Science.gov

Sample records for submarine volcano located

  1. Active submarine volcano sampled

    USGS Publications Warehouse

    Taylor, B.

    1983-01-01

    On June 4, 1982, two full dredge hauls of fresh lava were recovered from the upper flanks of Kavachi submarine volcano, Solomon Islands, in the western Pacific Ocean, from the water depths of 1,200 and 2,700 feet. the shallower dredge site was within 0.5 mile of the active submarine vent shown at the surface by an area of slick water, probably caused by gas emissions. Kavachi is a composite stratovolcano that has been observed to erupt every year or two for at least the last 30 years (see photographs). An island formed in 1952, 1961, 1965, and 1978; but, in each case, it rapidly eroded below sea level. The latest eruption was observed by Solair pilots during the several weeks up to and including May 18, 1982. 

  2. The Submarine Flanks of Anatahan Volcano

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Embley, R. W.; Johnson, P. D.; Merle, S. G.; Ristau, S.

    2003-12-01

    submarine volcano located about 10 km NE of the island, here named NE Anatahan volcano. The summit of NE Anatahan volcano reaches a depth of 459 m, and the depth of the saddle between NE Anatahan and the submarine flank of Anatahan is 1000 m. NE Anatahan volcano has a circular crater rim that is open to the west. The summit and northern flank of NE Anatahan volcano are cut by normal faults that trend north-south, possibly reflecting the orientation of the local tectonic stress field. Another submarine volcanic construction is located 5 miles north of the island and is a linear ridge aligned in the NNW-SSE direction. This ridge has a crest at a depth of 1000 m, and the most recent deposits from Anatahan and NE Anatahan volcanoes are deflected around it. There is no evidence of any landslide materials on the submarine flanks of Anatahan, except perhaps for a small area southeast of NE Anatahan volcano. Even though there appears to be evidence for relatively young submarine eruptions at Anatahan, there has been no reported evidence for submarine volcanic activity during the 2003 eruption.

  3. Mineralized microbes from Giggenbach submarine volcano

    NASA Astrophysics Data System (ADS)

    Jones, Brian; de Ronde, C. E. J.; Renaut, Robin W.

    2008-08-01

    The Giggenbach submarine volcano, which forms part of the Kermadec active arc front, is located ˜780 km NNE of the North Island of New Zealand. Samples collected from chimneys associated with seafloor hydrothermal vents on this volcano, at a depth of 160-180 m, contain silicified microbes and microbes entombed in reticular Fe-rich precipitates. The mineralized biota includes filamentous, rod-shaped, and rare coccoid microbes. In the absence of organic carbon for rDNA analysis or preserved cells, the taxonomic affinity of these microbes, in terms of extant taxa, remains questionable because of their architectural simplicity and the paucity of taxonomically significant features. The three-dimensional preservation of the microbes indicates rapid mineralization with a steady supply of supersaturated fluids to the nucleation sites present on the surfaces of the microbes. The mineralization styles evident in the microbes from the Giggenbach submarine volcano are similar to those associated with mineralized microbes found in terrestrial hot spring deposits in New Zealand, Iceland, Yellowstone, and Kenya. These similarities exist even though the microbes are probably different and the fluids become supersaturated with respect to opal-A by different mechanisms. For ancient rocks it means that interpretations of the depositional settings cannot be based solely on the silicified microbes or their style of silicification.

  4. Long-term eruptive activity at a submarine arc volcano

    USGS Publications Warehouse

    Embley, R.W.; Chadwick, W.W.; Baker, E.T.; Butterfield, D.A.; Resing, J.A.; De Ronde, C. E. J.; Tunnicliffe, V.; Lupton, J.E.; Juniper, S.K.; Rubin, K.H.; Stern, R.J.; Lebon, G.T.; Nakamura, K.-I.; Merle, S.G.; Hein, J.R.; Wiens, D.A.; Tamura, Y.

    2006-01-01

    Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions have been indirect, made from surface vessels or made after the fact. We describe here direct observations and sampling of an eruption at a submarine arc volcano named NW Rota-1, located 60 km northwest of the island of Rota (Commonwealth of the Northern Mariana Islands). We observed a pulsating plume permeated with droplets of molten sulphur disgorging volcanic ash and lapilli from a 15-m diameter pit in March 2004 and again in October 2005 near the summit of the volcano at a water depth of 555 m (depth in 2004). A turbid layer found on the flanks of the volcano (in 2004) at depths from 700 m to more than 1,400 m was probably formed by mass-wasting events related to the eruption. Long-term eruptive activity has produced an unusual chemical environment and a very unstable benthic habitat exploited by only a few mobile decapod species. Such conditions are perhaps distinctive of active arc and hotspot volcanoes. ?? 2006 Nature Publishing Group.

  5. Voluminous submarine lava flows from Hawaiian volcanoes

    SciTech Connect

    Holcomb, R.T.; Moore, J.G.; Lipman, P.W.; Belderson, R.H.

    1988-05-01

    The GLORIA long-range sonar imaging system has revealed fields of large lava flows in the Hawaiian Trough east and south of Hawaii in water as deep as 5.5 km. Flows in the most extensive field (110 km long) have erupted from the deep submarine segment of Kilauea's east rift zone. Other flows have been erupted from Loihi and Mauna Loa. This discovery confirms a suspicion, long held from subaerial studies, that voluminous submarine flows are erupted from Hawaiian volcanoes, and it supports an inference that summit calderas repeatedly collapse and fill at intervals of centuries to millenia owing to voluminous eruptions. These extensive flows differ greatly in form from pillow lavas found previously along shallower segments of the rift zones; therefore, revision of concepts of volcano stratigraphy and structure may be required.

  6. A Submarine Perspective on Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Moore, J. G.

    2011-12-01

    Postwar improvements in navigation, sonar-based mapping, and submarine photography enabled the development of bathymetric maps, which revealed submarine morphologic features that could be dredged or explored and sampled with a new generation of manned and unmanned submersibles. The maps revealed debris fields from giant landslides, the great extent of rift zones radiating from volcanic centers, and two previously unknown submarine volcanoes named Mahukona and Loihi, the youngest Hawaiian volcano. About 70 major landslides cover half the flanks of the Hawaiian Ridge out to Midway Island. Some of the landslides attain lengths of 200 km and have volumes exceeding 5,000 km3. More recent higher resolution bathymetry and sidescan data reveal that many submarine eruptions construct circular, flat-topped, monogenetic cones; that large fields of young strongly alkalic lava flows, such as the North Arch and South Arch lava fields, erupt on the seafloor within several hundred km of the islands; and that alkalic lavas erupt during the shield stage on Kilauea and Mauna Loa. The North Arch flow field covers about 24,000 km2, has an estimated volume between about 1000 and 1250 km3, has flows as long as 108 km, and erupted from over 100 vents. The source and melting mechanisms for their production is still debated. The maps also displayed stair-step terraces, mostly constructed of drowned coral reefs, which form during early rapid subsidence of the volcanoes during periods of oscillating sea level. The combination of scuba and underwater photography facilitated the first motion pictures of the mechanism of formation of pillow lava in shallow water offshore Kilauea. The age progression known from the main islands was extended westward along the Hawaiian Ridge past Midway Island, around a bend in the chain and northward along the Emperor Seamounts. Radiometric dating of dredged samples from these submarine volcanoes show that the magma source that built the chain has been active for

  7. The submarine flanks of Anatahan Volcano, commonwealth of the Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    Chadwick, William W.; Embley, Robert W.; Johnson, Paul D.; Merle, Susan G.; Ristau, Shannon; Bobbitt, Andra

    2005-08-01

    The submarine flanks of Anatahan volcano were surveyed comprehensively for the first time in 2003 and 2004 with multibeam and sidescan sonar systems. A geologic map based on the new bathymetry and backscatter data shows that 67% of the volcano's submarine flanks are covered with volcaniclastic debris and 26% is lava flows, cones, and bedrock outcrops. The island of Anatahan is only 1% of the volume of the entire volcano, which has a height from its submarine base of 3700 m and an average diameter of ˜35 km. NE Anatahan is a prominent satellite volcano located 10 km NE of the island, but it is only 6% of Anatahan's volume (40 km 3 vs. 620 km 3). Seventy-eight submarine eruptive vents are mapped associated with lava flows and cones between depths of 350 and 2950 m, and 80% of these vents are located in a cluster on the east flank of the volcano. The distribution of cones and lava flows vs. depth suggests a possible change in eruptive style from explosive to effusive between 1500 and 2000 m. Eruptive vents below 2000 m have produced mostly lava flows. There is no evidence of major landslides on the submarine flanks of Anatahan volcano, in contrast to many basaltic islands and seamounts, suggesting that mass wasting at felsic oceanic arc volcanoes may be characterized by sediment flows of unconsolidated volcaniclastic debris instead of mass movements of relatively large intact blocks.

  8. Integrated volcanologic and petrologic analysis of the 1650 AD eruption of Kolumbo submarine volcano, Greece

    NASA Astrophysics Data System (ADS)

    Cantner, Kathleen; Carey, Steven; Nomikou, Paraskevi

    2014-01-01

    Kolumbo submarine volcano, located 7 km northeast of Santorini, Greece in the Aegean Sea, last erupted in 1650 AD. Submarine and subaerial explosive activity lasted for a period of about four months and led to the formation of thick (~ 250 m) highly stratified pumice deposits on the upper crater walls as well as extensive pumice rafts that were dispersed throughout the southern Aegean Sea. Subaerial tephra fallout from eruption columns that breached the surface occurred as far east as Turkey.

  9. The 2014 Submarine Eruption of Ahyi Volcano, Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    Haney, M. M.; Chadwick, W.; Merle, S. G.; Buck, N. J.; Butterfield, D. A.; Coombs, M. L.; Evers, L. G.; Heaney, K. D.; Lyons, J. J.; Searcy, C. K.; Walker, S. L.; Young, C.; Embley, R. W.

    2014-12-01

    On April 23, 2014, Ahyi Volcano, a submarine cone in the Northern Mariana Islands (NMI), ended a 13-year-long period of repose with an explosive eruption lasting over 2 weeks. The remoteness of the volcano and the presence of several seamounts in the immediate area posed a challenge for constraining the source location of the eruption. Critical to honing in on the Ahyi area quickly were quantitative error estimates provided by the CTBTO on the backazimuth of hydroacoustic arrivals observed at Wake Island (IMS station H11). T-phases registered across the NMI seismic network at the rate of approximately 10 per hour until May 8 and were observed in hindsight at seismic stations on Guam and Chichijima. After May 8, sporadic T-phases were observed until May 17. Within days of the eruption onset, reports were received from NOAA research divers of hearing explosions underwater and through the hull on the ship while working on the SE coastline of Farallon de Pajaros (Uracas), a distance of 20 km NW of Ahyi. In the same area, the NOAA crew reported sighting mats of orange-yellow bubbles on the water surface and extending up to 1 km from the shoreline. Despite these observations, satellite images showed nothing unusual throughout the eruption. During mid-May, a later cruise leg on the NOAA ship Hi'ialakai that was previously scheduled in the Ahyi area was able to collect some additional data in response to the eruption. Preliminary multibeam sonar bathymetry and water-column CTD casts were obtained at Ahyi. Comparison between 2003 and 2014 bathymetry revealed that the minimum depth had changed from 60 m in 2003 to 75 m in 2014, and a new crater ~95 m deep had formed at the summit. Extending SSE from the crater was a new scoured-out landslide chute extending downslope to a depth of at least 2300 m. Up to 125 m of material had been removed from the head of the landslide chute and downslope deposits were up to 40 m thick. Significant particle plumes were detected at all three

  10. Submarine radial vents on Mauna Loa Volcano, Hawai'i

    USGS Publications Warehouse

    Wanless, V. Dorsey; Garcia, M.O.; Trusdell, F.A.; Rhodes, J.M.; Norman, M.D.; Weis, Dominique; Fornari, D.J.; Kurz, M.D.; Guillou, Herve

    2006-01-01

    A 2002 multibeam sonar survey of Mauna Loa's western flank revealed ten submarine radial vents and three submarine lava flows. Only one submarine radial vent was known previously. The ages of these vents are constrained by eyewitness accounts, geologic relationships, Mn-Fe coatings, and geochemical stratigraphy; they range from 128 years B.P. to possibly 47 ka. Eight of the radial vents produced degassed lavas despite eruption in water depths sufficient to inhibit sulfur degassing. These vents formed truncated cones and short lava flows. Two vents produced undegassed lavas that created “irregular” cones and longer lava flows. Compositionally and isotopically, the submarine radial vent lavas are typical of Mauna Loa lavas, except two cones that erupted alkalic lavas. He-Sr isotopes for the radial vent lavas follow Mauna Loa's evolutionary trend. The compositional and isotopic heterogeneity of these lavas indicates most had distinct parental magmas. Bathymetry and acoustic backscatter results, along with photography and sampling during four JASON2 dives, are used to produce a detailed geologic map to evaluate Mauna Loa's submarine geologic history. The new map shows that the 1877 submarine eruption was much larger than previously thought, resulting in a 10% increase for recent volcanism. Furthermore, although alkalic lavas were found at two radial vents, there is no systematic increase in alkalinity among these or other Mauna Loa lavas as expected for a dying volcano. These results refute an interpretation that Mauna Loa's volcanism is waning. The submarine radial vents and flows cover 29 km2 of seafloor and comprise a total volume of ∼2×109 m3 of lava, reinforcing the idea that submarine lava eruptions are important in the growth of oceanic island volcanoes even after they emerged above sea level.

  11. Debris Avalanche Formation at Kick'em Jenny Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Sigurdsson, H.; Carey, S. N.; Wilson, D.

    2005-12-01

    Kick'em Jenny submarine volcano near Grenada is the most active volcanic center in the Lesser Antilles arc. Multibeam surveys of the volcano by NOAA in 2002 revealed an arcuate fault scarp east of the active cone, suggesting flank collapse. More extensive NOAA surveys in 2003 demonstrated the presence of an associated debris avalanche deposit, judging from their surface morphologic expression on the sea floor, extending at least 15 km and possibly as much as 30 km from the volcano, into the Grenada Basin to the west. Seismic air-gun profiles of the region show that these are lobate deposits, that range in thickness from tens to hundreds of meters. The debris avalanche deposit is contained within two marginal levees, that extend symmetrically from the volcano to the west. A conservative estimate of the volume of the smaller debris avalanche deposit is about 10 km3. Age dating of the deposits and the flank failure events is in progress, by analysis of gravity cores collected during the 2003 survey. Reconstruction of the pre-collapse volcanic edifice suggests that the ancestral Kick'em Jenny volcano might have been at or above sea level. Kick'em Jenny is dominantly supplied by basalt to basaltic andesite magmas, that are extruded now as submarine pillow lavas and domes or ejected as tephra in relatively minor phreatomagmatic explosions. Geochemical evolution of this volcano has not, however, reached the stage of generation of volatile-rich silicic magmas that might form highly explosive eruptions.

  12. Growth History of Kaena Volcano, the Isolated, Dominantly Submarine, Precursor Volcano to Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Sinton, J. M.; Eason, D. E.

    2014-12-01

    The construction of O'ahu began with the recently recognized, ~3.5-4.9 Ma Ka'ena Volcano, as an isolated edifice in the Kaua'i Channel. Ka'ena remained submarine until, near the end of its lifetime as magma supply waned and the volcano transitioned to a late-shield stage of activity, it emerged to reach a maximum elevation of ~1000 m above sea level. We estimate that Ka'ena was emergent only for the last 15-25% of its lifespan, and that subaerial lavas make up < 5% of the total volume (20-27 x 103 km3). O'ahu's other volcanoes, Wai'anae (~3.9-2.85 Ma) and Ko'olau (~3.0-1.9 Ma), were built at least partly on the flanks of earlier edifices and both were active subaerial volcanoes for at least 1 Ma. The constructional history of Ka'ena contrasts with that of Wai'anae, Ko'olau, and many other Hawaiian volcanoes, which likely emerge within a few hundred kyr after inception, and with subaerial lavas comprising up to 35 volume % of the volcano. These relations suggest that volcano growth history and morphology are critically dependent on whether volcanic initiation and growth occur in the deep ocean floor (isolated), or on the flanks of pre-existing edifices. Two other volcanoes that likely formed in isolation are West Moloka'i and Kohala, both of which have long submarine rift zones, and neither attained great heights above sea level despite having substantial volume. The partitioning of volcanism between submarine and subaerial volcanism depends on the distance between volcanic centers, whether new volcanoes initiate on the flanks of earlier ones, and the time over which neighboring volcanoes are concurrently active. Ka'ena might represent an end-member in this spectrum, having initiated far from its next oldest neighbor and completed much of its evolution in isolation.

  13. Updated bathymetric survey of Kick-'em-Jenny submarine volcano

    NASA Astrophysics Data System (ADS)

    Watlington, R. A.; Wilson, W. D.; Johns, W. E.; Nelson, C.

    High-resolution bathymetric data obtained in July 1996 during a survey of the Kick-'em-Jenny submarine volcano north of Grenada in the Lesser Antilles revealed changes in the structure of the volcanic edifice compared to previously available surveys. The volcano's summit, at 178 m below sea level, was found to be approximately 18 m farther from the surface than was reported by Bouysse et al. (1988) and others. No dome was observed. Instead, an open crater, surrounded by walls that dropped significantly in elevation from one side to the opposite, suggest that eruptions, earthquakes, rockfalls or explosions may have altered the structure since the last detailed survey. The deepest contour of the volcano's crater was found 106 m below the summit.

  14. Near-specular acoustic scattering from a buried submarine mud volcano.

    PubMed

    Gerig, Anthony L; Holland, Charles W

    2007-12-01

    Submarine mud volcanoes are objects that form on the seafloor due to the emission of gas and fluidized sediment from the Earth's interior. They vary widely in size, can be exposed or buried, and are of interest to the underwater acoustics community as potential sources of active sonar clutter. Coincident seismic reflection data and low frequency bistatic scattering data were gathered from one such buried mud volcano located in the Straits of Sicily. The bistatic data were generated using a pulsed piston source and a 64-element horizontal array, both towed over the top of the volcano. The purpose of this work was to appropriately model low frequency scattering from the volcano using the bistatic returns, seismic bathymetry, and knowledge of the general geoacoustic properties of the area's seabed to guide understanding and model development. Ray theory, with some approximations, was used to model acoustic propagation through overlying layers. Due to the volcano's size, scattering was modeled using geometric acoustics and a simple representation of volcano shape. Modeled bistatic data compared relatively well with experimental data, although some features remain unexplained. Results of an inversion for the volcano's reflection coefficient indicate that it may be acoustically softer than expected.

  15. Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system.

    PubMed

    Rizzo, Andrea Luca; Caracausi, Antonio; Chavagnac, Valèrie; Nomikou, Paraskevi; Polymenakou, Paraskevi N; Mandalakis, Manolis; Kotoulas, Georgios; Magoulas, Antonios; Castillo, Alain; Lampridou, Danai

    2016-06-17

    Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report (3)He/(4)He measurements in CO2-dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a (3)He/(4)He signature of at least 7.0 Ra (being Ra the (3)He/(4)He ratio of atmospheric He equal to 1.39×10(-6)), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like (3)He/(4)He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano.

  16. Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system

    PubMed Central

    Rizzo, Andrea Luca; Caracausi, Antonio; Chavagnac, Valèrie; Nomikou, Paraskevi; Polymenakou, Paraskevi N.; Mandalakis, Manolis; Kotoulas, Georgios; Magoulas, Antonios; Castillo, Alain; Lampridou, Danai

    2016-01-01

    Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report 3He/4He measurements in CO2–dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a 3He/4He signature of at least 7.0 Ra (being Ra the 3He/4He ratio of atmospheric He equal to 1.39×10−6), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like 3He/4He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano. PMID:27311383

  17. Environmental monitoring of El Hierro Island submarine volcano, by combining low and high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Eugenio, F.; Martin, J.; Marcello, J.; Fraile-Nuez, E.

    2014-06-01

    El Hierro Island, located at the Canary Islands Archipelago in the Atlantic coast of North Africa, has been rocked by thousands of tremors and earthquakes since July 2011. Finally, an underwater volcanic eruption started 300 m below sea level on October 10, 2011. Since then, regular multidisciplinary monitoring has been carried out in order to quantify the environmental impacts caused by the submarine eruption. Thanks to this natural tracer release, multisensorial satellite imagery obtained from MODIS and MERIS sensors have been processed to monitor the volcano activity and to provide information on the concentration of biological, chemical and physical marine parameters. Specifically, low resolution satellite estimations of optimal diffuse attenuation coefficient (Kd) and chlorophyll-a (Chl-a) concentration under these abnormal conditions have been assessed. These remote sensing data have played a fundamental role during field campaigns guiding the oceanographic vessel to the appropriate sampling areas. In addition, to analyze El Hierro submarine volcano area, WorldView-2 high resolution satellite spectral bands were atmospherically and deglinted processed prior to obtain a high-resolution optimal diffuse attenuation coefficient model. This novel algorithm was developed using a matchup data set with MERIS and MODIS data, in situ transmittances measurements and a seawater radiative transfer model. Multisensor and multitemporal imagery processed from satellite remote sensing sensors have demonstrated to be a powerful tool for monitoring the submarine volcanic activities, such as discolored seawater, floating material and volcanic plume, having shown the capabilities to improve the understanding of submarine volcanic processes.

  18. Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system

    NASA Astrophysics Data System (ADS)

    Rizzo, Andrea Luca; Caracausi, Antonio; Chavagnac, Valèrie; Nomikou, Paraskevi; Polymenakou, Paraskevi N.; Mandalakis, Manolis; Kotoulas, Georgios; Magoulas, Antonios; Castillo, Alain; Lampridou, Danai

    2016-06-01

    Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report 3He/4He measurements in CO2–dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a 3He/4He signature of at least 7.0 Ra (being Ra the 3He/4He ratio of atmospheric He equal to 1.39×10‑6), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like 3He/4He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano.

  19. New Mapping of Mariana Submarine Volcanoes with Sidescan and Multibeam Sonars

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Chadwick, W. W.; Baker, E. T.; Johnson, P. D.; Merle, S. G.; Ristau, S.

    2003-12-01

    aprons of the islands and larger submarine volcanoes, sediment waves with wavelengths of up to 1.0 km and amplitudes up to 50 m commonly occur. Their crests are almost always oriented parallel to regional contours, indicating a formation mechanism related to down slope flow. In some places clear transitions occur between mass flows on the volcanoes' steeper flanks and the sediment waves on the gentler slopes of the apron. A preliminary interpretation is the sediment waves form during the transition from channelized to unconstrained flows. Sediment waves of similar scale are commonly observed on the levees of deep-sea channels and on deep-sea fans. The location and shape of the arc volcanoes are often controlled or influenced by tectonic control. Within the southern part of the Central Island Province, from about 15\\deg 50' N to 18\\deg 00' N, volcanoes often line up and/or are elongated in an E-W or an E-NE direction. There are several cross-chains of volcanoes in this region that penetrate 10's of kms into the back-arc basin. Along the northern part of the arc (the Northern Seamount Province), where the convergence direction is roughly parallel to the arc front, the structure is more complex. Several active volcanoes occur at the intersection of two or more structural lineaments northwest of Farallon de Pajaros Island. There are several volcanoes in the northern area that are narrow ridges striking in a S-SW trend 9 (arc-orthogonal).

  20. High-resolution seismic structure analysis of an active submarine mud volcano area off SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Hsiao-Shan; Hsu, Shu-Kun; Tsai, Wan-Lin; Tsai, Ching-Hui; Lin, Shin-Yi; Chen, Song-Chuen

    2015-04-01

    In order to better understand the subsurface structure related to an active mud volcano MV1 and to understand their relationship with gas hydrate/cold seep formation, we conducted deep-towed side-scan sonar (SSS), sub-bottom profiler (SBP), multibeam echo sounding (MBES), and multi-channel reflection seismic (MCS) surveys off SW Taiwan from 2009 to 2011. As shown in the high-resolution sub-bottom profiler and EK500 sonar data, the detailed structures reveal more gas seeps and gas flares in the study area. In addition, the survey profiles show several submarine landslides occurred near the thrust faults. Based on the MCS results, we can find that the MV1 is located on top of a mud diapiric structure. It indicates that the MV1 has the same source as the associated mud diapir. The blanking of the seismic signal may indicate the conduit for the upward migration of the gas (methane or CO2). Therefore, we suggest that the submarine mud volcano could be due to a deep source of mud compressed by the tectonic convergence. Fluids and argillaceous materials have thus migrated upward along structural faults and reach the seafloor. The gas-charged sediments or gas seeps in sediments thus make the seafloor instable and may trigger submarine landslides.

  1. H2O Contents of Submarine and Subaerial Silicic Pyroclasts from Oomurodashi Volcano, Northern Izu-Bonin Arc

    NASA Astrophysics Data System (ADS)

    McIntosh, I. M.; Tani, K.; Nichols, A. R.

    2014-12-01

    Oomurodashi volcano is an active shallow submarine silicic volcano in the northern Izu-Bonin Arc, located ~20 km south of the inhabited active volcanic island of Izu-Oshima. Oomurodashi has a large (~20km diameter) flat-topped summit located at 100 - 150 metres below sea level (mbsl), with a small central crater, Oomuro Hole, located at ~200 mbsl. Surveys conducted during cruise NT12-19 of R/V Natsushima in 2012 using the remotely-operated vehicle (ROV) Hyper-Dolphin revealed that Oomuro Hole contains numerous active hydrothermal vents and that the summit of Oomurodashi is covered by extensive fresh rhyolitic lava and pumice clasts with little biogenetic or manganese cover, suggesting recent eruption(s) from Oomuro Hole. Given the shallow depth of the volcano summit, such eruptions are likely to have generated subaerial eruption columns. A ~10ka pumiceous subaerial tephra layer on the neighbouring island of Izu-Oshima has a similar chemical composition to the submarine Oomurodashi rocks collected during the NT12-19 cruise and is thought to have originated from Oomurodashi. Here we present FTIR measurements of the H2O contents of rhyolitic pumice from both the submarine deposits sampled during ROV dives and the subaerial tephra deposit on Izu-Oshima, in order to assess magma degassing and eruption processes occurring during shallow submarine eruptions.

  2. A Miocene submarine volcano at Low Layton, Jamaica

    NASA Technical Reports Server (NTRS)

    Wadge, G.

    1982-01-01

    A submarine fissure eruption of Upper Miocene age produced a modest volume of alkaline basalt at Low Layton, on the north coast of Jamaica. The eruption occurred in no more than a few hundred meters of water and produced a series of hyaloclastites, pillow breccias and pillow lavas, massive lavas, and dikes with an ENE en echelon structure. The volcano lies on the trend of one of the island's major E-W strike-slip fault zones; the Dunavale Fault Zone. The K-Ar age of the eruption of 9.5 plus or minus 0.5 Ma. B.P. corresponds to an extension of the Mid-Cayman Rise spreading center inferred from magnetic anomalies and bathymetry of the Cayman Trough to the north and west of Jamaica. The Low Layton eruption was part of the response of the strike-slip fault systems adjacent to this spreading center during this brief episode of tectonic readjustment.

  3. Remote Analysis of Grain Size Characteristic in Submarine Pyroclastic Deposits from Kolumbo Volcano, Greece

    NASA Astrophysics Data System (ADS)

    Smart, C.; Whitesell, D. P.; Roman, C.; Carey, S.

    2011-12-01

    Grain size characteristics of pyroclastic deposits provide valuable information about source eruption energetics and depositional processes. Maximum size and sorting are often used to discriminate between fallout and sediment gravity flow processes during explosive eruptions. In the submarine environment the collection of such data in thick pyroclastic sequences is extremely challenging and potentially time consuming. A method has been developed to extract grain size information from stereo images collected by a remotely operated vehicle (ROV). In the summer of 2010 the ROV Hercules collected a suite of stereo images from a thick pumice sequence in the caldera walls of Kolumbo submarine volcano located about seven kilometers off the coast of Santorini, Greece. The highly stratified, pumice-rich deposit was likely created by the last explosive eruption of the volcano that took place in 1650 AD. Each image was taken from a distance of only a few meters from the outcrop in order to capture the outlines of individual clasts with relatively high resolution. Mosaics of individual images taken as the ROV transected approximately 150 meters of vertical outcrop were used to create large-scale vertical stratigraphic columns that proved useful for overall documentation of the eruption sequence and intracaldera correlations of distinct tephra units. Initial image processing techniques, including morphological operations, edge detection, shape and size estimation were implemented in MatLab and applied to a subset of individual images of the mosiacs. A large variety of algorithms were tested in order to best discriminate the outlines of individual pumices. This proved to be challenging owing to the close packing and overlapping of individual pumices. Preliminary success was achieved in discriminating the outlines of the large particles and measurements were carried out on the largest clasts present at different stratigraphic levels. In addition, semi-quantitative analysis of the

  4. Are midwater shrimp trapped in the craters of submarine volcanoes by hydrothermal venting?

    NASA Astrophysics Data System (ADS)

    Wishner, Karen F.; Graff, Jason R.; Martin, Joel W.; Carey, S.; Sigurdsson, H.; Seibel, B. A.

    2005-08-01

    The biology of Kick'em Jenny (KEJ) submarine volcano, part of the Lesser Antilles volcanic arc and located off the coast of Grenada in the Caribbean Sea, was studied during a cruise in 2003. Hydrothermal venting and an associated biological assemblage were discovered in the volcanic crater (˜250 m depth). Warm water with bubbling gas emanated through rock fissures and sediments. Shrimp (some of them swimming) were clustered at vents, while other individuals lay immobile on sediments. The shrimp fauna consisted of 3 mesopelagic species that had no prior record of benthic or vent association. We suggest that these midwater shrimp, from deeper water populations offshore, were trapped within the crater during their downward diel vertical migration. It is unknown whether they then succumbed to the hostile vent environment (immobile individuals) or whether they are potentially opportunistic vent residents (active individuals). Given the abundance of submarine arc volcanoes worldwide, this phenomenon suggests that volcanic arcs could be important interaction sites between oceanic midwater and vent communities.

  5. Looking for Larvae Above an Erupting Submarine Volcano, NW Rota-1, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Hanson, M.; Beaulieu, S.; Tunnicliffe, V.; Chadwick, W.; Breuer, E. R.

    2015-12-01

    In 2009 the first marine protected areas for deep-sea hydrothermal vents in U.S. waters were established as part of the Volcanic Unit of the Marianas Trench Marine National Monument. In this region, hydrothermal vents are located along the Mariana Arc and back-arc spreading center. In particular hydrothermal vents are located near the summit of NW Rota-1, an active submarine volcano on the Mariana Arc which was erupting between 2003 through 2010 and ceased as of 2014. In late 2009, NW Rota-1 experienced a massive landslide decimating the habitat on the southern side of the volcano. This presented an enormous natural disturbance to the community. This project looked at zooplankton tow samples taken from the water column above NW Rota-1 in 2010, searching specifically for larvae which have the potential to recolonize the sea floor after such a major disturbance. We focused on samples for which profiles with a MAPR sensor indicated hydrothermal plumes in the water column. Samples were sorted in entirety into coarse taxa, and then larvae were removed for DNA barcoding. Overall zooplankton composition was dominated by copepods, ostracods, and chaetognaths, the majority of which are pelagic organisms. Comparatively few larvae of benthic invertebrates were found, but shrimp, gastropod, barnacle, and polychaete larvae did appear in low numbers in the samples. Species-level identification obtained via genetic barcoding will allow for these larvae to be matched to species known to inhabit the benthic communities at NW Rota-1. Identified larvae will give insight into the organisms which can re-colonize the seafloor vent communities after a disturbance such as the 2009 landslide. Communities at hydrothermal vents at other submarine volcanoes in the Monument also can act as sources for these planktonic, recolonizing larvae. As the microinvertebrate biodiversity in the Monument has yet to be fully characterized, our project also provides an opportunity to better describe both

  6. Distribution of tephra from the 1650 AD submarine eruption of Kolumbo volcano, Greece

    NASA Astrophysics Data System (ADS)

    Fuller, S. A.; Carey, S.; Nomikou, P.

    2013-12-01

    Kolumbo submarine volcano, located 7 km northeast of Santorini in the Aegean Sea, last erupted in 1650 AD resulting in about 70 fatalities on Thera from gas discharge and significant coastal destruction from tsunamis. Extensive pumice rafts were reported over a large area surrounding Santorini, extending as far south as Crete. Tephra from the 1650 AD submarine eruption has been correlated in sediment box cores using a combination of mineralogy and major element composition of glass shards. The biotite-bearing rhyolite of Kolumbo can be readily discriminated from other silicic pyroclastics derived from the main Santorini complex. In general the tephra deposits are very fine grained (silt to fine sand-size), medium gray in color, and covered by about 10 cms of brown hemipelagic sediment. This corresponds to an average background sedimentation rate of 29 cm/kyr. The distribution of the 1650 AD Kolumbo tephra extends over an area larger than previously inferred from seismic profiles on the volcano's slopes and in adjacent basins. The cores indicate tephra deposits at least 19 km from the caldera, more than double the approximate 9 km inferred from seismic data. The preferential occurrence of the tephra within basins and sedimentological features such as cross bedding and laminations suggests that emplacement was dominated by sediment gravity flows generated from submarine and subaerial eruption plumes. We suggest that generation of the sediment gravity flows took place by collapse of submarine eruption columns and by Rayleigh-Taylor instabilities that formed on the sea surface as subaerial fallout accumulated from parts of the columns that breached the surface. Additionally, SEM imaging reveals particle morphologies that can be attributed to fragmentation by both primary volatile degassing (bubble wall shards) and phreatomagmatic activity (blocky equant grains). It is likely that phreatomagmatic activity became more important in the latter stages of the eruptive

  7. Imaging of CO2 bubble plumes above an erupting submarine volcano, NW Rota-1, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Chadwick, William W.; Merle, Susan G.; Buck, Nathaniel J.; Lavelle, J. William; Resing, Joseph A.; Ferrini, Vicki

    2014-11-01

    Rota-1 is a submarine volcano in the Mariana volcanic arc located ˜100 km north of Guam. Underwater explosive eruptions driven by magmatic gases were first witnessed there in 2004 and continued until at least 2010. During a March 2010 expedition, visual observations documented continuous but variable eruptive activity at multiple vents at ˜560 m depth. Some vents released CO2 bubbles passively and continuously, while others released CO2 during stronger but intermittent explosive bursts. Plumes of CO2 bubbles in the water column over the volcano were imaged by an EM122 (12 kHz) multibeam sonar system. Throughout the 2010 expedition numerous passes were made over the eruptive vents with the ship to document the temporal variability of the bubble plumes and relate them to the eruptive activity on the seafloor, as recorded by an in situ hydrophone and visual observations. Analysis of the EM122 midwater data set shows: (1) bubble plumes were present on every pass over the summit and they rose 200-400 m above the vents but dissolved before they reached the ocean surface, (2) bubble plume deflection direction and distance correlate well with ocean current direction and velocity determined from the ship's acoustic doppler current profiler, (3) bubble plume heights and volumes were variable over time and correlate with eruptive intensity as measured by the in situ hydrophone. This study shows that midwater multibeam sonar data can be used to characterize the level of eruptive activity and its temporal variability at a shallow submarine volcano with robust CO2 output.

  8. Numerical tsunami hazard assessment of the submarine volcano Kick 'em Jenny in high resolution are

    NASA Astrophysics Data System (ADS)

    Dondin, Frédéric; Dorville, Jean-Francois Marc; Robertson, Richard E. A.

    2016-04-01

    Landslide-generated tsunami are infrequent phenomena that can be potentially highly hazardous for population located in the near-field domain of the source. The Lesser Antilles volcanic arc is a curved 800 km chain of volcanic islands. At least 53 flank collapse episodes have been recognized along the arc. Several of these collapses have been associated with underwater voluminous deposits (volume > 1 km3). Due to their momentum these events were likely capable of generating regional tsunami. However no clear field evidence of tsunami associated with these voluminous events have been reported but the occurrence of such an episode nowadays would certainly have catastrophic consequences. Kick 'em Jenny (KeJ) is the only active submarine volcano of the Lesser Antilles Arc (LAA), with a current edifice volume estimated to 1.5 km3. It is the southernmost edifice of the LAA with recognized associated volcanic landslide deposits. The volcano appears to have undergone three episodes of flank failure. Numerical simulations of one of these episodes associated with a collapse volume of ca. 4.4 km3 and considering a single pulse collapse revealed that this episode would have produced a regional tsunami with amplitude of 30 m. In the present study we applied a detailed hazard assessment on KeJ submarine volcano (KeJ) form its collapse to its waves impact on high resolution coastal area of selected island of the LAA in order to highlight needs to improve alert system and risk mitigation. We present the assessment process of tsunami hazard related to shoreline surface elevation (i.e. run-up) and flood dynamic (i.e. duration, height, speed...) at the coast of LAA island in the case of a potential flank collapse scenario at KeJ. After quantification of potential initial volumes of collapse material using relative slope instability analysis (RSIA, VolcanoFit 2.0 & SSAP 4.5) based on seven geomechanical models, the tsunami source have been simulate by St-Venant equations-based code

  9. Bubble Plumes above erupting NW Rota-1 submarine volcano, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Chadwick, B.; Merle, S. G.; Embley, R. W.; Buck, N.; Resing, J. A.; Leifer, I.

    2013-12-01

    NW Rota-1 is a submarine volcano in the Mariana volcanic arc with a summit depth of 517 m, located ~100 km north of Guam. Underwater explosive eruptions driven by magmatic gases were first witnessed here in 2004 and the volcano has remained persistently active ever since. During a March 2010 expedition to NW Rota-1 with the remotely operated vehicle Jason, we observed intermittent explosive activity at five distinct eruptive vents along a line 100-m long near the summit of the volcano (550-590 m depth). The continuous but variable eruptive activity produced CO2 bubble plumes that rose in the water column over the volcano and could be readily imaged by sonar because they provide excellent acoustic reflectors. This study compares the manifestations of NW Rota's eruptive activity as measured by several independent methods, including: (1) an EM122 multibeam sonar system (12 kHz) on the R/V Kilo Moana that imaged bubble plumes in the water column over the volcano, (2) hydrophone data that recorded the sounds of the variable eruptive activity, and (3) visual observations of the activity at the eruptive vents on the seafloor from Jason. Throughout the 2010 expedition numerous passes were made over the volcano's summit to image the bubble plumes with the EM122 multibeam sonar, in order to capture the variability of the plumes over time and to relate them to the eruptive output of the volcano. The mid-water sonar dataset totals >95 hours of observations over a 12-day period. Analysis of the EM122 dataset shows: (1) bubble plumes were visible in the water column on every pass over the summit, (2) separate plumes were resolvable from up to 4 of the 5 eruptive vents at times, (3) plume heights and intensities were variable with time, (4) the highest observed bubble plume rise height was 415 meters above the seafloor to within 175 m of the ocean surface, while lower amplitude wisps rose to heights <100 m from the surface, (5) most of the bubble plumes were deflected to the WSW

  10. Hydroacoustic detection of submarine landslides on Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Caplan-Auerbach, Jacqueline; Fox, Christopher G.; Duennebier, Frederick K.

    Landslides produced at the site where lava flows into the ocean at Kilauea volcano have been detected hydroacoustically. Up to 10 landslides per day were detected by a hydrophone on the Hawaii Undersea Geo-Observatory (HUGO), located 50 km south of the entry site. The largest of these landslides, partly subaerial events known as bench collapses, were detected by a network of hydrophones in the eastern Pacific, 5000-7000 km away from the source. The landslides display a characteristic spectral signature easily recognizable among other signals such as earthquake T-phases and anthropogenic noises. The fact that signals are detected at great distances suggests that hydroacoustic detection of landslides could be a powerful tool in tsunami monitoring and modeling efforts.

  11. Predicting the Timing and Location of the next Hawaiian Volcano

    ERIC Educational Resources Information Center

    Russo, Joseph; Mattox, Stephen; Kildau, Nicole

    2010-01-01

    The wealth of geologic data on Hawaiian volcanoes makes them ideal for study by middle school students. In this paper the authors use existing data on the age and location of Hawaiian volcanoes to predict the location of the next Hawaiian volcano and when it will begin to grow on the floor of the Pacific Ocean. An inquiry-based lesson is also…

  12. Submarine radial vents on Mauna Loa Volcano, Hawaìi

    NASA Astrophysics Data System (ADS)

    Wanless, V. Dorsey; Garcia, M. O.; Trusdell, F. A.; Rhodes, J. M.; Norman, M. D.; Weis, Dominique; Fornari, D. J.; Kurz, M. D.; Guillou, Hervé

    2006-05-01

    A 2002 multibeam sonar survey of Mauna Loa's western flank revealed ten submarine radial vents and three submarine lava flows. Only one submarine radial vent was known previously. The ages of these vents are constrained by eyewitness accounts, geologic relationships, Mn-Fe coatings, and geochemical stratigraphy; they range from 128 years B.P. to possibly 47 ka. Eight of the radial vents produced degassed lavas despite eruption in water depths sufficient to inhibit sulfur degassing. These vents formed truncated cones and short lava flows. Two vents produced undegassed lavas that created "irregular" cones and longer lava flows. Compositionally and isotopically, the submarine radial vent lavas are typical of Mauna Loa lavas, except two cones that erupted alkalic lavas. He-Sr isotopes for the radial vent lavas follow Mauna Loa's evolutionary trend. The compositional and isotopic heterogeneity of these lavas indicates most had distinct parental magmas. Bathymetry and acoustic backscatter results, along with photography and sampling during four JASON2 dives, are used to produce a detailed geologic map to evaluate Mauna Loa's submarine geologic history. The new map shows that the 1877 submarine eruption was much larger than previously thought, resulting in a 10% increase for recent volcanism. Furthermore, although alkalic lavas were found at two radial vents, there is no systematic increase in alkalinity among these or other Mauna Loa lavas as expected for a dying volcano. These results refute an interpretation that Mauna Loa's volcanism is waning. The submarine radial vents and flows cover 29 km2 of seafloor and comprise a total volume of ˜2 × 109 m3 of lava, reinforcing the idea that submarine lava eruptions are important in the growth of oceanic island volcanoes even after they emerged above sea level.

  13. Argon-40: excess in submarine pillow basalts from kilauea volcano, hawaii.

    PubMed

    Dalrymple, G B; Moore, J G

    1968-09-13

    Submarine pillow basalts from Kilauea Volcano contain excess radiogenic argon-40 and give anomalously high potassium-argon ages. Glassy rims of pillows show a systematic increase in radiogenic argon-40 with depth, and a pillow from a depth of 2590 meters shows a decrease in radiogenic argon40 inward from the pillow rim. The data indicate that the amount of excess radiogenic argon-40 is a direct function of both hydrostatic pressure and rate of cooling, and that many submarine basalts are not suitable for potassium-argon dating.

  14. Mapping the sound field of an erupting submarine volcano using an acoustic glider.

    PubMed

    Matsumoto, Haru; Haxel, Joseph H; Dziak, Robert P; Bohnenstiehl, Delwayne R; Embley, Robert W

    2011-03-01

    An underwater glider with an acoustic data logger flew toward a recently discovered erupting submarine volcano in the northern Lau basin. With the volcano providing a wide-band sound source, recordings from the two-day survey produced a two-dimensional sound level map spanning 1 km (depth) × 40 km(distance). The observed sound field shows depth- and range-dependence, with the first-order spatial pattern being consistent with the predictions of a range-dependent propagation model. The results allow constraining the acoustic source level of the volcanic activity and suggest that the glider provides an effective platform for monitoring natural and anthropogenic ocean sounds.

  15. Controls of surface topography on submarine and subaerial hydrothermal fluid flow and vent-site location

    NASA Astrophysics Data System (ADS)

    Bani Hassan, N.; Rupke, L.; Iyer, K. H.; Borgia, A.

    2010-12-01

    Hydrothermal convection is an important process that occurs in the oceanic lithosphere as well as within continents where the geothermal gradient is high enough to drive fluid flow. This process efficiently mines heat from the lithosphere, sustains life in the otherwise bleak settings at oceanic depths and is associated with mineral deposits. Although recent focus on hydrothermal systems has greatly improved our understanding on how they work, the detailed effects of topography on these systems has largely been ignored. While the qualitative effects of topography on hydrothermal flow are largely known (e.g. Ingebritsen 2006), we here present results from systematic numerical modeling on the importance of topography for both, subaerial and submarine hydrothermal convection. The model is based on a 2-D Finite Element Method (FEM) solver for fully compressible, single-phase, porous media fluid flow and is used to simulate hydrothermal convection in a number of synthetic studies as well as for two case studies for the Lucky Strike vent field (submarine) and the Amiata volcano (subaerial). The results of synthetic studies using sinusoidal topography variations show that topography indeed has a profound effect on the distribution and flow field of the convection cells. In the submarine case, fluid venting occurs at the topographic highs while the recharge zones are restricted to the lows. For the subaerial scenarios, the opposite occurs where groundwater flow focuses venting at flank regions and the recharge zones are situated at the highs. For example, in the submarine case, ~90% of the hydrothermal fluids vent at upper 50% of topographic highs if the number of topographic highs equals the number of plumes in a flat-top reference simulation. The results show that the focusing effect into topographic highs (submarine) and lows (subaerial) is highly dependent on the wavelength and amplitude of topography, i.e. wavelengths that are too high or low result in venting at

  16. Transport and Deposition During The 2012 Submarine Explosive Eruption of Havre Volcano

    NASA Astrophysics Data System (ADS)

    Soule, S. A.; Carey, R.; Jones, M.; Ikegami, F.; Yoerger, D.; Fornari, D. J.

    2015-12-01

    Havre Volcano in the Kermadec Arc experienced a large eruption in 2012. The eruption was identified when ships in the area intersected a pumice raft, which was subsequently tracked by NASA MODIS satellite imagery. In 2015, an NSF-sponsored research cruise to the area conducted AUV and ROV dives to map and sample the deposits of this eruption. This presentation describes the high-resolution mapping data and seafloor observations that illustrate the processes of lava and pyroclast transport and deposition. The National Deep Submergence Facility (NDSF) AUV Sentry collected multibeam bathymetry data over the Havre caldera rim and floor - an area of 56 km2 - at a resolution of 1m. In addition, Sentry collected high-resolution sidescan sonar backscatter data over the same area. The NDSF ROV Jason collected HD video and down-looking still imagery along dive transects. These data allow us to document the depositional landforms in great detail. Notable features include effusive domes, lava flows, and a widespread blanket of giant pumice and ash. With constraints from seafloor imagery, we use the morphology of the imaged landforms to delineate deposit extents, identify intra-flow and intra-deposit features, pinpoint vent locations, and, in comparison with pre-eruption bathymetry, determine eruptive volumes. This information informs preliminary models of transport and deposition processes that are unique to submarine explosive eruptions.

  17. Draft Genome Sequence of Methanoculleus sediminis S3FaT, a Hydrogenotrophic Methanogen Isolated from a Submarine Mud Volcano in Taiwan.

    PubMed

    Chen, Sheng-Chung; Chen, Mei-Fei; Weng, Chieh-Yin; Lai, Mei-Chin; Wu, Sue-Yao

    2016-04-21

    Here, we announce the genome sequence of ITALIC! Methanoculleus sediminisS3Fa(T)(DSM 29354(T)), a strict anaerobic methanoarchaeon, which was isolated from sediments near the submarine mud volcano MV4 located offshore in southwestern Taiwan. The 2.49-Mb genome consists of 2,459 predicted genes, 3 rRNAs, 48 tRNAs, and 1 ncRNA. The sequence of this novel strain may provide more information for species delineation and the roles that this strain plays in the unique marine mud volcano habitat.

  18. The study of active submarine volcanoes and hydrothermal vents in the Southernmost Part of Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Tsai, C.; Lee, C.

    2004-12-01

    The study area is located in the Southernmost Part of Okinawa Trough (SPOT), which is a back-arc basin formed by extension of Eurasian plate. Previous research indicated two extensional stages in SPOT area. Many normal-fault structures were come into existence during both extensional processes. The SPOT is presently in an activity tectonic episode. Therefore, the area becomes a frequent earthquake and abundant magmatism. The purpose of this study is to discuss which relationship between tectonics, submarine volcanoes and hydrothermal vents in SPOT area. The investigations are continued from 1998 to 2004, we have found at least twelve active hydrothermal vents in study area. Compare the locations hydrothermal vents with fault systems, we find both of them have highly correlated. We can distinguish them into two shapes, pyramidal shape and non-pyramidal shape. According to plumes height, we are able to divide these vents into two groups near east longitude 122.5° . East of this longitude, the hydrothermal plumes are more powerful and west of it are the weaker. This is closely related to the present extensional axis (N80° E) of the southern part of the Okinawa Trough. This can be explained the reason of why the more powerful vents coming out of the east group. The east group is associated with the present back-arc spreading system. West of 122.5° , the spreading system are in a primary stage. The andesitic volcanic island, the Turtle Island, is a result of N60° E extensional tectonism with a lot of faults. Besides the pyramidal shape, this can be proved indirectly. The vents located in the west side were occurred from previous extensional faults and are weaker than the eastern. Therefore, we suggest that if last the extension keeps going on, the hydrothermal vents located at the west side of the longitude 122.5° will be intensified.

  19. Exploring the "Sharkcano": Biogeochemical observations of the Kavachi submarine volcano (Solomon Islands) using simple, cost-effective methods.

    NASA Astrophysics Data System (ADS)

    Phillips, B. T.; Albert, S.; Carey, S.; DeCiccio, A.; Dunbabin, M.; Flinders, A. F.; Grinham, A. R.; Henning, B.; Howell, C.; Kelley, K. A.; Scott, J. J.

    2015-12-01

    Kavachi is a highly active undersea volcano located in the Western Province of the Solomon Islands, known for its frequent phreatomagmatic eruptions and ephemeral island-forming activity. The remote location of Kavachi and its explosive behavior has restricted scientific exploration of the volcano, limiting observations to surface imagery and peripheral water-column data. An expedition to Kavachi in January 2015 was timed with a rare lull in volcanic activity, allowing for observation of the inside of Kavachi's caldera and its flanks. Here we present medium-resolution bathymetry of the main peak paired with benthic imagery, petrologic analysis of samples from the caldera rim, measurements of gas flux over the main peak, and hydrothermal plume structure data. A second peak was discovered to the Southwest of the main cone and displayed evidence of diffuse-flow venting. Populations of gelatinous animals, small fish, and sharks were observed inside the active crater, raising new questions about the ecology of active submarine volcanoes. Most equipment used in this study was lightweight, relatively low-cost, and deployed using small boats; these methods may offer developing nations an economic means to explore deep-sea environments within their own territorial waters.

  20. Sector collapse at Kick 'em Jenny submarine volcano (Lesser Antilles): numerical simulation and landslide behaviour

    NASA Astrophysics Data System (ADS)

    Dondin, Frédéric; Lebrun, Jean-Frédéric; Kelfoun, Karim; Fournier, Nicolas; Randrianasolo, Auran

    2012-03-01

    Kick 'em Jenny volcano is the only known active submarine volcano in the Lesser Antilles. It lies within a horseshoe-shaped structure open to the west northwest, toward the deep Grenada Basin. A detailed bathymetric survey of the basin slope at Kick 'em Jenny and resulting high-resolution digital elevation model allowed the identification of a major submarine landslide deposit. This deposit is thought to result from a single sector collapse event at Kick 'em Jenny and to be linked to the formation of the horseshoe-shaped structure. We estimated the volume and the leading-edge runout of the landslide to be ca. 4.4 km3 and 14 km, respectively. We modelled a sector collapse event of a proto Kick 'em Jenny volcano using VolcFlow, a finite difference code based on depth-integrated mass and momentum equations. Our models show that the landslide can be simulated by either a Coulomb-type rheology with low basal friction angles (5.5°-6.5°) and a significant internal friction angle (above 17.5°) or, with better results, by a Bingham rheology with low Bingham kinematic viscosity (0 < ν B < 30 m2/s) and high shear strength (130 < γ ≤ 180 m2/s2). The models and the short runout distance suggest that the landslide travelled as a stiff cohesive flow affected by minimal granular disaggregation and slumping on a non-lubricated surface. The main submarine landslide deposit can therefore be considered as a submarine mass slide deposit that behaved like a slump.

  1. Transition from circular to stellate forms of submarine volcanoes

    NASA Astrophysics Data System (ADS)

    Mitchell, Neil C.

    2001-02-01

    Large volcanic islands and guyots have stellate forms that reflect the relief of radiating volcanic rift zones, multiple volcanic centers, and embayments due to giant flank failures. Small mid-ocean ridge volcanoes, in contrast, are commonly subcircular in plan view and show only embryonic rift zones. In order to characterize the transition between these two end-members the morphology of 141 seamounts and guyots was studied using the shape of the depth contour at half the height of each edifice. Irregularity was characterized by measuring perimeter distance, elongation, and moment of inertia of the contours, assuming an "ideal" edifice is circular. The analysis reveals a general transition over 2-4 km edifice height (best transition estimate 3 km), while some large edifices 4-5 km high show no major embayments or ridges, suggesting considerable variation in the effectiveness of mechanisms that cause flank instability and growth of rift zones. The various origins of the transition are discussed, and the upper limit of magma chambers, many of which lie above the basement of the larger edifices, is proposed to affect the morphologic complexity via a number of mechanisms and is an important factor affecting the mode of growth. The origins of the truncated cone shape of mid-ocean ridge volcanoes are also discussed. Of the eruption mechanisms that have been proposed to explain their flat summits, the most likely mechanisms involve eruption from small ephemeral magma bodies lying within the low-density upper oceanic crust. The discussion includes speculations on factors affecting the depths of magma chambers beneath oceanic volcanoes. Supporting table is available via Web browser or via Anonymous FTP from ftp://kosmos.agu.org, directory "append" (Username = "anonymous", Password ="guest"); subdirectories in the ftp site are arranged by paper number. Information on searching and submitting electronic supplements is found at http://www.agu.org/pubs/csupp_about.html.

  2. Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island.

    PubMed

    Santana-Casiano, J M; Fraile-Nuez, E; González-Dávila, M; Baker, E T; Resing, J A; Walker, S L

    2016-05-09

    The residual hydrothermalism associated with submarine volcanoes, following an eruption event, plays an important role in the supply of CO2 to the ocean. The emitted CO2 increases the acidity of seawater. The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to study the effect of volcanic CO2 on the seawater carbonate system, the global carbon flux, and local ocean acidification. A detailed survey of the volcanic edifice was carried out using seven CTD-pH-ORP tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of anomalies. In order to investigate the temporal variability of the system, two CTD-pH-ORP yo-yo studies were conducted that included discrete sampling for carbonate system parameters. Meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column for each surveyed section. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 10(5) ± 1.1 10(5 )kg d(-1) which is ~0.1% of global volcanic CO2 flux. Finally, the CO2 emitted by El Hierro increases the acidity above the volcano by ~20%.

  3. Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island

    PubMed Central

    Santana-Casiano, J. M.; Fraile-Nuez, E.; González-Dávila, M.; Baker, E. T.; Resing, J. A.; Walker, S. L.

    2016-01-01

    The residual hydrothermalism associated with submarine volcanoes, following an eruption event, plays an important role in the supply of CO2 to the ocean. The emitted CO2 increases the acidity of seawater. The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to study the effect of volcanic CO2 on the seawater carbonate system, the global carbon flux, and local ocean acidification. A detailed survey of the volcanic edifice was carried out using seven CTD-pH-ORP tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of anomalies. In order to investigate the temporal variability of the system, two CTD-pH-ORP yo-yo studies were conducted that included discrete sampling for carbonate system parameters. Meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column for each surveyed section. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 105 ± 1.1 105 kg d−1 which is ~0.1% of global volcanic CO2 flux. Finally, the CO2 emitted by El Hierro increases the acidity above the volcano by ~20%. PMID:27157062

  4. Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island

    NASA Astrophysics Data System (ADS)

    Santana-Casiano, J. M.; Fraile-Nuez, E.; González-Dávila, M.; Baker, E. T.; Resing, J. A.; Walker, S. L.

    2016-05-01

    The residual hydrothermalism associated with submarine volcanoes, following an eruption event, plays an important role in the supply of CO2 to the ocean. The emitted CO2 increases the acidity of seawater. The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to study the effect of volcanic CO2 on the seawater carbonate system, the global carbon flux, and local ocean acidification. A detailed survey of the volcanic edifice was carried out using seven CTD-pH-ORP tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of anomalies. In order to investigate the temporal variability of the system, two CTD-pH-ORP yo-yo studies were conducted that included discrete sampling for carbonate system parameters. Meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column for each surveyed section. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 105 ± 1.1 105 kg d‑1 which is ~0.1% of global volcanic CO2 flux. Finally, the CO2 emitted by El Hierro increases the acidity above the volcano by ~20%.

  5. Volcanoes

    ERIC Educational Resources Information Center

    Kunar, L. N. S.

    1975-01-01

    Describes the forces responsible for the eruptions of volcanoes and gives the physical and chemical parameters governing the type of eruption. Explains the structure of the earth in relation to volcanoes and explains the location of volcanic regions. (GS)

  6. Degassing history of water, sulfur, and carbon in submarine lavas from Kilauea Volcano, Hawaii

    SciTech Connect

    Dixon, J.E.; Stolper, E.M. ); Clague, D.A. )

    1991-05-01

    Major, minor, and dissolved volatile element concentrations were measured in tholeiitic glasses from the submarine portion (Puna Ridge) of the east rift zone of Kilauea Volcano, Hawaii. Dissolved H{sub 2}O and S concentrations display a wide range relative to nonvolatile incompatible elements at all depths. This range cannot be readily explained by fractional crystallization, degassing of H{sub 2}O and S during eruption on the seafloor, or source region heterogeneities. Dissolved CO{sub 2} concentrations, in contrast, show a positive correlation with eruption depth and typically agree within error with the solubility at that depth. The authors propose that most magmas along the Puna Ridge result from (1) mixing of a relatively volatile-rich, undegassed component with magmas that experienced low pressure (perhaps subaerial) degassing during which substantial H{sub 2}O, S, and CO{sub 2} were lost, followed by (2) fractional crystallization of olivine, clinopyroxene, and plagioclase from this mixture to generate a residual liquid; and (3) further degassing, principally of CO{sub 2} for samples erupted deeper than 1,000 m, during eruption on the seafloor. They predict that average Kilauean primary magmas with 16% MgO contain {approximately}0.47 wt % H{sub 2}0, {approximately}900 ppm S, and have {delta}D values of {approximately}{minus}30 to {minus}40%. The model predicts that submarine lavas from wholly submarine volcanoes (i.e., Loihi), for which there is no opportunity to generate the degassed end member by low pressure degassing, will be enriched in volatiles relative to those from volcanoes whose summits have breached the sea surface (i.e., Kilauea and Mauna Loa).

  7. Methanoculleus sediminis sp. nov., a methanogen from sediments near a submarine mud volcano.

    PubMed

    Chen, Sheng-Chung; Chen, Mei-Fei; Lai, Mei-Chin; Weng, Chieh-Yin; Wu, Sue-Yao; Lin, Saulwood; Yang, Tsanyao F; Chen, Po-Chun

    2015-07-01

    A mesophilic, hydrogenotrophic methanogen, strain S3Fa(T), was isolated from sediments collected by Ocean Researcher I cruise ORI-934 in 2010 near the submarine mud volcano MV4 located at the upper slope of south-west Taiwan. The methanogenic substrates utilized by strain S3Fa(T) were formate and H2/CO2 but not acetate, secondary alcohols, methylamines, methanol or ethanol. Cells of strain S3Fa(T) were non-motile, irregular cocci, 0.5-1.0 μm in diameter. The surface-layer protein showed an Mr of 128,000.The optimum growth conditions were 37 °C, pH 7.1 and 0.17 M NaCl. The DNA G+C content of the genome of strain S3Fa(T) was 62.3 mol%. Phylogenetic analysis revealed that strain S3Fa(T) was most closely related to Methanoculleus marisnigri JR1(T) (99.3% 16S rRNA gene sequence similarity). Genome relatedness between strain S3Fa(T) and Methanoculleus marisnigri JR1(T) was computed using both genome-to-genome distance analysis (GGDA) and average nucleotide identity (ANI) with values of 46.3-55.5% and 93.08%, respectively. Based on morphological, phenotypic, phylogenetic and genomic relatedness data, it is evident that strain S3Fa(T) represents a novel species of the genus Methanoculleus, for which the name Methanoculleus sediminis sp. nov. is proposed. The type strain is S3Fa(T) ( = BCRC AR10044(T) = DSM 29354(T)).

  8. Hydrothermal Venting at Kick'Em Jenny Submarine Volcano (West Indies)

    NASA Astrophysics Data System (ADS)

    Carey, S.; Croff Bell, K. L.; Dondin, F. J. Y.; Roman, C.; Smart, C.; Lilley, M. D.; Lupton, J. E.; Ballard, R. D.

    2014-12-01

    Kick'em Jenny is a frequently-erupting, shallow submarine volcano located ~8 km off the northwest coast of Grenada in the West Indies. The last eruption took place in 2001 but did not breach the sea surface. Focused and diffuse hydrothermal venting is taking place mainly within a small (~100 x 100 m) depression within the 300 m diameter crater of the volcano at depths of about 265 meters. Near the center of the depression clear fluids are being discharged from a focused mound-like vent at a maximum temperature of 180o C with the simultaneous discharge of numerous bubble streams. The gas consists of 93-96% CO2 with trace amounts of methane and hydrogen. A sulfur component likely contributes 1-4% of the gas total. Gas flux measurements on individual bubble streams ranged from 10 to 100 kg of CO2 per day. Diffuse venting with temperatures 5 to 35o C above ambient occurs throughout the depression and over large areas of the main crater. These zones are extensively colonized by reddish-yellow bacterial mats with the production of loose Fe-oxyhydroxides largely as a surface coating and in some cases, as fragile spires up to several meters in height. A high-resolution photo mosaic of the crater depression was constructed using the remotely operated vehicle Hercules on cruise NA039 of the E/V Nautilus. The image revealed prominent fluid flow patterns descending the sides of the depression towards the base. We speculate that the negatively buoyant fluid flow may be the result of second boiling of hydrothermal fluids at Kick'em Jenny generating a dense saline component that does not rise despite its elevated temperature. Increased density may also be the result of high dissolved CO2 content of the fluids, although we were not able to measure this directly. The low amount of sulphide mineralization on the crater floor suggests that deposition may be occurring mostly subsurface, in accord with models of second boiling mineralization from other hydrothermal vent systems.

  9. Long-term explosive degassing and debris flow activity at West Mata submarine volcano

    NASA Astrophysics Data System (ADS)

    Dziak, R. P.; Bohnenstiehl, D. R.; Baker, E. T.; Matsumoto, H.; Caplan-Auerbach, J.; Embley, R. W.; Merle, S. G.; Walker, S. L.; Lau, T.-K.; Chadwick, W. W.

    2015-03-01

    West Mata is a 1200 m deep submarine volcano where explosive boninite eruptions were observed in 2009. The acoustic signatures from the volcano's summit eruptive vents Hades and Prometheus were recorded with an in situ (~25 m range) hydrophone during ROV dives in May 2009 and with local (~5 km range) moored hydrophones between December 2009 and August 2011. The sensors recorded low frequency (1-40 Hz), short duration explosions consistent with magma bubble bursts from Hades, and broadband, 1-5 min duration signals associated with episodes of fragmentation degassing from Prometheus. Long-term eruptive degassing signals, recorded through May 2010, preceded a several month period of declining activity. Degassing episodes were not recorded acoustically after early 2011, although quieter effusive eruption activity may have continued. Synchronous optical measurements of turbidity made between December 2009 and April 2010 indicate that turbidity maxima resulted from occasional south flank slope failures triggered by the collapse of accumulated debris during eruption intervals.

  10. Submarine geology of Hana Ridge and Haleakala Volcano's northeast flank, Maui

    USGS Publications Warehouse

    Eakins, Barry W.; Robinson, Joel E.

    2006-01-01

    We present a morphostructural analysis of the submarine portions of Haleakala Volcano and environs, based upon a 4-year program of geophysical surveys and submersible explorations of the underwater flanks of Hawaiian volcanoes that was conducted by numerous academic and governmental research organizations in Japan and the U.S. and funded primarily by the Japan Agency for Marine–Earth Science and Technology. A resulting reconnaissance geologic map features the 135-km-long Hana Ridge, the 3000 km2 Hana slump on the volcano's northeast flank, and island-surrounding terraces that are the submerged parts of volcanic shields. Hana Ridge below 2000 m water depth exhibits the lobate morphology typical of the subaqueously erupted parts of Hawaiian rift zones, with some important distinctions: namely, subparallel crestlines, which we propose result from the down-rift migration of offsets in the dike intrusion zone, and an amphitheater at its distal toe, where a submarine landslide has embayed the ridge tip. Deformation of Haleakala's northeast flank is limited to that part identified as the Hana slump, which lies downslope from the volcano's submerged shield, indicating that flank mobility is also limited in plan, inconsistent with hypothesized volcanic spreading driven by rift-zone dilation. The leading edge of the slump has transverse basins and ridges that resemble the thrust ramps of accretionary prisms, and we present a model to describe the slump's development that emphasizes the role of coastally generated fragmental basalt on gravitational instability of Haleakala's northeast flank and that may be broadly applicable to other ocean-island slumps.

  11. A GIS typology to locate sites of submarine groundwater discharge.

    PubMed

    Rapaglia, John; Grant, Carley; Bokuniewicz, Henry; Pick, Tsvi; Scholten, Jan

    2015-07-01

    Although many researchers agree on the importance of submarine groundwater discharge (SGD), it remains difficult to locate and quantify this process. A groundwater typology was developed based on local digital elevation models and compared to concurrent radon mapping indicative of SGD in the Niantic River, CT USA. Areas of high radon activity were located near areas of high flow accumulation lending evidence to the utility of this approach to locate SGD. The benefits of this approach are three-fold: fresh terrestrial SGD may be quickly located through widely-available digital elevation models at little or no cost to the investigator; fresh SGD may also be quantified through the GIS approach by multiplying pixelated flow accumulation with the expected annual recharge; and, as these data necessarily quantify only fresh SGD, a comparison of these data with SGD as calculated by Rn activity may allow for the separation of the fresh and circulated fractions of SGD. This exercise was completed for the Niantic River where SGD as calculated by the GIS model is 1.2 m(3)/s, SGD as calculated by Rn activity is 0.73-5.5 m(3)/s, and SGD as calculated via a theoretical approach is 1.8-4.3 m(3)/s. Therefore fresh, terrestrial SGD accounts for 22-100% of total SGD in the Niantic River.

  12. New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece.

    PubMed

    Kilias, Stephanos P; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Polymenakou, Paraskevi N; Godelitsas, Athanasios; Argyraki, Ariadne; Carey, Steven; Gamaletsos, Platon; Mertzimekis, Theo J; Stathopoulou, Eleni; Goettlicher, Joerg; Steininger, Ralph; Betzelou, Konstantina; Livanos, Isidoros; Christakis, Christos; Bell, Katherine Croff; Scoullos, Michael

    2013-01-01

    We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the hydrothermal vent field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor hydrothermal activity are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (±Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits. Iron microbial-mat analyses reveal dominating ferrihydrite-type phases, and high-proportion of microbial sequences akin to "Nitrosopumilus maritimus", a mesophilic Thaumarchaeota strain capable of chemoautotrophic growth on hydrothermal ammonia and CO2. Our findings highlight that acidic shallow-submarine hydrothermal vents nourish marine ecosystems in which nitrifying Archaea are important and suggest ferrihydrite-type Fe(3+)-(hydrated)-oxyhydroxides in associated low-temperature iron mats are formed by anaerobic Fe(2+)-oxidation, dependent on microbially produced nitrate.

  13. New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece

    PubMed Central

    Kilias, Stephanos P.; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Polymenakou, Paraskevi N.; Godelitsas, Athanasios; Argyraki, Ariadne; Carey, Steven; Gamaletsos, Platon; Mertzimekis, Theo J.; Stathopoulou, Eleni; Goettlicher, Joerg; Steininger, Ralph; Betzelou, Konstantina; Livanos, Isidoros; Christakis, Christos; Bell, Katherine Croff; Scoullos, Michael

    2013-01-01

    We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the hydrothermal vent field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor hydrothermal activity are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (±Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits. Iron microbial-mat analyses reveal dominating ferrihydrite-type phases, and high-proportion of microbial sequences akin to "Nitrosopumilus maritimus", a mesophilic Thaumarchaeota strain capable of chemoautotrophic growth on hydrothermal ammonia and CO2. Our findings highlight that acidic shallow-submarine hydrothermal vents nourish marine ecosystems in which nitrifying Archaea are important and suggest ferrihydrite-type Fe3+-(hydrated)-oxyhydroxides in associated low-temperature iron mats are formed by anaerobic Fe2+-oxidation, dependent on microbially produced nitrate. PMID:23939372

  14. Submarine geology of the Hilina slump and morpho-structural evolution of Kilauea volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Smith, John R.; Malahoff, Alexander; Shor, Alexander N.

