Science.gov

Sample records for submarine volcano located

  1. Active submarine volcano sampled

    USGS Publications Warehouse

    Taylor, B.

    1983-01-01

    On June 4, 1982, two full dredge hauls of fresh lava were recovered from the upper flanks of Kavachi submarine volcano, Solomon Islands, in the western Pacific Ocean, from the water depths of 1,200 and 2,700 feet. the shallower dredge site was within 0.5 mile of the active submarine vent shown at the surface by an area of slick water, probably caused by gas emissions. Kavachi is a composite stratovolcano that has been observed to erupt every year or two for at least the last 30 years (see photographs). An island formed in 1952, 1961, 1965, and 1978; but, in each case, it rapidly eroded below sea level. The latest eruption was observed by Solair pilots during the several weeks up to and including May 18, 1982. 

  2. Comparative Study of Submarine Volcanoes and Small Venusian Volcanic Edifices

    NASA Astrophysics Data System (ADS)

    Komatsu, G.; Krempasky, M. C.

    1996-03-01

    The small volcanic edifices on Venus are important because of their common occurrence on the planet's surface. They normally range 0-10 km in diameter. An extensive inventory has been compiled for more than 2000 small edifices. Based on this inventory, it is estimated that there are about half million identifiable small volcanic edifices on the planet. This work also indicates that the small volcanic edifices' size frequency distribution is very similar to that of submarine volcanoes (seamounts) distributed on the East Pacific Rise. It has been suggested that submarine volcanoes, particularly flat-topped seamounts located off the coast of Hawaii, are analogous to "pancake domes" on Venus. However the detailed geomorphic analysis of seamounts located on the Mid-Atlantic Ridge and Pacific Ocean Basin indicates that submarine volcanoes are better analogs for small volcanic edifices.

  3. Long-term eruptive activity at a submarine arc volcano.

    PubMed

    Embley, Robert W; Chadwick, William W; Baker, Edward T; Butterfield, David A; Resing, Joseph A; de Ronde, Cornel E J; Tunnicliffe, Verena; Lupton, John E; Juniper, S Kim; Rubin, Kenneth H; Stern, Robert J; Lebon, Geoffrey T; Nakamura, Ko-ichi; Merle, Susan G; Hein, James R; Wiens, Douglas A; Tamura, Yoshihiko

    2006-05-25

    Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions have been indirect, made from surface vessels or made after the fact. We describe here direct observations and sampling of an eruption at a submarine arc volcano named NW Rota-1, located 60 km northwest of the island of Rota (Commonwealth of the Northern Mariana Islands). We observed a pulsating plume permeated with droplets of molten sulphur disgorging volcanic ash and lapilli from a 15-m diameter pit in March 2004 and again in October 2005 near the summit of the volcano at a water depth of 555 m (depth in 2004). A turbid layer found on the flanks of the volcano (in 2004) at depths from 700 m to more than 1,400 m was probably formed by mass-wasting events related to the eruption. Long-term eruptive activity has produced an unusual chemical environment and a very unstable benthic habitat exploited by only a few mobile decapod species. Such conditions are perhaps distinctive of active arc and hotspot volcanoes. PMID:16724063

  4. Long-term eruptive activity at a submarine arc volcano

    USGS Publications Warehouse

    Embley, R.W.; Chadwick, W.W.; Baker, E.T.; Butterfield, D.A.; Resing, J.A.; De Ronde, C. E. J.; Tunnicliffe, V.; Lupton, J.E.; Juniper, S.K.; Rubin, K.H.; Stern, R.J.; Lebon, G.T.; Nakamura, K.-I.; Merle, S.G.; Hein, J.R.; Wiens, D.A.; Tamura, Y.

    2006-01-01

    Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions have been indirect, made from surface vessels or made after the fact. We describe here direct observations and sampling of an eruption at a submarine arc volcano named NW Rota-1, located 60 km northwest of the island of Rota (Commonwealth of the Northern Mariana Islands). We observed a pulsating plume permeated with droplets of molten sulphur disgorging volcanic ash and lapilli from a 15-m diameter pit in March 2004 and again in October 2005 near the summit of the volcano at a water depth of 555 m (depth in 2004). A turbid layer found on the flanks of the volcano (in 2004) at depths from 700 m to more than 1,400 m was probably formed by mass-wasting events related to the eruption. Long-term eruptive activity has produced an unusual chemical environment and a very unstable benthic habitat exploited by only a few mobile decapod species. Such conditions are perhaps distinctive of active arc and hotspot volcanoes. ?? 2006 Nature Publishing Group.

  5. Voluminous submarine lava flows from Hawaiian volcanoes

    SciTech Connect

    Holcomb, R.T.; Moore, J.G.; Lipman, P.W.; Belderson, R.H.

    1988-05-01

    The GLORIA long-range sonar imaging system has revealed fields of large lava flows in the Hawaiian Trough east and south of Hawaii in water as deep as 5.5 km. Flows in the most extensive field (110 km long) have erupted from the deep submarine segment of Kilauea's east rift zone. Other flows have been erupted from Loihi and Mauna Loa. This discovery confirms a suspicion, long held from subaerial studies, that voluminous submarine flows are erupted from Hawaiian volcanoes, and it supports an inference that summit calderas repeatedly collapse and fill at intervals of centuries to millenia owing to voluminous eruptions. These extensive flows differ greatly in form from pillow lavas found previously along shallower segments of the rift zones; therefore, revision of concepts of volcano stratigraphy and structure may be required.

  6. Fluid Flow Patterns in a Submarine Volcano: Simulating the Hydrothermal Evolution of Brothers Volcano

    NASA Astrophysics Data System (ADS)

    Gruen, G.; de Ronde, C. E.; Driesner, T.; Heinrich, C. A.

    2010-12-01

    Brothers volcano is part of the southern Kermadec intra-oceanic arc located northeast of New Zealand, and is one of the world’s best-studied active submarine volcanoes. It provides insight into the complex subseafloor hydrology of a submarine arc volcano with evidence for different stages in its magmatic-hydrothermal evolution [1]. The volcanic edifice comprises an elongated caldera surrounding an asymmetrically centered post-collapse cone. While hydrothermal venting at the NW caldera wall is focused and dates back to at least 1,200 years, hydrothermal discharge at the cone summit is diffuse and considered to be significantly younger. Recent studies of regional seismicity and local harmonic tremor at Brothers volcano imply the existence of a hydrothermal fluid reservoir underneath the area of the present cone [2]. Using a combined finite element - finite volume method, we have computed multi-phase mass and heat transport with a process simulation scheme based on realistic fluid properties. We have used correlations that describe phase stability relations in the binary NaCl-H2O system up to 1000°C [3]. Our earlier results of generic fluid flow simulations showed that water depth and seafloor topography, together with crustal permeability and the relative contributions of seawater and magmatic fluids, are first-order physical parameters controlling the fluid flow patterns and the style of hydrothermal venting. In our more recent simulations, we use available data from Brothers volcano, including detailed bathymetry, physical and chemical measurements from different vent sites and information on the size and location of the subseafloor magma chamber(s). The implementation of two distinct magmatic stages (i.e., pre-cone vs. post-cone) shows that the topography of the volcanic edifice, in combination with the location and size of an underlying magma chamber, play an important role in the style and evolution of the hydrothermal system. [1] de Ronde, C. E. J., et al

  7. Integrated volcanologic and petrologic analysis of the 1650 AD eruption of Kolumbo submarine volcano, Greece

    NASA Astrophysics Data System (ADS)

    Cantner, Kathleen; Carey, Steven; Nomikou, Paraskevi

    2014-01-01

    Kolumbo submarine volcano, located 7 km northeast of Santorini, Greece in the Aegean Sea, last erupted in 1650 AD. Submarine and subaerial explosive activity lasted for a period of about four months and led to the formation of thick (~ 250 m) highly stratified pumice deposits on the upper crater walls as well as extensive pumice rafts that were dispersed throughout the southern Aegean Sea. Subaerial tephra fallout from eruption columns that breached the surface occurred as far east as Turkey.

  8. Submarine radial vents on Mauna Loa Volcano, Hawai'i

    USGS Publications Warehouse

    Wanless, V. Dorsey; Garcia, M.O.; Trusdell, F.A.; Rhodes, J.M.; Norman, M.D.; Weis, Dominique; Fornari, D.J.; Kurz, M.D.; Guillou, Herve

    2006-01-01

    A 2002 multibeam sonar survey of Mauna Loa's western flank revealed ten submarine radial vents and three submarine lava flows. Only one submarine radial vent was known previously. The ages of these vents are constrained by eyewitness accounts, geologic relationships, Mn-Fe coatings, and geochemical stratigraphy; they range from 128 years B.P. to possibly 47 ka. Eight of the radial vents produced degassed lavas despite eruption in water depths sufficient to inhibit sulfur degassing. These vents formed truncated cones and short lava flows. Two vents produced undegassed lavas that created “irregular” cones and longer lava flows. Compositionally and isotopically, the submarine radial vent lavas are typical of Mauna Loa lavas, except two cones that erupted alkalic lavas. He-Sr isotopes for the radial vent lavas follow Mauna Loa's evolutionary trend. The compositional and isotopic heterogeneity of these lavas indicates most had distinct parental magmas. Bathymetry and acoustic backscatter results, along with photography and sampling during four JASON2 dives, are used to produce a detailed geologic map to evaluate Mauna Loa's submarine geologic history. The new map shows that the 1877 submarine eruption was much larger than previously thought, resulting in a 10% increase for recent volcanism. Furthermore, although alkalic lavas were found at two radial vents, there is no systematic increase in alkalinity among these or other Mauna Loa lavas as expected for a dying volcano. These results refute an interpretation that Mauna Loa's volcanism is waning. The submarine radial vents and flows cover 29 km2 of seafloor and comprise a total volume of ∼2×109 m3 of lava, reinforcing the idea that submarine lava eruptions are important in the growth of oceanic island volcanoes even after they emerged above sea level.

  9. The 2014 Submarine Eruption of Ahyi Volcano, Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    Haney, M. M.; Chadwick, W.; Merle, S. G.; Buck, N. J.; Butterfield, D. A.; Coombs, M. L.; Evers, L. G.; Heaney, K. D.; Lyons, J. J.; Searcy, C. K.; Walker, S. L.; Young, C.; Embley, R. W.

    2014-12-01

    On April 23, 2014, Ahyi Volcano, a submarine cone in the Northern Mariana Islands (NMI), ended a 13-year-long period of repose with an explosive eruption lasting over 2 weeks. The remoteness of the volcano and the presence of several seamounts in the immediate area posed a challenge for constraining the source location of the eruption. Critical to honing in on the Ahyi area quickly were quantitative error estimates provided by the CTBTO on the backazimuth of hydroacoustic arrivals observed at Wake Island (IMS station H11). T-phases registered across the NMI seismic network at the rate of approximately 10 per hour until May 8 and were observed in hindsight at seismic stations on Guam and Chichijima. After May 8, sporadic T-phases were observed until May 17. Within days of the eruption onset, reports were received from NOAA research divers of hearing explosions underwater and through the hull on the ship while working on the SE coastline of Farallon de Pajaros (Uracas), a distance of 20 km NW of Ahyi. In the same area, the NOAA crew reported sighting mats of orange-yellow bubbles on the water surface and extending up to 1 km from the shoreline. Despite these observations, satellite images showed nothing unusual throughout the eruption. During mid-May, a later cruise leg on the NOAA ship Hi'ialakai that was previously scheduled in the Ahyi area was able to collect some additional data in response to the eruption. Preliminary multibeam sonar bathymetry and water-column CTD casts were obtained at Ahyi. Comparison between 2003 and 2014 bathymetry revealed that the minimum depth had changed from 60 m in 2003 to 75 m in 2014, and a new crater ~95 m deep had formed at the summit. Extending SSE from the crater was a new scoured-out landslide chute extending downslope to a depth of at least 2300 m. Up to 125 m of material had been removed from the head of the landslide chute and downslope deposits were up to 40 m thick. Significant particle plumes were detected at all three

  10. Hydrothermal Helium Plumes over Submarine Volcanoes of the Marianas Arc

    NASA Astrophysics Data System (ADS)

    Lupton, J. E.; Baker, E. T.; Embley, R. W.; Resing, J. E.; Massoth, G. J.; Nakamura, K.; Greene, R.; Walker, S.; Lebon, G.

    2003-12-01

    During February-March, 2003, as part of the Submarine Ring of Fire project funded by NOAA's Ocean Exploration Program, the R/V T.G. Thompson conducted a comprehensive survey of hydrothermal activity along 1200 km of the Mariana Arc from 13.5° N to 22.5° N [see Embley et al., EOS Trans. AGU, 2003]. Plume surveys were conducted in the water-column above ~50 submarine volcanoes using a CTD/rosette system. A total of 70 CTD casts were completed, and discrete water samples were collected for analysis of a variety of hydrothermal tracers, including 3He, CH4, CO2, H2S, Fe, Mn, pH, and suspended particles. Although shorebased analysis of the samples is still underway, preliminary results indicate that about 11 of the 50 submarine volcanoes surveyed are hydrothermally active. Because many of the Marianas Arc volcanoes rise to within 500 m of the sea surface, hydrothermal plume signals such as light attenuation (suspended particles) and temperature anomaly have limited utility due to masking by near surface effects. For this reason 3He, an unambiguous hydrothermal tracer, has been particularly useful for identifying which of the shallow arc volcanoes are hydrothermally active. Our expectation was that the water-column helium signal might be reduced at shallow depths due to ventilation into the atmosphere. However, we observed very high 3He enrichments at shallow depths both at Maug Islands and at NW Rota #1 (14° 36'N; 144° 46.5'E). The 3He enrichments were strongly correlated with changes in pH, Mn, and other hydrothermal tracers. The three Maug Islands mark the perimeter of a caldera formed by an explosive eruption, and a single hydrocast in the center of the caldera detected a robust helium plume at 120-200 m depth with δ 3He reaching a maximum of 250% at 150m depth. Analysis of the co-variation of [3He] vs. [4He] at Maug gave R/Ra = 6.6 for an estimate of the end-member helium isotope ratio (R = 3He/4He and Ra = Rair). This value falls well within the range of R

  11. The Chemistry of Hydrothermal venting at a Volcano "O", a large Submarine Volcano in the NE Lau Basin

    NASA Astrophysics Data System (ADS)

    Resing, J. A.; Baker, E. T.; Lupton, J. E.; Lilley, M. D.; Rubin, K. H.; Buck, N. J.

    2011-12-01

    Volcano O is located in the NE Lau basin in a highly extensional region between the Tonga arc and back arc. The NE Lau basin has the highest subduction rates on Earth [Bevis et al., 1995] and is Earth's fastest-opening back-arc basin [Zellmer and Taylor, 2001]. The NE Lau Basin contains abundant recent submarine volcanism with magma production likely driven by water released from the subducting slab and decompression associated with crustal extension. One manifestation of this abundant volcanism is Volcano O, one of the largest discrete active-submarine volcanoes on Earth. It is hard to classify this volcano is either arc or back arc because its location behind the magmatic arc is inconsistent with the eruption of dacitic lavas and highly acidic hydrothermal activity reported here. Volcano O has exhibited ongoing hydrothermal activity as documented in 2004 (Lupton pers. Comm.), 2006 [Kim et al., 2009], and in both 2008 and 2010 as presented here. In 2008 and 2010, we documented intense hydrothermal plumes in several locations in the caldera. The most intense hydrothermal plume was observed in 2010 directly above a small cone on the eastern side of the caldera. A camera tow across the cone revealed fresh blocky lavas with a hint of sulfur-rich waters surrounding the cone. Here we present data on the chemistry of hydrothermal plumes at Volcano O. Of particular interest is a hydrocast conducted directly above the cone. During this hydrocast we collected fluids rich in Fe (≤13,000nM), Mn (≤665nM), particulate Al (≤1500nM), particulate sulfur (≤18000nM), and with large decreases in pH (≤0.9 pH units). These anomalies are extraordinarily large and are much greater than the Fe and Mn levels observed by Kim et al. These chemical enrichments and depletions strongly suggest that Volcano O is actively degassing SO2 which, in turn, suggests that the magma chamber must be fairly shallow. This may indicate an active state of cone building at Volcano O. In addition to

  12. Near-specular acoustic scattering from a buried submarine mud volcano.

    PubMed

    Gerig, Anthony L; Holland, Charles W

    2007-12-01

    Submarine mud volcanoes are objects that form on the seafloor due to the emission of gas and fluidized sediment from the Earth's interior. They vary widely in size, can be exposed or buried, and are of interest to the underwater acoustics community as potential sources of active sonar clutter. Coincident seismic reflection data and low frequency bistatic scattering data were gathered from one such buried mud volcano located in the Straits of Sicily. The bistatic data were generated using a pulsed piston source and a 64-element horizontal array, both towed over the top of the volcano. The purpose of this work was to appropriately model low frequency scattering from the volcano using the bistatic returns, seismic bathymetry, and knowledge of the general geoacoustic properties of the area's seabed to guide understanding and model development. Ray theory, with some approximations, was used to model acoustic propagation through overlying layers. Due to the volcano's size, scattering was modeled using geometric acoustics and a simple representation of volcano shape. Modeled bistatic data compared relatively well with experimental data, although some features remain unexplained. Results of an inversion for the volcano's reflection coefficient indicate that it may be acoustically softer than expected. PMID:18247739

  13. Near-specular acoustic scattering from a buried submarine mud volcano.

    PubMed

    Gerig, Anthony L; Holland, Charles W

    2007-12-01

    Submarine mud volcanoes are objects that form on the seafloor due to the emission of gas and fluidized sediment from the Earth's interior. They vary widely in size, can be exposed or buried, and are of interest to the underwater acoustics community as potential sources of active sonar clutter. Coincident seismic reflection data and low frequency bistatic scattering data were gathered from one such buried mud volcano located in the Straits of Sicily. The bistatic data were generated using a pulsed piston source and a 64-element horizontal array, both towed over the top of the volcano. The purpose of this work was to appropriately model low frequency scattering from the volcano using the bistatic returns, seismic bathymetry, and knowledge of the general geoacoustic properties of the area's seabed to guide understanding and model development. Ray theory, with some approximations, was used to model acoustic propagation through overlying layers. Due to the volcano's size, scattering was modeled using geometric acoustics and a simple representation of volcano shape. Modeled bistatic data compared relatively well with experimental data, although some features remain unexplained. Results of an inversion for the volcano's reflection coefficient indicate that it may be acoustically softer than expected.

  14. Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system.

    PubMed

    Rizzo, Andrea Luca; Caracausi, Antonio; Chavagnac, Valèrie; Nomikou, Paraskevi; Polymenakou, Paraskevi N; Mandalakis, Manolis; Kotoulas, Georgios; Magoulas, Antonios; Castillo, Alain; Lampridou, Danai

    2016-01-01

    Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report (3)He/(4)He measurements in CO2-dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a (3)He/(4)He signature of at least 7.0 Ra (being Ra the (3)He/(4)He ratio of atmospheric He equal to 1.39×10(-6)), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like (3)He/(4)He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano. PMID:27311383

  15. Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system.

    PubMed

    Rizzo, Andrea Luca; Caracausi, Antonio; Chavagnac, Valèrie; Nomikou, Paraskevi; Polymenakou, Paraskevi N; Mandalakis, Manolis; Kotoulas, Georgios; Magoulas, Antonios; Castillo, Alain; Lampridou, Danai

    2016-06-17

    Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report (3)He/(4)He measurements in CO2-dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a (3)He/(4)He signature of at least 7.0 Ra (being Ra the (3)He/(4)He ratio of atmospheric He equal to 1.39×10(-6)), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like (3)He/(4)He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano.

  16. Environmental monitoring of El Hierro Island submarine volcano, by combining low and high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Eugenio, F.; Martin, J.; Marcello, J.; Fraile-Nuez, E.

    2014-06-01

    El Hierro Island, located at the Canary Islands Archipelago in the Atlantic coast of North Africa, has been rocked by thousands of tremors and earthquakes since July 2011. Finally, an underwater volcanic eruption started 300 m below sea level on October 10, 2011. Since then, regular multidisciplinary monitoring has been carried out in order to quantify the environmental impacts caused by the submarine eruption. Thanks to this natural tracer release, multisensorial satellite imagery obtained from MODIS and MERIS sensors have been processed to monitor the volcano activity and to provide information on the concentration of biological, chemical and physical marine parameters. Specifically, low resolution satellite estimations of optimal diffuse attenuation coefficient (Kd) and chlorophyll-a (Chl-a) concentration under these abnormal conditions have been assessed. These remote sensing data have played a fundamental role during field campaigns guiding the oceanographic vessel to the appropriate sampling areas. In addition, to analyze El Hierro submarine volcano area, WorldView-2 high resolution satellite spectral bands were atmospherically and deglinted processed prior to obtain a high-resolution optimal diffuse attenuation coefficient model. This novel algorithm was developed using a matchup data set with MERIS and MODIS data, in situ transmittances measurements and a seawater radiative transfer model. Multisensor and multitemporal imagery processed from satellite remote sensing sensors have demonstrated to be a powerful tool for monitoring the submarine volcanic activities, such as discolored seawater, floating material and volcanic plume, having shown the capabilities to improve the understanding of submarine volcanic processes.

  17. Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system

    PubMed Central

    Rizzo, Andrea Luca; Caracausi, Antonio; Chavagnac, Valèrie; Nomikou, Paraskevi; Polymenakou, Paraskevi N.; Mandalakis, Manolis; Kotoulas, Georgios; Magoulas, Antonios; Castillo, Alain; Lampridou, Danai

    2016-01-01

    Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report 3He/4He measurements in CO2–dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a 3He/4He signature of at least 7.0 Ra (being Ra the 3He/4He ratio of atmospheric He equal to 1.39×10−6), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like 3He/4He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano. PMID:27311383

  18. Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system

    NASA Astrophysics Data System (ADS)

    Rizzo, Andrea Luca; Caracausi, Antonio; Chavagnac, Valèrie; Nomikou, Paraskevi; Polymenakou, Paraskevi N.; Mandalakis, Manolis; Kotoulas, Georgios; Magoulas, Antonios; Castillo, Alain; Lampridou, Danai

    2016-06-01

    Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report 3He/4He measurements in CO2–dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a 3He/4He signature of at least 7.0 Ra (being Ra the 3He/4He ratio of atmospheric He equal to 1.39×10‑6), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like 3He/4He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano.

  19. High-resolution seismic structure analysis of an active submarine mud volcano area off SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Hsiao-Shan; Hsu, Shu-Kun; Tsai, Wan-Lin; Tsai, Ching-Hui; Lin, Shin-Yi; Chen, Song-Chuen

    2015-04-01

    In order to better understand the subsurface structure related to an active mud volcano MV1 and to understand their relationship with gas hydrate/cold seep formation, we conducted deep-towed side-scan sonar (SSS), sub-bottom profiler (SBP), multibeam echo sounding (MBES), and multi-channel reflection seismic (MCS) surveys off SW Taiwan from 2009 to 2011. As shown in the high-resolution sub-bottom profiler and EK500 sonar data, the detailed structures reveal more gas seeps and gas flares in the study area. In addition, the survey profiles show several submarine landslides occurred near the thrust faults. Based on the MCS results, we can find that the MV1 is located on top of a mud diapiric structure. It indicates that the MV1 has the same source as the associated mud diapir. The blanking of the seismic signal may indicate the conduit for the upward migration of the gas (methane or CO2). Therefore, we suggest that the submarine mud volcano could be due to a deep source of mud compressed by the tectonic convergence. Fluids and argillaceous materials have thus migrated upward along structural faults and reach the seafloor. The gas-charged sediments or gas seeps in sediments thus make the seafloor instable and may trigger submarine landslides.

  20. H2O Contents of Submarine and Subaerial Silicic Pyroclasts from Oomurodashi Volcano, Northern Izu-Bonin Arc

    NASA Astrophysics Data System (ADS)

    McIntosh, I. M.; Tani, K.; Nichols, A. R.

    2014-12-01

    Oomurodashi volcano is an active shallow submarine silicic volcano in the northern Izu-Bonin Arc, located ~20 km south of the inhabited active volcanic island of Izu-Oshima. Oomurodashi has a large (~20km diameter) flat-topped summit located at 100 - 150 metres below sea level (mbsl), with a small central crater, Oomuro Hole, located at ~200 mbsl. Surveys conducted during cruise NT12-19 of R/V Natsushima in 2012 using the remotely-operated vehicle (ROV) Hyper-Dolphin revealed that Oomuro Hole contains numerous active hydrothermal vents and that the summit of Oomurodashi is covered by extensive fresh rhyolitic lava and pumice clasts with little biogenetic or manganese cover, suggesting recent eruption(s) from Oomuro Hole. Given the shallow depth of the volcano summit, such eruptions are likely to have generated subaerial eruption columns. A ~10ka pumiceous subaerial tephra layer on the neighbouring island of Izu-Oshima has a similar chemical composition to the submarine Oomurodashi rocks collected during the NT12-19 cruise and is thought to have originated from Oomurodashi. Here we present FTIR measurements of the H2O contents of rhyolitic pumice from both the submarine deposits sampled during ROV dives and the subaerial tephra deposit on Izu-Oshima, in order to assess magma degassing and eruption processes occurring during shallow submarine eruptions.

  1. A Miocene submarine volcano at Low Layton, Jamaica

    NASA Technical Reports Server (NTRS)

    Wadge, G.

    1982-01-01

    A submarine fissure eruption of Upper Miocene age produced a modest volume of alkaline basalt at Low Layton, on the north coast of Jamaica. The eruption occurred in no more than a few hundred meters of water and produced a series of hyaloclastites, pillow breccias and pillow lavas, massive lavas, and dikes with an ENE en echelon structure. The volcano lies on the trend of one of the island's major E-W strike-slip fault zones; the Dunavale Fault Zone. The K-Ar age of the eruption of 9.5 plus or minus 0.5 Ma. B.P. corresponds to an extension of the Mid-Cayman Rise spreading center inferred from magnetic anomalies and bathymetry of the Cayman Trough to the north and west of Jamaica. The Low Layton eruption was part of the response of the strike-slip fault systems adjacent to this spreading center during this brief episode of tectonic readjustment.

  2. Remote Analysis of Grain Size Characteristic in Submarine Pyroclastic Deposits from Kolumbo Volcano, Greece

    NASA Astrophysics Data System (ADS)

    Smart, C.; Whitesell, D. P.; Roman, C.; Carey, S.

    2011-12-01

    Grain size characteristics of pyroclastic deposits provide valuable information about source eruption energetics and depositional processes. Maximum size and sorting are often used to discriminate between fallout and sediment gravity flow processes during explosive eruptions. In the submarine environment the collection of such data in thick pyroclastic sequences is extremely challenging and potentially time consuming. A method has been developed to extract grain size information from stereo images collected by a remotely operated vehicle (ROV). In the summer of 2010 the ROV Hercules collected a suite of stereo images from a thick pumice sequence in the caldera walls of Kolumbo submarine volcano located about seven kilometers off the coast of Santorini, Greece. The highly stratified, pumice-rich deposit was likely created by the last explosive eruption of the volcano that took place in 1650 AD. Each image was taken from a distance of only a few meters from the outcrop in order to capture the outlines of individual clasts with relatively high resolution. Mosaics of individual images taken as the ROV transected approximately 150 meters of vertical outcrop were used to create large-scale vertical stratigraphic columns that proved useful for overall documentation of the eruption sequence and intracaldera correlations of distinct tephra units. Initial image processing techniques, including morphological operations, edge detection, shape and size estimation were implemented in MatLab and applied to a subset of individual images of the mosiacs. A large variety of algorithms were tested in order to best discriminate the outlines of individual pumices. This proved to be challenging owing to the close packing and overlapping of individual pumices. Preliminary success was achieved in discriminating the outlines of the large particles and measurements were carried out on the largest clasts present at different stratigraphic levels. In addition, semi-quantitative analysis of the

  3. Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system

    NASA Astrophysics Data System (ADS)

    Rizzo, Andrea; Caracausi, Antonio; Chavagnac, Valérie; Nomikou, Paraskevi; Polymenakou, Paraskevi; Mandalakis, Manolis; Kotoulas, Georgios; Magoulas, Antonios; Castillo, Alain

    2016-04-01

    Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important ource of mantle-derived gases. These gases are fundamental for the comprehension of mantle characteristics in key sectors where subaerial volcanism is missing or strongly modified by mixing with crustal and atmospheric components. Though, the study of submarine volcanic areas remains a challenge due to their hazardousness and sea depth. Here, we report 3He/4He measurements in CO2-dominated gases discharged at 500 m below the sea level from the high-temperature (~220°C) hydrothermal system of Kolumbo submarine volcano, located 7 km northeast off Santorini Island in the central part of Hellenic Volcanic Arc (HVA). For the first time, we demonstrate that the mantle below Kolumbo and Santorini has a 3He/4He signature of at least 7.1 Ra (being Ra the 3He/4He ratio of atmospheric He equal to 1.39×10-6), 3 Ra units higher than actually known for Santorini gases-rocks. This isotopic ratio is also the highest measured across HVA and is indicative of the direct degassing of a MORB-like mantle through lithospheric faults or a possible slab tear. We finally highlight that the 3He/4He ratio has been increasing since 2010 (ΔRa=0.3), which implies an enhanced magmatic activity beneath Kolumbo.

  4. Looking for Larvae Above an Erupting Submarine Volcano, NW Rota-1, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Hanson, M.; Beaulieu, S.; Tunnicliffe, V.; Chadwick, W.; Breuer, E. R.

    2015-12-01

    In 2009 the first marine protected areas for deep-sea hydrothermal vents in U.S. waters were established as part of the Volcanic Unit of the Marianas Trench Marine National Monument. In this region, hydrothermal vents are located along the Mariana Arc and back-arc spreading center. In particular hydrothermal vents are located near the summit of NW Rota-1, an active submarine volcano on the Mariana Arc which was erupting between 2003 through 2010 and ceased as of 2014. In late 2009, NW Rota-1 experienced a massive landslide decimating the habitat on the southern side of the volcano. This presented an enormous natural disturbance to the community. This project looked at zooplankton tow samples taken from the water column above NW Rota-1 in 2010, searching specifically for larvae which have the potential to recolonize the sea floor after such a major disturbance. We focused on samples for which profiles with a MAPR sensor indicated hydrothermal plumes in the water column. Samples were sorted in entirety into coarse taxa, and then larvae were removed for DNA barcoding. Overall zooplankton composition was dominated by copepods, ostracods, and chaetognaths, the majority of which are pelagic organisms. Comparatively few larvae of benthic invertebrates were found, but shrimp, gastropod, barnacle, and polychaete larvae did appear in low numbers in the samples. Species-level identification obtained via genetic barcoding will allow for these larvae to be matched to species known to inhabit the benthic communities at NW Rota-1. Identified larvae will give insight into the organisms which can re-colonize the seafloor vent communities after a disturbance such as the 2009 landslide. Communities at hydrothermal vents at other submarine volcanoes in the Monument also can act as sources for these planktonic, recolonizing larvae. As the microinvertebrate biodiversity in the Monument has yet to be fully characterized, our project also provides an opportunity to better describe both

  5. Volcano-tectonic evolution of the polygenetic Kolumbo submarine volcano/Santorini (Aegean Sea)

    NASA Astrophysics Data System (ADS)

    Hübscher, Christian; Ruhnau, M.; Nomikou, P.

    2015-01-01

    Here we show for the first time the 3D-structural evolution of an explosive submarine volcano by means of reflection seismic interpretation. Four to five vertically stacked circular and cone-shaped units consisting mainly of volcaniclastics build the Kolumbo underwater volcano which experienced its first eruption > 70 ka ago and its last explosive eruption 1650 AD, 7 km NE of Santorini volcano (southern Aegean Sea). The summed volume of volcaniclastics is estimated to range between 13-22 km3. The entire Kolumbo volcanic complex has a height of ≥ 1 km and a diameter of ≥ 11 km. All volcaniclastic units reveal the same transparent reflection pattern strongly suggesting that explosive underwater volcanism was the prevalent process. Growth faults terminate upwards at the base of volcaniclastic units, thus representing a predictor to an eruption phase. Similarities in seismic reflection pattern between Kolumbo and near-by volcanic cones imply that the smaller cones evolved through explosive eruptions as well. Hence, the central Aegean Sea experienced several more explosive eruptions (≥ 23) than previously assumed, thus justifying further risk assessment. However, the eruption columns from the smaller volcanic cones did not reach the air and- consequently - no sub-aerial pyroclastic surge was created. The Anydros basin that hosts Kolumbo volcanic field opened incrementally NW to SE and parallel to the Pliny and Strabo trends during four major tectonic pulses prior to the onset of underwater volcanism.

  6. Rapid rates of growth and collapse of Monowai submarine volcano in the Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Watts, A. B.; Peirce, C.; Grevemeyer, I.; Paulatto, M.; Stratford, W.; Bassett, D.; Hunter, J. A.; Kalnins, L. M.; de Ronde, C. E. J.

    2012-07-01

    Most of Earth's volcanoes are under water. As a result of their relative inaccessibility, little is known of the structure and evolution of submarine volcanoes. Advances in navigation and sonar imaging techniques have made it possible to map submarine volcanoes in detail, and repeat surveys allow the identification of regions where the depth of the sea floor is actively changing. Here we report the results of a bathymetric survey of Monowai submarine volcano in the Tonga-Kermadec Arc, which we mapped twice within 14 days. We found marked differences in bathymetry between the two surveys, including an increase in seafloor depth up to 18.8m and a decrease in depth up to 71.9m. We attribute the depth increase to collapse of the volcano summit region and the decrease to growth of new lava cones and debris flows. Hydroacoustic T-wave data reveal a 5-day-long swarm of seismic events with unusually high amplitude between the surveys, which directly link the depth changes to explosive activity at the volcano. The collapse and growth rates implied by our data are extremely high, compared with measured long-term growth rates of the volcano, demonstrating the pulsating nature of submarine volcanism and highlighting the dynamic nature of the sea floor.

  7. Distribution of tephra from the 1650 AD submarine eruption of Kolumbo volcano, Greece

    NASA Astrophysics Data System (ADS)

    Fuller, S. A.; Carey, S.; Nomikou, P.

    2013-12-01

    Kolumbo submarine volcano, located 7 km northeast of Santorini in the Aegean Sea, last erupted in 1650 AD resulting in about 70 fatalities on Thera from gas discharge and significant coastal destruction from tsunamis. Extensive pumice rafts were reported over a large area surrounding Santorini, extending as far south as Crete. Tephra from the 1650 AD submarine eruption has been correlated in sediment box cores using a combination of mineralogy and major element composition of glass shards. The biotite-bearing rhyolite of Kolumbo can be readily discriminated from other silicic pyroclastics derived from the main Santorini complex. In general the tephra deposits are very fine grained (silt to fine sand-size), medium gray in color, and covered by about 10 cms of brown hemipelagic sediment. This corresponds to an average background sedimentation rate of 29 cm/kyr. The distribution of the 1650 AD Kolumbo tephra extends over an area larger than previously inferred from seismic profiles on the volcano's slopes and in adjacent basins. The cores indicate tephra deposits at least 19 km from the caldera, more than double the approximate 9 km inferred from seismic data. The preferential occurrence of the tephra within basins and sedimentological features such as cross bedding and laminations suggests that emplacement was dominated by sediment gravity flows generated from submarine and subaerial eruption plumes. We suggest that generation of the sediment gravity flows took place by collapse of submarine eruption columns and by Rayleigh-Taylor instabilities that formed on the sea surface as subaerial fallout accumulated from parts of the columns that breached the surface. Additionally, SEM imaging reveals particle morphologies that can be attributed to fragmentation by both primary volatile degassing (bubble wall shards) and phreatomagmatic activity (blocky equant grains). It is likely that phreatomagmatic activity became more important in the latter stages of the eruptive

  8. Numerical tsunami hazard assessment of the submarine volcano Kick 'em Jenny in high resolution are

    NASA Astrophysics Data System (ADS)

    Dondin, Frédéric; Dorville, Jean-Francois Marc; Robertson, Richard E. A.

    2016-04-01

    Landslide-generated tsunami are infrequent phenomena that can be potentially highly hazardous for population located in the near-field domain of the source. The Lesser Antilles volcanic arc is a curved 800 km chain of volcanic islands. At least 53 flank collapse episodes have been recognized along the arc. Several of these collapses have been associated with underwater voluminous deposits (volume > 1 km3). Due to their momentum these events were likely capable of generating regional tsunami. However no clear field evidence of tsunami associated with these voluminous events have been reported but the occurrence of such an episode nowadays would certainly have catastrophic consequences. Kick 'em Jenny (KeJ) is the only active submarine volcano of the Lesser Antilles Arc (LAA), with a current edifice volume estimated to 1.5 km3. It is the southernmost edifice of the LAA with recognized associated volcanic landslide deposits. The volcano appears to have undergone three episodes of flank failure. Numerical simulations of one of these episodes associated with a collapse volume of ca. 4.4 km3 and considering a single pulse collapse revealed that this episode would have produced a regional tsunami with amplitude of 30 m. In the present study we applied a detailed hazard assessment on KeJ submarine volcano (KeJ) form its collapse to its waves impact on high resolution coastal area of selected island of the LAA in order to highlight needs to improve alert system and risk mitigation. We present the assessment process of tsunami hazard related to shoreline surface elevation (i.e. run-up) and flood dynamic (i.e. duration, height, speed...) at the coast of LAA island in the case of a potential flank collapse scenario at KeJ. After quantification of potential initial volumes of collapse material using relative slope instability analysis (RSIA, VolcanoFit 2.0 & SSAP 4.5) based on seven geomechanical models, the tsunami source have been simulate by St-Venant equations-based code

  9. Collapse and Re-growth of Monowai Submarine Volcano, Kermadec Arc, 1998-2004

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Wright, I. C.; de Ronde, C. E.; Reymond, D.; Hyvernaud, O.; Bannister, S.; Stoffers, P.

    2005-12-01

    Monowai submarine volcano is located at 25°53.5'S/177°11.1'W, about 1400 km NNE of New Zealand along the Kermadec arc, and consists of a shallow symmetrical cone with a summit depth of ~100 m. Monowai is one of the most active submarine volcanoes in the Kermadec arc, based on visual reports from overflights, oceanographic surveys of hydrothermal plumes, and seismoacoustic monitoring from French Polynesia and elsewhere. Since the late 1970's, Monowai has been the source of frequent swarms of acoustic T-wave events every few years. On 24 May 2002 there was a particularly large seismoacoustic event with a duration of 6-8 minutes and an exceptional amplitude that was 4-5 times larger than any other T-wave signal recorded from Monowai. Bathymetric surveys of Monowai that bracket this event were collected with multibeam sonars in 1998 and 2004 by R/V Sonne (Hydrosweep) and R/V Tangaroa (EM300), respectively. A new collapse feature is apparent on the SE side of the volcano in the 2004 bathymetry. The two surveys were compared using a quantitative technique that has been used for documenting depth changes due to volcanic eruptions on mid-ocean ridges. The results of this comparison show that the summit depth of Monowai changed from 69 m below sealevel in 1998 to 135 m in 2004, a difference of -66 m, and the location of the shallowest point moved ~200 m to the NNW. However, the maximum depth change between the surveys is -105 m and is located near the 1998-summit, which in 2004 is south of the new headwall scarp on the SE flank of the volcano. The total area of significant depth change is 1.26 x 106 m2, and the decrease in volume is 6.12 x 107 m3 (or 0.06 km3). From the distribution of the depth changes it is also clear that two things occurred between the surveys: removal of volume from slope failure and the subsequent addition of volume from an eruptive vent within the new slide scar. Therefore, the volume removed by slope failure was probably closer to 0.1 km3 whereas

  10. The growth rate of submarine volcanoes on the South Honshu and East Mariana ridges — Comments

    NASA Astrophysics Data System (ADS)

    Jackson, Michael C.; Fryer, Patricia

    1991-04-01

    Growth rates, recently reported for eleven submarine volcanoes of the Mariana arc, are probably in error by several orders of magnitude. The reported growth rates are based solely on comparison of bathymetric surveys done by different methods over a 15-20-year time span. We have additional data on three of the volcanoes which argue against the inferred high growth rates. A detailed seismic reflection survey of one edifice (Fukujin Seamount) reveals that it has a very sharp peak which would be difficult to detect by more regional-scale sonar surveys. Examination of side-scan sonar images and bottom photography, and the recovery of highly weathered rocks in dredge hauls from another volcano (Kasuga Seamount), which is presumed to have grown almost 200 m in height in the last 17 years on the basis of bathymetric surveys, show it to be most likely extinct. Alvin submersible dives, as well as bottom photography and sonar images, on a third seamount (South Kasuga) show processes at its summit to be mainly erosional rather than constructional even though it is considered to be active. The inferred average growth rates of 15 m/y in height for six of the eleven volcanoes located in the northernmost part of the Mariana arc imply a volumetric volcanic production rate for this 500-km-long section of the arc of up to 9 km 3/y which exceeds the estimated global rate for all subduction zones. We believe that navigational errors and lack of total coverage over the summits of these seamounts are the main causes of the apparent differences in their minimum shoal depths between different survey methods.

  11. Bubble Plumes above erupting NW Rota-1 submarine volcano, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Chadwick, B.; Merle, S. G.; Embley, R. W.; Buck, N.; Resing, J. A.; Leifer, I.

    2013-12-01

    NW Rota-1 is a submarine volcano in the Mariana volcanic arc with a summit depth of 517 m, located ~100 km north of Guam. Underwater explosive eruptions driven by magmatic gases were first witnessed here in 2004 and the volcano has remained persistently active ever since. During a March 2010 expedition to NW Rota-1 with the remotely operated vehicle Jason, we observed intermittent explosive activity at five distinct eruptive vents along a line 100-m long near the summit of the volcano (550-590 m depth). The continuous but variable eruptive activity produced CO2 bubble plumes that rose in the water column over the volcano and could be readily imaged by sonar because they provide excellent acoustic reflectors. This study compares the manifestations of NW Rota's eruptive activity as measured by several independent methods, including: (1) an EM122 multibeam sonar system (12 kHz) on the R/V Kilo Moana that imaged bubble plumes in the water column over the volcano, (2) hydrophone data that recorded the sounds of the variable eruptive activity, and (3) visual observations of the activity at the eruptive vents on the seafloor from Jason. Throughout the 2010 expedition numerous passes were made over the volcano's summit to image the bubble plumes with the EM122 multibeam sonar, in order to capture the variability of the plumes over time and to relate them to the eruptive output of the volcano. The mid-water sonar dataset totals >95 hours of observations over a 12-day period. Analysis of the EM122 dataset shows: (1) bubble plumes were visible in the water column on every pass over the summit, (2) separate plumes were resolvable from up to 4 of the 5 eruptive vents at times, (3) plume heights and intensities were variable with time, (4) the highest observed bubble plume rise height was 415 meters above the seafloor to within 175 m of the ocean surface, while lower amplitude wisps rose to heights <100 m from the surface, (5) most of the bubble plumes were deflected to the WSW

  12. Predicting the Timing and Location of the next Hawaiian Volcano

    ERIC Educational Resources Information Center

    Russo, Joseph; Mattox, Stephen; Kildau, Nicole

    2010-01-01

    The wealth of geologic data on Hawaiian volcanoes makes them ideal for study by middle school students. In this paper the authors use existing data on the age and location of Hawaiian volcanoes to predict the location of the next Hawaiian volcano and when it will begin to grow on the floor of the Pacific Ocean. An inquiry-based lesson is also…

  13. Argon-40: excess in submarine pillow basalts from kilauea volcano, hawaii.

    PubMed

    Dalrymple, G B; Moore, J G

    1968-09-13

    Submarine pillow basalts from Kilauea Volcano contain excess radiogenic argon-40 and give anomalously high potassium-argon ages. Glassy rims of pillows show a systematic increase in radiogenic argon-40 with depth, and a pillow from a depth of 2590 meters shows a decrease in radiogenic argon40 inward from the pillow rim. The data indicate that the amount of excess radiogenic argon-40 is a direct function of both hydrostatic pressure and rate of cooling, and that many submarine basalts are not suitable for potassium-argon dating. PMID:17812284

  14. Argon-40: Excess in submarine pillow basalts from Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Brent, Dalrymple G.; Moore, J.G.

    1968-01-01

    Submarine pillow basalts from Kilauea Volcano contain excess radiogenic argon-40 and give anomalously high potassium-argon ages. Glassy rims of pillows show a systematic increase in radiogenic argon-40 with depth, and a pillow from a depth of 2590 meters shows a decrease in radiogenic argon-40 inward from the pillow rim. The data indicate that the amount of excess radiogenic argon-40 is a direct function of both hydrostatic pressure and rate of cooling, and that many submarine basalts are not suitable for potassium-argon dating.

  15. The INGV's new OBS/H: Analysis of the signals recorded at the Marsili submarine volcano

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Antonino; D'Anna, Giuseppe; Luzio, Dario; Mangano, Giorgio

    2009-05-01

    The ocean bottom seismometer with hydrophone deployed on the flat top of the Marsili submarine volcano (790 m deep) by the Gibilmanna OBS Lab (CNT-INGV) from 12th to 21st July, 2006, recorded more than 1000 transient seismic signals. Nineteen of these signals were associated with tectonic earthquakes: 1 teleseismic, 8 regional (located by INGV) and 10 small local seismic events (non located earthquakes). The regional events were used to determine sensor orientation. By comparing the signals recorded with typical volcanic seismic activity, we were able to group all the other signals into three categories: 817 volcano-tectonic type B (VT-B) events, 159 occurrences of high frequency tremor (HFT) and 32 short duration events (SDE). Small-magnitude VT-B swarms, having a frequency band of 2-6 Hz and a mean length of about 30 s, were almost all recorded during the first 7 days. During the last 2 days, the OBS/H mainly recorded HFT events with frequencies of over 40 Hz and of a few minutes in length. Signals that have similar features in frequency and time domain are generally associated with hydrothermal activity. During the last two days a signal was recorded that had a frequency content similar to that of VT-B events was recorded. It will be referred to as continuous volcanic tremor (CVT). The SDE signals, characterized by a quasi-monochromatic waveform and having an exponential decaying envelope, may have been generated by oscillations of resonant bodies excited by magmatic or hydrothermal activity. By applying polarization and parametric spectral analyses, we inferred that the VT-B were probably multi P-phase events having shallow sources that were situated in narrow azimuthal windows in relation to the positions of the OBS/H. The parametric spectral analysis of the SDE signals allowed us to determine their dominant complex frequencies with high accuracy; these frequencies are distributed in two distinct clusters on the complex plane.

  16. Lateral Dispersion of Volcanic Ash From the Flanks of an Actively Erupting Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Baker, E. T.; Resing, J. A.; Lebon, G. T.; Lupton, J. E.; Greene, R. R.

    2006-12-01

    NW Rota-1 is an actively erupting submarine volcano along the Mariana Arc, rising some 2500 m from the local seafloor. Eruptions at Brimstone Pit, located about 30 m below the summit on the south side of the volcano at 550 m water depth, have been directly observed since 2004. Water column surveys (using CTD-O vertical cast and tow methods) in 2003, 2004 and 2006 mapped the distribution of both persistent and variable particle plumes over the summit and down the flanks. In all years, there was a non-buoyant laterally dispersing plume over the summit that was optically intense and very thin (25-30 m plume maximum), measurable up to 2-3 km from the summit. The plume was most intense in 2003 and 2004 with dNTU values reaching 5 (the upper limit of the optical backscatter sensor). High concentrations of particulate sulfur in the plume contribute to these unusually intense optical signals, as sulfur particles are efficient optical backscatters. The plume maxima depth has steadily declined over 3 years: 460 m in 2003, 485 m in 2004, and 505-530 m in 2006. In 2003, both hydrothermal and volcanic components were detected in the plume, so it is not certain that the 2003 data represent pre-eruption conditions. Deeper layers of turbidity were absent in 2003, but were observed in multiple layers surrounding the volcano in 2004 and 2006 from depths of about 700 m extending to >2500 m, and were detectable at distances up to 18 km from the summit. Microscopy and chemical analysis indicates that the particles in these layers are overwhelmingly glass fragments rather than hydrothermal precipitates. Over the scale of 3-6 days, repeat tows showed significant decreases in particle concentrations, implying some of the particles settled rapidly from these plumes. The most likely source of these layers is gravity flow of volcanic ash down the flanks, fed by violent eruptions at the summit. Detachment from the seafloor may be controlled by turbulence from current flow or internal waves

  17. Submarine venting of liquid carbon dioxide on a Mariana Arc volcano

    NASA Astrophysics Data System (ADS)

    Lupton, John; Butterfield, David; Lilley, Marvin; Evans, Leigh; Nakamura, Ko-Ichi; Chadwick, William; Resing, Joseph; Embley, Robert; Olson, Eric; Proskurowski, Giora; Baker, Edward; de Ronde, Cornel; Roe, Kevin; Greene, Ronald; Lebon, Geoff; Young, Conrad

    2006-08-01

    Although CO2 is generally the most abundant dissolved gas found in submarine hydrothermal fluids, it is rarely found in the form of CO2 liquid. Here we report the discovery of an unusual CO2-rich hydrothermal system at 1600-m depth near the summit of NW Eifuku, a small submarine volcano in the northern Mariana Arc. The site, named Champagne, was found to be discharging two distinct fluids from the same vent field: a 103°C gas-rich hydrothermal fluid and cold (<4°C) droplets composed mainly of liquid CO2. The hot vent fluid contained up to 2.7 moles/kg CO2, the highest ever reported for submarine hydrothermal fluids. The liquid droplets were composed of ˜98% CO2, ˜1% H2S, with only trace amounts of CH4 and H2. Surveys of the overlying water column plumes indicated that the vent fluid and buoyant CO2 droplets ascended <200 m before dispersing into the ocean. Submarine venting of liquid CO2 has been previously observed at only one other locality, in the Okinawa Trough back-arc basin (Sakai et al., 1990a), a geologic setting much different from NW Eifuku, which is a young arc volcano. The discovery of such a high CO2 flux at the Champagne site, estimated to be about 0.1% of the global MOR carbon flux, suggests that submarine arc volcanoes may play a larger role in oceanic carbon cycling than previously realized. The Champagne field may also prove to be a valuable natural laboratory for studying the effects of high CO2 concentrations on marine ecosystems.

  18. Transport and Deposition During The 2012 Submarine Explosive Eruption of Havre Volcano

    NASA Astrophysics Data System (ADS)

    Soule, S. A.; Carey, R.; Jones, M.; Ikegami, F.; Yoerger, D.; Fornari, D. J.

    2015-12-01

    Havre Volcano in the Kermadec Arc experienced a large eruption in 2012. The eruption was identified when ships in the area intersected a pumice raft, which was subsequently tracked by NASA MODIS satellite imagery. In 2015, an NSF-sponsored research cruise to the area conducted AUV and ROV dives to map and sample the deposits of this eruption. This presentation describes the high-resolution mapping data and seafloor observations that illustrate the processes of lava and pyroclast transport and deposition. The National Deep Submergence Facility (NDSF) AUV Sentry collected multibeam bathymetry data over the Havre caldera rim and floor - an area of 56 km2 - at a resolution of 1m. In addition, Sentry collected high-resolution sidescan sonar backscatter data over the same area. The NDSF ROV Jason collected HD video and down-looking still imagery along dive transects. These data allow us to document the depositional landforms in great detail. Notable features include effusive domes, lava flows, and a widespread blanket of giant pumice and ash. With constraints from seafloor imagery, we use the morphology of the imaged landforms to delineate deposit extents, identify intra-flow and intra-deposit features, pinpoint vent locations, and, in comparison with pre-eruption bathymetry, determine eruptive volumes. This information informs preliminary models of transport and deposition processes that are unique to submarine explosive eruptions.

  19. Draft Genome Sequence of Methanoculleus sediminis S3FaT, a Hydrogenotrophic Methanogen Isolated from a Submarine Mud Volcano in Taiwan.

    PubMed

    Chen, Sheng-Chung; Chen, Mei-Fei; Weng, Chieh-Yin; Lai, Mei-Chin; Wu, Sue-Yao

    2016-01-01

    Here, we announce the genome sequence of ITALIC! Methanoculleus sediminisS3Fa(T)(DSM 29354(T)), a strict anaerobic methanoarchaeon, which was isolated from sediments near the submarine mud volcano MV4 located offshore in southwestern Taiwan. The 2.49-Mb genome consists of 2,459 predicted genes, 3 rRNAs, 48 tRNAs, and 1 ncRNA. The sequence of this novel strain may provide more information for species delineation and the roles that this strain plays in the unique marine mud volcano habitat. PMID:27103730

  20. Draft Genome Sequence of Methanoculleus sediminis S3FaT, a Hydrogenotrophic Methanogen Isolated from a Submarine Mud Volcano in Taiwan.

    PubMed

    Chen, Sheng-Chung; Chen, Mei-Fei; Weng, Chieh-Yin; Lai, Mei-Chin; Wu, Sue-Yao

    2016-01-01

    Here, we announce the genome sequence of ITALIC! Methanoculleus sediminisS3Fa(T)(DSM 29354(T)), a strict anaerobic methanoarchaeon, which was isolated from sediments near the submarine mud volcano MV4 located offshore in southwestern Taiwan. The 2.49-Mb genome consists of 2,459 predicted genes, 3 rRNAs, 48 tRNAs, and 1 ncRNA. The sequence of this novel strain may provide more information for species delineation and the roles that this strain plays in the unique marine mud volcano habitat.

  1. Draft Genome Sequence of Methanoculleus sediminis S3FaT, a Hydrogenotrophic Methanogen Isolated from a Submarine Mud Volcano in Taiwan

    PubMed Central

    Chen, Sheng-Chung; Chen, Mei-Fei; Weng, Chieh-Yin; Wu, Sue-Yao

    2016-01-01

    Here, we announce the genome sequence of Methanoculleus sediminis S3FaT (DSM 29354T), a strict anaerobic methanoarchaeon, which was isolated from sediments near the submarine mud volcano MV4 located offshore in southwestern Taiwan. The 2.49-Mb genome consists of 2,459 predicted genes, 3 rRNAs, 48 tRNAs, and 1 ncRNA. The sequence of this novel strain may provide more information for species delineation and the roles that this strain plays in the unique marine mud volcano habitat. PMID:27103730

  2. The study of active submarine volcanoes and hydrothermal vents in the Southernmost Part of Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Tsai, C.; Lee, C.

    2004-12-01

    The study area is located in the Southernmost Part of Okinawa Trough (SPOT), which is a back-arc basin formed by extension of Eurasian plate. Previous research indicated two extensional stages in SPOT area. Many normal-fault structures were come into existence during both extensional processes. The SPOT is presently in an activity tectonic episode. Therefore, the area becomes a frequent earthquake and abundant magmatism. The purpose of this study is to discuss which relationship between tectonics, submarine volcanoes and hydrothermal vents in SPOT area. The investigations are continued from 1998 to 2004, we have found at least twelve active hydrothermal vents in study area. Compare the locations hydrothermal vents with fault systems, we find both of them have highly correlated. We can distinguish them into two shapes, pyramidal shape and non-pyramidal shape. According to plumes height, we are able to divide these vents into two groups near east longitude 122.5° . East of this longitude, the hydrothermal plumes are more powerful and west of it are the weaker. This is closely related to the present extensional axis (N80° E) of the southern part of the Okinawa Trough. This can be explained the reason of why the more powerful vents coming out of the east group. The east group is associated with the present back-arc spreading system. West of 122.5° , the spreading system are in a primary stage. The andesitic volcanic island, the Turtle Island, is a result of N60° E extensional tectonism with a lot of faults. Besides the pyramidal shape, this can be proved indirectly. The vents located in the west side were occurred from previous extensional faults and are weaker than the eastern. Therefore, we suggest that if last the extension keeps going on, the hydrothermal vents located at the west side of the longitude 122.5° will be intensified.

  3. The Geologic Setting of Hydrothermal Vents at Mariana Arc Submarine Volcanoes: High-Resolution Bathymetry and ROV Observations

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Embley, R. W.; de Ronde, C. E.; Stern, R. J.; Hein, J.; Merle, S.; Ristau, S.

    2004-12-01

    Remotely operated vehicle (ROV) dives were made at 7 submarine volcanoes between 14-23° N in the Mariana Arc in April 2004 with the ROPOS ROV. Six of these volcanoes were known to be hydrothermally active from CTD data collected during a previous expedition in March 2003: NW Rota-1, E Diamante, NW Eifuku, Daikoku, Kasuga-2, and Maug, a partly submerged caldera. The physical setting of hydrothermal venting varies widely from volcano to volcano. High-resolution bathymetric surveys of the summits of NW Rota-1 and NW Eifuku volcanoes were conducted with an Imagenex scanning sonar mounted on ROPOS. Near bottom observations during ROPOS dives were recorded with digital video and a digital still camera and the dives were navigated acoustically from the R/V Thompson using an ultra-short baseline system. The mapping and dive observations reveal the following: (1) The summits of some volcanoes have pervasive diffuse venting (NW Rota-1, Daikoku, NW Eifuku) suggesting that hydrothermal fluids are able to circulate freely within a permeable edifice. At other volcanoes, the hydrothermal venting is more localized (Kasuga-2, Maug, E Diamante), suggesting more restricted permeability pathways. (2) Some volcanoes have both focused venting at depth and diffuse venting near the summit (E Diamante, NW Eifuku). Where the hydrothermal vents are focused, fluid flow appears to be localized by massive lava outcrops that form steep cliffs and ridges, or by subsurface structures such as dikes. High-temperature (240° C) venting was only observed at E Diamante volcano, where the "Black Forest" vent field is located on the side of a constructional cone near the middle of E Diamante caldera at a depth of 350 m. On the side of an adjacent shallower cone, the venting style changed to diffuse discharge and it extended all the way up into the photic zone (167 m). At NW Eifuku, the pattern of both deep-focused and shallow-diffuse venting is repeated. "Champagne vent" is located at 1607 m, ~150 m

  4. Exploring the "Sharkcano": Biogeochemical observations of the Kavachi submarine volcano (Solomon Islands) using simple, cost-effective methods.

    NASA Astrophysics Data System (ADS)

    Phillips, B. T.; Albert, S.; Carey, S.; DeCiccio, A.; Dunbabin, M.; Flinders, A. F.; Grinham, A. R.; Henning, B.; Howell, C.; Kelley, K. A.; Scott, J. J.

    2015-12-01

    Kavachi is a highly active undersea volcano located in the Western Province of the Solomon Islands, known for its frequent phreatomagmatic eruptions and ephemeral island-forming activity. The remote location of Kavachi and its explosive behavior has restricted scientific exploration of the volcano, limiting observations to surface imagery and peripheral water-column data. An expedition to Kavachi in January 2015 was timed with a rare lull in volcanic activity, allowing for observation of the inside of Kavachi's caldera and its flanks. Here we present medium-resolution bathymetry of the main peak paired with benthic imagery, petrologic analysis of samples from the caldera rim, measurements of gas flux over the main peak, and hydrothermal plume structure data. A second peak was discovered to the Southwest of the main cone and displayed evidence of diffuse-flow venting. Populations of gelatinous animals, small fish, and sharks were observed inside the active crater, raising new questions about the ecology of active submarine volcanoes. Most equipment used in this study was lightweight, relatively low-cost, and deployed using small boats; these methods may offer developing nations an economic means to explore deep-sea environments within their own territorial waters.

  5. Active Volcanic and Hydrothermal Processes at NW Rota-1 Submarine Volcano: Mariana Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Baker, E. T.; Butterfield, D. A.; Chadwick, W. W.; de Ronde, C.; Dower, J.; Evans, L.; Hein, J.; Juniper, K.; Lebon, G.; Lupton, J. E.; Merle, S.; Metaxas, A.; Nakamura, K.; Resing, J. E.; Roe, K.; Stern, R.; Tunnicliffe, V.

    2004-12-01

    Dives with the remotely operated vehicle ROPOS in March/April 2004 documented a volcanic eruption at NW Rota-1, a submarine volcano of basaltic composition located at 14\\deg 36.0'N, 144\\deg 46.5'E lying 65 km northwest of Rota Island in the Commonwealth of the Northern Mariana Islands. The site was chosen as a dive target because of the of the high concentrations of H2S and alunite in the hydrothermal plume overlying its summit in February 2003. The summit of the volcano is composed of curvilinear volcanic ridge oriented NW-SE bounded by NE-SW trending normal faults. Lavas collected on the upper part of the edifice are primitive to moderately fractionated basalts (Mg# = 51-66). The eruptive activity is occurring within a small crater (Brimstone Pit) located on the upper south flank of the volcano at 550 m, about 30 m below the summit. The crater is approximately 15 m wide and at least 20 meters deep. The ROPOS's cameras observed billowing clouds of sulfur-rich fluid rising out of the crater, punctuated by frequent bursts of several minutes duration that entrained glassy volcanic ejecta up to at least 2 cm in diameter. ROPOS recorded a temperature of 38\\degC within the plume. The volcanic activity had substantial temporal variability on the scale of minutes. ROPOS was sometimes completely enveloped by the plume while on the rim of the crater, and its surfaces were coated with large sulfur droplets. Black glassy fragments were entrained in the plume up to least 50 m above the crater and deposits of this material were on ledges and tops of outcrops up to several hundred meters from Brimstone Pit. The pit crater fluids have an extremely high content of particulate sulfur and extremely acidic, with pH around 2.0. This strongly implicates magmatic degassing of SO2 and disproportionation into elemental S and sulfuric acid. Diffuse venting of clear fluids was also present on the summit of the volcano, with temperatures exceeding 100\\degC in volcaniclastic sands

  6. Transition from circular to stellate forms of submarine volcanoes

    NASA Astrophysics Data System (ADS)

    Mitchell, Neil C.

    2001-02-01

    Large volcanic islands and guyots have stellate forms that reflect the relief of radiating volcanic rift zones, multiple volcanic centers, and embayments due to giant flank failures. Small mid-ocean ridge volcanoes, in contrast, are commonly subcircular in plan view and show only embryonic rift zones. In order to characterize the transition between these two end-members the morphology of 141 seamounts and guyots was studied using the shape of the depth contour at half the height of each edifice. Irregularity was characterized by measuring perimeter distance, elongation, and moment of inertia of the contours, assuming an "ideal" edifice is circular. The analysis reveals a general transition over 2-4 km edifice height (best transition estimate 3 km), while some large edifices 4-5 km high show no major embayments or ridges, suggesting considerable variation in the effectiveness of mechanisms that cause flank instability and growth of rift zones. The various origins of the transition are discussed, and the upper limit of magma chambers, many of which lie above the basement of the larger edifices, is proposed to affect the morphologic complexity via a number of mechanisms and is an important factor affecting the mode of growth. The origins of the truncated cone shape of mid-ocean ridge volcanoes are also discussed. Of the eruption mechanisms that have been proposed to explain their flat summits, the most likely mechanisms involve eruption from small ephemeral magma bodies lying within the low-density upper oceanic crust. The discussion includes speculations on factors affecting the depths of magma chambers beneath oceanic volcanoes. Supporting table is available via Web browser or via Anonymous FTP from ftp://kosmos.agu.org, directory "append" (Username = "anonymous", Password ="guest"); subdirectories in the ftp site are arranged by paper number. Information on searching and submitting electronic supplements is found at http://www.agu.org/pubs/csupp_about.html.

  7. Carbon Fluxes from Submarine Arc Volcanoes - examples from the Mariana and Kermadec Arcs

    NASA Astrophysics Data System (ADS)

    Lupton, J.; Butterfield, D.; Lilley, M.; Evans, L.; Greene, R.; Resing, J.; Embley, R.; Massoth, G.; Christenson, B.; de Ronde, C.; Olson, E.; Proskurowski, G.; Nakamura, K.; Schmidt, M.; Stoffers, P.; Worthington, T.; Hannington, M.

    2005-12-01

    Recent investigations of volcanic arcs have revealed unusually high fluxes of CO2 from several submarine arc volcanoes. In 2004 the ROPOS ROV was used to map and sample ~10 active volcanoes along the Mariana arc, and in 2005 a similar study of volcanoes along the Kermadec arc was conducted using the HURL Pisces submersible. Of particular interest are 3 volcanoes that, in addition to discharging hot vent fluid, were found to be venting a separate CO2-rich phase in the form of gas bubbles or, in one case, droplets of liquid CO2. The Champagne hydrothermal site situated at ~1600-m depth near the summit of NW Eifuku volcano (21.49°N, 144.04°E) in the northern Mariana Arc, was discovered in 2004 during NOAAs Submarine Ring of Fire (SROF) project. This unusual site was discharging two distinct fluids from the same vent field: a 103°C gas-rich hydrothermal fluid, and cold (4°C) droplets of liquid CO2. The hot fluid contained ~2.2 moles/kg CO2, the highest ever reported for submarine hydrothermal fluids and about twice the saturation value at that p,T. The carbon flux from this site was estimated to be ~23 moles CO2/sec, about 0.1% of the global MOR carbon flux. Two similar but much shallower CO2-rich systems were discovered on the Kermadec arc. Pisces dives on Giggenbach volcano (30.04°S, 178.71°W) in the Kermadec arc discovered a mixture of gas bubbles and 203°C fluid discharging at 164-m depth. The fluid contained 250 - 500 mM/kg total gas. At Volcano 1 (21.15°S, 175.75°W), Pisces found streams of gas bubbles rising from the seafloor at ~100 m depth. This vent area had areas of diffuse discharge (30 to 150°C) with gas contents up to 130 mM/kg. Although analyses are still in progress for these two sites, the gas bubbles are assumed to be mainly CO2. It is notable that discharges of pure CO2 have never been reported for MOR hydrothermal systems, and only one other submarine occurrence of liquid CO2 has been reported (in the Okinawa Trough, a back-arc system

  8. Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island.

    PubMed

    Santana-Casiano, J M; Fraile-Nuez, E; González-Dávila, M; Baker, E T; Resing, J A; Walker, S L

    2016-01-01

    The residual hydrothermalism associated with submarine volcanoes, following an eruption event, plays an important role in the supply of CO2 to the ocean. The emitted CO2 increases the acidity of seawater. The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to study the effect of volcanic CO2 on the seawater carbonate system, the global carbon flux, and local ocean acidification. A detailed survey of the volcanic edifice was carried out using seven CTD-pH-ORP tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of anomalies. In order to investigate the temporal variability of the system, two CTD-pH-ORP yo-yo studies were conducted that included discrete sampling for carbonate system parameters. Meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column for each surveyed section. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 10(5) ± 1.1 10(5 )kg d(-1) which is ~0.1% of global volcanic CO2 flux. Finally, the CO2 emitted by El Hierro increases the acidity above the volcano by ~20%.

  9. Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island

    NASA Astrophysics Data System (ADS)

    Santana-Casiano, J. M.; Fraile-Nuez, E.; González-Dávila, M.; Baker, E. T.; Resing, J. A.; Walker, S. L.

    2016-05-01

    The residual hydrothermalism associated with submarine volcanoes, following an eruption event, plays an important role in the supply of CO2 to the ocean. The emitted CO2 increases the acidity of seawater. The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to study the effect of volcanic CO2 on the seawater carbonate system, the global carbon flux, and local ocean acidification. A detailed survey of the volcanic edifice was carried out using seven CTD-pH-ORP tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of anomalies. In order to investigate the temporal variability of the system, two CTD-pH-ORP yo-yo studies were conducted that included discrete sampling for carbonate system parameters. Meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column for each surveyed section. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 105 ± 1.1 105 kg d‑1 which is ~0.1% of global volcanic CO2 flux. Finally, the CO2 emitted by El Hierro increases the acidity above the volcano by ~20%.

  10. Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island.

    PubMed

    Santana-Casiano, J M; Fraile-Nuez, E; González-Dávila, M; Baker, E T; Resing, J A; Walker, S L

    2016-01-01

    The residual hydrothermalism associated with submarine volcanoes, following an eruption event, plays an important role in the supply of CO2 to the ocean. The emitted CO2 increases the acidity of seawater. The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to study the effect of volcanic CO2 on the seawater carbonate system, the global carbon flux, and local ocean acidification. A detailed survey of the volcanic edifice was carried out using seven CTD-pH-ORP tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of anomalies. In order to investigate the temporal variability of the system, two CTD-pH-ORP yo-yo studies were conducted that included discrete sampling for carbonate system parameters. Meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column for each surveyed section. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 10(5) ± 1.1 10(5 )kg d(-1) which is ~0.1% of global volcanic CO2 flux. Finally, the CO2 emitted by El Hierro increases the acidity above the volcano by ~20%. PMID:27157062

  11. Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island

    PubMed Central

    Santana-Casiano, J. M.; Fraile-Nuez, E.; González-Dávila, M.; Baker, E. T.; Resing, J. A.; Walker, S. L.

    2016-01-01

    The residual hydrothermalism associated with submarine volcanoes, following an eruption event, plays an important role in the supply of CO2 to the ocean. The emitted CO2 increases the acidity of seawater. The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to study the effect of volcanic CO2 on the seawater carbonate system, the global carbon flux, and local ocean acidification. A detailed survey of the volcanic edifice was carried out using seven CTD-pH-ORP tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of anomalies. In order to investigate the temporal variability of the system, two CTD-pH-ORP yo-yo studies were conducted that included discrete sampling for carbonate system parameters. Meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column for each surveyed section. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 105 ± 1.1 105 kg d−1 which is ~0.1% of global volcanic CO2 flux. Finally, the CO2 emitted by El Hierro increases the acidity above the volcano by ~20%. PMID:27157062

  12. A large submarine sand-rubble flow on kilauea volcano, hawaii

    USGS Publications Warehouse

    Fornari, D.J.; Moore, J.G.; Calk, L.

    1979-01-01

    Papa'u seamount on the south submarine slope of Kilauea volcano is a large landslide about 19 km long, 6 km wide, and up to 1 km thick with a volume of about 39 km3. Dredge hauls, remote camera photographs, and submersible observations indicate that it is composed primarily of unconsolidated angular glassy basalt sand with scattered basalt blocks up to 1 m in size; no lava flows were seen. Sulfur contents of basalt glass from several places on the sand-rubble flow and nearby areas are low (< 240 ppm), indicating that the clastic basaltic material was all erupted on land. The Papa'u sandrubble flow was emplaced during a single flow event fed from a large near-shore bank of clastic basaltic material which in turn was formed as lava flows from the summit area of Kilauea volcano disintegrated when they entered the sea. The current eruptive output of the volcano suggests that the material in the submarine sand-rubble flow represents about 6000 years of accumulation, and that the flow event occurred several thousand years ago. ?? 1979.

  13. Analysis of Submarine Landslides at West Mata Volcano, NE Lau Basin, Using Hydroacoustic Data

    NASA Astrophysics Data System (ADS)

    Caplan-Auerbach, J.; Dziak, R. P.; Chadwick, B.; Lau, T. K. A.; Bohnenstiehl, D. R.

    2014-12-01

    Hundreds of submarine landslides were detected by a network of moored hydrophones near the erupting West Mata submarine volcano during a five month deployment in 2010-2011. The landslides are identifiable by their spectral characteristics, including a low frequency onset and extended broadband coda. All hydroacoustic signals at West Mata exhibit spectral banding due to interference of direct and surface-reflected waves (the Lloyd's Mirror effect), but in landslide signals the bands change frequency over the duration of the signal. This shows that the source is propagating, and the timing between direct and reflected arrivals is changing. We use the change in spectral content to estimate source and terminus depths and average propagation velocity. Landslides were only weakly recorded on a hydrophone to the south of West Mata suggesting that the events took place on the volcano's north flank, a region known from bathymetric mapping to have experienced significant mass wasting. We propose that the few landslides that did not exhibit spectral banding failed over a large source area and depth range and represent the largest West Mata slides. West Mata landslides occurred frequently during the eruption, suggesting that they may be triggered by loading of fragmental material on the volcano's flanks. While the slides occurred throughout the duration of the deployment, events tend to cluster in time, possibly indicating sequential or retrogressive failures.

  14. Long-term explosion records from two erupting submarine volcanoes in the Mariana and Tonga island-arcs

    NASA Astrophysics Data System (ADS)

    Dziak, R. P.; Embley, R. W.; Baker, E. T.; Chadwick, W. W.; Resing, J.; Matsumoto, H.; Walker, S. L.; Bohnenstiehl, D. R.; Klink, H.

