Sample records for submaximal cycle ergometer

  1. Inflight Exercise Regimen for the 2-Hour Prebreathe Protocol

    NASA Technical Reports Server (NTRS)

    Foster, Philip P.; Gernhardt, Michael L.; Woodruff, Kristin K.; Schneider, Susan M.; Homick, Jerry L. (Technical Monitor)

    2000-01-01

    A 10 min aerobic prebreathe exercise up to 75% V-O2(sub max) on a dual-cycle ergometer, included in the 2-hour prebreathe protocol, has been shown to dramatically reduce the incidence of decompression sickness (DCS) at altitude. In-flight only leg ergometry will be available. A balanced exercise was developed using surgical tubing with the ergometer on-orbit. We hypothesize that a 75% V02max workload, individually prescribed, would be achieved using a target heart rate to regulate the intensity of the arm exercise. VO2, heart rate (HR) / ECG, V-CO2 /V-O2, V(sub E), and V(sub T), and rate of perceived exertion (Borg scale) were measured in eleven healthy subjects who passed a US Air Force Class III Physical examination. A V-O2 peak test was performed to assess the sub-maximal exercise prescription. Two series of sub-maximal tests were performed: (1) leg ergometer/hand ergometer and (2) leg ergometer/surgical tubes. We found no significant differences (P > 0.05) in comparing the means for V-O2 and HR between the predicted and measured values during the final 4 minute-stage at "75% V-O2 workload" or between the two types of sub-maximal tests. The prescribed prebreathe sub-maximal exercise performed with flight certified surgical tubes was achieved using the target HR.

  2. Design and testing of an MRI-compatible cycle ergometer for non-invasive cardiac assessments during exercise

    PubMed Central

    2012-01-01

    Background Magnetic resonance imaging (MRI) is an important tool for cardiac research, and it is frequently used for resting cardiac assessments. However, research into non-pharmacological stress cardiac evaluation is limited. Methods We aimed to design a portable and relatively inexpensive MRI cycle ergometer capable of continuously measuring pedalling workload while patients exercise to maintain target heart rates. Results We constructed and tested an MRI-compatible cycle ergometer for a 1.5 T MRI scanner. Resting and sub-maximal exercise images (at 110 beats per minute) were successfully obtained in 8 healthy adults. Conclusions The MRI-compatible cycle ergometer constructed by our research group enabled cardiac assessments at fixed heart rates, while continuously recording power output by directly measuring pedal force and crank rotation. PMID:22423637

  3. A comparison of practical assessment methods to determine treadmill, cycle and elliptical ergometer VO2peak

    PubMed Central

    Mays, Ryan J.; Boér, Nicholas F.; Mealey, Lisa M.; Kim, Kevin H.; Goss, Fredric L.

    2015-01-01

    This investigation compared estimated and predicted peak oxygen consumption (VO2peak) and maximal heart rate (HRmax) among the treadmill, cycle ergometer and elliptical ergometer. Seventeen women (mean ± SE: 21.9 ± .3 yrs) exercised to exhaustion on all modalities. ACSM metabolic equations were used to estimate VO2peak. Digital displays on the elliptical ergometer were used to estimate VO2peak. Two individual linear regression methods were used to predict VO2peak: 1) two steady state heart rate (HR) responses up to 85% of age-predicted HRmax, and 2) multiple steady state/non-steady state HR responses up to 85% of age-predicted HRmax. Estimated VO2peak for the treadmill (46.3 ± 1.3 ml · kg−1 · min−1) and the elliptical ergometer (44.4 ± 1.0 ml · kg−1 · min−1) did not differ. The cycle ergometer estimated VO2peak (36.5 ± 1.0 ml · kg−1 · min−1) was lower (p < .001) than the estimated VO2peak values for the treadmill and elliptical ergometer. Elliptical ergometer VO2peak predicted from steady state (51.4 ± .8 ml · kg−1 · min−1) and steady state/non-steady state (50.3 ± 2.0 ml · kg−1 · min−1) models were higher than estimated elliptical ergometer VO2peak, p < .01. HRmax and estimates of VO2peak were similar between the treadmill and elliptical ergometer, thus cross-modal exercise prescriptions may be generated. The use of digital display estimates of submaximal oxygen uptake for the elliptical ergometer may not be an accurate method for predicting VO2peak. Health-fitness professionals should use caution when utilizing submaximal elliptical ergometer digital display estimates to predict VO2peak. PMID:20393357

  4. Physical efficiency and activity energy expenditure in term pregnancy females measured during cardiopulmonary exercise tests with a supine cycle ergometer.

    PubMed

    Jędrzejko, Maciej; Nowosielski, Krzysztof; Poręba, Ryszard; Ulman-Włodarz, Izabela; Bobiński, Rafał

    2016-12-01

    To evaluate physical efficiency and activity energy expenditure (AEE) in term pregnancy females during cardiopulmonary exercise tests with a supine cycle ergometer. The study comprised 22 healthy full-term pregnancy women with uncomplicated pregnancies hospitalized in the Department of Gynecology and Obstetrics, Specialist Teaching Hospital in Tychy, Poland. All subjects underwent cardiopulmonary exercise tests (CPET) on a supine cycle ergometer. The 12-min, three-stage, progressive, symptom-limited submaximal test protocol (up to 80% HRmax) was used. Pulsometry was used to record HR on a beat-to-beat analysis and to calculate AEE. Respiratory responses were measured by ergospirometer and a computer system on a breath-by-breath basis at rest, during exercise and at restitution. In the studied population, VO2max was established at the level of 2.19 ± 0.33 L/min in ergospirometry and 2.04 ± 025 L/min in pulsometry. Physical efficiency calculated for sub-maximal exercise by use of the Davis equation was 30.52 ± 0.12%. AEE, based on VO2 in various phases of the CPET, was 0.47, 0.71 and 0.88 L/min for phases 25, 50 and 75 W. Based on ergospirometer readouts, AEE was 10.60, 16.11 and 20.94 kJ/min for phases 25, 50 and 75 W. Overall mean AEE (determined by pulsometry) was 10.59  kJ/min. CPET testing did not have any negative effect upon the health or life of the neonates involved in the study. Submaximal CPET up to 80% HRmax with a supine cycle ergometer is a safe and precise method for assessing work efficiency in term pregnancy women.

  5. Comparison of the US and Russian Cycle Ergometers

    NASA Technical Reports Server (NTRS)

    Norcross, Jason; Bentley, Jason R.; Moore, Alan D.; Hagan, R. Donald

    2007-01-01

    The purpose of this study was to compare the U.S. and Russian cycle ergometers focusing on the mechanical differences of the devices and the physiological differences observed while using the devices. Methods: First, the mechanical loads provided by the U.S. Cycle Ergometer with Vibration Isolation System (CEVIS) and the Russian Veloergometer were measured using a calibration dynamometer. Results were compared and conversion equations were modeled to determine the actual load provided by each device. Second, ten male subjects (32.9 +/- 6.5 yrs, 180.6 +/- 4.4 cm; 81.9 +/- 6.9 kg) experienced with both cycling and exercise testing completed a standardized submaximal exercise test protocol on CEVIS and Veloergometer. The exercise protocol involved 8 sub-maximal workloads each lasting 3 minutes for a total of 24 minutes per session, or until the end of the stage when the subject reached 85% of peak oxygen consumption or age-predicted maximum heart rate (220 - age). The workload started at 50 Watts (W), increased to 100 W, and then increased 25 W every 3 minutes until reaching a peak workload of 250 W. Physiological variables were then compared at each workload by repeated measures ANOVA or paired t-tests (p<0.05). Results: While both CEVIS and Veloergometer produced significantly lower workloads than the displayed workload, CEVIS produced even lower loads than Veloergometer (p<0.05) at each indicated workload. Despite this fact, the only physiological variables that showed a significant difference between the ergometers were VE (125 - 250W), VO2 (175 and 250 W), and VCO2 (175 W). All other physiological data were not statistically different between CEVIS and Veloergometer. Conclusion: Although workloads were different between ergometers, relatively few physiological differences were observed. Therefore, CEVIS workloads of 87.5 - 262.5 W can be rounded to the nearest 25 W increment and performed on the Veloergometer.

  6. Chronotropic and pressor effects of water ingestion at rest and in response to incremental dynamic exercise.

    PubMed

    Mendonca, Goncalo V; Teixeira, Micael S; Heffernan, Kevin S; Fernhall, Bo

    2013-06-01

    Ingestion of water attenuates the chronotropic response to submaximal exercise. However, it is not known whether this effect is equally manifested during dynamic exercise below and above the ventilatory threshold (VT). We explored the effects of water ingestion on the heart rate response to an incremental cycle-ergometer protocol. In a randomized fashion, 19 healthy adults (10 men and nine women, age 20.9 ± 1.8 years) ingested 50 and 500 ml of water before completing a cycle-ergometer protocol on two separate days. The heart rate and oxygen uptake ( ) responses to water ingestion were analysed both at rest and during exercise performed below and above the VT. The effects of water intake on brachial blood pressure were measured only at rest. Resting mean arterial pressure increased and resting heart rate decreased, but only after 500 ml of water (P < 0.05). Compared with that seen after 50 ml of water, the 500 ml volume elicited an overall decrease in submaximal heart rate (P < 0.05). In contrast, drinking 500 ml of water did not affect submaximal . The participants' maximal heart rate, maximal and VT were similar between conditions. Our results therefore indicate that, owing to its effects on submaximal heart rate over a broad spectrum of intensities, the drinking of water should be recognized as a potential confounder in cardiovascular exercise studies. However, by showing no differences between conditions for submaximal , they also suggest that the magnitude of heart rate reduction after drinking 500 ml of water may be of minimal physiological significance for exercise cardiorespiratory capacity.

  7. Validity of a Newly-Designed Rectilinear Stepping Ergometer Submaximal Exercise Test to Assess Cardiorespiratory Fitness.

    PubMed

    Zhang, Rubin; Zhan, Likui; Sun, Shaoming; Peng, Wei; Sun, Yining

    2017-09-01

    The maximum oxygen uptake (V̇O 2 max), determined from graded maximal or submaximal exercise tests, is used to classify the cardiorespiratory fitness level of individuals. The purpose of this study was to examine the validity and reliability of the YMCA submaximal exercise test protocol performed on a newly-designed rectilinear stepping ergometer (RSE) that used up and down reciprocating vertical motion in place of conventional circular motion and giving precise measurement of workload, to determine V̇O 2 max in young healthy male adults. Thirty-two young healthy male adults (32 males; age range: 20-35 years; height: 1.75 ± 0.05 m; weight: 67.5 ± 8.6 kg) firstly participated in a maximal-effort graded exercise test using a cycle ergometer (CE) to directly obtain measured V̇O 2 max. Subjects then completed the progressive multistage test on the RSE beginning at 50W and including additional stages of 70, 90, 110, 130, and 150W, and the RSE YMCA submaximal test consisting of a workload increase every 3 minutes until the termination criterion was reached. A metabolic equation was derived from the RSE multistage exercise test to predict oxygen consumption (V̇O 2 ) from power output (W) during the submaximal exercise test (V̇O 2 (mL·min -1 )=12.4 ×W(watts)+3.5 mL·kg -1 ·min -1 ×M+160mL·min -1 , R 2 = 0.91, standard error of the estimate (SEE) = 134.8mL·min -1 ). A high correlation was observed between the RSE YMCA estimated V̇O 2 max and the CE measured V̇O 2 max (r=0.87). The mean difference between estimated and measured V̇O 2 max was 2.5 mL·kg -1 ·min -1 , with an SEE of 3.55 mL·kg -1 ·min -1 . The data suggest that the RSE YMCA submaximal exercise test is valid for predicting V̇O 2 max in young healthy male adults. The findings show that the rectilinear stepping exercise is an effective submaximal exercise for predicting V̇O 2 max. The newly-designed RSE may be potentially further developed as an alternative ergometer for assessing cardiorespiratory fitness and the promotion of personalized health interventions for health care professionals.

  8. The Measurement of Maximal (Anaerobic) Power Output on a Cycle Ergometer: A Critical Review

    PubMed Central

    Driss, Tarak; Vandewalle, Henry

    2013-01-01

    The interests and limits of the different methods and protocols of maximal (anaerobic) power (P max) assessment are reviewed: single all-out tests versus force-velocity tests, isokinetic ergometers versus friction-loaded ergometers, measure of P max during the acceleration phase or at peak velocity. The effects of training, athletic practice, diet and pharmacological substances upon the production of maximal mechanical power are not discussed in this review mainly focused on the technical (ergometer, crank length, toe clips), methodological (protocols) and biological factors (muscle volume, muscle fiber type, age, gender, growth, temperature, chronobiology and fatigue) limiting P max in cycling. Although the validity of the Wingate test is questionable, a large part of the review is dedicated to this test which is currently the all-out cycling test the most often used. The biomechanical characteristics specific of maximal and high speed cycling, the bioenergetics of the all-out cycling exercises and the influence of biochemical factors (acidosis and alkalosis, phosphate ions…) are recalled at the beginning of the paper. The basic knowledge concerning the consequences of the force-velocity relationship upon power output, the biomechanics of sub-maximal cycling exercises and the study on the force-velocity relationship in cycling by Dickinson in 1928 are presented in Appendices. PMID:24073413

  9. Predicting VO[subscript 2max] in College-Aged Participants Using Cycle Ergometry and Perceived Functional Ability

    ERIC Educational Resources Information Center

    Nielson, David E.; George, James D.; Vehrs, Pat R.; Hager, Ron L.; Webb, Carrie V.

    2010-01-01

    The purpose of this study was to develop a multiple linear regression model to predict treadmill VO[subscript 2max] scores using both exercise and non-exercise data. One hundred five college-aged participants (53 male, 52 female) successfully completed a submaximal cycle ergometer test and a maximal graded exercise test on a motorized treadmill.…

  10. Variability of prediction of maximal oxygen concumption on the cycle ergometer using standard equations

    NASA Technical Reports Server (NTRS)

    Greenisen, Michael C.; Fortney, Suzanne M.; Lee, Stuart M. C.; Moore, Alan D.; Barrows, Linda H.

    1993-01-01

    Several investigations within the Exercise Countermeasures Project at the NASA Johnson Space Center focused on the assessment of maximum oxygen consumption (VO2(sub max)) within the Astronaut Corps pre- and postspace flight. Investigations during the Apollo era suggested that there was a significant decrease in postflight VO2(sub max) when compared to preflight values, and current studies have documented that this trend continues in the Space Shuttle era. It is generally accepted and was confirmed in our laboratory that VO2(sub max) can be predicted from submaximal measures taken during graded exercise tests on the cycle ergometer with respect to populations. However, previous work had not examined the effect of day-to-day variations in the physiologic responses that might alter these predictions for individuals. Stability of individual submaximal data over serial tests is important so that predicted changes in VO2(sub max) are reflective of actual VO2(sub max) changes. Therefore, the purpose of this investigation was to determine which of the accepted equations to predict VO2(sub max) would be less affected by normal daily physiologic changes.

  11. PREDICTION OF VO2PEAK USING OMNI RATINGS OF PERCEIVED EXERTION FROM A SUBMAXIMAL CYCLE EXERCISE TEST

    PubMed Central

    Mays, Ryan J.; Goss, Fredric L.; Nagle-Stilley, Elizabeth F.; Gallagher, Michael; Schafer, Mark A.; Kim, Kevin H.; Robertson, Robert J.

    2015-01-01

    Summary The primary aim of this study was to develop statistical models to predict peak oxygen consumption (VO2peak) using OMNI Ratings of Perceived Exertion measured during submaximal cycle ergometry. Men (mean ± standard error: 20.90 ± 0.42 yrs) and women (21.59 ± 0.49 yrs) participants (n = 81) completed a load-incremented maximal cycle ergometer exercise test. Simultaneous multiple linear regression was used to develop separate VO2peak statistical models using submaximal ratings of perceived exertion for the overall body, legs, and chest/breathing as predictor variables. VO2peak (L·min−1) predicted for men and women from ratings of perceived exertion for the overall body (3.02 ± 0.06; 2.03 ± 0.04), legs (3.02 ± 0.06; 2.04 ± 0.04) and chest/breathing (3.02 ± 0.05; 2.03 ± 0.03) were similar with measured VO2peak (3.02 ± 0.10; 2.03 ± 0.06, ps > .05). Statistical models based on submaximal OMNI Ratings of Perceived Exertion provide an easily administered and accurate method to predict VO2peak. PMID:25068750

  12. Validity of a Newly-Designed Rectilinear Stepping Ergometer Submaximal Exercise Test to Assess Cardiorespiratory Fitness

    PubMed Central

    Zhang, Rubin; Zhan, Likui; Sun, Shaoming; Peng, Wei; Sun, Yining

    2017-01-01

    The maximum oxygen uptake (V̇O2 max), determined from graded maximal or submaximal exercise tests, is used to classify the cardiorespiratory fitness level of individuals. The purpose of this study was to examine the validity and reliability of the YMCA submaximal exercise test protocol performed on a newly-designed rectilinear stepping ergometer (RSE) that used up and down reciprocating vertical motion in place of conventional circular motion and giving precise measurement of workload, to determine V̇O2 max in young healthy male adults. Thirty-two young healthy male adults (32 males; age range: 20-35 years; height: 1.75 ± 0.05 m; weight: 67.5 ± 8.6 kg) firstly participated in a maximal-effort graded exercise test using a cycle ergometer (CE) to directly obtain measured V̇O2 max. Subjects then completed the progressive multistage test on the RSE beginning at 50W and including additional stages of 70, 90, 110, 130, and 150W, and the RSE YMCA submaximal test consisting of a workload increase every 3 minutes until the termination criterion was reached. A metabolic equation was derived from the RSE multistage exercise test to predict oxygen consumption (V̇O2) from power output (W) during the submaximal exercise test (V̇O2 (mL·min-1 )=12.4 ×W(watts)+3.5 mL·kg-1·min-1×M+160mL·min-1, R2= 0.91, standard error of the estimate (SEE) = 134.8mL·min-1). A high correlation was observed between the RSE YMCA estimated V̇O2 max and the CE measured V̇O2 max (r=0.87). The mean difference between estimated and measured V̇O2 max was 2.5 mL·kg-1·min-1, with an SEE of 3.55 mL·kg-1·min-1. The data suggest that the RSE YMCA submaximal exercise test is valid for predicting V̇O2 max in young healthy male adults. The findings show that the rectilinear stepping exercise is an effective submaximal exercise for predicting V̇O2 max. The newly-designed RSE may be potentially further developed as an alternative ergometer for assessing cardiorespiratory fitness and the promotion of personalized health interventions for health care professionals. Key points The rectilinear stepping exercise is a simple modality of exercise, which requires only up and down movements of the legs. It overcomes the mechanical dead centers of circular motion and is mechanically efficient. It is potentially applicable to a large group of populations. The RSE gives an accurate measurement of power output and ensures a constant power output independent of stepping cadence. The RSE submaximal exercise test is valid and feasible for estimating V̇O2 max in young healthy male adults compared with the CE maximal exercise test. The rectilinear stepping exercise is an effective submaximal exercise mode for predicting V̇O2 max. The RSE designed for this study may be potentially developed as a new and alternative ergometer to assess cardiorespiratory fitness and could be used in the future by healthcare professionals to promote personalized health interventions. PMID:28912653

  13. Cross-Validation of the YMCA Submaximal Cycle Ergometer Test to Predict V[o.sub.2] Max

    ERIC Educational Resources Information Center

    Beekley, Matthew D.; Brechue, William F.; deHoyos, Diego V.; Garzarella, Linda; Werber-Zion, Galila; Pollock, Michael L.

    2004-01-01

    Maximal oxygen uptake (V[O.sub.2]max) is an important indicator of health-risk status, specifically for coronary heart disease (Blair et al., 1989). Direct measurement of V[O.sub.2]max is considered to be the most accurate means of determining cardiovascular fitness level. Typically, this measurement is taken using a progressive exercise test on a…

  14. Effects of combined high intensity arm and leg training on performance and cardio-respiratory measures.

    PubMed

    Zinner, Christoph; Sperlich, Billy; Born, Dennis-Peter; Michels, Guido

    2017-01-01

    The purpose of this study was to investigate the effects of combined arm and leg high-intensity low-volume interval training (HIITarm+leg) on maximal oxygen uptake, myocardial measures (i.e. stroke volume, cardiac output, ejection fraction), Tissue Oxygenation Index (TOI) of the vastus lateralis and triceps brachii, as well as power output in comparison to leg HIIT (HIITleg) only. The 20 healthy, male and female volunteers completed six sessions of either HIITleg on a cycle ergometer or HIITarm+leg on an arm and leg cycle ergometer. During pre- and post-testing, the volunteers completed a submaximal and incremental test to exhaustion on a cycle ergometer. Magnitude based interference revealed likely to very likely beneficial effects for HIITarm+leg compared to HIITleg in maximal oxygen uptake, cardiac measures as well peak power output. The TOI following HIITarm+leg demonstrated likely to very likely increased oxygenation in the triceps brachii or the vastus lateralis when compared to HIITleg. The results suggest that six sessions of HIITarm+leg may likely to very likely improve maximal oxygen uptake, some inotropy-related cardiac measures with improved tissue oxygenation of the triceps brachii and vastus lateralis muscles resulting in greater leg peak power output.

  15. Oxygen Uptake Responses to Submaximal Exercise Loads Do Not Change During Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Moore, Alan D., Jr.; Evetts, Simon N.; Feiveson, Alan H.; Lee, S. M. C.; McCleary, Frank A.; Platts, Steven H.; Ploutz-Snyder, Lori

    2011-01-01

    In previous publications we have reported that the heart rate (HR) responses to graded submaximal exercise tests are elevated during long-duration International Space Station (ISS) flights. Furthermore, the elevation in HR appears greater earlier, rather than later, during the missions. A potential confounder in the interpretation of HR results from graded exercise tests on ISS is that the cycle ergometer used (CEVIS) is vibration-isolated from the station structure. This feature causes the CEVIS assembly to sway slightly during its use and debriefing comments by some crewmembers indicate that there is a "learning curve" associated with CEVIS use. Therefore, one could not exclude the possibility that the elevated HRs experienced in the early stages of ISS missions were related to a lowered metabolic efficiency of CEVIS exercise that would raise the submaximal oxygen uptake (VO2) associated with graded exercise testing work rates.

  16. Wheelchair ergometer. Development of a prototype with electronic braking.

    PubMed

    Forchheimer, F; Lundberg, A

    1986-01-01

    A new wheelchair ergometer is described, which compensates for the pulsating character of the work by an automatic control system. This makes it possible to maintain a constant level of power during wheelchair work. An automatic control system has been integrated in an electronically braked bicycle ergometer, and a pedal unit from Rodby Electronic bicycle ergometer RE 820 has been coupled to a modified test wheelchair. With this device, the physical working capacity during submaximal circumstances can be tested in handicapped persons.

  17. The Cross-Validation of the United States Air Force Submaximal Cycle Ergometer Test to Estimate Aerobic Capacity

    DTIC Science & Technology

    1994-06-01

    the University of Florida. When body composition variables were included in the regression model, such as % body fat and fet free mass, as well as the...maximal oxygen intake . JAMA 203:201-210, 1968. 2. Sharp, J.R. The new Air Force fitness test: A field trial assessing effectiveness and safety...more muscle mass and less fat than the female counterpart. However males and females appear to adapt equally to training (53,55). Also men have a larger

  18. Pedaling rate is an important determinant of human oxygen uptake during exercise on the cycle ergometer

    PubMed Central

    Formenti, Federico; Minetti, Alberto E; Borrani, Fabio

    2015-01-01

    Estimation of human oxygen uptake () during exercise is often used as an alternative when its direct measurement is not feasible. The American College of Sports Medicine (ACSM) suggests estimating human during exercise on a cycle ergometer through an equation that considers individual's body mass and external work rate, but not pedaling rate (PR). We hypothesized that including PR in the ACSM equation would improve its prediction accuracy. Ten healthy male participants’ (age 19–48 years) were recruited and their steady-state was recorded on a cycle ergometer for 16 combinations of external work rates (0, 50, 100, and 150 W) and PR (50, 70, 90, and 110 revolutions per minute). was calculated by means of a new equation, and by the ACSM equation for comparison. Kinematic data were collected by means of an infrared 3-D motion analysis system in order to explore the mechanical determinants of . Including PR in the ACSM equation improved the accuracy for prediction of sub-maximal during exercise (mean bias 1.9 vs. 3.3 mL O2 kg−1 min−1) but it did not affect the accuracy for prediction of maximal (P > 0.05). Confirming the validity of this new equation, the results were replicated for data reported in the literature in 51 participants. We conclude that PR is an important determinant of human during cycling exercise, and it should be considered when predicting oxygen consumption. PMID:26371230

  19. Effects of posture on upper and lower limb peripheral resistance following submaximal cycling.

    PubMed

    Swan, P D; Spitler, D L; Todd, M K; Maupin, J L; Lewis, C L; Darragh, P M

    1989-09-01

    The purpose of this study was to determine postural effects on upper and lower limb peripheral resistance (PR) after submaximal exercise. Twelve subjects (six men and six women) completed submaximal cycle ergometer tests (60% age-predicted maximum heart rate) in the supine and upright seated positions. Each test included 20 minutes of rest, 20 minutes of cycling, and 15 minutes of recovery. Stroke volume and heart rate were determined by impedance cardiography, and blood pressure was measured by auscultation during rest, immediately after exercise, and at minutes 1-5, 7.5, 10, 12.5, and 15 of recovery. Peripheral resistance was calculated from values of mean arterial pressure and cardiac output. No significant (p less than 0.05) postural differences in PR were noted during rest for either limb. Immediately after exercise, PR decreased (55% to 61%) from resting levels in both limbs, independent of posture. Recovery ankle PR values were significantly different between postures. Upright ankle PR returned to 92% of the resting level within four minutes of recovery, compared to 76% of the resting level after 15 minutes in the supine posture. Peripheral resistance values in the supine and upright arm were not affected by posture and demonstrated a gradual pattern of recovery similar to the supine ankle recovery response (85% to 88% of rest within 15 minutes). The accelerated recovery rate of PR after upright exercise may result from local vasoconstriction mediated by a central regulatory response to stimulation from gravitational pressure on lower body circulation.

  20. Pedaling rate is an important determinant of human oxygen uptake during exercise on the cycle ergometer.

    PubMed

    Formenti, Federico; Minetti, Alberto E; Borrani, Fabio

    2015-09-01

    Estimation of human oxygen uptake (V˙o2) during exercise is often used as an alternative when its direct measurement is not feasible. The American College of Sports Medicine (ACSM) suggests estimating human V˙o2 during exercise on a cycle ergometer through an equation that considers individual's body mass and external work rate, but not pedaling rate (PR). We hypothesized that including PR in the ACSM equation would improve its V˙o2 prediction accuracy. Ten healthy male participants' (age 19-48 years) were recruited and their steady-state V˙o2 was recorded on a cycle ergometer for 16 combinations of external work rates (0, 50, 100, and 150 W) and PR (50, 70, 90, and 110 revolutions per minute). V˙o2 was calculated by means of a new equation, and by the ACSM equation for comparison. Kinematic data were collected by means of an infrared 3-D motion analysis system in order to explore the mechanical determinants of V˙o2. Including PR in the ACSM equation improved the accuracy for prediction of sub-maximal V˙o2 during exercise (mean bias 1.9 vs. 3.3 mL O2 kg(-1) min(-1)) but it did not affect the accuracy for prediction of maximal V˙o2 (P > 0.05). Confirming the validity of this new equation, the results were replicated for data reported in the literature in 51 participants. We conclude that PR is an important determinant of human V˙o2 during cycling exercise, and it should be considered when predicting oxygen consumption. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  1. Aerobic fitness of Anglo-Saxon and Indian students.

    PubMed

    Hardy, C P; Eston, R G

    1985-12-01

    The purpose of this study was to compare the aerobic fitness of two groups of male college students: 32 Anglo-Saxon males (age range 16-18 years) with 27 Indian males, born in England, (age range 16-23 years), none of whom was highly active in any particular sport. Maximal oxygen uptake was estimated by submaximal test on a cycle ergometer and percent body fat was assessed by skinfold calipers. The Anglo-Saxon group had higher absolute and relative maximal oxygen consumption values and higher body weight. There was no difference in percent fat between the two groups. Strength data were also provided for descriptive purposes.

  2. Can endurance training improve physical capacity and quality of life in young Fontan patients?

    PubMed

    Hedlund, Eva R; Lundell, Bo; Söderström, Liselott; Sjöberg, Gunnar

    2018-03-01

    Children after Fontan palliation have reduced exercise capacity and quality of life. Our aim was to study whether endurance training could improve physical capacity and quality of life in Fontan patients. Fontan patients (n=30) and healthy age- and gender-matched control subjects (n=25) performed a 6-minute walk test at submaximal capacity and a maximal cycle ergometer test. Quality of life was assessed with Pediatric Quality of Life Inventory Version 4.0 questionnaires for children and parents. All tests were repeated after a 12-week endurance training programme and after 1 year. Patients had decreased submaximal and maximal exercise capacity (maximal oxygen uptake 35.0±5.1 ml/minute per·kg versus 43.7±8.4 ml/minute·per·kg, p<0.001) and reported a lower quality of life score (70.9±9.9 versus 85.7±8.0, p<0.001) than controls. After training, patients improved their submaximal exercise capacity in a 6-minute walk test (from 590.7±65.5 m to 611.8±70.9 m, p<0.05) and reported a higher quality of life (p<0.01), but did not improve maximal exercise capacity. At follow-up, submaximal exercise capacity had increased further and improved quality of life was sustained. The controls improved their maximal exercise capacity (p<0.05), but not submaximal exercise capacity or quality of life after training. At follow-up, improvement of maximal exercise capacity was sustained. We believe that an individualised endurance training programme for Fontan patients improves submaximal exercise capacity and quality of life in Fontan patients and the effect on quality of life appears to be long-lasting.

  3. Aerobic fitness of Anglo-Saxon and Indian students.

    PubMed Central

    Hardy, C P; Eston, R G

    1985-01-01

    The purpose of this study was to compare the aerobic fitness of two groups of male college students: 32 Anglo-Saxon males (age range 16-18 years) with 27 Indian males, born in England, (age range 16-23 years), none of whom was highly active in any particular sport. Maximal oxygen uptake was estimated by submaximal test on a cycle ergometer and percent body fat was assessed by skinfold calipers. The Anglo-Saxon group had higher absolute and relative maximal oxygen consumption values and higher body weight. There was no difference in percent fat between the two groups. Strength data were also provided for descriptive purposes. Images p217-a p217-b PMID:4092143

  4. Stress Studies at Kennedy Space Center: a Backward and Forward Look

    NASA Technical Reports Server (NTRS)

    Decker, A. I.

    1971-01-01

    Possible relationships between occupational and other stresses on ischemic heart disease are explored. Three procedures were used: (1) double master 2-step test, (2) dynamic ECG technique using avionics equipment, and (3) submaximal stress testing with Marco bicycle ergometer.

  5. Validation of the Pulmonary Function System for Use on the International Space Station

    NASA Technical Reports Server (NTRS)

    McCleary, Frank A.; Moore, Alan D., Jr.; Hagan, R. Donald

    2007-01-01

    Aerobic deconditioning occurs during long duration space flight despite the use of exercise countermeasures (Convertino, 1996). As a part of International Space Station (ISS) medical operations, periodic tests designed to estimate aerobic capacity are performed to track changes in aerobic fitness and to determine the effectiveness of exercise countermeasures. These tests are performed prior to, during, and after missions of greater than 30 days in duration. Crewmembers selected for missions aboard the ISS perform a graded exercise test on a cycle ergometer approximately 270 days prior to their scheduled launch date in order to measure peak oxygen consumption (VO2PK) and peak heart rate (HRpk). Approximately 30 to 45 days prior to launch, crewmembers perform a submaximal cycle ergometer test at work rates set to elicit 25, 50 and 75% of their pre-flight VO2PK. This test, known as the Periodic Fitness Evaluation (PFE), serves as a baseline measure to which subsequent in-and post-flight exercise tests are compared. While onboard the ISS, crewmembers are normally scheduled to perform the PFE beginning with flight day (FD) 14 and every 30 days thereafter. The PFE is also conducted 5 and 30 days following flight. Using PFE data, aerobic fitness is estimated by quantifying the VO2 vs. HR relationship using linear regression and calculating the VO2 that would occur at the crewmember s previously measured HRpk. Currently, for data collected during flight, this technique assumes that the pre- vs. in-flight oxygen consumption per given cycle workload is similar. However, the validity of this assumption is based upon a sparse amount of data collected during the Skylab era (Michel, et al. 1977). The method of using heart rate and cycle ergometer work rates has been used to estimate aerobic fitness in normal gravity (Astrand and Ryhming, 1954; Lee, 1993). Due to spaceflight induced physiological alterations, such as shifts in extracellular fluid (e.g. plasma) volume, this method may not be valid during space flight. In addition, the ergometer onboard ISS is vibration-isolated and moves with the astronaut s application of force into the pedals. The effect of this movement on the VO2 of cycle exercise on ISS has not been quantified.

  6. Oxygen uptake kinetics of constant-load work - Upright vs. supine exercise

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Goldwater, D. J.; Sandler, H.

    1984-01-01

    Supine and upright positions were used in a comparitive study of the effects of constant load exercise on oxygen uptake (VO2), O2 deficit, steady-state VO2 and VO2 following recovery from constant load work. Ten male subjects (36-40 yr.) performed one submaximal exercise test in the supine and one test in the upright position consisting of 5 min rest and 5 min cycle ergometer exercise at 700 kg/min followed by ten minutes of recovery. It is found that the significant difference in VO2 kinetics during exercise in the upright compared to supine position resulted from changes in oxygen transport and utilization mechanisms rather than changes in mechanical efficiency. To the extent that data measured in the supine position can be used to estimate physiological responses to zero gravity, it is suggested that limitation of systemic O2 consumption may be the result of slow rates of oxygen uptake during transient periods of muscular work. Significant reductions in the rate of steady-state VO2 attainment at submaximal work intensities may produce an onset of muscle fatigue and exhaustion.

  7. Are gender differences in upper-body power generated by elite cross-country skiers augmented by increasing the intensity of exercise?

    PubMed

    Hegge, Ann Magdalen; Myhre, Kenneth; Welde, Boye; Holmberg, Hans-Christer; Sandbakk, Øyvind

    2015-01-01

    In the current study, we evaluated the impact of exercise intensity on gender differences in upper-body poling among cross-country skiers, as well as the associated differences in aerobic capacity, maximal strength, body composition, technique and extent of training. Eight male and eight female elite skiers, gender-matched for level of performance by FIS points, carried out a 4-min submaximal, and a 3-min and 30-sec maximal all-out test of isolated upper-body double poling on a Concept2 ski ergometer. Maximal upper-body power and strength (1RM) were determined with a pull-down exercise. In addition, body composition was assessed with a DXA scan and training during the previous six months quantified from diaries. Relative to the corresponding female values (defined as 100%), the power output produced by the men was 88%, 95% and 108% higher during the submaximal, 3-min and 30-sec tests, respectively, and peak power in the pull-down strength exercise was 118% higher (all P<0.001). During the ergometer tests the work performed per cycle by the men was 97%, 102% and 91% greater, respectively, and the men elevated their cycle rate to a greater extent at higher intensities (both P<0.01). Furthermore, men had a 61% higher VO2peak, 58% higher 1RM, relatively larger upper-body mass (61% vs 56%) and reported considerably more upper-body strength and endurance training (all P<0.05). In conclusion, gender differences in upper-body power among cross-country skiers augmented as the intensity of exercise increased. The gender differences observed here are greater than those reported previously for both lower- and whole-body sports and coincided with greater peak aerobic capacity and maximal upper-body strength, relatively more muscle mass in the upper-body, and more extensive training of upper-body strength and endurance among the male skiers.

  8. Are Gender Differences in Upper-Body Power Generated by Elite Cross-Country Skiers Augmented by Increasing the Intensity of Exercise?

    PubMed Central

    Hegge, Ann Magdalen; Myhre, Kenneth; Welde, Boye; Holmberg, Hans-Christer; Sandbakk, Øyvind

    2015-01-01

    In the current study, we evaluated the impact of exercise intensity on gender differences in upper-body poling among cross-country skiers, as well as the associated differences in aerobic capacity, maximal strength, body composition, technique and extent of training. Eight male and eight female elite skiers, gender-matched for level of performance by FIS points, carried out a 4-min submaximal, and a 3-min and 30-sec maximal all-out test of isolated upper-body double poling on a Concept2 ski ergometer. Maximal upper-body power and strength (1RM) were determined with a pull-down exercise. In addition, body composition was assessed with a DXA scan and training during the previous six months quantified from diaries. Relative to the corresponding female values (defined as 100%), the power output produced by the men was 88%, 95% and 108% higher during the submaximal, 3-min and 30-sec tests, respectively, and peak power in the pull-down strength exercise was 118% higher (all P<0.001). During the ergometer tests the work performed per cycle by the men was 97%, 102% and 91% greater, respectively, and the men elevated their cycle rate to a greater extent at higher intensities (both P<0.01). Furthermore, men had a 61% higher VO2peak, 58% higher 1RM, relatively larger upper-body mass (61% vs 56%) and reported considerably more upper-body strength and endurance training (all P<0.05). In conclusion, gender differences in upper-body power among cross-country skiers augmented as the intensity of exercise increased. The gender differences observed here are greater than those reported previously for both lower- and whole-body sports and coincided with greater peak aerobic capacity and maximal upper-body strength, relatively more muscle mass in the upper-body, and more extensive training of upper-body strength and endurance among the male skiers. PMID:26000713

  9. Effects of interactive video game cycling on overweight and obese adolescent health.

    PubMed

    Adamo, Kristi B; Rutherford, Jane A; Goldfield, Gary S

    2010-12-01

    The purpose of this study was to examine the efficacy of interactive video game stationary cycling (GameBike) in comparison with stationary cycling to music on adherence, energy expenditure measures, submaximal aerobic fitness, body composition, and cardiovascular disease risk markers in overweight and obese adolescents, using a randomized controlled trial design. Thirty overweight (with at least 1 metabolic complication) or obese adolescents aged 12-17 years were stratified by gender and randomized to video game or music condition, with 4 participants (2 per group) failing to complete the twice weekly 60 min sessions of the 10-week trial. The music group had a higher rate of attendance compared with the video game group (92% vs. 86%, p < 0.05). Time spent in minutes per session at vigorous intensity (80%-100% of predicted peak heart rate) (24.9 ± 20 min vs. 13.7 ± 12.8 min, p < 0.05) and average distance (km) pedaled per session (12.5 ± 2.8 km vs. 10.2 ± 2.2 km, p < 0.05) also favoured the music group. However, both interventions produced significant improvements in submaximal indicators of aerobic fitness as measured by a graded cycle ergometer protocol. Also, when collapsed, the exercise modalities reduced body fat percentage and total cholesterol. The present study indicates that cycling to music was just as effective as stationary cycling while playing video games at improving fitness, body composition, and cholesterol profiles in overweight and obese teens, and resulted in increased attendance, vigorous intensity of physical activity, and distance pedaled. Therefore, our data support the superiority of cycling to music and indicate investing in the more expensive GameBike may not be worth the cost.

  10. Effects of Cycling vs. Running Training on Endurance Performance in Preparation for Inline Speed Skating.

    PubMed

    Stangier, Carolin; Abel, Thomas; Hesse, Clemens; Claen, Stephanie; Mierau, Julia; Hollmann, Wildor; Strüder, Heiko K

    2016-06-01

    Winter weather conditions restrict regular sport-specific endurance training in inline speed skating. As a result, this study was designed to compare the effects of cycling and running training programs on inline speed skaters' endurance performance. Sixteen (8 men, 8 women) high-level athletes (mean ± SD 24 ± 8 years) were randomly assigned to 1 of 2 groups (running and cycling). Both groups trained twice a week for 8 weeks, one group on a treadmill and the other on a cycle ergometer. Training intensity and duration was individually calculated (maximal fat oxidation: ∼52% of V[Combining Dot Above]O2peak: 500 kcal per session). Before and after the training intervention, all athletes performed an incremental specific (inline speed skating) and 1 nonspecific (cycling or running) step test according to the group affiliation. In addition to blood lactate concentration, oxygen uptake (V[Combining Dot Above]O2), ventilatory equivalent (VE/V[Combining Dot Above]O2), respiratory exchange ratio (RER), and heart rate were measured. The specific posttest revealed significantly increased absolute V[Combining Dot Above]O2peak values (2.9 ± 0.4, 3.4 ± 0.7, p = 0.01) and submaximal V[Combining Dot Above]O2 values (p ≤ 0.01). VE/V[Combining Dot Above]O2 and RER significantly decreased at maximal (46.6 ± 6.6, 38.5 ± 3.4, p = 0.005; 1.1 ± 0.03, 1.0 ± 0.04, p = 0.001) and submaximal intensities (p ≤ 0.04). None of the analysis revealed a significant group effect (p ≥ 0.15). The results indicate that both cycling vs. running exercise at ∼52% of V[Combining Dot Above]O2peak had a positive effect on the athletes' endurance performance. The increased submaximal V[Combining Dot Above]O2 values indicate a reduction in athletes' inline speed skating technique. Therefore, athletes would benefit from a focus on technique training in the subsequent period.

  11. Mechanical Energy and Propulsion in Ergometer Double Poling by Cross-country Skiers.

    PubMed

    Danielsen, Jørgen; Sandbakk, Øyvind; Holmberg, Hans-Christer; Ettema, Gertjan

    2015-12-01

    This study aims to investigate fluctuations in total mechanical energy of the body (Ebody) in relation to external ergometer work (Werg) during the poling and recovery phases of simulated double-poling cross-country skiing. Nine male cross-country skiers (mean ± SD age, 24 ± 5 yr; mean ± SD body mass, 81.7 ± 6.5 kg) performed 4-min submaximal tests at low-intensity, moderate-intensity, and high-intensity levels and a 3-min all-out test on a ski ergometer. Motion capture analysis and load cell recordings were used to measure body kinematics and dynamics. From these, Werg, Ebody (sum of the translational, rotational, and gravitational potential energies of all segments), and their time differentials (power P) were calculated. Ptot--the rate of energy absorption or generation by muscles-tendons--was defined as the sum of Pbody and Perg. Ebody showed large fluctuations over the movement cycle, decreasing during poling and increasing during the recovery phase. The fluctuation in Pbody was almost perfectly out of phase with Perg. Some muscle-tendon energy absorption was observed at the onset of poling. For the rest of poling and throughout the recovery phase, muscles-tendons generated energy to do Werg and to increase Ebody. Approximately 50% of cycle Ptot occurred during recovery for all intensity levels. In double poling, the extensive contribution of the lower extremities and trunk to whole-body muscle-tendon work during recovery facilitates a "direct" transfer of Ebody to Werg during the poling phase. This observation reveals that double poling involves a unique movement pattern different from most other forms of legged terrestrial locomotion, which are characterized primarily by inverted pendulum or spring-mass types of movement.