    1999-12-01

    Marine geophysical data, including SEA BEAM bathymetry, HAWAII MR1 sidescan, and seismic reflection profiles, along with recent robot submersible observations and samples, were acquired over the offshore continuation of the mobile Kilauea volcano south flank. This slope comprises the three active hot spot volcanoes Mauna Loa, Kilauea, and Loihi seamount and is the locus of the Hawaiian hot spot. The south flank is the site of frequent low-intensity seismicity as well as episodic large-magnitude earthquakes. Its sub-aerial portion creeps seaward at a rate of approximately 10 cm/year. The Hilina slump is the only large submarine landslide in the Hawaiian Archipelago thought to be active, and this study is one of the first to more highly resolve submarine slide features there. The slump is classified into four distinct zones from nearshore to the island's base. Estimates of size based on these data indicate a slumped area of 2100 km 2 and a volume of 10,000-12,000 km 3, equivalent to about 10% of the entire island edifice. The overall picture gained from these data sets is one of mass wasting of the neovolcanic terrain as it builds upward and seaward, though reinforcement by young and pre-Hawaii seamounts adjacent to the pedestal is apparent. Extensive lava delta deposits are formed by hyaloclastites and detritus from recent lava flows into the sea. These deposits dominate the upper submarine slope offshore of Kilauea, with pillow breccia revealed at mid-depths. Along the lower flanks, massive outcrops of volcanically derived sedimentary rocks were found underlying Kilauea, thus necessitating a rethinking of previous models of volcanic island development. The morphologic and structural evolutionary model for Kilauea volcano and the Hilina slump proposed here attempts to incorporate this revelation. A hazard assessment for the Hilina slump is presented where it is suggested that displacement of the south flank to date has been restrained by a still developing northeast

  15. North Kona slump: Submarine flank failure during the early(?) tholeiitic shield stage of Hualalai Volcano

    USGS Publications Warehouse

    Lipman, P.W.; Coombs, M.L.

    2006-01-01

    The North Kona slump is an elliptical region, about 20 by 60 km (1000-km2 area), of multiple, geometrically intricate benches and scarps, mostly at water depths of 2000–4500 m, on the west flank of Hualalai Volcano. Two dives up steep scarps in the slump area were made in September 2001, using the ROV Kaiko of the Japan Marine Science and Technology Center (JAMSTEC), as part of a collaborative Japan–USA project to improve understanding of the submarine flanks of Hawaiian volcanoes. Both dives, at water depths of 2700–4000 m, encountered pillow lavas draping the scarp-and-bench slopes. Intact to only slightly broken pillow lobes and cylinders that are downward elongate dominate on the steepest mid-sections of scarps, while more equant and spherical pillow shapes are common near the tops and bases of scarps and locally protrude through cover of muddy sediment on bench flats. Notably absent are subaerially erupted Hualalai lava flows, interbedded hyaloclastite pillow breccia, and/or coastal sandy sediment that might have accumulated downslope from an active coastline. The general structure of the North Kona flank is interpreted as an intricate assemblage of downdropped lenticular blocks, bounded by steeply dipping normal faults. The undisturbed pillow-lava drape indicates that slumping occurred during shield-stage tholeiitic volcanism. All analyzed samples of the pillow-lava drape are tholeiite, similar to published analyses from the submarine northwest rift zone of Hualālai. Relatively low sulfur (330–600 ppm) and water (0.18–0.47 wt.%) contents of glass rinds suggest that the eruptive sources were in shallow water, perhaps 500–1000-m depth. In contrast, saturation pressures calculated from carbon dioxide concentrations (100–190 ppm) indicate deeper equilibration, at or near sample sites at water depths of − 3900 to − 2800 m. Either vents close to the sample sites erupted mixtures of undegassed and degassed magmas, or volatiles were resorbed from

  16. Flank Collapse Assessment At Kick-'em-Jenny Submarine Volcano (Lesser Antilles): A Combined Approach Using Modelling and Experiments

    NASA Astrophysics Data System (ADS)

    Dondin, Frédéric; Heap, Michael; Robert, Richard E. A.; Dorville, Jean-Francois M.; Carey, Steven

    2016-04-01

    Volcanic landslides - the result of volcanic flank failure - are highly hazardous mass movements due to their high mobility, the wide area they can impact, and their potential to generate tsunamis. In the Lesser Antilles at least 53 episodes of flank collapse have been identified, with many of them associated with voluminous (Vdeposit exceeding 1 km3) submarine volcanic landslide deposits. The existence of such voluminous deposits highlights the hazard of potentially devastating tsunami waves to the populated islands of the Lesser Antilles. To help understand and mitigate such hazards, we applied a relative stability assessment method to the only active submarine volcano of the Lesser Antilles island arc: Kick-'em-Jenny (KeJ). KeJ - located 8 km north of the island of Grenada - is the southernmost edifice in the arc with recognized associated volcanic landslide deposits. From the three identified landslide prehistoric episodes, one is associated with a collapse volume of about 4.4 km3. Numerical simulations considering a single pulse collapse revealed that this episode would have produced a regional tsunami. A volume estimate of the present day edifice is about 1.5 km3. We aim to quantify potential initial volumes of collapsed material using relative instability analysis (RIA). The RIA evaluates the critical potential failure surface associated with factor of safety (Fs) inferior to 1 and compares them to areas of deficit/surplus of mass/volume obtained from the comparison of an high resolution digital elevation model of the edifice with an ideal 3D surface named Volcanoid. To do so we use freeware programs VolcanoFit 2.0 and SSAP 4.5. We report, for the first time, results of a Limit Equilibrium Method (Janbu's rigorous method) as a slope stability computation analysis performed using geomechanical parameters retrieved from rock mechanics tests performed on two rock basaltic-andesite rock samples collected from within the crater of the volcano during the 1

  17. Characteristics of Offshore Hawai';i Island Seismicity and Velocity Structure, including Lo';ihi Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Merz, D. K.; Caplan-Auerbach, J.; Thurber, C. H.

    2013-12-01

    The Island of Hawai';i is home to the most active volcanoes in the Hawaiian Islands. The island's isolated nature, combined with the lack of permanent offshore seismometers, creates difficulties in recording small magnitude earthquakes with accuracy. This background offshore seismicity is crucial in understanding the structure of the lithosphere around the island chain, the stresses on the lithosphere generated by the weight of the islands, and how the volcanoes interact with each other offshore. This study uses the data collected from a 9-month deployment of a temporary ocean bottom seismometer (OBS) network fully surrounding Lo';ihi volcano. This allowed us to widen the aperture of earthquake detection around the Big Island, lower the magnitude detection threshold, and better constrain the hypocentral depths of offshore seismicity that occurs between the OBS network and the Hawaii Volcano Observatory's land based network. Although this study occurred during a time of volcanic quiescence for Lo';ihi, it establishes a basis for background seismicity of the volcano. More than 480 earthquakes were located using the OBS network, incorporating data from the HVO network where possible. Here we present relocated hypocenters using the double-difference earthquake location algorithm HypoDD (Waldhauser & Ellsworth, 2000), as well as tomographic images for a 30 km square area around the summit of Lo';ihi. Illuminated by using the double-difference earthquake location algorithm HypoDD (Waldhauser & Ellsworth, 2000), offshore seismicity during this study is punctuated by events locating in the mantle fault zone 30-50km deep. These events reflect rupture on preexisting faults in the lower lithosphere caused by stresses induced by volcano loading and flexure of the Pacific Plate (Wolfe et al., 2004; Pritchard et al., 2007). Tomography was performed using the double-difference seismic tomography method TomoDD (Zhang & Thurber, 2003) and showed overall velocities to be slower than

  18. Submarine Volcaniclastic Deposits Associated with the Minoan Eruption of Santorini volcano, Greece

    NASA Astrophysics Data System (ADS)

    Carey, S.; Sigurdsson, H.; Alexandri, M.; Vougioukalakis, G.; Croff, K.; Roman, C.; Sakellariou, D.; Anagnostou, C.; Rousakis, G.; Ioakim, C.; Gogou, A.; Ballas, D.; Misaridis, T.; Nomikou, P.

    2006-12-01

    The distribution of submarine volcaniclastic deposits has been studied in the Santorini volcanic field by a combination of seismic surveys using a ten cubic inch air-gun, sediment coring and ROV operations. A distinctive sediment sequence has been identified in the uppermost section of the seafloor surrounding Santorini. It is generally massive or chaotic with some irregular internal reflectors. The sequence extends more than 25 km to the west in the Christiana Basin, 22 km to the east in the Anafi Basin, and 28 km to the NE in the Anydros Basin. A mean thickness of about 29 meters is inferred from the seismic records, but is as high as 80 meters locally in areas near the coast of Santorini, where the Minoan pyroclastic flow deposit is up to 40 m thick on land. The sequence has been traced over an area of at least 1378 square kilometers on the sea floor. On the steep submarine slopes of the volcano the sequence often exhibits a terraced or step-like morphology that may reflect downslope creep or slumping during or just after deposition. The massive facies of the sequence was observed to transform abruptly into a laminated or well-bedded, and much thinner facies with distance from source, and with greater overall extent. In many cases this distal facies, which may consist of turbidites, extends beyond the area of the seismic survey lines, or more than 30 km from Santorini. ROV dives on the sediment sequence to the east of Santorini show that it consists of massive pyroclastic flow deposit. By analogy with the seismic character of submarine pyroclastic flows from the 1883 eruption of Krakatau we propose that the widespread sequence is related to the entrance of pyroclastic flows into the sea during the Minoan explosive eruption of Santorini (~3600 yrs. B.P.). A previous estimate of the volume of submarine pyroclastic flow deposits from the Minoan eruption was 20 cubic kilometers (dense rock equivalent, DRE) based on the fractionation of co-ignimbrite ash fall from

  19. The third Volcano of La Réunion Island : new geochemical data from submarine flanks

    NASA Astrophysics Data System (ADS)

    Smietana, M. S.; Bachèlery, P. B.; Hémond, C. H.

    2009-04-01

    The existence of a third volcano on La Réunion Island, named Les Alizés, was presumed from gravity and magnetic data. This buried volcano is only known by the hypovolcanic complex encountered during a geothermal exploration drilling, beneath the eastern flank of Piton de la Fournaise. Negative magnetic anomalies offshore the north-eastern coast, suggest that the rocks belonging to Les Alizés volcano could be present in this area. In January 2008, a scientific survey onboard the R/V METEOR was carried out offshore La Réunion within the frame of the project ERODER2. During this campaign, submarine basalts were dredged on three rift zones of this intraplate volcanic island (NE and SE rift zones of Piton de la Fournaise volcano, and l'Etang Salé rift zone off the southern flank of Piton des Neiges volcano). The dredged rocks were analyzed for their major and trace element bulk compositions and compared with all available data for both Piton des Neiges and Piton de la Fournaise. Two groups of basaltic lava have been identified. Group 1, which encompasses samples from each rift zone, presents compositions similar to the subaerial basaltic rocks. Group 2, only found in the northern part of the NE rift zone, has higher K2O (1,28-1,44 wt.%), P2O5 (0,35-0,43 wt.%), and La/Sm (4,1-4,2) compared to subaerial and Group 1 lava [K20 (0,61-1,07 wt.%), P2O5 (0,17-0,28 wt.%), La/Sm (3,1-3,8)]. Such characteristics (high K2O, P2O5 and HREE and low SiO2) are exceptional for La Réunion lava and Group 2 composition does not correspond to any known rock from this island. This suggests a possible compositional change during the building of La Réunion edifice that can be indicative of variations in the partial melting processes. Is Les Alizés volcano there?

  20. Esmeralda Bank: Geochemistry of an active submarine volcano in the Mariana Island Arc

    NASA Astrophysics Data System (ADS)

    Stern, Robert J.; Bibee, L. D.

    1984-05-01

    Esmeralda Bank is the southernmost active volcano in the Izu-Volcano-Mariana Arc. This submarine volcano is one of the most active vents in the western Pacific. It has a total volume of about 27 km3, rising to within 30 m of sea level. Two dredge hauls from Esmeralda recovered fresh, nearly aphyric, vesicular basalts and basaltic andesites and minor basaltic vitrophyre. These samples reflect uniform yet unusual major and trace element chemistries. Mean abundances of TiO2 (1.3%) and FeO* (12.6%) are higher and CaO (9.2%) and Al2O3 (15.1%) are lower than rocks of similar silica content from other active Mariana Arc volcanoes. Mean incompatible element ratios K/Rb (488) and K/Ba (29) of Esmeralda rocks are indistinguishable from those of other Mariana Arc volcanoes. On a Ti-Zr plot, Esmeralda samples plot in the field of oceanic basalts while other Mariana Arc volcanic rocks plot in the field for island arcs. Incompatible element ratios K/Rb and K/Ba and isotopic compositions of Sr (87Sr/86Sr=0.70342 0.70348), Nd (ɛND=+7.6 to +8.1), and O(δ18O=+5.8 to +5.9) are incompatible with models calling for the Esmeralda source to include appreciable contributions from pelagic sediments or fresh or altered abyssal tholeiite from subduction zone melting. Instead, incompatible element and isotopic ratios of Esmeralda rocks are similar to those of intra-plate oceanic islands or “hot-spot” volcanoes in general and Kilauean tholeiites in particular. The conclusion that the source for Esmeralda lavas is an ocean-island type mantle reservoir is preferred. Esmeralda Bank rare earth element patterns are inconsistent with models calling for residual garnet in the source region, but are adequately modelled by 7 10% equilibrium partial melting of spinel lherzolite. This is supported by consideration of the results of melting experiments at 20 kbars, 1,150° C with CO2 and H2O as important volatile components. These experiments further indicate that low MgO (4.1%), MgO/FeO*(0.25) and

  1. Submarine lavas from Mauna Kea Volcano, Hawaii: Implications for Hawaiian shield stage processes

    NASA Astrophysics Data System (ADS)

    Yang, Huai-Jen; Frey, Frederick A.; Garcia, Michael O.; Clague, David A.

    1994-08-01

    The island of Hawaii is composed of five voluminous shields but only the youngest, active and well-exposed shields of Mauna Loa and Kilauea have been studied in detail. The shield lavas forming Kohala, Hualalai, and Mauna Kea are largely covered by postshield lavas with geochemical characteristics that differ from the shield lavas. In order to determine the geochemical characteristics of the Mauna Kea shield which is adjacent to the Kilauea and Mauna Loa shields, 12 Mauna Kea shield basalts dredged from the submarine east rift were analyzed for major and trace element contents and isotopic (Sr, Nd, and Pb) ratios. The lavas are MgO-rich (11 to 20%), submarine erupted, tholeiitic basalts, but they are not representative of crystallized MgO-rich melts. Their whole rock and mineral compositions are consistent with mixing of an evolved magma, less than 7% MgO, with a magma containing abundant olivine xenocrysts, probably disaggregated from a dunitic cumulate. At a given MgO content, some of the Mauna Kea whole rocks have lower abundances of CaO and higher abundances of incompatible elements. The evolved melt component in these lavas reflects significant fractionation of plagioclase and clinopyroxene and in some cases even the late crystallizing phases orthopyroxene and Fe-Ti oxide. Although these Mauna Kea lavas are not isotopically homogenous, in general their Sr, Nd, and Pb isotopic ratios overlap with the fields for lavas from Loihi and Kilauea volcanoes.

  2. Bacterial diversity in Fe-rich hydrothermal sediments at two South Tonga Arc submarine volcanoes.

    PubMed

    Forget, N L; Murdock, S A; Juniper, S K

    2010-12-01

    Seafloor iron oxide deposits are a common feature of submarine hydrothermal systems. Morphological study of these deposits has led investigators to suggest a microbiological role in their formation, through the oxidation of reduced Fe in hydrothermal fluids. Fe-oxidizing bacteria, including the recently described Zetaproteobacteria, have been isolated from a few of these deposits but generally little is known about the microbial diversity associated with this habitat. In this study, we characterized bacterial diversity in two Fe oxide samples collected on the seafloor of Volcanoes 1 and 19 on the South Tonga Arc. We were particularly interested in confirming the presence of Zetaproteobacteria at these two sites and in documenting the diversity of groups other than Fe oxidizers. Our results (small subunit rRNA gene sequence data) showed a surprisingly high bacterial diversity, with 150 operational taxonomic units belonging to 19 distinct taxonomic groups. Both samples were dominated by Zetaproteobacteria Fe oxidizers. This group was most abundant at Volcano 1, where sediments were richer in Fe and contained more crystalline forms of Fe oxides. Other groups of bacteria found at these two sites include known S- and a few N-metabolizing bacteria, all ubiquitous in marine environments. The low similarity of our clones with the GenBank database suggests that new species and perhaps new families were recovered. The results of this study suggest that Fe-rich hydrothermal sediments, while dominated by Fe oxidizers, can be exploited by a variety of autotrophic and heterotrophic micro-organisms.

  3. Deployment of a seismic array for volcano monitoring during the ongoing submarine eruption at El Hierro, Canary Islands

    NASA Astrophysics Data System (ADS)

    Abella, R.; Almendros, J.; Carmona, E.; Martin, R.

    2012-04-01

    On 17 July 2011 there was an important increase of the seismic activity at El Hierro (Canary Islands, Spain). This increase was detected by the Volcano Monitoring Network (Spanish national seismic network) run by the Instituto Geográfico Nacional (IGN). As a consequence, the IGN immediately deployed a dense, complete monitoring network that included seismometers, GPS stations, geochemical equipment, magnetometers, and gravity meters. During the first three months of activity, the seismic network recorded over ten thousand volcano-tectonic earthquakes, with a maximum magnitude of 4.6. On 10 October 2011 an intense volcanic tremor started. It was a monochromatic signal, with variable amplitude and frequency content centered at about 1-2 Hz. The tremor onset was correlated with the initial stages of the submarine eruption that occurred from a vent located south of El Hierro island, near the village of La Restinga. At that point the IGN, in collaboration with the Instituto Andaluz de Geofísica, deployed a seismic array intended for volcanic tremor monitoring and analysis. The seismic array is located about 7 km NW of the submarine vent. It has a 12-channel, 24-bit data acquisition system sampling each channel at 100 sps. The array is composed by 1 three-component and 9 vertical-component seismometers, distributed in a flat area with an aperture of 360 m. The data provided by the seismic array are going to be processed using two different approaches: (1) near-real-time, to produce information that can be useful in the management of the volcanic crisis; and (2) detailed investigations, to study the volcanic tremor characteristics and relate them to the eruption dynamics. At this stage we are mostly dedicated to produce fast, near-real-time estimates. Preliminary results have been obtained using the maximum average cross-correlation method. They indicate that the tremor wavefronts are highly coherent among array stations and propagate across the seismic array with an

  4. Modelling submarine pyroclastic flows at the Soufrière Hills volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Hogg, A. J.; Goater, A.

    2011-12-01

    Submarine sedimentary flows are notoriously difficult to observe directly and interpreting their deposits to gain insight to the parent flows can be problematic. Pyroclastic flows from the Soufrière Hills volcano, Montserrat, which entered the ocean and deposited particles over the sea bed are a notable exception. In this case, from monitoring of the volcano, the mass of particulate released and the duration of the flow can be estimated accurately. Furthermore research cruises have imaged, cored the ocean bed and measured the distribution and composition of the deposit left by these flows over much of their runout. These observations therefore form a unique dataset in which both source conditions and final deposit are relatively well constrained. Mathematically modelling long runout sedimentary flows can also present several difficulties. Over these length and time scales, it is not feasible to simulate directly all of the fluid and particulate motions and so reduced models have been developed to capture the dominant processes and features of the flows. These have often been calibrated by laboratory scale experiments - but now with this data from the Soufrière Hills volcano, it is possible to compare model predictions with a natural scale event. Our model is based upon a shallow layer formulation, assuming hydrostatic balance in the vertical to leading order. The downslope motion of the sediment-laden fluid is driven by gravitational forces, associated with the density difference between the intruding and surrounding fluid. Particles settle out of the current to the underlying boundary, reducing the density difference, slowing the motion and forming the deposit. We develop a model that expresses conservation of fluid and particulate mass and a balance of streamwise momentum. This system of equations is integrated numerically to reveal the temporal and spatial evolution and asymptotic methods are used to reveal the dynamical controls on the runout. The theoretical

  5. Discovery of an active shallow submarine silicic volcano in the northern Izu-Bonin Arc: volcanic structure and potential hazards of Oomurodashi Volcano (Invited)

    NASA Astrophysics Data System (ADS)

    Tani, K.; Ishizuka, O.; Nichols, A. R.; Hirahara, Y.; Carey, R.; McIntosh, I. M.; Masaki, Y.; Kondo, R.; Miyairi, Y.

    2013-12-01

    Oomurodashi is a bathymetric high located ~20 km south of Izu-Oshima, an active volcanic island of the northern Izu-Bonin Arc. Using the 200 m bathymetric contour to define its summit dimensions, the diameter of Oomurodashi is ~20 km. Oomurodashi has been regarded as inactive, largely because it has a vast flat-topped summit at 100 - 150 meters below sea level (mbsl). During cruise NT07-15 of R/V Natsushima in 2007, we conducted a dive survey in a small crater, Oomuro Hole, located in the center of the flat-topped summit, using the remotely-operated vehicle (ROV) Hyper-Dolphin. The only heat flow measurement conducted on the floor of Oomuro Hole during the dive recorded an extremely high value of 4,200 mW/m2. Furthermore, ROV observations revealed that the southwestern wall of Oomuro Hole consists of fresh rhyolitic lavas. These findings suggest that Oomurodashi is in fact an active silicic submarine volcano. To confirm this hypothesis, we conducted detailed geological and geophysical ROV Hyper-Dolphin (cruise NT12-19). In addition to further ROV surveys, we carried out single-channel seismic (SCS) surveys across Oomurodashi in order to examine the shallow structures beneath the current edifice. The ROV surveys revealed numerous active hydrothermal vents on the floor of Oomuro Hole, at ~200 mbsl, with maximum water temperature measured at the hydrothermal vents reaching 194°C. We also conducted a much more detailed set of heat flow measurements across the floor of Oomuro Hole, detecting very high heat flows of up to 29,000 mW/m2. ROV observations revealed that the area surrounding Oomuro Hole on the flat-topped summit of Oomurodashi is covered by extensive fresh rhyolitic lava and pumice clasts with minimum biogenetic or manganese cover, suggesting recent eruption(s). These findings strongly indicate that Oomurodashi is an active silicic submarine volcano, with recent eruption(s) occurring from Oomuro Hole. Since the summit of Oomurodashi is in shallow water, it

  6. Submarine explosive activity and ocean noise generation at Monowai Volcano, Kermadec Arc: constraints from hydroacoustic T-waves

    NASA Astrophysics Data System (ADS)

    Grevemeyer, Ingo; Metz, Dirk; Watts, Anthony

    2016-04-01

    Submarine volcanic activity is difficult to detect, because eruptions at depth are strongly attenuated by seawater. With increasing depth the ambient water pressure increases and limits the expansion of gas and steam such that volcanic eruptions tend to be less violent and less explosive with depth. Furthermore, the thermal conductivity and heat capacity of water causes rapid cooling of ejected products and hence erupted magma cools much more quickly than during subaerial eruptions. Therefore, reports on submarine volcanism are restricted to those sites where erupted products - like the presence of pumice rafts, gas bubbling on the sea surface, and local seawater colour changes - reach the sea surface. However, eruptions cause sound waves that travel over far distances through the Sound-Fixing-And-Ranging (SOFAR) channel, so called T-waves. Seismic networks in French Polynesia recorded T-waves since the 1980's that originated at Monowai Volcano, Kermadec Arc, and were attributed to episodic growth and collapse events. Repeated swath-mapping campaigns conducted between 1998 and 2011 confirm that Monowai volcano is a highly dynamic volcano. In July of 2007 a network of ocean-bottom-seismometers (OBS) and hydrophones was deployed and recovered at the end of January 2008. The instruments were located just to the east of Monowai between latitude 25°45'S and 27°30'S. The 23 OBS were placed over the fore-arc and on the incoming subducting plate to obtain local seismicity associated with plate bending and coupling of the subduction megathrust. However, we recognized additional non-seismic sleuths in the recordings. Events were best seen in 1 Hz high-pass filtered hydrophone records and were identified as T-waves. The term T-wave is generally used for waves travelling through the SOFAR channel over large distances. In our case, however, they were also detected on station down to ~8000 m, suggesting that waves on the sea-bed station were direct waves caused by explosive

  7. U-series disequilibrium of basaltic rocks from Kick'em-Jenny submarine volcano, Lesser Antilles island arc

    NASA Astrophysics Data System (ADS)

    Huang, F.; Lundstrom, C. C.

    2005-12-01

    Kick'em Jenny (KEJ) submarine volcano located 9 km to the north of Grenada in the Lesser Antilles volcanic arc produces lavas ranging in composition from high MgO basalts to moderately evolved andesites. We have determined U-series disequilibria in 12 porphyritic lavas erupted from KEJ volcano by TIMS and MC-ICP-MS methods to constrain the timing and identify the processes creating the magma diversity observed. The SiO2 contents of samples studied here vary from 47 to 55 wt.% SiO2 while REE patterns evolve from slightly LREE enriched, MREE/HREE = 1 patterns to strongly LREE enriched, MREE depleted concave-up patterns. Separate dissolutions of sample KEJ100 indicate an external reproducibility (1s) of 0.7% for (230Th/238U) (n=4), 0.8% for (230Th/232Th) (n=4) and 0.6% for (226Ra/230Th) (n=3), respectively. For all sample, (234U/238U) lies within 0.7% of unity, suggesting that secondary alteration by seawater has not disturbed the U-series data significantly. Sample ages for these submarine erupted samples are unknown, resulting in uncertain values for initial (226Ra/230Th); however, 10 out of 12 of the measured (226Ra/230Th) range between 3.16 and 1.13 and are thus unequivocally young with respect to decay of 230Th and 231Pa since eruption. The U (0.535 - 4.876 ppm) and Th (1.25 - 10.78 ppm) concentrations increase with SiO2 contents. (230Th/232Th) has a restricted range, varying from 0.994 to 1.093 with the exception of one sample. (230Th/238U) ranges from 0.684 to 0.875 while (231Pa/235U) ranges from 1.76 up to 2.84, among the highest 231Pa excess in island arcs yet reported. These data confirm previous observations of the unusual behavior of KEJ lavas relative to global observations in having both large 238U and 231Pa excesses. Combined with (226Ra/230Th), these disequilibria observations require that 238U excesses reflect more than solely fluid addition to the mantle wedge from the subducted oceanic slab.

  8. Hydrothermal venting and mineralization in the crater of Kick'em Jenny submarine volcano, Grenada (Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Carey, Steven; Olsen, Rene; Bell, Katherine L. C.; Ballard, Robert; Dondin, Frederic; Roman, Chris; Smart, Clara; Lilley, Marvin; Lupton, John; Seibel, Brad; Cornell, Winton; Moyer, Craig

    2016-03-01

    Kick'em Jenny is a frequently erupting, shallow submarine volcano located 7.5 km off the northern coast of Grenada in the Lesser Antilles subduction zone. Focused and diffuse hydrothermal venting is taking place mainly within a small (˜70 × 110 m) depression within the 300 m diameter crater of the volcano at depths of about 265 m. Much of the crater is blanketed with a layer of fine-grained tephra that has undergone hydrothermal alteration. Clear fluids and gas are being discharged near the center of the depression from mound-like vents at a maximum temperature of 180°C. The gas consists of 93-96% CO2 with trace amounts of methane and hydrogen. Gas flux measurements of individual bubble streams range from 10 to 100 kg of CO2 per day. Diffuse venting with temperatures 5-35°C above ambient occurs throughout the depression and over large areas of the main crater. These zones are colonized by reddish-yellow bacteria with the production of Fe-oxyhydroxides as surface coatings, fragile spires up to several meters in height, and elongated mounds up to tens of centimeters thick. A high-resolution photomosaic of the inner crater depression shows fluid flow patterns descending the sides of the depression toward the crater floor. We suggest that the negatively buoyant fluid flow is the result of phase separation of hydrothermal fluids at Kick'em Jenny generating a dense saline component that does not rise despite its elevated temperature.

  9. Growth and collapse of Waianae volcano, Hawaii, as revealed by exploration of its submarine flanks

    USGS Publications Warehouse

    Coombs, Michelle L.; Clague, David A.; Moore, Gregory F.; Cousens, Brian L.

    2004-01-01

    Wai‘anae Volcano comprises the western half of O‘ahu Island, but until recently little was known about the submarine portion of this volcano. Seven new submersible dives, conducted in 2001 and 2002, and multibeam bathymetry offshore of Wai‘anae provide evidence pertaining to the overall growth of the volcano's edifice as well as the timing of collapses that formed the Wai‘anae slump complex. A prominent slope break at ∼1400 mbsl marks the paleoshoreline of Wai‘anae at the end of its shield-building stage and wraps around Ka‘ena Ridge, suggesting that this may have been an extension of Wai‘anae's northwest rift zone. Subaerially erupted tholeiitic lavas were collected from a small shield along the crest of Ka‘ena Ridge. The length of Wai‘anae's south rift zone is poorly constrained but reaches at least 65 km on the basis of recovered tholeiite pillows at this distance from the volcano's center. Wai‘anae's growth was marked by multiple collapse and deformation events during and after its shield stage, resulting in the compound mass wasting features on the volcano's southwest flank (Wai‘anae slump complex). The slump complex, one of the largest in Hawai‘i, covering an area of ∼5500 km2, is composed of several distinct sections on the basis of morphology and the lithologies of recovered samples. Two dives ascended the outer bench of the slump complex and collected predominantly low-S tholeiites that correlate with subaerial lavas erupted early during the volcano's shield stage, from 3.9 to 3.5 Ma. Pillow lavas from the outer bench have Pb, Sr, and Nd isotopic values that overlap with previously published subaerial Wai‘anae lavas. On the basis of the compositions of the recovered samples, the main body of the slump complex, as represented by the outer bench, probably formed during and shortly after the early shield stage. To the southwest of the outer bench lies a broad debris field on the seafloor, interpreted to have formed by a

  10. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response

    NASA Astrophysics Data System (ADS)

    Fraile-Nuez, E.; Santana-Casiano, J.; Gonzalez-Davila, M.

    2013-12-01

    On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments. (A) Natural color composite from the MEdium Resolution Imaging Spectrometer (MERIS) instrument aboard ENVISAT Satellite (European Space Agency), (November 9, 2011 at 14:45 UTC). Remote sensing data have been used to monitor the evolution of the volcanic emissions, playing a fundamental role during field cruises in guiding the Spanish government oceanographic vessel to the appropriate sampling areas. The inset map shows the position of Canary Islands west of Africa and the study area (solid white box). (B) Location of the stations carried out from November 2011 to February 2012 at El Hierro. Black lines denote transects A-B and C-D.

  11. Hydrothermal mineralization at Kick'em Jenny submarine volcano in the Lesser Antilles island arc

    NASA Astrophysics Data System (ADS)

    Olsen, R.; Carey, S.; Sigurdsson, H.; Cornell, W. C.

    2011-12-01

    Kick 'em Jenny (KeJ) is an active submarine volcano located in the Lesser Antilles island arc, ~7.5 km northwest of Grenada. Of the twelve eruptions detected since 1939, most have been explosive as evidenced by eyewitness accounts in 1939, 1974, and 1988 and the dominance of explosive eruption products recovered by dredging. In 2003, vigorous hydrothermal activity was observed in the crater of KeJ. Video footage taken by a remotely operated vehicle (ROV) during the cruise RB-03-03 of the R/V Ronald Brown documented the venting of a vapor phase in the form of bubbles that ascended through the water column and a clear fluid phase in the form of shimmering water. The shimmering water generally ascended through the water column but can also been seen flowing down gradient from a fissure at the top of a fine-grained sediment mound. These fine-grained sediment mounds are the only structure associated with hydrothermal venting; spire or chimney structures were not observed. Hydrothermal venting was also observed coming from patches of coarse-grained volcaniclastic sediment on the crater floor and from talus slopes around the perimeter of the crater. Samples were collected from these areas and from areas void of hydrothermal activity. XRD and ICPMS analyses of bulk sediment were carried out to investigate the geochemical relationships between sediment types. Sediment samples from the hydrothermal mound structures are comprised of the same components (plagioclase, amphibole, pyroxene, and scoria) as sediment samples from areas void of hydrothermal activity (primary volcaniclastic sediment) in the 500-63 μm size range. High resolution grain size analyses show that >78% of sediment in the hydrothermal mound samples are between 63-2 μm with 6-20% clay sized (<2 μm) whereas <40% of the primary volcaniclastic sediment is between 63-2 μm with ~2% clay sized. The presence of clay minerals (smectite, illite, talc, and I/S mixed layer) in the hydrothermal mound samples was

  12. Flank instability assessment at Kick-'em-Jenny submarine volcano (Grenada, Lesser Antilles): a multidisciplinary approach using experiments and modeling

    NASA Astrophysics Data System (ADS)

    Dondin, F. J.-Y.; Heap, M. J.; Robertson, R. E. A.; Dorville, J.-F. M.; Carey, S.

    2017-01-01

    Kick-'em-Jenny (KeJ)—located ca. 8 km north of the island of Grenada—is the only active submarine volcano of the Lesser Antilles Volcanic Arc. Previous investigations of KeJ revealed that it lies within a collapse scar inherited from a past flank instability episode. To assess the likelihood of future collapse, we employ here a combined laboratory and modeling approach. Lavas collected using a remotely operated vehicle (ROV) provided samples to perform the first rock physical property measurements for the materials comprising the KeJ edifice. Uniaxial and triaxial deformation experiments showed that the dominant failure mode within the edifice host rock is brittle. Edifice fractures (such as those at Champagne Vent) will therefore assist the outgassing of the nearby magma-filled conduit, favoring effusive behavior. These laboratory data were then used as input parameters in models of slope stability. First, relative slope stability analysis revealed that the SW to N sector of the volcano displays a deficit of mass/volume with respect to a volcanoid (ideal 3D surface). Slope stability analysis using a limit equilibrium method (LEM) showed that KeJ is currently stable, since all values of stability factor or factor of safety (Fs) are greater than unity. The lowest values of Fs were found for the SW-NW sector of the volcano (the sector displaying a mass/volume deficit). Although currently stable, KeJ may become unstable in the future. Instability (severe reductions in Fs) could result, for example, from overpressurization due to the growth of a cryptodome. Our modeling has shown that instability-induced flank collapse will most likely initiate from the SW-NW sector of KeJ, therefore mobilizing a volume of at least ca. 0.7 km3. The mobilization of ca. 0.7 km3 of material is certainly capable of generating a tsunami that poses a significant hazard to the southern islands of the West Indies.

  13. Dive and Explore: An Interactive Web Visualization that Simulates Making an ROV Dive to an Active Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Weiland, C.; Chadwick, W. W.

    2004-12-01

    Several years ago we created an exciting and engaging multimedia exhibit for the Hatfield Marine Science Center that lets visitors simulate making a dive to the seafloor with the remotely operated vehicle (ROV) named ROPOS. The exhibit immerses the user in an interactive experience that is naturally fun but also educational. The public display is located at the Hatfield Marine Science Visitor Center in Newport, Oregon. We are now completing a revision to the project that will make this engaging virtual exploration accessible to a much larger audience. With minor modifications we will be able to put the exhibit onto the world wide web so that any person with internet access can view and learn about exciting volcanic and hydrothermal activity at Axial Seamount on the Juan de Fuca Ridge. The modifications address some cosmetic and logistic ISSUES confronted in the museum environment, but will mainly involve compressing video clips so they can be delivered more efficiently over the internet. The web version, like the museum version, will allow users to choose from 1 of 3 different dives sites in the caldera of Axial Volcano. The dives are based on real seafloor settings at Axial seamount, an active submarine volcano on the Juan de Fuca Ridge (NE Pacific) that is also the location of a seafloor observatory called NeMO. Once a dive is chosen, then the user watches ROPOS being deployed and then arrives into a 3-D computer-generated seafloor environment that is based on the real world but is easier to visualize and navigate. Once on the bottom, the user is placed within a 360 degree panorama and can look in all directions by manipulating the computer mouse. By clicking on markers embedded in the scene, the user can then either move to other panorama locations via movies that travel through the 3-D virtual environment, or they can play video clips from actual ROPOS dives specifically related to that scene. Audio accompanying the video clips informs the user where they are

  14. Influence of hydrothermal venting on water column properties in the crater of the Kolumbo submarine volcano, Santorini volcanic field (Greece)

    NASA Astrophysics Data System (ADS)

    Christopoulou, Maria E.; Mertzimekis, Theo J.; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Carey, Steven; Mandalakis, Manolis

    2016-02-01

    The Kolumbo submarine volcano, located 7 km northeast of the island of Santorini, is part of Santorini's volcanic complex in the south Aegean Sea, Greece. Kolumbo's last eruption was in 1650 AD. However, a unique and active hydrothermal vent field has been revealed in the northern part of its crater floor during an oceanographic survey by remotely operated vehicles (ROVs) in 2006. In the present study, conductivity-temperature-depth (CTD) data collected by ROV Hercules during three oceanographic surveys onboard E/V Nautilus in 2010 and 2011 have served to investigate the distribution of physicochemical properties in the water column, as well as their behavior directly over the hydrothermal field. Additional CTD measurements were carried out in volcanic cone 3 (VC3) along the same volcanic chain but located 3 km northeast of Kolumbo where no hydrothermal activity has been detected to date. CTD profiles exhibit pronounced anomalies directly above the active vents on Kolumbo's crater floor. In contrast, VC3 data revealed no such anomalies, essentially resembling open-sea (background) conditions. Steep increases of temperature (e.g., from 16 to 19 °C) and conductivity near the maximum depth (504 m) inside Kolumbo's cone show marked spatiotemporal correlation. Vertical distributions of CTD signatures suggest a strong connection to Kolumbo's morphology, with four distinct zones identified (open sea, turbid flow, invariable state, hydrothermal vent field). Additionally, overlaying the near-seafloor temperature measurements on an X-Y coordinate grid generates a detailed 2D distribution of the hydrothermal vent field and clarifies the influence of fluid discharges in its formation.

  15. 40Ar/39Ar geochronology of submarine Mauna Loa volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Jicha, Brian R.; Rhodes, J. Michael; Singer, Brad S.; Garcia, Michael O.

    2012-09-01

    New geochronologic constraints refine the growth history of Mauna Loa volcano and enhance interpretations of the petrologic, geochemical, and isotopic evolution of Hawaiian magmatism. We report results of 40Ar/39Ar incremental heating experiments on low-K, tholeiitic lavas from the 1.6 km high Kahuku landslide scarp cutting Mauna Loa's submarine southwest rift zone, and from lavas in a deeper section of the rift. Obtaining precise40Ar/39Ar ages from young, tholeiitic lavas containing only 0.2-0.3 wt.% K2O is challenging due to their extremely low radiogenic 40Ar contents. Analyses of groundmass from 45 lavas yield 14 new age determinations (31% success rate) with plateau and isochron ages that agree with stratigraphic constraints. Lavas collected from a 1250 m thick section in the landslide scarp headwall were all erupted around 470 ± 10 ka, implying an extraordinary period of accumulation of ˜25 mm/yr, possibly correlating with the peak of the shield-building stage. This rate is three times higher than the estimated vertical lava accumulation rate for shield-building at Mauna Kea (8.6 ± 3.1 mm/yr) based on results from the Hawaii Scientific Drilling Project. Between ˜470 and 273 ka, the lava accumulation rate along the southwest rift zone decreased dramatically to ˜1 mm/yr. We propose that the marked reduction in lava accumulation rate does not mark the onset of post-shield volcanism as previously suggested, but rather indicates the upward migration of the magma system as Mauna Loa evolved from a submarine stage of growth to one that is predominantly subaerial, thereby cutting off supply to the distal rift zone. Prior to ˜250 ka, lavas with Loihi-like isotopic signatures were erupted along with lavas having typical Mauna Loa values, implying greater heterogeneity in the plume source earlier in Mauna Loa's growth. In addition to refining accumulation rates and the isotopic evolution of the lavas erupted along the southwest rift zone, our new40Ar/39Ar results

  16. Numerical Tsunami Hazard Assessment of the Only Active Lesser Antilles Arc Submarine Volcano: Kick 'em Jenny.

    NASA Astrophysics Data System (ADS)

    Dondin, F. J. Y.; Dorville, J. F. M.; Robertson, R. E. A.

    2015-12-01

    The Lesser Antilles Volcanic Arc has potentially been hit by prehistorical regional tsunamis generated by voluminous volcanic landslides (volume > 1 km3) among the 53 events recognized so far. No field evidence of these tsunamis are found in the vincity of the sources. Such a scenario taking place nowadays would trigger hazardous tsunami waves bearing potentially catastrophic consequences for the closest islands and regional offshore oil platforms.Here we applied a complete hazard assessment method on the only active submarine volcano of the arc Kick 'em Jenny (KeJ). KeJ is the southernmost edifice with recognized associated volcanic landslide deposits. From the three identified landslide episodes one is associated with a collapse volume ca. 4.4 km3. Numerical simulations considering a single pulse collapse revealed that this episode would have produced a regional tsunami. An edifice current volume estimate is ca. 1.5 km3.Previous study exists in relationship to assessment of regional tsunami hazard related to shoreline surface elevation (run-up) in the case of a potential flank collapse scenario at KeJ. However this assessment was based on inferred volume of collapse material. We aim to firstly quantify potential initial volumes of collapse material using relative slope instability analysis (RSIA); secondly to assess first order run-ups and maximum inland inundation distance for Barbados and Trinidad and Tobago, i.e. two important economic centers of the Lesser Antilles. In this framework we present for seven geomechanical models tested in the RSIA step maps of critical failure surface associated with factor of stability (Fs) for twelve sectors of 30° each; then we introduce maps of expected potential run-ups (run-up × the probability of failure at a sector) at the shoreline.The RSIA evaluates critical potential failure surface associated with Fs <1 as compared to areas of deficit/surplus of mass/volume identified on the volcanic edifice using (VolcanoFit 2

  17. A distinct source and differentiation history for Kolumbo submarine volcano, Santorini volcanic field, Aegean arc.

    PubMed

    Klaver, Martijn; Carey, Steven; Nomikou, Paraskevi; Smet, Ingrid; Godelitsas, Athanasios; Vroon, Pieter

    2016-08-01

    This study reports the first detailed geochemical characterization of Kolumbo submarine volcano in order to investigate the role of source heterogeneity in controlling geochemical variability within the Santorini volcanic field in the central Aegean arc. Kolumbo, situated 15 km to the northeast of Santorini, last erupted in 1650 AD and is thus closely associated with the Santorini volcanic system in space and time. Samples taken by remotely-operated vehicle that were analyzed for major element, trace element and Sr-Nd-Hf-Pb isotope composition include the 1650 AD and underlying K2 rhyolitic, enclave-bearing pumices that are nearly identical in composition (73 wt.% SiO2, 4.2 wt.% K2O). Lava bodies exposed in the crater and enclaves are basalts to andesites (52-60 wt.% SiO2). Biotite and amphibole are common phenocryst phases, in contrast with the typically anhydrous mineral assemblages of Santorini. The strong geochemical signature of amphibole fractionation and the assimilation of lower crustal basement in the petrogenesis of the Kolumbo magmas indicates that Kolumbo and Santorini underwent different crustal differentiation histories and that their crustal magmatic systems are unrelated. Moreover, the Kolumbo samples are derived from a distinct, more enriched mantle source that is characterized by high Nb/Yb (>3) and low (206)Pb/(204)Pb (<18.82) that has not been recognized in the Santorini volcanic products. The strong dissimilarity in both petrogenesis and inferred mantle sources between Kolumbo and Santorini suggests that pronounced source variations can be manifested in arc magmas that are closely associated in space and time within a single volcanic field.

  18. Historical bathymetric charts and the evolution of Santorini submarine volcano, Greece

    NASA Astrophysics Data System (ADS)

    Watts, A. B.; Nomikou, P.; Moore, J. D. P.; Parks, M. M.; Alexandri, M.

    2015-03-01

    Historical bathymetric charts are a potential resource for better understanding the dynamics of the seafloor and the role of active processes, such as submarine volcanism. The British Admiralty, for example, have been involved in lead line measurements of seafloor depth since the early 1790s. Here, we report on an analysis of historical charts in the region of Santorini volcano, Greece. Repeat lead line surveys in 1848, late 1866, and 1925-1928 as well as multibeam swath bathymetry surveys in 2001 and 2006 have been used to document changes in seafloor depth. These data reveal that the flanks of the Kameni Islands, a dacitic dome complex in the caldera center, have shallowed by up to ˜175 m and deepened by up to ˜80 m since 1848. The largest shallowing occurred between the late 1866 and 1925-1928 surveys and the largest deepening occurred during the 1925-1928 and 2001 and 2006 surveys. The shallowing is attributed to the emplacement of lavas during effusive eruptions in both 1866-1870 and 1925-1928 at rates of up to 0.18 and 0.05 km3 a-1, respectively. The deepening is attributed to a load-induced viscoelastic stress relaxation following the 1866-1870 and 1925-1928 lava eruptions. The elastic thickness and viscosity that best fits the observed deepening are 1.0 km and ˜1016 Pa s, respectively. This parameter pair, which is consistent with the predictions of a shallow magma chamber thermal model, explains both the amplitude and wavelength of the historical bathymetric data and the present day rate of subsidence inferred from InSAR analysis.

  19. A distinct source and differentiation history for Kolumbo submarine volcano, Santorini volcanic field, Aegean arc

    NASA Astrophysics Data System (ADS)

    Klaver, Martijn; Carey, Steven; Nomikou, Paraskevi; Smet, Ingrid; Godelitsas, Athanasios; Vroon, Pieter

    2016-08-01

    This study reports the first detailed geochemical characterization of Kolumbo submarine volcano in order to investigate the role of source heterogeneity in controlling geochemical variability within the Santorini volcanic field in the central Aegean arc. Kolumbo, situated 15 km to the northeast of Santorini, last erupted in 1650 AD and is thus closely associated with the Santorini volcanic system in space and time. Samples taken by remotely-operated vehicle that were analyzed for major element, trace element and Sr-Nd-Hf-Pb isotope composition include the 1650 AD and underlying K2 rhyolitic, enclave-bearing pumices that are nearly identical in composition (73 wt.% SiO2, 4.2 wt.% K2O). Lava bodies exposed in the crater and enclaves are basalts to andesites (52-60 wt.% SiO2). Biotite and amphibole are common phenocryst phases, in contrast with the typically anhydrous mineral assemblages of Santorini. The strong geochemical signature of amphibole fractionation and the assimilation of lower crustal basement in the petrogenesis of the Kolumbo magmas indicates that Kolumbo and Santorini underwent different crustal differentiation histories and that their crustal magmatic systems are unrelated. Moreover, the Kolumbo samples are derived from a distinct, more enriched mantle source that is characterized by high Nb/Yb (>3) and low 206Pb/204Pb (<18.82) that has not been recognized in the Santorini volcanic products. The strong dissimilarity in both petrogenesis and inferred mantle sources between Kolumbo and Santorini suggests that pronounced source variations can be manifested in arc magmas that are closely associated in space and time within a single volcanic field.

  20. A distinct source and differentiation history for Kolumbo submarine volcano, Santorini volcanic field, Aegean arc

    PubMed Central

    Carey, Steven; Nomikou, Paraskevi; Smet, Ingrid; Godelitsas, Athanasios; Vroon, Pieter

    2016-01-01

    Abstract This study reports the first detailed geochemical characterization of Kolumbo submarine volcano in order to investigate the role of source heterogeneity in controlling geochemical variability within the Santorini volcanic field in the central Aegean arc. Kolumbo, situated 15 km to the northeast of Santorini, last erupted in 1650 AD and is thus closely associated with the Santorini volcanic system in space and time. Samples taken by remotely‐operated vehicle that were analyzed for major element, trace element and Sr‐Nd‐Hf‐Pb isotope composition include the 1650 AD and underlying K2 rhyolitic, enclave‐bearing pumices that are nearly identical in composition (73 wt.% SiO2, 4.2 wt.% K2O). Lava bodies exposed in the crater and enclaves are basalts to andesites (52–60 wt.% SiO2). Biotite and amphibole are common phenocryst phases, in contrast with the typically anhydrous mineral assemblages of Santorini. The strong geochemical signature of amphibole fractionation and the assimilation of lower crustal basement in the petrogenesis of the Kolumbo magmas indicates that Kolumbo and Santorini underwent different crustal differentiation histories and that their crustal magmatic systems are unrelated. Moreover, the Kolumbo samples are derived from a distinct, more enriched mantle source that is characterized by high Nb/Yb (>3) and low 206Pb/204Pb (<18.82) that has not been recognized in the Santorini volcanic products. The strong dissimilarity in both petrogenesis and inferred mantle sources between Kolumbo and Santorini suggests that pronounced source variations can be manifested in arc magmas that are closely associated in space and time within a single volcanic field. PMID:27917071

  1. Vailulu’u Seamount, Samoa: Life and death on an active submarine volcano

    PubMed Central

    Staudigel, Hubert; Hart, Stanley R.; Pile, Adele; Bailey, Bradley E.; Baker, Edward T.; Brooke, Sandra; Connelly, Douglas P.; Haucke, Lisa; German, Christopher R.; Hudson, Ian; Jones, Daniel; Koppers, Anthony A. P.; Konter, Jasper; Lee, Ray; Pietsch, Theodore W.; Tebo, Bradley M.; Templeton, Alexis S.; Zierenberg, Robert; Young, Craig M.

    2006-01-01

    Submersible exploration of the Samoan hotspot revealed a new, 300-m-tall, volcanic cone, named Nafanua, in the summit crater of Vailulu’u seamount. Nafanua grew from the 1,000-m-deep crater floor in <4 years and could reach the sea surface within decades. Vents fill Vailulu’u crater with a thick suspension of particulates and apparently toxic fluids that mix with seawater entering from the crater breaches. Low-temperature vents form Fe oxide chimneys in many locations and up to 1-m-thick layers of hydrothermal Fe floc on Nafanua. High-temperature (81°C) hydrothermal vents in the northern moat (945-m water depth) produce acidic fluids (pH 2.7) with rising droplets of (probably) liquid CO2. The Nafanua summit vent area is inhabited by a thriving population of eels (Dysommina rugosa) that feed on midwater shrimp probably concentrated by anticyclonic currents at the volcano summit and rim. The moat and crater floor around the new volcano are littered with dead metazoans that apparently died from exposure to hydrothermal emissions. Acid-tolerant polychaetes (Polynoidae) live in this environment, apparently feeding on bacteria from decaying fish carcasses. Vailulu’u is an unpredictable and very active underwater volcano presenting a potential long-term volcanic hazard. Although eels thrive in hydrothermal vents at the summit of Nafanua, venting elsewhere in the crater causes mass mortality. Paradoxically, the same anticyclonic currents that deliver food to the eels may also concentrate a wide variety of nektonic animals in a death trap of toxic hydrothermal fluids. PMID:16614067

  2. Submarine Pyroclastic Flow Deposits; July 2003 Dome Collapse Event of the Soufrière Hills Volcano, Montserrat, West Indies

    NASA Astrophysics Data System (ADS)

    Trofimovs, J.; Sparks, S.; Talling, P.

    2006-12-01

    What happens when pyroclastic flows enter the ocean? To date, the subject of submarine pyroclastic flow behaviour has been controversial. Ambiguity arises from inconclusive evidence of a subaqueous depositional environment in ancient successions, to difficulty in sampling the in situ products of modern eruptions. A research voyage of the RRS James Clark Ross (9-18 May 2005) sampled 52 sites offshore from the volcanic island of Montserrat. The Soufrière Hills volcano, Montserrat, has been active since 1995 with eruptive behaviour dominated by andesite lava dome growth and collapse. Over 90% of the pyroclastic material produced has been deposited into the ocean. In July 2003 the Soufrière Hills volcano produced the largest historically documented dome collapse event. 210 x 106 m3 of pyroclastic material avalanched down the Tar River Valley, southeast Montserrat, to be deposited into the ocean. Bathymetric imaging and coring of offshore pyroclastic deposits, with a specific focus on the July 2003 units, reveals that the pyroclastic flows mix rapidly and violently with the water as they enter the ocean. Mixing takes place between the shore and 500 m depth where the deposition of basal coarse-grained parts of the flow initiates on slopes of 15° or less. The coarse components (pebbles to boulders) are deposited proximally from dense basal slurries to form steep sided, near linear ridges that amalgamate to form a kilometer-scale submarine fan. These proximal deposits contain <1% of ash-grade material. The finer components (dominantly ash-grade) are mixed into the overlying water column to form turbidity currents that flow distances >40 km from source. The total volume of pyroclastic material deposited within the submarine environment during this event exceeds 170 x 106 m3, with 65% deposited in proximal lobes and 35% deposited as distal turbidites. This broadly correlates with the block and ash components respectively, of the source subaerial pyroclastic flow. However

  3. Episodic massive mud eruptions from submarine mud volcanoes examined through topographical signatures

    NASA Astrophysics Data System (ADS)

    Kioka, Arata; Ashi, Juichiro

    2015-10-01

    The role of mud volcanism on subsurface fluid migration and material cycling has long been debated. Here we compile the heights and radii of offshore mud volcanoes and estimate a mean volume of episodic massive mud eruptions based on previous studies into granular flows. The volume is estimated as a function of the ratio of height to basal radius of the mud volcano's body under reasonable assumptions of the sizes of the mud conduit. Nearly all known offshore mud volcanoes are found to be polygenetic with the mean individual eruption volume of the pie-type mud volcano being several orders of magnitude larger than that of the cone type. The frequent occurrence of pie-type mud volcanoes in accretionary margins characterized by high-sediment influx is explained by their efficiency in the transport of large amounts of fluidized sediments from deep depths to the seafloor.

  4. Unusual seismic activity in 2011 and 2013 at the submarine volcano Rocard, Society hot spot (French Polynesia)

    NASA Astrophysics Data System (ADS)

    Talandier, Jacques; Hyvernaud, Olivier; Maury, René C.

    2016-05-01

    We analyze two seismic events that occurred on 27 May 2011 and 29 April 2013 at the Rocard submarine volcano which overlies the Society hot spot. The Polynesian Seismic Network recorded for the first time unusual associated short- and long-period signals, with perfectly monochromatic (0.0589 Hz) Rayleigh wave trains of long period and duration. None of the numerous observations of long-period (10-30 s) signals previously associated with volcanic activity in Japan, Italy, Mexico, Indonesia, Antarctica, and the Hawaiian Islands have the characteristics we observed at Rocard. We propose a tentative model for these unusual and rather enigmatic signals, in which the movement of lava excited the resonance of a shallow open conduit under a high hydrostatic pressure of ~400 bars.

  5. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response

    NASA Astrophysics Data System (ADS)

    Fraile-Nuez, Eugenio; Magdalena Santana-Casiano, J.; González-Dávila, Melchor

    2014-05-01

    On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments.

  6. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response.

    PubMed

    Fraile-Nuez, E; González-Dávila, M; Santana-Casiano, J M; Arístegui, J; Alonso-González, I J; Hernández-León, S; Blanco, M J; Rodríguez-Santana, A; Hernández-Guerra, A; Gelado-Caballero, M D; Eugenio, F; Marcello, J; de Armas, D; Domínguez-Yanes, J F; Montero, M F; Laetsch, D R; Vélez-Belchí, P; Ramos, A; Ariza, A V; Comas-Rodríguez, I; Benítez-Barrios, V M

    2012-01-01

    On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments.

  7. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response

    PubMed Central

    Fraile-Nuez, E.; González-Dávila, M.; Santana-Casiano, J. M.; Arístegui, J.; Alonso-González, I. J.; Hernández-León, S.; Blanco, M. J.; Rodríguez-Santana, A.; Hernández-Guerra, A.; Gelado-Caballero, M. D.; Eugenio, F.; Marcello, J.; de Armas, D.; Domínguez-Yanes, J. F.; Montero, M. F.; Laetsch, D. R.; Vélez-Belchí, P.; Ramos, A.; Ariza, A. V.; Comas-Rodríguez, I.; Benítez-Barrios, V. M.

    2012-01-01

    On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments. PMID:22768379

  8. Magnetic mapping of submarine hydrothermal systems at Marsili and Palinuro volcanoes from deep-towed magnetometer data

    NASA Astrophysics Data System (ADS)

    Caratori Tontini, F.; Bortoluzzi, G.; Carmisciano, C.; Cocchi, L.; de Ronde, C. E.; Ligi, M.; Muccini, F.

    2013-12-01

    We collected near-bottom magnetic data at Marsili and Palinuro volcanoes in the Southern Tyrrhenian Sea, by adding a magnetometer to a deep-towed sidescan sonar. Equivalent magnetization maps obtained by inversion of the recorded magnetic anomalies are analyzed to map alteration zones related to hydrothermal processes and are correlated with water-column and seafloor observations of hydrothermal activity. At Marsili volcano, we found a large elliptical area of low magnetization, confirming the existence of a large hydrothermal system located in proximity of the top cone, above the magma chamber. Palinuro volcano is characterized by hydrothermal venting located along the caldera walls, where the corresponding ring faults may provide preferred pathways for the upflow of the hydrothermal fluids.

  9. Viral infections stimulate the metabolism and shape prokaryotic assemblages in submarine mud volcanoes.

    PubMed

    Corinaldesi, Cinzia; Dell'Anno, Antonio; Danovaro, Roberto

    2012-06-01

    Mud volcanoes are geological structures in the oceans that have key roles in the functioning of the global ecosystem. Information on the dynamics of benthic viruses and their interactions with prokaryotes in mud volcano ecosystems is still completely lacking. We investigated the impact of viral infection on the mortality and assemblage structure of benthic prokaryotes of five mud volcanoes in the Mediterranean Sea. Mud volcano sediments promote high rates of viral production (1.65-7.89 × 10(9) viruses g(-1) d(-1)), viral-induced prokaryotic mortality (VIPM) (33% cells killed per day) and heterotrophic prokaryotic production (3.0-8.3 μgC g(-1) d(-1)) when compared with sediments outside the mud volcano area. The viral shunt (that is, the microbial biomass converted into dissolved organic matter as a result of viral infection, and thus diverted away from higher trophic levels) provides 49 mgC m(-2) d(-1), thus fuelling the metabolism of uninfected prokaryotes and contributing to the total C budget. Bacteria are the dominant components of prokaryotic assemblages in surface sediments of mud volcanoes, whereas archaea dominate the subsurface sediment layers. Multivariate multiple regression analyses show that prokaryotic assemblage composition is not only dependant on the geochemical features and processes of mud volcano ecosystems but also on synergistic interactions between bottom-up (that is, trophic resources) and top-down (that is, VIPM) controlling factors. Overall, these findings highlight the significant role of the viral shunt in sustaining the metabolism of prokaryotes and shaping their assemblage structure in mud volcano sediments, and they provide new clues for our understanding of the functioning of cold-seep ecosystems.

  10. Cold seeps associated with a submarine debris avalanche deposit at Kick'em Jenny volcano, Grenada (Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Carey, Steven; Ballard, Robert; Bell, Katherine L. C.; Bell, Richard J.; Connally, Patrick; Dondin, Frederic; Fuller, Sarah; Gobin, Judith; Miloslavich, Patricia; Phillips, Brennan; Roman, Chris; Seibel, Brad; Siu, Nam; Smart, Clara

    2014-11-01

    Remotely operated vehicle (ROV) exploration at the distal margins of a debris avalanche deposit from Kick'em Jenny submarine volcano in Grenada has revealed areas of cold seeps with chemosynthetic-based ecosystems. The seeps occur on steep slopes of deformed, unconsolidated hemipelagic sediments in water depths between 1952 and 2042 m. Two main areas consist of anastomosing systems of fluid flow that have incised local sediments by several tens of centimeters. No temperature anomalies were observed in the vent areas and no active flow was visually observed, suggesting that the venting may be waning. An Eh sensor deployed on a miniature autonomous plume recorder (MAPR) recorded a positive signal and the presence of live organisms indicates at least some venting is still occurring. The chemosynthetic-based ecosystem included giant mussels (Bathymodiolus sp.) with commensal polychaetes (Branchipolynoe sp.) and cocculinid epibionts, other bivalves, Siboglinida (vestimentiferan) tubeworms, other polychaetes, and shrimp, as well as associated heterotrophs, including gastropods, anemones, crabs, fish, octopods, brittle stars, and holothurians. The origin of the seeps may be related to fluid overpressure generated during the collapse of an ancestral Kick'em Jenny volcano. We suggest that deformation and burial of hemipelagic sediment at the front and base of the advancing debris avalanche led to fluid venting at the distal margin. Such deformation may be a common feature of marine avalanches in a variety of geological environments especially along continental margins, raising the possibility of creating large numbers of ephemeral seep-based ecosystems.

  11. Volcanoes!

    USGS Publications Warehouse

    ,

    1997-01-01

    Volcanoes is an interdisciplinary set of materials for grades 4-8. Through the story of the 1980 eruption of Mount St. Helens, students will answer fundamental questions about volcanoes: "What is a volcano?" "Where do volcanoes occur and why?" "What are the effects of volcanoes on the Earth system?" "What are the risks and the benefits of living near volcanoes?" "Can scientists forecast volcanic eruptions?"

  12. Earthquakes, Subaerial and Submarine Landslides, Tsunamis and Volcanoes in Aysén Fjord, Chile

    NASA Astrophysics Data System (ADS)

    Lastras, G.; Amblas, D.; Calafat-Frau, A. M.; Canals, M.; Frigola, J.; Hermanns, R. L.; Lafuerza, S.; Longva, O.; Micallef, A.; Sepulveda, S. A.; Vargas Easton, G.; Azpiroz, M.; Bascuñán, I.; Duhart, P.; Iglesias, O.; Kempf, P.; Rayo, X.

    2014-12-01

    The Aysén fjord, 65 km long and east-west oriented, is located at 45.4ºS and 73.2ºW in Chilean Patagonia. It has a maximum water depth of 345 m. It collects the inputs of Aysén, Pescado, Condor and Cuervo rivers, which drain the surrounding Patagonian Andes. The fjord is crossed by the Liquiñe-Ofqui Fault Zone, a seismically active trench parallel intra-arc fault system. On 21 April 2007, an Mw 6.2 earthquake triggered numerous subaerial and submarine landslides along the fjord flanks. Some of the subaerial landslides reached the water mass, generating tsunami-like displacement waves that flooded the adjacent coastlines, withlocal >50 m high run-ups, causing ten fatalities and damage to salmon farms. The research cruise DETSUFA on board BIO Hespérides in March 2013, aiming to characterise the landslides and their effects, mapped with great detail the submerged morphology of the fjord. Multibeam data display deformation structures created by the impact of the landslides in the inner fjord floor. Landslide material descended and accelerated down the highly sloping fjord flanks, and reached the fjord floor at 200 m water depth generating large, 10-m-deep impact depressions. Fjord floor sediment was pushed and piled up in arcuate deformation areas formed by 15-m-high compressional ridges, block fields and a narrow frontal depression. Up to six >1.5 km2 of these structures have been identified. In addition, the cruise mapped the outer fjord floor beyond the Cuervo ridge. This ridge, previously interpreted as a volcanic transverse structure, most probably acted as a limit for grounding ice in the past, as suggested by the presence of a melt-water channel. The fjord smoothens and deepens to more than 330 m forming an enclosed basin, before turning SW across a field of streamlined hills of glacial origin. Three volcanic cones, one of them forming Isla Colorada and the other two totally submerged and previously unknown, have been mapped in the outer fjord. The largest

  13. Source of the tsunami generated by the 1650 AD eruption of Kolumbo submarine volcano (Aegean Sea, Greece)

    NASA Astrophysics Data System (ADS)

    Ulvrova, Martina; Paris, R.; Nomikou, P.; Kelfoun, K.; Leibrandt, S.; Tappin, D. R.; McCoy, F. W.

    2016-07-01

    The 1650 AD explosive eruption of Kolumbo submarine volcano (Aegean Sea, Greece) generated a destructive tsunami. In this paper we propose a source mechanism of this poorly documented tsunami using both geological investigations and numerical simulations. Sedimentary evidence of the 1650 AD tsunami was found along the coast of Santorini Island at maximum altitudes ranging between 3.5 m a.s.l. (Perissa, southern coast) and 20 m a.s.l. (Monolithos, eastern coast), corresponding to a minimum inundation of 360 and 630 m respectively. Tsunami deposits consist of an irregular 5 to 30 cm thick layer of dark grey sand that overlies pumiceous deposits erupted during the Minoan eruption and are found at depths of 30-50 cm below the surface. Composition of the tsunami sand is similar to the composition of the present-day beach sand but differs from the pumiceous gravelly deposits on which it rests. The spatial distribution of the tsunami deposits was compared to available historical records and to the results of numerical simulations of tsunami inundation. Different source mechanisms were tested: earthquakes, underwater explosions, caldera collapse, and pyroclastic flows. The most probable source of the 1650 AD Kolumbo tsunami is a 250 m high water surface displacement generated by underwater explosion with an energy of 2 × 1016 J at water depths between 20 and 150 m. The tsunamigenic explosion(s) occurred on September 29, 1650 during the transition between submarine and subaerial phases of the eruption. Caldera subsidence is not an efficient tsunami source mechanism as short (and probably unrealistic) collapse durations (< 5 min) are needed. Pyroclastic flows cannot be discarded, but the required flux (106 to 107 m3 · s- 1) is exceptionally high compared to the magnitude of the eruption.

  14. Source of the tsunami generated by the 1650 AD eruption of Kolumbo submarine volcano (Aegean Sea, Greece)

    NASA Astrophysics Data System (ADS)

    Ulvrova, Martina; Paris, Raphael; Nomikou, Paraskevi; Tappin, Dave

    2016-04-01

    The 1650 AD explosive eruption of Kolumbo submarine volcano (Aegean Sea, Greece) generated a destructive tsunami. In this paper we propose a source mechanism of this poorly documented tsunami using both geological investigations and numerical simulations. Sedimentary evidences of the 1650 AD tsunami were found along the coast of Santorini Island at maximum altitudes ranging between 3.5 m a.s.l. (Perissa, southern coast) and 20 m a.s.l. (Monolithos, eastern coast), corresponding to a minimum inundation of 360 and 630 m respectively. Tsunami deposits correspond to an irregular 5 to 30 cm thick layer of dark grey sand intercalated in soil at depths between 30 and 50 cm. Composition of the tsunami sand is similar to the composition of the present-day beach and clearly differs from the pumiceous gravelly soil. Spatial distribution of the tsunami deposits was confronted to available historical records and to the results of numerical simulations of tsunami inundation. Different scenarios of source mechanism were tested: earthquakes, underwater explosions, caldera collapse, and pyroclastic flows. The most probable source of the 1650 AD Kolumbo tsunami is a 250 m high water surface displacement generated by underwater explosion with an energy of ~2 E15 J at water depths between 20 and 150 m. The tsunamigenic explosion(s) occurred on September 29, 1650 during the transition between submarine and subaerial phases. Caldera subsidence is not an efficient source of tsunami, as short (and probably unrealistic) collapse durations (< 5 minutes) are needed. Pyroclastic flows cannot be discarded, but the required flux (E6 to E7 m³.s-1) is exceptionally high compared to the magnitude of the eruption.

  15. SeaMARC 2 side-scan images of submarine volcanoes: Potential analogues for Venus

    NASA Technical Reports Server (NTRS)

    Fryer, P.; Hussong, D.; Mouginis-Mark, P. J.

    1984-01-01

    The Earth's surface beneath the oceans may be very similar, in terms of ambient pressures, to the surface of Venus. For that reason it is particularly important for geologists studying the surface of Venus to understand the processes which form features on the floors of the oceans. With the SeaMARC 2 seafloor mapping system, it is possible to view a swath of seafloor that is 10 km wide (about 6.2 mi). Side scan images of the Mariana region show that volcanoes of the island arc are more complicated than previously realized and that features of the fore-arc region, which resemble volcanoes morphologically, may result from processes other than volcanism. By comparing data obtained from the ocean floor with radar images of Venus, the geological evolution of that planet may be more fully understood.

  16. Location and Pressures Change Prediction of Bromo Volcano Magma Chamber Using Inversion Scheme

    NASA Astrophysics Data System (ADS)

    Kumalasari, Ratih; Srigutomo, Wahyu

    2016-08-01

    Bromo volcano is one of active volcanoes in Indonesia. It has erupted at least 50 times since 1775 and has been monitored by Global Positioning System (GPS) since 1989. We applied the Levenberg-Marquardt inversion scheme to estimate the physical parameters contributing to the surface deformation. Physical parameters obtained by the inversion scheme such as magma chamber location and volume change are useful in monitoring and predicting the activity of Bromo volcano. From our calculation it is revealed that the depth of the magma chamber d = 6307.6 m, radius of magma chamber α = 1098.6 m and pressure change ΔP ≈ 1.0 MPa.

  17. The Kolumbo submarine volcano of Santorini island is a large pool of bacterial strains with antimicrobial activity.

    PubMed

    Bourbouli, Maria; Katsifas, Efstathios A; Papathanassiou, Evangelos; Karagouni, Amalia D

    2015-05-01

    Microbes in hydrothermal vents with their unique secondary metabolism may represent an untapped potential source of new natural products. In this study, samples were collected from the hydrothermal field of Kolumbo submarine volcano in the Aegean Sea, in order to isolate bacteria with antimicrobial activity. Eight hundred and thirty-two aerobic heterotrophic bacteria were isolated and then differentiated through BOX-PCR analysis at the strain level into 230 genomic fingerprints, which were screened against 13 different type strains (pathogenic and nonpathogenic) of Gram-positive, Gram-negative bacteria and fungi. Forty-two out of 176 bioactive-producing genotypes (76 %) exhibited antimicrobial activity against at least four different type strains and were selected for 16S rDNA sequencing and screening for nonribosomal peptide (NRPS) and polyketide (PKS) synthases genes. The isolates were assigned to genus Bacillus and Proteobacteria, and 20 strains harbored either NRPS, PKS type I or both genes. This is the first report on the diversity of culturable mesophilic bacteria associated with antimicrobial activity from Kolumbo area; the extremely high proportion of antimicrobial-producing strains suggested that this unique environment may represent a potential reservoir of novel bioactive compounds.

  18. Molecular Comparison of Bacterial Communities within Iron-Containing Flocculent Mats Associated with Submarine Volcanoes along the Kermadec Arc▿

    PubMed Central

    Hodges, Tyler W.; Olson, Julie B.