    2009-12-01

    Records of explosive activity longer than a few weeks are rare for subaerial volcanoes, and nonexistent for submarine volcanoes. From February 2008 to February 2009, we recorded a year long, continuous acoustic and volcanic plume record from NW Rota-1, an erupting submarine volcano located within the Mariana Arc. From December 2008 to May 2009, we also obtained acoustic records of ongoing explosion and tremor activity at West Mata, a submarine volcano in the NE Lau basin near the Tofua volcanic-arc. At NW Rota-1, a hydrophone and turbidity/temperature sensor were moored ~150 m from the volcano’s summit vent (520 m deep). The volcano exhibited frequent degassing explosions lasting 60-120 s, separated by quiet periods of 10-30 s, for the entire 12-months resulting in >284,000 discrete explosion events. The explosions are broadband (1-80 Hz) with typical source levels of 191 dB re μPa @ 1m. Harmonic tremor is also present at times in the explosions, typically with <5 Hz fundamentals and extremely high-amplitude overtone peaks near 30 Hz. The fundamentals are likely due to resonance of the entire volcanic edifice, while the peak overtone may represent reverberation of an internal structure, possibly the conduit feeding the summit vent. The hydrophone also documents a 103 decrease in explosion amplitude over the year, marked by a sharp reduction after 6 mos, which may be part of the typical eruption cycle or due to burial of the vent by accumulated ejecta. Explosions at the summit vent produced a steady series of volcanic plumes that carried ash and hydrothermal precipitates into the water column. Hundreds of short-lived turbidity spikes are present, with no long periods of quiescence, indicating changes in explosion intensity did not affect the pattern of volcanic plume creation. Our data are the first to confirm the frequent creation and dispersal of submarine volcanic plumes on a year-long scale. In December 2008 a moored hydrophone (250 Hz) was deployed ~30 km

  15. Degassing history of water, sulfur, and carbon in submarine lavas from Kilauea Volcano, Hawaii

    SciTech Connect

    Dixon, J.E.; Stolper, E.M. ); Clague, D.A. )

    1991-05-01

    Major, minor, and dissolved volatile element concentrations were measured in tholeiitic glasses from the submarine portion (Puna Ridge) of the east rift zone of Kilauea Volcano, Hawaii. Dissolved H{sub 2}O and S concentrations display a wide range relative to nonvolatile incompatible elements at all depths. This range cannot be readily explained by fractional crystallization, degassing of H{sub 2}O and S during eruption on the seafloor, or source region heterogeneities. Dissolved CO{sub 2} concentrations, in contrast, show a positive correlation with eruption depth and typically agree within error with the solubility at that depth. The authors propose that most magmas along the Puna Ridge result from (1) mixing of a relatively volatile-rich, undegassed component with magmas that experienced low pressure (perhaps subaerial) degassing during which substantial H{sub 2}O, S, and CO{sub 2} were lost, followed by (2) fractional crystallization of olivine, clinopyroxene, and plagioclase from this mixture to generate a residual liquid; and (3) further degassing, principally of CO{sub 2} for samples erupted deeper than 1,000 m, during eruption on the seafloor. They predict that average Kilauean primary magmas with 16% MgO contain {approximately}0.47 wt % H{sub 2}0, {approximately}900 ppm S, and have {delta}D values of {approximately}{minus}30 to {minus}40%. The model predicts that submarine lavas from wholly submarine volcanoes (i.e., Loihi), for which there is no opportunity to generate the degassed end member by low pressure degassing, will be enriched in volatiles relative to those from volcanoes whose summits have breached the sea surface (i.e., Kilauea and Mauna Loa).

  16. Methanoculleus sediminis sp. nov., a methanogen from sediments near a submarine mud volcano.

    PubMed

    Chen, Sheng-Chung; Chen, Mei-Fei; Lai, Mei-Chin; Weng, Chieh-Yin; Wu, Sue-Yao; Lin, Saulwood; Yang, Tsanyao F; Chen, Po-Chun

    2015-07-01

    A mesophilic, hydrogenotrophic methanogen, strain S3Fa(T), was isolated from sediments collected by Ocean Researcher I cruise ORI-934 in 2010 near the submarine mud volcano MV4 located at the upper slope of south-west Taiwan. The methanogenic substrates utilized by strain S3Fa(T) were formate and H2/CO2 but not acetate, secondary alcohols, methylamines, methanol or ethanol. Cells of strain S3Fa(T) were non-motile, irregular cocci, 0.5-1.0 μm in diameter. The surface-layer protein showed an Mr of 128,000.The optimum growth conditions were 37 °C, pH 7.1 and 0.17 M NaCl. The DNA G+C content of the genome of strain S3Fa(T) was 62.3 mol%. Phylogenetic analysis revealed that strain S3Fa(T) was most closely related to Methanoculleus marisnigri JR1(T) (99.3% 16S rRNA gene sequence similarity). Genome relatedness between strain S3Fa(T) and Methanoculleus marisnigri JR1(T) was computed using both genome-to-genome distance analysis (GGDA) and average nucleotide identity (ANI) with values of 46.3-55.5% and 93.08%, respectively. Based on morphological, phenotypic, phylogenetic and genomic relatedness data, it is evident that strain S3Fa(T) represents a novel species of the genus Methanoculleus, for which the name Methanoculleus sediminis sp. nov. is proposed. The type strain is S3Fa(T) ( = BCRC AR10044(T) = DSM 29354(T)). PMID:25855623

  17. Methanoculleus sediminis sp. nov., a methanogen from sediments near a submarine mud volcano.

    PubMed

    Chen, Sheng-Chung; Chen, Mei-Fei; Lai, Mei-Chin; Weng, Chieh-Yin; Wu, Sue-Yao; Lin, Saulwood; Yang, Tsanyao F; Chen, Po-Chun

    2015-07-01

    A mesophilic, hydrogenotrophic methanogen, strain S3Fa(T), was isolated from sediments collected by Ocean Researcher I cruise ORI-934 in 2010 near the submarine mud volcano MV4 located at the upper slope of south-west Taiwan. The methanogenic substrates utilized by strain S3Fa(T) were formate and H2/CO2 but not acetate, secondary alcohols, methylamines, methanol or ethanol. Cells of strain S3Fa(T) were non-motile, irregular cocci, 0.5-1.0 μm in diameter. The surface-layer protein showed an Mr of 128,000.The optimum growth conditions were 37 °C, pH 7.1 and 0.17 M NaCl. The DNA G+C content of the genome of strain S3Fa(T) was 62.3 mol%. Phylogenetic analysis revealed that strain S3Fa(T) was most closely related to Methanoculleus marisnigri JR1(T) (99.3% 16S rRNA gene sequence similarity). Genome relatedness between strain S3Fa(T) and Methanoculleus marisnigri JR1(T) was computed using both genome-to-genome distance analysis (GGDA) and average nucleotide identity (ANI) with values of 46.3-55.5% and 93.08%, respectively. Based on morphological, phenotypic, phylogenetic and genomic relatedness data, it is evident that strain S3Fa(T) represents a novel species of the genus Methanoculleus, for which the name Methanoculleus sediminis sp. nov. is proposed. The type strain is S3Fa(T) ( = BCRC AR10044(T) = DSM 29354(T)).

  18. Hydrothermal Venting at Kick'Em Jenny Submarine Volcano (West Indies)

    NASA Astrophysics Data System (ADS)

    Carey, S.; Croff Bell, K. L.; Dondin, F. J. Y.; Roman, C.; Smart, C.; Lilley, M. D.; Lupton, J. E.; Ballard, R. D.

    2014-12-01

    Kick'em Jenny is a frequently-erupting, shallow submarine volcano located ~8 km off the northwest coast of Grenada in the West Indies. The last eruption took place in 2001 but did not breach the sea surface. Focused and diffuse hydrothermal venting is taking place mainly within a small (~100 x 100 m) depression within the 300 m diameter crater of the volcano at depths of about 265 meters. Near the center of the depression clear fluids are being discharged from a focused mound-like vent at a maximum temperature of 180o C with the simultaneous discharge of numerous bubble streams. The gas consists of 93-96% CO2 with trace amounts of methane and hydrogen. A sulfur component likely contributes 1-4% of the gas total. Gas flux measurements on individual bubble streams ranged from 10 to 100 kg of CO2 per day. Diffuse venting with temperatures 5 to 35o C above ambient occurs throughout the depression and over large areas of the main crater. These zones are extensively colonized by reddish-yellow bacterial mats with the production of loose Fe-oxyhydroxides largely as a surface coating and in some cases, as fragile spires up to several meters in height. A high-resolution photo mosaic of the crater depression was constructed using the remotely operated vehicle Hercules on cruise NA039 of the E/V Nautilus. The image revealed prominent fluid flow patterns descending the sides of the depression towards the base. We speculate that the negatively buoyant fluid flow may be the result of second boiling of hydrothermal fluids at Kick'em Jenny generating a dense saline component that does not rise despite its elevated temperature. Increased density may also be the result of high dissolved CO2 content of the fluids, although we were not able to measure this directly. The low amount of sulphide mineralization on the crater floor suggests that deposition may be occurring mostly subsurface, in accord with models of second boiling mineralization from other hydrothermal vent systems.

  19. Mapping the sound field of an erupting submarine volcano using an acoustic glider.

    PubMed

    Matsumoto, Haru; Haxel, Joseph H; Dziak, Robert P; Bohnenstiehl, Delwayne R; Embley, Robert W

    2011-03-01

    An underwater glider with an acoustic data logger flew toward a recently discovered erupting submarine volcano in the northern Lau basin. With the volcano providing a wide-band sound source, recordings from the two-day survey produced a two-dimensional sound level map spanning 1 km (depth) × 40 km(distance). The observed sound field shows depth- and range-dependence, with the first-order spatial pattern being consistent with the predictions of a range-dependent propagation model. The results allow constraining the acoustic source level of the volcanic activity and suggest that the glider provides an effective platform for monitoring natural and anthropogenic ocean sounds. PMID:21428474

  20. Long-term explosive degassing and debris flow activity at West Mata submarine volcano

    NASA Astrophysics Data System (ADS)

    Dziak, R. P.; Bohnenstiehl, D. R.; Baker, E. T.; Matsumoto, H.; Caplan-Auerbach, J.; Embley, R. W.; Merle, S. G.; Walker, S. L.; Lau, T.-K.; Chadwick, W. W.

    2015-03-01

    West Mata is a 1200 m deep submarine volcano where explosive boninite eruptions were observed in 2009. The acoustic signatures from the volcano's summit eruptive vents Hades and Prometheus were recorded with an in situ (~25 m range) hydrophone during ROV dives in May 2009 and with local (~5 km range) moored hydrophones between December 2009 and August 2011. The sensors recorded low frequency (1-40 Hz), short duration explosions consistent with magma bubble bursts from Hades, and broadband, 1-5 min duration signals associated with episodes of fragmentation degassing from Prometheus. Long-term eruptive degassing signals, recorded through May 2010, preceded a several month period of declining activity. Degassing episodes were not recorded acoustically after early 2011, although quieter effusive eruption activity may have continued. Synchronous optical measurements of turbidity made between December 2009 and April 2010 indicate that turbidity maxima resulted from occasional south flank slope failures triggered by the collapse of accumulated debris during eruption intervals.

  1. Submarine geology of Hana Ridge and Haleakala Volcano's northeast flank, Maui

    USGS Publications Warehouse

    Eakins, Barry W.; Robinson, Joel E.

    2006-01-01

    We present a morphostructural analysis of the submarine portions of Haleakala Volcano and environs, based upon a 4-year program of geophysical surveys and submersible explorations of the underwater flanks of Hawaiian volcanoes that was conducted by numerous academic and governmental research organizations in Japan and the U.S. and funded primarily by the Japan Agency for Marine–Earth Science and Technology. A resulting reconnaissance geologic map features the 135-km-long Hana Ridge, the 3000 km2 Hana slump on the volcano's northeast flank, and island-surrounding terraces that are the submerged parts of volcanic shields. Hana Ridge below 2000 m water depth exhibits the lobate morphology typical of the subaqueously erupted parts of Hawaiian rift zones, with some important distinctions: namely, subparallel crestlines, which we propose result from the down-rift migration of offsets in the dike intrusion zone, and an amphitheater at its distal toe, where a submarine landslide has embayed the ridge tip. Deformation of Haleakala's northeast flank is limited to that part identified as the Hana slump, which lies downslope from the volcano's submerged shield, indicating that flank mobility is also limited in plan, inconsistent with hypothesized volcanic spreading driven by rift-zone dilation. The leading edge of the slump has transverse basins and ridges that resemble the thrust ramps of accretionary prisms, and we present a model to describe the slump's development that emphasizes the role of coastally generated fragmental basalt on gravitational instability of Haleakala's northeast flank and that may be broadly applicable to other ocean-island slumps.

  2. A GIS typology to locate sites of submarine groundwater discharge.

    PubMed

    Rapaglia, John; Grant, Carley; Bokuniewicz, Henry; Pick, Tsvi; Scholten, Jan

    2015-07-01

    Although many researchers agree on the importance of submarine groundwater discharge (SGD), it remains difficult to locate and quantify this process. A groundwater typology was developed based on local digital elevation models and compared to concurrent radon mapping indicative of SGD in the Niantic River, CT USA. Areas of high radon activity were located near areas of high flow accumulation lending evidence to the utility of this approach to locate SGD. The benefits of this approach are three-fold: fresh terrestrial SGD may be quickly located through widely-available digital elevation models at little or no cost to the investigator; fresh SGD may also be quantified through the GIS approach by multiplying pixelated flow accumulation with the expected annual recharge; and, as these data necessarily quantify only fresh SGD, a comparison of these data with SGD as calculated by Rn activity may allow for the separation of the fresh and circulated fractions of SGD. This exercise was completed for the Niantic River where SGD as calculated by the GIS model is 1.2 m(3)/s, SGD as calculated by Rn activity is 0.73-5.5 m(3)/s, and SGD as calculated via a theoretical approach is 1.8-4.3 m(3)/s. Therefore fresh, terrestrial SGD accounts for 22-100% of total SGD in the Niantic River.

  3. Helium Isotopes of Fluids from Submarine Volcanoes in the South-Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Hsin Kao, Li; Yang, Tsanyao Frank; Wen, Hsin-Yi; Chen, Ai-Ti; Lee, Hsiao-Fen

    2014-05-01

    Many active submarine volcanoes have been found in southern Okinawa Trough. Water column samples from the hydrothermal plumes above venting volcanoes were collected during the OR2-1897 and -1984 cruises. Meanwhile, diving at shallower depths were conducted several times to collect the water samples near the venting sites. In total, 122 water samples from various depths in the offshore area of NE Taiwan were collected for dissolved gases and helium isotopes measurement. The dissolved gases of water column samples show that the CO2 concentration and the alkalinity increase with depth and become higher at the bottom, while the result of O2 concentration shows a reverse pattern. The 3He/4He ratios near the vicinity of active Kueishantao volcano show highest value, up to 5.5 RA, where RA is the atmospheric ratios of 1.39 x 10-6. The plot of 3He/4He and 3He/20Ne ratios suggests that there may be different sources in this region. Furthermore, we will estimate the helium flux from the venting volcanoes in this area.

  4. Volcanoes

    ERIC Educational Resources Information Center

    Kunar, L. N. S.

    1975-01-01

    Describes the forces responsible for the eruptions of volcanoes and gives the physical and chemical parameters governing the type of eruption. Explains the structure of the earth in relation to volcanoes and explains the location of volcanic regions. (GS)

  5. New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece

    PubMed Central

    Kilias, Stephanos P.; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Polymenakou, Paraskevi N.; Godelitsas, Athanasios; Argyraki, Ariadne; Carey, Steven; Gamaletsos, Platon; Mertzimekis, Theo J.; Stathopoulou, Eleni; Goettlicher, Joerg; Steininger, Ralph; Betzelou, Konstantina; Livanos, Isidoros; Christakis, Christos; Bell, Katherine Croff; Scoullos, Michael

    2013-01-01

    We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the hydrothermal vent field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor hydrothermal activity are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (±Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits. Iron microbial-mat analyses reveal dominating ferrihydrite-type phases, and high-proportion of microbial sequences akin to "Nitrosopumilus maritimus", a mesophilic Thaumarchaeota strain capable of chemoautotrophic growth on hydrothermal ammonia and CO2. Our findings highlight that acidic shallow-submarine hydrothermal vents nourish marine ecosystems in which nitrifying Archaea are important and suggest ferrihydrite-type Fe3+-(hydrated)-oxyhydroxides in associated low-temperature iron mats are formed by anaerobic Fe2+-oxidation, dependent on microbially produced nitrate. PMID:23939372

  6. New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece.

    PubMed

    Kilias, Stephanos P; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Polymenakou, Paraskevi N; Godelitsas, Athanasios; Argyraki, Ariadne; Carey, Steven; Gamaletsos, Platon; Mertzimekis, Theo J; Stathopoulou, Eleni; Goettlicher, Joerg; Steininger, Ralph; Betzelou, Konstantina; Livanos, Isidoros; Christakis, Christos; Bell, Katherine Croff; Scoullos, Michael

    2013-01-01

    We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the hydrothermal vent field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor hydrothermal activity are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (±Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits. Iron microbial-mat analyses reveal dominating ferrihydrite-type phases, and high-proportion of microbial sequences akin to "Nitrosopumilus maritimus", a mesophilic Thaumarchaeota strain capable of chemoautotrophic growth on hydrothermal ammonia and CO2. Our findings highlight that acidic shallow-submarine hydrothermal vents nourish marine ecosystems in which nitrifying Archaea are important and suggest ferrihydrite-type Fe(3+)-(hydrated)-oxyhydroxides in associated low-temperature iron mats are formed by anaerobic Fe(2+)-oxidation, dependent on microbially produced nitrate.

  7. New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece.

    PubMed

    Kilias, Stephanos P; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Polymenakou, Paraskevi N; Godelitsas, Athanasios; Argyraki, Ariadne; Carey, Steven; Gamaletsos, Platon; Mertzimekis, Theo J; Stathopoulou, Eleni; Goettlicher, Joerg; Steininger, Ralph; Betzelou, Konstantina; Livanos, Isidoros; Christakis, Christos; Bell, Katherine Croff; Scoullos, Michael

    2013-01-01

    We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the hydrothermal vent field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor hydrothermal activity are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (±Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits. Iron microbial-mat analyses reveal dominating ferrihydrite-type phases, and high-proportion of microbial sequences akin to "Nitrosopumilus maritimus", a mesophilic Thaumarchaeota strain capable of chemoautotrophic growth on hydrothermal ammonia and CO2. Our findings highlight that acidic shallow-submarine hydrothermal vents nourish marine ecosystems in which nitrifying Archaea are important and suggest ferrihydrite-type Fe(3+)-(hydrated)-oxyhydroxides in associated low-temperature iron mats are formed by anaerobic Fe(2+)-oxidation, dependent on microbially produced nitrate. PMID:23939372

  8. Plume indications from hydrothermal activity on Kawio Barat Submarine Volcano, Sangihe Talaud Sea, North Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Makarim, S.; Baker, E. T.; Walker, S. L.; Wirasantosa, S.; Permana, H.; Sulistiyo, B.; Shank, T. M.; Holden, J. F.; Butterfield, D.; Ramdhan, M.; Adi, R.; Marzuki, M. I.

    2010-12-01

    Kawio Barat submarine volcano has formed in response to the active tectonic conditions in Sangihe Talaud, an area that lies in the subduction zone between the Molucca Sea Plate and Celebes Sea Plate. Submarine volcanic activity in the western Sangihe volcanic arc is controlled by the west-dipping Molucca Sea Plate as it subducts beneath the Sangihe Arc. A secondary faulting system on Kawio Barat is in a northwest - southeast direction, and creates a network of deep cracks that facilitate hydrothermal discharge in this area. Hydrothermal activity on Kawio Barat was first discovered by joint Indonesia/Australian cruises in 2003. In 2010, as part of the joint US/Indonesian INDEX-SATAL expedition, we conducted CTD casts that confirmed continuing activity. Hydrothermal plumes were detected by light -scattering (LSS) and oxidation-reduction potential (ORP) sensors on the CTD package. LSS anomalies were found between 1600-1900 m, with delta NTU levels of 0.020-0.040. ORP anomalies coincident with the LSS anomalies indicate strong concentrations of reduced species such as H2S and Fe, confirming the hydrothermal origin of the plumes. Images of hydrothermal vents on Kawio Barat Submarine volcano, recorded by high- definition underwater cameras on the ROV “Little Hercules” operated from the NOAA ship Okeanos Explorer, confirmed the presence and sources of the detected vent plumes in the northern and southwest part of the summit in 1800-1900 m depth. In southwest part of this summit chimney, drips of molten sulfur were observed in the proximity of microbal staining.

  9. North Kona slump: Submarine flank failure during the early(?) tholeiitic shield stage of Hualalai Volcano

    USGS Publications Warehouse

    Lipman, P.W.; Coombs, M.L.

    2006-01-01

    The North Kona slump is an elliptical region, about 20 by 60 km (1000-km2 area), of multiple, geometrically intricate benches and scarps, mostly at water depths of 2000–4500 m, on the west flank of Hualalai Volcano. Two dives up steep scarps in the slump area were made in September 2001, using the ROV Kaiko of the Japan Marine Science and Technology Center (JAMSTEC), as part of a collaborative Japan–USA project to improve understanding of the submarine flanks of Hawaiian volcanoes. Both dives, at water depths of 2700–4000 m, encountered pillow lavas draping the scarp-and-bench slopes. Intact to only slightly broken pillow lobes and cylinders that are downward elongate dominate on the steepest mid-sections of scarps, while more equant and spherical pillow shapes are common near the tops and bases of scarps and locally protrude through cover of muddy sediment on bench flats. Notably absent are subaerially erupted Hualalai lava flows, interbedded hyaloclastite pillow breccia, and/or coastal sandy sediment that might have accumulated downslope from an active coastline. The general structure of the North Kona flank is interpreted as an intricate assemblage of downdropped lenticular blocks, bounded by steeply dipping normal faults. The undisturbed pillow-lava drape indicates that slumping occurred during shield-stage tholeiitic volcanism. All analyzed samples of the pillow-lava drape are tholeiite, similar to published analyses from the submarine northwest rift zone of Hualālai. Relatively low sulfur (330–600 ppm) and water (0.18–0.47 wt.%) contents of glass rinds suggest that the eruptive sources were in shallow water, perhaps 500–1000-m depth. In contrast, saturation pressures calculated from carbon dioxide concentrations (100–190 ppm) indicate deeper equilibration, at or near sample sites at water depths of − 3900 to − 2800 m. Either vents close to the sample sites erupted mixtures of undegassed and degassed magmas, or volatiles were resorbed from

  10. Direct Observations of Explosive Eruptive Activity at a Submarine Volcano, NW Rota-1, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Embley, R. W.; de Ronde, C. E.; Deardorff, N.; Matsumoto, H.; Cashman, K. V.; Dziak, R. P.; Merle, S. G.

    2006-12-01

    In April 2006, a series of extraordinary observations of a deep-sea volcanic eruption were made at NW Rota-1, located at 14^{circ}36'N in the Mariana arc, western Pacific. This is a conical, basaltic-andesite submarine volcano with a summit depth of 517 m. Explosive eruptive activity at NW Rota-1 was discovered in 2004 and was witnessed again in 2005, but the activity in 2006 was especially vigorous and well documented. During six dives with the remotely operated vehicle Jason II over a period of 7 days, video observations made at close range documented a diverse and increasingly energetic range of volcanic activity that culminated in explosive bursts with flashes of glowing red lava propelled by violently expanding gases. Other notable activity included discreet degassing events, extrusion of sluggish lava flows, explosions that formed dilute density currents and/or expelled rocks and ash tens of meters from the vent, and rapid pressure oscillations apparently caused by the repeated formation and condensation of steam. During the last dive when the highest extrusion rates were observed, quasi-periodic bursts from the vent, each lasting 1-10 minutes, were separated by pauses lasting 10 seconds to a few minutes. Each burst started as a plug of crusted-over lava rose in the vent and was blown apart by expanding gases, producing large lava bombs with distinctly flat, disc-like shapes. A remarkable aspect of these observations was how close Jason II could be to the vent during the eruptions. This was because the pressure of the overlying seawater dampened the energy of the explosions and slowed the velocity of volcanic ejecta. Also, lava degassing could be visualized with great clarity underwater as either clear bubbles (CO2) or opaque yellow clouds (dominated by SO2 and H2S). A portable hydrophone with a 30-hour recording capacity was deployed twice by Jason II at the summit of NW Rota-1 during the 2006 dive series. The hydrophone data extends the visual observations

  11. Discovery of an Active Submarine Mud Volcano Along the Nootka Fault West of Vancouver Island

    NASA Astrophysics Data System (ADS)

    Riedel, M.; Riedel, M.; Kelly, D. S.; Delaney, J. R.; Spence, G. D.; Hyndman, R. D.; Hyndman, R. D.; Mayer, L.; Calder, B.; Lilley, M. D.; Olson, E. O.; Schrenk, M. O.; Coffin, R.

    2001-12-01

    Submarine mud volcanoes are a common feature in margin environments, but few of them have been documented in the Northeast Pacific. However, during a Hydrosweep bathymetric survey in July, 2001, and a follow-on sub-surface seismic survey in August two mud volcanoes were imaged along the Nootka Fault, 16-18 km west of Vancouver Island at a water depth of 2500 m. The southern volcano, called Maquinna, lies directly along the southern expression of the left lateral, strike slip Nootka Fault. It is 1.5 km across, has a breached caldera and two small summit craters, and it stands about 30 m above the seafloor. The base is bounded by a narrow moat, partially filled by Holocene sediments that are flat lying; older, underlying sediments show steep downwarping towards the sides of the volcano. Subsurface imaging shows a dramatic loss of reflectivity beneath the volcano mound, which may indicate significant mobilization of material. However, a very bright reflector is seen at about 400 m depth below the volcano. This reflector is too deep for stability of methane clathrate, and is interpreted as a zone of high fluid content. A CTD vertical cast above the summit of the volcano showed strong, co-registered thermal, particulate, and oxygen anomalies that extend 50 m up into the overlying water column. These data indicate that the volcano is actively venting warm hydrothermal fluids. The fluids are depleted in CO2, contain background concentrations of CH4, but show elevated H2 concentrations above ocean background water. Microscopic examination of the Nootka hydrothermal samples shows that they contain dense and morphologically diverse microbial communities in comparison to background seawater with cell densities of 106 cells/ml. Enrichment culturing indicates that these communities include both anaerobic and aerobic organisms, some of which are thermophilic with optimal growth temperatures in excess of 50 deg C. Some of these cultures can use methane oxidation as an energy

  12. Flank Collapse Assessment At Kick-'em-Jenny Submarine Volcano (Lesser Antilles): A Combined Approach Using Modelling and Experiments

    NASA Astrophysics Data System (ADS)

    Dondin, Frédéric; Heap, Michael; Robert, Richard E. A.; Dorville, Jean-Francois M.; Carey, Steven

    2016-04-01

    Volcanic landslides - the result of volcanic flank failure - are highly hazardous mass movements due to their high mobility, the wide area they can impact, and their potential to generate tsunamis. In the Lesser Antilles at least 53 episodes of flank collapse have been identified, with many of them associated with voluminous (Vdeposit exceeding 1 km3) submarine volcanic landslide deposits. The existence of such voluminous deposits highlights the hazard of potentially devastating tsunami waves to the populated islands of the Lesser Antilles. To help understand and mitigate such hazards, we applied a relative stability assessment method to the only active submarine volcano of the Lesser Antilles island arc: Kick-'em-Jenny (KeJ). KeJ - located 8 km north of the island of Grenada - is the southernmost edifice in the arc with recognized associated volcanic landslide deposits. From the three identified landslide prehistoric episodes, one is associated with a collapse volume of about 4.4 km3. Numerical simulations considering a single pulse collapse revealed that this episode would have produced a regional tsunami. A volume estimate of the present day edifice is about 1.5 km3. We aim to quantify potential initial volumes of collapsed material using relative instability analysis (RIA). The RIA evaluates the critical potential failure surface associated with factor of safety (Fs) inferior to 1 and compares them to areas of deficit/surplus of mass/volume obtained from the comparison of an high resolution digital elevation model of the edifice with an ideal 3D surface named Volcanoid. To do so we use freeware programs VolcanoFit 2.0 and SSAP 4.5. We report, for the first time, results of a Limit Equilibrium Method (Janbu's rigorous method) as a slope stability computation analysis performed using geomechanical parameters retrieved from rock mechanics tests performed on two rock basaltic-andesite rock samples collected from within the crater of the volcano during the 1

  13. Characteristics of Offshore Hawai';i Island Seismicity and Velocity Structure, including Lo';ihi Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Merz, D. K.; Caplan-Auerbach, J.; Thurber, C. H.

    2013-12-01

    The Island of Hawai';i is home to the most active volcanoes in the Hawaiian Islands. The island's isolated nature, combined with the lack of permanent offshore seismometers, creates difficulties in recording small magnitude earthquakes with accuracy. This background offshore seismicity is crucial in understanding the structure of the lithosphere around the island chain, the stresses on the lithosphere generated by the weight of the islands, and how the volcanoes interact with each other offshore. This study uses the data collected from a 9-month deployment of a temporary ocean bottom seismometer (OBS) network fully surrounding Lo';ihi volcano. This allowed us to widen the aperture of earthquake detection around the Big Island, lower the magnitude detection threshold, and better constrain the hypocentral depths of offshore seismicity that occurs between the OBS network and the Hawaii Volcano Observatory's land based network. Although this study occurred during a time of volcanic quiescence for Lo';ihi, it establishes a basis for background seismicity of the volcano. More than 480 earthquakes were located using the OBS network, incorporating data from the HVO network where possible. Here we present relocated hypocenters using the double-difference earthquake location algorithm HypoDD (Waldhauser & Ellsworth, 2000), as well as tomographic images for a 30 km square area around the summit of Lo';ihi. Illuminated by using the double-difference earthquake location algorithm HypoDD (Waldhauser & Ellsworth, 2000), offshore seismicity during this study is punctuated by events locating in the mantle fault zone 30-50km deep. These events reflect rupture on preexisting faults in the lower lithosphere caused by stresses induced by volcano loading and flexure of the Pacific Plate (Wolfe et al., 2004; Pritchard et al., 2007). Tomography was performed using the double-difference seismic tomography method TomoDD (Zhang & Thurber, 2003) and showed overall velocities to be slower than

  14. Bubble Plumes at NW Rota-1 Submarine Volcano, Mariana Arc: Visualization and Analysis of Multibeam Water Column Data

    NASA Astrophysics Data System (ADS)

    Merle, S. G.; Chadwick, W. W.; Embley, R. W.; Doucet, M.

    2012-12-01

    During a March 2010 expedition to NW Rota-1 submarine volcano in the Mariana arc a new EM122 multibeam sonar system on the R/V Kilo Moana was used to repeatedly image bubble plumes in the water column over the volcano. The EM122 (12 kHz) system collects seafloor bathymetry and backscatter data, as well as acoustic return water column data. Previous expeditions to NW Rota-1 have included seafloor mapping / CTD tow-yo surveys and remotely operated vehicle (ROV) dives in 2004, 2005, 2006 and 2009. Much of the focus has been on the one main eruptive vent, Brimstone, located on the south side of the summit at a depth of ~440m, which has been persistently active during all ROV visits. Extensive degassing of CO2 bubbles have been observed by the ROV during frequent eruptive bursts from the vent. Between expeditions in April 2009 and March 2010 a major eruption and landslide occurred at NW Rota-1. ROV dives in 2010 revealed that after the landslide the eruptive vent had been reorganized from a single site to a line of vents. Brimstone vent was still active, but 4 other new eruptive vents had also emerged in a NW/SE line below the summit extending ~100 m from the westernmost to easternmost vents. During the ROV dives, the eruptive vents were observed to turn on and off from day to day and hour to hour. Throughout the 2010 expedition numerous passes were made over the volcano summit to image the bubble plumes above the eruptive vents in the water column, in order to capture the variability of the plumes over time and to relate them to the eruptive output of the volcano. The mid-water sonar data set totals >95 hours of observations over a 12-day period. Generally, the ship drove repeatedly over the eruptive vents at a range of ship speeds (0.5-4 knots) and headings. In addition, some mid-water data was collected during three ROV dives when the ship was stationary over the vents. We used the FMMidwater software program (part of QPS Fledermaus) to visualize and analyze the data

  15. Hydrodynamic modeling of magmatic-hydrothermal activity at submarine arc volcanoes, with implications for ore formation

    NASA Astrophysics Data System (ADS)

    Gruen, Gillian; Weis, Philipp; Driesner, Thomas; Heinrich, Christoph A.; de Ronde, Cornel E. J.

    2014-10-01

    Subduction-related magmas have higher volatile contents than mid-ocean ridge basalts, which affects the dynamics of associated submarine hydrothermal systems. Interaction of saline magmatic fluids with convecting seawater may enhance ore metal deposition near the seafloor, making active submarine arcs a preferred modern analogue for understanding ancient massive sulfide deposits. We have constructed a quantitative hydrological model for sub-seafloor fluid flow based on observations at Brothers volcano, southern Kermadec arc, New Zealand. Numerical simulations of multi-phase hydrosaline fluid flow were performed on a two-dimensional cross-section cutting through the NW Caldera and the Upper Cone sites, two regions of active venting at the Brothers volcanic edifice, with the former hosting sulfide mineralization. Our aim is to explore the flow paths of saline magmatic fluids released from a crystallizing magma body at depth and their interaction with seawater circulating through the crust. The model includes a 3×2 km sized magma chamber emplaced at ∼2.5 km beneath the seafloor connected to the permeable cone via a ∼200 m wide feeder dike. During the simulation, a magmatic fluid was temporarily injected from the top of the cooling magma chamber into the overlying convection system, assuming hydrostatic conditions and a static permeability distribution. The simulations predict a succession of hydrologic regimes in the subsurface of Brothers volcano, which can explain some of the present-day hydrothermal observations. We find that sub-seafloor phase separation, inferred from observed vent fluid salinities, and the temperatures of venting at Brothers volcano can only be achieved by input of a saline magmatic fluid at depth, consistent with chemical and isotopic data. In general, our simulations show that the transport of heat, water, and salt from magmatic and seawater sources is partly decoupled. Expulsion of magmatic heat and volatiles occurs within the first few

  16. Esmeralda Bank: Geochemistry of an active submarine volcano in the Mariana Island Arc

    NASA Astrophysics Data System (ADS)

    Stern, Robert J.; Bibee, L. D.

    1984-05-01

    Esmeralda Bank is the southernmost active volcano in the Izu-Volcano-Mariana Arc. This submarine volcano is one of the most active vents in the western Pacific. It has a total volume of about 27 km3, rising to within 30 m of sea level. Two dredge hauls from Esmeralda recovered fresh, nearly aphyric, vesicular basalts and basaltic andesites and minor basaltic vitrophyre. These samples reflect uniform yet unusual major and trace element chemistries. Mean abundances of TiO2 (1.3%) and FeO* (12.6%) are higher and CaO (9.2%) and Al2O3 (15.1%) are lower than rocks of similar silica content from other active Mariana Arc volcanoes. Mean incompatible element ratios K/Rb (488) and K/Ba (29) of Esmeralda rocks are indistinguishable from those of other Mariana Arc volcanoes. On a Ti-Zr plot, Esmeralda samples plot in the field of oceanic basalts while other Mariana Arc volcanic rocks plot in the field for island arcs. Incompatible element ratios K/Rb and K/Ba and isotopic compositions of Sr (87Sr/86Sr=0.70342 0.70348), Nd (ɛND=+7.6 to +8.1), and O(δ18O=+5.8 to +5.9) are incompatible with models calling for the Esmeralda source to include appreciable contributions from pelagic sediments or fresh or altered abyssal tholeiite from subduction zone melting. Instead, incompatible element and isotopic ratios of Esmeralda rocks are similar to those of intra-plate oceanic islands or “hot-spot” volcanoes in general and Kilauean tholeiites in particular. The conclusion that the source for Esmeralda lavas is an ocean-island type mantle reservoir is preferred. Esmeralda Bank rare earth element patterns are inconsistent with models calling for residual garnet in the source region, but are adequately modelled by 7 10% equilibrium partial melting of spinel lherzolite. This is supported by consideration of the results of melting experiments at 20 kbars, 1,150° C with CO2 and H2O as important volatile components. These experiments further indicate that low MgO (4.1%), MgO/FeO*(0.25) and

  17. Bacterial diversity in Fe-rich hydrothermal sediments at two South Tonga Arc submarine volcanoes.

    PubMed

    Forget, N L; Murdock, S A; Juniper, S K

    2010-12-01

    Seafloor iron oxide deposits are a common feature of submarine hydrothermal systems. Morphological study of these deposits has led investigators to suggest a microbiological role in their formation, through the oxidation of reduced Fe in hydrothermal fluids. Fe-oxidizing bacteria, including the recently described Zetaproteobacteria, have been isolated from a few of these deposits but generally little is known about the microbial diversity associated with this habitat. In this study, we characterized bacterial diversity in two Fe oxide samples collected on the seafloor of Volcanoes 1 and 19 on the South Tonga Arc. We were particularly interested in confirming the presence of Zetaproteobacteria at these two sites and in documenting the diversity of groups other than Fe oxidizers. Our results (small subunit rRNA gene sequence data) showed a surprisingly high bacterial diversity, with 150 operational taxonomic units belonging to 19 distinct taxonomic groups. Both samples were dominated by Zetaproteobacteria Fe oxidizers. This group was most abundant at Volcano 1, where sediments were richer in Fe and contained more crystalline forms of Fe oxides. Other groups of bacteria found at these two sites include known S- and a few N-metabolizing bacteria, all ubiquitous in marine environments. The low similarity of our clones with the GenBank database suggests that new species and perhaps new families were recovered. The results of this study suggest that Fe-rich hydrothermal sediments, while dominated by Fe oxidizers, can be exploited by a variety of autotrophic and heterotrophic micro-organisms.

  18. Bacterial diversity in Fe-rich hydrothermal sediments at two South Tonga Arc submarine volcanoes.

    PubMed

    Forget, N L; Murdock, S A; Juniper, S K

    2010-12-01

    Seafloor iron oxide deposits are a common feature of submarine hydrothermal systems. Morphological study of these deposits has led investigators to suggest a microbiological role in their formation, through the oxidation of reduced Fe in hydrothermal fluids. Fe-oxidizing bacteria, including the recently described Zetaproteobacteria, have been isolated from a few of these deposits but generally little is known about the microbial diversity associated with this habitat. In this study, we characterized bacterial diversity in two Fe oxide samples collected on the seafloor of Volcanoes 1 and 19 on the South Tonga Arc. We were particularly interested in confirming the presence of Zetaproteobacteria at these two sites and in documenting the diversity of groups other than Fe oxidizers. Our results (small subunit rRNA gene sequence data) showed a surprisingly high bacterial diversity, with 150 operational taxonomic units belonging to 19 distinct taxonomic groups. Both samples were dominated by Zetaproteobacteria Fe oxidizers. This group was most abundant at Volcano 1, where sediments were richer in Fe and contained more crystalline forms of Fe oxides. Other groups of bacteria found at these two sites include known S- and a few N-metabolizing bacteria, all ubiquitous in marine environments. The low similarity of our clones with the GenBank database suggests that new species and perhaps new families were recovered. The results of this study suggest that Fe-rich hydrothermal sediments, while dominated by Fe oxidizers, can be exploited by a variety of autotrophic and heterotrophic micro-organisms. PMID:20533949

  19. NeMO-Net: A System for Near Real-Time Remote Sensing of Hydrothermal and Biological Activity in the Caldera of an Active Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Hammond, S. R.; Butterfield, D.; Embley, R. W.; Meinig, C.; Stalin, S.

    2001-12-01

    In July of 2000, a camera and three temperature sensors were placed on the seafloor near a hydrothermal vent located in the caldera of an active submarine volcano. The volcano's summit lies at a depth of about 1500 m and is located at 46° N, 130° W, approximately 250 nautical miles off the Oregon coast. The volcano is the site of a long-term interdisciplinary study focused in part on discovering relationships between submarine volcanic and hydrothermal activity and a microbial biosphere which exists beneath the sea floor within the volcano's summit caldera. NeMO-Net utilizes an acoustic modem to communicate with a surface mooring anchored nearby. The mooring, in turn, is linked from the ocean surface to the Pacific Marine Environmental Laboratory by means of satellite systems. A unique feature of NeMO-Net is that it enables shore-based investigators to interrogate and command the system to perform specific tasks, the results of which are then reported back typically within several minutes . In the initial year-long deployment, photographic images, along with hourly readings from the three temperature probes, were available on a website which was updated every 24 hours. During the year, the camera documented a dynamic vent biological community as well as water temperature variations due to the influence of tides, and possibly with changing vent fluid temperatures The NeMO-Net system is under continuing development with particular emphasis on linking it to multiple sea floor instruments including near-real-time chemical and water samplers. Near-future plans also call for NeMO Net to be linked to a resident sea floor AUV.

  20. Submarine explosive activity and ocean noise generation at Monowai Volcano, Kermadec Arc: constraints from hydroacoustic T-waves

    NASA Astrophysics Data System (ADS)

    Grevemeyer, Ingo; Metz, Dirk; Watts, Anthony

    2016-04-01

    Submarine volcanic activity is difficult to detect, because eruptions at depth are strongly attenuated by seawater. With increasing depth the ambient water pressure increases and limits the expansion of gas and steam such that volcanic eruptions tend to be less violent and less explosive with depth. Furthermore, the thermal conductivity and heat capacity of water causes rapid cooling of ejected products and hence erupted magma cools much more quickly than during subaerial eruptions. Therefore, reports on submarine volcanism are restricted to those sites where erupted products - like the presence of pumice rafts, gas bubbling on the sea surface, and local seawater colour changes - reach the sea surface. However, eruptions cause sound waves that travel over far distances through the Sound-Fixing-And-Ranging (SOFAR) channel, so called T-waves. Seismic networks in French Polynesia recorded T-waves since the 1980's that originated at Monowai Volcano, Kermadec Arc, and were attributed to episodic growth and collapse events. Repeated swath-mapping campaigns conducted between 1998 and 2011 confirm that Monowai volcano is a highly dynamic volcano. In July of 2007 a network of ocean-bottom-seismometers (OBS) and hydrophones was deployed and recovered at the end of January 2008. The instruments were located just to the east of Monowai between latitude 25°45'S and 27°30'S. The 23 OBS were placed over the fore-arc and on the incoming subducting plate to obtain local seismicity associated with plate bending and coupling of the subduction megathrust. However, we recognized additional non-seismic sleuths in the recordings. Events were best seen in 1 Hz high-pass filtered hydrophone records and were identified as T-waves. The term T-wave is generally used for waves travelling through the SOFAR channel over large distances. In our case, however, they were also detected on station down to ~8000 m, suggesting that waves on the sea-bed station were direct waves caused by explosive

  1. Discovery of an active shallow submarine silicic volcano in the northern Izu-Bonin Arc: volcanic structure and potential hazards of Oomurodashi Volcano (Invited)

    NASA Astrophysics Data System (ADS)

    Tani, K.; Ishizuka, O.; Nichols, A. R.; Hirahara, Y.; Carey, R.; McIntosh, I. M.; Masaki, Y.; Kondo, R.; Miyairi, Y.

    2013-12-01

    Oomurodashi is a bathymetric high located ~20 km south of Izu-Oshima, an active volcanic island of the northern Izu-Bonin Arc. Using the 200 m bathymetric contour to define its summit dimensions, the diameter of Oomurodashi is ~20 km. Oomurodashi has been regarded as inactive, largely because it has a vast flat-topped summit at 100 - 150 meters below sea level (mbsl). During cruise NT07-15 of R/V Natsushima in 2007, we conducted a dive survey in a small crater, Oomuro Hole, located in the center of the flat-topped summit, using the remotely-operated vehicle (ROV) Hyper-Dolphin. The only heat flow measurement conducted on the floor of Oomuro Hole during the dive recorded an extremely high value of 4,200 mW/m2. Furthermore, ROV observations revealed that the southwestern wall of Oomuro Hole consists of fresh rhyolitic lavas. These findings suggest that Oomurodashi is in fact an active silicic submarine volcano. To confirm this hypothesis, we conducted detailed geological and geophysical ROV Hyper-Dolphin (cruise NT12-19). In addition to further ROV surveys, we carried out single-channel seismic (SCS) surveys across Oomurodashi in order to examine the shallow structures beneath the current edifice. The ROV surveys revealed numerous active hydrothermal vents on the floor of Oomuro Hole, at ~200 mbsl, with maximum water temperature measured at the hydrothermal vents reaching 194°C. We also conducted a much more detailed set of heat flow measurements across the floor of Oomuro Hole, detecting very high heat flows of up to 29,000 mW/m2. ROV observations revealed that the area surrounding Oomuro Hole on the flat-topped summit of Oomurodashi is covered by extensive fresh rhyolitic lava and pumice clasts with minimum biogenetic or manganese cover, suggesting recent eruption(s). These findings strongly indicate that Oomurodashi is an active silicic submarine volcano, with recent eruption(s) occurring from Oomuro Hole. Since the summit of Oomurodashi is in shallow water, it

  2. Hydrothermal venting and mineralization in the crater of Kick'em Jenny submarine volcano, Grenada (Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Carey, Steven; Olsen, Rene; Bell, Katherine L. C.; Ballard, Robert; Dondin, Frederic; Roman, Chris; Smart, Clara; Lilley, Marvin; Lupton, John; Seibel, Brad; Cornell, Winton; Moyer, Craig

    2016-03-01

    Kick'em Jenny is a frequently erupting, shallow submarine volcano located 7.5 km off the northern coast of Grenada in the Lesser Antilles subduction zone. Focused and diffuse hydrothermal venting is taking place mainly within a small (˜70 × 110 m) depression within the 300 m diameter crater of the volcano at depths of about 265 m. Much of the crater is blanketed with a layer of fine-grained tephra that has undergone hydrothermal alteration. Clear fluids and gas are being discharged near the center of the depression from mound-like vents at a maximum temperature of 180°C. The gas consists of 93-96% CO2 with trace amounts of methane and hydrogen. Gas flux measurements of individual bubble streams range from 10 to 100 kg of CO2 per day. Diffuse venting with temperatures 5-35°C above ambient occurs throughout the depression and over large areas of the main crater. These zones are colonized by reddish-yellow bacteria with the production of Fe-oxyhydroxides as surface coatings, fragile spires up to several meters in height, and elongated mounds up to tens of centimeters thick. A high-resolution photomosaic of the inner crater depression shows fluid flow patterns descending the sides of the depression toward the crater floor. We suggest that the negatively buoyant fluid flow is the result of phase separation of hydrothermal fluids at Kick'em Jenny generating a dense saline component that does not rise despite its elevated temperature.

  3. High-Temperature Hydrothermal Vent Field of Kolumbo Submarine Volcano, Aegean Sea: Site of Active Kuroko-Type Mineralization

    NASA Astrophysics Data System (ADS)

    Sigurdsson, H.; Carey, S.; Alexandri, M.; Vougioukalakis, G.; Croff, K.; Roman, C.; Sakellariou, D.; Anagnostou, C.; Rousakis, G.; Ioakim, C.; Gogou, A.; Ballas, D.; Misaridis, T.; Nomikou, P.

    2006-12-01

    Kolumbo submarine volcano is located 7 km north-east of the island of Santorini in the Hellenic arc (Greece), and comprises one of about twenty submarine cones in a NE-trending rift zone. Kolumbo erupted explosively in 1649-50AD, causing 70 fatalities on Santorini. Kolumbo's crater is 1700 m in diameter, with a crater rim at 10 m below sea level and crater floor at depth of 505 m. Recent marine geological investigations, using ROVs, reveal a very active high-temperature hydrothermal vent field in the northeastern part of the Kolumbo crater floor, about 25,000 m2. Vent chimneys up to 4 m high are vigorously emitting colorless gas plumes up to 10 m high in the water column. Temperatures up to 220oC are recorded in vent fluids. Some vents are in crater- like depressions, containing debris from collapsed extinct chimneys. The entire crater floor of Kolumbo is mantled by a reddish-orange bacterial mat, and bacterial filaments of a variety of colors cling to chimneys in dense clusters. Glassy tunicates and anemones are common in lower-temperature environments on the crater floor. Most chimneys show a high porosity, with a central conduit surrounded by an open and very permeable framework of sulfides and sulfates, aiding fluid flow through the chimney walls. In the sulfate-rich samples, blades of euhedral barite and anhydrite crystals coat the outside of the chimney wall, and layers of barite alternate with sulfide in the interior. The dominant sulfides are pyrite, sphalerite, wurtzite, marcasite and galena. Crusts on extinct and lower-temperature chimneys are composed of amorphous silica, goethite and halite. Sulfur isotope composition of sulfates is virtually at sea water values, whereas the sulfides are more depleted. Elevated levels of copper, gold and silver are observed in bulk composition of chimney samples. Both the structural setting, character of the vent field and sulfide/sulfate mineralogy and geochemistry indicate on-going Kuroko-type mineralization in the

  4. Growth and collapse of Waianae Volcano, Hawaii, as revealed by exploration of its submarine flanks

    NASA Astrophysics Data System (ADS)

    Coombs, Michelle L.; Clague, David A.; Moore, Gregory F.; Cousens, Brian L.

    2004-08-01

    Wai`anae Volcano comprises the western half of O`ahu Island, but until recently little was known about the submarine portion of this volcano. Seven new submersible dives, conducted in 2001 and 2002, and multibeam bathymetry offshore of Wai`anae provide evidence pertaining to the overall growth of the volcano's edifice as well as the timing of collapses that formed the Wai`anae slump complex. A prominent slope break at ˜1400 mbsl marks the paleoshoreline of Wai`anae at the end of its shield-building stage and wraps around Ka`ena Ridge, suggesting that this may have been an extension of Wai`anae's northwest rift zone. Subaerially erupted tholeiitic lavas were collected from a small shield along the crest of Ka`ena Ridge. The length of Wai`anae's south rift zone is poorly constrained but reaches at least 65 km on the basis of recovered tholeiite pillows at this distance from the volcano's center. Wai`anae's growth was marked by multiple collapse and deformation events during and after its shield stage, resulting in the compound mass wasting features on the volcano's southwest flank (Wai`anae slump complex). The slump complex, one of the largest in Hawai`i, covering an area of ˜5500 km2, is composed of several distinct sections on the basis of morphology and the lithologies of recovered samples. Two dives ascended the outer bench of the slump complex and collected predominantly low-S tholeiites that correlate with subaerial lavas erupted early during the volcano's shield stage, from 3.9 to 3.5 Ma. Pillow lavas from the outer bench have Pb, Sr, and Nd isotopic values that overlap with previously published subaerial Wai`anae lavas. On the basis of the compositions of the recovered samples, the main body of the slump complex, as represented by the outer bench, probably formed during and shortly after the early shield stage. To the southwest of the outer bench lies a broad debris field on the seafloor, interpreted to have formed by a catastrophic collapse event that

  5. Historical bathymetric charts and the evolution of Santorini submarine volcano, Greece

    NASA Astrophysics Data System (ADS)

    Watts, A. B.; Nomikou, P.; Parks, M.; Smith, J.

    2013-12-01

    Historical bathymetric charts are a potential resource for better understanding the dynamics of the seafloor and the role of active processes such as those associated with submarine faulting, landsliding, and magmatism. The UK Hydrographic Office, for example, has been involved in lead line measurements of seafloor depth since the early 1790s in a range of geological settings including ocean islands. Here, we report on an analysis of historical bathymetric charts in the region of Santorini volcano, Greece. Repeat lead line surveys in 1848, 1866 and 1928 and multibeam swath bathymetric surveys in 2001 and 2006 have been used to document changes in the depth of the seafloor in Santorini caldera. The data reveal that the flanks of the Kameni islands, a volcanic dome and dacitic lava complex in the caldera centre, have shallowed by up to 215 m and deepened by up to 60 m since 1848. The largest shallowing occurred between the 1866 and 1928 surveys and was accompanied by a significant increase in the surface area of the island of Nea Kameni, especially its southeast flank. Field observations by the French Geologist, F. A. Fouqué, during 1866-1870 suggest the shallowing is associated with the formation of the Giorgos and Aphroessa domes and their associated lava flows. Other shallowing probably occurred during 1925-1928 when lava flows filled the narrow strait between Nea Kameni and Mikra Kameni. The largest deepenings occurred between the 1928 and 2001 and 2006 surveys, on the shelf and slope of Nea Kameni. One possibility is that the deepening is caused by mass wasting due to large-scale slope failure and debris flow. Another is that it reflects a stress-induced viscoelastic relaxation of the crust following dome loading. Irrespective, the rates implied from the volumes and duration of the 19th century submarine magmatic activity are up to 0.11 km3/yr, which is significantly larger than rates inferred from mapping of surface lava flows.

  6. Direct video and hydrophone observations of submarine explosive eruptions at NW Rota-1 volcano, Mariana arc

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Cashman, K. V.; Embley, R. W.; Matsumoto, H.; Dziak, R. P.; de Ronde, C. E. J.; Lau, T. K.; Deardorff, N. D.; Merle, S. G.

    2008-08-01

    Extraordinary video and hydrophone observations of a submarine explosive eruption were made with a remotely operated vehicle in April 2006 at a depth of 550-560 m on NW Rota-1 volcano in the Mariana arc. The observed eruption evolved from effusive to explosive, while the eruption rate increased from near zero to 10-100 m3/h. During the peak in activity, cyclic explosive bursts 2-6 min long were separated by shorter non-eruptive pauses lasting 10-100 s. The size of the ejecta increased with the vigor of the explosions. A portable hydrophone deployed near the vent recorded sounds correlated with the explosive bursts; the highest amplitudes were ˜50 dB higher than ambient noise at frequencies between 10 and 50 Hz. The acoustic data allow us to quantify the durations, amplitudes, and evolution of the eruptive events over time. The low eruption rate, high gas/lava ratio, and rhythmic eruptive behavior at NW Rota-1 are most consistent with a Strombolian eruptive style. We interpret that the eruption was primarily driven by the venting of magmatic gases, which was also the primary source of the sound recorded during the explosive bursts. The rhythmic nature of the bursts can be explained by partial gas segregation in the conduit and upward migration in a transitional regime between bubbly flow and fully developed slug flow. The strongest explosive bursts were accompanied by flashes of red glow and oscillating eruption plumes in the vent, apparently caused by magma-seawater interaction and rapid steam formation and condensation. This is the first time submarine explosive eruptions have been witnessed with simultaneous near-field acoustic recordings.

  7. Liquid and Emulsified Sulfur in Submarine Solfatara Fields of two Northern Mariana Arc Volcanoes.

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Embley, R. W.; Chadwick, W. W.; Butterfield, D. A.; Takano, B.; Resing, J. A.; de Ronde, C. E.; Lilley, M. D.; Lupton, J. E.; Merle, S. G.; Inagaki, F.

    2006-12-01

    Because elemental sulfur melting point is ca 100 deg C (depend on allotropes and heating rate, S8 triple point temperature: 115 deg C), the evidence of liquid sulfur has been known for many subaerial crater lakes and small ponds in geothermal regions throughout the world. But the milky nature of water (sulfur-in- water emulsion in limited water mass) prohibited the direct observation of on-going processes at the bottom of these subaerial lakes. In the passive degassing environment at the summit craters of Daikoku and Nikko Seamounts of the northern Mariana Arc, the continuous flushing of sulfur emulsion by seawater allowed us to observe on- going submarine solfatara processes and associated chemistry through dives with ROVs during the NT05-18 cruise (JAMSTEC R/V Natsushima and ROV hyper-Dolphin) and the Submarine Ring of Fire 2006 cruise (R/V Melville and ROV JASON II). A higher viscosity for liquid elemental sulfur relative to that of seawater, as well as a limited stability of sulfur emulsion (aqueous sulfur sol) at high temperatures in electrolyte solution (seawater), ensures limited mobility of liquid sulfur in the conduits of hydrothermal vents. The subseafloor boiling depth of hydrothermal fluid limits the locus of any liquid sulfur reservoir. It was observed in an exposed liquid sulfur pond that the penetration of gas bubbles (mostly CO2) created sulfur emulsion while collapsing liquid sulfur film between seawater and gas bubbles. Liquid sulfur pits, encrusted sulfur, liquid sulfur fountain structure, sulfur stalactites and stalagmites, mini-pillow lava-like sulfur flows, accretionary sulfur lapilli and sulfur deltas were also observed at the summits of two volcanoes. Note: Solfatara: Italian. A type of fumarole, the gases of which are characteristically sulfurous. In 'Glossary of geology.'

  8. Hydrothermal mineralization at Kick'em Jenny submarine volcano in the Lesser Antilles island arc

    NASA Astrophysics Data System (ADS)

    Olsen, R.; Carey, S.; Sigurdsson, H.; Cornell, W. C.

    2011-12-01

    Kick 'em Jenny (KeJ) is an active submarine volcano located in the Lesser Antilles island arc, ~7.5 km northwest of Grenada. Of the twelve eruptions detected since 1939, most have been explosive as evidenced by eyewitness accounts in 1939, 1974, and 1988 and the dominance of explosive eruption products recovered by dredging. In 2003, vigorous hydrothermal activity was observed in the crater of KeJ. Video footage taken by a remotely operated vehicle (ROV) during the cruise RB-03-03 of the R/V Ronald Brown documented the venting of a vapor phase in the form of bubbles that ascended through the water column and a clear fluid phase in the form of shimmering water. The shimmering water generally ascended through the water column but can also been seen flowing down gradient from a fissure at the top of a fine-grained sediment mound. These fine-grained sediment mounds are the only structure associated with hydrothermal venting; spire or chimney structures were not observed. Hydrothermal venting was also observed coming from patches of coarse-grained volcaniclastic sediment on the crater floor and from talus slopes around the perimeter of the crater. Samples were collected from these areas and from areas void of hydrothermal activity. XRD and ICPMS analyses of bulk sediment were carried out to investigate the geochemical relationships between sediment types. Sediment samples from the hydrothermal mound structures are comprised of the same components (plagioclase, amphibole, pyroxene, and scoria) as sediment samples from areas void of hydrothermal activity (primary volcaniclastic sediment) in the 500-63 μm size range. High resolution grain size analyses show that >78% of sediment in the hydrothermal mound samples are between 63-2 μm with 6-20% clay sized (<2 μm) whereas <40% of the primary volcaniclastic sediment is between 63-2 μm with ~2% clay sized. The presence of clay minerals (smectite, illite, talc, and I/S mixed layer) in the hydrothermal mound samples was

  9. Influence of hydrothermal venting on water column properties in the crater of the Kolumbo submarine volcano, Santorini volcanic field (Greece)

    NASA Astrophysics Data System (ADS)

    Christopoulou, Maria E.; Mertzimekis, Theo J.; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Carey, Steven; Mandalakis, Manolis

    2016-02-01

    The Kolumbo submarine volcano, located 7 km northeast of the island of Santorini, is part of Santorini's volcanic complex in the south Aegean Sea, Greece. Kolumbo's last eruption was in 1650 AD. However, a unique and active hydrothermal vent field has been revealed in the northern part of its crater floor during an oceanographic survey by remotely operated vehicles (ROVs) in 2006. In the present study, conductivity-temperature-depth (CTD) data collected by ROV Hercules during three oceanographic surveys onboard E/V Nautilus in 2010 and 2011 have served to investigate the distribution of physicochemical properties in the water column, as well as their behavior directly over the hydrothermal field. Additional CTD measurements were carried out in volcanic cone 3 (VC3) along the same volcanic chain but located 3 km northeast of Kolumbo where no hydrothermal activity has been detected to date. CTD profiles exhibit pronounced anomalies directly above the active vents on Kolumbo's crater floor. In contrast, VC3 data revealed no such anomalies, essentially resembling open-sea (background) conditions. Steep increases of temperature (e.g., from 16 to 19 °C) and conductivity near the maximum depth (504 m) inside Kolumbo's cone show marked spatiotemporal correlation. Vertical distributions of CTD signatures suggest a strong connection to Kolumbo's morphology, with four distinct zones identified (open sea, turbid flow, invariable state, hydrothermal vent field). Additionally, overlaying the near-seafloor temperature measurements on an X-Y coordinate grid generates a detailed 2D distribution of the hydrothermal vent field and clarifies the influence of fluid discharges in its formation.

  10. 40Ar/39Ar geochronology of submarine Mauna Loa volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Jicha, Brian R.; Rhodes, J. Michael; Singer, Brad S.; Garcia, Michael O.

    2012-09-01

    New geochronologic constraints refine the growth history of Mauna Loa volcano and enhance interpretations of the petrologic, geochemical, and isotopic evolution of Hawaiian magmatism. We report results of 40Ar/39Ar incremental heating experiments on low-K, tholeiitic lavas from the 1.6 km high Kahuku landslide scarp cutting Mauna Loa's submarine southwest rift zone, and from lavas in a deeper section of the rift. Obtaining precise40Ar/39Ar ages from young, tholeiitic lavas containing only 0.2-0.3 wt.% K2O is challenging due to their extremely low radiogenic 40Ar contents. Analyses of groundmass from 45 lavas yield 14 new age determinations (31% success rate) with plateau and isochron ages that agree with stratigraphic constraints. Lavas collected from a 1250 m thick section in the landslide scarp headwall were all erupted around 470 ± 10 ka, implying an extraordinary period of accumulation of ˜25 mm/yr, possibly correlating with the peak of the shield-building stage. This rate is three times higher than the estimated vertical lava accumulation rate for shield-building at Mauna Kea (8.6 ± 3.1 mm/yr) based on results from the Hawaii Scientific Drilling Project. Between ˜470 and 273 ka, the lava accumulation rate along the southwest rift zone decreased dramatically to ˜1 mm/yr. We propose that the marked reduction in lava accumulation rate does not mark the onset of post-shield volcanism as previously suggested, but rather indicates the upward migration of the magma system as Mauna Loa evolved from a submarine stage of growth to one that is predominantly subaerial, thereby cutting off supply to the distal rift zone. Prior to ˜250 ka, lavas with Loihi-like isotopic signatures were erupted along with lavas having typical Mauna Loa values, implying greater heterogeneity in the plume source earlier in Mauna Loa's growth. In addition to refining accumulation rates and the isotopic evolution of the lavas erupted along the southwest rift zone, our new40Ar/39Ar results

  11. Numerical Tsunami Hazard Assessment of the Only Active Lesser Antilles Arc Submarine Volcano: Kick 'em Jenny.

    NASA Astrophysics Data System (ADS)

    Dondin, F. J. Y.; Dorville, J. F. M.; Robertson, R. E. A.

    2015-12-01

    The Lesser Antilles Volcanic Arc has potentially been hit by prehistorical regional tsunamis generated by voluminous volcanic landslides (volume > 1 km3) among the 53 events recognized so far. No field evidence of these tsunamis are found in the vincity of the sources. Such a scenario taking place nowadays would trigger hazardous tsunami waves bearing potentially catastrophic consequences for the closest islands and regional offshore oil platforms.Here we applied a complete hazard assessment method on the only active submarine volcano of the arc Kick 'em Jenny (KeJ). KeJ is the southernmost edifice with recognized associated volcanic landslide deposits. From the three identified landslide episodes one is associated with a collapse volume ca. 4.4 km3. Numerical simulations considering a single pulse collapse revealed that this episode would have produced a regional tsunami. An edifice current volume estimate is ca. 1.5 km3.Previous study exists in relationship to assessment of regional tsunami hazard related to shoreline surface elevation (run-up) in the case of a potential flank collapse scenario at KeJ. However this assessment was based on inferred volume of collapse material. We aim to firstly quantify potential initial volumes of collapse material using relative slope instability analysis (RSIA); secondly to assess first order run-ups and maximum inland inundation distance for Barbados and Trinidad and Tobago, i.e. two important economic centers of the Lesser Antilles. In this framework we present for seven geomechanical models tested in the RSIA step maps of critical failure surface associated with factor of stability (Fs) for twelve sectors of 30° each; then we introduce maps of expected potential run-ups (run-up × the probability of failure at a sector) at the shoreline.The RSIA evaluates critical potential failure surface associated with Fs <1 as compared to areas of deficit/surplus of mass/volume identified on the volcanic edifice using (VolcanoFit 2

  12. Historical bathymetric charts and the evolution of Santorini submarine volcano, Greece

    NASA Astrophysics Data System (ADS)

    Watts, A. B.; Nomikou, P.; Moore, J. D. P.; Parks, M. M.; Alexandri, M.

    2015-03-01

    Historical bathymetric charts are a potential resource for better understanding the dynamics of the seafloor and the role of active processes, such as submarine volcanism. The British Admiralty, for example, have been involved in lead line measurements of seafloor depth since the early 1790s. Here, we report on an analysis of historical charts in the region of Santorini volcano, Greece. Repeat lead line surveys in 1848, late 1866, and 1925-1928 as well as multibeam swath bathymetry surveys in 2001 and 2006 have been used to document changes in seafloor depth. These data reveal that the flanks of the Kameni Islands, a dacitic dome complex in the caldera center, have shallowed by up to ˜175 m and deepened by up to ˜80 m since 1848. The largest shallowing occurred between the late 1866 and 1925-1928 surveys and the largest deepening occurred during the 1925-1928 and 2001 and 2006 surveys. The shallowing is attributed to the emplacement of lavas during effusive eruptions in both 1866-1870 and 1925-1928 at rates of up to 0.18 and 0.05 km3 a-1, respectively. The deepening is attributed to a load-induced viscoelastic stress relaxation following the 1866-1870 and 1925-1928 lava eruptions. The elastic thickness and viscosity that best fits the observed deepening are 1.0 km and ˜1016 Pa s, respectively. This parameter pair, which is consistent with the predictions of a shallow magma chamber thermal model, explains both the amplitude and wavelength of the historical bathymetric data and the present day rate of subsidence inferred from InSAR analysis.

  13. A distinct source and differentiation history for Kolumbo submarine volcano, Santorini volcanic field, Aegean arc

    NASA Astrophysics Data System (ADS)

    Klaver, Martijn; Carey, Steven; Nomikou, Paraskevi; Smet, Ingrid; Godelitsas, Athanasios; Vroon, Pieter

    2016-08-01

    This study reports the first detailed geochemical characterization of Kolumbo submarine volcano in order to investigate the role of source heterogeneity in controlling geochemical variability within the Santorini volcanic field in the central Aegean arc. Kolumbo, situated 15 km to the northeast of Santorini, last erupted in 1650 AD and is thus closely associated with the Santorini volcanic system in space and time. Samples taken by remotely-operated vehicle that were analyzed for major element, trace element and Sr-Nd-Hf-Pb isotope composition include the 1650 AD and underlying K2 rhyolitic, enclave-bearing pumices that are nearly identical in composition (73 wt.% SiO2, 4.2 wt.% K2O). Lava bodies exposed in the crater and enclaves are basalts to andesites (52-60 wt.% SiO2). Biotite and amphibole are common phenocryst phases, in contrast with the typically anhydrous mineral assemblages of Santorini. The strong geochemical signature of amphibole fractionation and the assimilation of lower crustal basement in the petrogenesis of the Kolumbo magmas indicates that Kolumbo and Santorini underwent different crustal differentiation histories and that their crustal magmatic systems are unrelated. Moreover, the Kolumbo samples are derived from a distinct, more enriched mantle source that is characterized by high Nb/Yb (>3) and low 206Pb/204Pb (<18.82) that has not been recognized in the Santorini volcanic products. The strong dissimilarity in both petrogenesis and inferred mantle sources between Kolumbo and Santorini suggests that pronounced source variations can be manifested in arc magmas that are closely associated in space and time within a single volcanic field.

  14. Long-distance magma transport from arc volcanoes inferred from the submarine eruptive fissures offshore Izu-Oshima volcano, Izu-Bonin arc

    NASA Astrophysics Data System (ADS)

    Ishizuka, Osamu; Geshi, Nobuo; Kawanabe, Yoshihisa; Ogitsu, Itaru; Taylor, Rex N.; Tuzino, Taqumi; Sakamoto, Izumi; Arai, Kohsaku; Nakano, Shun

    2014-09-01

    Long-distance lateral magma transport away from volcanic centers in island arcs is emerging as a common phenomenon where the regional stress regime is favorable. It should also be recognized as an important factor in the construction and growth of island arcs, and a potential trigger for devastating eruptions. In this contribution, we report on recent investigations into the magma dynamics of Izu-Oshima volcano, an active basaltic volcano with an extensive fissure system. Izu-Oshima is flanked by numerous, subparallel NW-SE trending submarine ridges extending up to 22 km to the NW and the SE from the central vent. During a recent submersible survey we have identified that these ridges are fissures which erupted basaltic spatter and lava flows. Furthermore, lavas are petrographically similar along each ridge, while there are noticeable differences between ridges. The subparallel ridges are observed to transect a series of seamounts - the Izu-Tobu monogenetic volcanoes - which are dispersed across this area of the rear-arc. However, there are consistent petrographic and chemical differences between these seamounts and the ridges, indicating that they have different magma sources, yet, they are essentially bounding each other in dive tracks. The most appropriate scenario for their development is one where the Izu-Tobu Volcanoes are fed by an "in-situ" underlying source, while the NW-SE ridges are fed by lateral magma transport from Izu-Oshima. Magma erupted from each ridge is of a consistent geochemistry along its length, but has experienced crystal fractionation and some plagioclase accumulation. Compositions of the ridges are also very similar to lavas from the subaerial cones that can be traced down the flanks of Izu-Oshima. This implies that pairs of subaerial cones and submarine ridges represent the locus of magma transport events away from the storage system beneath Izu-Oshima. Hence, magma from this crustal reservoir moved upward to feed the on-edifice cones

  15. Vailulu'u Seamount, Samoa: Life and death on an active submarine volcano.

    PubMed

    Staudigel, Hubert; Hart, Stanley R; Pile, Adele; Bailey, Bradley E; Baker, Edward T; Brooke, Sandra; Connelly, Douglas P; Haucke, Lisa; German, Christopher R; Hudson, Ian; Jones, Daniel; Koppers, Anthony A P; Konter, Jasper; Lee, Ray; Pietsch, Theodore W; Tebo, Bradley M; Templeton, Alexis S; Zierenberg, Robert; Young, Craig M

    2006-04-25

    Submersible exploration of the Samoan hotspot revealed a new, 300-m-tall, volcanic cone, named Nafanua, in the summit crater of Vailulu'u seamount. Nafanua grew from the 1,000-m-deep crater floor in <4 years and could reach the sea surface within decades. Vents fill Vailulu'u crater with a thick suspension of particulates and apparently toxic fluids that mix with seawater entering from the crater breaches. Low-temperature vents form Fe oxide chimneys in many locations and up to 1-m-thick layers of hydrothermal Fe floc on Nafanua. High-temperature (81 degrees C) hydrothermal vents in the northern moat (945-m water depth) produce acidic fluids (pH 2.7) with rising droplets of (probably) liquid CO(2). The Nafanua summit vent area is inhabited by a thriving population of eels (Dysommina rugosa) that feed on midwater shrimp probably concentrated by anticyclonic currents at the volcano summit and rim. The moat and crater floor around the new volcano are littered with dead metazoans that apparently died from exposure to hydrothermal emissions. Acid-tolerant polychaetes (Polynoidae) live in this environment, apparently feeding on bacteria from decaying fish carcasses. Vailulu'u is an unpredictable and very active underwater volcano presenting a potential long-term volcanic hazard. Although eels thrive in hydrothermal vents at the summit of Nafanua, venting elsewhere in the crater causes mass mortality. Paradoxically, the same anticyclonic currents that deliver food to the eels may also concentrate a wide variety of nektonic animals in a death trap of toxic hydrothermal fluids. PMID:16614067

  16. Vailulu’u Seamount, Samoa: Life and death on an active submarine volcano

    PubMed Central

    Staudigel, Hubert; Hart, Stanley R.; Pile, Adele; Bailey, Bradley E.; Baker, Edward T.; Brooke, Sandra; Connelly, Douglas P.; Haucke, Lisa; German, Christopher R.; Hudson, Ian; Jones, Daniel; Koppers, Anthony A. P.; Konter, Jasper; Lee, Ray; Pietsch, Theodore W.; Tebo, Bradley M.; Templeton, Alexis S.; Zierenberg, Robert; Young, Craig M.

    2006-01-01

    Submersible exploration of the Samoan hotspot revealed a new, 300-m-tall, volcanic cone, named Nafanua, in the summit crater of Vailulu’u seamount. Nafanua grew from the 1,000-m-deep crater floor in <4 years and could reach the sea surface within decades. Vents fill Vailulu’u crater with a thick suspension of particulates and apparently toxic fluids that mix with seawater entering from the crater breaches. Low-temperature vents form Fe oxide chimneys in many locations and up to 1-m-thick layers of hydrothermal Fe floc on Nafanua. High-temperature (81°C) hydrothermal vents in the northern moat (945-m water depth) produce acidic fluids (pH 2.7) with rising droplets of (probably) liquid CO2. The Nafanua summit vent area is inhabited by a thriving population of eels (Dysommina rugosa) that feed on midwater shrimp probably concentrated by anticyclonic currents at the volcano summit and rim. The moat and crater floor around the new volcano are littered with dead metazoans that apparently died from exposure to hydrothermal emissions. Acid-tolerant polychaetes (Polynoidae) live in this environment, apparently feeding on bacteria from decaying fish carcasses. Vailulu’u is an unpredictable and very active underwater volcano presenting a potential long-term volcanic hazard. Although eels thrive in hydrothermal vents at the summit of Nafanua, venting elsewhere in the crater causes mass mortality. Paradoxically, the same anticyclonic currents that deliver food to the eels may also concentrate a wide variety of nektonic animals in a death trap of toxic hydrothermal fluids. PMID:16614067

  17. A Geochemical Study of Magmatic Processes and Evolution along the Submarine Southwest Rift zone of Mauna Loa Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Rhodes, J. M.; Garcia, M. O.; Weis, D.; Trusdell, F. A.; Vollinger, M. J.