  12. Pre-exercise glycerol hydration improves cycling endurance time

    NASA Technical Reports Server (NTRS)

    Montner, P.; Stark, D. M.; Riedesel, M. L.; Murata, G.; Robergs, R.; Timms, M.; Chick, T. W.

    1996-01-01

    The effects of glycerol ingestion (GEH) on hydration and subsequent cycle ergometer submaximal load exercise were examined in well conditioned subjects. We hypothesized that GEH would reduce physiologic strain and increase endurance. The purpose of Study I (n = 11) was to determine if pre-exercise GEH (1.2 gm/kg glycerol in 26 ml/kg solution) compared to pre-exercise placebo hydration (PH) (26 ml/kg of aspartame flavored water) lowered heart rate (HR), lowered rectal temperature (Tc), and prolonged endurance time (ET) during submaximal load cycle ergometry. The purpose of Study II (n = 7) was to determine if the same pre-exercise regimen followed by carbohydrate oral replacement solution (ORS) during exercise also lowered HR, Tc, and prolonged ET. Both studies were double-blind, randomized, crossover trials, performed at an ambient temperature of 23.5-24.5 degrees C, and humidity of 25-27%. Mean HR was lower by 2.8 +/- 0.4 beats/min (p = 0.05) after GEH in Study I and by 4.4 +/- 1.1 beats/min (p = 0.01) in Study II. Endurance time was prolonged after GEH in Study I (93.8 +/- 14 min vs. 77.4 +/- 9 min, p = 0.049) and in Study II (123.4 +/- 17 min vs. 99.0 +/- 11 min, p = 0.03). Rectal temperature did not differ between hydration regimens in both Study I and Study II. Thus, pre-exercise glycerol-enhanced hyperhydration lowers HR and prolongs ET even when combined with ORS during exercise. The regimens tested in this study could potentially be adapted for endurance activities.

  13. Construction of an isokinetic eccentric cycle ergometer for research and training.

    PubMed

    Elmer, Steven J; Martin, James C

    2013-08-01

    Eccentric cycling serves a useful exercise modality in clinical, research, and sport training settings. However, several constraints can make it difficult to use commercially available eccentric cycle ergometers. In this technical note, we describe the process by which we built an isokinetic eccentric cycle ergometer using exercise equipment modified with commonly available industrial parts. Specifically, we started with a used recumbent cycle ergometer and removed all the original parts leaving only the frame and seat. A 2.2 kW electric motor was attached to a transmission system that was then joined with the ergometer. The motor was controlled using a variable frequency drive, which allowed for control of a wide range of pedaling rates. The ergometer was also equipped with a power measurement device that quantified work, power, and pedaling rate and provided feedback to the individual performing the exercise. With these parts along with some custom fabrication, we were able to construct an isokinetic eccentric cycle ergometer suitable for research and training. This paper offers a guide for those individuals who plan to use eccentric cycle ergometry as an exercise modality and wish to construct their own ergometer.

  14. Effects of Hemopure on maximal oxygen uptake and endurance performance in healthy humans.

    PubMed

    Ashenden, M J; Schumacher, Y O; Sharpe, K; Varlet-Marie, E; Audran, M

    2007-05-01

    Haemoglobin-based oxygen carriers (HBOCs) such as Hemopure are touted as a tenable substitute for red blood cells and therefore potential doping agents, although the mechanisms of oxygen transport of HBOCs are incompletely understood. We investigated whether infusion of Hemopure increased maximal oxygen uptake (V.O 2max) and endurance performance in healthy subjects. Twelve male subjects performed two 4-minute submaximal exercise bouts equivalent to 60 % and 75 % of V.O (2max) on a cycle ergometer, followed by a ramped incremental protocol to elicit V.O (2max). A crossover design tested the effect of infusing either 30 g (6 subjects) or 45 g (6 subjects) of Hemopure versus a placebo. Under our study conditions, Hemopure did not increase V.O (2max) nor endurance performance. However, the infusion of Hemopure caused a decrease in heart rate of approximately 10 bpm (p=0.009) and an average increase in mean ( approximately 7 mmHg) and diastolic blood pressure ( approximately 8 mmHg) (p=0.046) at submaximal and maximal exercise intensities. Infusion of Hemopure did not bestow the same physiological advantages generally associated with infusion of red blood cells. It is conceivable that under exercise conditions, the hypertensive effects of Hemopure counter the performance-enhancing effect of improved blood oxygen carrying capacity.

  15. Heterogeneous neuromuscular activation within human rectus femoris muscle during pedaling.

    PubMed

    Watanabe, Kohei; Kouzaki, Motoki; Moritani, Toshio

    2015-09-01

    We investigated the effect of workload and the use of pedal straps on the spatial distribution of neuromuscular activation within the rectus femoris (RF) muscle during pedaling movements. Eleven healthy men performed submaximal pedaling exercises on an electrically braked ergometer at different workloads and with or without pedal straps. During these tasks, surface electromyograms (SEMGs) were recorded from the RF using 36 electrode pairs, and central locus activation (CLA) was calculated along the longitudinal line of the muscle. CLA moved markedly, indicating changes in spatial distribution of SEMG within the muscle, during a crank cycle under all conditions (P < 0.05). There were significant differences in CLA among different workloads and between those with and without pedal straps (P < 0.05). These results suggest that neuromuscular activation within the RF is regulated regionally by changes in workload and the use of pedal straps during pedaling. © 2014 Wiley Periodicals, Inc.

  16. Lack of endogenous pain inhibition during exercise in people with chronic whiplash associated disorders: an experimental study.

    PubMed

    Van Oosterwijck, Jessica; Nijs, Jo; Meeus, Mira; Van Loo, Michel; Paul, Lorna

    2012-03-01

    A controlled experimental study was performed to examine the efficacy of the endogenous pain inhibitory systems and whether this (mal)functioning is associated with symptom increases following exercise in patients with chronic whiplash-associated disorders (WAD). In addition, 2 types of exercise were compared. Twenty-two women with chronic WAD and 22 healthy controls performed a submaximal and a self-paced, physiologically limited exercise test on a cycle ergometer with cardiorespiratory monitoring on 2 separate occasions. Pain pressure thresholds (PPT), health status, and activity levels were assessed in response to the 2 exercise bouts. In chronic WAD, PPT decreased following submaximal exercise, whereas they increased in healthy subjects. The same effect was established in response to the self-paced, physiologically limited exercise, with exception of the PPT at the calf which increased. A worsening of the chronic WAD symptom complex was reported post-exercise. Fewer symptoms were reported in response to the self-paced, physiologically limited exercise. These observations suggest abnormal central pain processing during exercise in patients with chronic WAD. Submaximal exercise triggers post-exertional malaise, while a self-paced and physiologically limited exercise will trigger less severe symptoms, and therefore seems more appropriate for chronic WAD patients. The results from this exercise study suggest impaired endogenous pain inhibition during exercise in people with chronic WAD. This finding highlights the fact that one should be cautious when evaluating and recommending exercise in people with chronic WAD, and that the use of more individual, targeted exercise therapies is recommended. Copyright © 2012 American Pain Society. Published by Elsevier Inc. All rights reserved.

  17. A Pilot Study for Applying an Extravehicular Activity Exercise Prebreathe Protocol to the International Space Station

    NASA Technical Reports Server (NTRS)

    Woodruff, Kristin K.; Johnson, Anyika N.; Lee, Stuart M. C.; Gernhardt, Michael; Schneider, Suzanne M.; Foster, Philip P.

    2000-01-01

    Decompression sickness (DCS) is a serious risk to astronauts performing extravehicular activity (EVA). To reduce this risk, the addition of ten minutes of moderate exercise (75% VO2pk) during prebreathe has been shown to decrease the total prebreathe time from 4 to 2 hours and to decrease the incidence of DCS. The overall purpose of this pilot study was to develop an exercise protocol using flight hardware and an in-flight physical fitness cycle test to perform prebreathe exercise before an EVA. Eleven subjects volunteered to participate in this study. The first objective of this study was to compare the steady-state heart rate (HR) and oxygen consumption (VO2) from a submaximal arm and leg exercise (ALE) session with those predicted from a maximal ALE test. The second objective was to compare the steady-state HR and V02 from a submaximal elastic tube and leg exercise (TLE) session with those predicted from the maximal ALE test. The third objective involved a comparison of the maximal ALE test with a maximal leg-only (LE) test to conform to the in- flight fitness assessment test. The 75% VO2pk target HR from the LE test was significantly less than the target HR from the ALE test. Prescribing exercise using data from the maximal ALE test resulted in the measured submaximal values being higher than predicted VO2 and HR. The results of this pilot study suggest that elastic tubing is valid during EVA prebreathe as a method of arm exercise with the flight leg ergometer and it is recommended that prebreathe countermeasure exercise protocol incorporate this method.

  18. Responses of proenkephalin Peptide F to aerobic exercise stress in the plasma and white blood cell biocompartments.

    PubMed

    Kraemer, William J; Fragala, Maren S; van Henegouwen, Wendy R H Beijersbergen; Gordon, Scott E; Bush, Jill A; Volek, Jeff S; Triplett, N Travis; Dunn-Lewis, Courtenay; Comstock, Brett A; Szivak, Tunde K; Flanagan, Shawn D; Hooper, David R; Luk, Hui-Ying; Mastro, Andrea M

    2013-04-01

    Proenkephalin Peptide F [107-140] is an enkephalin-containing peptide found predominantly within the adrenal medulla, co-packaged with epinephrine within the chromaffin granules. In vivo studies indicate that Peptide F has classic opioid analgesia effects; in vitro studies suggest potential immune cell interactions. In this investigation we examined patterns of Peptide F concentrations in different bio-compartments of the blood at rest and following sub-maximal cycle exercise to determine if Peptide F interacts with the white blood cell (WBC) bio-compartment during aerobic exercise. Eight physically active men (n=8) performed sub-maximal (80-85% V˙O2peak) cycle ergometer exercise for 30 min. Plasma Peptide F and WBC Peptide F immunoreactivity were examined pre-exercise, mid-exercise and immediately post-, 5-min post-, 15-min post-, 30-min post- and 60-min post-exercise and at similar time-points during a control condition (30 min rest). Peptide F concentrations significantly (p<0.05) increased at 5 and 60 min post-exercise, compared to pre-exercise concentrations. No significant increases in Peptide F concentrations in the WBC fraction were observed during or after exercise. However, a significant decrease was observed at 30 min post-exercise. An ultradian pattern of Peptide F distribution was apparent during rest. Furthermore, concentrations of T cells, B cells, NK cells, and total WBCs demonstrated significant changes in response to aerobic exercise. Data indicated that Peptide F was bound in significant molar concentrations in the WBC fraction and that this biocompartment may be one of the tissue targets for binding interactions. These data indicate that Peptide F is involved with immune cell modulation in the white blood circulatory biocompartment of blood. Copyright © 2013. Published by Elsevier Inc.

  19. Combining perceptual regulation and exergaming for exercise prescription in low-active adults with and without cognitive impairment.

    PubMed

    McAuliffe, Liam; Parfitt, Gaynor C; Eston, Roger G; Gray, Caitlin; Keage, Hannah A D; Smith, Ashleigh E

    2018-01-01

    Exercise adherence in already low-active older adults with and without mild cognitive impairment (MCI) remains low. Perceptual regulation and exergaming may facilitate future exercise behaviour by improving the affective experience, however evidence that this population can perceptually regulate is lacking. To explore this, we investigated 1) perceptual regulation of exercise intensity during either exergaming or regular ergometer cycling and 2) explored affective responses. Thirty-two low active older adults (73.9 ± 7.3 years, n  = 16, 8 females) with or without MCI (70.9 ± 5.5 years, n  = 16, 11 females) participated in a sub-maximal fitness assessment to determine ventilatory threshold (VT) and two experimental sessions (counterbalanced: exergaming or regular ergometer cycling). Experimental sessions consisted 21-min of continuous cycling with 7-min at each: RPE 9, 11 and 13. Oxygen consumption (VO 2 ), heart rate (HR), and affect (Feeling Scale) were obtained throughout the exercise. VO 2 ( p  < 0.01) and HR ( p  < 0.01) increased linearly with RPE, but were not significantly different between exercise modes or cognitive groups. At RPE 13, participants worked above VT in both modes (exergaming: 115.7 ± 27.3; non-exergaming 114.1 ± 24.3 VO 2 (%VT)). Regardless of cognitive group, affect declined significantly as RPE increased ( p  < 0.01). However on average, affect remained pleasant throughout and did not differ between exercise modes or cognitive groups. These results suggest low-active older adults can perceptually regulate exercise intensity, regardless of cognition or mode. At RPE 13, participants regulated above VT, at an intensity that improves cardiorespiratory fitness long-term, and affect remained positive in the majority of participants, which may support long-term physical activity adherence.

  20. Fincke uses Cycle Ergometer with Vibration Isolation System (CEVIS)

    NASA Image and Video Library

    2009-03-26

    ISS018-E-043414 (26 March 2009) --- Astronaut Michael Fincke, Expedition 18 commander, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  1. Changes of heart rate variability and prefrontal oxygenation during Tai Chi practice versus arm ergometer cycling.

    PubMed

    Lu, Xi; Hui-Chan, Christina Wan-Ying; Tsang, William Wai-Nam

    2016-11-01

    [Purpose] Exercise has been shown to improve cardiovascular fitness and cognitive function. Whether the inclusion of mind over exercise would increase parasympathetic control of the heart and brain activities more than general exercise at a similar intensity is not known. The aim of this study was to compare the effects of Tai Chi (mind-body exercise) versus arm ergometer cycling (body-focused exercise) on the heart rate variability and prefrontal oxygenation level. [Subjects and Methods] A Tai Chi master was invited to perform Tai Chi and arm ergometer cycling with similar exercise intensity on two separate days. Heart rate variability and prefrontal oxyhemoglobin levels were measured continuously by a RR recorder and near-infrared spectroscopy, respectively. [Results] During Tai Chi exercise, spectral analysis of heart rate variability demonstrated a higher high-frequency power as well as a lower low-frequency/high-frequency ratio than during ergometer cycling, suggesting increased parasympathetic and decreased sympathetic control of the heart. Also, prefrontal oxyhemoglobin and total hemoglobin levels were higher than those during arm ergometer exercise. [Conclusion] These findings suggest that increased parasympathetic control of the heart and prefrontal activities may be associated with Tai Chi practice. Having a "mind" component in Tai Chi could be more beneficial for older adults' cardiac health and cognitive function than body-focused ergometer cycling.

  2. Physiological responses to an acute bout of sprint interval cycling.

    PubMed

    Freese, Eric C; Gist, Nicholas H; Cureton, Kirk J

    2013-10-01

    Sprint interval training has been shown to improve skeletal muscle oxidative capacity, V[Combining Dot Above]O2max, and health outcomes. However, the acute physiological responses to 4-7 maximal effort intervals have not been determined. To determine the V[Combining Dot Above]O2, cardiorespiratory responses, and energy expenditure during an acute bout of sprint interval cycling (SIC), health, college-aged subjects, 6 men and 6 women, completed 2 SIC sessions with at least 7 days between trials. Sprint interval cycling was performed on a cycle ergometer and involved a 5-minute warm-up followed by four 30-second all-out sprints with 4-minute active recovery. Peak oxygen uptake (ml·kg·min) during the 4 sprints were 35.3 ± 8.2, 38.8 ± 10.1, 38.8 ± 10.6, and 36.8 ± 9.3, and peak heart rate (b·min) were 164 ± 17, 172 ± 10, 177 ± 12, and 175 ± 22. We conclude that an acute bout of SIC elicits submaximal V[Combining Dot Above]O2 and cardiorespiratory responses during each interval that are above 80% of estimated maximal values. Although the duration of exercise in SIC is very short, the high level of V[Combining Dot Above]O2 and cardiorespiratory responses are sufficient to potentially elicit adaptations to training associated with elevated aerobic energy demand.

  3. [Scintigraphic study of gastric emptying of rehydration drinks in athletes].

    PubMed

    Martínez Gonzálvez, A B; Nuño de la Rosa Y Pozuelo, J A; Sánchez Gascón, F; Villegas García, J A; Mulero Aniorte, F; Contreras Gutiérrez, J C

    2005-01-01

    This study aims to evaluate how rehydration beverage ingestion influences gastric emptying rate (in cycle ergometer) at rest and during exercise at 70 % of maximal oxygen consumption (VO2max). 26 well-trained cyclists performed a preliminary maximal test until exhaustion to evaluate their VO2max, and two submaximal exercise tests at 70 % of their mode-specific VO2max. Each test was separated by one week. During the two submaximal tests, cyclists consumed 200 ml of a 99mTc-DTPA labeled rehydration beverage (A or B) and scintigraphy determinations were performed at rest. After, exercise was initiated for 60 minutes with an intake rate of 200 ml every 15 minutes, making gastric serial scintigraphy determinations. The difference regarding chemical composition between A and B drinks resides in the fact that drink A contains a smaller load in carbohydrates (10.3 g/100 ml versus 15.2 g/100 ml of B), proteins in form of serum milk and antioxidants in form of fruit juice. Both contain ions and vitamins. at rest, gastric count number was significantly reduced (p > 0.000) from 0 to 25 minutes for both A and B beverage. At the end of exercise (60 min), there was greater gastric retention for B beverage than for A, this difference being statistically significant (p < 0.031). The A beverage, a rehydration drink on the market with protein and antioxidants with fruit juice content, has a faster gastric emptying rate than the B sport beverage.

  4. Validity and reliability of the PowerTap mobile cycling powermeter when compared with the SRM Device.

    PubMed

    Bertucci, W; Duc, S; Villerius, V; Pernin, J N; Grappe, F

    2005-12-01

    The SRM power measuring crank system is nowadays a popular device for cycling power output (PO) measurements in the field and in laboratories. The PowerTap (CycleOps, Madison, USA) is a more recent and less well-known device that allows mobile PO measurements of cycling via the rear wheel hub. The aim of this study is to test the validity and reliability of the PowerTap by comparing it with the most accurate (i.e. the scientific model) of the SRM system. The validity of the PowerTap is tested during i) sub-maximal incremental intensities (ranging from 100 to 420 W) on a treadmill with different pedalling cadences (45 to 120 rpm) and cycling positions (standing and seated) on different grades, ii) a continuous sub-maximal intensity lasting 30 min, iii) a maximal intensity (8-s sprint), and iiii) real road cycling. The reliability is assessed by repeating ten times the sub-maximal incremental and continuous tests. The results show a good validity of the PowerTap during sub-maximal intensities between 100 and 450 W (mean PO difference -1.2 +/- 1.3 %) when it is compared to the scientific SRM model, but less validity for the maximal PO during sprint exercise, where the validity appears to depend on the gear ratio. The reliability of the PowerTap during the sub-maximal intensities is similar to the scientific SRM model (the coefficient of variation is respectively 0.9 to 2.9 % and 0.7 to 2.1 % for PowerTap and SRM). The PowerTap must be considered as a suitable device for PO measurements during sub-maximal real road cycling and in sub-maximal laboratory tests.

  5. Voss in Service module with cycle ergometer

    NASA Image and Video Library

    2001-03-23

    ISS002-E-5732 (23 March 2001) --- James S. Voss, Expedition Two flight engineer, prepares to exercise on the cycle ergometer in the Zvezda Service Module. The image was taken with a digital still camera.

  6. Usachev on cycle ergometer in Service Module

    NASA Image and Video Library

    2001-04-27

    ISS002-E-6136 (27 April 2001) --- Yury V. Usachev of Rosaviakosmos, Expedition Two mission commander, exercises on the cycle ergometer in the Zvezda Service Module. The image was taken with a digital still camera.

  7. Effect of L-ornithine hydrochloride ingestion on intermittent maximal anaerobic cycle ergometer performance and fatigue recovery after exercise.

    PubMed

    Demura, Shinichi; Morishita, Koji; Yamada, Takayoshi; Yamaji, Shunsuke; Komatsu, Miho

    2011-11-01

    L-Ornithine plays an important role in ammonia metabolism via the urea cycle. This study aimed to examine the effect of L-ornithine hydrochloride ingestion on ammonia metabolism and performance after intermittent maximal anaerobic cycle ergometer exercise. Ten healthy young adults (age, 23.8 ± 3.9 year; height, 172.3 ± 5.5 cm; body mass, 67.7 ± 6.1 kg) with regular training experience ingested L-ornithine hydrochloride (0.1 g/kg, body mass) or placebo after 30 s of maximal cycling exercise. Five sets of the same maximal cycling exercise were conducted 60 min after ingestion, and maximal cycling exercise was conducted after a 15 min rest. The intensity of cycling exercise was based on each subject's body mass (0.74 N kg(-1)). Work volume (watt), peak rpm (rpm) before and after intermittent maximal ergometer exercise and the following serum parameters were measured before ingestion, immediately after exercise and 15 min after exercise: ornithine, ammonia, urea, lactic acid and glutamate. Peak rpm was significantly greater with L-ornithine hydrochloride ingestion than with placebo ingestion. Serum ornithine level was significantly greater with L-ornithine hydrochloride ingestion than with placebo ingestion immediately and 15 min after intermittent maximal cycle ergometer exercise. In conclusion, although maximal anaerobic performance may be improved by L-ornithine hydrochloride ingestion before intermittent maximal anaerobic cycle ergometer exercise, the above may not depend on increase of ammonia metabolism with L-ornithine hydrochloride.

  8. Wakata on Cycle Ergometer in Lab

    NASA Image and Video Library

    2009-05-30

    ISS020-E-005790 (30 May 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  9. The Effects of Caffeine Supplementation on Physiological Responses to Submaximal Exercise in Endurance-Trained Men.

    PubMed

    Glaister, Mark; Williams, Benjamin Henley; Muniz-Pumares, Daniel; Balsalobre-Fernández, Carlos; Foley, Paul

    2016-01-01

    The aim of this study was to evaluate the effects of caffeine on physiological responses to submaximal exercise, with a focus on blood lactate concentration ([BLa]). Using a randomised, single-blind, crossover design; 16 endurance-trained, male cyclists (age: 38 ± 8 years; height: 1.80 ± 0.05 m; body mass: 76.6 ± 7.8 kg; [Formula: see text]: 4.3 ± 0.6 L∙min-1) completed four trials on an electromagnetically-braked cycle ergometer. Each trial consisted of a six-stage incremental test (3 minute stages) followed by 30 minutes of passive recovery. One hour before trials 2-4, participants ingested a capsule containing 5 mg∙kg-1 of either caffeine or placebo (maltodextrin). Trials 2 and 3 were designed to evaluate the effects of caffeine on various physiological responses during exercise and recovery. In contrast, Trial 4 was designed to evaluate the effects of caffeine on [BLa] during passive recovery from an end-exercise concentration of 4 mmol∙L-1. Relative to placebo, caffeine increased [BLa] during exercise, independent of exercise intensity (mean difference: 0.33 ± 0.41 mmol∙L-1; 95% likely range: 0.11 to 0.55 mmol∙L-1), but did not affect the time-course of [BLa] during recovery (p = 0.604). Caffeine reduced ratings of perceived exertion (mean difference: 0.5 ± 0.7; 95% likely range: 0.1 to 0.9) and heart rate (mean difference: 3.6 ± 4.2 b∙min-1; 95% likely range: 1.3 to 5.8 b∙min-1) during exercise, with the effect on the latter dissipating as exercise intensity increased. Supplement × exercise intensity interactions were observed for respiratory exchange ratio (p = 0.004) and minute ventilation (p = 0.034). The results of the present study illustrate the clear, though often subtle, effects of caffeine on physiological responses to submaximal exercise. Researchers should be aware of these responses, particularly when evaluating the physiological effects of various experimental interventions.

  10. Wakata on Cycle Ergometer with Vibration Isolation System (CEVIS)

    NASA Image and Video Library

    2009-03-30

    ISS018-E-043723 (30 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18/19 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  11. Feasibility of virtual reality augmented cycling for health promotion of people poststroke.

    PubMed

    Deutsch, Judith E; Myslinski, Mary Jane; Kafri, Michal; Ranky, Richard; Sivak, Mark; Mavroidis, Constantinos; Lewis, Jeffrey A

    2013-09-01

    A virtual reality (VR) augmented cycling kit (VRACK) was developed to address motor control and fitness deficits of individuals with chronic stroke. In this article, we report on the safety, feasibility, and efficacy of using the VR augmented cycling kit to improve cardiorespiratory (CR) fitness of individuals in the chronic phase poststroke. Four individuals with chronic stroke (47-65 years old and ≥3 years poststroke), with residual lower extremity impairments (Fugl-Meyer 24-26/34), who were limited community ambulators (gait speed range 0.56-1.1 m/s) participated in this study. Safety was defined as the absence of adverse events. Feasibility was measured using attendance, total exercise time, and "involvement" measured with the presence questionnaire (PQ). Efficacy of CR fitness was evaluated using a submaximal bicycle ergometer test before and after an 8-week training program. The intervention was safe and feasible with participants having 1 adverse event, 100% adherence, achieving between 90 and 125 minutes of cycling each week, and a mean PQ score of 39 (SD 3.3). There was a statistically significant (13%; P = 0.035) improvement in peak VO(2), with a range of 6% to 24.5%. For these individuals, poststroke, VR augmented cycling, using their heart rate to set their avatar's speed, fostered training of sufficient duration and intensity to promote CR fitness. In addition, there was a transfer of training from the bicycle to walking endurance. VR augmented cycling may be an addition to the therapist's tools for concurrent training of mobility and health promotion of individuals poststroke.

  12. Magnus on Cycle Ergometer with Vibration Isolation System (CEVIS) in US Laboratory Destiny

    NASA Image and Video Library

    2009-03-22

    ISS018-E-042649 (22 March 2009) --- Astronaut Sandra Magnus, STS-119 mission specialist, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station while Space Shuttle Discovery remains docked with the station.

  13. Renal and cardiovascular responses to water immersion in trained runners and swimmers

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Tatro, D. L.; Rogan, R. B.

    1993-01-01

    The purpose of this study was to determine if fluid-electrolyte, renal, hormonal, and cardiovascular responses during and after multi-hour water immersion were associated with aerobic training. Additionally, we compared these responses in those who trained in a hypogravic versus a 1-g environment. Seventeen men comprised three similarly aged groups: six long-distance runners, five competitive swimmers, and six untrained control subjects. Each subject underwent 5 h of immersion in water [mean (SE)] 36.0 (0.5) degrees C to the neck. Immediately before and at each hour of immersion, blood and urine samples were collected and analyzed for sodium (Na), potassium, osmolality, and creatinine (Cr). Plasma antidiuretic hormone and aldosterone were also measured. Hematocrits were used to calculate relative changes in plasma volume (% delta Vpl). Heart rate response to submaximal cycle ergometer exercise (35% peak oxygen uptake) was measured before and after water immersion. Water immersion induced significant increases in urine flow, Na clearance (CNa), and a 3-5% decrease in Vpl. Urine flow during immersion was greater (P < 0.05) in runners [2.4 (0.4) ml.min-1] compared to controls [1.3 (0.1) ml.min-1]. However, % delta Vpl, CCr, CNa and CH2O during immersion were not different (P > 0.05) between runners, swimmers, and controls. After 5 h of immersion, there was an increase (P < 0.05) in submaximal exercise heart rate of 9 (3) and 10 (3) beats.min-1 in both runners and controls, respectively, but no change (P > 0.05) was observed in swimmers.(ABSTRACT TRUNCATED AT 250 WORDS).

  14. Cardiorespiratory function associated with dietary nitrate supplementation

    PubMed Central

    Bond, Vernon; Curry, Bryan H.; Adams, Richard G.; Millis, Richard M.; Haddad, Georges E.

    2014-01-01

    The advent of medical nutrition therapy and nutritional physiology affords the opportunity to link diet to specific cardiovascular mechanisms, suggesting novel treatments for cardiovascular disease. This study tests the hypothesis that beetroot juice increases the plasma nitric oxide (NO) concentration, which is associated with improvements in cardiorespiratory function at rest and during submaximal aerobic exercise. The subjects were 12 healthy, young adult, normotensive African-American females, with a body mass of 61 ± 2 kg, body fat of 28% ± 4%, and peak oxygen consumption of 26 ± 3 mL·kg−1·min−1. The subjects were studied at rest and during cycle ergometer exercise at 40%, 60%, and 80% of peak oxygen consumption. Plasma NO concentration, respiratory quotient (RQ), minute ventilation, systolic and diastolic blood pressure (SBP and DBP), heart rate, and oxygen consumption were compared between isocaloric, isovolumetric placebo control orange juice and experimental beetroot juice treatments on separate days. The beetroot juice treatment increased plasma NO concentration and decreased oxygen consumption, SBP, and the heart rate-SBP product at rest and at 40%, 60%, and 80% of peak oxygen consumption in the absence of significant effects on RQ, minute ventilation, heart rate, and DBP. These findings suggest that, in healthy subjects, beetroot juice treatments increase plasma NO concentration and decrease cardiac afterload and myocardial oxygen demand at rest and during 3 submaximal levels of aerobic exercise. Future studies should determine the cellular and molecular mechanisms responsible for the improvement in cardiorespiratory function associated with dietary nitrate supplementation and whether they translate into better cardiovascular function and exercise tolerance in individuals with a compromised cardiovascular system. PMID:24476472

  15. Aspirin does not affect exercise performance.

    PubMed

    Roi, G S; Garagiola, U; Verza, P; Spadari, G; Radice, D; Zecca, L; Cerretelli, P

    1994-07-01

    A single-blind, cross-over study was carried out to evaluate the effects of acetylsalicylic acid (ASA) on cardiorespiratory performance during exercise. Eighteen young men, 9 athletes and 9 untrained but active subjects, performed a progressive maximal exercise test on a cycle ergometer (30 watt, 3 min steps, starting at 60 watt) on three different occasions, after a single administration of plain aspirin (1000mg of ASA), chewable buffered aspirin (1000mg of ASA and 600 mg of calcium carbonate) and placebo. Continuous measurement of breath-by-breath ventilation, oxygen consumption, carbon dioxide output, respiratory frequency and heart rate was carried-out at rest and during the exercise test. Blood lactate concentration was measured just before the start of exercise and at the third minute of each step in order to detect the anaerobic threshold. The pharmacokinetics of aspirin during exercise was also investigated in ten of the eighteen participants. The analysis of all investigated variables did not show any statistically significant difference between treatments, suggesting that a single dose of 1000mg of aspirin does not affect physical performance during submaximal and maximal exercise.

  16. Comparing peak and submaximal cardiorespiratory responses during field walking tests with incremental cycle ergometry in COPD.

    PubMed

    Hill, Kylie; Dolmage, Thomas E; Woon, Lynda; Coutts, Debbie; Goldstein, Roger; Brooks, Dina

    2012-02-01

    Field and laboratory-based tests are used to measure exercise capacity in people with COPD. A comparison of the cardiorespiratory responses to field tests, referenced to a laboratory test, is needed to appreciate the relative physiological demands. We sought to compare peak and submaximal cardiorespiratory responses to the 6-min walk test, incremental shuttle walk test and endurance shuttle walk test with a ramp cycle ergometer test (CET) in patients with COPD. Twenty-four participants (FEV(1) 50 ± 14%; 66.5 ± 7.7 years; 15 men) completed four sessions, separated by ≥24 h. During an individual session, participants completed either two 6-min walk tests, incremental shuttle walk tests, endurance shuttle walk tests using standardized protocols, or a single CET, wearing a portable gas analysis unit (Cosmed K4b(2)) which included measures of heart rate and arterial oxygen saturation (SpO(2)). Between tests, no difference was observed in the peak rate of oxygen uptake (F(3,69) = 1.2; P = 0.31), end-test heart rate (F(2,50) = 0.6; P = 0.58) or tidal volume (F(3,69) = 1.5; P = 0.21). Compared with all walking tests, the CET elicited a higher peak rate of carbon dioxide output (1173 ± 350 mL/min; F(3,62) = 4.8; P = 0.006), minute ventilation (48 ± 17 L/min; F(3,69) = 10.2; P < 0.001) and a higher end-test SpO(2) (95 ± 4%; F(3,63) = 24.9; P < 0.001). In patients with moderate COPD, field walking tests elicited a similar peak rate of oxygen uptake and heart rate as a CET, demonstrating that both self- and externally paced walking tests progress to high intensities. © 2011 The Authors. Respirology © 2011 Asian Pacific Society of Respirology.

  17. Short Duration Heat Acclimation in Australian Football Players

    PubMed Central

    Kelly, Monica; Gastin, Paul B.; Dwyer, Daniel B; Sostaric, Simon; Snow, Rodney J.

    2016-01-01

    This study examined if five sessions of short duration (27 min), high intensity, interval training (HIIT) in the heat over a nine day period would induce heat acclimation in Australian football (AF) players. Fourteen professional AF players were matched for VO2peak (mL·kg-1·min-1) and randomly allocated into either a heat acclimation (Acc) (n = 7) or Control (Con) group (n = 7). The Acc completed five cycle ergometer HIIT sessions within a nine day period on a cycle ergometer in the heat (38.7 ± 0.5 °C; 34.4 ± 1.3 % RH), whereas Con trained in thermo-neutral conditions (22.3 ± 0.2 °C; 35.8 ± 0. % RH). Four days prior and two days post HIIT participants undertook a 30 min constant load cycling test at 60% V̇O2peak in the heat (37.9 ± 0.1 °C; 28.5 ± 0.7 % RH) during which VO2, blood lactate concentration ([Lac-]), heart rate (HR), rating of perceived exertion (RPE), thermal comfort, core and skin temperatures were measured. Heat acclimation resulted in reduced RPE, thermal comfort and [Lac-] (all p < 0.05) during the submaximal exercise test in the heat. Heart rate was lower (p = 0.007) after HIIT, in both groups. Heat acclimation did not influence any other measured variables. In conclusion, five short duration HIIT sessions in hot dry conditions induced limited heat acclimation responses in AF players during the in-season competition phase. In practice, the heat acclimation protocol can be implemented in a professional team environment; however the physiological adaptations resulting from such a protocol were limited. Key points Some minor heat acclimation adaptations can be induced in professional AF players with five 27 min non-consecutive, short duration HIIT sessions in the heat. The heat acclimation protocol employed in this study was able to be implemented in a professional team sport environment during an actual competitive season. Elevating and maintaining a high core temperature sufficient for heat acclimation likely requires a longer heat training session or some pre-heating prior to exercise. PMID:26957934

  18. Short Duration Heat Acclimation in Australian Football Players.

    PubMed

    Kelly, Monica; Gastin, Paul B; Dwyer, Daniel B; Sostaric, Simon; Snow, Rodney J

    2016-03-01

    This study examined if five sessions of short duration (27 min), high intensity, interval training (HIIT) in the heat over a nine day period would induce heat acclimation in Australian football (AF) players. Fourteen professional AF players were matched for VO2peak (mL·kg(-1)·min(-1)) and randomly allocated into either a heat acclimation (Acc) (n = 7) or Control (Con) group (n = 7). The Acc completed five cycle ergometer HIIT sessions within a nine day period on a cycle ergometer in the heat (38.7 ± 0.5 °C; 34.4 ± 1.3 % RH), whereas Con trained in thermo-neutral conditions (22.3 ± 0.2 °C; 35.8 ± 0. % RH). Four days prior and two days post HIIT participants undertook a 30 min constant load cycling test at 60% V̇O2peak in the heat (37.9 ± 0.1 °C; 28.5 ± 0.7 % RH) during which VO2, blood lactate concentration ([Lac(-)]), heart rate (HR), rating of perceived exertion (RPE), thermal comfort, core and skin temperatures were measured. Heat acclimation resulted in reduced RPE, thermal comfort and [Lac(-)] (all p < 0.05) during the submaximal exercise test in the heat. Heart rate was lower (p = 0.007) after HIIT, in both groups. Heat acclimation did not influence any other measured variables. In conclusion, five short duration HIIT sessions in hot dry conditions induced limited heat acclimation responses in AF players during the in-season competition phase. In practice, the heat acclimation protocol can be implemented in a professional team environment; however the physiological adaptations resulting from such a protocol were limited. Key pointsSome minor heat acclimation adaptations can be induced in professional AF players with five 27 min non-consecutive, short duration HIIT sessions in the heat.The heat acclimation protocol employed in this study was able to be implemented in a professional team sport environment during an actual competitive season.Elevating and maintaining a high core temperature sufficient for heat acclimation likely requires a longer heat training session or some pre-heating prior to exercise.

  19. Underwater Cycle Ergometry: Power Requirements With and Without Diver Thermal Dress

    DTIC Science & Technology

    2009-01-01

    cycle ergometers were built at NEDU as successors to the waterproofed Collins Pedal Mate ergometers that are no longer available. A pedal shaft drives...8217 feet to the pedals. In contrast to the large foot cups and neoprene booties used at NEDU, regular bicycle pedals with toe straps2 over canvas shoes

  20. Several submaximal exercise tests are reliable, valid and acceptable in people with chronic pain, fibromyalgia or chronic fatigue: a systematic review.

    PubMed

    Ratter, Julia; Radlinger, Lorenz; Lucas, Cees

    2014-09-01

    Are submaximal and maximal exercise tests reliable, valid and acceptable in people with chronic pain, fibromyalgia and fatigue disorders? Systematic review of studies of the psychometric properties of exercise tests. People older than 18 years with chronic pain, fibromyalgia and chronic fatigue disorders. Studies of the measurement properties of tests of physical capacity in people with chronic pain, fibromyalgia or chronic fatigue disorders were included. Studies were required to report: reliability coefficients (intraclass correlation coefficient, alpha reliability coefficient, limits of agreements and Bland-Altman plots); validity coefficients (intraclass correlation coefficient, Spearman's correlation, Kendal T coefficient, Pearson's correlation); or dropout rates. Fourteen studies were eligible: none had low risk of bias, 10 had unclear risk of bias and four had high risk of bias. The included studies evaluated: Åstrand test; modified Åstrand test; Lean body mass-based Åstrand test; submaximal bicycle ergometer test following another protocol other than Åstrand test; 2-km walk test; 5-minute, 6-minute and 10-minute walk tests; shuttle walk test; and modified symptom-limited Bruce treadmill test. None of the studies assessed maximal exercise tests. Where they had been tested, reliability and validity were generally high. Dropout rates were generally acceptable. The 2-km walk test was not recommended in fibromyalgia. Moderate evidence was found for reliability, validity and acceptability of submaximal exercise tests in patients with chronic pain, fibromyalgia or chronic fatigue. There is no evidence about maximal exercise tests in patients with chronic pain, fibromyalgia and chronic fatigue. Copyright © 2014. Published by Elsevier B.V.

  1. Laboratory versus outdoor cycling conditions: differences in pedaling biomechanics.

    PubMed

    Bertucci, William; Grappe, Frederic; Groslambert, Alain

    2007-05-01

    The aim of our study was to compare crank torque profile and perceived exertion between the Monark ergometer (818 E) and two outdoor cycling conditions: level ground and uphill road cycling. Seven male cyclists performed seven tests in seated position at different pedaling cadences: (a) in the laboratory at 60, 80, and 100 rpm; (b) on level terrain at 80 and 100 rpm; and (c) on uphill terrain (9.25% grade) at 60 and 80 rpm. The cyclists exercised for 1 min at their maximal aerobic power. The Monark ergometer and the bicycle were equipped with the SRM Training System (Schoberer, Germany) for the measurement of power output (W), torque (Nxm), pedaling cadence (rpm), and cycling velocity (kmxh-1). The most important findings of this study indicate that at maximal aerobic power the crank torque profiles in the Monark ergometer (818 E) were significantly different (especially on dead points of the crank cycle) and generate a higher perceived exertion compared with road cycling conditions.

  2. Variability of Respiration and Metabolism: Responses to Submaximal Cycling and Running.

    ERIC Educational Resources Information Center

    Armstrong, Lawrence E.; Costill, David L.

    1985-01-01

    This investigation examined day-to-day variations in metabolic measurements during submaximal running and cycling. Significant differences were found in the oxygen uptake (VO2) of runners and cyclists and the minute ventilation (VE) of cyclists while running, but blood lactic acid (HLA) did not differ day to day. (Author/MT)

  3. Do current sports brassiere designs impede respiratory function?

    PubMed

    Bowles, Kelly-Ann; Steele, Julie R; Chaunchaiyakul, Rungchai

    2005-09-01

    Although sports brassieres are more effective in limiting breast motion and related breast pain when compared with standard fashion brassieres, some females do not wear sports brassieres during physical activity, as they perceive them to be too tight around the torso, possibly impeding their performance during physical activity. The purpose of this study was to determine whether breast hypertrophy, breast momentum, and/or wearing a sports brassiere impeded respiratory function at rest and during physical activity. Twenty-two active women completed standard resting spirometry maneuvers while not wearing a brassiere. All subjects then completed maximal cycle ergometer testing in two breast support conditions (sports brassiere and no brassiere (NB)), followed by submaximal treadmill exercise tests under three breast support conditions (sports brassiere, no brassiere and fashion brassiere) while standard spirometry, brassiere pressure and comfort were measured. The sports brassiere imparted significantly more pressure on smaller breasted females' torsos when compared with the fashion brassiere (0.861 +/- 0.247 and 0.672 +/- 0.254 N.cm(-2), respectively), although this increased pressure did not appear to significantly affect measured lung volumes or brassiere comfort scores. Brassiere size affected maximal exercise ability (relative VO(2peak): smaller breasted NB: 49.84 +/- 6.15 mL.kg(-1).min(-1); larger breasted NB: 40.76 +/- 4.47 mL.kg(-1).min(-1)) as well as some temporal measures of resting and submaximal respiration. However, no significant difference was found between the no brassiere and brassiere conditions in regards to measured lung volumes. As no significant restriction to exercise performance or respiratory mechanics was found when subjects wore sports brassieres, it was concluded that active females should wear a sports brassiere during physical activity to reduce breast motion and related breast pain.