    2009-01-01

    Iron oxide sheaths and filaments are commonly found in hydrothermal environments and have been shown to have a biogenic origin. These structures were seen in the flocculent material associated with two submarine volcanoes along the Kermadec Arc north of New Zealand. Molecular characterization of the bacterial communities associated with the flocculent samples indicated that no known Fe-oxidizing bacteria dominated the recovered clone libraries. However, clones related to the recently described Fe-oxidizing bacterium Mariprofundus ferrooxydans were obtained from both the iron-containing flocculent (Fe-floc) and sediment samples, and peaks corresponding to Mariprofundus ferrooxydans, as well as the related clones, were observed in several of our terminal restriction fragment length polymorphism profiles. A large group of epsilonproteobacterial sequences, for which there is no cultured representative, dominated clones from the Fe-floc libraries and were less prevalent in the sediment sample. Phylogenetic analyses indicated that several operational taxonomic units appeared to be site specific, and statistical analyses of the clone libraries found that all samples were significantly different from each other. Thus, the bacterial communities in the Fe-floc samples were not more closely related to each other than to the sediment communities. PMID:19114513

  19. Molecular comparison of bacterial communities within iron-containing flocculent mats associated with submarine volcanoes along the Kermadec Arc.

    PubMed

    Hodges, Tyler W; Olson, Julie B

    2009-03-01

    Iron oxide sheaths and filaments are commonly found in hydrothermal environments and have been shown to have a biogenic origin. These structures were seen in the flocculent material associated with two submarine volcanoes along the Kermadec Arc north of New Zealand. Molecular characterization of the bacterial communities associated with the flocculent samples indicated that no known Fe-oxidizing bacteria dominated the recovered clone libraries. However, clones related to the recently described Fe-oxidizing bacterium Mariprofundus ferrooxydans were obtained from both the iron-containing flocculent (Fe-floc) and sediment samples, and peaks corresponding to Mariprofundus ferrooxydans, as well as the related clones, were observed in several of our terminal restriction fragment length polymorphism profiles. A large group of epsilonproteobacterial sequences, for which there is no cultured representative, dominated clones from the Fe-floc libraries and were less prevalent in the sediment sample. Phylogenetic analyses indicated that several operational taxonomic units appeared to be site specific, and statistical analyses of the clone libraries found that all samples were significantly different from each other. Thus, the bacterial communities in the Fe-floc samples were not more closely related to each other than to the sediment communities.

  20. Lava bubble-wall fragments formed by submarine hydrovolcanic explosions on Lo'ihi Seamount and Kilauea Volcano

    USGS Publications Warehouse

    Clague, D.A.; Davis, A.S.; Bischoff, J.L.; Dixon, J.E.; Geyer, R.

    2000-01-01

    Glassy bubble-wall fragments, morphologically similar to littoral limu o Pele, have been found in volcanic sands erupted on Lo'ihi Seamount and along the submarine east rift zone of Kilauea Volcano. The limu o Pele fragments are undegassed with respect to H2O and S and formed by mild steam explosions. Angular glass sand fragments apparently form at similar, and greater, depths by cooling-contraction granulation. The limu o Pele fragments from Lo'ihi Seamount are dominantly tholeiitic basalt containing 6.25-7.25% MgO. None of the limu o Pele samples from Lo'ihi Seamount contains less than 5.57% MgO, suggesting that higher viscosity magmas do not form lava bubbles. The dissolved CO2 and H2O contents of 7 of the limu o Pele fragments indicate eruption at 1200??300 m depth (120??30 bar). These pressures exceed that generally thought to limit steam explosions. We conclude that hydrovolcanic eruptions are possible, with appropriate pre-mixing conditions, at pressures as great as 120 bar.

  1. Unravelling the Geometry of Unstable Flanks of Submarine Volcanoes by Magnetic Investigation: the Case of the "sciara del Fuoco" Scar (stromboli Volcano, Aeolian Islands)

    NASA Astrophysics Data System (ADS)

    Muccini, F.; Cocchi, L.; Carmisciano, C.; Speranza, F.; Marziani, F.

    2012-12-01

    Stromboli is the easternmost island of the Aeolian Archipelago (Tyrrhenian Sea) and one of the most active Mediterranean volcanoes. The volcanic edifice rises over 3000 m above the surrounding seafloor, from a depth of about 2000 m b.s.l. to 924 m a.s.l. The north-western flank of volcano is deeply scarred by a destructive collapse event occurred ca. 5000 years ago, and forming a big horseshoe-shaped depression, known as "Sciara del Fuoco" (SdF). This depression, 3 Km long and 2 Km wide, is supposed to extend into the sea down to 700 m b.s.l., while further basinward it turns into a fan-shaped mounted deposit down to about 2600 m b.s.l., where it merges the so-called "Stromboli Canyon". Since its formation, emerged and submerged portions of the SdF have been progressively filled by the volcanic products of the persistent activity of the Stromboli Volcano. In the last 10 years, two paroxysmal eruptions occurred in the Stromboli Volcano, during 2002-2003 and February-April 2007. During both events, the SdF has been partially covered by lava flows and affected by slope failures, also causing (for the 2002-2003 event) a local tsunami. Since the 1990's, and especially after the last two paroxysms, the submerged extension of the SdF has been intensively investigated by using swath bathymetry data. We focused principally on the magnetic anomaly pattern of the submerged SdF since the chaotic depositional system virtually cancels magnetic remanence (which at Stromboli can reach 5-10 A/m values), thus lowering magnetic residual intensity. On July 2012 we acquired new detailed sea-surface magnetic data of the SdF from the shoreline to about 7 km offshore, where the depth is more than 1800 m b.s.l. We collected data thanks to the Italian Navy ship "Nave Aretusa" and by using the Marine Magnetics SeaSPY magnetometer. At the same time, new bathymetric data were acquired in the same area by using a Kongsberg Marine multibeam systems. Although the morphologic features of the

  2. Volcanoes

    SciTech Connect

    Decker, R.W.; Decker, B.

    1989-01-01

    This book describes volcanoes although the authors say they are more to be experienced than described. This book poses more question than answers. The public has developed interest and awareness in volcanism since the first edition eight years ago, maybe because since the time 120 volcanoes have erupted. Of those, the more lethal eruptions were from volcanoes not included in the first edition's World's 101 Most Notorious Volcanoes.

  3. Dive and Explore: An Interactive Exhibit That Simulates Making an ROV Dive to a Submarine Volcano, Hatfield Marine Science Visitor Center, Newport, Oregon

    NASA Astrophysics Data System (ADS)

    Weiland, C.; Chadwick, W. W.; Hanshumaker, W.; Osis, V.; Hamilton, C.

    2002-12-01

    We have created a new interactive exhibit in which the user can sit down and simulate that they are making a dive to the seafloor with the remotely operated vehicle (ROV) named ROPOS. The exhibit immerses the user in an interactive experience that is naturally fun but also educational. This new public display is located at the Hatfield Marine Science Visitor Center in Newport, Oregon. The exhibit is designed to look like the real ROPOS control console and includes three video monitors, a PC, a DVD player, an overhead speaker, graphic panels, buttons, lights, dials, and a seat in front of a joystick. The dives are based on real seafloor settings at Axial seamount, an active submarine volcano on the Juan de Fuca Ridge (NE Pacific) that is also the location of a seafloor observatory called NeMO. The user can choose between 1 of 3 different dives sites in the caldera of Axial Volcano. Once a dive is chosen, then the user watches ROPOS being deployed and then arrives into a 3-D computer-generated seafloor environment that is based on the real world but is easier to visualize and navigate. Once on the bottom, the user is placed within a 360 degree panorama and can look in all directions by manipulating the joystick. By clicking on markers embedded in the scene, the user can then either move to other panorama locations via movies that travel through the 3-D virtual environment, or they can play video clips from actual ROPOS dives specifically related to that scene. Audio accompanying the video clips informs the user where they are going or what they are looking at. After the user is finished exploring the dive site they end the dive by leaving the bottom and watching the ROV being recovered onto the ship at the surface. The user can then choose a different dive or make the same dive again. Within the three simulated dives there are a total of 6 arrival and departure movies, 7 seafloor panoramas, 12 travel movies, and 23 ROPOS video clips. The exhibit software was created

  4. Volcanoes.

    ERIC Educational Resources Information Center

    Tilling, Robert I.

    One of a series of general interest publications on science topics, this booklet provides a non-technical introduction to the subject of volcanoes. Separate sections examine the nature and workings of volcanoes, types of volcanoes, volcanic geological structures such as plugs and maars, types of eruptions, volcanic-related activity such as geysers…

  5. Two-dimensional simulations of explosive eruptions of Kick-em Jenny and other submarine volcanos

    SciTech Connect

    Gisler, Galen R.; Weaver, R. P.; Mader, Charles L.; Gittings, M. L.

    2004-01-01

    Kick-em Jenny, in the Eastern Caribbean, is a submerged volcanic cone that has erupted a dozen or more times since its discovery in 1939. The most likely hazard posed by this volcano is to shipping in the immediate vicinity (through volcanic missiles or loss-of-buoyancy), but it is of interest to estimate upper limits on tsunamis that might be produced by a catastrophic explosive eruption. To this end, we have performed two-dimensional simulations of such an event in a geometry resembling that of Kick-em Jenny with our SAGE adaptive mesh Eulerian multifluid compressible hydrocode. We use realistic equations of state for air, water, and basalt, and follow the event from the initial explosive eruption, through the generation of a transient water cavity and the propagation of waves away from the site. We find that even for extremely catastrophic explosive eruptions, tsunamis from Kick-em Jenny are unlikely to pose significant danger to nearby islands. For comparison, we have also performed simulations of explosive eruptions at the much larger shield volcano Vailuluu in the Samoan chain, where the greater energy available can produce a more impressive wave. In general, however, we conclude that explosive eruptions do not couple well to water waves. The waves that are produced from such events are turbulent and highly dissipative, and don't propagate well. This is consistent with what we have found previously in simulations of asteroid-impact generated tsunamis. Non-explosive events, however, such as landslides or gas hydrate releases, do couple well to waves, and our simulations of tsunamis generated by subaerial and sub-aqueous landslides demonstrate this.

  6. Validation of Innovative Exploration Technologies for Newberry Volcano: Drill Site Location Map 2010

    SciTech Connect

    Jaffe, Todd

    2012-01-01

    Newberry seeks to explore "blind" (no surface evidence) convective hydrothermal systems associated with a young silicic pluton on the flanks of Newberry Volcano. This project will employ a combination of innovative and conventional techniques to identify the location of subsurface geothermal fluids associated with the hot pluton. Newberry project drill site location map 2010. Once the exploration mythology is validated, it can be applied throughout the Cascade Range and elsewhere to locate and develop “blind” geothermal resources.

  7. Crustal structure of the southern Okinawa Trough: Symmetrical rifting, submarine volcano, and potential mantle accretion in the continental back-arc basin

    NASA Astrophysics Data System (ADS)

    Arai, Ryuta; Kodaira, Shuichi; Yuka, Kaiho; Takahashi, Tsutomu; Miura, Seiichi; Kaneda, Yoshiyuki

    2017-01-01

    Back-arc basins are a primary target to understand lithospheric evolution in extension associated with plate subduction. Most of the currently active back-arc basins formed in intraoceanic settings and host well-developed spreading centers where seafloor spreading has occurred. However, rift structure at its initial stage, a key to understand how the continental lithosphere starts to break in a magma-rich back-arc setting, is poorly documented. Here we present seismological evidence for structure of the southern Okinawa Trough, an active rift zone behind the Ryukyu subduction zone. We find that the southern Okinawa Trough exhibits an almost symmetric rift system across the rift axis (Yaeyama Rift) and that the sedimentary layers are highly cut by inward dipping normal faults. The rift structure also accompanies a narrow (2-7 km wide) on-axis intrusion resulted from passive upwelling of magma. On the other hand, an active submarine volcano is located 10 km away from the rift axis. The P wave velocity (Vp) model derived from seismic refraction data suggests that the crust has been significantly thinned from the original 25 km thick arc crust and the thinnest part with 12 km thickness occurs directly beneath the rift axis. The velocity model also reveals that there exists a thick layer with Vp of 6.5-7.2 km/s at lower crustal levels and may indicate that mantle materials accreted at the bottom of the crust during the crustal stretching. The abrupt crustal thinning and the velocity-depth profile suggest that the southern Okinawa Trough is at a transitional stage from continental rifting to seafloor spreading.

  8. The submarine volcano eruption off El Hierro Island: effects on the scattering migrant biota and the evolution of the pelagic communities.

    PubMed

    Ariza, Alejandro; Kaartvedt, Stein; Røstad, Anders; Garijo, Juan Carlos; Arístegui, Javier; Fraile-Nuez, Eugenio; Hernández-León, Santiago

    2014-01-01

    The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community.

  9. The Submarine Volcano Eruption off El Hierro Island: Effects on the Scattering Migrant Biota and the Evolution of the Pelagic Communities

    PubMed Central

    Ariza, Alejandro; Kaartvedt, Stein; Røstad, Anders; Garijo, Juan Carlos; Arístegui, Javier; Fraile-Nuez, Eugenio; Hernández-León, Santiago

    2014-01-01

    The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community. PMID:25047077

  10. Submarine evidence of a debris avalanche deposit on the eastern slope of Santorini volcano, Greece

    NASA Astrophysics Data System (ADS)

    Bell, Katherine Lynn Croff; Carey, Steven N.; Nomikou, Paraskevi; Sigurdsson, Haraldur; Sakellariou, Dimitris

    2013-06-01

    Hummocky seafloor features were discovered on the eastern flank of Santorini volcano, Greece. Multibeam bathymetric mapping, airgun seismic profiling, side scan sonar survey, and remotely operated vehicle (ROV) dives have been carried out to characterize the nature of the hummocks. These hummocks appear to be composed of several tens of blocks that are up to several hundred meters in diameter, and are the surface expression of a much larger deposit than is observed in the bathymetry. The sidescan and airgun data show that the deposit covers an area of approximately 6 km wide by 20 km long, and is up to 75 m thick. We estimate the total volume of the deposit to be approximately 4.4 × 109 m3. Sampling of these blocks show they are composed of pyroclastic flow deposits produced during the Minoan eruption of Santorini (ca. 3600 BP). We propose that the deposit is the result of a multi-stage landslide event that was caused by one of the several large earthquakes or volcanic eruptions that have occurred in the vicinity of Santorini since the Minoan eruption. One or more of these events likely triggered the destabilization of a part of the eastern flank of Santorini, which led to a debris avalanche, depositing blocks and forming a hummocky terrain at the base of the island's slope. The mass movement later evolved into a turbulent suspension flow that traveled 20 km or more from the presumed initial failure. Given the size of the landslide deposit, it might have a tsunami potentially affecting the islands across the southern Aegean Sea. The understanding of earthquake-landslide dynamics has important implications for hazard assessment in this seismically active, historical, and highly populated region of the world.

  11. An experiment to detect and locate lightning associated with eruptions of Redoubt Volcano

    USGS Publications Warehouse

    Hoblitt, R.P.

    1994-01-01

    A commercially-available lightning-detection system was temporarily deployed near Cook Inlet, Alaska in an attempt to remotely monitor volcanogenic lightning associated with eruptions of Redoubt Volcano. The system became operational on February 14, 1990; lightning was detected in 11 and located in 9 of the 13 subsequent eruptions. The lightning was generated by ash clouds rising from pyroclastic density currents produced by collapse of a lava dome emplaced near Redoubt's summit. Lightning discharge (flash) location was controlled by topography, which channeled the density currents, and by wind direction. In individual eruptions, early flashes tended to have a negative polarity (negative charge is lowered to ground) while late flashes tended to have a positive polarity (positive charge is lowered to ground), perhaps because the charge-separation process caused coarse, rapid-settling particles to be negatively charged and fine, slow-settling particles to be positively charged. Results indicate that lightning detection and location is a useful adjunct to seismic volcano monitoring, particularly when poor weather or darkness prevents visual observation. The simultaneity of seismicity and lightning near a volcano provides the virtual certainty that an ash cloud is present. This information is crucial for aircraft safety and to warn threatened communities of impending tephra falls. The Alaska Volcano Observatory has now deployed a permanent lightning-detection network around Cook Inlet. ?? 1994.

  12. Volcanoes

    MedlinePlus

    ... hot gases and debris called pyroclastic flows. Some dangers from volcanoes can be predicted ahead of time ... for All Disasters Illnesses, injuries, carbon monoxide poisoning, animals & insects, food, water, cleanup, mold, environmental concerns, and ...

  13. Volcanoes

    USGS Publications Warehouse

    Tilling, Robert I.

    1998-01-01

    Volcanoes destroy and volcanoes create. The catastrophic eruption of Mount St. Helens on May 18, 1980, made clear the awesome destructive power of a volcano. Yet, over a time span longer than human memory and record, volcanoes have played a key role in forming and modifying the planet upon which we live. More than 80 percent of the Earth's surface--above and below sea level--is of volcanic origin. Gaseous emissions from volcanic vents over hundreds of millions of years formed the Earth's earliest oceans and atmosphere, which supplied the ingredients vital to evolve and sustain life. Over geologic eons, countless volcanic eruptions have produced mountains, plateaus, and plains, which subsequent erosion and weathering have sculpted into majestic landscapes and formed fertile soils.

  14. Insights on volcanic behaviour from the 2015 July 23-24 T-phase signals generated by eruptions at Kick-'em-Jenny Submarine Volcano, Grenada, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Dondin, F. J. Y.; Latchman, J. L.; Robertson, R. E. A.; Lynch, L.; Stewart, R.; Smith, P.; Ramsingh, C.; Nath, N.; Ramsingh, H.; Ash, C.

    2015-12-01

    Kick-'em-Jenny volcano (KeJ) is the only known active submarine volcano in the Lesser Antilles Arc. Since 1939, the year it revealed itself, and until the volcano-seismic unrest of 2015 July 11-25 , the volcano has erupted 12 times. Only two eruptions breached the surface: 1939, 1974. The volcano has an average eruption cycle of about 10-11 years. Excluding the Montserrat, Soufrière Hills, KeJ is the most active volcano in the Lesser Antilles arc. The University of the West Indies, Seismic Research Centre (SRC) has been monitoring KeJ since 1953. On July 23 and 24 at 1:42 am and 0:02 am local time, respectively, the SRC recorded T-phase signals , considered to have been generated by KeJ. Both signals were recorded at seismic stations in and north of Grenada: SRC seismic stations as well as the French volcano observatories in Guadeloupe and Martinique, Montserrat Volcano Observatory, and the Puerto Rico Seismic Network. These distant recordings, along with the experience of similar observations in previous eruptions, allowed the SRC to confirm that two explosive eruptions occurred in this episode at KeJ. Up to two days after the second eruption, when aerial surveillance was done, there was no evidence of activity at the surface. During the instrumental era, eruptions of the KeJ have been identified from T-phases recorded at seismic stations from Trinidad, in the south, to Puerto Rico, in the north. In the 2015 July eruption episode, the seismic station in Trinidad did not record T-phases associated with the KeJ eruptions. In this study we compare the T-phase signals of 2015 July with those recorded in KeJ eruptions up to 1974 to explore possible causative features for the T-phase recording pattern in KeJ eruptions. In particular, we investigate the potential role played by the Sound Fixing and Ranging (SOFAR) layer in influencing the absence of the T-phase on the Trinidad seismic station during this eruption.

  15. Preliminary results from Submarine Ring of Fire 2012 - NE Lau: First explorations of hydrothermally active volcanoes across the supra-subduction zone and a return to the West Mata eruption site

    NASA Astrophysics Data System (ADS)

    Resing, J.; Embley, R. W.

    2012-12-01

    Several expeditions in the past few years have shown that the NE Lau basin has one of the densest concentrations of volcanically and hydrothermally active volcanoes on the planet. In 2008 two active submarine volcanic eruptions were discovered during a one week period and subsequent dives with the Jason remotely operated vehicle at one of the sites (West Mata) revealed an active boninite eruption taking place at 1200 m depth. Two dives at the other revealed evidence for recent eruption along the NE Lau Spreading Center. Several more expeditions in 2010-11 discovered additional evidence about the extent and types of hydrothermal activity in this area. Data from CTDO (conductivity, temperature, depth, optical) vertical casts, tow-yos, and towed camera deployments revealed more than 15 hydrothermal sites at water depths from ~800 to 2700 m that include sites from the magmatic arc, the "rear arc," and the back arc spreading centers. These sites range from high temperature black smoker sulfide-producing systems to those dominated by magmatic degassing. Dives by remotely operated vehicle (Quest 4000) in September 2012 will explore these sites and return samples for chemical, biological and geologic studies. One of the dives will be a return visit to West Mata volcano, the site of the deepest submarine eruption yet observed (in 2009). Recent multibeam data reveal large changes in West Mata's summit, suggesting that the nature of the eruption and the location of the erupting vents may have changed. In addition to the preliminary results from the science team, we will also discuss our use and experience with continuous live video transmission (through the High Definition video camera on the Quest 4000) back to shore via satellite and through the internet. Submarine Ring of Fire 2012 Science Team: Bradley Tebo, Bill Chadwick, Ed Baker, Ken Rubin, Susan Merle, Timothy Shank, Sharon Walker, Andra Bobbitt, Nathan Buck, David Butterfield, Eric Olson, John Lupton, Richard Arculus

  16. Distribution of trace elements including tellurium, gallium, indium, and select REE in sulfide chimneys from Brothers submarine volcano, Kermadec arc

    NASA Astrophysics Data System (ADS)

    Berkenbosch, H. A.; de Ronde, C. E.; McNeill, A.; Goemann, K.; Gemmell, J. B.

    2011-12-01

    Brothers volcano is a dacitic volcano located along the Kermadec arc, New Zealand, and hosts the NW Caldera hydrothermal vent field perched on part of the steep caldera walls. The field strikes for ~600 m between depths of 1550 and 1700 m and includes numerous, active, high-temperature (max 302°C) chimneys and even more dead, sulfide-rich spires. Chimney samples collected from Brothers show distinct mineralogical zonation reflecting gradients in oxidation state, temperature, and pH from the inner walls in contact with hydrothermal fluids through to the outer walls in contact with seawater. Minerals deposited from hotter fluids (e.g., chalcopyrite) are located in the interior of the chimneys and are surrounded by an external zone of minerals deposited by cooler fluids (e.g., sulfates, sphalerite). Four chimneys types are identified at Brothers volcano based on the relative proportions of chalcopyrite and sulfate layers, and the presence or absence of anhydrite. Two are Cu-rich, i.e., chalcopyrite-rich and chalcopyrite-bornite-rich chimneys, and two are Zn-rich, i.e., sphalerite-rich and sphalerite-chalcopyrite-rich. Barite and anhydrite are common to both Cu-rich chimney types whereas Zn-rich chimneys contain barite only. The main mineral phases in all the chimneys are anhydrite, barite, chalcopyrite, pyrite/marcasite, and sphalerite. Trace minerals include galena, covellite, tennantite, realgar, chalcocite, bornite, hematite, goethite, Pb-As sulfosalts, and Bi- or Au-tellurides. The vast majority of tellurides are <5 μm in size, although columnar crystals up to 80 μm long have been observed. The tellurides commonly form in bands, cluster in patches, or occur along internal grain boundaries within chalcopyrite. They also are found at the contact between chalcopyrite and pyrite grains. In sulfate layers adjacent to the chalcopyrite zones tellurides can occur as inclusions in anhydrite, barite or pyrite and/or occupy void space within the chimney. One Cu

  17. Characterization of Source and Wave Propagation Effects of Volcano-seismic Events and Tremor Using the Amplitude Source Location Method

    NASA Astrophysics Data System (ADS)

    Kumagai, H.; Londono, J. M.; López, C. M.; Ruiz, M. C.; Mothes, P. A.; Maeda, Y.

    2015-12-01

    We propose application of the amplitude source location (ASL) method to characterize source and wave propagation effects of volcano-seismic events and tremor observed at different volcanoes. We used this method to estimate the source location and source amplitude from high-frequency (5-10 Hz) seismic amplitudes under the assumption of isotropic S-wave radiation. We estimated the cumulative source amplitude (Is) as the offset value of the time-integrated envelope of the vertical seismogram corrected for geometrical spreading and medium attenuation in the 5-10 Hz band. We studied these parameters of tremor signals associated with eruptions and explosion events at Tungurahua volcano, Ecuador; long-period (LP) events at Cotopaxi volcano, Ecuador; and LP events at Nevado del Ruiz volcano, Colombia. We identified two types of eruption tremor at Tungurahua; noise-like inharmonic waveforms and harmonic oscillatory signals. We found that Is increased linearly with increasing source amplitude for explosion events and LP events, and that Is increased exponentially with increasing source amplitude for inharmonic eruption tremor signals. The source characteristics of harmonic eruption tremor signals differed from those of inharmonic tremor signals. The Is values we estimated for inharmonic eruption tremor were consistent with previous estimates of volumes of tephra fallout. The linear relationship between the source amplitude and Is for LP events can be explained by the wave propagation effects in the diffusion model for multiple scattering assuming a diffusion coefficient of 105 m2/s and an intrinsic Q factor of around 50. The resultant mean free path is approximately 100 m. Our results suggest that Cotopaxi and Nevado del Ruiz volcanoes have similar highly scattering and attenuating structures. Our approach provides a systematic way to compare the size of volcano-seismic signals observed at different volcanoes. The scaling relations among source parameters that we identified

  18. Kinematic variables and water transport control the formation and location of arc volcanoes.

    PubMed

    Grove, T L; Till, C B; Lev, E; Chatterjee, N; Médard, E

    2009-06-04

    The processes that give rise to arc magmas at convergent plate margins have long been a subject of scientific research and debate. A consensus has developed that the mantle wedge overlying the subducting slab and fluids and/or melts from the subducting slab itself are involved in the melting process. However, the role of kinematic variables such as slab dip and convergence rate in the formation of arc magmas is still unclear. The depth to the top of the subducting slab beneath volcanic arcs, usually approximately 110 +/- 20 km, was previously thought to be constant among arcs. Recent studies revealed that the depth of intermediate-depth earthquakes underneath volcanic arcs, presumably marking the slab-wedge interface, varies systematically between approximately 60 and 173 km and correlates with slab dip and convergence rate. Water-rich magmas (over 4-6 wt% H(2)O) are found in subduction zones with very different subduction parameters, including those with a shallow-dipping slab (north Japan), or steeply dipping slab (Marianas). Here we propose a simple model to address how kinematic parameters of plate subduction relate to the location of mantle melting at subduction zones. We demonstrate that the location of arc volcanoes is controlled by a combination of conditions: melting in the wedge is induced at the overlap of regions in the wedge that are hotter than the melting curve (solidus) of vapour-saturated peridotite and regions where hydrous minerals both in the wedge and in the subducting slab break down. These two limits for melt generation, when combined with the kinematic parameters of slab dip and convergence rate, provide independent constraints on the thermal structure of the wedge and accurately predict the location of mantle wedge melting and the position of arc volcanoes.

  19. Bayesian statistics applied to the location of the source of explosions at Stromboli Volcano, Italy

    USGS Publications Warehouse

    Saccorotti, G.; Chouet, B.; Martini, M.; Scarpa, R.

    1998-01-01

    We present a method for determining the location and spatial extent of the source of explosions at Stromboli Volcano, Italy, based on a Bayesian inversion of the slowness vector derived from frequency-slowness analyses of array data. The method searches for source locations that minimize the error between the expected and observed slowness vectors. For a given set of model parameters, the conditional probability density function of slowness vectors is approximated by a Gaussian distribution of expected errors. The method is tested with synthetics using a five-layer velocity model derived for the north flank of Stromboli and a smoothed velocity model derived from a power-law approximation of the layered structure. Application to data from Stromboli allows for a detailed examination of uncertainties in source location due to experimental errors and incomplete knowledge of the Earth model. Although the solutions are not constrained in the radial direction, excellent resolution is achieved in both transverse and depth directions. Under the assumption that the horizontal extent of the source does not exceed the crater dimension, the 90% confidence region in the estimate of the explosive source location corresponds to a small volume extending from a depth of about 100 m to a maximum depth of about 300 m beneath the active vents, with a maximum likelihood source region located in the 120- to 180-m-depth interval.

  20. Reconstructing Final H2O Contents of Hydrated Rhyolitic Glasses: Insights into H2O Degassing and Eruptive Style of Silicic Submarine Volcanoes

    NASA Astrophysics Data System (ADS)

    McIntosh, I. M.; Nichols, A. R.; Tani, K.; Llewellin, E. W.

    2015-12-01

    H2O degassing influences the evolution of magma viscosity and vesicularity during ascent through the crust, and ultimately the eruptive style. Investigating H2O degassing requires data on both initial and final H2O contents. Initial H2O contents are revealed by melt inclusion data, while final H2O contents are found from dissolved H2O contents of volcanic glass. However volcanic glasses, particularly of silicic composition, are susceptible to secondary hydration i.e. the addition of H2O from the surrounding environment at ambient temperature during the time following pyroclast deposition. Obtaining meaningful final H2O data therefore requires distinguishing between the original final dissolved H2O content and the H2O added subsequently during hydration. Since H2O added during hydration is added as molecular H2O (H2Om), and the species interconversion between H2Om and hydroxyl (OH) species is negligible at ambient temperature, the final OH content of the glass remains unaltered during hydration. By using H2O speciation models to find the original H2Om content that would correspond to the measured OH content of the glass, the original total H2O (H2Ot) content of the glass prior to hydration can be reconstructed. These H2O speciation data are obtained using FTIR spectroscopy. In many cases, particularly where vesicular glasses necessitate thin wafers, OH cannot be measured directly and instead is calculated indirectly as OH = H2Ot - H2Om. Here we demonstrate the importance of using a speciation-dependent H2Ot molar absorptivity coefficient to obtain accurate H2Ot and H2O speciation data and outline a methodology for calculating such a coefficient for rhyolite glasses, with application to hydrated silicic pumice from submarine volcanoes in the Japanese Izu-Bonin Arc. Although hydrated pumice from Kurose Nishi and Oomurodashi now contain ~1.0 - 2.5 wt% H2Ot, their pre-hydration final H2O contents were typically ~0.3 - 0.4 wt% H2Ot. Furthermore, we show that pre

  1. Volcanic evolution of the submarine super volcano, Tamu Massif of Shatsky Rise: New insights from Formation MicroScanner logging imagery

    NASA Astrophysics Data System (ADS)

    Tominaga, Masako; Iturrino, Gerardo; Evans, Helen F.

    2015-01-01

    Massif, the southernmost plateau of Shatsky Rise, is recently reported as the largest single volcano known on Earth. This work seeks to understand the type of volcanism necessary to form such an anomalously large single volcano by integrating core and high-resolution wireline logging data. In particular, resistivity imagery obtained by the Formation MicroScanner, in Integrated Ocean Drilling Program Hole U1347A, located on the eastern flank of Tamu Massif, was used to construct a logging-based volcanostratigraphy. This model revealed two different volcanic stages formed Tamu Massif: (i) the core part of the massif's basaltic basement was formed by a "construction phase" of volcanism with cyclic eruption events from a steady state magma supply and (ii) the very topmost basaltic section was formed by a "depositional phase" of volcanism during which long-traveling lava flows were deposited from a distant eruption center.

  2. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: Earthquake locations and source parameters

    USGS Publications Warehouse

    Ruppert, N.A.; Prejean, S.; Hansen, R.A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field. Copyright ?? 2011 by the American Geophysical Union.

  3. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: earthquake locations and source parameters

    USGS Publications Warehouse

    Ruppert, Natalia G.; Prejean, Stephanie G.; Hansen, Roger A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field.

  4. Location of long-period events below Kilauea Volcano using seismic amplitudes and accurate relative relocation

    USGS Publications Warehouse

    Battaglia, J.; Got, J.-L.; Okubo, P.

    2003-01-01

    We present methods for improving the location of long-period (LP) events, deep and shallow, recorded below Kilauea Volcano by the permanent seismic network. LP events might be of particular interest to understanding eruptive processes as their source mechanism is assumed to directly involve fluid transport. However, it is usually difficult or impossible to locate their source using traditional arrival time methods because of emergent wave arrivals. At Kilauea, similar LP waveform signatures suggest the existence of LP multiplets. The waveform similarity suggests spatially close sources, while catalog solutions using arrival time estimates are widely scattered beneath Kilauea's summit caldera. In order to improve estimates of absolute LP location, we use the distribution of seismic amplitudes corrected for station site effects. The decay of the amplitude as a function of hypocentral distance is used for inferring LP location. In a second stage, we use the similarity of the events to calculate their relative positions. The analysis of the entire LP seismicity recorded between January 1997 and December 1999 suggests that a very large part of the LP event population, both deep and shallow, is generated by a small number of compact sources. Deep events are systematically composed of a weak high-frequency onset followed by a low-frequency wave train. Aligning the low-frequency wave trains does not lead to aligning the onsets indicating the two parts of the signal are dissociated. This observation favors an interpretation in terms of triggering and resonance of a magmatic conduit. Instead of defining fault planes, the precise relocation of similar LP events, based on the alignment of the high-energy low-frequency wave trains, defines limited size volumes. Copyright 2003 by the American Geophysical Union.

  5. Rock magnetic and petrographical-mineralogical studies of the dredged rocks from the submarine volcanoes of the Sea-of-Okhotsk slope within the northern part of the Kuril Island Arc

    NASA Astrophysics Data System (ADS)

    Rashidov, V. A.; Pilipenko, O. V.; Petrova, V. V.

    2016-07-01

    The rock magnetic properties of the samples of dredged rocks composing the submarine volcanic edifices within the Sea-of-Okhotsk slope of the northern part of the Kuril Island Arc are studied. The measurements of the standard rock magnetic parameters, thermomagnetic analysis, petrographical studies, and microprobe investigations have been carried out. The magnetization of the studied rocks is mainly carried by the pseudo-single domain and multidomain titanomagnetite and low-Ti titanomagnetite grains. The high values of the natural remanent magnetization are due to the pseudo-single-domain structure of the titanomagnetite grains, whereas the high values of magnetic susceptibility are associated with the high concentration of ferrimagnetic grains. The highest Curie points are observed in the titanomagnetite grains of the igneous rocks composing the edifices of the Smirnov, Edelshtein, and 1.4 submarine volcanoes.

  6. Active Submarine Volcanoes and Electro-Optical Sensor Networks: The Potential of Capturing and Quantifying an Entire Eruptive Sequence at Axial Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Delaney, J. R.; Kelley, D. S.; Proskurowski, G.; Fundis, A. T.; Kawka, O.

    2011-12-01

    The NE Pacific Regional Scale Nodes (RSN) component of the NSF Ocean Observatories Initiative is designed to provide unprecedented electrical power and bandwidth to the base and summit of Axial Seamount. The scientific community is engaged in identifying a host of existing and innovative observation and measurement techniques that utilize the high-power and bandwidth infrastructure and its real-time transmission capabilities. The cable, mooring, and sensor arrays will enable the first quantitative documentation of myriad processes leading up to, during, and following a submarine volcanic event. Currently planned RSN instrument arrays will provide important and concurrent spatial and temporal constraints on earthquake activity, melt migration, hydrothermal venting behavior and chemistry, ambient currents, microbial community structure, high-definition (HD) still images and HD video streaming from the vents, and water-column chemistry in the overlying ocean. Anticipated, but not yet funded, additions will include AUVs and gliders that continually document the spatial-temporal variations in the water column above the volcano and the distal zones. When an eruption appears imminent the frequency of sampling will be increased remotely, and the potential of repurposing the tracking capabilities of the mobile sensing platforms will be adapted to the spatial indicators of likely eruption activity. As the eruption begins mobile platforms will fully define the geometry, temperature, and chemical-microbial character of the volcanic plume as it rises into the thoroughly documented control volume above the volcano. Via the Internet the scientific community will be able to witness and direct adaptive sampling in response to changing conditions of plume formation. A major goal will be to document the eruptive volume and link the eruption duration to the volume of erupted magma. For the first time, it will be possible to begin to quantify the time-integrated output of an underwater

  7. Long Period (LP) volcanic earthquake source location at Merapi volcano by using dense array technics

    NASA Astrophysics Data System (ADS)

    Metaxian, Jean Philippe; Budi Santoso, Agus; Laurin, Antoine; Subandriyo, Subandriyo; Widyoyudo, Wiku; Arshab, Ghofar

    2015-04-01

    Since 2010, Merapi shows unusual activity compared to last decades. Powerful phreatic explosions are observed; some of them are preceded by LP signals. In the literature, LP seismicity is thought to be originated within the fluid, and therefore to be representative of the pressurization state of the volcano plumbing system. Another model suggests that LP events are caused by slow, quasi-brittle, low stress-drop failure driven by transient upper-edifice deformations. Knowledge of the spatial distribution of LP events is fundamental for better understanding the physical processes occurring in the conduit, as well as for the monitoring and the improvement of eruption forecasting. LP events recorded at Merapi have a spectral content dominated by frequencies between 0.8 and 3 Hz. To locate the source of these events, we installed a seismic antenna composed of 4 broadband CMG-6TD Güralp stations. This network has an aperture of 300 m. It is located on the site of Pasarbubar, between 500 and 800 m from the crater rim. Two multi-parameter stations (seismic, tiltmeter, S-P) located in the same area, equipped with broadband CMG-40T Güralp sensors may also be used to complete the data of the antenna. The source of LP events is located by using different approaches. In the first one, we used a method based on the measurement of the time delays between the early beginnings of LP events for each array receiver. The observed differences of time delays obtained for each pair of receivers are compared to theoretical values calculated from the travel times computed between grid nodes, which are positioned in the structure, and each receiver. In a second approach, we estimate the slowness vector by using MUSIC algorithm applied to 3-components data. From the slowness vector, we deduce the back-azimuth and the incident angle, which give an estimation of LP source depth in the conduit. This work is part of the Domerapi project funded by French Agence Nationale de la Recherche (https

  8. Products of Submarine Fountains and Bubble-burst Eruptive Activity at 1200 m on West Mata Volcano, Lau Basin

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Rubin, K. H.; Keller, N. S.

    2009-12-01

    An eruption was observed and sampled at West Mata Volcano using ROV JASON II for 5 days in May 2009 during the NSF-NOAA eruption response cruise to this region of suspected volcanic activity. Activity was focused near the summit at the Prometheus and Hades vents. Prometheus erupted almost exclusively as low-level fountains. Activity at Hades cycled between vigorous degassing, low fountains, and bubble-bursts, building up and partially collapsing a small spatter/scoria cone and feeding short sheet-like and pillow flows. Fire fountains at Prometheus produced mostly small primary pyroclasts that include Pele's hair and fluidal fragments of highly vesicular volcanic glass. These fragments have mostly shattered and broken surfaces, although smooth spatter-like surfaces also occur. As activity wanes, glow in the vent fades, and denser, sometimes altered volcanic clasts are incorporated into the eruption. The latter are likely from the conduit walls and/or vent-rim ejecta, drawn back into the vent by inrushing seawater that replaces water entrained in the rising volcanic plume. Repeated recycling of previously erupted materials eventually produces rounded clasts resembling beach cobbles and pitted surfaces on broken phenocrysts of pyroxene and olivine. We estimate that roughly 33% of near vent ejecta are recycled. Our best sample of this ejecta type was deposited in the drawer of the JASON II ROV during a particularly large explosion that occurred during plume sampling immediately above the vent. Elemental sulfur spherules up to 5 mm in diameter are common in ejecta from both vents and occur inside some of the lava fragments Hades activity included dramatic bubble-bursts unlike anything previously observed under water. The lava bubbles, sometimes occurring in rapid-fire sequence, collapsed in the water-column, producing fragments that are quenched in less than a second to form Pele's hair, limu o Pele, spatter-like lava blobs, and scoria. All are highly vesicular

  9. Seismic precursors of vulcanian explosions at Ubinas volcano (Peru) : Statistical analysis and source locations

    NASA Astrophysics Data System (ADS)

    Métaxian, J.-P.; Macedo, O.; Lengline, O.; Monteiller, V.; Taipe, E.

    2009-04-01

    Ubinas stratovolcano (5672 m), located 60 km east from Arequipa city is historically the most active volcano in Peru. The present eruption began on March 25th 2006. A lava plug has been observed at the bottom of the pit crater situated in the south part of the caldeira. The eruptive activity involves very brought closer exhalations rising a few hundred meters above the crater rim to larger plumes produced by explosions that may reach up to 3 kilometers. The seismic activity is characterized by high rates of long-period (LP) event production accompanying eruptive activity and very long period (VLP) events observed at the same time as vulcanian explosions. The LP and VLP events have a spectral content respectively dominated by frequencies between 2-5 Hz and 0.3-0.9 Hz. The vulcanian explosive activity is characterized by the occurrence of LP swarm preceding most of the VLPs by about 2 hours. In some occasions, the LP swarm merges into tremor about half an hour before the explosion. LPs belonging to the same swarm have similar waveform suggesting a unique source area, which could be the conduit and/or the lava plug surface. The monitoring system includes 4 seismic stations, among which one is equipped with a broadband sensor and 2 tiltmeters. In this work we analyzed a catalogue of data including more than 40000 LP events and 130 VLP events recorded between May 2006 and December 2008. The evolution of the average number of LP events preceding explosions was computed. The variation of the LP rate is clearly diverging from the background rate ~ 0.1 days before explosions. In particular, the most energetic explosions are correlated with the biggest increases of seismicity. However this general behavior is not observed for every single explosion. A direct test is now under study in order to check if the earthquake rate can be used as an alert tool for future explosions. To locate the source of LP events belonging to the swarms, we used a method based on the measurement of

  10. Vertical Motions of Oceanic Volcanoes

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Moore, J. G.

    2006-12-01

    Oceanic volcanoes offer abundant evidence of changes in their elevations through time. Their large-scale motions begin with a period of rapid subsidence lasting hundreds of thousands of years caused by isostatic compensation of the added mass of the volcano on the ocean lithosphere. The response is within thousands of years and lasts as long as the active volcano keeps adding mass on the ocean floor. Downward flexure caused by volcanic loading creates troughs around the growing volcanoes that eventually fill with sediment. Seismic surveys show that the overall depression of the old ocean floor beneath Hawaiian volcanoes such as Mauna Loa is about 10 km. This gross subsidence means that the drowned shorelines only record a small part of the total subsidence the islands experienced. In Hawaii, this history is recorded by long-term tide-gauge data, the depth in drill holes of subaerial lava flows and soil horizons, former shorelines presently located below sea level. Offshore Hawaii, a series of at least 7 drowned reefs and terraces record subsidence of about 1325 m during the last half million years. Older sequences of drowned reefs and terraces define the early rapid phase of subsidence of Maui, Molokai, Lanai, Oahu, Kauai, and Niihau. Volcanic islands, such as Maui, tip down toward the next younger volcano as it begins rapid growth and subsidence. Such tipping results in drowned reefs on Haleakala as deep as 2400 m where they are tipped towards Hawaii. Flat-topped volcanoes on submarine rift zones also record this tipping towards the next younger volcano. This early rapid subsidence phase is followed by a period of slow subsidence lasting for millions of years caused by thermal contraction of the aging ocean lithosphere beneath the volcano. The well-known evolution along the Hawaiian chain from high to low volcanic island, to coral island, and to guyot is due to this process. This history of rapid and then slow subsidence is interrupted by a period of minor uplift

  11. Locations and focal mechanisms of deep long period events beneath Aleutian Arc volcanoes using back projection methods

    NASA Astrophysics Data System (ADS)

    Lough, A. C.; Roman, D. C.; Haney, M. M.

    2015-12-01

    Deep long period (DLP) earthquakes are commonly observed in volcanic settings such as the Aleutian Arc in Alaska. DLPs are poorly understood but are thought to be associated with movements of fluids, such as magma or hydrothermal fluids, deep in the volcanic plumbing system. These events have been recognized for several decades but few studies have gone beyond their identification and location. All long period events are more difficult to identify and locate than volcano-tectonic (VT) earthquakes because traditional detection schemes focus on high frequency (short period) energy. In addition, DLPs present analytical challenges because they tend to be emergent and so it is difficult to accurately pick the onset of arriving body waves. We now expect to find DLPs at most volcanic centers, the challenge lies in identification and location. We aim to reduce the element of human error in location by applying back projection to better constrain the depth and horizontal position of these events. Power et al. (2004) provided the first compilation of DLP activity in the Aleutian Arc. This study focuses on the reanalysis of 162 cataloged DLPs beneath 11 volcanoes in the Aleutian arc (we expect to ultimately identify and reanalyze more DLPs). We are currently adapting the approach of Haney (2014) for volcanic tremor to use back projection over a 4D grid to determine position and origin time of DLPs. This method holds great potential in that it will allow automated, high-accuracy picking of arrival times and could reduce the number of arrival time picks necessary for traditional location schemes to well constrain event origins. Back projection can also calculate a relative focal mechanism (difficult with traditional methods due to the emergent nature of DLPs) allowing the first in depth analysis of source properties. Our event catalog (spanning over 25 years and volcanoes) is one of the longest and largest and enables us to investigate spatial and temporal variation in DLPs.

  12. Identifying elements of the plumbing system beneath Kilauea Volcano, Hawaii, from the source locations of very-long-period signals

    USGS Publications Warehouse

    Almendros, J.; Chouet, B.; Dawson, P.; Bond, T.

    2002-01-01

    We analyzed 16 seismic events recorded by the Hawaiian broad-band seismic network at Kilauca Volcano during the period September 9-26, 1999. Two distinct types of event are identified based on their spectral content, very-long-period (VLP) waveform, amplitude decay pattern and particle motion. We locate the VLP signals with a method based on analyses of semblance and particle motion. Different source regions are identified for the two event types. One source region is located at depths of ~1 km beneath the northeast edge of the Halemaumau pit crater. A second region is located at depths of ~8 km below the northwest quadrant of Kilauea caldera. Our study represents the first time that such deep sources have been identified in VLP data at Kilauea. This discovery opens the possibility of obtaining a detailed image of the location and geometry of the magma plumbing system beneath this volcano based on source locations and moment tensor inversions of VLP signals recorded by a permanent, large-aperture broad-band network.

  13. Application of near real-time radial semblance to locate the shallow magmatic conduit at Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Dawson, P.; Whilldin, D.; Chouet, B.

    2004-01-01

    Radial Semblance is applied to broadband seismic network data to provide source locations of Very-Long-Period (VLP) seismic energy in near real time. With an efficient algorithm and adequate network coverage, accurate source locations of VLP energy are derived to quickly locate the shallow magmatic conduit system at Kilauea Volcano, Hawaii. During a restart in magma flow following a brief pause in the current eruption, the shallow magmatic conduit is pressurized, resulting in elastic radiation from various parts of the conduit system. A steeply dipping distribution of VLP hypocenters outlines a region extending from sea level to about 550 m elevation below and just east of the Halemaumau Pit Crater. The distinct hypocenters suggest the shallow plumbing system beneath Halemaumau consists of a complex plexus of sills and dikes. An unconstrained location for a section of the conduit is also observed beneath the region between Kilauea Caldera and Kilauea Iki Crater.

  14. Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Orr, Tim R.

    2008-01-01

    Lava from Kilauea volcano flowing through a forest in the Royal Gardens subdivision, Hawai'i, in February 2008. The Hawaiian Volcano Observatory (HVO) monitors the volcanoes of Hawai'i and is located within Hawaiian Volcanoes National Park. HVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Kilauea and HVO at http://hvo.wr.usgs.gov.

  15. Abundances of platinum group elements in native sulfur condensates from the Niuatahi-Motutahi submarine volcano, Tonga rear arc: Implications for PGE mineralization in porphyry deposits

    NASA Astrophysics Data System (ADS)

    Park, Jung-Woo; Campbell, Ian H.; Kim, Jonguk

    2016-02-01

    Some porphyry Cu-Au deposits, which are enriched in Pd, are potentially an economic source of Pd. Magmatic volatile phases are thought to transport the platinum group elements (PGEs) from the porphyry source magma to the point of deposition. However, the compatibilities of the PGEs in magmatic volatile phases are poorly constrained. We report PGE and Re contents in native sulfur condensates and associated altered dacites from the Niuatahi-Motutahi submarine volcano, Tonga rear arc, in order to determine the compatibility of PGEs and Re in magmatic volatile phases, and their mobility during secondary hydrothermal alteration. The native sulfur we analyzed is the condensate of a magmatic volatile phase exsolved from the Niuatahi-Motutahi magma. The PGEs are moderately enriched in the sulfur condensates in comparison to the associated fresh dacite, with enrichment factors of 11-285, whereas Au, Cu and Re are strongly enriched with enrichment factors of ∼20,000, ∼5000 and ∼800 respectively. Although the PGEs are moderately compatible into magmatic volatile phases, their compatibility is significantly lower than that of Au, Cu and Re. Furthermore, the compatibility of PGEs decrease in the order: Ru > Pt > Ir > Pd. This trend is also observed in condensates and sublimates from other localities. PGE mineralization in porphyry Cu-Au deposits is characterized by substantially higher Pd/Pt (∼7-60) and Pd/Ir (∼100-10,500) than typical orthomagmatic sulfide deposits (e.g. Pd/Pt ∼0.6 and Pd/Ir ∼20 for the Bushveld). It has previously been suggested that the high mobility of Pd, relative to the other PGEs, may account for the preferential enrichment of Pd in porphyry Cu-Au deposits. However, the low compatibility of Pd in the volatile phase relative to the other PGEs, shown in this study, invalidates this explanation. We suggest that the PGE geochemistry of Pd-rich Cu-Au deposits is principally derived from the PGE characteristics of the magma from which the ore

  16. Trace element distribution, with a focus on gold, in copper-rich and zinc-rich sulfide chimneys from Brothers submarine volcano, Kermadec arc

    NASA Astrophysics Data System (ADS)

    Berkenbosch, H. A.; de Ronde, C. E.; McNeill, A.; Goemann, K.; Gemmell, J. B.

    2012-12-01

    Brothers volcano is a dacitic volcano located along the Kermadec arc, New Zealand, and hosts the NW Caldera hydrothermal vent field perched on part of the steep caldera walls. The field strikes for ~600 m between depths of 1550 and 1700 m and includes numerous, active, high-temperature (max 302°C) chimneys and even more dead, sulfide-rich spires. Chimney samples collected from Brothers show distinct mineralogical zonation reflecting gradients in oxidation state, temperature, and pH from the inner walls in contact with hydrothermal fluids through to the outer walls in contact with seawater. Minerals deposited from hotter fluids (e.g., chalcopyrite) are located in the interior of the chimneys and are surrounded by an external zone of minerals deposited by cooler fluids (e.g., sulfates, sphalerite). Four chimneys types are identified at Brothers volcano based on the relative proportions of chalcopyrite and sulfate layers, and the presence or absence of anhydrite. Two are Cu-rich, i.e., chalcopyrite-rich and chalcopyrite-bornite-rich chimneys, and two are Zn-rich, i.e., sphalerite-rich and sphalerite-chalcopyrite-rich. Barite and anhydrite are common to both Cu-rich chimney types whereas Zn-rich chimneys contain barite only. The main mineral phases in all the chimneys are anhydrite, barite, chalcopyrite, pyrite/marcasite, and sphalerite. Trace minerals include galena, covellite, tennantite, realgar, chalcocite, bornite, hematite, goethite, Pb-As sulfosalts, and Bi- or Au-tellurides. The vast majority of tellurides are <5 μm in size and they commonly form in bands, cluster in patches, or occur along internal grain boundaries within chalcopyrite. In sulfate layers adjacent to the chalcopyrite zones tellurides can occur as inclusions in anhydrite, barite or pyrite and/or occupy void space within the chimney. The occurrence of specular hematite and Bi- or Au-tellurides associated with chalcopyrite are consistent with magmatic contributions to the NW Caldera vent site

  17. Geology and petrology of Mahukona Volcano, Hawaii

    USGS Publications Warehouse

    Clague, D.A.; Moore, J.G.

    1991-01-01

    The submarine Mahukona Volcano, west of the island of Hawaii, is located on the Loa loci line between Kahoolawe and Hualalai Volcanoes. The west rift zone ridge of the volcano extends across a drowned coral reef at about-1150 m and a major slope break at about-1340 m, both of which represent former shoreines. The summit of the volcano apparently reached to about 250 m above sea level (now at-1100 m depth) did was surmounted by a roughly circular caldera. A econd rift zone probably extended toward the east or sutheast, but is completely covered by younger lavas from the adjacent subaerial volcanoes. Samples were vecovered from nine dredges and four submersible lives. Using subsidence rates and the compositions of flows which drape the dated shoreline terraces, we infer that the voluminous phase of tholeiitic shield growth ended about 470 ka, but tholeiitic eruptions continued until at least 435 ka. Basalt, transitional between tholeiitic and alkalic basalt, erupted at the end of tholeiitic volcanism, but no postshield-alkalic stage volcanism occurred. The summit of the volcano apparently subcided below sea level between 435 and 365 ka. The tholeiitic lavas recovered are compositionally diverse. ?? 1991 Springer-Verlag.

  18. Volcanic Risk Perception in Five Communities Located near the Chichón Volcano, Northern Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    Rodriguez, F.; Novelo-Casanova, D. A.

    2010-12-01

    The Chichón volcano (17° 19’ N and 93° 15’ W) is located in the state of Chiapas, Mexico. This volcano is classified by UNESCO as one of the ten most dangerous volcanos in the world. The eruptions of March and April in 1982 affected at least 51 communities located in the surroundings of the volcano and caused the death of about 2000 people. In this work we evaluate the risk perception in five communities highly populated: Juárez, Ostuacán, Pichucalco, Reforma and Sunuapa. We selected these communities because they have a high possibility to be affected by a volcanic eruption in the future. Our survey was carried out during February and March 2006. A total of 222 families were interviewed using a questionnaire to measure risk perception. These questionnaires retrieved general information as how long people had been living there and their reasons to do so; their experiences during the 1982 events, their opinion about the authorities participation and their perception of volcanic risk; the plans of the community for disaster prevention and mitigation. Some of the most important results are: (1). People perceive a very low volcanic risk and the 70% of interviewees believe that a new eruption in the future is almost improbable because it happened in 1982. This result is particularly interesting because, according to the state government, more than 100,000 inhabitants will be directly affected in case of a new similar eruption; (2). About 95% of the population do not know the current activity of the volcano and consider that the authorities do not inform properly to their communities; (3). The response of the authorities during the events of 1982 was ranked as deficient mainly because they were unable provide shelters, storage facilities, food as well as medicine and health care access; (4). Approximately 60% of the community will accept to be re-located again in case of a new eruption; (5). About 70% of the population will not accept to be re-located because

  19. Submarine landslides

    USGS Publications Warehouse

    Hampton, M.A.; Lee, H.J.; Locat, J.

    1996-01-01

    Landslides are common on inclined areas of the seafloor, particularly in environments where weak geologic materials such as rapidly deposited, finegrained sediment or fractured rock are subjected to strong environmental stresses such as earthquakes, large storm waves, and high internal pore pressures. Submarine landslides can involve huge amounts of material and can move great distances: slide volumes as large as 20,000 km3 and runout distances in excess of 140 km have been reported. They occur at locations where the downslope component of stress exceeds the resisting stress, causing movement along one or several concave to planar rupture surfaces. Some recent slides that originated nearshore and retrogressed back across the shoreline were conspicuous by their direct impact on human life and activities. Most known slides, however, occurred far from land in prehistoric time and were discovered by noting distinct to subtle characteristics, such as headwall scarps and displaced sediment or rock masses, on acoustic-reflection profiles and side-scan sonar images. Submarine landslides can be analyzed using the same mechanics principles as are used for occurrences on land. However, some loading mechanisms are unique, for example, storm waves, and some, such as earthquakes, can have greater impact. The potential for limited-deformation landslides to transform into sediment flows that can travel exceedingly long distances is related to the density of the slope-forming material and the amount of shear strength that is lost when the slope fails.

  20. Determining the seismic source mechanism and location for an explosive eruption with limited observational data: Augustine Volcano, Alaska

    USGS Publications Warehouse

    Dawson, P.B.; Chouet, B.A.; Power, J.

    2011-01-01

    Waveform inversions of the very-long-period components of the seismic wavefield produced by an explosive eruption that occurred on 11 January, 2006 at Augustine Volcano, Alaska constrain the seismic source location to near sea level beneath the summit of the volcano. The calculated moment tensors indicate the presence of a volumetric source mechanism. Systematic reconstruction of the source mechanism shows the source consists of a sill intersected by either a sub-vertical east-west trending dike or a sub-vertical pipe and a weak single force. The trend of the dike may be controlled by the east-west trending Augustine-Seldovia arch. The data from the network of broadband sensors is limited to fourteen seismic traces, and synthetic modeling confirms the ability of the network to recover the source mechanism. The synthetic modeling also provides a guide to the expected capability of a broadband network to resolve very-long-period source mechanisms, particularly when confronted with limited observational data. Copyright 2011 by the American Geophysical Union.

  1. Determining the seismic source mechanism and location for an explosive eruption with limited observational data: Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Dawson, Phillip B.; Chouet, Bernard A.; Power, John

    2011-02-01

    Waveform inversions of the very-long-period components of the seismic wavefield produced by an explosive eruption that occurred on 11 January, 2006 at Augustine Volcano, Alaska constrain the seismic source location to near sea level beneath the summit of the volcano. The calculated moment tensors indicate the presence of a volumetric source mechanism. Systematic reconstruction of the source mechanism shows the source consists of a sill intersected by either a sub-vertical east-west trending dike or a sub-vertical pipe and a weak single force. The trend of the dike may be controlled by the east-west trending Augustine-Seldovia arch. The data from the network of broadband sensors is limited to fourteen seismic traces, and synthetic modeling confirms the ability of the network to recover the source mechanism. The synthetic modeling also provides a guide to the expected capability of a broadband network to resolve very-long-period source mechanisms, particularly when confronted with limited observational data.

  2. Microbial communities in sunken wood are structured by wood-boring bivalves and location in a submarine canyon.

    PubMed

    Fagervold, Sonja K; Romano, Chiara; Kalenitchenko, Dimitri; Borowski, Christian; Nunes-Jorge, Amandine; Martin, Daniel; Galand, Pierre E

    2014-01-01

    The cornerstones of sunken wood ecosystems are microorganisms involved in cellulose degradation. These can either be free-living microorganisms in the wood matrix or symbiotic bacteria associated with wood-boring bivalves such as emblematic species of Xylophaga, the most common deep-sea woodborer. Here we use experimentally submerged pine wood, placed in and outside the Mediterranean submarine Blanes Canyon, to compare the microbial communities on the wood, in fecal pellets of Xylophaga spp. and associated with the gills of these animals. Analyses based on tag pyrosequencing of the 16S rRNA bacterial gene showed that sunken wood contained three distinct microbial communities. Wood and pellet communities were different from each other suggesting that Xylophaga spp. create new microbial niches by excreting fecal pellets into their burrows. In turn, gills of Xylophaga spp. contain potential bacterial symbionts, as illustrated by the presence of sequences closely related to symbiotic bacteria found in other wood eating marine invertebrates. Finally, we found that sunken wood communities inside the canyon were different and more diverse than the ones outside the canyon. This finding extends to the microbial world the view that submarine canyons are sites of diverse marine life.

  3. Microbial Communities in Sunken Wood Are Structured by Wood-Boring Bivalves and Location in a Submarine Canyon

    PubMed Central

    Fagervold, Sonja K.; Romano, Chiara; Kalenitchenko, Dimitri; Borowski, Christian; Nunes-Jorge, Amandine; Martin, Daniel; Galand, Pierre E.

    2014-01-01

    The cornerstones of sunken wood ecosystems are microorganisms involved in cellulose degradation. These can either be free-living microorganisms in the wood matrix or symbiotic bacteria associated with wood-boring bivalves such as emblematic species of Xylophaga, the most common deep-sea woodborer. Here we use experimentally submerged pine wood, placed in and outside the Mediterranean submarine Blanes Canyon, to compare the microbial communities on the wood, in fecal pellets of Xylophaga spp. and associated with the gills of these animals. Analyses based on tag pyrosequencing of the 16S rRNA bacterial gene showed that sunken wood contained three distinct microbial communities. Wood and pellet communities were different from each other suggesting that Xylophaga spp. create new microbial niches by excreting fecal pellets into their burrows. In turn, gills of Xylophaga spp. contain potential bacterial symbionts, as illustrated by the presence of sequences closely related to symbiotic bacteria found in other wood eating marine invertebrates. Finally, we found that sunken wood communities inside the canyon were different and more diverse than the ones outside the canyon. This finding extends to the microbial world the view that submarine canyons are sites of diverse marine life. PMID:24805961

  4. Cutting Costs by Locating High Production Wells: A Test of the Volcano seismic Approach to Finding ''Blind'' Resources

    SciTech Connect

    Eylon Shalev; Peter E. Malin; Wendy McCausland

    2002-06-06

    In the summer of 2000, Duke University and the Kenyan power generation company, KenGen, conducted a microearthquake monitoring experiment at Longonot volcano in Kenya. Longonot is one of several major late Quaternary trachyte volcanoes in the Kenya Rift. They study was aimed at developing seismic methods for locating buried hydrothermal areas in the Rift on the basis of their microearthquake activity and wave propagation effects. A comparison of microearthquake records from 4.5 Hz, 2 Hz, and broadband seismometers revealed strong high-frequency site and wave-propagation effects. The lower frequency seismometers were needed to detect and record individual phases. Two-dozen 3-component 2- Hz L22 seismographs and PASSCAL loggers were then distributed around Longonot. Recordings from this network located one seismically active area on Longonot's southwest flank. The events from this area were emergent, shallow (<3 km), small (M<1), and spatially restricted. Evidently, the hydrothermal system in this area is not currently very extensive or active. To establish the nature of the site effects, the data were analyzed using three spectral techniques that reduce source effects. The data were also compared to a simple forward model. The results show that, in certain frequency ranges, the technique of dividing the horizontal motion by the vertical motion (H/V) to remove the source fails because of non-uniform vertical amplification. Outside these frequencies, the three methods resolve the same, dominant, harmonic frequencies at a given site. In a few cases, the spectra can be fit with forward models containing low velocity surface layers. The analysis suggests that the emergent, low frequency character of the microearthquake signals is due to attenuation and scattering in the near surface ash deposits.

  5. Volcanoes. A planetary perspective.

    NASA Astrophysics Data System (ADS)

    Francis, P.

    In this book, the author gives an account of the familiar violent aspects of volcanoes and the various forms that eruptions can take. He explores why volcanoes exist at all, why volcanoes occur where they do, and how examples of major historical eruptions can be interpreted in terms of physical processes. Throughout he attempts to place volcanism in a planetary perspective, exploring the pre-eminent role of submarine volcanism on Earth and the stunning range of volcanic phenomena revealed by spacecraft exploration of the solar system.

  6. Open-System Magma Reservoir Affects Gas Segregation, Vesiculation, Fragmentation and Lava/Pyroclast Dispersal During the 1.2 km-deep 2007-2010 Submarine Eruption at West Mata Volcano

    NASA Astrophysics Data System (ADS)

    Rubin, K. H.; Clague, D. A.; Embley, R. W.; Hellebrand, E.; Soule, S. A.; Resing, J.

    2014-12-01

    West Mata, a small, active rear-arc volcano in the NE Lau Basin, erupts crystal and gas rich boninite magma. Eruptions were observed at the summit (1.2 km water depth) during 5 ROV Jason dives in 2009 (the deepest erupting submarine volcano observed to date). Subsequent ROV and ship-based bathymetric mapping revealed that a pit crater formed and the summit eruption ceased in 2010, with roughly simultaneous eruptions along the SW rift zone. During the summit eruption, a combination of water depth, H2O-CO2-rich and high crystallinity magma, a split in the conduit to feed two vent sites, and waxing/waning magma supply led to a range of effusive/explosive eruption styles and volcanic deposit types. The 2-3 vent Hades cluster and the lone Prometheus vent had different eruption characteristics. Petrographic, petrologic and geochemical studies of erupted products indicate a change in magma composition in time and space over a period of 3.5 yrs, suggesting a small, open-system magma reservoir within the volcano. Prometheus (1174m depth) produced mostly pyroclastic material during our observations (e.g., highly vesicular glowing fluidal ejecta that cooled in the water column and rounded recycled dense clasts), but sampling and 210Po radiometric dating show that several months prior pillowed lava flows, subsequently covered with cm-sized pyroclasts, had flowed >50m from the vent. In contrast, vents at Hades (1200m depth) cycled between lava production and vigorous degassing, 10-20m high fire fountains and bursts of glowing lava-skinned bubbles, the products of which froze/broke in the water column, forming unstable cones of spatter and scoria near the vents. We hypothesize that bubbles collapse rather than form lava balloons because of skin brittleness (from high crystal content) and hydrostatic pressure. Clast settling times and patterns suggest >100m water column rise height for 10+ cm-sized fragments. Pillow flows were also observed to be issuing from the base of the

  7. An efficient algorithm for double-difference tomography and location in heterogeneous media, with an application to the Kilauea volcano

    USGS Publications Warehouse

    Monteiller, V.; Got, J.-L.; Virieux, J.; Okubo, P.

    2005-01-01

    Improving our understanding of crustal processes requires a better knowledge of the geometry and the position of geological bodies. In this study we have designed a method based upon double-difference relocation and tomography to image, as accurately as possible, a heterogeneous medium containing seismogenic objects. Our approach consisted not only of incorporating double difference in tomography but also partly in revisiting tomographic schemes for choosing accurate and stable numerical strategies, adapted to the use of cross-spectral time delays. We used a finite difference solution to the eikonal equation for travel time computation and a Tarantola-Valette approach for both the classical and double-difference three-dimensional tomographic inversion to find accurate earthquake locations and seismic velocity estimates. We estimated efficiently the square root of the inverse model's covariance matrix in the case of a Gaussian correlation function. It allows the use of correlation length and a priori model variance criteria to determine the optimal solution. Double-difference relocation of similar earthquakes is performed in the optimal velocity model, making absolute and relative locations less biased by the velocity model. Double-difference tomography is achieved by using high-accuracy time delay measurements. These algorithms have been applied to earthquake data recorded in the vicinity of Kilauea and Mauna Loa volcanoes for imaging the volcanic structures. Stable and detailed velocity models are obtained: the regional tomography unambiguously highlights the structure of the island of Hawaii and the double-difference tomography shows a detailed image of the southern Kilauea caldera-upper east rift zone magmatic complex. Copyright 2005 by the American Geophysical Union.

  8. Submarine seismic monitoring of El Hierro volcanic eruption with a 3C-geophone string: applying new acquisition and data processing techniques to volcano monitoring

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Ripepe, Maurizio; Lopez, Carmen; Blanco, Maria Jose; Crespo, Jose

    2015-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2011 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. Right after the eruption onset, in October 2011 a geophone string was deployed by the CSIC-IGN to monitor seismic activity. Monitoring with the seismic array continued till May 2012. The array was installed less than 2 km away from the new vol¬cano, next to La Restinga village shore in the harbor from 6 to 12m deep into the water. Our purpose was to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. Each geophone consists on a 3-component module based on 3 orthogonal independent sensors that measures ground velocity. Some of the geophones were placed directly on the seabed, some were buried. Due to different factors, as the irregular characteristics of the seafloor. The data was recorded on the surface with a seismometer and stored on a laptop computer. We show how acoustic data collected underwater show a great correlation with the seismic data recorded on land. Finally we compare our data analysis results with the observed sea surface activity (ash and lava emission and degassing). This evidence is disclosing new and innovative tecniques on monitoring submarine volcanic activity. Reference Instituto Geográfico Nacional (IGN), "Serie El Hierro." Internet: http://www.ign.es/ign/resources /volcanologia/HIERRO.html [May, 17. 2013

  9. Titan Submarines!

    NASA Astrophysics Data System (ADS)

    Oleson, S. R.; Lorenz, R. D.; Paul, M. V.; Hartwig, J. W.; Walsh, J. M.

    2017-02-01

    A NIAC Phase II submarine concept, dubbed 'Titan Turtle' for Saturn's moon Titan's northern sea, Ligea Mare. A design concept including science and operations is described for this -180°C liquid methane sea.

  10. Relative Slowness Estimates for Locations of Repeating Low-Frequency Earthquakes and Narrow-Band Tremor at Fuego Volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Waite, G. P.; Lyons, J. J.

    2009-12-01

    Fuego volcano, Guatemala, is an open-vent basaltic stratovolcano characterized by nearly constant, but low-level eruptive activity since 1999. In January 2008, we deployed small antennas of six broadband seismic and five acoustic sensors 0.9 km north of the active vent to investigate the source of explosions and low-frequency seismicity. The seismic array had stations spaced 30 m apart and a total aperture of ~140 m. The infrasound sensors were deployed in a similar array, but with average station spacing of 50 m. There was no lava effusion during the deployment, but explosions were recorded approximately once per hour, with varied amounts of ash, and with durations from 20-150 s. In addition to the explosions, our seismic array recorded narrow band tremor with dominant frequencies of 1.6 and 1.9 Hz and discrete events that were not generally detected by the acoustic array. The dominant class of these events, which repeated approximately 10-15 times per hour, had an impulsive onset with first motion toward the vent, a short duration of <5 s, and dominant frequencies from 1-3 Hz. Their similarity suggests a nondestructive source process. While waveforms are similar from event to event when viewed on the same channel, the large variation in waveforms across the array yields a large uncertainty in slowness parameter estimates. We take advantage of the high degree of similarity between events to determine relative slowness estimates. After determining the best-fit slowness parameters for a master event, we measured the relative slowness parameters for 203 similar events. The results indicate a stationary source, although subtle variations in waveforms suggest that the source mechanism or source location varied slightly with time. The low-frequency events were located by computing slowness parameters from synthetic waveforms for a volume of sources beneath the summit region. The source is ~150 m directly beneath the active vent, but not associated with explosions. Full

  11. Syrian Volcano

    NASA Technical Reports Server (NTRS)

    2006-01-01

    23 July 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small volcano in the Syria Planum region of Mars. Today, the lava flows that compose this small volcano are nearly hidden by a mantle of rough-textured, perhaps somewhat cemented, dust. The light-toned streaks that cross the scene were formed by passing dust devils, a common occurrence in Syria.