    2003-12-01

    Mauna Loa's southwest rift zone (SWR) extends for 102 km from its summit caldera, at an elevation of 4,170 m above sea level, to submarine depths of over 4,500 m. About 65% of the rift zone is subaerial and 35% submarine. Recent sampling with the Jason II submersible of the `mile-high' (1800 m) Ka Lae submarine landslide scarp and the deepest section of the rift zone, in conjunction with previous submersible and dredge-haul collecting, provides petrological and geochemical understanding of rift zone processes, as well as a record of Mauna Loa's eruptive history extending back about 400 ka. The major and trace element trends of the submarine lavas are remarkably similar to those of historical and young prehistoric lavas (<31 ka) erupted along the subaerial SWR. We take this to imply that magma-forming processes have remained relatively constant over much of the volcano's recorded eruptive history. However, the distribution of samples along these trends has varied, and is correlated with elevation. There are very few picrites (>12% MgO) among the subaerial lavas, and compositions tend to cluster around 6.8-8.0% MgO. In contrast, picritic lavas are extremely abundant in the submarine samples, increasing in frequency with depth, especially below 1200 m. These observations support earlier interpretations that the submarine lavas are derived directly from deeper levels in the magma column, and that magmas from a shallow, steady-state, magma reservoir are of uncommon at these depths. Isotopic ratios of Pb and Sr in the submarine lavas, in conjunction with Nb/Y and Zr/Nb ratios, extend from values that are identical with subaerial historical Mauna Loa lavas to lavas with markedly lower 87Sr/86Sr and higher 206Pb/204Pb isotopic ratios. As yet, we see no correlation with depth or age, but the implications are that, in the past, the plume source of Mauna Loa magmas was more variable than in the last 31 ka, and contained a greater proportion of the Kea component. *Team members

  18. High-Resolution Distribution of Temperature, Particle and Oxidation/Reduction Potential Anomalies From a Submarine Hydrothermal System: Brothers Volcano, Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Baker, E. T.; de Ronde, C. E.; Yoerger, D.; Embley, R. W.; Davy, B.; Merle, S. G.; Resing, J. A.; Nakamura, K.

    2008-12-01

    The complex relationships between geological setting and hydrothermal venting have, to date, largely been explored with ship-based surveys that effectively examine regional relationships, or with remotely operated vehicles (ROV) and manned submersibles which allow close examination of individual vent fields. Higher- resolution surveys than are possible with ship-based techniques and broader surveys than are practical with ROVs and manned submersibles are necessary for more thoroughly understanding hydrothermal systems and their impact on ocean ecosystems. Autonomous vehicles (AUVs), such as the WHOI Autonomous Benthic Explorer (ABE) can be programmed to conduct high-resolution surveys that systematically cover a broad area of seafloor. Brothers volcano, a hydrothermally active submarine caldera volcano located on the Kermadec arc northwest of New Zealand, was surveyed in July-August 2007 using ABE. Brothers caldera is ~3 km in diameter with a floor depth of 1850 m and walls that rise 290-530 m above the caldera floor. A dacite cone with a summit depth of ~1200 m sits within the caldera, partially merging with the southern caldera wall. Prior to the survey, active hydrothermal vents were known to be perched along the NW caldera wall and located at three sites on the cone. The enclosed caldera, presence of known vent fields with differing geochemical characteristics, and existence of at least one currently inactive site made Brothers volcano an ideal site for a high-resolution survey to explore in greater detail the mass, thermal and geochemical exchanges of hydrothermal systems. During our expedition, the caldera walls and dacite cone (~7 km2) were completely surveyed by ABE with 50-60 m trackline spacing at an altitude of 50 m above the seafloor. Hydrothermal plumes were mapped with ABE's integrated CTD (conductivity- temperature-depth) and sensors measuring optical backscatter (particle concentrations) and oxidation- reduction potential (ORP; indicating the

  19. Internal structure of Puna Ridge: evolution of the submarine East Rift Zone of Kilauea Volcano, Hawai ̀i

    NASA Astrophysics Data System (ADS)

    Leslie, Stephen C.; Moore, Gregory F.; Morgan, Julia K.

    2004-01-01

    Multichannel seismic reflection, sonobuoy, gravity and magnetics data collected over the submarine length of the 75 km long Puna Ridge, Hawai ̀i, resolve the internal structure of the active rift zone. Laterally continuous reflections are imaged deep beneath the axis of the East Rift Zone (ERZ) of Kilauea Volcano. We interpret these reflections as a layer of abyssal sediments lying beneath the volcanic edifice of Kilauea. Early arrival times or 'pull-up' of sediment reflections on time sections imply a region of high P-wave velocity ( Vp) along the submarine ERZ. Refraction measurements along the axis of the ridge yield Vp values of 2.7-4.85 km/s within the upper 1 km of the volcanic pile and 6.5-7 km/s deeper within the edifice. Few coherent reflections are observed on seismic reflection sections within the high-velocity area, suggesting steeply dipping dikes and/or chaotic and fractured volcanic materials. Southeastward dipping reflections beneath the NW flank of Puna Ridge are interpreted as the buried flank of the older Hilo Ridge, indicating that these two ridges overlap at depth. Gravity measurements define a high-density anomaly coincident with the high-velocity region and support the existence of a complex of intrusive dikes associated with the ERZ. Gravity modeling shows that the intrusive core of the ERZ is offset to the southeast of the topographic axis of the rift zone, and that the surface of the core dips more steeply to the northwest than to the southeast, suggesting that the dike complex has been progressively displaced to the southeast by subsequent intrusions. The gravity signature of the dike complex decreases in width down-rift, and is absent in the distal portion of the rift zone. Based on these observations, and analysis of Puna Ridge bathymetry, we define three morphological and structural regimes of the submarine ERZ, that correlate to down-rift changes in rift zone dynamics and partitioning of intrusive materials. We propose that these

  20. Controls on the location of arc volcanoes: an Andean study

    NASA Astrophysics Data System (ADS)

    Scott, Erin; Allen, Mark B.; McCaffrey, Kenneth J. W.; Macpherson, Colin G.; Davidson, Jon P.; Saville, Christopher

    2016-04-01

    Depth corrected data of earthquake hypocentres from South America are used to generate new models of depth to the subducting Nazca slab. This new slab model shows a general correlation between the 100 km depth to the slab, the western edge of the Altiplano-Puna Plateau (defined by the 3500 m elevation contour) and the frontal volcanic arc. Across the entire Altiplano-Puna Plateau, volcanic centres are found to be either at or above the 3500 m critical elevation contour, which also defines the cut off for seismogenic thrusting. Normal faults are only found above this critical elevation contour, suggesting that there may be a change in the stress regime associated with high elevations in the plateau. The Salar de Atacama basin (23-24oS) defines a major break in topography on the west side of the Puna Plateau. Here, the volcanism deviates around the eastern edge of the basin, approximately 80 km inland from the general trend of the arc, remaining above the 3500 m elevation contour. The volcanoes bordering the Salar de Atacama have a depth to slab approximately 30 km deeper than those in the adjacent arc segment 200 km to the north of the basin. Across this distance there is no significant difference in subduction parameters such as the slab dip, subduction rate and age of the oceanic plate entering the trench. It is likely, therefore, that melt forms at the same depth in both locations, as the factors affecting the melt source are constant. However, in the case of the Salar de Atacama region, magma is diverted to the east due to preferential emplacement under the higher elevations of the plateau. We suggest that although mantle and subduction processes have a primary control on the location of arc volcanoes, shaping the general trend of the arc, they cannot explain anomalies from the trend. Such anomalies, such as the arc deviation around the Atacama basin, can be explained by the influence of structures and stress regime within the overriding plate.

  1. Unusual seismic activity in 2011 and 2013 at the submarine volcano Rocard, Society hot spot (French Polynesia)

    NASA Astrophysics Data System (ADS)

    Talandier, Jacques; Hyvernaud, Olivier; Maury, René C.

    2016-05-01

    We analyze two seismic events that occurred on 27 May 2011 and 29 April 2013 at the Rocard submarine volcano which overlies the Society hot spot. The Polynesian Seismic Network recorded for the first time unusual associated short- and long-period signals, with perfectly monochromatic (0.0589 Hz) Rayleigh wave trains of long period and duration. None of the numerous observations of long-period (10-30 s) signals previously associated with volcanic activity in Japan, Italy, Mexico, Indonesia, Antarctica, and the Hawaiian Islands have the characteristics we observed at Rocard. We propose a tentative model for these unusual and rather enigmatic signals, in which the movement of lava excited the resonance of a shallow open conduit under a high hydrostatic pressure of ~400 bars.

  2. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response

    PubMed Central

    Fraile-Nuez, E.; González-Dávila, M.; Santana-Casiano, J. M.; Arístegui, J.; Alonso-González, I. J.; Hernández-León, S.; Blanco, M. J.; Rodríguez-Santana, A.; Hernández-Guerra, A.; Gelado-Caballero, M. D.; Eugenio, F.; Marcello, J.; de Armas, D.; Domínguez-Yanes, J. F.; Montero, M. F.; Laetsch, D. R.; Vélez-Belchí, P.; Ramos, A.; Ariza, A. V.; Comas-Rodríguez, I.; Benítez-Barrios, V. M.

    2012-01-01

    On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments. PMID:22768379

  3. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response.

    PubMed

    Fraile-Nuez, E; González-Dávila, M; Santana-Casiano, J M; Arístegui, J; Alonso-González, I J; Hernández-León, S; Blanco, M J; Rodríguez-Santana, A; Hernández-Guerra, A; Gelado-Caballero, M D; Eugenio, F; Marcello, J; de Armas, D; Domínguez-Yanes, J F; Montero, M F; Laetsch, D R; Vélez-Belchí, P; Ramos, A; Ariza, A V; Comas-Rodríguez, I; Benítez-Barrios, V M

    2012-01-01

    On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments. PMID:22768379

  4. Viral infections stimulate the metabolism and shape prokaryotic assemblages in submarine mud volcanoes.

    PubMed

    Corinaldesi, Cinzia; Dell'Anno, Antonio; Danovaro, Roberto

    2012-06-01

    Mud volcanoes are geological structures in the oceans that have key roles in the functioning of the global ecosystem. Information on the dynamics of benthic viruses and their interactions with prokaryotes in mud volcano ecosystems is still completely lacking. We investigated the impact of viral infection on the mortality and assemblage structure of benthic prokaryotes of five mud volcanoes in the Mediterranean Sea. Mud volcano sediments promote high rates of viral production (1.65-7.89 × 10(9) viruses g(-1) d(-1)), viral-induced prokaryotic mortality (VIPM) (33% cells killed per day) and heterotrophic prokaryotic production (3.0-8.3 μgC g(-1) d(-1)) when compared with sediments outside the mud volcano area. The viral shunt (that is, the microbial biomass converted into dissolved organic matter as a result of viral infection, and thus diverted away from higher trophic levels) provides 49 mgC m(-2) d(-1), thus fuelling the metabolism of uninfected prokaryotes and contributing to the total C budget. Bacteria are the dominant components of prokaryotic assemblages in surface sediments of mud volcanoes, whereas archaea dominate the subsurface sediment layers. Multivariate multiple regression analyses show that prokaryotic assemblage composition is not only dependant on the geochemical features and processes of mud volcano ecosystems but also on synergistic interactions between bottom-up (that is, trophic resources) and top-down (that is, VIPM) controlling factors. Overall, these findings highlight the significant role of the viral shunt in sustaining the metabolism of prokaryotes and shaping their assemblage structure in mud volcano sediments, and they provide new clues for our understanding of the functioning of cold-seep ecosystems.

  5. Viral infections stimulate the metabolism and shape prokaryotic assemblages in submarine mud volcanoes

    PubMed Central

    Corinaldesi, Cinzia; Dell'Anno, Antonio; Danovaro, Roberto

    2012-01-01

    Mud volcanoes are geological structures in the oceans that have key roles in the functioning of the global ecosystem. Information on the dynamics of benthic viruses and their interactions with prokaryotes in mud volcano ecosystems is still completely lacking. We investigated the impact of viral infection on the mortality and assemblage structure of benthic prokaryotes of five mud volcanoes in the Mediterranean Sea. Mud volcano sediments promote high rates of viral production (1.65–7.89 × 109 viruses g−1 d−1), viral-induced prokaryotic mortality (VIPM) (33% cells killed per day) and heterotrophic prokaryotic production (3.0–8.3 μgC g−1 d−1) when compared with sediments outside the mud volcano area. The viral shunt (that is, the microbial biomass converted into dissolved organic matter as a result of viral infection, and thus diverted away from higher trophic levels) provides 49 mgC m−2 d−1, thus fuelling the metabolism of uninfected prokaryotes and contributing to the total C budget. Bacteria are the dominant components of prokaryotic assemblages in surface sediments of mud volcanoes, whereas archaea dominate the subsurface sediment layers. Multivariate multiple regression analyses show that prokaryotic assemblage composition is not only dependant on the geochemical features and processes of mud volcano ecosystems but also on synergistic interactions between bottom-up (that is, trophic resources) and top-down (that is, VIPM) controlling factors. Overall, these findings highlight the significant role of the viral shunt in sustaining the metabolism of prokaryotes and shaping their assemblage structure in mud volcano sediments, and they provide new clues for our understanding of the functioning of cold-seep ecosystems. PMID:22170423

  6. Viral infections stimulate the metabolism and shape prokaryotic assemblages in submarine mud volcanoes.

    PubMed

    Corinaldesi, Cinzia; Dell'Anno, Antonio; Danovaro, Roberto

    2012-06-01

    Mud volcanoes are geological structures in the oceans that have key roles in the functioning of the global ecosystem. Information on the dynamics of benthic viruses and their interactions with prokaryotes in mud volcano ecosystems is still completely lacking. We investigated the impact of viral infection on the mortality and assemblage structure of benthic prokaryotes of five mud volcanoes in the Mediterranean Sea. Mud volcano sediments promote high rates of viral production (1.65-7.89 × 10(9) viruses g(-1) d(-1)), viral-induced prokaryotic mortality (VIPM) (33% cells killed per day) and heterotrophic prokaryotic production (3.0-8.3 μgC g(-1) d(-1)) when compared with sediments outside the mud volcano area. The viral shunt (that is, the microbial biomass converted into dissolved organic matter as a result of viral infection, and thus diverted away from higher trophic levels) provides 49 mgC m(-2) d(-1), thus fuelling the metabolism of uninfected prokaryotes and contributing to the total C budget. Bacteria are the dominant components of prokaryotic assemblages in surface sediments of mud volcanoes, whereas archaea dominate the subsurface sediment layers. Multivariate multiple regression analyses show that prokaryotic assemblage composition is not only dependant on the geochemical features and processes of mud volcano ecosystems but also on synergistic interactions between bottom-up (that is, trophic resources) and top-down (that is, VIPM) controlling factors. Overall, these findings highlight the significant role of the viral shunt in sustaining the metabolism of prokaryotes and shaping their assemblage structure in mud volcano sediments, and they provide new clues for our understanding of the functioning of cold-seep ecosystems. PMID:22170423

  7. Cold seeps associated with a submarine debris avalanche deposit at Kick'em Jenny volcano, Grenada (Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Carey, Steven; Ballard, Robert; Bell, Katherine L. C.; Bell, Richard J.; Connally, Patrick; Dondin, Frederic; Fuller, Sarah; Gobin, Judith; Miloslavich, Patricia; Phillips, Brennan; Roman, Chris; Seibel, Brad; Siu, Nam; Smart, Clara

    2014-11-01

    Remotely operated vehicle (ROV) exploration at the distal margins of a debris avalanche deposit from Kick'em Jenny submarine volcano in Grenada has revealed areas of cold seeps with chemosynthetic-based ecosystems. The seeps occur on steep slopes of deformed, unconsolidated hemipelagic sediments in water depths between 1952 and 2042 m. Two main areas consist of anastomosing systems of fluid flow that have incised local sediments by several tens of centimeters. No temperature anomalies were observed in the vent areas and no active flow was visually observed, suggesting that the venting may be waning. An Eh sensor deployed on a miniature autonomous plume recorder (MAPR) recorded a positive signal and the presence of live organisms indicates at least some venting is still occurring. The chemosynthetic-based ecosystem included giant mussels (Bathymodiolus sp.) with commensal polychaetes (Branchipolynoe sp.) and cocculinid epibionts, other bivalves, Siboglinida (vestimentiferan) tubeworms, other polychaetes, and shrimp, as well as associated heterotrophs, including gastropods, anemones, crabs, fish, octopods, brittle stars, and holothurians. The origin of the seeps may be related to fluid overpressure generated during the collapse of an ancestral Kick'em Jenny volcano. We suggest that deformation and burial of hemipelagic sediment at the front and base of the advancing debris avalanche led to fluid venting at the distal margin. Such deformation may be a common feature of marine avalanches in a variety of geological environments especially along continental margins, raising the possibility of creating large numbers of ephemeral seep-based ecosystems.

  8. 1891 Submarine eruption of Foerstner volcano (Pantelleria, Sicily) : insights into the vent structure of basaltic balloon eruptions

    NASA Astrophysics Data System (ADS)

    Kelly, J. T.; Carey, S.; Bell, K. L.; Rosi, M.; Marani, M.; Roman, C.; Pistolesi, M.; Baker, E. T.

    2012-12-01

    Numerous shallow water basaltic eruptions have produced abundant floating scoria up to several meters in diameter, yet little is known about the conditions that give rise to this unusual style of volcanism. On October 17, 1891, a submarine eruption began 4 kilometers northwest of the island of Pantelleria, Sicily. The eruptive vent was located at a depth of 250 meters along the NW-SE trending Sicily Channel Rift Zone. Evidence for the eruption was provided by the occurrence of hot, scoriaceous lava "balloons" floating on the sea surface along a narrow line about 850-1000 meters long trending along the rift. These extremely vesicular fragments were spherical to ellipsoidal in shape and ranged from <50 to 250 cm in diameter. Remotely Operated Vehicles (ROVs) and existing bathymetric maps have been used to conduct the first detailed investigation of a vent site associated with this unique style of volcanism. In 2011 the ROV Hercules, deployed from the E/V Nautilus, explored the 1891 Foerstner vent using high definition video cameras and produced a high resolution bathymetric map of the area using a BlueView multibeam imaging sonar. Light backscattering and oxidation-reduction potential sensors (MAPRs) were added to Hercules to detect discharge from active venting. ROV video footage has been used in conjunction with the high resolution bathymetric data to construct a geologic map of the vent area based on a variety of facies descriptors, such as abundance of scoria bombs, occurrence of pillow or scoria flow lobes, extent of sediment cover, and presence of spatter-like deposits. Initial results of the mapping have shown that there are two main vents that erupted within the observed area of floating scoria and most likely erupted at the same time as evidenced by similar bulk chemical compositions of recovered samples. Scoria bomb beds and some scoria flow lobes largely cover the suspected main vent, located at a depth of 250 meters. Distinct pillow flow lobes cover the

  9. Continuous, Long-term, Cyclic, Varied Eruptive Activity Observed at NW Rota-1 Submarine Volcano, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Chadwick, B.; Dziak, R. P.; Baker, E. T.; Cashman, K. V.; Embley, R. W.; Ferrini, V.; de Ronde, C. E.; Butterfield, D. A.; Deardorff, N.; Haxel, J. H.; Matsumoto, H.; Fowler, M. J.; Walker, S. L.; Bobbitt, A. M.; Merle, S. G.

    2009-12-01

    NW Rota-1 is a conical, basaltic-andesite submarine volcano in the Mariana arc with a summit depth of 520 m. Eruptive activity was first witnessed here during remotely operated vehicle (ROV) dives in 2004, and was also observed during all four subsequent ROV expeditions in 2005, 2006, and 2009. Cyclic explosive bursts were documented by a portable hydrophone during the 2006 ROV dives. More recently, a year of instrumental monitoring data from a moored hydrophone and plume sensor show that the volcano was continuously active from February 2008 to February 2009, and that the cyclic character of the eruptions occurred with variable intensity and periodicity. The 2008-2009 hydrophone record includes explosive bursts every 1-2 minutes, with high acoustic amplitudes in the first half of the year and lower more variable amplitudes in the second half. In contrast, the moored turbidity sensor recorded major eruptive plumes on a time scale of every few days to weeks, and at approximately the same frequency throughout the year. This apparent disparity may be explained by the most recent ROV and portable hydrophone observations at NW Rota-1 in April 2009, which confirmed continuous and diverse eruptive activity with cyclicity over several time scales, from minutes to days. Visual observations at the eruptive vent provided new insight into the process of very slow lava extrusion on the seafloor. During slow extrusion (at rates of 1-2 m3/hr), lava spines rose in the eruptive vent, then gradually disintegrated into angular blocks as they cooled and were shoved aside by the next lava to emerge. Freshly erupted lava blocks periodically tumbled down the sides of a growing cone (40-m high and 300-m wide) that had been constructed by this process since the last visit in 2006. Thus auto-brecciation during slow lava extrusion underwater produces primary deposits that could easily be mistaken as secondary, and can construct substantial landforms on submarine arc volcanoes. Even during

  10. Earthquakes, Subaerial and Submarine Landslides, Tsunamis and Volcanoes in Aysén Fjord, Chile

    NASA Astrophysics Data System (ADS)

    Lastras, G.; Amblas, D.; Calafat-Frau, A. M.; Canals, M.; Frigola, J.; Hermanns, R. L.; Lafuerza, S.; Longva, O.; Micallef, A.; Sepulveda, S. A.; Vargas Easton, G.; Azpiroz, M.; Bascuñán, I.; Duhart, P.; Iglesias, O.; Kempf, P.; Rayo, X.

    2014-12-01

    The Aysén fjord, 65 km long and east-west oriented, is located at 45.4ºS and 73.2ºW in Chilean Patagonia. It has a maximum water depth of 345 m. It collects the inputs of Aysén, Pescado, Condor and Cuervo rivers, which drain the surrounding Patagonian Andes. The fjord is crossed by the Liquiñe-Ofqui Fault Zone, a seismically active trench parallel intra-arc fault system. On 21 April 2007, an Mw 6.2 earthquake triggered numerous subaerial and submarine landslides along the fjord flanks. Some of the subaerial landslides reached the water mass, generating tsunami-like displacement waves that flooded the adjacent coastlines, withlocal >50 m high run-ups, causing ten fatalities and damage to salmon farms. The research cruise DETSUFA on board BIO Hespérides in March 2013, aiming to characterise the landslides and their effects, mapped with great detail the submerged morphology of the fjord. Multibeam data display deformation structures created by the impact of the landslides in the inner fjord floor. Landslide material descended and accelerated down the highly sloping fjord flanks, and reached the fjord floor at 200 m water depth generating large, 10-m-deep impact depressions. Fjord floor sediment was pushed and piled up in arcuate deformation areas formed by 15-m-high compressional ridges, block fields and a narrow frontal depression. Up to six >1.5 km2 of these structures have been identified. In addition, the cruise mapped the outer fjord floor beyond the Cuervo ridge. This ridge, previously interpreted as a volcanic transverse structure, most probably acted as a limit for grounding ice in the past, as suggested by the presence of a melt-water channel. The fjord smoothens and deepens to more than 330 m forming an enclosed basin, before turning SW across a field of streamlined hills of glacial origin. Three volcanic cones, one of them forming Isla Colorada and the other two totally submerged and previously unknown, have been mapped in the outer fjord. The largest

  11. Source of the tsunami generated by the 1650 AD eruption of Kolumbo submarine volcano (Aegean Sea, Greece)

    NASA Astrophysics Data System (ADS)

    Ulvrova, Martina; Paris, R.; Nomikou, P.; Kelfoun, K.; Leibrandt, S.; Tappin, D. R.; McCoy, F. W.

    2016-07-01

    The 1650 AD explosive eruption of Kolumbo submarine volcano (Aegean Sea, Greece) generated a destructive tsunami. In this paper we propose a source mechanism of this poorly documented tsunami using both geological investigations and numerical simulations. Sedimentary evidence of the 1650 AD tsunami was found along the coast of Santorini Island at maximum altitudes ranging between 3.5 m a.s.l. (Perissa, southern coast) and 20 m a.s.l. (Monolithos, eastern coast), corresponding to a minimum inundation of 360 and 630 m respectively. Tsunami deposits consist of an irregular 5 to 30 cm thick layer of dark grey sand that overlies pumiceous deposits erupted during the Minoan eruption and are found at depths of 30-50 cm below the surface. Composition of the tsunami sand is similar to the composition of the present-day beach sand but differs from the pumiceous gravelly deposits on which it rests. The spatial distribution of the tsunami deposits was compared to available historical records and to the results of numerical simulations of tsunami inundation. Different source mechanisms were tested: earthquakes, underwater explosions, caldera collapse, and pyroclastic flows. The most probable source of the 1650 AD Kolumbo tsunami is a 250 m high water surface displacement generated by underwater explosion with an energy of ~ 2 × 1016 J at water depths between 20 and 150 m. The tsunamigenic explosion(s) occurred on September 29, 1650 during the transition between submarine and subaerial phases of the eruption. Caldera subsidence is not an efficient tsunami source mechanism as short (and probably unrealistic) collapse durations (< 5 min) are needed. Pyroclastic flows cannot be discarded, but the required flux (106 to 107 m3 · s- 1) is exceptionally high compared to the magnitude of the eruption.

  12. Source of the tsunami generated by the 1650 AD eruption of Kolumbo submarine volcano (Aegean Sea, Greece)

    NASA Astrophysics Data System (ADS)

    Ulvrova, Martina; Paris, Raphael; Nomikou, Paraskevi; Tappin, Dave

    2016-04-01

    The 1650 AD explosive eruption of Kolumbo submarine volcano (Aegean Sea, Greece) generated a destructive tsunami. In this paper we propose a source mechanism of this poorly documented tsunami using both geological investigations and numerical simulations. Sedimentary evidences of the 1650 AD tsunami were found along the coast of Santorini Island at maximum altitudes ranging between 3.5 m a.s.l. (Perissa, southern coast) and 20 m a.s.l. (Monolithos, eastern coast), corresponding to a minimum inundation of 360 and 630 m respectively. Tsunami deposits correspond to an irregular 5 to 30 cm thick layer of dark grey sand intercalated in soil at depths between 30 and 50 cm. Composition of the tsunami sand is similar to the composition of the present-day beach and clearly differs from the pumiceous gravelly soil. Spatial distribution of the tsunami deposits was confronted to available historical records and to the results of numerical simulations of tsunami inundation. Different scenarios of source mechanism were tested: earthquakes, underwater explosions, caldera collapse, and pyroclastic flows. The most probable source of the 1650 AD Kolumbo tsunami is a 250 m high water surface displacement generated by underwater explosion with an energy of ~2 E15 J at water depths between 20 and 150 m. The tsunamigenic explosion(s) occurred on September 29, 1650 during the transition between submarine and subaerial phases. Caldera subsidence is not an efficient source of tsunami, as short (and probably unrealistic) collapse durations (< 5 minutes) are needed. Pyroclastic flows cannot be discarded, but the required flux (E6 to E7 m³.s-1) is exceptionally high compared to the magnitude of the eruption.

  13. Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea).

    PubMed

    Pachiadaki, Maria G; Lykousis, Vasilios; Stefanou, Euripides G; Kormas, Konstantinos A

    2010-06-01

    We investigated 16S rRNA gene diversity at a high sediment depth resolution (every 5 cm, top 30 cm) in an active site of the Kazan mud volcano, East Mediterranean Sea. A total of 242 archaeal and 374 bacterial clones were analysed, which were attributed to 38 and 205 unique phylotypes, respectively (> or = 98% similarity). Most of the archaeal phylotypes were related to ANME-1, -2 and -3 members originating from habitats where anaerobic oxidation of methane (AOM) occurs, although they occurred in sediment layers with no apparent AOM (below the sulphate depletion depth). Proteobacteria were the most abundant and diverse bacterial group, with the Gammaproteobacteria dominating in most sediment layers and these were related to phylotypes involved in methane cycling. The Deltaproteobacteria included several of the sulphate-reducers related to AOM. The rest of the bacterial phylotypes belonged to 15 known phyla and three unaffiliated groups, with representatives from similar habitats. Diversity index H was in the range 0.56-1.73 and 1.47-3.82 for Archaea and Bacteria, respectively, revealing different depth patterns for the two groups. At 15 and 20 cm below the sea floor, the prokaryotic communities were highly similar, hosting AOM-specific Archaea and Bacteria. Our study revealed different dominant phyla in proximate sediment layers. PMID:20370830

  14. SeaMARC 2 side-scan images of submarine volcanoes: Potential analogues for Venus

    NASA Technical Reports Server (NTRS)

    Fryer, P.; Hussong, D.; Mouginis-Mark, P. J.

    1984-01-01

    The Earth's surface beneath the oceans may be very similar, in terms of ambient pressures, to the surface of Venus. For that reason it is particularly important for geologists studying the surface of Venus to understand the processes which form features on the floors of the oceans. With the SeaMARC 2 seafloor mapping system, it is possible to view a swath of seafloor that is 10 km wide (about 6.2 mi). Side scan images of the Mariana region show that volcanoes of the island arc are more complicated than previously realized and that features of the fore-arc region, which resemble volcanoes morphologically, may result from processes other than volcanism. By comparing data obtained from the ocean floor with radar images of Venus, the geological evolution of that planet may be more fully understood.

  15. Locating volcano-seismic signals in the presence of rough topography: wave simulations on Arenal volcano, Costa Rica

    NASA Astrophysics Data System (ADS)

    Métaxian, J. P.; O'Brien, G. S.; Bean, C. J.; Valette, B.; Mora, M.

    2009-12-01

    Quantifying the scattering effects of pronounced volcano topography on the seismic wavefield is an important component in locating and interpreting volcano seismic sources. In this study, we perform seismic wave simulations to quantify the scattering generated by a 3-D digital elevation map and 1-D velocity model of Arenal volcano, Costa Rica. Full waveform synthetic seismograms were generated using a 3-D elastic lattice method including complex topography. Several different simulations were performed where the source location, source type and topographic models were varied. Synthetic seismograms were calculated for 35 seismic arrays each one comprising nine stations. At each array, the slowness vector of wave propagation is estimated from the time delays between the sensors obtained using the cross-spectral method. Results show that the backazimuth estimated for some arrays, in particular those close to the source, deviate from the true source position suggesting strong topographic effects in these regions. The maximum of the probability density function, obtained by crossing the backazimuths of the remaining arrays, coincides exactly with the true source location. We also compare our synthetic seismograms with array results from a physical field study. The true and calculated location misfit depends largely on the topography, but also on the number of antennas, the distance from the source and the spatial resolution of the antennas. The results show that this kind of study could be undertaken prior to the installation of seismic arrays to select the sites that minimize the topographic effects leading to improved source locations.

  16. Molecular comparison of bacterial communities within iron-containing flocculent mats associated with submarine volcanoes along the Kermadec Arc.

    PubMed

    Hodges, Tyler W; Olson, Julie B

    2009-03-01

    Iron oxide sheaths and filaments are commonly found in hydrothermal environments and have been shown to have a biogenic origin. These structures were seen in the flocculent material associated with two submarine volcanoes along the Kermadec Arc north of New Zealand. Molecular characterization of the bacterial communities associated with the flocculent samples indicated that no known Fe-oxidizing bacteria dominated the recovered clone libraries. However, clones related to the recently described Fe-oxidizing bacterium Mariprofundus ferrooxydans were obtained from both the iron-containing flocculent (Fe-floc) and sediment samples, and peaks corresponding to Mariprofundus ferrooxydans, as well as the related clones, were observed in several of our terminal restriction fragment length polymorphism profiles. A large group of epsilonproteobacterial sequences, for which there is no cultured representative, dominated clones from the Fe-floc libraries and were less prevalent in the sediment sample. Phylogenetic analyses indicated that several operational taxonomic units appeared to be site specific, and statistical analyses of the clone libraries found that all samples were significantly different from each other. Thus, the bacterial communities in the Fe-floc samples were not more closely related to each other than to the sediment communities.

  17. Molecular comparison of bacterial communities within iron-containing flocculent mats associated with submarine volcanoes along the Kermadec Arc.

    PubMed

    Hodges, Tyler W; Olson, Julie B

    2009-03-01

    Iron oxide sheaths and filaments are commonly found in hydrothermal environments and have been shown to have a biogenic origin. These structures were seen in the flocculent material associated with two submarine volcanoes along the Kermadec Arc north of New Zealand. Molecular characterization of the bacterial communities associated with the flocculent samples indicated that no known Fe-oxidizing bacteria dominated the recovered clone libraries. However, clones related to the recently described Fe-oxidizing bacterium Mariprofundus ferrooxydans were obtained from both the iron-containing flocculent (Fe-floc) and sediment samples, and peaks corresponding to Mariprofundus ferrooxydans, as well as the related clones, were observed in several of our terminal restriction fragment length polymorphism profiles. A large group of epsilonproteobacterial sequences, for which there is no cultured representative, dominated clones from the Fe-floc libraries and were less prevalent in the sediment sample. Phylogenetic analyses indicated that several operational taxonomic units appeared to be site specific, and statistical analyses of the clone libraries found that all samples were significantly different from each other. Thus, the bacterial communities in the Fe-floc samples were not more closely related to each other than to the sediment communities. PMID:19114513

  18. Lava bubble-wall fragments formed by submarine hydrovolcanic explosions on Lo'ihi Seamount and Kilauea Volcano

    USGS Publications Warehouse

    Clague, D.A.; Davis, A.S.; Bischoff, J.L.; Dixon, J.E.; Geyer, R.

    2000-01-01

    Glassy bubble-wall fragments, morphologically similar to littoral limu o Pele, have been found in volcanic sands erupted on Lo'ihi Seamount and along the submarine east rift zone of Kilauea Volcano. The limu o Pele fragments are undegassed with respect to H2O and S and formed by mild steam explosions. Angular glass sand fragments apparently form at similar, and greater, depths by cooling-contraction granulation. The limu o Pele fragments from Lo'ihi Seamount are dominantly tholeiitic basalt containing 6.25-7.25% MgO. None of the limu o Pele samples from Lo'ihi Seamount contains less than 5.57% MgO, suggesting that higher viscosity magmas do not form lava bubbles. The dissolved CO2 and H2O contents of 7 of the limu o Pele fragments indicate eruption at 1200??300 m depth (120??30 bar). These pressures exceed that generally thought to limit steam explosions. We conclude that hydrovolcanic eruptions are possible, with appropriate pre-mixing conditions, at pressures as great as 120 bar.

  19. The Kolumbo submarine volcano of Santorini island is a large pool of bacterial strains with antimicrobial activity.

    PubMed

    Bourbouli, Maria; Katsifas, Efstathios A; Papathanassiou, Evangelos; Karagouni, Amalia D

    2015-05-01

    Microbes in hydrothermal vents with their unique secondary metabolism may represent an untapped potential source of new natural products. In this study, samples were collected from the hydrothermal field of Kolumbo submarine volcano in the Aegean Sea, in order to isolate bacteria with antimicrobial activity. Eight hundred and thirty-two aerobic heterotrophic bacteria were isolated and then differentiated through BOX-PCR analysis at the strain level into 230 genomic fingerprints, which were screened against 13 different type strains (pathogenic and nonpathogenic) of Gram-positive, Gram-negative bacteria and fungi. Forty-two out of 176 bioactive-producing genotypes (76 %) exhibited antimicrobial activity against at least four different type strains and were selected for 16S rDNA sequencing and screening for nonribosomal peptide (NRPS) and polyketide (PKS) synthases genes. The isolates were assigned to genus Bacillus and Proteobacteria, and 20 strains harbored either NRPS, PKS type I or both genes. This is the first report on the diversity of culturable mesophilic bacteria associated with antimicrobial activity from Kolumbo area; the extremely high proportion of antimicrobial-producing strains suggested that this unique environment may represent a potential reservoir of novel bioactive compounds.

  20. Molecular Comparison of Bacterial Communities within Iron-Containing Flocculent Mats Associated with Submarine Volcanoes along the Kermadec Arc▿

    PubMed Central

    Hodges, Tyler W.; Olson, Julie B.

    2009-01-01

    Iron oxide sheaths and filaments are commonly found in hydrothermal environments and have been shown to have a biogenic origin. These structures were seen in the flocculent material associated with two submarine volcanoes along the Kermadec Arc north of New Zealand. Molecular characterization of the bacterial communities associated with the flocculent samples indicated that no known Fe-oxidizing bacteria dominated the recovered clone libraries. However, clones related to the recently described Fe-oxidizing bacterium Mariprofundus ferrooxydans were obtained from both the iron-containing flocculent (Fe-floc) and sediment samples, and peaks corresponding to Mariprofundus ferrooxydans, as well as the related clones, were observed in several of our terminal restriction fragment length polymorphism profiles. A large group of epsilonproteobacterial sequences, for which there is no cultured representative, dominated clones from the Fe-floc libraries and were less prevalent in the sediment sample. Phylogenetic analyses indicated that several operational taxonomic units appeared to be site specific, and statistical analyses of the clone libraries found that all samples were significantly different from each other. Thus, the bacterial communities in the Fe-floc samples were not more closely related to each other than to the sediment communities. PMID:19114513

  1. The Kolumbo submarine volcano of Santorini island is a large pool of bacterial strains with antimicrobial activity.

    PubMed

    Bourbouli, Maria; Katsifas, Efstathios A; Papathanassiou, Evangelos; Karagouni, Amalia D

    2015-05-01

    Microbes in hydrothermal vents with their unique secondary metabolism may represent an untapped potential source of new natural products. In this study, samples were collected from the hydrothermal field of Kolumbo submarine volcano in the Aegean Sea, in order to isolate bacteria with antimicrobial activity. Eight hundred and thirty-two aerobic heterotrophic bacteria were isolated and then differentiated through BOX-PCR analysis at the strain level into 230 genomic fingerprints, which were screened against 13 different type strains (pathogenic and nonpathogenic) of Gram-positive, Gram-negative bacteria and fungi. Forty-two out of 176 bioactive-producing genotypes (76 %) exhibited antimicrobial activity against at least four different type strains and were selected for 16S rDNA sequencing and screening for nonribosomal peptide (NRPS) and polyketide (PKS) synthases genes. The isolates were assigned to genus Bacillus and Proteobacteria, and 20 strains harbored either NRPS, PKS type I or both genes. This is the first report on the diversity of culturable mesophilic bacteria associated with antimicrobial activity from Kolumbo area; the extremely high proportion of antimicrobial-producing strains suggested that this unique environment may represent a potential reservoir of novel bioactive compounds. PMID:25627249

  2. Location and Pressures Change Prediction of Bromo Volcano Magma Chamber Using Inversion Scheme

    NASA Astrophysics Data System (ADS)

    Kumalasari, Ratih; Srigutomo, Wahyu

    2016-08-01

    Bromo volcano is one of active volcanoes in Indonesia. It has erupted at least 50 times since 1775 and has been monitored by Global Positioning System (GPS) since 1989. We applied the Levenberg-Marquardt inversion scheme to estimate the physical parameters contributing to the surface deformation. Physical parameters obtained by the inversion scheme such as magma chamber location and volume change are useful in monitoring and predicting the activity of Bromo volcano. From our calculation it is revealed that the depth of the magma chamber d = 6307.6 m, radius of magma chamber α = 1098.6 m and pressure change ΔP ≈ 1.0 MPa.

  3. Dive and Explore: An Interactive Exhibit That Simulates Making an ROV Dive to a Submarine Volcano, Hatfield Marine Science Visitor Center, Newport, Oregon

    NASA Astrophysics Data System (ADS)

    Weiland, C.; Chadwick, W. W.; Hanshumaker, W.; Osis, V.; Hamilton, C.

    2002-12-01

    We have created a new interactive exhibit in which the user can sit down and simulate that they are making a dive to the seafloor with the remotely operated vehicle (ROV) named ROPOS. The exhibit immerses the user in an interactive experience that is naturally fun but also educational. This new public display is located at the Hatfield Marine Science Visitor Center in Newport, Oregon. The exhibit is designed to look like the real ROPOS control console and includes three video monitors, a PC, a DVD player, an overhead speaker, graphic panels, buttons, lights, dials, and a seat in front of a joystick. The dives are based on real seafloor settings at Axial seamount, an active submarine volcano on the Juan de Fuca Ridge (NE Pacific) that is also the location of a seafloor observatory called NeMO. The user can choose between 1 of 3 different dives sites in the caldera of Axial Volcano. Once a dive is chosen, then the user watches ROPOS being deployed and then arrives into a 3-D computer-generated seafloor environment that is based on the real world but is easier to visualize and navigate. Once on the bottom, the user is placed within a 360 degree panorama and can look in all directions by manipulating the joystick. By clicking on markers embedded in the scene, the user can then either move to other panorama locations via movies that travel through the 3-D virtual environment, or they can play video clips from actual ROPOS dives specifically related to that scene. Audio accompanying the video clips informs the user where they are going or what they are looking at. After the user is finished exploring the dive site they end the dive by leaving the bottom and watching the ROV being recovered onto the ship at the surface. The user can then choose a different dive or make the same dive again. Within the three simulated dives there are a total of 6 arrival and departure movies, 7 seafloor panoramas, 12 travel movies, and 23 ROPOS video clips. The exhibit software was created

  4. Volcanoes

    SciTech Connect

    Decker, R.W.; Decker, B.

    1989-01-01

    This book describes volcanoes although the authors say they are more to be experienced than described. This book poses more question than answers. The public has developed interest and awareness in volcanism since the first edition eight years ago, maybe because since the time 120 volcanoes have erupted. Of those, the more lethal eruptions were from volcanoes not included in the first edition's World's 101 Most Notorious Volcanoes.

  5. Two-dimensional simulations of explosive eruptions of Kick-em Jenny and other submarine volcanos

    SciTech Connect

    Gisler, Galen R.; Weaver, R. P.; Mader, Charles L.; Gittings, M. L.

    2004-01-01

    Kick-em Jenny, in the Eastern Caribbean, is a submerged volcanic cone that has erupted a dozen or more times since its discovery in 1939. The most likely hazard posed by this volcano is to shipping in the immediate vicinity (through volcanic missiles or loss-of-buoyancy), but it is of interest to estimate upper limits on tsunamis that might be produced by a catastrophic explosive eruption. To this end, we have performed two-dimensional simulations of such an event in a geometry resembling that of Kick-em Jenny with our SAGE adaptive mesh Eulerian multifluid compressible hydrocode. We use realistic equations of state for air, water, and basalt, and follow the event from the initial explosive eruption, through the generation of a transient water cavity and the propagation of waves away from the site. We find that even for extremely catastrophic explosive eruptions, tsunamis from Kick-em Jenny are unlikely to pose significant danger to nearby islands. For comparison, we have also performed simulations of explosive eruptions at the much larger shield volcano Vailuluu in the Samoan chain, where the greater energy available can produce a more impressive wave. In general, however, we conclude that explosive eruptions do not couple well to water waves. The waves that are produced from such events are turbulent and highly dissipative, and don't propagate well. This is consistent with what we have found previously in simulations of asteroid-impact generated tsunamis. Non-explosive events, however, such as landslides or gas hydrate releases, do couple well to waves, and our simulations of tsunamis generated by subaerial and sub-aqueous landslides demonstrate this.

  6. Vailulu'u Seamount, Samoa: Life and Death at the Edge of An Active Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Vailulu'U Research Group, T.

    2005-12-01

    Exploration of Vailulu'u seamount (14°13'S; 169°04'W) by manned submersible, ROV, and surface ship revealed a new, 300m tall volcano that has grown in the summit crater in less than four years. This shows that Vailulu'u's eruption behavior is at this stage not predictable and continued growth could allow Vailulu'u to breach sea level within decades Several types of hydrothermal vents fill Vailulu'u crater with particulates that reduce visibility to less than a few meters in some regions. Hydrothermal solutions mix with seawater that enters the crater from its breaches to produce distinct biological habitats. Low temperature hydrothermal vents can produce Fe-oxide chimneys or up to one meter-thick microbial mats. Higher temperature vents (85°C) produce low salinity acidic fluids containing buoyant droplets of immiscible CO2. Low temperature hydrothermal vents at Nafanua summit (708m depth) support a thriving population of eels (Dysommia rusosa). The areas around the high temperature vents and the moat and remaining crater around the new volcano is almost devoid of any macroscopic life and is littered with fish, and mollusk carcasses that apparently died from exposure to hydrothermal fluid components in deeper crater waters. Acid- tolerant polychaetes adapt to this environment and feed near and on these carcasses. Vailulu'u presents a natural laboratory for the study of how seamounts and their volcanic systems interact with the hydrosphere to produce distinct biological habitats, and how marine life can adapt to these conditions or be trapped in a toxic volcanic system that leads to mass mortality. The Vailulu'u research team: Hubert Staudigel, Samantha Allen, Brad Bailey, Ed Baker, Sandra Brooke, Ryan Delaney, Blake English, Lisa Haucke, Stan Hart, John Helly, Ian Hudson, Matt Jackson, Daniel Jones, Alison Koleszar, Anthony Koppers, Jasper Konter, Laurent Montesi, Adele Pile, Ray Lee, Scott Mcbride, Julie Rumrill, Daniel Staudigel, Brad Tebo, Alexis Templeton

  7. Volcanoes.

    ERIC Educational Resources Information Center

    Tilling, Robert I.

    One of a series of general interest publications on science topics, this booklet provides a non-technical introduction to the subject of volcanoes. Separate sections examine the nature and workings of volcanoes, types of volcanoes, volcanic geological structures such as plugs and maars, types of eruptions, volcanic-related activity such as geysers…

  8. Caldera structure of submarine Volcano #1 on the Tonga Arc at 21°09'S, southwestern Pacific: Analysis of multichannel seismic profiling

    NASA Astrophysics Data System (ADS)

    Kim, Han-Joon; Jou, Hyeong-Tae; Lee, Gwang-Hoon; Na, Ji-Hoon; Kim, Hyun-Sub; Jang, Ugeun; Lee, Kyeong-Yong; Kim, Chang-Hwan; Lee, Sang Hoon; Park, Chan-Hong; Jung, Seom-Kyu; Suk, Bong-Cool

    2013-08-01

    Volcano #1 is a large submarine stratovolcano with a summit caldera in the south central part of the Tonga Arc. We collected and analyzed multichannel seismic profiles in conjunction with magnetic data from Volcano #1 to investigate the structure of the intracaldera fill and processes of caldera formation. The intracaldera fill, exhibiting stratified units with a maximum thickness of 2 km, consists of at least four seismic units and a thick wedge of landslide debris derived from the caldera wall. The structural caldera floor, deepening toward the northwestern rim, suggests asymmetric collapse in the initial stage, which, in turn, appears to have contributed to the creation of a caldera elongated to the northwest by enhancing gravitational instability along the northwestern caldera boundary. Occasional, but repeated, eruptions resulted in a thick accumulation of the intracaldera fill and further subsidence in the mode of piston collapse. Magnetization lows are well-defined along the structural rim of the caldera that is interpreted as the inner principal ring fault. The magnetization lows indicate sites of submarine hydrothermal vents that caused an alteration of magnetic minerals. Faults recognized on the outer slope of the volcano are interpreted to be involved in hydrothermal fluid circulation.

  9. The volcanic debris avalanche on the SE submarine slope of Nisyros volcano, Greece: geophysical exploration and implications for subaerial eruption history

    NASA Astrophysics Data System (ADS)

    Livanos, Isidoros; Nomikou, Paraskevi; Papanikolaou, Dimitris; Rousakis, Grigoris

    2013-12-01

    A spectacular hummocky topography was discovered offshore of the south-eastern slope of the Nisyros island volcano in the eastern sector of the Aegean volcanic arc in 2000-2001, using multibeam bathymetric mapping and seismic profiling, and interpreted as part of a volcanic debris avalanche originating onland. During E/V Nautilus cruise NA011 in 2010, a detailed side-scan sonar and ROV exploration aimed at evaluating the surface morphology of this avalanche field. Combining the new data with selected older datasets reveals that the debris avalanche is characterized by numerous (at least 78) variously sized and shaped hummocks. Some of these are distinctly round, either scattered or aligned in groups, whereas others are elongated in the form of ridges. This is consistent with existing models accounting for variations in the longitudinal and lateral velocity ratio of landslides. Maximum dimensions reach 60 m in height above the sea bottom, 220 m in length and 230 m in width. The structures outline a large tongue-shaped, submarine hummock field of about 22.2 km2, approx. 4.8 km wide and 4.6 km long and with an estimated volume of 0.277 km3. Due to its characteristic shape, the collapsed volcanic flank is interpreted to represent a singular failing event, involving a rapid and virtually instantaneous downslope movement of the slide mass into the sea. Indeed, the H/L (height of 280 m vs. run-out of 7 km) ratio for the Nisyros slide is 0.04; plotted against volume, this falls within the theoretical bounds as well as measured values typical of submarine landslides. The timing of the event is probably related to the extrusion of Nikia lavas and their subsequent failure and formation of a main scarp observed at about 120 m depth on an 8-km-long seismic profile and a map of slope angle distribution, at the depth where the palaeo-coastline was located 40 ka ago. An inferred age of ca. 40 ka for the avalanche awaits confirmation based on dating of core material.

  10. Submarine evidence of a debris avalanche deposit on the eastern slope of Santorini volcano, Greece

    NASA Astrophysics Data System (ADS)

    Bell, Katherine Lynn Croff; Carey, Steven N.; Nomikou, Paraskevi; Sigurdsson, Haraldur; Sakellariou, Dimitris

    2013-06-01

    Hummocky seafloor features were discovered on the eastern flank of Santorini volcano, Greece. Multibeam bathymetric mapping, airgun seismic profiling, side scan sonar survey, and remotely operated vehicle (ROV) dives have been carried out to characterize the nature of the hummocks. These hummocks appear to be composed of several tens of blocks that are up to several hundred meters in diameter, and are the surface expression of a much larger deposit than is observed in the bathymetry. The sidescan and airgun data show that the deposit covers an area of approximately 6 km wide by 20 km long, and is up to 75 m thick. We estimate the total volume of the deposit to be approximately 4.4 × 109 m3. Sampling of these blocks show they are composed of pyroclastic flow deposits produced during the Minoan eruption of Santorini (ca. 3600 BP). We propose that the deposit is the result of a multi-stage landslide event that was caused by one of the several large earthquakes or volcanic eruptions that have occurred in the vicinity of Santorini since the Minoan eruption. One or more of these events likely triggered the destabilization of a part of the eastern flank of Santorini, which led to a debris avalanche, depositing blocks and forming a hummocky terrain at the base of the island's slope. The mass movement later evolved into a turbulent suspension flow that traveled 20 km or more from the presumed initial failure. Given the size of the landslide deposit, it might have a tsunami potentially affecting the islands across the southern Aegean Sea. The understanding of earthquake-landslide dynamics has important implications for hazard assessment in this seismically active, historical, and highly populated region of the world.

  11. The submarine volcano eruption off El Hierro Island: effects on the scattering migrant biota and the evolution of the pelagic communities.

    PubMed

    Ariza, Alejandro; Kaartvedt, Stein; Røstad, Anders; Garijo, Juan Carlos; Arístegui, Javier; Fraile-Nuez, Eugenio; Hernández-León, Santiago

    2014-01-01

    The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community. PMID:25047077

  12. The submarine volcano eruption off El Hierro Island: effects on the scattering migrant biota and the evolution of the pelagic communities.

    PubMed

    Ariza, Alejandro; Kaartvedt, Stein; Røstad, Anders; Garijo, Juan Carlos; Arístegui, Javier; Fraile-Nuez, Eugenio; Hernández-León, Santiago

    2014-01-01

    The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community.

  13. The Submarine Volcano Eruption off El Hierro Island: Effects on the Scattering Migrant Biota and the Evolution of the Pelagic Communities

    PubMed Central

    Ariza, Alejandro; Kaartvedt, Stein; Røstad, Anders; Garijo, Juan Carlos; Arístegui, Javier; Fraile-Nuez, Eugenio; Hernández-León, Santiago

    2014-01-01

    The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community. PMID:25047077

  14. Validation of Innovative Exploration Technologies for Newberry Volcano: Drill Site Location Map 2010

    DOE Data Explorer

    Jaffe, Todd

    2012-01-01

    Newberry seeks to explore "blind" (no surface evidence) convective hydrothermal systems associated with a young silicic pluton on the flanks of Newberry Volcano. This project will employ a combination of innovative and conventional techniques to identify the location of subsurface geothermal fluids associated with the hot pluton. Newberry project drill site location map 2010. Once the exploration mythology is validated, it can be applied throughout the Cascade Range and elsewhere to locate and develop “blind” geothermal resources.

  15. An experiment to detect and locate lightning associated with eruptions of Redoubt Volcano

    USGS Publications Warehouse

    Hoblitt, R.P.

    1994-01-01

    A commercially-available lightning-detection system was temporarily deployed near Cook Inlet, Alaska in an attempt to remotely monitor volcanogenic lightning associated with eruptions of Redoubt Volcano. The system became operational on February 14, 1990; lightning was detected in 11 and located in 9 of the 13 subsequent eruptions. The lightning was generated by ash clouds rising from pyroclastic density currents produced by collapse of a lava dome emplaced near Redoubt's summit. Lightning discharge (flash) location was controlled by topography, which channeled the density currents, and by wind direction. In individual eruptions, early flashes tended to have a negative polarity (negative charge is lowered to ground) while late flashes tended to have a positive polarity (positive charge is lowered to ground), perhaps because the charge-separation process caused coarse, rapid-settling particles to be negatively charged and fine, slow-settling particles to be positively charged. Results indicate that lightning detection and location is a useful adjunct to seismic volcano monitoring, particularly when poor weather or darkness prevents visual observation. The simultaneity of seismicity and lightning near a volcano provides the virtual certainty that an ash cloud is present. This information is crucial for aircraft safety and to warn threatened communities of impending tephra falls. The Alaska Volcano Observatory has now deployed a permanent lightning-detection network around Cook Inlet. ?? 1994.

  16. Geochemistry of Fresh Submarine HSDP-2 Glasses from Mauna Kea Volcano: Unexpected Mobility of 'Immobile' Trace Elements

    NASA Astrophysics Data System (ADS)

    Amini, M. A.; Jochum, K. P.; Stoll, B.; Willbold, M.; Sobolev, A. V.; Hofmann, A. W.

    2002-12-01

    The Hawaii Scientific Drilling Project-2 provides the opportunity to investigate the geochemical evolution of the submarine section of Mauna Kea. Our previous analyses of bulk-rock trace element concentrations had revealed relatively high degrees of scatter of trace element ratios such as Th/U, Ta/U and even Nb/Ta, and we suspected that many of the samples had been affected by seawater alteration. Fortunately, fresh glasses are found throughout the drill core in many glass-rich hyaloclastic and pillow basalts with glass proportions up to 10%. We therefore determined incompatible trace elements such as Th, U, Nb, Ta, Zr, Ba, Pb, Rb in carefully handpicked, fresh glasses in 16 samples derived from depths between 1310 m and 3050 m. The samples were crushed to less than 0.425 mm grain size in order to obtain very fresh glass fragments free of contamination by alteration products, olivines or other minerals. The glass fractions and their corresponding bulk samples were analyzed for major and trace elements by EMP, MIC-SSMS and HR-ICPMS. The differences between glass and bulk are particularly obvious in Pb, Rb, Cs and U. As expected, Pb, Rb and Cs were found to be mobile, with concentrations in the bulk samples varying by up to a factor of 5 relative to the glass samples. Similarly, U concentrations in glass are up to a factor of 2 higher than in bulk samples. More surprising is the observation that Th and Ta are quite probably mobile, because these elements are normally believed to be immobile. However, these results are consistent with those of Bienvenue et al. (1990), who found that Th appears to be sensitive to seawater alteration. Our glass data indicate that Ta/U (3.7+/-0.2) is uniform along the sequence, in contrast to the bulk data which show a large scatter (3.7-6.5). Th/U ratios in the glasses show a maximum (~3.5) at a depth of ~2100 m, whereas low ratios of about 3 were found in depths of 1300-1400 m and 2800-3000 m. The high Th/U ratios in the 2100 m region

  17. The beginning of explosive eruptions on a location lacking volcanoes: A case study on the Hijiori volcano, Northeastern Japan

    NASA Astrophysics Data System (ADS)

    Miyagi, I.

    2006-12-01

    The volcanic activity of Hijiori volcano (N38 36°f 35°f°f, E140 9°f 20°f°f, WGS84) is reported in detail as a case study to understand how a new felsic volcano commences the activity. Hijiori volcano, a small caldera with approximately 2 km in diameter, is one of the 108 active volcanoes in Japan, which erupted at about 12,000 years ago (in Calendar age) on the location where no volcanic body existed before the activity. From the field survey, it turns out that the suite of activities initiated by the major eruption that deposited a valley filling non-welded pumice flows. Finally the pumice flows covered the range 5 km to the southward and 9 km to the northward with total maximum thickness of about 150 m. The accompanying pumice fall and ash fall extends 60 km to the eastward. Although span of the activity is as short as the resolving power of radiocarbon dating, there recognized a quiescence for three times. After the every quiescence, phreatic (or phreatomagmatic) activities deposited lapilli falls and flows in the proximity. Total volume of the valley filling pyroclastic flows and the air falls are estimated to be 1.4 and 0.6 cubic km, respectively. All the pumices from the three major eruptions are similar in their phenocryst content (50- vol. percent), phenocryst assemblages (Pl, Qz, OPx, Hb, and Mt), bulk chemistry (c.a. 64 wt. percent SiO2), and in isotopic (Sr, Nd) compositions. Mt phenocrysts have no zoning profiles and their chemical compositions (Al2O3, Mg/Mn) are mostly unique through the eruptive sequences, suggesting that the physicochemical conditions of the magma were the same just before the each eruption. On the contrary Pl, Qz, OPx and Hb phenocrysts showed distinct zoning, suggesting that the magma chamber of Hijiori volcano had been disturbed repeatedly by such as magma mixing that continued intermittently before and during the eruptive activities. The observed difference between Mt and the other phenocrysts implies that there were

  18. Volcanoes

    USGS Publications Warehouse

    Tilling, Robert I.; ,

    1998-01-01

    Volcanoes destroy and volcanoes create. The catastrophic eruption of Mount St. Helens on May 18, 1980, made clear the awesome destructive power of a volcano. Yet, over a time span longer than human memory and record, volcanoes have played a key role in forming and modifying the planet upon which we live. More than 80 percent of the Earth's surface--above and below sea level--is of volcanic origin. Gaseous emissions from volcanic vents over hundreds of millions of years formed the Earth's earliest oceans and atmosphere, which supplied the ingredients vital to evolve and sustain life. Over geologic eons, countless volcanic eruptions have produced mountains, plateaus, and plains, which subsequent erosion and weathering have sculpted into majestic landscapes and formed fertile soils.

  19. Preliminary results from Submarine Ring of Fire 2012 - NE Lau: First explorations of hydrothermally active volcanoes across the supra-subduction zone and a return to the West Mata eruption site

    NASA Astrophysics Data System (ADS)

    Resing, J.; Embley, R. W.

    2012-12-01

    Several expeditions in the past few years have shown that the NE Lau basin has one of the densest concentrations of volcanically and hydrothermally active volcanoes on the planet. In 2008 two active submarine volcanic eruptions were discovered during a one week period and subsequent dives with the Jason remotely operated vehicle at one of the sites (West Mata) revealed an active boninite eruption taking place at 1200 m depth. Two dives at the other revealed evidence for recent eruption along the NE Lau Spreading Center. Several more expeditions in 2010-11 discovered additional evidence about the extent and types of hydrothermal activity in this area. Data from CTDO (conductivity, temperature, depth, optical) vertical casts, tow-yos, and towed camera deployments revealed more than 15 hydrothermal sites at water depths from ~800 to 2700 m that include sites from the magmatic arc, the "rear arc," and the back arc spreading centers. These sites range from high temperature black smoker sulfide-producing systems to those dominated by magmatic degassing. Dives by remotely operated vehicle (Quest 4000) in September 2012 will explore these sites and return samples for chemical, biological and geologic studies. One of the dives will be a return visit to West Mata volcano, the site of the deepest submarine eruption yet observed (in 2009). Recent multibeam data reveal large changes in West Mata's summit, suggesting that the nature of the eruption and the location of the erupting vents may have changed. In addition to the preliminary results from the science team, we will also discuss our use and experience with continuous live video transmission (through the High Definition video camera on the Quest 4000) back to shore via satellite and through the internet. Submarine Ring of Fire 2012 Science Team: Bradley Tebo, Bill Chadwick, Ed Baker, Ken Rubin, Susan Merle, Timothy Shank, Sharon Walker, Andra Bobbitt, Nathan Buck, David Butterfield, Eric Olson, John Lupton, Richard Arculus

  20. Olivine-rich submarine basalts from the southwest rift zone of Mauna Loa Volcano: Implications for magmatic processes and geochemical evolution

    NASA Astrophysics Data System (ADS)

    Garcia, Michael O.; Hulsebosch, Thomas P.; Rhodes, J. Michael

    The east Ka Lae landslide on the submarine south flank of Mauna Loa exposed a 1.3 km thick section into the interior of its southwest rift zone. We sampled this section in four dredge hauls and four submersible dives and made a multibeam survey of the rift zone. New magnetic data and our observations and bathymetric results indicate that the axis of the southwest rift is two to three kilometers west of the present topographic high. Our submersible observations of old beach deposits and the low sulfur content of pillow-rim glasses indicate that this portion of the southwest rift zone has subsided >400 m. Olivine-rich basalts are extremely abundant along the submarine portion of Mauna Loa's southwest rift zone but their abundance decreases significantly in the upper parts of the two sections examined. This change probably occurred, ˜60 ka when Mauna Loa's eruption rate slowed and was unable to keep up with its subsidence rate. The dense magmas for these olivine-rich basalts were probably intruded into the deeper portions of the rift zones and erupted from its distal regions during periods of high magma supply. The preferential eruption of olivine-rich lavas on the flanks of Mauna Loa and other Hawaiian volcanoes is a strong indication that a density filter operates within these volcanoes. These lavas contain abundant euhedral, undeforrned olivine with high forsterite contents (typically 90%). Some of these olivines grew in magmas with 17.5 wt% MgO at temperatures of 1415°C, indicating that Hawaiian tholeiitic magmas are some of the most mafic and hottest magmas erupted during the Cenozoic. All of the submarine lavas have major element contents typical of Mauna Loa, but unlike its subaerial lavas, some of the submarine lavas have trace element and isotope ratios that overlap with those of Kilauea lavas. Thus, the source for Mauna Loa contained a Kilauea-like component that has been consumed during the last hundred thousand years, but the melt extraction conditions

  1. Distribution of trace elements including tellurium, gallium, indium, and select REE in sulfide chimneys from Brothers submarine volcano, Kermadec arc

    NASA Astrophysics Data System (ADS)

    Berkenbosch, H. A.; de Ronde, C. E.; McNeill, A.; Goemann, K.; Gemmell, J. B.

    2011-12-01

    Brothers volcano is a dacitic volcano located along the Kermadec arc, New Zealand, and hosts the NW Caldera hydrothermal vent field perched on part of the steep caldera walls. The field strikes for ~600 m between depths of 1550 and 1700 m and includes numerous, active, high-temperature (max 302°C) chimneys and even more dead, sulfide-rich spires. Chimney samples collected from Brothers show distinct mineralogical zonation reflecting gradients in oxidation state, temperature, and pH from the inner walls in contact with hydrothermal fluids through to the outer walls in contact with seawater. Minerals deposited from hotter fluids (e.g., chalcopyrite) are located in the interior of the chimneys and are surrounded by an external zone of minerals deposited by cooler fluids (e.g., sulfates, sphalerite). Four chimneys types are identified at Brothers volcano based on the relative proportions of chalcopyrite and sulfate layers, and the presence or absence of anhydrite. Two are Cu-rich, i.e., chalcopyrite-rich and chalcopyrite-bornite-rich chimneys, and two are Zn-rich, i.e., sphalerite-rich and sphalerite-chalcopyrite-rich. Barite and anhydrite are common to both Cu-rich chimney types whereas Zn-rich chimneys contain barite only. The main mineral phases in all the chimneys are anhydrite, barite, chalcopyrite, pyrite/marcasite, and sphalerite. Trace minerals include galena, covellite, tennantite, realgar, chalcocite, bornite, hematite, goethite, Pb-As sulfosalts, and Bi- or Au-tellurides. The vast majority of tellurides are <5 μm in size, although columnar crystals up to 80 μm long have been observed. The tellurides commonly form in bands, cluster in patches, or occur along internal grain boundaries within chalcopyrite. They also are found at the contact between chalcopyrite and pyrite grains. In sulfate layers adjacent to the chalcopyrite zones tellurides can occur as inclusions in anhydrite, barite or pyrite and/or occupy void space within the chimney. One Cu

  2. Characterization of Source and Wave Propagation Effects of Volcano-seismic Events and Tremor Using the Amplitude Source Location Method

    NASA Astrophysics Data System (ADS)

    Kumagai, H.; Londono, J. M.; López, C. M.; Ruiz, M. C.; Mothes, P. A.; Maeda, Y.

    2015-12-01

    We propose application of the amplitude source location (ASL) method to characterize source and wave propagation effects of volcano-seismic events and tremor observed at different volcanoes. We used this method to estimate the source location and source amplitude from high-frequency (5-10 Hz) seismic amplitudes under the assumption of isotropic S-wave radiation. We estimated the cumulative source amplitude (Is) as the offset value of the time-integrated envelope of the vertical seismogram corrected for geometrical spreading and medium attenuation in the 5-10 Hz band. We studied these parameters of tremor signals associated with eruptions and explosion events at Tungurahua volcano, Ecuador; long-period (LP) events at Cotopaxi volcano, Ecuador; and LP events at Nevado del Ruiz volcano, Colombia. We identified two types of eruption tremor at Tungurahua; noise-like inharmonic waveforms and harmonic oscillatory signals. We found that Is increased linearly with increasing source amplitude for explosion events and LP events, and that Is increased exponentially with increasing source amplitude for inharmonic eruption tremor signals. The source characteristics of harmonic eruption tremor signals differed from those of inharmonic tremor signals. The Is values we estimated for inharmonic eruption tremor were consistent with previous estimates of volumes of tephra fallout. The linear relationship between the source amplitude and Is for LP events can be explained by the wave propagation effects in the diffusion model for multiple scattering assuming a diffusion coefficient of 105 m2/s and an intrinsic Q factor of around 50. The resultant mean free path is approximately 100 m. Our results suggest that Cotopaxi and Nevado del Ruiz volcanoes have similar highly scattering and attenuating structures. Our approach provides a systematic way to compare the size of volcano-seismic signals observed at different volcanoes. The scaling relations among source parameters that we identified

  3. Reconstructing Final H2O Contents of Hydrated Rhyolitic Glasses: Insights into H2O Degassing and Eruptive Style of Silicic Submarine Volcanoes

    NASA Astrophysics Data System (ADS)

    McIntosh, I. M.; Nichols, A. R.; Tani, K.; Llewellin, E. W.

    2015-12-01

    H2O degassing influences the evolution of magma viscosity and vesicularity during ascent through the crust, and ultimately the eruptive style. Investigating H2O degassing requires data on both initial and final H2O contents. Initial H2O contents are revealed by melt inclusion data, while final H2O contents are found from dissolved H2O contents of volcanic glass. However volcanic glasses, particularly of silicic composition, are susceptible to secondary hydration i.e. the addition of H2O from the surrounding environment at ambient temperature during the time following pyroclast deposition. Obtaining meaningful final H2O data therefore requires distinguishing between the original final dissolved H2O content and the H2O added subsequently during hydration. Since H2O added during hydration is added as molecular H2O (H2Om), and the species interconversion between H2Om and hydroxyl (OH) species is negligible at ambient temperature, the final OH content of the glass remains unaltered during hydration. By using H2O speciation models to find the original H2Om content that would correspond to the measured OH content of the glass, the original total H2O (H2Ot) content of the glass prior to hydration can be reconstructed. These H2O speciation data are obtained using FTIR spectroscopy. In many cases, particularly where vesicular glasses necessitate thin wafers, OH cannot be measured directly and instead is calculated indirectly as OH = H2Ot - H2Om. Here we demonstrate the importance of using a speciation-dependent H2Ot molar absorptivity coefficient to obtain accurate H2Ot and H2O speciation data and outline a methodology for calculating such a coefficient for rhyolite glasses, with application to hydrated silicic pumice from submarine volcanoes in the Japanese Izu-Bonin Arc. Although hydrated pumice from Kurose Nishi and Oomurodashi now contain ~1.0 - 2.5 wt% H2Ot, their pre-hydration final H2O contents were typically ~0.3 - 0.4 wt% H2Ot. Furthermore, we show that pre

  4. Kinematic variables and water transport control the formation and location of arc volcanoes.

    PubMed

    Grove, T L; Till, C B; Lev, E; Chatterjee, N; Médard, E

    2009-06-01

    The processes that give rise to arc magmas at convergent plate margins have long been a subject of scientific research and debate. A consensus has developed that the mantle wedge overlying the subducting slab and fluids and/or melts from the subducting slab itself are involved in the melting process. However, the role of kinematic variables such as slab dip and convergence rate in the formation of arc magmas is still unclear. The depth to the top of the subducting slab beneath volcanic arcs, usually approximately 110 +/- 20 km, was previously thought to be constant among arcs. Recent studies revealed that the depth of intermediate-depth earthquakes underneath volcanic arcs, presumably marking the slab-wedge interface, varies systematically between approximately 60 and 173 km and correlates with slab dip and convergence rate. Water-rich magmas (over 4-6 wt% H(2)O) are found in subduction zones with very different subduction parameters, including those with a shallow-dipping slab (north Japan), or steeply dipping slab (Marianas). Here we propose a simple model to address how kinematic parameters of plate subduction relate to the location of mantle melting at subduction zones. We demonstrate that the location of arc volcanoes is controlled by a combination of conditions: melting in the wedge is induced at the overlap of regions in the wedge that are hotter than the melting curve (solidus) of vapour-saturated peridotite and regions where hydrous minerals both in the wedge and in the subducting slab break down. These two limits for melt generation, when combined with the kinematic parameters of slab dip and convergence rate, provide independent constraints on the thermal structure of the wedge and accurately predict the location of mantle wedge melting and the position of arc volcanoes. PMID:19494913

  5. Kinematic variables and water transport control the formation and location of arc volcanoes.

    PubMed

    Grove, T L; Till, C B; Lev, E; Chatterjee, N; Médard, E

    2009-06-01

    The processes that give rise to arc magmas at convergent plate margins have long been a subject of scientific research and debate. A consensus has developed that the mantle wedge overlying the subducting slab and fluids and/or melts from the subducting slab itself are involved in the melting process. However, the role of kinematic variables such as slab dip and convergence rate in the formation of arc magmas is still unclear. The depth to the top of the subducting slab beneath volcanic arcs, usually approximately 110 +/- 20 km, was previously thought to be constant among arcs. Recent studies revealed that the depth of intermediate-depth earthquakes underneath volcanic arcs, presumably marking the slab-wedge interface, varies systematically between approximately 60 and 173 km and correlates with slab dip and convergence rate. Water-rich magmas (over 4-6 wt% H(2)O) are found in subduction zones with very different subduction parameters, including those with a shallow-dipping slab (north Japan), or steeply dipping slab (Marianas). Here we propose a simple model to address how kinematic parameters of plate subduction relate to the location of mantle melting at subduction zones. We demonstrate that the location of arc volcanoes is controlled by a combination of conditions: melting in the wedge is induced at the overlap of regions in the wedge that are hotter than the melting curve (solidus) of vapour-saturated peridotite and regions where hydrous minerals both in the wedge and in the subducting slab break down. These two limits for melt generation, when combined with the kinematic parameters of slab dip and convergence rate, provide independent constraints on the thermal structure of the wedge and accurately predict the location of mantle wedge melting and the position of arc volcanoes.

  6. Bayesian statistics applied to the location of the source of explosions at Stromboli Volcano, Italy

    USGS Publications Warehouse

    Saccorotti, G.; Chouet, B.; Martini, M.; Scarpa, R.

    1998-01-01

    We present a method for determining the location and spatial extent of the source of explosions at Stromboli Volcano, Italy, based on a Bayesian inversion of the slowness vector derived from frequency-slowness analyses of array data. The method searches for source locations that minimize the error between the expected and observed slowness vectors. For a given set of model parameters, the conditional probability density function of slowness vectors is approximated by a Gaussian distribution of expected errors. The method is tested with synthetics using a five-layer velocity model derived for the north flank of Stromboli and a smoothed velocity model derived from a power-law approximation of the layered structure. Application to data from Stromboli allows for a detailed examination of uncertainties in source location due to experimental errors and incomplete knowledge of the Earth model. Although the solutions are not constrained in the radial direction, excellent resolution is achieved in both transverse and depth directions. Under the assumption that the horizontal extent of the source does not exceed the crater dimension, the 90% confidence region in the estimate of the explosive source location corresponds to a small volume extending from a depth of about 100 m to a maximum depth of about 300 m beneath the active vents, with a maximum likelihood source region located in the 120- to 180-m-depth interval.

  7. Volcanic evolution of the submarine super volcano, Tamu Massif of Shatsky Rise: New insights from Formation MicroScanner logging imagery

    NASA Astrophysics Data System (ADS)

    Tominaga, Masako; Iturrino, Gerardo; Evans, Helen F.

    2015-01-01

    Massif, the southernmost plateau of Shatsky Rise, is recently reported as the largest single volcano known on Earth. This work seeks to understand the type of volcanism necessary to form such an anomalously large single volcano by integrating core and high-resolution wireline logging data. In particular, resistivity imagery obtained by the Formation MicroScanner, in Integrated Ocean Drilling Program Hole U1347A, located on the eastern flank of Tamu Massif, was used to construct a logging-based volcanostratigraphy. This model revealed two different volcanic stages formed Tamu Massif: (i) the core part of the massif's basaltic basement was formed by a "construction phase" of volcanism with cyclic eruption events from a steady state magma supply and (ii) the very topmost basaltic section was formed by a "depositional phase" of volcanism during which long-traveling lava flows were deposited from a distant eruption center.