  4. Effects of Parental Smoking on Exercise Systolic Blood Pressure in Adolescents

    PubMed Central

    Hacke, Claudia; Weisser, Burkhard

    2015-01-01

    Background In adults, exercise blood pressure seems to be more closely related to cardiovascular risk than resting blood pressure; however, few data are available on the effects of familial risk factors, including smoking habits, on exercise blood pressure in adolescents. Methods and Results Blood pressure at rest and during exercise, parental smoking, and other familial risk factors were investigated in 532 adolescents aged 12 to 17 years (14.6±1.5 years) in the Kiel EX.PRESS. (EXercise PRESSure) Study. Exercise blood pressure was determined at 1.5 W/kg body weight using a standardized submaximal cycle ergometer test. Mean resting blood pressure was 113.1±12.8/57.2±7.1 mm Hg, and exercise blood pressure was 149.9±19.8/54.2±8.6 mm Hg. Parental smoking increased exercise systolic blood pressure (+4.0 mm Hg, 3.1 to 4.9; P=0.03) but not resting blood pressure of the subjects (adjusted for age, sex, height, body mass index percentile, fitness). Parental overweight and familial hypertension were related to both higher resting and exercise systolic blood pressure values, whereas associations with an inactive lifestyle and a low educational level of the parents were found only with adolescents’ blood pressure during exercise. The cumulative effect of familial risk factors on exercise systolic blood pressure was more pronounced than on blood pressure at rest. Conclusions Parental smoking might be a novel risk factor for higher blood pressure, especially during exercise. In addition, systolic blood pressure during a submaximal exercise test was more closely associated with familial risk factors than was resting blood pressure, even in adolescents. PMID:25964207

  5. Effects of parental smoking on exercise systolic blood pressure in adolescents.

    PubMed

    Hacke, Claudia; Weisser, Burkhard

    2015-05-11

    In adults, exercise blood pressure seems to be more closely related to cardiovascular risk than resting blood pressure; however, few data are available on the effects of familial risk factors, including smoking habits, on exercise blood pressure in adolescents. Blood pressure at rest and during exercise, parental smoking, and other familial risk factors were investigated in 532 adolescents aged 12 to 17 years (14.6±1.5 years) in the Kiel EX.PRESS. (EXercise PRESSure) Study. Exercise blood pressure was determined at 1.5 W/kg body weight using a standardized submaximal cycle ergometer test. Mean resting blood pressure was 113.1±12.8/57.2±7.1 mm Hg, and exercise blood pressure was 149.9±19.8/54.2±8.6 mm Hg. Parental smoking increased exercise systolic blood pressure (+4.0 mm Hg, 3.1 to 4.9; P=0.03) but not resting blood pressure of the subjects (adjusted for age, sex, height, body mass index percentile, fitness). Parental overweight and familial hypertension were related to both higher resting and exercise systolic blood pressure values, whereas associations with an inactive lifestyle and a low educational level of the parents were found only with adolescents' blood pressure during exercise. The cumulative effect of familial risk factors on exercise systolic blood pressure was more pronounced than on blood pressure at rest. Parental smoking might be a novel risk factor for higher blood pressure, especially during exercise. In addition, systolic blood pressure during a submaximal exercise test was more closely associated with familial risk factors than was resting blood pressure, even in adolescents. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  6. Whole-body fat oxidation increases more by prior exercise than overnight fasting in elite endurance athletes.

    PubMed

    Andersson Hall, Ulrika; Edin, Fredrik; Pedersen, Anders; Madsen, Klavs

    2016-04-01

    The purpose of this study was to compare whole-body fat oxidation kinetics after prior exercise with overnight fasting in elite endurance athletes. Thirteen highly trained athletes (9 men and 4 women; maximal oxygen uptake: 66 ± 1 mL·min(-1)·kg(-1)) performed 3 identical submaximal incremental tests on a cycle ergometer using a cross-over design. A control test (CON) was performed 3 h after a standardized breakfast, a fasting test (FAST) 12 h after a standardized evening meal, and a postexercise test (EXER) after standardized breakfast, endurance exercise, and 2 h fasting recovery. The test consisted of 3 min each at 30%, 40%, 50%, 60%, 70%, and 80% of maximal oxygen uptake and fat oxidation rates were measured through indirect calorimetry. During CON, maximal fat oxidation rate was 0.51 ± 0.04 g·min(-1) compared with 0.69 ± 0.04 g·min(-1) in FAST (P < 0.01), and 0.89 ± 0.05 g·min(-1) in EXER (P < 0.01). Across all intensities, EXER was significantly higher than FAST and FAST was higher than CON (P < 0.01). Blood insulin levels were lower and free fatty acid and cortisol levels were higher at the start of EXER compared with CON and FAST (P < 0.05). Plasma nuclear magnetic resonance-metabolomics showed similar changes in both EXER and FAST, including increased levels of fatty acids and succinate. In conclusion, prior exercise significantly increases whole-body fat oxidation during submaximal exercise compared with overnight fasting. Already high rates of maximal fat oxidation in elite endurance athletes were increased by approximately 75% after prior exercise and fasting recovery.

  7. Effect of Semirecumbent and Upright Body Position on Maximal and Submaximal Exercise Testing

    ERIC Educational Resources Information Center

    Scott, Alexander; Antonishen, Kevin; Johnston, Chris; Pearce, Terri; Ryan, Michael; Sheel, A. William; McKenzie, Don C.

    2006-01-01

    The study was designed to determine the effect of upright-posture (UP) versus semirecumbent (SR) cycling on commonly used measures of maximal and submaximal exercise capacity. Nine healthy, untrained men (M age = 27 years, SD = 4.8 years) underwent steady-state submaximal aerobic testing followed by a ramped test to determine maximal oxygen…

  8. Sturckow uses Cycle Ergometer on Middeck (MDDK) during STS-128

    NASA Image and Video Library

    2009-08-29

    S128-E-006315 (29 Aug. 2009) --- Astronaut Rick Sturckow, STS-128 commander, gives a “thumbs-up” signal while exercising on a bicycle ergometer on the middeck of the Earth-orbiting Space Shuttle Discovery.

  9. Feasibility of Virtual Reality Augmented Cycling for Health Promotion of People Post-Stroke

    PubMed Central

    Deutsch, Judith E; Myslinski, Mary Jane; Kafri, Michal; Ranky, Richard; Sivak, Mark; Mavroidis, Constantinos; Lewis, Jeffrey A

    2013-01-01

    Background and Purpose A virtual reality (VR) augmented cycling kit (VRACK) was developed to address motor control and fitness deficits of individuals with chronic stroke. In this paper we report on the safety, feasibility and efficacy of using the VRACK to train cardio-respiratory (CR) fitness of individuals in the chronic phase poststroke. Methods Four individuals with chronic stroke (47–65 years old and three or more years post-stroke), with residual lower extremity impairments (Fugl Meyer 24–26/34) who were limited community ambulators (gait speed range 0.56 to 1.1 m/s) participated in this study. Safety was defined as the absence of adverse events. Feasibility was measured using attendance, total exercise time, and “involvement” measured with the Presence Questionnaire (PQ). Efficacy of CR fitness was evaluated using a sub-maximal bicycle ergometer test before and after an 8-week training program. Results The intervention was safe and feasible with participants having 1 adverse event, 100% adherence, achieving between 90 and 125 minutes of cycling each week and a mean PQ score of 39 (SD 3.3). There was a statistically significant 13% (p = 0.035) improvement in peak VO2 with a range of 6–24.5 %. Discussion and Conclusion For these individuals post-stroke, VR augmented cycling, using their heart rate to set their avatar’s speed, fostered training of sufficient duration and intensity to promote CR fitness. In addition, there was a transfer of training from the bicycle to walking endurance. VR augmented cycling may be an addition to the therapist’s tools for concurrent training of mobility and health promotion of individuals post-stroke. Video Abstract available (see Video, Supplemental Digital Content 1) for more insights from the authors. PMID:23863828

  10. The effect of a novel square-profile hand rim on propulsion technique of wheelchair tennis players.

    PubMed

    de Groot, Sonja; Bos, Femke; Koopman, Jorine; Hoekstra, Aldo E; Vegter, Riemer J K

    2018-09-01

    The purpose of this study was to investigate the effect of a square-profile hand rim (SPR) on propulsion technique of wheelchair tennis players. Eight experienced wheelchair tennis players performed two sets of three submaximal exercise tests and six sprint tests on a wheelchair ergometer, once with a regular rim (RR) and once with a SPR. Torque and velocity were measured continuously and power output and timing variables were calculated. No significant differences were found in propulsion technique between the RR and SPR during the submaximal tests. When sprinting with the racket, the SPR showed a significantly lower overall speed (9.1 vs. 9.8 m s -1 ), maximal speed (10.5 vs. 11.4 m s -1 ), and maximal acceleration (18.6 vs. 10.9 m s -2 ). The SPR does not seem to improve the propulsion technique when propelling a wheelchair with a tennis racket in the hand. However, the results gave input for new hand rim designs for wheelchair tennis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. MS Guidoni exercises on the cycle ergometer on the middeck of Endeavour

    NASA Image and Video Library

    2001-04-25

    S100-E-5356 (25 April 2001) --- Astronaut Umberto Guidoni, STS-100 mission specialist representing the European Space Agency (ESA), works out on a bicycle ergometer on the middeck of the Space Shuttle Endeavour.

  12. Physiological characteristics of elite short- and long-distance triathletes.

    PubMed

    Millet, Grégoire P; Dréano, Patrick; Bentley, David J

    2003-01-01

    The purpose of this study was to compare the physiological responses in cycling and running of elite short-distance (ShD) and long-distance (LD) triathletes. Fifteen elite male triathletes participating in the World Championships were divided into two groups (ShD and LD) and performed a laboratory trial that comprised submaximal treadmill running, maximal then submaximal ergometry cycling and then an additional submaximal run. "In situ" best ShD triathlon performances were also analysed for each athlete. ShD demonstrated a significantly faster swim time than LD whereas .VO(2max) (ml kg(-1) min(-1)), cycling economy (W l(-1) min(-1)), peak power output (.W(peak),W) and ventilatory threshold (%.VO(2max)) were all similar between ShD and LD. Moreover, there were no differences between the two groups in the change (%) in running economy from the first to the second running bout. Swimming time was correlated to .W(peak)(r=-0.76; P<0.05) and economy ( r=-0.89; P<0.01) in the ShD athletes. Also, cycling time in the triathlon was correlated to .W(peak)(r=-0.83; P<0.05) in LD. In conclusion, ShD triathletes had a faster swimming time but did not exhibit different maximal or submaximal physiological characteristics measured in cycling and running than LD triathletes.

  13. Comparison of VO[subscript 2] Maximum Obtained from 20 m Shuttle Run and Cycle Ergometer in Children with and without Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Cairney, John; Hay, John; Veldhuizen, Scott; Faught, Brent

    2010-01-01

    Oxygen consumption at peak physical exertion (VO[subscript 2] maximum) is the most widely used indicator of cardiorespiratory fitness. The purpose of this study was to compare two protocols for its estimation, cycle ergometer testing and the 20 m shuttle run, among children with and without probable developmental coordination disorder (pDCD). The…

  14. Characteristics of Lower Leg Muscle Activity in Patients with Cerebral Palsy during Cycling on an Ergometer.

    PubMed

    Roy, Susmita; Alves-Pinto, Ana; Lampe, Renée

    2018-01-01

    Cycling on ergometer is often part of rehabilitation programs for patients with cerebral palsy (CP). The present study analyzed activity patterns of individual lower leg muscle during active cycling on ergometer in patients with CP and compared them to similar recordings in healthy participants. Electromyographic (EMG) recordings of lower leg muscle activity were collected from 14 adult patients and 10 adult healthy participants. Activity of the following muscles was recorded: Musculus tibialis anterior, Musculus gastrocnemius, Musculus rectus femoris, and Musculus biceps femoris. Besides qualitative analysis also quantitative analysis of individual muscle activity was performed by computing the coefficient of variation of EMG signal amplitude. More irregular EMG patterns were observed in patients in comparison to healthy participants: agonist-antagonist cocontractions were more frequent, muscle activity measured at specific points of the cycle path was more variable, and dynamic range of muscle activity along the cycle path was narrower in patients. Hypertonicity was also more frequent in patients. Muscle activity patterns during cycling differed substantially across patients. It showed irregular nature and occasional sharp high peaks. Dynamic range was also narrower than in controls. Observations underline the need for individualized cycling training to optimize rehabilitation effects.

  15. Validation of a dual-cycle ergometer for exercise during 100 percent oxygen prebreathing

    NASA Technical Reports Server (NTRS)

    Wiegman, Janet F.; Ohlhausen, John H.; Webb, James T.; Pilmanis, Andrew A.

    1992-01-01

    A study has been designed to determine if exercise, while prebreathing 100 percent oxygen prior to decompression, can reduce the current resting-prebreathe time requirements for extravehicular activity and high altitude reconnaissance flight. For that study, a suitable exercise mode was required. Design considerations included space limitations, cost, pressure suit compatibility, ease and maintenance of calibration, accuracy of work output, and assurance that no significant mechanical advantage or disadvantage would be introduced into the system. In addition, the exercise device must enhance denitrogenation by incorporation of both upper and lower body musculature at high levels of oxygen consumption. The purpose of this paper is to describe the specially constructed, dual-cycle ergometer developed for simultaneous arm and leg exercise during prebreathing, and to compare maximal oxygen uptake obtained on the device to that obtained during leg-only cycle ergometry and treadmill testing. Results demonstrate the suitability of the dual-cycle ergometer as an appropriate tool for exercise research during 100 percent oxygen prebreathing.

  16. Metrological characterization of a cycle-ergometer to optimize the cycling induced by functional electrical stimulation on patients with stroke.

    PubMed

    Comolli, Lorenzo; Ferrante, Simona; Pedrocchi, Alessandra; Bocciolone, Marco; Ferrigno, Giancarlo; Molteni, Franco

    2010-05-01

    Functional electrical stimulation (FES) is a well established method in the rehabilitation of stroke patients. Indeed, a bilateral movement such as cycling induced by FES would be crucial for these patients who had an unilateral motor impairment and had to recover an equivalent use of limbs. The aim of this study was to develop a low-cost meteorologically qualified cycle-ergometer, optimized for patients with stroke. A commercial ergometer was instrumented with resistive strain gauges and was able to provide the torque produced at the right and left crank, independently. The developed system was integrated with a stimulator, obtaining a novel FES cycling device able to control in real-time the movement unbalance. A dynamic calibration of the sensors was performed and a total torque uncertainty was computed. The system was tested on a healthy subject and on a stroke patient. Results demonstrated that the proposed sensors could be successfully used during FES cycling sessions where the maximum torque produced is about 9Nm, an order of magnitude less than the torque produced during voluntary cycling. This FES cycling system will assist in future investigations on stroke rehabilitation by means of FES and in new exercise regimes designed specifically for patients with unilateral impairments.

  17. Post-exercise ingestion of a unique, high molecular weight glucose polymer solution improves performance during a subsequent bout of cycling exercise.

    PubMed

    Stephens, Francis B; Roig, Marc; Armstrong, Gerald; Greenhaff, Paul L

    2008-01-15

    The aim of the present study was to determine the effect of post-exercise ingestion of a unique, high molecular weight glucose polymer solution, known to augment gastric emptying and post-exercise muscle glycogen re-synthesis, on performance during a subsequent bout of intense exercise. On three randomized visits, eight healthy men cycled to exhaustion at 73.0% (s = 1.3) maximal oxygen uptake (90 min, s = 15). Immediately after this, participants consumed a one-litre solution containing sugar-free flavoured water (control), 100 g of a low molecular weight glucose polymer or 100 g of a very high molecular weight glucose polymer, and rested on a bed for 2 h. After recovery, a 15-min time-trial was performed on a cycle ergometer, during which work output was determined. Post-exercise ingestion of the very high molecular weight glucose polymer solution resulted in faster and greater increases in blood glucose (P < 0.001) and serum insulin (P < 0.01) concentrations than the low molecular weight glucose polymer solution, and greater work output during the 15-min time-trial (164.1 kJ, s = 21.1) than both the sugar-free flavoured water (137.5 kJ, s = 24.2; P < 0.05) and the low molecular weight glucose polymer (149.4 kJ, s = 21.8; P < 0.05) solutions. These findings could be of practical importance for athletes wishing to optimize performance by facilitating rapid re-synthesis of the muscle glycogen store during recovery following prolonged sub-maximal exercise.

  18. Voss in Service module with cycle ergometer

    NASA Image and Video Library

    2001-03-23

    ISS002-E-5734 (23 March 2001) --- Astronaut James S. Voss, Expedition Two flight engineer, gives his arms and upper body a workout with the bicycle ergometer facility in the Zvezda Service Module aboard the International Space Station (ISS). The image was recorded with a digital still camera.

  19. Sturckow uses Cycle Ergometer on Middeck (MDDK) during STS-128

    NASA Image and Video Library

    2009-08-29

    S128-E-006313 (29 Aug. 2009) --- Astronaut Rick Sturckow, STS-128 commander, gives a “thumbs-up” signal while exercising on a bicycle ergometer on the middeck of the Earth-orbiting Space Shuttle Discovery. Astronaut Nicole Stott, mission specialist, is visible at right.

  20. Power output measurement during treadmill cycling.

    PubMed

    Coleman, D A; Wiles, J D; Davison, R C R; Smith, M F; Swaine, I L

    2007-06-01

    The study aim was to consider the use of a motorised treadmill as a cycling ergometry system by assessing predicted and recorded power output values during treadmill cycling. Fourteen male cyclists completed repeated cycling trials on a motorised treadmill whilst riding their own bicycle fitted with a mobile ergometer. The speed, gradient and loading via an external pulley system were recorded during 20-s constant speed trials and used to estimate power output with an assumption about the contribution of rolling resistance. These values were then compared with mobile ergometer measurements. To assess the reliability of measured power output values, four repeated trials were conducted on each cyclist. During level cycling, the recorded power output was 257.2 +/- 99.3 W compared to the predicted power output of 258.2 +/- 99.9 W (p > 0.05). For graded cycling, there was no significant difference between measured and predicted power output, 268.8 +/- 109.8 W vs. 270.1 +/- 111.7 W, p > 0.05, SEE 1.2 %. The coefficient of variation for mobile ergometer power output measurements during repeated trials ranged from 1.5 % (95 % CI 1.2 - 2.0 %) to 1.8 % (95 % CI 1.5 - 2.4 %). These results indicate that treadmill cycling can be used as an ergometry system to assess power output in cyclists with acceptable accuracy.

  1. Ford uses Cycle Ergometer on MDDK

    NASA Image and Video Library

    2009-09-04

    S128-E-007532 (4 Sept. 2009) ---- Astronaut Kevin Ford, STS-128 pilot, works out on the bicycle ergometer on the middeck of the Space Shuttle Discovery. The shuttle is currently docked with the International Space Station while the STS-128 astronauts work with the Expedition 20 crewmembers aboard the orbital outpost.

  2. Hernandez uses Cycle Ergometer on MDDK

    NASA Image and Video Library

    2009-09-04

    S128-E-007534 (4 Sept. 2009) ---- Astronaut Jose Hernandez, STS-128 mission specialist, works out on the bicycle ergometer on the middeck of the Space Shuttle Discovery. The shuttle is currently docked with the International Space Station while the STS-128 astronauts work with the Expedition 20 crewmembers aboard the orbital outpost.

  3. Validated Predictions of Metabolic Energy Consumption for Submaximal Effort Movement

    PubMed Central

    Tsianos, George A.; MacFadden, Lisa N.

    2016-01-01

    Physical performance emerges from complex interactions among many physiological systems that are largely driven by the metabolic energy demanded. Quantifying metabolic demand is an essential step for revealing the many mechanisms of physical performance decrement, but accurate predictive models do not exist. The goal of this study was to investigate if a recently developed model of muscle energetics and force could be extended to reproduce the kinematics, kinetics, and metabolic demand of submaximal effort movement. Upright dynamic knee extension against various levels of ergometer load was simulated. Task energetics were estimated by combining the model of muscle contraction with validated models of lower limb musculotendon paths and segment dynamics. A genetic algorithm was used to compute the muscle excitations that reproduced the movement with the lowest energetic cost, which was determined to be an appropriate criterion for this task. Model predictions of oxygen uptake rate (VO2) were well within experimental variability for the range over which the model parameters were confidently known. The model's accurate estimates of metabolic demand make it useful for assessing the likelihood and severity of physical performance decrement for a given task as well as investigating underlying physiologic mechanisms. PMID:27248429

  4. A Cycle Ergometer Exercise Program Improves Exercise Capacity and Inspiratory Muscle Function in Hospitalized Patients Awaiting Heart Transplantation: a Pilot Study

    PubMed Central

    Forestieri, Patrícia; Guizilini, Solange; Peres, Monique; Bublitz, Caroline; Bolzan, Douglas W.; Rocco, Isadora S.; Santos, Vinícius B.; Moreira, Rita Simone L.; Breda, João R.; de Almeida, Dirceu R.; Carvalho, Antonio Carlos de C.; Arena, Ross; Gomes, Walter J.

    2016-01-01

    Objective The purpose of this study was to evaluate the effect of a cycle ergometer exercise program on exercise capacity and inspiratory muscle function in hospitalized patients with heart failure awaiting heart transplantation with intravenous inotropic support. Methods Patients awaiting heart transplantation were randomized and allocated prospectively into two groups: 1) Control Group (n=11) - conventional protocol; and 2) Intervention Group (n=7) - stationary cycle ergometer exercise training. Functional capacity was measured by the six-minute walk test and inspiratory muscle strength assessed by manovacuometry before and after the exercise protocols. Results Both groups demonstrated an increase in six-minute walk test distance after the experimental procedure compared to baseline; however, only the intervention group had a significant increase (P=0.08 and P=0.001 for the control and intervention groups, respectively). Intergroup comparison revealed a greater increase in the intervention group compared to the control (P<0.001). Regarding the inspiratory muscle strength evaluation, the intragroup analysis demonstrated increased strength after the protocols compared to baseline for both groups; statistical significance was only demonstrated for the intervention group, though (P=0.22 and P<0.01, respectively). Intergroup comparison showed a significant increase in the intervention group compared to the control (P<0.01). Conclusion Stationary cycle ergometer exercise training shows positive results on exercise capacity and inspiratory muscle strength in patients with heart failure awaiting cardiac transplantation while on intravenous inotropic support. PMID:27982348

  5. Commander Rominger on a cycle ergometer on the middeck of Endeavour during STS-100

    NASA Image and Video Library

    2001-04-23

    S100-E-5342 (23 April 2001) --- Astronaut Kent V. Rominger, STS-100 mission commander, economizes his time as he looks over flight data while working out on an ergometer device on the middeck of the Space Shuttle Endeavour. The scene was recorded with a digital still camera.

  6. Analysing visual pattern of skin temperature during submaximal and maximal exercises

    NASA Astrophysics Data System (ADS)

    Balci, Gorkem Aybars; Basaran, Tahsin; Colakoglu, Muzaffer

    2016-01-01

    Aims of this study were to examine our hypotheses assuming that (a) skin temperature patterns would differ between submaximal exercise (SE) and graded maximal exercise test (GXT) and (b) thermal kinetics of Tskin occurring in SE and GXT might be similar in a homogenous cohort. Core temperature (Tcore) also observed in order to evaluate thermoregulatory responses to SE and GXT. Eleven moderately to well-trained male athletes were volunteered for the study (age: 22.2 ± 3.7 years; body mass: 73.8 ± 6.9 kg; height: 181 ± 6.3 cm; body surface area 1.93 ± 0.1 m2; body fat: 12.6% ± 4.2%; V ˙ O2max: 54 ± 9.9 mL min-1 kg-1). Under stabilized environmental conditions in climatic chamber, GXT to volitional exhaustion and 20-min SE at 60% of VO2max were performed on cycle ergometer. Thermal analyses were conducted in 2-min intervals throughout exercise tests. Tskin was monitored by a thermal camera, while Tcore was recorded via an ingestible telemetric temperature sensor. Thermal kinetic analyses showed that Tskin gradually decreased till the 7.58 ± 1.03th minutes, and then initiated to increase till the end of SE (Rsqr = 0.97), while Tskin gradually decreased throughout the GXT (Rsqr = 0.89). Decrease in the level of Tskin during the GXT was significantly below from the SE [F (4, 40) = 2.67, p = 0.07, ηp2 = 0.211]. In the meantime, Tcore continuously increased throughout the SE and GXT (p < 0.05). Both GXT and SE were terminated at very close final Tcore values (37.8 ± 0.3 °C and 38.0 ± 0.3 °C, respectively; p > 0.05). However, total heat energies were calculated as 261.5 kJ/m2 and 416 kJ/m2 for GXT and SE, respectively (p < 0.05). Thus, it seems that SE may be more advantageous than GXT in thermoregulation. In conclusion, Tcore gradually increased throughout maximal and submaximal exercises as expected. Tskin curves patterns found to be associated amongst participants at both GXT and SE. Therefore, Tskin kinetics may ensure an important data for monitoring thermoregulation in exercise.

  7. The physiological and biomechanical differences between double poling and G3 skating in world class cross-country skiers.

    PubMed

    Sandbakk, Øyvind; Leirdal, Stig; Ettema, Gertjan

    2015-03-01

    The current study compared differences in cycle characteristics, energy expenditure and peak speed between double poling (DP) and G3 skating. Eight world class male sprint skiers performed a 5-min submaximal test at 16 km h(-1) and an incremental test to exhaustion at a 5% incline during treadmill roller skiing with two different techniques: DP where all propulsion comes from poling, and G3 skating where leg skating is added to each double poling movement. Video analyses determined cycle characteristics; respiratory parameters and blood lactate concentration determined the physiological responses. G3 skating resulted in 16% longer cycle lengths at 16% lower cycle rates, whereas oxygen uptake was independent of technique during submaximal roller skiing. The corresponding advantages for G3 skating during maximal roller skiing were reflected in 14% higher speed, 30% longer cycle length at 16% lower cycle rate and 11% higher peak oxygen uptake (all p < 0.05). Compared to DP approximately 14% higher speed was achieved when leg push-offs were added in G3 skating. This was done by major increases in cycle lengths at slightly lower cycle rates and a higher aerobic energy delivery. However, the oxygen uptake for a given submaximal speed was not affected by technique although higher cycle rate was used in DP.

  8. Discriminant analysis of cardiovascular and respiratory variables for classification of road cyclists by specialty.

    PubMed

    Nikolić, Biljana; Martinović, Jelena; Matić, Milan; Stefanović, Đorđe

    2018-05-29

    Different variables determine the performance of cyclists, which brings up the question how these parameters may help in their classification by specialty. The aim of the study was to determine differences in cardiorespiratory parameters of male cyclists according to their specialty, flat rider (N=21), hill rider (N=35) and sprinter (N=20) and obtain the multivariate model for further cyclists classification by specialties, based on selected variables. Seventeen variables were measured at submaximal and maximum load on the cycle ergometer Cosmed E 400HK (Cosmed, Rome, Italy) (initial 100W with 25W increase, 90-100 rpm). Multivariate discriminant analysis was used to determine which variables group cyclists within their specialty, and to predict which variables can direct cyclists to a particular specialty. Among nine variables that statistically contribute to the discriminant power of the model, achieved power on the anaerobic threshold and the produced CO2 had the biggest impact. The obtained discriminatory model correctly classified 91.43% of flat riders, 85.71% of hill riders, while sprinters were classified completely correct (100%), i.e. 92.10% of examinees were correctly classified, which point out the strength of the discriminatory model. Respiratory indicators mostly contribute to the discriminant power of the model, which may significantly contribute to training practice and laboratory tests in future.

  9. The impact of ergometer design on hip and trunk muscle activity patterns in elite rowers: an electromyographic assessment.

    PubMed

    Nowicky, Alex V; Horne, Sara; Burdett, Richard

    2005-03-01

    THIS STUDY USED SURFACE ELECTROMYOGRAPHY (SEMG) TO EXAMINE WHETHER THERE WERE DIFFERENCES IN HIP AND TRUNK MUSCLE ACTIVATION DURING THE ROWING CYCLE ON TWO OF THE MOST WIDELY USED AIR BRAKED ERGOMETERS: the Concept 2C and the Rowperfect. sEMG methods were used to record the muscle activity patterns from the right: m. Erector spinae (ES), m. Rectus Abdominus (RA), m. Rectus Femoris (RF) and m. Biceps Femoris (BF) for their contributions as agonist-antagonist pairs underlying hip and trunk extension/flexion. The sEMG activity patterns of these muscles were examined in six young male elite rowers completing a 2 minute set at a moderate training intensity (23 stroke·min(-1) and 1:47.500 m(-1) split time, 300W). The rowers closely maintained the required target pace through visual inspection of the standard LCD display of each ergometer. The measurements of duration of each rowing cycle and onset of each stroke during the test were recorded simultaneously with the sEMG activity through the additional instrumentation of a foot-pressure switch and handle accelerometry. There were no significant differences between the two ergometer designs in group means for: work rate (i.e., rowing speed and stroke rate), metabolic load as measured by mean heart rate, rowing cycle duration, or timing of the stroke in the cycle. 2-D motion analysis of hip and knee motion for the rowing cycle from the video footage taken during the test also revealed no significant differences in the joint range of motion between the ergometers. Ensemble average sEMG activity profiles based on 30+ strokes were obtained for each participant and normalised per 10% intervals of the cycle duration as well as for peak mean sEMG amplitude for each muscle. A repeated measures ANOVA on the sEMG activity per 10% interval for the four muscles contributing to hip and trunk motion during the rowing cycle revealed no significant differences between the Concept 2C and Rowperfect (F = 0.070, df = 1,5, p = 0.802). The outcome of this study suggests that the two different ergometer designs are equally useful for dry land training. Key PointsThe effects of endurance training on HR recovery after exercise and cardiac ANS modulation were investigated in female marathon runners by comparing with untrained controls.Time and frequency domain analysis of HRV was used to investigate cardiac ANS modulation.As compared with untrained controls, the female marathon runners showed faster HR recovery after exercise, which should result from their higher levels of HRV, higher aerobic capacity and exaggerated blood pressure response to exercise.

  10. The Impact of Ergometer Design on Hip and Trunk Muscle Activity Patterns in Elite Rowers: An Electromyographic Assessment

    PubMed Central

    Nowicky, Alex V.; Horne, Sara; Burdett, Richard

    2005-01-01

    This study used surface electromyography (sEMG) to examine whether there were differences in hip and trunk muscle activation during the rowing cycle on two of the most widely used air braked ergometers: the Concept 2C and the Rowperfect. sEMG methods were used to record the muscle activity patterns from the right: m. Erector spinae (ES), m. Rectus Abdominus (RA), m. Rectus Femoris (RF) and m. Biceps Femoris (BF) for their contributions as agonist-antagonist pairs underlying hip and trunk extension/flexion. The sEMG activity patterns of these muscles were examined in six young male elite rowers completing a 2 minute set at a moderate training intensity (23 stroke·min-1 and 1:47.500 m-1 split time, 300W). The rowers closely maintained the required target pace through visual inspection of the standard LCD display of each ergometer. The measurements of duration of each rowing cycle and onset of each stroke during the test were recorded simultaneously with the sEMG activity through the additional instrumentation of a foot-pressure switch and handle accelerometry. There were no significant differences between the two ergometer designs in group means for: work rate (i.e., rowing speed and stroke rate), metabolic load as measured by mean heart rate, rowing cycle duration, or timing of the stroke in the cycle. 2-D motion analysis of hip and knee motion for the rowing cycle from the video footage taken during the test also revealed no significant differences in the joint range of motion between the ergometers. Ensemble average sEMG activity profiles based on 30+ strokes were obtained for each participant and normalised per 10% intervals of the cycle duration as well as for peak mean sEMG amplitude for each muscle. A repeated measures ANOVA on the sEMG activity per 10% interval for the four muscles contributing to hip and trunk motion during the rowing cycle revealed no significant differences between the Concept 2C and Rowperfect (F = 0.070, df = 1,5, p = 0.802). The outcome of this study suggests that the two different ergometer designs are equally useful for dry land training. Key Points The effects of endurance training on HR recovery after exercise and cardiac ANS modulation were investigated in female marathon runners by comparing with untrained controls. Time and frequency domain analysis of HRV was used to investigate cardiac ANS modulation. As compared with untrained controls, the female marathon runners showed faster HR recovery after exercise, which should result from their higher levels of HRV, higher aerobic capacity and exaggerated blood pressure response to exercise. PMID:24431957

  11. Measures of rowing performance.

    PubMed

    Smith, T Brett; Hopkins, Will G

    2012-04-01

    Accurate measures of performance are important for assessing competitive athletes in practi~al and research settings. We present here a review of rowing performance measures, focusing on the errors in these measures and the implications for testing rowers. The yardstick for assessing error in a performance measure is the random variation (typical or standard error of measurement) in an elite athlete's competitive performance from race to race: ∼1.0% for time in 2000 m rowing events. There has been little research interest in on-water time trials for assessing rowing performance, owing to logistic difficulties and environmental perturbations in performance time with such tests. Mobile ergometry via instrumented oars or rowlocks should reduce these problems, but the associated errors have not yet been reported. Measurement of boat speed to monitor on-water training performance is common; one device based on global positioning system (GPS) technology contributes negligible extra random error (0.2%) in speed measured over 2000 m, but extra error is substantial (1-10%) with other GPS devices or with an impeller, especially over shorter distances. The problems with on-water testing have led to widespread use of the Concept II rowing ergometer. The standard error of the estimate of on-water 2000 m time predicted by 2000 m ergometer performance was 2.6% and 7.2% in two studies, reflecting different effects of skill, body mass and environment in on-water versus ergometer performance. However, well trained rowers have a typical error in performance time of only ∼0.5% between repeated 2000 m time trials on this ergometer, so such trials are suitable for tracking changes in physiological performance and factors affecting it. Many researchers have used the 2000 m ergometer performance time as a criterion to identify other predictors of rowing performance. Standard errors of the estimate vary widely between studies even for the same predictor, but the lowest errors (~1-2%) have been observed for peak power output in an incremental test, some measures of lactate threshold and measures of 30-second all-out power. Some of these measures also have typical error between repeated tests suitably low for tracking changes. Combining measures via multiple linear regression needs further investigation. In summary, measurement of boat speed, especially with a good GPS device, has adequate precision for monitoring training performance, but adjustment for environmental effects needs to be investigated. Time trials on the Concept II ergometer provide accurate estimates of a rower's physiological ability to output power, and some submaximal and brief maximal ergometer performance measures can be used frequently to monitor changes in this ability. On-water performance measured via instrumented skiffs that determine individual power output may eventually surpass measures derived from the Concept II.

  12. No Effect of Acute and 6-Day Nitrate Supplementation on VO2 and Time-Trial Performance in Highly Trained Cyclists.

    PubMed

    Nyakayiru, Jean M; Jonvik, Kristin L; Pinckaers, Philippe J M; Senden, Joan; van Loon, Luc J C; Verdijk, Lex B

    2017-02-01

    While the majority of studies reporting ergogenic effects of dietary nitrate have used a multiday supplementation protocol, some studies suggest that a single dose of dietary nitrate before exercise can also improve subsequent performance. We aimed to compare the impact of acute and 6-day sodium nitrate supplementation on oxygen uptake (V̇O 2 ) and time-trial performance in trained cyclists. Using a randomized, double-blind, cross-over design, 17 male cyclists (25 ± 4 y, V̇O 2peak 65 ± 4 ml·kg -1 ·min -1 , W max 411 ± 35 W) were subjected to 3 different trials; 5 days placebo and 1 day sodium nitrate supplementation (1-DAY); 6 days sodium nitrate supplementation (6-DAY); 6 days placebo supplementation (PLA). Nitrate was administered as 1097 mg sodium nitrate providing 800 mg (~12.9 mmol) nitrate per day. Three hours after ingestion of the last supplemental bolus, indirect calorimetry was performed while subjects performed 30 min of exercise at 45% W max and 30 min at 65% W max on a cycle ergometer, followed by a 10 km time-trial. Immediately before exercise, plasma [nitrate] and [nitrite] increased to a similar extent during the 6-DAY and 1-DAY trial, but not with PLA (plasma nitrite: 501 ± 205, 553 ± 278, and 239 ± 74 nM, respectively; p < .001). No differences were observed between interventions in V̇O 2 during submaximal exercise, or in time to complete the time-trial (6-DAY: 1004 ± 61, 1-DAY: 1022 ± 72, PLA: 1017 ± 71 s; p = .28). We conclude that both acute and 6-days of sodium nitrate supplementation do not alter V̇O 2 during submaximal exercise or improve time-trial performance in highly trained cyclists, despite increasing plasma [nitrate] and [nitrite].

  13. Comparison of sport-specific and non-specific exercise testing in inline speed skating.

    PubMed

    Stangier, Carolin; Abel, Thomas; Mierau, Julia; Gutmann, Boris; Hollmann, Wildor; Struder, Heiko K

    2016-04-01

    The most effective way to measure exercise performance in inline speed skating (ISS) has yet to be established. Generally most athletes are examined by means of traditional but unspecific cycling (CYC) or running (RUN) testing. The present study investigates whether a sport-specific incremental test in ISS reveals different results. Eight male top level inline speed skaters (age: 30±4 years; 65.4±6.3 mL∙kg-1∙min-1, training: 12-14 h/week) performed three incremental exhaustive tests in a randomized order (ergometer CYC, field RUN, field ISS). During the tests, heart rate (HR), oxygen uptake (V̇O2, energy expenditure (EE) and blood lactate concentration (BLC) were measured. Analysis of variance revealed no significant differences for peak HR (187±9, 191±9, 190±9; P=0.75), BLC (10.9±2.3, 10.8±2.4, 8.5±3.2; P=0.25), V̇O2 (65.4±6.3, 66.8±3.5, 66.4±6.5; P=0.91) and EE (1371±165, 1335±93, 1439±196; P=0.51) between ISS and CYC or RUN test. Similar results appeared for HR and V̇O2 at submaximal intensities (2 and 4 mmol·L-1 BLC; P≥0.05). Small to moderate effect sizes 0.3-0.87 and considerable variability of differences between the exercise modes (mean bias range between 1% and 17% with 95% limits of agreement between 3% and 33%) among submaximal and maximal results limit the comparability of the three tests. Consequently, CYC and RUN tests may be considered as qualified alternatives for a challenging ISS test. However a sport-specific test should be conducted in cases of doubt, or when precision is required (e.g. for elite athletes or scientific studies).

  14. A comparative analysis of physiological responses at submaximal workloads during different laboratory simulations of field cycling.

    PubMed

    Kenny, G P; Reardon, F D; Marion, A; Thoden, J S

    1995-01-01

    The purpose of this study was to evaluate the relationships between heart rate (fc), oxygen consumption (VO2), peak force and average force developed at the crank in response to submaximal exercise employing a racing bicycle which was attached to an ergometer (RE), ridden on a treadmill (TC) and ridden on a 400-m track (FC). Eight male trained competitive cyclists rode at three pre-determined work intensities set at a proportion of their maximal oxygen consumption (VO2max): (1) below lactate threshold [work load that produces a VO2 which is 10% less than the lactate threshold VO2 (sub-LT)], (2) lactate threshold VO2 (LT), and (3) above lactate threshold [workload that produces a VO2 which is 10% greater than lactate threshold VO2 (supra-LT)], and equated across exercise modes on the basis of fc. Voltage signals from the crank arm were recorded as FM signals for subsequent representation of peak and average force. Open circuit VO2 measurements were done in the field by Douglas bag gas collection and in the laboratory by automated gas collection and analysis. fc was recorded with a telemeter (Polar Electro Sport Tester, PE3000). Significant differences (P < 0.05) were observed: (1) in VO2 between FC and both laboratory conditions at sub-LT intensity and LT intensities, (2) in peak force between FC and TC at sub-LT intensity, (3) in average force between FC and RE at sub-LT. No significant differences were demonstrated at supra-LT intensity for VO2. Similarly no significant differences were observed in peak and average force for either LT or supra-LT intensities. These data indicate that equating work intensities on the basis of fc measured in laboratory conditions would overestimate the VO2 which would be generated in the field and conversely, that using fc measured in the laboratory to establish field work intensity would underestimate mechanical workload experienced in the field.

  15. Norandrosterone and noretiocholanolone concentration before and after submaximal standardized exercise.

    PubMed

    de Geus, B; Delbeke, F; Meeusen, R; Van Eenoo, P; De Meirleir, K; Busschaert, B

    2004-10-01

    19-Norandrosterone (19-NA) and 19-noretiocholanolone (19-NE) are the two main urinary indicators used to detect illegal use of nandrolone. Recent studies showed that 19-NA and 19-NE can be endogenously produced in non-treated humans. The concentrations were close to the threshold of the International Olympic Committee (IOC), i.e. 2 ng/ml for men and seem to increase after prolonged intense effort. Androgens are involved in the biosynthesis of estrogens and estrogen has a protective effect against skeletal muscle damage following eccentric exercise. Furthermore, the testicular tissue can synthesize 19-norandrogens from androgens, we hypothetisize that the 19-norandrogen production might be influenced by muscle damage following eccentric exercise. Therefore the purpose of this study is to examine if three different exercise methods will influence the urinary concentration of 19-NA and 19-NE in healthy young subjects. Fifteen amateur hockey players undertook a 30 min submaximal standardized exercise protocol. They were randomised for three different types of exercise, namely a cycle ergometer test (cyclic muscle activity), a treadmill test (concentric muscle activity), or a bench-steptest (eccentric muscle activity) at a target heart rate corresponding to 65 % (+/- 5 %) of Karvonen heart rate. Urine samples were obtained before the test and 60 min and 120 min after the end of exercise. Subjects completed a Likert scale of muscle soreness before and 12 h after exercise. 19-NA and 19-NE were determined by gas chromatography-tandem mass spectrometry (GC-MS-MS). Baseline urinary 19-NA and 19-NE concentrations were under limit of detection of 0.05 ng/ml, except for one sample (0.13 ng/ml). No 19-NA or 19-NE could be detected post exercise. In our experimental conditions, the exercise mode (eccentric or concentric) had no impact on 19-NA or 19-NE excretion. Our findings confirm that the current International Olympic Committee threshold level for nandrolone metabolites is sufficiently high to avoid false positive cases.

  16. Outpatient rehabilitation as an intervention to improve employees' physical capacity.

    PubMed

    Ojala, Birgitta; Nygård, Clas-Håkan; Nikkari, Seppo T

    2016-01-01

    The aging of the workforce poses new challenges for maintaining work ability. Because of limited information on the effectiveness of vocational rehabilitation performed in traditional inpatient programs, extended interest in outpatient rehabilitation has risen in the past few years. We examined the effects of a new outpatient rehabilitation program where every participant defined their own goals to improve work ability by the aid of a goal-oriented multi-professional team. This report will focus on the employees' physical capacity during a nine-month program. A total of 605 municipal employees from different production areas of the City of Tampere took part in the outpatient rehabilitation program, implemented by the occupational health unit. Groups of 12 employees participated in eight one-day sessions at intervals of two to three weeks; the final follow-up was 9 months from the beginning. Submaximal aerobic capacity was tested by a calibrated cycle ergometer with a commercial program (Aino Fitware pro, Helsinki, Finland). Musculoskeletal tests assessed muscle strength, balance and mobility. During the 9-month follow-up of the rehabilitation program, the employees' physical capacity was improved. The follow-up test scores from a total of 329 employees were significantly higher in the submaximal aerobic capacity test (p < 0.001). Other tests were also improved, such as standing on one foot (p = 0.001), back side bending flexibility test (p < 0.001), dynamic sit up (p = 0.001), upper extremity right (p < 0.001), and knee bending (p = 0.029). About 40% of the participants did not have an adequate health situation to take part in physical capacity tests; however they took part in the intervention. The new outpatient rehabilitation program organized by the occupational health unit had a positive influence on employees' physical capacity during a nine-month follow up.

  17. Proof of concept of a 45-second cardiorespiratory fitness self-test for coronary artery disease patients based on accelerometry.