    Location near: 13.0oS, 102.6oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Autumn

  12. White submarine

    NASA Astrophysics Data System (ADS)

    While not everyone gets to live in a yellow submarine, the scientific community may get to have a decommissioned U.S. Navy nuclear submarine dedicated to it. The Sturgeon class of submarines, which scientists say are the ideal choice for the project, will be coming up for decommissioning in this next decade. So the time is ripe, scientists say. Two weeks ago, oceanographers, submarine specialists, marine biologists, and geophysicists, among others met at AGU headquarters in Washington to discuss how to get the project in the water. If all goes well, the project would be the "biggest thing that ever happened in ocean and Earth science," according to Lloyd Keigwin of the Woods Hole Oceanographic Institution, who convened the meeting. For example, the submarine could make many types of "compelling" research possible that can not be done now by other means, such as studies in the Arctic that may have significant bearing on global change research, Keigwin says. However, the imposing hurdles that the project must overcome are as big as the opportunities it offers. Foremost, there is a question as to who will pick up the tab for such an endeavor.

  13. Contact Lenses on Submarines

    DTIC Science & Technology

    2014-09-26

    NAVAL SUBMARINE MEDICAL RESEARCH LABORATORY SUBMARINE BASE, GROTON, CONN. REPORT NUMBER 1048 CONTACT LENSES ON SUBMARINES... CONTACT LENSES ON SUBMARINES by James F. Socks, CDR, MSC, USN NAVAL SUBMARINE MEDICAL RESEARCH LABORATORY REPORT NUMBER 1048 NAVAL MEDICAL RESEARCH...DRSCHLAB Approved for public release; distribution unlimited SUMMARY PAGE PROBLEM To determine the feasibility of wearing contact lenses aboard

  14. Hawaii's volcanoes revealed

    USGS Publications Warehouse

    Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.

    2003-01-01

    Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while

  15. Seismic Activity at Vailulu'u, Samoa's Youngest Volcano

    NASA Astrophysics Data System (ADS)

    Konter, J.; Staudigel, H.; Hart, S.

    2002-12-01

    Submarine volcanic systems, as a product of the Earth's mantle, play an essential role in the Earth's heat budget and in the interaction between the solid Earth and the hydrosphere and biosphere. Their eruptive and intrusive activity exerts an important control on these hydrothermal systems. In March 2000, we deployed an array of five ocean bottom hydrophones (OBH) on the summit region (625-995 m water depth) of Vailulu'u Volcano (14°12.9'S;169°03.5'W); this volcano represents the active end of the Samoan hotspot chain and is one of only a few well-studied intra-plate submarine volcanoes. We monitored seismic activity for up to 12 months at low sample rate (25 Hz), and for shorter times at a higher sample rate (125 Hz). We have begun to catalogue and locate a variety of acoustic events from this network. Ambient ocean noise was filtered out by a 4th-order Butterworth bandpass filter (2.3 - 10 Hz). We distinguish small local earthquakes from teleseismic activity, mostly identified by T- (acoustic) waves, by comparison with a nearby GSN station (AFI). Most of the detected events are T-phases from teleseismic earthquakes, characterized by their emergent coda and high frequency content (up to 30 Hz); the latter distinguishes them from low frequency emergent signals associated with the volcano (e.g. tremor). A second type of event is characterized by impulsive arrivals, with coda lasting a few seconds. The differences in arrival times between stations on the volcano are too small for these events to be T-waves; they are very likely to be local events, since the GSN station in Western Samoa (AFI) shows no arrivals close in time to these events. Preliminary locations show that these small events occur approximately once per day and are located within the volcano (the 95% confidence ellipse is similar to the size of the volcano, due to the small size of the OBH network). Several events are located relatively close to each other (within a km radius) just NW of the crater.

  16. In Brief: Underwater volcano gets real-time monitoring

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2007-05-01

    A real-time underwater earthquake monitoring system was installed on the top of Kick'em Jenny, an underwater volcano located off the north coast of Grenada, on 6 May. The Real Time Offshore Seismic Station (RTOSS) consists of an ocean-bottom seismometer connected by a stretchy hose to a buoy on the ocean surface. The buoy is powered by solar panels and transmits seismic data by high-frequency radio to an observatory in Sauteurs, Grenada. The RTOSS research team, led by scientists from the Woods Hole Oceanographic Institution, is coordinating with the Grenadian National Disaster Management Agency and the Seismic Unit of the University of the West Indies to incorporate the RTOSS data into existing regional monitoring. Kick'em Jenny, the only `live' submarine volcano in the West Indies, last erupted in 2001.

  17. Andesite Magmas are Produced along Oceanic Arcs where the Crust is Thin: Evidence from Nishinoshima Volcano, Ogasawara Arc, Japan

    NASA Astrophysics Data System (ADS)

    Tamura, Y.; Ishizuka, O.; Sato, T.; Nichols, A. R.

    2015-12-01

    The incentive for this study is the ongoing explosive eruption of Nishinoshima volcano, located about 1,000 km south of Tokyo along the Ogasawara (Bonin) Arc. The straightforward but unexpected relationship presented here relates crustal thickness and magma type in the Izu-Ogasawara Oceanic Arc. Volcanoes along the Ogasawara segment of the arc, which include Nishinoshima, are underlain by thin crust (16-21 km)—in contrast to those along the Izu segment, where the crust is ~35 km thick. Interestingly, andesite magmas are dominant products from the former volcanoes and mostly basaltic lavas erupt from the latter. Why and how do volcanoes on the thin crust erupt andesite magmas? An introductory petrology textbook might answer this question by suggesting that, under decreasing pressure and hydrous conditions, the liquidus field of forsterite expands relative to that of enstatite, with the result that, at some point, enstatite melts incongruently to produce primary andesite melt. According to the hypothesis presented here, however, rising mantle diapirs stall near the base of the oceanic arc crust at depths controlled by the thickness of the overlying crust. Where the crust is thin, as along the Ogasawara segment of the arc, pressures are relatively low, and magmas produced in the mantle wedge tend to be andesitic. Where the crust is thick, as along the Izu segment, pressures are greater, and only basaltic magmas tend to be produced. To examine this hypothesis, JAMSTEC cruise NT15-E02 on the R/V Natsushima took place from 11 June to 21 June 2015 to Nishinoshima. It's present island has an elevation of only ~150 m, but its submarine flanks extend to ocean depths of 2,000-3,000 m, so the great bulk of the volcano is submarine and yet-to-be explored. We present the new hypothesis and its evidence from Nishinoshima based on the primitive lavas collected from the submarine parts of the volcano.

  18. Summit crater lake observations, and the location, chemistry, and pH of water samples near Mount Chiginagak volcano, Alaska: 2004-2012

    USGS Publications Warehouse

    Schaefer, Janet R.; Scott, William E.; Evans, William C.; Wang, Bronwen; McGimsey, Robert G.

    2013-01-01

    Mount Chiginagak is a hydrothermally active volcano on the Alaska Peninsula, approximately 170 km south–southwest of King Salmon, Alaska (fig. 1). This small stratovolcano, approximately 8 km in diameter, has erupted through Tertiary to Permian sedimentary and igneous rocks (Detterman and others, 1987). The highest peak is at an elevation of 2,135 m, and the upper ~1,000 m of the volcano are covered with snow and ice. Holocene activity consists of debris avalanches, lahars, and lava flows. Pleistocene pyroclastic flows and block-and-ash flows, interlayered with andesitic lava flows, dominate the edifice rocks on the northern and western flanks. Historical reports of activity are limited and generally describe “steaming” and “smoking” (Coats, 1950; Powers, 1958). Proximal tephra collected during recent fieldwork suggests there may have been limited Holocene explosive activity that resulted in localized ash fall. A cluster of fumaroles on the north flank, at an elevation of ~1,750 m, commonly referred to as the “north flank fumarole” have been emitting gas throughout historical time (location shown in fig. 2). The only other thermal feature at the volcano is the Mother Goose hot springs located at the base of the edifice on the northwestern flank in upper Volcano Creek, at an elevation of ~160 m (fig. 2, near sites H1, H3, and H4). Sometime between November 2004 and May 2005, a ~400-m-wide, 100-m-deep lake developed in the snow- and ice-filled summit crater of the volcano (Schaefer and others, 2008). In early May 2005, an estimated 3 million cubic meters (3×106 m3) of sulfurous, clay-rich debris and acidic water exited the crater through tunnels at the base of a glacier that breaches the south crater rim. More than 27 km downstream, these acidic flood waters reached approximately 1.3 m above normal water levels and inundated a fertile, salmon-spawning drainage, acidifying the entire water column of Mother Goose Lake from its surface waters to its

  19. Systematic Survey of the Kermadec-Tonga Intra-oceanic arc Between 1999 and 2004: a Significant Source of Diverse Submarine Hydrothermal Emissions

    NASA Astrophysics Data System (ADS)

    de Ronde, C. E.; Massoth, G. J.; Baker, E. T.; Lupton, J. E.; Arculus, R. J.; Wright, I. C.; Stoffers, P.; Ishibashi, J.; Walker, S. L.; Greene, R. R.; Faure, K.; Takai, K.

    2004-12-01

    The 1999 NZAPLUME cruise was the first of several expeditions to systematically locate, and chemically characterise, submarine hydrothermal vents associated with arc volcanoes of the southern part the Kermadec-Tonga intra-oceanic arc system. This was followed by the 2002 NZAPLUME II and 2004 NZAPLUME III cruises to the mid- and northern-sections of the Kermadec arc, respectively, and the 2001 TELVE cruise to the southern part of the Tonga (Tofua) arc. Combined, ˜1,800 km of this arc system have been mapped, including ˜60 major volcanoes and numerous subordinate volcanic edifices, making this the longest continuous stretch of intra-oceanic arc to be surveyed for hydrothermal emissions. Most of the volcanoes are simple cones although ˜25% are caldera volcanoes with their compositions ranging from basalt through rhyo-dacite. Results from the NZAPLUME I and II cruises show 16 of the 26 major volcanoes surveyed are hydrothermally active, while 7 of 19 are active along the Tongan section of the arc, a ˜50% frequency of venting. Depths to venting range from ˜120 m to ˜1,650 m. Chemical analysis of the hydrothermal plumes shows a large range in composition, including different compositions for plumes from vent sites at the same volcano, with indications locally of a magmatic fluid component. An expedition in Oct./Nov. 2004 by the deep-sea submersible Shinkai 6500 will enable vent sites at Brothers and Healy volcanoes to be mapped and mineralization, animals to be sampled.

  20. Joint relative location of earthquakes without a pre-defined velocity model: an example from a peculiar seismic cluster on Katla volcano's south-flank (Iceland)

    NASA Astrophysics Data System (ADS)

    Sgattoni, G.; Gudmundsson, Ó.; Einarsson, P.; Lucchi, F.

    2016-11-01

    Relative location methods are commonly used to precisely locate earthquake clusters consisting of similar waveforms. Repeating waveforms are often recorded at volcanoes, where, however, the crust structure is expected to contain strong heterogeneities and therefore the 1-D velocity model assumption that is made in most location strategies is not likely to describe reality. A peculiar cluster of repeating low-frequency seismic events was recorded on the south flank of Katla volcano (Iceland) from 2011. As the hypocentres are located at the rim of the glacier, the seismicity may be due to volcanic or glacial processes. Information on the size and shape of the cluster may help constraining the source process. The extreme similarity of waveforms points to a very small spatial distribution of hypocentres. In order to extract meaningful information about size and shape of the cluster, we minimize uncertainty by optimizing the cross-correlation measurements and relative-location process. With a synthetic test we determine the best parameters for differential-time measurements and estimate their uncertainties, specifically for each waveform. We design a location strategy to work without a pre-defined velocity model, by formulating and inverting the problem to seek changes in both location and slowness, thus accounting for azimuth, take-off angles and velocity deviations from a 1-D model. We solve the inversion explicitly in order to propagate data errors through the calculation. With this approach we are able to resolve a source volume few tens of metres wide in horizontal directions and around 100 metres in depth. There is no suggestion that the hypocentres lie on a single fault plane and the depth distribution indicates that their source is unlikely to be related to glacial processes as the ice thickness is not expected to exceed few tens of metres in the source area. Our method is designed for a very small source region, allowing us to assume a constant slowness for the

  1. Submarine Volcanic Morphology of Santorini Caldera, Greece

    NASA Astrophysics Data System (ADS)

    Nomikou, P.; Croff Bell, K.; Carey, S.; Bejelou, K.; Parks, M.; Antoniou, V.

    2012-04-01

    Santorini volcanic group form the central part of the modern Aegean volcanic arc, developed within the Hellenic arc and trench system, because of the ongoing subduction of the African plate beneath the European margin throughout Cenozoic. It comprises three distinct volcanic structures occurring along a NE-SW direction: Christianna form the southwestern part of the group, Santorini occupies the middle part and Koloumbo volcanic rift zone extends towards the northeastern part. The geology of the Santorini volcano has been described by a large number of researchers with petrological as well as geochronological data. The offshore area of the Santorini volcanic field has only recently been investigated with emphasis mainly inside the Santorini caldera and the submarine volcano of Kolumbo. In September 2011, cruise NA-014 on the E/V Nautilus carried out new surveys on the submarine volcanism of the study area, investigating the seafloor morphology with high-definition video imaging. Submarine hydrothermal vents were found on the seafloor of the northern basin of the Santorini caldera with no evidence of high temperature fluid discharges or massive sulphide formations, but only low temperature seeps characterized by meter-high mounds of bacteria-rich sediment. This vent field is located in line with the normal fault system of the Kolumbo rift, and also near the margin of a shallow intrusion that occurs within the sediments of the North Basin. Push cores have been collected and they will provide insights for their geochemical characteristics and their relationship to the active vents of the Kolumbo underwater volcano. Similar vent mounds occur in the South Basin, at shallow depths around the islets of Nea and Palaia Kameni. ROV exploration at the northern slopes of Nea Kameni revealed a fascinating underwater landscape of lava flows, lava spines and fractured lava blocks that have been formed as a result of 1707-1711 and 1925-1928 AD eruptions. A hummocky topography at

  2. Large landslides from oceanic volcanoes

    USGS Publications Warehouse

    Holcomb, R.T.; Searle, R.C.

    1991-01-01

    Large landslides are ubiquitous around the submarine flanks of Hawaiian volcanoes, and GLORIA has also revealed large landslides offshore from Tristan da Cunha and El Hierro. On both of the latter islands, steep flanks formerly attributed to tilting or marine erosion have been reinterpreted as landslide headwalls mantled by younger lava flows. These landslides occur in a wide range of settings and probably represent only a small sample from a large population. They may explain the large volumes of archipelagic aprons and the stellate shapes of many oceanic volcanoes. Large landslides and associated tsunamis pose hazards to many islands. -from Authors

  3. Improved tremor and LP event locations using station-corrected waveforms: applications to data recorded with a small aperture array at Fuego volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Waite, G. P.; Lyons, J. J.

    2010-12-01

    short duration of <5 s, and dominant frequencies from 1-3 Hz; their similarity suggests a nondestructive source process. While waveforms are similar from event to event when viewed on the same channel, the large variation in waveforms across the array yields a large uncertainty in slowness parameter estimates. We take advantage of the high degree of similarity between events to determine relative slowness estimates. After determining the best-fit slowness parameters for a master event, we measured the relative slowness parameters for 203 similar events. The results indicate a stationary source, although subtle variations in waveforms suggest that the source mechanism or source location varied slightly with time. In order to extend this to other signals in the same frequency band, we solve for these site affects and then deconvolve them from the LP and tremor data to improve the waveform similarity. Our initial modeling suggests these effects are primarily due to variations in distance from the ridge axis. This method may be applicable to similar volcanoes with complex topography where repetitive LP events and tremor are common, but enigmatic.

  4. Earthquake classification, location, and error analysis in a volcanic environment: implications for the magmatic system of the 1989-1990 eruptions at redoubt volcano, Alaska

    USGS Publications Warehouse

    Lahr, J.C.; Chouet, B.A.; Stephens, C.D.; Power, J.A.; Page, R.A.

    1994-01-01

    Determination of the precise locations of seismic events associated with the 1989-1990 eruptions of Redoubt Volcano posed a number of problems, including poorly known crustal velocities, a sparse station distribution, and an abundance of events with emergent phase onsets. In addition, the high relief of the volcano could not be incorporated into the hypoellipse earthquake location algorithm. This algorithm was modified to allow hypocenters to be located above the elevation of the seismic stations. The velocity model was calibrated on the basis of a posteruptive seismic survey, in which four chemical explosions were recorded by eight stations of the permanent network supplemented with 20 temporary seismographs deployed on and around the volcanic edifice. The model consists of a stack of homogeneous horizontal layers; setting the top of the model at the summit allows events to be located anywhere within the volcanic edifice. Detailed analysis of hypocentral errors shows that the long-period (LP) events constituting the vigorous 23-hour swarm that preceded the initial eruption on December 14 could have originated from a point 1.4 km below the crater floor. A similar analysis of LP events in the swarm preceding the major eruption on January 2 shows they also could have originated from a point, the location of which is shifted 0.8 km northwest and 0.7 km deeper than the source of the initial swarm. We suggest this shift in LP activity reflects a northward jump in the pathway for magmatic gases caused by the sealing of the initial pathway by magma extrusion during the last half of December. Volcano-tectonic (VT) earthquakes did not occur until after the initial 23-hour-long swarm. They began slowly just below the LP source and their rate of occurrence increased after the eruption of 01:52 AST on December 15, when they shifted to depths of 6 to 10 km. After January 2 the VT activity migrated gradually northward; this migration suggests northward propagating withdrawal of

  5. Intra-caldera Events: A Look at the Hydrovolcanic Deposit Stratigraphically Located Between two Caldera-Forming Eruptions of Okmok Volcano, Umnak Island, Alaska

    NASA Astrophysics Data System (ADS)

    Wong, L. J.

    2002-12-01

    Within the 10 km diameter caldera that characterizes Okmok Volcano, a field of post-caldera cones and deposits demonstrate many features associated with water-magma interactions. A unit deposited prior to the formation of the present caldera provides evidence for large explosive hydrovolcanic eruptions in the past as well. This unit is referred to as the Middle Scoria Unit as it is stratigraphically located between the ~9000 BP Okmok I and 2050 BP Okmok II caldera-forming events. Here, we present data on the stratigraphy, geochemistry, and eruptive mechanisms of the Middle Scoria Unit, which averages a thickness of 2.5 meters. The basal layer of the Middle Scoria consists of moderately well sorted, highly inflated juvenile clasts of basaltic composition (53.88 wt.% SiO2) that average 3 to 5 cm in size. Capping the base is a sequence of layers alternating between oxidized reddish lithic fragments and poorly vesicular scoria averaging 1 mm to 3 cm in size. The contacts between the scoria and lithic layers are less discrete in the top section, with a higher proportion of mixing averaging up to 75% for a clast-rich layer. The upper layers of the unit also show reverse grading and contain dense, poorly vesicular scoria fragments and lithic fragments of 2 mm to 1.5 cm in size. The Middle Scoria unit has been found on the neighboring Unalaska Island, approximately 30 km to the East, revealing a wide dispersal. Our results indicate that this eruption began as a highly explosive, purely magmatic and rare basaltic Plinian eruption. With time, the eruptive series evolved to incorporate external water, as demonstrated by the successions of oxidized lithic lapilli and poorly vesicular scoria layers. Our preliminary interpretations of the Middle Scoria indicate that Okmok Volcano may be capable of highly explosive basaltic Plinian and hydrovolcanic eruptions.

  6. Mud Volcanoes - Analogs to Martian Cones and Domes (by the Thousands!)

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Oehler, Dorothy

    2010-01-01

    Mud volcanoes are mounds formed by low temperature slurries of gas, liquid, sediments and rock that erupt to the surface from depths of meters to kilometers. They are common on Earth, with estimates of thousands onshore and tens of thousands offshore. Mud volcanoes occur in basins with rapidly-deposited accumulations of fine-grained sediments. Such settings are ideal for concentration and preservation of organic materials, and mud volcanoes typically occur in sedimentary basins that are rich in organic biosignatures. Domes and cones, cited as possible mud volcanoes by previous authors, are common on the northern plains of Mars. Our analysis of selected regions in southern Acidalia Planitia has revealed over 18,000 such features, and we estimate that more than 40,000 occur across the area. These domes and cones strongly resemble terrestrial mud volcanoes in size, shape, morphology, associated flow structures and geologic setting. Geologic and mineralogic arguments rule out alternative formation mechanisms involving lava, ice and impacts. We are studying terrestrial mud volcanoes from onshore and submarine locations. The largest concentration of onshore features is in Azerbaijan, near the western edge of the Caspian Sea. These features are typically hundreds of meters to several kilometers in diameter, and tens to hundreds of meters in height. Satellite images show spatial densities of 20 to 40 eruptive centers per 1000 square km. Many of the features remain active, and fresh mud flows as long as several kilometers are common. A large field of submarine mud volcanoes is located in the Gulf of Cadiz, off the Atlantic coasts of Morocco and Spain. High-resolution sonar bathymetry reveals numerous km-scale mud volcanoes, hundreds of meters in height. Seismic profiles demonstrate that the mud erupts from depths of several hundred meters. These submarine mud volcanoes are the closest morphologic analogs yet found to the features in Acidalia Planitia. We are also conducting

  7. Mud Volcanoes - Analogs to Martian Cones and Domes (by the thousands !)

    NASA Astrophysics Data System (ADS)

    Allen, C.; Oehler, D.

    2010-12-01

    Mud volcanoes are mounds formed by low temperature slurries of gas, liquid, sediments and rock that erupt to the surface from depths of meters to kilometers. They are common on Earth, with estimates of thousands onshore and tens of thousands offshore. Mud volcanoes occur in basins with rapidly-deposited accumulations of fine-grained sediments. Such settings are ideal for concentration and preservation of organic materials, and mud volcanoes typically occur in sedimentary basins that are rich in organic biosignatures. Domes and cones, cited as possible mud volcanoes by previous authors, are common on the northern plains of Mars. Our analysis of selected regions in southern Acidalia Planitia has revealed over 18,000 such features, and we estimate that more than 40,000 occur across the area. These domes and cones strongly resemble terrestrial mud volcanoes in size, shape, morphology, associated flow structures and geologic setting. Geologic and mineralogic arguments rule out alternative formation mechanisms involving lava, ice and impacts. We are studying terrestrial mud volcanoes from onshore and submarine locations. The largest concentration of onshore features is in Azerbaijan, near the western edge of the Caspian Sea. These features are typically hundreds of meters to several kilometers in diameter, and tens to hundreds of meters in height. Satellite images show spatial densities of 20 to 40 eruptive centers per 1000 km2. Many of the features remain active, and fresh mud flows as long as several kilometers are common. A large field of submarine mud volcanoes is located in the Gulf of Cadiz, off the Atlantic coasts of Morocco and Spain. High-resolution sonar bathymetry reveals numerous km-scale mud volcanoes, hundreds of meters in height. Seismic profiles demonstrate that the mud erupts from depths of several hundred meters. These submarine mud volcanoes are the closest morphologic analogs yet found to the features in Acidalia Planitia. We are also conducting

  8. The preliminary results of new submarine caldera on the west of Kume-jima island, Central Ryukyu Arc, Japan

    NASA Astrophysics Data System (ADS)

    Harigane, Y.; Ishizuka, O.; Shimoda, G.; Sato, T.

    2014-12-01

    The Ryukyu Arc occurs between the islands of Kyushu and Taiwan with approximately 1200 km in the full length. This volcanic arc is caused by subduction of the Philippine Sea plate beneath the Eurasia Plate along the Ryukyu trench, and is composed of forearc islands, chains of arc volcanoes, and a back-arc rift called Okinawa Trough. The Ryukyu Arc is commonly divided into three segments (northern, central and southern) that bounded by the Tokara Strait and the Kerama Gap, respectively (e.g., Konishi 1965; Kato et al., 1982). Sato et al. (2014) mentioned that there is no active subaerial volcano in the southwest of Iotori-shima in the Central Ryukyu Arc whereas the Northern Ryukyu Arc (i.e., the Tokara Islands) has active frontal arc volcanoes. Therefore, the existence of volcanoes and volcanotectonic history of active volcanic front in the southwestern part of the Central Ryukyu Arc are still ambiguous. Detailed geophysical and geological survey was mainly conducted using R/V Kaiyou-maru No.7 during GK12 cruise operated by the Geological Survey of Japan/National Institute of Advanced Industrial Science and Technology, Japan. As a result, we have found a new submarine volcanic caldera on the west of Kume-jima island, where located the southwestern part of Central Ryukyu Arc. Here, we present (1) the bathymetrical feature of this new submarine caldera for the first time and (2) the microstructural and petrological observations of volcanic rocks (20 volcanic samples in 13 dredge sites) sampled from the small volcanic cones of this caldera volcano. The dredged samples from the caldera consist of mainly rhyolite pumice with minor andesites, Mn oxides-crust and hydrothermally altered rocks. Andesite has plagioclase, olivine and pyroxene phenocrysts. Key words: volcanic rock, caldera, arc volcanism, active volcanic front, Kume-jima island, Ryukyu Arc

  9. The diversity of mud volcanoes in the landscape of Azerbaijan

    NASA Astrophysics Data System (ADS)

    Rashidov, Tofig

    2014-05-01

    As the natural phenomenon the mud volcanism (mud volcanoes) of Azerbaijan are known from the ancient times. The historical records describing them are since V century. More detail study of this natural phenomenon had started in the second half of XIX century. The term "mud volcano" (or "mud hill") had been given by academician H.W. Abich (1863), more exactly defining this natural phenomenon. All the previous definitions did not give such clear and capacious explanation of it. In comparison with magmatic volcanoes, globally the mud ones are restricted in distribution; they mainly locate within the Alpine-Himalayan, Pacific and Central Asian mobile belts, in more than 30 countries (Columbia, Trinidad Island, Italy, Romania, Ukraine, Georgia, Azerbaijan, Turkmenistan, Iran, Pakistan, Indonesia, Burma, Malaysia, etc.). Besides it, the zones of mud volcanoes development are corresponded to zones of marine accretionary prisms' development. For example, the South-Caspian depression, Barbados Island, Cascadia (N.America), Costa-Rica, Panama, Japan trench. Onshore it is Indonesia, Japan, and Trinidad, Taiwan. The mud volcanism with non-accretionary conditions includes the areas of Black Sea, Alboran Sea, the Gulf of Mexico (Louisiana coast), Salton Sea. But new investigations reveal more new mud volcanoes and in places which were not considered earlier as the traditional places of mud volcanoes development (e.g. West Nile Rive delta). Azerbaijan is the classic region of mud volcanoes development. From over 800 world mud volcanoes there are about 400 onshore and within the South-Caspian basin, which includes the territory of East Azerbaijan (the regions of Shemakha-Gobustan and Low-Kura River, Absheron peninsula), adjacent water area of South Caspian (Baku and Absheron archipelagoes) and SW Turkmenistan and represents an area of great downwarping with thick (over 25 km) sedimentary series. Generally, in the modern relief the mud volcanoes represent more or less large uplifts

  10. Iceland Volcano

    Atmospheric Science Data Center

    2013-04-23

    article title:  Eyjafjallajökull, Iceland, Volcano Ash Cloud     View larger ... Europe and captured this image of the Eyjafjallajökull Volcano ash cloud as it continued to drift over the continent. Unlike other ...

  11. Nicaraguan Volcanoes

    Atmospheric Science Data Center

    2013-04-18

    article title:  Nicaraguan Volcanoes     View Larger Image Nicaraguan volcanoes, February 26, 2000 . The true-color image at left is a ... February 26, 2000 - Plumes from the San Cristobal and Masaya volcanoes. project:  MISR category:  gallery ...

  12. Reunion Island Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On January 16, 2002, lava that had begun flowing on January 5 from the Piton de la Fournaise volcano on the French island of Reunion abruptly decreased, marking the end of the volcano's most recent eruption. These false color MODIS images of Reunion, located off the southeastern coast of Madagascar in the Indian Ocean, were captured on the last day of the eruption (top) and two days later (bottom). The volcano itself is located on the southeast side of the island and is dark brown compared to the surrounding green vegetation. Beneath clouds (light blue) and smoke, MODIS detected the hot lava pouring down the volcano's flanks into the Indian Ocean. The heat, detected by MODIS at 2.1 um, has been colored red in the January 16 image, and is absent from the lower image, taken two days later on January 18, suggesting the lava had cooled considerably even in that short time. Earthquake activity on the northeast flank continued even after the eruption had stopped, but by January 21 had dropped to a sufficiently low enough level that the 24-hour surveillance by the local observatory was suspended. Reunion is essentially all volcano, with the northwest portion of the island built on the remains of an extinct volcano, and the southeast half built on the basaltic shield of 8,630-foot Piton de la Fournaise. A basaltic shield volcano is one with a broad, gentle slope built by the eruption of fluid basalt lava. Basalt lava flows easily across the ground remaining hot and fluid for long distances, and so they often result in enormous, low-angle cones. The Piton de la Fournaise is one of Earth's most active volcanoes, erupting over 150 times in the last few hundred years, and it has been the subject of NASA research because of its likeness to the volcanoes of Mars. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  13. Location and wavefield attributes of long-period signals at Villarrica volcano (Chile) determined by array and polarization-moveout analysis

    NASA Astrophysics Data System (ADS)

    Lehr, Johanna; Thorwart, Martin; Rabbel, Wolfgang

    2016-04-01

    Villarrica Volcano is the most active volcano in Chile whose latest eruption occurred in March 2015. Increasing the knowledge on its processes, structure and behavior is thus crucial to an effective monitoring and hazard assessment. In this context, long-period volcanic signals (LP) are considered to be a key to the understanding of fluid dynamics and volcanic plumbing systems, accessible by seismological observations. However, standard seismological location tools usually fail due to the emergent onset of the signal and its serious distortion caused by attenuation and scattering in a complex geology. Therefore, alternative methods are needed. In March 2012, a dense seismic network was installed at Villarrica for two weeks with 50 stations covering the volcanic edifice including 6 subarrays. About 400 LP events were identified. LP-events recorded on crater stations look similar to typical earthquakes arrivals with distinguishable P- and S-wave onsets indicating a source near the crater. But with increasing source distance waveforms gradually change into typical LP-events. To investigate how to locate these LP-events we tested two approaches at the basis of a show-case event. In a first trial, records of the subarrays were used to determine backazimuths and slowness by beamforming in the time domain. The analysis was performed in a moving window, using semblance to measure the beam quality. The epicenter was derived by intersecting azimuthal rays. It locates ca. 1 km southeast of the summit crater. Slownesses range from 0.5 s/km up to 2.0 s/km. At frequencies above 2 Hz, additional maxima appear in the semblance distribution of near-summit arrays which can be interpreted as side-scattered signals. Since the crossing points of the backazimuth rays showed some scattering we tested polarization analysis (applied to the subset of 3-component stations) as an alternative location method. Although the direct interpretation of the backazimuths was unreliable, we identified

  14. Diversity of extremophilic bacteria in the sediment of high-altitude lakes located in the mountain desert of Ojos del Salado volcano, Dry-Andes.

    PubMed

    Aszalós, Júlia Margit; Krett, Gergely; Anda, Dóra; Márialigeti, Károly; Nagy, Balázs; Borsodi, Andrea K

    2016-09-01

    Ojos del Salado, the highest volcano on Earth is surrounded by a special mountain desert with extreme aridity, great daily temperature range, intense solar radiation, and permafrost from 5000 meters above sea level. Several saline lakes and permafrost derived high-altitude lakes can be found in this area, often surrounded by fumaroles and hot springs. The aim of this study was to gain information about the bacterial communities inhabiting the sediment of high-altitude lakes of the Ojos del Salado region located between 3770 and 6500 m. Altogether 11 sediment samples from 4 different altitudes were examined with 16S rRNA gene based denaturing gradient gel electrophoresis and clone libraries. Members of 17 phyla or candidate divisions were detected with the dominance of Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes. The bacterial community composition was determined mainly by the altitude of the sampling sites; nevertheless, the extreme aridity and the active volcanism had a strong influence on it. Most of the sequences showed the highest relation to bacterial species or uncultured clones from similar extreme environments.

  15. The proximal part of the giant submarine Wailau landslide, Molokai, Hawaii

    USGS Publications Warehouse

    Clague, D.A.; Moore, J.G.

    2002-01-01

    The main break-in-slope on the northern submarine flank of Molokai at -1500 to -1250 m is a shoreline feature that has been only modestly modified by the Wailau landslide. Submarine canyons above the break-in-slope, including one meandering stream, were subaerially carved. Where such canyons cross the break-in-slope, plunge pools may form by erosion from bedload sediment carried down the canyons. West Molokai Volcano continued infrequent volcanic activity that formed a series of small coastal sea cliffs, now submerged, as the island subsided. Lavas exposed at the break-in-slope are subaerially erupted and emplaced tholeiitic shield lavas. Submarine rejuvenated-stage volcanic cones formed after the landslide took place and following at least 400-500 m of subsidence after the main break-in-slope had formed. The sea cliff on east Molokai is not the headwall of the landslide, nor did it form entirely by erosion. It may mark the location of a listric fault similar to the Hilina faults on present-day Kilauea Volcano. The Wailau landslide occurred about 1.5 Ma and the Kalaupapa Peninsula most likely formed 330??5 ka. Molokai is presently stable relative to sea level and has subsided no more than 30 m in the last 330 ka. At their peak, West and East Molokai stood 1.6 and 3 km above sea level. High rainfall causes high surface runoff and formation of canyons, and increases groundwater pressure that during dike intrusions may lead to flank failure. Active shield or postshield volcanism (with dikes injected along rift zones) and high rainfall appear to be two components needed to trigger the deep-seated giant Hawaiian landslides. ?? 2002 Elsevier Science B.V. All rights reserved.

  16. Volcano hazards at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Sherrod, David R.; Mastin, Larry G.; Scott, William E.; Schilling, Steven P.

    1997-01-01

    Newberry volcano is a broad shield volcano located in central Oregon. It has been built by thousands of eruptions, beginning about 600,000 years ago. At least 25 vents on the flanks and summit have been active during several eruptive episodes of the past 10,000 years. The most recent eruption 1,300 years ago produced the Big Obsidian Flow. Thus, the volcano's long history and recent activity indicate that Newberry will erupt in the future. The most-visited part of the volcano is Newberry Crater, a volcanic depression or caldera at the summit of the volcano. Seven campgrounds, two resorts, six summer homes, and two major lakes (East and Paulina Lakes) are nestled in the caldera. The caldera has been the focus of Newberry's volcanic activity for at least the past 10,000 years. Other eruptions during this time have occurred along a rift zone on the volcano's northwest flank and, to a lesser extent, the south flank. Many striking volcanic features lie in Newberry National Volcanic Monument, which is managed by the U.S. Forest Service. The monument includes the caldera and extends along the northwest rift zone to the Deschutes River. About 30 percent of the area within the monument is covered by volcanic products erupted during the past 10,000 years from Newberry volcano. Newberry volcano is presently quiet. Local earthquake activity (seismicity) has been trifling throughout historic time. Subterranean heat is still present, as indicated by hot springs in the caldera and high temperatures encountered during exploratory drilling for geothermal energy. This report describes the kinds of hazardous geologic events that might occur in the future at Newberry volcano. A hazard-zonation map is included to show the areas that will most likely be affected by renewed eruptions. In terms of our own lifetimes, volcanic events at Newberry are not of day-to-day concern because they occur so infrequently; however, the consequences of some types of eruptions can be severe. When Newberry

  17. Volcano-hazard zonation for San Vicente volcano, El Salvador

    USGS Publications Warehouse

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Howell, M.M.

    2001-01-01

    San Vicente volcano, also known as Chichontepec, is one of many volcanoes along the volcanic arc in El Salvador. This composite volcano, located about 50 kilometers east of the capital city San Salvador, has a volume of about 130 cubic kilometers, rises to an altitude of about 2180 meters, and towers above major communities such as San Vicente, Tepetitan, Guadalupe, Zacatecoluca, and Tecoluca. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and major transportation routes are located near the lowermost southern and eastern flanks of the volcano. The population density and proximity around San Vicente volcano, as well as the proximity of major transportation routes, increase the risk that even small landslides or eruptions, likely to occur again, can have serious societal consequences. The eruptive history of San Vicente volcano is not well known, and there is no definitive record of historical eruptive activity. The last significant eruption occurred more than 1700 years ago, and perhaps long before permanent human habitation of the area. Nevertheless, this volcano has a very long history of repeated, and sometimes violent, eruptions, and at least once a large section of the volcano collapsed in a massive landslide. The oldest rocks associated with a volcanic center at San Vicente are more than 2 million years old. The volcano is composed of remnants of multiple eruptive centers that have migrated roughly eastward with time. Future eruptions of this volcano will pose substantial risk to surrounding communities.

  18. Bathymetry of southern Mauna Loa Volcano, Hawaii

    USGS Publications Warehouse

    Chadwick, William W.; Moore, James G.; Garcia, Michael O.; Fox, Christopher G.

    1993-01-01

    Manua Loa, the largest volcano on Earth, lies largely beneath the sea, and until recently only generalized bathymetry of this giant volcano was available. However, within the last two decades, the development of multibeam sonar and the improvement of satellite systems (Global Positioning System) have increased the availability of precise bathymetric mapping. This map combines topography of the subaerial southern part of the volcano with modern multibeam bathymetric data from the south submarine flank. The map includes the summit caldera of Mauna Loa Volcano and the entire length of the 100-km-long southwest rift zone that is marked by a much more pronounced ridge below sea level than above. The 60-km-long segment of the rift zone abruptly changes trend from southwest to south 30 km from the summit. It extends from this bend out to sea at the south cape of the island (Kalae) to 4 to 4.5 km depth where it impinges on the elongate west ridge of Apuupuu Seamount. The west submarine flank of the rift-zone ridge connects with the Kahuku fault on land and both are part of the ampitheater head of a major submarine landslide (Lipman and others, 1990; Moore and Clague, 1992). Two pre-Hawaiian volcanic seamounts in the map area, Apuupuu and Dana Seamounts, are apparently Cretaceous in age and are somewhat younger than the Cretaceous oceanic crust on which they are built.

  19. 33 CFR 165.1302 - Bangor Naval Submarine Base, Bangor, WA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Bangor Naval Submarine Base... Bangor Naval Submarine Base, Bangor, WA. (a) Location. The following is a security zone: The waters of... States Naval vessels. (ii) Vessels that are performing work at Naval Submarine Base Bangor pursuant to...

  20. 33 CFR 165.1302 - Bangor Naval Submarine Base, Bangor, WA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Bangor Naval Submarine Base... Bangor Naval Submarine Base, Bangor, WA. (a) Location. The following is a security zone: The waters of... States Naval vessels. (ii) Vessels that are performing work at Naval Submarine Base Bangor pursuant to...

  1. 33 CFR 165.1302 - Bangor Naval Submarine Base, Bangor, WA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Bangor Naval Submarine Base... Bangor Naval Submarine Base, Bangor, WA. (a) Location. The following is a security zone: The waters of... States Naval vessels. (ii) Vessels that are performing work at Naval Submarine Base Bangor pursuant to...

  2. Detail of conning tower atop the submarine. Note the wire ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of conning tower atop the submarine. Note the wire rope wrapped around the base of the tower, which may have been used in an attempt to pull the submarine offshore. - Sub Marine Explorer, Located along the beach of Isla San Telmo, Pearl Islands, Isla San Telmo, Former Panama Canal Zone, CZ

  3. 32 CFR 707.7 - Submarine identification light.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Submarine identification light. 707.7 Section... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.7 Submarine identification light... off-period. The light will be located where it can best be seen, as near as practicable, all...

  4. 32 CFR 707.7 - Submarine identification light.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Submarine identification light. 707.7 Section... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.7 Submarine identification light... off-period. The light will be located where it can best be seen, as near as practicable, all...

  5. 32 CFR 707.7 - Submarine identification light.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Submarine identification light. 707.7 Section... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.7 Submarine identification light... off-period. The light will be located where it can best be seen, as near as practicable, all...

  6. 32 CFR 707.7 - Submarine identification light.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Submarine identification light. 707.7 Section... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.7 Submarine identification light... off-period. The light will be located where it can best be seen, as near as practicable, all...

  7. New insights into magma plumbing along rift systems from detailed observations of eruptive behavior at Axial volcano

    NASA Astrophysics Data System (ADS)

    Sigmundsson, Freysteinn

    2016-12-01

    The magma reservoir in geophysical volcano plumbing models is often modeled as a simple geometric volume, filled with magma of uniform properties. However, the constraints on reservoir size and magma properties in volcano roots are typically indirect and poor. Axial Seamount, a volcano at a depth of about 1500 m on the Juan de Fuca mid-oceanic ridge in the Pacific Ocean, has both high-resolution seismic images of its subsurface magma and detailed results from monitoring of its most recent eruption and associated seismicity and ground deformation. The 2015 eruption at Axial Seamount is the best monitored submarine eruption so far because of observations made possible by the Ocean Observatories Initiative, and seismic imaging of magma at this volcano is better than in most other environments because of advanced analysis of extensive seismic reflection profiling at sea and the relatively simple volcano structure. This allows new understanding compared to findings from earlier observations from monitored rifting episodes on land. Geophysical magma plumbing models, in general, may need to allow for more complexities, namely, spatial heterogeneities in magma composition, melt content, and location of major volume changes within a single magma dominated crustal volume during eruptions.

  8. Paint-Stirrer Submarine

    ERIC Educational Resources Information Center

    Young, Jocelyn; Hardy, Kevin

    2007-01-01

    In this article, the authors discuss a unique and challenging laboratory exercise called, the paint-stir-stick submarine, that keeps the students enthralled. The paint-stir-stick submarine fits beautifully with the National Science Education Standards Physical Science Content Standard B, and with the California state science standards for physical…

  9. Submarine cable route survey

    SciTech Connect

    Herrouin, G.; Scuiller, T.

    1995-12-31

    The growth of telecommunication market is very significant. From the beginning of the nineties, more and more the use of optical fiber submarine cables is privileged to that of satellites. These submarine telecommunication highways require accurate surveys in order to select the optimum route and determine the cable characteristics. Advanced technology tools used for these surveys are presented along with their implementation.

  10. Subtle and Not-So-Subtle Variability in Very-Long-Period Earthquakes at Fuego Volcano, Guatemala Reveal Details on Vent Location and Eruption Style

    NASA Astrophysics Data System (ADS)

    Waite, G. P.; Brill, K. A.; Lyons, J. J.; Nadeau, P. A.

    2012-12-01

    Repeated short-term deployments of seismic, infrasound, video, and gas-emission instruments at Fuego volcano, Guatemala have revealed three types of very-long-period (VLP) earthquakes associated with conduit sealing, pressure accumulation, and release. Major differences in waveforms are due to changes in vent locations. Vulcanian explosions and gas puffing from the summit vent produce waveforms that differ only slightly in peak period. Vulcanian explosions from a flank vent produce very different VLP waveforms. In January 2008, ash-rich, vulcanian explosions issued from a vent on the western flank and produced a distinct type of VLP (Type 1). Bomb-rich explosions from the summit vent in January 2009 produced a much shorter duration VLP (Type 2), but a vulcanian-style ash release. Type 3 VLP events occurred during ash-free exhalations from the summit vent in January 2008; waveforms for Type 2 and 3 VLP events were similar although Type 3 were lower amplitude and shorter in duration. Weak infrasound records for Type 1 explosions compared to Type 2 suggest lower magma pressures and higher porosity for Type 1. Type 3 events correlate with spikes in SO2 emission rate and are driven by partial sealing and rapid release of ash-free gas at the summit vent. In 2012, both vents were active again and produced waveforms like those observed in earlier deployments. We also had a 9-station network of broadband stations that allow for improved waveform modeling. We suggest variations in the VLP period may provide a new tool for monitoring conditions within the conduit.xamples of VLP waveforms from Type 1 explosions (red, in a), Type 2 explosions (blue in b) and Type 3 puffing exhalations (black in c) and their spectra (d) highlight the waveform shape and frequency content of each. All data were deconvolved and filtered with the same 2-pole acausal Butterworth filter with corners at 60 and 12 seconds. In each of the plots, the fine lines are for individual events and the thick

  11. In search of ancestral Kilauea volcano

    USGS Publications Warehouse

    Lipman, P.W.; Sisson, T.W.; Ui, T.; Naka, J.

    2000-01-01

    Submersible observations and samples show that the lower south flank of Hawaii, offshore from Kilauea volcano and the active Hilina slump system, consists entirely of compositionally diverse volcaniclastic rocks; pillow lavas are confined to shallow slopes. Submarine-erupted basalt clasts have strongly variable alkalic and transitional basalt compositions (to 41% SiO2, 10.8% alkalies), contrasting with present-day Kilauea tholeiites. The volcaniclastic rocks provide a unique record of ancestral alkalic growth of an archetypal hotspot volcano, including transition to its tholeiitic shield stage, and associated slope-failure events.

  12. Volcano Hazards Assessment for Medicine Lake Volcano, Northern California

    USGS Publications Warehouse

    Donnelly-Nolan, Julie M.; Nathenson, Manuel; Champion, Duane E.; Ramsey, David W.; Lowenstern, Jacob B.; Ewert, John W.

    2007-01-01

    Medicine Lake volcano (MLV) is a very large shield-shaped volcano located in northern California where it forms part of the southern Cascade Range of volcanoes. It has erupted hundreds of times during its half-million-year history, including nine times during the past 5,200 years, most recently 950 years ago. This record represents one of the highest eruptive frequencies among Cascade volcanoes and includes a wide variety of different types of lava flows and at least two explosive eruptions that produced widespread fallout. Compared to those of a typical Cascade stratovolcano, eruptive vents at MLV are widely distributed, extending 55 km north-south and 40 km east-west. The total area covered by MLV lavas is >2,000 km2, about 10 times the area of Mount St. Helens, Washington. Judging from its long eruptive history and its frequent eruptions in recent geologic time, MLV will erupt again. Although the probability of an eruption is very small in the next year (one chance in 3,600), the consequences of some types of possible eruptions could be severe. Furthermore, the documented episodic behavior of the volcano indicates that once it becomes active, the volcano could continue to erupt for decades, or even erupt intermittently for centuries, and very likely from multiple vents scattered across the edifice. Owing to its frequent eruptions, explosive nature, and proximity to regional infrastructure, MLV has been designated a 'high threat volcano' by the U.S. Geological Survey (USGS) National Volcano Early Warning System assessment. Volcanic eruptions are typically preceded by seismic activity, but with only two seismometers located high on the volcano and no other USGS monitoring equipment in place, MLV is at present among the most poorly monitored Cascade volcanoes.

  13. Submarine neutrino communication

    NASA Astrophysics Data System (ADS)

    Huber, Patrick

    2010-09-01

    We discuss the possibility to use a high energy neutrino beam from a muon storage ring to provide one way communication with a submerged submarine. Neutrino interactions produce muons which can be detected either, directly when they pass through the submarine or by their emission of Cerenkov light in sea water, which, in turn, can be exploited with sensitive photo detectors. Due to the very high neutrino flux from a muon storage ring, it is sufficient to mount either detection system directly onto the hull of the submersible. The achievable data transfer rates compare favorable with existing technologies and do allow for a communication at the usual speed and depth of submarines.

  14. Spectral Analysis of Surface Features of Subaquaeous Pyroclastic Flow Deposits Around Santorini Volcano, Greece

    NASA Astrophysics Data System (ADS)

    Croff, K. L.; Sigurdsson, H.; Carey, S.; Alexandri, M.; Sakellariou, D.; Nomikou, P.

    2006-12-01

    Multibeam bathymetry mapping and seismic airgun surveys of the submarine region around the Santorini volcanic field in the Hellenic Arc (Greece) have revealed regions of terraced or step-like topography. These features may be related to the transport and deposition of submarine pyroclastic flows from the last major eruption of this volcano (~3600yrs. B.P.). The uppermost sediment sequence identified in seismic records has an average thickness of approximately 29 meters and may represent the pyroclastic flow deposits from this eruption. These terraced or step-like features are mainly located in areas that are approximately five kilometers offshore and at depths in the range of 200 to 800 meters. The seafloor in these areas has slope ratios on the order of 1:20. Profiles of the seafloor topography were sampled from seismic profiles that radiate from the Sanotrini caldera in five regions of interest. Spectral analysis of seafloor topography has been carried out to determine spectral characteristics of these features, including power spectrum, periodicity and amplitude of the waveforms, variance, and roughness of topography. The results are compared to surface features of the subaqueous pyroclastic deposits from the 1883 explosive eruption of Krakatau (Indonesia) and other areas with similar environments, to determine the parameters that are characteristic of this new feature of submarine volcaniclastic deposits.

  15. Dante's Volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  16. Submarine volcanic features west of Kealakekua Bay, Hawaii

    USGS Publications Warehouse

    Fornari, D.J.; Lockwood, J.P.; Lipman, P.W.; Rawson, M.; Malahoff, A.

    1980-01-01

    Visual observations of submarine volcanic vents were made from the submersible vehicle DSV "Sea Cliff" in water depths between 1310 and 690 m, west of Kealakekua Bay, Hawaii. Glass-rich, shelly submarine lavas surround circular 1- to 3-m-diameter volcanic vents between 1050 and 690 m depth in an area west-northwest of the southernpoint (Keei Pt.) of Kealakekua Bay. Eye-witness accounts indicate that this area was the site of a submarine eruption on February 24, 1877. Chemical analyses of lavas from these possible seafloor vent areas indicate that the eruptive products are very similar in composition to volcanic rocks produced by historic eruptions of Mauna Loa volcano. ?? 1980.

  17. Volcano Infrasound

    NASA Astrophysics Data System (ADS)

    Johnson, J. B.; Fee, D.; Matoza, R. S.

    2013-12-01

    Open-vent volcanoes generate prodigious low frequency sound waves that tend to peak in the infrasound (<20 Hz) band. These long wavelength (> ~20 m) atmospheric pressure waves often propagate long distances with low intrinsic attenuation and can be well recorded with a variety of low frequency sensitive microphones. Infrasound records may be used to remotely monitor eruptions, identify active vents or track gravity-driven flows, and/or characterize source processes. Such studies provide information vital for both scientific study and volcano monitoring efforts. This presentation proposes to summarize and standardize some of the terminology used in the still young, yet rapidly growing field of volcano infrasound. Herein we suggest classification of typical infrasound waveform types, which include bimodal pulses, blast (or N-) waves, and a variety of infrasonic tremors (including broadband, harmonic, and monotonic signals). We summarize various metrics, including reduced pressure, intensity, power, and energy, in which infrasound excess pressures are often quantified. We also describe the spectrum of source types and radiation patterns, which are typically responsible for recorded infrasound. Finally we summarize the variety of propagation paths that are common for volcano infrasound radiating to local (<10 km), regional (out to several hundred kilometers), and global distances. The effort to establish common terminology requires community feedback, but is now timely as volcano infrasound studies proliferate and infrasound becomes a standard component of volcano monitoring.

  18. Physical and chemical properties of submarine basaltic rocks from the submarine flanks of the Hawaiian Islands

    USGS Publications Warehouse

    Yokose, H.; Lipman, P.W.; Kanamatsu, T.

    2005-01-01

    To evaluate physical and chemical diversity in submarine basaltic rocks, approximately 280 deep submarine samples recovered by submersibles from the underwater flanks of the Hawaiian Islands were analyzed and compared. Based on observations from the submersibles and hand specimens, these samples were classified into three main occurrence types (lavas, coarse-grained volcaniclastic rocks, and fine-grained sediments), each with several subtypes. The whole-rock sulfur content and porosity in submarine basaltic rocks, recovered from depths greater than 2000 m, range from < 10 ppm and 2 vol.% to 2200 ppm and 47 vol.%, respectively. These wide variations cannot be due just to different ambient pressures at the collection depths, as inferred previously for submarine erupted lavas. The physical and chemical properties of the recovered samples, especially a combination of three whole-rock parameters (Fe-oxidation state, Sulfur content, and Porosity), are closely related to the occurrence type. The FSP triangular diagram is a valuable indicator of the source location of basaltic fragments deposited in deep submarine areas. This diagram can be applied to basaltic rocks such as clasts in debris-flow deposits, submarine-emplaced lava flows that may have crossed the shoreline, and slightly altered geological samples. ?? 2005 Elsevier B.V. All rights reserved.

  19. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This pair of images was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 26. The image on the left shows the scene in true color. The small purple box in the upper righthand corner marks the location of Nyamuragira's hot summit. The false-color image on the right shows the plume from the volcano streaming southwestward. This image was made using MODIS' channels sensitive at wavelengths from 8.5 to 11 microns. Red pixels indicate high concentrations of sulphur dioxide. Image courtesy Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison

  20. Digital Data for Volcano Hazards at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Sherrod, D.R.; Mastin, L.G.; Scott, W.E.

    2008-01-01

    Newberry volcano is a broad shield volcano located in central Oregon, the product of thousands of eruptions, beginning about 600,000 years ago. At least 25 vents on the flanks and summit have been active during the past 10,000 years. The most recent eruption 1,300 years ago produced the Big Obsidian Flow. Thus, the volcano's long history and recent activity indicate that Newberry will erupt in the future. Newberry Crater, a volcanic depression or caldera has been the focus of Newberry's volcanic activity for at least the past 10,000 years. Newberry National Volcanic Monument, which is managed by the U.S. Forest Service, includes the caldera and extends to the Deschutes River. Newberry volcano is quiet. Local earthquake activity (seismicity) has been trifling throughout historic time. Subterranean heat is still present, as indicated by hot springs in the caldera and high temperatures encountered during exploratory drilling for geothermal energy. The report USGS Open-File Report 97-513 (Sherrod and others, 1997) describes the kinds of hazardous geologic events that might occur in the future at Newberry volcano. A hazard-zonation map is included to show the areas that will most likely be affected by renewed eruptions. When Newberry volcano becomes restless, the eruptive scenarios described herein can inform planners, emergency response personnel, and citizens about the kinds and sizes of events to expect. The geographic information system (GIS) volcano hazard data layers used to produce the Newberry volcano hazard map in USGS Open-File Report 97-513 are included in this data set. Scientists at the USGS Cascades Volcano Observatory created a GIS data layer to depict zones subject to the effects of an explosive pyroclastic eruption (tephra fallout, pyroclastic flows, and ballistics), lava flows, volcanic gasses, and lahars/floods in Paulina Creek. A separate GIS data layer depicts drill holes on the flanks of Newberry Volcano that were used to estimate the probability

  1. Seismic Attenuation beneath Tateyama Volcano, Central Japan

    NASA Astrophysics Data System (ADS)

    Iwata, K.; Kawakata, H.; Doi, I.

    2014-12-01

    Subsurface structures beneath active volcanoes have frequently been investigated (e.g., Oikawa et al., 1994: Sudo et al., 1996), and seismic attenuation beneath some active volcanoes are reported to be strong. On the other hand, few local subsurface structures beneath volcanoes whose volcanic activities are low have been investigated in detail, though it is important to study them to understand the potential of volcanic activity of these volcanoes. Then, we analyzed the seismic attenuation beneath Tateyama volcano (Midagahara volcano) located in central Japan, whose volcanic activity is quite low. We used seismograms obtained by Hi-net deployed by NIED (National Research Institute for Earth Science and Disaster Prevention). Hi-net is one of the densest seismic station networks in the world, and the spatial interval of their seismographs is about 20 km, which is suitable for investigating local structure beneath an individual volcano. We estimated S-wave attenuation using seismograms at five stations near Tateyama volcano for nineteen small, local, shallow earthquakes (M 2.7-4.0) that occurred from January 2012 to December 2013. We divided these earthquakes into six groups according to their hypocenter locations. We used twofold spectral ratios around the first S-arrivals to investigate the S-wave attenuation when S-waves passed through the region beneath Tateyama volcano. We focused on station pairs located on opposite sides of Tateyama volcano to each other, and earthquake pairs whose epicenters were located almost along the line connecting Tateyama volcano and the two stations, so that the spectral ratios reflect a local structure beneath Tateyama volcano. Twofold spectral ratios of all seismograms for S waves having northwestern or southeastern sources show strong attenuation beneath Tateyama volcano. On the other hand, those of seismograms having northeastern or southwestern sources show much weaker attenuation, which suggested that the region of strong

  2. Growth and degradation of Hawaiian volcanoes: Chapter 3 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Clague, David A.; Sherrod, David R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Large Hawaiian volcanoes can persist as islands through the rapid subsidence by building upward rapidly enough. But in the long run, subsidence, coupled with surface erosion, erases any volcanic remnant above sea level in about 15 m.y. One consequence of subsidence, in concert with eustatic changes in sea level, is the drowning of coral reefs that drape the submarine flanks of the actively subsiding volcanoes. At least six reefs northwest of the Island of Hawai‘i form a stairstep configuration, the oldest being deepest.

  3. Morphology of Piton de la Fournaise basaltic shield volcano (La Réunion Island): Characterization and implication in the volcano evolution

    NASA Astrophysics Data System (ADS)

    Michon, Laurent; Saint-Ange, Francky

    2008-03-01

    The topography of Piton de la Fournaise volcano (PdF) differs from the classic view of basaltic shield volcanoes as it is characterized by (1) several steep slope zones on its flanks and (2) a large U-shaped caldera, the Enclos-Grand Brûlé structure (EGBS). Most of these structures were previously interpreted as the scars of lateral landslides, the deposits of which cover the submarine flanks of PdF. We carried out a detailed analysis of the morphology of PdF, which reveals that the steep slope zones form two independent, circumferential structures that continue into the caldera. The development of circumferential steep slopes on volcano flanks may have several origins: constructive, destructive, and deformation processes. We interpret those processes acting on PdF as caused by the spreading of the volcanic edifice above a weak hydrothermal core, leading to outward displacements and a summit extensive stress field. The continuity of the steep slope on both sides of the EGBS escarpments suggests that this structure was not caused by a 4.5 ka old giant landslide as it is usually proposed but is due to a mainly vertical collapse. The recent debris avalanche deposits east of the island indicate that this event likely destabilized part of the submarine flank. We propose that the collapse of the Grand Brûlé, the lower half of the EGBS, was due to the downward drag related to the dense intrusive complex of the Alizés volcano, which is located 1 km below the Grand Brûlé. The collapse of the Enclos is interpreted as the consequence of the deformation of the hydrothermal system of the pre-Enclos volcano. Although the continuity of the geological and morphological structures between the Enclos and the Grand Brûlé suggests a narrow link between these two collapse events, their chronology and relationship are still uncertain. Finally, we hypothesize that the persistence of the NE and SE rift zones during the last 150 ka, despite the large changes of the topography

  4. Addressing submarine geohazards through scientific drilling

    NASA Astrophysics Data System (ADS)

    Camerlenghi, A.

    2009-04-01

    eruptions, earthquakes and the associated tsunamis can lead to destruction of seafloor structures potentially capable of releasing hydrocarbon pollutants into Mediterranean waters, and damage to a dense telecommunication cables net that would cause severe economic loss. However, the most devastating effect would be that of earthquake or landslide-induced tsunamis. When compared to other basins, the Mediterranean has larger vulnerability due to its small dimensions, resulting in close proximity to tsunami sources and impact areas. Recent examples include the 1979 Nice airport submarine landslide and tsunami and the 2002 Stromboli volcano landslide and tsunami. Future international scientific drilling must include submarine geohazards among priority scientific objectives. The science advisory structure must be prepared to receive and evaluate proposal specifically addressing submarine geohazards. The implementing organizations need to be prepared for the technological needs of drilling proposals addressing geohazards. Among the most relevant: geotechnical sampling, down-hole logging at shallow depths below the seafloor, in situ geotechnical and physical measurements, capability of deployment of long-term in situ observatories. Pre-site surveys will often aim at the highest possible resolution, three dimensional imaging of the seafloor ant its sub-surface. Drilling for submarine geohazards is seen as an opportunity of multiplatform drilling, and for Mission Specific drilling in particular. Rather than turning the scientific investigation in a purely engineering exercise, proposals addressing submarine geohazards should offer an opportunity to scientists and engineers to work together to unravel the details of basic geological processes that may turn into catastrophic events.

  5. Mud Volcanoes Formation And Occurrence

    NASA Astrophysics Data System (ADS)

    Guliyev, I. S.

    2007-12-01

    Mud volcanoes are natural phenomena, which occur throughout the globe. They are found at a greater or lesser scale in Azerbaijan, Turkmenistan, Georgia, on the Kerch and Taman peninsulas, on Sakhalin Island, in West Kuban, Italy, Romania, Iran, Pakistan, India, Burma, China, Japan, Indonesia, Malaysia, New Zealand, Mexico, Colombia, Trinidad and Tobago, Venezuela and Ecuador. Mud volcanoes are most well-developed in Eastern Azerbaijan, where more than 30% of all the volcanoes in the world are concentrated. More than 300 mud volcanoes have already been recognized here onshore or offshore, 220 of which lie within an area of 16,000 km2. Many of these mud volcanoes are particularly large (up to 400 m high). The volcanoes of the South Caspian form permanent or temporary islands, and numerous submarine banks. Many hypotheses have been developed regarding the origin of mud volcanoes. Some of those hypotheses will be examined in the present paper. Model of spontaneous excitation-decompaction (proposed by Ivanov and Guliev, 1988, 2002). It is supposed that one of major factors of the movement of sedimentary masses and formation of hydrocarbon deposits are phase transitions in sedimentary basin. At phase transitions there are abnormal changes of physical and chemical parameters of rocks. Abnormal (high and negative) pressure takes place. This process is called as excitation of the underground environment with periodicity from several tens to several hundreds, or thousand years. The relationship between mud volcanism and the generation of hydrocarbons, particularly methane, is considered to be a critical factor in mud volcano formation. At high flow rates the gas and sediment develops into a pseudo-liquid state and as flow increases the mass reaches the "so-called hover velocity" where mass transport begins. The mass of fluid moves as a quasi-uniform viscous mass through the sediment pile in a piston like manner until expelled from the surface as a "catastrophic eruption

  6. Anatahan Volcano, Mariana Islands

    NASA Technical Reports Server (NTRS)

    2008-01-01

    In the early hours of February 7, ASTER captured this nighttime thermal infrared image of an eruption of Anatahan Volcano in the central Mariana Islands. The summit of the volcano is bright indicating there is a very hot area there. Streaming to the west is an ash plume, visible by the red color indicating the presence of silicate-rich particles. Dark grey areas are clouds that appear colder than the ocean. Anatahan is a stratovolcano that started erupting in May 2003, forming a new crater.

    The image covers an area of 56.3 x 41.8 km, and is located 16 degrees north latitude and 145.6 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  7. Preliminary volcano-hazard assessment for Great Sitkin Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Miller, Thomas P.; Nye, Christopher J.

    2003-01-01

    Great Sitkin Volcano is a composite andesitic stratovolcano on Great Sitkin Island (51°05’ N latitude, 176°25’ W longitude), a small (14 x 16 km), circular volcanic island in the western Aleutian Islands of Alaska. Great Sitkin Island is located about 35 kilometers northeast of the community of Adak on Adak Island and 130 kilometers west of the community of Atka on Atka Island. Great Sitkin Volcano is an active volcano and has erupted at least eight times in the past 250 years (Miller and others, 1998). The most recent eruption in 1974 caused minor ash fall on the flanks of the volcano and resulted in the emplacement of a lava dome in the summit crater. The summit of the composite cone of Great Sitkin Volcano is 1,740 meters above sea level. The active crater is somewhat lower than the summit, and the highest point along its rim is about 1,460 meters above sea level. The crater is about 1,000 meters in diameter and is almost entirely filled by a lava dome emplaced in 1974. An area of active fumaroles, hot springs, and bubbling hot mud is present on the south flank of the volcano at the head of Big Fox Creek (see the map), and smaller ephemeral fumaroles and steam vents are present in the crater and around the crater rim. The flanking slopes of the volcano are gradual to steep and consist of variously weathered and vegetated blocky lava flows that formed during Pleistocene and Holocene eruptions. The modern edifice occupies a caldera structure that truncates an older sequence of lava flows and minor pyroclastic rocks on the east side of the volcano. The eastern sector of the volcano includes the remains of an ancestral volcano that was partially destroyed by a northwest-directed flank collapse. In winter, Great Sitkin Volcano is typically completely snow covered. Should explosive pyroclastic eruptions occur at this time, the snow would be a source of water for volcanic mudflows or lahars. In summer, much of the snowpack melts, leaving only a patchy

  8. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This true-color image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 28, 2002. Nyamuragira is situated roughly in the center of this scene, roughly 100 km south of Lake Edward and just north of Lake Kivu (which is mostly obscured by the haze from the erupting volcano and the numerous fires burning in the surrounding countryside). Due south of Lake Kivu is the long, narrow Lake Tanganyika running south and off the bottom center of this scene.

  9. Mount Rainier active cascade volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  10. Volcano Hazards Program

    USGS Publications Warehouse

    Venezky, Dina Y.; Myers, Bobbie; Driedger, Carolyn

    2008-01-01

    Diagram of common volcano hazards. The U.S. Geological Survey Volcano Hazards Program (VHP) monitors unrest and eruptions at U.S. volcanoes, assesses potential hazards, responds to volcanic crises, and conducts research on how volcanoes work. When conditions change at a monitored volcano, the VHP issues public advisories and warnings to alert emergency-management authorities and the public. See http://volcanoes.usgs.gov/ to learn more about volcanoes and find out what's happening now.

  11. Chikurachki Volcano

    Atmospheric Science Data Center

    2013-04-16

    ... southeast. The darker areas of the plume typically indicate volcanic ash, while the white portions of the plume indicate entrained water droplets and ice. According to the Kamchatkan Volcanic Eruptions Response Team (KVERT), the temperature of the plume near the volcano ...

  12. Acoustic stratigraphy and hydrothermal activity within Epi Submarine Caldera, Vanuatu, New Hebrides Arc

    USGS Publications Warehouse

    Greene, H. Gary; Exon, N.F.

    1988-01-01

    Geological and geophysical surveys of active submarine volcanoes offshore and southeast of Epi Island, Vanuatu, New Hebrides Arc, have delineated details of the structure and acoustic stratigraphy of three volcanic cones. These submarine cones, named Epia, Epib, and Epic, are aligned east-west and spaced 3.5 km apart on the rim of a submerged caldera. At least three acoustic sequences, of presumed Quaternary age, can be identified on single-channel seismic-reflection profiles. Rocks dredged from these cones include basalt, dacite, and cognate gabbroic inclusions with magmatic affinities similar to those of the Karua (an active submarine volcano off the southeastern tip of Epi) lavas. ?? 1988 Springer-Verlag New York Inc.

  13. Lahar-hazard zonation for San Miguel volcano, El Salvador

    USGS Publications Warehouse

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Chesner, C.A.; Howell, M.M.

    2001-01-01

    San Miguel volcano, also known as Chaparrastique, is one of many volcanoes along the volcanic arc in El Salvador. The volcano, located in the eastern part of the country, rises to an altitude of about 2130 meters and towers above the communities of San Miguel, El Transito, San Rafael Oriente, and San Jorge. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and the PanAmerican and coastal highways cross the lowermost northern and southern flanks of the volcano. The population density around San Miguel volcano coupled with the proximity of major transportation routes increases the risk that even small volcano-related events, like landslides or eruptions, may have significant impact on people and infrastructure. San Miguel volcano is one of the most active volcanoes in El Salvador; it has erupted at least 29 times since 1699. Historical eruptions of the volcano consisted mainly of relatively quiescent emplacement of lava flows or minor explosions that generated modest tephra falls (erupted fragments of microscopic ash to meter sized blocks that are dispersed into the atmosphere and fall to the ground). Little is known, however, about prehistoric eruptions of the volcano. Chemical analyses of prehistoric lava flows and thin tephra falls from San Miguel volcano indicate that the volcano is composed dominantly of basalt (rock having silica content

  14. Preliminary volcano-hazard assessment for Kanaga Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Miller, Thomas P.; Nye, Christopher J.

    2002-01-01

    Kanaga Volcano is a steep-sided, symmetrical, cone-shaped, 1307 meter high, andesitic stratovolcano on the north end of Kanaga Island (51°55’ N latitude, 177°10’ W longitude) in the western Aleutian Islands of Alaska. Kanaga Island is an elongated, low-relief (except for the volcano) island, located about 35 kilometers west of the community of Adak on Adak Island and is part of the Andreanof Islands Group of islands. Kanaga Volcano is one of the 41 historically active volcanoes in Alaska and has erupted numerous times in the past 11,000 years, including at least 10 eruptions in the past 250 years (Miller and others, 1998). The most recent eruption occurred in 1993-95 and caused minor ash fall on Adak Island and produced blocky aa lava flows that reached the sea on the northwest and west sides of the volcano (Neal and others, 1995). The summit of the volcano is characterized by a small, circular crater about 200 meters in diameter and 50-70 meters deep. Several active fumaroles are present in the crater and around the crater rim. The flanking slopes of the volcano are steep (20-30 degrees) and consist mainly of blocky, linear to spoonshaped lava flows that formed during eruptions of late Holocene age (about the past 3,000 years). The modern cone sits within a circular caldera structure that formed by large-scale collapse of a preexisting volcano. Evidence for eruptions of this preexisting volcano mainly consists of lava flows exposed along Kanaton Ridge, indicating that this former volcanic center was predominantly effusive in character. In winter (October-April), Kanaga Volcano may be covered by substantial amounts of snow that would be a source of water for lahars (volcanic mudflows). In summer, much of the snowpack melts, leaving only a patchy distribution of snow on the volcano. Glacier ice is not present on the volcano or on other parts of Kanaga Island. Kanaga Island is uninhabited and is part of the Alaska Maritime National Wildlife Refuge, managed by

  15. Making a Submarine.

    ERIC Educational Resources Information Center

    Cornacchia, Deborah J.