  8. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: earthquake locations and source parameters

    USGS Publications Warehouse

    Ruppert, Natalia G.; Prejean, Stephanie G.; Hansen, Roger A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field.

  9. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: Earthquake locations and source parameters

    USGS Publications Warehouse

    Ruppert, N.A.; Prejean, S.; Hansen, R.A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field. Copyright ?? 2011 by the American Geophysical Union.

  10. Shallow Submarine Hydrothermal Systems in the Aeolian Volcanic Arc, Italy

    NASA Astrophysics Data System (ADS)

    Monecke, Thomas; Petersen, Sven; Lackschewitz, Klas; Hügler, Michael; Hannington, Mark D.; Gemmell, J. Bruce

    2009-03-01

    The majority of known high-temperature hydrothermal vents occur at mid-ocean ridges and back-arc spreading centers, typically at water depths from 2000 to 4000 meters. Compared with 30 years of hydrothermal research along spreading centers in the deep parts of the ocean, exploration of the approximately 700 submarine arc volcanoes is relatively recent [de Ronde et al., 2003]. At these submarine arc volcanoes, active hydrothermal vents are located at unexpectedly shallow water depth (95% at <1600-meter depth), which has important consequences for the style of venting, the nature of associated mineral deposits, and the local biological communities. As part of an ongoing multinational research effort to study shallow submarine volcanic arcs, two hydrothermal systems in the submerged part of the Aeolian arc have been investigated in detail during research cruises by R/V Poseidon (July 2006) and R/V Meteor (August 2007). Comprehensive seafloor video surveys were conducted using a remotely operated vehicle, and drilling to a depth of 5 meters was carried out using a lander-type submersible drill. This research has resulted in the first detailed, three-dimensional documentation of shallow submarine hydrothermal systems on arc volcanoes.

  11. Location of long-period events below Kilauea Volcano using seismic amplitudes and accurate relative relocation

    USGS Publications Warehouse

    Battaglia, J.; Got, J.-L.; Okubo, P.

    2003-01-01

    We present methods for improving the location of long-period (LP) events, deep and shallow, recorded below Kilauea Volcano by the permanent seismic network. LP events might be of particular interest to understanding eruptive processes as their source mechanism is assumed to directly involve fluid transport. However, it is usually difficult or impossible to locate their source using traditional arrival time methods because of emergent wave arrivals. At Kilauea, similar LP waveform signatures suggest the existence of LP multiplets. The waveform similarity suggests spatially close sources, while catalog solutions using arrival time estimates are widely scattered beneath Kilauea's summit caldera. In order to improve estimates of absolute LP location, we use the distribution of seismic amplitudes corrected for station site effects. The decay of the amplitude as a function of hypocentral distance is used for inferring LP location. In a second stage, we use the similarity of the events to calculate their relative positions. The analysis of the entire LP seismicity recorded between January 1997 and December 1999 suggests that a very large part of the LP event population, both deep and shallow, is generated by a small number of compact sources. Deep events are systematically composed of a weak high-frequency onset followed by a low-frequency wave train. Aligning the low-frequency wave trains does not lead to aligning the onsets indicating the two parts of the signal are dissociated. This observation favors an interpretation in terms of triggering and resonance of a magmatic conduit. Instead of defining fault planes, the precise relocation of similar LP events, based on the alignment of the high-energy low-frequency wave trains, defines limited size volumes. Copyright 2003 by the American Geophysical Union.

  12. Active Submarine Volcanoes and Electro-Optical Sensor Networks: The Potential of Capturing and Quantifying an Entire Eruptive Sequence at Axial Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Delaney, J. R.; Kelley, D. S.; Proskurowski, G.; Fundis, A. T.; Kawka, O.

    2011-12-01

    The NE Pacific Regional Scale Nodes (RSN) component of the NSF Ocean Observatories Initiative is designed to provide unprecedented electrical power and bandwidth to the base and summit of Axial Seamount. The scientific community is engaged in identifying a host of existing and innovative observation and measurement techniques that utilize the high-power and bandwidth infrastructure and its real-time transmission capabilities. The cable, mooring, and sensor arrays will enable the first quantitative documentation of myriad processes leading up to, during, and following a submarine volcanic event. Currently planned RSN instrument arrays will provide important and concurrent spatial and temporal constraints on earthquake activity, melt migration, hydrothermal venting behavior and chemistry, ambient currents, microbial community structure, high-definition (HD) still images and HD video streaming from the vents, and water-column chemistry in the overlying ocean. Anticipated, but not yet funded, additions will include AUVs and gliders that continually document the spatial-temporal variations in the water column above the volcano and the distal zones. When an eruption appears imminent the frequency of sampling will be increased remotely, and the potential of repurposing the tracking capabilities of the mobile sensing platforms will be adapted to the spatial indicators of likely eruption activity. As the eruption begins mobile platforms will fully define the geometry, temperature, and chemical-microbial character of the volcanic plume as it rises into the thoroughly documented control volume above the volcano. Via the Internet the scientific community will be able to witness and direct adaptive sampling in response to changing conditions of plume formation. A major goal will be to document the eruptive volume and link the eruption duration to the volume of erupted magma. For the first time, it will be possible to begin to quantify the time-integrated output of an underwater

  13. Rock magnetic and petrographical-mineralogical studies of the dredged rocks from the submarine volcanoes of the Sea-of-Okhotsk slope within the northern part of the Kuril Island Arc

    NASA Astrophysics Data System (ADS)

    Rashidov, V. A.; Pilipenko, O. V.; Petrova, V. V.

    2016-07-01

    The rock magnetic properties of the samples of dredged rocks composing the submarine volcanic edifices within the Sea-of-Okhotsk slope of the northern part of the Kuril Island Arc are studied. The measurements of the standard rock magnetic parameters, thermomagnetic analysis, petrographical studies, and microprobe investigations have been carried out. The magnetization of the studied rocks is mainly carried by the pseudo-single domain and multidomain titanomagnetite and low-Ti titanomagnetite grains. The high values of the natural remanent magnetization are due to the pseudo-single-domain structure of the titanomagnetite grains, whereas the high values of magnetic susceptibility are associated with the high concentration of ferrimagnetic grains. The highest Curie points are observed in the titanomagnetite grains of the igneous rocks composing the edifices of the Smirnov, Edelshtein, and 1.4 submarine volcanoes.

  14. Long Period (LP) volcanic earthquake source location at Merapi volcano by using dense array technics

    NASA Astrophysics Data System (ADS)

    Metaxian, Jean Philippe; Budi Santoso, Agus; Laurin, Antoine; Subandriyo, Subandriyo; Widyoyudo, Wiku; Arshab, Ghofar

    2015-04-01

    Since 2010, Merapi shows unusual activity compared to last decades. Powerful phreatic explosions are observed; some of them are preceded by LP signals. In the literature, LP seismicity is thought to be originated within the fluid, and therefore to be representative of the pressurization state of the volcano plumbing system. Another model suggests that LP events are caused by slow, quasi-brittle, low stress-drop failure driven by transient upper-edifice deformations. Knowledge of the spatial distribution of LP events is fundamental for better understanding the physical processes occurring in the conduit, as well as for the monitoring and the improvement of eruption forecasting. LP events recorded at Merapi have a spectral content dominated by frequencies between 0.8 and 3 Hz. To locate the source of these events, we installed a seismic antenna composed of 4 broadband CMG-6TD Güralp stations. This network has an aperture of 300 m. It is located on the site of Pasarbubar, between 500 and 800 m from the crater rim. Two multi-parameter stations (seismic, tiltmeter, S-P) located in the same area, equipped with broadband CMG-40T Güralp sensors may also be used to complete the data of the antenna. The source of LP events is located by using different approaches. In the first one, we used a method based on the measurement of the time delays between the early beginnings of LP events for each array receiver. The observed differences of time delays obtained for each pair of receivers are compared to theoretical values calculated from the travel times computed between grid nodes, which are positioned in the structure, and each receiver. In a second approach, we estimate the slowness vector by using MUSIC algorithm applied to 3-components data. From the slowness vector, we deduce the back-azimuth and the incident angle, which give an estimation of LP source depth in the conduit. This work is part of the Domerapi project funded by French Agence Nationale de la Recherche (https

  15. Products of Submarine Fountains and Bubble-burst Eruptive Activity at 1200 m on West Mata Volcano, Lau Basin

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Rubin, K. H.; Keller, N. S.

    2009-12-01

    An eruption was observed and sampled at West Mata Volcano using ROV JASON II for 5 days in May 2009 during the NSF-NOAA eruption response cruise to this region of suspected volcanic activity. Activity was focused near the summit at the Prometheus and Hades vents. Prometheus erupted almost exclusively as low-level fountains. Activity at Hades cycled between vigorous degassing, low fountains, and bubble-bursts, building up and partially collapsing a small spatter/scoria cone and feeding short sheet-like and pillow flows. Fire fountains at Prometheus produced mostly small primary pyroclasts that include Pele's hair and fluidal fragments of highly vesicular volcanic glass. These fragments have mostly shattered and broken surfaces, although smooth spatter-like surfaces also occur. As activity wanes, glow in the vent fades, and denser, sometimes altered volcanic clasts are incorporated into the eruption. The latter are likely from the conduit walls and/or vent-rim ejecta, drawn back into the vent by inrushing seawater that replaces water entrained in the rising volcanic plume. Repeated recycling of previously erupted materials eventually produces rounded clasts resembling beach cobbles and pitted surfaces on broken phenocrysts of pyroxene and olivine. We estimate that roughly 33% of near vent ejecta are recycled. Our best sample of this ejecta type was deposited in the drawer of the JASON II ROV during a particularly large explosion that occurred during plume sampling immediately above the vent. Elemental sulfur spherules up to 5 mm in diameter are common in ejecta from both vents and occur inside some of the lava fragments Hades activity included dramatic bubble-bursts unlike anything previously observed under water. The lava bubbles, sometimes occurring in rapid-fire sequence, collapsed in the water-column, producing fragments that are quenched in less than a second to form Pele's hair, limu o Pele, spatter-like lava blobs, and scoria. All are highly vesicular

  16. Seismic precursors of vulcanian explosions at Ubinas volcano (Peru) : Statistical analysis and source locations

    NASA Astrophysics Data System (ADS)

    Métaxian, J.-P.; Macedo, O.; Lengline, O.; Monteiller, V.; Taipe, E.

    2009-04-01

    Ubinas stratovolcano (5672 m), located 60 km east from Arequipa city is historically the most active volcano in Peru. The present eruption began on March 25th 2006. A lava plug has been observed at the bottom of the pit crater situated in the south part of the caldeira. The eruptive activity involves very brought closer exhalations rising a few hundred meters above the crater rim to larger plumes produced by explosions that may reach up to 3 kilometers. The seismic activity is characterized by high rates of long-period (LP) event production accompanying eruptive activity and very long period (VLP) events observed at the same time as vulcanian explosions. The LP and VLP events have a spectral content respectively dominated by frequencies between 2-5 Hz and 0.3-0.9 Hz. The vulcanian explosive activity is characterized by the occurrence of LP swarm preceding most of the VLPs by about 2 hours. In some occasions, the LP swarm merges into tremor about half an hour before the explosion. LPs belonging to the same swarm have similar waveform suggesting a unique source area, which could be the conduit and/or the lava plug surface. The monitoring system includes 4 seismic stations, among which one is equipped with a broadband sensor and 2 tiltmeters. In this work we analyzed a catalogue of data including more than 40000 LP events and 130 VLP events recorded between May 2006 and December 2008. The evolution of the average number of LP events preceding explosions was computed. The variation of the LP rate is clearly diverging from the background rate ~ 0.1 days before explosions. In particular, the most energetic explosions are correlated with the biggest increases of seismicity. However this general behavior is not observed for every single explosion. A direct test is now under study in order to check if the earthquake rate can be used as an alert tool for future explosions. To locate the source of LP events belonging to the swarms, we used a method based on the measurement of

  17. Vertical Motions of Oceanic Volcanoes

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Moore, J. G.

    2006-12-01

    Oceanic volcanoes offer abundant evidence of changes in their elevations through time. Their large-scale motions begin with a period of rapid subsidence lasting hundreds of thousands of years caused by isostatic compensation of the added mass of the volcano on the ocean lithosphere. The response is within thousands of years and lasts as long as the active volcano keeps adding mass on the ocean floor. Downward flexure caused by volcanic loading creates troughs around the growing volcanoes that eventually fill with sediment. Seismic surveys show that the overall depression of the old ocean floor beneath Hawaiian volcanoes such as Mauna Loa is about 10 km. This gross subsidence means that the drowned shorelines only record a small part of the total subsidence the islands experienced. In Hawaii, this history is recorded by long-term tide-gauge data, the depth in drill holes of subaerial lava flows and soil horizons, former shorelines presently located below sea level. Offshore Hawaii, a series of at least 7 drowned reefs and terraces record subsidence of about 1325 m during the last half million years. Older sequences of drowned reefs and terraces define the early rapid phase of subsidence of Maui, Molokai, Lanai, Oahu, Kauai, and Niihau. Volcanic islands, such as Maui, tip down toward the next younger volcano as it begins rapid growth and subsidence. Such tipping results in drowned reefs on Haleakala as deep as 2400 m where they are tipped towards Hawaii. Flat-topped volcanoes on submarine rift zones also record this tipping towards the next younger volcano. This early rapid subsidence phase is followed by a period of slow subsidence lasting for millions of years caused by thermal contraction of the aging ocean lithosphere beneath the volcano. The well-known evolution along the Hawaiian chain from high to low volcanic island, to coral island, and to guyot is due to this process. This history of rapid and then slow subsidence is interrupted by a period of minor uplift

  18. Locations and focal mechanisms of deep long period events beneath Aleutian Arc volcanoes using back projection methods

    NASA Astrophysics Data System (ADS)

    Lough, A. C.; Roman, D. C.; Haney, M. M.

    2015-12-01

    Deep long period (DLP) earthquakes are commonly observed in volcanic settings such as the Aleutian Arc in Alaska. DLPs are poorly understood but are thought to be associated with movements of fluids, such as magma or hydrothermal fluids, deep in the volcanic plumbing system. These events have been recognized for several decades but few studies have gone beyond their identification and location. All long period events are more difficult to identify and locate than volcano-tectonic (VT) earthquakes because traditional detection schemes focus on high frequency (short period) energy. In addition, DLPs present analytical challenges because they tend to be emergent and so it is difficult to accurately pick the onset of arriving body waves. We now expect to find DLPs at most volcanic centers, the challenge lies in identification and location. We aim to reduce the element of human error in location by applying back projection to better constrain the depth and horizontal position of these events. Power et al. (2004) provided the first compilation of DLP activity in the Aleutian Arc. This study focuses on the reanalysis of 162 cataloged DLPs beneath 11 volcanoes in the Aleutian arc (we expect to ultimately identify and reanalyze more DLPs). We are currently adapting the approach of Haney (2014) for volcanic tremor to use back projection over a 4D grid to determine position and origin time of DLPs. This method holds great potential in that it will allow automated, high-accuracy picking of arrival times and could reduce the number of arrival time picks necessary for traditional location schemes to well constrain event origins. Back projection can also calculate a relative focal mechanism (difficult with traditional methods due to the emergent nature of DLPs) allowing the first in depth analysis of source properties. Our event catalog (spanning over 25 years and volcanoes) is one of the longest and largest and enables us to investigate spatial and temporal variation in DLPs.

  19. Identifying elements of the plumbing system beneath Kilauea Volcano, Hawaii, from the source locations of very-long-period signals

    USGS Publications Warehouse

    Almendros, J.; Chouet, B.; Dawson, P.; Bond, T.

    2002-01-01

    We analyzed 16 seismic events recorded by the Hawaiian broad-band seismic network at Kilauca Volcano during the period September 9-26, 1999. Two distinct types of event are identified based on their spectral content, very-long-period (VLP) waveform, amplitude decay pattern and particle motion. We locate the VLP signals with a method based on analyses of semblance and particle motion. Different source regions are identified for the two event types. One source region is located at depths of ~1 km beneath the northeast edge of the Halemaumau pit crater. A second region is located at depths of ~8 km below the northwest quadrant of Kilauea caldera. Our study represents the first time that such deep sources have been identified in VLP data at Kilauea. This discovery opens the possibility of obtaining a detailed image of the location and geometry of the magma plumbing system beneath this volcano based on source locations and moment tensor inversions of VLP signals recorded by a permanent, large-aperture broad-band network.

  20. Application of near real-time radial semblance to locate the shallow magmatic conduit at Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Dawson, P.; Whilldin, D.; Chouet, B.

    2004-01-01

    Radial Semblance is applied to broadband seismic network data to provide source locations of Very-Long-Period (VLP) seismic energy in near real time. With an efficient algorithm and adequate network coverage, accurate source locations of VLP energy are derived to quickly locate the shallow magmatic conduit system at Kilauea Volcano, Hawaii. During a restart in magma flow following a brief pause in the current eruption, the shallow magmatic conduit is pressurized, resulting in elastic radiation from various parts of the conduit system. A steeply dipping distribution of VLP hypocenters outlines a region extending from sea level to about 550 m elevation below and just east of the Halemaumau Pit Crater. The distinct hypocenters suggest the shallow plumbing system beneath Halemaumau consists of a complex plexus of sills and dikes. An unconstrained location for a section of the conduit is also observed beneath the region between Kilauea Caldera and Kilauea Iki Crater.

  1. Attack submarines

    SciTech Connect

    Not Available

    1991-01-01

    This issue discusses missions for submarines, technology proliferation; implications for U.S. security; U.S. SSN-21 Seawolf versus other submarines; stability and arms control; nuclear propulsion and nuclear proliferation; air independent propulsion.

  2. Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Orr, Tim R.

    2008-01-01

    Lava from Kilauea volcano flowing through a forest in the Royal Gardens subdivision, Hawai'i, in February 2008. The Hawaiian Volcano Observatory (HVO) monitors the volcanoes of Hawai'i and is located within Hawaiian Volcanoes National Park. HVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Kilauea and HVO at http://hvo.wr.usgs.gov.

  3. Abundances of platinum group elements in native sulfur condensates from the Niuatahi-Motutahi submarine volcano, Tonga rear arc: Implications for PGE mineralization in porphyry deposits

    NASA Astrophysics Data System (ADS)

    Park, Jung-Woo; Campbell, Ian H.; Kim, Jonguk

    2016-02-01

    Some porphyry Cu-Au deposits, which are enriched in Pd, are potentially an economic source of Pd. Magmatic volatile phases are thought to transport the platinum group elements (PGEs) from the porphyry source magma to the point of deposition. However, the compatibilities of the PGEs in magmatic volatile phases are poorly constrained. We report PGE and Re contents in native sulfur condensates and associated altered dacites from the Niuatahi-Motutahi submarine volcano, Tonga rear arc, in order to determine the compatibility of PGEs and Re in magmatic volatile phases, and their mobility during secondary hydrothermal alteration. The native sulfur we analyzed is the condensate of a magmatic volatile phase exsolved from the Niuatahi-Motutahi magma. The PGEs are moderately enriched in the sulfur condensates in comparison to the associated fresh dacite, with enrichment factors of 11-285, whereas Au, Cu and Re are strongly enriched with enrichment factors of ∼20,000, ∼5000 and ∼800 respectively. Although the PGEs are moderately compatible into magmatic volatile phases, their compatibility is significantly lower than that of Au, Cu and Re. Furthermore, the compatibility of PGEs decrease in the order: Ru > Pt > Ir > Pd. This trend is also observed in condensates and sublimates from other localities. PGE mineralization in porphyry Cu-Au deposits is characterized by substantially higher Pd/Pt (∼7-60) and Pd/Ir (∼100-10,500) than typical orthomagmatic sulfide deposits (e.g. Pd/Pt ∼0.6 and Pd/Ir ∼20 for the Bushveld). It has previously been suggested that the high mobility of Pd, relative to the other PGEs, may account for the preferential enrichment of Pd in porphyry Cu-Au deposits. However, the low compatibility of Pd in the volatile phase relative to the other PGEs, shown in this study, invalidates this explanation. We suggest that the PGE geochemistry of Pd-rich Cu-Au deposits is principally derived from the PGE characteristics of the magma from which the ore

  4. Trace element distribution, with a focus on gold, in copper-rich and zinc-rich sulfide chimneys from Brothers submarine volcano, Kermadec arc

    NASA Astrophysics Data System (ADS)

    Berkenbosch, H. A.; de Ronde, C. E.; McNeill, A.; Goemann, K.; Gemmell, J. B.

    2012-12-01

    Brothers volcano is a dacitic volcano located along the Kermadec arc, New Zealand, and hosts the NW Caldera hydrothermal vent field perched on part of the steep caldera walls. The field strikes for ~600 m between depths of 1550 and 1700 m and includes numerous, active, high-temperature (max 302°C) chimneys and even more dead, sulfide-rich spires. Chimney samples collected from Brothers show distinct mineralogical zonation reflecting gradients in oxidation state, temperature, and pH from the inner walls in contact with hydrothermal fluids through to the outer walls in contact with seawater. Minerals deposited from hotter fluids (e.g., chalcopyrite) are located in the interior of the chimneys and are surrounded by an external zone of minerals deposited by cooler fluids (e.g., sulfates, sphalerite). Four chimneys types are identified at Brothers volcano based on the relative proportions of chalcopyrite and sulfate layers, and the presence or absence of anhydrite. Two are Cu-rich, i.e., chalcopyrite-rich and chalcopyrite-bornite-rich chimneys, and two are Zn-rich, i.e., sphalerite-rich and sphalerite-chalcopyrite-rich. Barite and anhydrite are common to both Cu-rich chimney types whereas Zn-rich chimneys contain barite only. The main mineral phases in all the chimneys are anhydrite, barite, chalcopyrite, pyrite/marcasite, and sphalerite. Trace minerals include galena, covellite, tennantite, realgar, chalcocite, bornite, hematite, goethite, Pb-As sulfosalts, and Bi- or Au-tellurides. The vast majority of tellurides are <5 μm in size and they commonly form in bands, cluster in patches, or occur along internal grain boundaries within chalcopyrite. In sulfate layers adjacent to the chalcopyrite zones tellurides can occur as inclusions in anhydrite, barite or pyrite and/or occupy void space within the chimney. The occurrence of specular hematite and Bi- or Au-tellurides associated with chalcopyrite are consistent with magmatic contributions to the NW Caldera vent site

  5. Submarine landslides

    USGS Publications Warehouse

    Hampton, M.A.; Lee, H.J.; Locat, J.

    1996-01-01

    Landslides are common on inclined areas of the seafloor, particularly in environments where weak geologic materials such as rapidly deposited, finegrained sediment or fractured rock are subjected to strong environmental stresses such as earthquakes, large storm waves, and high internal pore pressures. Submarine landslides can involve huge amounts of material and can move great distances: slide volumes as large as 20,000 km3 and runout distances in excess of 140 km have been reported. They occur at locations where the downslope component of stress exceeds the resisting stress, causing movement along one or several concave to planar rupture surfaces. Some recent slides that originated nearshore and retrogressed back across the shoreline were conspicuous by their direct impact on human life and activities. Most known slides, however, occurred far from land in prehistoric time and were discovered by noting distinct to subtle characteristics, such as headwall scarps and displaced sediment or rock masses, on acoustic-reflection profiles and side-scan sonar images. Submarine landslides can be analyzed using the same mechanics principles as are used for occurrences on land. However, some loading mechanisms are unique, for example, storm waves, and some, such as earthquakes, can have greater impact. The potential for limited-deformation landslides to transform into sediment flows that can travel exceedingly long distances is related to the density of the slope-forming material and the amount of shear strength that is lost when the slope fails.

  6. Volcanic Risk Perception in Five Communities Located near the Chichón Volcano, Northern Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    Rodriguez, F.; Novelo-Casanova, D. A.

    2010-12-01

    The Chichón volcano (17° 19’ N and 93° 15’ W) is located in the state of Chiapas, Mexico. This volcano is classified by UNESCO as one of the ten most dangerous volcanos in the world. The eruptions of March and April in 1982 affected at least 51 communities located in the surroundings of the volcano and caused the death of about 2000 people. In this work we evaluate the risk perception in five communities highly populated: Juárez, Ostuacán, Pichucalco, Reforma and Sunuapa. We selected these communities because they have a high possibility to be affected by a volcanic eruption in the future. Our survey was carried out during February and March 2006. A total of 222 families were interviewed using a questionnaire to measure risk perception. These questionnaires retrieved general information as how long people had been living there and their reasons to do so; their experiences during the 1982 events, their opinion about the authorities participation and their perception of volcanic risk; the plans of the community for disaster prevention and mitigation. Some of the most important results are: (1). People perceive a very low volcanic risk and the 70% of interviewees believe that a new eruption in the future is almost improbable because it happened in 1982. This result is particularly interesting because, according to the state government, more than 100,000 inhabitants will be directly affected in case of a new similar eruption; (2). About 95% of the population do not know the current activity of the volcano and consider that the authorities do not inform properly to their communities; (3). The response of the authorities during the events of 1982 was ranked as deficient mainly because they were unable provide shelters, storage facilities, food as well as medicine and health care access; (4). Approximately 60% of the community will accept to be re-located again in case of a new eruption; (5). About 70% of the population will not accept to be re-located because

  7. Microbial communities in sunken wood are structured by wood-boring bivalves and location in a submarine canyon.

    PubMed

    Fagervold, Sonja K; Romano, Chiara; Kalenitchenko, Dimitri; Borowski, Christian; Nunes-Jorge, Amandine; Martin, Daniel; Galand, Pierre E

    2014-01-01

    The cornerstones of sunken wood ecosystems are microorganisms involved in cellulose degradation. These can either be free-living microorganisms in the wood matrix or symbiotic bacteria associated with wood-boring bivalves such as emblematic species of Xylophaga, the most common deep-sea woodborer. Here we use experimentally submerged pine wood, placed in and outside the Mediterranean submarine Blanes Canyon, to compare the microbial communities on the wood, in fecal pellets of Xylophaga spp. and associated with the gills of these animals. Analyses based on tag pyrosequencing of the 16S rRNA bacterial gene showed that sunken wood contained three distinct microbial communities. Wood and pellet communities were different from each other suggesting that Xylophaga spp. create new microbial niches by excreting fecal pellets into their burrows. In turn, gills of Xylophaga spp. contain potential bacterial symbionts, as illustrated by the presence of sequences closely related to symbiotic bacteria found in other wood eating marine invertebrates. Finally, we found that sunken wood communities inside the canyon were different and more diverse than the ones outside the canyon. This finding extends to the microbial world the view that submarine canyons are sites of diverse marine life.

  8. Microbial communities in sunken wood are structured by wood-boring bivalves and location in a submarine canyon.

    PubMed

    Fagervold, Sonja K; Romano, Chiara; Kalenitchenko, Dimitri; Borowski, Christian; Nunes-Jorge, Amandine; Martin, Daniel; Galand, Pierre E

    2014-01-01

    The cornerstones of sunken wood ecosystems are microorganisms involved in cellulose degradation. These can either be free-living microorganisms in the wood matrix or symbiotic bacteria associated with wood-boring bivalves such as emblematic species of Xylophaga, the most common deep-sea woodborer. Here we use experimentally submerged pine wood, placed in and outside the Mediterranean submarine Blanes Canyon, to compare the microbial communities on the wood, in fecal pellets of Xylophaga spp. and associated with the gills of these animals. Analyses based on tag pyrosequencing of the 16S rRNA bacterial gene showed that sunken wood contained three distinct microbial communities. Wood and pellet communities were different from each other suggesting that Xylophaga spp. create new microbial niches by excreting fecal pellets into their burrows. In turn, gills of Xylophaga spp. contain potential bacterial symbionts, as illustrated by the presence of sequences closely related to symbiotic bacteria found in other wood eating marine invertebrates. Finally, we found that sunken wood communities inside the canyon were different and more diverse than the ones outside the canyon. This finding extends to the microbial world the view that submarine canyons are sites of diverse marine life. PMID:24805961

  9. Microbial Communities in Sunken Wood Are Structured by Wood-Boring Bivalves and Location in a Submarine Canyon

    PubMed Central

    Fagervold, Sonja K.; Romano, Chiara; Kalenitchenko, Dimitri; Borowski, Christian; Nunes-Jorge, Amandine; Martin, Daniel; Galand, Pierre E.

    2014-01-01

    The cornerstones of sunken wood ecosystems are microorganisms involved in cellulose degradation. These can either be free-living microorganisms in the wood matrix or symbiotic bacteria associated with wood-boring bivalves such as emblematic species of Xylophaga, the most common deep-sea woodborer. Here we use experimentally submerged pine wood, placed in and outside the Mediterranean submarine Blanes Canyon, to compare the microbial communities on the wood, in fecal pellets of Xylophaga spp. and associated with the gills of these animals. Analyses based on tag pyrosequencing of the 16S rRNA bacterial gene showed that sunken wood contained three distinct microbial communities. Wood and pellet communities were different from each other suggesting that Xylophaga spp. create new microbial niches by excreting fecal pellets into their burrows. In turn, gills of Xylophaga spp. contain potential bacterial symbionts, as illustrated by the presence of sequences closely related to symbiotic bacteria found in other wood eating marine invertebrates. Finally, we found that sunken wood communities inside the canyon were different and more diverse than the ones outside the canyon. This finding extends to the microbial world the view that submarine canyons are sites of diverse marine life. PMID:24805961

  10. Geology and petrology of Mahukona Volcano, Hawaii

    USGS Publications Warehouse

    Clague, D.A.; Moore, J.G.

    1991-01-01

    The submarine Mahukona Volcano, west of the island of Hawaii, is located on the Loa loci line between Kahoolawe and Hualalai Volcanoes. The west rift zone ridge of the volcano extends across a drowned coral reef at about-1150 m and a major slope break at about-1340 m, both of which represent former shoreines. The summit of the volcano apparently reached to about 250 m above sea level (now at-1100 m depth) did was surmounted by a roughly circular caldera. A econd rift zone probably extended toward the east or sutheast, but is completely covered by younger lavas from the adjacent subaerial volcanoes. Samples were vecovered from nine dredges and four submersible lives. Using subsidence rates and the compositions of flows which drape the dated shoreline terraces, we infer that the voluminous phase of tholeiitic shield growth ended about 470 ka, but tholeiitic eruptions continued until at least 435 ka. Basalt, transitional between tholeiitic and alkalic basalt, erupted at the end of tholeiitic volcanism, but no postshield-alkalic stage volcanism occurred. The summit of the volcano apparently subcided below sea level between 435 and 365 ka. The tholeiitic lavas recovered are compositionally diverse. ?? 1991 Springer-Verlag.

  11. Determining the seismic source mechanism and location for an explosive eruption with limited observational data: Augustine Volcano, Alaska

    USGS Publications Warehouse

    Dawson, P.B.; Chouet, B.A.; Power, J.

    2011-01-01

    Waveform inversions of the very-long-period components of the seismic wavefield produced by an explosive eruption that occurred on 11 January, 2006 at Augustine Volcano, Alaska constrain the seismic source location to near sea level beneath the summit of the volcano. The calculated moment tensors indicate the presence of a volumetric source mechanism. Systematic reconstruction of the source mechanism shows the source consists of a sill intersected by either a sub-vertical east-west trending dike or a sub-vertical pipe and a weak single force. The trend of the dike may be controlled by the east-west trending Augustine-Seldovia arch. The data from the network of broadband sensors is limited to fourteen seismic traces, and synthetic modeling confirms the ability of the network to recover the source mechanism. The synthetic modeling also provides a guide to the expected capability of a broadband network to resolve very-long-period source mechanisms, particularly when confronted with limited observational data. Copyright 2011 by the American Geophysical Union.

  12. Cutting Costs by Locating High Production Wells: A Test of the Volcano seismic Approach to Finding ''Blind'' Resources

    SciTech Connect

    Eylon Shalev; Peter E. Malin; Wendy McCausland

    2002-06-06

    In the summer of 2000, Duke University and the Kenyan power generation company, KenGen, conducted a microearthquake monitoring experiment at Longonot volcano in Kenya. Longonot is one of several major late Quaternary trachyte volcanoes in the Kenya Rift. They study was aimed at developing seismic methods for locating buried hydrothermal areas in the Rift on the basis of their microearthquake activity and wave propagation effects. A comparison of microearthquake records from 4.5 Hz, 2 Hz, and broadband seismometers revealed strong high-frequency site and wave-propagation effects. The lower frequency seismometers were needed to detect and record individual phases. Two-dozen 3-component 2- Hz L22 seismographs and PASSCAL loggers were then distributed around Longonot. Recordings from this network located one seismically active area on Longonot's southwest flank. The events from this area were emergent, shallow (<3 km), small (M<1), and spatially restricted. Evidently, the hydrothermal system in this area is not currently very extensive or active. To establish the nature of the site effects, the data were analyzed using three spectral techniques that reduce source effects. The data were also compared to a simple forward model. The results show that, in certain frequency ranges, the technique of dividing the horizontal motion by the vertical motion (H/V) to remove the source fails because of non-uniform vertical amplification. Outside these frequencies, the three methods resolve the same, dominant, harmonic frequencies at a given site. In a few cases, the spectra can be fit with forward models containing low velocity surface layers. The analysis suggests that the emergent, low frequency character of the microearthquake signals is due to attenuation and scattering in the near surface ash deposits.

  13. Volcanoes. A planetary perspective.

    NASA Astrophysics Data System (ADS)

    Francis, P.

    In this book, the author gives an account of the familiar violent aspects of volcanoes and the various forms that eruptions can take. He explores why volcanoes exist at all, why volcanoes occur where they do, and how examples of major historical eruptions can be interpreted in terms of physical processes. Throughout he attempts to place volcanism in a planetary perspective, exploring the pre-eminent role of submarine volcanism on Earth and the stunning range of volcanic phenomena revealed by spacecraft exploration of the solar system.

  14. Open-System Magma Reservoir Affects Gas Segregation, Vesiculation, Fragmentation and Lava/Pyroclast Dispersal During the 1.2 km-deep 2007-2010 Submarine Eruption at West Mata Volcano

    NASA Astrophysics Data System (ADS)

    Rubin, K. H.; Clague, D. A.; Embley, R. W.; Hellebrand, E.; Soule, S. A.; Resing, J.

    2014-12-01

    West Mata, a small, active rear-arc volcano in the NE Lau Basin, erupts crystal and gas rich boninite magma. Eruptions were observed at the summit (1.2 km water depth) during 5 ROV Jason dives in 2009 (the deepest erupting submarine volcano observed to date). Subsequent ROV and ship-based bathymetric mapping revealed that a pit crater formed and the summit eruption ceased in 2010, with roughly simultaneous eruptions along the SW rift zone. During the summit eruption, a combination of water depth, H2O-CO2-rich and high crystallinity magma, a split in the conduit to feed two vent sites, and waxing/waning magma supply led to a range of effusive/explosive eruption styles and volcanic deposit types. The 2-3 vent Hades cluster and the lone Prometheus vent had different eruption characteristics. Petrographic, petrologic and geochemical studies of erupted products indicate a change in magma composition in time and space over a period of 3.5 yrs, suggesting a small, open-system magma reservoir within the volcano. Prometheus (1174m depth) produced mostly pyroclastic material during our observations (e.g., highly vesicular glowing fluidal ejecta that cooled in the water column and rounded recycled dense clasts), but sampling and 210Po radiometric dating show that several months prior pillowed lava flows, subsequently covered with cm-sized pyroclasts, had flowed >50m from the vent. In contrast, vents at Hades (1200m depth) cycled between lava production and vigorous degassing, 10-20m high fire fountains and bursts of glowing lava-skinned bubbles, the products of which froze/broke in the water column, forming unstable cones of spatter and scoria near the vents. We hypothesize that bubbles collapse rather than form lava balloons because of skin brittleness (from high crystal content) and hydrostatic pressure. Clast settling times and patterns suggest >100m water column rise height for 10+ cm-sized fragments. Pillow flows were also observed to be issuing from the base of the

  15. Submarine seismic monitoring of El Hierro volcanic eruption with a 3C-geophone string: applying new acquisition and data processing techniques to volcano monitoring

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Ripepe, Maurizio; Lopez, Carmen; Blanco, Maria Jose; Crespo, Jose

    2015-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2011 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. Right after the eruption onset, in October 2011 a geophone string was deployed by the CSIC-IGN to monitor seismic activity. Monitoring with the seismic array continued till May 2012. The array was installed less than 2 km away from the new vol¬cano, next to La Restinga village shore in the harbor from 6 to 12m deep into the water. Our purpose was to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. Each geophone consists on a 3-component module based on 3 orthogonal independent sensors that measures ground velocity. Some of the geophones were placed directly on the seabed, some were buried. Due to different factors, as the irregular characteristics of the seafloor. The data was recorded on the surface with a seismometer and stored on a laptop computer. We show how acoustic data collected underwater show a great correlation with the seismic data recorded on land. Finally we compare our data analysis results with the observed sea surface activity (ash and lava emission and degassing). This evidence is disclosing new and innovative tecniques on monitoring submarine volcanic activity. Reference Instituto Geográfico Nacional (IGN), "Serie El Hierro." Internet: http://www.ign.es/ign/resources /volcanologia/HIERRO.html [May, 17. 2013

  16. Location and Waveform Classification of Seismicity at Tungurahua Volcano (Ecuador) During the February and April 2014 Eruptive Phases

    NASA Astrophysics Data System (ADS)

    Battaglia, J.; Hartmann, J.; Hidalgo, S.; Douchain, J. M.; Cordova, J.; Alvarado, A. P.; Ruiz, M. C.; Parra, R.

    2015-12-01

    We examined 6 months of seismic recordings collected in 2014 during a temporary experiment carried at Tungurahua. This andesitic stratovolcano has been erupting since 1999 and its activity since late 2008 is characterized by the occurrence of eruptive phases lasting from few weeks to months, separated by quiescence periods. These phases have quite variable temporal evolutions. They include the emission of ash and gases with the occurrence of Strombolian to Vulcanian explosions. We use data from the temporary network and permanent monitoring network which includes 6 broadband and 6 short period stations. The temporary network was installed at the end of October 2013 to improve the density and azimuthal coverage. In 2014, it included 11 broadband stations located up to 4200 m elevation. This network is still running at the time of writing. We processed the data including the eruptive phases of February and April 2014 which started with major Vulcanian explosions generating plumes up to 13,000 m elevation and pyroclastic flows. We first applied waveform classification techniques to search for characteristic short period repeating events. Results outline the presence of several families mostly grouping explosion quakes (EQs) and Long Period events(LPs). We then focused on the location of the seismo-volcanic sources. Volcano-tectonic events are not frequent at Tungurahua. As suggested by waveform classification most of the seismicity is related to eruptive processes with EQs, LPs and tremors. To locate such signals which are often emergent or steady, we used a method based on the decay of the amplitude as a function of the distance. Amplitudes calculated at the different stations are corrected for site effect using coda site amplification factors. Approximating that seismic amplitudes decay as a function of distance as body waves in a homogeneous medium, we use an inversion technique to locate the source of the events. We used this technique to locate the source of

  17. The Fukuyama volcanic rocks: Submarine composite volcano in the Late Miocene to Early Pliocene Akita-Yamagata back-arc basin, northeast Honshu, Japan

    NASA Astrophysics Data System (ADS)

    Yagi, Masahiko; Ohguch, Takeshi; Akiba, Fumio; Yoshida, Takeyoshi; Tiba, Tokiko

    2009-10-01

    The Fukuyama Volcanic Rocks are composed of pyroxene andesite (FKV-1), hornblende-pyroxene andesite (FKV-2), biotite-hornblende dacite (FKV-3) and volcaniclastic debris-flow deposits and/or turbidites. FKV-1, FKV-2 and FKV-3 are medium-K calc-alkaline rocks depleted in Nd, similar to other back-arc volcanic rocks of the northeast Japan arc and constitute a dome cluster at Fukuyama. Volcaniclastic beds surround the dome cluster and thin and fine upwards. The predominant clast type in the volcaniclastic beds changes upwards from pyroxene andesite, through hornblende-pyroxene andesite, to biotite-hornblende dacite, consistent with the stratigraphic relationships of FKV-1, FKV-2 and FKV-3 lavas. All the siltstones inter-bedded with the volcaniclastic beds and overlying the whole succession contain diatom fossils indicative of the lower part of the Thalassionema schraderi zone (7.8 Ma to 8.5 Ma), compatible with the isotopic ages of FKV-1, FKV-2 and FKV-3. The Fukuyama volcano has a total eruption volume of 60-100 km 3, with a lifetime of the order of 10 5 years, as typically observed for volcanoes in the present back-arc region of northeast Honshu. FKV-1 erupted in deep water and partly disintegrated into hyaloclastite breccias due to direct contact with water. FKV-2 lava repeatedly effused over the FKV-1 lava and produced a volcanic apron of breccias that eventually grew above wave base and was eroded by wave action. The magma of FKV-3 was probably hydrous as it contains biotite and hornblende. The FKV-3 magma could have explosively erupted from a shallow-water dome or vent emergent above the wave base, followed by growth of a degassing lava dome. Repose between eruptions allowed accumulation of silt, and after the Fukuyama eruptions ceased silt entirely mantled the volcano. A small magma supply rate perhaps allowed a relatively long period of quiescence between eruptions of FKV-1, FKV-2 and FKV-3 magmas, resulting in abrasion and reworking of volcanic fragments and

  18. An efficient algorithm for double-difference tomography and location in heterogeneous media, with an application to the Kilauea volcano

    USGS Publications Warehouse

    Monteiller, V.; Got, J.-L.; Virieux, J.; Okubo, P.

    2005-01-01

    Improving our understanding of crustal processes requires a better knowledge of the geometry and the position of geological bodies. In this study we have designed a method based upon double-difference relocation and tomography to image, as accurately as possible, a heterogeneous medium containing seismogenic objects. Our approach consisted not only of incorporating double difference in tomography but also partly in revisiting tomographic schemes for choosing accurate and stable numerical strategies, adapted to the use of cross-spectral time delays. We used a finite difference solution to the eikonal equation for travel time computation and a Tarantola-Valette approach for both the classical and double-difference three-dimensional tomographic inversion to find accurate earthquake locations and seismic velocity estimates. We estimated efficiently the square root of the inverse model's covariance matrix in the case of a Gaussian correlation function. It allows the use of correlation length and a priori model variance criteria to determine the optimal solution. Double-difference relocation of similar earthquakes is performed in the optimal velocity model, making absolute and relative locations less biased by the velocity model. Double-difference tomography is achieved by using high-accuracy time delay measurements. These algorithms have been applied to earthquake data recorded in the vicinity of Kilauea and Mauna Loa volcanoes for imaging the volcanic structures. Stable and detailed velocity models are obtained: the regional tomography unambiguously highlights the structure of the island of Hawaii and the double-difference tomography shows a detailed image of the southern Kilauea caldera-upper east rift zone magmatic complex. Copyright 2005 by the American Geophysical Union.

  19. White submarine

    NASA Astrophysics Data System (ADS)

    While not everyone gets to live in a yellow submarine, the scientific community may get to have a decommissioned U.S. Navy nuclear submarine dedicated to it. The Sturgeon class of submarines, which scientists say are the ideal choice for the project, will be coming up for decommissioning in this next decade. So the time is ripe, scientists say. Two weeks ago, oceanographers, submarine specialists, marine biologists, and geophysicists, among others met at AGU headquarters in Washington to discuss how to get the project in the water. If all goes well, the project would be the "biggest thing that ever happened in ocean and Earth science," according to Lloyd Keigwin of the Woods Hole Oceanographic Institution, who convened the meeting. For example, the submarine could make many types of "compelling" research possible that can not be done now by other means, such as studies in the Arctic that may have significant bearing on global change research, Keigwin says. However, the imposing hurdles that the project must overcome are as big as the opportunities it offers. Foremost, there is a question as to who will pick up the tab for such an endeavor.

  20. Hawaii's volcanoes revealed

    USGS Publications Warehouse

    Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.

    2003-01-01

    Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while

  1. A Benthic Invertebrate Survey of Jun Jaegyu Volcano: An active undersea volcano in Antarctic Sound, Antarctica

    NASA Astrophysics Data System (ADS)

    Quinones, G.; Brachfeld, S.; Gorring, M.; Prezant, R. S.; Domack, E.

    2005-12-01

    Jun Jaegyu volcano, an Antarctic submarine volcano, was dredged in May 2004 during cruise 04-04 of the RV Laurence M. Gould to determine rock, sediment composition and marine macroinvertebrate diversity. The objectives of this study are to examine the benthic assemblages and biodiversity present on a young volcano. The volcano is located on the continental shelf of the northeastern Antarctic Peninsula, where recent changes in surface temperature and ice shelf stability have been observed. This volcano was originally swath-mapped during cruise 01-07 of the Research Vessel-Ice Breaker Nathaniel B. Palmer. During LMG04-04 we also studied the volcano using a SCUD video camera, and performed temperature surveys along the flanks and crest. Both the video and the dredge indicate a seafloor surface heavily colonized by benthic organisms. Indications of fairly recent lava flows are given by the absence of marine life on regions of the volcano. The recovered dredge material was sieved, and a total of thirty-three invertebrates were extracted. The compilation of invertebrate community data can subsequently be compared to other benthic invertebrate studies conducted along the peninsula, which can determine the regional similarity of communities over time, their relationship to environmental change and health, if any, and their relationship to geologic processes in Antarctic Sound. Twenty-two rock samples, all slightly weathered and half bearing encrusted organisms, were also analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES). Except for one conglomerate sample, all are alkali basalts and share similar elemental compositions with fresh, unweathered samples from the volcano. Two of the encrusted basalt samples have significantly different compositions than the rest. We speculate this difference could be due to water loss during sample preparation, loss of organic carbon trapped within the vesicles of the samples and/or elemental uptake by the

  2. Submarine Silicic Explosive Eruptions: what can submarine pyroclasts tell us?

    NASA Astrophysics Data System (ADS)

    Carey, R.; Allen, S.; McPhie, J.; Fiske, R. S.; Tani, K.

    2014-12-01

    Our understanding of submarine volcanism is in its infancy with respect to subaerial eruption processes. Two fundamental differences between eruptions in seawater compared to those on land are that (1) eruptions occur at higher confining pressures, and (2) in a seawater medium, which has a higher heat capacity, density and viscosity than air. Together with JAMSTEC collaborators we have a sample suite of submarine pumice deposits from modern volcanoes of known eruption depths. This sample suite spans a spectrum of eruption intensities, from 1) powerful explosive caldera-forming (Myojin Knoll caldera); to 2) weakly explosive cone building (pre-caldera Myojin Knoll pumice and Kurose-Nishi pumice); to 3) volatile-driven effusive dome spalling (Sumisu knoll A); to 4) passive dome effusion (Sumisu knoll B and C). This sample suite has exceptional potential, not simply because the samples have been taken from well-constrained, sources but because they have similar high silica contents, are unaltered and their phenocrysts contain melt inclusions. Microtextural quantitative analysis has revealed that (i) clast vesicularities remain high (69-90 vol.%) regardless of confining pressure, mass eruption rate or eruption style , (ii) vesicle number densities scale with inferred eruption rate, and (iii) darcian and inertial permeabilities of submarine effusive and explosive pyroclasts overlap with explosively-erupted subaerial pyroclasts.

  3. Andesite Magmas are Produced along Oceanic Arcs where the Crust is Thin: Evidence from Nishinoshima Volcano, Ogasawara Arc, Japan

    NASA Astrophysics Data System (ADS)

    Tamura, Y.; Ishizuka, O.; Sato, T.; Nichols, A. R.

    2015-12-01

    The incentive for this study is the ongoing explosive eruption of Nishinoshima volcano, located about 1,000 km south of Tokyo along the Ogasawara (Bonin) Arc. The straightforward but unexpected relationship presented here relates crustal thickness and magma type in the Izu-Ogasawara Oceanic Arc. Volcanoes along the Ogasawara segment of the arc, which include Nishinoshima, are underlain by thin crust (16-21 km)—in contrast to those along the Izu segment, where the crust is ~35 km thick. Interestingly, andesite magmas are dominant products from the former volcanoes and mostly basaltic lavas erupt from the latter. Why and how do volcanoes on the thin crust erupt andesite magmas? An introductory petrology textbook might answer this question by suggesting that, under decreasing pressure and hydrous conditions, the liquidus field of forsterite expands relative to that of enstatite, with the result that, at some point, enstatite melts incongruently to produce primary andesite melt. According to the hypothesis presented here, however, rising mantle diapirs stall near the base of the oceanic arc crust at depths controlled by the thickness of the overlying crust. Where the crust is thin, as along the Ogasawara segment of the arc, pressures are relatively low, and magmas produced in the mantle wedge tend to be andesitic. Where the crust is thick, as along the Izu segment, pressures are greater, and only basaltic magmas tend to be produced. To examine this hypothesis, JAMSTEC cruise NT15-E02 on the R/V Natsushima took place from 11 June to 21 June 2015 to Nishinoshima. It's present island has an elevation of only ~150 m, but its submarine flanks extend to ocean depths of 2,000-3,000 m, so the great bulk of the volcano is submarine and yet-to-be explored. We present the new hypothesis and its evidence from Nishinoshima based on the primitive lavas collected from the submarine parts of the volcano.

  4. Submarine Volcanic Cones in the São Miguel Region/Azores

    NASA Astrophysics Data System (ADS)

    Weiß, Benedikt; Hübscher, Christian; Wolf, Daniela

    2014-05-01

    São Miguel, the main island of the Azores Archipelago, is located in an area ~1500 km west of Portugal where the American, African and Eurasian plates converge. Just as well as the other eight Azorian islands, it is of volcanic origin and therefore volcanic processes also play an important role for the evolution of its submarine domain. Around 300 submarine volcanic cones have been mapped in the vicinity of São Miguel Island with multi-beam data during RV Meteor cruise M79/2 . They are distributed in depth down to 3000 m. They exhibit an average diameter of 600 m, an average slope of 22° and heights mainly between 50 and 200 m, slightly decreasing with increasing water depth. Even if their morphological appearances show no segregation, the volcanic setting can be classified in three different categories. A numerous amount of cones are located on the submarine flank of Sete Cidades Volcano in the west of São Miguel considered as parasitic structures, whereas in the very east they build up an own superstructure possibly reflecting an early submarine stadium of a posterior subaerial stratovolcano like Sete Cidades. The third class is controlled by and orientated along faults, most of them in a graben system southwest of the Island. High-resolution multichannel seismic data depicts that the graben cones extinguished synchronously in the past most likely accompanying with the end of graben formation. Backscatter data reveal a rough surface possibly caused by currents removing the fine grain-size fraction over time. However, a young cone investigated in detail is characterized by a smooth surface, a distal increasing stratification and concave shaped flanks. Other few exhibit craters, all together indicating rather a phreatomagmatic than an effusive evolution of these structures. Very similar in size and shape to cinder cones on-shore São Miguel Island, they appear to be their submarine equivalent.

  5. Summit crater lake observations, and the location, chemistry, and pH of water samples near Mount Chiginagak volcano, Alaska: 2004-2012

    USGS Publications Warehouse

    Schaefer, Janet R.; Scott, William E.; Evans, William C.; Wang, Bronwen; McGimsey, Robert G.

    2013-01-01

    Mount Chiginagak is a hydrothermally active volcano on the Alaska Peninsula, approximately 170 km south–southwest of King Salmon, Alaska (fig. 1). This small stratovolcano, approximately 8 km in diameter, has erupted through Tertiary to Permian sedimentary and igneous rocks (Detterman and others, 1987). The highest peak is at an elevation of 2,135 m, and the upper ~1,000 m of the volcano are covered with snow and ice. Holocene activity consists of debris avalanches, lahars, and lava flows. Pleistocene pyroclastic flows and block-and-ash flows, interlayered with andesitic lava flows, dominate the edifice rocks on the northern and western flanks. Historical reports of activity are limited and generally describe “steaming” and “smoking” (Coats, 1950; Powers, 1958). Proximal tephra collected during recent fieldwork suggests there may have been limited Holocene explosive activity that resulted in localized ash fall. A cluster of fumaroles on the north flank, at an elevation of ~1,750 m, commonly referred to as the “north flank fumarole” have been emitting gas throughout historical time (location shown in fig. 2). The only other thermal feature at the volcano is the Mother Goose hot springs located at the base of the edifice on the northwestern flank in upper Volcano Creek, at an elevation of ~160 m (fig. 2, near sites H1, H3, and H4). Sometime between November 2004 and May 2005, a ~400-m-wide, 100-m-deep lake developed in the snow- and ice-filled summit crater of the volcano (Schaefer and others, 2008). In early May 2005, an estimated 3 million cubic meters (3×106 m3) of sulfurous, clay-rich debris and acidic water exited the crater through tunnels at the base of a glacier that breaches the south crater rim. More than 27 km downstream, these acidic flood waters reached approximately 1.3 m above normal water levels and inundated a fertile, salmon-spawning drainage, acidifying the entire water column of Mother Goose Lake from its surface waters to its

  6. Jun Jaegyu Volcano: A Recently Discovered Alkali Basalt Volcano in Antarctic Sound, Antarctica

    NASA Astrophysics Data System (ADS)

    Hatfield, A.; Bailey, D.; Domack, E.; Brachfeld, S.; Gilbert, R.; Ishman, S.; Krahmann, G.; Leventer, A.

    2004-12-01

    Jun Jaegyu is a young volcanic construct discovered in May 2004 by researchers aboard the National Science Foundation (NSF) vessel Laurence M. Gould (LMG04-04). The volcano is located on the Antarctic continental shelf in Antarctic Sound, approximately 9 km due north of the easternmost point of Andersson Island. Swath bathymetry (NBP01-07) indicates that the volcano stands 700 meters above the seafloor, yet remains 275 meters short of the ocean surface. The seamount lies along a northwest-southeast oriented fault scarp and contains at least 1.5 km3 of volcanic rock. Video recording of the volcano's surface revealed regions nearly devoid of submarine life. These areas are associated with a thermal anomaly of up to 0.052° C higher than the surrounding ocean water. A rock dredge collected ~13 kg of material, over 80% of which was fresh volcanic rock; the remainder was glacial IRD. These observations, along with reports by mariners of discolored water in this region of Antarctic Sound, suggest that the volcano has been recently active. The basalt samples are generally angular, glassy and vesicular. Preliminary petrographic observations indicate that plagioclase, olivine, and clinopyroxene are all present as phenocryst phases, and that small (<1cm) rounded xenoliths are common. A comprehensive study of the volcano's petrography and whole-rock chemistry is currently underway. Jun Jaegyu is the northernmost volcanic center of the James Ross Island Volcanic Group (JRIVG), and the only center in this region of the Antarctic Peninsula with evidence of recent activity. It lies along the boundary between the Late Cenozoic JRIVG and the Upper Paleozoic rocks of the Trinity Peninsula Formation. While the tectonic setting of the region is complex, volcanism appears to be associated with active faults related to within-plate extension.

  7. Joint relative location of earthquakes without a predefined velocity model: an example from a peculiar seismic cluster on Katla volcano's south-flank (Iceland)

    NASA Astrophysics Data System (ADS)

    Sgattoni, G.; Gudmundsson, Ó.; Einarsson, P.; Lucchi, F.

    2016-09-01

    Relative location methods are commonly used to precisely locate earthquake clusters consisting of similar waveforms. Repeating waveforms are often recorded at volcanoes, where, however, the crust structure is expected to contain strong heterogeneities and therefore the 1D velocity model assumption that is made in most location strategies is not likely to describe reality. A peculiar cluster of repeating low-frequency seismic events was recorded on the south flank of Katla volcano (Iceland) from 2011. As the hypocentres are located at the rim of the glacier, the seismicity may be due to volcanic or glacial processes. Information on the size and shape of the cluster may help constraining the source process. The extreme similarity of waveforms points to a very small spatial distribution of hypocentres. In order to extract meaningful information about size and shape of the cluster, we minimize uncertainty by optimizing the cross-correlation measurements and relative-location process. With a synthetic test we determine the best parameters for differential-time measurements and estimate their uncertainties, specifically for each waveform. We design a location strategy to work without a predefined velocity model, by formulating and inverting the problem to seek changes in both location and slowness, thus accounting for azimuth, take-off angles and velocity deviations from a 1D model. We solve the inversion explicitly in order to propagate data errors through the calculation. With this approach we are able to resolve a source volume few tens of meters wide in horizontal directions and around 100 meters in depth. There is no suggestion that the hypocentres lie on a single fault plane and the depth distribution indicates that their source is unlikely to be related to glacial processes as the ice thickness is not expected to exceed few tens of meters in the source area. Our method is designed for a very small source region, allowing us to assume a constant slowness for the

  8. Joint relative location of earthquakes without a pre-defined velocity model: an example from a peculiar seismic cluster on Katla volcano's south-flank (Iceland)

    NASA Astrophysics Data System (ADS)

    Sgattoni, G.; Gudmundsson, Ó.; Einarsson, P.; Lucchi, F.

    2016-11-01

    Relative location methods are commonly used to precisely locate earthquake clusters consisting of similar waveforms. Repeating waveforms are often recorded at volcanoes, where, however, the crust structure is expected to contain strong heterogeneities and therefore the 1-D velocity model assumption that is made in most location strategies is not likely to describe reality. A peculiar cluster of repeating low-frequency seismic events was recorded on the south flank of Katla volcano (Iceland) from 2011. As the hypocentres are located at the rim of the glacier, the seismicity may be due to volcanic or glacial processes. Information on the size and shape of the cluster may help constraining the source process. The extreme similarity of waveforms points to a very small spatial distribution of hypocentres. In order to extract meaningful information about size and shape of the cluster, we minimize uncertainty by optimizing the cross-correlation measurements and relative-location process. With a synthetic test we determine the best parameters for differential-time measurements and estimate their uncertainties, specifically for each waveform. We design a location strategy to work without a pre-defined velocity model, by formulating and inverting the problem to seek changes in both location and slowness, thus accounting for azimuth, take-off angles and velocity deviations from a 1-D model. We solve the inversion explicitly in order to propagate data errors through the calculation. With this approach we are able to resolve a source volume few tens of metres wide in horizontal directions and around 100 metres in depth. There is no suggestion that the hypocentres lie on a single fault plane and the depth distribution indicates that their source is unlikely to be related to glacial processes as the ice thickness is not expected to exceed few tens of metres in the source area. Our method is designed for a very small source region, allowing us to assume a constant slowness for the

  9. Examination of the constructional processes of submarine Cerro Azul and the Galapagos Platform

    NASA Astrophysics Data System (ADS)

    Lambert, M. K.; Harpp, K. S.; Geist, D. J.; Fornari, D. J.; Kurz, M. D.; Koleszar, A. M.; Rollins, N. A.

    2004-05-01

    One of the primary goals of the 2001 Drift04 cruise was to examine the constructional processes responsible for the Galapagos platform and to investigate the relationship between the platform and the overlying volcanoes. Cerro Azul volcano is located above the steep escarpment that marks the southwestern limit of the Galapagos platform, at the leading edge of the hotspot. This area is of particular interest in light of a recent seismic tomography experiment by Toomey, Hooft, et al., which suggests that the root of the Galapagos plume is centered between Cerro Azul and adjacent Fernandina Island. During the Drift04 cruise, detailed bathymetric and sidescan sonar studies were carried out across the submarine sector of Cerro Azul and 14 dredges were collected from the same area. Major element analyses of the submarine lavas indicate that the lavas from the platform edge and the subaerial Cerro Azul lavas constitute a suite of petrologically-related lavas. The dredged glasses of the Drift04 cruise have MgO contents of <7.5% and are indistinguishable from published data on Cerro Azul. Whole rock analyses include a highly primitive sample (20 wt% MgO), which probably contains accumulated olivine. All the submarine and subaerial lavas define coherent trends in major element space that are consistent with variable amounts of olivine and olivine+cpx fractionation. Incompatible trace element (ITE) ratios indicate that the mantle source for the submarine platform flows is intermediate in composition between the magmas supplying Fernandina and Cerro Azul. Previous researchers have proposed that two mantle endmembers are interacting across the leading edge of the plume, one focused at Fernandina and the other at Floreana Island. The intermediate ITE ratios of the submarine and subaerial Cerro Azul lavas are consistent both geographically and compositionally with this hypothesis. Naumann and co-workers concluded that the lavas erupted at Cerro Azul were stored in small

  10. Large landslides from oceanic volcanoes

    USGS Publications Warehouse

    Holcomb, R.T.; Searle, R.C.

    1991-01-01

    Large landslides are ubiquitous around the submarine flanks of Hawaiian volcanoes, and GLORIA has also revealed large landslides offshore from Tristan da Cunha and El Hierro. On both of the latter islands, steep flanks formerly attributed to tilting or marine erosion have been reinterpreted as landslide headwalls mantled by younger lava flows. These landslides occur in a wide range of settings and probably represent only a small sample from a large population. They may explain the large volumes of archipelagic aprons and the stellate shapes of many oceanic volcanoes. Large landslides and associated tsunamis pose hazards to many islands. -from Authors

  11. A Newly Recognized Shield Volcano Southwest of Oahu Island, Hawaii

    NASA Astrophysics Data System (ADS)

    Takahashi, E.; Moore, J. G.; Yokose, H.; Clague, D. A.; Nakagawa, M.; Kani, T.; Coombs, M.; Moore, G.; Harada, Y.; Kunikiyo, T.; Robinson, J.

    2001-12-01

    During the 2001 Hawaiian cruise of the JAMSTEC research ship Kairei (with ROV-Kaiko; P.I.: E. Takahashi, Co P.I.: T. Kanamatsu), Seabeam mapping revealed a previously unidentified volcanic edifice (submarine shield) located about 100 km southwest of Oahu. The volcano (centered at 21\\deg35'N, 158\\deg45'W) is approximately 100 km in diameter and 0.5 km high with its summit at 4200 m depth. Near the top of the volcano, a lava flow field with high reflectivity in the GLORIA image has been previously reported (Moore et al., 1989) but the presence of the shield volcano was not known. The low submarine shield is studded with numerous flat top cones typically less than 100m in height and several km across (similar to those described by Clague et al, 2000). In addition, more than 30 steep cones (circular to irregular in shape; typically 300 to 500 m in height) are distributed over the submarine shield volcano. Much of the east side of the volcano is mantled by thick sediment probably due to landsliding of Waianae volcano. The maximum thickness of such material is more than a few hundred meters. Accordingly, the flat top cones are not visible (if present) and only some steep cones are exposed on the east side. ROV dive K203 (20\\deg40.0'N, 158\\deg51.5'W) collected samples from the high-reflectivity lava flow shown on the GLORIA image as well as from one of the steep cones. Judging from the thin sediment and the thickness of the Mn-coating (1-2 mm), the high-reflectivity lava flow may be similar in age to the North Arch alkalic lavas (0.5 to 1.5 Ma, Clague et al., 1990). The steep cone consists of vesiculated pillow lava and hyaloclastite and is apparently older than the flow judging from the thick sediment cover and the Mn-coating (up to 6 mm) similar to that on the north slope of the ca. 3 Ma old Koolau volcano (Shinozaki et al., 2001). The high vesicularity of some of the lavas (collected at depths of 4000 m) indicates a high volatile content and almost certainly an

  12. Location of seismic events and eruptive fissures on the Piton de la Fournaise volcano using seismic amplitudes

    USGS Publications Warehouse

    Battaglia, J.; Aki, K.

    2003-01-01

    We present a method for locating the source of seismic events on Piton de la Fournaise. The method is based on seismic amplitudes corrected for station site effects using coda site amplification factors. Once corrected, the spatial distribution of amplitudes shows smooth and simple contours for many types of events, including rockfalls, long-period events and eruption tremor. On the basis of the simplicity of these distributions we develop inversion methods for locating their origins. To achieve this, the decrease of the amplitude as a function of the distance to the source is approximated by the decay either of surface or body waves in a homogeneous medium. The method is effective for locating rockfalls, long-period events, and eruption tremor sources. The sources of eruption tremor are usually found to be located at shallow depth and close to the eruptive fissures. Because of this, our method is a useful tool for locating fissures at the beginning of eruptions.

  13. Earthquake classification, location, and error analysis in a volcanic environment: implications for the magmatic system of the 1989-1990 eruptions at redoubt volcano, Alaska

    USGS Publications Warehouse

    Lahr, J.C.; Chouet, B.A.; Stephens, C.D.; Power, J.A.; Page, R.A.

    1994-01-01

    Determination of the precise locations of seismic events associated with the 1989-1990 eruptions of Redoubt Volcano posed a number of problems, including poorly known crustal velocities, a sparse station distribution, and an abundance of events with emergent phase onsets. In addition, the high relief of the volcano could not be incorporated into the hypoellipse earthquake location algorithm. This algorithm was modified to allow hypocenters to be located above the elevation of the seismic stations. The velocity model was calibrated on the basis of a posteruptive seismic survey, in which four chemical explosions were recorded by eight stations of the permanent network supplemented with 20 temporary seismographs deployed on and around the volcanic edifice. The model consists of a stack of homogeneous horizontal layers; setting the top of the model at the summit allows events to be located anywhere within the volcanic edifice. Detailed analysis of hypocentral errors shows that the long-period (LP) events constituting the vigorous 23-hour swarm that preceded the initial eruption on December 14 could have originated from a point 1.4 km below the crater floor. A similar analysis of LP events in the swarm preceding the major eruption on January 2 shows they also could have originated from a point, the location of which is shifted 0.8 km northwest and 0.7 km deeper than the source of the initial swarm. We suggest this shift in LP activity reflects a northward jump in the pathway for magmatic gases caused by the sealing of the initial pathway by magma extrusion during the last half of December. Volcano-tectonic (VT) earthquakes did not occur until after the initial 23-hour-long swarm. They began slowly just below the LP source and their rate of occurrence increased after the eruption of 01:52 AST on December 15, when they shifted to depths of 6 to 10 km. After January 2 the VT activity migrated gradually northward; this migration suggests northward propagating withdrawal of

  14. Locations of Long-Period Seismic Events Beneath the Soufriere Hills Volcano, Montserrat, W.I., Inferred from a Waveform Semblance Method

    NASA Astrophysics Data System (ADS)

    Taira, T.; Linde, A. T.; Sacks, I. S.; Shalev, E.; Malin, P. E.; Nielsen, J. M.; Voight, B.; Hidayat, D.; Mattioli, G. S.

    2005-05-01

    Analysis of long-period (LP) seismic events provides information about the internal state of a volcano because LP events are attributed mainly to fluid dynamics between magma and hydrothermal reservoirs in its volcano (e.g., Chouet, 1992). We analyzed LP events recorded by three borehole seismic stations (AIRS, OLVN, and TRNT) at Soufriere Hills Volcano (SHV), Montserrat, W.I., during the period from March to June 2003. Borehole stations were deployed by the Caribbean Andesite Lava Island Precision Seismo-geodetic Observatory project (e.g., Shalev et al., 2003; Mattioli et al., 2004) and equipped with three-component short-period velocity seismometers with a sampling rate of 200 Hz. We selected 61 LP events with high signal-to-noise ratios. Almost all of the selected LP events are characterized by dominant periods in a range of 0.3 to 2.0 sec and durations of about 30 sec. Several LP events appear to be generated by a single source, based on the strong similarity in their waveforms. We first identified a family of LP events based on the dimensionless cross-correlation coefficient (CCC) of their spectral amplitudes of a period in a range of 0.2 to 2.0 sec, under the assumption of a fluid-driven crack model (Chouet, 1986). Seven LP events are identified as a family of LP events with high CCCs, particularly CCCs at AIRS in the vertical component greater than 0.88 in each event. This result suggested that these LP events are probably due to a repeated excitation of an identical source mechanism. We next attempted to estimate the locations of the identified a family of LP events by a waveform semblance method (Kawakatsu et al., 2000; Almendros and Chouet, 2003). To apply the above method, we searched the seismic phases with a rectilinear polarization from LP events, by performing a complex polarization analysis (Vidale, 1986). These phases are identified as averaged particle motion ellipticities of all stations in a time window less than 0.50. Incident angles of the

  15. The preliminary results of new submarine caldera on the west of Kume-jima island, Central Ryukyu Arc, Japan

    NASA Astrophysics Data System (ADS)

    Harigane, Y.; Ishizuka, O.; Shimoda, G.; Sato, T.

    2014-12-01

    The Ryukyu Arc occurs between the islands of Kyushu and Taiwan with approximately 1200 km in the full length. This volcanic arc is caused by subduction of the Philippine Sea plate beneath the Eurasia Plate along the Ryukyu trench, and is composed of forearc islands, chains of arc volcanoes, and a back-arc rift called Okinawa Trough. The Ryukyu Arc is commonly divided into three segments (northern, central and southern) that bounded by the Tokara Strait and the Kerama Gap, respectively (e.g., Konishi 1965; Kato et al., 1982). Sato et al. (2014) mentioned that there is no active subaerial volcano in the southwest of Iotori-shima in the Central Ryukyu Arc whereas the Northern Ryukyu Arc (i.e., the Tokara Islands) has active frontal arc volcanoes. Therefore, the existence of volcanoes and volcanotectonic history of active volcanic front in the southwestern part of the Central Ryukyu Arc are still ambiguous. Detailed geophysical and geological survey was mainly conducted using R/V Kaiyou-maru No.7 during GK12 cruise operated by the Geological Survey of Japan/National Institute of Advanced Industrial Science and Technology, Japan. As a result, we have found a new submarine volcanic caldera on the west of Kume-jima island, where located the southwestern part of Central Ryukyu Arc. Here, we present (1) the bathymetrical feature of this new submarine caldera for the first time and (2) the microstructural and petrological observations of volcanic rocks (20 volcanic samples in 13 dredge sites) sampled from the small volcanic cones of this caldera volcano. The dredged samples from the caldera consist of mainly rhyolite pumice with minor andesites, Mn oxides-crust and hydrothermally altered rocks. Andesite has plagioclase, olivine and pyroxene phenocrysts. Key words: volcanic rock, caldera, arc volcanism, active volcanic front, Kume-jima island, Ryukyu Arc

  16. Tectonic and magmatic controls on the location of post-subduction monogenetic volcanoes in Baja California, Mexico, revealed through spatial analysis of eruptive vents

    NASA Astrophysics Data System (ADS)

    Germa, Aurélie; Connor, Laura J.; Cañon-Tapia, Edgardo; Le Corvec, Nicolas

    2013-12-01

    Post-subduction (12.5 Ma to less than 1 Ma) monogenetic volcanism on the Baja California peninsula, Mexico, formed one of the densest intra-continental areas of eruptive vents on Earth. It includes about 900 vents within an area ˜700 km long (N-S) and 70 to 150 km wide (W-E). This study shows that post-subduction volcanic activity was distributed along this arc and that modes exist in the volcano distribution, indicating that productivity of the magma source region was not uniform along the length of the arc. Vent clustering, vent alignments, and cone elongations were measured within eight monogenetic volcanic fields located along the peninsula. Results indicate that on a regional scale, vent clustering varies from north to south with denser spatial clustering in the north on the order of 1.9 × 10-1 vents/km2 to less dense clustering in the south on the order of 7.8 × 10-2 vents/km2. San Quintin, San Carlos, Jaraguay, and Santa Clara are spatially distinct volcanic fields with higher eruptive vent densities suggesting the existence of individual melt columns that may have persisted over time. In contrast, the San Borja, Vizcaino, San Ignacio, and La Purisima vent fields show lower degrees of vent clustering and no obvious spatial gaps between fields, thus indicating an area of more distributed volcanism. Insight into the lithospheric stress field can be gained from vent alignments and vent elongation measurements. Within the fields located along the extinct, subduction-related volcanic arc, elongation patterns of cinder cones and fissure-fed spatter cones, vent clusters, and vent alignments trend NW-SE and N-S. Within the Santa Clara field, located more to the west within the forearc, elongation patterns of the same volcanic features trend NE-SW. These patterns suggest that magmatism was more focused in the forearc and in the northern part of Baja California than in its southern region. Within the extinct arc, magma ascent created volcano alignments and elongate

  17. Mud Volcanoes - Analogs to Martian Cones and Domes (by the Thousands!)

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Oehler, Dorothy

    2010-01-01

    Mud volcanoes are mounds formed by low temperature slurries of gas, liquid, sediments and rock that erupt to the surface from depths of meters to kilometers. They are common on Earth, with estimates of thousands onshore and tens of thousands offshore. Mud volcanoes occur in basins with rapidly-deposited accumulations of fine-grained sediments. Such settings are ideal for concentration and preservation of organic materials, and mud volcanoes typically occur in sedimentary basins that are rich in organic biosignatures. Domes and cones, cited as possible mud volcanoes by previous authors, are common on the northern plains of Mars. Our analysis of selected regions in southern Acidalia Planitia has revealed over 18,000 such features, and we estimate that more than 40,000 occur across the area. These domes and cones strongly resemble terrestrial mud volcanoes in size, shape, morphology, associated flow structures and geologic setting. Geologic and mineralogic arguments rule out alternative formation mechanisms involving lava, ice and impacts. We are studying terrestrial mud volcanoes from onshore and submarine locations. The largest concentration of onshore features is in Azerbaijan, near the western edge of the Caspian Sea. These features are typically hundreds of meters to several kilometers in diameter, and tens to hundreds of meters in height. Satellite images show spatial densities of 20 to 40 eruptive centers per 1000 square km. Many of the features remain active, and fresh mud flows as long as several kilometers are common. A large field of submarine mud volcanoes is located in the Gulf of Cadiz, off the Atlantic coasts of Morocco and Spain. High-resolution sonar bathymetry reveals numerous km-scale mud volcanoes, hundreds of meters in height. Seismic profiles demonstrate that the mud erupts from depths of several hundred meters. These submarine mud volcanoes are the closest morphologic analogs yet found to the features in Acidalia Planitia. We are also conducting

  18. Mud Volcanoes - Analogs to Martian Cones and Domes (by the thousands !)

    NASA Astrophysics Data System (ADS)

    Allen, C.; Oehler, D.