    PubMed

    Papini, Gabriele; Bonomi, Alberto G; Stut, Wim; Kraal, Jos J; Kemps, Hareld M C; Sartor, Francesco

    2017-01-01

    Cardiorespiratory fitness (CRF) provides important diagnostic and prognostic information. It is measured directly via laboratory maximal testing or indirectly via submaximal protocols making use of predictor parameters such as submaximal [Formula: see text], heart rate, workload, and perceived exertion. We have established an innovative methodology, which can provide CRF prediction based only on body motion during a periodic movement. Thirty healthy subjects (40% females, 31.3 ± 7.8 yrs, 25.1 ± 3.2 BMI) and eighteen male coronary artery disease (CAD) (56.6 ± 7.4 yrs, 28.7 ± 4.0 BMI) patients performed a [Formula: see text] test on a cycle ergometer as well as a 45 second squatting protocol at a fixed tempo (80 bpm). A tri-axial accelerometer was used to monitor movements during the squat exercise test. Three regression models were developed to predict CRF based on subject characteristics and a new accelerometer-derived feature describing motion decay. For each model, the Pearson correlation coefficient and the root mean squared error percentage were calculated using the leave-one-subject-out cross-validation method (rcv, RMSEcv). The model built with all healthy individuals' data showed an rcv = 0.68 and an RMSEcv = 16.7%. The CRF prediction improved when only healthy individuals with normal to lower fitness (CRF<40 ml/min/kg) were included, showing an rcv = 0.91 and RMSEcv = 8.7%. Finally, our accelerometry-based CRF prediction CAD patients, the majority of whom taking β-blockers, still showed high accuracy (rcv = 0.91; RMSEcv = 9.6%). In conclusion, motion decay and subject characteristics could be used to predict CRF in healthy people as well as in CAD patients taking β-blockers, accurately. This method could represent a valid alternative for patients taking β-blockers, but needs to be further validated in a larger population.

  18. High-intensity sprint fatigue does not alter constant-submaximal velocity running mechanics and spring-mass behavior.

    PubMed

    Morin, Jean-Benoit; Tomazin, Katja; Samozino, Pierre; Edouard, Pascal; Millet, Guillaume Y

    2012-04-01

    We investigated the changes in constant velocity spring-mass behavior after high intensity sprint fatigue in order to better interpret the results recently reported after ultra-long distance (ULD) exercises. Our hypothesis was that after repeated sprints (RS), subjects may likely experience losses of force such as after ULD, but the necessity to modify their running pattern to attenuate the overall impact at each step (such as after ULD) may not be present. Eleven male subjects performed four sets of five 6-s sprints with 24-s recovery between sprints and 3 min between sets, on a sprint treadmill and on a bicycle ergometer. For each session, their running mechanics and spring-mass characteristics were measured at 10 and 20 km h(-1) on an instrumented treadmill before and after RS. Two-way (period and velocity) ANOVAs showed that high-intensity fatigue did not induce any change in the constant velocity running pattern at low or high velocity, after both running and cycling RS, despite significant decreases (P < 0.001) in maximal power (-27.1 ± 8.2% after running RS and -15.4 ± 11.5 % after cycling RS) and knee extensors maximal voluntary force (-18.8 ± 6.7 % after running RS and -15.0 ± 7.6 % after cycling RS). These results bring indirect support to the hypothesis put forward in recent ULD studies that the changes in running mechanics observed after ULD are likely not related to the decrease in strength capabilities, but rather to the necessity for subjects to adopt a protective running pattern.

  19. A comparison of electromyography and stroke kinematics during ergometer and on-water rowing.

    PubMed

    Fleming, Neil; Donne, Bernard; Mahony, Nicholas

    2014-01-01

    This study assessed muscle recruitment patterns and stroke kinematics during ergometer and on-water rowing to validate the accuracy of rowing ergometry. Male rowers (n = 10; age 21 ± 2 years, height 1.90 ± 0.05 m and body mass 83.3 ± 4.8 kg) performed 3 × 3 min exercise bouts, at heart and stroke rates equivalent to 75, 85 and 95% VO2peak, on both dynamic and stationary rowing ergometers, and on water. During exercise, synchronised data for surface electromyography (EMG) and 2D kinematics were recorded. Overall muscle activity was quantified by the integration of rmsEMG and averaged for each 10% interval of the stroke cycle. Muscle activity significantly increased in rectus femoris (RF) and vastus medialis (VM) (P <0.01), as exercise intensity increased. Comparing EMG data across conditions revealed significantly (P <0.05) greater RF and VM activity during on-water rowing at discrete 10% intervals of stroke cycle. In addition, the drive/recovery ratio was significantly lower during dynamic ergometry compared to on-water (40 ± 1 vs. 44 ± 1% at 95%, P <0.01). Results suggest that significant differences exist while comparing recruitment and kinematic patterns between on-water and ergometer rowing. These differences may be due to altered acceleration and deceleration of moving masses on-ergometer not perfectly simulating the on-water scenario.

  20. Virts on ergometer in U.S. Lab

    NASA Image and Video Library

    2014-12-27

    ISS042E082884 (12/27/2014) --- Expedition 42 Flight Engineer Terry Virts of NASA straps into the station’s stationary exercise bicycle known as the Cycle Ergometer with Vibration Isolation System (CEVIS). Each crew member spends an average of 2.5 hours a day exercising to combat the negative effects of prolonged weightlessness by maintaining bone and muscle mass and cardiovascular health.

  1. Oxygen uptake during peak graded exercise and single-stage fatigue tests of wheelchair propulsion in manual wheelchair users and the able-bodied.

    PubMed

    Keyser, R E; Rodgers, M M; Gardner, E R; Russell, P J

    1999-10-01

    To determine if a single-stage, submaximal fatigue test on a wheelchair ergometer would result in higher than expected energy expenditure. An experimental survey design contrasting physiologic responses during peak graded exercise tests and fatigue tests. A rehabilitation science laboratory that included a prototypical wheelchair ergometer, open-circuit spirometry system, and heart rate monitor. Nine able-bodied non-wheelchair users (the NWC group: 6 men and 3 women, mean +/- SD age 30 +/- 7yrs) and 15 manual wheelchair users (the WC group: 12 men and 3 women, age 40 +/- 9yrs, time in wheelchair 16 +/- 9yrs). No subject had any disease, medication regimen, or upper body neurologic, orthopedic, or other condition that would limit wheelchair exercise. Peak oxygen uptake (VO2) for graded exercise testing and during fatigue testing, using a power output corresponding to 75% peak aerobic capacity on graded exercise test. In the WC group, VO2 at 6 minutes of fatigue testing was not significantly different from peak VO2. In the NWC group, VO2 was similar to the expected level throughout fatigue testing. Energy expenditure was higher than expected in the WC group but not in the NWC group. Fatigue testing may provide a useful evaluation of cardiorespiratory status in manual wheelchair users.

  2. Anaerobic Work Capacity derived from isokinetic and isoinertial cycling.

    PubMed

    Wiedemann, M S F; Bosquet, L

    2010-02-01

    The purpose of this study was to compare Anaerobic Work Capacity (AWC) measured on an isoinertial or an isokinetic bicycle ergometer. Twelve male participants completed two randomly ordered exercise testing sessions including a torque-velocity test followed by a 30-s all-out test on an isokinetic ergometer, or a force-velocity test followed by a Wingate Anaerobic Test on an isoinertial ergometer. Optimal load measured during the force-velocity test on the isoinertial ergometer was 1.13+/-0.11 N.kg(-1). Optimal cadence measured during the torque-velocity test on the isokinetic ergometer was 107+/-13 rpm. Although P(peak) measures were significantly correlated (r=0.77), we found a large difference between them (effect size=2.85) together with wide limits of agreement (bias+/-95%LOA=24+/-12%). The same observation was made with P(mean), but with a smaller magnitude of difference (bias+/-95%LOA=4.2+/-12%; effect size=0.51; r=0.73). This lack of agreement led us to the conclusion that AWC measures obtained during 30-s all-out tests performed on an isoinertial or an isokinetic bicycle ergometer are not necessarily similar and cannot be used interchangeably.

  3. Design of a vibration isolation system for a cycle ergometer to be used onboard the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Pearson, Lillian; Tait, Steven; Trevino, Maurice

    1991-01-01

    Low frequency vibrations generated during exercise using the cycle ergometer onboard the Space Shuttle are disrupting sensitive microgravity experiments. The design team is asked by NASA/USRA to generate alternatives for the design of a vibration isolation system for the cycle ergometer. It is the design team's objective to present alternative designs and a problem solution for a vibration isolation system for an exercise cycle ergometer to be used onboard the Space Shuttle. In the development of alternative designs, the design team emphasizes passive systems as opposed to active control systems. This decision is made because the team feels that passive systems are less complex than active control systems, external energy sources are not required, and mass is reduced due to the lack of machinery such as servomotors or compressors typical of active control systems. Eleven alternative designs are developed by the design team. From these alternatives, three active control systems are included to compare the benefits of active and passive systems. Also included in the alternatives is an isolation system designed by an independent engineer that was acquired late in the project. The eight alternatives using passive isolation systems are narrowed down by selection criteria to four considered to be the most promising by the design team. A feasibility analysis is performed on these four passive isolation systems. Based on the feasibility analysis, a final design solution is chosen and further developed. From the development of the design, the design team has concluded that passive systems are not effective at isolating vibrations for the low frequencies considered for this project. Recommendations are made for guidelines of passive isolation design and application of such systems.

  4. Effects of Pedal Speed and Crank Length on Pedaling Mechanics during Submaximal Cycling.

    PubMed

    Barratt, Paul Richard; Martin, James C; Elmer, Steve J; Korff, Thomas

    2016-04-01

    During submaximal cycling, the neuromuscular system has the freedom to select different intermuscular coordination strategies. From both a basic science and an applied perspective, it is important to understand how the central nervous system adjusts pedaling mechanics in response to changes in pedaling conditions. To determine the effect of changes in pedal speed (a marker of muscle shortening velocity) and crank length (a marker of muscle length) on pedaling mechanics during submaximal cycling. Fifteen trained cyclists performed submaximal isokinetic cycling trials (90 rpm, 240 W) using pedal speeds of 1.41 to 1.61 m·s(-1) and crank lengths of 150 to 190 mm. Joint powers were calculated using inverse dynamics. Increases in pedal speed and crank length caused large increases knee and hip angular excursions and velocities (P < 0.05), whereas ankle angular kinematics stayed relatively constant (P > 0.05). Joint moments and joint powers were less affected by changes in the independent variables, but some interesting effects and trends were observed. Most noteworthy, knee extension moments and powers tended to decrease, whereas hip extension power tended to increase with an increase in crank length. The distribution of joint moments and powers is largely maintained across a range of pedaling conditions. The crank length induced differences in knee extension moments, and powers may represent a trade-off between the central nervous system's attempts to simultaneously minimize muscle metabolic and mechanical stresses. These results increase our understanding of the neural and mechanical mechanisms underlying multi-joint task performance, and they have practical relevance to coaches, athletes, and clinicians.

  5. Air-braked cycle ergometers: validity of the correction factor for barometric pressure.

    PubMed

    Finn, J P; Maxwell, B F; Withers, R T

    2000-10-01

    Barometric pressure exerts by far the greatest influence of the three environmental factors (barometric pressure, temperature and humidity) on power outputs from air-braked ergometers. The barometric pressure correction factor for power outputs from air-braked ergometers is in widespread use but apparently has never been empirically validated. Our experiment validated this correction factor by calibrating two air-braked cycle ergometers in a hypobaric chamber using a dynamic calibration rig. The results showed that if the power output correction for changes in air resistance at barometric pressures corresponding to altitudes of 38, 600, 1,200 and 1,800 m above mean sea level were applied, then the coefficients of variation were 0.8-1.9% over the range of 160-1,597 W. The overall mean error was 3.0 % but this included up to 0.73 % for the propagated error that was associated with errors in the measurement of: a) temperature b) relative humidity c) barometric pressure d) force, distance and angular velocity by the dynamic calibration rig. The overall mean error therefore approximated the +/- 2.0% of true load that was specified by the Laboratory Standards Assistance Scheme of the Australian Sports Commission. The validity of the correction factor for barometric pressure on power output was therefore demonstrated over the altitude range of 38-1,800 m.

  6. Acute effects of exercise on plasma catecholamines in sedentary and athletic women with normal and abnormal menses.

    PubMed

    Chin, N W; Chang, F E; Dodds, W G; Kim, M H; Malarkey, W B

    1987-10-01

    Norepinephrine plays a role in the regulation of luteinizing hormone secretion and may therefore be involved in the etiology of exercise-induced menstrual dysfunction. This study evaluated both intraexercise and postexercise responses of epinephrine, norepinephrine, and dopamine in sedentary women and women runners with normal and abnormal menstruation. Five eumenorrheic nonrunners and five eumenorrheic, four oligomenorrheic, and five amenorrheic runners were evaluated on 2 consecutive days. On day 1, the women cycled on a bicycle ergometer against an increasing work load until exhaustion, and on day 2, the women underwent a submaximal exercise regimen. Serial blood draws were taken at specified time intervals during intraexercise and postexercise periods on both days. The data collected during exercise for all groups showed that epinephrine and norepinephrine had a sixfold to sevenfold rise on day 1 and had a threefold rise on day 2. Dopamine increased twofold during both exercise protocols. On day 1 norepinephrine displayed a significantly higher percentage change from baseline to peak levels for oligomenorrheic and amenorrheic runners than for eumenorrheic runners and sedentary women. This latter finding is consistent with the hypothesis that periodic marked elevations in norepinephrine levels during maximal exercise may interfere with pulsatile luteinizing hormone release and hence may play a role in the occurrence of menstrual dysfunction in women runners.

  7. Effect of 400 ml blood loss on adaptation of certain functions of the organism to exercise.

    PubMed

    Markiewicz, K; Cholewa, M; Górski, L; Jaszczuk, J; Chmura, J; Bartniczak, Z

    1981-01-01

    Eighteen men aged 19-23 years, volunteer blood donors, donated 400 ml of blood. Twenty-four hours before donation, one hour and 24 hours after it they performed a 10-minute exercise on Monark cycle ergometer at workloads raising the heart rate to 170/min. During the exercise the oxygen uptake (VO2), carbon dioxide elimination (VCO2), respiratory quotient (RQ), oxygen uptake to maximal oxygen uptake ratio (VO2/VO2 max), heart rate (HR) and systolic and diastolic arterial blood pressure (Ps and Pd) were determined. The obtained results were compared with the values of haemoglobin concentration and erythrocyte count. One hour after blood donation raised values of HR and Pd were obtained (p less than 0.05) with decreased Ps (p less than 0.05) and VO2 (p less than 0.05). Twenty-four hours after blood loss these parameters were not different from the initial ones (p less than 0.05). Submaximal exercise performed 1 hour after blood loss produced a significantly greater increase of the heart rate than this exercise performed before blood loss. The values of VO2, VCO2, and VO2/VO2 max were slightly lower and those of RQ and HRXPs slightly higher than during control exercise (p less than 0.05). Exercise performed 24 hours after blood loss caused identical changes in these parameters as during control tests.

  8. A Gaussian Model-Based Probabilistic Approach for Pulse Transit Time Estimation.

    PubMed

    Jang, Dae-Geun; Park, Seung-Hun; Hahn, Minsoo

    2016-01-01

    In this paper, we propose a new probabilistic approach to pulse transit time (PTT) estimation using a Gaussian distribution model. It is motivated basically by the hypothesis that PTTs normalized by RR intervals follow the Gaussian distribution. To verify the hypothesis, we demonstrate the effects of arterial compliance on the normalized PTTs using the Moens-Korteweg equation. Furthermore, we observe a Gaussian distribution of the normalized PTTs on real data. In order to estimate the PTT using the hypothesis, we first assumed that R-waves in the electrocardiogram (ECG) can be correctly identified. The R-waves limit searching ranges to detect pulse peaks in the photoplethysmogram (PPG) and to synchronize the results with cardiac beats--i.e., the peaks of the PPG are extracted within the corresponding RR interval of the ECG as pulse peak candidates. Their probabilities of being the actual pulse peak are then calculated using a Gaussian probability function. The parameters of the Gaussian function are automatically updated when a new pulse peak is identified. This update makes the probability function adaptive to variations of cardiac cycles. Finally, the pulse peak is identified as the candidate with the highest probability. The proposed approach is tested on a database where ECG and PPG waveforms are collected simultaneously during the submaximal bicycle ergometer exercise test. The results are promising, suggesting that the method provides a simple but more accurate PTT estimation in real applications.

  9. ISS Expedition 18 Fincke on Cycle Egrometer with Vibration Isolation System (CEVIS)

    NASA Image and Video Library

    2008-10-29

    ISS018-E-005710 (29 Oct. 2008) --- Astronaut Michael Fincke, Expedition 18 commander, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  10. LBNP/ergometer effects on female cardiovascular and muscle deconditioning in 15d head-down bed rest

    NASA Astrophysics Data System (ADS)

    Wang, Lin-Jie

    2012-07-01

    Female has already been an important part of astronaut corps but gender characteristics in weightlessness and countermeasure effects still not clearly elucidated. In this study the LBNP/Ergometer effects on female cardiovascular deconditioning and muscle atrophy in 15d head-down bed rest were explored. 22 female university students were recruited as volunteers that participated in the 15d head-down bed rest. They were divided into control group (Con,n=8), LBNP exercise group (LBNP,n=7) and LBNP combined with ergometer exercise group (LBNP+Ergo, n=7). Grade negative pressures of -10,-20,-30,-40mmHg 20 or 55min were used in LBNP exercise. In ergometer exercises the subjects must maintain 60-80% VO2peak of pre-bed rest at pedal speed of about 70cycle/min for 15min and the entire exercise duration was 30min. LBNP were performed at 6th,8th,10th,12th,and 13th day and Ergometer were operated at 4th,5th,7th,9th,11th day during bed rest. Before and after bed rest, cardiovascular tilt test were performed to evaluate orthostatic intolerance, supine cycle ergometer were used to test the cardiopulmonary function, MRI tests were operated to examine the volume variations of leg muscle groups and isokinetic test were given to test the muscle strength and endurance of knee. 40% of female subjects did not pass the tilt table test after bed rest and exercises made no difference. Compared with pre-BR, VO2max and VO2max /body weight, VO2/HRmax, maximal power and duration significantly decreased in CON group and LBNP group. For the ERGO+LBNP group, there were no visible different in the parameters of cardiopulmonary function except that maximal power and duration decreased. Muscle maximal voluntary contraction and muscle (quadriceps, rectus femoris, gastrocnemius and soleus) volume decreasing in non-predominant leg was larger in Con group than in LBNP+Ergo group. It is suggested that LBNP combined with ergometer in some degrees can counteract the cardiovascular and muscle deconditioning induced by 15d head-down bed rest.

  11. Effects of Pedal Speed and Crank Length on Pedaling Mechanics during Submaximal Cycling

    PubMed Central

    BARRATT, PAUL RICHARD; MARTIN, JAMES C.; ELMER, STEVE J.; KORFF, THOMAS

    2016-01-01

    ABSTRACT During submaximal cycling, the neuromuscular system has the freedom to select different intermuscular coordination strategies. From both a basic science and an applied perspective, it is important to understand how the central nervous system adjusts pedaling mechanics in response to changes in pedaling conditions. Purpose To determine the effect of changes in pedal speed (a marker of muscle shortening velocity) and crank length (a marker of muscle length) on pedaling mechanics during submaximal cycling. Methods Fifteen trained cyclists performed submaximal isokinetic cycling trials (90 rpm, 240 W) using pedal speeds of 1.41 to 1.61 m·s−1 and crank lengths of 150 to 190 mm. Joint powers were calculated using inverse dynamics. Results Increases in pedal speed and crank length caused large increases knee and hip angular excursions and velocities (P < 0.05), whereas ankle angular kinematics stayed relatively constant (P > 0.05). Joint moments and joint powers were less affected by changes in the independent variables, but some interesting effects and trends were observed. Most noteworthy, knee extension moments and powers tended to decrease, whereas hip extension power tended to increase with an increase in crank length. Conclusions The distribution of joint moments and powers is largely maintained across a range of pedaling conditions. The crank length induced differences in knee extension moments, and powers may represent a trade-off between the central nervous system’s attempts to simultaneously minimize muscle metabolic and mechanical stresses. These results increase our understanding of the neural and mechanical mechanisms underlying multi-joint task performance, and they have practical relevance to coaches, athletes, and clinicians. PMID:26559455

  12. STS-46 Pilot Allen uses cycle ergometer on OV-104's middeck

    NASA Image and Video Library

    1992-08-08

    STS046-24-025 (31 July-8 Aug. 1992) --- Astronaut Andrew M. Allen, STS-46 pilot, exercises on the bicycle ergometer device on the flight deck of the Space Shuttle Atlantis as it makes one of its 127 total orbits for the eight-day mission. Allen, equipped with sensors for monitoring his biological systems during the run, was joined by four other NASA astronauts and two European scientists on the mission.

  13. Effect of aerobic fitness on the physiological stress responses at work.

    PubMed

    Ritvanen, Tiina; Louhevaara, Veikko; Helin, Pertti; Halonen, Toivo; Hänninen, Osmo

    2007-01-01

    The aim of the present study was to examine the effects of aerobic fitness on physiological stress responses experienced by teachers during working hours. Twenty-six healthy female and male teachers aged 33-62 years participated in the study. The ratings of perceived stress visual analogue scale (VAS), and the measurement of physiological responses (norepinephrine, epinephrine, cortisol, diastolic and systolic blood pressure, heart rate (HR), and trapezius muscle activity by electromyography (EMG), were determined. Predicted maximal oxygen uptake (VO(2)max) was measured using the submaximal bicycle ergometer test. The predicted VO(2)max was standardized for age using residuals of linear regression analyses. Static EMG activity, HR and VAS were associated with aerobic fitness in teachers. The results suggest that a higher level of aerobic fitness may reduce muscle tension, HR and perceived work stress in teachers.

  14. Comparison of ergometer- and track-based testing in junior track-sprint cyclists. Implications for talent identification and development.

    PubMed

    Tofari, Paul J; Cormack, Stuart J; Ebert, Tammie R; Gardner, A Scott; Kemp, Justin G

    2017-10-01

    Talent identification (TID) and talent development (TDE) programmes in track sprint cycling use ergometer- and track-based tests to select junior athletes and assess their development. The purpose of this study was to assess which tests are best at monitoring TID and TDE. Ten male participants (16.2 ± 1.1 year; 178.5 ± 6.0 cm and 73.6 ± 7.6 kg) were selected into the national TID squad based on initial testing. These tests consisted of two 6-s maximal sprints on a custom-built ergometer and 4 maximal track-based tests (2 rolling and 2 standing starts) using 2 gear ratios. Magnitude-based inferences and correlation coefficients assessed changes following a 3-month TDE programme. Training elicited meaningful improvements (80-100% likely) in all ergometer parameters. The standing and rolling small gear, track-based effort times were likely and very likely (3.2 ± 2.4% and 3.3 ± 1.9%, respectively) improved by training. Stronger correlations between ergometer- and track-based measures were very likely following training. Ergometer-based testing provides a more sensitive tool than track-based testing to monitor changes in neuromuscular function during the early stages of TDE. However, track-based testing can indicate skill-based improvements in performance when interpreted with ergometer testing. In combination, these tests provide information on overall talent development.

  15. A split-crank bicycle ergometer uses servomotors to provide programmable pedal forces for studies in human biomechanics.

    PubMed

    Van der Loos, H F Machiel; Worthen-Chaudhari, Lise; Schwandt, Douglas; Bevly, David M; Kautz, Steven A

    2010-08-01

    This paper presents a novel computer-controlled bicycle ergometer, the TiltCycle, for use in human biomechanics studies of locomotion. The TiltCycle has a tilting (reclining) seat and backboard, a split pedal crankshaft to isolate the left and right loads to the feet of the pedaler, and two belt-driven, computer-controlled motors to provide assistance or resistance loads independently to each crank. Sensors measure the kinematics and force production of the legs to calculate work performed, and the system allows for goniometric and electromyography signals to be recorded. The technical description presented includes the mechanical design, low-level software and control algorithms, system identification and validation test results.

  16. Minute ventilation of cyclists, car and bus passengers: an experimental study.

    PubMed

    Zuurbier, Moniek; Hoek, Gerard; van den Hazel, Peter; Brunekreef, Bert

    2009-10-27

    Differences in minute ventilation between cyclists, pedestrians and other commuters influence inhaled doses of air pollution. This study estimates minute ventilation of cyclists, car and bus passengers, as part of a study on health effects of commuters' exposure to air pollutants. Thirty-four participants performed a submaximal test on a bicycle ergometer, during which heart rate and minute ventilation were measured simultaneously at increasing cycling intensity. Individual regression equations were calculated between heart rate and the natural log of minute ventilation. Heart rates were recorded during 280 two hour trips by bicycle, bus and car and were calculated into minute ventilation levels using the individual regression coefficients. Minute ventilation during bicycle rides were on average 2.1 times higher than in the car (individual range from 1.3 to 5.3) and 2.0 times higher than in the bus (individual range from 1.3 to 5.1). The ratio of minute ventilation of cycling compared to travelling by bus or car was higher in women than in men. Substantial differences in regression equations were found between individuals. The use of individual regression equations instead of average regression equations resulted in substantially better predictions of individual minute ventilations. The comparability of the gender-specific overall regression equations linking heart rate and minute ventilation with one previous American study, supports that for studies on the group level overall equations can be used. For estimating individual doses, the use of individual regression coefficients provides more precise data. Minute ventilation levels of cyclists are on average two times higher than of bus and car passengers, consistent with the ratio found in one small previous study of young adults. The study illustrates the importance of inclusion of minute ventilation data in comparing air pollution doses between different modes of transport.

  17. Intervention to increase physical activity in irritable bowel syndrome shows long-term positive effects.

    PubMed

    Johannesson, Elisabet; Ringström, Gisela; Abrahamsson, Hasse; Sadik, Riadh

    2015-01-14

    To assess the long-term effects of physical activity on irritable bowel syndrome (IBS) symptoms and on quality of life, fatigue, depression and anxiety. Seventy-six patients from a previous randomized controlled interventional study on increased physical activity in IBS were asked to participate in this long-term follow-up study. The included patients attended one visit in which they filled out questionnaires and they underwent a submaximal cycle ergometer test. The primary end point was the change in the IBS Severity Scoring System (IBS-SSS) at baseline, i.e., before the intervention and at follow-up. The secondary endpoints were changes in quality of life, fatigue, depression and anxiety. A total of 39 [32 women, median age 45 (28-61) years] patients were included in this follow-up. Median follow-up time was 5.2 (range: 3.8-6.2) years. The IBS symptoms were improved compared with baseline [IBS-SSS: 276 (169-360) vs 218 (82-328), P = 0.001]. This was also true for the majority of the dimensions of psychological symptoms such as disease specific quality of life, fatigue, depression and anxiety. The reported time of physical activity during the week before the visit had increased from 3.2 (0.0-10.0) h at baseline to 5.2 (0.0-15.0) h at follow-up, P = 0.019. The most common activities reported were walking, aerobics and cycling. There was no significant difference in the oxygen uptake 31.8 (19.7-45.8) mL per min per kg at baseline vs 34.6 (19.0-54.6) mL/min per kg at follow-up. An intervention to increase physical activity has positive long-term effects on IBS symptoms and psychological symptoms.

  18. Dietary acid load and renal function have varying effects on blood acid-base status and exercise performance across age and sex.

    PubMed

    Hietavala, Enni-Maria; Stout, Jeffrey R; Frassetto, Lynda A; Puurtinen, Risto; Pitkänen, Hannu; Selänne, Harri; Suominen, Harri; Mero, Antti A

    2017-12-01

    Diet composition influences acid-base status of the body. This may become more relevant as renal functional capacity declines with aging. We examined the effects of low (LD) versus high dietary acid load (HD) on blood acid-base status and exercise performance. Participants included 22 adolescents, 33 young adults (YA), and 33 elderly (EL), who followed a 7-day LD and HD in a randomized order. At the end of both diet periods the subjects performed a cycle ergometer test (3 × 10 min at 35%, 55%, 75%, and (except EL) until exhaustion at 100% of maximal oxygen uptake). At the beginning of and after the diet periods, blood samples were collected at rest and after all workloads. Oxygen uptake, respiratory exchange ratio (RER), and heart rate (HR) were monitored during cycling. In YA and EL, bicarbonate (HCO 3 - ) and base excess (BE) decreased over the HD period, and HCO 3 - , BE, and pH were lower at rest after HD compared with LD. In YA and EL women, HCO 3 - and BE were lower at submaximal workloads after HD compared with LD. In YA women, the maximal workload was 19% shorter and maximal oxygen uptake, RER, and HR were lower after HD compared with LD. Our data uniquely suggests that better renal function is associated with higher availability of bases, which may diminish exercise-induced acidosis and improve maximal aerobic performance. Differences in glomerular filtration rate between the subject groups likely explains the larger effects of dietary acid load in the elderly compared with younger subjects and in women compared with men.

  19. Somatotype-variables related to muscle torque and power output in female volleyball players.

    PubMed

    Buśko, Krzysztof; Lewandowska, Joanna; Lipińska, Monika; Michalski, Radosław; Pastuszak, Anna

    2013-01-01

    The purpose of this study was to investigate the relationship between somatotype, muscle torque, maximal power output and height of rise of the body mass centre measured in akimbo counter movement jump (ACMJ), counter movement jump (CMJ) and spike jump (SPJ), and power output measured in maximal cycle ergometer exercise bouts in female volleyball players. Fourteen players participated in the study. Somatotype was determined using the Heath-Carter method. Maximal muscle torque was measured under static conditions. Power output was measured in 5 maximal cycle ergometer exercise bouts, 10 s each, at increasing external loads equal to 2.5, 5.0, 7.5, 10.0 and 12.5% of body weight (BW). All jump trials (ACMJ, SPJ and CMJ) were performed on a force plate. The mean somatotype of volleyball players was: 4.9-3.5-2.5. The value of the sum of muscle torque of the left upper extremities was significantly correlated only with mesomorphic component. Mesomorphic and ectomorphic components correlated significantly with values of maximal power measured during ACMJ and CMJ. Power output measured in maximal cycle ergometer exercise bouts at increasing external loads equal to 2.5, 5.0 and 7.5% of BW was significantly correlated with endomorphy, mesomorphy and ectomorphy.

  20. Effects of Beetroot Juice Supplementation on a 30-s High-Intensity Inertial Cycle Ergometer Test

    PubMed Central

    Domínguez, Raul; Garnacho-Castaño, Manuel Vicente; Cuenca, Eduardo; García-Fernández, Pablo; Muñoz-González, Arturo; de Jesús, Fernando; Lozano-Estevan, María Del Carmen; Veiga-Herreros, Pablo

    2017-01-01

    Background: Beetroot juice (BJ) is rich in inorganic nitrates and has proved effective at increasing blood nitric oxide (NO) levels. When used as a supplement BJ has shown an ergogenic effect on cardiorespiratory resistance exercise modalities, yet few studies have examined its impact on high intensity efforts. Objective: To assess the effects of BJ intake on anaerobic performance in a Wingate test. Methods: Fifteen trained men (age 21.46 ± 1.72 years, height 1.78 ± 0.07 cm and weight 76.90 ± 8.67 kg) undertook a 30-s maximum intensity test on an inertial cycle ergometer after drinking 70 mL of BJ (5.6 mmol NO3−) or placebo. Results: Despite no impacts of BJ on the mean power recorded during the test, improvements were produced in peak power (6%) (p = 0.034), average power 0–15 s (6.7%) (p = 0.048) and final blood lactate levels (82.6%) (p < 0.001), and there was a trend towards a shorter time taken to attain peak power (−8.4%) (p = 0.055). Conclusions: Supplementation with BJ has an ergonomic effect on maximum power output and on average power during the first 15 s of a 30-s maximum intensity inertial cycle ergometer test. PMID:29244746

  1. Fat oxidation, hormonal and plasma metabolite kinetics during a submaximal incremental test in lean and obese adults.

    PubMed

    Lanzi, Stefano; Codecasa, Franco; Cornacchia, Mauro; Maestrini, Sabrina; Salvadori, Alberto; Brunani, Amelia; Malatesta, Davide

    2014-01-01

    This study aimed to compare fat oxidation, hormonal and plasma metabolite kinetics during exercise in lean (L) and obese (O) men. Sixteen L and 16 O men [Body Mass Index (BMI): 22.9 ± 0.3 and 39.0 ± 1.4 kg · m(-2)] performed a submaximal incremental test (Incr) on a cycle-ergometer. Fat oxidation rates (FORs) were determined using indirect calorimetry. A sinusoidal model, including 3 independent variables (dilatation, symmetry, translation), was used to describe fat oxidation kinetics and determine the intensity (Fat(max)) eliciting maximal fat oxidation. Blood samples were drawn for the hormonal and plasma metabolite determination at each step of Incr. FORs (mg · FFM(-1) · min(-1)) were significantly higher from 20 to 30% of peak oxygen uptake (VO2peak) in O than in L and from 65 to 85% VO2peak in L than in O (p ≤ 0.05). FORs were similar in O and in L from 35 to 60% VO2peak. Fat max was 17% significantly lower in O than in L (p<0.01). Fat oxidation kinetics were characterized by similar translation, significantly lower dilatation and left-shift symmetry in O compared with L (p<0.05). During whole exercise, a blunted lipolysis was found in O [lower glycerol/fat mass (FM) in O than in L (p ≤ 0.001)], likely associated with higher insulin concentrations in O than in L (p<0.01). Non-esterified fatty acids (NEFA) were significantly higher in O compared with L (p<0.05). Despite the blunted lipolysis, O presented higher NEFA availability, likely due to larger amounts of FM. Therefore, a lower Fat(max), a left-shifted and less dilated curve and a lower reliance on fat oxidation at high exercise intensities suggest that the difference in the fat oxidation kinetics is likely linked to impaired muscular capacity to oxidize NEFA in O. These results may have important implications for the appropriate exercise intensity prescription in training programs designed to optimize fat oxidation in O.

  2. Poor glycaemic control is associated with reduced exercise performance and oxygen economy during cardio-pulmonary exercise testing in people with type 1 diabetes.

    PubMed

    Moser, Othmar; Eckstein, Max L; McCarthy, Olivia; Deere, Rachel; Bain, Stephen C; Haahr, Hanne L; Zijlstra, Eric; Bracken, Richard M

    2017-01-01

    To explore the impact of glycaemic control (HbA 1c ) on functional capacity during cardio-pulmonary exercise testing in people with type 1 diabetes. Sixty-four individuals with type 1 diabetes (age: 34 ± 8 years; 13 females, HbA 1c : 7.8 ± 1% (62 ± 13 mmol/mol), duration of diabetes: 17 ± 9 years) performed a cardio-pulmonary cycle ergometer exercise test until volitional exhaustion. Stepwise linear regression was used to explore relationships between HbA 1c and cardio-respiratory data with p ≤ 0.05. Furthermore, participants were divided into quartiles based on HbA 1c levels and cardio-respiratory data were analysed by one-way ANOVA. Multiple regression analysis was performed to explore the relationships between changes in time to exhaustion and cardio-respiratory data. Data were adjusted for confounder. HbA 1c was related to time to exhaustion and oxygen consumption at the power output elicited at the sub-maximal threshold of the heart rate turn point (r = 0.47, R 2  = 0.22, p = 0.03). Significant differences were found at time to exhaustion between Q I vs. Q IV and at oxygen consumption at the power output elicited at the heart rate turn point between Q I vs. Q II and Q I vs. Q IV (p < 0.05). Changes in oxygen uptake, power output and in oxygen consumption at the power output elicited at the heart rate turn point and at maximum power output explained 55% of the variance in time to exhaustion ( r  = 0.74, R 2  = 0.55, p < 0.01). Poor glycaemic control is related to less economical use of oxygen at sub-maximal work rates and an earlier time to exhaustion during cardio-pulmonary exercise testing. However, exercise training could have the same potential to counteract the influence of poor glycaemic control on functional capacity. Trial registration NCT01704417. Date of registration: October 11, 2012.

  3. Accurate prediction of cardiorespiratory fitness using cycle ergometry in minimally disabled persons with relapsing-remitting multiple sclerosis.

    PubMed

    Motl, Robert W; Fernhall, Bo

    2012-03-01

    To examine the accuracy of predicting peak oxygen consumption (VO(2peak)) primarily from peak work rate (WR(peak)) recorded during a maximal, incremental exercise test on a cycle ergometer among persons with relapsing-remitting multiple sclerosis (RRMS) who had minimal disability. Cross-sectional study. Clinical research laboratory. Women with RRMS (n=32) and sex-, age-, height-, and weight-matched healthy controls (n=16) completed an incremental exercise test on a cycle ergometer to volitional termination. Not applicable. Measured and predicted VO(2peak) and WR(peak). There were strong, statistically significant associations between measured and predicted VO(2peak) in the overall sample (R(2)=.89, standard error of the estimate=127.4 mL/min) and subsamples with (R(2)=.89, standard error of the estimate=131.3 mL/min) and without (R(2)=.85, standard error of the estimate=126.8 mL/min) multiple sclerosis (MS) based on the linear regression analyses. Based on the 95% confidence limits for worst-case errors, the equation predicted VO(2peak) within 10% of its true value in 95 of every 100 subjects with MS. Peak VO(2) can be accurately predicted in persons with RRMS who have minimal disability as it is in controls by using established equations and WR(peak) recorded from a maximal, incremental exercise test on a cycle ergometer. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. NIRS-Derived Tissue Oxygen Saturation and Hydrogen Ion Concentration Following Bed Rest

    NASA Technical Reports Server (NTRS)

    Lee, S. M. C.; Everett, M. E.; Crowell, J. B.; Westby, C. M.; Soller, B. R.

    2010-01-01

    Long-term bed rest (BR), a model of spaceflight, results in a decrease in aerobic capacity and altered submaximal exercise responses. The strongest BR-induced effects on exercise appear to be centrally-mediated, but longer BR durations may result in peripheral adaptations (e.g., decreased mitochondrial and capillary density) which are likely to influence exercise responses. PURPOSE: To measure tissue oxygen saturation (SO2) and hydrogen ion concentration ([H+]) in the vastus lateralis (VL) using near infrared spectroscopy (NIRS) during cycle ergometry before and after . 30 d of BR. METHODS: Eight subjects performed a graded exercise test on a cycle ergometer to volitional fatigue 7 d before (pre-BR) and at the end or 1 day after BR (post-BR). NIRS spectra were collected from a sensor adhered to the skin overlying the VL. Oxygen consumption (VO2) was measured by open circuit spirometry. Blood volume (BV) was measured before and after BR using the carbon monoxide rebreathing technique. Changes in pre- and post-BR SO2 and [H+] data were compared using mixed model analyses. BV and peak exercise data were compared using paired t-tests. RESULTS: BV (pre-BR: 4.3+/-0.3, post-BR: 3.7+/-0.2 L, mean+/-SE, p=.01) and peak VO2 (pre-BR: 1.98+/-0.24, post-BR: 1.48 +/-0.21 L/min, p<.01) were reduced after BR. As expected, SO2 decreased with exercise before and after BR. However, SO2 was lower post compared with pre-BR throughout exercise, including at peak exercise (pre-BR: 50+/-3, post-BR: 43+/-4%, p=.01). After BR, [H+] was higher at the start of exercise and did not increase at the same rate as pre-BR. Peak [H+] was not different from pre to post-BR (pre-BR: 36+/-2; post-BR: 38+/-2 nmol/L). CONCLUSIONS: Lower SO2 during exercise suggests that oxygen extraction in the VL is higher after BR, perhaps due to lower circulating blood volume. The higher [H+] after BR suggests a greater reliance upon glycolysis during submaximal exercise, although [H+] at peak exercise was unchanged. Taken together, these data suggest that longer duration BR induces a number of changes that result in peripheral adaptations which contribute to cardiovascular and muscular deconditioning as measured by NIRS-derived SO2 and [H+] in the VL and may contribute to lower post-BR exercise tolerance. Supported by the National Space Biomedical Research Institute through NASA NCC 9-58

  5. Physical demands in working life and individual physical capacity.

    PubMed

    Karlqvist, L; Leijon, O; Härenstam, A

    2003-08-01

    The purpose of this study was to investigate the prevalence of the excess of metabolic level (metabolic demands in work exceeding one-third of the individual's aerobic capacity) of working men and women today and to describe the population whose metabolic level is exceeded. A second aim was to explore how externally assessed metabolic demands match with the physical function and capacity of working men and women in jobs with the lowest and the highest demands. The aerobic power of each individual (94 men and 94 women) was estimated from heart rate and workload in sub-maximal tests from dynamic legwork on a cycle ergometer. Physical activity was assessed using a task-oriented interview technique. Physical function was measured by tests of muscle endurance in arms, abdomen and legs, handgrip pressure, balance and coordination. The calculation of individual metabolic demands during a "typical working day" showed that 27% of the men and 22% of the women exceeded their metabolic level. The results indicate that the physical fitness is low or somewhat low for two-thirds of the 94 men and for more than one-half of the 94 women. Women in the group with the highest job demands had significantly lower muscle endurance in the abdomen and legs and worse coordination than women in the group with the lowest job demands. Metabolic demands in working life today remain high. This is reflected in a mismatch between individual physical capacity and the physical demands of work for 25% of the population.

  6. LIFESTYLE INDICATORS AND CARDIORESPIRATORY FITNESS IN ADOLESCENTS

    PubMed Central

    de Victo, Eduardo Rossato; Ferrari, Gerson Luis de Moraes; da Silva, João Pedro; Araújo, Timóteo Leandro; Matsudo, Victor Keihan Rodrigues

    2017-01-01

    ABSTRACT Objective: To evaluate the lifestyle indicators associated with cardiorespiratory fitness in adolescents from Ilhabela, São Paulo, Brazil. Methods: The sample consisted of 181 adolescents (53% male) from the Mixed Longitudinal Project on Growth, Development, and Physical Fitness of Ilhabela. Body composition (weight, height, and body mass index, or BMI), school transportation, time spent sitting, physical activity, sports, television time (TV), having a TV in the bedroom, sleep, health perception, diet, and economic status (ES) were analyzed. Cardiorespiratory fitness was estimated by the submaximal progressive protocol performed on a cycle ergometer. Linear regression models were used with the stepwise method. Results: The sample average age was 14.8 years, and the average cardiorespiratory fitness was 42.2 mL.kg-1.min-1 (42.9 for boys and 41.4 for girls; p=0.341). In the total sample, BMI (unstandardized regression coefficient [B]=-0.03), height (B=-0.01), ES (B=0.10), gender (B=0.12), and age (B=0.03) were significantly associated with cardiorespiratory fitness. In boys, BMI, height, not playing any sports, and age were significantly associated with cardiorespiratory fitness. In girls, BMI, ES, and having a TV in the bedroom were significantly associated with cardiorespiratory fitness. Conclusions: Lifestyle indicators influenced the cardiorespiratory fitness; BMI, ES, and age influenced both sexes. Not playing any sports, for boys, and having a TV in the bedroom, for girls, also influenced cardiorespiratory fitness. Public health measures to improve lifestyle indicators can help to increase cardiorespiratory fitness levels. PMID:28977318

  7. Criterion validation of two submaximal aerobic fitness tests, the self-monitoring Fox-walk test and the Åstrand cycle test in people with rheumatoid arthritis.