    2002-01-01

    Describes Archimedes principle and why a ship sinks when it gets a hole in it. Suggests an activity for teaching the concept of density and water displacement through the construction of a simple submarine. Includes materials and procedures for this activity. (KHR)

  16. Character of seismic motion at a location of a gas hydrate-bearing mud volcano on the SW Barents Sea margin

    NASA Astrophysics Data System (ADS)

    Franek, Peter; Mienert, Jürgen; Buenz, Stefan; Géli, Louis

    2014-08-01

    The Håkon Mosby mud volcano (HMMV) at 1270 m water depth on the SW Barents Sea slope has been intensively studied since its discovery in 1989. A variety of sensors monitored morphological, hydrological, geochemical, and biological parameters in the HMMV area. An ocean bottom seismometer deployment allowed us to register seismic motion for 2 years, from October 2008 to October 2010. The analysis of seismic records documents two types of seismic signals. The first type are harmonic tremors with frequency peaks around 4-5 and 8-10 Hz that occur in swarms. Their origin could be from fluid flow circulation or resonant vibrations of gas bubbles or from delayed movement of fluid-rich sediments in the conduit or in a deeper pseudo-mud chamber of the HMMV. Because swarms occur with a periodicity of ~ 6 h, tide-related effects are suspected to influence the mechanism originating the tremors. The second type of signals are regional earthquakes that were in 15 cases recognized in seismic records. The activity of harmonic tremors was not significantly affected by earthquakes.

  17. Santorini Volcano

    USGS Publications Warehouse

    Druitt, T.H.; Edwards, L.; Mellors, R.M.; Pyle, D.M.; Sparks, R.S.J.; Lanphere, M.; Davies, M.; Barreirio, B.

    1999-01-01

    Santorini is one of the most spectacular caldera volcanoes in the world. It has been the focus of significant scientific and scholastic interest because of the great Bronze Age explosive eruption that buried the Minoan town of Akrotiri. Santorini is still active. It has been dormant since 1950, but there have been several substantial historic eruptions. Because of this potential risk to life, both for the indigenous population and for the large number of tourists who visit it, Santorini has been designated one of five European Laboratory Volcanoes by the European Commission. Santorini has long fascinated geologists, with some important early work on volcanoes being conducted there. Since 1980, research groups at Cambridge University, and later at the University of Bristol and Blaise Pascal University in Clermont-Ferrand, have collected a large amount of data on the stratigraphy, geochemistry, geochronology and petrology of the volcanics. The volcanic field has been remapped at a scale of 1:10 000. A remarkable picture of cyclic volcanic activity and magmatic evolution has emerged from this work. Much of this work has remained unpublished until now. This Memoir synthesizes for the first time all the data from the Cambridge/Bristol/Clermont groups, and integrates published data from other research groups. It provides the latest interpretation of the tectonic and magmatic evolution of Santorini. It is accompanied by the new 1:10 000 full-colour geological map of the island.

  18. Hydroacoustic Records of the First Historical Eruption of Anatahan Volcano, Mariana Islands

    NASA Astrophysics Data System (ADS)

    Dziak, R.; Park, M.; Matsumoto, H.; Fox, C.; Byun, S.; Fowler, M.; Haxel, J.; Embley, R.

    2003-12-01

    For the past decade, NOAA/Pacific Marine Environmental Laboratory has monitored volcano-seismic activity from western Pacific island-arc volcanoes using an array of U.S. Navy hydrophones (called SOSUS) deployed at fixed locations throughout the North Pacific Ocean. SOSUS hydrophones are mounted within the SOFAR channel and record the hydroacoustic tertiary phase or T-wave of oceanic earthquakes from throughout the Pacific basin. Since acoustic T-waves obey cylindrical energy attenuation as opposed to the spherical attenuation of solid-earth seismic phases, sound channel hydrophones can detect often smaller and therefore more numerous earthquakes than land-based seismic networks. This property allowed for the detection of harmonic tremor from a submarine volcano in the Volcano Islands on hydrophones >14,000 km away in the eastern Pacific. The first historical eruption of Anatahan Volcano appears to have started (from satellite imagery) at 1730Z on 10 May, with an ash plume visible by 2232Z (BGVN, 5 May 2003). Records from a broadband seismometer deployed on nearby ( ˜6.5 km) Sarigan Island indicate earthquake activity increased at about 1300Z on 10 May (D. Weins, pers com). SOSUS hydrophones in the western Pacific ( ˜4000 km distant) also recorded increased earthquake activity at 1300Z on 10 May as well as continuous, low-frequency (<10 Hz) energy (possible volcanic tremor) that began about a day before the seismicity. The earthquakes and tremor were detected on only two SOSUS hydrophones and therefore it was not possible to estimate their source location. The arrival azimuth of the signals were, however, consistent with a source in the Mariana Islands. To complement the SOSUS hydrophone array coverage in the western Pacific Ocean, an array of five autonomous hydrophones were deployed in February 2003 (sponsored by NOAA's Ocean Exploration Program) within the SOFAR channel along the active island- and back-arc of the Mariana Islands. All five hydrophones (1-110 Hz

  19. A new species of Copepoda Harpacticoida, Xylora calyptogenae spec. n., with a carnivorous life-style from a hydrothermally active submarine volcano in the New Ireland Fore-Arc system (Papua New Guinea) with notes on the systematics of the Donsiellinae Lang, 1948

    NASA Astrophysics Data System (ADS)

    Willen, Elke

    2006-12-01

    A new species of harpacticoid copepods, Xylora calyptogenae spec. n., from Edison Seamount, a hydrothermally active submarine volcano in the New Ireland Fore-Arc system (Papua New Guinea) is described. The new species belongs to the Donsiellinae Lang, 1944, a highly specialised taxon, the members of which have previously been encountered only in association with decaying wood and/or wood-boring isopods. A closer relationship of the Donsiellinae with the Pseudotachidiidae Lang, 1936, can be stated on the basis of characteristics concerning the setation and/or segmentation of A1, A2, Mxl, Mxp, the shape of the female P5, anal somite, sexual dimorphisms on P2 and P3 and missing caudal seta I. Within the Pseudotachidiidae, the Donsiellinae again can be well characterized, e.g. by the setation and segmentation of A2, Mxl, swimming-legs, the shape of P1, female P5, male P2, sexual dimorphism and male P5. The Donsiellinae share some apomorphies with the pseudotachidiid subtaxon Paranannopinae Por, 1986: setation/segmentation of Mx, P1, A1. X. calyptogenae spec. n. is more closely related to Xylora bathyalis Hicks 1988 living in the deep sea wood substrata in New Zealand waters. Some traits of the evolutionary history of the Donsiellinae become evident, probably starting from the more primitive deep sea taxa X .calyptogenae spec. n., which lives in the hydrothermal seafloor in the absence of decaying wood, and X. bathyalis, which is found in decaying wood but not necessarily associated with the wood-boring isopod Limnoria Leach, 1814, towards the more advanced genera such as Donsiella Stephensen, 1936, which invades shallow waters and, further, clings to Limnoria, forming a close and, for the copepod, probably obligatory association. The specialised mouthparts of X. calyptogenae spec. n. seem to facilitate the grabbing and fixing of larger and/or active food items. This is confirmed by the presence of a large prey organism, presumably a copepod, consumed either alive or

  20. Underwater observations of active lava flows from Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Tribble, G.W.

    1991-01-01

    Underwater observation of active submarine lava flows from Kilauea volcano, Hawaii, in March-June 1989 revealed both pillow lava and highly channelized lava streams flowing down a steep and unconsolidated lava delta. The channelized streams were 0.7-1.5 m across and moved at rates of 1-3 m/s. The estimated flux of a stream was 0.7 m3/s. Jets of hydrothermal water and gas bubbles were associated with the volcanic activity. The rapidly moving channelized lava streams represent a previously undescribed aspect of submarine volcanism. -Author

  1. Submarine basalt from the Revillagigedo Islands region, Mexico

    USGS Publications Warehouse

    Moore, J.G.

    1970-01-01

    Ocean-floor dredging and submarine photography in the Revillagigedo region off the west coast of Mexico reveal that the dominant exposed rock of the submarine part of the large island-forming volcanoes (Roca Partida and San Benedicto) is a uniform alkali pillow basalt; more siliceous rocks are exposed on the upper, subaerial parts of the volcanoes. Basalts dredged from smaller seamounts along the Clarion fracture zone south of the Revillagigedo Islands are tholeiitic pillow basalts. Pillows of alkali basalts are more vesicular than Hawaiian tholeiitic pillows collected from the same depths. This difference probably reflects a higher original volatile content of the alkali basalts. Manganese-iron oxide nodules common in several dredge hauls generally contain nucleii of rhyolitic pumice or basalt pillow fragments. The pumice floated to its present site from subaerial eruptions, became waterlogged and sank, and was then coated with manganese-iron oxides. The thickness of palagonite rinds on the glassy pillow fragments is proportional to the thickness of manganese-iron oxide layers, and both are a measure of the age of the nodule. Both oldest basalts (10-100 m.y.) and youngest (less than 1 m.y.) are along the Clarion fracture zone, whereas basalts from Roca Partida and San Benedicto volcanoes are of intermediate age. ?? 1970.

  2. Variations of the state of stress and dike propagation at Fernandina volcano, Galápagos.

    NASA Astrophysics Data System (ADS)

    Bagnardi, M.; Amelung, F.

    2012-04-01

    Fernandina volcano forms the youngest and westernmost island of the Galapagos Archipelago, a group of volcanic islands located near the equator and 1000 km west of Ecuador. Twenty-five eruptions in the last two hundred years make Fernandina the most active volcano in the archipelago and one of the most active volcanoes in the world. Most eruptions occur along fissures fed by dikes that propagate from the central magmatic system and from reservoirs centered under the summit caldera. Eruptive fissures in the subaerial portion of the volcano form two distinct sets: (1) arcuate or circumferential fissures characterize the upper portion of the volcano around the caldera while (2) radial fissures are present on the lower flanks. The subaerial portion of the volcano lacks of well-developed rift zones, while the submarine part of Fernandina shows three rifting zones that extend from the western side of the island. Using Interferometric Synthetic Aperture Radar (InSAR) measurements of the surface displacement at Fernandina acquired from 1992 to 2010, and in particular the ones spanning the last three eruptions (1995 - radial, 2005 - circumferential and 2009 - radial) we infer the geometry of the shallow magmatic system and of the dikes that fed these eruptions. A shallow dipping radial dike on the southwestern flank has been inferred by Jónnson et al. (1999) for the 1995 eruption. This event shows a pattern of deformation strikingly similar to the one associated with the April 2009 eruption for which we infer a similar geometry. Co-eruptive deformation for the 2005 event has been modeled by Chadwick et al. (2010) using three planar dikes, connected along hinge lines, in the attempt to simulate a curve-concave shell, steeply dipping toward the caldera at the surface and more gently dipping at depth. Dike propagation in a volcano is not a random process but it is controlled by the orientation of the principal stresses, with the dike orthogonal to the least compressive stress

  3. Arctic Submarine Slope Stability

    NASA Astrophysics Data System (ADS)

    Winkelmann, D.; Geissler, W.

    2010-12-01

    Submarine landsliding represents aside submarine earthquakes major natural hazard to coastal and sea-floor infrastructure as well as to coastal communities due to their ability to generate large-scale tsunamis with their socio-economic consequences. The investigation of submarine landslides, their conditions and trigger mechanisms, recurrence rates and potential impact remains an important task for the evaluation of risks in coastal management and offshore industrial activities. In the light of a changing globe with warming oceans and rising sea-level accompanied by increasing human population along coasts and enhanced near- and offshore activities, slope stability issues gain more importance than ever before. The Arctic exhibits the most rapid and drastic changes and is predicted to change even faster. Aside rising air temperatures, enhanced inflow of less cooled Atlantic water into the Arctic Ocean reduces sea-ice cover and warms the surroundings. Slope stability is challenged considering large areas of permafrost and hydrates. The Hinlopen/Yermak Megaslide (HYM) north of Svalbard is the first and so far only reported large-scale submarine landslide in the Arctic Ocean. The HYM exhibits the highest headwalls that have been found on siliciclastic margins. With more than 10.000 square kilometer areal extent and app. 2.400 cubic kilometer of involved sedimentary material, it is one of the largest exposed submarine slides worldwide. Geometry and age put this slide in a special position in discussing submarine slope stability on glaciated continental margins. The HYM occurred 30 ka ago, when the global sea-level dropped by app. 50 m within less than one millennium due to rapid onset of global glaciation. It probably caused a tsunami with circum-Arctic impact and wave heights exceeding 130 meters. The HYM affected the slope stability field in its neighbourhood by removal of support. Post-megaslide slope instability as expressed in creeping and smaller-scaled slides are

  4. Shrimp Populations on Northwest Rota, an Active Volcano of the Mariana Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Tunnicliffe, V.; Juniper, S. K.; Limén, H.; Jones, W. J.; Vrijenhoek, R.; Webber, R.; Eerkes-Medrano, D.

    2004-12-01

    NW Rota-1 is a submarine volcano that manifested active volcanic and hydrothermal activity during submersible surveys in March 2004 (see Embley et al.). Substratum on the volcano summit (520 m depth) was entirely basalt outcrop or variously-sized ejecta lying near the angle of repose. While no fauna inhabited the rim of the volcanic pit, patches of shrimp were located within 25 m and on the nearby summit. Two species are present. Opaepele cf. loihi shows few morphological differences from either a nearby population on Eifuku Volcano (see Chadwick et al.) at 1700 m depth or from the type locality in Hawaii. A molecular comparison of COI sequences of 13 specimens found little difference from two Hawaiian sequences. Video observations detail frequent feeding activity using spatulate chelipeds to trim microbial filaments as the cephalothorax sways across the substratum. The second species is an undescribed Alvinocaris. Juveniles of this species appear to form clusters distinct from Opaepele where they also graze on filaments. Sparse adults of Alvinocaris range up to 5.5 cm long and display aggressive behaviour moving through patches of smaller shrimp. Densities of Opaepele were highest on sloping rock walls (over 500 per sq.m.) whereas adult Alvinocaris were more abundant on rubble. This division may reflect food preference: microbial filaments versus polychaetes and meiofauna. Characterization of particulates from these substrata was conducted using visual sorting and stable isotope composition. As Alvinocaris matures, the chelipeds enlarge, enabling a greater predatory capacity. Measurements of Opaepele from digital in situ images reveal a population structure suggesting a recent recruitment. Average size is significantly smaller than the Eifuku population and no egg-bearing females were collected. The disjunct range of this species where it occurs on active volcanoes 6000 km apart is puzzling. Further work on intermediate sites and into the reproductive strategy of

  5. 4D volcano gravimetry

    USGS Publications Warehouse

    Battaglia, Maurizio; Gottsmann, J.; Carbone, D.; Fernandez, J.

    2008-01-01

    Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. The ability of gravity measurements to detect subsurface mass flow is greatly enhanced if gravity measurements are analyzed and modeled with ground-deformation data. Obtaining the maximum information from microgravity studies requires careful evaluation of the layout of network benchmarks, the gravity environmental signal, and the coupling between gravity changes and crustal deformation. When changes in the system under study are fast (hours to weeks), as in hydrothermal systems and restless volcanoes, continuous gravity observations at selected sites can help to capture many details of the dynamics of the intrusive sources. Despite the instrumental effects, mainly caused by atmospheric temperature, results from monitoring at Mt. Etna volcano show that continuous measurements are a powerful tool for monitoring and studying volcanoes.Several analytical and numerical mathematical models can beused to fit gravity and deformation data. Analytical models offer a closed-form description of the volcanic source. In principle, this allows one to readily infer the relative importance of the source parameters. In active volcanic sites such as Long Valley caldera (California, U.S.A.) and Campi Flegrei (Italy), careful use of analytical models and high-quality data sets has produced good results. However, the simplifications that make analytical models tractable might result in misleading volcanological inter-pretations, particularly when the real crust surrounding the source is far from the homogeneous/ isotropic assumption. Using numerical models allows consideration of more realistic descriptions of the sources and of the crust where they are located (e.g., vertical and lateral mechanical discontinuities, complex source geometries, and topography). Applications at Teide volcano (Tenerife) and Campi Flegrei demonstrate the

  6. Massive edifice failure at Aleutian arc volcanoes

    USGS Publications Warehouse

    Coombs, M.L.; White, S.M.; Scholl, D. W.

    2007-01-01

    Along the 450-km-long stretch of the Aleutian volcanic arc from Great Sitkin to Kiska Islands, edifice failure and submarine debris-avalanche deposition have occurred at seven of ten Quaternary volcanic centers. Reconnaissance geologic studies have identified subaerial evidence for large-scale prehistoric collapse events at five of the centers (Great Sitkin, Kanaga, Tanaga, Gareloi, and Segula). Side-scan sonar data collected in the 1980s by GLORIA surveys reveal a hummocky seafloor fabric north of several islands, notably Great Sitkin, Kanaga, Bobrof, Gareloi, Segula, and Kiska, suggestive of landslide debris. Simrad EM300 multibeam sonar data, acquired in 2005, show that these areas consist of discrete large blocks strewn across the seafloor, supporting the landslide interpretation from the GLORIA data. A debris-avalanche deposit north of Kiska Island (177.6?? E, 52.1?? N) was fully mapped by EM300 multibeam revealing a hummocky surface that extends 40??km from the north flank of the volcano and covers an area of ??? 380??km2. A 24-channel seismic reflection profile across the longitudinal axis of the deposit reveals a several hundred-meter-thick chaotic unit that appears to have incised into well-bedded sediment, with only a few tens of meters of surface relief. Edifice failures include thin-skinned, narrow, Stromboli-style collapse as well as Bezymianny-style collapse accompanied by an explosive eruption, but many of the events appear to have been deep-seated, removing much of an edifice and depositing huge amounts of debris on the sea floor. Based on the absence of large pyroclastic sheets on the islands, this latter type of collapse was not accompanied by large eruptions, and may have been driven by gravity failure instead of magmatic injection. Young volcanoes in the central and western portions of the arc (177?? E to 175?? W) are located atop the northern edge of the ??? 4000-m-high Aleutian ridge. The position of the Quaternary stratocones relative to the

  7. Smithsonian Volcano Data on Google Earth

    NASA Astrophysics Data System (ADS)

    Venzke, E.; Siebert, L.; Luhr, J. F.

    2006-12-01

    Interactive global satellite imagery datasets such as hosted by Google Earth provide a dynamic platform for educational outreach in the Earth Sciences. Users with widely varied backgrounds can easily view geologic features on a global-to-local scale, giving access to educational background on individual geologic features or events such as volcanoes and earthquakes. The Smithsonian Institution's Global Volcanism Program (GVP) volcano data became available as a Google Earth layer on 11 June 2006. Locations for about 1550 volcanoes with known or possible Holocene activity are shown as red triangles with associated volcano names that appear when zooming in to a regional-scale view. Clicking on a triangle opens an informational balloon that displays a photo, geographic data, and a brief paragraph summarizing the volcano's geologic history. The balloon contains links to a larger version of the photo with credits and a caption and to more detailed information on the volcano, including eruption chronologies, from the GVP website. Links to USGS and international volcano observatories or other websites focusing on regional volcanoes are also provided, giving the user ready access to a broad spectrum of volcano data. Updates to the GVP volcano layer will be provided to Google Earth. A downloadable file with the volcanoes organized regionally is also available directly from the GVP website (www.volcano.si.edu) and provides the most current volcano data set. Limitations of the implied accuracy of spacially plotted data at high zoom levels are also apparent using platforms such as Google Earth. Real and apparent mismatches between plotted locations and the summits of some volcanoes seen in Google Earth satellite imagery occur for reasons including data precision (deg/min vs. deg/min/sec) and the GVP convention of plotting the center-point of large volcanic fields, which often do not correspond to specific volcanic vents. A more fundamental problem originates from the fact that

  8. Location, Location, Location!

    ERIC Educational Resources Information Center

    Ramsdell, Kristin

    2004-01-01

    Of prime importance in real estate, location is also a key element in the appeal of romances. Popular geographic settings and historical periods sell, unpopular ones do not--not always with a logical explanation, as the author discovered when she conducted a survey on this topic last year. (Why, for example, are the French Revolution and the…

  9. Subaerial, submarine and extraterrestrial volcanic morphologies: Comparisons and contrasts

    NASA Astrophysics Data System (ADS)

    Gregg, T. K.

    2013-12-01

    Interpretation of volcanic deposits on Mars is frustrated by lack of ground truth. Although orbiting instruments are collecting compositional data (as spectra), and rovers are providing detailed analyses of a few select areas on the surface, volcanic morphologies remain the primary means for our understanding of Martian volcanic behavior. Geologic mapping, combined with critical study of terrestrial analogs, provides a sound means for constraining the precise origin of volcanic deposits on Mars, Earth's sea floor, and the surfaces of the other terrestrial planets. Layered deposits within Hesperia Planum, Mars, and composing Tyrrhenus Mons (a low-relief central-vent volcano located within Hesperia Planum) have variously been interpreted to be: flood lavas, pyroclastic deposits (probably pyroclastic flows), or sedimentary deposits. Compositional data are not helpful here: the area is covered with sufficient dust to prevent orbiting instruments from measuring the bedrock composition. An additional complication is that these deposits were emplaced in the Noachian to Early Hesperian and have been subsequently modified by fluvial, mass wasting, and groundwater sapping processes. Comparing Martian deposits with terrestrial subaerial and submarine analogs provides necessary insight for interpreting the Martian deposits as effusive, explosive, or sedimentary. The planform margins of eroded subaerial ignimbrite deposits on Earth, for example, are locally dominated by aeolian exploitation of contraction cooling joints and have a crenulated margin. In contrast, the planform shape of seamounts reflects competing forces of accumulation of lava with simultaneous mass-wasting of oversteepened slopes, resulting in an almost stellate outline. Sedimentary deposits are unlikely to display thermal jointing, but may have jointing caused by local tectonics. Thus, determining the nature of these (and other) layered deposits requires the compilation of a 'preponderance of evidence

  10. Nyiragonga Volcano

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image of the Nyiragonga volcano eruption in the Congo was acquired on January 28, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    Image: A river of molten rock poured from the Nyiragongo volcano in the Congo on January 18, 2002, a day after it erupted, killing dozens, swallowing buildings and forcing hundreds of thousands to flee the town of Goma. The flow continued into Lake Kivu. The lave flows are depicted in red on the image indicating they are still hot. Two of them flowed south form the volcano's summit and went through the town of Goma. Another flow can be seen at the top of the image, flowing towards the northwest. One of Africa's most notable volcanoes, Nyiragongo contained an active lava lake in its deep summit crater that drained catastrophically through its outer flanks in 1977. Extremely fluid, fast-moving lava flows draining from the summit lava lake in 1977 killed 50 to 100 people, and several villages were destroyed. The image covers an area of 21 x 24 km and combines a thermal band in red, and two infrared bands in green and blue.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the

  11. Volcanostratigraphic Approach for Evaluation of Geothermal Potential in Galunggung Volcano

    NASA Astrophysics Data System (ADS)

    Ramadhan, Q. S.; Sianipar, J. Y.; Pratopo, A. K.

    2016-09-01

    he geothermal systems in Indonesia are primarily associated with volcanoes. There are over 100 volcanoes located on Sumatra, Java, and in the eastern part of Indonesia. Volcanostratigraphy is one of the methods that is used in the early stage for the exploration of volcanic geothermal system to identify the characteristics of the volcano. The stratigraphy of Galunggung Volcano is identified based on 1:100.000 scale topographic map of Tasikmalaya sheet, 1:50.000 scale topographic map and also geological map. The schematic flowchart for evaluation of geothermal exploration is used to interpret and evaluate geothermal potential in volcanic regions. Volcanostratigraphy study has been done on Galunggung Volcano and Talaga Bodas Volcano, West Java, Indonesia. Based on the interpretation of topographic map and analysis of the dimension, rock composition, age and stress regime, we conclude that both Galunggung Volcano and Talaga Bodas Volcano have a geothermal resource potential that deserve further investigation.

  12. Discovery of the Largest Historic Silicic Submarine Eruption

    NASA Astrophysics Data System (ADS)

    Carey, Rebecca J.; Wysoczanski, Richard; Wunderman, Richard; Jutzeler, Martin

    2014-05-01

    It was likely twice the size of the renowned Mount St. Helens eruption of 1980 and perhaps more than 10 times bigger than the more recent 2010 Eyjafjallajökull eruption in Iceland. However, unlike those two events, which dominated world news headlines, in 2012 the daylong submarine silicic eruption at Havre volcano in the Kermadec Arc, New Zealand (Figure 1a; ~800 kilometers north of Auckland, New Zealand), passed without fanfare. In fact, for a while no one even knew it had occurred.

  13. Absolute and relative locations of earthquakes at Mount St. Helens, Washington, using continuous data: implications for magmatic processes: Chapter 4 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Thelen, Weston A.; Crosson, Robert S.; Creager, Kenneth C.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    This study uses a combination of absolute and relative locations from earthquake multiplets to investigate the seismicity associated with the eruptive sequence at Mount St. Helens between September 23, 2004, and November 20, 2004. Multiplets, a prominent feature of seismicity during this time period, occurred as volcano-tectonic, hybrid, and low-frequency earthquakes spanning a large range of magnitudes and lifespans. Absolute locations were improved through the use of a new one-dimensional velocity model with excellent shallow constraints on P-wave velocities. We used jackknife tests to minimize possible biases in absolute and relative locations resulting from station outages and changing station configurations. In this paper, we show that earthquake hypocenters shallowed before the October 1 explosion along a north-dipping structure under the 1980-86 dome. Relative relocations of multiplets during the initial seismic unrest and ensuing eruption showed rather small source volumes before the October 1 explosion and larger tabular source volumes after October 5. All multiplets possess absolute locations very close to each other. However, the highly dissimilar waveforms displayed by each of the multiplets analyzed suggest that different sources and mechanisms were present within a very small source volume. We suggest that multiplets were related to pressurization of the conduit system that produced a stationary source that was highly stable over long time periods. On the basis of their response to explosions occurring in October 2004, earthquakes not associated with multiplets also appeared to be pressure dependent. The pressure source for these earthquakes appeared, however, to be different from the pressure source of the multiplets.

  14. Relationship between morphological feature of submarine landslides and geological condition -focus on Oshima-Oshima, Kaimon and Hawaii regions-

    NASA Astrophysics Data System (ADS)

    Kaji, T.; Yamazaki, H.; Kato, Y.

    2008-12-01

    Huge submarine landslides which generate the tsunami are found in the world. Those submarine landslides are generated by the collapse of the volcano and an unstable slope of sediments on the continental shelf. It is thought that a generation mechanism and morphological features of submarine landslides are different according to the environment (geological condition, topography, and transportation mechanism, etc) in each region. We compared submarine landslides in three different regions to clarify the relation of them. The comparison items are geological condition, morphological feature, form of submarine landslide and transportation mechanism. Oshima-Oshima is a volcanic island and tsunami was generated by collapse of volcanic edifice in 1741 eruption. Kaimon submarine landslide was generated by collapse of continental shelf slope off Kaimon volcano which has acted since 4000BP. There are many submarine landslides around Hawaii Islands. Nuuanu-Wailau submarine landslides are peculiar in those submarine landslides. Moreover, we compare some submarine landslides around Hawaii islands with Oshima-Oshima debris avalanche. Both Oshima-Oshima and Hawaii islands are volcanic islands, however the morphological features are different. As a morphological feature, Oshima-Oshima has thick sediment of 100-120m in front of collapse area and those sediment thins with distance. Nuuanu-Wailau submarine landslides have sediment including a huge blocks of 2km height at equal intervals around Hawaii islands. On the other hand, Kaimon submarine landslide has evenly thin sediment as a non volcanic type. In addition, in the case of Nuuanu-Wailau slides are smaller than Oshima-Oshima's case when we think about sediment extension to lateral side. Especially, sediment extension of Kaimon submarine landslide is small. These sediment distributions are related to the transportation mechanism. In general, sediment gravity flow is divided into 4 types (turbidity current, fluidized sediment flow

  15. Submarine landslides in Society and Austral Islands, French Polynesia: Evolution with the age of the edifices

    NASA Astrophysics Data System (ADS)

    Clouard, V.; Bonneville, A.

    2003-04-01

    This paper presents descriptions of numerous submarine landslides in French Polynesia. This inventory shows an evolution of the landslide type with the age of oceanic islands. Submarine active volcanoes are subject to superficial landslides of fragmental material whereas young islands exhibit marks of mass wasting corresponding to giant lateral collapses due to debris avalanche that occurred during the period of volcanic activity. Later, erosional processes generate sand-rubble flows and lead the islands to the stellate morphology known on atolls and guyots. In addition, Tupai atoll and Rurutu Island have been subject to giant slump that deeply modify their shape.

  16. The Initiation of Submarine Debris Flow after 2006 Pingtung Earthquake Offshore Southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Su, C. C.; Liu, J. T.; Chiu, H. T.; Li, S. J.

    2014-12-01

    On 26-27 December 2006, a series of submarine cables were damaged offshore southwestern Taiwan from Gaoping Slope to the northern terminus of the Manila Trench. The cable breakages were caused by gravity flows which triggered by the Pingtung earthquake doublet occurred on 26 December 2006 at 20:26 (21.9°N, 120.6°E; ML 7.0) and 20:34 (21.97°N, 120.42°E; ML 7.0) offshore of Fangliao Twonship and meanwhile the local fishermen reported disturbed waters at the head of Fangliao submarine canyon. Although many researchers conjectured the disturbed waters may cause by the eruption of submarine volcanoes which has been widely discovered off the southwestern Taiwan, the actual mechanism is still unclear. In previous studies, a series of faults, liquefaction strata, pockmarks and acoustically transparent sediments with doming structures were observed at the head of Fanliao submarine canyon and may highly related to the submarine groundwater discharge off southwestern Taiwan. Recently, further multi-beam surveys were conducted at the east of Fangliao submarine canyon head and the result shows large area of seafloor subsidence after Pingtung Earthquake. The area of subsidence is over 60 km2 with maximum depth around 5 meters. The north end of the subsidence is connected to the Fangliao submarine canyon where the first cable was failed (CH-US CN-W2-1: 22°13.287'N, 120°33.722'E) after Pingtung Earthquake. All the evidences point out the large earthquake might triggered liquefaction process and generated large debris flow and swept the submarine cables away from the Fangliao submarine canyon head to the abyss.

  17. Observations on the Origin of Submarine Volcanic Cone Morphologies in Hawaii

    NASA Astrophysics Data System (ADS)

    Reynolds, J. R.; Clague, D. A.; Hon, K.; Dixon, J. E.; Cousens, B. L.

    2001-12-01

    Our recent models for the formation of flat-topped and pointed volcanic cones on the submarine flanks of the Hawaiian islands were based on 30 kHz multibeam bathymetry and backscatter data and the few existing samples [Clague et al., Bull. Volcanol. 62, 214-233, 2000]. During MBARI's Hawaii expedition in April-May 2001, we used the ROV TIBURON to further investigate the origins of volcanic cones. Pointed cones have steep, symmetrical, smooth slopes with no discernible summit platform. We proposed that these were monogenetic cones constructed of a uniform type of fragmental volcanic products in the manner of cinder cones on land; major differences are that submarine pointed cones are taller and do not have summit craters. Observations from dives on three such cones on the NW flank of Ni`ihau showed that the smooth acoustic character of the slopes cannot be attributed either to sediment cover or to the specific nature of volcanic products on the cones' surfaces (e.g., volcaniclastics vs. talus vs. pillow lava), but instead to a uniform distribution of these products. One of the cones is partly dissected and eroded, exposing bedded volcaniclastics in both interior and exterior, but near the summit its surface is mantled by pillow lava. The other two are located 600m apart and are composed of geochemically similar hawaiites, suggesting that they represent two vents from the same eruption. These observations are consistent with our proposal that these pointed cones were constructed by vigorous eruption of fragmental ejecta, and this gives them their steep, pointed shape. The pillow lava is a thin veneer extruded at lower effusion rate during the waning stage of eruptions. New samples from these three pointed cones are vesicular hawaiite similar to Ni'ihau's subaerial postshield alkalic lavas, and confirm that pointed cones form by eruptions of gas-rich alkalic lavas. Flat-topped volcanic cones are found on the tholeiitic submarine rift zones of all mature Hawaiian

  18. Lifespans of Cascade Arc volcanoes

    NASA Astrophysics Data System (ADS)

    Calvert, A. T.

    2015-12-01

    Compiled argon ages reveal inception, eruptive episodes, ages, and durations of Cascade stratovolcanoes and their ancestral predecessors. Geologic mapping and geochronology show that most Cascade volcanoes grew episodically on multiple scales with periods of elevated behavior lasting hundreds of years to ca. 100 kyr. Notable examples include the paleomag-constrained, few-hundred-year-long building of the entire 15-20 km3 Shastina edifice at Mt. Shasta, the 100 kyr-long episode that produced half of Mt. Rainier's output, and the 30 kyr-long episode responsible for all of South and Middle Sister. Despite significant differences in timing and rates of construction, total durations of active and ancestral volcanoes at discrete central-vent locations are similar. Glacier Peak, Mt. Rainier, Mt. Adams, Mt. Hood, and Mt. Mazama all have inception ages of 400-600 ka. Mt. St. Helens, Mt. Jefferson, Newberry Volcano, Mt. Shasta and Lassen Domefield have more recent inception ages of 200-300 ka. Only the Sisters cluster and Mt. Baker have established eruptive histories spanning less than 50 kyr. Ancestral volcanoes centered 5-20 km from active stratocones appear to have similar total durations (200-600 kyr), but are less well exposed and dated. The underlying mechanisms governing volcano lifecycles are cryptic, presumably involving tectonic and plumbing changes and perhaps circulation cycles in the mantle wedge, but are remarkably consistent along the arc.

  19. Seismic signals from Lascar Volcano

    NASA Astrophysics Data System (ADS)

    Hellweg, M.

    1999-03-01

    Lascar, the most active volcano in northern Chile, lies near the center of the region studied during the Proyecto de Investigación Sismológica de la Cordillera Occidental 94 (PISCO '94). Its largest historical eruption occurred on 19 April 1993. By the time of the PISCO '94 deployment, its activity consisted mainly of a plume of water vapor and SO 2. In April and May 1994, three short-period, three-component seismometers were placed on the flanks of the volcano, augmenting the broadband seismometer located on the NW flank of the volcano during the entire deployment. In addition to the usual seismic signals recorded at volcanoes, Lascar produced two unique tremor types: Rapid-fire tremor and harmonic tremor. Rapid-fire tremor appears to be a sequence of very similar, but independent, "impulsive" events with a large range of amplitudes. Harmonic tremor, on the other hand, is a continuous, cyclic signal lasting several hours. It is characterized by a spectrum with peaks at a fundamental frequency and its integer multiples. Both types of tremor seem to be generated by movement of fluids in the volcano, most probably water, steam or gas.

  20. Current submarine atmosphere control technology.

    PubMed

    Mazurek, W

    1998-01-01

    Air purification in submarines was introduced towards the end of World War II and was limited to the use of soda lime for the removal of carbon dioxide and oxygen candles for the regeneration of oxygen. The next major advances came with the advent of nuclear-powered submarines. These included the development of regenerative and, sometimes, energy-intensive processes for comprehensive atmosphere revitalization. With the present development of conventional submarines using air-independent propulsion there is a requirement for air purification similar to that of the nuclear-powered submarines but it is constrained by limited power and space. Some progress has been made in the development of new technology and the adoption of air purification equipment used in the nuclear-powered submarines for this application.

  1. Acoustic scattering from mud volcanoes and carbonate mounds.

    PubMed

    Holland, Charles W; Weber, Thomas C; Etiope, Giuseppe

    2006-12-01

    Submarine mud volcanoes occur in many parts of the world's oceans and form an aperture for gas and fluidized mud emission from within the earth's crust. Their characteristics are of considerable interest to the geology, geophysics, geochemistry, and underwater acoustics communities. For the latter, mud volcanoes are of interest in part because they pose a potential source of clutter for active sonar. Close-range (single-interaction) scattering measurements from a mud volcano in the Straits of Sicily show scattering 10-15 dB above the background. Three hypotheses were examined concerning the scattering mechanism: (1) gas entrained in sediment at/near mud volcano, (2) gas bubbles and/or particulates (emitted) in the water column, (3) the carbonate bio-construction covering the mud volcano edifice. The experimental evidence, including visual, acoustic, and nonacoustic sensors, rules out the second hypothesis (at least during the observation time) and suggests that, for this particular mud volcano the dominant mechanism is associated with carbonate chimneys on the mud volcano. In terms of scattering levels, target strengths of 4-14 dB were observed from 800 to 3600 Hz for a monostatic geometry with grazing angles of 3-5 degrees. Similar target strengths were measured for vertically bistatic paths with incident and scattered grazing angles of 3-5 degrees and 33-50 degrees, respectively.

  2. Flushing submarine canyons.

    PubMed

    Canals, Miquel; Puig, Pere; de Madron, Xavier Durrieu; Heussner, Serge; Palanques, Albert; Fabres, Joan

    2006-11-16

    The continental slope is a steep, narrow fringe separating the coastal zone from the deep ocean. During low sea-level stands, slides and dense, sediment-laden flows erode the outer continental shelf and the continental slope, leading to the formation of submarine canyons that funnel large volumes of sediment and organic matter from shallow regions to the deep ocean(1). During high sea-level stands, such as at present, these canyons still experience occasional sediment gravity flows(2-5), which are usually thought to be triggered by sediment failure or river flooding. Here we present observations from a submarine canyon on the Gulf of Lions margin, in the northwest Mediterranean Sea, that demonstrate that these flows can also be triggered by dense shelf water cascading (DSWC)-a type of current that is driven solely by seawater density contrast. Our results show that DSWC can transport large amounts of water and sediment, reshape submarine canyon floors and rapidly affect the deep-sea environment. This cascading is seasonal, resulting from the formation of dense water by cooling and/or evaporation, and occurs on both high- and low-latitude continental margins(6-8). DSWC may therefore transport large amounts of sediment and organic matter to the deep ocean. Furthermore, changes in the frequency and intensity of DSWC driven by future climate change may have a significant impact on the supply of organic matter to deep-sea ecosystems and on the amount of carbon stored on continental margins and in ocean basins.

  3. Submarine laser communications

    NASA Astrophysics Data System (ADS)

    McConathy, D. R.

    The Department of the Navy and the Defense Advanced Research Projects Agency (DARPA) are sponsoring a joint study to investigate the use of blue-green laser technology to comunicate with submarines at operating depths. Two approaches are under investigation - one in which the laser itself is space-based, and the other in which the laser is ground-based with its beam redirected to the earth's surface by an orbiting mirror. This paper discusses these two approaches, and presents a brief history of activities which led to the current studies.

  4. Transport of Fine Ash Through the Water Column at Erupting Volcanoes - Monowai Cone, Kermadec-Tonga Arc

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Baker, E. T.; Leybourne, M. I.; de Ronde, C. E.; Greene, R.; Faure, K.; Chadwick, W.; Dziak, R. P.; Lupton, J. E.; Lebon, G.

    2010-12-01

    Monowai cone is a large, active, basaltic stratovolcano, part of the submarine Monowai volcanic center (MVC) located at ~26°S on the Kermadec-Tonga arc. At other actively erupting submarine volcanoes, magma extrusions and hydrothermal vents have been located only near the summit of the edifice, generating plumes enriched with hydrothermal components and magmatic gasses that disperse into the ocean environment at, or shallower than, the summit depth. Plumes found deeper than summit depths are dominated by fresh volcaniclastic ash particles, devoid of hydrothermal tracers, emplaced episodically by down-slope gravity flows, and transport fine ash to 10’s of km from the active eruptions. A water column survey of the MVC in 2004 mapped intensely hydrothermal-magmatic plumes over the shallow (~130 m) summit of Monowai cone and widespread plumes around its flanks. Due to the more complex multiple parasitic cone and caldera structure of MVC, we analyzed the dissolved and particulate components of the flank plumes for evidence of additional sources. Although hydrothermal plumes exist within the adjacent caldera, none of the parasitic cones on Monowai cone or elsewhere within the MVC were hydrothermally or volcanically active. The combination of an intensely enriched summit plume, sulfur particles and bubbles at the sea surface, and ash-dominated flank plumes indicate Monowai cone was actively erupting at the time of the 2004 survey. Monowai cone is thus the fourth erupting submarine volcano we have encountered, and all have had deep ash plumes distributed around their flanks [the others are: Kavachi (Solomon Island arc), NW Rota-1 (Mariana arc) and W Mata (NE Lau basin)]. These deep ash plumes are a syneruptive phenomenon, but it is unknown how they are related to eruptive style and output, or to the cycles of construction and collapse that occur on the slopes of submarine volcanoes. Repeat multibeam bathymetric surveys have documented two large-scale sector collapse

  5. Submarine fresh water outflow detection with a dual-frequency microwave and an infrared radiometer system

    NASA Technical Reports Server (NTRS)

    Blume, H.-J. C.; Kendall, B. M.; Fedors, J. C.

    1981-01-01

    Since infrared measurements are only very slightly affected by whitecap and banking angle influences, the combined multifrequency radiometric signatures of the L-band, the S-band, and an infrared radiometer are used in identifying freshwater outflows (submerged and superficial). To separate the river and lagoon outflows from the submarine outflows, geographical maps with a scale of 1:100,000 are used. In all, 44 submarine freshwater springs are identified. This is seen as indicating that the submarine freshwater outflow locations are more numerous around the island than had earlier been estimated. Most of the submarine springs are located at the northwest and southeast portion of the Puerto Rican coastline; the success in detecting the submarine springs during both missions at the northwest portion of the island is 39%. Salinity and temperature distribution plots along the flight path in longitude and latitude coordinates reveal that runoff direction can be determined.

  6. Seismicity and active tectonics at Coloumbo Reef (Aegean Sea, Greece): Monitoring an active volcano at Santorini Volcanic Center using a temporary seismic network

    NASA Astrophysics Data System (ADS)

    Dimitriadis, I.; Karagianni, E.; Panagiotopoulos, D.; Papazachos, C.; Hatzidimitriou, P.; Bohnhoff, M.; Rische, M.; Meier, T.

    2009-02-01

    The volcanic center of Santorini Island is the most active volcano of the southern Aegean volcanic arc. Α dense seismic array consisting of fourteen portable broadband seismological stations has been deployed in order to monitor and study the seismo-volcanic activity at the broader area of the Santorini volcanic center between March 2003 and September 2003. Additional recordings from a neighbouring larger scale temporary network (CYCNET) were also used for the relocation of more than 240 earthquakes recorded by both arrays. A double-difference relocation technique was used, in order to obtain optimal focal parameters for the best-constrained earthquakes. The results indicate that the seismic activity of the Santorini volcanic center is strongly associated with the tectonic regime of the broader Southern Aegean Sea area as well as with the volcanic processes. The main cluster of the epicenters is located at the Coloumbo Reef, a submarine volcano of the volcanic system of Santorini Islands. A smaller cluster of events is located near the Anydros Islet, aligned in a NE-SW direction, running almost along the main tectonic feature of the area under study, the Santorini-Amorgos Fault Zone. In contrast, the main Santorini Island caldera is characterized by the almost complete absence of seismicity. This contrast is in very good agreement with recent volcanological and marine studies, with the Coloumbo volcanic center showing an intense high-temperature hydrothermal activity, in comparison to the corresponding low-level activity of the Santorini caldera. The high-resolution hypocentral relocations present a clear view of the volcanic submarine structure at the Coloumbo Reef, showing that the main seismic activity is located within a very narrow vertical column, mainly at depths between 6 and 9 km. The focal mechanisms of the best-located events show that the cluster at the Coloumbo Reef is associated with the "Kameni-Coloumbo Fracture Zone", which corresponds to the

  7. Multifrequency radiometer detection of submarine freshwater sources along the Puerto Rican coastline

    NASA Technical Reports Server (NTRS)

    Blume, H.-J. C.; Kendall, B. M.; Fedors, J. C.

    1981-01-01

    The surface area above submarine springs of fresh water exhibit temperatures and salinities lower than the surrounding sea waters. A multifrequency radiometer system which earlier demonstrated an accuracy of 1 degree C and 1 part per thousand in remotely detecting the surface temperature and salinities, respectively, was used to detect submarine freshwater springs. The first mission on February 4, 1978, consisted of overflight measurements over three fourths of the coastal areas around the Island of Puerto Rico. During the second mission on February 6, 1978, special attention was directed to the northwest portion of Puerto Rico where several submarine springs had been reported. The previously reported spring locations correlated well with the locations detected by the radiometers. After separating the surface runoffs such as rivers, lagoons, marshes, and bays, 44 submarine freshwater springs were identified which indicates that the submarine freshwater outflow locations are more numerous around the island than had earlier been estimated. The majority of the submarine springs are located at the northwest and southeast portion of the Puerto Rican coastline. The success of detecting the same submarine springs during both missions at the northwest portion of the island was 39%.

  8. Revisiting Jorullo volcano (Mexico): monogenetic or polygenetic volcano?

    NASA Astrophysics Data System (ADS)

    Delgado Granados, H.; Roberge, J.; Farraz Montes, I. A.; Victoria Morales, A.; Pérez Bustamante, J. C.; Correa Olan, J. C.; Gutiérrez Jiménez, A. J.; Adán González, N.; Bravo Cardona, E. F.

    2007-05-01

    Jorullo volcano is located near the volcanic front of the westernmost part of the Trans-Mexican Volcanic Belt, which is related to the subduction of the Cocos plate beneath the North American plate. This part of the TMVB is known as the Michoacán-Guanajuato Volcanic Field, a region where widespread monogenetic volcanism is present although polygenetic volcanism is also recognized (i. e. Tancítaro volcano; Ownby et al., 2006). Jorullo volcano was born in the middle of crop fields. During its birth several lava flows were emitted and several cones were constructed. The main cone is the Jorullo proper, but there is a smaller cone on the north (Volcán del Norte), and three smaller cones aligned N-S on the south (Unnamed cone, UC; Volcán de Enmedio, VE; and Volcán del Sur, VS). The cone of Jorullo volcano is made up of tephra and lava flows erupted from the crater. The three southern cones show very interesting histories not described previously. VE erupted highly vesiculated tephras including xenoliths from the granitic basement. VS is made of spatter and bombs. A very well preserved hummocky morphology reveals that VE and VS collapsed towards the west. After the collapses, phreatomagmatic activity took place at the UC blanketing VE, VS and the southern flank of the Jorullo cone with sticky surge deposits. The excellent study by Luhr and Carmichael (1985) indicates that during the course of the eruption, lavas evolved from primitive basalt to basaltic andesite, although explosive products show a reverse evolution pattern (Johnson et al., 2006). We mapped lava flows not described by the observers in the 18th century nor considered in previous geologic reports as part of the Jorullo lavas. These lavas are older, distributed to the west and south, and some of them resemble the lava flows from La Pilita volcano, a cone older than Jorullo (Luhr and Carmichael, 1985). These lava flows were not considered before because they were not extruded during the 1759

  9. Hawaiian submarine manganese-iron oxide crusts - A dating tool?

    USGS Publications Warehouse

    Moore, J.G.; Clague, D.A.

    2004-01-01

    Black manganese-iron oxide crusts form on most exposed rock on the ocean floor. Such crusts are well developed on the steep lava slopes of the Hawaiian Ridge and have been sampled during dredging and submersible dives. The crusts also occur on fragments detached from bedrock by mass wasting, on submerged coral reefs, and on poorly lithified sedimentary rocks. The thickness of the crusts was measured on samples collected since 1965 on the Hawaiian Ridge from 140 dive or dredge localities. Fifty-nine (42%) of the sites were collected in 2001 by remotely operated vehicles (ROVs). The thinner crusts on many samples apparently result from post-depositional breakage, landsliding, and intermittent burial of outcrops by sediment. The maximum crust thickness was selected from each dredge or dive site to best represent crusts on the original rock surface at that site. The measurements show an irregular progressive thickening of the crusts toward the northwest-i.e., progressive thickening toward the older volcanic features with increasing distance from the Hawaiian hotspot. Comparison of the maximum crust thickness with radiometric ages of related subaerial features supports previous studies that indicate a crust-growth rate of about 2.5 mm/m.y. The thickness information not only allows a comparison of the relative exposure ages of two or more features offshore from different volcanoes, but also provides specific age estimates of volcanic and landslide deposits. The data indicate that some of the landslide blocks within the south Kona landslide are the oldest exposed rock on Mauna Loa, Kilauea, or Loihi volcanoes. Crusts on the floors of submarine canyons off Kohala and East Molokai volcanoes indicate that these canyons are no longer serving as channelways for downslope, sediment-laden currents. Mahukona volcano was approximately synchronous with Hilo Ridge, both being younger than Hana Ridge. The Nuuanu landslide is considerably older than the Wailau landslide. The Waianae

  10. Geologic Map of the Summit Region of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Neal, Christina A.; Lockwood, John P.

    2003-01-01

    This report consists of a large map sheet and a pamphlet. The map shows the geology, some photographs, description of map units, and correlation of map units. The pamphlet gives the full text about the geologic map. The area covered by this map includes parts of four U.S. Geological Survey 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water; the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones.

  11. Bathymetry of the southwest flank of Mauna Loa Volcano, Hawaii

    USGS Publications Warehouse

    Chadwick, William W.; Moore, James G.; Fox, Christopher G.

    1994-01-01

    Much of the seafloor topography in the map area is on the southwest submarine flank of the currently active Mauna Loa Volcano. The benches and blocky hills shown on the map were shaped by giant landslides that resulted from instability of the rapidly growing volcano. These landslides were imagined during a 1986 to 1991 swath sonar program of the United States Hawaiian Exclusive Economic Zone, a cooperative venture by the U.S. Geological Survey and the British Institute of Oceanographic Sciences (Lipman and others, 1988; Moore and others, 1989). Dana Seamount (and probably also the neighboring Day Seamount) are apparently Cretaceous in age, based on paleomagnetic studies, and predate the growth of the Hawaiian Ridge volcanoes (Sager and Pringle, 1990).

  12. Postshield stage transitional volcanism on Mahukona Volcano, Hawaii

    USGS Publications Warehouse

    Clague, D.A.; Calvert, A.T.

    2009-01-01

    Age spectra from 40Ar/39Ar incremental heating experiments yield ages of 298??25 ka and 310??31 ka for transitional composition lavas from two cones on submarine Mahukona Volcano, Hawaii. These ages are younger than the inferred end of the tholeiitic shield stage and indicate that the volcano had entered the postshield alkalic stage before going extinct. Previously reported elevated helium isotopic ratios of lavas from one of these cones were incorrectly interpreted to indicate eruption during a preshield alkalic stage. Consequently, high helium isotopic ratios are a poor indicator of eruptive stage, as they occur in preshield, shield, and postshield stage lavas. Loihi Seamount and Kilauea are the only known Hawaiian volcanoes where the volume of preshield alkalic stage lavas can be estimated. ?? Springer-Verlag 2008.

  13. Focus: alien volcanos

    NASA Astrophysics Data System (ADS)

    Carroll, Michael; Lopes, Rosaly

    2007-03-01

    Part 1: Volcanoes on Earth - blowing their top; Part 2: Volcanoes of the inner Solar System - dead or alive: the Moon, Mercury, Mars, Venus; Part 3: Volcanoes of the outer Solar System - fire and ice: Io, Europa, Ganymede and Miranda, Titan, Triton, Enceladus.

  14. A Scientific Excursion: Volcanoes.

    ERIC Educational Resources Information Center

    Olds, Henry, Jr.

    1983-01-01

    Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)

  15. Submarine lithification of carbonate sediments.

    PubMed

    Milliman, J D

    1966-08-26

    Recrystallized planktonic limestones from two guyots in the North Atlantic are in oxygen-isotopic equilibrium with their present ambient waters, suggesting submarine lithifica tion and recrystallization. The early stages of submarine lithification of carbonates may involve precipitation of, and replacement by, magnesium-rich calcite; with time this may invert to magnesium-poor calcite. This type of lithification probably requires very low rates of sediment accumulation.

  16. Active control of radiated pressure of a submarine hull

    NASA Astrophysics Data System (ADS)

    Pan, Xia; Tso, Yan; Juniper, Ross

    2008-03-01

    A theoretical analysis of the active control of low-frequency radiated pressure from submarine hulls is presented. Two typical hull models are examined in this paper. Each model consists of a water-loaded cylindrical shell with a hemispherical shell at one end and conical shell at the other end, which forms a simple model of a submarine hull. The conical end is excited by an axial force to simulate propeller excitations while the other end is free. The control action is implemented through a Tee-sectioned circumferential stiffener driven by pairs of PZT stack actuators. These actuators are located under the flange of the stiffener and driven out of phase to produce a control moment. A number of cost functions for minimizing the radiated pressure are examined. In general, it was found that the control system was capable of reducing more than half of the total radiated pressure from each of the submarine hull for the first three axial modes.

  17. Magmatic sill intrusions beneath El Hierro Island following the 2011-2012 submarine eruption

    NASA Astrophysics Data System (ADS)

    Benito-Saz, María Á.; Sigmundsson, Freysteinn; Parks, Michelle M.; García-Cañada, Laura; Domínguez Cerdeña, Itahiza

    2016-04-01

    El Hierro, the most southwestern island of Canary Islands, Spain, is a volcano rising from around 3600 m above the ocean floor and up to of 1500 m above sea level. A submarine eruption occurred off the coast of El Hierro in 2011-2012, which was the only confirmed eruption in the last ~ 600 years. Activity continued after the end of the eruption with six magmatic intrusions occurring between 2012-2014. Each of these intrusions was characterized by hundreds of earthquakes and 3-19 centimeters of observed ground deformation. Ground displacements at ten continuous GPS sites were initially inverted to determine the optimal source parameters (location, geometry, volume/pressure change) that best define these intrusions from a geodetic point of view. Each intrusive period appears to be associated with the formation of a separate sill, with inferred volumes between 0.02 - 0.3 km3. SAR images from the Canadian RADARSAT-2 satellite and the Italian Space Agency COSMO-SkyMed constellation have been used to produce high-resolution detailed maps of line-of-sight displacements for each of these intrusions. These data have been combined with the continuous GPS observations and a joint inversion undertaken to gain further constraints on the optimal source parameters for each of these separate intrusive events. The recorded activity helps to understand how an oceanic intraplate volcanic island grows through repeated sill intrusions; well documented by seismic, GPS and InSAR observations in the case of the El Hierro activity.

  18. Did the crew of the submarine H.L. Hunley suffocate?

    PubMed

    Lance, Rachel M; Moon, Richard E; Crisafulli, Michael; Bass, Cameron R

    2016-03-01

    On the evening of February 17th, 1864, the Confederate submarine H.L. Hunley attacked the Union ship USS Housatonic outside Charleston, South Carolina and became the first submarine in history to successfully sink an enemy ship in combat. One hypothesis for the sinking of the Confederate submarine H.L. Hunley is that the crew, in the enclosed vessel, suffered a lack of oxygen and suffocated. This study estimates the effects of hypoxia and hypercapnia on the crew based on submarine gas volume and crew breathing dynamics. The calculations show the crew of the Hunley had a minimum of 10 min between the onset of uncomfortable hypercapnia symptoms and danger of loss of consciousness from hypoxia. Based on this result and the location of the crew when discovered, hypoxia and hypercapnia do not explain the sinking of the world's first successful combat submarine.

  19. Laboratory simulation of volcano seismicity.

    PubMed

    Benson, Philip M; Vinciguerra, Sergio; Meredith, Philip G; Young, R Paul

    2008-10-10

    The physical processes generating seismicity within volcanic edifices are highly complex and not fully understood. We report results from a laboratory experiment in which basalt from Mount Etna volcano (Italy) was deformed and fractured. The experiment was monitored with an array of transducers around the sample to permit full-waveform capture, location, and analysis of microseismic events. Rapid post-failure decompression of the water-filled pore volume and damage zone triggered many low-frequency events, analogous to volcanic long-period seismicity. The low frequencies were associated with pore fluid decompression and were located in the damage zone in the fractured sample; these events exhibited a weak component of shear (double-couple) slip, consistent with fluid-driven events occurring beneath active volcanoes.

  20. Swath sonar mapping of Earth's submarine plate boundaries

    NASA Astrophysics Data System (ADS)

    Carbotte, S. M.; Ferrini, V. L.; Celnick, M.; Nitsche, F. O.; Ryan, W. B. F.

    2014-12-01

    The recent loss of Malaysia Airlines flight MH370 in an area of the Indian Ocean where less than 5% of the seafloor is mapped with depth sounding data (Smith and Marks, EOS 2014) highlights the striking lack of detailed knowledge of the topography of the seabed for much of the worlds' oceans. Advances in swath sonar mapping technology over the past 30 years have led to dramatic improvements in our capability to map the seabed. However, the oceans are vast and only an estimated 10% of the seafloor has been mapped with these systems. Furthermore, the available coverage is highly heterogeneous and focused within areas of national strategic priority and community scientific interest. The major plate boundaries that encircle the globe, most of which are located in the submarine environment, have been a significant focus of marine geoscience research since the advent of swath sonar mapping. While the location of these plate boundaries are well defined from satellite-derived bathymetry, significant regions remain unmapped at the high-resolutions provided by swath sonars and that are needed to study active volcanic and tectonic plate boundary processes. Within the plate interiors, some fossil plate boundary zones, major hotspot volcanoes, and other volcanic provinces have been the focus of dedicated research programs. Away from these major tectonic structures, swath mapping coverage is limited to sparse ocean transit lines which often reveal previously unknown deep-sea channels and other little studied sedimentary structures not resolvable in existing low-resolution global compilations, highlighting the value of these data even in the tectonically quiet plate interiors. Here, we give an overview of multibeam swath sonar mapping of the major plate boundaries of the globe as extracted from public archives. Significant quantities of swath sonar data acquired from deep-sea regions are in restricted-access international archives. Open access to more of these data sets would

  1. Volcano Seismology

    NASA Astrophysics Data System (ADS)

    Chouet, B.

    - A fundamental goal of volcano seismology is to understand active magmatic systems, to characterize the configuration of such systems, and to determine the extent and evolution of source regions of magmatic energy. Such understanding is critical to our assessment of eruptive behavior and its hazardous impacts. With the emergence of portable broadband seismic instrumentation, availability of digital networks with wide dynamic range, and development of new powerful analysis techniques, rapid progress is being made toward a synthesis of high-quality seismic data to develop a coherent model of eruption mechanics. Examples of recent advances are: (1) high-resolution tomography to image subsurface volcanic structures at scales of a few hundred meters; (2) use of small-aperture seismic antennas to map the spatio-temporal properties of long-period (LP) seismicity; (3) moment tensor inversions of very-long-period (VLP) data to derive the source geometry and mass-transport budget of magmatic fluids; (4) spectral analyses of LP events to determine the acoustic properties of magmatic and associated hydrothermal fluids; and (5) experimental modeling of the source dynamics of volcanic tremor. These promising advances provide new insights into the mechanical properties of volcanic fluids and subvolcanic mass-transport dynamics. As new seismic methods refine our understanding of seismic sources, and geochemical methods better constrain mass balance and magma behavior, we face new challenges in elucidating the physico-chemical processes that cause volcanic unrest and its seismic and gas-discharge manifestations. Much work remains to be done toward a synthesis of seismological, geochemical, and petrological observations into an integrated model of volcanic behavior. Future important goals must include: (1) interpreting the key types of magma movement, degassing and boiling events that produce characteristic seismic phenomena; (2) characterizing multiphase fluids in subvolcanic

  2. Volcano seismology

    USGS Publications Warehouse

    Chouet, B.

    2003-01-01

    A fundamental goal of volcano seismology is to understand active magmatic systems, to characterize the configuration of such systems, and to determine the extent and evolution of source regions of magmatic energy. Such understanding is critical to our assessment of eruptive behavior and its hazardous impacts. With the emergence of portable broadband seismic instrumentation, availability of digital networks with wide dynamic range, and development of new powerful analysis techniques, rapid progress is being made toward a synthesis of high-quality seismic data to develop a coherent model of eruption mechanics. Examples of recent advances are: (1) high-resolution tomography to image subsurface volcanic structures at scales of a few hundred meters; (2) use of small-aperture seismic antennas to map the spatio-temporal properties of long-period (LP) seismicity; (3) moment tensor inversions of very-long-period (VLP) data to derive the source geometry and mass-transport budget of magmatic fluids; (4) spectral analyses of LP events to determine the acoustic properties of magmatic and associated hydrothermal fluids; and (5) experimental modeling of the source dynamics of volcanic tremor. These promising advances provide new insights into the mechanical properties of volcanic fluids and subvolcanic mass-transport dynamics. As new seismic methods refine our understanding of seismic sources, and geochemical methods better constrain mass balance and magma behavior, we face new challenges in elucidating the physico-chemical processes that cause volcanic unrest and its seismic and gas-discharge manifestations. Much work remains to be done toward a synthesis of seismological, geochemical, and petrological observations into an integrated model of volcanic behavior. Future important goals must include: (1) interpreting the key types of magma movement, degassing and boiling events that produce characteristic seismic phenomena; (2) characterizing multiphase fluids in subvolcanic

  3. Mount Rainier, a decade volcano

    SciTech Connect

    Kuehn, S.C.; Hooper, P.R. . Dept. of Geology); Eggers, A.E. . Dept. of Geology)

    1993-04-01

    Mount Rainier, recently designated as a decade volcano, is a 14,410 foot landmark which towers over the heavily populated southern Puget Sound Lowland of Washington State. It last erupted in the mid-1800's and is an obvious threat to this area, yet Rainier has received little detailed study. Previous work has divided Rainier into two distinct pre-glacial eruptive episodes and one post-glacial eruptive episode. In a pilot project, the authors analyzed 253 well-located samples from the volcano for 27 major and trace elements. Their objective is to test the value of chemical compositions as a tool in mapping the stratigraphy and understanding the eruptive history of the volcano which they regard as prerequisite to determining the petrogenesis and potential hazard of the volcano. The preliminary data demonstrates that variation between flows is significantly greater than intra-flow variation -- a necessary condition for stratigraphic use. Numerous flows or groups of flows can be distinguished chemically. It is also apparent from the small variation in Zr abundances and considerable variation in such ratios as Ba/Nb that fractional crystallization plays a subordinate role to some form of mixing process in the origin of the Mount Rainier lavas.

  4. Infrared surveys of Hawaiian volcanoes

    USGS Publications Warehouse

    Fischer, W. A.; Moxham, R.M.; Polcyn, F.; Landis, G.H.

    1964-01-01

    Aerial infrared-sensor surveys of Kilauea volcano have depicted the areal extent and the relative intensity of abnormal thermal features in the caldera area of the volcano and along its associated rift zones. Many of these anomalies show correlation with visible steaming and reflect convective transfer of heat to the surface from subterranean sources. Structural details of the volcano, some not evident from surface observation, are also delineated by their thermal abnormalities. Several changes were observed in the patterns of infrared emission during the period of study; two such changes show correlation in location with subsequent eruptions, but the cause-and-effect relationship is uncertain.Thermal anomalies were also observed on the southwest flank of Mauna Loa; images of other volcanoes on the island of Hawaii, and of Haleakala on the island of Maui, revealed no thermal abnormalities.Approximately 25 large springs issuing into the ocean around the periphery of Hawaii have been detected.Infrared emission varies widely with surface texture and composition, suggesting that similar observations may have value for estimating surface conditions on the moon or planets.

  5. Ceboruco Volcano Gravimetric Analysis, Mexico

    NASA Astrophysics Data System (ADS)

    Fernandez Cordoba, J.; Espindola, J. M.; Gutierrez, Q. J.; Garcia Serrano, A.; Zamora-Camacho, A.; Pinzon, J. I.; Nuñez-Cornu, F. J.

    2015-12-01

    The Ceboruco is a late Quaternary dacitic-andesitic stratovolcano, is located in the Tepic-Zacoalco graben in the western part of the Trans-Mexican Volcanic Belt (TMVB) near to Ahuacatlan and Jala towns in Mexico. There have been at least eight eruptions from this volcano in the last thousand years, and for this reason Ceboruco must be considered an active volcano whit the possibility of erupting again in the future. This work aims to contribute with a regional density contrasts model from gravity measurements of volcano area. 163 observations were measured every 500 meters with a Scintrex CG-5 gravimeter. We corrected data were measured in the area to filter information dependent of external gravitational fields or outside to object of study. Post-filtering of data, we obtained gravity anomalies distribution and with other supporting data (aeromagnetic and geological data) we made 8 profiles around Ceboruco to build an approximate model of density changes in the lithological units under the volcano.

  6. Cascades Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Driedger, Carolyn; Pallister, John

    2008-01-01

    Washington's Mount St. Helens volcano reawakens explosively on October 1, 2004, after 18 years of quiescence. Scientists at the U.S. Geological Survey's Cascades Volcano Observatory (CVO) study and observe Mount St. Helens and other volcanoes of the Cascade Range in Washington, Oregon, and northern California that hold potential for future eruptions. CVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Mount St. Helens and CVO at http://vulcan.wr.usgs.gov/.

  7. Exploration of the 1891 Foerstner submarine vent site (Pantelleria, Italy): insights into the formation of basaltic balloons

    NASA Astrophysics Data System (ADS)

    Kelly, Joshua T.; Carey, Steven; Pistolesi, Marco; Rosi, Mauro; Croff-Bell, Katherine Lynn; Roman, Chris; Marani, Michael

    2014-07-01

    On October 17, 1891, a submarine eruption started at Foerstner volcano located within the Pantelleria Rift of the Strait of Sicily (Italy). Activity occurred for a period of 1 week from an eruptive vent located 4 km northwest of the island of Pantelleria at a water depth of 250 m. The eruption produced lava balloons that discharged gas at the surface and eventually sank to the seafloor. Remotely operated vehicle (ROV) video footage and high-resolution multi-beam mapping of the Foerstner vent site were used to create a geologic map of the AD 1891 deposits and conduct the first detailed study of the source area associated with this unusual type of submarine volcanism. The main Foerstner vent consists of two overlapping circular mounds with a total volume of 6.3 × 105 m3 and relief of 60 m. It is dominantly constructed of clastic scoriaceous deposits with some interbedded pillow lavas. Petrographic and geochemical analyses of Foerstner samples by X-ray fluorescence and inductively coupled plasma mass spectrometry reveal that the majority of the deposits are vesicular, hypocrystalline basanite scoria that display porphyritic, hyaloophitic, and vitrophyric textures. An intact lava balloon recovered from the seafloor consists of a large interior gas cavity surrounded by a thin lava shell comprising two distinct layers: a thin, oxidized, quenched crust surrounding the exterior of the balloon and a dark gray, tachylite layer lying beneath it. Ostwald ripening is proposed to be the dominant bubble growth mechanism of four representative Foerstner scoria samples as inferred by vesicle size distributions. Characterization of the diversity of deposit facies observed at Foerstner in conjunction with quantitative rock texture analysis indicates that submarine Strombolian-like activity is the most likely mechanism for the formation of lava balloons. The deposit facies observed at the main Foerstner vent are very similar to those produced by other known submarine Strombolian

  8. Leakage of magmatic-hydrothermal volatiles from a crater bottom formed by a submarine eruption in 1989 at Teishi Knoll, Japan

    NASA Astrophysics Data System (ADS)

    Notsu, Kenji; Sohrin, Rumi; Wada, Hideki; Tsuboi, Tatsuya; Sumino, Hirochika; Mori, Toshiya; Tsunogai, Urumu; Hernández, Pedro A.; Suzuki, Yusuke; Ikuta, Ryoya; Oorui, Kohei; Koyama, Masato; Masuda, Toshiaki; Fujii, Naoyuki

    2014-01-01

    A submarine eruption occurred off the Izu Peninsula of Japan on 13 July 1989, forming Teishi Knoll, which has a diameter of 450 m and a height of ca. 10 m above the surrounding 90-100 m deep seafloor. Immediately after the eruption, intense gas release was observed from two vents in the crater. The gas bubbling gradually decreased and apparently ceased in 1990. Given that no survey has been undertaken to examine volatile release from the crater of Teishi Knoll, we collected seawater samples at three different sites from just above the crater bottom on 17 July 2012, in order to detect signs of magmatic volatile release. Seawater samples from the crater bottom have dissolved CH4 contents and δ13C values higher than those of shallower (50-100 m deep) seawater samples. Total inorganic carbon contents from the bottom seawater samples are also higher, and δ13C and Δ14C values lower than those of shallower seawater samples. These data indicate the addition of minor CH4 and CO2 of hydrothermal or magmatic origin to the bottom seawater from the crater. 3He/4He ratios and total organic carbon data are also consistent with the leakage of magmatic fluids. The most prominent CH4 and CO2 anomalies were observed at the site located closest to one of the bubbling gas sites of the 1989 eruption. As such, volcanic gas emissions still continue today at extremely low levels, 23 years after eruption of this monogenetic volcano. The monitoring of ultra-trace amounts of chemical components in seawater is a prospective method to monitor temporal changes in magmatic activity at such submarine volcanoes.

  9. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  10. Preliminary volcano-hazard assessment for Mount Spurr Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Nye, Christopher J.

    2001-01-01

    Mount Spurr volcano is an ice- and snow-covered stratovolcano complex located in the north-central Cook Inlet region about 100 kilometers west of Anchorage, Alaska. Mount Spurr volcano consists of a breached stratovolcano, a lava dome at the summit of Mount Spurr, and Crater Peak vent, a small stratocone on the south flank of Mount Spurr volcano. Historical eruptions of Crater Peak occurred in 1953 and 1992. These eruptions were relatively small but explosive, and they dispersed volcanic ash over areas of interior, south-central, and southeastern Alaska. Individual ash clouds produced by the 1992 eruption drifted east, north, and south. Within a few days of the eruption, the south-moving ash cloud was detected over the North Atlantic. Pyroclastic flows that descended the south flank of Crater Peak during both historical eruptions initiated volcanic-debris flows or lahars that formed temporary debris dams across the Chakachatna River, the principal drainage south of Crater Peak. Prehistoric eruptions of Crater Peak and Mount Spurr generated clouds of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. A flank collapse on the southeast side of Mount Spurr generated a large debris avalanche that flowed about 20 kilometers beyond the volcano into the Chakachatna River valley. The debris-avalanche deposit probably formed a large, temporary debris dam across the Chakachatna River. The distribution and thickness of volcanic-ash deposits from Mount Spurr volcano in the Cook Inlet region indicate that volcanic-ash clouds from most prehistoric eruptions were as voluminous as those produced by the 1953 and 1992 eruptions. Clouds of volcanic ash emitted from the active vent, Crater Peak, would be a major hazard to all aircraft using Ted Stevens Anchorage International Airport and other local airports and, depending on wind direction, could drift a considerable distance beyond the volcano. Ash fall from future eruptions could disrupt many

  11. Submarine harbor navigation using image data

    NASA Astrophysics Data System (ADS)

    Stubberud, Stephen C.; Kramer, Kathleen A.