    2010-12-01

    Mud volcanoes are mounds formed by low temperature slurries of gas, liquid, sediments and rock that erupt to the surface from depths of meters to kilometers. They are common on Earth, with estimates of thousands onshore and tens of thousands offshore. Mud volcanoes occur in basins with rapidly-deposited accumulations of fine-grained sediments. Such settings are ideal for concentration and preservation of organic materials, and mud volcanoes typically occur in sedimentary basins that are rich in organic biosignatures. Domes and cones, cited as possible mud volcanoes by previous authors, are common on the northern plains of Mars. Our analysis of selected regions in southern Acidalia Planitia has revealed over 18,000 such features, and we estimate that more than 40,000 occur across the area. These domes and cones strongly resemble terrestrial mud volcanoes in size, shape, morphology, associated flow structures and geologic setting. Geologic and mineralogic arguments rule out alternative formation mechanisms involving lava, ice and impacts. We are studying terrestrial mud volcanoes from onshore and submarine locations. The largest concentration of onshore features is in Azerbaijan, near the western edge of the Caspian Sea. These features are typically hundreds of meters to several kilometers in diameter, and tens to hundreds of meters in height. Satellite images show spatial densities of 20 to 40 eruptive centers per 1000 km2. Many of the features remain active, and fresh mud flows as long as several kilometers are common. A large field of submarine mud volcanoes is located in the Gulf of Cadiz, off the Atlantic coasts of Morocco and Spain. High-resolution sonar bathymetry reveals numerous km-scale mud volcanoes, hundreds of meters in height. Seismic profiles demonstrate that the mud erupts from depths of several hundred meters. These submarine mud volcanoes are the closest morphologic analogs yet found to the features in Acidalia Planitia. We are also conducting

  19. The diversity of mud volcanoes in the landscape of Azerbaijan

    NASA Astrophysics Data System (ADS)

    Rashidov, Tofig

    2014-05-01

    As the natural phenomenon the mud volcanism (mud volcanoes) of Azerbaijan are known from the ancient times. The historical records describing them are since V century. More detail study of this natural phenomenon had started in the second half of XIX century. The term "mud volcano" (or "mud hill") had been given by academician H.W. Abich (1863), more exactly defining this natural phenomenon. All the previous definitions did not give such clear and capacious explanation of it. In comparison with magmatic volcanoes, globally the mud ones are restricted in distribution; they mainly locate within the Alpine-Himalayan, Pacific and Central Asian mobile belts, in more than 30 countries (Columbia, Trinidad Island, Italy, Romania, Ukraine, Georgia, Azerbaijan, Turkmenistan, Iran, Pakistan, Indonesia, Burma, Malaysia, etc.). Besides it, the zones of mud volcanoes development are corresponded to zones of marine accretionary prisms' development. For example, the South-Caspian depression, Barbados Island, Cascadia (N.America), Costa-Rica, Panama, Japan trench. Onshore it is Indonesia, Japan, and Trinidad, Taiwan. The mud volcanism with non-accretionary conditions includes the areas of Black Sea, Alboran Sea, the Gulf of Mexico (Louisiana coast), Salton Sea. But new investigations reveal more new mud volcanoes and in places which were not considered earlier as the traditional places of mud volcanoes development (e.g. West Nile Rive delta). Azerbaijan is the classic region of mud volcanoes development. From over 800 world mud volcanoes there are about 400 onshore and within the South-Caspian basin, which includes the territory of East Azerbaijan (the regions of Shemakha-Gobustan and Low-Kura River, Absheron peninsula), adjacent water area of South Caspian (Baku and Absheron archipelagoes) and SW Turkmenistan and represents an area of great downwarping with thick (over 25 km) sedimentary series. Generally, in the modern relief the mud volcanoes represent more or less large uplifts

  20. The Kaena Ridge Submarine Rift Zone off Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Smith, J. R.

    2002-12-01

    Deep-water multibeam data was collected in the Kauai Channel between the islands of Kauai and Oahu during the years 2000 to 2002 using the R/V Roger Revelle in support of the NSF funded Hawaii Ocean Mixing Experiment (HOME) with M. Gregg and A. Chave as principal investigators. The bathymetric surveys covered the Kaena Ridge, possibly a large submarine rift zone extension of the Waianae Volcano that makes up the western half of the island of Oahu. The Kaena ridge is bordered by the Kauai Channel and debris avalanche deposit material to the west, the Waianae slump to the south, and the Kaena slump to the north. The 35-55 km wide crest of the Kaena ridge extends 75-100 km northwest from Kaena Point, the westernmost tip of Oahu. The length and morphology resemble that of the Hana Ridge, the submarine extension of the Haleakala east rift zone. The broad central portion of Kaena ridge is comprised of two apparent lava shields 15 km and 10 km in diameter, both rising 200 m above the ridge (approximately 2500 m above the basal seafloor) to within 880 m and 660 m of sea level, respectively. The large size and distant location of the westernmost cone in the middle of the Kauai Channel suggests that it might predate Waianae Volcano and represent a precursor to the island of Oahu in the Hawaiian Chain, aborted before it ever reached sea level. Several 1500 m high steep concave landslide scars facing the giant Waianae slump mark the southern side of the ridge. To the north, a series of four 15 to 30 km wide benches step down to the basal seafloor, forming the Kaena slump, which may represent a less developed version of the Waianae slump. A 42 km long and 22 km wide (at its center) narrow rift zone ridge, in the classic Hawaiian submarine rift zone style (e.g., Puna ridge), bifurcates from the main broad ridge near the distal end. The smaller ridge trends north-northwest and is covered with approximately a dozen volcanic cones along its axis. Its rough morphology is

  1. Location and wavefield attributes of long-period signals at Villarrica volcano (Chile) determined by array and polarization-moveout analysis

    NASA Astrophysics Data System (ADS)

    Lehr, Johanna; Thorwart, Martin; Rabbel, Wolfgang

    2016-04-01

    Villarrica Volcano is the most active volcano in Chile whose latest eruption occurred in March 2015. Increasing the knowledge on its processes, structure and behavior is thus crucial to an effective monitoring and hazard assessment. In this context, long-period volcanic signals (LP) are considered to be a key to the understanding of fluid dynamics and volcanic plumbing systems, accessible by seismological observations. However, standard seismological location tools usually fail due to the emergent onset of the signal and its serious distortion caused by attenuation and scattering in a complex geology. Therefore, alternative methods are needed. In March 2012, a dense seismic network was installed at Villarrica for two weeks with 50 stations covering the volcanic edifice including 6 subarrays. About 400 LP events were identified. LP-events recorded on crater stations look similar to typical earthquakes arrivals with distinguishable P- and S-wave onsets indicating a source near the crater. But with increasing source distance waveforms gradually change into typical LP-events. To investigate how to locate these LP-events we tested two approaches at the basis of a show-case event. In a first trial, records of the subarrays were used to determine backazimuths and slowness by beamforming in the time domain. The analysis was performed in a moving window, using semblance to measure the beam quality. The epicenter was derived by intersecting azimuthal rays. It locates ca. 1 km southeast of the summit crater. Slownesses range from 0.5 s/km up to 2.0 s/km. At frequencies above 2 Hz, additional maxima appear in the semblance distribution of near-summit arrays which can be interpreted as side-scattered signals. Since the crossing points of the backazimuth rays showed some scattering we tested polarization analysis (applied to the subset of 3-component stations) as an alternative location method. Although the direct interpretation of the backazimuths was unreliable, we identified

  2. Nicaraguan Volcanoes

    Atmospheric Science Data Center

    2013-04-18

    article title:  Nicaraguan Volcanoes     View Larger Image Nicaraguan volcanoes, February 26, 2000 . The true-color image at left is a ... February 26, 2000 - Plumes from the San Cristobal and Masaya volcanoes. project:  MISR category:  gallery ...

  3. Diversity of extremophilic bacteria in the sediment of high-altitude lakes located in the mountain desert of Ojos del Salado volcano, Dry-Andes.

    PubMed

    Aszalós, Júlia Margit; Krett, Gergely; Anda, Dóra; Márialigeti, Károly; Nagy, Balázs; Borsodi, Andrea K

    2016-09-01

    Ojos del Salado, the highest volcano on Earth is surrounded by a special mountain desert with extreme aridity, great daily temperature range, intense solar radiation, and permafrost from 5000 meters above sea level. Several saline lakes and permafrost derived high-altitude lakes can be found in this area, often surrounded by fumaroles and hot springs. The aim of this study was to gain information about the bacterial communities inhabiting the sediment of high-altitude lakes of the Ojos del Salado region located between 3770 and 6500 m. Altogether 11 sediment samples from 4 different altitudes were examined with 16S rRNA gene based denaturing gradient gel electrophoresis and clone libraries. Members of 17 phyla or candidate divisions were detected with the dominance of Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes. The bacterial community composition was determined mainly by the altitude of the sampling sites; nevertheless, the extreme aridity and the active volcanism had a strong influence on it. Most of the sequences showed the highest relation to bacterial species or uncultured clones from similar extreme environments. PMID:27315168

  4. Diversity of extremophilic bacteria in the sediment of high-altitude lakes located in the mountain desert of Ojos del Salado volcano, Dry-Andes.

    PubMed

    Aszalós, Júlia Margit; Krett, Gergely; Anda, Dóra; Márialigeti, Károly; Nagy, Balázs; Borsodi, Andrea K

    2016-09-01

    Ojos del Salado, the highest volcano on Earth is surrounded by a special mountain desert with extreme aridity, great daily temperature range, intense solar radiation, and permafrost from 5000 meters above sea level. Several saline lakes and permafrost derived high-altitude lakes can be found in this area, often surrounded by fumaroles and hot springs. The aim of this study was to gain information about the bacterial communities inhabiting the sediment of high-altitude lakes of the Ojos del Salado region located between 3770 and 6500 m. Altogether 11 sediment samples from 4 different altitudes were examined with 16S rRNA gene based denaturing gradient gel electrophoresis and clone libraries. Members of 17 phyla or candidate divisions were detected with the dominance of Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes. The bacterial community composition was determined mainly by the altitude of the sampling sites; nevertheless, the extreme aridity and the active volcanism had a strong influence on it. Most of the sequences showed the highest relation to bacterial species or uncultured clones from similar extreme environments.

  5. The proximal part of the giant submarine Wailau landslide, Molokai, Hawaii

    USGS Publications Warehouse

    Clague, D.A.; Moore, J.G.

    2002-01-01

    The main break-in-slope on the northern submarine flank of Molokai at -1500 to -1250 m is a shoreline feature that has been only modestly modified by the Wailau landslide. Submarine canyons above the break-in-slope, including one meandering stream, were subaerially carved. Where such canyons cross the break-in-slope, plunge pools may form by erosion from bedload sediment carried down the canyons. West Molokai Volcano continued infrequent volcanic activity that formed a series of small coastal sea cliffs, now submerged, as the island subsided. Lavas exposed at the break-in-slope are subaerially erupted and emplaced tholeiitic shield lavas. Submarine rejuvenated-stage volcanic cones formed after the landslide took place and following at least 400-500 m of subsidence after the main break-in-slope had formed. The sea cliff on east Molokai is not the headwall of the landslide, nor did it form entirely by erosion. It may mark the location of a listric fault similar to the Hilina faults on present-day Kilauea Volcano. The Wailau landslide occurred about 1.5 Ma and the Kalaupapa Peninsula most likely formed 330??5 ka. Molokai is presently stable relative to sea level and has subsided no more than 30 m in the last 330 ka. At their peak, West and East Molokai stood 1.6 and 3 km above sea level. High rainfall causes high surface runoff and formation of canyons, and increases groundwater pressure that during dike intrusions may lead to flank failure. Active shield or postshield volcanism (with dikes injected along rift zones) and high rainfall appear to be two components needed to trigger the deep-seated giant Hawaiian landslides. ?? 2002 Elsevier Science B.V. All rights reserved.

  6. Volcano hazards at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Sherrod, David R.; Mastin, Larry G.; Scott, William E.; Schilling, Steven P.

    1997-01-01

    Newberry volcano is a broad shield volcano located in central Oregon. It has been built by thousands of eruptions, beginning about 600,000 years ago. At least 25 vents on the flanks and summit have been active during several eruptive episodes of the past 10,000 years. The most recent eruption 1,300 years ago produced the Big Obsidian Flow. Thus, the volcano's long history and recent activity indicate that Newberry will erupt in the future. The most-visited part of the volcano is Newberry Crater, a volcanic depression or caldera at the summit of the volcano. Seven campgrounds, two resorts, six summer homes, and two major lakes (East and Paulina Lakes) are nestled in the caldera. The caldera has been the focus of Newberry's volcanic activity for at least the past 10,000 years. Other eruptions during this time have occurred along a rift zone on the volcano's northwest flank and, to a lesser extent, the south flank. Many striking volcanic features lie in Newberry National Volcanic Monument, which is managed by the U.S. Forest Service. The monument includes the caldera and extends along the northwest rift zone to the Deschutes River. About 30 percent of the area within the monument is covered by volcanic products erupted during the past 10,000 years from Newberry volcano. Newberry volcano is presently quiet. Local earthquake activity (seismicity) has been trifling throughout historic time. Subterranean heat is still present, as indicated by hot springs in the caldera and high temperatures encountered during exploratory drilling for geothermal energy. This report describes the kinds of hazardous geologic events that might occur in the future at Newberry volcano. A hazard-zonation map is included to show the areas that will most likely be affected by renewed eruptions. In terms of our own lifetimes, volcanic events at Newberry are not of day-to-day concern because they occur so infrequently; however, the consequences of some types of eruptions can be severe. When Newberry

  7. Volcano-hazard zonation for San Vicente volcano, El Salvador

    USGS Publications Warehouse

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Howell, M.M.

    2001-01-01

    San Vicente volcano, also known as Chichontepec, is one of many volcanoes along the volcanic arc in El Salvador. This composite volcano, located about 50 kilometers east of the capital city San Salvador, has a volume of about 130 cubic kilometers, rises to an altitude of about 2180 meters, and towers above major communities such as San Vicente, Tepetitan, Guadalupe, Zacatecoluca, and Tecoluca. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and major transportation routes are located near the lowermost southern and eastern flanks of the volcano. The population density and proximity around San Vicente volcano, as well as the proximity of major transportation routes, increase the risk that even small landslides or eruptions, likely to occur again, can have serious societal consequences. The eruptive history of San Vicente volcano is not well known, and there is no definitive record of historical eruptive activity. The last significant eruption occurred more than 1700 years ago, and perhaps long before permanent human habitation of the area. Nevertheless, this volcano has a very long history of repeated, and sometimes violent, eruptions, and at least once a large section of the volcano collapsed in a massive landslide. The oldest rocks associated with a volcanic center at San Vicente are more than 2 million years old. The volcano is composed of remnants of multiple eruptive centers that have migrated roughly eastward with time. Future eruptions of this volcano will pose substantial risk to surrounding communities.

  8. Submarine explosive volcanism in the southeastern Terceira Rift/São Miguel region (Azores)

    NASA Astrophysics Data System (ADS)

    Weiß, B. J.; Hübscher, C.; Wolf, D.; Lüdmann, T.

    2015-09-01

    Morphologic studies with sonar data and in situ observations of modern eruptions have revealed some information suggesting how submarine volcanic cones develop, but the information only addresses the modern surfaces of these features. Here, we describe a study combining morphological data with high-resolution seismic reflection data collected over cones within the southeastern Terceira Rift - a succession of deep basins, volcanic bathymetric highs and islands (e.g. São Miguel) representing the westernmost part of the Eurasian-Nubian plate boundary. The cones (252) are distributed in depths down to 3200 m and exhibit an average diameter of 743 m, an average slope of 20° and heights mainly between 50 and 200 m. The cones are here classified into three different categories by physiographic or tectonic setting (we find no particular morphometric differences in cone shapes between these areas). First, numerous cones located at the submarine flanks of São Miguel's Sete Cidades and Fogo Volcano are considered to be parasitic structures. Second, in the southeast of the island, they form a superstructure possibly reflecting an early submarine stadium of a posterior subaerial stratovolcano. Third, some cones are controlled by faults, mostly in a graben system southwest of the island. High-resolution multichannel seismic data indicates that the graben cones evolved synchronously with the graben formation. Bottom currents then probably removed the surficial fine grain-size fraction, leaving rough surface textures of the cones, which backscatter sonar signals strongly in the data recorded here. However, a young cone investigated in detail is characterized by a smooth surface, a marked increase of internal stratification with increasing distance from the summit and upwards concave flanks. Others exhibit central craters, suggesting an explosive than an effusive evolution of these structures. The morphological characteristics of these submarine cones show that they have similar

  9. Detail of conning tower atop the submarine. Note the wire ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of conning tower atop the submarine. Note the wire rope wrapped around the base of the tower, which may have been used in an attempt to pull the submarine offshore. - Sub Marine Explorer, Located along the beach of Isla San Telmo, Pearl Islands, Isla San Telmo, Former Panama Canal Zone, CZ

  10. 32 CFR 707.7 - Submarine identification light.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Submarine identification light. 707.7 Section... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.7 Submarine identification light... off-period. The light will be located where it can best be seen, as near as practicable, all...

  11. 32 CFR 707.7 - Submarine identification light.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Submarine identification light. 707.7 Section... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.7 Submarine identification light... off-period. The light will be located where it can best be seen, as near as practicable, all...

  12. 32 CFR 707.7 - Submarine identification light.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Submarine identification light. 707.7 Section... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.7 Submarine identification light... off-period. The light will be located where it can best be seen, as near as practicable, all...

  13. 32 CFR 707.7 - Submarine identification light.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Submarine identification light. 707.7 Section... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.7 Submarine identification light... off-period. The light will be located where it can best be seen, as near as practicable, all...

  14. Submarine cable route survey

    SciTech Connect

    Herrouin, G.; Scuiller, T.

    1995-12-31

    The growth of telecommunication market is very significant. From the beginning of the nineties, more and more the use of optical fiber submarine cables is privileged to that of satellites. These submarine telecommunication highways require accurate surveys in order to select the optimum route and determine the cable characteristics. Advanced technology tools used for these surveys are presented along with their implementation.

  15. Paint-Stirrer Submarine

    ERIC Educational Resources Information Center

    Young, Jocelyn; Hardy, Kevin

    2007-01-01

    In this article, the authors discuss a unique and challenging laboratory exercise called, the paint-stir-stick submarine, that keeps the students enthralled. The paint-stir-stick submarine fits beautifully with the National Science Education Standards Physical Science Content Standard B, and with the California state science standards for physical…

  16. Bathymetry,submarine geomorphology and tectonics of the Aeolian Islands

    NASA Astrophysics Data System (ADS)

    Favalli, M.; Karatson, D.; Mazzuoli, R.; Pareschi, M. T.; Ventura, G.

    2003-04-01

    On the basis of a new DEM of the submarine portions of the Aeolian Island Arc, Southern Italy, we discuss the offshore geomorphology, morphometry and tectonics of the seven major volcanic edifices and their surroundings. Bathymetric data have been compiled from various sources. Geomorphological maps reveal important details of the submerged volcanic structures as well as tectonic lineaments that are related to the most evident on land pattern. Geomorphological and morphomnetrical data have allowed us to get an insight into the evolution of the submarine volcanoes and the relationship between tectonics and volcanism in the archipelago.

  17. 33 CFR 165.1302 - Bangor Naval Submarine Base, Bangor, WA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Bangor Naval Submarine Base... Bangor Naval Submarine Base, Bangor, WA. (a) Location. The following is a security zone: The waters of... States Naval vessels. (ii) Vessels that are performing work at Naval Submarine Base Bangor pursuant to...

  18. 33 CFR 165.1302 - Bangor Naval Submarine Base, Bangor, WA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Bangor Naval Submarine Base... Bangor Naval Submarine Base, Bangor, WA. (a) Location. The following is a security zone: The waters of... States Naval vessels. (ii) Vessels that are performing work at Naval Submarine Base Bangor pursuant to...

  19. 33 CFR 165.1302 - Bangor Naval Submarine Base, Bangor, WA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Bangor Naval Submarine Base... Bangor Naval Submarine Base, Bangor, WA. (a) Location. The following is a security zone: The waters of... States Naval vessels. (ii) Vessels that are performing work at Naval Submarine Base Bangor pursuant to...

  20. 33 CFR 165.1302 - Bangor Naval Submarine Base, Bangor, WA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Bangor Naval Submarine Base... Bangor Naval Submarine Base, Bangor, WA. (a) Location. The following is a security zone: The waters of... States Naval vessels. (ii) Vessels that are performing work at Naval Submarine Base Bangor pursuant to...

  1. Bathymetry of southern Mauna Loa Volcano, Hawaii

    USGS Publications Warehouse

    Chadwick, William W.; Moore, James G.; Garcia, Michael O.; Fox, Christopher G.

    1993-01-01

    Manua Loa, the largest volcano on Earth, lies largely beneath the sea, and until recently only generalized bathymetry of this giant volcano was available. However, within the last two decades, the development of multibeam sonar and the improvement of satellite systems (Global Positioning System) have increased the availability of precise bathymetric mapping. This map combines topography of the subaerial southern part of the volcano with modern multibeam bathymetric data from the south submarine flank. The map includes the summit caldera of Mauna Loa Volcano and the entire length of the 100-km-long southwest rift zone that is marked by a much more pronounced ridge below sea level than above. The 60-km-long segment of the rift zone abruptly changes trend from southwest to south 30 km from the summit. It extends from this bend out to sea at the south cape of the island (Kalae) to 4 to 4.5 km depth where it impinges on the elongate west ridge of Apuupuu Seamount. The west submarine flank of the rift-zone ridge connects with the Kahuku fault on land and both are part of the ampitheater head of a major submarine landslide (Lipman and others, 1990; Moore and Clague, 1992). Two pre-Hawaiian volcanic seamounts in the map area, Apuupuu and Dana Seamounts, are apparently Cretaceous in age and are somewhat younger than the Cretaceous oceanic crust on which they are built.

  2. Triggering and dynamic evolution of the LUSI mud volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Mazzini, A.; Svensen, H.; Akhmanov, G. G.; Aloisi, G.; Planke, S.; Malthe-Sørenssen, A.; Istadi, B.

    2007-09-01

    Mud volcanoes are geologically important manifestations of vertical fluid flow and mud eruption in sedimentary basins worldwide. Their formation is predominantly ascribed to release of overpressure from clay- and organic-rich sediments, leading to impressive build-up of mud mountains in submarine and subaerial settings. Here we report on a newly born mud volcano appearing close to an active magmatic complex in a backarc sedimentary basin in Indonesia. The location of the mud volcano close to magmatic volcanoes results in a high background temperature gradient that triggers mineralogical transformations and geochemical reactions at shallow depth. The eruption of 100 °C mud and gas that started the 29th of May 2006 flooded a large area within the Sidoarjo village in Northeast Java. Thousands of people have so far been evacuated due to the mud flood hazards from the eruption. Since the initial eruption, the flow rate escalated from 5000 to 120,000 m 3/d during the first eleven weeks. Then the erupted volume started to pulsate between almost zero and 120,000 m 3/d in the period August 14 to September 10, whereas it increased dramatically following swarms of earthquakes in September, before reaching almost 180,000 m 3/d in December 2006. Sampling and observations were completed during two fieldwork campaigns on the site. The eruption of boiling water is accompanied by mud, aqueous vapour, CO 2 and CH 4. Based on geochemical and field results, we propose a mechanism where the eruptions started following the 27th of May earthquake due to fracturing and accompanied depressurization of > 100 °C pore fluids from > 1700 m depth. This resulted in the formation of a quasi-hydrothermal system with a geyser-like surface expression and with an activity influenced by the regional seismicity.

  3. In search of ancestral Kilauea volcano

    USGS Publications Warehouse

    Lipman, P.W.; Sisson, T.W.; Ui, T.; Naka, J.

    2000-01-01

    Submersible observations and samples show that the lower south flank of Hawaii, offshore from Kilauea volcano and the active Hilina slump system, consists entirely of compositionally diverse volcaniclastic rocks; pillow lavas are confined to shallow slopes. Submarine-erupted basalt clasts have strongly variable alkalic and transitional basalt compositions (to 41% SiO2, 10.8% alkalies), contrasting with present-day Kilauea tholeiites. The volcaniclastic rocks provide a unique record of ancestral alkalic growth of an archetypal hotspot volcano, including transition to its tholeiitic shield stage, and associated slope-failure events.

  4. Potential for SGD induced submarine geohazard off southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Su, C.; Lin, C.; Cheng, Y.; Chiu, H.

    2013-12-01

    The submarine groundwater discharge (SGD) is not only play important roles on material exchange between land and sea, it may also trigger liquefaction process and induce further submarine geohazards in coastal zone. Since 2006, Southern Taiwan was experienced a series of natural hazards including earthquakes and typhoon that induced severe landslides and flooding and caused huge human lives and economics losses. These natural hazards also touched off submarine cable-break incidents off southwestern Taiwan from Gaoping Slope to the northern terminus of the Manila Trench. After the 2006 Pingtung Earthquake, the local fishermen reported disturbed waters at the Fangliao submarine canyon head. Although many researches conjectured the disturbed waters may caused by the eruption of submarine volcanoes which has been widely discovered off the southwestern Taiwan. The subbottom profiles reveal a series of faults and liquefaction strata exist near the head of Fanliao submarine canyon and acoustically transparent sediments with doming structures also observed at the adjacent area. Moreover, we also found pockmarks with acoustic blanking under it on the Gaoping Shelf and a series of gaseous pluming gushed from the seafloor was also observed in the shallow waters. Integrate all these data, we may reasonably infer the disturbed waters which reported by the fishermen may caused by the liquefaction process on the seafloor. In addition to geophysical observations, natural geochemical tracers (radon and radium) in conjunction with side-scan sonar were used to evaluate the distribution of SGD system in the study area. All the evidences indicate that the large earthquake in conjunction with high pore fluid pressures in the surface sediment might have easily triggered liquefaction process and generated large debris flow and swept the submarine cables away from the Fangliao submarine canyon head to the abyss.

  5. Submarine volcanic features west of Kealakekua Bay, Hawaii

    USGS Publications Warehouse

    Fornari, D.J.; Lockwood, J.P.; Lipman, P.W.; Rawson, M.; Malahoff, A.

    1980-01-01

    Visual observations of submarine volcanic vents were made from the submersible vehicle DSV "Sea Cliff" in water depths between 1310 and 690 m, west of Kealakekua Bay, Hawaii. Glass-rich, shelly submarine lavas surround circular 1- to 3-m-diameter volcanic vents between 1050 and 690 m depth in an area west-northwest of the southernpoint (Keei Pt.) of Kealakekua Bay. Eye-witness accounts indicate that this area was the site of a submarine eruption on February 24, 1877. Chemical analyses of lavas from these possible seafloor vent areas indicate that the eruptive products are very similar in composition to volcanic rocks produced by historic eruptions of Mauna Loa volcano. ?? 1980.

  6. Physical and chemical properties of submarine basaltic rocks from the submarine flanks of the Hawaiian Islands

    USGS Publications Warehouse

    Yokose, H.; Lipman, P.W.; Kanamatsu, T.

    2005-01-01

    To evaluate physical and chemical diversity in submarine basaltic rocks, approximately 280 deep submarine samples recovered by submersibles from the underwater flanks of the Hawaiian Islands were analyzed and compared. Based on observations from the submersibles and hand specimens, these samples were classified into three main occurrence types (lavas, coarse-grained volcaniclastic rocks, and fine-grained sediments), each with several subtypes. The whole-rock sulfur content and porosity in submarine basaltic rocks, recovered from depths greater than 2000 m, range from < 10 ppm and 2 vol.% to 2200 ppm and 47 vol.%, respectively. These wide variations cannot be due just to different ambient pressures at the collection depths, as inferred previously for submarine erupted lavas. The physical and chemical properties of the recovered samples, especially a combination of three whole-rock parameters (Fe-oxidation state, Sulfur content, and Porosity), are closely related to the occurrence type. The FSP triangular diagram is a valuable indicator of the source location of basaltic fragments deposited in deep submarine areas. This diagram can be applied to basaltic rocks such as clasts in debris-flow deposits, submarine-emplaced lava flows that may have crossed the shoreline, and slightly altered geological samples. ?? 2005 Elsevier B.V. All rights reserved.

  7. Volcano Hazards Assessment for Medicine Lake Volcano, Northern California

    USGS Publications Warehouse

    Donnelly-Nolan, Julie M.; Nathenson, Manuel; Champion, Duane E.; Ramsey, David W.; Lowenstern, Jacob B.; Ewert, John W.

    2007-01-01

    Medicine Lake volcano (MLV) is a very large shield-shaped volcano located in northern California where it forms part of the southern Cascade Range of volcanoes. It has erupted hundreds of times during its half-million-year history, including nine times during the past 5,200 years, most recently 950 years ago. This record represents one of the highest eruptive frequencies among Cascade volcanoes and includes a wide variety of different types of lava flows and at least two explosive eruptions that produced widespread fallout. Compared to those of a typical Cascade stratovolcano, eruptive vents at MLV are widely distributed, extending 55 km north-south and 40 km east-west. The total area covered by MLV lavas is >2,000 km2, about 10 times the area of Mount St. Helens, Washington. Judging from its long eruptive history and its frequent eruptions in recent geologic time, MLV will erupt again. Although the probability of an eruption is very small in the next year (one chance in 3,600), the consequences of some types of possible eruptions could be severe. Furthermore, the documented episodic behavior of the volcano indicates that once it becomes active, the volcano could continue to erupt for decades, or even erupt intermittently for centuries, and very likely from multiple vents scattered across the edifice. Owing to its frequent eruptions, explosive nature, and proximity to regional infrastructure, MLV has been designated a 'high threat volcano' by the U.S. Geological Survey (USGS) National Volcano Early Warning System assessment. Volcanic eruptions are typically preceded by seismic activity, but with only two seismometers located high on the volcano and no other USGS monitoring equipment in place, MLV is at present among the most poorly monitored Cascade volcanoes.

  8. Dante's Volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  9. Dante's volcano

    NASA Astrophysics Data System (ADS)

    1994-09-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  10. Volcano Infrasound

    NASA Astrophysics Data System (ADS)

    Johnson, J. B.; Fee, D.; Matoza, R. S.

    2013-12-01

    Open-vent volcanoes generate prodigious low frequency sound waves that tend to peak in the infrasound (<20 Hz) band. These long wavelength (> ~20 m) atmospheric pressure waves often propagate long distances with low intrinsic attenuation and can be well recorded with a variety of low frequency sensitive microphones. Infrasound records may be used to remotely monitor eruptions, identify active vents or track gravity-driven flows, and/or characterize source processes. Such studies provide information vital for both scientific study and volcano monitoring efforts. This presentation proposes to summarize and standardize some of the terminology used in the still young, yet rapidly growing field of volcano infrasound. Herein we suggest classification of typical infrasound waveform types, which include bimodal pulses, blast (or N-) waves, and a variety of infrasonic tremors (including broadband, harmonic, and monotonic signals). We summarize various metrics, including reduced pressure, intensity, power, and energy, in which infrasound excess pressures are often quantified. We also describe the spectrum of source types and radiation patterns, which are typically responsible for recorded infrasound. Finally we summarize the variety of propagation paths that are common for volcano infrasound radiating to local (<10 km), regional (out to several hundred kilometers), and global distances. The effort to establish common terminology requires community feedback, but is now timely as volcano infrasound studies proliferate and infrasound becomes a standard component of volcano monitoring.

  11. Addressing submarine geohazards through scientific drilling

    NASA Astrophysics Data System (ADS)

    Camerlenghi, A.

    2009-04-01

    eruptions, earthquakes and the associated tsunamis can lead to destruction of seafloor structures potentially capable of releasing hydrocarbon pollutants into Mediterranean waters, and damage to a dense telecommunication cables net that would cause severe economic loss. However, the most devastating effect would be that of earthquake or landslide-induced tsunamis. When compared to other basins, the Mediterranean has larger vulnerability due to its small dimensions, resulting in close proximity to tsunami sources and impact areas. Recent examples include the 1979 Nice airport submarine landslide and tsunami and the 2002 Stromboli volcano landslide and tsunami. Future international scientific drilling must include submarine geohazards among priority scientific objectives. The science advisory structure must be prepared to receive and evaluate proposal specifically addressing submarine geohazards. The implementing organizations need to be prepared for the technological needs of drilling proposals addressing geohazards. Among the most relevant: geotechnical sampling, down-hole logging at shallow depths below the seafloor, in situ geotechnical and physical measurements, capability of deployment of long-term in situ observatories. Pre-site surveys will often aim at the highest possible resolution, three dimensional imaging of the seafloor ant its sub-surface. Drilling for submarine geohazards is seen as an opportunity of multiplatform drilling, and for Mission Specific drilling in particular. Rather than turning the scientific investigation in a purely engineering exercise, proposals addressing submarine geohazards should offer an opportunity to scientists and engineers to work together to unravel the details of basic geological processes that may turn into catastrophic events.

  12. Sedimentary facies in submarine canyons

    NASA Astrophysics Data System (ADS)

    Sumner, E.; Paull, C. K.; Gwiazda, R.; Anderson, K.; Lundsten, E. M.; McGann, M.

    2013-12-01

    Submarine canyons are the major conduits by which sediment, pollutants and nutrients are transported from the continental shelf out into the deep sea. The sedimentary facies within these canyons are remarkably poorly understood because it has proven difficult to accurately sample these heterogeneous and bathymetrically complex environments using traditional ship-based coring techniques. This study exploits a suite of over 100 precisely located vibracores collected using remotely operated vehicles in ten canyons along the northern Californian margin, enabling better understanding of the facies that exist within submarine canyons, their distribution, and the processes responsible for their formation. The dataset reveals three major facies types within the submarine canyons: extremely poorly sorted, coarse-grained sands and gravels with complex and indistinct internal grading patterns and abundant floating clasts; classical normally graded thin bedded turbidites; and a variety of fine-grained muddy deposits. Not all facies are observed within individual canyons, in particular coarse-grained deposits occur exclusively in canyons where the canyon head cuts up to the modern day beach, whereas finer grained deposits have a more complex distribution that relates to processes of sediment redistribution on the shelf. Pairs of cores collected within 30 meters elevation of one another reveal that the coarse-grained chaotic deposits are restricted to the basal canyon floor, with finer-grained deposits at higher elevations on the canyon walls. The remarkable heterogeneity of the facies within these sediment cores illustrate that distinctive processes operate locally within the canyon. In the authors' experience the canyon floor facies represent an unusual facies rarely observed in ancient outcrops, which potentially results from the poor preservation of ancient coarse-grained canyon deposits in the geological record.

  13. Extensive and Diverse Submarine Volcanism and Hydrothermal Activity in the NE Lau Basin

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Merle, S. G.; Lupton, J. E.; Resing, J.; Baker, E. T.; Lilley, M. D.; Arculus, R. J.; Crowhurst, P. V.

    2009-12-01

    The northeast Lau basin, the NE “corner” of the Tonga subduction zone, has an unusual concentration of young submarine volcanism and hydrothermal activity. The area is bounded on the west by overlapping spreading centers opening at rates up to 120 mm/yr, on the north by the E-W trending Tonga trench and on the east by the Tofua arc front. From the south, the Fonualei rift spreading center (FRSC) overlaps with the southern rift of The Mangatolo triple junction spreading center (MTJSC). The northern arm of the MTJSC overlaps with the northeast Lau spreading center (NELSC). Surveys of the area with an EM300 sonar system in November 2008 show high backscatter over the 10-20 km wide neovolcanic zones of the FRSC, MTJSC and NELSC. High backscatter is also associated with: (1) a 10-km diameter, hydrothermally active, volcanic caldera/cone (Volcano “O”) lying between the NELSC and the northern Tofua arc front; (2) a rift zone extending north from volcano “O” and intersecting the NELSC near the Tonga trench; and (3) a series of volcanoes constructed along SW-NE trending crustal tears in the northernmost backarc near the east-west portion of the Tonga Trench. Two eruptions were detected in November 2008 during hydrothermal plume surveys of the area. Subsequent dives with the remotely operated vehicle Jason 2 in May 2009 revealed that the southern NELSC eruption was a short-lived, primarily effusive eruption. The second eruption was detected on the summit of the largest SW-NE trending volcano (West Mata) and was ongoing when Jason 2 arrived on site more than 6 months later. It was producing both pillow lavas and abundant volcaniclastic debris streams that have a characteristic appearance on the sonar backscatter map. There is also an unusual series of lava flows emanating from ridges and scarps between Volcano “O” and West Mata. These flows contain drained-out lava ponds up to 2 km in diameter. The apparent high level of volcanic activity in the NE Lau basin

  14. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This pair of images was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 26. The image on the left shows the scene in true color. The small purple box in the upper righthand corner marks the location of Nyamuragira's hot summit. The false-color image on the right shows the plume from the volcano streaming southwestward. This image was made using MODIS' channels sensitive at wavelengths from 8.5 to 11 microns. Red pixels indicate high concentrations of sulphur dioxide. Image courtesy Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison

  15. Digital Data for Volcano Hazards at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Sherrod, D.R.; Mastin, L.G.; Scott, W.E.

    2008-01-01

    Newberry volcano is a broad shield volcano located in central Oregon, the product of thousands of eruptions, beginning about 600,000 years ago. At least 25 vents on the flanks and summit have been active during the past 10,000 years. The most recent eruption 1,300 years ago produced the Big Obsidian Flow. Thus, the volcano's long history and recent activity indicate that Newberry will erupt in the future. Newberry Crater, a volcanic depression or caldera has been the focus of Newberry's volcanic activity for at least the past 10,000 years. Newberry National Volcanic Monument, which is managed by the U.S. Forest Service, includes the caldera and extends to the Deschutes River. Newberry volcano is quiet. Local earthquake activity (seismicity) has been trifling throughout historic time. Subterranean heat is still present, as indicated by hot springs in the caldera and high temperatures encountered during exploratory drilling for geothermal energy. The report USGS Open-File Report 97-513 (Sherrod and others, 1997) describes the kinds of hazardous geologic events that might occur in the future at Newberry volcano. A hazard-zonation map is included to show the areas that will most likely be affected by renewed eruptions. When Newberry volcano becomes restless, the eruptive scenarios described herein can inform planners, emergency response personnel, and citizens about the kinds and sizes of events to expect. The geographic information system (GIS) volcano hazard data layers used to produce the Newberry volcano hazard map in USGS Open-File Report 97-513 are included in this data set. Scientists at the USGS Cascades Volcano Observatory created a GIS data layer to depict zones subject to the effects of an explosive pyroclastic eruption (tephra fallout, pyroclastic flows, and ballistics), lava flows, volcanic gasses, and lahars/floods in Paulina Creek. A separate GIS data layer depicts drill holes on the flanks of Newberry Volcano that were used to estimate the probability

  16. Growth and degradation of Hawaiian volcanoes: Chapter 3 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Clague, David A.; Sherrod, David R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Large Hawaiian volcanoes can persist as islands through the rapid subsidence by building upward rapidly enough. But in the long run, subsidence, coupled with surface erosion, erases any volcanic remnant above sea level in about 15 m.y. One consequence of subsidence, in concert with eustatic changes in sea level, is the drowning of coral reefs that drape the submarine flanks of the actively subsiding volcanoes. At least six reefs northwest of the Island of Hawai‘i form a stairstep configuration, the oldest being deepest.

  17. On the geometric form of volcanoes - Comment

    NASA Technical Reports Server (NTRS)

    Wood, C. A.

    1982-01-01

    The model of Lacey et al. (1981) accounting for the geometric regularity and approximate cone shape of volcanoes is discussed. It is pointed out that, contrary to the model, volcano eruptions do not occur randomly in elevation and azimuth, but are commonly restricted to summit vents and a few well defined flank zones, so that the form of a volcano is determined by its vent locations and styles of eruption. Other false predictions of the model include the constancy of lava volumes at all vent elevations, the increase in volcano radius as the square root of time, a critical height for volcano growth, the influence of planetary gravity on volcano height and the negligible influence of ash falls and flows and erosional deposition. It is noted that the model of Shteynberg and Solov'yev, in which cone shape is related to stresses due to increasing cone height, may provide a better understanding of volcano morphology.

  18. Acoustic stratigraphy and hydrothermal activity within Epi Submarine Caldera, Vanuatu, New Hebrides Arc

    USGS Publications Warehouse

    Greene, H. Gary; Exon, N.F.

    1988-01-01

    Geological and geophysical surveys of active submarine volcanoes offshore and southeast of Epi Island, Vanuatu, New Hebrides Arc, have delineated details of the structure and acoustic stratigraphy of three volcanic cones. These submarine cones, named Epia, Epib, and Epic, are aligned east-west and spaced 3.5 km apart on the rim of a submerged caldera. At least three acoustic sequences, of presumed Quaternary age, can be identified on single-channel seismic-reflection profiles. Rocks dredged from these cones include basalt, dacite, and cognate gabbroic inclusions with magmatic affinities similar to those of the Karua (an active submarine volcano off the southeastern tip of Epi) lavas. ?? 1988 Springer-Verlag New York Inc.

  19. Mud Volcanoes Formation And Occurrence

    NASA Astrophysics Data System (ADS)

    Guliyev, I. S.

    2007-12-01

    Mud volcanoes are natural phenomena, which occur throughout the globe. They are found at a greater or lesser scale in Azerbaijan, Turkmenistan, Georgia, on the Kerch and Taman peninsulas, on Sakhalin Island, in West Kuban, Italy, Romania, Iran, Pakistan, India, Burma, China, Japan, Indonesia, Malaysia, New Zealand, Mexico, Colombia, Trinidad and Tobago, Venezuela and Ecuador. Mud volcanoes are most well-developed in Eastern Azerbaijan, where more than 30% of all the volcanoes in the world are concentrated. More than 300 mud volcanoes have already been recognized here onshore or offshore, 220 of which lie within an area of 16,000 km2. Many of these mud volcanoes are particularly large (up to 400 m high). The volcanoes of the South Caspian form permanent or temporary islands, and numerous submarine banks. Many hypotheses have been developed regarding the origin of mud volcanoes. Some of those hypotheses will be examined in the present paper. Model of spontaneous excitation-decompaction (proposed by Ivanov and Guliev, 1988, 2002). It is supposed that one of major factors of the movement of sedimentary masses and formation of hydrocarbon deposits are phase transitions in sedimentary basin. At phase transitions there are abnormal changes of physical and chemical parameters of rocks. Abnormal (high and negative) pressure takes place. This process is called as excitation of the underground environment with periodicity from several tens to several hundreds, or thousand years. The relationship between mud volcanism and the generation of hydrocarbons, particularly methane, is considered to be a critical factor in mud volcano formation. At high flow rates the gas and sediment develops into a pseudo-liquid state and as flow increases the mass reaches the "so-called hover velocity" where mass transport begins. The mass of fluid moves as a quasi-uniform viscous mass through the sediment pile in a piston like manner until expelled from the surface as a "catastrophic eruption

  20. Preliminary volcano-hazard assessment for Great Sitkin Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Miller, Thomas P.; Nye, Christopher J.

    2003-01-01

    Great Sitkin Volcano is a composite andesitic stratovolcano on Great Sitkin Island (51°05’ N latitude, 176°25’ W longitude), a small (14 x 16 km), circular volcanic island in the western Aleutian Islands of Alaska. Great Sitkin Island is located about 35 kilometers northeast of the community of Adak on Adak Island and 130 kilometers west of the community of Atka on Atka Island. Great Sitkin Volcano is an active volcano and has erupted at least eight times in the past 250 years (Miller and others, 1998). The most recent eruption in 1974 caused minor ash fall on the flanks of the volcano and resulted in the emplacement of a lava dome in the summit crater. The summit of the composite cone of Great Sitkin Volcano is 1,740 meters above sea level. The active crater is somewhat lower than the summit, and the highest point along its rim is about 1,460 meters above sea level. The crater is about 1,000 meters in diameter and is almost entirely filled by a lava dome emplaced in 1974. An area of active fumaroles, hot springs, and bubbling hot mud is present on the south flank of the volcano at the head of Big Fox Creek (see the map), and smaller ephemeral fumaroles and steam vents are present in the crater and around the crater rim. The flanking slopes of the volcano are gradual to steep and consist of variously weathered and vegetated blocky lava flows that formed during Pleistocene and Holocene eruptions. The modern edifice occupies a caldera structure that truncates an older sequence of lava flows and minor pyroclastic rocks on the east side of the volcano. The eastern sector of the volcano includes the remains of an ancestral volcano that was partially destroyed by a northwest-directed flank collapse. In winter, Great Sitkin Volcano is typically completely snow covered. Should explosive pyroclastic eruptions occur at this time, the snow would be a source of water for volcanic mudflows or lahars. In summer, much of the snowpack melts, leaving only a patchy

  1. Making a Submarine.

    ERIC Educational Resources Information Center

    Cornacchia, Deborah J.

    2002-01-01

    Describes Archimedes principle and why a ship sinks when it gets a hole in it. Suggests an activity for teaching the concept of density and water displacement through the construction of a simple submarine. Includes materials and procedures for this activity. (KHR)

  2. Anatahan Volcano, Mariana Islands

    NASA Technical Reports Server (NTRS)

    2008-01-01

    In the early hours of February 7, ASTER captured this nighttime thermal infrared image of an eruption of Anatahan Volcano in the central Mariana Islands. The summit of the volcano is bright indicating there is a very hot area there. Streaming to the west is an ash plume, visible by the red color indicating the presence of silicate-rich particles. Dark grey areas are clouds that appear colder than the ocean. Anatahan is a stratovolcano that started erupting in May 2003, forming a new crater.

    The image covers an area of 56.3 x 41.8 km, and is located 16 degrees north latitude and 145.6 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  3. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This true-color image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 28, 2002. Nyamuragira is situated roughly in the center of this scene, roughly 100 km south of Lake Edward and just north of Lake Kivu (which is mostly obscured by the haze from the erupting volcano and the numerous fires burning in the surrounding countryside). Due south of Lake Kivu is the long, narrow Lake Tanganyika running south and off the bottom center of this scene.

  4. Mount Rainier active cascade volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  5. Volcano Hazards Program

    USGS Publications Warehouse

    Venezky, Dina Y.; Myers, Bobbie; Driedger, Carolyn

    2008-01-01

    Diagram of common volcano hazards. The U.S. Geological Survey Volcano Hazards Program (VHP) monitors unrest and eruptions at U.S. volcanoes, assesses potential hazards, responds to volcanic crises, and conducts research on how volcanoes work. When conditions change at a monitored volcano, the VHP issues public advisories and warnings to alert emergency-management authorities and the public. See http://volcanoes.usgs.gov/ to learn more about volcanoes and find out what's happening now.

  6. Chikurachki Volcano

    Atmospheric Science Data Center

    2013-04-16

    ... and ice. According to the Kamchatkan Volcanic Eruptions Response Team (KVERT), the temperature of the plume near the volcano on April ... D.C. The Terra spacecraft is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. The MISR data were obtained from the NASA Langley ...

  7. Lahar-hazard zonation for San Miguel volcano, El Salvador

    USGS Publications Warehouse

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Chesner, C.A.; Howell, M.M.

    2001-01-01

    San Miguel volcano, also known as Chaparrastique, is one of many volcanoes along the volcanic arc in El Salvador. The volcano, located in the eastern part of the country, rises to an altitude of about 2130 meters and towers above the communities of San Miguel, El Transito, San Rafael Oriente, and San Jorge. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and the PanAmerican and coastal highways cross the lowermost northern and southern flanks of the volcano. The population density around San Miguel volcano coupled with the proximity of major transportation routes increases the risk that even small volcano-related events, like landslides or eruptions, may have significant impact on people and infrastructure. San Miguel volcano is one of the most active volcanoes in El Salvador; it has erupted at least 29 times since 1699. Historical eruptions of the volcano consisted mainly of relatively quiescent emplacement of lava flows or minor explosions that generated modest tephra falls (erupted fragments of microscopic ash to meter sized blocks that are dispersed into the atmosphere and fall to the ground). Little is known, however, about prehistoric eruptions of the volcano. Chemical analyses of prehistoric lava flows and thin tephra falls from San Miguel volcano indicate that the volcano is composed dominantly of basalt (rock having silica content

  8. Preliminary volcano-hazard assessment for Kanaga Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Miller, Thomas P.; Nye, Christopher J.

    2002-01-01

    Kanaga Volcano is a steep-sided, symmetrical, cone-shaped, 1307 meter high, andesitic stratovolcano on the north end of Kanaga Island (51°55’ N latitude, 177°10’ W longitude) in the western Aleutian Islands of Alaska. Kanaga Island is an elongated, low-relief (except for the volcano) island, located about 35 kilometers west of the community of Adak on Adak Island and is part of the Andreanof Islands Group of islands. Kanaga Volcano is one of the 41 historically active volcanoes in Alaska and has erupted numerous times in the past 11,000 years, including at least 10 eruptions in the past 250 years (Miller and others, 1998). The most recent eruption occurred in 1993-95 and caused minor ash fall on Adak Island and produced blocky aa lava flows that reached the sea on the northwest and west sides of the volcano (Neal and others, 1995). The summit of the volcano is characterized by a small, circular crater about 200 meters in diameter and 50-70 meters deep. Several active fumaroles are present in the crater and around the crater rim. The flanking slopes of the volcano are steep (20-30 degrees) and consist mainly of blocky, linear to spoonshaped lava flows that formed during eruptions of late Holocene age (about the past 3,000 years). The modern cone sits within a circular caldera structure that formed by large-scale collapse of a preexisting volcano. Evidence for eruptions of this preexisting volcano mainly consists of lava flows exposed along Kanaton Ridge, indicating that this former volcanic center was predominantly effusive in character. In winter (October-April), Kanaga Volcano may be covered by substantial amounts of snow that would be a source of water for lahars (volcanic mudflows). In summer, much of the snowpack melts, leaving only a patchy distribution of snow on the volcano. Glacier ice is not present on the volcano or on other parts of Kanaga Island. Kanaga Island is uninhabited and is part of the Alaska Maritime National Wildlife Refuge, managed by

  9. Investigation of Surtsey Volcano

    NASA Astrophysics Data System (ADS)

    Moore, James G.; Jakobsson, Sveinn P.; Norrman, John O.

    The volcanic island of Surtsey, Iceland, was built during the period November 1963 to June 1967 and is one of the few oceanic volcanic islands that has formed and survived in recent times. New stimulus to geologic work on the island was provided in 1979 by completion of a 181-m-deep hole that was drilled to investigate the structure of the volcano and the active hydrothermal system below.During August 1985 an international group of researchers undertook a series of geologic and biologic investigations on the island. This work was facilitated by new aerial photographs taken by the Icelandic Geodetic Survey and a new bathymetric map of the Surtsy region made by the Icelandic Hydrographic Service (both in Reykjavik). Ground surveying of markers appearing in the photographs will permit a major revision of the to pographic map of the island (scale 1:5000). The new bathymetry defines the extent of continuing erosion of three volcanic vents, two of which formed short-lived islands during the Surtsey eruptive episode. Since 1967, when the first bathymetry of these submarine features was made, the summitt errace of Syrtlingur has been reduced from 23 to 32 m below sea level; that of Jolnir, from 15 to 37 m; and that of Surtla, from 32 t o 46 m.

  10. Submarine basalt from the Revillagigedo Islands region, Mexico

    USGS Publications Warehouse

    Moore, J.G.

    1970-01-01

    Ocean-floor dredging and submarine photography in the Revillagigedo region off the west coast of Mexico reveal that the dominant exposed rock of the submarine part of the large island-forming volcanoes (Roca Partida and San Benedicto) is a uniform alkali pillow basalt; more siliceous rocks are exposed on the upper, subaerial parts of the volcanoes. Basalts dredged from smaller seamounts along the Clarion fracture zone south of the Revillagigedo Islands are tholeiitic pillow basalts. Pillows of alkali basalts are more vesicular than Hawaiian tholeiitic pillows collected from the same depths. This difference probably reflects a higher original volatile content of the alkali basalts. Manganese-iron oxide nodules common in several dredge hauls generally contain nucleii of rhyolitic pumice or basalt pillow fragments. The pumice floated to its present site from subaerial eruptions, became waterlogged and sank, and was then coated with manganese-iron oxides. The thickness of palagonite rinds on the glassy pillow fragments is proportional to the thickness of manganese-iron oxide layers, and both are a measure of the age of the nodule. Both oldest basalts (10-100 m.y.) and youngest (less than 1 m.y.) are along the Clarion fracture zone, whereas basalts from Roca Partida and San Benedicto volcanoes are of intermediate age. ?? 1970.

  11. Arctic Submarine Slope Stability

    NASA Astrophysics Data System (ADS)

    Winkelmann, D.; Geissler, W.

    2010-12-01

    Submarine landsliding represents aside submarine earthquakes major natural hazard to coastal and sea-floor infrastructure as well as to coastal communities due to their ability to generate large-scale tsunamis with their socio-economic consequences. The investigation of submarine landslides, their conditions and trigger mechanisms, recurrence rates and potential impact remains an important task for the evaluation of risks in coastal management and offshore industrial activities. In the light of a changing globe with warming oceans and rising sea-level accompanied by increasing human population along coasts and enhanced near- and offshore activities, slope stability issues gain more importance than ever before. The Arctic exhibits the most rapid and drastic changes and is predicted to change even faster. Aside rising air temperatures, enhanced inflow of less cooled Atlantic water into the Arctic Ocean reduces sea-ice cover and warms the surroundings. Slope stability is challenged considering large areas of permafrost and hydrates. The Hinlopen/Yermak Megaslide (HYM) north of Svalbard is the first and so far only reported large-scale submarine landslide in the Arctic Ocean. The HYM exhibits the highest headwalls that have been found on siliciclastic margins. With more than 10.000 square kilometer areal extent and app. 2.400 cubic kilometer of involved sedimentary material, it is one of the largest exposed submarine slides worldwide. Geometry and age put this slide in a special position in discussing submarine slope stability on glaciated continental margins. The HYM occurred 30 ka ago, when the global sea-level dropped by app. 50 m within less than one millennium due to rapid onset of global glaciation. It probably caused a tsunami with circum-Arctic impact and wave heights exceeding 130 meters. The HYM affected the slope stability field in its neighbourhood by removal of support. Post-megaslide slope instability as expressed in creeping and smaller-scaled slides are

  12. Volcanoes generate devastating waves

    SciTech Connect

    Lockridge, P. )

    1988-01-01

    Although volcanic eruptions can cause many frightening phenomena, it is often the power of the sea that causes many volcano-related deaths. This destruction comes from tsunamis (huge volcano-generated waves). Roughly one-fourth of the deaths occurring during volcanic eruptions have been the result of tsunamis. Moreover, a tsunami can transmit the volcano's energy to areas well outside the reach of the eruption itself. Some historic records are reviewed. Refined historical data are increasingly useful in predicting future events. The U.S. National Geophysical Data Center/World Data Center A for Solid Earth Geophysics has developed data bases to further tsunami research. These sets of data include marigrams (tide gage records), a wave-damage slide set, digital source data, descriptive material, and a tsunami wall map. A digital file contains information on methods of tsunami generation, location, and magnitude of generating earthquakes, tsunami size, event validity, and references. The data can be used to describe areas mot likely to generate tsunamis and the locations along shores that experience amplified effects from tsunamis.

  13. Iceland: Eyjafjallajökull Volcano

    Atmospheric Science Data Center

    2013-04-17

    ... height map   Ash from Iceland's Eyjafjallajökull volcano, viewed here in imagery from the Multi-angle Imaging SpectroRadiometer ... natural-color, nadir (vertical) view of the scene, with the volcano itself located outside the upper left corner of the image. The ash ...

  14. Santorini Volcano

    USGS Publications Warehouse

    Druitt, T.H.; Edwards, L.; Mellors, R.M.; Pyle, D.M.; Sparks, R.S.J.; Lanphere, M.; Davies, M.; Barreirio, B.

    1999-01-01

    Santorini is one of the most spectacular caldera volcanoes in the world. It has been the focus of significant scientific and scholastic interest because of the great Bronze Age explosive eruption that buried the Minoan town of Akrotiri. Santorini is still active. It has been dormant since 1950, but there have been several substantial historic eruptions. Because of this potential risk to life, both for the indigenous population and for the large number of tourists who visit it, Santorini has been designated one of five European Laboratory Volcanoes by the European Commission. Santorini has long fascinated geologists, with some important early work on volcanoes being conducted there. Since 1980, research groups at Cambridge University, and later at the University of Bristol and Blaise Pascal University in Clermont-Ferrand, have collected a large amount of data on the stratigraphy, geochemistry, geochronology and petrology of the volcanics. The volcanic field has been remapped at a scale of 1:10 000. A remarkable picture of cyclic volcanic activity and magmatic evolution has emerged from this work. Much of this work has remained unpublished until now. This Memoir synthesizes for the first time all the data from the Cambridge/Bristol/Clermont groups, and integrates published data from other research groups. It provides the latest interpretation of the tectonic and magmatic evolution of Santorini. It is accompanied by the new 1:10 000 full-colour geological map of the island.

  15. Near-bottom water column anomalies associated with active hydrothermal venting at Aeolian arc volcanoes, Tyrrhenian Sea, Italy

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Carey, S.; Bell, K. L.; Baker, E. T.; Faure, K.; Rosi, M.; Marani, M.; Nomikou, P.

    2012-12-01

    Hydrothermal deposits such as metalliferous sediments, Fe-Mn crusts, and massive sulfides are common on the submarine volcanoes of the Aeolian arc (Tyrrhenian Sea, Italy), but the extent and style of active hydrothermal venting is less well known. A systematic water column survey in 2007 found helium isotope ratios indicative of active venting at 6 of the 9 submarine volcanoes surveyed plus the Marsili back-arc spreading center (Lupton et al., 2011). Other plume indicators, such as turbidity and temperature anomalies were weak or not detected. In September 2011, we conducted five ROV Hercules dives at Eolo, Enarete, and Palinuro volcanoes during an E/V Nautilus expedition. Additionally, two dives explored the Casoni seamount on the southern flank of Stromboli where a dredge returned apparently warm lava in 2002 (Gamberi, 2006). Four PMEL MAPRs, with temperature, optical backscatter (particles), and oxidation-reduction potential (ORP) sensors, were arrayed along the lowermost 50 m of the Hercules/Argus cable during the dives to assess the relationship between seafloor observations and water column anomalies. Active venting was observed at each of the volcanoes visited. Particle anomalies were weak or absent, consistent with the 2007 CTD surveys, but ORP anomalies were common. Venting at Eolo volcano was characterized by small, localized patches of yellow-orange bacteria; living tubeworms were observed at one location. ORP anomalies (-1 to -22 mv) were measured at several locations, primarily along the walls of the crescent-shaped collapse area (or possible caldera) east of the Eolo summit. At Enarete volcano, we found venting fluids with temperatures up to 5°C above ambient as well as small, fragile iron-oxide chimneys. The most intense ORP anomaly (-140 mv) occurred at a depth of about 495 m on the southeast side of the volcano, with smaller anomalies (-10 to -20 mv) more common as the ROV moved upslope to the summit. At Palinuro volcano, multiple dives located

  16. Variations of the state of stress and dike propagation at Fernandina volcano, Galápagos.

    NASA Astrophysics Data System (ADS)

    Bagnardi, M.; Amelung, F.

    2012-04-01

    Fernandina volcano forms the youngest and westernmost island of the Galapagos Archipelago, a group of volcanic islands located near the equator and 1000 km west of Ecuador. Twenty-five eruptions in the last two hundred years make Fernandina the most active volcano in the archipelago and one of the most active volcanoes in the world. Most eruptions occur along fissures fed by dikes that propagate from the central magmatic system and from reservoirs centered under the summit caldera. Eruptive fissures in the subaerial portion of the volcano form two distinct sets: (1) arcuate or circumferential fissures characterize the upper portion of the volcano around the caldera while (2) radial fissures are present on the lower flanks. The subaerial portion of the volcano lacks of well-developed rift zones, while the submarine part of Fernandina shows three rifting zones that extend from the western side of the island. Using Interferometric Synthetic Aperture Radar (InSAR) measurements of the surface displacement at Fernandina acquired from 1992 to 2010, and in particular the ones spanning the last three eruptions (1995 - radial, 2005 - circumferential and 2009 - radial) we infer the geometry of the shallow magmatic system and of the dikes that fed these eruptions. A shallow dipping radial dike on the southwestern flank has been inferred by Jónnson et al. (1999) for the 1995 eruption. This event shows a pattern of deformation strikingly similar to the one associated with the April 2009 eruption for which we infer a similar geometry. Co-eruptive deformation for the 2005 event has been modeled by Chadwick et al. (2010) using three planar dikes, connected along hinge lines, in the attempt to simulate a curve-concave shell, steeply dipping toward the caldera at the surface and more gently dipping at depth. Dike propagation in a volcano is not a random process but it is controlled by the orientation of the principal stresses, with the dike orthogonal to the least compressive stress

  17. Discovery of the Largest Historic Silicic Submarine Eruption

    NASA Astrophysics Data System (ADS)

    Carey, Rebecca J.; Wysoczanski, Richard; Wunderman, Richard; Jutzeler, Martin

    2014-05-01

    It was likely twice the size of the renowned Mount St. Helens eruption of 1980 and perhaps more than 10 times bigger than the more recent 2010 Eyjafjallajökull eruption in Iceland. However, unlike those two events, which dominated world news headlines, in 2012 the daylong submarine silicic eruption at Havre volcano in the Kermadec Arc, New Zealand (Figure 1a; ~800 kilometers north of Auckland, New Zealand), passed without fanfare. In fact, for a while no one even knew it had occurred.

  18. Effects of submarine groundwater discharge on the present-day extent of relict submarine permafrost and gas hydrate stability on the Beaufort Sea continental shelf

    NASA Astrophysics Data System (ADS)

    Frederick, J. M.; Buffett, B. A.

    2015-03-01

    We investigate the role of submarine groundwater discharge on the offshore temperature and salinity field and its effect on the present-day extent of submarine permafrost and gas hydrate stability on the North American Beaufort Shelf with a two-dimensional numerical model based on the finite volume method. This study finds that submarine groundwater discharge can play a large role in submarine permafrost evolution and gas hydrate stability, suggesting that local hydrology may control the evolution of submarine permafrost as strongly as does sea level or paleoclimatic conditions. Submarine permafrost evolution shows transient behavior over potentially long time scales (e.g., several glacial cycles) before a balance of density- and pressure-driven flows is established with the permeability variations imposed by the overlying permafrost layer. The "detectable" offshore permafrost extent is related to the quasi-stationary location of the saltwater-freshwater transition. Larger values of submarine groundwater discharge allow permafrost to extend farther offshore because fresh pore water preserves relict ice. Therefore, differences in the permafrost extent at locations that share similar paleoclimatic history may be explained in part by differences in the local hydrology. Gas hydrate stability on the North American Beaufort Shelf may be more widespread than currently thought because low-ice saturation, highly degraded submarine permafrost likely exists beyond the boundary detectable by common geophysical methods.

  19. 33 CFR 209.310 - Representation of submarine cables and pipelines on nautical charts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cables and pipelines on nautical charts. 209.310 Section 209.310 Navigation and Navigable Waters CORPS OF... of submarine cables and pipelines on nautical charts. (a) The policy of the Corps of Engineers with respect to showing the locations of submarine cables and pipelines on nautical charts published by...

  20. 33 CFR 209.310 - Representation of submarine cables and pipelines on nautical charts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cables and pipelines on nautical charts. 209.310 Section 209.310 Navigation and Navigable Waters CORPS OF... of submarine cables and pipelines on nautical charts. (a) The policy of the Corps of Engineers with respect to showing the locations of submarine cables and pipelines on nautical charts published by...

  1. 33 CFR 209.310 - Representation of submarine cables and pipelines on nautical charts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cables and pipelines on nautical charts. 209.310 Section 209.310 Navigation and Navigable Waters CORPS OF... of submarine cables and pipelines on nautical charts. (a) The policy of the Corps of Engineers with respect to showing the locations of submarine cables and pipelines on nautical charts published by...

  2. 33 CFR 209.310 - Representation of submarine cables and pipelines on nautical charts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cables and pipelines on nautical charts. 209.310 Section 209.310 Navigation and Navigable Waters CORPS OF... of submarine cables and pipelines on nautical charts. (a) The policy of the Corps of Engineers with respect to showing the locations of submarine cables and pipelines on nautical charts published by...

  3. 33 CFR 209.310 - Representation of submarine cables and pipelines on nautical charts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cables and pipelines on nautical charts. 209.310 Section 209.310 Navigation and Navigable Waters CORPS OF... of submarine cables and pipelines on nautical charts. (a) The policy of the Corps of Engineers with respect to showing the locations of submarine cables and pipelines on nautical charts published by...

  4. Submarine Landslides: A Multidisciplinary Crossroad

    NASA Astrophysics Data System (ADS)

    Moscardelli, L. G.

    2014-12-01

    The study of submarine landslides has advanced considerably in the last decade. A multitude of geoscience disciplines, including marine, petroleum and planetary geology, as well as geohazard assessments, are concerned with the study of these units. Oftentimes, researchers working in these fields disseminate their findings within their own communities and a multidisciplinary approach seems to lack. This presentation showcases several case studies in which a broader approach has increased our understanding of submarine landslides in a variety of geologic settings. Three-dimensional seismic data from several continental margins (Trinidad, Brazil, Morocco, Canada, GOM), as well as data from outcrop localities are shown to explore geomorphological complexities associated with submarine landslides. Discussion associated with the characterization and classification of submarine landslides is also part of this work. Topics that will be cover include: 1) how data from conventional oil and gas exploration activities can be used to increase our understanding of the dynamic behavior of submarine landslides, 2) analogies between terrestrial submarine landslides and potential Martian counterparts, 3) impact of submarine landslides in margin construction, as well as their economic significance and 4) the importance of quantifying the morphology of submarine landslides in a systematic fashion.

  5. Submarine landslides in Society and Austral Islands, French Polynesia: Evolution with the age of the edifices

    NASA Astrophysics Data System (ADS)

    Clouard, V.; Bonneville, A.

    2003-04-01

    This paper presents descriptions of numerous submarine landslides in French Polynesia. This inventory shows an evolution of the landslide type with the age of oceanic islands. Submarine active volcanoes are subject to superficial landslides of fragmental material whereas young islands exhibit marks of mass wasting corresponding to giant lateral collapses due to debris avalanche that occurred during the period of volcanic activity. Later, erosional processes generate sand-rubble flows and lead the islands to the stellate morphology known on atolls and guyots. In addition, Tupai atoll and Rurutu Island have been subject to giant slump that deeply modify their shape.

  6. Location, Location, Location!

    ERIC Educational Resources Information Center

    Ramsdell, Kristin

    2004-01-01

    Of prime importance in real estate, location is also a key element in the appeal of romances. Popular geographic settings and historical periods sell, unpopular ones do not--not always with a logical explanation, as the author discovered when she conducted a survey on this topic last year. (Why, for example, are the French Revolution and the…

  7. Volcanoes, Nicaragua

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This 150 kilometer stretch of the Pacific coastal plain of Nicaragua (12.0N, 86.5W) from the Gulf of Fonseca to Lake Managua. The large crater on the peninsula is Coseguina, which erupted in 1835, forming a 2 km. wide by 500 meter deep caldera and deposited ash as far away as Mexico City, some 1400 km. to the north. A plume of Steam can be seen venting from San Cristobal volcano, in the Marabios Range, the highest mouintain in Nicaragua.

  8. Flushing submarine canyons.

    PubMed

    Canals, Miquel; Puig, Pere; de Madron, Xavier Durrieu; Heussner, Serge; Palanques, Albert; Fabres, Joan

    2006-11-16

    The continental slope is a steep, narrow fringe separating the coastal zone from the deep ocean. During low sea-level stands, slides and dense, sediment-laden flows erode the outer continental shelf and the continental slope, leading to the formation of submarine canyons that funnel large volumes of sediment and organic matter from shallow regions to the deep ocean(1). During high sea-level stands, such as at present, these canyons still experience occasional sediment gravity flows(2-5), which are usually thought to be triggered by sediment failure or river flooding. Here we present observations from a submarine canyon on the Gulf of Lions margin, in the northwest Mediterranean Sea, that demonstrate that these flows can also be triggered by dense shelf water cascading (DSWC)-a type of current that is driven solely by seawater density contrast. Our results show that DSWC can transport large amounts of water and sediment, reshape submarine canyon floors and rapidly affect the deep-sea environment. This cascading is seasonal, resulting from the formation of dense water by cooling and/or evaporation, and occurs on both high- and low-latitude continental margins(6-8). DSWC may therefore transport large amounts of sediment and organic matter to the deep ocean. Furthermore, changes in the frequency and intensity of DSWC driven by future climate change may have a significant impact on the supply of organic matter to deep-sea ecosystems and on the amount of carbon stored on continental margins and in ocean basins. PMID:17108962

  9. Flushing submarine canyons.

    PubMed

    Canals, Miquel; Puig, Pere; de Madron, Xavier Durrieu; Heussner, Serge; Palanques, Albert; Fabres, Joan

    2006-11-16

    The continental slope is a steep, narrow fringe separating the coastal zone from the deep ocean. During low sea-level stands, slides and dense, sediment-laden flows erode the outer continental shelf and the continental slope, leading to the formation of submarine canyons that funnel large volumes of sediment and organic matter from shallow regions to the deep ocean(1). During high sea-level stands, such as at present, these canyons still experience occasional sediment gravity flows(2-5), which are usually thought to be triggered by sediment failure or river flooding. Here we present observations from a submarine canyon on the Gulf of Lions margin, in the northwest Mediterranean Sea, that demonstrate that these flows can also be triggered by dense shelf water cascading (DSWC)-a type of current that is driven solely by seawater density contrast. Our results show that DSWC can transport large amounts of water and sediment, reshape submarine canyon floors and rapidly affect the deep-sea environment. This cascading is seasonal, resulting from the formation of dense water by cooling and/or evaporation, and occurs on both high- and low-latitude continental margins(6-8). DSWC may therefore transport large amounts of sediment and organic matter to the deep ocean. Furthermore, changes in the frequency and intensity of DSWC driven by future climate change may have a significant impact on the supply of organic matter to deep-sea ecosystems and on the amount of carbon stored on continental margins and in ocean basins.

  10. Observations of Local Seismicity and Harmonic Tremor Using an Ocean Bottom Hydrophone Array at Brothers Volcano, South Kermadec Arc.

    NASA Astrophysics Data System (ADS)

    Haxel, J. H.; Dziak, R. P.; Lau, T. K.; Matsumoto, H.

    2005-12-01

    The submarine Brothers volcano is an important link in the volcanic chain of the southern Kermadec Arc system in the Southwest Pacific Ocean north of New Zealand. The 3-3.5 km wide caldera has a center depth of 1850m and steep surrounding walls of 300-450m. Active hydrothermal venting distinguished Brothers as a point of focus for the New Zealand American Submarine Ring of Fire (NZASRoF) expeditions in 2004 and 2005. Due to its remote location, moderate to small magnitude seismicity around the Brothers area is largely unknown. In late September 2004, four ocean bottom hydrophones (OBHs) were deployed on the caldera floor. In April 2005, three of the four instruments were recovered intact. These three OBHs continuously recorded, for seven months, the low frequency (0-110Hz) acoustic field around Brothers volcano, in particular seismic P- and S-waves propagating through the crust and acoustic T-waves in the water column . Preliminary analysis reveals seismicity rates on the order of 106 earthquakes per month. In addition to seismic arrivals, low frequency harmonic tremor is frequently and independently observed on each of the OBH instruments, often occurring subsequent to the larger seismic events. Qualitative comparisons of these signals with tremor observed from the Volcano Islands south of Japan (Dziak and Fox, 2002) show them to be nearly equivalent in frequency structure, suggesting the origin of the tremor observed at Brothers may also be attributed to resonance of a magma-gas mixture in a large chamber or conduit near the water/ seafloor boundary.

  11. Current submarine atmosphere control technology.

    PubMed

    Mazurek, W

    1998-01-01

    Air purification in submarines was introduced towards the end of World War II and was limited to the use of soda lime for the removal of carbon dioxide and oxygen candles for the regeneration of oxygen. The next major advances came with the advent of nuclear-powered submarines. These included the development of regenerative and, sometimes, energy-intensive processes for comprehensive atmosphere revitalization. With the present development of conventional submarines using air-independent propulsion there is a requirement for air purification similar to that of the nuclear-powered submarines but it is constrained by limited power and space. Some progress has been made in the development of new technology and the adoption of air purification equipment used in the nuclear-powered submarines for this application.

  12. 4D volcano gravimetry

    USGS Publications Warehouse

    Battaglia, Maurizio; Gottsmann, J.; Carbone, D.; Fernandez, J.