    PubMed

    Nordgren, Birgitta; Fridén, Cecilia; Jansson, Eva; Österlund, Ted; Grooten, Wilhelmus Johannes; Opava, Christina H; Rickenlund, Anette

    2014-09-17

    Aerobic capacity tests are important to evaluate exercise programs and to encourage individuals to have a physically active lifestyle. Submaximal tests, if proven valid and reliable could be used for estimation of maximal oxygen uptake (VO2max). The purpose of the study was to examine the criterion-validity of the submaximal self-monitoring Fox-walk test and the submaximal Åstrand cycle test against a maximal cycle test in people with rheumatoid arthritis (RA). A secondary aim was to study the influence of different formulas for age predicted maximal heart rate when estimating VO2max by the Åstrand test. Twenty seven subjects (81% female), mean (SD) age 62 (8.1) years, diagnosed with RA since 17.9 (11.7) years, participated in the study. They performed the Fox-walk test (775 meters), the Åstrand test and the maximal cycle test (measured VO2max test). Pearson's correlation coefficients were calculated to determine the direction and strength of the association between the tests, and paired t-tests were used to test potential differences between the tests. Bland and Altman methods were used to assess whether there was any systematic disagreement between the submaximal tests and the maximal test. The correlation between the estimated and measured VO2max values were strong and ranged between r = 0.52 and r = 0.82 including the use of different formulas for age predicted maximal heart rate, when estimating VO2max by the Åstrand test. VO2max was overestimated by 30% by the Fox-walk test and underestimated by 10% by the Åstrand test corrected for age. When the different formulas for age predicted maximal heart rate were used, the results showed that two formulas better predicted maximal heart rate and consequently a more precise estimation of VO2max. Despite the fact that the Fox-walk test overestimated VO2max substantially, the test is a promising method for self-monitoring VO2max and further development of the test is encouraged. The Åstrand test should be considered as highly valid and feasible and the two newly developed formulas for predicting maximal heart rate according to age are preferable to use when estimating VO2max by the Åstrand test.

  8. Sprint interval training (SIT) substantially reduces depressive symptoms in major depressive disorder (MDD): A randomized controlled trial.

    PubMed

    Minghetti, Alice; Faude, Oliver; Hanssen, Henner; Zahner, Lukas; Gerber, Markus; Donath, Lars

    2018-07-01

    Continuous aerobic exercise training (CAT) is considered a complementary treatment option in patients with major depressive disorder (MDD). Intermittent exercise training protocols, such as sprint interval training (SIT) have gained increasing popularity, but no studies on depressive symptoms following SIT in patients with MDD are available. Fifty-nine in-patients with MDD were randomly assigned to a SIT or CAT group. Medication was counterbalanced in both intervention arms. Both intervention groups received 3 weekly training sessions for 4-weeks (12 sessions in total). SIT comprised 25 bouts of 30 seconds at 80% of maximal power, whereas CAT consisted of 20 minutes of physical activity at 60% of maximal power. The training protocols were isocalorically designed. Maximal bicycle ergometer exercise testing yielded maximal and submaximal physical fitness parameters. The Beck-Depression-Inventory-II (BDI-II) was filled out by the patients before and after the intervention period. BDI-II scores substantially decreased in both groups with an effect size pointing towards a large effect (p < 0.001, η p ² = 0.70) while submaximal (0.07 < d < 0.89) and maximal (0.05 < d < 0.85) fitness variables improved in both groups. Short-term SIT leads to similar results as CAT in patients with MDD and can be regarded as a time-efficient and promising exercise-based treatment strategy. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Psycho-physiological analysis of an aerobic dance programme for women

    PubMed Central

    Rockefeller, Kathleen A.; Burke, E. J.

    1979-01-01

    The purpose of this study was to determine: (1) the energy cost and (2) the psycho-physiological effects of an aerobic dance programme in young women. Twenty-one college-age women participated 40 minutes a day, three days a week, for a 10-week training period. Each work session included a five-minute warm-up period, a 30-minute stimulus period (including walk-runs) and a five-minute cool-down period. During the last four weeks of the training period, the following parameters were monitored in six of the subjects during two consecutive sessions: perceived exertion (RPE) utilising the Borg 6-20 scale, Mean = 13.19; heart rate (HR) monitored at regular intervals during the training session, Mean = 166.37; and estimated caloric expenditure based on measured oxygen consumption (V̇O2) utilising a Kofranyi-Michaelis respirometer, Mean = 289.32. Multivariate analysis of variance (MANOVA) computed between pre and post tests for the six dependent variables revealed a significant approximate F-ratio of 5.72 (p <.05). Univariate t-test analysis of mean changes revealed significant pre-post test differences for V̇O2 max expressed in ml/kg min-1, maximal pulmonary ventilation, maximal working capacity on the bicycle ergometer, submaximal HR and submaximal RPE. Body weight was not significantly altered. It was concluded that the aerobic dance training programme employed was of sufficient intensity to elicit significant physiological and psycho-physiological alterations in college-age women. PMID:465914

  10. Effect of Acute Dietary Nitrate Consumption on Oxygen Consumption During Submaximal Exercise in Hypobaric Hypoxia.

    PubMed

    Carriker, Colin R; Mermier, Christine M; Van Dusseldorp, Trisha A; Johnson, Kelly E; Beltz, Nicholas M; Vaughan, Roger A; McCormick, James J; Cole, Nathan H; Witt, Christopher C; Gibson, Ann L

    2016-08-01

    Reduced partial pressure of oxygen impairs exercise performance at altitude. Acute nitrate supplementation, at sea level, may reduce oxygen cost during submaximal exercise in hypobaric hypoxia. Therefore, we investigated the metabolic response during exercise at altitude following acute nitrate consumption. Ten well-trained (61.0 ± 7.4 ml/kg/min) males (age 28 ± 7 yr) completed 3 experimental trials (T1, T2, T3). T1 included baseline demographics, a maximal aerobic capacity test (VO2max) and five submaximal intensity cycling determination bouts at an elevation of 1600 m. A 4-day dietary washout, minimizing consumption of nitrate-rich foods, preceded T2 and T3. In a randomized, double-blind, placebo-controlled, crossover fashion, subjects consumed either a nitrate-depleted beetroot juice (PL) or ~12.8 mmol nitrate rich (NR) beverage 2.5 hr before T2 and T3. Exercise at 3500 m (T2 and T3) via hypobaric hypoxia consisted of a 5-min warm-up (25% of normobaric VO2max) and four 5-min cycling bouts (40, 50, 60, 70% of normobaric VO2max) each separated by a 4-min rest period. Cycling RPM and watts for each submaximal bout during T2 and T3 were determined during T1. Preexercise plasma nitrite was elevated following NR consumption compared with PL (1.4 ± 1.2 and 0.7 ± 0.3 uM respectively; p < .05). There was no difference in oxygen consumption (-0.5 ± 1.8, 0.1 ± 1.7, 0.7 ± 2.1, and 1.0 ± 3.0 ml/kg/min) at any intensity (40, 50, 60, 70% of VO2max, respectively) between NR and PL. Further, respiratory exchange ratio, oxygen saturation, heart rate and rating of perceived exertion were not different at any submaximal intensity between NR and PL either. Blood lactate, however, was reduced following NR consumption compared with PL at 40 and 60% of VO2max (p < .0.05). Our findings suggest that acute nitrate supplementation before exercise at 3500 m does not reduce oxygen cost but may reduce blood lactate accumulation at lower intensity workloads.

  11. Heavy strength training improves running and cycling performance following prolonged submaximal work in well-trained female athletes.

    PubMed

    Vikmoen, Olav; Rønnestad, Bent R; Ellefsen, Stian; Raastad, Truls

    2017-03-01

    The purpose of this study was to investigate the effects of adding heavy strength training to female duathletes' normal endurance training on both cycling and running performance. Nineteen well-trained female duathletes ( V O 2max cycling: 54 ± 3 ml∙kg -1 ∙min -1 , VO 2max running: 53 ± 3 ml∙kg -1 ∙min -1 ) were randomly assigned to either normal endurance training ( E , n  = 8) or normal endurance training combined with strength training ( E+S , n  = 11). The strength training consisted of four lower body exercises [3 × 4-10 repetition maximum (RM)] twice a week for 11 weeks. Running and cycling performance were assessed using 5-min all-out tests, performed immediately after prolonged periods of submaximal work (3 h cycling or 1.5 h running). E+S increased 1RM in half squat (45 ± 22%) and lean mass in the legs (3.1 ± 4.0%) more than E Performance during the 5-min all-out test increased in both cycling (7.0 ± 4.5%) and running (4.7 ± 6.0%) in E+S, whereas no changes occurred in E The changes in running performance were different between groups. E+S reduced oxygen consumption and heart rate during the final 2 h of prolonged cycling, whereas no changes occurred in E No changes occurred during the prolonged running in any group. Adding strength training to normal endurance training in well-trained female duathletes improved both running and cycling performance when tested immediately after prolonged submaximal work. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  12. Burbank exercises on the CEVIS

    NASA Image and Video Library

    2011-12-04

    ISS030-E-007559 (4 Dec. 2011) --- NASA astronaut Dan Burbank, Expedition 30 commander, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  13. Kopra Exercises on CEVIS

    NASA Image and Video Library

    2016-06-16

    iss047e154247 (6/16/2016) --- View of Commander Tim Kopra exercising on the Cycle Ergometer with Vibration Isolation and Stabilization (CEVIS) in the U.S. Laboratory. Photo was taken during Expedition 47.

  14. Simulated Partners and Collaborative Exercise (SPACE) to boost motivation for astronauts: study protocol.

    PubMed

    Feltz, Deborah L; Ploutz-Snyder, Lori; Winn, Brian; Kerr, Norbert L; Pivarnik, James M; Ede, Alison; Hill, Christopher; Samendinger, Stephen; Jeffery, William

    2016-11-14

    Astronauts may have difficulty adhering to exercise regimens at vigorous intensity levels during long space missions. Vigorous exercise is important for aerobic and musculoskeletal health during space missions and afterwards. A key impediment to maintaining vigorous exercise is motivation. Finding ways to motivate astronauts to exercise at levels necessary to mitigate reductions in musculoskeletal health and aerobic capacity have not been explored. The focus of Simulated Partners and Collaborative Exercise (SPACE) is to use recently documented motivation gains in task groups to heighten the exercise experience for participants, similar in age and fitness to astronauts, for vigorous exercise over a 6-month exercise regimen. A secondary focus is to determine the most effective features in simulated exercise partners for enhancing enjoyment, self-efficacy, and social connectedness. The aims of the project are to (1) Create software-generated (SG) exercise partners and interface software with a cycle ergometer; (2) Pilot test design features of SG partners within a video exercise game (exergame), and (3) Test whether exercising with an SG partner over 24-week time period, compared to exercising alone, leads to greater work effort, aerobic capacity, muscle strength, exercise adherence, and enhanced psychological parameters. This study was approved by the Institutional Review Board (IRB). Chronic exercisers, between the ages 30 and 62, were asked to exercise on a cycle ergometer 6 days per week for 24 weeks using a routine consisting of alternating between moderate-intensity continuous and high-intensity interval sessions. Participants were assigned to one of three conditions: no partner (control), always faster SG partner, or SG partner who was not always faster. Participants were told they could vary cycle ergometer output to increase or decrease intensity during the sessions. Mean change in cycle ergometer power (watts) from the initial continuous and 4 min. interval sessions was the primary dependent variable reflecting work effort. Measures of physiological, strength, and psychological parameters were also taken. This paper describes the rationale, development, and methods of the SPACE exergame. We believe this will be a viable intervention that can be disseminated for astronaut use and adapted for use by other populations.

  15. Mastracchio exercises on the CEVIS

    NASA Image and Video Library

    2013-11-22

    ISS038-E-007156 (22 Nov. 2013) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  16. Pettit exercises on the CEVIS

    NASA Image and Video Library

    2012-02-05

    ISS030-E-063871 (5 Feb. 2012) --- NASA astronaut Don Pettit, Expedition 30 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  17. Parmitano on CEVIS

    NASA Image and Video Library

    2013-07-06

    ISS036-E-015570 (6 July 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  18. iss051e029335

    NASA Image and Video Library

    2017-04-30

    iss051e029335 (April 30, 2017) --- European Space Agency astronaut Thomas Pesquet exercises on the Cycle Ergometer with Vibration Isolation and Stabilization System (CEVIS), the station’s exercise bike, inside the Destiny laboratory module.

  19. Garan exercises on the CEVIS

    NASA Image and Video Library

    2011-05-11

    ISS027-E-030045 (11 May 2011) --- NASA astronaut Ron Garan, Expedition 27 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  20. Gerst in U.S. Laboratory

    NASA Image and Video Library

    2014-06-02

    ISS040-E-006699 (2 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  1. FE Williams exercising on the CEVIS

    NASA Image and Video Library

    2012-07-21

    ISS032-E-008595 (20 July 2012) --- NASA astronaut Sunita Williams, Expedition 32 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  2. Gerst in U.S. Laboratory

    NASA Image and Video Library

    2014-06-02

    ISS040-E-006700 (2 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  3. Wakata on CEVIS

    NASA Image and Video Library

    2009-06-08

    ISS020-E-007607 (8 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  4. Parmitano in U.S. Laboratory

    NASA Image and Video Library

    2013-10-03

    ISS037-E-006471 (3 Oct. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 37 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  5. Physical exercises on a bicycle-ergometer and running track to prevent hypodynamia in workers of intellectual labor

    NASA Technical Reports Server (NTRS)

    Vasilyeva, V. V.; Korableva, Y. N.; Trunin, V. V.

    1980-01-01

    A program of exercises was developed and tested, consisting of a 12 minute session on a variable load bicycle ergometer and a 10-11 min. run with brief stretching and resting sessions between. Physical performance capacity was measured before, during, and after the period of the experiment and physical exams conducted. After a 4 month test period involving 30 men, aged 25-35, the program was found to be successful in increasing physical performance capacity. The PWC170 increased an average of 22 percent and maximum oxygen consumption 14 percent. Arterial pressure dropped (120/75 to 114/68), vital capacity of lungs increased by 6 percent, strength of respiratory muscles by 8.8 percent, duration of respiratory delay by 18 percent. Duration of cardiac cycles increased, stress index decreased. Cardiac contraction rate 2 minutes after work on the ergometer decreased from 118 to 102 bt/min.

  6. Perfusion dynamics assessment with Power Doppler ultrasound in skeletal muscle during maximal and submaximal cycling exercise.

    PubMed

    Heres, H M; Schoots, T; Tchang, B C Y; Rutten, M C M; Kemps, H M C; van de Vosse, F N; Lopata, R G P

    2018-06-01

    Assessment of limitations in the perfusion dynamics of skeletal muscle may provide insight in the pathophysiology of exercise intolerance in, e.g., heart failure patients. Power doppler ultrasound (PDUS) has been recognized as a sensitive tool for the detection of muscle blood flow. In this volunteer study (N = 30), a method is demonstrated for perfusion measurements in the vastus lateralis muscle, with PDUS, during standardized cycling exercise protocols, and the test-retest reliability has been investigated. Fixation of the ultrasound probe on the upper leg allowed for continuous PDUS measurements. Cycling exercise protocols included a submaximal and an incremental exercise to maximal power. The relative perfused area (RPA) was determined as a measure of perfusion. Absolute and relative reliability of RPA amplitude and kinetic parameters during exercise (onset, slope, maximum value) and recovery (overshoot, decay time constants) were investigated. A RPA increase during exercise followed by a signal recovery was measured in all volunteers. Amplitudes and kinetic parameters during exercise and recovery showed poor to good relative reliability (ICC ranging from 0.2-0.8), and poor to moderate absolute reliability (coefficient of variation (CV) range 18-60%). A method has been demonstrated which allows for continuous (Power Doppler) ultrasonography and assessment of perfusion dynamics in skeletal muscle during exercise. The reliability of the RPA amplitudes and kinetics ranges from poor to good, while the reliability of the RPA increase in submaximal cycling (ICC = 0.8, CV = 18%) is promising for non-invasive clinical assessment of the muscle perfusion response to daily exercise.

  7. Expedition 32 FE Acaba exercises on the CEVIS

    NASA Image and Video Library

    2012-07-21

    ISS032-E-009028 (21 July 2012) --- NASA astronaut Joe Acaba, Expedition 32 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  8. Burbank exercises on the CEVIS in the U.S. Laboratory

    NASA Image and Video Library

    2011-12-09

    ISS030-E-010646 (9 Dec. 2011) --- NASA astronaut Dan Burbank, Expedition 30 commander, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  9. Burbank exercises on the CEVIS in the U.S. Laboratory

    NASA Image and Video Library

    2011-12-09

    ISS030-E-010644 (9 Dec. 2011) --- NASA astronaut Dan Burbank, Expedition 30 commander, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  10. Tani Exercises on the CEVIS in the US Lab

    NASA Image and Video Library

    2008-02-06

    ISS016-E-027899 (6 Feb. 2008) --- Astronauts Daniel Tani, Expedition 16 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  11. De Winne exercises on CEVIS

    NASA Image and Video Library

    2009-06-22

    ISS020-E-013983 (22 June 2009) --- European Space Agency astronaut Frank De Winne, Expedition 20 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  12. Personal customizing exercise with a wearable measurement and control unit.

    PubMed

    Wang, Zhihui; Kiryu, Tohru; Tamura, Naoki

    2005-06-28

    Recently, wearable technology has been used in various health-related fields to develop advanced monitoring solutions. However, the monitoring function alone cannot meet all the requirements of customizing machine-based exercise on an individual basis by relying on biosignal-based controls. We propose a new wearable unit design equipped with measurement and control functions to support the customization process. The wearable unit can measure the heart rate and electromyogram signals during exercise performance and output workload control commands to the exercise machines. The workload is continuously tracked with exercise programs set according to personally customized workload patterns and estimation results from the measured biosignals by a fuzzy control method. Exercise programs are adapted by relying on a computer workstation, which communicates with the wearable unit via wireless connections. A prototype of the wearable unit was tested together with an Internet-based cycle ergometer system to demonstrate that it is possible to customize exercise on an individual basis. We tested the wearable unit in nine people to assess its suitability to control cycle ergometer exercise. The results confirmed that the unit could successfully control the ergometer workload and continuously support gradual changes in physical activities. The design of wearable units equipped with measurement and control functions is an important step towards establishing a convenient and continuously supported wellness environment.

  13. Accuracy of the Velotron ergometer and SRM power meter.

    PubMed

    Abbiss, C R; Quod, M J; Levin, G; Martin, D T; Laursen, P B

    2009-02-01

    The purpose of this study was to determine the accuracy of the Velotron cycle ergometer and the SRM power meter using a dynamic calibration rig over a range of exercise protocols commonly applied in laboratory settings. These trials included two sustained constant power trials (250 W and 414 W), two incremental power trials and three high-intensity interval power trials. To further compare the two systems, 15 subjects performed three dynamic 30 km performance time trials. The Velotron and SRM displayed accurate measurements of power during both constant power trials (<1% error). However, during high-intensity interval trials the Velotron and SRM were found to be less accurate (3.0%, CI=1.6-4.5% and -2.6%, CI=-3.2--2.0% error, respectively). During the dynamic 30 km time trials, power measured by the Velotron was 3.7+/-1.9% (CI=2.9-4.8%) greater than that measured by the SRM. In conclusion, the accuracy of the Velotron cycle ergometer and the SRM power meter appears to be dependent on the type of test being performed. Furthermore, as each power monitoring system measures power at various positions (i.e. bottom bracket vs. rear wheel), caution should be taken when comparing power across the two systems, particularly when power is variable.

  14. Coleman exercises on the CEVIS in the U.S. Laboratory

    NASA Image and Video Library

    2011-01-20

    ISS026-E-018823 (20 Jan. 2011) --- NASA astronaut Catherine (Cady) Coleman, Expedition 26 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  15. iss034e010622

    NASA Image and Video Library

    2012-12-31

    ISS034-E-010622 (31 Dec. 2012) --- Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, performs a periodic fitness evaluation on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  16. Burbank exercises on the CEVIS in the U.S. Lab

    NASA Image and Video Library

    2012-01-02

    ISS030-E-032829 (2 Jan. 2012) --- NASA astronaut Dan Burbank, Expedition 30 flight commander, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  17. Coleman exercises on the CEVIS in the U.S. Laboratory

    NASA Image and Video Library

    2011-01-20

    ISS026-E-018816 (20 Jan. 2011) --- NASA astronaut Catherine (Cady) Coleman, Expedition 26 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  18. Ford exercises on the CEVIS in the U.S. Laboratory

    NASA Image and Video Library

    2013-03-04

    ISS034-E-061648 (4 March 2013) --- Inside the U.S. lab Destiny on the Earth-orbiting International Space Station, Expedition 34 Commander Kevin Ford exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS).

  19. Pettit exercises on the CEVIS in the U.S. Laboratory

    NASA Image and Video Library

    2012-01-15

    ISS030-E-032768 (15 Jan. 2012) --- NASA astronaut Don Pettit, Expedition 30 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  20. Ivanishin exercises on the CEVIS in the U.S. Laboratory

    NASA Image and Video Library

    2011-12-10

    ISS030-E-012738 (10 Dec. 2011) --- Russian cosmonaut Anatoly Ivanishin, Expedition 30 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  1. Coleman exercises on the CEVIS in the U.S. Laboratory

    NASA Image and Video Library

    2011-01-20

    ISS026-E-018821 (20 Jan. 2011) --- NASA astronaut Catherine (Cady) Coleman, Expedition 26 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  2. Effects of sleep disturbances on subsequent physical performance.

    PubMed

    Mougin, F; Simon-Rigaud, M L; Davenne, D; Renaud, A; Garnier, A; Kantelip, J P; Magnin, P

    1991-01-01

    The purpose of the study was to compare the cardiovascular, respiratory and metabolic responses to exercise of highly endurance trained subjects after 3 different nights i.e. a baseline night, a partial sleep deprivation of 3 h in the middle of the night and a 0.25-mg triazolam-induced sleep. Sleep-waking chronobiology and endurance performance capacity were taken into account in the choice of the subjects. Seven subjects exercised on a cycle ergometer for a 10-min warm-up, then for 20 min at a steady exercise intensity (equal to the intensity corresponding to 75% of the predetermined maximal oxygen consumption) followed by an increased intensity until exhaustion. The night with 3 h sleep loss was accompanied by a greater number of periods of wakefulness (P less than 0.01) and fewer periods of stage 2 sleep (P less than 0.05) compared with the results recorded during the baseline night. Triazolam-induced sleep led to an increase in stage 2 sleep (P less than 0.05), a decrease in wakefulness (P less than 0.05) and in stage 3 sleep (P less than 0.05). After partial sleep deprivation, there were statistically significant increases in heart rate (P less than 0.05) and ventilation (P less than 0.05) at submaximal exercise compared with results obtained after the baseline night. Both variables were also significantly enhanced at maximal exercise, while the peak oxygen consumption (VO2) dropped (P less than 0.05) even though the maximal sustained exercise intensity was not different.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. No effect of acute beetroot juice ingestion on oxygen consumption, glucose kinetics, or skeletal muscle metabolism during submaximal exercise in males.

    PubMed

    Betteridge, Scott; Bescós, Raúl; Martorell, Miquel; Pons, Antoni; Garnham, Andrew P; Stathis, Christos C; McConell, Glenn K

    2016-02-15

    Beetroot juice, which is rich in nitrate (NO3 (-)), has been shown in some studies to decrease oxygen consumption (V̇o2) for a given exercise workload, i.e., increasing efficiency and exercise tolerance. Few studies have examined the effect of beetroot juice or nitrate supplementation on exercise metabolism. Eight healthy recreationally active males participated in three trials involving ingestion of either beetroot juice (Beet; ∼8 mmol NO3 (-)), Placebo (nitrate-depleted Beet), or Beet + mouthwash (Beet+MW), all of which were performed in a randomized single-blind crossover design. Two-and-a-half hours later, participants cycled for 60 min on an ergometer at 65% of V̇o2 peak. [6,6-(2)H]glucose was infused to determine glucose kinetics, blood samples obtained throughout exercise, and skeletal muscle biopsies that were obtained pre- and postexercise. Plasma nitrite [NO2 (-)] increased significantly (∼130%) with Beet, and this was attenuated in MW+Beet. Beet and Beet+MW had no significant effect on oxygen consumption, blood glucose, blood lactate, plasma nonesterified fatty acids, or plasma insulin during exercise. Beet and Beet+MW also had no significant effect on the increase in glucose disposal during exercise. In addition, Beet and Beet+MW had no significant effect on the decrease in muscle glycogen and phosphocreatine and the increase in muscle creatine, lactate, and phosphorylated acetyl CoA carboxylase during exercise. In conclusion, at the dose used, acute ingestion of beetroot juice had little effect on skeletal muscle metabolism during exercise. Copyright © 2016 the American Physiological Society.

  4. Heightened cortisol response to exercise challenge in women with functional hypothalamic amenorrhea.

    PubMed

    Sanders, Kristen M; Kawwass, Jennifer F; Loucks, Tammy; Berga, Sarah L

    2018-02-01

    Functional hypothalamic amenorrhea is characterized by anovulation caused by reduced gonadotropin-releasing hormone drive and is associated with hypercortisolemia that has been linked to heightened hypothalamic-pituitary-adrenal reactivity to common psychological and metabolic challenges. We hypothesized that women with functional hypothalamic amenorrhea would display greater cortisol responses to exercise challenge than ovulatory women with eumenorrhea. We completed a cross-sectional comparison of 9 women with functional hypothalamic amenorrhea and 11 women with eumenorrhea who were of reproductive age, who weighed 90-110% ideal body weight, who did not exercise excessively, and who had no formal psychiatric diagnosis. Subjects completed a 20-minute submaximal exercise challenge using a cycle ergometer in a research exercise laboratory. Heart rate and circulatory cortisol, glucose, and lactate were measured at 10-minute intervals before, during, and after the exercise challenge. Baseline (t= -10 minutes) cortisol, glucose, lactate, and heart rate were comparable between groups. Glucose levels rose modestly during exercise by 2.9% in women with eumenorrhea (P=.4) but declined by 10.6% in functional hypothalamic amenorrhea (P<.03). The nadir in glucose levels in functional hypothalamic amenorrhea occurred at the end of the 20-minute exercise challenge (t= +20 min). Lactate levels rose comparably in both groups (P<.01). Heart rate increased significantly with exercise in both groups (P<.01), but the increase was smaller in subjects with functional hypothalamic amenorrhea (P<.01). Cortisol levels increased during the exercise challenge in both groups (P<.01) and peaked 10 minutes after the exercise ended (t= +30 min). At peak, subjects with functional hypothalamic amenorrhea displayed higher cortisol levels (147±22 [standard error of the mean] ng/mL) than women with eumenorrhea (96±12 ng/mL; P=.05). The mean percent increase over baseline was 62% in women with eumenorrhea and 92% in functional hypothalamic amenorrhea. The heightened cortisol response to exercise in women with functional hypothalamic amenorrhea was associated with a decline in blood glucose level that was not observed in women with eumenorrhea. Women with functional hypothalamic amenorrhea appear to be more reactive at the endocrine level to the metabolic demand of exercise. Submaximal challenge unmasks underlying stress sensitivity in women with functional hypothalamic amenorrhea and highlights the importance of the use of psychological interventions for stress reduction in this population. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Cardiorespiratory responses to exercise after bed rest in men and women

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Bernauer, E. M.; Stremel, R. W.; Greenleaf, J. E.

    1977-01-01

    The purpose of this study was to compare cardiorespiratory responses of men and women to submaximal and maximal workloads before and after bed rest (BR). Fifteen male college students (19-23 yr) and eight female nurses (23-34 yr) underwent 14 d and 17 d, respectively, of bed rest. The maximal work capacity test was performed in the supine position on a bicycle ergometer just before and immediately after bed rest. Compared with pre-BR values, after bed rest the maximal ventilatory volume was essentially unchanged in the men (+1.8%) and women (+2.3%), but maximal heart rate was elevated from 185 to 193 b/min (+4.3%) in the men and from 181 to 187 b/min (3.3%) in the women. Mean corpuscular volume was unchanged in both groups pre- and post-bed rest. It is concluded that the proportional deterioration in maximal VO2 following prolonged bed rest was essentially the same in young men and women.

  6. Fluid-electrolyte shifts and thermoregulation - Rest and work in heat with head cooling

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Van Beaumont, W.; Brock, P. J.; Montgomery, L. D.; Morse, J. T.; Shvartz, E.; Kravik, S.

    1980-01-01

    The effects of head cooling on thermoregulation and associated plasma fluid and electrolyte shifts during rest and submaximal exercise in the heat are investigated. Thermoregulatory responses and plasma volume were measured in four male subjects fitted with liquid-cooled neoprene headgear during 60 min of rest, 60 min of ergometer exercise at 45% maximal oxygen uptake and 30 min of recovery in the supine position at 40.1 C and 40% relative humidity. It is found that, compared to control responses, head cooling decreased thigh sweating and increased mean skin temperature at rest and attenuated increases in thigh sweating, heart rate, rectal temperature and ventilation during exercise. During recovery, cooling is observed to facilitate decreases in sweat rate, heart rate, rectal temperature and forearm blood flow and enhance the increase in average temperature. Cooling had no effect on plasma protein, osmotic or electrolyte shifts, and decreased plasma volume losses. The findings indicate the effectiveness of moderate head cooling for the improvement of human performance during exercise in heat.

  7. Distribution and determinants of maximal physical work capacity of Korean male metal workers.

    PubMed

    Kang, D; Woo, J H; Shin, Y C

    2007-12-01

    The distribution of maximal physical work capacity (MPWC) can be used to establish an upper limit for energy expenditure during work (EEwork). If physically demanding work has wearing effects, there will be a negative relationship between MPWC and workload. This study was conducted to investigate the distribution of MPWC among Korean metal workers and to examine the relationship between workload and MPWC. MPWC was estimated with a bicycle ergometer using a submaximal test. Energy expenditure was estimated by measuring heart rates during work. The study subjects were 507 male employees from several metal industries in Korea. They had a lower absolute VO2max than the Caucasian populations described in previous studies. The older workers had a lower physical capacity and a greater overload at work. A negative relationship was found between MPWC and workload across all age groups. Upper limits for EEwork for all age groups and for older age groups are recommended based on the 5th percentile value of MPWC.

  8. VESTPD as a measure of ventilatory acclimatization to hypobaric hypoxia.

    PubMed

    Loeppky, J A; Sheard, A C; Salgado, R M; Mermier, C M

    2016-09-01

    This study compared the ventilation response to an incremental ergometer exercise at two altitudes: 633 mmHg (resident altitude = 1,600 m) and following acute decompression to 455 mmHg (≈4,350 m altitude) in eight male cyclists and runners. At 455 mmHg, the V E STPD at RER <1.0 was significantly lower and the V E BTPS was higher because of higher breathing frequency; at VO 2 max, both V E STPD and V E BTPS were not significantly different. As percent of VO 2 max, the V E BTPS was nearly identical and V E STPD was 30% lower throughout the exercise at 455 mmHg. The lower V E STPD at lower pressure differs from two classical studies of acclimatized subjects (Silver Hut and OEII), where V E STPD at submaximal workloads was maintained or increased above that at sea level. The lower V E STPD at 455 mmHg in unacclimatized subjects at submaximal workloads results from acute respiratory alkalosis due to the initial fall in HbO 2 (≈0.17 pHa units), reduction in PACO 2 (≈5 mmHg) and higher PAO 2 throughout the exercise, which are partially pre-established during acclimatization. Regression equations from these studies predict V E STPD from VO 2 and P B in unacclimatized and acclimatized subjects. The attainment of ventilatory acclimatization to altitude can be estimated from the measured vs. predicted difference in V E STPD at low workloads after arrival at altitude.

  9. Effect of diet composition on acid-base balance in adolescents, young adults and elderly at rest and during exercise.

    PubMed

    Hietavala, E-M; Stout, J R; Hulmi, J J; Suominen, H; Pitkänen, H; Puurtinen, R; Selänne, H; Kainulainen, H; Mero, A A

    2015-03-01

    Diets rich in animal protein and cereal grains and deficient in vegetables and fruits may cause low-grade metabolic acidosis, which may impact exercise and health. We hypothesized that (1) a normal-protein diet with high amount of vegetables and fruits (HV) induces more alkaline acid-base balance compared with a high-protein diet with no vegetables and fruits (HP) and (2) diet composition has a greater impact on acid-base balance in the elderly (ELD). In all, 12-15 (adolescents (ADO)), 25-35 (young adults (YAD)) and 60-75 (ELD)-year-old male and female subjects (n=88) followed a 7-day HV and a 7-day HP in a randomized order and at the end performed incremental cycle ergometer tests. We investigated the effect of diet composition and age on capillary (c-pH) and urine pH (u-pH), strong ion difference (SID), partial pressure of carbon dioxide (pCO2) and total concentration of weak acids (Atot). Linear regression analysis was used to examine the contribution of SID, pCO2 and Atot to c-pH. In YAD and ELD, c-pH (P⩽0.038) and u-pH (P<0.001) were higher at rest after HV compared with HP. During cycling, c-pH was higher (P⩽0.034) after HV compared with HP at submaximal workloads in YAD and at 75% of VO2max (maximal oxygen consumption) in ELD. The contribution of SID, pCO2 and Atot to c-pH varied widely. Gender effects or changes in acid-base balance of ADO were not detected. A high intake of vegetables and fruits increases blood and u-pH in YAD and ELD. ELD compared with younger persons may be more sensitive for the diet-induced acid-base changes.

  10. Reisman exercises on the CEVIS in the U.S. Laboratory during Expedition 17

    NASA Image and Video Library

    2008-05-11

    ISS017-E-006668 (11 May 2008) --- NASA astronaut Garrett Reisman, Expedition 17 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  11. Swanson exercises on the CEVIS in the US Lab

    NASA Image and Video Library

    2014-04-22

    ISS039-E-014696 (22 April 2014) --- Expedition 39 Flight Engineer Steve Swanson of NASA, works out on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the U.S. lab Destiny of the International Space Station.

  12. Antonelli and Phillips setup Cycle Ergometer on Middeck (MDDK)

    NASA Image and Video Library

    2009-03-19

    S119-E-006662 (19 March 2009) --- Astronauts Tony Antonelli (left), STS-119 pilot; and John Phillips, mission specialist, pose for a photo on the middeck of Space Shuttle Discovery while docked with the International Space Station.

  13. Personal customizing exercise with a wearable measurement and control unit

    PubMed Central

    Wang, Zhihui; Kiryu, Tohru; Tamura, Naoki

    2005-01-01

    Background Recently, wearable technology has been used in various health-related fields to develop advanced monitoring solutions. However, the monitoring function alone cannot meet all the requirements of customizing machine-based exercise on an individual basis by relying on biosignal-based controls. We propose a new wearable unit design equipped with measurement and control functions to support the customization process. Methods The wearable unit can measure the heart rate and electromyogram signals during exercise performance and output workload control commands to the exercise machines. The workload is continuously tracked with exercise programs set according to personally customized workload patterns and estimation results from the measured biosignals by a fuzzy control method. Exercise programs are adapted by relying on a computer workstation, which communicates with the wearable unit via wireless connections. A prototype of the wearable unit was tested together with an Internet-based cycle ergometer system to demonstrate that it is possible to customize exercise on an individual basis. Results We tested the wearable unit in nine people to assess its suitability to control cycle ergometer exercise. The results confirmed that the unit could successfully control the ergometer workload and continuously support gradual changes in physical activities. Conclusion The design of wearable units equipped with measurement and control functions is an important step towards establishing a convenient and continuously supported wellness environment. PMID:15982425

  14. Influence of Knee Joint Extension on Submaximal Oxygen Consumption and Anaerobic Power in Cyclists

    DTIC Science & Technology

    1991-06-05

    Cycling (pp. 91-122). Champaign, IL: Human Kinetics Books. Cavanagh, P.R. & Kram, R. (1985). Mechanical and muscular factors affecting the efficiency...M.L. (1986). Flexibility standards of the U.S. cycling team. In E.R. Burke (Ed.). Science of Cycling (pp. 47-68). Champaign, IL: Human Kinetics Books...height and pedaling cadence on power output and efficiency. In E.R. Burke (Ed.). Science of Cycling (pp. 69-907). Champaign, IL: Human Kinetics Books

  15. Cycling efficiency in humans is related to low UCP3 content and to type I fibres but not to mitochondrial efficiency.

    PubMed

    Mogensen, M; Bagger, M; Pedersen, P K; Fernström, M; Sahlin, K

    2006-03-15

    The purpose of this study was to investigate the hypothesis that cycling efficiency in vivo is related to mitochondrial efficiency measured in vitro and to investigate the effect of training status on these parameters. Nine endurance trained and nine untrained male subjects (V(O2peak) = 60.4 +/- 1.4 and 37.0 +/- 2.0 ml kg(-1) min(-1), respectively) completed an incremental submaximal efficiency test for determination of cycling efficiency (gross efficiency, work efficiency (WE) and delta efficiency). Muscle biopsies were taken from m. vastus lateralis and analysed for mitochondrial respiration, mitochondrial efficiency (MEff; i.e. P/O ratio), UCP3 protein content and fibre type composition (% MHC I). MEff was determined in isolated mitochondria during maximal (state 3) and submaximal (constant rate of ADP infusion) rates of respiration with pyruvate. The rates of mitochondrial respiration and oxidative phosphorylation per muscle mass were about 40% higher in trained subjects but were not different when expressed per unit citrate synthase (CS) activity (a marker of mitochondrial density). Training status had no influence on WE (trained 28.0 +/- 0.5, untrained 27.7 +/- 0.8%, N.S.). Muscle UCP3 was 52% higher in untrained subjects, when expressed per muscle mass (P < 0.05 versus trained). WE was inversely correlated to UCP3 (r = -0.57, P < 0.05) and positively correlated to percentage MHC I (r = 0.58, P < 0.05). MEff was lower (P < 0.05) at submaximal respiration rates (2.39 +/- 0.01 at 50% V(O2max)) than at state 3 (2.48 +/- 0.01) but was neither influenced by training status nor correlated to cycling efficiency. In conclusion cycling efficiency was not influenced by training status and not correlated to MEff, but was related to type I fibres and inversely related to UCP3. The inverse correlation between WE and UCP3 indicates that extrinsic factors may influence UCP3 activity and thus MEff in vivo.

  16. McArthur exercises on the CEVIS on Expedition 12

    NASA Image and Video Library

    2006-01-03

    ISS012-E-14206 (3 Jan. 2006) --- Astronaut William S. (Bill) McArthur Jr., Expedition 13 commander and NASA space station science officer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  17. Kononenko exercises on the CEVIS in the U.S. Laboratory during Expedition 17

    NASA Image and Video Library

    2008-05-11

    ISS017-E-006662 (11 May 2008) --- Russian Federal Space Agency cosmonaut Oleg Kononenko, Expedition 17 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  18. Energy expenditure evaluation in humans and non-human primates by SenseWear Armband. Validation of energy expenditure evaluation by SenseWear Armband by direct comparison with indirect calorimetry.

    PubMed

    Casiraghi, Francesca; Lertwattanarak, Raweewan; Luzi, Livio; Chavez, Alberto O; Davalli, Alberto M; Naegelin, Terry; Comuzzie, Anthony G; Frost, Patricia; Musi, Nicolas; Folli, Franco

    2013-01-01

    The purpose of this study was to compare and validate the use of SenseWear Armband (SWA) placed on the arm (SWA ARM) and on the back (SWA BACK) in healthy humans during resting and a cycle-ergometer exercise and to evaluate the SWA to estimate Resting Energy Expenditure (REE) and Total Energy Expenditure (TEE) in healthy baboons. We studied 26 (15F/11M) human subjects wearing SWA in two different anatomical sites (arm and back) during resting and a cycle-ergometer test and directly compared these results with indirect calorimetry evaluation (IC), performed at the same time. We then inserted the SWA in a metabolic jacket for baboons and evaluated the TEE and REE in free living condition for 6 days in 21 (8F/13M) non-human primates. In humans we found a good correlation between SWA place on the ARM and on the BACK with IC during the resting experiment (1.1±0.3 SWAs, 1±0.2 IC kcal/min) and a slight underestimation in the SWAs data compared with IC during the cycle-ergometer exercise (5±1.9 SWA ARM, 4.5±1.5 SWA BACK and 5.4±2.1 IC kcal/min). In the non-human primate (baboons) experiment SWA estimated a TEE of 0.54±0.009 kcal/min during free living and a REE of 0.82±0.06 kcal/min. SWA, an extremely simple and inexpensive apparatus, provides quite accurate measurements of energy expenditure in humans and in baboons. Energy expenditure data obtained with SWA are highly correlated with the data obtained with "gold standard", IC, in humans.

  19. Somatotype variables related to strength and power output in male basketball players.

    PubMed

    Buśko, Krzysztof; Pastuszak, Anna; Lipińska, Monika; Lipińska, Marta; Gryko, Karol

    2017-01-01

    The purpose of this study was to investigate the relationship between somatotype, muscular strength, power output measured in maximal cycle ergometer exercise bouts, and maximal power output and height of rise of the body mass centre (jump height) measured in akimbo counter movement jump (ACMJ), counter movement jump (CMJ) and spike jump (SPJ), in male basketball players. Thirteen male basketball players (second division, age 19.4 ± 0.8 years, body height 192.9 ± 5.6 cm, body mass 88.8 ± 8.6 kg, training experience 9.3 ± 0.8 years) participated in the study. Somatotype was determined using the Heath-Carter method. Maximal joint torques were measured under static conditions. Power output was measured in 2 maximal cycle ergometer exercise bouts, 10 seconds each, with increasing external loads equal to 7.5 and 10.0% of the body weight (BW). All jump trials (ACMJ, CMJ and SPJ) were performed on a force plate. The mean somatotype of basketball players amounted to: 2.8-4.2-3.2. The sum of the joint torques for left and right lower extremities (0.613), trunk (0.631) and all six measured muscle groups (0.647) were significantly correlated (p < 0.05) with the mesomorphic component. Endomorphic, mesomorphic and ectomorphic components were correlated insignificantly with values of maximal power and height of jump during ACMJ, CMJ and SPJ trials. The power output measured in maximal cycle ergometer exercise bouts with increasing external loads was significantly correlated (p < 0.05) with mesomorphy and ectomorphy. It can be assumed that basketball players' anthropometric characteristics can influence their level of performance but it is not a decisive factor.

  20. Work and power outputs determined from pedalling and flywheel friction forces during brief maximal exertion on a cycle ergometer.

    PubMed

    Hibi, N; Fujinaga, H; Ishii, K

    1996-01-01

    Work and power outputs during short-term, maximal exertion on a friction loaded cycle ergometer are usually calculated from the friction force applied to the flywheel. The inertia of the flywheel is sometimes taken into consideration, but the effects of internal resistances and other factors have been ignored. The purpose of this study was to estimate their effects by comparing work or power output determined from the force exerted on the pedals (pedalling force) with work or power output determined from the friction force and the moment of inertia of the rotational parts. A group of 22 male college students accelerated a cycle ergometer as rapidly as possible for 3 s. The total work output determined from the pedalling force (TWp) was significantly greater than that calculated from the friction force and the moment of inertia (TWf). Power output determined from the pedalling force during each pedal stroke (SPp) was also significantly greater than that calculated from the friction force and the moment of inertia. Percentage difference (% diff), defined by % diff = ¿(TWp - TWf)/TWf¿ x 100, ranged from 16.8% to 49.3% with a mean value of 30.8 (SD 9.1)%. It was observed that % diff values were higher in subjects with greater TWp or greater maximal SPp. These results would indicate that internal resistances and other factors, such as the deformation of the chain and the vibrations of the entire system, may have significant effects on the measurements of work and power outputs. The effects appear to depend on the magnitudes of pedalling force and pedal velocity.