    2017-01-01

    The process of ingress and egress of a United States Navy submarine is a human-intensive process that takes numerous individuals to monitor locations and for hazards. Sailors pass vocal information to bridge where it is processed manually. There is interest in using video imaging of the periscope view to more automatically provide navigation within harbors and other points of ingress and egress. In this paper, video-based navigation is examined as a target-tracking problem. While some image-processing methods claim to provide range information, the moving platform problem and weather concerns, such as fog, reduce the effectiveness of these range estimates. The video-navigation problem then becomes an angle-only tracking problem. Angle-only tracking is known to be fraught with difficulties, due to the fact that the unobservable space is not the null space. When using a Kalman filter estimator to perform the tracking, significant errors arise which could endanger the submarine. This work analyzes the performance of the Kalman filter when angle-only measurements are used to provide the target tracks. This paper addresses estimation unobservability and the minimal set of requirements that are needed to address it in this complex but real-world problem. Three major issues are addressed: the knowledge of navigation beacons/landmarks' locations, the minimal number of these beacons needed to maintain the course, and update rates of the angles of the landmarks as the periscope rotates and landmarks become obscured due to blockage and weather. The goal is to address the problem of navigation to and from the docks, while maintaining the traversing of the harbor channel based on maritime rules relying solely on the image-based data. The minimal number of beacons will be considered. For this effort, the image correlation from frame to frame is assumed to be achieved perfectly. Variation in the update rates and the dropping of data due to rotation and obscuration is considered

  12. A field guide to Newberry Volcano, Oregon

    USGS Publications Warehouse

    Jenson, Robert A.; Donnelly-Nolan, Julie M.; McKay, Daniele

    2009-01-01

    Newberry Volcano is located in central Oregon at the intersection of the Cascade Range and the High Lava Plains. Its lavas range in age from ca. 0.5 Ma to late Holocene. Erupted products range in composition from basalt through rhyolite and cover ~3000 km2. The most recent caldera-forming eruption occurred ~80,000 years ago. This trip will highlight a revised understanding of the volcano's history based on new detailed geologic work. Stops will also focus on evidence for ice and flooding on the volcano, as well as new studies of Holocene mafic eruptions. Newberry is one of the most accessible U.S. volcanoes, and this trip will visit a range of lava types and compositions including tholeiitic and calc-alkaline basalt flows, cinder cones, and rhyolitic domes and tuffs. Stops will include early distal basalts as well as the youngest intracaldera obsidian flow.

  13. Volcanoes: Nature's Caldrons Challenge Geochemists.

    ERIC Educational Resources Information Center

    Zurer, Pamela S.

    1984-01-01

    Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…

  14. Multibeam Bathymetry of Haleakala Volcano, Maui

    NASA Astrophysics Data System (ADS)

    Eakins, B. W.; Robinson, J.

    2002-12-01

    The submarine northeast flank of Haleakala Volcano, Maui was mapped in detail during the summers of 2001 and 2002 by a joint team from the Japan Marine Science and Technology Center (JAMSTEC), Tokyo Institute of Technology, University of Hawaii, and the U.S. Geological Survey. JAMSTEC instruments used included SeaBeam 2112 hull-mounted multibeam sonar (bathymetry and sidescan imagery), manned submersible Shinkai 6500 and ROV Kaiko (bottom video, photographs and sampling of Hana Ridge), gravimeter, magnetometer, and single-channel seismic system. Hana Ridge, Haleakala's submarine east rift zone, is capped by coral-reef terraces for much of its length, which are flexurally tilted towards the axis of the Hawaiian Ridge and delineate former shorelines. Its deeper, more distal portion exhibits a pair of parallel, linear crests, studded with volcanic cones, that suggest lateral migration of the rift zone during its growth. The northern face of the arcuate ridge terminus is a landslide scar in one of these crests, while its southwestern prong is a small, constructional ridge. The Hana slump, a series of basins and ridges analogous to the Laupahoehoe slump off Kohala Volcano, Hawaii, lies north of Hana Ridge and extends down to the Hawaiian moat. Northwest of this slump region a small, dual-crested ridge strikes toward the Hawaiian moat and is inferred to represent a fossil rift zone, perhaps of East Molokai Volcano. A sediment chute along its southern flank has built a large submarine fan with a staircase of contour-parallel folds on its surface that are probably derived from slow creep of sediments down into the moat. Sediments infill the basins of the Hana slump [Moore et al., 1989], whose lowermost layers have been variously back-tilted by block rotation during slumping and flexural loading of the Hawaiian Ridge; the ridges define the outer edges of those down-dropped blocks, which may have subsided several kilometers. An apron of volcaniclastic debris shed from

  15. Explorations of Mariana Arc Volcanoes Reveal New Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Baker, E. T.; Chadwick, W. W., Jr.; Lupton, J. E.; Resing, J. A.; Massoth, G. J.; Nakamura, K.

    2004-01-01

    Some 20,000 km of volcanic arcs, roughly one-third the length of the global mid-ocean ridge (MOR) system, rim the western Pacific Ocean. Compared to 25 years of hydrothermal investigations along MORs, exploration of similar activity on the estimated ~600 submarine arc volcanoes is only beginning [Ishibashi and Urabe, 1995; De Ronde et al., 2003]. To help alleviate this under-sampling, the R/V T. G. Thompson was used in early 2003 (9 February to 5 March) to conduct the first complete survey of hydrothermal activity along 1200 km of the Mariana intra-oceanic volcanic arc. This region includes both the Territory of Guam and the Commonwealth of the Northern Mariana Islands. The expedition mapped over 50 submarine volcanoes with stunning new clarity (Figures 1 and 2) and found active hydrothermal discharge at 12 sites, including the southern back-arc site. This includes eight new sites along the arc (West Rota, Northwest Rota, E. Diamante, Zealandia Bank, Maug Caldera, Ahyi, Daikoku, and Northwest Eifuku) and four sites of previously known hydrothermal activity (Seamount X, Esmeralda, Kasuga 2, and Nikko) (Figures 1 and 2). The mapping also fortuitously provided a ``before'' image of the submarine flanks of Anatahan Island, which had its first historical eruption on 10 May 2003 (Figures 1 and 3).

  16. Galactic Super Volcano Similar to Iceland Volcano

    NASA Video Gallery

    This composite image from NASAs Chandra X-ray Observatory with radio data from the Very Large Array shows a cosmic volcano being driven by a black hole in the center of the M87 galaxy. This eruptio...

  17. How volcano monitoring in New Zealand can contribute to a global volcano dataset: The GeoNet Project

    NASA Astrophysics Data System (ADS)

    Jolly, G. E.; Scott, B.

    2009-12-01

    Volcanism plays an important role in New Zealand. Much of the landscape of the central North Island owes its shape to volcanism, with the soils supporting forestry and farming economies, geothermal systems providing renewable electricity production and the spectacular landscape supporting tourism and adventure. However volcanism also has it disadvantages: eruptive activity brings physical damage and economic losses and, sometimes, tragically the loss of life. Historically, in New Zealand, volcanoes represent the largest single source of fatalities from natural disasters. To better mitigate the hazard from New Zealand’s volcanoes, a multidisciplinary approach is applied. In 2001 the NZ Earthquake Commission (EQC) commenced funding the GeoNet project, providing the first totally national modern geological hazard monitoring system in New Zealand. The GeoNet project is responsibly for monitoring and assessing all of the active volcanoes (and other geological hazards) in New Zealand. The volcano monitoring programme is integrated into the national seismograph and geodetic networks. The volcano monitoring covers active volcanic cones, resting calderas, volcanic fields, and submarine volcanoes. Monitoring techniques include volcano seismology, geodesy, gas and water chemistry, remote sensing and other geophysical techniques, producing a wide variety of data sets, with both temporal and spatial distribution. These data sets form the basis for detailed research to achieve in depth understanding of these volcanoes and will contribute to the global knowledge of volcanic processes. However to achieve this the data sets need to be accessible by a range of end users, so that they can be used to underpin fundamental research and applied hazard assessments. This presentation will outline the NZ data sets and the problems of presenting and sharing them globally.

  18. Iceland: Grímsvötn Volcano

    Atmospheric Science Data Center

    2013-04-17

    article title:  Grímsvötn Volcano Injects Ash into the Stratosphere     ... p.m. local time (1730 UTC) on Saturday, May 21, 2011. The volcano, located approximately 140 miles (220 kilometers) east of the capital ...

  19. Volcanoes, Observations and Impact

    NASA Astrophysics Data System (ADS)

    Thurber, Clifford; Prejean, Stephanie

    Volcanoes are critical geologic hazards that challenge our ability to make long-term forecasts of their eruptive behaviors. They also have direct and indirect impacts on human lives and society. As is the case with many geologic phenomena, the time scales over which volcanoes evolve greatly exceed that of a human lifetime. On the other hand, the time scale over which a volcano can move from inactivity to eruption can be rather short: months, weeks, days, and even hours. Thus, scientific study and monitoring of volcanoes is essential to mitigate risk. There are thousands of volcanoes on Earth, and it is impractical to study and implement ground-based monitoring at them all. Fortunately, there are other effective means for volcano monitoring, including increasing capabilities for satellite-based technologies.

  20. The Volcano Adventure Guide

    NASA Astrophysics Data System (ADS)

    Goff, Fraser

    2005-05-01

    Adventure travels to volcanoes offer chance encounters with danger, excitement, and romance, plus opportunities to experience scientific enlightenment and culture. To witness a violently erupting volcano and its resulting impacts on landscape, climate, and humanity is a powerful personal encounter with gigantic planetary forces. To study volcano processes and products during eruptions is to walk in the footsteps of Pliny himself. To tour the splendors and horrors of 25 preeminent volcanoes might be the experience of a lifetime, for scientists and nonscientists alike. In The Volcano Adventure Guide, we now have the ultimate tourist volume to lead us safely to many of the world's famous volcanoes and to ensure that we will see the important sites at each one.

  1. Volcanoes: observations and impact

    USGS Publications Warehouse

    Thurber, Clifford; Prejean, Stephanie G.

    2012-01-01

    Volcanoes are critical geologic hazards that challenge our ability to make long-term forecasts of their eruptive behaviors. They also have direct and indirect impacts on human lives and society. As is the case with many geologic phenomena, the time scales over which volcanoes evolve greatly exceed that of a human lifetime. On the other hand, the time scale over which a volcano can move from inactivity to eruption can be rather short: months, weeks, days, and even hours. Thus, scientific study and monitoring of volcanoes is essential to mitigate risk. There are thousands of volcanoes on Earth, and it is impractical to study and implement ground-based monitoring at them all. Fortunately, there are other effective means for volcano monitoring, including increasing capabilities for satellite-based technologies.

  2. Decreasing Magmatic Footprints of Individual Volcanos in a Waning Basaltic Field

    SciTech Connect

    G.A> Valentine; F.V. Perry

    2006-06-06

    The distribution and characteristics of individual basaltic volcanoes in the waning Southwestern Nevada Volcanic Field provide insight into the changing physical nature of magmatism and the controls on volcano location. During Pliocene-Pleistocene times the volumes of individual volcanoes have decreased by more than one order of magnitude, as have fissure lengths and inferred lava effusion rates. Eruptions evolved from Hawaiian-style eruptions with extensive lavas to eruptions characterized by small pulses of lava and Strombolian to violent Strombolian mechanisms. These trends indicate progressively decreasing partial melting and length scales, or magmatic footprints, of mantle source zones for individual volcanoes. The location of each volcano is determined by the location of its magmatic footprint at depth, and only by shallow structural and topographic features that are within that footprint. The locations of future volcanoes in a waning system are less likely to be determined by large-scale topography or structures than were older, larger volume volcanoes.

  3. [Radionuclides 90Sr and 137Cs in the benthos near the nuclear submarine "Komsomolets"].

    PubMed

    Kuznetsov, A P; Shmelev, I P; Demidov, A M; Efimov, B V; Shubko, V M

    1999-01-01

    We have analyzed the content of radionuclides 90Sr and 137Cs in the benthofauna and deposits near the nuclear submarine "Komsomolets." Analysis was performed on the basis of the materials of the 31st (1993) and 36th (1995) voyages of R/V "Akademik Mstislav Keldysh" in correspondence with the system of monitoring the state of the abiotic and biotic situation near the nuclear submarine "Komsomolets" (Norwegian Sea). Whereas during the 33rd voyage of this vessel (1994) the content of these elements in the benthic animals at stations located close to the submarine somewhat exceeded the background level of radioactivity (Kuznetsov et al., 1996), no such excess was found during the 31st and 36th voyages. Meanwhile, radioactive cobalt (60Co) was found in representatives of three groups of animals during the 31st voyage at two stations located near the submarine.

  4. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An Expedition Two crewmember aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  5. The 1998 eruption of Axial Seamount: New insights on submarine lava flow emplacement from high-resolution mapping

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Clague, D. A.; Embley, R. W.; Perfit, M. R.; Butterfield, D. A.; Caress, D. W.; Paduan, J. B.; Martin, J. F.; Sasnett, P.; Merle, S. G.; Bobbitt, A. M.

    2013-10-01

    Axial Seamount, an active submarine volcano on the Juan de Fuca Ridge at 46°N, 130°W, erupted in January 1998 along 11 km of its upper south rift zone. We use ship-based multibeam sonar, high-resolution (1 m) bathymetry, sidescan sonar imagery, and submersible dive observations to map four separate 1998 lava flows that were fed from 11 eruptive fissures. These new mapping results give an eruption volume of 31 × 106 m3, 70% of which was in the northern-most flow, 23% in the southern-most flow, and 7% in two smaller flows in between. We introduce the concept of map-scale submarine lava flow morphology (observed at a scale of hundreds of meters, as revealed by the high-resolution bathymetry), and an interpretive model in which two map-scale morphologies are produced by high effusion-rate eruptions: "inflated lobate flows" are formed near eruptive vents, and where they drain downslope more than 0.5-1.0 km, they transition to "inflated pillow flows." These two morphologies are observed on the 1998 lava flows at Axial. A third map-scale flow morphology that was not produced during this eruption, "pillow mounds," is formed by low effusion-rate eruptions in which pillow lava piles up directly over the eruptive vents. Axial Seamount erupted again in April 2011 and there are remarkable similarities between the 1998 and 2011 eruptions, particularly the locations of eruptive vents and lava flow morphologies. Because the 2011 eruption reused most of the same eruptive fissures, 58% of the area of the 1998 lava flows is now covered by 2011 lava.

  6. Volcano Monitoring Using Google Earth

    NASA Astrophysics Data System (ADS)

    Bailey, J. E.; Dehn, J.; Webley, P.; Skoog, R.

    2006-12-01

    At the Alaska Volcano Observatory (AVO), Google Earth is being used as a visualization tool for operational satellite monitoring of the region's volcanoes. Through the abilities of the Keyhole Markup Language (KML) utilized by Google Earth, different datasets have been integrated into this virtual globe browser. Examples include the ability to browse thermal satellite image overlays with dynamic control, to look for signs of volcanic activity. Webcams can also be viewed interactively through the Google Earth interface to confirm current activity. Other applications include monitoring the location and status of instrumentation; near real-time plotting of earthquake hypocenters; mapping of new volcanic deposits; and animated models of ash plumes within Google Earth, created by a combination of ash dispersion modeling and 3D visualization packages. The globe also provides an ideal interface for displaying near real-time information on detected thermal anomalies or "hotspot"; pixels in satellite images with elevated brightness temperatures relative to the background temperature. The Geophysical Institute at the University of Alaska collects AVHRR (Advanced Very High Resolution Radiometer) and MODIS (Moderate Resolution Imaging Spectroradiometer) through its own receiving station. The automated processing that follows includes application of algorithms that search for hotspots close to volcano location, flagging those that meet certain criteria. Further automated routines generate folders of KML placemarkers, which are linked to Google Earth through the network link function. Downloadable KML files have been created to provide links to various data products for different volcanoes and past eruptions, and to demonstrate examples of the monitoring tools developed. These KML files will be made accessible through a new website that will become publicly available in December 2006.

  7. Yellowstone Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Lowenstern, Jacob

    2008-01-01

    Eruption of Yellowstone's Old Faithful Geyser. Yellowstone hosts the world's largest and most diverse collection of natural thermal features, which are the surface expression of magmatic heat at shallow depths in the crust. The Yellowstone system is monitored by the Yellowstone Volcano Observatory (YVO), a partnership among the U.S. Geological Survey (USGS), Yellowstone National Park, and the University of Utah. YVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Yellowstone and YVO at http://volcanoes.usgs.gov/yvo.

  8. Mud volcanoes on Mars?

    NASA Technical Reports Server (NTRS)

    Komar, Paul D.

    1991-01-01

    The term mud volcano is applied to a variety of landforms having in common a formation by extrusion of mud from beneath the ground. Although mud is the principal solid material that issues from a mud volcano, there are many examples where clasts up to boulder size are found, sometimes thrown high into the air during an eruption. Other characteristics of mud volcanoes (on Earth) are discussed. The possible presence of mud volcanoes, which are common and widespread on Earth, on Mars is considered.

  9. Cladistic analysis applied to the classification of volcanoes

    NASA Astrophysics Data System (ADS)

    Hone, D. W. E.; Mahony, S. H.; Sparks, R. S. J.; Martin, K. T.

    2007-11-01

    and evolutionary volcanic processes. Cladistics may also have utility in hazards assessment where spatial distributions and robust definitions of a volcano are important, as in locating sensitive facilities such as nuclear reactors and repositories.

  10. Flow dynamics around downwelling submarine canyons

    NASA Astrophysics Data System (ADS)

    Spurgin, J. M.; Allen, S. E.

    2014-10-01

    Flow dynamics around a downwelling submarine canyon were analysed with the Massachusetts Institute of Technology general circulation model. Blanes Canyon (northwestern Mediterranean) was used for topographic and initial forcing conditions. Fourteen scenarios were modelled with varying forcing conditions. Rossby and Burger numbers were used to determine the significance of Coriolis acceleration and stratification (respectively) and their impacts on flow dynamics. A new non-dimensional parameter (χ) was introduced to determine the significance of vertical variations in stratification. Some simulations do see brief periods of upwards displacement of water during the 10-day model period; however, the presence of the submarine canyon is found to enhance downwards advection of density in all model scenarios. High Burger numbers lead to negative vorticity and a trapped anticyclonic eddy within the canyon, as well as an increased density anomaly. Low Burger numbers lead to positive vorticity, cyclonic circulation, and weaker density anomalies. Vertical variations in stratification affect zonal jet placement. Under the same forcing conditions, the zonal jet is pushed offshore in more uniformly stratified domains. The offshore jet location generates upwards density advection away from the canyon, while onshore jets generate downwards density advection everywhere within the model domain. Increasing Rossby values across the canyon axis, as well as decreasing Burger values, increase negative vertical flux at shelf break depth (150 m). Increasing Rossby numbers lead to stronger downwards advection of a passive tracer (nitrate), as well as stronger vorticity within the canyon. Results from previous studies are explained within this new dynamic framework.

  11. Flow dynamics around downwelling submarine canyons

    NASA Astrophysics Data System (ADS)

    Spurgin, J. M.; Allen, S. E.

    2014-05-01

    Flow dynamics around a downwelling submarine canyon were analysed with the Massachusetts Institute of Technology general circulation model. Blanes Canyon (Northwest Mediterranean) was used for topographic and initial forcing conditions. Fourteen scenarios were modelled with varying forcing conditions. Rossby number and Burger number were used to determine the significance of Coriolis acceleration and stratification (respectively) and their impacts on flow dynamics. A new non-dimensional parameter (χ) was introduced to determine the significance of vertical variations in stratification. Some simulations do see brief periods of upwards displacement of water during the 10 day model period, however, the presence of the submarine canyon is found to enhance downwards advection of density in all model scenarios. High Burger numbers lead to negative vorticity and a trapped anticyclonic eddy within the canyon, as well as an increased density anomaly. Low Burger numbers lead to positive vorticity, cyclonic circulation and weaker density anomalies. Vertical variations in stratification affect zonal jet placement. Under the same forcing conditions, the zonal jet is pushed offshore in more uniformly stratified domains. Offshore jet location generates upwards density advection away from the canyon, while onshore jets generate downwards density advection everywhere within the model domain. Increasing Rossby values across the canyon axis, as well as decreasing Burger values, increase negative vertical flux at shelf break depth (150 m). Increasing Rossby numbers lead to stronger downwards advection of a passive tracer (nitrate) as well as stronger vorticity within the canyon. Results from previous studies were explained within this new dynamic framework.

  12. Ambient Noise Tomography at Bezymianny Volcano, Kamchatka

    NASA Astrophysics Data System (ADS)

    Shuler, A. E.; Ekström, G.; West, M.; Senyukov, S.

    2008-12-01

    Bezymianny Volcano is an active stratovolcano located in the Kluychevskoy volcanic group on the Kamchatka Peninsula in eastern Russia. Since its dramatic sector collapse eruption in 1956, the volcano's activity has been characterized by nearly twice annual plinian eruptions accompanying ongoing lava-dome growth. Its frequent eruptions and similarity to Mt. St. Helens have made it the target of a multifaceted geologic and geophysical project supported by the NSF Partners in Research and Education (PIRE) program. Since mid- 2006, the volcano has been monitored by a broadband seismic array that is currently composed of 8 stations within 10 kilometers of the active dome. In this project, we use continuous data from these stations to investigate the static and dynamic structure of the volcano. Using methods similar to those used by Brenguier et al. (2007, 2008), we estimate the Green's function for each pair of stations by cross-correlating day-long time series of ambient noise. Paths with high signal-to-noise ratios can be used to estimate group velocity dispersion curves. From these measurements, we work towards constructing the first velocity model of this volcano. Furthermore, we begin to test whether measurements of ambient noise can be used to monitor changes inside the volcano prior to eruptive activity. These problems will continue to be addressed as more data becomes available in future field seasons.

  13. Geomorphic evolution of the Piton des Neiges volcano (Réunion Island, Indian Ocean): Competition between volcanic construction and erosion since 1.4 Ma

    NASA Astrophysics Data System (ADS)

    Salvany, Tiffany; Lahitte, Pierre; Nativel, Pierre; Gillot, Pierre-Yves

    2012-01-01

    Réunion Island (Indian Ocean) is a volcanic complex whose eruptive history was dominated by the activity of two main edifices: Piton des Neiges (PN) and Piton de la Fournaise (PF) volcanoes. The tropical climate induces erosion processes that permanently compete with volcanic constructional processes. Exposed to the trade winds and associated heavy rainfalls, the northeastern part of the island exhibits the most complex morphological evolution. Geomorphological analysis, performed on a 50 m DEM and associated to new K-Ar ages has clarified the overall history of PN volcano. Each massif is assigned to one of the main building stages of the edifice. In addition, the arrangement of these different massifs reveals that the eruptive phases have led to successive relief inversions and successive excavations of large central depressions in the proximal area. As a result, the younger massifs are always located in more proximal parts of the volcano, the youngest being close to the edifice center. In distal areas, early lava flows were channeled into valleys incised along the massif boundaries, leading to a more complex geochronological organization. Quantitative study of the dissection of PN volcano allows us to propose a minimum eroded volume of 101 ± 44 and 105 ± 41 km 3 for the Mafate and Cilaos "Cirques" (depressions), respectively, during the last 180 kyr and a minimum average long-term erosion rate of 1.2 ± 0.4 km 3/ka. This leads us to estimate the removed volume during the whole history of PN volcano (> 1000 km 3) as equivalent to the volume of the deposits identified on the submarine flanks of Piton des Neiges volcano. Therefore, as regressive erosion appears to be the prevailing geomorphic process during the whole PN history, it questions the presence of major flank collapses younger than 1.4 Ma on this volcano. Erosion processes have largely been neglected in recent models, but our study emphasizes them as a key component of landscape development and a major

  14. Preliminary Volcano-Hazard Assessment for Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Dorava, Joseph M.; Miller, Thomas P.; Neal, Christina A.; McGimsey, Robert G.

    1997-01-01

    Redoubt Volcano is a stratovolcano located within a few hundred kilometers of more than half of the population of Alaska. This volcano has erupted explosively at least six times since historical observations began in 1778. The most recent eruption occurred in 1989-90 and similar eruptions can be expected in the future. The early part of the 1989-90 eruption was characterized by explosive emission of substantial volumes of volcanic ash to altitudes greater than 12 kilometers above sea level and widespread flooding of the Drift River valley. Later, the eruption became less violent, as developing lava domes collapsed, forming short-lived pyroclastic flows associated with low-level ash emission. Clouds of volcanic ash had significant effects on air travel as they drifted across Alaska, over Canada, and over parts of the conterminous United States causing damage to jet aircraft. Economic hardships were encountered by the people of south-central Alaska as a result of ash fallout. Based on new information gained from studies of the 1989-90 eruption, an updated assessment of the principal volcanic hazards is now possible. Volcanic hazards from a future eruption of Redoubt Volcano require public awareness and planning so that risks to life and property are reduced as much as possible.

  15. Submarine geothermal resources

    USGS Publications Warehouse

    Williams, D.L.

    1976-01-01

    Approximately 20% of the earth's heat loss (or 2 ?? 1012 cal/s) is released through 1% of the earth's surface area and takes the form of hydrothermal discharge from young (Pleistocene or younger) rocks adjacent to active seafloor-spreading centers and submarine volcanic areas. This amount is roughly equivalent to man's present gross energy consumption rate. A sub-seafloor geothermal reservoir, to be exploitable under future economic conditions, will have to be hot, porous, permeable, large, shallow, and near an energy-deficient, populated land mass. Furthermore, the energy must be recoverable using technology achievable at a competitive cost and numerous environmental, legal and institutional problems will have to be overcome. The highest-temperature reservoirs should be found adjacent to the zones of the seafloor extension or volcanism that are subject to high sedimentation rates. The relatively impermeable sediments reduce hydrothermal-discharge flow rates, forcing the heat to be either conducted away or released by high-temperature fluids, both of which lead to reservoir temperatures that can exceed 300??C. There is evidence that the oceanic crust is quite permeable and porous and that it was amenable to deep (3-5 km) penetration by seawater at least some time in the early stages of its evolution. Most of the heat escapes far from land, but there are notable exceptions. For example, in parts of the Gulf of California, thermal gradients in the bottom sediments exceed 1??C/m. In the coastal areas of the Gulf of California, where electricity and fresh water are at a premium, this potential resource lies in shallow water (< 200 m) and within sight of land. Other interesting areas include the Sea of Japan, the Sea of Okhotsk and the Andaman Sea along the margins of the western Pacific, the Tyrrhenian Sea west of Italy, and the southern California borderland and west flank of the Juan de Fuca Ridge off the west coast of the United States. Many questions remain to be

  16. An ongoing large submarine landslide at the Japan trench

    NASA Astrophysics Data System (ADS)

    Nitta, S.; Kasaya, T.; Miura, S.; Kawamura, K.

    2013-12-01

    This paper deals with an active submarine landslide on a landward trench slope in the Japan trench. Studied area is located on the upper terrace ranging from 400 to 1200 m in water depth, off Sendai, northeast Japan. We have surveyed in detail the seabed topography using a multi narrow beam (hereafter MBES) and a subbottom profiler (hereafter SBP) during the cruise MR12-E02 of R/V Mirai. The survey lines were 12 lines in N-S, and 3 lines in E-W, and situated in the region from 141°45'E, 37°40'N to 142°33'E, 38°32'N. Moreover, we used multi-channel seismic profile by the cruise KR04-10 of R/V Kairei in the interpretation of the SBP results. In general, horseshoe-shaped depressions of about 100 km wide along the trench slope are arrayed along the Japan trench. It has thought that they were formed by large submarine landslides, but we could not understand critically the relationship between the depressions and the submarine landslides. Based on the survey results, we found signals of an active submarine landslide in the depression as follows. 1) We observed arcuate-shaped lineaments, which are sub-parallel to a horseshoe-shaped depression. The lineaments concentrate in the south region from 38°N at about 20 km wide. These lineaments are formed by deformation structures as anticlines, synclines and normal fault sense displacements. 2) Most of the synclines and anticlines are not buried to form the lineaments. 3) Normal faults cutting about 1 km deep are observed in a multi-channel seismic profile. The normal faults are located just below the arcuate-shaped lineaments, and are tilted eastward being the downslope direction. It indicates a large submarine landslide. We concluded that the arcuate-shaped lineaments were generated by surface sediment movement with the submarine landsliding. We think that the submarine landslide of about 20 km wide and about 1 km thick move continuously down the landward trench slope. This would be the formation process of the horseshoe

  17. Cold-water coral banks and submarine landslides: a review

    NASA Astrophysics Data System (ADS)

    de Mol, Ben; Huvenne, Veerle; Canals, Miquel

    2009-06-01

    This paper aims to review the relation between cold-water coral bank development and submarine landslides. Both are common features on continental margins, but so far it has not been reviewed which effect—if at all—they may have upon each other. Indirect and direct relations between coral banks and landslides are evaluated here, based on four case studies: the Magellan Mound Province in the Porcupine Seabight, where fossil coral banks appear partly on top of a buried slide deposit; the Sula Ridge Reef Complex and the Storegga landslide both off mid-Norway; and the Mauritania coral bank province, associated with the Mauritanian Slide Complex. For each of these locations, positive and negative relationships between both features are discussed, based on available datasets. Locally submarine landslides might directly favour coral bank development by creating substratum where corals can settle on, enhancing turbulence due to abrupt seabed morphological variations and, in some cases, causing fluid seepage. In turn, some of these processes may contribute to increased food availability and lower sedimentation rates. Landslides can also affect coral bank development by direct erosion of the coral banks, and by the instantaneous increase of turbidity, which may smother the corals. On the other hand, coral banks might have a stabilising function and delay or stop the headwall retrogradation of submarine landslides. Although local relationships can be deduced from these case studies, no general and direct relationship exists between submarine landslides and cold-water coral banks.

  18. Obstacle avoidance sonar for submarines

    NASA Astrophysics Data System (ADS)

    Dugas, Albert C.; Webman, Kenneth M.

    2002-05-01

    The Advanced Mine Detection Sonar (AMDS) system was designed to operate in poor environments with high biological and/or shallow-water boundary conditions. It provides increased capability for active detection of volume, close-tethered, and bottom mines, as well as submarine and surface target active/passive detection for ASW and collision avoidance. It also provides bottom topography mapping capability for precise submarine navigation in uncharted littoral waters. It accomplishes this by using advanced processing techniques with extremely narrow beamwidths. The receive array consists of 36 modules arranged in a 15-ft-diameter semicircle at the bottom of the submarine sonar dome to form a chin-mounted array. Each module consists of 40 piezoelectric rubber elements. The modules provide the necessary signal conditioning to the element data prior to signal transmission (uplink) through the hull. The elements are amplified, filtered, converted to digital signals by an A/D converter, and multiplexed prior to uplink to the inboard receiver. Each module also has a downlink over which it receives synchronization and mode/gain control. Uplink and downlink transmission is done using fiberoptic telemetry. AMDS was installed on the USS Asheville. The high-frequency chin array for Virginia class submarines is based on the Asheville design.

  19. Distribution of Io's volcanoes: Possible influence on spin axis

    NASA Astrophysics Data System (ADS)

    Stoddard, Paul R.; Jurdy, Donna M.

    2002-05-01

    We examine the potential effect of volcano distribution on the orientation of Io's spin axis. Volcanoes dominate Io's surface and the massive outpourings documented in short intervals could cause instability in Io's rotation and a corresponding reorientation of its spin axis. Currently, the volcanoes and mountains exhibit a complementary distribution, with the maximum principal axis for the set of 351 volcanoes close to the position of the rotation axis. In addition, a delicate balance results from the near equivalence of the magnitudes of the maximum and intermediate eigenvalues. Assuming an otherwise homogeneous body, a changing mass distribution on its surface could control the location of the spin axis. In our models, changing the location of as few as three volcanoes is sufficient to cause dramatic shifts of the principal axis positions, and hence the spin axis orientation. This result, although somewhat diminished, still prevails even when a strong influence of Io's tidal bulge is included in the model.

  20. GlobVolcano: Earth Observation Services for global monitoring of active volcanoes

    NASA Astrophysics Data System (ADS)

    Tampellini, L.; Ratti, R.; Borgström, S.; Seifert, F. M.; Solaro, G.

    2009-04-01

    The GlobVolcano project is part of the Data User Element (DUE) programme of the European Space Agency (ESA). The objective of the project is to demonstrate EO-based (Earth Observation) services able to support the Volcanological Observatories and other mandate users (Civil Protection, scientific communities of volcanoes) in their monitoring activities. The information service is assessed in close cooperation with the user organizations for different types of active volcano, from various geographical areas in various climatic zones. Users are directly and actively involved in the validation of the Earth Observation products, by comparing them with ground data available at each site. The following EO-based information services have been defined, harmonising the user requirements provided by a worldwide selection of user organizations. - Deformation Mapping - Surface Thermal Anomalies - Volcanic Gas Emission (SO2) - Volcanic Ash Tracking During the first phase of the project (completed in June 2008) a pre-operational information system has been designed, implemented and validated, involving a limited number of test areas and respective user organizations (i.e. Piton de la Fournaise in La Reunion Island, Karthala in Comore Islands, Stromboli, Volcano and Etna in Italy, Soufrière Hills in Montserrat Island, Colima in Mexico, Merapi in Indonesia). The second phase of the project (currently on-going) concerns the service provision on pre-operational basis. Fifteen volcanic sites located in four continents are regularly monitored and as many user organizations are involved and cooperating with the project team. Based on user requirements, the GlobVolcano Information System has been developed following system engineering rules and criteria, besides most recent interoperability standards for geospatial data. The GlobVolcano Information System includes two main elements: 1. The GlobVolcano Data Processing System, which consists of seven of EO data processing subsystems

  1. Volcano Monitoring and Eruption Response in Japan

    NASA Astrophysics Data System (ADS)

    Nakada, S.; Morita, Y.

    2010-12-01

    Although the start of eruption was forecasted at Miyakejima in June 2000, its change since then was largely different from what we expected; the countermeasures always became one step behind. There was a sudden lateral intrusion of the enormous amount magma as far as 30 km away from the volcano. The failure in forecasting comes partly from insufficient consideration of the eruption history and simple analogy of recent, near-steady state eruption events. The 2000 eruption may be reappearance of that of 2.5 ka at Miyakejima. The national project of eruption prediction researches has focused on seismological and geomagnetic investigations to detect the temporal change in the subsurface structure for active volcanoes, together with repeated, multidiscipline intensive observation. These were considered important to understand magma storage and movement, to evaluate the eruption potential, and to forecast the future eruption. Although direct detection of the magma chamber was incomplete, the convex distribution of dense material beneath the summit became common throughout examined volcanoes. It became clear that the part consists of the dike swarms through the conduit drilling project at Unzen. Understanding of the velocity structure by the seismic experiments was very useful to determine the detail location of volcano earthquakes in those volcanoes. Furthermore, combination of seismic, geodetic, geomagnetic and petrological investigations provided us a better imaging of the subsurface structure of several volcanoes. New technology such as the cosmic-ray (muon) radiography, which made the volcano interior visible, will give us the important information on magma ascent in the shallowest part of volcano. Recently, seismological and geodetic monitoring at densely-located observation sites makes possible to image the magma’s ascent and accumulation under volcanoes from the middle to upper crust. This process, of course, needs knowledge on the subsurface structure (depth of

  2. Volcano infrasound: A review

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey Bruce; Ripepe, Maurizio

    2011-09-01

    Exploding volcanoes, which produce intense infrasound, are reminiscent of the veritable explosion of volcano infrasound papers published during the last decade. Volcano infrasound is effective for tracking and quantifying eruptive phenomena because it corresponds to activity occurring near and around the volcanic vent, as opposed to seismic signals, which are generated by both surface and internal volcanic processes. As with seismology, infrasound can be recorded remotely, during inclement weather, or in the dark to provide a continuous record of a volcano's unrest. Moreover, it can also be exploited at regional or global distances, where seismic monitoring has limited efficacy. This paper provides a literature overview of the current state of the field and summarizes applications of infrasound as a tool for better understanding volcanic activity. Many infrasound studies have focused on integration with other geophysical data, including seismic, thermal, electromagnetic radiation, and gas spectroscopy and they have generally improved our understanding of eruption dynamics. Other work has incorporated infrasound into volcano surveillance to enhance capabilities for monitoring hazardous volcanoes and reducing risk. This paper aims to provide an overview of volcano airwave studies (from analog microbarometer to modern pressure transducer) and summarizes how infrasound is currently used to infer eruption dynamics. It also outlines the relative merits of local and regional infrasound surveillance, highlights differences between array and network sensor topologies, and concludes with mention of sensor technologies appropriate for volcano infrasound study.

  3. Gravity model studies of Newberry Volcano, Oregon

    USGS Publications Warehouse

    Gettings, M.E.; Griscom, A.

    1988-01-01

    Newberry Volcano, a large Quaternary volcano located about 60 km east of the axis of the High Cascades volcanoes in central Oregon, has a coincident positive residual gravity anomaly of about 12 mGals. Model calculations of the gravity anomaly field suggest that the volcano is underlain by an intrusive complex of mafic composition of about 20-km diameter and 2-km thickness, at depths above 4 km below sea level. However, uplifted basement in a northwest trending ridge may form part of the underlying excess mass, thus reducing the volume of the subvolcanic intrusive. A ring dike of mafic composition is inferred to intrude to near-surface levels along the caldera ring fractures, and low-density fill of the caldera floor probably has a thickness of 0.7-0.9 km. The gravity anomaly attributable to the volcano is reduced to the east across a north-northwest trending gravity anomaly gradient through Newberry caldera and suggests that normal, perhaps extensional, faulting has occurred subsequent to caldera formation and may have controlled the location of some late-stage basaltic and rhyolitic eruptions. Significant amounts of felsic intrusive material may exist above the mafic intrusive zone but cannot be resolved by the gravity data. -Authors

  4. Gravity model studies of Newberry Volcano, Oregon

    SciTech Connect

    Gettings, M.E.; Griscom, A.

    1988-09-10

    Newberry, Volcano, a large Quaternary volcano located about 60 km east of the axis of the High Cascades volcanoes in central Oregon, has a coincident positive residual gravity anomaly of about 12 mGals. Model calculations of the gravity anomaly field suggest that the volcano is underlain by an intrusive complex of mafic composition of about 20-km diameter and 2-km thickness, at depths above 4 km below sea level. However, uplifted basement in a northwest trending ridge may form part of the underlying excess mass, thus reducing the volume of the subvolcanic intrusive. A ring dike of mafic composition is inferred to intrude to near-surface levels along the caldera ring fractures, and low-density fill of the caldera floor probably has a thickness of 0.7--0.9 km. The gravity anomaly attributable to the volcano is reduced to the east across a north-northwest trending gravity anomaly gradient through Newberry caldera and suggests that normal, perhaps extensional, faulting has occurred subsequent to caldera formation and may have controlled the location of some late-stage basaltic and rhyolitic eruptions. Significant amounts of felsic intrusive material may exist above the mafic intrusive zone but cannot be resolved by the gravity data.

  5. Monitoring El Hierro submarine volcanic eruption events with a submarine seismic array

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Molino, Erik; Lopez, Carmen

    2013-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2012 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. From the beginning of the eruption a geophone string was installed less than 2 km away from the new volcano, next to La Restinga village shore, to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. The analysis of the dataset using spectral techniques allows the characterization of the different phases of the eruption and the study of its dynamics. The correlation of the data analysis results with the observed sea surface activity (ash and lava emission and degassing) and also with the seismic activity recorded by the IGN field seismic monitoring system, allows the identification of different stages suggesting the existence of different signal sources during the volcanic eruption and also the posteruptive record of the degassing activity. The study shows that the high frequency capability of the geophone array allow the study of important features that cannot be registered by the standard seismic stations. The accumulative spectral amplitude show features related to eruptive changes.

  6. 30. VIEW OF PHOTO CAPTIONED 'SUBMARINE BASE, NEW LONDON, CONNECTICUT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. VIEW OF PHOTO CAPTIONED 'SUBMARINE BASE, NEW LONDON, CONNECTICUT. 2 JUNE 1930. SUBMARINE TRAINING TANK - STEELWORK 98% COMPLETE; BRICKWORK 95% COMPLETE, PIPING 10% IN PLACE. LOOKING NORTH. CONTRACT NO. Y-1539-ELEVATOR, SUBMARINE ESCAPE TANK.' - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  7. Mud volcanoes of the Orinoco Delta, Eastern Venezuela

    USGS Publications Warehouse

    Aslan, A.; Warne, A.G.; White, W.A.; Guevara, E.H.; Smyth, R.C.; Raney, J.A.; Gibeaut, J.C.

    2001-01-01

    Mud volcanoes along the northwest margin of the Orinoco Delta are part of a regional belt of soft sediment deformation and diapirism that formed in response to rapid foredeep sedimentation and subsequent tectonic compression along the Caribbean-South American plate boundary. Field studies of five mud volcanoes show that such structures consist of a central mound covered by active and inactive vents. Inactive vents and mud flows are densely vegetated, whereas active vents are sparsely vegetated. Four out of the five mud volcanoes studied are currently active. Orinoco mud flows consist of mud and clayey silt matrix surrounding lithic clasts of varying composition. Preliminary analysis suggests that the mud volcano sediment is derived from underlying Miocene and Pliocene strata. Hydrocarbon seeps are associated with several of the active mud volcanoes. Orinoco mud volcanoes overlie the crest of a mud-diapir-cored anticline located along the axis of the Eastern Venezuelan Basin. Faulting along the flank of the Pedernales mud volcano suggests that fluidized sediment and hydrocarbons migrate to the surface along faults produced by tensional stresses along the crest of the anticline. Orinoco mud volcanoes highlight the proximity of this major delta to an active plate margin and the importance of tectonic influences on its development. Evaluation of the Orinoco Delta mud volcanoes and those elsewhere indicates that these features are important indicators of compressional tectonism along deformation fronts of plate margins. ?? 2001 Elsevier Science B.V. All rights reserved.

  8. Seismic unrest at Katla Volcano- southern Iceland

    NASA Astrophysics Data System (ADS)

    jeddi, zeinab; Tryggvason, Ari; Gudmundsson, Olafur; Bödvarsson, Reynir; SIL Seismology Group

    2014-05-01

    Katla volcano is located on the propagating Eastern Volcanic Zone (EVZ) in South Iceland. It is located beneath Mýrdalsjökull ice-cap which covers an area of almost 600 km2, comprising the summit caldera and the eruption vents. 20 eruptions between 930 and 1918 with intervals of 13-95 years are documented at Katla which is one of the most active subglacial volcanoes in Iceland. Eruptions at Katla are mainly explosive due to the subglacial mode of extrusion and produce high eruption columns and catastrophic melt water floods (jökulhlaups). The present long Volcanic repose (almost 96 years) at Katla, the general unrest since 1955, and the 2010 eruption of the neighbouring Eyjafjallajökull volcano has prompted concerns among geoscientists about an imminent eruption. Thus, the volcano has been densely monitored by seismologists and volcanologists. The seismology group of Uppsala University as a partner in the Volcano Anatomy (VA) project in collaboration with the University of Iceland and the Icelandic Meteorological Office (IMO) installed 9 temporary seismic stations on and around the Mýrdalsjökull glacier in 2011. Another 10 permanent seismic stations are operated by IMO around Katla. The project's data collection is now finished and temporary stations were pulled down in August 2013. According to seismicity maps of the whole recording period, thousands of microearthquakes have occurred within the caldera region. At least three different source areas are active in Katla: the caldera region, the western Godaland region and a small cluster at the southern rim of Mýrdalsjökull near the glacial stream of Hafursarjökull. Seismicity in the southern flank has basically started after June 2011. The caldera events are mainly volcano-tectonic, while western and southern events are mostly long period (lp) and can be related to glacial or magmatic movement. One motivation of the VA Katla project is to better understand the physical mechanism of these lp events. Changes

  9. Shiveluch Volcano, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2001-01-01

    On the night of June 4, 2001, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) captured this thermal image of the erupting Shiveluch volcano. Located on Russia's Kamchatka Peninsula, Shiveluch rises to an altitude of 2,447 meters (8,028 feet). The active lava dome complex is seen as a bright (hot) area on the summit of the volcano. To the southwest, a second hot area is either a debris avalanche or hot ash deposit. Trailing to the west is a 25-kilometer (15-mile) ash plume, seen as a cold 'cloud' streaming from the summit. At least 60 large eruptions have occurred here during the last 10,000 years; the largest historical eruptions were in 1854 and 1964.

    Because Kamchatka is located along the major aircraft routes between North America/Europe and Asia, this area is constantly monitored for potential ash hazards to aircraft. The area is part of the 'Ring of Fire,' a string of volcanoes that encircles the Pacific Ocean.

    The lower image is the same as the upper, except it has been color-coded: red is hot, light greens to dark green are progressively colder, and gray/black are the coldest areas.

    The image is located at 56.7 degrees north latitude, 161.3 degrees east longitude.

    ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

  10. The Fina Nagu volcanic complex: Unusual submarine arc volcanism in the rapidly deforming southern Mariana margin

    NASA Astrophysics Data System (ADS)

    Brounce, Maryjo; Kelley, Katherine A.; Stern, Robert; Martinez, Fernando; Cottrell, Elizabeth

    2016-10-01

    In the Mariana convergent margin, large arc volcanoes disappear south of Guam even though the Pacific plate continues to subduct and instead, small cones scatter on the seafloor. These small cones could form either due to decompression melting accompanying back-arc extension or flux melting, as expected for arc volcanoes, or as a result of both processes. Here, we report the major, trace, and volatile element compositions, as well as the oxidation state of Fe, in recently dredged, fresh pillow lavas from the Fina Nagu volcanic chain, an unusual alignment of small, closely spaced submarine calderas and cones southwest of Guam. We show that Fina Nagu magmas are the consequence of mantle melting due to infiltrating aqueous fluids and sediment melts sourced from the subducting Pacific plate into a depleted mantle wedge, similar in extent of melting to accepted models for arc melts. Fina Nagu magmas are not as oxidized as magmas elsewhere along the Mariana arc, suggesting that the subduction component responsible for producing arc magmas is either different or not present in the zone of melt generation for Fina Nagu, and that amphibole or serpentine mineral destabilization reactions are key in producing oxidized arc magmas. Individual Fina Nagu volcanic structures are smaller in volume than Mariana arc volcanoes, although the estimated cumulative volume of the volcanic chain is similar to nearby submarine arc volcanoes. We conclude that melt generation under the Fina Nagu chain occurs by similar mechanisms as under Mariana arc volcanoes, but that complex lithospheric deformation in the region distributes the melts among several small edifices that get younger to the northeast.

  11. Submarine channel evolution linked to rising salt domes, Gulf of Mexico, USA

    NASA Astrophysics Data System (ADS)

    Carter, Rachel C.; Gani, M. Royhan; Roesler, Toby; Sarwar, Abu K. M.

    2016-08-01

    An examination of halokinetics and channel evolution together in a deepwater system provides an opportunity to investigate how submarine channel morphology is locally affected by rising salt domes. The study area is located in the northern Gulf of Mexico (GOM), directly off the Louisiana continental slope in a prominent salt dome region. The influence of salt growth on submarine channel evolution is relatively understudied, particularly in the GOM. Utilizing high-resolution 3D seismic and well data and seismic geomorphology techniques, a long-lived (~ 3 Myr) Plio-Pleistocene submarine channel system has been investigated to show a relationship between variable phases of salt motion and planform morphology of preserved submarine channels. Our data suggest that local salt motion acts as a driver for submarine channel evolution. During the late Pliocene, when salt moved upward at a relatively fast rate, channels show distinct entrenchment with narrow channel belts and overall less sinuosity. When salt motion slowed down at the beginning of the Pleistocene, channels aggraded rapidly with preserved levees, and moved toward an equilibrium state with the expansion of channel belt widths. As our results indicate, the rate of salt diapirism exerted a first-order control on channel location and morphology and distribution of reservoir-prone units. This study cautions against readily invoking allogenic factors (e.g., sea level and climate) in explaining changes in submarine channel behavior and associated fan sedimentation, particularly in regions with salt tectonics.

  12. Complete data listings for CSEM soundings on Kilauea Volcano, Hawaii

    SciTech Connect

    Kauahikaua, J.; Jackson, D.B.; Zablocki, C.J.

    1983-01-01

    This document contains complete data from a controlled-source electromagnetic (CSEM) sounding/mapping project at Kilauea volcano, Hawaii. The data were obtained at 46 locations about a fixed-location, horizontal, polygonal loop source in the summit area of the volcano. The data consist of magnetic field amplitudes and phases at excitation frequencies between 0.04 and 8 Hz. The vector components were measured in a cylindrical coordinate system centered on the loop source. 5 references.

  13. Monitoring Anak Krakatau Volcano in Indonesia

    NASA Astrophysics Data System (ADS)

    Hoffmann-Rothe, Arne; Ibs-von Seht, Malte; Knieβ, Rudolf; Faber, Eckhard; Klinge, Klaus; Reichert, Christian; Atje Purbawinata, Mas; Patria, Cahya

    2006-12-01

    Krakatau volcano, in Indonesia, showed its destructive vigor when it exploded in 1883 [Self and Rampino, 1981]. The eruption and subsequent tsunami caused more than 35,000 casualties along the coasts of the Sunda Strait. In 1928, the `child' of Krakatau, Anak Krakatau, emerged from the sea at the same location as its predecessor and has since grown to a height of 315 meters. The volcano exhibits frequent activity-on average one large eruption every four years-yet again posing risk for the coastal population of Java and Sumatra and for the economically important shipping routes through the Sunda Strait.

  14. 34. VIEW OF SUBMARINE ESCAPE TRAINING TANK PRIOR TO ADDITION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. VIEW OF SUBMARINE ESCAPE TRAINING TANK PRIOR TO ADDITION OF BLISTERS IN 1959, LOOKING SOUTHEAST - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  15. Chiliques volcano, Chile

    NASA Technical Reports Server (NTRS)

    2002-01-01

    joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Size: 7.5 x 7.5 km (4.5 x 4.5 miles) Location: 23.6 deg. South lat., 67.6 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3, and thermal band 12 Original Data Resolution: 15 m and 90 m Date Acquired: January 6, 2002 and November 19, 2000

  16. Russian nuclear-powered submarine decommissioning

    SciTech Connect

    Bukharin, O.; Handler, J.

    1995-11-01

    Russia is facing technical, economic and organizational difficulties in dismantling its oversized and unsafe fleet of nuclear powered submarines. The inability of Russia to deal effectively with the submarine decommissioning crisis increases the risk of environmental disaster and may hamper the implementation of the START I and START II treaties. This paper discusses the nuclear fleet support infrastructure, the problems of submarine decommissioning, and recommends international cooperation in addressing these problems.

  17. Saga is largest commercial submarine ever

    SciTech Connect

    Not Available

    1985-05-01

    The long-range autonomous submarine, Saga, went nuclear last year with an agreement between the French and two Canadian companies. The agreement to convert the prototype from Swedish Stirling closed-cycle combustion engines to a nuclear power supply will make Saga the first non-defense nuclear submarine. With an external hull displacement of 500 tons, Saga will be the largest commercial submarine ever built.

  18. Submarine landslides hazard offshore Israel

    NASA Astrophysics Data System (ADS)

    Katz, Oded

    2016-04-01

    Submarine landslides pose significant natural hazards. They can damage seafloor infrastructure, such as that used to recover oil and gas or seafloor telecommunication cables, and even generate tsunamis. We recently mapped 447 submarine landslides across the east Mediterranean continental slope, offshore Israel (hereafter the studied area). The mapped landslides are found at water depths of 130 m to 1,000 m and their volume ranges 10-5 - 100 km3. Landslide scars are typically related to a critical slope angle of >4° . Landslides at the northern part of the studied area are spatially associated with fault scarps and are smaller than the ones on the southern part. In this work we evaluate the potential hazard to population and to on- and off- shore facilities posed by submarine landslides across the studied area. We integrate three independent probabilities: (1) the probability for a landslide event of a given volume, based on the size distribution of the mapped landslides; (2) the probability for a landslide event in a given time, based on the reoccurrence time of triggering earthquakes with M >7, and on a 50,000 years general time frame derived from submarine landslides identified across the Mediterranean Sea; (3) the probability for a landslide event in a given area, based on the distribution of slopes exceeding the critical angle. Overall, the fraction of potentially destructive landslides (size > 0.1 km3) is small, 0.05. Thus, considering typical planning time scales of less than 100 years, the calculated hazard is only moderate. The small fraction of landslides with tsunamogenic potential (size > 1 km3), suggests that the hazard for landslide-induced tsunamis along the open slope part of the studied area is small. Landslides in the southern part of the studied area are larger and thus present a somewhat bigger potential source of tsunami waves.

  19. Renewed unrest at Mount Spurr Volcano, Alaska

    USGS Publications Warehouse

    Power, John A.

    2004-01-01

    The Alaska Volcano Observatory (AVO),a cooperative program of the U.S. Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys, has detected unrest at Mount Spurr volcano, located about 125 km west of Anchorage, Alaska, at the northeast end of the Aleutian volcanic arc.This activity consists of increased seismicity melting of the summit ice cap, and substantial rates of C02 and H2S emission.The current unrest is centered beneath the volcano's 3374-m-high summit, whose last known eruption was 5000–6000 years ago. Since then, Crater Peak, 2309 m in elevation and 4 km to the south, has been the active vent. Recent eruptions occurred in 1953 and 1992.

  20. Diffuse degassing survey at the Higashi Izu monogenetic volcano field, Japan

    NASA Astrophysics Data System (ADS)

    Notsu, Kenji; Pérez, Nemesio M.; Fujii, Naoyuki; Hernández, Pedro A.; Mori, Toshiya; Padrón, Eleazar; Melián, Gladys

    2016-04-01

    The Higashi-Izu monogenetic volcanic group, which consists of more than 60 volcanoes, overlies the polygenetic volcanoes in the eastern part of the Izu peninsula, Japan, which are distributed over the area of 350 km2. Some of the monogenetic volcanoes are located on northwest-southeast alignments, suggesting that they developed along fissures. Recent volcanic activity occurred offshore, e.g., at the Izu-Oshima volcano, which erupted in 1986 and a submarine eruption of the small new Teishi knoll off eastern Izu Peninsula in 1989 (Hasebe et al., 2001). This study was carried out to investigate the possible relationship of diffuse CO2 emission and the recent seismic activity recorded NE of Higashi Izu monogenetic volcanic field, to quantify the rate at which CO2 is diffusely degassed from the studied area including Omuroyama volcano and to identify the structures controlling the degassing process. Measurements were carried out over a three day period from 8-10 July 2013. Diffuse CO2 emission surveys were always carried out following the accumulation chamber method and spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. Soil gas samples were collected at 30-40 cm depth by withdrawal into 60 cc hypodermic syringes to characterize the chemical and isotopic composition of the soil gas. At Omurayama volcano, soil CO2 efflux values ranged from non-detectable to 97.5 g m-2 d-1, while at the seismic swarm zone ranged from 1.5 to 233.2 g m-2 d-1 and at the fault zone ranged from 5.7 to 101.2 g m-2 d-1. Probability-plot technique of all CO2 efflux data showed two different populations, background with a mean of 8.7 g m-2 d-1 and peak with a mean of 92.7 g m-2 d-1. In order to strength the deep seated contribution to the soil gases at the studied are, carbon isotopic analysis were performed in the CO2 gas. Soil gases (He, CO2 and N2) showed a clear mixing trend between air composition and a rich CO2 end member, suggesting the

  1. An Overview of Geodetic Volcano Research in the Canary Islands

    NASA Astrophysics Data System (ADS)

    Fernández, José; González, Pablo J.; Camacho, Antonio G.; Prieto, Juan F.; Brú, Guadalupe

    2015-11-01

    The Canary Islands are mostly characterized by diffuse and scattered volcanism affecting a large area, with only one active stratovolcano, the Teide-Pico Viejo complex (Tenerife). More than 2 million people live and work in the 7,447 km2 of the archipelago, resulting in an average population density three times greater than the rest of Spain. This fact, together with the growth of exposure during the past 40 years, increases volcanic risk with respect previous eruptions, as witnessed during the recent 2011-2012 El Hierro submarine eruption. Therefore, in addition to purely scientific reasons there are economic and population-security reasons for developing and maintaining an efficient volcano monitoring system. In this scenario geodetic monitoring represents an important part of the monitoring system. We describe volcano geodetic monitoring research carried out in the Canary Islands and the results obtained. We consider for each epoch the two main existing constraints: the level of volcanic activity in the archipelago, and the limitations of the techniques available at the time. Theoretical and observational aspects are considered, as well as the implications for operational volcano surveillance. Current challenges of and future perspectives in geodetic volcano monitoring in the Canaries are also presented.

  2. Volcano growth and evolution of the island of Hawaii

    USGS Publications Warehouse

    Moore, J.G.; Clague, D.A.

    1992-01-01

    The seven volcanoes comprising the island of Hawaii and its submarine base are, in order of growth, Mahukona, Kohala, Mauna Kea, Hualalai, Mauna Loa, Kilauea, and Loihi. The first four have completed their shield-building stage, and the timing of this event can be determined from the depth of the slope break associated with the end of shield building, calibrated using the ages and depths of a series of dated submerged coral reefs off northwest Hawaii. On each volcano, the transition from eruption of tholeiitic to alkalic lava occurs near the end of shield building. The rate of southeastern progression of the end of shield building in the interval from Haleakala to Hualalai is about 13 cm/yr. Based on this rate and an average spacing of volcanoes on each loci line of 40-60km, the volcanoes required about 600 thousand years to grow from the ocean floor to the time of the end of shield building. They arrive at the ocean surface about midway through this period. -from Authors

  3. Monitoring volcanoes using seismic noise correlations

    NASA Astrophysics Data System (ADS)

    Brenguier, Florent; Clarke, Daniel; Aoki, Yosuke; Shapiro, Nikolai M.; Campillo, Michel; Ferrazzini, Valérie

    2011-09-01

    In this article, we summarize some recent results of measurements of temporal changes of active volcanoes using seismic noise cross-correlations. We first present a novel approach to estimate volcano interior temporal seismic velocity changes. The proposed method allows to measure very small velocity changes (≈ 0.1%) with a time resolution as small as one day. The application of that method to Piton de la Fournaise Volcano (La Réunion Island) shows velocity decreases preceding eruptions. Moreover, velocity changes from noise cross-correlations over 10 years allow to detect transient velocity changes that could be due to long-lasting intrusions of magma without eruptive activity or to pressure buildup associated to the replenishing of the magma reservoir. We also present preliminary results of noise cross-correlation waveform perturbation associated with the occurrence of dike injection and volcanic eruption. We show that such an analysis leads us to locate the areas of dike injection and eruptive fissures at Piton de la Fournaise Volcano. These recent results suggest that monitoring volcanoes using seismic noise correlations should improve our ability to forecast eruptions, their intensity and thus potential environmental impact.

  4. Deformation microstructures and timing of a large submarine landslide drilled offshore Martinique (IODP Exp. 340)

    NASA Astrophysics Data System (ADS)

    Guyard, H.; Le Friant, A.; Brunet, M.; Boudon, G.; Emmanuel, L.; Caron, B.; Villemant, B.; Feuillet, N.

    2015-12-01

    Flank-instabilities constitute a recurrent process in the long-term evolution of many volcanoes. A very large submarine landslide deposit (~2100 km2, ~300 km3) drilled southwest Martinique island during the IODP Exp. 340 in 2012 is likely associated with one (or more) major volcanic flank collapse of Mount Pelée during the Late Pleistocene. A recent study revealed that this D1/D2 deposit is emergent in its central part, frontally confined, and mainly comprises remobilized seafloor sediments rather than debris avalanche material from the volcanic edifice (Brunet et al., subm). Here, we investigate the sedimentary microstructures and timing of deformation from the central (Hole 1400B, ~37 km from the coastline) and distal (Hole 1399A, ~70 km from the coastline) units of the D1/D2 deposit, in order to better understand the emplacement dynamics of such potentially tsunamigenic submarine landslides. High resolution CT-Scan analyses were continuously performed on more than 300 m of sediment cores, in order to characterize and distinguish the internal architecture and the complex deformation features of the sediments at each drilling site. The establishment of the stratigraphy, based on δ18O measurements and AMS 14C dating, is still in progress and may confirm the possible link between the submarine landslide deposits and the flank collapse scars observed on the subaerial part of Martinique. These new insights into the timing and emplacement processes of this large submarine landslide will have important implications for tsunami hazards. ReferenceBrunet, M., Le Friant, A., Boudon, G., Lafuerza, S., Talling, P., Hornbach, M., Lebas, E., Guyard, H., and IODP Expedition 340 science party, submitted. Composition, geometry and emplacement dynamics of a large volcanic island landslide offshore Martinique: from volcano flank-collapse to seafloor sediment failure? Geochemistry, Geophysics, Geosystems.

  5. Geology of Medicine Lake Volcano, Northern California Cascade Range

    USGS Publications Warehouse

    Donnelly-Nolan, Julie

    1990-01-01

    Medicine Lake volcano (MLV) is located in an E-W extensional environment on the Modoc Plateau just east of the main arc of the Cascades. It consists mainly of mafic lavas, although drillhole data indicate that a larger volume of rhyolite is present than is indicated by surface mapping. The most recent eruption was rhyolitic and occurred about 900 years ago. At least seventeen eruptions have occurred since 12,000 years ago, or between 1 and 2 eruptions per century on average, although activity appears to be strongly episodic. The calculated eruptive rate is about 0.6 km3 per thousand years during the entire history of the volcano. Drillhole data indicate that the plateau surface underlying the volcano has been downwarped by 0.5 km under the center of MLV. The volcano may be even larger than the estimated 600 km3, already the largest volcano by volume in the Cascades.

  6. What Are Volcano Hazards?

    MedlinePlus

    ... large landslides have swept down the slopes of Mount Rainier, Washington, during the past 6,000 years. The ... communities downstream from glacier-clad volcanoes, such as Mount Rainier. To help protect lives and property, scientists of ...

  7. Shaking up volcanoes

    USGS Publications Warehouse

    Prejean, Stephanie G.; Haney, Matthew M.

    2014-01-01

    Most volcanic eruptions that occur shortly after a large distant earthquake do so by random chance. A few compelling cases for earthquake-triggered eruptions exist, particularly within 200 km of the earthquake, but this phenomenon is rare in part because volcanoes must be poised to erupt in order to be triggered by an earthquake (1). Large earthquakes often perturb volcanoes in more subtle ways by triggering small earthquakes and changes in spring discharge and groundwater levels (1, 2). On page 80 of this issue, Brenguier et al. (3) provide fresh insight into the interaction of large earthquakes and volcanoes by documenting a temporary change in seismic velocity beneath volcanoes in Honshu, Japan, after the devastating Tohoku-Oki earthquake in 2011.

  8. Volcano-Monitoring Instrumentation in the United States, 2008

    USGS Publications Warehouse

    Guffanti, Marianne; Diefenbach, Angela K.; Ewert, John W.; Ramsey, David W.; Cervelli, Peter F.; Schilling, Steven P.

    2010-01-01

    , ground-based, volcano-monitoring capabilities, (2) answer queries within a geospatial framework about the nature of the instrumentation, and (3) provide a benchmark for planning future monitoring improvements. The VMID is not an archive of the data collected by monitoring instruments, nor is it intended to keep track of whether a station is temporarily unavailable due to telemetry or equipment problems. Instead, it is a compilation of basic information about each instrument such as location, type, and sponsoring agency. Typically, instruments installed expressly for volcano monitoring are emplaced within about 20 kilometers (km) of a volcanic center; however, some more distant instruments (as far away as 100 km) can be used under certain circumstances and therefore are included in the database. Not included is information about satellite-based and airborne sensors and temporarily deployed instrument arrays, which also are used for volcano monitoring but do not lend themselves to inclusion in a geospatially organized compilation of sensor networks. This Open-File Report is provided in two parts: (1) an Excel spreadsheet (http://pubs.usgs.gov/of/2009/1165/) containing the version of the Volcano-Monitoring Instrumentation Database current through 31 December 2008 and (2) this text (in Adobe PDF format), which serves as metadata for the VMID. The disclaimer for the VMID is in appendix 1 of the text. Updated versions of the VMID will be posted on the Web sites of the Consortium of U.S. Volcano Observatories (http://www.cusvo.org/) and the USGS Volcano Hazards Program http://volcanoes.usgs.gov/activity/data/index.php.

  9. Present Thoughts on Exercise, Weight, and Performance Aboard Nuclear Submarines,

    DTIC Science & Technology

    Submarine personnel, Physical fitness, Confined environments, Stress(Physiology), Stress(Psychology), Body weight, Weight reduction, Diet , Nuclear powered submarines, Exercise(Physiology), Performance(Human)

  10. Seismic Structure Beneath Taal Volcano, Philippines

    NASA Astrophysics Data System (ADS)

    You, S. H.; Gung, Y.; Konstantinou, K. I.; Lin, C. H.

    2014-12-01

    The very active Taal Volcano is situated 60 km south of Metro Manila in the southern part of Luzon Island. Based on its frequent explosive eruptions and high potential hazards to nearby population of several million, Taal Volcano is chosen as one of the 15 most dangerous "Decade Volcanoes" in the world. We deployed a temporary seismic network consisting of 8 stations since March 2008. The temporal network was operated from late March 2008 to mid March 2010 and recorded over 2270 local earthquakes. In the early data processing stages, unexpected linear drifting of clock time was clearly identified from ambient noise cross-correlation functions for a number of stations. The drifting rates of all problematic stations were determined as references to correct timing errors prior to further processing. Initial locations of earthquakes were determined from manually picking P- and S-phases arrivals with a general velocity model based on AK135. We used travel times of 305 well-located local events to derive a minimum 1-D model using VELEST. Two major earthquake groups were noticed from refined locations. One was underneath the western shore of Taal Lake with a linear feature, and the other spread at shallower depths showing a less compact feature around the eastern flank of Taal Volcano Island. We performed seismic tomography to image the 3D structure beneath Taal Volcano using a well-established algorithm, LOTOS. Some interesting features are noted in the tomographic results, such as a probable solidified past magma conduit below the northwestern corner of Taal Volcano Island, characterized by high Vp, Vs, and low Vp/Vs ratio, and a potential large hydrothermal reservoir beneath the central of Taal Volcano Island, characterized by low Vs and high Vp/Vs ratio. Combining the results of seismicity and tomographic images, we also suggest the potential existence of a magma chamber beneath the southwestern Taal Lake, and a magma conduit or fault extending from there to the

  11. Preliminary volcano-hazard assessment for Akutan Volcano east-central Aleutian Islands, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Power, John A.; Richter, Donlad H.; McGimsey, Robert G.

    1998-01-01

    Akutan Volcano is a 1100-meter-high stratovolcano on Akutan Island in the east-central Aleutian Islands of southwestern Alaska. The volcano is located about 1238 kilometers southwest of Anchorage and about 56 kilometers east of Dutch Harbor/Unalaska. Eruptive activity has occurred at least 27 times since historical observations were recorded beginning in the late 1700?s. Recent eruptions produced only small amounts of fine volcanic ash that fell primarily on the upper flanks of the volcano. Small amounts of ash fell on the Akutan Harbor area during eruptions in 1911, 1948, 1987, and 1989. Plumes of volcanic ash are the primary hazard associated with eruptions of Akutan Volcano and are a major hazard to all aircraft using the airfield at Dutch Harbor or approaching Akutan Island. Eruptions similar to historical Akutan eruptions should be anticipated in the future. Although unlikely, eruptions larger than those of historical time could generate significant amounts of volcanic ash, fallout, pyroclastic flows, and lahars that would be hazardous to life and property on all sectors of the volcano and other parts of the island, but especially in the major valleys that head on the volcano flanks. During a large eruption an ash cloud could be produced that may be hazardous to aircraft using the airfield at Cold Bay and the airspace downwind from the volcano. In the event of a large eruption, volcanic ash fallout could be relatively thick over parts of Akutan Island and volcanic bombs could strike areas more than 10 kilometers from the volcano.

  12. Nitrogen biogeochemistry of submarine groundwater discharge

    USGS Publications Warehouse

    Kroeger, K.D.; Charette, M.A.