    2008-01-01

    Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. The ability of gravity measurements to detect subsurface mass flow is greatly enhanced if gravity measurements are analyzed and modeled with ground-deformation data. Obtaining the maximum information from microgravity studies requires careful evaluation of the layout of network benchmarks, the gravity environmental signal, and the coupling between gravity changes and crustal deformation. When changes in the system under study are fast (hours to weeks), as in hydrothermal systems and restless volcanoes, continuous gravity observations at selected sites can help to capture many details of the dynamics of the intrusive sources. Despite the instrumental effects, mainly caused by atmospheric temperature, results from monitoring at Mt. Etna volcano show that continuous measurements are a powerful tool for monitoring and studying volcanoes.Several analytical and numerical mathematical models can beused to fit gravity and deformation data. Analytical models offer a closed-form description of the volcanic source. In principle, this allows one to readily infer the relative importance of the source parameters. In active volcanic sites such as Long Valley caldera (California, U.S.A.) and Campi Flegrei (Italy), careful use of analytical models and high-quality data sets has produced good results. However, the simplifications that make analytical models tractable might result in misleading volcanological inter-pretations, particularly when the real crust surrounding the source is far from the homogeneous/ isotropic assumption. Using numerical models allows consideration of more realistic descriptions of the sources and of the crust where they are located (e.g., vertical and lateral mechanical discontinuities, complex source geometries, and topography). Applications at Teide volcano (Tenerife) and Campi Flegrei demonstrate the

  13. Massive edifice failure at Aleutian arc volcanoes

    USGS Publications Warehouse

    Coombs, M.L.; White, S.M.; Scholl, D. W.

    2007-01-01

    Along the 450-km-long stretch of the Aleutian volcanic arc from Great Sitkin to Kiska Islands, edifice failure and submarine debris-avalanche deposition have occurred at seven of ten Quaternary volcanic centers. Reconnaissance geologic studies have identified subaerial evidence for large-scale prehistoric collapse events at five of the centers (Great Sitkin, Kanaga, Tanaga, Gareloi, and Segula). Side-scan sonar data collected in the 1980s by GLORIA surveys reveal a hummocky seafloor fabric north of several islands, notably Great Sitkin, Kanaga, Bobrof, Gareloi, Segula, and Kiska, suggestive of landslide debris. Simrad EM300 multibeam sonar data, acquired in 2005, show that these areas consist of discrete large blocks strewn across the seafloor, supporting the landslide interpretation from the GLORIA data. A debris-avalanche deposit north of Kiska Island (177.6?? E, 52.1?? N) was fully mapped by EM300 multibeam revealing a hummocky surface that extends 40??km from the north flank of the volcano and covers an area of ??? 380??km2. A 24-channel seismic reflection profile across the longitudinal axis of the deposit reveals a several hundred-meter-thick chaotic unit that appears to have incised into well-bedded sediment, with only a few tens of meters of surface relief. Edifice failures include thin-skinned, narrow, Stromboli-style collapse as well as Bezymianny-style collapse accompanied by an explosive eruption, but many of the events appear to have been deep-seated, removing much of an edifice and depositing huge amounts of debris on the sea floor. Based on the absence of large pyroclastic sheets on the islands, this latter type of collapse was not accompanied by large eruptions, and may have been driven by gravity failure instead of magmatic injection. Young volcanoes in the central and western portions of the arc (177?? E to 175?? W) are located atop the northern edge of the ??? 4000-m-high Aleutian ridge. The position of the Quaternary stratocones relative to the

  14. Nyiragonga Volcano

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image of the Nyiragonga volcano eruption in the Congo was acquired on January 28, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    Image: A river of molten rock poured from the Nyiragongo volcano in the Congo on January 18, 2002, a day after it erupted, killing dozens, swallowing buildings and forcing hundreds of thousands to flee the town of Goma. The flow continued into Lake Kivu. The lave flows are depicted in red on the image indicating they are still hot. Two of them flowed south form the volcano's summit and went through the town of Goma. Another flow can be seen at the top of the image, flowing towards the northwest. One of Africa's most notable volcanoes, Nyiragongo contained an active lava lake in its deep summit crater that drained catastrophically through its outer flanks in 1977. Extremely fluid, fast-moving lava flows draining from the summit lava lake in 1977 killed 50 to 100 people, and several villages were destroyed. The image covers an area of 21 x 24 km and combines a thermal band in red, and two infrared bands in green and blue.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the

  15. Absolute and relative locations of earthquakes at Mount St. Helens, Washington, using continuous data: implications for magmatic processes: Chapter 4 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Thelen, Weston A.; Crosson, Robert S.; Creager, Kenneth C.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    This study uses a combination of absolute and relative locations from earthquake multiplets to investigate the seismicity associated with the eruptive sequence at Mount St. Helens between September 23, 2004, and November 20, 2004. Multiplets, a prominent feature of seismicity during this time period, occurred as volcano-tectonic, hybrid, and low-frequency earthquakes spanning a large range of magnitudes and lifespans. Absolute locations were improved through the use of a new one-dimensional velocity model with excellent shallow constraints on P-wave velocities. We used jackknife tests to minimize possible biases in absolute and relative locations resulting from station outages and changing station configurations. In this paper, we show that earthquake hypocenters shallowed before the October 1 explosion along a north-dipping structure under the 1980-86 dome. Relative relocations of multiplets during the initial seismic unrest and ensuing eruption showed rather small source volumes before the October 1 explosion and larger tabular source volumes after October 5. All multiplets possess absolute locations very close to each other. However, the highly dissimilar waveforms displayed by each of the multiplets analyzed suggest that different sources and mechanisms were present within a very small source volume. We suggest that multiplets were related to pressurization of the conduit system that produced a stationary source that was highly stable over long time periods. On the basis of their response to explosions occurring in October 2004, earthquakes not associated with multiplets also appeared to be pressure dependent. The pressure source for these earthquakes appeared, however, to be different from the pressure source of the multiplets.

  16. Submarine tankers proposed for Arctic LNG transport

    SciTech Connect

    Robb, D.

    1982-02-01

    General Dynamics Corporation announced a plan for a proposed US-West German joint venture to transport liquefied natural gas via submarine tanker from Alaska's Prudhoe Bay to ice-free ports in Western Europe and North America. The proposal would call for an investment of $20 billion, with generated revenue estimates of at least $70 billion over a 25 year period. The major advantage of a submarine tanker over a conventional surface tanker would be the reliable and predictable transport of LNG from remote Arctic location regardless of surface weather and ice conditions. The water depths of the proposed transit route would allow the tankers to remain submerged for virtually the entire transit, save for passage through the western Barrow Strait where the water depth at times dips to 91 meters. The proposed plan calls for the construction of 28 submarine tankers and 9 surface tankers over an 11-year period. The proposal also calls for the construction of an Arctic liquefaction plant large enough to process LNG to meet General Dyanmics' target cargo lift of 2 billion cubic feet of LNG a day. (DP)

  17. Venus - Volcano in Parga Chasma

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This comet-like tail, trending northeast from the volcanic structure, is a relatively radar-bright deposit. The volcano, with a base diameter of 5 kilometers (about 3 miles) is a local topographic high point that has slowed down northeast trending winds enough to cause deposition of this material. The streak is 35 kilometers (about 22 miles) long and 10 kilometers (about 6 miles) wide. The volcano is located at the western end of Parga Chasma at 9.4 degrees south latitude and 247.5 degrees east longitude.

  18. Submarine fresh water outflow detection with a dual-frequency microwave and an infrared radiometer system

    NASA Technical Reports Server (NTRS)

    Blume, H.-J. C.; Kendall, B. M.; Fedors, J. C.

    1981-01-01

    Since infrared measurements are only very slightly affected by whitecap and banking angle influences, the combined multifrequency radiometric signatures of the L-band, the S-band, and an infrared radiometer are used in identifying freshwater outflows (submerged and superficial). To separate the river and lagoon outflows from the submarine outflows, geographical maps with a scale of 1:100,000 are used. In all, 44 submarine freshwater springs are identified. This is seen as indicating that the submarine freshwater outflow locations are more numerous around the island than had earlier been estimated. Most of the submarine springs are located at the northwest and southeast portion of the Puerto Rican coastline; the success in detecting the submarine springs during both missions at the northwest portion of the island is 39%. Salinity and temperature distribution plots along the flight path in longitude and latitude coordinates reveal that runoff direction can be determined.

  19. Triggering and dynamic evolution of the LUSI mud volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Svensen, H.; Mazzini, A.; Akhmanov, G. G.; Aloisi, G.; Planke, S.; Sørenssen, A.; Istadi, B.

    2007-12-01

    Mud volcanoes are geologically important manifestations of vertical fluid flow and mud eruption in sedimentary basins worldwide. Their formation is predominantly ascribed to release of overpressure from clay- and organic- rich sediments, leading to impressive buildup of mud mountains in submarine and subaerial settings. Here we report data from two fieldworks on a newly born mud volcano named LUSI eruption in Eastern Java (Indonesia). The eruption site appears close to an active magmatic complex in a backarc sedimentary basin in Indonesia. Its specific location results in a high background temperature gradient that triggers mineralogical transformations and geochemical reactions at shallow depth. The eruption of 100 deg.C mud and gas that started the 29th of May 2006 flooded a large area within the Sidoarjo village in Northeast Java. Thousands of people have so far been evacuated and, since the initial eruption, the flow rate escalated from 5000 to 120,000 m3/d during the first eleven weeks. Then the erupted volume started to pulsate between almost zero and 120,000 m3/d in the period August-September, whereas it increased dramatically following swarms of earthquakes in September, before reaching almost 180,000 m3/d in December 2006. Fifteen months after the initial burst, LUSI is still vigorously erupting up to 111,000 m3/d, the average subsidence of the area reached 11 m. Seismic images show that a pre-existing structure was present before the eruption. Based on geochemical and field results, we propose a mechanism where the eruptions started following the 27th of May earthquake due to fracturing and accompanied depressurization of >100 deg.C pore fluids from > 1700 m depth released from a structure in already critical conditions. This resulted in the formation of a quasi-hydrothermal system with a geyser-like surface expression and with an activity influenced by the regional seismicity.

  20. Acoustic scattering from mud volcanoes and carbonate mounds.

    PubMed

    Holland, Charles W; Weber, Thomas C; Etiope, Giuseppe

    2006-12-01

    Submarine mud volcanoes occur in many parts of the world's oceans and form an aperture for gas and fluidized mud emission from within the earth's crust. Their characteristics are of considerable interest to the geology, geophysics, geochemistry, and underwater acoustics communities. For the latter, mud volcanoes are of interest in part because they pose a potential source of clutter for active sonar. Close-range (single-interaction) scattering measurements from a mud volcano in the Straits of Sicily show scattering 10-15 dB above the background. Three hypotheses were examined concerning the scattering mechanism: (1) gas entrained in sediment at/near mud volcano, (2) gas bubbles and/or particulates (emitted) in the water column, (3) the carbonate bio-construction covering the mud volcano edifice. The experimental evidence, including visual, acoustic, and nonacoustic sensors, rules out the second hypothesis (at least during the observation time) and suggests that, for this particular mud volcano the dominant mechanism is associated with carbonate chimneys on the mud volcano. In terms of scattering levels, target strengths of 4-14 dB were observed from 800 to 3600 Hz for a monostatic geometry with grazing angles of 3-5 degrees. Similar target strengths were measured for vertically bistatic paths with incident and scattered grazing angles of 3-5 degrees and 33-50 degrees, respectively. PMID:17225386

  1. Acoustic scattering from mud volcanoes and carbonate mounds.

    PubMed

    Holland, Charles W; Weber, Thomas C; Etiope, Giuseppe

    2006-12-01

    Submarine mud volcanoes occur in many parts of the world's oceans and form an aperture for gas and fluidized mud emission from within the earth's crust. Their characteristics are of considerable interest to the geology, geophysics, geochemistry, and underwater acoustics communities. For the latter, mud volcanoes are of interest in part because they pose a potential source of clutter for active sonar. Close-range (single-interaction) scattering measurements from a mud volcano in the Straits of Sicily show scattering 10-15 dB above the background. Three hypotheses were examined concerning the scattering mechanism: (1) gas entrained in sediment at/near mud volcano, (2) gas bubbles and/or particulates (emitted) in the water column, (3) the carbonate bio-construction covering the mud volcano edifice. The experimental evidence, including visual, acoustic, and nonacoustic sensors, rules out the second hypothesis (at least during the observation time) and suggests that, for this particular mud volcano the dominant mechanism is associated with carbonate chimneys on the mud volcano. In terms of scattering levels, target strengths of 4-14 dB were observed from 800 to 3600 Hz for a monostatic geometry with grazing angles of 3-5 degrees. Similar target strengths were measured for vertically bistatic paths with incident and scattered grazing angles of 3-5 degrees and 33-50 degrees, respectively.

  2. Lifespans of Cascade Arc volcanoes

    NASA Astrophysics Data System (ADS)

    Calvert, A. T.

    2015-12-01

    Compiled argon ages reveal inception, eruptive episodes, ages, and durations of Cascade stratovolcanoes and their ancestral predecessors. Geologic mapping and geochronology show that most Cascade volcanoes grew episodically on multiple scales with periods of elevated behavior lasting hundreds of years to ca. 100 kyr. Notable examples include the paleomag-constrained, few-hundred-year-long building of the entire 15-20 km3 Shastina edifice at Mt. Shasta, the 100 kyr-long episode that produced half of Mt. Rainier's output, and the 30 kyr-long episode responsible for all of South and Middle Sister. Despite significant differences in timing and rates of construction, total durations of active and ancestral volcanoes at discrete central-vent locations are similar. Glacier Peak, Mt. Rainier, Mt. Adams, Mt. Hood, and Mt. Mazama all have inception ages of 400-600 ka. Mt. St. Helens, Mt. Jefferson, Newberry Volcano, Mt. Shasta and Lassen Domefield have more recent inception ages of 200-300 ka. Only the Sisters cluster and Mt. Baker have established eruptive histories spanning less than 50 kyr. Ancestral volcanoes centered 5-20 km from active stratocones appear to have similar total durations (200-600 kyr), but are less well exposed and dated. The underlying mechanisms governing volcano lifecycles are cryptic, presumably involving tectonic and plumbing changes and perhaps circulation cycles in the mantle wedge, but are remarkably consistent along the arc.

  3. Seismic signals from Lascar Volcano

    NASA Astrophysics Data System (ADS)

    Hellweg, M.

    1999-03-01

    Lascar, the most active volcano in northern Chile, lies near the center of the region studied during the Proyecto de Investigación Sismológica de la Cordillera Occidental 94 (PISCO '94). Its largest historical eruption occurred on 19 April 1993. By the time of the PISCO '94 deployment, its activity consisted mainly of a plume of water vapor and SO 2. In April and May 1994, three short-period, three-component seismometers were placed on the flanks of the volcano, augmenting the broadband seismometer located on the NW flank of the volcano during the entire deployment. In addition to the usual seismic signals recorded at volcanoes, Lascar produced two unique tremor types: Rapid-fire tremor and harmonic tremor. Rapid-fire tremor appears to be a sequence of very similar, but independent, "impulsive" events with a large range of amplitudes. Harmonic tremor, on the other hand, is a continuous, cyclic signal lasting several hours. It is characterized by a spectrum with peaks at a fundamental frequency and its integer multiples. Both types of tremor seem to be generated by movement of fluids in the volcano, most probably water, steam or gas.

  4. Transport of Fine Ash Through the Water Column at Erupting Volcanoes - Monowai Cone, Kermadec-Tonga Arc

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Baker, E. T.; Leybourne, M. I.; de Ronde, C. E.; Greene, R.; Faure, K.; Chadwick, W.; Dziak, R. P.; Lupton, J. E.; Lebon, G.

    2010-12-01

    Monowai cone is a large, active, basaltic stratovolcano, part of the submarine Monowai volcanic center (MVC) located at ~26°S on the Kermadec-Tonga arc. At other actively erupting submarine volcanoes, magma extrusions and hydrothermal vents have been located only near the summit of the edifice, generating plumes enriched with hydrothermal components and magmatic gasses that disperse into the ocean environment at, or shallower than, the summit depth. Plumes found deeper than summit depths are dominated by fresh volcaniclastic ash particles, devoid of hydrothermal tracers, emplaced episodically by down-slope gravity flows, and transport fine ash to 10’s of km from the active eruptions. A water column survey of the MVC in 2004 mapped intensely hydrothermal-magmatic plumes over the shallow (~130 m) summit of Monowai cone and widespread plumes around its flanks. Due to the more complex multiple parasitic cone and caldera structure of MVC, we analyzed the dissolved and particulate components of the flank plumes for evidence of additional sources. Although hydrothermal plumes exist within the adjacent caldera, none of the parasitic cones on Monowai cone or elsewhere within the MVC were hydrothermally or volcanically active. The combination of an intensely enriched summit plume, sulfur particles and bubbles at the sea surface, and ash-dominated flank plumes indicate Monowai cone was actively erupting at the time of the 2004 survey. Monowai cone is thus the fourth erupting submarine volcano we have encountered, and all have had deep ash plumes distributed around their flanks [the others are: Kavachi (Solomon Island arc), NW Rota-1 (Mariana arc) and W Mata (NE Lau basin)]. These deep ash plumes are a syneruptive phenomenon, but it is unknown how they are related to eruptive style and output, or to the cycles of construction and collapse that occur on the slopes of submarine volcanoes. Repeat multibeam bathymetric surveys have documented two large-scale sector collapse

  5. Silicic Submarine Eruptions: what can erupted pyroclasts tell us?

    NASA Astrophysics Data System (ADS)

    Carey, R.; Allen, S.; McPhie, J.; Fiske, R. S.; Tani, K.

    2013-12-01

    Our understanding of submarine volcanism is in its infancy with respect to subaerial eruption processes. Two fundamental differences between eruptions in seawater compared to those on land are that (1) eruptions occur at higher confining pressures, and (2) in a seawater medium, which has a higher heat capacity, density and viscosity than air. Together with JAMSTEC collaborators we have a sample suite of submarine pumice deposits from modern volcanoes of known eruption depths. This sample suite spans a spectrum of eruption intensities, from 1) powerful explosive caldera-forming (Myojin Knoll caldera); to 2) weakly explosive cone building (pre-caldera Myojin Knoll pumice and Kurose-Nishi pumice); to 3) volatile-driven effusive dome spalling (Sumisu knoll A); to 4) passive dome effusion (Sumisu knoll B and C). This sample suite has exceptional potential, not simply because the samples have been taken from well-constrained, sources but because they have similar high silica contents, are unaltered and their phenocrysts contain melt inclusions. Microtextural quantitative analysis has revealed that (i) clast vesicularities remain high (69-90 vol.%) regardless of confining pressure, mass eruption rate or eruption style , (ii) vesicle number densities scale with inferred eruption rate, and (iii) darcian and inertial permeabilities of submarine effusive and explosive pyroclasts overlap with explosively-erupted subaerial pyroclasts.

  6. Submarine lithification of carbonate sediments.

    PubMed

    Milliman, J D

    1966-08-26

    Recrystallized planktonic limestones from two guyots in the North Atlantic are in oxygen-isotopic equilibrium with their present ambient waters, suggesting submarine lithifica tion and recrystallization. The early stages of submarine lithification of carbonates may involve precipitation of, and replacement by, magnesium-rich calcite; with time this may invert to magnesium-poor calcite. This type of lithification probably requires very low rates of sediment accumulation.

  7. Submarine lithification of carbonate sediments.

    PubMed

    Milliman, J D

    1966-08-26

    Recrystallized planktonic limestones from two guyots in the North Atlantic are in oxygen-isotopic equilibrium with their present ambient waters, suggesting submarine lithifica tion and recrystallization. The early stages of submarine lithification of carbonates may involve precipitation of, and replacement by, magnesium-rich calcite; with time this may invert to magnesium-poor calcite. This type of lithification probably requires very low rates of sediment accumulation. PMID:17837254

  8. Hawaiian submarine manganese-iron oxide crusts - A dating tool?

    USGS Publications Warehouse

    Moore, J.G.; Clague, D.A.

    2004-01-01

    Black manganese-iron oxide crusts form on most exposed rock on the ocean floor. Such crusts are well developed on the steep lava slopes of the Hawaiian Ridge and have been sampled during dredging and submersible dives. The crusts also occur on fragments detached from bedrock by mass wasting, on submerged coral reefs, and on poorly lithified sedimentary rocks. The thickness of the crusts was measured on samples collected since 1965 on the Hawaiian Ridge from 140 dive or dredge localities. Fifty-nine (42%) of the sites were collected in 2001 by remotely operated vehicles (ROVs). The thinner crusts on many samples apparently result from post-depositional breakage, landsliding, and intermittent burial of outcrops by sediment. The maximum crust thickness was selected from each dredge or dive site to best represent crusts on the original rock surface at that site. The measurements show an irregular progressive thickening of the crusts toward the northwest-i.e., progressive thickening toward the older volcanic features with increasing distance from the Hawaiian hotspot. Comparison of the maximum crust thickness with radiometric ages of related subaerial features supports previous studies that indicate a crust-growth rate of about 2.5 mm/m.y. The thickness information not only allows a comparison of the relative exposure ages of two or more features offshore from different volcanoes, but also provides specific age estimates of volcanic and landslide deposits. The data indicate that some of the landslide blocks within the south Kona landslide are the oldest exposed rock on Mauna Loa, Kilauea, or Loihi volcanoes. Crusts on the floors of submarine canyons off Kohala and East Molokai volcanoes indicate that these canyons are no longer serving as channelways for downslope, sediment-laden currents. Mahukona volcano was approximately synchronous with Hilo Ridge, both being younger than Hana Ridge. The Nuuanu landslide is considerably older than the Wailau landslide. The Waianae

  9. Multifrequency radiometer detection of submarine freshwater sources along the Puerto Rican coastline

    NASA Technical Reports Server (NTRS)

    Blume, H.-J. C.; Kendall, B. M.; Fedors, J. C.

    1981-01-01

    The surface area above submarine springs of fresh water exhibit temperatures and salinities lower than the surrounding sea waters. A multifrequency radiometer system which earlier demonstrated an accuracy of 1 degree C and 1 part per thousand in remotely detecting the surface temperature and salinities, respectively, was used to detect submarine freshwater springs. The first mission on February 4, 1978, consisted of overflight measurements over three fourths of the coastal areas around the Island of Puerto Rico. During the second mission on February 6, 1978, special attention was directed to the northwest portion of Puerto Rico where several submarine springs had been reported. The previously reported spring locations correlated well with the locations detected by the radiometers. After separating the surface runoffs such as rivers, lagoons, marshes, and bays, 44 submarine freshwater springs were identified which indicates that the submarine freshwater outflow locations are more numerous around the island than had earlier been estimated. The majority of the submarine springs are located at the northwest and southeast portion of the Puerto Rican coastline. The success of detecting the same submarine springs during both missions at the northwest portion of the island was 39%.

  10. Penguin Bank: A Loa-Trend Hawaiian Volcano

    NASA Astrophysics Data System (ADS)

    Xu, G.; Blichert-Toft, J.; Clague, D. A.; Cousens, B.; Frey, F. A.; Moore, J. G.

    2007-12-01

    Hawaiian volcanoes along the Hawaiian Ridge from Molokai Island in the northwest to the Big Island in the southeast, define two parallel trends of volcanoes known as the Loa and Kea spatial trends. In general, lavas erupted along these two trends have distinctive geochemical characteristics that have been used to define the spatial distribution of geochemical heterogeneities in the Hawaiian plume (e.g., Abouchami et al., 2005). These geochemical differences are well established for the volcanoes forming the Big Island. The longevity of the Loa- Kea geochemical differences can be assessed by studying East and West Molokai volcanoes and Penguin Bank which form a volcanic ridge perpendicular to the Loa and Kea spatial trends. Previously we showed that East Molokai volcano (~1.5 Ma) is exclusively Kea-like and that West Molokai volcano (~1.8 Ma) includes lavas that are both Loa- and Kea-like (Xu et al., 2005 and 2007).The submarine Penguin Bank (~2.2 Ma), probably an independent volcano constructed west of West Molokai volcano, should be dominantly Loa-like if the systematic Loa and Kea geochemical differences were present at ~2.2 Ma. We have studied 20 samples from Penguin Bank including both submarine and subaerially-erupted lavas recovered by dive and dredging. All lavas are tholeiitic basalt representing shield-stage lavas. Trace element ratios, such as Sr/Nb and Zr/Nb, and isotopic ratios of Sr and Nd clearly are Loa-like. On an ɛNd-ɛHf plot, Penguin Bank lavas fall within the field defined by Mauna Loa lavas. Pb isotopic data lie near the Loa-Kea boundary line defined by Abouchami et al. (2005). In conclusion, we find that from NE to SW, i.e., perpendicular to the Loa and Kea spatial trend, there is a shift from Kea-like East Molokai lavas to Loa-like Penguin Bank lavas with the intermediate West Molokai volcano having lavas with both Loa- and Kea-like geochemical features. Therefore, the Loa and Kea geochemical dichotomy exhibited by Big Island volcanoes

  11. Submarine volcanism surrounding Tenerife, Canary Islands: implications for tectonic controls, and oceanic shield forming processes

    NASA Astrophysics Data System (ADS)

    Ruiz, C. Romeo; García-Cacho, L.; Araña, V.; Luque, A. Yanes; Felpeto, A.

    2000-12-01

    Using high-resolution bathymetric data, 97 seamounts within two large submarine areas, N and SE of Tenerife, have been identified and studied in detail. Main dimensions and associated parameters of these seamounts have been measured, allowing a morphometric and morphologic classification on a shape basis. In order to be certain of their volcanic origin, several restrictive criteria were applied (conical shape with maximum height >150 m, basal ratio >1, aspect ratio >0.1) to the initial tally, obtaining finally 31 regular shapes that can be identified without any reasonable doubt as volcanic seamounts. These are very similar to submarine volcanoes described elsewhere on the sea floor. Most of these volcanic seamounts are aligned along two lines that follow the main volcano-tectonic trends of the Canary Archipelago. The NW-SE line crosses the island, while the NE-SW line coincides with a seismically active reverse fault that separates the Tenerife and Gran Canaria insular blocks. The distribution of the submarine volcanism to the north of Tenerife permits a better knowledge of the island from its base on the sea floor and defines the tectonic control of the growth of the shield between 4 and 2 Ma. Therefore, the evolution of the submarine edifice of Tenerife shows that the widespread parasite or satellite eruption centres are also very important in the overall growth of large shield edifices of volcanic islands.

  12. Did the crew of the submarine H.L. Hunley suffocate?

    PubMed

    Lance, Rachel M; Moon, Richard E; Crisafulli, Michael; Bass, Cameron R

    2016-03-01

    On the evening of February 17th, 1864, the Confederate submarine H.L. Hunley attacked the Union ship USS Housatonic outside Charleston, South Carolina and became the first submarine in history to successfully sink an enemy ship in combat. One hypothesis for the sinking of the Confederate submarine H.L. Hunley is that the crew, in the enclosed vessel, suffered a lack of oxygen and suffocated. This study estimates the effects of hypoxia and hypercapnia on the crew based on submarine gas volume and crew breathing dynamics. The calculations show the crew of the Hunley had a minimum of 10 min between the onset of uncomfortable hypercapnia symptoms and danger of loss of consciousness from hypoxia. Based on this result and the location of the crew when discovered, hypoxia and hypercapnia do not explain the sinking of the world's first successful combat submarine. PMID:26821202

  13. Magmatic sill intrusions beneath El Hierro Island following the 2011-2012 submarine eruption

    NASA Astrophysics Data System (ADS)

    Benito-Saz, María Á.; Sigmundsson, Freysteinn; Parks, Michelle M.; García-Cañada, Laura; Domínguez Cerdeña, Itahiza

    2016-04-01

    El Hierro, the most southwestern island of Canary Islands, Spain, is a volcano rising from around 3600 m above the ocean floor and up to of 1500 m above sea level. A submarine eruption occurred off the coast of El Hierro in 2011-2012, which was the only confirmed eruption in the last ~ 600 years. Activity continued after the end of the eruption with six magmatic intrusions occurring between 2012-2014. Each of these intrusions was characterized by hundreds of earthquakes and 3-19 centimeters of observed ground deformation. Ground displacements at ten continuous GPS sites were initially inverted to determine the optimal source parameters (location, geometry, volume/pressure change) that best define these intrusions from a geodetic point of view. Each intrusive period appears to be associated with the formation of a separate sill, with inferred volumes between 0.02 - 0.3 km3. SAR images from the Canadian RADARSAT-2 satellite and the Italian Space Agency COSMO-SkyMed constellation have been used to produce high-resolution detailed maps of line-of-sight displacements for each of these intrusions. These data have been combined with the continuous GPS observations and a joint inversion undertaken to gain further constraints on the optimal source parameters for each of these separate intrusive events. The recorded activity helps to understand how an oceanic intraplate volcanic island grows through repeated sill intrusions; well documented by seismic, GPS and InSAR observations in the case of the El Hierro activity.

  14. Swath sonar mapping of Earth's submarine plate boundaries

    NASA Astrophysics Data System (ADS)

    Carbotte, S. M.; Ferrini, V. L.; Celnick, M.; Nitsche, F. O.; Ryan, W. B. F.

    2014-12-01

    The recent loss of Malaysia Airlines flight MH370 in an area of the Indian Ocean where less than 5% of the seafloor is mapped with depth sounding data (Smith and Marks, EOS 2014) highlights the striking lack of detailed knowledge of the topography of the seabed for much of the worlds' oceans. Advances in swath sonar mapping technology over the past 30 years have led to dramatic improvements in our capability to map the seabed. However, the oceans are vast and only an estimated 10% of the seafloor has been mapped with these systems. Furthermore, the available coverage is highly heterogeneous and focused within areas of national strategic priority and community scientific interest. The major plate boundaries that encircle the globe, most of which are located in the submarine environment, have been a significant focus of marine geoscience research since the advent of swath sonar mapping. While the location of these plate boundaries are well defined from satellite-derived bathymetry, significant regions remain unmapped at the high-resolutions provided by swath sonars and that are needed to study active volcanic and tectonic plate boundary processes. Within the plate interiors, some fossil plate boundary zones, major hotspot volcanoes, and other volcanic provinces have been the focus of dedicated research programs. Away from these major tectonic structures, swath mapping coverage is limited to sparse ocean transit lines which often reveal previously unknown deep-sea channels and other little studied sedimentary structures not resolvable in existing low-resolution global compilations, highlighting the value of these data even in the tectonically quiet plate interiors. Here, we give an overview of multibeam swath sonar mapping of the major plate boundaries of the globe as extracted from public archives. Significant quantities of swath sonar data acquired from deep-sea regions are in restricted-access international archives. Open access to more of these data sets would

  15. Lavas from Active Boninite and Very Recent Basalt Eruptions at Two Submarine NE Lau Basin Sites

    NASA Astrophysics Data System (ADS)

    Rubin, K. H.; Embley, R. W.; Clague, D. A.; Resing, J. A.; Michael, P. J.; Keller, N. S.; Baker, E. T.

    2009-12-01

    Very young submarine lava flows were discovered at two sites in the NE Lau Basin during a May 2009 NSF-NOAA expedition. The multidisciplinary rapid response expedition was organized to investigate these sites based on chemical and physical water column signatures observed during a NOAA-led regional study in Nov. 2008. An active eruption was discovered and observed for 5 days in May 2009 at W. Mata volcano, just behind the northernmost segment of the Tofua arc. The ongoing eruption produced extrusive and pyroclastic deposits from multiple vents near the 1200m depth summit of the volcano. Lavas were sampled from the summit and volcano flanks using the ROV Jason II. The samples indicate that W. Mata is currently erupting orthopyroxene-clinopyroxene-olivine porphyritic boninite magmas, which is also the predominant rock composition elsewhere on the seamount. The youngest lavas are very fresh, highly vesicular (up to ~30%) and occur as predominantly pillow and lobate forms, sometimes mantled by very young pyroclastic deposits and/or thin chemical coatings of presumed microbial and/or inorganic origin. The coatings and pyroclast apron make it difficult to map the extent of the youngest deposits by visual indicators alone, so we are currently dating 7 well-distributed samples from the W. Mata summit by 210Po-210Pb chronology. Very preliminary age results indicate that samples collected near the active vents are <1 month old, although samples collected further afield erupted sometime between early 2009 and Fall 2008, implying either that active vents have migrated or that lavas flowed farther from the vents in earlier eruptive phases. Extremely fresh but no longer active lava flows were also discovered along 2 km of the NE Lau Spreading Center axis, at 1600m water depth. The highly vesicular and sparsely phyric basalts occur as a series of high effusion rate sheets and lobates at vent-proximal sites along the ridge axis, transitional to pillows in distal locations. Very

  16. Geologic Map of the Summit Region of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Neal, Christina A.; Lockwood, John P.

    2003-01-01

    This report consists of a large map sheet and a pamphlet. The map shows the geology, some photographs, description of map units, and correlation of map units. The pamphlet gives the full text about the geologic map. The area covered by this map includes parts of four U.S. Geological Survey 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water; the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones.

  17. Postshield stage transitional volcanism on Mahukona Volcano, Hawaii

    USGS Publications Warehouse

    Clague, D.A.; Calvert, A.T.

    2009-01-01

    Age spectra from 40Ar/39Ar incremental heating experiments yield ages of 298??25 ka and 310??31 ka for transitional composition lavas from two cones on submarine Mahukona Volcano, Hawaii. These ages are younger than the inferred end of the tholeiitic shield stage and indicate that the volcano had entered the postshield alkalic stage before going extinct. Previously reported elevated helium isotopic ratios of lavas from one of these cones were incorrectly interpreted to indicate eruption during a preshield alkalic stage. Consequently, high helium isotopic ratios are a poor indicator of eruptive stage, as they occur in preshield, shield, and postshield stage lavas. Loihi Seamount and Kilauea are the only known Hawaiian volcanoes where the volume of preshield alkalic stage lavas can be estimated. ?? Springer-Verlag 2008.

  18. Bathymetry of the southwest flank of Mauna Loa Volcano, Hawaii

    USGS Publications Warehouse

    Chadwick, William W.; Moore, James G.; Fox, Christopher G.

    1994-01-01

    Much of the seafloor topography in the map area is on the southwest submarine flank of the currently active Mauna Loa Volcano. The benches and blocky hills shown on the map were shaped by giant landslides that resulted from instability of the rapidly growing volcano. These landslides were imagined during a 1986 to 1991 swath sonar program of the United States Hawaiian Exclusive Economic Zone, a cooperative venture by the U.S. Geological Survey and the British Institute of Oceanographic Sciences (Lipman and others, 1988; Moore and others, 1989). Dana Seamount (and probably also the neighboring Day Seamount) are apparently Cretaceous in age, based on paleomagnetic studies, and predate the growth of the Hawaiian Ridge volcanoes (Sager and Pringle, 1990).

  19. Exploration of the 1891 Foerstner submarine vent site (Pantelleria, Italy): insights into the formation of basaltic balloons

    NASA Astrophysics Data System (ADS)

    Kelly, Joshua T.; Carey, Steven; Pistolesi, Marco; Rosi, Mauro; Croff-Bell, Katherine Lynn; Roman, Chris; Marani, Michael

    2014-07-01

    On October 17, 1891, a submarine eruption started at Foerstner volcano located within the Pantelleria Rift of the Strait of Sicily (Italy). Activity occurred for a period of 1 week from an eruptive vent located 4 km northwest of the island of Pantelleria at a water depth of 250 m. The eruption produced lava balloons that discharged gas at the surface and eventually sank to the seafloor. Remotely operated vehicle (ROV) video footage and high-resolution multi-beam mapping of the Foerstner vent site were used to create a geologic map of the AD 1891 deposits and conduct the first detailed study of the source area associated with this unusual type of submarine volcanism. The main Foerstner vent consists of two overlapping circular mounds with a total volume of 6.3 × 105 m3 and relief of 60 m. It is dominantly constructed of clastic scoriaceous deposits with some interbedded pillow lavas. Petrographic and geochemical analyses of Foerstner samples by X-ray fluorescence and inductively coupled plasma mass spectrometry reveal that the majority of the deposits are vesicular, hypocrystalline basanite scoria that display porphyritic, hyaloophitic, and vitrophyric textures. An intact lava balloon recovered from the seafloor consists of a large interior gas cavity surrounded by a thin lava shell comprising two distinct layers: a thin, oxidized, quenched crust surrounding the exterior of the balloon and a dark gray, tachylite layer lying beneath it. Ostwald ripening is proposed to be the dominant bubble growth mechanism of four representative Foerstner scoria samples as inferred by vesicle size distributions. Characterization of the diversity of deposit facies observed at Foerstner in conjunction with quantitative rock texture analysis indicates that submarine Strombolian-like activity is the most likely mechanism for the formation of lava balloons. The deposit facies observed at the main Foerstner vent are very similar to those produced by other known submarine Strombolian

  20. Volcano Vents

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 5 May 2003

    This low-relief shield volcano imaged with the THEMIS visible camera has two large vents which have erupted several individual lava flows. The positions of the origins of many of the flows indicate that it is probable that the vents are secondary structures that formed only after the shield was built up by eruptions from a central caldera.

    Image information: VIS instrument. Latitude 17.6, Longitude 243.6 East (116.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. A Scientific Excursion: Volcanoes.

    ERIC Educational Resources Information Center

    Olds, Henry, Jr.

    1983-01-01

    Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)

  2. Focus: alien volcanos

    NASA Astrophysics Data System (ADS)

    Carroll, Michael; Lopes, Rosaly

    2007-03-01

    Part 1: Volcanoes on Earth - blowing their top; Part 2: Volcanoes of the inner Solar System - dead or alive: the Moon, Mercury, Mars, Venus; Part 3: Volcanoes of the outer Solar System - fire and ice: Io, Europa, Ganymede and Miranda, Titan, Triton, Enceladus.

  3. Cascades Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Driedger, Carolyn; Pallister, John

    2008-01-01

    Washington's Mount St. Helens volcano reawakens explosively on October 1, 2004, after 18 years of quiescence. Scientists at the U.S. Geological Survey's Cascades Volcano Observatory (CVO) study and observe Mount St. Helens and other volcanoes of the Cascade Range in Washington, Oregon, and northern California that hold potential for future eruptions. CVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Mount St. Helens and CVO at http://vulcan.wr.usgs.gov/.

  4. Mount Rainier, a decade volcano

    SciTech Connect

    Kuehn, S.C.; Hooper, P.R. . Dept. of Geology); Eggers, A.E. . Dept. of Geology)

    1993-04-01

    Mount Rainier, recently designated as a decade volcano, is a 14,410 foot landmark which towers over the heavily populated southern Puget Sound Lowland of Washington State. It last erupted in the mid-1800's and is an obvious threat to this area, yet Rainier has received little detailed study. Previous work has divided Rainier into two distinct pre-glacial eruptive episodes and one post-glacial eruptive episode. In a pilot project, the authors analyzed 253 well-located samples from the volcano for 27 major and trace elements. Their objective is to test the value of chemical compositions as a tool in mapping the stratigraphy and understanding the eruptive history of the volcano which they regard as prerequisite to determining the petrogenesis and potential hazard of the volcano. The preliminary data demonstrates that variation between flows is significantly greater than intra-flow variation -- a necessary condition for stratigraphic use. Numerous flows or groups of flows can be distinguished chemically. It is also apparent from the small variation in Zr abundances and considerable variation in such ratios as Ba/Nb that fractional crystallization plays a subordinate role to some form of mixing process in the origin of the Mount Rainier lavas.

  5. Infrared surveys of Hawaiian volcanoes

    USGS Publications Warehouse

    Fischer, W. A.; Moxham, R.M.; Polcyn, F.; Landis, G.H.

    1964-01-01

    Aerial infrared-sensor surveys of Kilauea volcano have depicted the areal extent and the relative intensity of abnormal thermal features in the caldera area of the volcano and along its associated rift zones. Many of these anomalies show correlation with visible steaming and reflect convective transfer of heat to the surface from subterranean sources. Structural details of the volcano, some not evident from surface observation, are also delineated by their thermal abnormalities. Several changes were observed in the patterns of infrared emission during the period of study; two such changes show correlation in location with subsequent eruptions, but the cause-and-effect relationship is uncertain. Thermal anomalies were also observed on the southwest flank of Mauna Loa; images of other volcanoes on the island of Hawaii, and of Haleakala on the island of Maui, revealed no thermal abnormalities. Approximately 25 large springs issuing into the ocean around the periphery of Hawaii have been detected. Infrared emission varies widely with surface texture and composition, suggesting that similar observations may have value for estimating surface conditions on the moon or planets.

  6. Infrared science of Hawaiian volcanoes

    USGS Publications Warehouse

    Fischer, William A.; Moxham, R.M.; Polcyn, R.C.; Landis, G.H.

    1964-01-01

    Aerial infrared-sensor surveys of Kilauea volcano have depicted the areal extent and the relative intensity of abnormal thermal features in the caldera area of the volcano and along its associated rift zones. Many of these anomalies show correlation with visible steaming and reflect convective transfer of heat to the surface from subterranean sources. Structural details of the volcano, some not evident from surface observation, are also delineated by their thermal abnormalities. Several changes were observed in the patterns of infrared emission during the period of study; two such changes show correlation in location with subsequent eruptions, but the cause-and-effect relationship is uncertain. Thermal anomalies were also observed on the southwest flank of Mauna Loa; images of other volcanoes on the island of Hawaii, and of Haleakala on the island of Maui, revealed no thermal abnormalities. Approximately 25 large springs is- suing into the ocean around the periphery of Hawaii have been detected. Infrared emission varies widely with surface texture and composition, suggesting that similar observations may have value for estimating surface conditions on the moon or planets.

  7. Ceboruco Volcano Gravimetric Analysis, Mexico

    NASA Astrophysics Data System (ADS)

    Fernandez Cordoba, J.; Espindola, J. M.; Gutierrez, Q. J.; Garcia Serrano, A.; Zamora-Camacho, A.; Pinzon, J. I.; Nuñez-Cornu, F. J.

    2015-12-01

    The Ceboruco is a late Quaternary dacitic-andesitic stratovolcano, is located in the Tepic-Zacoalco graben in the western part of the Trans-Mexican Volcanic Belt (TMVB) near to Ahuacatlan and Jala towns in Mexico. There have been at least eight eruptions from this volcano in the last thousand years, and for this reason Ceboruco must be considered an active volcano whit the possibility of erupting again in the future. This work aims to contribute with a regional density contrasts model from gravity measurements of volcano area. 163 observations were measured every 500 meters with a Scintrex CG-5 gravimeter. We corrected data were measured in the area to filter information dependent of external gravitational fields or outside to object of study. Post-filtering of data, we obtained gravity anomalies distribution and with other supporting data (aeromagnetic and geological data) we made 8 profiles around Ceboruco to build an approximate model of density changes in the lithological units under the volcano.

  8. Volcano seismology

    USGS Publications Warehouse

    Chouet, B.

    2003-01-01

    A fundamental goal of volcano seismology is to understand active magmatic systems, to characterize the configuration of such systems, and to determine the extent and evolution of source regions of magmatic energy. Such understanding is critical to our assessment of eruptive behavior and its hazardous impacts. With the emergence of portable broadband seismic instrumentation, availability of digital networks with wide dynamic range, and development of new powerful analysis techniques, rapid progress is being made toward a synthesis of high-quality seismic data to develop a coherent model of eruption mechanics. Examples of recent advances are: (1) high-resolution tomography to image subsurface volcanic structures at scales of a few hundred meters; (2) use of small-aperture seismic antennas to map the spatio-temporal properties of long-period (LP) seismicity; (3) moment tensor inversions of very-long-period (VLP) data to derive the source geometry and mass-transport budget of magmatic fluids; (4) spectral analyses of LP events to determine the acoustic properties of magmatic and associated hydrothermal fluids; and (5) experimental modeling of the source dynamics of volcanic tremor. These promising advances provide new insights into the mechanical properties of volcanic fluids and subvolcanic mass-transport dynamics. As new seismic methods refine our understanding of seismic sources, and geochemical methods better constrain mass balance and magma behavior, we face new challenges in elucidating the physico-chemical processes that cause volcanic unrest and its seismic and gas-discharge manifestations. Much work remains to be done toward a synthesis of seismological, geochemical, and petrological observations into an integrated model of volcanic behavior. Future important goals must include: (1) interpreting the key types of magma movement, degassing and boiling events that produce characteristic seismic phenomena; (2) characterizing multiphase fluids in subvolcanic

  9. Effect of Submarine Groundwater Discharge on Relict Arctic Submarine Permafrost and Gas Hydrate

    NASA Astrophysics Data System (ADS)

    Frederick, J. M.; Buffett, B. A.

    2014-12-01

    Permafrost-associated gas hydrate deposits exist at shallow depths within the sediments of the circum-Arctic continental shelves. Degradation of this shallow water reservoir has the potential to release large quantities of methane gas directly to the atmosphere. Gas hydrate stability and the permeability of the shelf sediments to gas migration is closely linked with submarine permafrost. Submarine permafrost extent depends on several factors, such as the lithology, sea level variations, mean annual air temperature, ocean bottom water temperature, geothermal heat flux, and the salinity of the pore water. The salinity of the pore water is especially relevant because it partially controls the freezing point for both ice and gas hydrate. Measurements of deep pore water salinity are few and far between, but show that deep off-shore sediments are fresh. Deep freshening has been attributed to large-scale topographically-driven submarine groundwater discharge, which introduces fresh terrestrial groundwater into deep marine sediments. We investigate the role of submarine ground water discharge on the salinity field and its effects on the seaward extent of relict submarine permafrost and gas hydrate stability on the Arctic shelf with a 2D shelf-scale model based on the finite volume method. The model tracks the evolution of the temperature, salinity, and pressure fields given imposed boundary conditions, with latent heat of water ice and hydrate formation included. The permeability structure of the sediments is coupled to changes in permafrost. Results show that pore fluid is strongly influenced by the permeability variations imposed by the overlying permafrost layer. Groundwater discharge tends to travel horizontally off-shore beneath the permafrost layer and the freshwater-saltwater interface location displays long timescale transient behavior that is dependent on the groundwater discharge strength. The seaward permafrost extent is in turn strongly influenced by the

  10. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  11. Preliminary volcano-hazard assessment for Mount Spurr Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Nye, Christopher J.

    2001-01-01

    Mount Spurr volcano is an ice- and snow-covered stratovolcano complex located in the north-central Cook Inlet region about 100 kilometers west of Anchorage, Alaska. Mount Spurr volcano consists of a breached stratovolcano, a lava dome at the summit of Mount Spurr, and Crater Peak vent, a small stratocone on the south flank of Mount Spurr volcano. Historical eruptions of Crater Peak occurred in 1953 and 1992. These eruptions were relatively small but explosive, and they dispersed volcanic ash over areas of interior, south-central, and southeastern Alaska. Individual ash clouds produced by the 1992 eruption drifted east, north, and south. Within a few days of the eruption, the south-moving ash cloud was detected over the North Atlantic. Pyroclastic flows that descended the south flank of Crater Peak during both historical eruptions initiated volcanic-debris flows or lahars that formed temporary debris dams across the Chakachatna River, the principal drainage south of Crater Peak. Prehistoric eruptions of Crater Peak and Mount Spurr generated clouds of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. A flank collapse on the southeast side of Mount Spurr generated a large debris avalanche that flowed about 20 kilometers beyond the volcano into the Chakachatna River valley. The debris-avalanche deposit probably formed a large, temporary debris dam across the Chakachatna River. The distribution and thickness of volcanic-ash deposits from Mount Spurr volcano in the Cook Inlet region indicate that volcanic-ash clouds from most prehistoric eruptions were as voluminous as those produced by the 1953 and 1992 eruptions. Clouds of volcanic ash emitted from the active vent, Crater Peak, would be a major hazard to all aircraft using Ted Stevens Anchorage International Airport and other local airports and, depending on wind direction, could drift a considerable distance beyond the volcano. Ash fall from future eruptions could disrupt many

  12. Pit crater formation and mass-wasting on West Mata volcano in 2010-2011 interpreted from repeat bathymetric surveys

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Merle, S. G.; Dziak, R. P.; Rubin, K. H.; Martinez, F.; Crowhurst, P. V.

    2012-12-01

    A multibeam bathymetric resurvey of West Mata submarine volcano in the NE Lau basin in November 2011 has revealed major depth changes in the summit area where explosive boninite eruptions were observed by remotely operated vehicle in 2009. The bathymetry differencing between the December 2010 survey and the November 2011 survey, both made with the EM122 system on the R/V Kilo Moana, reveals some well-defined anomalies. There are two large negative anomalies at the summit and a lesser amplitude but broader area positive anomaly downslope on the eastern flank. The western negative anomaly is basically a deep pit of ~70-80 m right where the Hades eruptive vent was located in 2009. The larger, linear negative anomaly to the east appears to be a submarine slide that took off part of the preexisting summit ridge and a portion of the upper flank of the volcano and extends for more than a kilometer to the east. Downslope and east of that is an elongated area positive anomaly extending about kilometer downslope that likely represents the portion of the slide material that is within the resolution of the multibeam difference grids (~ 5-10 m). A smaller negative anomaly on the west rift zone is less certain because it's located on a steeper slope where differencing errors are higher. We also recorded water column acoustic scans over the volcano's summit using the ship's EM122 sonar. The water column data did not show obvious bubble plumes rising from the summit or any of the acoustic dropouts recorded during May 2010 multibeam surveys, the latter of which we interpreted as errors in the sound velocity profile induced by temperature/particle anomalies in the rising plume. Because we know that the volcano has cyclic activity and that gas bubbles would be relatively small at this depth (1200 m) and difficult to detect acoustically, our assessment is that the volcano appeared to have a reduced output of heat and gas during the one month observation period relative to the 2009

  13. Wide Angle View of Arsia Mons Volcano

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Arsia Mons (above) is one of the largest volcanoes known. This shield volcano is part of an aligned trio known as the Tharsis Montes--the others are Pavonis Mons and Ascraeus Mons. Arsia Mons is rivaled only by Olympus Mons in terms of its volume. The summit of Arsia Mons is more than 9 kilometers (5.6 miles) higher than the surrounding plains. The crater--or caldera--at the volcano summit is approximately 110 km (68 mi) across. This view of Arsia Mons was taken by the red and blue wide angle cameras of the Mars Global Surveyor Mars Orbiter Camera (MOC) system. Bright water ice clouds (the whitish/bluish wisps) hang above the volcano--a common sight every martian afternoon in this region. Arsia Mons is located at 120o west longitude and 9o south latitude. Illumination is from the left.

  14. A field guide to Newberry Volcano, Oregon

    USGS Publications Warehouse

    Jenson, Robert A.; Donnelly-Nolan, Julie M.; McKay, Daniele

    2009-01-01

    Newberry Volcano is located in central Oregon at the intersection of the Cascade Range and the High Lava Plains. Its lavas range in age from ca. 0.5 Ma to late Holocene. Erupted products range in composition from basalt through rhyolite and cover ~3000 km2. The most recent caldera-forming eruption occurred ~80,000 years ago. This trip will highlight a revised understanding of the volcano's history based on new detailed geologic work. Stops will also focus on evidence for ice and flooding on the volcano, as well as new studies of Holocene mafic eruptions. Newberry is one of the most accessible U.S. volcanoes, and this trip will visit a range of lava types and compositions including tholeiitic and calc-alkaline basalt flows, cinder cones, and rhyolitic domes and tuffs. Stops will include early distal basalts as well as the youngest intracaldera obsidian flow.

  15. Growth and collapse of the Reunion Island volcanoes

    NASA Astrophysics Data System (ADS)

    Oehler, Jean-François; Lénat, Jean-François; Labazuy, Philippe

    2008-04-01

    This work presents the first exhaustive study of the entire surface of the Reunion Island volcanic system. The focus is on the submarine part, for which a compilation of all multibeam data collected during the last 20 years has been made. Different types of submarine features have been identified: a coastal shelf, debris avalanches and sedimentary deposits, erosion canyons, volcanic constructions near the coast, and seamounts offshore. Criteria have been defined to differentiate the types of surfaces and to establish their relative chronology where possible. Debris avalanche deposits are by far the most extensive and voluminous formations in the submarine domain. They have built four huge Submarine Bulges to the east, north, west, and south of the island. They form fans 20-30 km wide at the coastline and 100-150 km wide at their ends, 70-80 km offshore. They were built gradually by the superimposition and/or juxtaposition of products moved during landslide episodes, involving up to several hundred cubic kilometers of material. About 50 individual events deposits can be recognized at the surface. The landslides have recurrently dismantled Piton des Neiges, Les Alizés, and Piton de La Fournaise volcanoes since 2 Ma. About one third are interpreted as secondary landslides, affecting previously emplaced debris avalanche deposits. On land, landslide deposits are observed in the extensively eroded central area of Piton des Neiges and in its coastal areas. Analysis of the present-day topography and of geology allows us to identify presumed faults and scars of previous large landslides. The Submarine Bulges are dissected and bound by canyons up to 200 m deep and 40 km long, filled with coarse-grained sediments, and generally connected to streams onshore. A large zone of sedimentary accumulation exists to the north-east of the island. It covers a zone 20 km in width, extending up to 15 km offshore. Volcanic constructions are observed near the coast on both Piton des Neiges

  16. Multibeam Bathymetry of Haleakala Volcano, Maui

    NASA Astrophysics Data System (ADS)

    Eakins, B. W.; Robinson, J.

    2002-12-01

    The submarine northeast flank of Haleakala Volcano, Maui was mapped in detail during the summers of 2001 and 2002 by a joint team from the Japan Marine Science and Technology Center (JAMSTEC), Tokyo Institute of Technology, University of Hawaii, and the U.S. Geological Survey. JAMSTEC instruments used included SeaBeam 2112 hull-mounted multibeam sonar (bathymetry and sidescan imagery), manned submersible Shinkai 6500 and ROV Kaiko (bottom video, photographs and sampling of Hana Ridge), gravimeter, magnetometer, and single-channel seismic system. Hana Ridge, Haleakala's submarine east rift zone, is capped by coral-reef terraces for much of its length, which are flexurally tilted towards the axis of the Hawaiian Ridge and delineate former shorelines. Its deeper, more distal portion exhibits a pair of parallel, linear crests, studded with volcanic cones, that suggest lateral migration of the rift zone during its growth. The northern face of the arcuate ridge terminus is a landslide scar in one of these crests, while its southwestern prong is a small, constructional ridge. The Hana slump, a series of basins and ridges analogous to the Laupahoehoe slump off Kohala Volcano, Hawaii, lies north of Hana Ridge and extends down to the Hawaiian moat. Northwest of this slump region a small, dual-crested ridge strikes toward the Hawaiian moat and is inferred to represent a fossil rift zone, perhaps of East Molokai Volcano. A sediment chute along its southern flank has built a large submarine fan with a staircase of contour-parallel folds on its surface that are probably derived from slow creep of sediments down into the moat. Sediments infill the basins of the Hana slump [Moore et al., 1989], whose lowermost layers have been variously back-tilted by block rotation during slumping and flexural loading of the Hawaiian Ridge; the ridges define the outer edges of those down-dropped blocks, which may have subsided several kilometers. An apron of volcaniclastic debris shed from

  17. Volcanoes: Nature's Caldrons Challenge Geochemists.

    ERIC Educational Resources Information Center

    Zurer, Pamela S.

    1984-01-01

    Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…

  18. [Radionuclides 90Sr and 137Cs in the benthos near the nuclear submarine "Komsomolets"].

    PubMed

    Kuznetsov, A P; Shmelev, I P; Demidov, A M; Efimov, B V; Shubko, V M

    1999-01-01

    We have analyzed the content of radionuclides 90Sr and 137Cs in the benthofauna and deposits near the nuclear submarine "Komsomolets." Analysis was performed on the basis of the materials of the 31st (1993) and 36th (1995) voyages of R/V "Akademik Mstislav Keldysh" in correspondence with the system of monitoring the state of the abiotic and biotic situation near the nuclear submarine "Komsomolets" (Norwegian Sea). Whereas during the 33rd voyage of this vessel (1994) the content of these elements in the benthic animals at stations located close to the submarine somewhat exceeded the background level of radioactivity (Kuznetsov et al., 1996), no such excess was found during the 31st and 36th voyages. Meanwhile, radioactive cobalt (60Co) was found in representatives of three groups of animals during the 31st voyage at two stations located near the submarine. PMID:10188365

  19. Explorations of Mariana Arc Volcanoes Reveal New Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Baker, E. T.; Chadwick, W. W., Jr.; Lupton, J. E.; Resing, J. A.; Massoth, G. J.; Nakamura, K.

    2004-01-01

    Some 20,000 km of volcanic arcs, roughly one-third the length of the global mid-ocean ridge (MOR) system, rim the western Pacific Ocean. Compared to 25 years of hydrothermal investigations along MORs, exploration of similar activity on the estimated ~600 submarine arc volcanoes is only beginning [Ishibashi and Urabe, 1995; De Ronde et al., 2003]. To help alleviate this under-sampling, the R/V T. G. Thompson was used in early 2003 (9 February to 5 March) to conduct the first complete survey of hydrothermal activity along 1200 km of the Mariana intra-oceanic volcanic arc. This region includes both the Territory of Guam and the Commonwealth of the Northern Mariana Islands. The expedition mapped over 50 submarine volcanoes with stunning new clarity (Figures 1 and 2) and found active hydrothermal discharge at 12 sites, including the southern back-arc site. This includes eight new sites along the arc (West Rota, Northwest Rota, E. Diamante, Zealandia Bank, Maug Caldera, Ahyi, Daikoku, and Northwest Eifuku) and four sites of previously known hydrothermal activity (Seamount X, Esmeralda, Kasuga 2, and Nikko) (Figures 1 and 2). The mapping also fortuitously provided a ``before'' image of the submarine flanks of Anatahan Island, which had its first historical eruption on 10 May 2003 (Figures 1 and 3).

  20. Submarine geothermal resources

    USGS Publications Warehouse

    Williams, D.L.

    1976-01-01

    Approximately 20% of the earth's heat loss (or 2 ?? 1012 cal/s) is released through 1% of the earth's surface area and takes the form of hydrothermal discharge from young (Pleistocene or younger) rocks adjacent to active seafloor-spreading centers and submarine volcanic areas. This amount is roughly equivalent to man's present gross energy consumption rate. A sub-seafloor geothermal reservoir, to be exploitable under future economic conditions, will have to be hot, porous, permeable, large, shallow, and near an energy-deficient, populated land mass. Furthermore, the energy must be recoverable using technology achievable at a competitive cost and numerous environmental, legal and institutional problems will have to be overcome. The highest-temperature reservoirs should be found adjacent to the zones of the seafloor extension or volcanism that are subject to high sedimentation rates. The relatively impermeable sediments reduce hydrothermal-discharge flow rates, forcing the heat to be either conducted away or released by high-temperature fluids, both of which lead to reservoir temperatures that can exceed 300??C. There is evidence that the oceanic crust is quite permeable and porous and that it was amenable to deep (3-5 km) penetration by seawater at least some time in the early stages of its evolution. Most of the heat escapes far from land, but there are notable exceptions. For example, in parts of the Gulf of California, thermal gradients in the bottom sediments exceed 1??C/m. In the coastal areas of the Gulf of California, where electricity and fresh water are at a premium, this potential resource lies in shallow water (< 200 m) and within sight of land. Other interesting areas include the Sea of Japan, the Sea of Okhotsk and the Andaman Sea along the margins of the western Pacific, the Tyrrhenian Sea west of Italy, and the southern California borderland and west flank of the Juan de Fuca Ridge off the west coast of the United States. Many questions remain to be

  1. How volcano monitoring in New Zealand can contribute to a global volcano dataset: The GeoNet Project

    NASA Astrophysics Data System (ADS)

    Jolly, G. E.; Scott, B.

    2009-12-01

    Volcanism plays an important role in New Zealand. Much of the landscape of the central North Island owes its shape to volcanism, with the soils supporting forestry and farming economies, geothermal systems providing renewable electricity production and the spectacular landscape supporting tourism and adventure. However volcanism also has it disadvantages: eruptive activity brings physical damage and economic losses and, sometimes, tragically the loss of life. Historically, in New Zealand, volcanoes represent the largest single source of fatalities from natural disasters. To better mitigate the hazard from New Zealand’s volcanoes, a multidisciplinary approach is applied. In 2001 the NZ Earthquake Commission (EQC) commenced funding the GeoNet project, providing the first totally national modern geological hazard monitoring system in New Zealand. The GeoNet project is responsibly for monitoring and assessing all of the active volcanoes (and other geological hazards) in New Zealand. The volcano monitoring programme is integrated into the national seismograph and geodetic networks. The volcano monitoring covers active volcanic cones, resting calderas, volcanic fields, and submarine volcanoes. Monitoring techniques include volcano seismology, geodesy, gas and water chemistry, remote sensing and other geophysical techniques, producing a wide variety of data sets, with both temporal and spatial distribution. These data sets form the basis for detailed research to achieve in depth understanding of these volcanoes and will contribute to the global knowledge of volcanic processes. However to achieve this the data sets need to be accessible by a range of end users, so that they can be used to underpin fundamental research and applied hazard assessments. This presentation will outline the NZ data sets and the problems of presenting and sharing them globally.

  2. Galactic Super Volcano Similar to Iceland Volcano

    NASA Video Gallery

    This composite image from NASAs Chandra X-ray Observatory with radio data from the Very Large Array shows a cosmic volcano being driven by a black hole in the center of the M87 galaxy. This eruptio...

  3. Clay alteration of volcaniclastic material in a submarine geothermal system, Bay of Plenty, New Zealand

    NASA Astrophysics Data System (ADS)

    Hocking, Michael W. A.; Hannington, Mark D.; Percival, Jeanne B.; Stoffers, Peter; Schwarz-Schampera, Ulrich; de Ronde, C. E. J.

    2010-04-01

    The Calypso Hydrothermal Vent Field (CHVF) is located along an offshore extension of the Taupo Volcanic Zone (TVZ), an area of abundant volcanism and geothermal activity on the North Island of New Zealand. The field occurs within a northeast-trending submarine depression on the continental shelf approximately 10-15 km southwest of the White Island volcano in the Bay of Plenty. The graben has been partially filled by tephra from regional subaerial volcanic eruptions, and active hydrothermal venting occurs at several locations along its length. The vents occur at water depths of 160 to 190 m and have temperatures up to 201 °C. Recovered samples from the vent field include variably cemented and veined volcaniclastic sediments containing an assemblage of clay minerals, amorphous silica, barite, As-Sb-Hg sulfides, and abundant native sulfur. The volcanic glass has been altered primarily to montmorillonite and mixed-layer illite-montmorillonite; illite, and possibly minor talc and mixed-layer chlorite-smectite or chlorite-vermiculite are also present. A hydrothermal versus diagenetic origin for the smectite is indicated by the presence of both illite and mixed-layer clays and by the correlation between the abundance of clay minerals and the abundance of native sulfur in the samples. The mineralization and alteration of the volcanic host rocks are similar to that observed in near-neutral pH geothermal systems on land in the TVZ (e.g., Broadlands-Ohaaki). However, the clay minerals in the CHVF have a higher concentration of Mg in the dioctahedral layer and a higher interlayer Na content than clay minerals from Broadlands-Ohaaki, reflecting the higher concentrations of Mg and Na in seawater compared to meteoric water. Minerals formed at very low pH (e.g., kaolinite and alunite), typical of steam-heated acid-sulfate type alteration in the TVZ geothermal environment, were not found. Mixing with seawater likely prevented the formation of such low-pH mineral assemblages. The

  4. Soufriere Hills Volcano

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this ASTER image of Soufriere Hills Volcano on Montserrat in the Caribbean, continued eruptive activity is evident by the extensive smoke and ash plume streaming towards the west-southwest. Significant eruptive activity began in 1995, forcing the authorities to evacuate more than 7,000 of the island's original population of 11,000. The primary risk now is to the northern part of the island and to the airport. Small rockfalls and pyroclastic flows (ash, rock and hot gases) are common at this time due to continued growth of the dome at the volcano's summit.

    This image was acquired on October 29, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is

  5. Volcanoes, Observations and Impact

    NASA Astrophysics Data System (ADS)

    Thurber, Clifford; Prejean, Stephanie

    Volcanoes are critical geologic hazards that challenge our ability to make long-term forecasts of their eruptive behaviors. They also have direct and indirect impacts on human lives and society. As is the case with many geologic phenomena, the time scales over which volcanoes evolve greatly exceed that of a human lifetime. On the other hand, the time scale over which a volcano can move from inactivity to eruption can be rather short: months, weeks, days, and even hours. Thus, scientific study and monitoring of volcanoes is essential to mitigate risk. There are thousands of volcanoes on Earth, and it is impractical to study and implement ground-based monitoring at them all. Fortunately, there are other effective means for volcano monitoring, including increasing capabilities for satellite-based technologies.

  6. The Volcano Adventure Guide

    NASA Astrophysics Data System (ADS)

    Goff, Fraser

    2005-05-01

    Adventure travels to volcanoes offer chance encounters with danger, excitement, and romance, plus opportunities to experience scientific enlightenment and culture. To witness a violently erupting volcano and its resulting impacts on landscape, climate, and humanity is a powerful personal encounter with gigantic planetary forces. To study volcano processes and products during eruptions is to walk in the footsteps of Pliny himself. To tour the splendors and horrors of 25 preeminent volcanoes might be the experience of a lifetime, for scientists and nonscientists alike. In The Volcano Adventure Guide, we now have the ultimate tourist volume to lead us safely to many of the world's famous volcanoes and to ensure that we will see the important sites at each one.

  7. Volcanoes: observations and impact

    USGS Publications Warehouse

    Thurber, Clifford; Prejean, Stephanie G.

    2012-01-01

    Volcanoes are critical geologic hazards that challenge our ability to make long-term forecasts of their eruptive behaviors. They also have direct and indirect impacts on human lives and society. As is the case with many geologic phenomena, the time scales over which volcanoes evolve greatly exceed that of a human lifetime. On the other hand, the time scale over which a volcano can move from inactivity to eruption can be rather short: months, weeks, days, and even hours. Thus, scientific study and monitoring of volcanoes is essential to mitigate risk. There are thousands of volcanoes on Earth, and it is impractical to study and implement ground-based monitoring at them all. Fortunately, there are other effective means for volcano monitoring, including increasing capabilities for satellite-based technologies.

  8. An ongoing large submarine landslide at the Japan trench

    NASA Astrophysics Data System (ADS)

    Nitta, S.; Kasaya, T.; Miura, S.; Kawamura, K.

    2013-12-01

    This paper deals with an active submarine landslide on a landward trench slope in the Japan trench. Studied area is located on the upper terrace ranging from 400 to 1200 m in water depth, off Sendai, northeast Japan. We have surveyed in detail the seabed topography using a multi narrow beam (hereafter MBES) and a subbottom profiler (hereafter SBP) during the cruise MR12-E02 of R/V Mirai. The survey lines were 12 lines in N-S, and 3 lines in E-W, and situated in the region from 141°45'E, 37°40'N to 142°33'E, 38°32'N. Moreover, we used multi-channel seismic profile by the cruise KR04-10 of R/V Kairei in the interpretation of the SBP results. In general, horseshoe-shaped depressions of about 100 km wide along the trench slope are arrayed along the Japan trench. It has thought that they were formed by large submarine landslides, but we could not understand critically the relationship between the depressions and the submarine landslides. Based on the survey results, we found signals of an active submarine landslide in the depression as follows. 1) We observed arcuate-shaped lineaments, which are sub-parallel to a horseshoe-shaped depression. The lineaments concentrate in the south region from 38°N at about 20 km wide. These lineaments are formed by deformation structures as anticlines, synclines and normal fault sense displacements. 2) Most of the synclines and anticlines are not buried to form the lineaments. 3) Normal faults cutting about 1 km deep are observed in a multi-channel seismic profile. The normal faults are located just below the arcuate-shaped lineaments, and are tilted eastward being the downslope direction. It indicates a large submarine landslide. We concluded that the arcuate-shaped lineaments were generated by surface sediment movement with the submarine landsliding. We think that the submarine landslide of about 20 km wide and about 1 km thick move continuously down the landward trench slope. This would be the formation process of the horseshoe

  9. Decreasing Magmatic Footprints of Individual Volcanos in a Waning Basaltic Field

    SciTech Connect

    G.A> Valentine; F.V. Perry

    2006-06-06

    The distribution and characteristics of individual basaltic volcanoes in the waning Southwestern Nevada Volcanic Field provide insight into the changing physical nature of magmatism and the controls on volcano location. During Pliocene-Pleistocene times the volumes of individual volcanoes have decreased by more than one order of magnitude, as have fissure lengths and inferred lava effusion rates. Eruptions evolved from Hawaiian-style eruptions with extensive lavas to eruptions characterized by small pulses of lava and Strombolian to violent Strombolian mechanisms. These trends indicate progressively decreasing partial melting and length scales, or magmatic footprints, of mantle source zones for individual volcanoes. The location of each volcano is determined by the location of its magmatic footprint at depth, and only by shallow structural and topographic features that are within that footprint. The locations of future volcanoes in a waning system are less likely to be determined by large-scale topography or structures than were older, larger volume volcanoes.

  10. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2002

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sánchez, John; Estes, Steve; McNutt, Stephen R.; Paskievitch, John

    2003-01-01

    an EARTHWORM detection system. AVO located 7430 earthquakes during 2002 in the vicinity of the monitored volcanoes. This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of velocity models used for earthquake locations; (4) a summary of earthquakes located in 2002; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2002.The AVO seismic network was used to monitor twenty-four volcanoes in real time in 2002. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). Monitoring highlights in 2002 include an earthquake swarm at Great Sitkin Volcano in May-June; an earthquake swarm near Snowy Mountain in July-September; low frequency (1-3 Hz) tremor and long-period events at Mount Veniaminof in September-October and in December; and continuing volcanogenic seismic swarms at Shishaldin Volcano throughout the year. Instrumentation and data acquisition highlights in 2002 were the installation of a subnetwork on Okmok Volcano, the establishment of telemetry for the Mount Veniaminof subnetwork, and the change in the data acquisition system to an EARTHWORM detection system. AVO located 7430 earthquakes during 2002 in the vicinity of the monitored volcanoes.This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a

  11. Yellowstone Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Lowenstern, Jacob

    2008-01-01

    Eruption of Yellowstone's Old Faithful Geyser. Yellowstone hosts the world's largest and most diverse collection of natural thermal features, which are the surface expression of magmatic heat at shallow depths in the crust. The Yellowstone system is monitored by the Yellowstone Volcano Observatory (YVO), a partnership among the U.S. Geological Survey (USGS), Yellowstone National Park, and the University of Utah. YVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Yellowstone and YVO at http://volcanoes.usgs.gov/yvo.

  12. Mud volcanoes on Mars?

    NASA Technical Reports Server (NTRS)

    Komar, Paul D.

    1991-01-01

    The term mud volcano is applied to a variety of landforms having in common a formation by extrusion of mud from beneath the ground. Although mud is the principal solid material that issues from a mud volcano, there are many examples where clasts up to boulder size are found, sometimes thrown high into the air during an eruption. Other characteristics of mud volcanoes (on Earth) are discussed. The possible presence of mud volcanoes, which are common and widespread on Earth, on Mars is considered.

  13. Monitoring El Hierro submarine volcanic eruption events with a submarine seismic array

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Molino, Erik; Lopez, Carmen

    2013-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2012 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. From the beginning of the eruption a geophone string was installed less than 2 km away from the new volcano, next to La Restinga village shore, to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. The analysis of the dataset using spectral techniques allows the characterization of the different phases of the eruption and the study of its dynamics. The correlation of the data analysis results with the observed sea surface activity (ash and lava emission and degassing) and also with the seismic activity recorded by the IGN field seismic monitoring system, allows the identification of different stages suggesting the existence of different signal sources during the volcanic eruption and also the posteruptive record of the degassing activity. The study shows that the high frequency capability of the geophone array allow the study of important features that cannot be registered by the standard seismic stations. The accumulative spectral amplitude show features related to eruptive changes.

  14. Cladistic analysis applied to the classification of volcanoes

    NASA Astrophysics Data System (ADS)

    Hone, D. W. E.; Mahony, S. H.; Sparks, R. S. J.; Martin, K. T.

    2007-11-01

    and evolutionary volcanic processes. Cladistics may also have utility in hazards assessment where spatial distributions and robust definitions of a volcano are important, as in locating sensitive facilities such as nuclear reactors and repositories.

  15. 30. VIEW OF PHOTO CAPTIONED 'SUBMARINE BASE, NEW LONDON, CONNECTICUT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. VIEW OF PHOTO CAPTIONED 'SUBMARINE BASE, NEW LONDON, CONNECTICUT. 2 JUNE 1930. SUBMARINE TRAINING TANK - STEELWORK 98% COMPLETE; BRICKWORK 95% COMPLETE, PIPING 10% IN PLACE. LOOKING NORTH. CONTRACT NO. Y-1539-ELEVATOR, SUBMARINE ESCAPE TANK.' - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  16. Volcano Deformation and Modeling on Active Volcanoes in the Philippines from ALOS InSAR Time Series

    NASA Astrophysics Data System (ADS)

    Morales Rivera, Anieri M.; Amelung, Falk; Eco, Rodrigo

    2015-05-01

    Bulusan, Kanlaon, and Mayon volcanoes have erupted over the last decade, and Taal caldera showed signs of volcanic unrest within the same time range. Eruptions at these volcanoes are a threat to human life and infrastructure, having over 1,000,000 people living within 10 km from just these 4 volcanic centers. For this reason, volcano monitoring in the Philippines is of extreme importance. We use the ALOS-1 satellite from the Japanese Aerospace Exploration Agency (JAXA) to make an InSAR time series analysis over Bulusan, Kanlaon, Mayon, and Taal volcanoes for the 2007-2011 period. Time-dependent deformation was detected at all of the volcanoes. Deformation related to changes in pressurization of the volcanic systems was found on Taal caldera and Bulusan volcanoes, with best fitting Mogi sources located at half-space depths of 3.07 km and 0.5 km respectively.