  1. Effect of water-based recovery on blood lactate removal after high-intensity exercise.

    PubMed

    Lucertini, Francesco; Gervasi, Marco; D'Amen, Giancarlo; Sisti, Davide; Rocchi, Marco Bruno Luigi; Stocchi, Vilberto; Benelli, Piero

    2017-01-01

    This study assessed the effectiveness of water immersion to the shoulders in enhancing blood lactate removal during active and passive recovery after short-duration high-intensity exercise. Seventeen cyclists underwent active water- and land-based recoveries and passive water and land-based recoveries. The recovery conditions lasted 31 minutes each and started after the identification of each cyclist's blood lactate accumulation peak, induced by a 30-second all-out sprint on a cycle ergometer. Active recoveries were performed on a cycle ergometer at 70% of the oxygen consumption corresponding to the lactate threshold (the control for the intensity was oxygen consumption), while passive recoveries were performed with subjects at rest and seated on the cycle ergometer. Blood lactate concentration was measured 8 times during each recovery condition and lactate clearance was modeled over a negative exponential function using non-linear regression. Actual active recovery intensity was compared to the target intensity (one sample t-test) and passive recovery intensities were compared between environments (paired sample t-tests). Non-linear regression parameters (coefficients of the exponential decay of lactate; predicted resting lactates; predicted delta decreases in lactate) were compared between environments (linear mixed model analyses for repeated measures) separately for the active and passive recovery modes. Active recovery intensities did not differ significantly from the target oxygen consumption, whereas passive recovery resulted in a slightly lower oxygen consumption when performed while immersed in water rather than on land. The exponential decay of blood lactate was not significantly different in water- or land-based recoveries in either active or passive recovery conditions. In conclusion, water immersion at 29°C would not appear to be an effective practice for improving post-exercise lactate removal in either the active or passive recovery modes.

  2. Application of force-velocity cycle ergometer test and vertical jump tests in the functional assessment of karate competitor.

    PubMed

    Ravier, G; Grappe, F; Rouillon, J D

    2004-12-01

    The aim of this study was to analyze the links between tests performances (vertical jump and force-velocity sprint on cycle ergometer) and 2 different karate level groups in order to propose a test battery adjusted to karate. Twenty-two karate competitors (10 national junior team (IJ) and 12 national competition level (NL)) performed 4 maximal squat jumps (SJ), 4 maximal counter movement jumps (CMJ) on an ergojump and 3 8-s sprints on a friction braked cycle ergometer (friction loads of 0.5, 0.7, 0.9 N x kg(-1)). The maximal theoretical force (F(0)) and velocity (V(0)), the maximal power output (P(max)) and the optimal pedalling velocity (V(opt)) were derived from both the force -- velocity and the power -- velocity relationships plotted from all the 3 friction loads data. V(0), F(0), V(opt), P(max) and the best SJ and CMJ, were compared between IJ and NL groups. The IJ group was characterised by significantly higher values of V(0) (+13%) and SJ (+14.3%) compared to NL group, whereas no significant difference was observed between groups for F(0). Thus, karate performance would depend on maximal velocity and explosive strength. In addition, V(opt) was significantly higher in IJ group compared to NL group (135.4 rpm vs 119.2 rpm, p<0.001). Although based upon indirect evidence, these results accounted for mechanical functional capabilities of experts which could be particularly valuable when monitoring training of karate competitor. A force-velocity and a vertical jump tests may be applied in the functional assessment of karate competitor.

  3. High-Intensity Interval Exercises' Acute Impact on Heart Rate Variability: Comparison Between Whole-Body and Cycle Ergometer Protocols.

    PubMed

    Schaun, Gustavo Z; Del Vecchio, Fabrício B

    2018-01-01

    Schaun, GZ and Del Vecchio, FB. High-intensity interval exercises' acute impact on heart rate variability: comparison between whole-body and cycle ergometer protocols. J Strength Cond Res 32(1): 223-229, 2018-Study aimed to compare the effects of 2 high-intensity interval training (HIIT) protocols on heart rate variability. Twelve young adult males (23.3 ± 3.9 years, 177.8 ± 7.4 cm, 76.9 ± 12.9 kg) volunteered to participate. In a randomized cross-over design, subjects performed 2 HIIT protocols, 1 on a cycle ergometer (Tabata protocol [TBT]; eight 20-second bouts at 170% Pmax interspersed by 10-second rest) and another with whole-body calisthenic exercises (McRae protocol; eight 20-second all-out intervals interspersed by 10-second rest). Heart rate variability outcomes in the time, frequency, and nonlinear domains were assessed on 3 moments: (a) presession; (b) immediately postsession; and (c) 24 hours postsession. Results revealed that RRmean, Ln rMSSD, Ln high frequency (HF), and Ln low frequency (LF) were significantly reduced immediately postsession (p ≤ 0.001) and returned to baseline 24 h after both protocols. In addition, LF/HF ratio was reduced 24 h postsession (p ≤ 0.01) and SD2 was significantly lower immediately postsession only in TBT. Our main finding was that responses from heart rate autonomic control were similar in both protocols, despite different modes of exercise performed. Specifically, exercises resulted in a high parasympathetic inhibition immediately after session with subsequent recovery within 1 day. These results suggest that subjects were already recovered the day after and can help coaches to better program training sessions with such protocols.

  4. Dual-cycle ergometry as an exercise modality during prebreathe with 100 percent oxygen

    NASA Technical Reports Server (NTRS)

    Heaps, Cristine L.; Fischer, Michele D.; Webb, James T.

    1994-01-01

    In an effort to reduce prebreathe time requirements prior to extravehicular activities and high-altitude flights, a combined arm and leg exercise task proposes to enhance denitrogenation by incorporation of both upper and lower body musculature at a moderately high work intensity during prebreathe with 100% oxygen. Preliminary findings indicated peak oxygen consumption (VO2peak) levels attained on the dual-cycle ergometer do not differ significantly from those levels attained on the treadmill. Eight male subjects were exercised to VO2peak using leg-only cycle ergometry and dual-cycle ergometry on separate days. Preliminary data during dual-cycle ergometry showed arm work equaling 30% of the leg workrate at each stage of the incremental test resulted in arm fatigue in several subjects and a reduced VO2peak compared to dual-cycle ergometry with arm work at 20%. Thus, the 20% workrate was used during the dual-cycle VO2peak trial. On a third experimental day, subjects performed a 10 minute exercise test at a workrate required to elicit 75% of VO2peak for each subject on the dual-cycle ergometer. Blood lactate response to the exercise was monitored as an objective measure of fatigue. Peak VO2 levels attained on the leg-only and the dual-cycle ergometry tasks were not significantly different. Blood lactate levels were significantly elevated following the dual-cycle ergometry at 75% VO2peak. However, lactate levels show the expected rate of decline during recovery and, as demonstrated in the literature, should return to baseline levels within 30 minutes following exercise cessation. Thus, dual-cycle ergometry at 75% VO2peak appears to be a valid exercise for use during prebreathe and should not contribute to fatigue during subsequent EVA's.

  5. FOOT experiment (Foot/Ground Reaction Forces during Space Flight)

    NASA Image and Video Library

    2005-06-29

    ISS011-E-09822 (29 June 2005) --- Astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, uses the Cycle Ergometer with Vibration Isolation System (CEVIS) while participating in the Foot/Ground Reaction Forces During Spaceflight (FOOT) experiment in the Destiny laboratory of the International Space Station. Phillips wore the specially instrumented Lower Extremity Monitoring Suit (LEMS), cycling tights outfitted with sensors, during the experiment.

  6. Understanding the meaning of lactate threshold in resistance exercises.

    PubMed

    Garnacho-Castaño, M V; Dominguez, R; Maté-Muñoz, J L

    2015-05-01

    This study compares acute cardiorespiratory, metabolic, mechanical and rating of perceived effort (RPE) responses to 2 different prolonged constant-load exercises, half-squat (HS) and cycle ergometry, performed at a workload corresponding to the lactate threshold (LT). A total of 18 healthy subjects completed 5 exercise tests separated by 48 h rest periods: an incremental cycle ergometer test, a constant-load cycle ergometer test at LT intensity, a one-repetition maximum (1RM) HS test, an incremental HS test and a constant-load HS test at LT intensity. In both constant-load tests, cardiorespiratory, metabolic and RPE data were recorded. Mechanical responses before and after each test were assessed in terms of jump height and mean power measured in a counter movement jump (CMJ) test. In both exercises, cardiorespiratory and metabolic responses stabilized, though cardiorespiratory responses were significantly greater for cycle ergometry (P<0.001), with the exception of respiratory exchange ratio (RER), which was higher for HS (P=0.028). Mechanical fatigue was observed in only HS (P<0.001). In conclusion, different exercise modalities induced different yet stable acute cardiorespiratory and metabolic responses. Although such responses were significantly reduced in HS, greater mechanical fatigue was produced, most likely because of the particular muscle actions involved in this form of exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Endogenous pain modulation in response to exercise in patients with rheumatoid arthritis, patients with chronic fatigue syndrome and comorbid fibromyalgia, and healthy controls: a double-blind randomized controlled trial.

    PubMed

    Meeus, Mira; Hermans, Linda; Ickmans, Kelly; Struyf, Filip; Van Cauwenbergh, Deborah; Bronckaerts, Laura; De Clerck, Luc S; Moorken, Greta; Hans, Guy; Grosemans, Sofie; Nijs, Jo

    2015-02-01

    Temporal summation (TS) of pain, conditioned pain modulation (CPM), and exercise-induced analgesia (EIA) are often investigated in chronic pain populations as an indicator for enhanced pain facilitation and impaired endogenous pain inhibition, respectively, but interactions are not yet clear both in healthy controls and in chronic pain patients. Therefore, the present double-blind randomized placebo-controlled study evaluates pains cores, TS, and CPM in response to exercise in healthy controls, patients with chronic fatigue syndrome and comorbid fibromyalgia (CFS/FM), and patients with rheumatoid arthritis (RA), both under placebo and paracetamol condition. Fifty-three female volunteers - of which 19 patients with CFS/FM, 16 patients with RA, and 18 healthy controls - underwent a submaximal exercise test on a bicycle ergometer on 2 different occasions (paracetamol vs. placebo), with an interval of 7 days. Before and after exercise, participants rated pain intensity during TS and CPM. Patients with rheumatoid arthritis showed decreased TS after exercise, both after paracetamol and placebo (P < 0.05). In patients with CFS/FM, results were less univocal. A nonsignificant decrease in TS was only observed after taking paracetamol. CPM responses to exercise are inconclusive, but seem to worsen after exercise. No adverse effects were seen. This study evaluates pain scores, TS, and CPM in response to submaximal exercise in 2 different chronic pain populations and healthy controls. In patients with RA, exercise had positive effects on TS, suggesting normal EIA. In patients with CFS/FM, these positive effects were only observed after paracetamol and results were inconsistent. © 2014 World Institute of Pain.

  8. Cardiorespiratory responses to exercise after bed rest in men and women.

    PubMed

    Convertino, V A; Stremel, R W; Bernauer, E M; Greenleaf, J E

    1977-01-01

    The purpose of this study was to compare cardiorespiratory responses of men and women to submaximal and maximal workloads before and after bed rest (BR). Fifteen male college students (19-23 yr) and 8 female nurses (23-34 yr) underwent 14 d and 17 d, respectively of bed rest. The maximal work capacity test was performed in the supine position on a bicycle ergometer just before and immediately after bed rest. The women's maximal O2 uptake (maximal VO2) was 41% lower (P<0.05) than the men's before bed rest and 42% lower (P<0.05) after bed rest. During bed rest the women's maximal VO2 decreased from 2.06 to 1.86 liter/min (-9.7%, P<0.05), and that of the men decreased from 3.52 to 3.20 liter/min (-9.1%, P<0.05). Compared with pre-BR values, after bed rest the maximal ventilatory volume was essentially unchanged in the men (+1.8%) and women (+ 2.3%), but maximal heart rate was elevated from 185 to 193 b/min (+ 4.3%, P<0.05) in the men and from 181 to 187 b/min (3.3%, P<0.05) in the women. Submaximal VO2 was unchanged after bed rest in the men but was significantly reduced in the women; the women's Hct and RBC levels were lower (P<0.05) than comparable male data. Mean corpuscular volume was unchanged in both groups pre- and post-bed rest. It is concluded that the proportional deterioration in maximal VO2 following prolonged bed rest was essentially the same in young men and women.

  9. Metformin improves performance in high-intensity exercise, but not anaerobic capacity in healthy male subjects.

    PubMed

    Learsi, S K; Bastos-Silva, V J; Lima-Silva, A E; Bertuzzi, R; De Araujo, G G

    2015-10-01

    The aim of this study was to determine the ergogenic effects of metformin in high-intensity exercise, as well as its effects on anaerobic capacity, in healthy and physically active men. Ten subjects (mean (± standard deviation) maximal oxygen uptake (V˙O2max ) 38.6 ± 4.5 mL/kg per min) performed the following tests in a cycle ergometer: (i) an incremental test; (ii) six submaximal constant workload tests at 40%-90% (V˙O2max ); and (iii) two supramaximal tests (110% (V˙O2max ). Metformin (500 mg) or placebo was ingested 60 min before the supramaximal test. There were no significant differences between the placebo and metformin groups in terms of maximum accumulated oxygen deficit (2.8 ± 0.6 vs 3.0 ± 0.8 L, respectively; P = 0.08), lactate concentrations (7.8 ± 2.6 vs 7.5 ± 3.0 mmol/L, respectively; P = 0.75) or O2 consumed in either the last 30 s of exercise (40.4 ± 4.4 vs 39.9 ± 4.0 mL/kg per min, respectively; P = 0.35) or the first 110 s of exercise (29.0 ± 2.5 vs 29.5 ± 3.0 mL/kg per min, respectively; P = 0.42). Time to exhaustion was significantly higher after metformin than placebo ingestion (191 ± 33 vs 167 ± 32 s, respectively; P = 0.001). The fast component of V˙O2 recovery was higher in the metformin than placebo group (12.71 vs 12.18 mL/kg per min, respectively; P = 0.025). Metformin improved performance and anaerobic alactic contribution during high-intensity exercise, but had no effect on overall anaerobic capacity in healthy subjects. © 2015 Wiley Publishing Asia Pty Ltd.

  10. Effect of high-intensity interval exercise on lipid oxidation during postexercise recovery.

    PubMed

    Malatesta, Davide; Werlen, Catherine; Bulfaro, Stefano; Chenevière, Xavier; Borrani, Fabio

    2009-02-01

    The aim of this study was to examine whether lipid oxidation predominates during 3 h of postexercise recovery in high-intensity interval exercise as compared with moderate-intensity continuous exercise on a cycle ergometer in fit young men (n = 12; 24.6 +/- 0.6 yr). The energy substrate partitioning was evaluated during and after high-intensity submaximal interval exercise (INT, 1-min intervals at 80% of maximal aerobic power output [Wmax] with an intervening 1 min of active recovery at 40% Wmax) and 60-min moderate-intensity continuous exercise at 45% of maximal oxygen uptake (C45%) as well as a time-matched resting control trial (CON). Exercise bouts were matched for mechanical work output. During exercise, a significantly greater contribution of CHO and a lower contribution of lipid to energy expenditure were found in INT (512.7 +/- 26.6 and 41.0 +/- 14.0 kcal, respectively) than in C45% (406.3 +/- 21.2 and 170.3 +/- 24.0 kcal, respectively; P < 0.001) despite similar overall energy expenditure in both exercise trials (P = 0.13). During recovery, there were no significant differences between INT and C45% in substrate turnover and oxidation (P > 0.05). On the other hand, the mean contribution of lipids to energy yield was significantly higher after exercise trials (C45% = 61.3 +/- 4.2 kcal; INT = 66.7 +/- 4.7 kcal) than after CON (51.5 +/- 3.4 kcal; P < 0.05). These findings show that lipid oxidation during postexercise recovery was increased by a similar amount on two isoenergetic exercise bouts of different forms and intensities compared with the time-matched no-exercise control trial.

  11. The six-minute walk test predicts cardiorespiratory fitness in individuals with aneurysmal subarachnoid hemorrhage.

    PubMed

    Harmsen, Wouter J; Ribbers, Gerard M; Slaman, Jorrit; Heijenbrok-Kal, Majanka H; Khajeh, Ladbon; van Kooten, Fop; Neggers, Sebastiaan J C M M; van den Berg-Emons, Rita J

    2017-05-01

    Peak oxygen uptake (VO 2peak ) established during progressive cardiopulmonary exercise testing (CPET) is the "gold-standard" for cardiorespiratory fitness. However, CPET measurements may be limited in patients with aneurysmal subarachnoid hemorrhage (a-SAH) by disease-related complaints, such as cardiovascular health-risks or anxiety. Furthermore, CPET with gas-exchange analyses require specialized knowledge and infrastructure with limited availability in most rehabilitation facilities. To determine whether an easy-to-administer six-minute walk test (6MWT) is a valid clinical alternative to progressive CPET in order to predict VO 2peak in individuals with a-SAH. Twenty-seven patients performed the 6MWT and CPET with gas-exchange analyses on a cycle ergometer. Univariate and multivariate regression models were made to investigate the predictability of VO 2peak from the six-minute walk distance (6MWD). Univariate regression showed that the 6MWD was strongly related to VO 2peak (r = 0.75, p < 0.001), with an explained variance of 56% and a prediction error of 4.12 ml/kg/min, representing 18% of mean VO 2peak . Adding age and sex to an extended multivariate regression model improved this relationship (r = 0.82, p < 0.001), with an explained variance of 67% and a prediction error of 3.67 ml/kg/min corresponding to 16% of mean VO 2peak . The 6MWT is an easy-to-administer submaximal exercise test that can be selected to estimate cardiorespiratory fitness at an aggregated level, in groups of patients with a-SAH, which may help to evaluate interventions in a clinical or research setting. However, the relatively large prediction error does not allow for an accurate prediction in individual patients.

  12. Influence of moderate training on gait and work capacity of fibromyalgia patients: a preliminary field study.

    PubMed

    Tiidus, Peter M; Pierrynowski, Michael; Dawson, Kimberley A

    2002-12-01

    This field study examined the influence of moderate intensity training on gait patterns and work capacity of individuals with fibromyalgia syndrome (FS). FS is a chronic condition of unknown etiology, characterized by muscle tenderness, pain and stiffness and often accompanied by depression and fatigue which seems to occur primarily in middle aged females. There is no known cure for FS but treatment often includes a prescription of mild exercise. Few studies have evaluated the effectiveness of mild exercise on work capacity and gait patterns in FS patients. Participants were 14 females (age 47.0 ± 7.6 y) who participated in a 10 wk community based aerobic, strength and stretching program designed for FS individuals. Subjects were evaluated pre- and post-program and at a 2 month follow up. Work capacity was estimated by a sub-maximal PWC 170 cycle ergometer test and a Borg perceived exertion scale. Gait was assessed using OptoTrack three dimensional kinematics with 16 channel analogue data acquisition system. Trunk flexibility was also assessed. No significant change in estimated work capacity or flexibility was seen between pre- post- and follow up times. Nevertheless, a significant increase in self selected walking speed (p < 0.05) and a trend toward a more normal gait pattern that was sustained in the follow up testing was noted. We had previously also reported a significant improvement in muscle pain and other fibromyalgia symptoms in this population consequent to the training program. It was concluded that mild exercise training that does not influence work capacity or trunk flexibility can nevertheless positively influence gait mechanics and fibromyalgia symptoms in female FS patients.

  13. Influence of Moderate Training on Gait and Work Capacity of Fibromyalgia Patients: A Preliminary Field Study

    PubMed Central

    Tiidus, Peter M.; Pierrynowski, Michael; Dawson, Kimberley A.

    2002-01-01

    This field study examined the influence of moderate intensity training on gait patterns and work capacity of individuals with fibromyalgia syndrome (FS). FS is a chronic condition of unknown etiology, characterized by muscle tenderness, pain and stiffness and often accompanied by depression and fatigue which seems to occur primarily in middle aged females. There is no known cure for FS but treatment often includes a prescription of mild exercise. Few studies have evaluated the effectiveness of mild exercise on work capacity and gait patterns in FS patients. Participants were 14 females (age 47.0 ± 7.6 y) who participated in a 10 wk community based aerobic, strength and stretching program designed for FS individuals. Subjects were evaluated pre- and post-program and at a 2 month follow up. Work capacity was estimated by a sub-maximal PWC 170 cycle ergometer test and a Borg perceived exertion scale. Gait was assessed using OptoTrack three dimensional kinematics with 16 channel analogue data acquisition system. Trunk flexibility was also assessed. No significant change in estimated work capacity or flexibility was seen between pre- post- and follow up times. Nevertheless, a significant increase in self selected walking speed (p < 0.05) and a trend toward a more normal gait pattern that was sustained in the follow up testing was noted. We had previously also reported a significant improvement in muscle pain and other fibromyalgia symptoms in this population consequent to the training program. It was concluded that mild exercise training that does not influence work capacity or trunk flexibility can nevertheless positively influence gait mechanics and fibromyalgia symptoms in female FS patients. PMID:24748843

  14. Cardiorespiratory optimal point during exercise testing as a predictor of all-cause mortality.

    PubMed

    Ramos, Plínio S; Araújo, Claudio Gil S

    2017-04-01

    The cardiorespiratory optimal point (COP) is a novel index, calculated as the minimum oxygen ventilatory equivalent (VE/VO 2 ) obtained during cardiopulmonary exercise testing (CPET). In this study we demonstrate the prognostic value of COP both independently and in combination with maximum oxygen consumption (VO 2 max) in community-dwelling adults. Maximal cycle ergometer CPET was performed in 3331 adults (66% men) aged 40-85 years, healthy (18%) or with chronic disease (81%). COP cut-off values of <22, 22-30, and >30 were selected based on the log-rank test. Risk discrimination was assessed using COP as an independent predictor and combined with VO 2 max. Median follow-up was 6.4 years (7.1% mortality). Subjects with COP >30 demonstrated increased mortality compared to those with COP <22 (hazard ratio [HR] 6.86, 95% confidence interval [CI] 3.69-12.75, p<0.001). Multivariate analysis including gender, age, body mass index, and the forced expiratory volume in 1 s/vital capacity ratio showed adjusted HR for COP >30 of 3.72 (95% CI 1.98-6.98; p<0.001) and for COP 22-30 of 2.15 (95% CI 1.15-4.03, p<0.001). Combining COP and VO 2 max data further enhanced risk discrimination. COP >30, either independently or in combination with low VO 2 max, is a good predictor of all-cause mortality in community-dwelling adults (healthy or with chronic disease). COP is a submaximal prognostic index that is simple to obtain and adds to CPET assessment, especially for adults unable or unwilling to achieve maximal exercise. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Rehabilitation After International Space Station Flights

    NASA Technical Reports Server (NTRS)

    Chauvin, S. J.; Shepherd, B. A. S.; Guilliams, M. E.; Taddeo, T.

    2003-01-01

    Rehabilitating U.S. crew members to preflight status following flights on the Russian Mir Space Station required longer than six months for full functional recovery of some of the seven crew members. Additional exercise hardware has been added on the International Space Station as well as a rehabilitative emphasis on functional fitness/agility and proprioception. The authors will describe and present the results of the rehabilitation program for ISS and evaluate rehabilitative needs for longer missions. Pre- and in-flight programs emphasize strength and aerobic conditioning. One year before launch, crew members are assigned an Astronaut Strength and Conditioning specialist. Crew members are scheduled for 2 hours, 3 days a week, for pre-flight training and 2.5 hours, six days a week, for in-flight training. Crewmembers are tested on functional fitness, agility, isokinetic strength, and submaximal cycle ergometer evaluation before and after flight. The information from these tests is used for exercise prescriptions, comparison, and evaluation of the astronaut and training programs. The rehabilitation program lasts for 45 days and is scheduled for 2 hours during each crew workday. Phase 1 of the rehabilitation program starts on landing day and places emphasis on ambulation, flexibility, and muscle strengthening. Phase 2 adds proprioceptive exercise and cardiovascular conditioning. Phase 3 (the longest phase) focuses on functional development. All programs are tailored specifically for each individual according to their test results, preferred recreational activities, and mission roles and duties. Most crew members reached or exceeded their preflight test values 45 days after flight. Some crew members subjectively indicated the need for a longer rehabilitation period. The current rehabilitation program for returning ISS crew members seems adequate in content but may need to be extended for longer expeditions.

  16. Fitness attenuates the prevalence of increased coronary artery calcium in individuals with metabolic syndrome.

    PubMed

    Ekblom-Bak, Elin; Ekblom, Örjan; Fagman, Erika; Angerås, Oskar; Schmidt, Caroline; Rosengren, Annika; Börjesson, Mats; Bergström, Göran

    2018-02-01

    Background The association between cardiorespiratory fitness, physical activity and coronary artery calcium (CAC) is unclear, and whether higher levels of fitness attenuate CAC prevalence in subjects with metabolic syndrome is not fully elucidated. The present study aims to: a) investigate the independent association of fitness on the prevalence of CAC, after adjustment for moderate-to-vigorous physical activity and sedentary time, and b) study the possible attenuation of increased CAC by higher fitness, in participants with metabolic syndrome. Design Cross-sectional. Methods In total 678 participants (52% women), 50-65 years old, from the SCAPIS pilot study were included. Fitness (VO 2 max) was estimated by submaximal cycle ergometer test and moderate-to-vigorous physical activity and sedentary time were assessed using hip-worn accelerometers. CAC score (CACS) was quantified using the Agatston score. Results The odds of having a significant CACS (≥100) was half in participants with moderate/high fitness compared with their low fitness counterparts. Further consideration of moderate-to-vigorous physical activity, sedentary time and number of components of the metabolic syndrome did only slightly alter the effect size. Those with metabolic syndrome had 47% higher odds for significant CAC compared with those without metabolic syndrome. However, moderate/high fitness seems to partially attenuate this risk, as further joint analysis indicated an increased odds for having significant CAC only in the unfit metabolic syndrome participants. Conclusions Being fit is associated with a reduced risk of having significant CAC in individuals with metabolic syndrome. While still very much underutilized, fitness should be taken into consideration in everyday clinical risk prediction in addition to the traditional risk factors of the metabolic syndrome.

  17. Cardiorespiratory and neuromuscular deconditioning in fatigued and non-fatigued breast cancer survivors.

    PubMed

    Neil, Sarah E; Klika, Riggs J; Garland, S Jayne; McKenzie, Donald C; Campbell, Kristin L

    2013-03-01

    Fatigue is one of the most commonly reported side effects during treatment for breast cancer and can persist following treatment completion. Cancer-related fatigue after treatment is multifactorial in nature, and one hypothesized mechanism is cardiorespiratory and neuromuscular deconditioning. The purpose of this study was to compare cardiorespiratory and neuromuscular function in breast cancer survivors who had completed treatment and met the specified criteria for cancer-related fatigue and a control group of breast cancer survivors without fatigue. Participants in the fatigue (n = 16) and control group (n = 11) performed a maximal exercise test on a cycle ergometer for determination of peak power, power at lactate threshold, and VO(2) peak. Neuromuscular fatigue was induced with a sustained submaximal contraction of the right quadriceps. Central fatigue (failure of voluntary activation) was evaluated using twitch interpolation, and peripheral fatigue was measured with an electrically evoked twitch. Power at lactate threshold was lower in the fatigue group (p = 0.05). There were no differences between groups for power at lactate threshold as percentage of peak power (p = 0.10) or absolute or relative VO(2) peak (p = 0.08 and 0.33, respectively). When adjusted for age, the fatigue group had a lower power at lactate threshold (p = 0.02) and absolute VO(2) peak (p = 0.03). There were no differences between groups in change in any neuromuscular parameters after the muscle-fatiguing protocol. Findings support the hypothesis that cardiorespiratory deconditioning may play a role in the development and persistence of cancer-related fatigue following treatment. Future research into the use of exercise training to reduce cardiorespiratory deconditioning as a treatment for cancer-related fatigue is warranted to confirm these preliminary findings.

  18. Crossover and maximal fat-oxidation points in sedentary healthy subjects: methodological issues.

    PubMed

    Gmada, N; Marzouki, H; Haboubi, M; Tabka, Z; Shephard, R J; Bouhlel, E

    2012-02-01

    Our study aimed to assess the influence of protocol on the crossover point and maximal fat-oxidation (LIPOX(max)) values in sedentary, but otherwise healthy, young men. Maximal oxygen intake was assessed in 23 subjects, using a progressive maximal cycle ergometer test. Twelve sedentary males (aged 20.5±1.0 years) whose directly measured maximal aerobic power (MAP) values were lower than their theoretical maximal values (tMAP) were selected from this group. These individuals performed, in random sequence, three submaximal graded exercise tests, separated by three-day intervals; work rates were based on the tMAP in one test and on MAP in the remaining two. The third test was used to assess the reliability of data. Heart rate, respiratory parameters, blood lactate, the crossover point and LIPOX(max) values were measured during each of these tests. The crossover point and LIPOX(max) values were significantly lower when the testing protocol was based on tMAP rather than on MAP (P<0.001). Respiratory exchange ratios were significantly lower with MAP than with tMAP at 30, 40, 50 and 60% of maximal aerobic power (P<0.01). At the crossover point, lactate and 5-min postexercise oxygen consumption (EPOC(5 min)) values were significantly higher using tMAP rather than MAP (P<0.001). During the first 5 min of recovery, EPOC(5 min) and blood lactate were significantly correlated (r=0.89; P<0.001). Our data show that, to assess the crossover point and LIPOX(max) values for research purposes, the protocol must be based on the measured MAP rather than on a theoretical value. Such a determination should improve individualization of training for initially sedentary subjects. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  19. Cardiorespiratory fitness and nutritional status of schoolchildren: 30-year evolution.

    PubMed

    Moraes Ferrari, Gerson Luis de; Bracco, Mario Maia; Matsudo, Victor K Rodrigues; Fisberg, Mauro

    2013-01-01

    To compare the changes in cardiorespiratory fitness in evaluations performed every ten years since 1978/1980, according to the nutritional status and gender of students in the city of Ilhabela, Brazil. The study is part of the Mixed Longitudinal Project on Growth, Development and Physical Fitness of Ilhabela. The study included 1,291 students of both genders, aged 10 to 11 years old. The study periods were: 1978/1980, 1988/1990, 1998/2000, and 2008/2010. The variables analyzed were: body weight, height, and cardiorespiratory fitness (VO2max - L.min-1 and mL.kg-1.min-1) performed using a submaximal progressive protocol on a cycle ergometer. Individuals were classified as normal weight and overweight according to curves proposed by the World Health Organization of body mass index for age and gender. Analysis of variance (ANOVA) with three factors followed by the Bonferroni method were used to compare the periods. The number of normal weight individuals (61%) was higher than that of overweight. There was a significant decrease in cardiorespiratory fitness in both genders. Among the schoolchildren with normal weight, there was a decrease of 22% in males and 26% in females. In overweight schoolchildren, males showed a decrease of 12.7% and females, of 18%. During a 30-year analysis with reviews every ten years from 1978/1980, there was a significant decrease in cardiorespiratory fitness in schoolchildren of both genders, which cannot be explained by the nutritional status. The decline in cardiorespiratory fitness was greater in individuals with normal weight than in overweight individuals. Copyright © 2013 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  20. Whitson exercises on the CEVIS in the U.S. Laboratory during Joint Operations

    NASA Image and Video Library

    2008-03-23

    S123-E-008961 (23 March 2008) --- Astronaut Peggy Whitson, Expedition 16 commander, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station while Space Shuttle Endeavour remains docked with the station.

  1. FE Anderson exercising on the CEVIS during STS-118/Expedition 15 Joint Operations

    NASA Image and Video Library

    2007-08-16

    S118-E-07657 (16 Aug. 2007) --- Astronaut Clayton Anderson, Expedition 15 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station while Space Shuttle Endeavour remains docked with the station.

  2. Rowing Crew Coordination Dynamics at Increasing Stroke Rates

    PubMed Central

    2015-01-01

    In rowing, perfect synchronisation is important for optimal performance of a crew. Remarkably, a recent study on ergometers demonstrated that antiphase crew coordination might be mechanically more efficient by reducing the power lost to within-cycle velocity fluctuations of the boat. However, coupled oscillator dynamics predict the stability of the coordination to decrease with increasing stroke rate, which in case of antiphase may eventually yield breakdowns to in-phase. Therefore, this study examined the effects of increasing stroke rate on in- and antiphase crew coordination in rowing dyads. Eleven experienced dyads rowed on two mechanically coupled ergometers on slides, which allowed the ergometer system to move back and forth as one ‘boat’. The dyads performed a ramp trial in both in- and antiphase pattern, in which stroke rates gradually increased from 30 strokes per minute (spm) to as fast as possible in steps of 2 spm. Kinematics of rowers, handles and ergometers were captured. Two dyads showed a breakdown of antiphase into in-phase coordination at the first stroke rate of the ramp trial. The other nine dyads reached between 34–42 spm in antiphase but achieved higher rates in in-phase. As expected, the coordinative accuracy in antiphase was worse than in in-phase crew coordination, while, somewhat surprisingly, the coordinative variability did not differ between the patterns. Whereas crew coordination did not substantially deteriorate with increasing stroke rate, stroke rate did affect the velocity fluctuations of the ergometers: fluctuations were clearly larger in the in-phase pattern than in the antiphase pattern, and this difference significantly increased with stroke rate. Together, these results suggest that although antiphase rowing is less stable (i.e., less resistant to perturbation), potential on-water benefits of antiphase over in-phase rowing may actually increase with stroke rate. PMID:26185987

  3. Strength training alters MCT1-protein expression and exercise-induced translocation in erythrocytes of men with non-insulin-dependent type-2 diabetes.

    PubMed

    Opitz, David; Kreutz, Thorsten; Lenzen, Edward; Dillkofer, Benedict; Wahl, Patrick; Montiel-Garcia, Gracia; Graf, Christine; Bloch, Wilhelm; Brixius, Klara

    2014-03-01

    We investigated the cellular distribution of lactate transporter (MCT1) and its chaperone CD147 (using immunohistochemistry and fluorescence-activated cell sorting) in the erythrocytes of men with non-insulin-dependent type-2 diabetes (NIDDM, n = 11, 61 ± 8 years of age) under acute exercise (ergometer cycling test, World Health Organisation scheme) performed before and after a 3-month strength training program. Cytosolic MCT1 distribution and membraneous CD147 density did not change after acute exercise (ergometer). After the 3-month strength training, MCT1-density was increased and the reaction of MCT1 (but not that of CD147) towards acute exercise (ergometer) was altered. MCT1 localisation was shifted from the centre to the cellular membrane. This resulted in a decrease in the immunohistochemically measured cytosolic MCT1-density. We conclude that strength training alters the acute exercise reaction of MCT1 but not that of CD147 in erythrocytes in patients with NIDDM. This reaction may contribute to long-term normalisation and stabilisation of the regulation of lactate plasma concentration in NIDDM.

  4. Effects of Early Bedside Cycle Exercise on Intracranial Pressure and Systemic Hemodynamics in Critically Ill Patients in a Neurointensive Care Unit.

    PubMed

    Thelandersson, Anneli; Nellgård, Bengt; Ricksten, Sven-Erik; Cider, Åsa

    2016-12-01

    Physiotherapy is an important part of treatment after severe brain injuries and stroke, but its effect on intracranial and systemic hemodynamics is minimally investigated. Therefore, the aim of this study was to assess the effects of an early bedside cycle exercise on intracranial and systemic hemodynamics in critically ill patients when admitted to a neurointensive care unit (NICU). Twenty critically ill patients suffering from brain injuries or stroke were included in this study performed in the NICU at Sahlgrenska University Hospital. One early implemented exercise session was performed using a bedside cycle ergometer for 20 min. Intracranial and hemodynamic variables were measured two times before, three times during, and two times after the bedside cycling exercise. Analyzed variables were intracranial pressure (ICP), cerebral perfusion pressure (CPP), mean arterial blood pressure (MAP), heart rate (HR), peripheral oxygen saturation (SpO 2 ), cardiac output (CO), stroke volume (SV), and stroke volume variation (SVV). The cycling intervention was conducted within 7 ± 5 days after admission to the NICU. Cycle exercise increased MAP (p = 0.029) and SV (p = 0.003) significantly. After exercise CO, SV, MAP, and CPP decreased significantly, while no changes in HR, SVV, SpO 2 , or ICP were noted when compared to values obtained during exercise. There were no differences in data obtained before versus after exercise. Early implemented exercise with a bedside cycle ergometer, for patients with severe brain injuries or stroke when admitted to a NICU, is considered to be a clinically safe procedure.

  5. Eyharts Exercises on the CEVIS in the US Lab

    NASA Image and Video Library

    2008-03-16

    ISS016-E-032805 (16 March 2008) --- European Space Agency (ESA) astronaut Leopold Eyharts, Expedition 16 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station while Space Shuttle Endeavour (STS-123) remains docked with the station.

  6. Williams during the PFE-OUM Experiment in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-05-24

    ISS015-E-09461 (24 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) during a Periodic Fitness Evaluation with Oxygen Uptake Measurement (PFE-OUM) experiment in the Destiny laboratory of the International Space Station.

  7. Analog Exercise Hardware to Implement a High Intensity Exercise Program During Bed Rest

    NASA Technical Reports Server (NTRS)

    Loerch, Linda; Newby, Nate; Ploutz-Snyder, Lori

    2012-01-01

    Background: In order to evaluate novel countermeasure protocols in a space flight analog prior to validation on the International Space Station (ISS), NASA's Human Research Program (HRP) is sponsoring a multi-investigator bedrest campaign that utilizes a combination of commercial and custom-made exercise training hardware to conduct daily resistive and aerobic exercise protocols. This paper will describe these pieces of hardware and how they are used to support current bedrest studies at NASA's Flight Analog Research Unit in Galveston, TX. Discussion: To implement candidate exercise countermeasure studies during extended bed rest studies the following analog hardware are being utilized: Stand alone Zero-Gravity Locomotion Simulator (sZLS) -- a custom built device by NASA, the sZLS allows bedrest subjects to remain supine as they run on a vertically-oriented treadmill (0-15 miles/hour). The treadmill includes a pneumatic subject loading device to provide variable body loading (0-100%) and a harness to keep the subject in contact with the motorized treadmill to provide a ground reaction force at their feet that is quantified by a Kistler Force Plate. Supine Cycle Ergometer -- a commercially available supine cycle ergometer (Lode, Groningen, Netherlands) is used for all cycle ergometer sessions. The ergometer has adjustable shoulder supports and handgrips to help stabilize the subject during exercise. Horizontal Squat Device (HSD) -- a custom built device by Quantum Fitness Corp (Stafford, TX), the HSD allows for squat exercises to be performed while lying in a supine position. The HSD can provide 0 to 600 pounds of force in selectable 5 lb increments, and allows hip translation in both the vertical and horizontal planes. Prone Leg Curl -- a commercially available prone leg curl machine (Cybex International Inc., Medway, MA) is used to complete leg curl exercises. Horizontal Leg Press -- a commercially available horizontal leg press (Quantum Fitness Corporation) is used for leg press and heel raise exercises. Minor modifications were made to the device including adding 200 lbs to the weight stack, raising the frame by 12 inches, making the footplate adjustable, and providing removable handles. Conclusion: A combination of novel and commercial exercise hardware are used to mimic the exercise hardware capabilities aboard the ISS, allowing scientific investigation of new countermeasure protocols in a space flight analog prior to flight validation

  8. Influence of respiratory muscle work on VO(2) and leg blood flow during submaximal exercise.

    PubMed

    Wetter, T J; Harms, C A; Nelson, W B; Pegelow, D F; Dempsey, J A

    1999-08-01

    The work of breathing (W(b)) normally incurred during maximal exercise not only requires substantial cardiac output and O(2) consumption (VO(2)) but also causes vasoconstriction in locomotor muscles and compromises leg blood flow (Q(leg)). We wondered whether the W(b) normally incurred during submaximal exercise would also reduce Q(leg). Therefore, we investigated the effects of changing the W(b) on Q(leg) via thermodilution in 10 healthy trained male cyclists [maximal VO(2) (VO(2 max)) = 59 +/- 9 ml. kg(-1). min(-1)] during repeated bouts of cycle exercise at work rates corresponding to 50 and 75% of VO(2 max). Inspiratory muscle work was 1) reduced 40 +/- 6% via a proportional-assist ventilator, 2) not manipulated (control), or 3) increased 61 +/- 8% by addition of inspiratory resistive loads. Increasing the W(b) during submaximal exercise caused VO(2) to increase; decreasing the W(b) was associated with lower VO(2) (DeltaVO(2) = 0.12 and 0.21 l/min at 50 and 75% of VO(2 max), respectively, for approximately 100% change in W(b)). There were no significant changes in leg vascular resistance (LVR), norepinephrine spillover, arterial pressure, or Q(leg) when W(b) was reduced or increased. Why are LVR, norepinephrine spillover, and Q(leg) influenced by the W(b) at maximal but not submaximal exercise? We postulate that at submaximal work rates and ventilation rates the normal W(b) required makes insufficient demands for VO(2) and cardiac output to require any cardiovascular adjustment and is too small to activate sympathetic vasoconstrictor efferent output. Furthermore, even a 50-70% increase in W(b) during submaximal exercise, as might be encountered in conditions where ventilation rates and/or inspiratory flow resistive forces are higher than normal, also does not elicit changes in LVR or Q(leg).

  9. Eryptosis and hemorheological responses to maximal exercise in athletes: Comparison between running and cycling.

    PubMed

    Nader, E; Guillot, N; Lavorel, L; Hancco, I; Fort, R; Stauffer, E; Renoux, C; Joly, P; Germain, M; Connes, P

    2018-05-01

    We compared the effects of cycling and running exercise on hemorheological and hematological properties, as well as eryptosis markers. Seven endurance-trained subjects randomly performed a progressive and maximal exercise test on a cycle ergometer and a treadmill. Blood was sampled at rest and at the end of the exercise to analyze hematological and blood rheological parameters including hematocrit (Hct), red blood cell (RBC) deformability, aggregation, and blood viscosity. Hemoglobin saturation (SpO2), blood lactate, and glucose levels were also monitored. Red blood cell oxidative stress, calcium content, and phosphatidylserine exposure were determined by flow cytometry to assess eryptosis level. Cycling exercise increased blood viscosity and RBC aggregation whereas it had no significant effect on RBC deformability. In contrast, blood viscosity remained unchanged and RBC deformability increased with running. The increase in Hct, lactate, and glucose concentrations and the loss of weight at the end of exercise were not different between running and cycling. Eryptosis markers were not affected by exercise. A significant drop in SpO2 was noted during running but not during cycling. Our study showed that a progressive and maximal exercise test conducted on a cycle ergometer increased blood viscosity while the same test conducted on a treadmill did not change this parameter because of different RBC rheological behavior between the 2 tests. We also demonstrated that a short maximal exercise does not alter RBC physiology in trained athletes. We suspect that exercise-induced hypoxemia occurring during running could be at the origin of the RBC rheological behavior differences with cycling. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Microhematuria Associated With a Special Operations Craft Mission

    DTIC Science & Technology

    2004-09-22

    proteinuria at 5 minutes and 1 hour following three 60-second Wingate tests, a 60-minute treadmill run at 90% of anaerobic threshold , a 60-minute cycle...ergometer ride at 90% of anaerobic threshold , and three 400-meter sprints. Of these only the sprints produced microhematuria on average. All ten...Ulmer, H., et al. (2003). The effect of marathon cycling on renal function. Int J Sports Med, 24(2), 131-137. [7] Alvarez, C., Mir, J., Obaya, S

  11. [Cycle ergometer stress testing for identification of significant coronary artery disease: improved accuracy by the use of chronotropic reserve adjustment of ST-segment depression].