    2008-01-01

    To investigate the role of the seepage zone in transport, chemical speciation, and attenuation of nitrogen loads carried by submarine groundwater discharge, we collected nearshore groundwater samples (n = 328) and examined the distribution and isotopic signature (??15N) of nitrate and ammonium. In addition, we estimated nutrient fluxes from terrestrial and marine groundwater sources. We discuss our results in the context of three aquifer zones: a fresh groundwater zone, a shallow salinity transition zone (STZ), and a deep STZ. Groundwater plumes containing nitrate and ammonium occurred in the freshwater zone, whereas the deep STZ carried almost exclusively ammonium. The distributions of redox-cycled elements were consistent with theoretical thermodynamic stability of chemical species, with sharp interfaces between water masses of distinct oxidation : reduction potential, suggesting that microbial transformations of nitrogen were rapid relative to dispersive mixing. In limited locations in which overlap occurs between distribution of nitrate with that of ammonium and dissolved Fe2+, changes in concentration and in ??15N suggest loss of all species. Concurrent removal of NO 3- and NH4+, both in freshwater and the deep STZ, might occur through a range of mechanisms, including heterotrophic or autotrophic denitrification, coupled nitrfication : denitrification, anammox, or Mn oxidation of NH4+. Loss of nitrogen was not apparent in the shallow STZ, perhaps because of short water residence time. Despite organic C-poor conditions, the nearshore aquifer and subterranean estuary are biogeochemically active zones, where attenuation of N loads can occur. Extent of attenuation is controlled by the degree of mixing of biogeochemically dissimilar water masses, highlighting the critical role of hydrogeology in N biogeochemistry. Mixing is related in part to thinning of the freshwater lens before discharge and to dispersion at the fresh : saline groundwater interface, features

  13. Segmentation and Tracking of Anticyclonic Eddies during a Submarine Volcanic Eruption Using Ocean Colour Imagery

    PubMed Central

    Marcello, Javier; Eugenio, Francisco; Estrada-Allis, Sheila; Sangrà, Pablo

    2015-01-01

    The eruptive phase of a submarine volcano located 2 km away from the southern coast of El Hierro Island started on October 2011. This extraordinary event provoked a dramatic perturbation of the water column. In order to understand and quantify the environmental impacts caused, a regular multidisciplinary monitoring was carried out using remote sensing sensors. In this context, we performed the systematic processing of every MODIS and MERIS and selected high resolution Worldview-2 imagery to provide information on the concentration of a number of biological, physical and chemical parameters. On the other hand, the eruption provided an exceptional source of tracer that allowed the study a variety of oceanographic structures. Specifically, the Canary Islands belong to a very active zone of long-lived eddies. Such structures are usually monitored using sea level anomaly fields. However these products have coarse spatial resolution and they are not suitable to perform submesoscale studies. Thanks to the volcanic tracer, detailed studies were undertaken with ocean colour imagery allowing, using the diffuse attenuation coefficient, to monitor the process of filamentation and axisymmetrization predicted by theoretical studies and numerical modelling. In our work, a novel 2-step segmentation methodology has been developed. The approach incorporates different segmentation algorithms and region growing techniques. In particular, the first step obtains an initial eddy segmentation using thresholding or clustering methods and, next, the fine detail is achieved by the iterative identification of the points to grow and the subsequent application of watershed or thresholding strategies. The methodology has demonstrated an excellent performance and robustness and it has proven to properly capture the eddy and its filaments. PMID:25875193

  14. Segmentation and tracking of anticyclonic eddies during a submarine volcanic eruption using ocean colour imagery.

    PubMed

    Marcello, Javier; Eugenio, Francisco; Estrada-Allis, Sheila; Sangrà, Pablo

    2015-04-14

    The eruptive phase of a submarine volcano located 2 km away from the southern coast of El Hierro Island started on October 2011. This extraordinary event provoked a dramatic perturbation of the water column. In order to understand and quantify the environmental impacts caused, a regular multidisciplinary monitoring was carried out using remote sensing sensors. In this context, we performed the systematic processing of every MODIS and MERIS and selected high resolution Worldview-2 imagery to provide information on the concentration of a number of biological, physical and chemical parameters. On the other hand, the eruption provided an exceptional source of tracer that allowed the study a variety of oceanographic structures. Specifically, the Canary Islands belong to a very active zone of long-lived eddies. Such structures are usually monitored using sea level anomaly fields. However these products have coarse spatial resolution and they are not suitable to perform submesoscale studies. Thanks to the volcanic tracer, detailed studies were undertaken with ocean colour imagery allowing, using the diffuse attenuation coefficient, to monitor the process of filamentation and axisymmetrization predicted by theoretical studies and numerical modelling. In our work, a novel 2-step segmentation methodology has been developed. The approach incorporates different segmentation algorithms and region growing techniques. In particular, the first step obtains an initial eddy segmentation using thresholding or clustering methods and, next, the fine detail is achieved by the iterative identification of the points to grow and the subsequent application of watershed or thresholding strategies. The methodology has demonstrated an excellent performance and robustness and it has proven to properly capture the eddy and its filaments.

  15. 33 CFR 165.1327 - Security Zone; escorted U.S. Navy submarines in Sector Seattle Captain of the Port Zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... submarines in Sector Seattle Captain of the Port Zone. 165.1327 Section 165.1327 Navigation and Navigable... Captain of the Port Zone. (a) Location. The following area is a security zone: All waters within 1000 yards of any U.S. Navy submarine that is operating in the Sector Puget Sound Captain of the Port...

  16. 33 CFR 165.1327 - Security Zone; escorted U.S. Navy submarines in Sector Seattle Captain of the Port Zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... submarines in Sector Seattle Captain of the Port Zone. 165.1327 Section 165.1327 Navigation and Navigable... Captain of the Port Zone. (a) Location. The following area is a security zone: All waters within 1000 yards of any U.S. Navy submarine that is operating in the Sector Puget Sound Captain of the Port...

  17. 33 CFR 165.1327 - Security Zone; escorted U.S. Navy submarines in Sector Seattle Captain of the Port Zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... submarines in Sector Seattle Captain of the Port Zone. 165.1327 Section 165.1327 Navigation and Navigable... Captain of the Port Zone. (a) Location. The following area is a security zone: All waters within 1000 yards of any U.S. Navy submarine that is operating in the Sector Puget Sound Captain of the Port...

  18. 33 CFR 165.1327 - Security Zone; escorted U.S. Navy submarines in Sector Seattle Captain of the Port Zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... submarines in Sector Seattle Captain of the Port Zone. 165.1327 Section 165.1327 Navigation and Navigable... Captain of the Port Zone. (a) Location. The following area is a security zone: All waters within 1000 yards of any U.S. Navy submarine that is operating in the Sector Puget Sound Captain of the Port...

  19. 33 CFR 165.1327 - Security Zone; escorted U.S. Navy submarines in Sector Seattle Captain of the Port Zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... submarines in Sector Seattle Captain of the Port Zone. 165.1327 Section 165.1327 Navigation and Navigable... Captain of the Port Zone. (a) Location. The following area is a security zone: All waters within 1000 yards of any U.S. Navy submarine that is operating in the Sector Seattle Captain of the Port Zone,...

  20. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 2000 through December 31, 2001

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; Moran, Seth C.; Paskievitch, John; McNutt, Stephen R.

    2002-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at potentially active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996; Jolly and others, 2001). The primary objectives of this program are the seismic surveillance of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog reflects the status and evolution of the seismic monitoring program, and presents the basic seismic data for the time period January 1, 2000, through December 31, 2001. For an interpretation of these data and previously recorded data, the reader should refer to several recent articles on volcano related seismicity on Alaskan volcanoes in Appendix G.The AVO seismic network was used to monitor twenty-three volcanoes in real time in 2000-2001. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). AVO located 1551 and 1428 earthquakes in 2000 and 2001, respectively, on and around these volcanoes.Highlights of the catalog period (Table 1) include: volcanogenic seismic swarms at Shishaldin Volcano between January and February 2000 and between May and June 2000; an eruption at Mount Cleveland between February and May 2001; episodes of possible tremor at Makushin Volcano starting March 2001 and continuing through 2001, and two earthquake swarms at Great Sitkin Volcano in 2001.This catalog includes: (1) earthquake origin times

  1. Correlation of submarine deposits and witness accounts of the 1952 Myojinsho submarine eruption, Izu-Bonin arc, by bathymetric survey

    NASA Astrophysics Data System (ADS)

    Shimano, T.; Tani, K.; Maeno, F.; Fiske, R. S.; Shukuno, H.; Ito, K.; Shimoda, G.; Suzuki, Y. J.; Yoshida, T.; Taniguchi, H.

    2009-12-01

    The relationship between eruptive phenomena during the 1952 phreatomagmatic eruption and consequent deposits under seawater is discussed, on the basis of bathymetric survey of Myojinsho volcano, Izu-Bonin island arc (32°55’N, 140°00’E). We carried out some research cruises by the ship Natsushima (JAMSTEC) in 2006-2008. We used unmanned bathymetric vehicle, Hyperdolphin, for observation and sampling of the submarine deposit. Myojinsho volcano is an active post-caldera volcano that grew on the northeastern rim of Myojinsho caldera (8 x 6 km in diameter). There have been many reports of colored seawater, and we also recognized a bubbly column above the summit of Myojinsho (Myojin reef; ca. 50 m below sea level) during acoustic survey. The 1952 eruption was the latest eruption that formed and destroyed new island above sea level, and would have been the first submarine eruption to be recorded by good scientific standard. This eruption was firstly recognized at the middle of September, 1952, and explosions and dome growth have been documented for about 1 year till the middle of September, 1953. There are many time series color photographs of explosions so that we can evaluate these explosions quantitatively (Ossaka, 1991). These records indicate that most of the cock’s tail jets are limited within the proximal area (ca. 500m) from the center of explosions, whereas the base surges and lateral steam clouds reach farther than ca. 500 m. During the bathymetric survey, we found several small lobes of pumice-rich deposits (< 1 m thick, several meter wide, several tens of meter long) on the sandy flat slope father than ca. 500 m from the summit of Myojinsho (deeper than ca. 300 m below sea level). Large pumices are concentrated at the front of each lobe, and the lobes become thinner toward the summit. On the other hand, the proximal deposit (<500 m from the summit) is characterized by scattered large angular blocky rocks or pumices. The largest blocks are as large as

  2. Sediment wave-forms and modes of construction on Mariana (and other) intra-oceanic arc volcanoes

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Stern, R. J.; Chadwick, B.; Tamura, Y.; Merle, S. G.

    2014-12-01

    Most intra-oceanic arc volcanoes are composite edifices constructed primarily in the submarine environment, built up by volcaniclastic sediments derived from hydroclastic and pyroclastic processes at/near the summits, punctuated by occasional lava flows and intrusions. Of particular interest in the mode of construction are extensive fields of large sediment waveforms (SWFs), up to >2 km wavelength and >100 m amplitude, on the submarine flanks of many islands and seamounts within the Mariana and other intra-oceanic subduction zones. These SWFs are composed of coarse-grained volcaniclastic sediments derived from the (approximate) point source summits of the island and submarine volcanoes. SWFs around some seamounts and islands, particularly those with large calderas, define quasi-concentric ring-like ridges, suggesting formation by density currents generated during submarine and island eruptions, and preserved for 10s of thousands of years. Some types of SWFs appear to have formed by progressive slumping of oversteepened slopes without fluidization. General conclusions about the origin of SWFs are hampered by the dearth of samples and high resolution seismic reflection profiles. However, large coherent slumps and debris avalanches documented for some ocean islands (e.g., Hawaiian Islands) are (mostly) are not as evident on the composite arc volcanoes. Submarine Mariana arc (and other intra-oceanic arc) volcanism probably spread volcaniclastic material primarily during submarine "Neptunian" eruptions and by progressive slides and other sediment flow rather than by catastrophic flank collapse. These processes could mitigate the Hawaiian-style of tsumami hazard, but Krakatoa-type tsunami hazards exist.

  3. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2007

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.

    2008-01-01

    Between January 1 and December 31, 2007, AVO located 6,664 earthquakes of which 5,660 occurred within 20 kilometers of the 33 volcanoes monitored by the Alaska Volcano Observatory. Monitoring highlights in 2007 include: the eruption of Pavlof Volcano, volcanic-tectonic earthquake swarms at the Augustine, Illiamna, and Little Sitkin volcanic centers, and the cessation of episodes of unrest at Fourpeaked Mountain, Mount Veniaminof and the northern Atka Island volcanoes (Mount Kliuchef and Korovin Volcano). This catalog includes descriptions of : (1) locations of seismic instrumentation deployed during 2007; (2) earthquake detection, recording, analysis, and data archival systems; (3) seismic velocity models used for earthquake locations; (4) a summary of earthquakes located in 2007; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, location quality statistics, daily station usage statistics, and all files used to determine the earthquake locations in 2007.

  4. Ups and downs on spreading flanks of ocean-island volcanoes: evidence from Mauna Loa and Kīlauea

    USGS Publications Warehouse

    Lipman, Peter W.; Eakins, Barry W.; Yokose, Hisayoshi

    2003-01-01

    Submarine-flank deposits of Hawaiian volcanoes are widely recognized to have formed largely by gravitationally driven volcano spreading and associated landsliding. Observations from submersibles show that prominent benches at middepths on flanks of Mauna Loa and Kilauea consist of volcaniclastic debris derived by landsliding from nearby shallow submarine and subaerial flanks of the same edifice. Massive slide breccias from the mature subaerial tholeiitic shield of Mauna Loa underlie the frontal scarp of its South Kona bench. In contrast, coarse volcaniclastic sediments derived largely from submarine-erupted preshield alkalic and transitional basalts of ancestral Kilauea underlie its Hilina bench. Both midslope benches record the same general processes of slope failure, followed by modest compression during continued volcano spreading, even though they record development during different stages of edifice growth. The dive results suggest that volcaniclastic rocks at the north end of the Kona bench, interpreted by others as distal sediments from older volcanoes that were offscraped, uplifted, and accreted to the island by far-traveled thrusts, alternatively are a largely coherent stratigraphic assemblage deposited in a basin behind the South Kona bench.

  5. Mud Volcanoes from the Beaufort Sea to the South China Sea

    NASA Astrophysics Data System (ADS)

    Lundsten, E. M.; Paull, C. K.; Caress, D. W.; Dallimore, S.; Melling, H.; Liu, C. S.; Anderson, K.; Gwiazda, R.

    2015-12-01

    The detailed morphology of five submarine mud volcanoes were surveyed using an Autonomous Underwater Vehicle (AUV) developed at the Monterey Bay Aquarium Research Institute. Mud volcanoes are constructional features built by extrusion of gas, subsurface fluids and fine-grained sediment. Two surveys covering four submarine mud volcanoes were conducted on the CCGS Sir Wilfred Laurier in the Beaufort Sea in the Canadian Arctic. A survey of one mud volcano was conducted on the Taiwanese Ocean Research V in the South China Sea, SE of Taiwan. The AUV carried a multibeam sonar, a 1-6 kHz chirp sub-bottom profiler, and a110 kHz sidescan, and obtained overlapping multibeam bathymetric coverage at a vertical resolution of 0.15 m with a horizontal footprint of 0.9 m and chirp seismic-reflection profiles with a vertical resolution of 0.11 m. Mud volcanoes were either flat topped or conical. The conical mud volcano off Taiwan had a diameter of ~2 km and 10° side slopes; the conical feature in the Beaufort Sea had a diameter of ~1.5 km and 4° side slopes. The sides of the conical mud volcanoes were smooth, suggesting they were formed by sediment flows that emanate from a vent on their crests. The flanks of the conical mud volcanoes characteristically had very low acoustic reflectivity, but one single high reflectivity trail from the crest of the Beaufort Sea mud volcano indicates a recent flow. Three mud volcanoes in the Beaufort Sea formed circular, flat-topped plateaus that are up to ~1.1 km in diameter and elevated up to 30 m from the surrounding seafloor. The fine scale morphology and reflectivity on these plateaus show low relief, concentric, and ovoid circles that appear to be mud boils probably associated with eruptive events of varying ages at shifting vent sites. The different mud volcano shapes are attributed to variations in the viscosity of the erupting sediment slurries and may represent a sequential morphology, which is altered by shifts in venting position over

  6. Submarines, spacecraft and exhaled breath.

    PubMed

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  7. Reference PMHS Sled Tests to Assess Submarining.

    PubMed

    Uriot, Jérôme; Potier, Pascal; Baudrit, Pascal; Trosseille, Xavier; Petit, Philippe; Richard, Olivier; Compigne, Sabine; Masuda, Mitsutoshi; Douard, Richard

    2015-11-01

    Sled tests focused on pelvis behavior and submarining can be found in the literature. However, they were performed either with rigid seats or with commercial seats. The objective of this study was to get reference tests to assess the submarining ability of dummies in more realistic conditions than on rigid seat, but still in a repeatable and reproducible setup. For this purpose, a semi-rigid seat was developed, which mimics the behavior of real seats, although it is made of rigid plates and springs that are easy to reproduce and simulate with an FE model. In total, eight PMHS sled tests were performed on this semirigid seat to get data in two different configurations: first in a front seat configuration that was designed to prevent submarining, then in a rear seat configuration with adjusted spring stiffness to generate submarining. All subjects sustained extensive rib fractures from the shoulder belt loading. No pelvis fractures and no submarining were observed in the front seat configuration, but two subjects sustained lumbar vertebrae fractures. In the rear seat configuration, all subjects sustained pelvic fractures and demonstrated submarining. Corridors were constructed for the external forces and the PMHS kinematics. They are provided in this paper as new reference tests to assess the biofidelity of human surrogates in different configurations that either result in submarining or do not. In future, it is intended to analyze further seat and restraint system configurations to be able to define a submarining predictor.

  8. Nuclear Submarines and Aircraft Carriers | Radiation ...

    EPA Pesticide Factsheets

    2016-02-23

    Nuclear submarines and aircraft carriers are powered by onboard nuclear reactors. Heat from the nuclear reaction makes the steam needed to power the submarine. When a nuclear vessel is taken out of service, its radioactive parts are disposed of and monitored.

  9. Obsolescence Management for Virginia-Class Submarines

    DTIC Science & Technology

    2010-10-01

    century. PROBLEM Although the Vitginia- chss submarine is designed for maximum flexibility, allowing tor technological insertion and innovation over the... chss obsoles- cence program was the submarine’s design using modules, open architecture, and COTS compo- nents. The following are the key lessons

  10. Comparative Naval Architecture Analysis of Diesel Submarines

    DTIC Science & Technology

    2005-06-01

    mission, cost, or other factors affect the architecture? This study examines and compares the naval architecture of selected diesel submarines from...79 A ppendix E : Subm arine Shape Factors ................................................................................... 90 5 List of...country. Do factors such as mission, cost, or tradition 10 affect submarine naval architecture? An in depth comparison is performed of six diesel

  11. Seafloor geodetic reference station branched from submarine cable

    NASA Astrophysics Data System (ADS)

    Mochizuki, M.; Asada, A.; Ura, T.; Asakawa, K.; Yokobiki, T.; Iwase, R.; Goto, T.; Sato, M.; Nagahashi, K.; Tanaka, T.

    2008-12-01

    to the transponder as well as power. The new cable transponder can realize acoustic ranging between sea surface and bottom with much higher accuracy than the current system. Submarine cable system off Toyohashi (Tokai-SCANNER) in central Japan is located on the source region of the huge repeated earthquakes. It is under the control of the JAMSTEC and used for long-term geophysical monitoring. This cable is one to which we are planning to connect newly developed seafloor transponder. The cruise of JAMSTEC"fS ROV "KAIKO 7000 II" and R/V "KAIREI" is scheduled to deploy and connect the seafloor transponder to the Tokai-SCANNER cable system from Sep. 18, 2008. We will report the overview of the cable transponder system and its deployment procedure in this presentation.

  12. Currents in monterey submarine canyon

    USGS Publications Warehouse

    Xu, J. P.; Noble, M.A.

    2009-01-01

    Flow fields of mean, subtidal, and tidal frequencies between 250 and 3300 m water depths in Monterey Submarine Canyon are examined using current measurements obtained in three yearlong field experiments. Spatial variations in flow fields are mainly controlled by the topography (shape and width) of the canyon. The mean currents flow upcanyon in the offshore reaches (>1000 m) and downcanyon in the shallow reaches (100-m amplitude isotherm oscillations and associated high-speed rectilinear currents. The 15-day spring-neap cycle and a ???3-day??? band are the two prominent frequencies in subtidal flow field. Neither of them seems directly correlated with the spring-neap cycle of the sea level.

  13. Submarine landslides: advances and challenges

    USGS Publications Warehouse

    Locat, Jacques; Lee, Homa J.

    2002-01-01

    Due to the recent development of well-integrated surveying techniques of the sea floor, significant improvements were achieved in mapping and describing the morphology and architecture of submarine mass movements. Except for the occurrence of turbidity currents, the aquatic environment (marine and fresh water) experiences the same type of mass failure as that found on land. Submarine mass movements, however, can have run-out distances in excess of 100 km, so their impact on any offshore activity needs to be integrated over a wide area. This great mobility of submarinemass movements is still not very well understood, particularly for cases like the far-reaching debris flows mapped on the Mississippi Fan and the large submarine rock avalanches found around many volcanic islands. A major challenge ahead is the integration of mass movement mechanics in an appropriate evaluation of the hazard so that proper risk assessment methodologies can be developed and implemented for various human activities offshore, including the development of natural resources and the establishment of reliable communication corridors. Key words : submarine slides, hazards, risk assessment, morphology, mobility, tsunami. Le dveloppement rcent de techniques de levs hydrograhiques pour les fonds marins nous a permis d'atteindre une qualit ingale dans la cartographie et la description des glissements sous marins. l'exception des courants de turbidit, on retrouve dans le domaine aquatique les mmes types de mouvements de terrain que sur terre. Par contre, les glissements sous-marins peuvent atteindre des distances excdant 100 km de telle sorte que leur impact sur les activits offshore doit tre pris en compte sur degrandes tendues. La grande mobilit des glissements sous-marins n'est pas encore bien comprise, comme pour le cas des coules dedbris cartographies sur le cne du Mississippi ainsi que pour les grandes avalanches rocheuses sous-marines retrouves au pourtour des les volcaniques. Un dfi majeur

  14. Volcanoes: Coming Up from Under.

    ERIC Educational Resources Information Center

    Science and Children, 1980

    1980-01-01

    Provides specific information about the eruption of Mt. St. Helens in March 1980. Also discusses how volcanoes are formed and how they are monitored. Words associated with volcanoes are listed and defined. (CS)

  15. Boron-rich mud volcanoes of the Black Sea region: modern analogues to ancient sea-floor tourmalinites associated with Sullivan-type Pb-Zn deposits?

    USGS Publications Warehouse

    Slack, J.F.; Turner, R.J.W.; Ware, P.L.G.

    1998-01-01

    Large submarine mud volcanoes in the abyssal part of the Black Sea south of the Crimean Peninsula are similar in many respects to synsedimentary mud volcanoes in the Mesoproterozoic Belt-Purcell basin. One of the Belt-Purcell mud volcanoes directly underlies the giant Sullivan Pb-Zn-Ag deposit in southeastern British Columbia. Footwall rocks to the Sullivan deposit comprise variably tourmalinized siltstone, conglomerate, and related fragmental rock; local thin pyrrhotite-rich and spessartine-quartz beds are interpreted as Fe and Fe-Mn exhalites, respectively. Analogous Fe- and Mn-rich sediments occur near the abyssal Black Sea mud volcanoes. Massive pyrite crusts and associated carbonate chimneys discovered in relatively shallow waters (~200 m depth) west of the Crimean Peninsula indicate an active sea-floor-hydrothermal system. Subaerial mud volcanoes on the Kerch and Taman Peninsulas (~100 km north of the abyssal mud volcanoes) contain saline thermal waters that locally have very high B contents (to 915 mg/L). These data suggest that tourmalinites might be forming in or near submarine Black Sea mud volcanoes, where potential may also exist for Sullivan-type Pb-Zn mineralization.

  16. Fuel-cell-propelled submarine-tanker-system study

    SciTech Connect

    Court, K E; Kumm, W H; O'Callaghan, J E

    1982-06-01

    This report provides a systems analysis of a commercial Arctic Ocean submarine tanker system to carry fossil energy to markets. The submarine is to be propelled by a modular Phosphoric Acid Fuel Cell system. The power level is 20 Megawatts. The DOE developed electric utility type fuel cell will be fueled with methanol. Oxidant will be provided from a liquid oxygen tank carried onboard. The twin screw submarine tanker design is sized at 165,000 deadweight tons and the study includes costs and an economic analysis of the transport system of 6 ships. The route will be under the polar icecap from a loading terminal located off Prudhoe Bay, Alaska to a transshipment facility postulated to be in a Norwegian fjord. The system throughput of the gas-fed methanol cargo will be 450,000 barrels per day. The total delivered cost of the methanol including well head purchase price of natural gas, methanol production, and shipping would be $25/bbl from Alaska to the US East Coast. Of this, the shipping cost is $6.80/bbl. All costs in 1981 dollars.

  17. Southeastern Australia's Submarine Landslides : a Model for Their Occurence

    NASA Astrophysics Data System (ADS)

    Hubble, T.; Clarke, S. L.; Yu, P.; Airey, D.; Keene, J.

    2012-12-01

    Recent work has identified an extensive region of the eastern Australian Continental Margin offshore Northern NSW and Southern Queensland which has experienced intense submarine erosion dominated by large-scale, submarine-landsliding that has removed enormous amounts of Neogene to recent sediment from the upper and middle continental slope. Preliminary findings demonstrate that i) some upper slope slides are geologically very young (< 20 kA), ii) the most recent slides occurred in relatively shallow depths and were volumetrically large enough (~3 cu km) to have been capable of generating damaging tsunami if shed as single masses and iii) the mid-slope slides are comprised of compacted Neogene sediments; iv) some of the mid-slope slide scars are huge (several 10's of cu km); and v) some of the mid-slope slide masses probably remained largely intact during sliding, potentially generated megatsunami, and are suspected to located on the abyssal Tasman Sea plain adjacent to the margin. A conceptual model that accounts for the apparent onset of sliding approximately 15 million years ago and the continuing deconstruction of the margin has been developed. This model posits that erosion of material from the middle and lower slope by deep, cold-water, ocean currents originating in Antartica occurred contemporaneously with an increase in the frequency and intensity of earthquakes due to increasing tectonic interaction between Australia and Asia. These two processes acted together to initiate and then sustain the submarine landsliding.

  18. Certification of a submarine design using fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Kiddy, Jason S.; Baldwin, Chris S.; Salter, Toni J.

    2004-07-01

    Systems Planning and Analysis, Inc. (SPA) has recently planned, installed, and tested a fiber Bragg grating (FBG) strain sensor system to validate FEM predictions of a new submarine design undergoing American Bureau of Shipping (ABS) certification testing. Fiber optic triaxial, biaxial, and uniaxial gage locations were selected based on the FEM analysis. FBGs were placed on six optical fibers with two fibers (33 sensors) mounted internally to the hull and four fibers (64 sensors) mounted externally. Testing was performed by lowering the submarine to the design depth and recording strain measurements. The optical sensor signals were transmitted directly to the water's surface and monitored by top-side interrogation instrumentation through over 2000 feet of optical cable. Measured temperature-compensated strain values were compared to the FEM predicted strain values with excellent results. To the author's knowledge, this successful test represents the first time that FBG sensors have been used to certify a submarine design and to validate FEM analysis on a large-scale structure.

  19. Estimating the empirical probability of submarine landslide occurrence

    USGS Publications Warehouse

    Geist, Eric L.; Parsons, Thomas E.; Mosher, David C.; Shipp, Craig; Moscardelli, Lorena; Chaytor, Jason D.; Baxter, Christopher D. P.; Lee, Homa J.; Urgeles, Roger

    2010-01-01

    The empirical probability for the occurrence of submarine landslides at a given location can be estimated from age dates of past landslides. In this study, tools developed to estimate earthquake probability from paleoseismic horizons are adapted to estimate submarine landslide probability. In both types of estimates, one has to account for the uncertainty associated with age-dating individual events as well as the open time intervals before and after the observed sequence of landslides. For observed sequences of submarine landslides, we typically only have the age date of the youngest event and possibly of a seismic horizon that lies below the oldest event in a landslide sequence. We use an empirical Bayes analysis based on the Poisson-Gamma conjugate prior model specifically applied to the landslide probability problem. This model assumes that landslide events as imaged in geophysical data are independent and occur in time according to a Poisson distribution characterized by a rate parameter λ. With this method, we are able to estimate the most likely value of λ and, importantly, the range of uncertainty in this estimate. Examples considered include landslide sequences observed in the Santa Barbara Channel, California, and in Port Valdez, Alaska. We confirm that given the uncertainties of age dating that landslide complexes can be treated as single events by performing statistical test of age dates representing the main failure episode of the Holocene Storegga landslide complex.

  20. 32. VIEW OF PHOTO CAPTIONED 'SUBMARINE BASE, NEW LONDON, CONN. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. VIEW OF PHOTO CAPTIONED 'SUBMARINE BASE, NEW LONDON, CONN. OCTOBER 3, 1932. COMPLETION OF ERECTION OF STEELWORK FOR ELEVATOR. LOOKING NORTH. CONTRACT NO. Y-1539-ELEVATOR, SUBMARINE ESCAPE TANK.' - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  1. 47 CFR 32.2424 - Submarine & deep sea cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Submarine & deep sea cable. 32.2424 Section 32... Submarine & deep sea cable. (a) This account shall include the original cost of submarine cable and deep sea... defined below, are to be maintained for nonmetallic submarine and deep sea cable and metallic...

  2. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  3. 47 CFR 32.2424 - Submarine & deep sea cable.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Submarine & deep sea cable. 32.2424 Section 32... Submarine & deep sea cable. (a) This account shall include the original cost of submarine cable and deep sea... defined below, are to be maintained for nonmetallic submarine and deep sea cable and metallic...

  4. 47 CFR 32.2424 - Submarine & deep sea cable.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Submarine & deep sea cable. 32.2424 Section 32... Submarine & deep sea cable. (a) This account shall include the original cost of submarine cable and deep sea... defined below, are to be maintained for nonmetallic submarine and deep sea cable and metallic...

  5. 29. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION AT POINT JUST ABOVE THE SUBMARINE SECTION AT THE 110-FOOT LEVEL 1929-1930 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  6. 47 CFR 32.2424 - Submarine & deep sea cable.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Submarine & deep sea cable. 32.2424 Section 32... Submarine & deep sea cable. (a) This account shall include the original cost of submarine cable and deep sea... defined below, are to be maintained for nonmetallic submarine and deep sea cable and metallic...

  7. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  8. 47 CFR 32.2424 - Submarine & deep sea cable.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Submarine & deep sea cable. 32.2424 Section 32... Submarine & deep sea cable. (a) This account shall include the original cost of submarine cable and deep sea... defined below, are to be maintained for nonmetallic submarine and deep sea cable and metallic...

  9. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  10. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  11. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  12. Submarine evidence for large-scale debris avalanches in the Lesser Antilles Arc

    NASA Astrophysics Data System (ADS)

    Deplus, Christine; Le Friant, Anne; Boudon, Georges; Komorowski, Jean-Christophe; Villemant, Benoit; Harford, Chloe; Ségoufin, Jacques; Cheminée, Jean-Louis

    2001-10-01

    Results from a recent marine geophysical survey demonstrate the importance of the process of flank collapse in the growth and evolution of volcanoes along an island arc. The Aguadomar cruise, aboard the French R/V L'Atalante, surveyed the flanks of the Lesser Antilles Arc between the islands of Montserrat and St. Lucia. Analysis of the data shows that flank collapse events occurred on active volcanoes all along the arc and resulted in debris avalanches, some of them being of large magnitude. The debris avalanche deposits display hummocky topography on the swath bathymetry, speckled pattern on backscatter images, hyperbolic facies on 3.5 kHz echosounder data and chaotic units on air gun seismic profiles. They extend from horseshoe-shaped structures previously identified on the subaerial part of the volcanoes. In the southern part of the arc, large-scale debris avalanche deposits were identified on the floor of the Grenada Basin west of active volcanoes on Dominica, Martinique and St. Lucia. The extent of debris avalanche deposits off Dominica is about 3500 km 2. The debris avalanches have resulted from major flank collapse events which may be mainly controlled by the large-scale structure of the island arc and the presence of the deep Grenada Basin. In the northern part of the arc, several debris avalanche deposits were also identified around the island of Montserrat. With smaller extent (20-120 km 2), they are present on the east, south and west submarine flanks of Soufriere Hills volcano which has been erupting since July 1995. Flank collapse is thus a recurrent process in the recent history of this volcano. The marine data are also relevant for a discussion of the transport mechanisms of debris avalanches on the seafloor surrounding a volcanic island arc.

  13. Database for the Geologic Map of the Summit Region of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Dutton, Dillon R.; Ramsey, David W.; Bruggman, Peggy E.; Felger, Tracey J.; Lougee, Ellen; Margriter, Sandy; Showalter, Patrick; Neal, Christina A.; Lockwood, John P.

    2007-01-01

    INTRODUCTION The area covered by this map includes parts of four U.S. Geological Survey (USGS) 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water: the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas, the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones. This digital release contains all the information used to produce the geologic map published as USGS Geologic Investigations Series I-2759 (Neal and Lockwood, 2003). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains printable files for the geologic map and accompanying descriptive pamphlet from I-2759.

  14. Water in Aleutian Arc Volcanoes

    NASA Astrophysics Data System (ADS)

    Plank, T.; Zimmer, M. M.; Hauri, E. H.

    2011-12-01

    In the past decade, baseline data have been obtained on pre-eruptive water contents for several volcanic arcs worldwide. One surprising observation is that parental magmas contain ~ 4 wt% H2O on average at each arc worldwide [1]. Within each arc, the variation from volcano to volcano is from 2 to 6 w% H2O, with few exceptions. The similar averages at different arcs are unexpected given the order of magnitude variations in the concentration of other slab tracers. H2O is clearly different from other tracers, however, being both a major driver of melting in the mantle and a major control of buoyancy and viscosity in the crust. Some process, such as mantle melting or crustal storage, apparently modulates the water content of mafic magmas at arcs. Mantle melting may deliver a fairly uniform product to the Moho, if the wet melt process includes a negative feedback. On the other hand, magmas with variable water content may be generated in the mantle, but a crustal filter may lead to magma degassing up to a common mid-to-upper crustal storage region. Testing between these two end-member scenarios is critical to our understanding of subduction dehydration, global water budgets, magmatic plumbing systems, melt generation and eruptive potential. The Alaska-Aleutian arc is a prime location to explore this fundamental problem in the subduction water cycle, because active volcanoes vary more than elsewhere in the world in parental H2O contents (based on least-degassed, mafic melt inclusions hosted primarily in olivine). For example, Shishaldin volcano taps magma with among the lowest H2O contents globally (~ 2 wt%) and records low pressure crystal fractionation [2], consistent with a shallow magma system (< 1 km bsl). At the other extreme, Augustine volcano is fed by a mafic parent that contains among the highest H2O globally (~ 7 wt%), and has evolved by deep crystal fractionation [2], consistent with a deep magma system (~ 14 km bsl). Do these magmas stall at different depths

  15. Early growth of Kohala volcano and formation of long Hawaiian rift zones

    USGS Publications Warehouse

    Lipman, P.W.; Calvert, A.T.

    2011-01-01

    Transitional-composition pillow basalts from the toe of the Hilo Ridge, collected from outcrop by submersible, have yielded the oldest ages known from the Island of Hawaii: 1138 ?? 34 to 1159 ?? 33 ka. Hilo Ridge has long been interpreted as a submarine rift zone of Mauna Kea, but the new ages validate proposals that it is the distal east rift zone of Kohala, the oldest subaerial volcano on the island. These ages constrain the inception of tholeiitic volcanism at Kohala, provide the first measured duration of tholeiitic shield building (???870 k.y.) for any Hawaiian volcano, and show that this 125-km-long rift zone developed to near-total length during early growth of Kohala. Long eastern-trending rift zones of Hawaiian volcanoes may follow fractures in oceanic crust activated by arching of the Hawaiian Swell in front of the propagating hotspot. ?? 2011 Geological Society of America.

  16. Eruption of a deep-sea mud volcano triggers rapid sediment movement.

    PubMed

    Feseker, Tomas; Boetius, Antje; Wenzhöfer, Frank; Blandin, Jerome; Olu, Karine; Yoerger, Dana R; Camilli, Richard; German, Christopher R; de Beer, Dirk

    2014-11-11

    Submarine mud volcanoes are important sources of methane to the water column. However, the temporal variability of their mud and methane emissions is unknown. Methane emissions were previously proposed to result from a dynamic equilibrium between upward migration and consumption at the seabed by methane-consuming microbes. Here we show non-steady-state situations of vigorous mud movement that are revealed through variations in fluid flow, seabed temperature and seafloor bathymetry. Time series data for pressure, temperature, pH and seafloor photography were collected over 431 days using a benthic observatory at the active Håkon Mosby Mud Volcano. We documented 25 pulses of hot subsurface fluids, accompanied by eruptions that changed the landscape of the mud volcano. Four major events triggered rapid sediment uplift of more than a metre in height, substantial lateral flow of muds at average velocities of 0.4 m per day, and significant emissions of methane and CO₂ from the seafloor.

  17. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition Five crew members aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy in October 2002. Triggered by a series of earthquakes on October 27, 2002, this eruption was one of Etna's most vigorous in years. This image shows the ash plume curving out toward the horizon. The lighter-colored plumes down slope and north of the summit seen in this frame are produced by forest fires set by flowing lava. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  18. Organizational changes at Earthquakes & Volcanoes

    USGS Publications Warehouse

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  19. Timing of occurrence of large submarine landslides on the Atlantic Ocean margin

    USGS Publications Warehouse

    Lee, H.J.

    2009-01-01

    Submarine landslides are distributed unevenly both in space and time. Spatially, they occur most commonly in fjords, active river deltas, submarine canyon-fan systems, the open continental slope and on the flanks of oceanic volcanic islands. Temporally, they are influenced by the size, location, and sedimentology of migrating depocenters, changes in seafloor pressures and temperatures, variations in seismicity and volcanic activity, and changes in groundwater flow conditions. The dominant factor influencing the timing of submarine landslide occurrence is glaciation. A review of known ages of submarine landslides along the margins of the Atlantic Ocean, augmented by a few ages from other submarine locations shows a relatively even distribution of large landslides with time from the last glacial maximum until about five thousand years after the end of glaciation. During the past 5000??yr, the frequency of occurrence is less by a factor of 1.7 to 3.5 than during or shortly after the last glacial/deglaciation period. Such an association likely exists because of the formation of thick deposits of sediment on the upper continental slope during glacial periods and increased seismicity caused by isostatic readjustment during and following deglaciation. Hydrate dissociation may play a role, as suggested previously in the literature, but the connection is unclear.

  20. Venus small volcano classification and description

    NASA Astrophysics Data System (ADS)

    Aubele, J. C.

    1993-03-01

    The high resolution and global coverage of the Magellan radar image data set allows detailed study of the smallest volcanoes on the planet. A modified classification scheme for volcanoes less than 20 km in diameter is shown and described. It is based on observations of all members of the 556 significant clusters or fields of small volcanoes located and described by this author during data collection for the Magellan Volcanic and Magmatic Feature Catalog. This global study of approximately 10 exp 4 volcanoes provides new information for refining small volcano classification based on individual characteristics. Total number of these volcanoes was estimated to be 10 exp 5 to 10 exp 6 planetwide based on pre-Magellan analysis of Venera 15/16, and during preparation of the global catalog, small volcanoes were identified individually or in clusters in every C1-MIDR mosaic of the Magellan data set. Basal diameter (based on 1000 measured edifices) generally ranges from 2 to 12 km with a mode of 34 km, and follows an exponential distribution similar to the size frequency distribution of seamounts as measured from GLORIA sonar images. This is a typical distribution for most size-limited natural phenomena unlike impact craters which follow a power law distribution and continue to infinitely increase in number with decreasing size. Using an exponential distribution calculated from measured small volcanoes selected globally at random, we can calculate total number possible given a minimum size. The paucity of edifice diameters less than 2 km may be due to inability to identify very small volcanic edifices in this data set; however, summit pits are recognizable at smaller diameters, and 2 km may represent a significant minimum diameter related to style of volcanic eruption. Guest, et al, discussed four general types of small volcanic edifices on Venus: (1) small lava shields; (2) small volcanic cones; (3) small volcanic domes; and (4) scalloped margin domes ('ticks'). Steep

  1. Venus small volcano classification and description

    NASA Technical Reports Server (NTRS)

    Aubele, J. C.

    1993-01-01

    The high resolution and global coverage of the Magellan radar image data set allows detailed study of the smallest volcanoes on the planet. A modified classification scheme for volcanoes less than 20 km in diameter is shown and described. It is based on observations of all members of the 556 significant clusters or fields of small volcanoes located and described by this author during data collection for the Magellan Volcanic and Magmatic Feature Catalog. This global study of approximately 10 exp 4 volcanoes provides new information for refining small volcano classification based on individual characteristics. Total number of these volcanoes was estimated to be 10 exp 5 to 10 exp 6 planetwide based on pre-Magellan analysis of Venera 15/16, and during preparation of the global catalog, small volcanoes were identified individually or in clusters in every C1-MIDR mosaic of the Magellan data set. Basal diameter (based on 1000 measured edifices) generally ranges from 2 to 12 km with a mode of 34 km, and follows an exponential distribution similar to the size frequency distribution of seamounts as measured from GLORIA sonar images. This is a typical distribution for most size-limited natural phenomena unlike impact craters which follow a power law distribution and continue to infinitely increase in number with decreasing size. Using an exponential distribution calculated from measured small volcanoes selected globally at random, we can calculate total number possible given a minimum size. The paucity of edifice diameters less than 2 km may be due to inability to identify very small volcanic edifices in this data set; however, summit pits are recognizable at smaller diameters, and 2 km may represent a significant minimum diameter related to style of volcanic eruption. Guest, et al, discussed four general types of small volcanic edifices on Venus: (1) small lava shields; (2) small volcanic cones; (3) small volcanic domes; and (4) scalloped margin domes ('ticks'). Steep

  2. Volcano-electromagnetic effects

    USGS Publications Warehouse

    Johnston, Malcolm J. S.

    2007-01-01

    Volcano-electromagnetic effects—electromagnetic (EM) signals generated by volcanic activity—derive from a variety of physical processes. These include piezomagnetic effects, electrokinetic effects, fluid vaporization, thermal demagnetization/remagnetization, resistivity changes, thermochemical effects, magnetohydrodynamic effects, and blast-excited traveling ionospheric disturbances (TIDs). Identification of different physical processes and their interdependence is often possible with multiparameter monitoring, now common on volcanoes, since many of these processes occur with different timescales and some are simultaneously identified in other geophysical data (deformation, seismic, gas, ionospheric disturbances, etc.). EM monitoring plays an important part in understanding these processes.

  3. Geochemical constraints on the evolution of mafic and felsic rocks in the Bathani volcanic and volcano-sedimentary sequence of Chotanagpur Granite Gneiss Complex

    NASA Astrophysics Data System (ADS)

    Saikia, Ashima; Gogoi, Bibhuti; Ahmad, Mansoor; Ahmad, Talat

    2014-06-01

    The Bathani volcanic and volcano-sedimentary (BVS) sequence is a volcanic and volcano-sedimentary sequence, best exposed near Bathani village in Gaya district of Bihar. It is located in the northern fringe of the Chotanagpur Granite Gneiss Complex (CGGC). The volcano-sedimentary unit comprises of garnet-mica schist, rhyolite, tuff, banded iron formation (BIF) and chert bands with carbonate rocks as enclaves within the rhyolite and the differentiated volcanic sequence comprises of rhyolite, andesite, pillow basalt, massive basalt, tuff and mafic pyroclasts. Emplacement of diverse felsic and mafic rocks together testifies for a multi-stage and multi-source magmatism for the area. The presence of pillow basalt marks the eruption of these rocks in a subaqueous environment. Intermittent eruption of mafic and felsic magmas resulted in the formation of rhyolite, mafic pyroclasts, and tuff. Mixing and mingling of the felsic and mafic magmas resulted in the hybrid rock andesite. Granites are emplaced later, cross-cutting the volcanic sequence and are probably products of fractional crystallization of basaltic magma. The present work characterizes the geochemical characteristics of the magmatic rocks comprising of basalt, andesite, rhyolite, tuff, and granite of the area. Tholeiitic trend for basalt and calc-alkaline affinities of andesite, rhyolite and granite is consistent with their generation in an island arc, subduction related setting. The rocks of the BVS sequence probably mark the collision of the northern and southern Indian blocks during Proterozoic period. The explosive submarine volcanism may be related to culmination of the collision of the aforementioned blocks during the Neoproterozoic (1.0 Ga) as the Grenvillian metamorphism is well established in various parts of CGGC.

  4. Mapping tremor at Kīlauea volcano

    NASA Astrophysics Data System (ADS)

    Wech, A.; Thelen, W. A.

    2014-12-01

    Mapping the magma pathway geometry beneath active volcanoes is vital to providing an understanding of how each system works, what drives its dynamics and what eventually controls the surface expression of volcanism. Seismicity can provide clues about the subsurface plumbing, but the seismic catalog is often incomplete. The broad spectrum of seismic phenomena at volcanoes, from discrete earthquakes to the continuous hum of tremor, hampers event identification, and there are no standard seismological tools to resolve this problem. Even at Kīlauea, one of the best-instrumented and most studied volcanoes in the world, a detailed source geometry remains elusive. Here we present the first map of a volcano's deep plumbing system by taking a new approach to seismic monitoring. Using envelope cross-correlation, we systematically scan through 2.5 years of continuous seismic data to identify and locate thousands of undocumented volcanic sources, which we interpret to map the path of magma ascent from the deep mantle, offshore south of the Big Island, to the lava lake in Kīlauea's crater. The results offer a fundamental insight into the source of Kīlauea volcanism and generate a baseline understanding that increases our ability to interpret pre- and co-eruptive observations.

  5. Preliminary radon measurements at Villarrica volcano, Chile

    NASA Astrophysics Data System (ADS)

    Cigolini, C.; Laiolo, M.; Coppola, D.; Ulivieri, G.

    2013-10-01

    We report data from a radon survey conducted at Villarrica volcano. Measurements have been obtained at selected sites by E-PERM® electrets and two automatic stations utilizing DOSEman detectors (SARAD Gmbh). Mean values for Villarrica are 1600 (±1150) Bq/m3 are similar to values recorded at Cerro Negro and Arenal in Central America. Moderately higher emissions, at measurement sites, were recorded on the NNW sector of the volcano and the summit, ranging from 1800 to 2400 Bq/m3. These measurements indicate that this area could potentially be a zone of flank weakness. In addition, the highest radon activities, up to 4600 Bq/m3, were measured at a station located near the intersection of the Liquiñe-Ofqui Fault Zone with the Gastre Fault Zone. To date, the Villarrica radon measurements reported here are, together with those collected at Galeras (Colombia), the sole radon data reported from South American volcanoes. This research may contribute to improving future geochemical monitoring and volcano surveillance.

  6. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2011

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Searcy, Cheryl K.

    2012-01-01

    Between January 1 and December 31, 2011, the Alaska Volcano Observatory (AVO) located 4,364 earthquakes, of which 3,651 occurred within 20 kilometers of the 33 volcanoes with seismograph subnetworks. There was no significant seismic activity above background levels in 2011 at these instrumented volcanic centers. This catalog includes locations, magnitudes, and statistics of the earthquakes located in 2011 with the station parameters, velocity models, and other files used to locate these earthquakes.

  7. Santa Maria Volcano, Guatemala

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The eruption of Santa Maria volcano in 1902 was one of the largest eruptions of the 20th century, forming a large crater on the mountain's southwest flank. Since 1922, a lava-dome complex, Santiaguito, has been forming in the 1902 crater. Growth of the dome has produced pyroclastic flows as recently as the 2001-they can be identified in this image. The city of Quezaltenango (approximately 90,000 people in 1989) sits below the 3772 m summit. The volcano is considered dangerous because of the possibility of a dome collapse such as one that occurred in 1929, which killed about 5000 people. A second hazard results from the flow of volcanic debris into rivers south of Santiaguito, which can lead to catastrophic flooding and mud flows. More information on this volcano can be found at web sites maintained by the Smithsonian Institution, Volcano World, and Michigan Tech University. ISS004-ESC-7999 was taken 17 February 2002 from the International Space Station using a digital camera. The image is provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Searching and viewing of additional images taken by astronauts and cosmonauts is available at the NASA-JSC Gateway to

  8. Geology of Kilauea volcano

    SciTech Connect

    Moore, R.B. . Federal Center); Trusdell, F.A. . Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  9. The Volcano Adventure Guide

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly

    2005-02-01

    This guide contains vital information for anyone wishing to visit, explore, and photograph active volcanoes safely and enjoyably. Following an introduction that discusses eruption styles of different types of volcanoes and how to prepare for an exploratory trip that avoids volcanic dangers, the book presents guidelines to visiting 42 different volcanoes around the world. It is filled with practical information that includes tour itineraries, maps, transportation details, and warnings of possible non-volcanic dangers. Three appendices direct the reader to a wealth of further volcano resources in a volume that will fascinate amateur enthusiasts and professional volcanologists alike. Rosaly Lopes is a planetary geology and volcanology specialist at the NASA Jet Propulsion Laboratory in California. In addition to her curatorial and research work, she has lectured extensively in England and Brazil and written numerous popular science articles. She received a Latinas in Science Award from the Comision Feminil Mexicana Nacional in 1991 and since 1992, has been a co-organizer of the United Nations/European Space Agency/The Planetary Society yearly conferences on Basic Science for the Benefit of Developing Countries.

  10. Geology of kilauea volcano

    USGS Publications Warehouse

    Moore, R.B.; Trusdell, F.A.

    1993-01-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.

  11. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2003

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sanchez, John J.; McNutt, Stephen R.; Estes, Steve; Paskievitch, John

    2004-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988. The primary objectives of this program are the near real time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the calculated earthquake hypocenter and phase arrival data, and changes in the seismic monitoring program for the period January 1 through December 31, 2003.The AVO seismograph network was used to monitor the seismic activity at twenty-seven volcanoes within Alaska in 2003. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai volcanic cluster (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Okmok Caldera, Great Sitkin Volcano, Kanaga Volcano, Tanaga Volcano, and Mount Gareloi. Monitoring highlights in 2003 include: continuing elevated seismicity at Mount Veniaminof in January-April (volcanic unrest began in August 2002), volcanogenic seismic swarms at Shishaldin Volcano throughout the year, and low-level tremor at Okmok Caldera throughout the year. Instrumentation and data acquisition highlights in 2003 were the installation of subnetworks on Tanaga and Gareloi Islands, the installation of broadband installations on Akutan Volcano and Okmok Caldera, and the establishment of telemetry for the Okmok Caldera subnetwork. AVO located 3911 earthquakes in 2003.This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a

  12. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2004

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; Prejean, Stephanie; Sanchez, John J.; Sanches, Rebecca; McNutt, Stephen R.; Paskievitch, John

    2005-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988. The primary objectives of the seismic program are the real-time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the calculated earthquake hypocenter and phase arrival data, and changes in the seismic monitoring program for the period January 1 through December 31, 2004.These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai volcanic cluster (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Mount Peulik, Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Okmok Caldera, Great Sitkin Volcano, Kanaga Volcano, Tanaga Volcano, and Mount Gareloi. Over the past year, formal monitoring of Okmok, Tanaga and Gareloi were announced following an extended period of monitoring to determine the background seismicity at each volcanic center. The seismicity at Mount Peulik was still being studied at the end of 2004 and has yet to be added to the list of monitored volcanoes in the AVO weekly update. AVO located 6928 earthquakes in 2004.Monitoring highlights in 2004 include: (1) an earthquake swarm at Westdahl Peak in January; (2) an increase in seismicity at Mount Spurr starting in February continuing through the end of the year into 2005; (4) low-level tremor, and low-frequency events related to intermittent ash and steam emissions at Mount Veniaminof between April and October; (4) low-level tremor at Shishaldin Volcano between April and

  13. Catalogue of Icelandic Volcanoes

    NASA Astrophysics Data System (ADS)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Gudmundsson, Magnus T.; Vogfjord, Kristin; Pagneux, Emmanuel; Oddsson, Bjorn; Barsotti, Sara; Karlsdottir, Sigrun

    2016-04-01

    The Catalogue of Icelandic Volcanoes is a newly developed open-access web resource in English intended to serve as an official source of information about active volcanoes in Iceland and their characteristics. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the effort of FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene (the time since the end of the last glaciation - approximately the last 11,500 years). In the last 50 years, over 20 eruptions have occurred in Iceland displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and the distribution lava and tephra. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in numerous scientific papers and other publications. In 2010, the International Civil Aviation Organisation (ICAO) funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU through the FP7 project FUTUREVOLC. The Catalogue of Icelandic Volcanoes is a collaboration of the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere. The Catalogue is built up of chapters with texts and various

  14. 33 CFR 165.1302 - Bangor Naval Submarine Base, Bangor, WA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Bangor Naval Submarine Base, Bangor, WA. (a) Location. The following is a security zone: The waters of the Hood Canal encompassed by a line commencing on the east shore of Hood Canal at latitude 47°43′17...., longitude 122°42′12″ W.: thence southerly along the shoreline to the point of beginning. (b) Security...

  15. 33 CFR 334.75 - Thames River, Naval Submarine Base New London, restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Base New London, restricted area. 334.75 Section 334.75 Navigation and Navigable Waters CORPS OF....75 Thames River, Naval Submarine Base New London, restricted area. (a) The area: The open waters of... channel to a point located at latitude 41°24′04.1″ N, longitude 72°05′51.2″ W then southerly along...

  16. 33 CFR 334.75 - Thames River, Naval Submarine Base New London, restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Base New London, restricted area. 334.75 Section 334.75 Navigation and Navigable Waters CORPS OF....75 Thames River, Naval Submarine Base New London, restricted area. (a) The area: The open waters of... channel to a point located at latitude 41°24′04.1″ N, longitude 72°05′51.2″ W then southerly along...

  17. 33 CFR 334.75 - Thames River, Naval Submarine Base New London, restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Base New London, restricted area. 334.75 Section 334.75 Navigation and Navigable Waters CORPS OF....75 Thames River, Naval Submarine Base New London, restricted area. (a) The area: The open waters of... channel to a point located at latitude 41°24′04.1″ N, longitude 72°05′51.2″ W then southerly along...

  18. Topology Model of the Flow around a Submarine Hull Form

    DTIC Science & Technology

    2015-12-01

    end of the tail cone starts at approximately 76%L. The “X”-rudders located at approximately 86-91%L are the aft control surfaces. The present model ...Top view Side view L ψ Casing NACA−0015 Fin Hull surfaces control Aft y z xψ Nose Figure 1: A schematic diagram of the generic conventional hull form...which can affect the motion control , manoeuvring and signature of the submarine. The flow-topology model (e.g. Fig. 31) shows the presence of a pair

  19. Exterior view of submarine with survey crew posed in front. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior view of submarine with survey crew posed in front. From left to right: Todd Croteau - U.S. National Park Service, Joshua Price - U.S. Navy, Bert Ho - National Oceanic and Atmospheric Administration, Michael McCarthy - Western Australia Maritime Museum, Larry Murphy - U.S. National Park Service, Don Johnson- University of Nebraska Engineering School, James Delgado- Institute for Nautical Archeology, Jacinto Ahmendra - Government of Panama. - Sub Marine Explorer, Located along the beach of Isla San Telmo, Pearl Islands, Isla San Telmo, Former Panama Canal Zone, CZ

  20. 3-d Visualization of Earthquakes and Erupting Vents in Time-series Animations: Application to Kilauea and Miyakejima volcanoes

    NASA Astrophysics Data System (ADS)

    Wright, T. L.

    2003-12-01

    Computer programs have been developed to view erupting vents and earthquake sequences on and beneath transparent topography shown by a DEM, vertical image, or map. In a single frame an earthquake dataset can be rotated with the mouse to create perspective views. Multiple-frame time animations are created in which the perspective (e.g., map, cross-section) and time increments (e.g., hour, day, month) are chosen by the user. Viewed as movies, the animations allow recognition of seismicity patterns occurring over large areas and long time periods. Departures from characteristic activity are easily spotted and can be further investigated in a single frame or in animation with shorter time increments. Time animations have been made of earthquake sequences accompanying several eruptions of Kilauea volcano and the Miyakejima eruption and associated dike emplacement in 2000. An earthquake swarm shallower than 6 km beneath Miyakejima island began on the evening of 6/26/2000. The seismicity moved to the southwest, then to the north and offshore, and a submarine eruption occurred on the morning of 6/27. Shortly thereafter, earthquakes of M 4 and above migrated westward, also becoming deeper (to 20 km), marking the emplacement of a large dike northwest of Miyakejima island. Eruptions at Miyakejima from 7/8 to 9/1 were associated with formation of a new caldera. The timing and location of the submarine eruption can be seen in the seismicity, consistent with later visual observation of discolored seawater and photographs obtained of the seafloor vents. Seismicity associated with the submarine eruption plunges eastward. Seismic sequences preceding explosive eruptions at Miyakejima summit in August plunge southwest. Intersection of the opposed dips occurs near 10 km depth, consistent with existence of a deeper basaltic reservoir feeding the explosive eruptions. Sequences of vertical, pipe-like seismicity extending to very shallow depths over the propagating dike and occurring over

  1. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2010

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Searcy, Cheryl K.

    2011-01-01

    Between January 1 and December 31, 2010, the Alaska Volcano Observatory (AVO) located 3,405 earthquakes, of which 2,846 occurred within 20 kilometers of the 33 volcanoes with seismograph subnetworks. There was no significant seismic activity in 2010 at these monitored volcanic centers. Seismograph subnetworks with severe outages in 2009 were repaired in 2010 resulting in three volcanic centers (Aniakchak, Korovin, and Veniaminof) being relisted in the formal list of monitored volcanoes. This catalog includes locations and statistics of the earthquakes located in 2010 with the station parameters, velocity models, and other files used to locate these earthquakes.

  2. The use of rotational invariants for the interpretation of marine CSEM data with a case study from the North Alex mud volcano, West Nile Delta

    NASA Astrophysics Data System (ADS)

    Hölz, Sebastian; Swidinsky, Andrei; Sommer, Malte; Jegen, Marion; Bialas, Jörg

    2015-04-01

    Submarine mud volcanos at the seafloor are surface expressions of fluid flow systems within the seafloor. Since the electrical resistivity of the seafloor is mainly determined by the amount and characteristics of fluids contained within the sediment's pore space, electromagnetic methods offer a promising approach to gain insight into a mud volcano's internal resistivity structure. To investigate this structure, we conducted a controlled source electromagnetic experiment, which was novel in the sense that the source was deployed and operated with a remotely operated vehicle, which allowed for a flexible placement of the transmitter dipole with two polarization directions at each transmitter location. For the interpretation of the experiment, we have adapted the concept of rotational invariants from land-based electromagnetics to the marine case by considering the source normalized tensor of horizontal electric field components. We analyse the sensitivity of these rotational invariants in terms of 1-D models and measurement geometries and associated measurement errors, which resemble the experiment at the mud volcano. The analysis shows that any combination of rotational invariants has an improved parameter resolution as compared to the sensitivity of the pure radial or azimuthal component alone. For the data set, which was acquired at the `North Alex' mud volcano, we interpret rotational invariants in terms of 1-D inversions on a common midpoint grid. The resulting resistivity models show a general increase of resistivities with depth. The most prominent feature in the stitched 1-D sections is a lens-shaped interface, which can similarly be found in a section from seismic reflection data. Beneath this interface bulk resistivities frequently fall in a range between 2.0 and 2.5 Ωm towards the maximum penetration depths. We interpret the lens-shaped interface as the surface of a collapse structure, which was formed at the end of a phase of activity of an older mud

  3. A Comparative Study of the 2011 and 2015 Eruptions of Axial Volcano, Juan de Fuca Ridge, From Seafloor Hydrophones

    NASA Astrophysics Data System (ADS)

    Caplan-Auerbach, J.; Dziak, R. P.; Bohnenstiehl, D. R.; Chadwick, W.; Lau, T. K. A.

    2015-12-01

    Axial volcano, on the Juan de Fuca ridge, erupted in April 2011, and again in April 2015. Both eruptions were captured on ocean bottom hydrophones (OBHs). The 2011 eruption was recorded by three OBHs deployed near or within the caldera, although one instrument was overrun by lava and its data could not be recovered. The 2015 eruption was captured in real time by a network of ocean bottom seismometers and hydrophones deployed as part of the Ocean Observatories Initiative Cabled Array. Intense seismicity preceded and accompanied both eruptions. Earthquakes are recognizable in the hydroacoustic record by the timing of surface reflections: secondary and tertiary pulses are consistent with arrivals coming from below the hydrophone and reflecting off of the sea surface. The 2015 eruption also produced signals that initiate in the water column, interpreted as water-lava interactions. Surface reflections for these water column events are consistent with a more distant source, and the relative polarity of arrivals on the co-located OBH and OBSs are consistent with a signal traveling through the water rather than the subsurface. Comparisons of arrivals on the hydroacoustic and seismic channels show that there is little energy on the EW seismic channel, consistent with an impulsive signal arriving from the north. These water column events are absent from the 2011 eruption, despite the fact that preliminary estimates suggest that the eruptions were of comparable volume. Also observed during the 2015 event were a number of a diffuse broadband (10-100 Hz) signals that last from several minutes to over an hour. These events appear similar to hydroacoustic signals recorded in association with explosive degassing at other submarine volcanoes including NW Rota-1 (Marianas) and West Mata (Lau Basin). A comparison of hydroacoustic data recorded in the two events indicates that the 2015 eruption was more vigorous than the 2011 event and resulted in more explosive lava

  4. Flow Over a Model Submarine

    NASA Astrophysics Data System (ADS)

    Jiménez, Juan; Smits, Alexander

    2003-11-01

    Experimental investigation over a DARPA SUBOFF submarine model (SUBOFF Model) was performed using flow visualization and Digital Particle Image Velocimetry (DPIV). The model has an axisymmetric body with sail and fins, and it was supported by a streamlined strut that was formed by the extension of the sail appendage. The range of flow conditions studied correspond to a Reynolds numbers based on model length, Re_L, of about 10^5. Velocity vector fields, turbulence intensities, vorticity fields, and flow visualization in the vicinity of the junction flows are presented. In the vicinity of the control surface and sail hull junctions, the presence of streamwise vortices in the form of horseshoe or necklace vortices locally dominates the flow. The effects of unsteady motions about an axis passing through the sail are also investigated to understand the evolution of the unsteady wake.

  5. A kuroko-type polymetallic sulfide deposit in a submarine silicic caldera

    PubMed

    Iizasa; Fiske; Ishizuka; Yuasa; Hashimoto; Ishibashi; Naka; Horii; Fujiwara; Imai; Koyama

    1999-02-12

    Manned submersible studies have delineated a large and actively growing Kuroko-type volcanogenic massive sulfide deposit 400 kilometers south of Tokyo in Myojin Knoll submarine caldera. The sulfide body is located on the caldera floor at a depth of 1210 to 1360 meters, has an area of 400 by 400 by 30 meters, and is notably rich in gold and silver. The discovery of a large Kuroko-type polymetallic sulfide deposit in this arc-front caldera raises the possibility that the numerous unexplored submarine silicic calderas elsewhere might have similar deposits.

  6. The Deep Crustal Seismic Structure of Colima Volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Gardine, M.; West, M. E.; Dominguez, T.

    2009-12-01

    We present results of 3-D velocity modeling at Colima Volcano, located in the western section of the Trans-Mexican Volcanic Belt and one of North America’s most active volcano centers. From January 2006 - February 2008, twenty broadband seismometers were deployed in a wide-aperture array around the volcano as part of the IRIS/PASSCAL supported Colima Volcano Deep Seismic Experiment (CODEX). Data from this deployment, integrated with data from the Mapping of the Rivera Subduction Zone (MARS) project, have been used to characterize the seismicity along this section of the subduction zone as well as in the immediate vicinity of the volcano. We used subduction-zone earthquakes (depths > 40 km) as well as select regional crustal earthquakes to create a 1-D velocity model of the region. Using this model, slower apparent velocities are systematically seen at most stations close to the volcano. Variations in travel time residuals seen across the CODEX network were used to show initial evidence of a lower-velocity zone in the deep crust with a possible southwest-northeast trend near the volcano with depths of 20-40 km. Seismic tomography with the use of 3-D ray tracing helps to refine and better constrain the details of the low-velocity zone. It appears to be largely concentrated to the south-east of the volcano and extends approximately 30 km west-to-east. Other shallow crustal anomalies in the results match up well with surface geologic features. Additional anomalies in the crust, with a particular emphasis on velocity variations within the deep (>20 km) crust, are being investigated to achieve a better understanding of deep crustal processes underneath a prodigious subduction-zone volcano.

  7. A satellite geodetic survey of spatiotemporal deformation of Iranian volcanos

    NASA Astrophysics Data System (ADS)

    Shirzaei, M.

    2012-04-01

    Surface deformation in volcanic areas is usually due to movement of magma, hydrothermal activity at depth, weight of volcano, landside, etc. Iran, located at the convergence of the Eurasian and Arabian tectonic plates, is the host of five apparently inactive volcanoes, named 'Damavand', 'Taftan', 'Bazman', 'Sabalan' and 'Sahand'. Through investigation of the long term surface deformation rate at Damavand volcano, the highest point in the middle east, Shirzaei et al. (2011) demonstrated that a slow gravity-driven deformation in the form of spreading is going on at this volcano. Extending the earlier work, in this study, I explore large sets of SAR data obtained by Envisat radar satellite from 2003 through 2010 at all Iranian volcanoes. Multitemporal interferometric analysis of the SAR data sets allows retrieving sub-millimeter surface deformation at these volcanic systems. As a result, I detect a transient flank failure in the form of landslide at Damavand that is followed by elevated fumarolic activity. This suggests that landslide might have triggered volcanic unrest. Moreover, I measure significant surface deformation at Taftan and Bazman volcanos associated with different episodes of uplift and subsidence. The inverse model simulations suggest that the time-dependent inflations and deflations of extended and spherical pressurized magma chambers are responsible for the surface displacements at these volcanoes. I also detect time-dependent surface displacements at Sabalan and Sahand volcanoes, where the investigation of the type and the sources of the observed deformation is subject of ongoing research. This study is a best example that shows the absent of recent eruption can not be used as a reliable factor in volcanic hazard assessment and a continuous monitoring system is of vital importance. Reference Shirzaei, M., Walter, T.R., Nankali, H.R. and Holohan, E.P., 2011. Gravity-driven deformation of Damavand volcano, Iran, detected through InSAR time series

  8. CHALLENGES POSED BY RETIRED RUSSIAN NUCLEAR SUBMARINES

    SciTech Connect

    Rudolph, Dieter; Kroken, Ingjerd; Latyshev, Eduard; Griffith, Andrew

    2003-02-27

    The purpose of this paper is to provide an overview of the challenges posed by retired Russian nuclear submarines, review current U.S. and International efforts and provide an assessment of the success of these efforts.

  9. Volcanism offshore of Vesuvius Volcano in Naples Bay

    USGS Publications Warehouse

    Milia, A.; Mirabile, L.; Torrente, M.M.; Dvorak, J.J.

    1998-01-01

    High-resolution seismic reflection data are used to identify structural features in Naples Bay near Vesuvius Volcano. Several buried seismic units with reflection-free interiors are probably volcanic deposits erupted during and since the formation of the breached crater of Monte Somma Volcano, which preceded the growth of Vesuvius. The presumed undersea volcanic deposits are limited in extent; thus, stratigraphie relationships cannot be established among them. Other features revealed by our data include (a) the warping of lowstand marine deposits by undersea cryptodomes located approximately 10 km from the summit of Vesuvius, (b) a succession of normal step faults that record seaward collapse of the volcano, and (c) a small undersea slump in the uppermost marine deposits of Naples Bay, which may be the result of nue??e ardentes that entered the sea during a major eruption of Vesuvius in 1631. Detection of these undersea features illustrates some capabilities of making detailed seismic reflection profiles across undersea volcanoes.

  10. One hundred years of volcano monitoring in Hawaii

    USGS Publications Warehouse

    Kauahikaua, J.; Poland, M.

    2012-01-01

    In 2012 the Hawaiian Volcano Observatory (HVO), the oldest of five volcano observatories in the United States, is commemorating the 100th anniversary of its founding. HVO's location, on the rim of Klauea volcano (Figure 1)one of the most active volcanoes on Earthhas provided an unprecedented opportunity over the past century to study processes associated with active volcanism and develop methods for hazards assessment and mitigation. The scientifically and societally important results that have come from 100 years of HVO's existence are the realization of one man's vision of the best way to protect humanity from natural disasters. That vision was a response to an unusually destructive decade that began the twentieth century, a decade that saw almost 200,000 people killed by the effects of earthquakes and volcanic eruptions.

  11. One hundred years of volcano monitoring in Hawaii

    USGS Publications Warehouse

    Kauahikaua, Jim; Poland, Mike

    2012-01-01

    In 2012 the Hawaiian Volcano Observatory (HVO), the oldest of five volcano observatories in the United States, is commemorating the 100th anniversary of its founding. HVO's location, on the rim of Kilauea volcano (Figure 1)—one of the most active volcanoes on Earth—has provided an unprecedented opportunity over the past century to study processes associated with active volcanism and develop methods for hazards assessment and mitigation. The scientifically and societally important results that have come from 100 years of HVO's existence are the realization of one man's vision of the best way to protect humanity from natural disasters. That vision was a response to an unusually destructive decade that began the twentieth century, a decade that saw almost 200,000 people killed by the effects of earthquakes and volcanic eruptions.

  12. Single-station monitoring of volcanoes using seismic ambient noise

    NASA Astrophysics Data System (ADS)

    De Plaen, Raphael S. M.; Lecocq, Thomas; Caudron, Corentin; Ferrazzini, Valérie; Francis, Olivier

    2016-08-01

    Seismic ambient noise cross correlation is increasingly used to monitor volcanic activity. However, this method is usually limited to volcanoes equipped with large and dense networks of broadband stations. The single-station approach may provide a powerful and reliable alternative to the classical "cross-station" approach when measuring variation of seismic velocities. We implemented it on the Piton de la Fournaise in Reunion Island, a very active volcano with a remarkable multidisciplinary continuous monitoring. Over the past decade, this volcano has been increasingly studied using the traditional cross-correlation technique and therefore represents a unique laboratory to validate our approach. Our results, tested on stations located up to 3.5 km from the eruptive site, performed as well as the classical approach to detect the volcanic eruption in the 1-2 Hz frequency band. This opens new perspectives to successfully forecast volcanic activity at volcanoes equipped with a single three-component seismometer.