  17. Ambient Noise Tomography at Bezymianny Volcano, Kamchatka

    NASA Astrophysics Data System (ADS)

    Shuler, A. E.; Ekström, G.; West, M.; Senyukov, S.

    2008-12-01

    Bezymianny Volcano is an active stratovolcano located in the Kluychevskoy volcanic group on the Kamchatka Peninsula in eastern Russia. Since its dramatic sector collapse eruption in 1956, the volcano's activity has been characterized by nearly twice annual plinian eruptions accompanying ongoing lava-dome growth. Its frequent eruptions and similarity to Mt. St. Helens have made it the target of a multifaceted geologic and geophysical project supported by the NSF Partners in Research and Education (PIRE) program. Since mid- 2006, the volcano has been monitored by a broadband seismic array that is currently composed of 8 stations within 10 kilometers of the active dome. In this project, we use continuous data from these stations to investigate the static and dynamic structure of the volcano. Using methods similar to those used by Brenguier et al. (2007, 2008), we estimate the Green's function for each pair of stations by cross-correlating day-long time series of ambient noise. Paths with high signal-to-noise ratios can be used to estimate group velocity dispersion curves. From these measurements, we work towards constructing the first velocity model of this volcano. Furthermore, we begin to test whether measurements of ambient noise can be used to monitor changes inside the volcano prior to eruptive activity. These problems will continue to be addressed as more data becomes available in future field seasons.

  18. Preliminary Volcano-Hazard Assessment for Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Dorava, Joseph M.; Miller, Thomas P.; Neal, Christina A.; McGimsey, Robert G.

    1997-01-01

    Redoubt Volcano is a stratovolcano located within a few hundred kilometers of more than half of the population of Alaska. This volcano has erupted explosively at least six times since historical observations began in 1778. The most recent eruption occurred in 1989-90 and similar eruptions can be expected in the future. The early part of the 1989-90 eruption was characterized by explosive emission of substantial volumes of volcanic ash to altitudes greater than 12 kilometers above sea level and widespread flooding of the Drift River valley. Later, the eruption became less violent, as developing lava domes collapsed, forming short-lived pyroclastic flows associated with low-level ash emission. Clouds of volcanic ash had significant effects on air travel as they drifted across Alaska, over Canada, and over parts of the conterminous United States causing damage to jet aircraft. Economic hardships were encountered by the people of south-central Alaska as a result of ash fallout. Based on new information gained from studies of the 1989-90 eruption, an updated assessment of the principal volcanic hazards is now possible. Volcanic hazards from a future eruption of Redoubt Volcano require public awareness and planning so that risks to life and property are reduced as much as possible.

  19. Investigating the active hydrothermal field of Kolumbo Volcano using CTD profiling

    NASA Astrophysics Data System (ADS)

    Eleni Christopoulou, Maria; Mertzimekis, Theo; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Carey, Steve

    2014-05-01

    The submarine Kolumbo volcano NE of Santorini Island and the unique active hydrothermal vent field on its crater field (depth ~ 500 m) have been recently explored in multiple cruises aboard E/V Nautilus. ROV explorations showed the existence of extensive vent activity and almost completely absence of vent-specific macrofauna. Gas discharges have been found to be 99%-rich in CO2, which is sequestered at the bottom of the crater due to a special combination of physicochemical and geomorphological factors. The dynamic conditions existing along the water column in the crater have been studied in detail by means of temperature, salinity and conductivity depth profiles for the first time. CTD sensors aboard the ROV Hercules were employed to record anomalies in those parameters in an attempt to investigate several active and inactive vent locations. Temporal CTD monitoring inside and outside of the crater was carried out over a period of two years. Direct comparison between the vent field and locations outside the main cone, where no hydrothermal activity is known to exist, showed completely different characteristics. CTD profiles above the active vent field (NNE side) are correlated to Kolumbo's cone morphology. The profiles suggest the existence of four distinct zones of physicochemical properties in the water column. The layer directly above the chimneys exhibit gas discharges highly enriched in CO2. Continuous gas motoring is essential to identify the onset of geological hazards in the region.

  20. Volcano infrasound: A review

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey Bruce; Ripepe, Maurizio

    2011-09-01

    Exploding volcanoes, which produce intense infrasound, are reminiscent of the veritable explosion of volcano infrasound papers published during the last decade. Volcano infrasound is effective for tracking and quantifying eruptive phenomena because it corresponds to activity occurring near and around the volcanic vent, as opposed to seismic signals, which are generated by both surface and internal volcanic processes. As with seismology, infrasound can be recorded remotely, during inclement weather, or in the dark to provide a continuous record of a volcano's unrest. Moreover, it can also be exploited at regional or global distances, where seismic monitoring has limited efficacy. This paper provides a literature overview of the current state of the field and summarizes applications of infrasound as a tool for better understanding volcanic activity. Many infrasound studies have focused on integration with other geophysical data, including seismic, thermal, electromagnetic radiation, and gas spectroscopy and they have generally improved our understanding of eruption dynamics. Other work has incorporated infrasound into volcano surveillance to enhance capabilities for monitoring hazardous volcanoes and reducing risk. This paper aims to provide an overview of volcano airwave studies (from analog microbarometer to modern pressure transducer) and summarizes how infrasound is currently used to infer eruption dynamics. It also outlines the relative merits of local and regional infrasound surveillance, highlights differences between array and network sensor topologies, and concludes with mention of sensor technologies appropriate for volcano infrasound study.

  1. San Cristobal Volcano, Nicaragua

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A white plume of smoke, from San Cristobal Volcano (13.0N, 87.5W) on the western coast of Nicaragua, blows westward along the Nicaraguan coast just south of the Gulf of Fonseca and the Honduran border. San Csistobal is a strato volcano some 1,745 meters high and is frequently active.

  2. Submarine channel evolution linked to rising salt domes, Gulf of Mexico, USA

    NASA Astrophysics Data System (ADS)

    Carter, Rachel C.; Gani, M. Royhan; Roesler, Toby; Sarwar, Abu K. M.

    2016-08-01

    An examination of halokinetics and channel evolution together in a deepwater system provides an opportunity to investigate how submarine channel morphology is locally affected by rising salt domes. The study area is located in the northern Gulf of Mexico (GOM), directly off the Louisiana continental slope in a prominent salt dome region. The influence of salt growth on submarine channel evolution is relatively understudied, particularly in the GOM. Utilizing high-resolution 3D seismic and well data and seismic geomorphology techniques, a long-lived (~ 3 Myr) Plio-Pleistocene submarine channel system has been investigated to show a relationship between variable phases of salt motion and planform morphology of preserved submarine channels. Our data suggest that local salt motion acts as a driver for submarine channel evolution. During the late Pliocene, when salt moved upward at a relatively fast rate, channels show distinct entrenchment with narrow channel belts and overall less sinuosity. When salt motion slowed down at the beginning of the Pleistocene, channels aggraded rapidly with preserved levees, and moved toward an equilibrium state with the expansion of channel belt widths. As our results indicate, the rate of salt diapirism exerted a first-order control on channel location and morphology and distribution of reservoir-prone units. This study cautions against readily invoking allogenic factors (e.g., sea level and climate) in explaining changes in submarine channel behavior and associated fan sedimentation, particularly in regions with salt tectonics.

  3. Submarine landslides hazard offshore Israel

    NASA Astrophysics Data System (ADS)

    Katz, Oded

    2016-04-01

    Submarine landslides pose significant natural hazards. They can damage seafloor infrastructure, such as that used to recover oil and gas or seafloor telecommunication cables, and even generate tsunamis. We recently mapped 447 submarine landslides across the east Mediterranean continental slope, offshore Israel (hereafter the studied area). The mapped landslides are found at water depths of 130 m to 1,000 m and their volume ranges 10-5 - 100 km3. Landslide scars are typically related to a critical slope angle of >4° . Landslides at the northern part of the studied area are spatially associated with fault scarps and are smaller than the ones on the southern part. In this work we evaluate the potential hazard to population and to on- and off- shore facilities posed by submarine landslides across the studied area. We integrate three independent probabilities: (1) the probability for a landslide event of a given volume, based on the size distribution of the mapped landslides; (2) the probability for a landslide event in a given time, based on the reoccurrence time of triggering earthquakes with M >7, and on a 50,000 years general time frame derived from submarine landslides identified across the Mediterranean Sea; (3) the probability for a landslide event in a given area, based on the distribution of slopes exceeding the critical angle. Overall, the fraction of potentially destructive landslides (size > 0.1 km3) is small, 0.05. Thus, considering typical planning time scales of less than 100 years, the calculated hazard is only moderate. The small fraction of landslides with tsunamogenic potential (size > 1 km3), suggests that the hazard for landslide-induced tsunamis along the open slope part of the studied area is small. Landslides in the southern part of the studied area are larger and thus present a somewhat bigger potential source of tsunami waves.

  4. Northern Arizona Volcanoes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Northern Arizona is best known for the Grand Canyon. Less widely known are the hundreds of geologically young volcanoes, at least one of which buried the homes of local residents. San Francisco Mtn., a truncated stratovolcano at 3887 meters, was once a much taller structure (about 4900 meters) before it exploded some 400,000 years ago a la Mt. St. Helens. The young cinder cone field to its east includes Sunset Crater, that erupted in 1064 and buried Native American homes. This ASTER perspective was created by draping ASTER image data over topographic data from the U.S. Geological Survey National Elevation Data.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 20.4 by 24.6 kilometers (12.6 by 15.2 miles) Location: 35.3 degrees North latitude, 111

  5. 34. VIEW OF SUBMARINE ESCAPE TRAINING TANK PRIOR TO ADDITION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. VIEW OF SUBMARINE ESCAPE TRAINING TANK PRIOR TO ADDITION OF BLISTERS IN 1959, LOOKING SOUTHEAST - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  6. Saga is largest commercial submarine ever

    SciTech Connect

    Not Available

    1985-05-01

    The long-range autonomous submarine, Saga, went nuclear last year with an agreement between the French and two Canadian companies. The agreement to convert the prototype from Swedish Stirling closed-cycle combustion engines to a nuclear power supply will make Saga the first non-defense nuclear submarine. With an external hull displacement of 500 tons, Saga will be the largest commercial submarine ever built.

  7. Russian nuclear-powered submarine decommissioning

    SciTech Connect

    Bukharin, O.; Handler, J.

    1995-11-01

    Russia is facing technical, economic and organizational difficulties in dismantling its oversized and unsafe fleet of nuclear powered submarines. The inability of Russia to deal effectively with the submarine decommissioning crisis increases the risk of environmental disaster and may hamper the implementation of the START I and START II treaties. This paper discusses the nuclear fleet support infrastructure, the problems of submarine decommissioning, and recommends international cooperation in addressing these problems.

  8. Gravity model studies of Newberry Volcano, Oregon

    SciTech Connect

    Gettings, M.E.; Griscom, A.

    1988-09-10

    Newberry, Volcano, a large Quaternary volcano located about 60 km east of the axis of the High Cascades volcanoes in central Oregon, has a coincident positive residual gravity anomaly of about 12 mGals. Model calculations of the gravity anomaly field suggest that the volcano is underlain by an intrusive complex of mafic composition of about 20-km diameter and 2-km thickness, at depths above 4 km below sea level. However, uplifted basement in a northwest trending ridge may form part of the underlying excess mass, thus reducing the volume of the subvolcanic intrusive. A ring dike of mafic composition is inferred to intrude to near-surface levels along the caldera ring fractures, and low-density fill of the caldera floor probably has a thickness of 0.7--0.9 km. The gravity anomaly attributable to the volcano is reduced to the east across a north-northwest trending gravity anomaly gradient through Newberry caldera and suggests that normal, perhaps extensional, faulting has occurred subsequent to caldera formation and may have controlled the location of some late-stage basaltic and rhyolitic eruptions. Significant amounts of felsic intrusive material may exist above the mafic intrusive zone but cannot be resolved by the gravity data.

  9. Mud volcanoes of the Orinoco Delta, Eastern Venezuela

    USGS Publications Warehouse

    Aslan, A.; Warne, A.G.; White, W.A.; Guevara, E.H.; Smyth, R.C.; Raney, J.A.; Gibeaut, J.C.

    2001-01-01

    Mud volcanoes along the northwest margin of the Orinoco Delta are part of a regional belt of soft sediment deformation and diapirism that formed in response to rapid foredeep sedimentation and subsequent tectonic compression along the Caribbean-South American plate boundary. Field studies of five mud volcanoes show that such structures consist of a central mound covered by active and inactive vents. Inactive vents and mud flows are densely vegetated, whereas active vents are sparsely vegetated. Four out of the five mud volcanoes studied are currently active. Orinoco mud flows consist of mud and clayey silt matrix surrounding lithic clasts of varying composition. Preliminary analysis suggests that the mud volcano sediment is derived from underlying Miocene and Pliocene strata. Hydrocarbon seeps are associated with several of the active mud volcanoes. Orinoco mud volcanoes overlie the crest of a mud-diapir-cored anticline located along the axis of the Eastern Venezuelan Basin. Faulting along the flank of the Pedernales mud volcano suggests that fluidized sediment and hydrocarbons migrate to the surface along faults produced by tensional stresses along the crest of the anticline. Orinoco mud volcanoes highlight the proximity of this major delta to an active plate margin and the importance of tectonic influences on its development. Evaluation of the Orinoco Delta mud volcanoes and those elsewhere indicates that these features are important indicators of compressional tectonism along deformation fronts of plate margins. ?? 2001 Elsevier Science B.V. All rights reserved.

  10. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink.

    PubMed

    Niemann, Helge; Lösekann, Tina; de Beer, Dirk; Elvert, Marcus; Nadalig, Thierry; Knittel, Katrin; Amann, Rudolf; Sauter, Eberhard J; Schlüter, Michael; Klages, Michael; Foucher, Jean Paul; Boetius, Antje

    2006-10-19

    Mud volcanism is an important natural source of the greenhouse gas methane to the hydrosphere and atmosphere. Recent investigations show that the number of active submarine mud volcanoes might be much higher than anticipated (for example, see refs 3-5), and that gas emitted from deep-sea seeps might reach the upper mixed ocean. Unfortunately, global methane emission from active submarine mud volcanoes cannot be quantified because their number and gas release are unknown. It is also unclear how efficiently methane-oxidizing microorganisms remove methane. Here we investigate the methane-emitting Haakon Mosby Mud Volcano (HMMV, Barents Sea, 72 degrees N, 14 degrees 44' E; 1,250 m water depth) to provide quantitative estimates of the in situ composition, distribution and activity of methanotrophs in relation to gas emission. The HMMV hosts three key communities: aerobic methanotrophic bacteria (Methylococcales), anaerobic methanotrophic archaea (ANME-2) thriving below siboglinid tubeworms, and a previously undescribed clade of archaea (ANME-3) associated with bacterial mats. We found that the upward flow of sulphate- and oxygen-free mud volcano fluids restricts the availability of these electron acceptors for methane oxidation, and hence the habitat range of methanotrophs. This mechanism limits the capacity of the microbial methane filter at active marine mud volcanoes to <40% of the total flux. PMID:17051217

  11. Seismic unrest at Katla Volcano- southern Iceland

    NASA Astrophysics Data System (ADS)

    jeddi, zeinab; Tryggvason, Ari; Gudmundsson, Olafur; Bödvarsson, Reynir; SIL Seismology Group

    2014-05-01

    Katla volcano is located on the propagating Eastern Volcanic Zone (EVZ) in South Iceland. It is located beneath Mýrdalsjökull ice-cap which covers an area of almost 600 km2, comprising the summit caldera and the eruption vents. 20 eruptions between 930 and 1918 with intervals of 13-95 years are documented at Katla which is one of the most active subglacial volcanoes in Iceland. Eruptions at Katla are mainly explosive due to the subglacial mode of extrusion and produce high eruption columns and catastrophic melt water floods (jökulhlaups). The present long Volcanic repose (almost 96 years) at Katla, the general unrest since 1955, and the 2010 eruption of the neighbouring Eyjafjallajökull volcano has prompted concerns among geoscientists about an imminent eruption. Thus, the volcano has been densely monitored by seismologists and volcanologists. The seismology group of Uppsala University as a partner in the Volcano Anatomy (VA) project in collaboration with the University of Iceland and the Icelandic Meteorological Office (IMO) installed 9 temporary seismic stations on and around the Mýrdalsjökull glacier in 2011. Another 10 permanent seismic stations are operated by IMO around Katla. The project's data collection is now finished and temporary stations were pulled down in August 2013. According to seismicity maps of the whole recording period, thousands of microearthquakes have occurred within the caldera region. At least three different source areas are active in Katla: the caldera region, the western Godaland region and a small cluster at the southern rim of Mýrdalsjökull near the glacial stream of Hafursarjökull. Seismicity in the southern flank has basically started after June 2011. The caldera events are mainly volcano-tectonic, while western and southern events are mostly long period (lp) and can be related to glacial or magmatic movement. One motivation of the VA Katla project is to better understand the physical mechanism of these lp events. Changes

  12. Shiveluch Volcano, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2001-01-01

    On the night of June 4, 2001, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) captured this thermal image of the erupting Shiveluch volcano. Located on Russia's Kamchatka Peninsula, Shiveluch rises to an altitude of 2,447 meters (8,028 feet). The active lava dome complex is seen as a bright (hot) area on the summit of the volcano. To the southwest, a second hot area is either a debris avalanche or hot ash deposit. Trailing to the west is a 25-kilometer (15-mile) ash plume, seen as a cold 'cloud' streaming from the summit. At least 60 large eruptions have occurred here during the last 10,000 years; the largest historical eruptions were in 1854 and 1964.

    Because Kamchatka is located along the major aircraft routes between North America/Europe and Asia, this area is constantly monitored for potential ash hazards to aircraft. The area is part of the 'Ring of Fire,' a string of volcanoes that encircles the Pacific Ocean.

    The lower image is the same as the upper, except it has been color-coded: red is hot, light greens to dark green are progressively colder, and gray/black are the coldest areas.

    The image is located at 56.7 degrees north latitude, 161.3 degrees east longitude.

    ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

  13. The Giant Submarine Alika Debris Slide, Mauna Loa, Hawaii

    NASA Astrophysics Data System (ADS)

    Lipman, Peter W.; Normark, William R.; Moore, James G.; Wilson, John B.; Gutmacher, Christina E.

    1988-05-01

    A 4000-km2 area of submarine slump and slide deposits along the west flank of Mauna Loa volcano has been mapped with GLORIA side-scan sonar images, seismic reflection profiles, and new bathymetry. The youngest deposits are two debris avalanche lobes that travelled from their breakaway area near the present shoreline as much as 100 km into the Hawaiian Deep at water depths of 4800 m. The two lobes partly overlap and together are designated the Alika slide. They were derived from the same source area and probably formed in rapid succession. Distinction hummocky topography, marginal levees, and other features on lower slopes (0.3°-0.6°) of these deposits resemble subaerial volcanic debris avalanche deposits such as 1980 Mount St. Helens and suggest high emplacement velocities. The breakaway area for the Alika slide (10°-15° slopes) is characterized by large block slumps, bounded by normal faults, that probably represent multiple subsidence events before, during, and after the debris avalanches. Lower slopes of the slide contain distinctive lobate-terraced deposits that are interpreted as having been emplaced more slowly, prior to the debris avalanches. Estimated thicknesses of 50-200 m suggest volumes of 200-600 km3 for the two lobes. The combined volume of the entire slide and slump terrane is probably 1500-2000 km3. The slide deposits predate a 13-ka coral reef and probably postdate the block-faulted Ninole Basalt, roughly dated as a few hundred thousand years old. The Alika slide, or a similar deposit recognized on GLORIA images further north along the Hawaiian Ridge, probably triggered a giant wave that washed 325 m high on Lanai at about 100 ka. Slumping on Mauna Loa has been most intense adjacent to the large arcuate bend in its southwest rift zone, as the rift zone migrated westward away from the growing Kilauea volcano. Slumping events were probably triggered by seismic activity accompanying dike injection along the rift zone. Such massive slumps

  14. Deformation microstructures and timing of a large submarine landslide drilled offshore Martinique (IODP Exp. 340)

    NASA Astrophysics Data System (ADS)

    Guyard, H.; Le Friant, A.; Brunet, M.; Boudon, G.; Emmanuel, L.; Caron, B.; Villemant, B.; Feuillet, N.

    2015-12-01

    Flank-instabilities constitute a recurrent process in the long-term evolution of many volcanoes. A very large submarine landslide deposit (~2100 km2, ~300 km3) drilled southwest Martinique island during the IODP Exp. 340 in 2012 is likely associated with one (or more) major volcanic flank collapse of Mount Pelée during the Late Pleistocene. A recent study revealed that this D1/D2 deposit is emergent in its central part, frontally confined, and mainly comprises remobilized seafloor sediments rather than debris avalanche material from the volcanic edifice (Brunet et al., subm). Here, we investigate the sedimentary microstructures and timing of deformation from the central (Hole 1400B, ~37 km from the coastline) and distal (Hole 1399A, ~70 km from the coastline) units of the D1/D2 deposit, in order to better understand the emplacement dynamics of such potentially tsunamigenic submarine landslides. High resolution CT-Scan analyses were continuously performed on more than 300 m of sediment cores, in order to characterize and distinguish the internal architecture and the complex deformation features of the sediments at each drilling site. The establishment of the stratigraphy, based on δ18O measurements and AMS 14C dating, is still in progress and may confirm the possible link between the submarine landslide deposits and the flank collapse scars observed on the subaerial part of Martinique. These new insights into the timing and emplacement processes of this large submarine landslide will have important implications for tsunami hazards. ReferenceBrunet, M., Le Friant, A., Boudon, G., Lafuerza, S., Talling, P., Hornbach, M., Lebas, E., Guyard, H., and IODP Expedition 340 science party, submitted. Composition, geometry and emplacement dynamics of a large volcanic island landslide offshore Martinique: from volcano flank-collapse to seafloor sediment failure? Geochemistry, Geophysics, Geosystems.

  15. Nitrogen biogeochemistry of submarine groundwater discharge

    USGS Publications Warehouse

    Kroeger, K.D.; Charette, M.A.

    2008-01-01

    To investigate the role of the seepage zone in transport, chemical speciation, and attenuation of nitrogen loads carried by submarine groundwater discharge, we collected nearshore groundwater samples (n = 328) and examined the distribution and isotopic signature (??15N) of nitrate and ammonium. In addition, we estimated nutrient fluxes from terrestrial and marine groundwater sources. We discuss our results in the context of three aquifer zones: a fresh groundwater zone, a shallow salinity transition zone (STZ), and a deep STZ. Groundwater plumes containing nitrate and ammonium occurred in the freshwater zone, whereas the deep STZ carried almost exclusively ammonium. The distributions of redox-cycled elements were consistent with theoretical thermodynamic stability of chemical species, with sharp interfaces between water masses of distinct oxidation : reduction potential, suggesting that microbial transformations of nitrogen were rapid relative to dispersive mixing. In limited locations in which overlap occurs between distribution of nitrate with that of ammonium and dissolved Fe2+, changes in concentration and in ??15N suggest loss of all species. Concurrent removal of NO 3- and NH4+, both in freshwater and the deep STZ, might occur through a range of mechanisms, including heterotrophic or autotrophic denitrification, coupled nitrfication : denitrification, anammox, or Mn oxidation of NH4+. Loss of nitrogen was not apparent in the shallow STZ, perhaps because of short water residence time. Despite organic C-poor conditions, the nearshore aquifer and subterranean estuary are biogeochemically active zones, where attenuation of N loads can occur. Extent of attenuation is controlled by the degree of mixing of biogeochemically dissimilar water masses, highlighting the critical role of hydrogeology in N biogeochemistry. Mixing is related in part to thinning of the freshwater lens before discharge and to dispersion at the fresh : saline groundwater interface, features

  16. Complete data listings for CSEM soundings on Kilauea Volcano, Hawaii

    SciTech Connect

    Kauahikaua, J.; Jackson, D.B.; Zablocki, C.J.

    1983-01-01

    This document contains complete data from a controlled-source electromagnetic (CSEM) sounding/mapping project at Kilauea volcano, Hawaii. The data were obtained at 46 locations about a fixed-location, horizontal, polygonal loop source in the summit area of the volcano. The data consist of magnetic field amplitudes and phases at excitation frequencies between 0.04 and 8 Hz. The vector components were measured in a cylindrical coordinate system centered on the loop source. 5 references.

  17. Venus - Rhea Mons Volcano

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Two mosaiced pieces of Magellan image strips display the area east of the Rhea Mons volcano on Venus. This image is centered at about 32.5 degrees north latitude and 286.6 degrees east longitude. The mosaic is 47 kilometers (28 miles) wide and 135 km (81 miles) long. This region has been previously identified as 'tessera' from Earth-based radar (Arecibo) images. The center of the image is dominated by a network of intersecting ridges and valleys. The radar bright north south trending features in this image range from 1 km (0.6 mile) to 3 km (1.8 miles) in length. The average spacing between these ridges is about 1.5 km (0.9 mile). The dark patches at the top of the image are smooth surfaces and may be lava flows located in lowlands between the higher ridge and the valley terrain. This image is a mosaic of two orbits obtained in the first Magellan radar test and played back to Earth to the Deep Space Network stations near Goldstone, Calif. and Canberra, Australia, respectively. The resolution of this image is approximately 120 meters (400 feet).

  18. Segmentation and Tracking of Anticyclonic Eddies during a Submarine Volcanic Eruption Using Ocean Colour Imagery

    PubMed Central

    Marcello, Javier; Eugenio, Francisco; Estrada-Allis, Sheila; Sangrà, Pablo

    2015-01-01

    The eruptive phase of a submarine volcano located 2 km away from the southern coast of El Hierro Island started on October 2011. This extraordinary event provoked a dramatic perturbation of the water column. In order to understand and quantify the environmental impacts caused, a regular multidisciplinary monitoring was carried out using remote sensing sensors. In this context, we performed the systematic processing of every MODIS and MERIS and selected high resolution Worldview-2 imagery to provide information on the concentration of a number of biological, physical and chemical parameters. On the other hand, the eruption provided an exceptional source of tracer that allowed the study a variety of oceanographic structures. Specifically, the Canary Islands belong to a very active zone of long-lived eddies. Such structures are usually monitored using sea level anomaly fields. However these products have coarse spatial resolution and they are not suitable to perform submesoscale studies. Thanks to the volcanic tracer, detailed studies were undertaken with ocean colour imagery allowing, using the diffuse attenuation coefficient, to monitor the process of filamentation and axisymmetrization predicted by theoretical studies and numerical modelling. In our work, a novel 2-step segmentation methodology has been developed. The approach incorporates different segmentation algorithms and region growing techniques. In particular, the first step obtains an initial eddy segmentation using thresholding or clustering methods and, next, the fine detail is achieved by the iterative identification of the points to grow and the subsequent application of watershed or thresholding strategies. The methodology has demonstrated an excellent performance and robustness and it has proven to properly capture the eddy and its filaments. PMID:25875193

  19. Segmentation and tracking of anticyclonic eddies during a submarine volcanic eruption using ocean colour imagery.

    PubMed

    Marcello, Javier; Eugenio, Francisco; Estrada-Allis, Sheila; Sangrà, Pablo

    2015-01-01

    The eruptive phase of a submarine volcano located 2 km away from the southern coast of El Hierro Island started on October 2011. This extraordinary event provoked a dramatic perturbation of the water column. In order to understand and quantify the environmental impacts caused, a regular multidisciplinary monitoring was carried out using remote sensing sensors. In this context, we performed the systematic processing of every MODIS and MERIS and selected high resolution Worldview-2 imagery to provide information on the concentration of a number of biological, physical and chemical parameters. On the other hand, the eruption provided an exceptional source of tracer that allowed the study a variety of oceanographic structures. Specifically, the Canary Islands belong to a very active zone of long-lived eddies. Such structures are usually monitored using sea level anomaly fields. However these products have coarse spatial resolution and they are not suitable to perform submesoscale studies. Thanks to the volcanic tracer, detailed studies were undertaken with ocean colour imagery allowing, using the diffuse attenuation coefficient, to monitor the process of filamentation and axisymmetrization predicted by theoretical studies and numerical modelling. In our work, a novel 2-step segmentation methodology has been developed. The approach incorporates different segmentation algorithms and region growing techniques. In particular, the first step obtains an initial eddy segmentation using thresholding or clustering methods and, next, the fine detail is achieved by the iterative identification of the points to grow and the subsequent application of watershed or thresholding strategies. The methodology has demonstrated an excellent performance and robustness and it has proven to properly capture the eddy and its filaments. PMID:25875193

  20. Submarines, spacecraft and exhaled breath.

    PubMed

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  1. Submarines, spacecraft and exhaled breath.

    PubMed

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  2. Chiliques volcano, Chile

    NASA Technical Reports Server (NTRS)

    2002-01-01

    joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Size: 7.5 x 7.5 km (4.5 x 4.5 miles) Location: 23.6 deg. South lat., 67.6 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3, and thermal band 12 Original Data Resolution: 15 m and 90 m Date Acquired: January 6, 2002 and November 19, 2000

  3. Volcano growth and evolution of the island of Hawaii

    USGS Publications Warehouse

    Moore, J.G.; Clague, D.A.

    1992-01-01

    The seven volcanoes comprising the island of Hawaii and its submarine base are, in order of growth, Mahukona, Kohala, Mauna Kea, Hualalai, Mauna Loa, Kilauea, and Loihi. The first four have completed their shield-building stage, and the timing of this event can be determined from the depth of the slope break associated with the end of shield building, calibrated using the ages and depths of a series of dated submerged coral reefs off northwest Hawaii. On each volcano, the transition from eruption of tholeiitic to alkalic lava occurs near the end of shield building. The rate of southeastern progression of the end of shield building in the interval from Haleakala to Hualalai is about 13 cm/yr. Based on this rate and an average spacing of volcanoes on each loci line of 40-60km, the volcanoes required about 600 thousand years to grow from the ocean floor to the time of the end of shield building. They arrive at the ocean surface about midway through this period. -from Authors

  4. An Overview of Geodetic Volcano Research in the Canary Islands

    NASA Astrophysics Data System (ADS)

    Fernández, José; González, Pablo J.; Camacho, Antonio G.; Prieto, Juan F.; Brú, Guadalupe

    2015-11-01

    The Canary Islands are mostly characterized by diffuse and scattered volcanism affecting a large area, with only one active stratovolcano, the Teide-Pico Viejo complex (Tenerife). More than 2 million people live and work in the 7,447 km2 of the archipelago, resulting in an average population density three times greater than the rest of Spain. This fact, together with the growth of exposure during the past 40 years, increases volcanic risk with respect previous eruptions, as witnessed during the recent 2011-2012 El Hierro submarine eruption. Therefore, in addition to purely scientific reasons there are economic and population-security reasons for developing and maintaining an efficient volcano monitoring system. In this scenario geodetic monitoring represents an important part of the monitoring system. We describe volcano geodetic monitoring research carried out in the Canary Islands and the results obtained. We consider for each epoch the two main existing constraints: the level of volcanic activity in the archipelago, and the limitations of the techniques available at the time. Theoretical and observational aspects are considered, as well as the implications for operational volcano surveillance. Current challenges of and future perspectives in geodetic volcano monitoring in the Canaries are also presented.

  5. Diffuse degassing survey at the Higashi Izu monogenetic volcano field, Japan

    NASA Astrophysics Data System (ADS)

    Notsu, Kenji; Pérez, Nemesio M.; Fujii, Naoyuki; Hernández, Pedro A.; Mori, Toshiya; Padrón, Eleazar; Melián, Gladys

    2016-04-01

    The Higashi-Izu monogenetic volcanic group, which consists of more than 60 volcanoes, overlies the polygenetic volcanoes in the eastern part of the Izu peninsula, Japan, which are distributed over the area of 350 km2. Some of the monogenetic volcanoes are located on northwest-southeast alignments, suggesting that they developed along fissures. Recent volcanic activity occurred offshore, e.g., at the Izu-Oshima volcano, which erupted in 1986 and a submarine eruption of the small new Teishi knoll off eastern Izu Peninsula in 1989 (Hasebe et al., 2001). This study was carried out to investigate the possible relationship of diffuse CO2 emission and the recent seismic activity recorded NE of Higashi Izu monogenetic volcanic field, to quantify the rate at which CO2 is diffusely degassed from the studied area including Omuroyama volcano and to identify the structures controlling the degassing process. Measurements were carried out over a three day period from 8-10 July 2013. Diffuse CO2 emission surveys were always carried out following the accumulation chamber method and spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. Soil gas samples were collected at 30-40 cm depth by withdrawal into 60 cc hypodermic syringes to characterize the chemical and isotopic composition of the soil gas. At Omurayama volcano, soil CO2 efflux values ranged from non-detectable to 97.5 g m‑2 d‑1, while at the seismic swarm zone ranged from 1.5 to 233.2 g m‑2 d‑1 and at the fault zone ranged from 5.7 to 101.2 g m‑2 d‑1. Probability-plot technique of all CO2 efflux data showed two different populations, background with a mean of 8.7 g m‑2 d‑1 and peak with a mean of 92.7 g m‑2 d‑1. In order to strength the deep seated contribution to the soil gases at the studied are, carbon isotopic analysis were performed in the CO2 gas. Soil gases (He, CO2 and N2) showed a clear mixing trend between air composition and a rich CO2 end

  6. Diffuse degassing survey at the Higashi Izu monogenetic volcano field, Japan

    NASA Astrophysics Data System (ADS)

    Notsu, Kenji; Pérez, Nemesio M.; Fujii, Naoyuki; Hernández, Pedro A.; Mori, Toshiya; Padrón, Eleazar; Melián, Gladys

    2016-04-01

    The Higashi-Izu monogenetic volcanic group, which consists of more than 60 volcanoes, overlies the polygenetic volcanoes in the eastern part of the Izu peninsula, Japan, which are distributed over the area of 350 km2. Some of the monogenetic volcanoes are located on northwest-southeast alignments, suggesting that they developed along fissures. Recent volcanic activity occurred offshore, e.g., at the Izu-Oshima volcano, which erupted in 1986 and a submarine eruption of the small new Teishi knoll off eastern Izu Peninsula in 1989 (Hasebe et al., 2001). This study was carried out to investigate the possible relationship of diffuse CO2 emission and the recent seismic activity recorded NE of Higashi Izu monogenetic volcanic field, to quantify the rate at which CO2 is diffusely degassed from the studied area including Omuroyama volcano and to identify the structures controlling the degassing process. Measurements were carried out over a three day period from 8-10 July 2013. Diffuse CO2 emission surveys were always carried out following the accumulation chamber method and spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. Soil gas samples were collected at 30-40 cm depth by withdrawal into 60 cc hypodermic syringes to characterize the chemical and isotopic composition of the soil gas. At Omurayama volcano, soil CO2 efflux values ranged from non-detectable to 97.5 g m-2 d-1, while at the seismic swarm zone ranged from 1.5 to 233.2 g m-2 d-1 and at the fault zone ranged from 5.7 to 101.2 g m-2 d-1. Probability-plot technique of all CO2 efflux data showed two different populations, background with a mean of 8.7 g m-2 d-1 and peak with a mean of 92.7 g m-2 d-1. In order to strength the deep seated contribution to the soil gases at the studied are, carbon isotopic analysis were performed in the CO2 gas. Soil gases (He, CO2 and N2) showed a clear mixing trend between air composition and a rich CO2 end member, suggesting the

  7. Reference PMHS Sled Tests to Assess Submarining.

    PubMed

    Uriot, Jérôme; Potier, Pascal; Baudrit, Pascal; Trosseille, Xavier; Petit, Philippe; Richard, Olivier; Compigne, Sabine; Masuda, Mitsutoshi; Douard, Richard

    2015-11-01

    Sled tests focused on pelvis behavior and submarining can be found in the literature. However, they were performed either with rigid seats or with commercial seats. The objective of this study was to get reference tests to assess the submarining ability of dummies in more realistic conditions than on rigid seat, but still in a repeatable and reproducible setup. For this purpose, a semi-rigid seat was developed, which mimics the behavior of real seats, although it is made of rigid plates and springs that are easy to reproduce and simulate with an FE model. In total, eight PMHS sled tests were performed on this semirigid seat to get data in two different configurations: first in a front seat configuration that was designed to prevent submarining, then in a rear seat configuration with adjusted spring stiffness to generate submarining. All subjects sustained extensive rib fractures from the shoulder belt loading. No pelvis fractures and no submarining were observed in the front seat configuration, but two subjects sustained lumbar vertebrae fractures. In the rear seat configuration, all subjects sustained pelvic fractures and demonstrated submarining. Corridors were constructed for the external forces and the PMHS kinematics. They are provided in this paper as new reference tests to assess the biofidelity of human surrogates in different configurations that either result in submarining or do not. In future, it is intended to analyze further seat and restraint system configurations to be able to define a submarining predictor. PMID:26660745

  8. Newberry Volcano (Oregon, USA) Revised

    NASA Astrophysics Data System (ADS)

    Donnelly-Nolan, J. M.; Grove, T. L.

    2015-12-01

    Newberry Volcano (NV) located E. of the Cascades arc axis is often interpreted as (1) a High Lava Plains (NW Basin & Range -- B&R) volcano hosting rhyolites generated by a traveling plume, (2) a shield volcano built of basalt, or (3) an enigma unrelated to the adjacent High Cascades. Recent work shows that these interpretations are incorrect. Petrologic, geochemical, isotopic, drill hole, & seismic data indicate that the NV magma system results from arc-related processes at the NW corner of the B&R, where this major extensional province impinges on the Cascades arc. NV rhyolites are geochemically distinct and lower in SiO2 than those to the east where a general NW-younging trend of rhyolite ages has suggested a traveling hotspot -- a consequence instead of propagation of B&R extension. NV lies ~90 km above the downgoing slab based on seismic evidence (McCrory et al. 2012), ~15 km deeper than under the Three Sisters (TS) volcanic complex 60 km to the NW on the arc axis. NV & TS exhibit a range of compositions and both have generated rhyodacite with unusually high Na2O contents (~7 wt. %; Mandler et al. 2014), exhibiting similar petrogenetic processes. Silicic lavas and tuffs of the caldera-centric NV make up a significant component (~20% of drill core) of its 600 km3, although basaltic andesite is the dominant composition. Basalts of calcalkaline affinity erupted on the edifice as recently as early Holocene time. These basalts contain petrologic evidence for high pre-eruptive H2O contents, have strong arc-like trace element signatures, and are isotopically Cascadian and distinct from basalts to the east in the B&R that have much higher 3/4He (Graham et al. 2009). NV is one variety of Cascades arc volcano among which are a range of stratovolcanoes including Mt. Baker (15 km3) and Mt. Shasta (500 km3), a Holocene caldera (Crater Lake), and the many basaltic andesite shield volcanoes that make up most of the Oregon High Cascades.

  9. Volcano-Monitoring Instrumentation in the United States, 2008

    USGS Publications Warehouse

    Guffanti, Marianne; Diefenbach, Angela K.; Ewert, John W.; Ramsey, David W.; Cervelli, Peter F.; Schilling, Steven P.

    2010-01-01

    , ground-based, volcano-monitoring capabilities, (2) answer queries within a geospatial framework about the nature of the instrumentation, and (3) provide a benchmark for planning future monitoring improvements. The VMID is not an archive of the data collected by monitoring instruments, nor is it intended to keep track of whether a station is temporarily unavailable due to telemetry or equipment problems. Instead, it is a compilation of basic information about each instrument such as location, type, and sponsoring agency. Typically, instruments installed expressly for volcano monitoring are emplaced within about 20 kilometers (km) of a volcanic center; however, some more distant instruments (as far away as 100 km) can be used under certain circumstances and therefore are included in the database. Not included is information about satellite-based and airborne sensors and temporarily deployed instrument arrays, which also are used for volcano monitoring but do not lend themselves to inclusion in a geospatially organized compilation of sensor networks. This Open-File Report is provided in two parts: (1) an Excel spreadsheet (http://pubs.usgs.gov/of/2009/1165/) containing the version of the Volcano-Monitoring Instrumentation Database current through 31 December 2008 and (2) this text (in Adobe PDF format), which serves as metadata for the VMID. The disclaimer for the VMID is in appendix 1 of the text. Updated versions of the VMID will be posted on the Web sites of the Consortium of U.S. Volcano Observatories (http://www.cusvo.org/) and the USGS Volcano Hazards Program http://volcanoes.usgs.gov/activity/data/index.php.

  10. Detecting Volcano-Tectonic Earthquakes at the Tatun Volcano Group in Taiwan with Dense Arrays

    NASA Astrophysics Data System (ADS)

    Sun, W. F.; Lin, C. H.; Chang, W. Y.

    2015-12-01

    The Tatun Volcano Group (TVG) is located at the northernmost tip of the island of Taiwan. Although TVG have been erupted 0.1-0.2 Ma ago and are considered being extinct, some recent studies suggest that they are active or dormant volcanos. We perform a systematic detection of volcano-tectonic earthquakes beneath TVG using three dense, small-aperture seismic arrays, which were deployed for six months in 2012. We use broadband frequency-wavenumber beam forming and moving-window grid-search methods to compute array parameters for all nearly continuous data and identify volcano-tectonic earthquakes. We detect much more events than that listed in the TVG volcano-tectonic earthquake catalog, about 50 events per month. Our results suggest that dense array techniques are capable of capturing detailed spatiotemporal evolution of volcano-tectonic earthquake behaviours at TVG, and also help to better understand the source mechanism of the brittle, uppermost part of the crust to the combined effect of the local hydrothermal fluid pressure and the regional stress field in the volcanic environment.

  11. Geology of Medicine Lake Volcano, Northern California Cascade Range

    USGS Publications Warehouse

    Donnelly-Nolan, Julie

    1990-01-01

    Medicine Lake volcano (MLV) is located in an E-W extensional environment on the Modoc Plateau just east of the main arc of the Cascades. It consists mainly of mafic lavas, although drillhole data indicate that a larger volume of rhyolite is present than is indicated by surface mapping. The most recent eruption was rhyolitic and occurred about 900 years ago. At least seventeen eruptions have occurred since 12,000 years ago, or between 1 and 2 eruptions per century on average, although activity appears to be strongly episodic. The calculated eruptive rate is about 0.6 km3 per thousand years during the entire history of the volcano. Drillhole data indicate that the plateau surface underlying the volcano has been downwarped by 0.5 km under the center of MLV. The volcano may be even larger than the estimated 600 km3, already the largest volcano by volume in the Cascades.

  12. Shaking up volcanoes

    USGS Publications Warehouse

    Prejean, Stephanie G.; Haney, Matthew M.

    2014-01-01

    Most volcanic eruptions that occur shortly after a large distant earthquake do so by random chance. A few compelling cases for earthquake-triggered eruptions exist, particularly within 200 km of the earthquake, but this phenomenon is rare in part because volcanoes must be poised to erupt in order to be triggered by an earthquake (1). Large earthquakes often perturb volcanoes in more subtle ways by triggering small earthquakes and changes in spring discharge and groundwater levels (1, 2). On page 80 of this issue, Brenguier et al. (3) provide fresh insight into the interaction of large earthquakes and volcanoes by documenting a temporary change in seismic velocity beneath volcanoes in Honshu, Japan, after the devastating Tohoku-Oki earthquake in 2011.

  13. Currents in monterey submarine canyon

    USGS Publications Warehouse

    Xu, J. P.; Noble, M.A.

    2009-01-01

    Flow fields of mean, subtidal, and tidal frequencies between 250 and 3300 m water depths in Monterey Submarine Canyon are examined using current measurements obtained in three yearlong field experiments. Spatial variations in flow fields are mainly controlled by the topography (shape and width) of the canyon. The mean currents flow upcanyon in the offshore reaches (>1000 m) and downcanyon in the shallow reaches (100-m amplitude isotherm oscillations and associated high-speed rectilinear currents. The 15-day spring-neap cycle and a ???3-day??? band are the two prominent frequencies in subtidal flow field. Neither of them seems directly correlated with the spring-neap cycle of the sea level.

  14. Seismic Structure Beneath Taal Volcano, Philippines

    NASA Astrophysics Data System (ADS)

    You, S. H.; Gung, Y.; Konstantinou, K. I.; Lin, C. H.

    2014-12-01

    The very active Taal Volcano is situated 60 km south of Metro Manila in the southern part of Luzon Island. Based on its frequent explosive eruptions and high potential hazards to nearby population of several million, Taal Volcano is chosen as one of the 15 most dangerous "Decade Volcanoes" in the world. We deployed a temporary seismic network consisting of 8 stations since March 2008. The temporal network was operated from late March 2008 to mid March 2010 and recorded over 2270 local earthquakes. In the early data processing stages, unexpected linear drifting of clock time was clearly identified from ambient noise cross-correlation functions for a number of stations. The drifting rates of all problematic stations were determined as references to correct timing errors prior to further processing. Initial locations of earthquakes were determined from manually picking P- and S-phases arrivals with a general velocity model based on AK135. We used travel times of 305 well-located local events to derive a minimum 1-D model using VELEST. Two major earthquake groups were noticed from refined locations. One was underneath the western shore of Taal Lake with a linear feature, and the other spread at shallower depths showing a less compact feature around the eastern flank of Taal Volcano Island. We performed seismic tomography to image the 3D structure beneath Taal Volcano using a well-established algorithm, LOTOS. Some interesting features are noted in the tomographic results, such as a probable solidified past magma conduit below the northwestern corner of Taal Volcano Island, characterized by high Vp, Vs, and low Vp/Vs ratio, and a potential large hydrothermal reservoir beneath the central of Taal Volcano Island, characterized by low Vs and high Vp/Vs ratio. Combining the results of seismicity and tomographic images, we also suggest the potential existence of a magma chamber beneath the southwestern Taal Lake, and a magma conduit or fault extending from there to the

  15. Seafloor geodetic reference station branched from submarine cable

    NASA Astrophysics Data System (ADS)

    Mochizuki, M.; Asada, A.; Ura, T.; Asakawa, K.; Yokobiki, T.; Iwase, R.; Goto, T.; Sato, M.; Nagahashi, K.; Tanaka, T.

    2008-12-01

    to the transponder as well as power. The new cable transponder can realize acoustic ranging between sea surface and bottom with much higher accuracy than the current system. Submarine cable system off Toyohashi (Tokai-SCANNER) in central Japan is located on the source region of the huge repeated earthquakes. It is under the control of the JAMSTEC and used for long-term geophysical monitoring. This cable is one to which we are planning to connect newly developed seafloor transponder. The cruise of JAMSTEC"fS ROV "KAIKO 7000 II" and R/V "KAIREI" is scheduled to deploy and connect the seafloor transponder to the Tokai-SCANNER cable system from Sep. 18, 2008. We will report the overview of the cable transponder system and its deployment procedure in this presentation.

  16. Preliminary volcano-hazard assessment for Akutan Volcano east-central Aleutian Islands, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Power, John A.; Richter, Donlad H.; McGimsey, Robert G.

    1998-01-01

    Akutan Volcano is a 1100-meter-high stratovolcano on Akutan Island in the east-central Aleutian Islands of southwestern Alaska. The volcano is located about 1238 kilometers southwest of Anchorage and about 56 kilometers east of Dutch Harbor/Unalaska. Eruptive activity has occurred at least 27 times since historical observations were recorded beginning in the late 1700?s. Recent eruptions produced only small amounts of fine volcanic ash that fell primarily on the upper flanks of the volcano. Small amounts of ash fell on the Akutan Harbor area during eruptions in 1911, 1948, 1987, and 1989. Plumes of volcanic ash are the primary hazard associated with eruptions of Akutan Volcano and are a major hazard to all aircraft using the airfield at Dutch Harbor or approaching Akutan Island. Eruptions similar to historical Akutan eruptions should be anticipated in the future. Although unlikely, eruptions larger than those of historical time could generate significant amounts of volcanic ash, fallout, pyroclastic flows, and lahars that would be hazardous to life and property on all sectors of the volcano and other parts of the island, but especially in the major valleys that head on the volcano flanks. During a large eruption an ash cloud could be produced that may be hazardous to aircraft using the airfield at Cold Bay and the airspace downwind from the volcano. In the event of a large eruption, volcanic ash fallout could be relatively thick over parts of Akutan Island and volcanic bombs could strike areas more than 10 kilometers from the volcano.

  17. Submarine Hydrothermal Activity on the Aeolian Arc: New Evidence from Helium Isotopes

    NASA Astrophysics Data System (ADS)

    Lupton, J.; de Ronde, C.; Baker, E.; Sprovieri, M.; Bruno, P.; Italiano, F.; Walker, S.; Faure, K.; Leybourne, M.; Britten, K.; Greene, R.

    2008-12-01

    In November 2007 we conducted a water-column and seafloor mapping study of the submarine volcanoes of the Aeolian Arc in the southern Tyrrhenian Sea aboard the R/V Urania. A total of 26 CTD casts were completed, 13 vertical casts and 13 tows. In addition to in situ measurements of temperature, conductivity, pressure and suspended particles, we also collected discrete samples for helium isotopes, methane, and trace metals. The helium isotope ratio, which is known to be an unambiguous indicator of hydrothermal input, showed a clear excess above background at 5 out of the 10 submarine volcanoes surveyed. We found the strongest helium anomaly over Marsili seamount, where the 3He/4He ratio reached maximum values of δ3He = 23% at 610 m depth compared with background values of ~7%. We also found smaller but distinct δ3He anomalies over Enerato, Eolo, Palinuro, and Secca del Capo. We interpret these results as indicating the presence of hydrothermal activity on these 5 seamounts. Hydrothermal venting has been documented at subsea vents offshore of the islands of Panarea, Stromboli, and Vulcano (Dando et al., 1999; Di Roberto et al., 2008), and hydrothermal deposits have been sampled on many of the submarine volcanoes of the Aeolian Arc (Dekov and Savelli, 2004). However, as far as we know this is the first evidence of present day hydrothermal activity on Marsili, Enerato, and Eolo. Samples collected over Filicudi, Glabro, Lamentini, Sisifo, and Alcioni had δ3He very close to the regional background values, suggesting either absence of or very weak hydrothermal activity on these seamounts. Helium isotope measurements from the background hydrocasts positioned between the volcanoes revealed the presence of an excess in 3He throughout the SE Tyrrhenian Sea. These background profiles reach a consistent maximum of about δ3He = 11% at 2300 m depth. Historical helium profiles collected in the central and northern Tyrrhenian Sea in 1987 and 1997 do not show this deep 3He

  18. Sediment wave-forms and modes of construction on Mariana (and other) intra-oceanic arc volcanoes

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Stern, R. J.; Chadwick, B.; Tamura, Y.; Merle, S. G.

    2014-12-01

    Most intra-oceanic arc volcanoes are composite edifices constructed primarily in the submarine environment, built up by volcaniclastic sediments derived from hydroclastic and pyroclastic processes at/near the summits, punctuated by occasional lava flows and intrusions. Of particular interest in the mode of construction are extensive fields of large sediment waveforms (SWFs), up to >2 km wavelength and >100 m amplitude, on the submarine flanks of many islands and seamounts within the Mariana and other intra-oceanic subduction zones. These SWFs are composed of coarse-grained volcaniclastic sediments derived from the (approximate) point source summits of the island and submarine volcanoes. SWFs around some seamounts and islands, particularly those with large calderas, define quasi-concentric ring-like ridges, suggesting formation by density currents generated during submarine and island eruptions, and preserved for 10s of thousands of years. Some types of SWFs appear to have formed by progressive slumping of oversteepened slopes without fluidization. General conclusions about the origin of SWFs are hampered by the dearth of samples and high resolution seismic reflection profiles. However, large coherent slumps and debris avalanches documented for some ocean islands (e.g., Hawaiian Islands) are (mostly) are not as evident on the composite arc volcanoes. Submarine Mariana arc (and other intra-oceanic arc) volcanism probably spread volcaniclastic material primarily during submarine "Neptunian" eruptions and by progressive slides and other sediment flow rather than by catastrophic flank collapse. These processes could mitigate the Hawaiian-style of tsumami hazard, but Krakatoa-type tsunami hazards exist.

  19. Microbiological and Geochemical Characterization of the Deep Subsurface Environment: Kumano Mud Volcano, Nankai Trough, Japan

    NASA Astrophysics Data System (ADS)

    Case, D. H.; Ijiri, A.; Morono, Y.; Orphan, V. J.; Inagaki, F.

    2013-12-01

    Submarine mud volcanoes play an important environmental role by delivering deep-sourced fluids, elements, and hydrocarbons to the seafloor. These fluxes in turn support chemosynthetic benthic communities. However, due to difficulty in accessing the deep biosphere most mud volcano samples only represent the top one to several meters below seafloor (mbsf) obtainable by remotely operated vehicle (ROV) or gravity cores. Thus, the geochemical and microbiological conditions, as well as vertical homogeneity, deep within mud volcanoes remains poorly constrained. In 2012, using the deep-sea drilling vessel Chikyu, we drilled one of the most active submarine mud volcanoes in the Kumano forearc basin of the Nankai Trough, off the Kii Peninsula of Japan (33°67.581'N, 136°56.8085'E: 1,986.7 m in water depth). Cores were obtained down to 200 mbsf. Cell counts indicate the presence of microorganisms at relatively low abundance (less than 105 cells/cm3) throughout the cored depth. Molecular analyses reveal vertical heterogeneity in the microbial community composition, including specific depth horizons harboring putative methanogenic and methanotrophic phylotypes at >100 mbsf. Geochemical profiles indicate the potential for microbial activity and rate measurements with radiotracers revealed active homoacetogenesis rates that were 2-3 orders of magnitude higher than rates of homo- and acetoclastic methanogenesis. To assess active autotrophic, methanotrophic and heterotrophic populations, 13C- and 15N-amendment experiments with sediment samples collected from 15 and 115 mbsf were established and single cell stable isotope analyses with nanoSIMS are in progress. Our samples and analyses represent a unique observation of a subseafloor setting different from previously explored stratified sediments on continental margins and will allow further understanding of how submarine mud volcanoes contribute to geochemical and microbiological fluxes into the surface biosphere.

  20. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 2000 through December 31, 2001

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; Moran, Seth C.; Paskievitch, John; McNutt, Stephen R.

    2002-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at potentially active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996; Jolly and others, 2001). The primary objectives of this program are the seismic surveillance of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog reflects the status and evolution of the seismic monitoring program, and presents the basic seismic data for the time period January 1, 2000, through December 31, 2001. For an interpretation of these data and previously recorded data, the reader should refer to several recent articles on volcano related seismicity on Alaskan volcanoes in Appendix G. The AVO seismic network was used to monitor twenty-three volcanoes in real time in 2000-2001. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). AVO located 1551 and 1428 earthquakes in 2000 and 2001, respectively, on and around these volcanoes. Highlights of the catalog period (Table 1) include: volcanogenic seismic swarms at Shishaldin Volcano between January and February 2000 and between May and June 2000; an eruption at Mount Cleveland between February and May 2001; episodes of possible tremor at Makushin Volcano starting March 2001 and continuing through 2001, and two earthquake swarms at Great Sitkin Volcano in 2001. This catalog includes: (1) earthquake origin

  1. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 2000 through December 31, 2001

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; Moran, Seth C.; Paskievitch, John; McNutt, Stephen R.

    2002-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at potentially active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996; Jolly and others, 2001). The primary objectives of this program are the seismic surveillance of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog reflects the status and evolution of the seismic monitoring program, and presents the basic seismic data for the time period January 1, 2000, through December 31, 2001. For an interpretation of these data and previously recorded data, the reader should refer to several recent articles on volcano related seismicity on Alaskan volcanoes in Appendix G.The AVO seismic network was used to monitor twenty-three volcanoes in real time in 2000-2001. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). AVO located 1551 and 1428 earthquakes in 2000 and 2001, respectively, on and around these volcanoes.Highlights of the catalog period (Table 1) include: volcanogenic seismic swarms at Shishaldin Volcano between January and February 2000 and between May and June 2000; an eruption at Mount Cleveland between February and May 2001; episodes of possible tremor at Makushin Volcano starting March 2001 and continuing through 2001, and two earthquake swarms at Great Sitkin Volcano in 2001.This catalog includes: (1) earthquake origin times

  2. Near and Far Field Particle Plumes Around an Erupting Volcano - W Mata, NE Lau Basin

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Baker, E. T.; Lupton, J. E.; Resing, J.; Crowhurst, P. V.; Greene, R.; Buck, N.

    2009-12-01

    Particle-rich plumes carry emissions from actively erupting submarine volcanoes to the ocean environment. Characterizing and mapping the distribution of these plumes can help identify the nature of the eruption, define its impact on ocean chemistry, and suggest mechanisms for the transport of fine ash to distal sediments. Unusually intense particle plumes encountered over W Mata volcano (NE Lau basin) during November 2008 were confirmed in May 2009 to be the product of an ongoing submarine volcanic eruption with more than one active vent near the summit at water depths of 1175-1207 m. The particle plume over the summit in November 2008 was unusually intense in many respects. Light scattering anomalies of dNTU>1.0 were present in the bottom 150 m of the water column (below 1030 m), and exceeded the maximum detection limit of the sensor (dNTU=5.0) for more than 10 minutes while the CTD was within this depth range. The bottom 50 m of the water column had an average temperature anomaly of 0.8°C, spiking to 2.0°C near the seafloor. The oxidation-reduction potential (ORP) plunged dramatically within the particle plume, reaching a maximum anomaly of more than 750 mV near the seafloor. Two CTD tows suggest the plume was being dispersed to the south and west of the summit in November 2008 within a narrow depth range centered at 1050-1100 m. CTD casts conducted in May 2009 showed the particle plume above the summit of W Mata was still optically intense (dNTU>2.0) but occurred as an above-bottom plume at a depth range of 1070-1150 m water depth. The ORP anomaly was 340 mV. Temperature anomalies within the particle plume were less intense than in November. Additional particle profiles acquired on a separate cruise in May 2009 found the W Mata plume was being advected to the north and west of the volcano to a distance of at least 10 km from the summit. In addition to these summit plumes, particle layers were also found at deeper depths. At other erupting volcanoes, down

  3. Ups and downs on spreading flanks of ocean-island volcanoes: evidence from Mauna Loa and Kīlauea

    USGS Publications Warehouse

    Lipman, Peter W.; Eakins, Barry W.; Yokose, Hisayoshi

    2003-01-01

    Submarine-flank deposits of Hawaiian volcanoes are widely recognized to have formed largely by gravitationally driven volcano spreading and associated landsliding. Observations from submersibles show that prominent benches at middepths on flanks of Mauna Loa and Kilauea consist of volcaniclastic debris derived by landsliding from nearby shallow submarine and subaerial flanks of the same edifice. Massive slide breccias from the mature subaerial tholeiitic shield of Mauna Loa underlie the frontal scarp of its South Kona bench. In contrast, coarse volcaniclastic sediments derived largely from submarine-erupted preshield alkalic and transitional basalts of ancestral Kilauea underlie its Hilina bench. Both midslope benches record the same general processes of slope failure, followed by modest compression during continued volcano spreading, even though they record development during different stages of edifice growth. The dive results suggest that volcaniclastic rocks at the north end of the Kona bench, interpreted by others as distal sediments from older volcanoes that were offscraped, uplifted, and accreted to the island by far-traveled thrusts, alternatively are a largely coherent stratigraphic assemblage deposited in a basin behind the South Kona bench.

  4. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  5. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  6. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  7. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  8. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  9. 29. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION AT POINT JUST ABOVE THE SUBMARINE SECTION AT THE 110-FOOT LEVEL 1929-1930 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  10. 32. VIEW OF PHOTO CAPTIONED 'SUBMARINE BASE, NEW LONDON, CONN. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. VIEW OF PHOTO CAPTIONED 'SUBMARINE BASE, NEW LONDON, CONN. OCTOBER 3, 1932. COMPLETION OF ERECTION OF STEELWORK FOR ELEVATOR. LOOKING NORTH. CONTRACT NO. Y-1539-ELEVATOR, SUBMARINE ESCAPE TANK.' - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  11. Mud Volcanoes from the Beaufort Sea to the South China Sea

    NASA Astrophysics Data System (ADS)

    Lundsten, E. M.; Paull, C. K.; Caress, D. W.; Dallimore, S.; Melling, H.; Liu, C. S.; Anderson, K.; Gwiazda, R.

    2015-12-01

    The detailed morphology of five submarine mud volcanoes were surveyed using an Autonomous Underwater Vehicle (AUV) developed at the Monterey Bay Aquarium Research Institute. Mud volcanoes are constructional features built by extrusion of gas, subsurface fluids and fine-grained sediment. Two surveys covering four submarine mud volcanoes were conducted on the CCGS Sir Wilfred Laurier in the Beaufort Sea in the Canadian Arctic. A survey of one mud volcano was conducted on the Taiwanese Ocean Research V in the South China Sea, SE of Taiwan. The AUV carried a multibeam sonar, a 1-6 kHz chirp sub-bottom profiler, and a110 kHz sidescan, and obtained overlapping multibeam bathymetric coverage at a vertical resolution of 0.15 m with a horizontal footprint of 0.9 m and chirp seismic-reflection profiles with a vertical resolution of 0.11 m. Mud volcanoes were either flat topped or conical. The conical mud volcano off Taiwan had a diameter of ~2 km and 10° side slopes; the conical feature in the Beaufort Sea had a diameter of ~1.5 km and 4° side slopes. The sides of the conical mud volcanoes were smooth, suggesting they were formed by sediment flows that emanate from a vent on their crests. The flanks of the conical mud volcanoes characteristically had very low acoustic reflectivity, but one single high reflectivity trail from the crest of the Beaufort Sea mud volcano indicates a recent flow. Three mud volcanoes in the Beaufort Sea formed circular, flat-topped plateaus that are up to ~1.1 km in diameter and elevated up to 30 m from the surrounding seafloor. The fine scale morphology and reflectivity on these plateaus show low relief, concentric, and ovoid circles that appear to be mud boils probably associated with eruptive events of varying ages at shifting vent sites. The different mud volcano shapes are attributed to variations in the viscosity of the erupting sediment slurries and may represent a sequential morphology, which is altered by shifts in venting position over

  12. Fuel-cell-propelled submarine-tanker-system study

    SciTech Connect

    Court, K E; Kumm, W H; O'Callaghan, J E

    1982-06-01

    This report provides a systems analysis of a commercial Arctic Ocean submarine tanker system to carry fossil energy to markets. The submarine is to be propelled by a modular Phosphoric Acid Fuel Cell system. The power level is 20 Megawatts. The DOE developed electric utility type fuel cell will be fueled with methanol. Oxidant will be provided from a liquid oxygen tank carried onboard. The twin screw submarine tanker design is sized at 165,000 deadweight tons and the study includes costs and an economic analysis of the transport system of 6 ships. The route will be under the polar icecap from a loading terminal located off Prudhoe Bay, Alaska to a transshipment facility postulated to be in a Norwegian fjord. The system throughput of the gas-fed methanol cargo will be 450,000 barrels per day. The total delivered cost of the methanol including well head purchase price of natural gas, methanol production, and shipping would be $25/bbl from Alaska to the US East Coast. Of this, the shipping cost is $6.80/bbl. All costs in 1981 dollars.

  13. Estimating the empirical probability of submarine landslide occurrence

    USGS Publications Warehouse

    Geist, Eric L.; Parsons, Thomas E.; Mosher, David C.; Shipp, Craig; Moscardelli, Lorena; Chaytor, Jason D.; Baxter, Christopher D. P.; Lee, Homa J.; Urgeles, Roger

    2010-01-01

    The empirical probability for the occurrence of submarine landslides at a given location can be estimated from age dates of past landslides. In this study, tools developed to estimate earthquake probability from paleoseismic horizons are adapted to estimate submarine landslide probability. In both types of estimates, one has to account for the uncertainty associated with age-dating individual events as well as the open time intervals before and after the observed sequence of landslides. For observed sequences of submarine landslides, we typically only have the age date of the youngest event and possibly of a seismic horizon that lies below the oldest event in a landslide sequence. We use an empirical Bayes analysis based on the Poisson-Gamma conjugate prior model specifically applied to the landslide probability problem. This model assumes that landslide events as imaged in geophysical data are independent and occur in time according to a Poisson distribution characterized by a rate parameter λ. With this method, we are able to estimate the most likely value of λ and, importantly, the range of uncertainty in this estimate. Examples considered include landslide sequences observed in the Santa Barbara Channel, California, and in Port Valdez, Alaska. We confirm that given the uncertainties of age dating that landslide complexes can be treated as single events by performing statistical test of age dates representing the main failure episode of the Holocene Storegga landslide complex.

  14. Catalog of Earthquake Hypocenters at Alaskan Volcanoes: January 1 through December 31, 2007

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.

    2008-01-01

    Between January 1 and December 31, 2007, AVO located 6,664 earthquakes of which 5,660 occurred within 20 kilometers of the 33 volcanoes monitored by the Alaska Volcano Observatory. Monitoring highlights in 2007 include: the eruption of Pavlof Volcano, volcanic-tectonic earthquake swarms at the Augustine, Illiamna, and Little Sitkin volcanic centers, and the cessation of episodes of unrest at Fourpeaked Mountain, Mount Veniaminof and the northern Atka Island volcanoes (Mount Kliuchef and Korovin Volcano). This catalog includes descriptions of : (1) locations of seismic instrumentation deployed during 2007; (2) earthquake detection, recording, analysis, and data archival systems; (3) seismic velocity models used for earthquake locations; (4) a summary of earthquakes located in 2007; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, location quality statistics, daily station usage statistics, and all files used to determine the earthquake locations in 2007.

  15. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2007

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.

    2008-01-01

    Between January 1 and December 31, 2007, AVO located 6,664 earthquakes of which 5,660 occurred within 20 kilometers of the 33 volcanoes monitored by the Alaska Volcano Observatory. Monitoring highlights in 2007 include: the eruption of Pavlof Volcano, volcanic-tectonic earthquake swarms at the Augustine, Illiamna, and Little Sitkin volcanic centers, and the cessation of episodes of unrest at Fourpeaked Mountain, Mount Veniaminof and the northern Atka Island volcanoes (Mount Kliuchef and Korovin Volcano). This catalog includes descriptions of : (1) locations of seismic instrumentation deployed during 2007; (2) earthquake detection, recording, analysis, and data archival systems; (3) seismic velocity models used for earthquake locations; (4) a summary of earthquakes located in 2007; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, location quality statistics, daily station usage statistics, and all files used to determine the earthquake locations in 2007.

  16. Submarine evidence for large-scale debris avalanches in the Lesser Antilles Arc

    NASA Astrophysics Data System (ADS)

    Deplus, Christine; Le Friant, Anne; Boudon, Georges; Komorowski, Jean-Christophe; Villemant, Benoit; Harford, Chloe; Ségoufin, Jacques; Cheminée, Jean-Louis

    2001-10-01

    Results from a recent marine geophysical survey demonstrate the importance of the process of flank collapse in the growth and evolution of volcanoes along an island arc. The Aguadomar cruise, aboard the French R/V L'Atalante, surveyed the flanks of the Lesser Antilles Arc between the islands of Montserrat and St. Lucia. Analysis of the data shows that flank collapse events occurred on active volcanoes all along the arc and resulted in debris avalanches, some of them being of large magnitude. The debris avalanche deposits display hummocky topography on the swath bathymetry, speckled pattern on backscatter images, hyperbolic facies on 3.5 kHz echosounder data and chaotic units on air gun seismic profiles. They extend from horseshoe-shaped structures previously identified on the subaerial part of the volcanoes. In the southern part of the arc, large-scale debris avalanche deposits were identified on the floor of the Grenada Basin west of active volcanoes on Dominica, Martinique and St. Lucia. The extent of debris avalanche deposits off Dominica is about 3500 km 2. The debris avalanches have resulted from major flank collapse events which may be mainly controlled by the large-scale structure of the island arc and the presence of the deep Grenada Basin. In the northern part of the arc, several debris avalanche deposits were also identified around the island of Montserrat. With smaller extent (20-120 km 2), they are present on the east, south and west submarine flanks of Soufriere Hills volcano which has been erupting since July 1995. Flank collapse is thus a recurrent process in the recent history of this volcano. The marine data are also relevant for a discussion of the transport mechanisms of debris avalanches on the seafloor surrounding a volcanic island arc.

  17. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2002

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sánchez, John; Estes, Steve; McNutt, Stephen R.; Paskievitch, John

    2003-01-01

    an EARTHWORM detection system. AVO located 7430 earthquakes during 2002 in the vicinity of the monitored volcanoes. This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of velocity models used for earthquake locations; (4) a summary of earthquakes located in 2002; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2002.

  18. Volcanic Explosions, Seismicity, and Debris from the West and North Mata Volcano Complex, NE Lau Basin

    NASA Astrophysics Data System (ADS)

    Dziak, R. P.; Bohnenstiehl, D. R.; Baker, E. T.; Matsumoto, H.; Haxel, J.; Walker, S.; Fowler, M.

    2010-12-01

    The discovery of the explosively erupting deep-ocean West Mata volcano in the northeast Lau Basin offers an unprecedented opportunity for in situ and near-field studies of the hydroacoustic wavefield produced by a submarine arc volcano, as well as the relationship between gas-driven explosions and the formation of volcanic-hydrothermal plumes. From December 2009 to April 2010, we re-initiated acoustic monitoring of the West Mata system by deploying four hydrophone moorings in a diamond-shaped geometry encompassing the summit and a set of nearby volcanic edifices known as the North Matas. Recent water column surveys over the North Matas found intense volcanic plumes suggesting that one or more of these volcanoes may be in an active eruption phase similar to West Mata. Each mooring contained a single sound-channel moored hydrophone (~1000 m depth) with a sample-rate of 1 kHz. The southern mooring in the array also included two optical backscatter and temperature sensors (MAPRs) attached to the mooring line (at 1800 m (data lost due to a battery failure) and 2250 m (~300 mab) depth) to detect plumes of volcanic debris that detach from the flank of West Mata. The acoustic record shows that West Mata volcano was continually erupting during the 5-month period of the experiment, producing broadband explosions every few seconds and long episodes of both mono- and poly-chromatic volcanic tremor. The MAPR record shows at least four major and several minor events, lasting from days to >week, that may correspond to debris flows. In most cases these episodes begin with a turbidity spike that slowly decreases while also fluctuating between elevated and ambient levels with the semidiurnal tides, as indicated by the temperature record. This linked temperature-turbidity fluctuation requires the events to be thin (<~100 m?) lenses that vertically oscillate around the MAPR depth while dissipating. High turbidity values (0.15-5 NTU) in some events imply these debris flows regularly

  19. Global estimates of fresh submarine groundwater discharge

    NASA Astrophysics Data System (ADS)

    Luijendijk, Elco; Gleeson, Tom; Moosdorf, Nils

    2016-04-01

    Fresh submarine groundwater discharge, the flow of fresh groundwater to oceans, may be a significant contributor to the water and chemical budgets of the world's oceans. We present new estimates of the flux of fresh groundwater to the world's oceans. We couple density-dependent numerical simulations of generic models of coastal basins with geospatial databases of hydrogeological parameters and topography to resolve the rate of terrestrially-derived submarine groundwater discharge globally. We compare the model results to a new global compilation of submarine groundwater discharge observations. The results show that terrestrially-derived SGD is highly sensitive to permeability. In most watersheds only a small fraction of groundwater recharge contributes to submarine groundwater discharge, with most recharge instead contributing to terrestrial discharge in the form of baseflow or evapotranspiration. Fresh submarine groundwater discharge is only significant in watersheds that contain highly permeable sediments, such as coarse-grained siliciclastic sediments, karstic carbonates or volcanic deposits. Our estimates of global submarine groundwater discharge are much lower than most previous estimates. However, many tropical and volcanic islands are hotspots of submarine groundwater discharge and solute fluxes towards the oceans. The comparison of model results and data highlights the spatial variability of SGD and the difficulty of scaling up observations.

  20. Timing of occurrence of large submarine landslides on the Atlantic Ocean margin

    USGS Publications Warehouse

    Lee, H.J.

    2009-01-01

    Submarine landslides are distributed unevenly both in space and time. Spatially, they occur most commonly in fjords, active river deltas, submarine canyon-fan systems, the open continental slope and on the flanks of oceanic volcanic islands. Temporally, they are influenced by the size, location, and sedimentology of migrating depocenters, changes in seafloor pressures and temperatures, variations in seismicity and volcanic activity, and changes in groundwater flow conditions. The dominant factor influencing the timing of submarine landslide occurrence is glaciation. A review of known ages of submarine landslides along the margins of the Atlantic Ocean, augmented by a few ages from other submarine locations shows a relatively even distribution of large landslides with time from the last glacial maximum until about five thousand years after the end of glaciation. During the past 5000??yr, the frequency of occurrence is less by a factor of 1.7 to 3.5 than during or shortly after the last glacial/deglaciation period. Such an association likely exists because of the formation of thick deposits of sediment on the upper continental slope during glacial periods and increased seismicity caused by isostatic readjustment during and following deglaciation. Hydrate dissociation may play a role, as suggested previously in the literature, but the connection is unclear.