    PubMed

    Palmieri, Vittorio; Pezzullo, Salvatore; Arezzi, Emma; Russo, Cesare; Martino, Stefania; D'Andrea, Claudia; Cassese, Salvatore; Celentano, Aldo

    2008-09-01

    Diagnostic reliability of indexations of peak exercise ST-segment depression (deltaST) for heart rate reserve (HRi) or chronotropic reserve (CR) to identify significant coronary artery disease (CAD) by bicycle exercise testing has not been evaluated previously. Upright bicycle exercise testing (25 W increment every 3 min) was performed in consecutive patients in primary prevention with at least one of the following criteria: history of exercise-induced chest discomfort and cardiovascular risk factors; overt peripheral arterial disease; type 2 diabetes associated with two or more additional cardiovascular risk factors. Coronary angiography was performed to define significant CAD (stenosis > or = 70% of the main coronary arteries or of their major branches, or isolated left main stenosis > or = 50%, or two or more stenoses 50-69%). Duke angina index was used to grade exercise-induced chest pain; deltaST, ST/HRi and ST/CR were calculated at peak exercise; three different criteria for the definition of inducible myocardial ischemia were tested versus significant CAD: peak deltaST > or =100 microV, ST/HRi > 1.69 microV/b/min or ST/CR > 1.76 microV/%. Of the study sample (n = 46), 40% had typical angina; during stress test 80% showed deltaST > or = 100 microV; 76% had ST/HRi > 1.69 microV/b/min; 62% had ST/CR >1.76 microV/%. Diagnostic accuracy of deltaST > or = 100 microV, of ST/HRi > 1.69 micro5V/b/min, and of ST/CR > 1.76 microV/% were 78%, 72%, and 89% respectively (p < 0.001 for the difference in diagnostic performance). ST/CR > 1.76 microV/% showed the highest diagnostic accuracy both in patients with submaximal exercise (96%) and in women (92%). Similarly, ST/CR >1.76 microV/% was associated with the highest diagnostic accuracy both in patients with maximal exercise (78%) and in men (88%). Analyses of the ROC curve revealed that ST/CR was associated with the greatest area under the curve, and a population-specific cut-off of 1.77 microV/% was associated with a sensitivity of 88% and a specificity of 90%. Our pilot study suggests that in patients undergoing bicycle stress testing for differential diagnosis or screening of significant CAD, and with moderate-to-high pre-test probability, the use of ST/CR > 1.76 microV/% may provide elevated sensitivity and specificity, and the best diagnostic accuracy, which was consistent in patients with submaximal exercise test and in women.

  12. Post-prandial carbohydrate ingestion during 1-h of moderate-intensity, intermittent cycling does not improve mood, perceived exertion, or subsequent power output in recreationally-active exercisers

    PubMed Central

    2013-01-01

    Background This study compared the effects of ingesting water (W), a flavored carbohydrate-electrolyte (CE) or a flavored non-caloric electrolyte (NCE) beverage on mood, ratings of perceived exertion (RPE), and sprint power during cycling in recreational exercisers. Methods Men (n = 23) and women (n = 13) consumed a 24–h standardized diet and reported 2–4 h post-prandial for all test sessions. After a familiarization session, participants completed 50 min of stationary cycling in a warm environment (wet bulb globe temperature = 25.0°C) at ~ 60-65% of heart rate reserve (146 ± 4 bpm) interspersed with 5 rest periods of 2 min each. During exercise, participants consumed W, CE, or NCE, served in a counterbalanced cross-over design. Beverage volume was served in 3 aliquots equaling each individual’s sweat losses (mean 847 ± 368 mL) during the familiarization session. Profiles of Mood States questionnaires (POMS) were administered and blood glucose levels were determined pre- and post- sub-maximal cycling. Following sub-maximal exercise, participants completed 3 30–s Wingate anaerobic tests (WAnT) with 2.5 min rest between tests to assess performance. Results Blood glucose was higher (p <  0.05) after 50 min of submaximal cycling just prior to the WAnT for CE (6.1 ± 1.7 mmol/L) compared to W (4.9 ± 1.5 mmol/L) and NCE (4.6 ± 1.2 mmol/L). Nonetheless, there were no differences among treatments in peak (642 ± 153, 635 ± 143, 650 ± 141 watts for W, NCE, and CE, respectively; p  =  0.44) or mean (455 ± 100, 458 ± 95, 454 ± 95 watts for W, NCE, and CE, respectively; p = 0.62) power for the first WAnT or mean (414 ± 92, 425 ± 85, 423 ± 82 watts, respectively; p = 0.13) power output averaged across all 3 WAnT. Likewise, RPE during submaximal exercise, session RPE, and fatigue and vigor assessed by POMS did not differ among beverage treatments (p > 0.05). Conclusions Carbohydrate ingestion consumed by recreational exercisers during a 1–h, moderate-intensity aerobic workout did not alter mood or perceived exertion, nor did it affect subsequent anaerobic performance under the conditions of this study. Drinking caloric sport beverages does not benefit recreational exercisers in a non-fasted state. PMID:23347391

  13. CDR De Winne takes Water Samples for analysis in the US Lab

    NASA Image and Video Library

    2009-10-20

    ISS021-E-010368 (20 Oct. 2009) --- European Space Agency astronaut Frank De Winne (foreground), Expedition 21 commander, fills a bag with water in the Destiny laboratory of the International Space Station. NASA astronaut Jeffrey Williams, flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) at left.

  14. Coleman performs VO2 Max PFS Software Calibrations and Instrument Check

    NASA Image and Video Library

    2011-02-24

    ISS026-E-029180 (24 Feb. 2011) --- NASA astronaut Catherine (Cady) Coleman, Expedition 26 flight engineer, performs VO2max portable Pulmonary Function System (PFS) software calibrations and instrument check while using the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  15. Underwater Cycle Ergometry: Power Requirements With and Without Diver Thermal Dress

    DTIC Science & Technology

    2009-01-01

    waterproofed Collins Pedal Mate ergometers that are no longer available. A pedal shaft drives the shaft of a hysteresis brake (HB210, Magtrol; Buffalo, NY...NEDU, regular bicycle pedals with toe straps/ over canvas shoes were used in Buffalo (personal 13 communication). The foot cups used at NEDU are

  16. Does level D personal protective equipment guard against hazardous biologic agents during cardiopulmonary resuscitation?

    PubMed

    Martín Rodríguez, Francisco; Fernández Pérez, Cristina; Castro Villamor, Miguel; Martín Conty, José Luis; Arnillas Gómez, Pedro; Casado Vicente, Verónica

    2018-01-01

    Our aim was to determine the usefulness of level D personal protective equipment (PPE) in safeguarding health care staff who perform cardiopulmonary resuscitation (CPR). Quasi-experimental, uncontrolled trial in 96 volunteers chosen randomly and stratified by sex, level of training, and professional category. The subjects were selected from a convenience sample of 164 nurses, physicians, and students of nursing and medicine (40 men [41.66%] and 56 women [58.33%]). The mean (SD) age was 31 (11) years. The Conconi test was used to determine heart rate (HR) at the anaerobic threshold on a cycle ergometer. That HR was then compared to each volunteer's maximum HR during performance of CPR while wearing PPE. While the volunteers were performing CPR, 46.9% of them surpassed their maximum recommendable HR recorded during the cycle ergometer test. We found that performing CPR while wearing level D PPE requires intense physical effort. Special situations should be taken into consideration when developing protocols for situations that require staff to wear PPE. Staff who must perform CPR under these conditions should be given specific training.

  17. Comparison of forearm blood flow responses to incremental handgrip and cycle ergometer exercise: relative contribution of nitric oxide

    PubMed Central

    Green, Daniel J; Bilsborough, William; Naylor, Louise H; Reed, Chris; Wright, Jeremy; O'Driscoll, Gerry; Walsh, Jennifer H

    2005-01-01

    The contribution of endothelium-derived nitric oxide (NO) to exercise hyperaemia remains controversial. Disparate findings may, in part, be explained by different shear stress stimuli as a result of different types of exercise. We have directly compared forearm blood flow (FBF) responses to incremental handgrip and cycle ergometer exercise in 14 subjects (age ± s.e.m.) using a novel software system which calculates conduit artery blood flow continuously across the cardiac cycle by synchronising automated edge-detection and wall tracking of high resolution B-mode arterial ultrasound images and Doppler waveform envelope analysis. Monomethyl arginine (l-NMMA) was infused during repeat bouts of each incremental exercise test to assess the contribution of NO to hyperaemic responses. During handgrip, mean FBF increased with workload (P < 0.01) whereas FBF decreased at lower cycle workloads (P < 0.05), before increasing at 120 W (P < 0.001). Differences in these patterns of mean FBF response to different exercise modalities were due to the influence of retrograde diastolic flow during cycling, which had a relatively larger impact on mean flows at lower workloads. Retrograde diastolic flow was negligible during handgrip. Although mean FBF was lower in response to cycling than handgrip exercise, the impact of l–NMMA was significant during the cycle modality only (P < 0.05), possibly reflecting the importance of an oscillatory antegrade/retrograde flow pattern on shear stress-mediated release of NO from the endothelium. In conclusion, different types of exercise present different haemodynamic stimuli to the endothelium, which may result in differential effects of shear stress on the vasculature. PMID:15513940

  18. Energy Expenditure Evaluation in Humans and Non-Human Primates by SenseWear Armband. Validation of Energy Expenditure Evaluation by SenseWear Armband by Direct Comparison with Indirect Calorimetry

    PubMed Central

    Casiraghi, Francesca; Chavez, Alberto O.; Davalli, Alberto M.; Naegelin, Terry; Comuzzie, Anthony G.; Frost, Patricia; Musi, Nicolas; Folli, Franco

    2013-01-01

    Introduction The purpose of this study was to compare and validate the use of SenseWear Armband (SWA) placed on the arm (SWA ARM) and on the back (SWA BACK) in healthy humans during resting and a cycle-ergometer exercise and to evaluate the SWA to estimate Resting Energy Expenditure (REE) and Total Energy Expenditure (TEE) in healthy baboons. Methods We studied 26 (15F/11M) human subjects wearing SWA in two different anatomical sites (arm and back) during resting and a cycle-ergometer test and directly compared these results with indirect calorimetry evaluation (IC), performed at the same time. We then inserted the SWA in a metabolic jacket for baboons and evaluated the TEE and REE in free living condition for 6 days in 21 (8F/13M) non-human primates. Results In humans we found a good correlation between SWA place on the ARM and on the BACK with IC during the resting experiment (1.1±0.3 SWAs, 1±0.2 IC kcal/min) and a slight underestimation in the SWAs data compared with IC during the cycle-ergometer exercise (5±1.9 SWA ARM, 4.5±1.5 SWA BACK and 5.4±2.1 IC kcal/min). In the non-human primate (baboons) experiment SWA estimated a TEE of 0.54±0.009 kcal/min during free living and a REE of 0.82±0.06 kcal/min. Conclusion SWA, an extremely simple and inexpensive apparatus, provides quite accurate measurements of energy expenditure in humans and in baboons. Energy expenditure data obtained with SWA are highly correlated with the data obtained with “gold standard”, IC, in humans. PMID:24069218

  19. A reference equation for maximal aerobic power for treadmill and cycle ergometer exercise testing: Analysis from the FRIEND registry.

    PubMed

    de Souza E Silva, Christina G; Kaminsky, Leonard A; Arena, Ross; Christle, Jeffrey W; Araújo, Claudio Gil S; Lima, Ricardo M; Ashley, Euan A; Myers, Jonathan

    2018-05-01

    Background Maximal oxygen uptake (VO 2 max) is a powerful predictor of health outcomes. Valid and portable reference values are integral to interpreting measured VO 2 max; however, available reference standards lack validation and are specific to exercise mode. This study was undertaken to develop and validate a single equation for normal standards for VO 2 max for the treadmill or cycle ergometer in men and women. Methods Healthy individuals ( N = 10,881; 67.8% men, 20-85 years) who performed a maximal cardiopulmonary exercise test on either a treadmill or a cycle ergometer were studied. Of these, 7617 and 3264 individuals were randomly selected for development and validation of the equation, respectively. A Brazilian sample (1619 individuals) constituted a second validation cohort. The prediction equation was determined using multiple regression analysis, and comparisons were made with the widely-used Wasserman and European equations. Results Age, sex, weight, height and exercise mode were significant predictors of VO 2 max. The regression equation was: VO 2 max (ml kg -1  min -1 ) = 45.2 - 0.35*Age - 10.9*Sex (male = 1; female = 2) - 0.15*Weight (pounds) + 0.68*Height (inches) - 0.46*Exercise Mode (treadmill = 1; bike = 2) ( R = 0.79, R 2  = 0.62, standard error of the estimate = 6.6 ml kg -1  min -1 ). Percentage predicted VO 2 max for the US and Brazilian validation cohorts were 102.8% and 95.8%, respectively. The new equation performed better than traditional equations, particularly among women and individuals ≥60 years old. Conclusion A combined equation was developed for normal standards for VO 2 max for different exercise modes derived from a US national registry. The equation provided a lower average error between measured and predicted VO 2 max than traditional equations even when applied to an independent cohort. Additional studies are needed to determine its portability.

  20. Orbital Fitness: An Overview of Space Shuttle Cardiopulmonary Exercise Physiology Findings

    NASA Technical Reports Server (NTRS)

    Moore, Alan D.

    2011-01-01

    Limited observations regarding the cardiopulmonary responses to aerobic exercise had been conducted during short-duration spaceflight before the Space Shuttle program. This presentation focuses on the findings regarding changes observed in the cardiopulmonary exercise responses during and following Shuttle flights. During flight, maximum oxygen uptake (VO2max) remained unchanged as did the maximum work rate achievable during cycle exercise testing conducted during the last full flight day. Immediately following flight, the ubiquitous finding, confirmed by investigations conducted during the Spacelab Life Sciences missions 1 and 2 and by NASA Detailed Supplemental Objective studies, indicated that VO2max was reduced; however, the reduction in VO2max was transient and returned to preflight levels within 7 days following return. Studies regarding the influence of aerobic exercise countermeasures performed during flight on postflight performance were mostly limited to the examination of the heart rate (HR) response to submaximal exercise testing on landing day. These studies revealed that exercise HR was elevated in individuals who performed little to no exercise during their missions as compared to individuals who performed regular exercise. In addition, astronauts who performed little to no aerobic exercise during flight demonstrated an increased HR and lowered pulse pressure response to the standard stand test on landing day, indicating a decrease in orthostatic function in these individuals. With regard to exercise modality, four devices were examined during the Shuttle era: two treadmills, a cycle ergometer, and a rowing device. Although there were limited investigations regarding the use of these devices for exercise training aboard the Shuttle, there was no clear consensus reached regarding which proved to be a "superior" device. Each device had a unique operational or physiologic limitation associated with its use. In conclusion, exercise research conducted during the Shuttle Program demonstrated that attenuation of postflight deconditioning was possible through use of exercise countermeasures and the Shuttle served as a test bed for equipment destined for use on the International Space Station. Learning Objective: Overview of the Space Shuttle Program research results related to aerobic capacity and performance, including what was learned from research and effectiveness of exercise countermeasures.

  1. Restraint system for ergometer

    NASA Technical Reports Server (NTRS)

    Gause, R. L.; Spier, R. A. (Inventor)

    1973-01-01

    A restraint system for securing a person to an ergometer while exercising under zero gravity conditions or while operating the ergometer in earth environment in a position other than the upright position. A padded, form-fitting body belt fits around the operator's waist and suspenders are attached to the body belt. The body belt is secured to the ergometer forwardly and rearwardly of the ergometer seat by adjustable belts joined to the body belt and releasably hooked to the ergometer frame.

  2. Physiological and perceptual responses to incremental exercise testing in healthy men: effect of exercise test modality.

    PubMed

    Muscat, Kristina M; Kotrach, Houssam G; Wilkinson-Maitland, Courtney A; Schaeffer, Michele R; Mendonca, Cassandra T; Jensen, Dennis

    2015-11-01

    In a randomized cross-over study of 15 healthy men aged 20-30 years, we compared physiological and perceptual responses during treadmill and cycle exercise test protocols matched for increments in work rate - the source of increased locomotor muscle metabolic and contractile demands. The rates of O2 consumption and CO2 production were higher at the peak of treadmill versus cycle testing (p ≤ 0.05). Nevertheless, work rate, minute ventilation, tidal volume (VT), breathing frequency (fR), inspiratory capacity (IC), inspiratory reserve volume (IRV), tidal esophageal (Pes,tidal) and transdiaphragmatic pressure swings (Pdi,tidal), peak expiratory gastric pressures (Pga,peak), the root mean square of the diaphragm electromyogram (EMGdi,rms) expressed as a percentage of maximum EMGdi,rms (EMGdi,rms%max), and dyspnea ratings were similar at the peak of treadmill versus cycle testing (p > 0.05). Ratings of leg discomfort were higher at the peak of cycle versus treadmill exercise (p ≤ 0.05), even though peak O2 consumption was lower during cycling. Oxygen consumption, CO2 production, minute ventilation, fR, Pes,tidal, Pdi,tidal and Pga,peak were higher (p ≤ 0.05), while VT, IC, IRV, EMGdi,rms%max, and ratings of dyspnea and leg discomfort were similar (p > 0.05) at all or most submaximal work rates during treadmill versus cycle exercise. Our findings highlight important differences (and similarities) in physiological and perceptual responses at maximal and submaximal work rates during incremental treadmill and cycle exercise testing protocols. The lack of effect of exercise test modality on peak work rate advocates for the use of this readily available parameter to optimize training intensity determination, regardless of exercise training mode.

  3. Validity and reproducibility of the ErgomoPro power meter compared with the SRM and Powertap power meters.

    PubMed

    Duc, Sebastien; Villerius, Vincent; Bertucci, William; Grappe, Frederic

    2007-09-01

    The ErgomoPro (EP) is a power meter that measures power output (PO) during outdoor and indoor cycling via 2 optoelectronic sensors located in the bottom bracket axis. The aim of this study was to determine the validity and the reproducibility of the EP compared with the SRM crank set and Powertap hub (PT). The validity of the EP was tested in the laboratory during 8 submaximal incremental tests (PO: 100 to 400 W), eight 30-min submaximal constant-power tests (PO = 180 W), and 8 sprint tests (PO > 750 W) and in the field during 8 training sessions (time: 181 +/- 73 min; PO: approximately 140 to 160 W). The reproducibility was assessed by calculating the coefficient of PO variation (CV) during the submaximal incremental and constant tests. The EP provided a significantly higher PO than the SRM and PT during the submaximal incremental test: The mean PO differences were +6.3% +/- 2.5% and +11.1% +/- 2.1% respectively. The difference was greater during field training sessions (+12.0% +/- 5.7% and +16.5% +/- 5.9%) but lower during sprint tests (+1.6% +/- 2.5% and +3.2% +/- 2.7%). The reproducibility of the EP is lower than those of the SRM and PT (CV = 4.1% +/- 1.8%, 1.9% +/- 0.4%, and 2.1% +/- 0.8%, respectively). The EP power meter appears less valid and reliable than the SRM and PT systems.

  4. Effect of menstrual cycle phase on exercise performance of high-altitude native women at 3600 m.

    PubMed

    Brutsaert, Tom D; Spielvogel, Hilde; Caceres, Esperanza; Araoz, Mauricio; Chatterton, Robert T; Vitzthum, Virginia J

    2002-01-01

    At sea level normally menstruating women show increased ventilation (VE) and hemodynamic changes due to increased progesterone (P) and estrogen (E2) levels during the mid-luteal (L) compared to the mid-follicular (F) phase of the ovarian cycle. Such changes may affect maximal exercise performance. This repeated-measures, randomized study, conducted at 3600 m, tests the hypothesis that a P-mediated increase in VE increases maximal oxygen consumption (V(O(2)max)) during the L phase relative to the F phase in Bolivian women, either born and raised at high altitude (HA), or resident at HA since early childhood. Subjects (N=30) enrolled in the study were aged 27.7 +/- 0.7 years (mean +/- S.E.M.) and non-pregnant, non-lactating, relatively sedentary residents of La Paz, Bolivia, who were not using hormonal contraceptives. Mean salivary P levels at the time of the exercise tests were 63.3 pg ml(-1) and 22.9 pg ml(-1) for the L and F phases, respectively. Subset analyses of submaximal (N=23) and maximal (N=13) exercise responses were conducted only with women showing increased P levels from F to L and, in the latter case, with those also achieving true (V(O(2)max)). Submaximal exercise VE and ventilatory equivalents were higher in the L phase (P<0.001). P levels were significantly correlated to the submaximal exercise VE (r=0.487, P=0.006). Maximal work output (W) was higher (approximately 5 %) during the L phase (P=0.044), but (V(O(2)max)) (l min(-1)) was unchanged (P=0.063). Post-hoc analyses revealed no significant relationship between changes in P levels and changes in (V(O(2)max))) from F to L (P=0.072). In sum, the menstrual cycle phase has relatively modest effects on ventilation, but no effect on (V(O(2)max)) of HA native women.

  5. Oxygen uptake response to cycle ergometry in post-acute stroke patients with different severity of hemiparesis.

    PubMed

    Chen, Chun-Kai; Weng, Ming-Cheng; Chen, Tien-Wen; Huang, Mao-Hsiung

    2013-11-01

    This study evaluated the impact of severity of hemiparesis on oxygen uptake (VO2) response in post-acute stroke patients. Sixty-four patients with a mean poststroke interval of 8.6 ± 3.8 days underwent a ramp cardiopulmonary exercise test on a cycling ergometer to volitional termination. Mean peak VO2 (VO2peak) and work efficiency (ΔVO2/ΔWR) were measured by open-circuit spirometry during standard upright ergometer cycling. Severity of the hemiparetic lower limb was assessed by Brunnstrom's motor recovery stages lower extremity (BMRSL). VO2peak was 10% lower in hemiparetic leg with BMRSL V than in that with BMRSL VI, 20% lower in BMRSL IV, and 50% lower in BMRSL III. ΔVO2/ΔWR was higher for the group with increased BMRSL. The relations were consistent after adjustment for age, sex, body mass index, stroke type, hemiparetic side, modified Ashworth Scale, time poststroke, comorbidities, and medications. Our findings revealed that O2peak is dependent on the severity of hemiparesis in leg, and along with ΔO2/ΔWR closely related to the severity of hemiparesis in post-acute stroke patients, regardless of the types and locations of lesion after stroke, as well as the differences in comorbidities and medications. Copyright © 2013. Published by Elsevier B.V.

  6. A simple method for measurement of maximal downstroke power on friction-loaded cycle ergometer.

    PubMed

    Morin, Jean-Benoît; Belli, Alain

    2004-01-01

    The aim of this study was to propose and validate a post-hoc correction method to obtain maximal power values taking into account inertia of the flywheel during sprints on friction-loaded cycle ergometers. This correction method was obtained from a basic postulate of linear deceleration-time evolution during the initial phase (until maximal power) of a sprint and included simple parameters as flywheel inertia, maximal velocity, time to reach maximal velocity and friction force. The validity of this model was tested by comparing measured and calculated maximal power values for 19 sprint bouts performed by five subjects against 0.6-1 N kg(-1) friction loads. Non-significant differences between measured and calculated maximal power (1151+/-169 vs. 1148+/-170 W) and a mean error index of 1.31+/-1.20% (ranging from 0.09% to 4.20%) showed the validity of this method. Furthermore, the differences between measured maximal power and power neglecting inertia (20.4+/-7.6%, ranging from 9.5% to 33.2%) emphasized the usefulness of power correcting in studies about anaerobic power which do not include inertia, and also the interest of this simple post-hoc method.

  7. Effect of hand-arm exercise on venous blood constituents during leg exercise

    NASA Technical Reports Server (NTRS)

    Wong, N.; Silver, J. E.; Greenawalt, S.; Kravik, S. E.; Geelen, G.

    1985-01-01

    Contributions by ancillary hand and arm actions to the changes in blood constituents effected by leg exercises on cycle ergometer were assessed. Static or dynamic hand-arm exercises were added to the leg exercise (50 percent VO2 peak)-only control regimens for the subjects (19-27 yr old men) in the two experimental groups. Antecubital venous blood was analyzed at times 0, 15, and 30 min (T0, T15, and T30) for serum Na(+), K(+), osmolality, albumin, total CA(2+), and glucose; blood hemoglobin, hematocrit, and lactic acid; and change in plasma volume. Only glucose and lactate values were affected by additional arm exercise. Glucose decreased 4 percent at T15 and T30 after static exercise, and by 2 percent at T15 (with no change at T30) after dynamic arm exercise. Conversely, lactic acid increased by 20 percent at T30 after static exercise, and by 14 percent by T15 and 6 percent at T30 after dynamic arm exercise. It is concluded that additional arm movements, performed usually when gripping the handle-bar on the cycle ergometer, could introduce significant errors in measured venous concentrations of glucose and lactate in the leg-exercised subjects.

  8. Warm-up effects from concomitant use of vibration and static stretching after cycling.

    PubMed

    Yang, Wen-Wen; Liu, Chiang; Shiang, Tzyy-Yuang

    2017-04-01

    Static stretch is routinely used in traditional warm-up but impaired muscle performance. Combining vibration with static stretching as a feasible component may be an alternative to static stretching after submaximal aerobic exercise to improve jumping as well as flexibility. Therefore, the purpose of this study was to investigate and compare the effects of aerobic exercise, static stretching, and vibration with static stretching on flexibility and vertical jumping performance. A repeated measures experimental design was used in this study. Twelve participants randomly underwent 5 different warm-ups including cycling alone (C warm-up), static stretching alone (S warm-up), combining vibration with static stretching (VS warm-up), cycling followed by S (C+S warm-up), and cycling followed by VS (C+VS warm-up) on 5 separate days. Sit-and-reach, squat jump (SJ), and counter movement jump (CMJ) were measured for pre- and post- tests. The sit-and-reach scores after the S, VS, C+S and C+VS warm-ups were significantly enhanced (P<0.001), and were significantly greater than that of the C warm-up (P<0.05). The jumping height of SJ and CMJ after the C and C+VS warm-ups were significantly increased (P<0.05), whereas a significant reduction was found after the S warm-up (P<0.05). Vibration combined with stretching after submaximal cycling exercise (C+VS warm-up) could be a feasible warm-up protocol to improve both flexibility and vertical jump performance, compared with the traditional warm-up (C+S warm-up).

  9. Incremental exercise test for the evaluation of peak oxygen consumption in paralympic swimmers.

    PubMed

    de Souza, Helton; DA Silva Alves, Eduardo; Ortega, Luciana; Silva, Andressa; Esteves, Andrea M; Schwingel, Paulo A; Vital, Roberto; DA Rocha, Edilson A; Rodrigues, Bruno; Lira, Fabio S; Tufik, Sergio; DE Mello, Marco T

    2016-04-01

    Peak oxygen consumption (VO2peak) is a fundamental parameter used to evaluate physical capacity. The objective of this study was to explore two types of incremental exercise tests used to determine VO2peak in four Paralympic swimmers: arm ergometer testing in the laboratory and testing in the swimming pool. On two different days, the VO2peak values of the four athletes were measured in a swimming pool and by a cycle ergometer. The protocols identified the VO2peak by progressive loading until the volitional exhaustion maximum was reached. The results were analyzed using the paired Student's t-test, Cohen's d effect sizes and a linear regression. The results showed that the VO2peak values obtained using the swimming pool protocol were higher (P=0.02) than those obtained by the arm ergometer (45.8±19.2 vs. 30.4±15.5; P=0.02), with a large effect size (d=3.20). When analyzing swimmers 1, 2, 3 and 4 individually, differences of 22.4%, 33.8%, 60.1% and 27.1% were observed, respectively. Field tests similar to the competitive setting are a more accurate way to determine the aerobic capacity of Paralympic swimmers. This approach provides more sensitive data that enable better direction of training, consequently facilitating improved performance.

  10. Changes in lipid profile variables in response to submaximal and maximal exercise in trained cyclists.

    PubMed

    El-Sayed, M S; Rattu, A J

    1996-01-01

    This study examined the effect of prolonged submaximal exercise followed by a self-paced maximal performance test on cholesterol (T-Chol), triglycerides (TG), and high-density lipoprotein cholesterol (HDLC). Nine trained male athletes cycled at 70 percent of maximal oxygen consumption for 60 min, followed by a self-paced maximal ride for 10 min. Venous blood samples were obtained at rest, at 30 and 60 min during submaximal exercise, and immediately after the performance test. Lactic acid, haematocrit (Hct), haemoglobin (Hb), T-Chol and TG were measured in the blood, while plasma was assayed for HDL-C. Plasma volume changes in response to exercise were calculated from Hct and Hb values and all lipid measurements were corrected accordingly. In order to ascertain the repeatability of lipid responses to exercise, all subjects were re-tested under identical testing conditions and experimental protocols. When data obtained during the two exercise trials were analysed by two-way ANOVA no significant differences (P > 0.05) between tests were observed. Consequently the data obtained during the two testing trials were pooled and analysed by one-way ANOVA. Blood lactic acid increased nonsignificantly (P > 0.05) during the prolonged submaximal test, but rose markedly (P <0.05) following the performance ride. Lipid variables ascertained at rest were within the normal range for healthy subjects. ANOVA showed that blood T-Chol and TG were unchanged (P > 0.05), whereas HDL-C rose significantly (P <0.05) in response to exercise. Post hoc analyses indicated that the latter change was due to a significant rise in HDL-C after the performance ride. It is concluded that apparent favourable changes in lipid profile variables occur in response to prolonged submaximal exercise followed by maximal effort, and these changes showed a good level of agreement over the two testing occasions.

  11. Abundance in proteins expressed after functional electrical stimulation cycling or arm cycling ergometry training in persons with chronic spinal cord injury.

    PubMed

    Gorgey, Ashraf S; Graham, Zachary A; Bauman, William A; Cardozo, Christopher; Gater, David R

    2017-07-01

    Longitudinal design. The study determined the effects of two forms of exercise training on the abundance of two proteins, (glucose transporter-4 [GLUT-4], adenosine monophosphate kinase [AMPK]) involved in glucose utilization and the transcriptional coactivator that regulates the genes involved in energy metabolism and mitochondrial biogenesis (peroxisome proliferator-activated receptor (PPAR) coactivator 1 alpha [PGC-1α]), in muscles in men with chronic motor-complete spinal cord injury (SCI). Clinical trial at a Medical Center. Nine men with chronic motor-complete SCI participated in functional electrical stimulation lower extremity cycling (FES-LEC; n = 4) or arm cycling ergometer (arm-cycling ergometer [ACE]; n = 5) 5 days/week for 16 weeks. Whole body composition was measured by dual energy X-ray absorptiometry. An intravenous glucose tolerance test was performed to measure glucose effectiveness (Sg) and insulin sensitivity (Si). Muscle biopsies of the right vastus lateralis (VL) and triceps muscles were collected one week prior to and post the exercise training intervention. Neither training intervention altered body composition or carbohydrate metabolism. GLUT-4 increased by 3.8 fold in the VL after FES training and increased 0.6 fold in the triceps after ACE training. PGC-1α increased by 2.3 fold in the VL after FES training and 3.8 fold in the triceps after ACE training. AMPK increased by 3.4 fold in the VL after FES training and in the triceps after ACE training. FES-LEC and ACE training were associated with greater protein expressions in the trained muscles by effectively influencing the abundance of GLUT-4, AMPK and PGC-1α. Thus, FES-LEC training of paralyzed muscle can modulate protein expression similar to that of trained and innervated muscle.

  12. Effects of a Non-Circular Chainring on Sprint Performance During a Cycle Ergometer Test

    PubMed Central

    Hintzy, Frédérique; Grappe, Frédéric; Belli, Alain

    2016-01-01

    Non-circular chainrings have been reported to alter the crank angular velocity profile over a pedal revolution so that more time is spent in the effective power phase. The purpose of this study was to determine whether sprint cycling performance could be improved using a non-circular chainring (Osymetric: ellipticity 1.25 and crank lever mounted nearly perpendicular to the major axis), in comparison with a circular chainring. Twenty sprint cyclists performed an 8 s sprint on a cycle ergometer against a 0.5 N/kg-1 friction force in four crossing conditions (non-circular or circular chainring with or without clipless pedal). Instantaneous force, velocity and power were continuously measured during each sprint. Three main characteristic pedal downstrokes were selected: maximal force (in the beginning of the sprint), maximal power (towards the middle), and maximal velocity (at the end of the sprint). Both average and instantaneous force, velocity and power were calculated during the three selected pedal downstrokes. The important finding of this study was that the maximal power output was significantly higher (+ 4.3%, p < 0.05) when using the non-circular chainring independent from the shoe-pedal linkage condition. This improvement is mainly explained by a significantly higher instantaneous external force that occurs during the downstroke. Non-circular chainring can have potential benefits on sprint cycling performance. Key points The Osymetric non-circular chainring significantly maximized crank power by 4.3% during sprint cycling, in comparison with a circular chainring. This maximal power output improvement was due to significant higher force developed when the crank was in the effective power phase. This maximal power output improvement was independent from the shoe-pedal linkage condition. Present benefits provided by the non-circular chainring on pedalling kinetics occurred only at high cadences. PMID:27274658

  13. Don’t Rock the Boat: How Antiphase Crew Coordination Affects Rowing

    PubMed Central

    de Brouwer, Anouk J.; de Poel, Harjo J.; Hofmijster, Mathijs J.

    2013-01-01

    It is generally accepted that crew rowing requires perfect synchronization between the movements of the rowers. However, a long-standing and somewhat counterintuitive idea is that out-of-phase crew rowing might have benefits over in-phase (i.e., synchronous) rowing. In synchronous rowing, 5 to 6% of the power produced by the rower(s) is lost to velocity fluctuations of the shell within each rowing cycle. Theoretically, a possible way for crews to increase average boat velocity is to reduce these fluctuations by rowing in antiphase coordination, a strategy in which rowers perfectly alternate their movements. On the other hand, the framework of coordination dynamics explicates that antiphase coordination is less stable than in-phase coordination, which may impede performance gains. Therefore, we compared antiphase to in-phase crew rowing performance in an ergometer experiment. Nine pairs of rowers performed a two-minute maximum effort in-phase and antiphase trial at 36 strokes min−1 on two coupled free-floating ergometers that allowed for power losses to velocity fluctuations. Rower and ergometer kinetics and kinematics were measured during the trials. All nine pairs easily acquired antiphase rowing during the warm-up, while one pair’s coordination briefly switched to in-phase during the maximum effort trial. Although antiphase interpersonal coordination was indeed less accurate and more variable, power production was not negatively affected. Importantly, in antiphase rowing the decreased power loss to velocity fluctuations resulted in more useful power being transferred to the ergometer flywheels. These results imply that antiphase rowing may indeed improve performance, even without any experience with antiphase technique. Furthermore, it demonstrates that although perfectly synchronous coordination may be the most stable, it is not necessarily equated with the most efficient or optimal performance. PMID:23383024

  14. Combining ergometer exercise and artificial gravity in a compact-radius centrifuge

    NASA Astrophysics Data System (ADS)

    Diaz, Ana; Trigg, Chris; Young, Laurence R.

    2015-08-01

    Humans experience physiological deconditioning during space missions, primarily attributable to weightlessness. Some of these adverse consequences include bone loss, muscle atrophy, sensory-motor deconditioning, and cardiovascular alteration, which may lead to orthostatic intolerance when astronauts return to Earth. Artificial gravity could provide a comprehensive countermeasure capable of challenging all the physiological systems at once, particularly if combined with exercise, thereby maintaining overall health during extended exposure to weightlessness. A new Compact Radius Centrifuge (CRC) platform was designed and built on the existing Short Radius Centrifuge (SRC) at the Massachusetts Institute of Technology (MIT). The centrifuge has been constrained to a radius of 1.4 m, the upper radial limit for a centrifuge to fit within an International Space Station (ISS) module without extensive structural alterations. In addition, a cycle ergometer has been added for exercise during centrifugation. The CRC now includes sensors of foot forces, cardiovascular parameters, and leg muscle electromyography. An initial human experiment was conducted on 12 subjects to analyze the effects of different artificial gravity levels (0 g, 1 g, and 1.4 g, measured at the feet) and ergometer exercise intensities (25 W warm-up, 50 W moderate and 100 W vigorous) on the musculoskeletal function as well as motion sickness and comfort. Foot forces were measured during the centrifuge runs, and subjective comfort and motion sickness data were gathered after each session. Preliminary results indicate that ergometer exercise on a centrifuge may be effective in improving musculoskeletal function. The combination is well tolerated and motion sickness is minimal. The MIT CRC is a novel platform for future studies of exercise combined with artificial gravity. This combination may be effective as a countermeasure to space physiological deconditioning.

  15. Don't rock the boat: how antiphase crew coordination affects rowing.

    PubMed

    de Brouwer, Anouk J; de Poel, Harjo J; Hofmijster, Mathijs J

    2013-01-01

    It is generally accepted that crew rowing requires perfect synchronization between the movements of the rowers. However, a long-standing and somewhat counterintuitive idea is that out-of-phase crew rowing might have benefits over in-phase (i.e., synchronous) rowing. In synchronous rowing, 5 to 6% of the power produced by the rower(s) is lost to velocity fluctuations of the shell within each rowing cycle. Theoretically, a possible way for crews to increase average boat velocity is to reduce these fluctuations by rowing in antiphase coordination, a strategy in which rowers perfectly alternate their movements. On the other hand, the framework of coordination dynamics explicates that antiphase coordination is less stable than in-phase coordination, which may impede performance gains. Therefore, we compared antiphase to in-phase crew rowing performance in an ergometer experiment. Nine pairs of rowers performed a two-minute maximum effort in-phase and antiphase trial at 36 strokes min(-1) on two coupled free-floating ergometers that allowed for power losses to velocity fluctuations. Rower and ergometer kinetics and kinematics were measured during the trials. All nine pairs easily acquired antiphase rowing during the warm-up, while one pair's coordination briefly switched to in-phase during the maximum effort trial. Although antiphase interpersonal coordination was indeed less accurate and more variable, power production was not negatively affected. Importantly, in antiphase rowing the decreased power loss to velocity fluctuations resulted in more useful power being transferred to the ergometer flywheels. These results imply that antiphase rowing may indeed improve performance, even without any experience with antiphase technique. Furthermore, it demonstrates that although perfectly synchronous coordination may be the most stable, it is not necessarily equated with the most efficient or optimal performance.

  16. Psychophysiological effects of synchronous versus asynchronous music during cycling.

    PubMed

    Lim, Harry B T; Karageorghis, Costas I; Romer, Lee M; Bishop, Daniel T

    2014-02-01

    Synchronizing movement to a musical beat may reduce the metabolic cost of exercise, but findings to date have been equivocal. Our aim was to examine the degree to which the synchronous application of music moderates the metabolic demands of a cycle ergometer task. Twenty-three recreationally active men made two laboratory visits. During the first visit, participants completed a maximal incremental ramp test on a cycle ergometer. At the second visit, they completed four randomized 6-min cycling bouts at 90% of ventilatory threshold (control, metronome, synchronous music, and asynchronous music). Main outcome variables were oxygen uptake, HR, ratings of dyspnea and limb discomfort, affective valence, and arousal. No significant differences were evident for oxygen uptake. HR was lower under the metronome condition (122 ± 15 bpm) compared to asynchronous music (124 ± 17 bpm) and control (125 ± 16 bpm). Limb discomfort was lower while listening to the metronome (2.5 ± 1.2) and synchronous music (2.3 ± 1.1) compared to control (3.0 ± 1.5). Both music conditions, synchronous (1.9 ± 1.2) and asynchronous (2.1 ± 1.3), elicited more positive affective valence compared to metronome (1.2 ± 1.4) and control (1.2 ± 1.2), while arousal was higher with synchronous music (3.4 ± 0.9) compared to metronome (2.8 ± 1.0) and control (2.8 ± 0.9). Synchronizing movement to a rhythmic stimulus does not reduce metabolic cost but may lower limb discomfort. Moreover, synchronous music has a stronger effect on limb discomfort and arousal when compared to asynchronous music.

  17. Cycle ergometer and inspiratory muscle training offer modest benefit compared with cycle ergometer alone: a comprehensive assessment in stable COPD patients

    PubMed Central

    Luo, Yu-wen; Wang, Mei; Hu, Yu-he; Xu, Wen-hui; Zhou, Lu-qian; Chen, Rong-chang; Chen, Xin

    2017-01-01

    Background Cycle ergometer training (CET) has been shown to improve exercise performance of the quadriceps muscles in patients with COPD, and inspiratory muscle training (IMT) may improve the pressure-generating capacity of the inspiratory muscles. However, the effects of combined CET and IMT remain unclear and there is a lack of comprehensive assessment. Materials and methods Eighty-one patients with COPD were randomly allocated to three groups: 28 received 8 weeks of CET + IMT (combined training group), 27 received 8 weeks of CET alone (CET group), and 26 only received 8 weeks of free walking (control group). Comprehensive assessment including respiratory muscle strength, exercise capacity, pulmonary function, dyspnea, quality of life, emotional status, nutritional status, and body mass index, airflow obstruction, and exercise capacity index were measured before and after the pulmonary rehabilitation program. Results Respiratory muscle strength, exercise capacity, inspiratory capacity, dyspnea, quality of life, depression and anxiety, and nutritional status were all improved in the combined training and CET groups when compared with that in the control group (P<0.05) after pulmonary rehabilitation program. Inspiratory muscle strength increased significantly in the combined training group when compared with that in the CET group (ΔPImax [maximal inspiratory pressure] 5.20±0.89 cmH2O vs 1.32±0.91 cmH2O; P<0.05). However, there were no significant differences in the other indices between the two groups (P>0.05). Patients with weakened respiratory muscles in the combined training group derived no greater benefit than those without respiratory muscle weakness (P>0.05). There were no significant differences in these indices between the patients with malnutrition and normal nutrition after pulmonary rehabilitation program (P>0.05). Conclusion Combined training is more effective than CET alone for increasing inspiratory muscle strength. IMT may not be useful when combined with CET in patients with weakened inspiratory muscles. Nutritional status had slight impact on the effects of pulmonary rehabilitation. A comprehensive assessment approach can be more objective to evaluate the effects of combined CET and IMT. PMID:28919733

  18. [Determination of the anaerobic threshold by the rate of ventilation and cardio interval variability].