  13. Three-dimensional flow dynamics of an active submarine channel

    NASA Astrophysics Data System (ADS)

    Sumner, E. J.; Dorrell, R. M.; Peakall, J.; Darby, S. E.; Parsons, D. R.; Wynn, R.

    2012-12-01

    Field scale submarine channel gravity currents are notoriously difficult to measure and thus directly investigate due to their inaccessible location and infrequent nature, which is compounded by present sea-level high-stand. An exception to this is the almost continuous density-driven current that results from the inflow of saline Mediterranean water, via the Bosporus strait, into the Black Sea. This flow has carved a sinuous channel system in water depths of 70 to 120 m. The relatively shallow depths of the channel and the continuous nature of this current provide a rare opportunity to study three-dimensional flow dynamics and the interaction of the flow with a seafloor channel network. Thus, it provides a rare analogue for channelized dilute sediment-laden turbidity currents. Sediment erosion, transport and deposition within submarine channel bends is primarily controlled by the magnitude and direction of near bed flow. Flow around channel bends is characterized by a helical or spiralling structure. In rivers this helical flow is characterized by near-surface fluid moving toward the outer bank and near-bed fluid moving toward the inner bank. Following fierce debate over the last decade, it is now accepted that helical flow in submarine channel bends can display a variety of complex structures. Most importantly for understanding sediment transport, near bed flow can be directed towards the outer bank, which is in the opposite sense to in a river. The next challenge is to understand what the exact controls on the orientation of helical flow cells within submarine flows are, and their spatial evolution around bends. We present data from the Black Sea showing how the three-dimensional velocity and density of a submarine gravity current evolves at multiple cross sections as the flow travels around a bend. We use this data to calculate the magnitude, relative importance and interaction of centrifugal, coriolis and pressure gradients in controlling the structure of

  14. Size distributions and failure initiation of submarine and subaerial landslides

    USGS Publications Warehouse

    ten Brink, U.S.; Barkan, R.; Andrews, B.D.; Chaytor, J.D.

    2009-01-01

    Landslides are often viewed together with other natural hazards, such as earthquakes and fires, as phenomena whose size distribution obeys an inverse power law. Inverse power law distributions are the result of additive avalanche processes, in which the final size cannot be predicted at the onset of the disturbance. Volume and area distributions of submarine landslides along the U.S. Atlantic continental slope follow a lognormal distribution and not an inverse power law. Using Monte Carlo simulations, we generated area distributions of submarine landslides that show a characteristic size and with few smaller and larger areas, which can be described well by a lognormal distribution. To generate these distributions we assumed that the area of slope failure depends on earthquake magnitude, i.e., that failure occurs simultaneously over the area affected by horizontal ground shaking, and does not cascade from nucleating points. Furthermore, the downslope movement of displaced sediments does not entrain significant amounts of additional material. Our simulations fit well the area distribution of landslide sources along the Atlantic continental margin, if we assume that the slope has been subjected to earthquakes of magnitude ??? 6.3. Regions of submarine landslides, whose area distributions obey inverse power laws, may be controlled by different generation mechanisms, such as the gradual development of fractures in the headwalls of cliffs. The observation of a large number of small subaerial landslides being triggered by a single earthquake is also compatible with the hypothesis that failure occurs simultaneously in many locations within the area affected by ground shaking. Unlike submarine landslides, which are found on large uniformly-dipping slopes, a single large landslide scarp cannot form on land because of the heterogeneous morphology and short slope distances of tectonically-active subaerial regions. However, for a given earthquake magnitude, the total area

  15. Identification of topographic fingerprints of eruption environments: Geomorphometric evidence from volcanoes of the Reykjanes Peninsula, Iceland

    NASA Astrophysics Data System (ADS)

    Pedersen, G. B.; Grosse, P.

    2012-12-01

    The geomorphometry of volcanoes provides important information on the geologic evolution of planets. Therefore, constraining the topographic characteristics of terrestrial volcanoes is an important step for comparative planetology. Here we resolve geomorphometric fingerprints of volcanic edifices formed in subaerial, submarine and subglacial environments by focusing on volcanoes of the Reykjanes Peninsula, Iceland. The Reykjanes Volcanic Belt connects the Reykjanes midoceanic spreading ridge with the Western volcanic zone. It consists of four volcanic systems that display a variety of pristine Quaternary submarine, subglacial and subaerial volcanic edifices. 35 edifices were chosen for quantitative characterization using the IS 50V digital elevation model (20m/pixel). The edifice boundaries were delimited by concave breaks in slope around their bases and edifices were grouped according to slope, size and shape. A division based on slope values proves successful in discriminating subaerial edifices from subglacial and submarine edifices. Subaerial shields have average slopes between 2.8°-6.5°, which is at least 6° less than the average slopes of submarine and subglacial edifices. Moreover, the shields can be sub-divided into tholeite (2.8°-4.6°) and picrite (5.3°-6.5°) shields based on average slope. Submarine and subglacial edifices cannot be distinguished from each other by average slopes, and were grouped together in a submarine and subglacial class. This class was sub-divided into 3 groups based on their volume and suggests an evolutionary growth trend starting with small elliptical, linear ridges (~2*10-3-7*10-3 km3) to flat topped, table-shaped mountains (~100*10-3 -640*10-3 km3), with an intermediate growth stage (~10*10-3 - 80*10-3 km3) of very variable and irregular complex edifices. Further analysis of topographic profiles, slope frequency and elevational slope development, show that it is possible to resolve individual land elements based on break

  16. Decision Making in the Submarine Information Architecture

    DTIC Science & Technology

    2012-12-15

    submarine’s resources across time and operational geography to produce the output that the higher level plan requires. There are opportunities to...the intended track of the submarine in geography and in time. This is executed through use of a U.S. Navy approved Electronic Chart Display and...Spring( 42). Hoverstadt, P. (2008) The Fractal Organization: Creating Sustainable Organizations with the Viable Systems Model. West Sussex, UK: Wiley

  17. Possible Origins of the `Free T Phase' Seismic Signals Generated by the Kick `em Jenny Volcano

    NASA Astrophysics Data System (ADS)

    Mohais, A.; Mohais, R.

    2006-12-01

    The Kick 'em Jenny submarine volcano located approximately 9km off the North Coast of Grenada in the Lesser Antilles, was discovered in 1939. Since then, it has had a history of twelve recorded eruptions. Geophysicists have determined over the years that many of these eruptions have been accompanied by T- phases occurring in the absence of P and S-phases. Although these authors have characterized these 'free T- phases' and have analyzed the frequency components of the seismic activity, there has been little attention given to the possible origins of these signals. Based on the analysis of the seismic signals of eruptions of Kick 'em Jenny, an attempt is made to determine a possible source of the free T-phases. Previous studies of sample free T-phases showed a spectral peak of 0.7 Hz, corresponding to a period of 1.43 seconds. Although no definitive statement by previous authors was made on this analysis, one may be led to categorise the event as a long period event. When the power spectral densities of a long period event from a volcanic earthquake was compared to that of a free T phase however, there was a marked difference between the two. Within the bandwidth of 1 to 6 Hz, the power spectrum of the T phase of an earthquake exhibits frequency peaks beyond the 10 Hz value as compared to a value less than 1. Also in the 1990 Kick 'em Jenny eruption, there was a period of harmonic tremor preceding the T phase. Harmonic tremor lends itself to the idea of the signal originating from a resonator. One possibility is the resonance of a fluid filled cavity which accompanies the oscillation of magma within a fissure arising from rapid degassing. This may be applicable in the case of Kick 'em Jenny since it is in fact active. The other possibility is the presence of reverberations in the stratified structure of the volcano. Other evidence suggests that in the time domain there is a significant difference between the free T-phase and the earthquake generated T phase, in that

  18. Preliminary Volcano-Hazard Assessment for Gareloi Volcano, Gareloi Island, Alaska

    USGS Publications Warehouse

    Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.

    2008-01-01

    Gareloi Volcano (178.794 degrees W and 51.790 degrees N) is located on Gareloi Island in the Delarof Islands group of the Aleutian Islands, about 2,000 kilometers west-southwest of Anchorage and about 150 kilometers west of Adak, the westernmost community in Alaska. This small (about 8x10 kilometer) volcano has been one of the most active in the Aleutians since its discovery by the Bering expedition in the 1740s, though because of its remote location, observations have been scant and many smaller eruptions may have gone unrecorded. Eruptions of Gareloi commonly produce ash clouds and lava flows. Scars on the flanks of the volcano and debris-avalanche deposits on the adjacent seafloor indicate that the volcano has produced large landslides in the past, possibly causing tsunamis. Such events are infrequent, occurring at most every few thousand years. The primary hazard from Gareloi is airborne clouds of ash that could affect aircraft. In this report, we summarize and describe the major volcanic hazards associated with Gareloi.

  19. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 1994 through December 31, 1999

    USGS Publications Warehouse

    Jolly, Arthur D.; Stihler, Scott D.; Power, John A.; Lahr, John C.; Paskievitch, John; Tytgat, Guy; Estes, Steve; Lockhart, Andrew B.; Moran, Seth C.; McNutt, Stephen R.; Hammond, William R.

    2001-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska - Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained a seismic monitoring program at potentially active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996). The primary objectives of this program are the seismic surveillance of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism.Between 1994 and 1999, the AVO seismic monitoring program underwent significant changes with networks added at new volcanoes during each summer from 1995 through 1999. The existing network at Katmai –Valley of Ten Thousand Smokes (VTTS) was repaired in 1995, and new networks were installed at Makushin (1996), Akutan (1996), Pavlof (1996), Katmai - south (1996), Aniakchak (1997), Shishaldin (1997), Katmai - north (1998), Westdahl, (1998), Great Sitkin (1999) and Kanaga (1999). These networks added to AVO's existing seismograph networks in the Cook Inlet area and increased the number of AVO seismograph stations from 46 sites and 57 components in 1994 to 121 sites and 155 components in 1999. The 1995–1999 seismic network expansion increased the number of volcanoes monitored in real-time from 4 to 22, including Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Mount Snowy, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin, Aniakchak Crater, Pavlof Volcano, Mount Dutton, Isanotski volcano, Shisaldin Volcano, Fisher Caldera, Westdahl volcano, Akutan volcano, Makushin Volcano, Great Sitkin volcano, and Kanaga Volcano (see Figures 1-15). The network expansion also increased the number of earthquakes located from about 600 per year in1994 and 1995 to about 3000 per year between 1997 and 1999.Highlights of the catalog period include: 1) a large volcanogenic seismic

  20. Hazard maps of Colima volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.

    2011-12-01

    Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events

  1. Estimates of elastic plate thicknesses beneath large volcanos on Venus

    NASA Technical Reports Server (NTRS)

    Mcgovern, Patrick J.; Solomon, Sean C.

    1992-01-01

    Megellan radar imaging and topography data are now available for a number of volcanos on Venus greater than 100 km in radius. These data can be examined to reveal evidence of the flexural response of the lithosphere to the volcanic load. On Earth, flexure beneath large hotspot volcanos results in an annual topographic moat that is partially to completely filled in by sedimentation and mass wasting from the volcano's flanks. On Venus, erosion and sediment deposition are considered to be negligible at the resolution of Magellan images. Thus, it may be possible to observe evidence of flexure by the ponding of recent volcanic flows in the moat. We also might expect to find topographic signals from unfilled moats surrounding large volcanos on Venus, although these signals may be partially obscured by regional topography. Also, in the absence of sedimentation, tectonic evidence of deformation around large volcanos should be evident except where buried by very young flows. We use analytic solutions in axisymmetric geometry for deflections and stresses resulting from loading of a plate overlying an inviscid fluid. Solutions for a set of disk loads are superimposed to obtain a solution for a conical volcano. The deflection of the lithosphere produces an annular depression or moat, the extent of which can be estimated by measuring the distance from the volcano's edge to the first zero crossing or to the peak of the flexural arch. Magellan altimetry data records (ARCDRs) from data cycle 1 are processed using the GMT mapping and graphics software to produce topographic contour maps of the volcanos. We then take topographic profiles that cut across the annular and ponded flows seen on the radar images. By comparing the locations of these flows to the predicted moat locations from a range of models, we estimate the elastic plate thickness that best fits the observations, together with the uncertainty in that estimate.

  2. Submarine landslides: processes, triggers and hazard prediction.

    PubMed

    Masson, D G; Harbitz, C B; Wynn, R B; Pedersen, G; Løvholt, F

    2006-08-15

    Huge landslides, mobilizing hundreds to thousands of km(3) of sediment and rock are ubiquitous in submarine settings ranging from the steepest volcanic island slopes to the gentlest muddy slopes of submarine deltas. Here, we summarize current knowledge of such landslides and the problems of assessing their hazard potential. The major hazards related to submarine landslides include destruction of seabed infrastructure, collapse of coastal areas into the sea and landslide-generated tsunamis. Most submarine slopes are inherently stable. Elevated pore pressures (leading to decreased frictional resistance to sliding) and specific weak layers within stratified sequences appear to be the key factors influencing landslide occurrence. Elevated pore pressures can result from normal depositional processes or from transient processes such as earthquake shaking; historical evidence suggests that the majority of large submarine landslides are triggered by earthquakes. Because of their tsunamigenic potential, ocean-island flank collapses and rockslides in fjords have been identified as the most dangerous of all landslide related hazards. Published models of ocean-island landslides mainly examine 'worst-case scenarios' that have a low probability of occurrence. Areas prone to submarine landsliding are relatively easy to identify, but we are still some way from being able to forecast individual events with precision. Monitoring of critical areas where landslides might be imminent and modelling landslide consequences so that appropriate mitigation strategies can be developed would appear to be areas where advances on current practice are possible.

  3. Catalogue of Icelandic volcanoes

    NASA Astrophysics Data System (ADS)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Vogfjörd, Kristin; Tumi Gudmundsson, Magnus; Jonsson, Trausti; Oddsson, Björn; Reynisson, Vidir; Barsotti, Sara; Karlsdottir, Sigrun

    2015-04-01

    Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene. In the last 100 years, over 30 eruptions have occurred displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and their distribution. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in scientific papers and other publications. In 2010, the International Civil Aviation Organisation funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland (commenced in 2012), and the EU FP7 project FUTUREVOLC (2012-2016), establishing an Icelandic volcano Supersite. The Catalogue is a collaborative effort between the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Icelandic Civil Protection, with contributions from a large number of specialists in Iceland and elsewhere. The catalogue is scheduled for opening in the first half of 2015 and once completed, it will be an official publication intended to serve as an accurate and up to date source of information about active volcanoes in Iceland and their characteristics. The Catalogue is an open web resource in English and is composed of individual chapters on each of the volcanic systems. The chapters include information on the geology and structure of the volcano; the eruption history, pattern and products; the known precursory signals

  4. Evidence for a Mega-Tsunami Generated by Giant Flank Collapse of Fogo Volcano, Cape Verde

    NASA Astrophysics Data System (ADS)

    Ramalho, R. S.; Madeira, J.; Helffrich, G. R.; Schaefer, J. M.; Winckler, G.; Quartau, R.; Adena, K.

    2013-12-01

    Mega-tsunamis generated by ocean island flank collapses are expected to be some of the most hazardous forces of nature, yet evidence for their near-source effects and inferred high run-ups so far is scarce or hotly debated. A newly discovered deposit on the northern coast of Santiago Island (Cape Verde), however, documents the magnitude and run-up height associated with this kind of event. Additionally to chaotic conglomerates distributed from sea-level up to 100 m elevation standing on slopes as steep as 20°, the deposit comprises a number of scattered megaclasts of submarine lava flows, limestone and tuff. The megaclasts are presently located over a higher substructural slope built on younger subaerial lava flows and at elevations ranging 160-220 m a.s.l. All megaclasts correspond to lithologies that crop out exclusively in nearby cliff faces. The origin of this deposit is consequently attributed to an exceptional wave that plucked blocks from the cliff face, transported them inland and deposited them over the higher slopes of the volcanic edifice. The distribution of the megaclasts, together with the local geomorphology, is in agreement with a tsunami that approached the island edifice from the west and was refracted along its northern flank, flooding a series of northwest-oriented valleys. This suggests that the well-known flank collapse of Fogo volcano, located 55 km west of Santiago, is the most likely source, a hypothesis being tested with surface exposure dating. The inferred run-up exceeded 200 m and is consistent with numerical simulations by Paris et al. 2011, implying that the present Fogo island morphology probably developed by at least one giant flank collapse with devastating near-source effects.

  5. Methane and radioactive isotopes in submarine hydrothermal systems

    SciTech Connect

    Kim, K.R.

    1983-01-01

    This thesis consists of two parts: 1) methane and 2) radioactive isotopes, especially radon, in submarine hydrothermal systems. Both parts deal with the use of these gases as tracers for mapping hydrothermal vents at sea, and with their relationships to other sensitive tracers such as helium, manganese, and temperature. Hydrothermal methane was used as a real-time tracer for locating new submarine hydrothermal systems along spreading axes, discovering new hydrothermal systems at two locations in Pacific Ocean: 1) 20/sup 0/S on East Pacific Rise, and 2) Mariana Trough Back-arc Basin. Methane shows good correlations with helium-3 and temperature with similar ratios in various hydrothermal systems, 3 to 42 x 10/sup 6/ for the methane to helium-3 ratio, and 3 to 19 ..mu.. cc/kg/sup 0/C for the methane to temperature anomaly. These similar ratios from different areas provide evidence for chemical homogeneity of submarine hydrothermal waters. A good correlation between methane and manganese appears to be associated only with high-temperature hydrothermal systems. Radioisotopes in the vent waters of 21/sup 0/N high-temperature hydrothermal system have end-member concentrations of 7.5 to 40 dpm/kg for Ra-226, 360 dpm/kg for Rn 222, 62 dpm/kg for Pb-210, and 19 dpm/kg for Po-210. The radon activity for this system is one order of magnitude lower, and the Pb-210 activity is one order or magnitude higher, than those a the low temperature Galapagos system. All these observations suggest that the high radon, and low Pb-210 activity observed in Galapagos system may originate from the extensive subsurface mixing and water-rock interaction in this system (direct injection of radon and scavenging of Pb-210).

  6. Submarine intraplate volcanism in the South Pacific: Geological setting and petrology of the society and the austral regions

    NASA Astrophysics Data System (ADS)

    Hekinian, Roger; Bideau, Daniel; Stoffers, Peter; Cheminee, Jean Louis; Muhe, Richard; Puteanus, Doris; Binard, Nicolas

    1991-02-01

    The southeastern prolongations of the Society and Austral islands volcanic chains are terminated by several recent submarine volcanoes (300-3800 m in height) built on irregularly shaped crustal swells or bulges (3600-3950 m in depth). The crustal swells (about 100 km in width) is bounded by deeper abyssal hill regions (>4000 m in depth) where old volcanoes with thick Fe-Mn coatings are encountered. The rocks sampled on this ancient oceanic crust are depleted mid-ocean ridge basalts (MORBs) similar to modem volcanics encountered on the East Pacific Rise. The volcanics of the Society hot spot consist of ankaramites, picrites, alkali-basalts, basanites, tephrites, and trachytes. Highly vesiculated pillow lavas show a wide compositional range in their large ion lithophile elements (LILE) (K2O=1-4%, Nb=25-80 ppm, Zr=200-400 ppm, Ba=300-840 ppm) and compatible element variations (Mg #=40-70, Ni=80-500 ppm), and low Zr/Nb ratios (5-8). Low-K tholeiites (K2O<0.15%, Nb=3-6 ppm, Zr=56-74 ppm, Zr/Nb=10-25), also found associated with alkali-basalts and basanites from recent volcanoes, are believed to have been exposed during rejuvenation of ancient edifices. The Macdonald volcano (Austral island chain), with a base diameter of 45 km at a depth of 3850 m, was sampled from its summital area (<100 m in depth) down to 2000 m in depth. Highly vesiculated pillow lavas, volcanic ejecta, and accidental rock debris recovered differ from those of the Society hot spot volcanoes by their lower Zr/Nb (3-5), Rb/Sr (<0.045), and (Ce/Yb)N (5-10) ratios and their lower Ba (350-400 ppm) and light rare eath elements (LREE) content. The accidental rock debris (metabasalt, metadolerite, isotropic gabbros, and metagabbros) were scattered during phreatic explosive events on the flanks of the Macdonald volcano. Volcanic ejecta of basanite lapilli partially covering the accidental rock debris were formed during more recent phreatomagmatic explosions. The most undersaturated glassy pillow lava

  7. Volcano hazards in the San Salvador region, El Salvador

    USGS Publications Warehouse

    Major, J.J.; Schilling, S.P.; Sofield, D.J.; Escobar, C.D.; Pullinger, C.R.

    2001-01-01

    San Salvador volcano is one of many volcanoes along the volcanic arc in El Salvador (figure 1). This volcano, having a volume of about 110 cubic kilometers, towers above San Salvador, the country’s capital and largest city. The city has a population of approximately 2 million, and a population density of about 2100 people per square kilometer. The city of San Salvador and other communities have gradually encroached onto the lower flanks of the volcano, increasing the risk that even small events may have serious societal consequences. San Salvador volcano has not erupted for more than 80 years, but it has a long history of repeated, and sometimes violent, eruptions. The volcano is composed of remnants of multiple eruptive centers, and these remnants are commonly referred to by several names. The central part of the volcano, which contains a large circular crater, is known as El Boquerón, and it rises to an altitude of about 1890 meters. El Picacho, the prominent peak of highest elevation (1960 meters altitude) to the northeast of the crater, and El Jabali, the peak to the northwest of the crater, represent remnants of an older, larger edifice. The volcano has erupted several times during the past 70,000 years from vents central to the volcano as well as from smaller vents and fissures on its flanks [1] (numerals in brackets refer to end notes in the report). In addition, several small cinder cones and explosion craters are located within 10 kilometers of the volcano. Since about 1200 A.D., eruptions have occurred almost exclusively along, or a few kilometers beyond, the northwest flank of the volcano, and have consisted primarily of small explosions and emplacement of lava flows. However, San Salvador volcano has erupted violently and explosively in the past, even as recently as 800 years ago. When such eruptions occur again, substantial population and infrastructure will be at risk. Volcanic eruptions are not the only events that present a risk to local

  8. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2008

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.

    2009-01-01

    Between January 1 and December 31, 2008, the Alaska Volcano Observatory (AVO) located 7,097 earthquakes of which 5,318 occurred within 20 kilometers of the 33 volcanoes monitored by the AVO. Monitoring highlights in 2008 include the eruptions of Okmok Caldera, and Kasatochi Volcano, as well as increased unrest at Mount Veniaminof and Redoubt Volcano. This catalog includes descriptions of: (1) locations of seismic instrumentation deployed during 2008; (2) earthquake detection, recording, analysis, and data archival systems; (3) seismic velocity models used for earthquake locations; (4) a summary of earthquakes located in 2008; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, location quality statistics, daily station usage statistics, and all files used to determine the earthquake locations in 2008.

  9. The Alaska Volcano Observatory - Expanded Monitoring of Volcanoes Yields Results

    USGS Publications Warehouse

    Brantley, Steven R.; McGimsey, Robert G.; Neal, Christina A.

    2004-01-01

    Recent explosive eruptions at some of Alaska's 52 historically active volcanoes have significantly affected air traffic over the North Pacific, as well as Alaska's oil, power, and fishing industries and local communities. Since its founding in the late 1980s, the Alaska Volcano Observatory (AVO) has installed new monitoring networks and used satellite data to track activity at Alaska's volcanoes, providing timely warnings and monitoring of frequent eruptions to the aviation industry and the general public. To minimize impacts from future eruptions, scientists at AVO continue to assess volcano hazards and to expand monitoring networks.

  10. Human-Powered Submarine Competition: World Submarine International 1996 [and] Design Technology Exhibit: A School Model.

    ERIC Educational Resources Information Center

    Hibberd, John C.; Edwards, Don

    1996-01-01

    Hibbard describes the process used by students at Millersville University to build a human-powered submarine for entry in an international submarine competition. Edwards discusses the Design Technology Exhibit held at Lu Sutton Elementary School, the purpose of which was to challenge students to design a useful structure and provide them with the…

  11. International Global Atmospheric Chemistry Programme global emissions inventory activity: Sulfur emissions from volcanoes, current status

    SciTech Connect

    Benkovitz, C.M.

    1995-07-01

    Sulfur emissions from volcanoes are located in areas of volcanic activity, are extremely variable in time, and can be released anywhere from ground level to the stratosphere. Previous estimates of global sulfur emissions from all sources by various authors have included estimates for emissions from volcanic activity. In general, these global estimates of sulfur emissions from volcanoes are given as global totals for an ``average`` year. A project has been initiated at Brookhaven National Laboratory to compile inventories of sulfur emissions from volcanoes. In order to complement the GEIA inventories of anthropogenic sulfur emissions, which represent conditions circa specific years, sulfur emissions from volcanoes are being estimated for the years 1985 and 1990.

  12. Small Syrian Volcano

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-498, 29 September 2003

    Today, 29 September 2003, is the first day of southern summer, and the first day of northern winter on Mars. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small volcano in Syria Planum near 12.9oS, 102.7oW. The volcano and surrounding terrain have been thickly mantled by dust; this dust has subsequently been eroded so that it appears textured rather than smooth. The thin, light streaks that crisscross the image are the tracks left by passing dust devils. Not all dust devils on Mars make streaks, and not all streaks are darker than their surroundings--those found in Syria Planum are invariably lighter in tone. The picture covers an area 3 km (1.9 mi) across; sunlight illuminates the scene from the upper left.

  13. The magmatic plumbing of the submarine Hachijo NW volcanic chain, Hachijojima, Japan: Long-distance magma transport?

    NASA Astrophysics Data System (ADS)

    Ishizuka, Osamu; Geshi, Nobuo; Itoh, Jun'ichi; Kawanabe, Yoshihisa; Tuzino, Taqumi

    2008-08-01

    Recent geophysical observations on basaltic composite volcanoes in Izu-Bonin arc reveal the process of long-distance lateral magma transport within arc crust. To clarify a long-distance magma transport system of the basaltic arc volcano from geological and petrological aspects, we investigated 20-km-long submarine volcanic chains (Hachijo NW chain and Hachijo-kojima chain) and cones on the northeastern slope (NE edifices) as well as subaerial satellite cones nested Hachijo Nishiyama volcano in the northern Izu arc front. Basalts from Hachijo NW chain have more primitive composition than those from other edifices. The composition of the Hachijo NW chain basalts is controlled by fractional crystallization, while plagioclase accumulation occurred in NE edifices and subaerial satellite cones. Trace element and isotopic characteristics indicate that the same basaltic primary magma is involved in all sections of the volcano. This leads us to consider that magma was transported long distances between the Nishiyama volcano and the Hachijo NW chain. Primitive magma was laterally transported NNW for at least 20 km in the middle to lower crust (10-20 km deep) from Nishiyama volcano with only minimal crustal level modifications and formed Hachijo NW chain. On the other hand, magmas experienced crystal fractionation and accumulation at shallow magma chamber beneath Nishiyama volcano seems to have been transported in a short distance (<5 km) and formed NE trending edifices and subaerial satellite cones. The long-distance magma transport seems to be controlled by a regional extensional stress regime, while short-distance transport may be controlled by local stress regime affected by load of main volcanic edifice.

  14. Shiveluch and Klyuchevskaya Volcanoes

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A distance of about 80 kilometers (50 miles) separates Shiveluch and Klyuchevskaya Volcanoes on Russia's Kamchatka Peninsula. Despite this distance, however, the two acted in unison on April 26, 2007, when the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite caught them both erupting simultaneously. ASTER 'sees' a slightly different portion of the light spectrum than human eyes. Besides a portion of visible light, ASTER detects thermal energy, meaning it can detect volcanic activity invisible to human eyes. Inset in each image above is a thermal infrared picture of the volcano's summit. In these insets, dark red shows where temperatures are coolest, and yellowish-white shows where temperatures are hottest, heated by molten lava. Both insets show activity at the crater. In the case of Klyuchevskaya, some activity at the crater is also visible in the larger image. In the larger images, the landscapes around the volcanoes appear in varying shades of blue-gray. Dark areas on the snow surface are likely stains left over from previous eruptions of volcanic ash. Overhead, clouds dot the sky, casting their shadows on the snow, especially southeast of Shiveluch and northeast of Klyuchevskaya. To the northwest of Klyuchevskaya is a large bank of clouds, appearing as a brighter white than the snow surface. Shiveluch (sometimes spelled Sheveluch) and Klyuchevskaya (sometimes spelled Klyuchevskoy or Kliuchevskoi) are both stratovolcanoes composed of alternating layers of hardened lava, solidified ash, and rocks from earlier eruptions. Both volcanoes rank among Kamchatka's most active. Because Kamchatka is part of the Pacific 'Ring of Fire,' the peninsula experiences regular seismic activity as the Pacific Plate slides below other tectonic plates in the Earth's crust. Large-scale plate tectonic activity causing simultaneous volcanic eruptions in Kamchatka is not uncommon.

  15. Underwater hydrophone location survey

    NASA Technical Reports Server (NTRS)

    Cecil, Jack B.

    1993-01-01

    The Atlantic Undersea Test and Evaluation Center (AUTEC) is a U.S. Navy test range located on Andros Island, Bahamas, and a Division of the Naval Undersea Warfare Center (NUWC), Newport, RI. The Headquarters of AUTEC is located at a facility in West Palm Beach, FL. AUTEC's primary mission is to provide the U.S. Navy with a deep-water test and evaluation facility for making underwater acoustic measurements, testing and calibrating sonars, and providing accurate underwater, surface, and in-air tracking data on surface ships, submarines, aircraft, and weapon systems. Many of these programs are in support of Antisubmarine Warfare (ASW), undersea research and development programs, and Fleet assessment and operational readiness trials. Most tests conducted at AUTEC require precise underwater tracking (plus or minus 3 yards) of multiple acoustic signals emitted with the correct waveshape and repetition criteria from either a surface craft or underwater vehicle.

  16. Volcano Monitoring Using Google Earth

    NASA Astrophysics Data System (ADS)

    Cameron, W.; Dehn, J.; Bailey, J. E.; Webley, P.

    2009-12-01

    At the Alaska Volcano Observatory (AVO), remote sensing is an important component of its daily monitoring of volcanoes. AVO’s remote sensing group (AVORS) primarily utilizes three satellite datasets; Advanced Very High Resolution Radiometer (AVHRR) data, from the National Oceanic and Atmospheric Administration’s (NOAA) Polar Orbiting Satellites (POES), Moderate Resolution Imaging Spectroradiometer (MODIS) data from the National Aeronautics and Space Administration’s (NASA) Terra and Aqua satellites, and NOAA’s Geostationary Operational Environmental Satellites (GOES) data. AVHRR and MODIS data are collected by receiving stations operated by the Geographic Information Network of Alaska (GINA) at the University of Alaska’s Geophysical Institute. An additional AVHRR data feed is supplied by NOAA’s Gilmore Creek satellite tracking station. GOES data are provided by the Naval Research Laboratory (NRL), Monterey Bay. The ability to visualize these images and their derived products is critical for the timely analysis of the data. To this end, AVORS has developed javascript web interfaces that allow the user to view images and metadata. These work well for internal analysts to quickly access a given dataset, but they do not provide an integrated view of all the data. To do this AVORS has integrated its datasets with Keyhole Markup Language (KML) allowing them to be viewed by a number of virtual globes or other geobrowsers that support this code. Examples of AVORS’ use of KML include the ability to browse thermal satellite image overlays to look for signs of volcanic activity. Webcams can also be viewed interactively through KML to confirm current activity. Other applications include monitoring the location and status of instrumentation; near real-time plotting of earthquake hypocenters; mapping of new volcanic deposits using polygons; and animated models of ash plumes, created by a combination of ash dispersion modeling and 3D visualization packages.

  17. Volcanoes and climate

    NASA Technical Reports Server (NTRS)

    Toon, O. B.

    1982-01-01

    The evidence that volcanic eruptions affect climate is reviewed. Single explosive volcanic eruptions cool the surface by about 0.3 C and warm the stratosphere by several degrees. Although these changes are of small magnitude, there have been several years in which these hemispheric average temperature changes were accompanied by severely abnormal weather. An example is 1816, the "year without summer" which followed the 1815 eruption of Tambora. In addition to statistical correlations between volcanoes and climate, a good theoretical understanding exists. The magnitude of the climatic changes anticipated following volcanic explosions agrees well with the observations. Volcanoes affect climate because volcanic particles in the atmosphere upset the balance between solar energy absorbed by the Earth and infrared energy emitted by the Earth. These interactions can be observed. The most important ejecta from volcanoes is not volcanic ash but sulfur dioxide which converts into sulfuric acid droplets in the stratosphere. For an eruption with its explosive magnitude, Mount St. Helens injected surprisingly little sulfur into the stratosphere. The amount of sulfuric acid formed is much smaller than that observed following significant eruptions and is too small to create major climatic shifts. However, the Mount St. Helens eruption has provided an opportunity to measure many properties of volcanic debris not previously measured and has therefore been of significant value in improving our knowledge of the relations between volcanic activity and climate.

  18. Imaging Magma Plumbing Beneath Askja Volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Greenfield, T. S.; White, R. S.

    2015-12-01

    Using a dense seismic network we have imaged the plumbing system beneath Askja, a large central volcano in the Northern Volcanic Zone, Iceland. Local and regional earthquakes have been used as sources to solve for the velocity structure beneath the volcano. We find a pronounced low-velocity anomaly beneath the caldera at a depth of ~7 km around the depth of the brittle-ductile transition. The anomaly is ~10% slower than the initial best fitting 1D model and has a Vp/Vs ratio higher than the surrounding crust, suggesting the presence of increased temperature or partial melt. We use relationships between mineralogy and seismic velocities to estimate that this region contains ~10% partial melt, similar to observations made at other volcanoes such as Kilauea. This low-velocity body is deeper than the depth range suggested by geodetic studies of a deflating source beneath Askja. Beneath the large low-velocity zone a region of reduced velocities extends into the lower crust and is coincident with seismicity in the lower crust. This is suggestive of a high temperature channel into the lower crust which could be the pathway for melt rising from the mantle. This melt either intrudes into the lower crust or stalls at the brittle-ductile boundary in the imaged body. Above this, melt can travel into the fissure swarm through large dikes or erupt within the Askja caldera itself.We generate travel time tables using a finite difference technique and the residuals used to simultaneously solve for both the earthquake locations and velocity structure. The 2014-15 Bárðarbunga dike intrusion has provided a 45 km long, distributed source of large earthquakes which are well located and provide accurate arrival time picks. Together with long-term background seismicity these provide excellent illumination of the Askja volcano from all directions.hhhh

  19. Insights from geophysical monitoring into the volcano structure and magma supply systems at three very different oceanic islands in the Cape Verde archipelago

    NASA Astrophysics Data System (ADS)

    Faria, B. V.; Day, S.; Fonseca, J. F.

    2013-12-01

    Three oceanic volcano islands in the west of the Cape Verde archipelago are considered to have the highest levels of volcanic hazard in the archipelago: Fogo, Brava, and Santo Antao. Fogo has had frequent mainly effusive eruptions in historic time, the most recent in 1995, whilst Brava and Santo Antao have ongoing geothermal activity and felt earthquakes, and have experienced geologically recent violent explosive eruptions. Therefore, these three islands have been the focus of recent efforts to set up seismic networks to monitor their activity. Here we present the first results from these networks, and propose interpretations of the monitored seismic activity in terms of subsurface volcano structures, near-surface intrusive activity and seasonal controls on geothermal activity. In Fogo, most recorded seismic events are hydrothermal events. These show a strong seasonal variation, increasing during the summer rain season and decreasing afterwards. Rare volcano-tectonic (VT) events (0.1located mainly in and below the Monte Amarelo lateral collapse scar. They are interpreted as shear failures between unconsolidated material at the base of the collapse scar fill and underlying more rigid pre-collapse rocks with abundant dikes, occuring as a result of long-term gravitational re-adjustment of the collapse scar fill after inflation of the island due to the 1995 eruption. Brava experiences frequent swarms of VT events. These are located mostly offshore, with a small proportion of on-shore events. The positions of offshore events are strongly correlated with seamounts and hence are interpreted as due to submarine volcanic processes. Onshore events (0.7

  20. Crustal deformation and volcanic earthquakes associated with the recent volcanic activity of Iwojima Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Ueda, H.; Fujita, E.; Tanada, T.

    2013-12-01

    Iwojima is an active volcanic island located within a 10 km wide submarine caldera about 1250 km to the south of Tokyo, Japan. The seismometer and GPS network of National Research Institute for Earth Science and Disaster Prevention (NIED) in Iwojima has observed a repeating island wide uplift more than 1 m associated with large number of volcanic earthquakes every several years. During 2006-2012, we observed more than 20000 volcanic earthquakes and an uplift of about 3 m, and precursory volcanic earthquakes and rapid crustal deformation just before the small submarine eruption near the northern coast of Iwojima in April 2012. In a restless volcano such as Iwojima, it is important issue to distinguish whether rapid crustal deformation and intense earthquake activity lead to an eruption or not. According to a long period geodetic observation by Ukawa et al. (2006), the crustal deformation of Iwojima can be classify into 2 phases. The first is an island wide large uplift centering on Motoyama area (the eastern part of the island, the center of the caldera), and the second is contraction and subsidence at local area centering on Motoyama and uplift around that area. They are interpreted by superposition of crustal deformations by a shallow contraction source and a deep seated inflation source beneath Motoyama. The earthquake activity of Iwojima highly correlates with the island wide large uplift, suggesting the earthquakes are almost controlled by a magma accumulation into a deep seated magma chamber. In contrast to the activity, the precursory activity of the eruption in 2012 is deviated from the correlation. The rapid crustal deformation just before and after the eruption in 2012 can be interpreted by rapid inflation and deflation of a shallow sill source about 1km deep, respectively, suggesting that it was caused by a shallow hydrothermal activity. The result shows that we can probably distinguish an abnormal activity related with a volcanic eruption when we observe

  1. Height and altitude distribution of large volcanoes on Venus

    NASA Technical Reports Server (NTRS)

    Keddie, S. T.; Head, J. W.

    1994-01-01

    Magellan data reveal 156 large volcanoes on Venus (greater than 100 km in diameter) which range in height from 300 m to 5.55 km, with an average height of 1.42 km. On the basis of theory it has been predicted that the development of neutral buoyancy zones (NBZ) on Venus and thus the resulting volcanic deposits are strongly influenced by the altitude-controlled variations in surface pressure. The distribution and height of these large volcanoes as a function of altitude was examined to begin to test these predications. Although large volcanoes are relatively uniformly distributed in altitude, there may be a slight paucity of volcanoes at the lowest elevations and a slight surplus at mid-altitudes. In addition, it is observed that the volcanoes at the highest altitudes tend to be the tallest. The observed distributions at low-mid altitudes is consistent with the prediction of NBZ theory. The high altitude distribution and heights, however, emphasize the necessity of considering other factors, such as tectonic setting, edifice age, magma supply, and thermal gradient, in describing the location and development of large volcanoes on Venus.

  2. Submarine Volcanology: 1950 to 2050 and Beyond (Invited)

    NASA Astrophysics Data System (ADS)

    Delaney, J. R.; Kelley, D. S.

    2010-12-01

    The vigorous pursuit of submarine volcanism as a major field emerged in the mid 1900’s with the post WWII recognition that there is a Mid-Ocean Ridge System that is a 70,000 km long volcanic mountain chain stretching around the world like the strings on a baseball. By the mid 1960’s it emerged that rocks from volcanic feature were consistently basaltic in character and that they were the direct result of major melting processes associated with rise of much deeper mantle material beneath the spreading ridges in a global plate tectonics framework. More than 60% of the volcanism on the planet occurs in submarine environments. The next major discovery, using the deep diving submarine ALVIN, was in the late 1970’s involving hydrothermal systems near active ridges close to the Galapagos Islands and Baja California. The idea that these vent sites were the locus of major biological productivity based on volcanically-driven chemosynthesis was a fundamental new insight in the deep ocean ecology of our planet. This was a major planetological discovery and was followed within about 15 years with an even more powerful realization: our planet has a vast sub seafloor microbial biosphere thriving in the pores and the cracks of the oceanic crust driven by circulation of modified ocean fluids through large portions of the lithosphere. These organisms are largely supported by degassing and water-rock reactions associated with submarine volcanoes. Some estimates have posited that: 1) these thermally active systems and the chemosynthetic lifestyle are a natural consequence of certain types of planetary evolution, 2) that life may have originated in these systems, and, 3) that the biomass associated with the modern sub seafloor systems rivals most other living carbon on the continents. Indeed, parallel exploration of the outer solar system has lead to propositions that the second moon of Jupiter, Europa, has (or had) a high potential to harbor analogous hydrothermal life forms

  3. KrakMon: Seismic signals recorded at Krakatau Volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Ibs-von Seht, M.; Hoffmann-Rothe, A.; Kniess, R.

    2005-12-01

    A recently installed multi-parameter monitoring system on the Krakatau volcanic island complex located in the Sunda Strait (Indonesia) provides continuous broadband records of seismic data. We present here an overview of the different signal types identified and first results of an automated detection and classification procedure for volcano-seismic events recorded at Krakatau volcano. In comparison to seismic signals known from other volcanoes, an unusually high portion of high-frequency content is observed in the spectra of the Krakatau signals. This observation applies to short-term volcano-tectonic (VT) events as well as to continuous tremor signals: most VT events show significant energy at frequencies above 30Hz, harmonic signals last almost continuously for days and show spectral peaks at distinct frequencies well above15Hz. The automated detection and classification procedure bases a spectrogram analysis of volcano-seismic signals using a straight-forward pattern recognition approach: a suitable threshold operator generates a binary representation of the spectrogram which is processed by a contour finding algorithm. The resulting contour-polygons define regions in the spectrogram containing significant spectral energy and their shapes reveal information about the respective volcano-seismic signals. By the extraction of stable shape-describing properties from the polygons and their statistical analysis it is attempted to identify different classes of signal types. A comparison of the resulting signal types with those determined visually by the operator can improve classification schemes for volcano-seismic signals and contribute to defining the activity status of Krakatau and other volcanoes.

  4. Mathematical modelling of submarine landslide motion

    NASA Astrophysics Data System (ADS)

    Burminskij, A.

    2012-04-01

    Mathematical modelling of submarine landslide motion The paper presents a mathematical model to calculate dynamic parameters of a submarine landslide. The problem of estimation possible submarine landslides dynamic parameters and run-out distances as well as their effect on submarine structures becomes more and more actual because they can have significant impacts on infrastructure such as the rupture of submarine cables and pipelines, damage to offshore drilling platforms, cause a tsunami. In this paper a landslide is considered as a viscoplastic flow and is described by continuum mechanics equations, averaged over the flow depth. The model takes into account friction at the bottom and at the landslide-water boundary, as well as the involvement of bottom material in motion. A software was created and series of test calculations were performed. Calculations permitted to estimate the contribution of various model coefficients and initial conditions. Motion down inclined bottom was studied both for constant and variable slope angle. Examples of typical distributions of the flow velocity, thickness and density along the landslide body at different stages of motion are given.

  5. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2002

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sánchez, John; Estes, Steve; McNutt, Stephen R.; Paskievitch, John

    2003-01-01

    an EARTHWORM detection system. AVO located 7430 earthquakes during 2002 in the vicinity of the monitored volcanoes. This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of velocity models used for earthquake locations; (4) a summary of earthquakes located in 2002; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2002.The AVO seismic network was used to monitor twenty-four volcanoes in real time in 2002. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). Monitoring highlights in 2002 include an earthquake swarm at Great Sitkin Volcano in May-June; an earthquake swarm near Snowy Mountain in July-September; low frequency (1-3 Hz) tremor and long-period events at Mount Veniaminof in September-October and in December; and continuing volcanogenic seismic swarms at Shishaldin Volcano throughout the year. Instrumentation and data acquisition highlights in 2002 were the installation of a subnetwork on Okmok Volcano, the establishment of telemetry for the Mount Veniaminof subnetwork, and the change in the data acquisition system to an EARTHWORM detection system. AVO located 7430 earthquakes during 2002 in the vicinity of the monitored volcanoes.This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a

  6. Estimation of submarine mass failure probability from a sequence of deposits with age dates

    USGS Publications Warehouse

    Geist, Eric L.; Chaytor, Jason D.; Parsons, Thomas E.; ten Brink, Uri S.

    2013-01-01

    The empirical probability of submarine mass failure is quantified from a sequence of dated mass-transport deposits. Several different techniques are described to estimate the parameters for a suite of candidate probability models. The techniques, previously developed for analyzing paleoseismic data, include maximum likelihood and Type II (Bayesian) maximum likelihood methods derived from renewal process theory and Monte Carlo methods. The estimated mean return time from these methods, unlike estimates from a simple arithmetic mean of the center age dates and standard likelihood methods, includes the effects of age-dating uncertainty and of open time intervals before the first and after the last event. The likelihood techniques are evaluated using Akaike’s Information Criterion (AIC) and Akaike’s Bayesian Information Criterion (ABIC) to select the optimal model. The techniques are applied to mass transport deposits recorded in two Integrated Ocean Drilling Program (IODP) drill sites located in the Ursa Basin, northern Gulf of Mexico. Dates of the deposits were constrained by regional bio- and magnetostratigraphy from a previous study. Results of the analysis indicate that submarine mass failures in this location occur primarily according to a Poisson process in which failures are independent and return times follow an exponential distribution. However, some of the model results suggest that submarine mass failures may occur quasiperiodically at one of the sites (U1324). The suite of techniques described in this study provides quantitative probability estimates of submarine mass failure occurrence, for any number of deposits and age uncertainty distributions.

  7. Buried Rift Zones and Seamounts in Hawaii: Implications for Volcano Tectonics

    NASA Astrophysics Data System (ADS)

    Park, J.; Morgan, J. K.; Zelt, C. A.; Okubo, P. G.

    2005-12-01

    As volcanoes grow, they deform due to their own weight and ongoing magmatic intrusions. For example, Kilauea's south flank is moving seaward ~10 cm/yr, apparently pushed by dike injection along rift zones and/or gravitational spreading. Offshore, Kilauea's south flank has developed a broad bench, attributed to overthrusting at the toe of the mobile flank. Mauna Loa's southeastern flank is much less mobile today, and exhibits no offshore bench. The great variability in present-day surface motions and deformation of these two volcanoes is not well explained by the distribution of surface structures, which might influence the driving and resisting forces acting on the flanks. Using first-arrival seismic tomography of a unique onshore-offshore airgun dataset, we have developed a 3-D P-wave velocity model of the southeastern part of the Island of Hawaii. This model provides an unprecedented view into both the submarine and subaerial portions of Kilauea, Mauna Loa, and Loihi volcanoes, helping to resolve some outstanding puzzles. The preferred velocity model shows that the known summits and rift zones of Kilauea, Mauna Loa and Loihi volcanoes are underlain by high velocity anomalies (6.5-7.0 km/s), indicating the presence of intrusive magma cumulates and dike complexes. In addition, we observe an anomalously high velocity feature (7.0-7.5 km/s) within the southeastern flank of Mauna Loa that extends ~40 km south of the volcano's summit. Our model also shows anomalously high velocity materials (6.3-6.8 km/s) in the oceanic crust beneath Kilauea's outer bench. Based on the geometry of their high velocities, we propose that these features represent previously unrecognized intrusive complexes that have influenced the evolution of the two volcanoes. The high velocity feature within Mauna Loa's southeastern flank appears to represent a buried rift zone, either of ancient Mauna Loa, or an older volcano perhaps related to the Ninole Hills. Curiously, at shallow depths (5-9 km

  8. Scattering effect of submarine hull on propeller non-cavitation noise

    NASA Astrophysics Data System (ADS)

    Wei, Yingsan; Shen, Yang; Jin, Shuanbao; Hu, Pengfei; Lan, Rensheng; Zhuang, Shuangjiang; Liu, Dezhi

    2016-05-01

    This paper investigates the non-cavitation noise caused by propeller running in the wake of submarine with the consideration of scattering effect caused by submarine's hull. The computation fluid dynamics (CFD) and acoustic analogy method are adopted to predict fluctuating pressure of propeller's blade and its underwater noise radiation in time domain, respectively. An effective iteration method which is derived in the time domain from the Helmholtz integral equation is used to solve multi-frequency waves scattering due to obstacles. Moreover, to minimize time interpolation caused numerical errors, the pressure and its derivative at the sound emission time is obtained by summation of Fourier series. It is noted that the time averaging algorithm is used to achieve a convergent result if the solution oscillated in the iteration process. Meanwhile, the developed iteration method is verified and applied to predict propeller noise scattered from submarine's hull. In accordance with analysis results, it is summarized that (1) the scattering effect of hull on pressure distribution pattern especially at the frequency higher than blade passing frequency (BPF) is proved according to the contour maps of sound pressure distribution of submarine's hull and typical detecting planes. (2) The scattering effect of the hull on the total pressure is observable in noise frequency spectrum of field points, where the maximum increment is up to 3 dB at BPF, 12.5 dB at 2BPF and 20.2 dB at 3BPF. (3) The pressure scattered from hull is negligible in near-field of propeller, since the scattering effect surrounding analyzed location of propeller on submarine's stern is significantly different from the surface ship. This work shows the importance of submarine's scattering effect in evaluating the propeller non-cavitation noise.

  9. The pattern of circumferential and radial eruptive fissures on the volcanoes of Fernandina and Isabela islands, Galapagos

    USGS Publications Warehouse

    Chadwick, W.W.; Howard, K.A.

    1991-01-01

    Maps of the eruptive vents on the active shield volcanoes of Fernandina and Isabela islands, Galapagos, made from aerial photographs, display a distinctive pattern that consists of circumferential eruptive fissures around the summit calderas and radial fissures lower on the flanks. On some volcano flanks either circumferential or radial eruptions have been dominant in recent time. The location of circumferential vents outside the calderas is independent of caldera-related normal faults. The eruptive fissures are the surface expression of dike emplacement, and the dike orientations are interpreted to be controlled by the state of stress in the volcano. Very few subaerial volcanoes display a pattern of fissures similar to that of the Galapagos volcanoes. Some seamounts and shield volcanoes on Mars morphologically resemble the Galapagos volcanoes, but more specific evidence is needed to determine if they also share common structure and eruptive style. ?? 1991 Springer-Verlag.

  10. Space Radar Image of Colombian Volcano

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a radar image of a little known volcano in northern Colombia. The image was acquired on orbit 80 of space shuttle Endeavour on April 14, 1994, by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The volcano near the center of the image is located at 5.6 degrees north latitude, 75.0 degrees west longitude, about 100 kilometers (65 miles) southeast of Medellin, Colombia. The conspicuous dark spot is a lake at the bottom of an approximately 3-kilometer-wide (1.9-mile) volcanic collapse depression or caldera. A cone-shaped peak on the bottom left (northeast rim) of the caldera appears to have been the source for a flow of material into the caldera. This is the northern-most known volcano in South America and because of its youthful appearance, should be considered dormant rather than extinct. The volcano's existence confirms a fracture zone proposed in 1985 as the northern boundary of volcanism in the Andes. The SIR-C/X-SAR image reveals another, older caldera further south in Colombia, along another proposed fracture zone. Although relatively conspicuous, these volcanoes have escaped widespread recognition because of frequent cloud cover that hinders remote sensing imaging in visible wavelengths. Four separate volcanoes in the Northern Andes nations ofColombia and Ecuador have been active during the last 10 years, killing more than 25,000 people, including scientists who were monitoring the volcanic activity. Detection and monitoring of volcanoes from space provides a safe way to investigate volcanism. The recognition of previously unknown volcanoes is important for hazard evaluations because a number of major eruptions this century have occurred at mountains that were not previously recognized as volcanoes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of

  11. Magmatically Greedy Reararc Volcanoes of the N. Tofua Segment of the Tonga Arc

    NASA Astrophysics Data System (ADS)

    Rubin, K. H.; Embley, R. W.; Arculus, R. J.; Lupton, J. E.

    2013-12-01

    Volcanism along the northernmost Tofua Arc is enigmatic because edifices of the arc's volcanic front are mostly, magmatically relatively anemic, despite the very high convergence rate of the Pacific Plate with this section of Tonga Arc. However, just westward of the arc front, in terrain generally thought of as part of the adjacent NE Lau Backarc Basin, lie a series of very active volcanoes and volcanic features, including the large submarine caldera Niuatahi (aka volcano 'O'), a large composite dacite lava flow terrain not obviously associated with any particular volcanic edifice, and the Mata volcano group, a series of 9 small elongate volcanoes in an extensional basin at the extreme NE corner of the Lau Basin. These three volcanic terrains do not sit on arc-perpendicular cross chains. Collectively, these volcanic features appear to be receiving a large proportion of the magma flux from the sub-Tonga/Lau mantle wedge, in effect 'stealing' this magma flux from the arc front. A second occurrence of such magma 'capture' from the arc front occurs in an area just to the south, on southernmost portion of the Fonualei Spreading Center. Erupted compositions at these 'magmatically greedy' volcanoes are consistent with high slab-derived fluid input into the wedge (particularly trace element abundances and volatile contents, e.g., see Lupton abstract this session). It is unclear how long-lived a feature this is, but the very presence of such hyperactive and areally-dispersed volcanism behind the arc front implies these volcanoes are not in fact part of any focused spreading/rifting in the Lau Backarc Basin, and should be thought of as 'reararc volcanoes'. Possible tectonic factors contributing to this unusually productive reararc environment are the high rate of convergence, the cold slab, the highly disorganized extension in the adjacent backarc, and the tear in the subducting plate just north of the Tofua Arc.

  12. Sustaining U.S. Nuclear Submarine Design Capabilities

    DTIC Science & Technology

    2007-01-01

    Attack Narwhal 1 1969 Attack Lipscomb 1 1974 Attack The Submarine Design Process 9 Submarine Class Class Size Commission Dates Type of Submarine...class, EB had several designs in process, including the Narwhal , Lipscomb, and NR-1, which helped them bridge the gap. The Seawolf class (SSN 21) was

  13. Reducing Unsteady Loads on a Piggyback Miniature Submarine

    NASA Technical Reports Server (NTRS)

    Lin, John

    2009-01-01

    A small, simple fixture has been found to be highly effective in reducing destructive unsteady hydrodynamic loads on a miniature submarine that is attached in piggyback fashion to the top of a larger, nuclear-powered, host submarine. The fixture, denoted compact ramp, can be installed with minimal structural modification, and the use of it does not entail any change in submarine operations.

  14. 36. VIEW OF CUPOLA, SUBMARINE ESCAPE TRAINING TANK, SHOWING ROVING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. VIEW OF CUPOLA, SUBMARINE ESCAPE TRAINING TANK, SHOWING ROVING RESCUE BELL SUSPENDED ABOVE TANK, WITH TWO-LOCK RECOMPRESSION CHAMBER AT REAR, LOOKING WEST. Photo taken after installation of recompression chamber in 1956. - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  15. 35. INTERIOR VIEW OF EQUIPMENT HOUSE, SUBMARINE ESCAPE TRAINING TANK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. INTERIOR VIEW OF EQUIPMENT HOUSE, SUBMARINE ESCAPE TRAINING TANK, PRIOR TO ENLARGEMENT OF ROOM AND INSTALLATION OF TRIPLE-LOCK RECOMPRESSION CHAMBER IN 1957 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  16. 31. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION OF THE ELEVATOR AND PASSAGEWAYS TO THE 18- AND 50-FOOT LOCKS AND CUPOLA 1932 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  17. 32 CFR 707.7 - Submarine identification light.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Submarine identification light. 707.7 Section... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.7 Submarine identification light. Submarines may display, as a distinctive means of identification, an intermittent flashing amber beacon...

  18. Seasonal variation in a tropical lagoon with submarine groundwater discharges

    NASA Astrophysics Data System (ADS)

    Tenorio, L.; Gómez-Valdés, J.; Enriquez, C.; Treviño, C.; Marino-Tapia, I.; López-Aguiar, K.

    2013-05-01

    The Chelem-Chuburna-Yucalpeten lagoon system is located at 21°17'N and 89°40'W in the Yucatan peninsula, Mexico. Temperature, conductivity, sea level, atmospheric pressure, solar radiation, and wind speed measurements were recorded in this lagoon, during various oceanographic surveys within 2010-2012. During the experiments, which included diurnal variations during spring and neap tidal cycles, CTD profiles were collected in 35 oceanographic stations and moored instruments were deployed at strategic locations. The aim of this work is to investigate transitions of thermohaline properties in a tropical lagoon with submarine groundwater discharges (SGDs) to increase the knowledge of the principal processes that control circulation and mixing in this kind of bodies of water. Results show that the lagoon is saltier than the ocean in the dry season and the opposite pattern is observed in the rain season. During the rain season could be more freshwater supplied from SGDs.

  19. Remote sensing of Italian volcanos

    NASA Technical Reports Server (NTRS)

    Bianchi, R.; Casacchia, R.; Coradini, A.; Duncan, A. M.; Guest, J. E.; Kahle, A.; Lanciano, P.; Pieri, D. C.; Poscolieri, M.

    1990-01-01

    The results of a July 1986 remote sensing campaign of Italian volcanoes are reviewed. The equipment and techniques used to acquire the data are described and the results obtained for Campi Flegrei and Mount Etna are reviewed and evaluated for their usefulness for the study of active and recently active volcanoes.

  20. Three-dimensional structure of the submarine flanks of La Réunion inferred from geophysical data

    NASA Astrophysics Data System (ADS)

    Gailler, Lydie-Sarah; LéNat, Jean-FrançOis

    2010-12-01

    La Réunion (Indian Ocean) constitutes a huge volcanic oceanic system of which most of the volume is submerged. We present a study of its submarine part based on the interpretation of magnetic and gravity data compiled from old and recent surveys. A model of the submarine internal structure is derived from 3-D and 2-D models using constraints from previous geological and geophysical studies. Two large-scale, previously unknown, buried volcanic construction zones are discovered in continuation of the island's construction. To the east, the Alizés submarine zone is interpreted as the remnants of Les Alizés volcano eastward flank whose center is marked by a large hypovolcanic intrusion complex. To the southwest, the Etang Salé submarine zone is interpreted as an extension of Piton des Neiges, probably fed by a volcanic rift zone over a large extent. They were predominantly built during the Matuyama period and thus probably belong to early volcanism. A correlation exists between their top and seismic horizons recognized in previous studies and interpreted as the base of the volcanic edifice. Their morphology suggested a lithospheric bulging beneath La Réunion, not required to explain our data, since the seismic interfaces match the top of our volcanic constructions. The coastal shelf coincides with a negative Bouguer anomaly belt, often associated with magnetic anomalies, suggesting a shelf built by hyaloclastites. A detailed analysis of the offshore continuation of La Montagne Massif to the north confirms this hypothesis. The gravity analysis confirms that the bathymetric bulges, forming the northern, eastern, southern, and western submarine flanks, are predominantly built by debris avalanche deposits at the surface.

  1. Italian Volcano Supersites

    NASA Astrophysics Data System (ADS)

    Puglisi, G.

    2011-12-01

    Volcanic eruptions are among the geohazards that may have a substantial economic and social impact, even at worldwide scale. Large populated regions are prone to volcanic hazards worldwide. Even local phenomena may affect largely populated areas and in some cases even megacities, producing severe economic losses. On a regional or global perspective, large volcanic eruptions may affect the climate for years with potentially huge economic impacts, but even relatively small eruptions may inject large amounts of volcanic ash in the atmosphere and severely affect air traffic over entire continents. One of main challenges of the volcanological community is to continuously monitor and understand the internal processes leading to an eruption, in order to give substantial contributions to the risk reduction. Italian active volcanoes constitute natural laboratories and ideal sites where to apply the cutting-edge volcano observation systems, implement new monitoring systems and to test and improve the most advanced models and methods for investigate the volcanic processes. That's because of the long tradition of volcanological studies resulting into long-term data sets, both in-situ and from satellite systems, among the most complete and accurate worldwide, and the large spectrum of the threatening volcanic phenomena producing high local/regional/continental risks. This contribution aims at presenting the compound monitoring systems operating on the Italian active volcanoes, the main improvements achieved during the recent studies direct toward volcanic hazard forecast and risk reductions and the guidelines for a wide coordinated project aimed at applying the ideas of the GEO Supersites Initiative at Mt. Etna and Campi Flegrei / Vesuvius areas.

  2. An experimental approach to submarine canyon evolution

    NASA Astrophysics Data System (ADS)

    Lai, Steven Y. J.; Gerber, Thomas P.; Amblas, David

    2016-03-01

    We present results from a sandbox experiment designed to investigate how sediment gravity flows form and shape submarine canyons. In the experiment, unconfined saline gravity flows were released onto an inclined sand bed bounded on the downstream end by a movable floor that was used to increase relief during the experiment. In areas unaffected by the flows, we observed featureless, angle-of-repose submarine slopes formed by retrogressive breaching processes. In contrast, areas influenced by gravity flows cascading across the shelf break were deeply incised by submarine canyons with well-developed channel networks. Normalized canyon long profiles extracted from successive high-resolution digital elevation models collapse to a single profile when referenced to the migrating shelf-slope break, indicating self-similar growth in the relief defined by the canyon and intercanyon profiles. Although our experimental approach is simple, the resulting canyon morphology and behavior appear similar in several important respects to that observed in the field.

  3. Ruiz Volcano: Preliminary report

    NASA Astrophysics Data System (ADS)

    Ruiz Volcano, Colombia (4.88°N, 75.32°W). All times are local (= GMT -5 hours).An explosive eruption on November 13, 1985, melted ice and snow in the summit area, generating lahars that flowed tens of kilometers down flank river valleys, killing more than 20,000 people. This is history's fourth largest single-eruption death toll, behind only Tambora in 1815 (92,000), Krakatau in 1883 (36,000), and Mount Pelée in May 1902 (28,000). The following briefly summarizes the very preliminary and inevitably conflicting information that had been received by press time.

  4. Geomorphic process fingerprints in submarine canyons

    USGS Publications Warehouse

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.; Twichell, David C.

    2013-01-01

    Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics.

  5. Methanogenic diversity and activity in hypersaline sediments of the centre of the Napoli mud volcano, Eastern Mediterranean Sea.

    PubMed

    Lazar, Cassandre Sara; Parkes, R John; Cragg, Barry A; L'Haridon, Stéphane; Toffin, Laurent

    2011-08-01

    Submarine mud volcanoes are a significant source of methane to the atmosphere. The Napoli mud volcano, situated in the brine-impacted Olimpi Area of the Eastern Mediterranean Sea, emits mainly biogenic methane particularly at the centre of the mud volcano. Temperature gradients support the suggestion that Napoli is a cold mud volcano with moderate fluid flow rates. Biogeochemical and molecular genetic analyses were carried out to assess the methanogenic activity rates, pathways and diversity in the hypersaline sediments of the centre of the Napoli mud volcano. Methylotrophic methanogenesis was the only significant methanogenic pathway in the shallow sediments (0-40 cm) but was also measured throughout the sediment core, confirming that methylotrophic methanogens could be well adapted to hypersaline environments. Hydrogenotrophic methanogenesis was the dominant pathway below 50 cm; however, low rates of acetoclastic methanogenesis were also present, even in sediment layers with the highest salinity, showing that these methanogens can thrive in this extreme environment. PCR-DGGE and methyl coenzyme M reductase gene libraries detected sequences affiliated with anaerobic methanotrophs (mainly ANME-1) as well as Methanococcoides methanogens. Results show that the hypersaline conditions in the centre of the Napoli mud volcano influence active biogenic methane fluxes and methanogenic/methylotrophic diversity.

  6. Submarine glaciated landscapes of central and northern British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Shaw, John; Lintern, Gwyn

    2015-04-01

    Recent systematic multibeam sonar mapping and ground-truthing surveys in the fjords and coastal waters of central and northern British Columbia, Canada, provide information on glacial processes associated with the Cordilleran Ice Sheet, and also on postglacial processes that have strongly modified the glacial terrain. During the last glacial maximum, ice covered the Coast Range, except for nunataks. Convergent streamlined glacial landforms in the Strait of Georgia testify to a strong flow of ice towards the southeast, between Vancouver Island and the mainland. During ice retreat, thick deposits of acoustically stratified glaciomarine mud were deposited in glacially over deepened basins. Retreat through the Douglas Channel fjord system was punctuated by still stands, resulting in a series of submarine moraines. Postglacial processes have created a suite of landforms that mask the primary glacial terrain: 1) Fjord floors host thick deposits of acoustically transparent postglacial mud with highly variable distribution: banks up to 80-m thick are commonly adjacent to erosional zones with glaciomarine mud exposed at the seafloor; 2) In this region of high precipitation and snowpack melt, numerous cone-shaped Holocene fan deltas developed on the fjord sidewalls transport coarse sediment to the fjord floors. Larger deltas are developed at fjord heads, notably at Kitimat and Kildala; 3) Submarine slope failures in this tectonically active area have resulted in a suite of mass transport deposits on sidewalls and fjord floors. The very large submarine slope failures at Camano Sound and KitKat Inlet occurred on the steep, rear facets of large transverse moraines, and involved the failure of glaciomarine sediment that moved into deeper basins, perhaps as a retrogressive failure. The ages of these events are unknown, although the presence of postglacial mud in the slide scar at Caamano suggests that the event at that location occurred in the late glacial or early Holocene. Also

  7. Space Radar Image of Teide Volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image shows the Teide volcano on the island of Tenerife in the Canary Islands. The Canary Islands, part of Spain, are located in the eastern Atlantic Ocean off the coast of Morocco. Teide has erupted only once in the 20th Century, in 1909, but is considered a potentially threatening volcano due to its proximity to the city of Santa Cruz de Tenerife, shown in this image as the purple and white area on the lower right edge of the island. The summit crater of Teide, clearly visible in the left center of the image, contains lava flows of various ages and roughnesses that appear in shades of green and brown. Different vegetation zones, both natural and agricultural, are detected by the radar as areas of purple, green and yellow on the volcano's flanks. Scientists are using images such as this to understand the evolution of the structure of Teide, especially the formation of the summit caldera and the potential for collapse of the flanks. The volcano is one of 15 identified by scientists as potentially hazardous to local populations, as part of the international The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 11, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 28.3 degrees North latitude and 16.6 degrees West longitude. North is toward the upper right. The area shown measures 90 kilometers by 54.5 kilometers (55.8 miles by 33.8 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is C-band horizontally transmitted, vertically received.

  8. What can we learn about the history of oceanic shield volcanoes from deep marine sediments? Example from La Reunion volcanoes.

    NASA Astrophysics Data System (ADS)

    Bachelery, Patrick; Babonneau, Nathalie; Jorry, Stephan; Mazuel, Aude

    2014-05-01

    The discovery in 2006, during the oceanographic survey FOREVER, of large volcaniclastic sedimentary systems off La Réunion Island (western Indian ocean) revealed a new image of the evolution of oceanic shield volcanoes and their dismantling. Marine data obtained from 2006 to 2011 during the oceanographic surveys ERODER 1 to ERODER 4 included bathymetry, acoustic imagery, echosounding profiles, dredging and coring. Six major turbidite systems were mapped and described on the submarine flanks of La Reunion volcanic edifice and the surrounding oceanic plate. The interpretation of sediment cores enable us to characterise the processes of gravity-driven sediment transfer from land to deep sea and also to revisit the history of the volcanoes of La Réunion Island. Turbidite systems constitute a major component of the transfer of volcanic materials to the abyssal plain (Saint-Ange et al., 2011; 2013; Sisavath et al., 2011; 2012; Babonneau et al., 2013). These systems are superimposed on other dismantling processes (slow deformation such as gravity sliding or spreading, and huge landslides causing debris avalanches). Turbidite systems mainly develop in connection with the hydrographic network of the island, and especially at the mouths of large rivers. They show varying degrees of maturity, with canyons incising the submarine slope of the island and feeding depositional areas, channels and lobes extending over 150 km from the coast. The cores collected in turbidite systems show successions of thin and thick turbidites alternating with hemipelagic sedimentation. Sedimentological and stratigraphic analysis of sediment cores yielded a chronology of submarine gravity events. First-order information was obtained on the explosive activity of these volcanoes by identifying tephra layers in the cores (glass shards and pumice). In addition, major events of the volcanic and tectonic history of the island can be identified and dated. In this contribution, we focus most attention on

  9. Preliminary Geologic Map of Mount Pagan Volcano, Pagan Island, Commonwealth of the Northern Mariana Islands

    USGS Publications Warehouse

    Trusdell, Frank A.; Moore, Richard B.; Sako, Maurice K.

    2006-01-01

    Pagan Island is the subaerial portion of two adjoining Quaternary stratovolcanoes near the middle of the active Mariana Arc, [FAT1]north of Saipan. Pagan and the other volcanic islands that constitute part of the Arc form the northern half of the East Mariana Ridge[FAT2], which extends about 2-4 km above the ocean floor. The > 6-km-deep Mariana Trench adjoins the East Mariana Ridge on the east, and the Mariana Trough, partly filled with young lava flows and volcaniclastic sediment, lies on the west of the Northern Mariana Islands (East Mariana Ridge. The submarine West Mariana Ridge, Tertiary in age, bounds the western side of the Mariana Trough. The Mariana Trench and Northern Mariana Islands (East Mariana Ridge) overlie an active subduction zone where the Pacific Plate, moving northwest at about 10.3 cm/year, is passing beneath the Philippine Plate, moving west-northwest at 6.8 cm/year. Beneath the Northern Mariana Islands, earthquake hypocenters at depths of 50-250 km identify the location of the west-dipping subduction zone, which farther west becomes nearly vertical and extends to 700 km depth. During the past century, more than 40 earthquakes of magnitude 6.5-8.1 have shaken the Mariana Trench. The Mariana Islands form two sub-parallel, concentric, concave-west arcs. The southern islands comprise the outer arc and extend north from Guam to Farallon de Medinilla. They consist of Eocene to Miocene volcanic rocks and uplifted Tertiary and Quaternary limestone. The nine northern islands extend from Anatahan to Farallon de Pajaro