  1. Volcano Flank Terraces on Mars

    NASA Astrophysics Data System (ADS)

    Byrne, P. K.; van Wyk de Vries, B.; Murray, J. B.; Troll, V. R.

    2008-12-01

    Flank terraces are bulge-like structures that occur on the slopes of at least nine large shield volcanoes on Mars, and three on Earth. Terraces have a convex-upward, convex-outward morphology, with an imbricate "fish scale" stacking pattern in plan. They occur at all elevations, are scale-invariant structures, and have similar proportions to thrust faults on Earth. Suggested mechanisms of formation include elastic self-loading, lithospheric flexure, magma chamber tumescence, flank relaxation, and shallow gravitational slumping. Terrace geometries predicted by most of these mechanisms do not agree with our observations, however. Only lithospheric flexure can fully account for terrace geometry on Mars and Earth, and so is the most likely candidate mechanism for flank terrace formation. To verify this hypothesis, we conducted scaled analogue modelling experiments, and investigated the structures formed during flexure. Cones of a sand-gypsum mix were placed upon a deep layer of silicone gel, to simulate volcanic loads upon viscoelastic Martian crust. Key parameters were varied across our experimental program. In all cases convex topographic structures developed on the cones' flanks, arranged in an imbricate, overlapping plan-view pattern. These structures closely resemble flank terraces observed on Mars, and our results provide for a basic kinematic model of terrace formation. Analogue volcanoes experienced a decrease in upper surface area whilst volume was conserved; the contractional surface strain was accommodated by outward verging, circumferentially striking thrusts. The morphology of experimental structures suggests an orientation of the principal stress axes of σ1 = radial, σ2 = concentric, and σ3 = vertical. Elsewhere (J. B. Murray et al., this volume) we detail the relationship between flank terraces and other structures such as pit craters and gräben, using Ascraeus Mons as a case study. We suggest that terraces may influence the distribution and location

  2. Boron-rich mud volcanoes of the Black Sea region: modern analogues to ancient sea-floor tourmalinites associated with Sullivan-type Pb-Zn deposits?

    USGS Publications Warehouse

    Slack, J.F.; Turner, R.J.W.; Ware, P.L.G.

    1998-01-01

    Large submarine mud volcanoes in the abyssal part of the Black Sea south of the Crimean Peninsula are similar in many respects to synsedimentary mud volcanoes in the Mesoproterozoic Belt-Purcell basin. One of the Belt-Purcell mud volcanoes directly underlies the giant Sullivan Pb-Zn-Ag deposit in southeastern British Columbia. Footwall rocks to the Sullivan deposit comprise variably tourmalinized siltstone, conglomerate, and related fragmental rock; local thin pyrrhotite-rich and spessartine-quartz beds are interpreted as Fe and Fe-Mn exhalites, respectively. Analogous Fe- and Mn-rich sediments occur near the abyssal Black Sea mud volcanoes. Massive pyrite crusts and associated carbonate chimneys discovered in relatively shallow waters (~200 m depth) west of the Crimean Peninsula indicate an active sea-floor-hydrothermal system. Subaerial mud volcanoes on the Kerch and Taman Peninsulas (~100 km north of the abyssal mud volcanoes) contain saline thermal waters that locally have very high B contents (to 915 mg/L). These data suggest that tourmalinites might be forming in or near submarine Black Sea mud volcanoes, where potential may also exist for Sullivan-type Pb-Zn mineralization.

  3. Volcanoes muon imaging using Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M. C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  4. Volcanoes: Coming Up from Under.

    ERIC Educational Resources Information Center

    Science and Children, 1980

    1980-01-01

    Provides specific information about the eruption of Mt. St. Helens in March 1980. Also discusses how volcanoes are formed and how they are monitored. Words associated with volcanoes are listed and defined. (CS)

  5. Database for the Geologic Map of the Summit Region of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Dutton, Dillon R.; Ramsey, David W.; Bruggman, Peggy E.; Felger, Tracey J.; Lougee, Ellen; Margriter, Sandy; Showalter, Patrick; Neal, Christina A.; Lockwood, John P.

    2007-01-01

    INTRODUCTION The area covered by this map includes parts of four U.S. Geological Survey (USGS) 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water: the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas, the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones. This digital release contains all the information used to produce the geologic map published as USGS Geologic Investigations Series I-2759 (Neal and Lockwood, 2003). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains printable files for the geologic map and accompanying descriptive pamphlet from I-2759.

  6. Early growth of Kohala volcano and formation of long Hawaiian rift zones

    USGS Publications Warehouse

    Lipman, P.W.; Calvert, A.T.

    2011-01-01

    Transitional-composition pillow basalts from the toe of the Hilo Ridge, collected from outcrop by submersible, have yielded the oldest ages known from the Island of Hawaii: 1138 ?? 34 to 1159 ?? 33 ka. Hilo Ridge has long been interpreted as a submarine rift zone of Mauna Kea, but the new ages validate proposals that it is the distal east rift zone of Kohala, the oldest subaerial volcano on the island. These ages constrain the inception of tholeiitic volcanism at Kohala, provide the first measured duration of tholeiitic shield building (???870 k.y.) for any Hawaiian volcano, and show that this 125-km-long rift zone developed to near-total length during early growth of Kohala. Long eastern-trending rift zones of Hawaiian volcanoes may follow fractures in oceanic crust activated by arching of the Hawaiian Swell in front of the propagating hotspot. ?? 2011 Geological Society of America.

  7. Eruption of a deep-sea mud volcano triggers rapid sediment movement.

    PubMed

    Feseker, Tomas; Boetius, Antje; Wenzhöfer, Frank; Blandin, Jerome; Olu, Karine; Yoerger, Dana R; Camilli, Richard; German, Christopher R; de Beer, Dirk

    2014-01-01

    Submarine mud volcanoes are important sources of methane to the water column. However, the temporal variability of their mud and methane emissions is unknown. Methane emissions were previously proposed to result from a dynamic equilibrium between upward migration and consumption at the seabed by methane-consuming microbes. Here we show non-steady-state situations of vigorous mud movement that are revealed through variations in fluid flow, seabed temperature and seafloor bathymetry. Time series data for pressure, temperature, pH and seafloor photography were collected over 431 days using a benthic observatory at the active Håkon Mosby Mud Volcano. We documented 25 pulses of hot subsurface fluids, accompanied by eruptions that changed the landscape of the mud volcano. Four major events triggered rapid sediment uplift of more than a metre in height, substantial lateral flow of muds at average velocities of 0.4 m per day, and significant emissions of methane and CO₂ from the seafloor.

  8. Organizational changes at Earthquakes & Volcanoes

    USGS Publications Warehouse

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  9. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition Five crew members aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy in October 2002. Triggered by a series of earthquakes on October 27, 2002, this eruption was one of Etna's most vigorous in years. This image shows the ash plume curving out toward the horizon. The lighter-colored plumes down slope and north of the summit seen in this frame are produced by forest fires set by flowing lava. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  10. CHALLENGES POSED BY RETIRED RUSSIAN NUCLEAR SUBMARINES

    SciTech Connect

    Rudolph, Dieter; Kroken, Ingjerd; Latyshev, Eduard; Griffith, Andrew

    2003-02-27

    The purpose of this paper is to provide an overview of the challenges posed by retired Russian nuclear submarines, review current U.S. and International efforts and provide an assessment of the success of these efforts.

  11. Exterior view of submarine with survey crew posed in front. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior view of submarine with survey crew posed in front. From left to right: Todd Croteau - U.S. National Park Service, Joshua Price - U.S. Navy, Bert Ho - National Oceanic and Atmospheric Administration, Michael McCarthy - Western Australia Maritime Museum, Larry Murphy - U.S. National Park Service, Don Johnson- University of Nebraska Engineering School, James Delgado- Institute for Nautical Archeology, Jacinto Ahmendra - Government of Panama. - Sub Marine Explorer, Located along the beach of Isla San Telmo, Pearl Islands, Isla San Telmo, Former Panama Canal Zone, CZ

  12. Venus small volcano classification and description

    NASA Astrophysics Data System (ADS)

    Aubele, J. C.

    1993-03-01

    The high resolution and global coverage of the Magellan radar image data set allows detailed study of the smallest volcanoes on the planet. A modified classification scheme for volcanoes less than 20 km in diameter is shown and described. It is based on observations of all members of the 556 significant clusters or fields of small volcanoes located and described by this author during data collection for the Magellan Volcanic and Magmatic Feature Catalog. This global study of approximately 10 exp 4 volcanoes provides new information for refining small volcano classification based on individual characteristics. Total number of these volcanoes was estimated to be 10 exp 5 to 10 exp 6 planetwide based on pre-Magellan analysis of Venera 15/16, and during preparation of the global catalog, small volcanoes were identified individually or in clusters in every C1-MIDR mosaic of the Magellan data set. Basal diameter (based on 1000 measured edifices) generally ranges from 2 to 12 km with a mode of 34 km, and follows an exponential distribution similar to the size frequency distribution of seamounts as measured from GLORIA sonar images. This is a typical distribution for most size-limited natural phenomena unlike impact craters which follow a power law distribution and continue to infinitely increase in number with decreasing size. Using an exponential distribution calculated from measured small volcanoes selected globally at random, we can calculate total number possible given a minimum size. The paucity of edifice diameters less than 2 km may be due to inability to identify very small volcanic edifices in this data set; however, summit pits are recognizable at smaller diameters, and 2 km may represent a significant minimum diameter related to style of volcanic eruption. Guest, et al, discussed four general types of small volcanic edifices on Venus: (1) small lava shields; (2) small volcanic cones; (3) small volcanic domes; and (4) scalloped margin domes ('ticks'). Steep

  13. Venus small volcano classification and description

    NASA Technical Reports Server (NTRS)

    Aubele, J. C.

    1993-01-01

    The high resolution and global coverage of the Magellan radar image data set allows detailed study of the smallest volcanoes on the planet. A modified classification scheme for volcanoes less than 20 km in diameter is shown and described. It is based on observations of all members of the 556 significant clusters or fields of small volcanoes located and described by this author during data collection for the Magellan Volcanic and Magmatic Feature Catalog. This global study of approximately 10 exp 4 volcanoes provides new information for refining small volcano classification based on individual characteristics. Total number of these volcanoes was estimated to be 10 exp 5 to 10 exp 6 planetwide based on pre-Magellan analysis of Venera 15/16, and during preparation of the global catalog, small volcanoes were identified individually or in clusters in every C1-MIDR mosaic of the Magellan data set. Basal diameter (based on 1000 measured edifices) generally ranges from 2 to 12 km with a mode of 34 km, and follows an exponential distribution similar to the size frequency distribution of seamounts as measured from GLORIA sonar images. This is a typical distribution for most size-limited natural phenomena unlike impact craters which follow a power law distribution and continue to infinitely increase in number with decreasing size. Using an exponential distribution calculated from measured small volcanoes selected globally at random, we can calculate total number possible given a minimum size. The paucity of edifice diameters less than 2 km may be due to inability to identify very small volcanic edifices in this data set; however, summit pits are recognizable at smaller diameters, and 2 km may represent a significant minimum diameter related to style of volcanic eruption. Guest, et al, discussed four general types of small volcanic edifices on Venus: (1) small lava shields; (2) small volcanic cones; (3) small volcanic domes; and (4) scalloped margin domes ('ticks'). Steep

  14. Volcano-electromagnetic effects

    USGS Publications Warehouse

    Johnston, Malcolm J. S.

    2007-01-01

    Volcano-electromagnetic effects—electromagnetic (EM) signals generated by volcanic activity—derive from a variety of physical processes. These include piezomagnetic effects, electrokinetic effects, fluid vaporization, thermal demagnetization/remagnetization, resistivity changes, thermochemical effects, magnetohydrodynamic effects, and blast-excited traveling ionospheric disturbances (TIDs). Identification of different physical processes and their interdependence is often possible with multiparameter monitoring, now common on volcanoes, since many of these processes occur with different timescales and some are simultaneously identified in other geophysical data (deformation, seismic, gas, ionospheric disturbances, etc.). EM monitoring plays an important part in understanding these processes.

  15. Hydraulic and Morphodynamic Characteristics of Submarine Channel Confluences

    NASA Astrophysics Data System (ADS)

    Ismail, H.; Viparelli, E.; Ezz, H.; Imran, J.

    2013-12-01

    Submarine channel systems are receiving increased attention recently for their potential in transporting and depositing hydrocarbons via turbidity currents into the deep ocean. In order to better predict the locations of hydrocarbon reserves, a more complete understanding of the hydraulic behavior of flows within the channels is necessary. Past field observations have shown that submarine channels have straight and meandering reaches, along with junctions in channel systems; flows in the submarine environment (i.e. density currents) may propagate as a single pulse or as a sustained flow over a prolonged period. This work aims to further the understanding of submarine channel systems by focusing on the hydraulic behavior of submarine channel confluences due to both sudden release (i.e. pulse events) and sustained flows. The associated morphodynamic consequences at and near the confluence are also assessed as they relate to the observed hydraulic conditions. Observational goals include comparisons to heavily studied characteristics of subaerial river channel confluences. These include flow separation zones, helical flow cells, existence of vertical shear layers, avalanche faces upstream of the junction, and deep central scours in the junction. For this investigation, a physical model was built to simulate a 45 degree submarine channel junction with an erodible bed in which two fully conservative density currents are released in each upstream reach and allowed to collide before creating a single combined current in the downstream reach. The pulse events focused on the head of the density currents and were simulated using a lock-exchange mechanism in which a fixed volume of salt water was locked in each upstream reach of the flume before being suddenly released into the ambient water downstream. HD images were used to obtain 1D velocity both up- and down-stream of the junction, and bathymetry measurements were obtained using an ultrasonic probe after each experiment

  16. Size distributions and failure initiation of submarine and subaerial landslides

    USGS Publications Warehouse

    ten Brink, U.S.; Barkan, R.; Andrews, B.D.; Chaytor, J.D.

    2009-01-01

    Landslides are often viewed together with other natural hazards, such as earthquakes and fires, as phenomena whose size distribution obeys an inverse power law. Inverse power law distributions are the result of additive avalanche processes, in which the final size cannot be predicted at the onset of the disturbance. Volume and area distributions of submarine landslides along the U.S. Atlantic continental slope follow a lognormal distribution and not an inverse power law. Using Monte Carlo simulations, we generated area distributions of submarine landslides that show a characteristic size and with few smaller and larger areas, which can be described well by a lognormal distribution. To generate these distributions we assumed that the area of slope failure depends on earthquake magnitude, i.e., that failure occurs simultaneously over the area affected by horizontal ground shaking, and does not cascade from nucleating points. Furthermore, the downslope movement of displaced sediments does not entrain significant amounts of additional material. Our simulations fit well the area distribution of landslide sources along the Atlantic continental margin, if we assume that the slope has been subjected to earthquakes of magnitude ??? 6.3. Regions of submarine landslides, whose area distributions obey inverse power laws, may be controlled by different generation mechanisms, such as the gradual development of fractures in the headwalls of cliffs. The observation of a large number of small subaerial landslides being triggered by a single earthquake is also compatible with the hypothesis that failure occurs simultaneously in many locations within the area affected by ground shaking. Unlike submarine landslides, which are found on large uniformly-dipping slopes, a single large landslide scarp cannot form on land because of the heterogeneous morphology and short slope distances of tectonically-active subaerial regions. However, for a given earthquake magnitude, the total area

  17. Submarine landslides: processes, triggers and hazard prediction.

    PubMed

    Masson, D G; Harbitz, C B; Wynn, R B; Pedersen, G; Løvholt, F

    2006-08-15

    Huge landslides, mobilizing hundreds to thousands of km(3) of sediment and rock are ubiquitous in submarine settings ranging from the steepest volcanic island slopes to the gentlest muddy slopes of submarine deltas. Here, we summarize current knowledge of such landslides and the problems of assessing their hazard potential. The major hazards related to submarine landslides include destruction of seabed infrastructure, collapse of coastal areas into the sea and landslide-generated tsunamis. Most submarine slopes are inherently stable. Elevated pore pressures (leading to decreased frictional resistance to sliding) and specific weak layers within stratified sequences appear to be the key factors influencing landslide occurrence. Elevated pore pressures can result from normal depositional processes or from transient processes such as earthquake shaking; historical evidence suggests that the majority of large submarine landslides are triggered by earthquakes. Because of their tsunamigenic potential, ocean-island flank collapses and rockslides in fjords have been identified as the most dangerous of all landslide related hazards. Published models of ocean-island landslides mainly examine 'worst-case scenarios' that have a low probability of occurrence. Areas prone to submarine landsliding are relatively easy to identify, but we are still some way from being able to forecast individual events with precision. Monitoring of critical areas where landslides might be imminent and modelling landslide consequences so that appropriate mitigation strategies can be developed would appear to be areas where advances on current practice are possible.

  18. Submarine landslides: processes, triggers and hazard prediction.

    PubMed

    Masson, D G; Harbitz, C B; Wynn, R B; Pedersen, G; Løvholt, F

    2006-08-15

    Huge landslides, mobilizing hundreds to thousands of km(3) of sediment and rock are ubiquitous in submarine settings ranging from the steepest volcanic island slopes to the gentlest muddy slopes of submarine deltas. Here, we summarize current knowledge of such landslides and the problems of assessing their hazard potential. The major hazards related to submarine landslides include destruction of seabed infrastructure, collapse of coastal areas into the sea and landslide-generated tsunamis. Most submarine slopes are inherently stable. Elevated pore pressures (leading to decreased frictional resistance to sliding) and specific weak layers within stratified sequences appear to be the key factors influencing landslide occurrence. Elevated pore pressures can result from normal depositional processes or from transient processes such as earthquake shaking; historical evidence suggests that the majority of large submarine landslides are triggered by earthquakes. Because of their tsunamigenic potential, ocean-island flank collapses and rockslides in fjords have been identified as the most dangerous of all landslide related hazards. Published models of ocean-island landslides mainly examine 'worst-case scenarios' that have a low probability of occurrence. Areas prone to submarine landsliding are relatively easy to identify, but we are still some way from being able to forecast individual events with precision. Monitoring of critical areas where landslides might be imminent and modelling landslide consequences so that appropriate mitigation strategies can be developed would appear to be areas where advances on current practice are possible. PMID:16844646

  19. Stratigraphic relationships and timing of the 2012 Havre submarine silicic volcanic eruption revealed by high resolution bathymetric mapping and observations by underwater vehicles.

    NASA Astrophysics Data System (ADS)

    Carey, R.; Soule, S. A.; Houghton, B. F.; White, J. D. L.; Manga, M.; Wysoczanski, R. J.; Tani, K.; McPhie, J.; Fornari, D. J.; Jutzeler, M.; Caratori Tontini, F.; Ikegami, F.; Jones, M.; Murch, A.; Fauria, K.; Mitchell, S. J.; Cahalan, R. C.; Conway, C.; McKenzie, W.

    2015-12-01

    The 2012 deep rhyolitic caldera eruption of Havre volcano in the Kermadec arc is the first historic observed submarine eruption that produced a pumice raft observed at the ocean's surface. Ship-based bathymetric surveys before and after the eruption permit the intricacies of eruption styles, products and timescales to be quantified. In 2015 we mapped this submarine volcano in unprecedented detail with two submergence vehicles in tandem, facilitating a wide and comprehensive geological survey and sampling mission. These efforts and observations show highly complex and often simultaneous eruptive behavior from more than 14 vents along two 3 km-long fissures that represent massive ruptures of the caldera walls. This survey also revealed an important role for pre- and inter-eruptive periods of mass wasting processes derived from the intrusion of magma and destablisation of caldera walls. The detailed characterization of the eruption products, and quantification of timescales provides the scientific community with the first glimpse of the nature of submarine, intermediate magnitude, deep silicic caldera eruptions and permits unanswered yet first order fundamental questions of submarine eruption and transport processes to be addressed in the decades to come.

  20. Highlights from the 2002 JASON2 marine expedition to Mauna Loa Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Weis, D.; Submarine Mauna Loa Science Team

    2003-04-01

    The new JASON2 ROV was used for 12 dives to explore and sample the submarine flanks of Mauna Loa, the world’s largest active volcano. JASON2 collected 215 visually (using video and still camera) and spatially well-documented rock and sediment samples totaling 1130 kg from the volcano’s southwest rift zone and western flank. The goals of the expedition were to investigate the nature and history of the Hawaiian mantle plume as revealed in a 1.6 km thick, submarine landslide scarp, to examine volcanic processes along the 37 km long, submarine portion of the southwest rift zone, which has 4.5 km of relief, and to sample the newly discovered submarine radial vents. In addition, detailed bathymetric data was collected for an area of 2000 km2 using an EM300 system, which has a pixel resolution of 30 m allowing for identification of small (horizontal) scale volcanic and tectonic features. These surveys provide the first detailed examination of the volcano’s submarine rift zone and western flank. They revealed 11 new radial vents, many of which appear to be young based on examination by JASON2. Radial vents are uncommon on Hawaiian volcanoes and represent only 2 of the 39 historical Mauna Loa eruptions. Picritic basalts are remarkably abundant in the rift zone section, which may record 400,000 years of eruptive activity representing about one half of the volcano’s total lifetime. This time period is comparable to that sampled by phase 2 of the Hawaiian Scientific Drilling Project. The initial bathymetric and geologic results from this cruise will be presented.

  1. Preliminary radon measurements at Villarrica volcano, Chile

    NASA Astrophysics Data System (ADS)

    Cigolini, C.; Laiolo, M.; Coppola, D.; Ulivieri, G.

    2013-10-01

    We report data from a radon survey conducted at Villarrica volcano. Measurements have been obtained at selected sites by E-PERM® electrets and two automatic stations utilizing DOSEman detectors (SARAD Gmbh). Mean values for Villarrica are 1600 (±1150) Bq/m3 are similar to values recorded at Cerro Negro and Arenal in Central America. Moderately higher emissions, at measurement sites, were recorded on the NNW sector of the volcano and the summit, ranging from 1800 to 2400 Bq/m3. These measurements indicate that this area could potentially be a zone of flank weakness. In addition, the highest radon activities, up to 4600 Bq/m3, were measured at a station located near the intersection of the Liquiñe-Ofqui Fault Zone with the Gastre Fault Zone. To date, the Villarrica radon measurements reported here are, together with those collected at Galeras (Colombia), the sole radon data reported from South American volcanoes. This research may contribute to improving future geochemical monitoring and volcano surveillance.

  2. Colima Volcano, State of Jalisco, Mexico

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Located about 125 km south of Guadalajara, state of Jalisco, Mexico, the 13,325 ft. Colima (19.5N, 103.5W) is the most active volcano in Mexico. The activity depicted occurred in early March 1991 with avalanches followed soon after by lava extrusion with ash and steam emission from the caldera. The steam plume can be seen drifting eastward from the summit and groundscars from the earlier avalanches can also be seen on the southwest slope.

  3. Preliminary Results of a Near-Bottom Integrated Seafloor and Water Column survey of Brothers volcano, Kermadec arc, Using the Autonomous Vehicle ABE

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; de Ronde, C.; Davy, B.; Baker, E. T.; Resing, J. A.; Yoerger, D. R.; Merle, S. G.; Walker, S. L.

    2007-12-01

    Brothers volcano, located about 310 km NE of New Zealand along the magmatic front of the Kermadec arc, is one of the best studied intraoceanic arc submarine volcanoes. Its 3.0 x 3.5 km caldera is slightly elliptical, with the long axis oriented about N320°E and has more than 300 m relief from a rim at ~1500 m to a maximum depth of 1880 m in its NW corner. Two major hydrothermal systems were discovered on it in the late 1990s, a high temperature field (up to 302°C) on the NW wall and a lower temperature gas-rich system on the summits of a pair of dacitic cones that occupy the SE half of the caldera. Although the caldera and cones were partly explored by submersibles in 2004 and 2005, the base map, made with a surface ship multibeam, was not detailed enough to understand the context of the seafloor observations. We used the autonomous vehicle ABE launched and recovered from the R/V SONNE in July-August 2007 to conduct high resolution near-bottom surveys of the caldera and its hydrothermal systems using a multibeam sonar, magnetometer, and CTD. The caldera wall, the dacite cones and part of the flat caldera rim were mapped in 96 hours of survey time over 8 dives. In addition, very detailed water column surveys at lower altitude and closer line spacing were conducted over the two most intense hydrothermal sites (i.e., the NW caldera wall and the smaller dacite cone). Although the results are preliminary, there are obvious correlations between hydrothermal activity, wall geomorphology, structural lineations, and the magnetic signature. New hydrothermal sites were discovered on the uppermost NW rim of the caldera and on the SW wall. This new map, along with the previously collected suites of fluid, mineral and seafloor observations, provides a baseline for future monitoring of Brothers' hydrothermal and volcanic activity. It will also provide a better understanding of how the long-term interplay of hydrothermal and volcanic activity affects the geomorphic evolution of

  4. Catalog of earthquake hypocenters at Alaskan Volcanoes: January 1 through December 31, 2011

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Searcy, Cheryl K.

    2012-01-01

    Between January 1 and December 31, 2011, the Alaska Volcano Observatory (AVO) located 4,364 earthquakes, of which 3,651 occurred within 20 kilometers of the 33 volcanoes with seismograph subnetworks. There was no significant seismic activity above background levels in 2011 at these instrumented volcanic centers. This catalog includes locations, magnitudes, and statistics of the earthquakes located in 2011 with the station parameters, velocity models, and other files used to locate these earthquakes.

  5. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2011

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Searcy, Cheryl K.

    2012-01-01

    Between January 1 and December 31, 2011, the Alaska Volcano Observatory (AVO) located 4,364 earthquakes, of which 3,651 occurred within 20 kilometers of the 33 volcanoes with seismograph subnetworks. There was no significant seismic activity above background levels in 2011 at these instrumented volcanic centers. This catalog includes locations, magnitudes, and statistics of the earthquakes located in 2011 with the station parameters, velocity models, and other files used to locate these earthquakes.

  6. Methane and radioactive isotopes in submarine hydrothermal systems

    SciTech Connect

    Kim, K.R.

    1983-01-01

    This thesis consists of two parts: 1) methane and 2) radioactive isotopes, especially radon, in submarine hydrothermal systems. Both parts deal with the use of these gases as tracers for mapping hydrothermal vents at sea, and with their relationships to other sensitive tracers such as helium, manganese, and temperature. Hydrothermal methane was used as a real-time tracer for locating new submarine hydrothermal systems along spreading axes, discovering new hydrothermal systems at two locations in Pacific Ocean: 1) 20/sup 0/S on East Pacific Rise, and 2) Mariana Trough Back-arc Basin. Methane shows good correlations with helium-3 and temperature with similar ratios in various hydrothermal systems, 3 to 42 x 10/sup 6/ for the methane to helium-3 ratio, and 3 to 19 ..mu.. cc/kg/sup 0/C for the methane to temperature anomaly. These similar ratios from different areas provide evidence for chemical homogeneity of submarine hydrothermal waters. A good correlation between methane and manganese appears to be associated only with high-temperature hydrothermal systems. Radioisotopes in the vent waters of 21/sup 0/N high-temperature hydrothermal system have end-member concentrations of 7.5 to 40 dpm/kg for Ra-226, 360 dpm/kg for Rn 222, 62 dpm/kg for Pb-210, and 19 dpm/kg for Po-210. The radon activity for this system is one order of magnitude lower, and the Pb-210 activity is one order or magnitude higher, than those a the low temperature Galapagos system. All these observations suggest that the high radon, and low Pb-210 activity observed in Galapagos system may originate from the extensive subsurface mixing and water-rock interaction in this system (direct injection of radon and scavenging of Pb-210).

  7. Human-Powered Submarine Competition: World Submarine International 1996 [and] Design Technology Exhibit: A School Model.

    ERIC Educational Resources Information Center

    Hibberd, John C.; Edwards, Don

    1996-01-01

    Hibbard describes the process used by students at Millersville University to build a human-powered submarine for entry in an international submarine competition. Edwards discusses the Design Technology Exhibit held at Lu Sutton Elementary School, the purpose of which was to challenge students to design a useful structure and provide them with the…

  8. Geology of Kilauea volcano

    SciTech Connect

    Moore, R.B. . Federal Center); Trusdell, F.A. . Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  9. Volcanoes and the Environment

    NASA Astrophysics Data System (ADS)

    Marti, Edited By Joan; Ernst, Gerald G. J.

    2005-10-01

    Volcanoes and the Environment is a comprehensive and accessible text incorporating contributions from some of the world's authorities in volcanology. This book is an indispensable guide for those interested in how volcanism affects our planet's environment. It spans a wide variety of topics from geology to climatology and ecology; it also considers the economic and social impacts of volcanic activity on humans. Topics covered include how volcanoes shape the environment, their effect on the geological cycle, atmosphere and climate, impacts on health of living on active volcanoes, volcanism and early life, effects of eruptions on plant and animal life, large eruptions and mass extinctions, and the impact of volcanic disasters on the economy. This book is intended for students and researchers interested in environmental change from the fields of earth and environmental science, geography, ecology and social science. It will also interest policy makers and professionals working on natural hazards. An all-inclusive text that goes beyond the geological working of volcanoes to consider their environmental and sociological impacts Each chapter is written by one of the world's leading authorities on the subject Accessible to students and researchers from a wide variety of backgrounds

  10. Geology of kilauea volcano

    USGS Publications Warehouse

    Moore, R.B.; Trusdell, F.A.

    1993-01-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.

  11. The Volcano Adventure Guide

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly

    2005-02-01

    This guide contains vital information for anyone wishing to visit, explore, and photograph active volcanoes safely and enjoyably. Following an introduction that discusses eruption styles of different types of volcanoes and how to prepare for an exploratory trip that avoids volcanic dangers, the book presents guidelines to visiting 42 different volcanoes around the world. It is filled with practical information that includes tour itineraries, maps, transportation details, and warnings of possible non-volcanic dangers. Three appendices direct the reader to a wealth of further volcano resources in a volume that will fascinate amateur enthusiasts and professional volcanologists alike. Rosaly Lopes is a planetary geology and volcanology specialist at the NASA Jet Propulsion Laboratory in California. In addition to her curatorial and research work, she has lectured extensively in England and Brazil and written numerous popular science articles. She received a Latinas in Science Award from the Comision Feminil Mexicana Nacional in 1991 and since 1992, has been a co-organizer of the United Nations/European Space Agency/The Planetary Society yearly conferences on Basic Science for the Benefit of Developing Countries.

  12. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2003

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sanchez, John J.; McNutt, Stephen R.; Estes, Steve; Paskievitch, John

    2004-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988. The primary objectives of this program are the near real time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the calculated earthquake hypocenter and phase arrival data, and changes in the seismic monitoring program for the period January 1 through December 31, 2003. The AVO seismograph network was used to monitor the seismic activity at twenty-seven volcanoes within Alaska in 2003. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai volcanic cluster (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Okmok Caldera, Great Sitkin Volcano, Kanaga Volcano, Tanaga Volcano, and Mount Gareloi. Monitoring highlights in 2003 include: continuing elevated seismicity at Mount Veniaminof in January-April (volcanic unrest began in August 2002), volcanogenic seismic swarms at Shishaldin Volcano throughout the year, and low-level tremor at Okmok Caldera throughout the year. Instrumentation and data acquisition highlights in 2003 were the installation of subnetworks on Tanaga and Gareloi Islands, the installation of broadband installations on Akutan Volcano and Okmok Caldera, and the establishment of telemetry for the Okmok Caldera subnetwork. AVO located 3911 earthquakes in 2003. This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a

  13. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2003

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sanchez, John J.; McNutt, Stephen R.; Estes, Steve; Paskievitch, John

    2004-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988. The primary objectives of this program are the near real time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the calculated earthquake hypocenter and phase arrival data, and changes in the seismic monitoring program for the period January 1 through December 31, 2003.The AVO seismograph network was used to monitor the seismic activity at twenty-seven volcanoes within Alaska in 2003. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai volcanic cluster (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Okmok Caldera, Great Sitkin Volcano, Kanaga Volcano, Tanaga Volcano, and Mount Gareloi. Monitoring highlights in 2003 include: continuing elevated seismicity at Mount Veniaminof in January-April (volcanic unrest began in August 2002), volcanogenic seismic swarms at Shishaldin Volcano throughout the year, and low-level tremor at Okmok Caldera throughout the year. Instrumentation and data acquisition highlights in 2003 were the installation of subnetworks on Tanaga and Gareloi Islands, the installation of broadband installations on Akutan Volcano and Okmok Caldera, and the establishment of telemetry for the Okmok Caldera subnetwork. AVO located 3911 earthquakes in 2003.This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a

  14. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2004

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; Prejean, Stephanie; Sanchez, John J.; Sanches, Rebecca; McNutt, Stephen R.; Paskievitch, John

    2005-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988. The primary objectives of the seismic program are the real-time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the calculated earthquake hypocenter and phase arrival data, and changes in the seismic monitoring program for the period January 1 through December 31, 2004.These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai volcanic cluster (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Mount Peulik, Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Okmok Caldera, Great Sitkin Volcano, Kanaga Volcano, Tanaga Volcano, and Mount Gareloi. Over the past year, formal monitoring of Okmok, Tanaga and Gareloi were announced following an extended period of monitoring to determine the background seismicity at each volcanic center. The seismicity at Mount Peulik was still being studied at the end of 2004 and has yet to be added to the list of monitored volcanoes in the AVO weekly update. AVO located 6928 earthquakes in 2004.Monitoring highlights in 2004 include: (1) an earthquake swarm at Westdahl Peak in January; (2) an increase in seismicity at Mount Spurr starting in February continuing through the end of the year into 2005; (4) low-level tremor, and low-frequency events related to intermittent ash and steam emissions at Mount Veniaminof between April and October; (4) low-level tremor at Shishaldin Volcano between April and

  15. Catalogue of Icelandic Volcanoes

    NASA Astrophysics Data System (ADS)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Gudmundsson, Magnus T.; Vogfjord, Kristin; Pagneux, Emmanuel; Oddsson, Bjorn; Barsotti, Sara; Karlsdottir, Sigrun

    2016-04-01

    The Catalogue of Icelandic Volcanoes is a newly developed open-access web resource in English intended to serve as an official source of information about active volcanoes in Iceland and their characteristics. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the effort of FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene (the time since the end of the last glaciation - approximately the last 11,500 years). In the last 50 years, over 20 eruptions have occurred in Iceland displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and the distribution lava and tephra. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in numerous scientific papers and other publications. In 2010, the International Civil Aviation Organisation (ICAO) funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU through the FP7 project FUTUREVOLC. The Catalogue of Icelandic Volcanoes is a collaboration of the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere. The Catalogue is built up of chapters with texts and various

  16. Volcano-Tectonic History of the Island of Montserrat, West Indies, From Seismic Reflection Profiles

    NASA Astrophysics Data System (ADS)

    Kenedi, C. L.; Sparks, S. J.; Dean, S.; Hammond, J.; Malin, P. E.; Minshull, T.; Paulatto, M.; Peirce, C.; Ryan, G.; Shalev, E.; Voight, B.

    2008-12-01

    Seismic reflection profiles provide a cross-sectional view of crustal layers and thus details about local sedimentation rates, chronology, and depositional materials. Based on seismic profiles collected as part of the SEA-CALIPSO seismic experiment, we apply this method to interpreting the volcanic and local tectonic history of the island of Montserrat, in the Lesser Antilles arc. In December 2007, the vessel RRS James Cook towed a tuned, 2600 cubic inch, 8-airgun array along encircling and radial lines around Montserrat. The airguns fired every 60 sec (approx. every 140 m) at a pressure of 2000 psi. The ship also towed a 600 m streamer consisting of 48 hydrophone channels. Over a period of 77 hours, the hydrophones recorded a total of 4414 shots. Onboard the ship, data were stacked to produce 26 seismic profiles. The profiles vary in length up to 15 km and allow interpretation up to a depth of approx. 2.5 km. The profiles from east of Montserrat reveal fans of coarse-grained debris flows and submarine pyroclastic flows that derive from both the older volcanic centers and the active Soufriere Hills Volcano (SHV). The flows form tapering wedges that have been overlain by younger sea-floor sediments. Older ( > 1 Ma) sedimentary rocks, containing multiple reflective layers, deflect downwards towards and beneath Montserrat, forming a moat into which the debris and pyroclastic flows have deposited. A sub-sediment volcanic basement is present offshore at approximately 1.5 km depth. Offshore on the west side of the island the prominent Belham valley fault can be traced trending NW. The new data suggest that the fault line has been active in the recent geological past; the fault has offset submarine deposits offshore and tectonic blocks onshore (Garibaldi Hill, St. Georges Hill, Roches Bluff), has caused the down-warping of ocean sediments on the east side of the island, and likely influenced the location of domes and feeding conduits at and adjacent to the SHV. Montserrat

  17. The use of rotational invariants for the interpretation of marine CSEM data with a case study from the North Alex mud volcano, West Nile Delta

    NASA Astrophysics Data System (ADS)

    Hölz, Sebastian; Swidinsky, Andrei; Sommer, Malte; Jegen, Marion; Bialas, Jörg

    2015-04-01

    Submarine mud volcanos at the seafloor are surface expressions of fluid flow systems within the seafloor. Since the electrical resistivity of the seafloor is mainly determined by the amount and characteristics of fluids contained within the sediment's pore space, electromagnetic methods offer a promising approach to gain insight into a mud volcano's internal resistivity structure. To investigate this structure, we conducted a controlled source electromagnetic experiment, which was novel in the sense that the source was deployed and operated with a remotely operated vehicle, which allowed for a flexible placement of the transmitter dipole with two polarization directions at each transmitter location. For the interpretation of the experiment, we have adapted the concept of rotational invariants from land-based electromagnetics to the marine case by considering the source normalized tensor of horizontal electric field components. We analyse the sensitivity of these rotational invariants in terms of 1-D models and measurement geometries and associated measurement errors, which resemble the experiment at the mud volcano. The analysis shows that any combination of rotational invariants has an improved parameter resolution as compared to the sensitivity of the pure radial or azimuthal component alone. For the data set, which was acquired at the `North Alex' mud volcano, we interpret rotational invariants in terms of 1-D inversions on a common midpoint grid. The resulting resistivity models show a general increase of resistivities with depth. The most prominent feature in the stitched 1-D sections is a lens-shaped interface, which can similarly be found in a section from seismic reflection data. Beneath this interface bulk resistivities frequently fall in a range between 2.0 and 2.5 Ωm towards the maximum penetration depths. We interpret the lens-shaped interface as the surface of a collapse structure, which was formed at the end of a phase of activity of an older mud

  18. Submarine intraplate volcanism in the South Pacific: Geological setting and petrology of the society and the austral regions

    NASA Astrophysics Data System (ADS)

    Hekinian, Roger; Bideau, Daniel; Stoffers, Peter; Cheminee, Jean Louis; Muhe, Richard; Puteanus, Doris; Binard, Nicolas

    1991-02-01

    The southeastern prolongations of the Society and Austral islands volcanic chains are terminated by several recent submarine volcanoes (300-3800 m in height) built on irregularly shaped crustal swells or bulges (3600-3950 m in depth). The crustal swells (about 100 km in width) is bounded by deeper abyssal hill regions (>4000 m in depth) where old volcanoes with thick Fe-Mn coatings are encountered. The rocks sampled on this ancient oceanic crust are depleted mid-ocean ridge basalts (MORBs) similar to modem volcanics encountered on the East Pacific Rise. The volcanics of the Society hot spot consist of ankaramites, picrites, alkali-basalts, basanites, tephrites, and trachytes. Highly vesiculated pillow lavas show a wide compositional range in their large ion lithophile elements (LILE) (K2O=1-4%, Nb=25-80 ppm, Zr=200-400 ppm, Ba=300-840 ppm) and compatible element variations (Mg #=40-70, Ni=80-500 ppm), and low Zr/Nb ratios (5-8). Low-K tholeiites (K2O<0.15%, Nb=3-6 ppm, Zr=56-74 ppm, Zr/Nb=10-25), also found associated with alkali-basalts and basanites from recent volcanoes, are believed to have been exposed during rejuvenation of ancient edifices. The Macdonald volcano (Austral island chain), with a base diameter of 45 km at a depth of 3850 m, was sampled from its summital area (<100 m in depth) down to 2000 m in depth. Highly vesiculated pillow lavas, volcanic ejecta, and accidental rock debris recovered differ from those of the Society hot spot volcanoes by their lower Zr/Nb (3-5), Rb/Sr (<0.045), and (Ce/Yb)N (5-10) ratios and their lower Ba (350-400 ppm) and light rare eath elements (LREE) content. The accidental rock debris (metabasalt, metadolerite, isotropic gabbros, and metagabbros) were scattered during phreatic explosive events on the flanks of the Macdonald volcano. Volcanic ejecta of basanite lapilli partially covering the accidental rock debris were formed during more recent phreatomagmatic explosions. The most undersaturated glassy pillow lava

  19. A Comparative Study of the 2011 and 2015 Eruptions of Axial Volcano, Juan de Fuca Ridge, From Seafloor Hydrophones

    NASA Astrophysics Data System (ADS)

    Caplan-Auerbach, J.; Dziak, R. P.; Bohnenstiehl, D. R.; Chadwick, W.; Lau, T. K. A.

    2015-12-01

    Axial volcano, on the Juan de Fuca ridge, erupted in April 2011, and again in April 2015. Both eruptions were captured on ocean bottom hydrophones (OBHs). The 2011 eruption was recorded by three OBHs deployed near or within the caldera, although one instrument was overrun by lava and its data could not be recovered. The 2015 eruption was captured in real time by a network of ocean bottom seismometers and hydrophones deployed as part of the Ocean Observatories Initiative Cabled Array. Intense seismicity preceded and accompanied both eruptions. Earthquakes are recognizable in the hydroacoustic record by the timing of surface reflections: secondary and tertiary pulses are consistent with arrivals coming from below the hydrophone and reflecting off of the sea surface. The 2015 eruption also produced signals that initiate in the water column, interpreted as water-lava interactions. Surface reflections for these water column events are consistent with a more distant source, and the relative polarity of arrivals on the co-located OBH and OBSs are consistent with a signal traveling through the water rather than the subsurface. Comparisons of arrivals on the hydroacoustic and seismic channels show that there is little energy on the EW seismic channel, consistent with an impulsive signal arriving from the north. These water column events are absent from the 2011 eruption, despite the fact that preliminary estimates suggest that the eruptions were of comparable volume. Also observed during the 2015 event were a number of a diffuse broadband (10-100 Hz) signals that last from several minutes to over an hour. These events appear similar to hydroacoustic signals recorded in association with explosive degassing at other submarine volcanoes including NW Rota-1 (Marianas) and West Mata (Lau Basin). A comparison of hydroacoustic data recorded in the two events indicates that the 2015 eruption was more vigorous than the 2011 event and resulted in more explosive lava

  20. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2010

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Searcy, Cheryl K.

    2011-01-01

    Between January 1 and December 31, 2010, the Alaska Volcano Observatory (AVO) located 3,405 earthquakes, of which 2,846 occurred within 20 kilometers of the 33 volcanoes with seismograph subnetworks. There was no significant seismic activity in 2010 at these monitored volcanic centers. Seismograph subnetworks with severe outages in 2009 were repaired in 2010 resulting in three volcanic centers (Aniakchak, Korovin, and Veniaminof) being relisted in the formal list of monitored volcanoes. This catalog includes locations and statistics of the earthquakes located in 2010 with the station parameters, velocity models, and other files used to locate these earthquakes.

  1. U-Th/He Ages of HSDP-2 Submarine Samples

    NASA Astrophysics Data System (ADS)

    Peterson, B. T.; Aciego, S. M.; Kennedy, B. M.; Depaolo, D. J.

    2008-12-01

    Hawaiian lavas have been used to investigate the life-cycles of hotspot-traversing volcanoes. The ~ 3500m core recovered by the Hawaii Scientific Drill Project, phase 2 (HSDP-2) has proven invaluable in refinement of models that link plume structures and melting rates to subaerial growth and geochemical evolution. Accurate age dating of lavas is critical in linking geochemical observations to plume characteristics; however, young ages and potassium-poor lavas limit the precision of argon methods. The U-Th/He method on olivine phenocrysts has been used to successfully date Hawaiian post-shield alkali basalts and flood basalts from the Snake River Plain. We are applying the method to olivine-rich lithologies in the HSDP-2 core in an attempt to gain further information about the growth rates of Hawaiian volcanoes. Preliminary results indicate that the method could help refine the flow chronology, but that modifications to the analysis procedure may be necessary to optimize the results. A subaerial Mauna Kea tholeiitic basalt from 528m depth yields a U-Th/He age of 485 +/- 100 ka (sample SR0222), slightly older than expected based on previous determinations on stratigraphically bounding flows by the argon isochron method (Sharp et al., Gcubed, 2005). A submarine hyaloclastite sample from 2931m depth (SR930) yields a preliminary age of 650+/-100 ka, which agrees well with previous Ar measurements. A pillow lava, SR0964, was also investigated, but it yielded a complicated He release pattern and no age can be obtained. U and Th concentrations in olivine separates from all three samples are low (2.6 - 5.2 ppb U; 4.5 - 8.0 ppb Th). The submarine samples appear to have a substantial amount of magmatic helium still remaining in the olivine after in vacuo crushing, as evidenced by high R/Ra values in gas released at high temperature. Residual gas left after crushing may be up to 85% magmatic, which makes the determination of radiogenic He less accurate. Sulfur contents of

  2. Temporary seismic networks on active volcanoes of Kamchatka (Russia)

    NASA Astrophysics Data System (ADS)

    Jakovlev, Andrey; Koulakov, Ivan; Abkadyrov, Ilyas; Shapiro, Nikolay; Kuznetsov, Pavel; Deev, Evgeny; Gordeev, Evgeny; Chebrov, Viktor

    2016-04-01

    We present details of four field campaigns carried out on different volcanoes of Kamchatka in 2012-2015. Each campaign was performed in three main steps: (i) installation of the temporary network of seismic stations; (ii) autonomous continuous registration of three component seismic signal; (III) taking off the network and downloading the registered data. During the first campaign started in September 2012, 11 temporary stations were installed over the Avacha group of volcanoes located 30 km north to Petropavlovsk-Kamchatsky in addition to the seven permanent stations operated by the Kamchatkan Branch of the Geophysical Survey (KBGS). Unfortunately, with this temporary network we faced with two obstacles. The first problem was the small amount of local earthquakes, which were detected during operation time. The second problem was an unexpected stop of several stations only 40 days after deployment. Nevertheless, after taking off the network in August 2013, the collected data appeared to be suitable for analysis using ambient noise. The second campaign was conducted in period from August 2013 to August 2014. In framework of the campaign, 21 temporary stations were installed over Gorely volcano, located 70 km south to Petropavlovsk-Kamchatsky. Just in time of the network deployment, Gorely Volcano became very seismically active - every day occurred more than 100 events. Therefore, we obtain very good dataset with information about thousands of local events, which could be used for any type of seismological analysis. The third campaign started in August 2014. Within this campaign, we have installed 19 temporary seismic stations over Tolbachik volcano, located on the south side of the Klyuchevskoy volcano group. In the same time on Tolbachik volcano were installed four temporary stations and several permanent stations operated by the KBGS. All stations were taking off in July 2015. As result, we have collected a large dataset, which is now under preliminary analysis

  3. One hundred years of volcano monitoring in Hawaii

    USGS Publications Warehouse

    Kauahikaua, Jim; Poland, Mike

    2012-01-01

    In 2012 the Hawaiian Volcano Observatory (HVO), the oldest of five volcano observatories in the United States, is commemorating the 100th anniversary of its founding. HVO's location, on the rim of Kilauea volcano (Figure 1)—one of the most active volcanoes on Earth—has provided an unprecedented opportunity over the past century to study processes associated with active volcanism and develop methods for hazards assessment and mitigation. The scientifically and societally important results that have come from 100 years of HVO's existence are the realization of one man's vision of the best way to protect humanity from natural disasters. That vision was a response to an unusually destructive decade that began the twentieth century, a decade that saw almost 200,000 people killed by the effects of earthquakes and volcanic eruptions.

  4. One hundred years of volcano monitoring in Hawaii

    USGS Publications Warehouse

    Kauahikaua, J.; Poland, M.

    2012-01-01

    In 2012 the Hawaiian Volcano Observatory (HVO), the oldest of five volcano observatories in the United States, is commemorating the 100th anniversary of its founding. HVO's location, on the rim of Klauea volcano (Figure 1)one of the most active volcanoes on Earthhas provided an unprecedented opportunity over the past century to study processes associated with active volcanism and develop methods for hazards assessment and mitigation. The scientifically and societally important results that have come from 100 years of HVO's existence are the realization of one man's vision of the best way to protect humanity from natural disasters. That vision was a response to an unusually destructive decade that began the twentieth century, a decade that saw almost 200,000 people killed by the effects of earthquakes and volcanic eruptions.

  5. Volcanism offshore of Vesuvius Volcano in Naples Bay

    USGS Publications Warehouse

    Milia, A.; Mirabile, L.; Torrente, M.M.; Dvorak, J.J.

    1998-01-01

    High-resolution seismic reflection data are used to identify structural features in Naples Bay near Vesuvius Volcano. Several buried seismic units with reflection-free interiors are probably volcanic deposits erupted during and since the formation of the breached crater of Monte Somma Volcano, which preceded the growth of Vesuvius. The presumed undersea volcanic deposits are limited in extent; thus, stratigraphie relationships cannot be established among them. Other features revealed by our data include (a) the warping of lowstand marine deposits by undersea cryptodomes located approximately 10 km from the summit of Vesuvius, (b) a succession of normal step faults that record seaward collapse of the volcano, and (c) a small undersea slump in the uppermost marine deposits of Naples Bay, which may be the result of nue??e ardentes that entered the sea during a major eruption of Vesuvius in 1631. Detection of these undersea features illustrates some capabilities of making detailed seismic reflection profiles across undersea volcanoes.

  6. Single-station monitoring of volcanoes using seismic ambient noise

    NASA Astrophysics Data System (ADS)

    De Plaen, Raphael S. M.; Lecocq, Thomas; Caudron, Corentin; Ferrazzini, Valérie; Francis, Olivier

    2016-08-01

    Seismic ambient noise cross correlation is increasingly used to monitor volcanic activity. However, this method is usually limited to volcanoes equipped with large and dense networks of broadband stations. The single-station approach may provide a powerful and reliable alternative to the classical "cross-station" approach when measuring variation of seismic velocities. We implemented it on the Piton de la Fournaise in Reunion Island, a very active volcano with a remarkable multidisciplinary continuous monitoring. Over the past decade, this volcano has been increasingly studied using the traditional cross-correlation technique and therefore represents a unique laboratory to validate our approach. Our results, tested on stations located up to 3.5 km from the eruptive site, performed as well as the classical approach to detect the volcanic eruption in the 1-2 Hz frequency band. This opens new perspectives to successfully forecast volcanic activity at volcanoes equipped with a single three-component seismometer.

  7. Hydroplaning and submarine debris flows

    NASA Astrophysics Data System (ADS)

    de Blasio, Fabio V.; Engvik, Lars; Harbitz, Carl B.; ElverhøI, Anders

    2004-01-01

    Examination of submarine clastic deposits along the continental margins reveals the remnants of holocenic or older debris flows with run-out distances up to hundreds of kilometers. Laboratory experiments on subaqueous debris flows, where typically one tenth of a cubic meter of material is dropped down a flume, also show high velocities and long run-out distances compared to subaerial debris flows. Moreover, they show the tendency of the head of the flow to run out ahead of the rest of the body. The experiments reveal the possible clue to the mechanism of long run-out. This mechanism, called hydroplaning, begins as the dynamic pressure at the front of the debris flow becomes of the order of the pressure exerted by the weight of the sediment. In such conditions a layer of water can intrude under the sediment with a lubrication effect and a decrease in the resistance forces between the sediment and the seabed. A physical-mathematical model of hydroplaning is presented and investigated numerically. The model is applied to both laboratory- and field-scale debris flows. Agreement with laboratory experiments makes us confident in the extrapolation of our model to natural flows and shows that long run-out distances can be naturally attained.

  8. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 1994 through December 31, 1999

    USGS Publications Warehouse

    Jolly, Arthur D.; Stihler, Scott D.; Power, John A.; Lahr, John C.; Paskievitch, John; Tytgat, Guy; Estes, Steve; Lockhart, Andrew B.; Moran, Seth C.; McNutt, Stephen R.; Hammond, William R.

    2001-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska - Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained a seismic monitoring program at potentially active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996). The primary objectives of this program are the seismic surveillance of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. Between 1994 and 1999, the AVO seismic monitoring program underwent significant changes with networks added at new volcanoes during each summer from 1995 through 1999. The existing network at Katmai –Valley of Ten Thousand Smokes (VTTS) was repaired in 1995, and new networks were installed at Makushin (1996), Akutan (1996), Pavlof (1996), Katmai - south (1996), Aniakchak (1997), Shishaldin (1997), Katmai - north (1998), Westdahl, (1998), Great Sitkin (1999) and Kanaga (1999). These networks added to AVO's existing seismograph networks in the Cook Inlet area and increased the number of AVO seismograph stations from 46 sites and 57 components in 1994 to 121 sites and 155 components in 1999. The 1995–1999 seismic network expansion increased the number of volcanoes monitored in real-time from 4 to 22, including Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Mount Snowy, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin, Aniakchak Crater, Pavlof Volcano, Mount Dutton, Isanotski volcano, Shisaldin Volcano, Fisher Caldera, Westdahl volcano, Akutan volcano, Makushin Volcano, Great Sitkin volcano, and Kanaga Volcano (see Figures 1-15). The network expansion also increased the number of earthquakes located from about 600 per year in1994 and 1995 to about 3000 per year between 1997 and 1999. Highlights of the catalog period include: 1) a large volcanogenic seismic

  9. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 1994 through December 31, 1999

    USGS Publications Warehouse

    Jolly, Arthur D.; Stihler, Scott D.; Power, John A.; Lahr, John C.; Paskievitch, John; Tytgat, Guy; Estes, Steve; Lockhart, Andrew B.; Moran, Seth C.; McNutt, Stephen R.; Hammond, William R.

    2001-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska - Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained a seismic monitoring program at potentially active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996). The primary objectives of this program are the seismic surveillance of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism.Between 1994 and 1999, the AVO seismic monitoring program underwent significant changes with networks added at new volcanoes during each summer from 1995 through 1999. The existing network at Katmai –Valley of Ten Thousand Smokes (VTTS) was repaired in 1995, and new networks were installed at Makushin (1996), Akutan (1996), Pavlof (1996), Katmai - south (1996), Aniakchak (1997), Shishaldin (1997), Katmai - north (1998), Westdahl, (1998), Great Sitkin (1999) and Kanaga (1999). These networks added to AVO's existing seismograph networks in the Cook Inlet area and increased the number of AVO seismograph stations from 46 sites and 57 components in 1994 to 121 sites and 155 components in 1999. The 1995–1999 seismic network expansion increased the number of volcanoes monitored in real-time from 4 to 22, including Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Mount Snowy, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin, Aniakchak Crater, Pavlof Volcano, Mount Dutton, Isanotski volcano, Shisaldin Volcano, Fisher Caldera, Westdahl volcano, Akutan volcano, Makushin Volcano, Great Sitkin volcano, and Kanaga Volcano (see Figures 1-15). The network expansion also increased the number of earthquakes located from about 600 per year in1994 and 1995 to about 3000 per year between 1997 and 1999.Highlights of the catalog period include: 1) a large volcanogenic seismic

  10. Preliminary Volcano-Hazard Assessment for Gareloi Volcano, Gareloi Island, Alaska

    USGS Publications Warehouse

    Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.

    2008-01-01

    Gareloi Volcano (178.794 degrees W and 51.790 degrees N) is located on Gareloi Island in the Delarof Islands group of the Aleutian Islands, about 2,000 kilometers west-southwest of Anchorage and about 150 kilometers west of Adak, the westernmost community in Alaska. This small (about 8x10 kilometer) volcano has been one of the most active in the Aleutians since its discovery by the Bering expedition in the 1740s, though because of its remote location, observations have been scant and many smaller eruptions may have gone unrecorded. Eruptions of Gareloi commonly produce ash clouds and lava flows. Scars on the flanks of the volcano and debris-avalanche deposits on the adjacent seafloor indicate that the volcano has produced large landslides in the past, possibly causing tsunamis. Such events are infrequent, occurring at most every few thousand years. The primary hazard from Gareloi is airborne clouds of ash that could affect aircraft. In this report, we summarize and describe the major volcanic hazards associated with Gareloi.

  11. Volcano-seismic activity before and after the Maule 2010 Earthquake (Southern Chile): a comparison between Llaima and Villarrica volcanoes

    NASA Astrophysics Data System (ADS)

    Mora-Stock, C.; Thorwart, M.; Wunderlich, T.; Bredemeyer, S.; Rabbel, W.

    2012-04-01

    Llaima and Villarrica are two of the most actives volcanoes in the Southern Volcanic Zone in the Chilean Andes, with different type of activity and edifice. Llaima is a close vent volcano with constant seismic activity, while Villarrica is an open vent volcano with lava lake at the summit and constant degassing. The relation between volcano eruptions following a great earthquake has been studied in different cases around the world, and it has been the case for the 1960 Valdivia earthquake in southern Chile, where Llaima and Villarrica presented eruptions on the following months to years. This study is focused on characterizing the volcano-seismic activity in the months before and after the M8.8 Maule earthquake on the 27th February 2010. Time series for tremors, long period and volcano tectonic events were obtained from the catalogue of the Volcanic Observatory of the Southern Andes (OVDAS in Spanish) and from the continuous record of the SFB 574 temporary volcanic network. In Villarrica volcano, peaks of activity of tremor and long period events were observed months prior to and after the earthquake, followed by degassing activity, which is consistent with an increase in the activity related to fluids (gas and magma). While in Llaima volcano, a high increase in the volcano tectonic activity was observed directly after the earthquake, consistent with a possible structural adjustment response. The values for pressure change and normal stress were calculated for the Maule earthquake (M8.8) giving results two orders of magnitude lower in comparison to the ones obtained for Valdivia earthquake (M9.5). Finally, these changes in the seismic behavior had lasted over a year, than it is possible to state that the Maule earthquake affected Llaima and Villarrica in some way due to static stress, but given the location and the insufficient critical state of both edifices, it was not possible to generate a great eruption.

  12. False Color Image of Volcano Sapas Mons

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This false-color image shows the volcano Sapas Mons, which is located in the broad equatorial rise called Atla Regio (8 degrees north latitude and 188 degrees east longitude). The area shown is approximately 650 kilometers (404 miles) on a side. Sapas Mons measures about 400 kilometers (248 miles) across and 1.5 kilometers (0.9 mile) high. Its flanks show numerous overlapping lava flows. The dark flows on the lower right are thought to be smoother than the brighter ones near the central part of the volcano. Many of the flows appear to have been erupted along the flanks of the volcano rather than from the summit. This type of flank eruption is common on large volcanoes on Earth, such as the Hawaiian volcanoes. The summit area has two flat-topped mesas, whose smooth tops give a relatively dark appearance in the radar image. Also seen near the summit are groups of pits, some as large as one kilometer (0.6 mile) across. These are thought to have formed when underground chambers of magma were drained through other subsurface tubes and lead to a collapse at the surface. A 20 kilometer-diameter (12-mile diameter) impact crater northeast of the volcano is partially buried by the lava flows. Little was known about Atla Regio prior to Magellan. The new data, acquired in February 1991, show the region to be composed of at least five large volcanoes such as Sapas Mons, which are commonly linked by complex systems of fractures or rift zones. If comparable to similar features on Earth, Atla Regio probably formed when large volumes of molten rock upwelled from areas within the interior of Venus known as'hot spots.' Magellan is a NASA spacecraft mission to map the surface of Venus with imaging radar. The basic scientific instrument is a synthetic aperture radar, or SAR, which can look through the thick clouds perpetually shielding the surface of Venus. Magellan is in orbit around Venus which completes one turn around its axis in 243 Earth days. That period of time, one Venus day

  13. Hazard maps of Colima volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.

    2011-12-01

    Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events

  14. Newly recognized submarine slide complexes in the southern California Bight

    NASA Astrophysics Data System (ADS)

    Conrad, J. E.; Lee, H. J.; Edwards, B. D.; McGann, M.; Sliter, R. W.

    2012-12-01

    New high-resolution bathymetric and seismic-reflection surveys have imaged large (<0.5 km3) submarine landslides offshore southern California that have not been previously recognized in the Borderland. The new data show several large slides or slide complexes that include: 1) a slide complex consisting of numerous (>7) individual overlapping slides along the western margin of Santa Cruz Basin (SCB slide); 2) a series of slumps and slide scars on the slope south of San Pedro shelf (SPS slide); and 3) a slope failure along the shelf edge in northern San Diego County, termed the Del Mar slide. The SCB slide complex extends for 30 km along the western slope of Santa Cruz Basin, with debris lobes extending 5-8 km into the basin. Head scarps of some of these slides are 50-75 m high. The SPS slide complex also appears to consist of multiple slides, which roughly parallel the Palos Verdes Fault and the San Gabriel Canyon submarine channel on the shelf edge and slope south of San Pedro shelf. Slide deposits associated with this complex are only partially mapped due to limited high-resolution bathymetric coverage, but extend to the south in the area SW of Lasuen Knoll. Seismic-reflection profiles show that some of these deposits are up to 20 m thick. The Del Mar slide is located about 10 km north of La Jolla Canyon and extends about 6 km along the shelf edge. The head scarp lies along the trend of a branch of the Rose Canyon Fault Zone. Radiocarbon ages of sediment overlying this slide indicate the Del Mar slide is approximately 12-16 ka. These large slide complexes have several characteristics in common. Nearly all occur in areas of tectonic uplift. All of the complexes show evidence of recurrent slide activity, exhibiting multiple headwall scarps and debris lobes, and where available, high-resolution seismic-reflection profiles of these slide areas provide evidence of older, buried mass transport deposits. Assuming typical sedimentation rates, the recurrence interval of

  15. Estimates of elastic plate thicknesses beneath large volcanos on Venus

    NASA Technical Reports Server (NTRS)

    Mcgovern, Patrick J.; Solomon, Sean C.

    1992-01-01

    Megellan radar imaging and topography data are now available for a number of volcanos on Venus greater than 100 km in radius. These data can be examined to reveal evidence of the flexural response of the lithosphere to the volcanic load. On Earth, flexure beneath large hotspot volcanos results in an annual topographic moat that is partially to completely filled in by sedimentation and mass wasting from the volcano's flanks. On Venus, erosion and sediment deposition are considered to be negligible at the resolution of Magellan images. Thus, it may be possible to observe evidence of flexure by the ponding of recent volcanic flows in the moat. We also might expect to find topographic signals from unfilled moats surrounding large volcanos on Venus, although these signals may be partially obscured by regional topography. Also, in the absence of sedimentation, tectonic evidence of deformation around large volcanos should be evident except where buried by very young flows. We use analytic solutions in axisymmetric geometry for deflections and stresses resulting from loading of a plate overlying an inviscid fluid. Solutions for a set of disk loads are superimposed to obtain a solution for a conical volcano. The deflection of the lithosphere produces an annular depression or moat, the extent of which can be estimated by measuring the distance from the volcano's edge to the first zero crossing or to the peak of the flexural arch. Magellan altimetry data records (ARCDRs) from data cycle 1 are processed using the GMT mapping and graphics software to produce topographic contour maps of the volcanos. We then take topographic profiles that cut across the annular and ponded flows seen on the radar images. By comparing the locations of these flows to the predicted moat locations from a range of models, we estimate the elastic plate thickness that best fits the observations, together with the uncertainty in that estimate.

  16. Catalogue of Icelandic volcanoes

    NASA Astrophysics Data System (ADS)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Vogfjörd, Kristin; Tumi Gudmundsson, Magnus; Jonsson, Trausti; Oddsson, Björn; Reynisson, Vidir; Barsotti, Sara; Karlsdottir, Sigrun

    2015-04-01

    Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene. In the last 100 years, over 30 eruptions have occurred displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and their distribution. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in scientific papers and other publications. In 2010, the International Civil Aviation Organisation funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland (commenced in 2012), and the EU FP7 project FUTUREVOLC (2012-2016), establishing an Icelandic volcano Supersite. The Catalogue is a collaborative effort between the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Icelandic Civil Protection, with contributions from a large number of specialists in Iceland and elsewhere. The catalogue is scheduled for opening in the first half of 2015 and once completed, it will be an official publication intended to serve as an accurate and up to date source of information about active volcanoes in Iceland and their characteristics. The Catalogue is an open web resource in English and is composed of individual chapters on each of the volcanic systems. The chapters include information on the geology and structure of the volcano; the eruption history, pattern and products; the known precursory signals

  17. Evidence for a Mega-Tsunami Generated by Giant Flank Collapse of Fogo Volcano, Cape Verde

    NASA Astrophysics Data System (ADS)

    Ramalho, R. S.; Madeira, J.; Helffrich, G. R.; Schaefer, J. M.; Winckler, G.; Quartau, R.; Adena, K.

    2013-12-01

    Mega-tsunamis generated by ocean island flank collapses are expected to be some of the most hazardous forces of nature, yet evidence for their near-source effects and inferred high run-ups so far is scarce or hotly debated. A newly discovered deposit on the northern coast of Santiago Island (Cape Verde), however, documents the magnitude and run-up height associated with this kind of event. Additionally to chaotic conglomerates distributed from sea-level up to 100 m elevation standing on slopes as steep as 20°, the deposit comprises a number of scattered megaclasts of submarine lava flows, limestone and tuff. The megaclasts are presently located over a higher substructural slope built on younger subaerial lava flows and at elevations ranging 160-220 m a.s.l. All megaclasts correspond to lithologies that crop out exclusively in nearby cliff faces. The origin of this deposit is consequently attributed to an exceptional wave that plucked blocks from the cliff face, transported them inland and deposited them over the higher slopes of the volcanic edifice. The distribution of the megaclasts, together with the local geomorphology, is in agreement with a tsunami that approached the island edifice from the west and was refracted along its northern flank, flooding a series of northwest-oriented valleys. This suggests that the well-known flank collapse of Fogo volcano, located 55 km west of Santiago, is the most likely source, a hypothesis being tested with surface exposure dating. The inferred run-up exceeded 200 m and is consistent with numerical simulations by Paris et al. 2011, implying that the present Fogo island morphology probably developed by at least one giant flank collapse with devastating near-source effects.

  18. The Geology and Volcanic Evolution of the Hjorliefshofthi Outlier, Iceland: A 3D exposure of a Surtseyan Volcano?

    NASA Astrophysics Data System (ADS)

    Watton, T. J.; Thordarson, T.; Jerram, D. A.; Brown, R. J.

    2012-12-01

    ) cap the succession. Inward-dipping beds, the location of basaltic spatter and the distribution of ballistically emplaced bombs constrain the location of the vent that supplied the early and late lava flows. The deposits of each phase have been analysed for major and trace elements to fingerprint the source of the basalt clasts in hyaloclastite material and the ignimbrites, which may have come from Katla volcano. Hjörleifshöfthi provides an excellent exposure of a submarine system.

  19. Volcano hazards in the San Salvador region, El Salvador

    USGS Publications Warehouse

    Major, J.J.; Schilling, S.P.; Sofield, D.J.; Escobar, C.D.; Pullinger, C.R.

    2001-01-01

    San Salvador volcano is one of many volcanoes along the volcanic arc in El Salvador (figure 1). This volcano, having a volume of about 110 cubic kilometers, towers above San Salvador, the country’s capital and largest city. The city has a population of approximately 2 million, and a population density of about 2100 people per square kilometer. The city of San Salvador and other communities have gradually encroached onto the lower flanks of the volcano, increasing the risk that even small events may have serious societal consequences. San Salvador volcano has not erupted for more than 80 years, but it has a long history of repeated, and sometimes violent, eruptions. The volcano is composed of remnants of multiple eruptive centers, and these remnants are commonly referred to by several names. The central part of the volcano, which contains a large circular crater, is known as El Boquerón, and it rises to an altitude of about 1890 meters. El Picacho, the prominent peak of highest elevation (1960 meters altitude) to the northeast of the crater, and El Jabali, the peak to the northwest of the crater, represent remnants of an older, larger edifice. The volcano has erupted several times during the past 70,000 years from vents central to the volcano as well as from smaller vents and fissures on its flanks [1] (numerals in brackets refer to end notes in the report). In addition, several small cinder cones and explosion craters are located within 10 kilometers of the volcano. Since about 1200 A.D., eruptions have occurred almost exclusively along, or a few kilometers beyond, the northwest flank of the volcano, and have consisted primarily of small explosions and emplacement of lava flows. However, San Salvador volcano has erupted violently and explosively in the past, even as recently as 800 years ago. When such eruptions occur again, substantial population and infrastructure will be at risk. Volcanic eruptions are not the only events that present a risk to local

  20. Submarine Volcanology: 1950 to 2050 and Beyond (Invited)

    NASA Astrophysics Data System (ADS)

    Delaney, J. R.; Kelley, D. S.

    2010-12-01

    The vigorous pursuit of submarine volcanism as a major field emerged in the mid 1900’s with the post WWII recognition that there is a Mid-Ocean Ridge System that is a 70,000 km long volcanic mountain chain stretching around the world like the strings on a baseball. By the mid 1960’s it emerged that rocks from volcanic feature were consistently basaltic in character and that they were the direct result of major melting processes associated with rise of much deeper mantle material beneath the spreading ridges in a global plate tectonics framework. More than 60% of the volcanism on the planet occurs in submarine environments. The next major discovery, using the deep diving submarine ALVIN, was in the late 1970’s involving hydrothermal systems near active ridges close to the Galapagos Islands and Baja California. The idea that these vent sites were the locus of major biological productivity based on volcanically-driven chemosynthesis was a fundamental new insight in the deep ocean ecology of our planet. This was a major planetological discovery and was followed within about 15 years with an even more powerful realization: our planet has a vast sub seafloor microbial biosphere thriving in the pores and the cracks of the oceanic crust driven by circulation of modified ocean fluids through large portions of the lithosphere. These organisms are largely supported by degassing and water-rock reactions associated with submarine volcanoes. Some estimates have posited that: 1) these thermally active systems and the chemosynthetic lifestyle are a natural consequence of certain types of planetary evolution, 2) that life may have originated in these systems, and, 3) that the biomass associated with the modern sub seafloor systems rivals most other living carbon on the continents. Indeed, parallel exploration of the outer solar system has lead to propositions that the second moon of Jupiter, Europa, has (or had) a high potential to harbor analogous hydrothermal life forms

  1. Underwater hydrophone location survey

    NASA Technical Reports Server (NTRS)

    Cecil, Jack B.

    1993-01-01

    The Atlantic Undersea Test and Evaluation Center (AUTEC) is a U.S. Navy test range located on Andros Island, Bahamas, and a Division of the Naval Undersea Warfare Center (NUWC), Newport, RI. The Headquarters of AUTEC is located at a facility in West Palm Beach, FL. AUTEC's primary mission is to provide the U.S. Navy with a deep-water test and evaluation facility for making underwater acoustic measurements, testing and calibrating sonars, and providing accurate underwater, surface, and in-air tracking data on surface ships, submarines, aircraft, and weapon systems. Many of these programs are in support of Antisubmarine Warfare (ASW), undersea research and development programs, and Fleet assessment and operational readiness trials. Most tests conducted at AUTEC require precise underwater tracking (plus or minus 3 yards) of multiple acoustic signals emitted with the correct waveshape and repetition criteria from either a surface craft or underwater vehicle.

  2. The Alaska Volcano Observatory - Expanded Monitoring of Volcanoes Yields Results

    USGS Publications Warehouse

    Brantley, Steven R.; McGimsey, Robert G.; Neal, Christina A.

    2004-01-01

    Recent explosive eruptions at some of Alaska's 52 historically active volcanoes have significantly affected air traffic over the North Pacific, as well as Alaska's oil, power, and fishing industries and local communities. Since its founding in the late 1980s, the Alaska Volcano Observatory (AVO) has installed new monitoring networks and used satellite data to track activity at Alaska's volcanoes, providing timely warnings and monitoring of frequent eruptions to the aviation industry and the general public. To minimize impacts from future eruptions, scientists at AVO continue to assess volcano hazards and to expand monitoring networks.

  3. International Global Atmospheric Chemistry Programme global emissions inventory activity: Sulfur emissions from volcanoes, current status

    SciTech Connect

    Benkovitz, C.M.

    1995-07-01

    Sulfur emissions from volcanoes are located in areas of volcanic activity, are extremely variable in time, and can be released anywhere from ground level to the stratosphere. Previous estimates of global sulfur emissions from all sources by various authors have included estimates for emissions from volcanic activity. In general, these global estimates of sulfur emissions from volcanoes are given as global totals for an ``average`` year. A project has been initiated at Brookhaven National Laboratory to compile inventories of sulfur emissions from volcanoes. In order to complement the GEIA inventories of anthropogenic sulfur emissions, which represent conditions circa specific years, sulfur emissions from volcanoes are being estimated for the years 1985 and 1990.

  4. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2008

    USGS Publications Warehouse

    Dixon, James P.; Stihler