    PubMed

    Seluianov, V N; Kalinin, E M; Pak, G D; Maevskaia, V I; Konrad, A H

    2011-01-01

    The aim of this work is to develop methods for determining the anaerobic threshold according to the rate of ventilation and cardio interval variability during the test with stepwise increases load on the cycle ergometer and treadmill. In the first phase developed the method for determining the anaerobic threshold for lung ventilation. 49 highly skilled skiers took part in the experiment. They performed a treadmill ski-walking test with sticks with gradually increasing slope from 0 to 25 degrees, the slope increased by one degree every minute. In the second phase we developed a method for determining the anaerobic threshold according dynamics ofcardio interval variability during the test. The study included 86 athletes of different sports specialties who performed pedaling on the cycle ergometer "Monarch" in advance. Initial output was 25 W, power increased by 25 W every 2 min. The pace was steady--75 rev/min. Measurement of pulmonary ventilation and oxygen and carbon dioxide content was performed using gas analyzer COSMED K4. Sampling of arterial blood was carried from the ear lobe or finger, blood lactate concentration was determined using an "Akusport" instrument. RR-intervals registration was performed using heart rate monitor Polar s810i. As a result, it was shown that the graphical method for determining the onset of anaerobic threshold ventilation (VAnP) coincides with the accumulation of blood lactate 3.8 +/- 0.1 mmol/l when testing on a treadmill and 4.1 +/- 0.6 mmol/1 on the cycle ergometer. The connection between the measure of oxygen consumption at VAnP and the dispersion of cardio intervals (SD1), derived regression equation: VO2AnT = 0.35 + 0.01SD1W + 0.0016SD1HR + + 0.106SD1(ms), l/min; (R = 0.98, error evaluation function 0.26 L/min, p < 0.001), where W (W)--Power, HR--heart rate (beats/min), SD1--cardio intervals dispersion (ms) at the moment of registration of cardio interval threshold.

  19. Cycle ergometer and inspiratory muscle training offer modest benefit compared with cycle ergometer alone: a comprehensive assessment in stable COPD patients.

    PubMed

    Wang, Kai; Zeng, Guang-Qiao; Li, Rui; Luo, Yu-Wen; Wang, Mei; Hu, Yu-He; Xu, Wen-Hui; Zhou, Lu-Qian; Chen, Rong-Chang; Chen, Xin

    2017-01-01

    Cycle ergometer training (CET) has been shown to improve exercise performance of the quadriceps muscles in patients with COPD, and inspiratory muscle training (IMT) may improve the pressure-generating capacity of the inspiratory muscles. However, the effects of combined CET and IMT remain unclear and there is a lack of comprehensive assessment. Eighty-one patients with COPD were randomly allocated to three groups: 28 received 8 weeks of CET + IMT (combined training group), 27 received 8 weeks of CET alone (CET group), and 26 only received 8 weeks of free walking (control group). Comprehensive assessment including respiratory muscle strength, exercise capacity, pulmonary function, dyspnea, quality of life, emotional status, nutritional status, and body mass index, airflow obstruction, and exercise capacity index were measured before and after the pulmonary rehabilitation program. Respiratory muscle strength, exercise capacity, inspiratory capacity, dyspnea, quality of life, depression and anxiety, and nutritional status were all improved in the combined training and CET groups when compared with that in the control group ( P <0.05) after pulmonary rehabilitation program. Inspiratory muscle strength increased significantly in the combined training group when compared with that in the CET group (ΔPI max [maximal inspiratory pressure] 5.20±0.89 cmH 2 O vs 1.32±0.91 cmH 2 O; P <0.05). However, there were no significant differences in the other indices between the two groups ( P >0.05). Patients with weakened respiratory muscles in the combined training group derived no greater benefit than those without respiratory muscle weakness ( P >0.05). There were no significant differences in these indices between the patients with malnutrition and normal nutrition after pulmonary rehabilitation program ( P >0.05). Combined training is more effective than CET alone for increasing inspiratory muscle strength. IMT may not be useful when combined with CET in patients with weakened inspiratory muscles. Nutritional status had slight impact on the effects of pulmonary rehabilitation. A comprehensive assessment approach can be more objective to evaluate the effects of combined CET and IMT.

  20. Repeatability and Validity of the Combined Arm-Leg (Cruiser) Ergometer

    ERIC Educational Resources Information Center

    Simmelink, Elisabeth K.; Wempe, Johan B.; Geertzen, Jan H. B.; Dekker, Rienk

    2009-01-01

    The measurement of physical fitness of lower limb amputees is difficult, as the commonly used ergometer tests have limitations. A combined arm-leg (Cruiser) ergometer might be valuable. The aim of this study was to establish the repeatability and validity of the combined arm-leg (Cruiser) ergometer. Thirty healthy volunteers carried out three…

  1. No effect of skin temperature on human ventilation response to hypercapnia during light exercise with a normothermic core temperature.

    PubMed

    Greiner, Jesse G; Clegg, Miriam E; Walsh, Michael L; White, Matthew D

    2010-05-01

    Hyperthermia potentiates the influence of CO(2) on pulmonary ventilation (.V(E)). It remains to be resolved how skin and core temperatures contribute to the elevated exercise ventilation response to CO(2). This study was conducted to assess the influences of mean skin temperature (_T(SK)) and end-tidal PCO(2) (P(ET)CO(2)) on .V(E) during submaximal exercise with a normothermic esophageal temperature (T(ES)). Five males and three females who were 1.76 +/- 0.11 m tall (mean +/- SD), 75.8 +/- 15.6 kg in weight and 22.0 +/- 2.2 years of age performed three 1 h exercise trials in a climatic chamber with the relative humidity (RH) held at 31.5 +/- 9.5% and the ambient temperature (T (AMB)) maintained at one of 25, 30, or 35 degrees C. In each trial, the volunteer breathed eucapnic air for 5 min during a rest period and subsequently cycle ergometer exercised at 50 W until T (ES) stabilized at approximately 37.1 +/- 0.4 degrees C. Once T (ES) stabilized in each trial, the volunteer breathed hypercapnic air twice for approximately 5 min with P(ET)CO(2) elevated by approximately +4 or +7.5 mmHg. The significantly (P < 0.05) different increases of P(ET)CO(2) of +4.20 +/- 0.49 and +7.40 +/- 0.51 mmHg gave proportionately larger increases in .V(E) of 10.9 +/- 3.6 and 15.2 +/- 3.6 L min(-1) (P = 0.001). This hypercapnia-induced hyperventilation was uninfluenced by varying the _T(SK) to three significantly different levels (P < 0.001) of 33.2 +/- 1.2 degrees C, to 34.5 +/- 0.8 degrees C to 36.4 +/- 0.5 degrees C. In conclusion, the results support that skin temperature between approximately 33 and approximately 36 degrees C has neither effect on pulmonary ventilation nor on hypercapnia-induced hyperventilation during a light exercise with a normothermic core temperature.

  2. The effect of puberty on fat oxidation rates during exercise in overweight and normal-weight girls.

    PubMed

    Chu, L; Riddell, M C; Schneiderman, J E; McCrindle, B W; Hamilton, J K

    2014-01-01

    Excess weight is often associated with insulin resistance (IR) and may disrupt fat oxidation during exercise. This effect is further modified by puberty. While studies have shown that maximal fat oxidation rates (FOR) during exercise decrease with puberty in normal-weight (NW) and overweight (OW) boys, the effect of puberty in NW and OW girls is unclear. Thirty-three NW and OW girls ages 8-18 yr old completed a peak aerobic capacity test on a cycle ergometer. FOR were calculated during progressive submaximal exercise. Body composition and Tanner stage were determined. For each participant, a best-fit polynomial curve was constructed using fat oxidation vs. exercise intensity to estimate max FOR. In a subset of the girls, IR derived from an oral glucose tolerance test (n = 20), and leptin and adiponectin levels (n = 11) were assessed in relation to FOR. NW pre-early pubertal girls had higher max FOR [6.9 ± 1.4 mg·kg fat free mass (FFM)(-1)·min(-1)] than NW mid-late pubertal girls (2.2 ± 0.9 mg·kg FFM(-1)·min(-1)) (P = 0.002), OW pre-early pubertal girls (3.8 ± 2.1 mg·kg FFM(-1)·min(-1)), and OW mid-late pubertal girls (3.3 ± 0.9 mg·kg FFM(-1)·min(-1)) (P < 0.05). Bivariable analyses showed positive associations between FOR with homeostatic model assessment of IR (P = 0.001), leptin (P < 0.001), and leptin-to-adiponectin ratio (P = 0.001), independent of percent body fat. Max FOR decreased in NW girls during mid-late puberty; however, this decrease associated with puberty was blunted in OW girls due to lower FOR in pre-early puberty. The presence of IR due to obesity potentially masks the effect of puberty on FOR during exercise in girls.

  3. Effects of caffeine on prolonged intermittent-sprint ability in team-sport athletes.

    PubMed

    Schneiker, Knut Thomas; Bishop, David; Dawson, Brian; Hackett, Laurence Peter

    2006-03-01

    Caffeine can be a powerful ergogenic aid for the performance of prolonged, submaximal exercise. Little evidence, however, supports an ergogenic effect of caffeine on intermittent-sprint performance. Hence, this study was conducted to examine the effects of acute caffeine ingestion on prolonged intermittent-sprint performance. Using a double-blind, placebo-controlled design, 10 male team-sport athletes (amateur level, VO2peak 56.5 +/- 8.0 mL x kg(-1) x min(-1)) completed two exercise trials, separated by 7 d, 60 min after ingestion of either 6 mg x kg(-1) caffeine or placebo. The exercise trial was performed on a front-access cycle ergometer and consisted of 2 x 36-min halves, each composed of 18 x 4-s sprints with 2-min active recovery at 35% VO2peak between each sprint. Urinary caffeine levels were measured after exercise. The total amount of sprint work performed during the caffeine trial was 8.5% greater than that performed during the placebo trial in the first half (75,165.4 +/- 3,902.9 vs 69,265.6 +/- 3,719.7 J, P < 0.05), and was 7.6% greater in the second half (73,978.7 +/- 4,092.6 vs 68,783.2 +/- 3,574.4 J, P < 0.05). Similarly, the mean peak power score achieved during sprints in the caffeine trial was 7.0% greater than that achieved during the placebo trial in the first half (1330.9 +/- 68.2 vs 1244.2 +/- 60.7 W, P < 0.05), and was 6.6% greater in the second half (1314.5 +/- 68.4 vs 1233.2 +/- 59.9 W, P < 0.05). Urinary caffeine levels following the caffeine trial ranged from 3.5 to 9.1 microg x mL(-1) (6.9 +/- 0.6 microg x mL(-1)). This study revealed that acute caffeine ingestion can significantly enhance performance of prolonged, intermittent-sprint ability in competitive, male, team-sport athletes.

  4. Type 2 diabetes exaggerates exercise effort and impairs exercise performance in older women.

    PubMed

    Huebschmann, A G; Kohrt, W M; Herlache, L; Wolfe, P; Daugherty, S; Reusch, J Eb; Bauer, T A; Regensteiner, J G

    2015-01-01

    Type 2 diabetes mellitus (T2DM) is associated with high levels of disability and mortality. Regular exercise prevents premature disability and mortality, but people with T2DM are generally sedentary for reasons that are not fully established. We previously observed that premenopausal women with T2DM report greater effort during exercise than their counterparts without diabetes, as measured by the Rating of Perceived Exertion (RPE) scale. We hypothesized that RPE is greater in older women with T2DM versus no T2DM. We enrolled overweight, sedentary women aged 50-75 years with (n=26) or without T2DM (n=28). Participants performed submaximal cycle ergometer exercise at 30 W and 35% of individually-measured peak oxygen consumption (35% VO2peak). We assessed exercise effort by RPE (self-report) and plasma lactate concentration. VO2peak was lower in T2DM versus controls (p=0.003). RPE was not significantly greater in T2DM versus controls (30 W: Control, 10.4±3.2, T2DM, 11.7±2.3, p=0.08; 35% VO2peak: Control, 11.1±0.5, T2DM, 12.1±0.5, p=0.21). However, lactate was greater in T2DM versus controls (p=0.004 at 30 W; p<0.05 at 35% VO2peak). Greater RPE was associated with higher lactate, higher heart rate, and a hypertension diagnosis (p<0.05 at 30 W and 35% VO2peak). Taken together, physiological measures of exercise effort were greater in older women with T2DM than controls. Exercise effort is a modifiable and thereby targetable end point. In order to facilitate regular exercise, methods to reduce exercise effort in T2DM should be sought. NCT00785005.

  5. Validity of electromyographic fatigue threshold as a noninvasive method for tracking changes in ventilatory threshold in college-aged men.

    PubMed

    Kendall, Kristina L; Smith, Abbie E; Graef, Jennifer L; Walter, Ashley A; Moon, Jordan R; Lockwood, Christopher M; Beck, Travis W; Cramer, Joel T; Stout, Jeffrey R

    2010-01-01

    The submaximal electromyographic fatigue threshold test (EMG(FT)) has been shown to be highly correlated to ventilatory threshold (VT) as determined from maximal graded exercise tests (GXTs). Recently, a prediction equation was developed using the EMG(FT) value to predict VT. The aim of this study, therefore, was to determine if this new equation could accurately track changes in VT after high-intensity interval training (HIIT). Eighteen recreationally trained men (mean +/- SD; age 22.4 +/- 3.2 years) performed a GXT to determine maximal oxygen consumption rate (V(O2)peak) and VT using breath-by-breath spirometry. Participants also completed a discontinuous incremental cycle ergometer test to determine their EMGFT value. A total of four 2-minute work bouts were completed to obtain 15-second averages of the electromyographic amplitude. The resulting slopes from each successive work bout were used to calculate EMG(FT). The EMG(FT) value from each participant was used to estimate VT from the recently developed equation. All participants trained 3 days a week for 6 weeks. Training consisted of 5 sets of 2-minute work bouts with 1 minute of rest in between. Repeated-measures analysis of variance indicated no significant difference between actual and predicted VT values after 3 weeks of training. However, there was a significant difference between the actual and predicted VT values after 6 weeks of training. These findings suggest that the EMG(FT) may be useful when tracking changes in VT after 3 weeks of HIIT in recreationally trained individuals. However, the use of EMG(FT) to predict VT does not seem to be valid for tracking changes after 6 weeks of HIIT. At this time, it is not recommended that EMG(FT) be used to predict and track changes in VT.

  6. Physical activity surveillance in the European Union: reliability and validity of the European Health Interview Survey-Physical Activity Questionnaire (EHIS-PAQ).

    PubMed

    Baumeister, Sebastian E; Ricci, Cristian; Kohler, Simone; Fischer, Beate; Töpfer, Christine; Finger, Jonas D; Leitzmann, Michael F

    2016-05-23

    The current study examined the reliability and validity of the European Health Interview Survey-Physical Activity Questionnaire (EHIS-PAQ), a novel questionnaire for the surveillance of physical activity (PA) during work, transportation, leisure time, sports, health-enhancing and muscle-strengthening activities over a typical week. Reliability was assessed by administering the 8-item questionnaire twice to a population-based sample of 123 participants aged 15-79 years at a 30-day interval. Concurrent (inter-method) validity was examined in 140 participants by comparisons with self-report (International Physical Activity Questionnaire-Long Form (IPAQ-LF), 7-day Physical Activity Record (PAR), and objective criterion measures (GT3X+ accelerometer, physical work capacity at 75% (PWC(75%)) from submaximal cycle ergometer test, hand grip strength). The EHIS-PAQ showed acceptable reliability, with a median intraclass correlation coefficient across PA domains of 0.55 (range 0.43-0.73). Compared to the GT3X+ (counts/minutes/day), the EHIS-PAQ underestimated moderate-to-vigorous PA (median difference -11.7, p-value = 0.054). Spearman correlation coefficients (ρ) for validity were moderate-to-strong (ρ's > 0.41) for work-related PA (IPAQ = 0.64, GT3X + =0.43, grip strength = 0.48), transportation-related PA (IPAQ = 0.62, GT3X + =0.43), walking (IPAQ = 0.58), and health-enhancing PA (IPAQ = 0.58, PAR = 0.64, GT3X + =0.44, PWC(75%) = 0.48), and fair-to-poor (ρ's < 0.41) for moderate-to-vigorous aerobic recreational and muscle-strengthening PA. The EHIS-PAQ showed good evidence for reliability and validity for the measurement of PA levels at work, during transportation and health-enhancing PA.

  7. Heart Rate and VO[subscript 2] Responses to Cycle Ergometry in White and African American Men

    ERIC Educational Resources Information Center

    Vehrs, Pat R.; Fellingham, Gilbert W.

    2006-01-01

    The validity of estimates of peak oxygen consumption (VO[subscript 2]peak) using submaximal exercise tests may be compromised when the participants being tested are not similar to the participants used to develop the test. This study compared ethnic differences in the heart rate (HR) and oxygen consumption (VO[subscript 2]) responses to submaximal…

  8. Effects of hybrid cycling versus handcycling on wheelchair-specific fitness and physical activity in people with long-term spinal cord injury: a 16-week randomized controlled trial.

    PubMed

    Bakkum, A J T; de Groot, S; Stolwijk-Swüste, J M; van Kuppevelt, D J; van der Woude, L H V; Janssen, T W J

    2015-05-01

    This is an open randomized controlled trial. The objective of this study was to investigate the effects of a 16-week hybrid cycle versus handcycle exercise program on fitness and physical activity in inactive people with long-term spinal cord injury (SCI). The study was conducted in two rehabilitation centers with a specialized SCI unit. Twenty individuals (SCI⩾8 years) were randomly assigned to a hybrid cycle (voluntary arm exercise combined with functional electrical stimulation (FES)-induced leg exercise) or a handcycle group. During 16 weeks, both groups trained twice a week for 30 min at 65-75% heart rate reserve. Outcome measures obtained before, during and after the program were fitness (peak power output, peak oxygen consumption), submaximal VO2 and heart rate (HR), resting HR, wheelchair skill performance time score) and physical activity (distance travelled in wheelchair and Physical Activity Scale for Individuals with Physical Disabilities (PASIPD) score). Changes were examined using a two-factor mixed-measures analysis of variance. For all fitness parameters, except for submaximal VO2, no interaction effects were found. The hybrid cycle group showed a decrease in VO2 over time in contrast to the handcycle group (P=0.045). An overall reduction in HRrest (5±2 b.p.m.; P=0.03) and overall increase in PASIPD score (6.5±2.1; P=0.002) were found after 16 weeks of training. No overall training effects were found for the other fitness and activity outcome measures. In the current study, hybrid cycling and handcycling showed similar effects on fitness and physical activity, indicating that there seem to be no additional benefits of the FES-induced leg exercise over handcycle training alone.

  9. Effects of a helium/oxygen mixture on individuals' lung function and metabolic cost during submaximal exercise for participants with obstructive lung diseases.

    PubMed

    Häussermann, Sabine; Schulze, Anja; Katz, Ira M; Martin, Andrew R; Herpich, Christiane; Hunger, Theresa; Texereau, Joëlle

    2015-01-01

    Helium/oxygen therapies have been studied as a means to reduce the symptoms of obstructive lung diseases with inconclusive results in clinical trials. To better understand this variability in results, an exploratory physiological study was performed comparing the effects of helium/oxygen mixture (78%/22%) to that of medical air. The gas mixtures were administered to healthy, asthmatic, and chronic obstructive pulmonary disease (COPD) participants, both moderate and severe (6 participants in each disease group, a total of 30); at rest and during submaximal cycling exercise with equivalent work rates. Measurements of ventilatory parameters, forced spirometry, and ergospirometry were obtained. There was no statistical difference in ventilatory and cardiac responses to breathing helium/oxygen during submaximal exercise. For asthmatics, but not for the COPD participants, there was a statistically significant benefit in reduced metabolic cost, determined through measurement of oxygen uptake, for the same exercise work rate. However, the individual data show that there were a mixture of responders and nonresponders to helium/oxygen in all of the groups. The inconsistent response to helium/oxygen between individuals is perhaps the key drawback to the more effective and widespread use of helium/oxygen to increase exercise capacity and for other therapeutic applications.

  10. Decompression Sickness During Simulated Low Pressure Exposure is Increased with Mild Ambulation Exercise

    NASA Technical Reports Server (NTRS)

    Pollock, N. W.; Natoli, M. J.; Martina, S. D.; Conkin, J.; Wessel, J. H., III; Gernhardt, M. L.

    2016-01-01

    Musculoskeletal activity accelerates inert gas elimination during oxygen breathing prior to decompression (prebreathe), but may also promote bubble formation (nucleation) and increase the risk of decompression sickness (DCS). The timing, pattern and intensity of musculoskeletal activity are likely critical to the net effect. The NASA Prebreathe Reduction Program (PRP) combined oxygen prebreathe and exercise preceding a 4.3 psia exposure in non-ambulatory subjects (a microgravity analog) to produce two protocols now used by astronauts preparing for extravehicular activity - one employing cycling and non-cycling exercise (CEVIS: 'cycle ergometer vibration isolation system') and one relying on non-cycling exercise only (ISLE: 'in-suit light exercise'). Current efforts investigate whether light exercise normal to 1 G environments increases the risk of DCS over microgravity simulation.

  11. The effect of running versus cycling high-intensity intermittent exercise on local tissue oxygenation and perceived enjoyment in 18–30-year-old sedentary men

    PubMed Central

    Solomon, Colin

    2018-01-01

    Background High-intensity interval training (HIIT) has been proposed as a time-efficient exercise format to improve exercise adherence, thereby targeting the chronic disease burden associated with sedentary behaviour. Exercise mode (cycling, running), if self-selected, will likely affect the physiological and enjoyment responses to HIIT in sedentary individuals. Differences in physiological and enjoyment responses, associated with the mode of exercise, could potentially influence the uptake and continued adherence to HIIT. It was hypothesised that in young sedentary men, local and systemic oxygen utilisation and enjoyment would be higher during a session of running HIIT, compared to a session of cycling HIIT. Methods A total of 12 sedentary men (mean ± SD; age 24 ± 3 years) completed three exercise sessions: a maximal incremental exercise test on a treadmill (MAX) followed by two experiment conditions, (1) free-paced cycling HIIT on a bicycle ergometer (HIITCYC) and (2) constant-paced running HIIT on a treadmill ergometer (HIITRUN). Deoxygenated haemoglobin (HHb) in the gastrocnemius (GN), the left vastus lateralis (LVL) and the right vastus lateralis (RVL) muscles, oxygen consumption (VO2), heart rate (HR), ratings of perceived exertion (RPE) and physical activity enjoyment (PACES) were measured during HIITCYC and HIITRUN. Results There was a higher HHb in the LVL (p = 0.001) and RVL (p = 0.002) sites and a higher VO2 (p = 0.017) and HR (p < 0.001) during HIITCYC, compared to HIITRUN. RPE was higher (p < 0.001) and PACES lower (p = 0.032) during HIITCYC compared to HIITRUN. Discussion In sedentary individuals, free-paced cycling HIIT produces higher levels of physiological stress when compared to constant-paced running HIIT. Participants perceived running HIIT to be more enjoyable than cycling HIIT. These findings have implications for selection of mode of HIIT for physical stress, exercise enjoyment and compliance.

  12. The effect of running versus cycling high-intensity intermittent exercise on local tissue oxygenation and perceived enjoyment in 18-30-year-old sedentary men.

    PubMed

    Kriel, Yuri; Askew, Christopher D; Solomon, Colin

    2018-01-01

    High-intensity interval training (HIIT) has been proposed as a time-efficient exercise format to improve exercise adherence, thereby targeting the chronic disease burden associated with sedentary behaviour. Exercise mode (cycling, running), if self-selected, will likely affect the physiological and enjoyment responses to HIIT in sedentary individuals. Differences in physiological and enjoyment responses, associated with the mode of exercise, could potentially influence the uptake and continued adherence to HIIT. It was hypothesised that in young sedentary men, local and systemic oxygen utilisation and enjoyment would be higher during a session of running HIIT, compared to a session of cycling HIIT. A total of 12 sedentary men (mean ± SD; age 24 ± 3 years) completed three exercise sessions: a maximal incremental exercise test on a treadmill (MAX) followed by two experiment conditions, (1) free-paced cycling HIIT on a bicycle ergometer (HIITCYC) and (2) constant-paced running HIIT on a treadmill ergometer (HIITRUN). Deoxygenated haemoglobin (HHb) in the gastrocnemius (GN), the left vastus lateralis (LVL) and the right vastus lateralis (RVL) muscles, oxygen consumption (VO 2 ), heart rate (HR), ratings of perceived exertion (RPE) and physical activity enjoyment (PACES) were measured during HIITCYC and HIITRUN. There was a higher HHb in the LVL ( p = 0.001) and RVL ( p = 0.002) sites and a higher VO 2 ( p = 0.017) and HR ( p < 0.001) during HIITCYC, compared to HIITRUN. RPE was higher ( p < 0.001) and PACES lower ( p = 0.032) during HIITCYC compared to HIITRUN. In sedentary individuals, free-paced cycling HIIT produces higher levels of physiological stress when compared to constant-paced running HIIT. Participants perceived running HIIT to be more enjoyable than cycling HIIT. These findings have implications for selection of mode of HIIT for physical stress, exercise enjoyment and compliance.

  13. Pettit exercises on the CEVIS

    NASA Image and Video Library

    2012-03-07

    ISS030-E-132542 (7 March 2012) --- NASA astronaut Don Pettit, Expedition 30 flight engineer, performs a VO2max experiment while using the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station. VO2max uses the Portable Pulmonary Function System (PPFS), CEVIS, Pulmonary Function System (PFS) gas cylinders and mixing bag system, plus multiple other pieces of hardware to measure oxygen uptake and cardiac output.

  14. Williams with VO2max

    NASA Image and Video Library

    2012-08-08

    ISS032-E-016876 (8 Aug. 2012) --- NASA astronaut Sunita Williams, Expedition 32 flight engineer, performs a VO2max experiment while using the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station. VO2max uses the Portable Pulmonary Function System (PPFS), CEVIS, Pulmonary Function System (PFS) gas cylinders and mixing bag system, plus multiple other pieces of hardware to measure oxygen uptake and cardiac output.

  15. Pettit exercises on the CEVIS

    NASA Image and Video Library

    2012-03-07

    ISS030-E-132541 (7 March 2012) --- NASA astronaut Don Pettit, Expedition 30 flight engineer, performs a VO2max experiment while using the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station. VO2max uses the Portable Pulmonary Function System (PPFS), CEVIS, Pulmonary Function System (PFS) gas cylinders and mixing bag system, plus multiple other pieces of hardware to measure oxygen uptake and cardiac output.

  16. The Effect of Passive versus Active Recovery on Power Output over Six Repeated Wingate Sprints

    ERIC Educational Resources Information Center

    Lopez, Egla-Irina D.; Smoliga, James M.; Zavorsky, Gerald S.

    2014-01-01

    Purpose: The aim of this study was to examine the effect of active versus passive recovery on 6 repeated Wingate tests (30-s all-out cycling sprints on a Velotron ergometer). Method: Fifteen healthy participants aged 29 (SD = 8) years old (body mass index = 23 [3] kg/m[superscript 2]) participated in 3 sprint interval training sessions separated…

  17. Detecting fatigue thresholds from electromyographic signals: A systematic review on approaches and methodologies.

    PubMed

    Ertl, Peter; Kruse, Annika; Tilp, Markus

    2016-10-01

    The aim of the current paper was to systematically review the relevant existing electromyographic threshold concepts within the literature. The electronic databases MEDLINE and SCOPUS were screened for papers published between January 1980 and April 2015 including the keywords: neuromuscular fatigue threshold, anaerobic threshold, electromyographic threshold, muscular fatigue, aerobic-anaerobictransition, ventilatory threshold, exercise testing, and cycle-ergometer. 32 articles were assessed with regard to their electromyographic methodologies, description of results, statistical analysis and test protocols. Only one article was of very good quality. 21 were of good quality and two articles were of very low quality. The review process revealed that: (i) there is consistent evidence of one or two non-linear increases of EMG that might reflect the additional recruitment of motor units (MU) or different fiber types during fatiguing cycle ergometer exercise, (ii) most studies reported no statistically significant difference between electromyographic and metabolic thresholds, (iii) one minute protocols with increments between 10 and 25W appear most appropriate to detect muscular threshold, (iv) threshold detection from the vastus medialis, vastus lateralis, and rectus femoris is recommended, and (v) there is a great variety in study protocols, measurement techniques, and data processing. Therefore, we recommend further research and standardization in the detection of EMGTs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effects of emotional exposure on state anxiety after acute exercise.

    PubMed

    Smith, J Carson

    2013-02-01

    Despite the well-known anxiolytic effect of acute exercise, it is unknown if anxiety reductions after acute exercise conditions survive in the face of a subsequently experienced arousing emotional exposure. The purpose of this study was to compare the effects of moderate-intensity cycle ergometer exercise to a seated rest control condition on state anxiety symptoms after exposure to a variety of highly arousing pleasant and unpleasant stimuli. Thirty-seven healthy and normally physically active young adults completed two conditions on separate days: 1) 30 min of seated rest and 2) 30 min of moderate-intensity cycle ergometer exercise (RPE = 13; "somewhat hard"). After each condition, participants viewed 90 arousing pleasant, unpleasant, and neutral pictures from the International Affective Picture System for 30 min. State anxiety was measured before and 15 min after each condition, and again after exposure to the affective pictures. State anxiety significantly decreased from baseline to after the exercise and seated rest conditions (P = 0.003). After the emotional picture-viewing period, state anxiety significantly increased to baseline values after the seated rest condition (P = 0.001) but remained reduced after the exercise condition. These findings suggest that the anxiolytic effects of acute exercise may be resistant to the potentially detrimental effects on mood after exposure to arousing emotional stimuli.

  19. Energy expenditure in rock/pop drumming.

    PubMed

    De La Rue, S E; Draper, S B; Potter, C R; Smith, M S

    2013-10-01

    Despite the vigorous nature of rock/pop drumming, there are no precise data on the energy expenditure of this activity. The aim of this study was to quantify the energy cost of rock/pop drumming. Fourteen male drummers (mean±SD; age 27±8 yrs.) completed an incremental drumming test to establish the relationship between energy expenditure and heart rate for this activity and a ramped cycle ergometer test to exhaustion as a criterion measure for peak values (oxygen uptake and heart rate). During live concert performance heart rate was continuously measured and used to estimate energy expenditure (from the energy expenditure vs. heart rate data derived from the drumming test). During concert performance, estimated energy expenditure (mean±SD) was 623±168 kcal.h⁻¹ (8.1±2.2 METs) during performances of 38.6±15.6 min, and drummers achieved a peak heart rate of 186±16 b.min⁻¹. During the drumming test participants attained 78.7±8.3% of the cycle ergometer peak oxygen uptake. Rock/pop drumming represents a relatively high-intensity form of physical activity and as such involves significant energy expenditure. Rock/pop drumming should be considered as a viable alternative to more traditional forms of physical activity. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Effects of resistance training frequency on cardiorespiratory fitness in older men and women during intervention and follow-up.

    PubMed

    Fernández-Lezaun, Elena; Schumann, Moritz; Mäkinen, Tuomas; Kyröläinen, Heikki; Walker, Simon

    2017-09-01

    This study investigated the effects of resistance training (RT) performed with different frequencies, including a follow-up period, on cardiorespiratory fitness in healthy older individuals. Eighty-eight men and women (69±3years, 167±9cm and 78±14kg) were randomly placed into four groups: training one- (M1=11, W1=12), two- (M2=7, W2=14), or three- (M3=11, W3=13) times-per-week or a non-training control group (MCon=11, WCon=9). During months 1-3, all subjects trained two-times-per-week while during the subsequent 6months, training frequency was set according to the group. Oxygen consumption (cycling economy: CE), gross efficiency (GE), blood lactate concentrations (La) and heart rate (HR) were evaluated during a submaximal cycle ergometer test. Hemoglobin (Hb), hematocrit (Hct), heart rate (HRrest) and body composition by DXA were also measured at rest. Maximal strength was measured by a 1-RM leg press test. Most improvements in CE, GE, La and HR occurred in all groups during months 1-3. No additional statistically significant improvements were observed during months 4-9, although effect sizes for the change in CE and GE at higher workloads indicated a dose-response pattern in men (CE at 75W: M1 g=0.13, M2 g=-0.58, M3 g=-0.89; 100W: M1 g=0.43, M2 g=-0.59, M3 g=-0.68) i.e. higher training frequency (two- and three-times-per-week versus one-time-per-week) led to greater improvements once the typical plateau in performance had occurred. Hb increased in W1 and W2, while no changes were observed in Hct or HRrest. 1-RM increased from months 1-3 in all intervention groups (except M2) and from month 4-9 only in M3 and in all women intervention groups. During follow-up, maximal strength was maintained but cycling economy returned to the baseline values in all training groups. These data indicate that RT led to significant improvements in cardiorespiratory fitness during the initial 3months of training. This was partly explained by the RT protocol performed but further improvements may require higher training frequency. These changes are likely to be originated by the improved cardiorespiratory functions rather than neuromuscular adaptations evidenced by a lack of significant relationship during the intervention as well as the divergent results during follow-up. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Energy systems contributions in 2,000 m race simulation: a comparison among rowing ergometers and water.

    PubMed

    de Campos Mello, Fernando; de Moraes Bertuzzi, Rômulo Cássio; Grangeiro, Patricia Moreno; Franchini, Emerson

    2009-11-01

    This study investigated the energy system contributions of rowers in three different conditions: rowing on an ergometer without and with the slide and rowing in the water. For this purpose, eight rowers were submitted to 2,000 m race simulations in each of the situations defined above. The fractions of the aerobic (W (AER)), anaerobic alactic (W (PCR)) and anaerobic lactic (W ([La-])) systems were calculated based on the oxygen uptake, the fast component of excess post-exercise oxygen uptake and changes in net blood lactate, respectively. In the water, the metabolic work was significantly higher [(851 (82) kJ] than during both ergometer [674 (60) kJ] and ergometer with slide [663 (65) kJ] (P < or = 0.05). The time in the water [515 (11) s] was higher (P < 0.001) than in the ergometers with [398 (10) s] and without the slide [402 (15) s], resulting in no difference when relative energy expenditure was considered: in the water [99 (9) kJ min(-1)], ergometer without the slide [99.6 (9) kJ min(-1)] and ergometer with the slide [100.2 (9.6) kJ min(-1)]. The respective contributions of the W (AER), W (PCR) and W ([La-]) systems were water = 87 (2), 7 (2) and 6 (2)%, ergometer = 84 (2), 7 (2) and 9 (2)%, and ergometer with the slide = 84 (2), 7 (2) and 9 (1)%. VO2, HR and lactate were not different among conditions. These results seem to indicate that the ergometer braking system simulates conditions of a bigger and faster boat and not a single scull. Probably, a 2,500 m test should be used to properly simulate in the water single-scull race.

  2. Multimode ergometer system

    NASA Technical Reports Server (NTRS)

    Bynum, B. G.; Gause, R. L.; Spier, R. A.

    1971-01-01

    System overcomes previous ergometer design and calibration problems including inaccurate measurements, large weight, size, and input power requirements, poor heat dissipation, high flammability, and inaccurate calibration. Device consists of lightweight, accurately controlled ergometer, restraint system, and calibration system.

  3. Tilting table for ergometer and for other biomedical devices

    NASA Technical Reports Server (NTRS)

    Gause, R. L.; Spier, R. A. (Inventor)

    1973-01-01

    The apparatus is for testing the human body in a variety of positions, ranging from the vertical to the supine, while exercising on an ergometer; and can also be used for angular positioning of other biomedical devices. It includes a floor plate and a hinged plate upon which to fix the ergometer, a back rest and a head rest attached at right angles to said hinged plate and behind the seat of the ergometer, dual hydraulic cylinders for raising and lowering the hinged plate through 90 deg by means of a self contained hydraulic system, with valve means for control and positive stops on the apparatus to prevent over travel. Tests can be made with the subject positioned on the seat of the ergometer, through the various angles, with a substantially normal body attitude relative to the seat and ergometer.

  4. Influence of exercise modality on cardiac parasympathetic and sympathetic indices during post-exercise recovery.

    PubMed

    Michael, Scott; Jay, Ollie; Graham, Kenneth S; Davis, Glen M

    2018-02-12

    This study investigated indirect measures of post-exercise parasympathetic reactivation (using heart-rate-variability, HRV) and sympathetic withdrawal (using systolic-time-intervals, STI) following upper- and lower-body exercise. Randomized, counter-balanced, crossover. 13 males (age 26.4±4.7years) performed maximal arm-cranking (MAX-ARM) and leg-cycling (MAX-LEG). Subsequently, participants undertook separate 8-min bouts of submaximal HR-matched exercise of each mode (ARM and LEG). HRV (including natural-logarithm of root-mean-square-of-successive-differences, Ln-RMSSD) and STI (including pre-ejection-period, PEP) were assessed throughout 10-min seated recovery. Peak-HR was higher (p=0.001) during MAX-LEG (182±7beatsmin -1 ) compared with MAX-ARM (171±12beatsmin -1 ), while HR (p<0.001) and Ln-RMSSD (p=0.010) recovered more rapidly following MAX-ARM. PEP recovery was similar between maximal bouts (p=0.106). HR during submaximal exercise was 146±7 (LEG) and 144±8beatsmin -1 (LEG) (p=0.139). Recovery of HR and Ln-RMSSD was also similar between submaximal modalities, remaining below baseline throughout recovery (p<0.001). PEP was similar during submaximal exercise (LEG 70±6ms; ARM 72±9ms; p=0.471) although recovery was slower following ARM (p=0.021), with differences apparent from 1- to 10-min recovery (p≤0.036). By 10-min post-exercise, PEP recovered to baseline (132±21ms) following LEG (130±21ms; p=0.143), but not ARM (121±17ms; p=0.001). Compared with submaximal lower-body exercise, HR-matched upper-body exercise elicited a similar recovery of HR and HRV indices of parasympathetic reactivation, but delayed recovery of PEP (reflecting sympathetic withdrawal). Exercise modality appears to influence post-exercise parasympathetic reactivation and sympathetic withdrawal in an intensity-dependent manner. These results highlight the need for test standardization and may be relevant to multi-discipline athletes and in clinical applications with varying modes of exercise testing. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Shoulder and Lower Back Joint Reaction Forces in Seated Double Poling.

    PubMed

    Lund Ohlsson, Marie; Danvind, Jonas; Holmberg, L Joakim

    2018-04-13

    Overuse injuries in the shoulders and lower back are hypothesized to be common in cross-country sit-skiing. Athletes with reduced trunk muscle control mainly sits with their knees higher than hips (KH). To reduce spinal flexion, a position with the knees below the hips (KL) was enabled for these athletes using a frontal trunk support. The aim of the study was to compare the shoulder joint (glenohumeral joint) and L4-L5 joint reactions between the sitting positions KL and KH. Five able-bodied female athletes performed submaximal and maximal exercise tests in the sitting positions KL and KH on a ski-ergometer. Measured pole forces and 3-dimensional kinematics served as input for inverse-dynamics simulations to compute the muscle forces and joint reactions in the shoulder and L4-L5 joint. This was the first musculoskeletal simulation study of seated double poling. The results showed that the KH position was favorable for higher performance and decreased values of the shoulder joint reactions for female able-bodied athletes with full trunk control. The KL position was favorable for lower L4-L5 joint reactions and might therefore reduce the risk of lower back injuries. These results indicate that it is hard to optimize both performance and safety in the same sit-ski.

  6. Cardiorespiratory deconditioning with static and dynamic leg exercise during bed rest.

    PubMed

    Stremel, R W; Convertino, V A; Bernauer, E M; Greenleaf, J E

    1976-12-01

    Bed rest deconditioning was assessed in seven healthy men (19-22 yr) following three 14-day periods of controlled activity during recumbency by measuring submaximal and maximal oxygen uptake (VO2), ventilation (VE), heart rate, and plasma volume. Exercise regimens were performed in the supine position and included a) two 30-min periods daily of intermittent static exercise at 21% of maximal leg extension force, and b) two 30-min periods of dynamic bicycle ergometer exercise daily at 68% of VO2max. No prescribed exercise was performed during the third bed rest period. Compared with their respective pre-bed rest control values, VO2max decreased (P less than 0.05) under all exercise conditions; -12.3% with no exercise, -9.2% with dynamic exercise, but only -4.8% with static exercise. Maximal heart rate was increased by 3.3% to 4.9% (P less than 0.05) under the three exercise conditions, while plasma volume decreased (P less than 0.05) -15.1% with no exercise and -10.1% with static, but only -7.8% (NS) with dynamic exercise. Since neither the static nor dynamic exercise training regimes minimized the changes in all the variables studied, some combination of these two types of exercise may be necessary for maximum protection from the effects of the bed deconditioning.

  7. Can the Lamberts and Lambert Submaximal Cycle Test Reflect Overreaching in Professional Cyclists?

    PubMed

    Decroix, Lieselot; Lamberts, Robert P; Meeusen, Romain

    2018-01-01

    The Lamberts and Lambert Submaximal Cycle Test (LSCT) consists of 3 stages during which cyclists cycle for 6 min at 60%, 6 min at 80%, and 3 min at 90% of their maximal heart rate, followed by 1-min recovery. To determine if the LSCT is able to reflect a state of functional overreaching in professional female cyclists during an 8-d training camp and the following recovery days. Six professional female cyclists performed an LSCT on days 1, 5, and 8 of the training camp and 3 d after the training camp. During each stage of the LSCT, power output and rating of perceived exertion (RPE) were determined. Training diaries and Profile of Mood States (POMS) were also completed. At the middle and the end of the training camp, increased power output during the 2nd and 3rd stages of the LSCT was accompanied with increased RPE during these stages and/or the inability to reach 90% of maximal heart rate. All athletes reported increased feelings of fatigue and muscle soreness, while changes in energy balance, calculated from the POMS, were less indicative of a state of overreaching. After 3 d of recovery, all parameters of the LSCT returned to baseline, indicating a state of functional overreaching during the training camp. The LSCT is able to reflect a state of overreaching in elite professional female cyclists during an 8-d training camp and the following recovery days.

  8. Countermeasures (iRED, ARED CEVIS, MEC, TVIS, T2, Periodic Fitness Evaluation, BP-ECG, HRM). Critical Readiness Review Increment 23 and 24

    NASA Technical Reports Server (NTRS)

    Toder, Carly; Gipson, Iona; Conly, Danielle; Nieschwitz, Linda; Perk, Austin

    2010-01-01

    This slide presentation reviews attempts to counteract the effects of being in space. It includes information on the Resistive Exercise Device (RED), the Advanced Resistive Exercise Device (ARED), Cycle Ergometer with Vibration Isolation and Stabilization (CEVIS), Treadmill with Vibration Isolation and Stabilization (TVIS) and periodic fitness evaluation with specific information on BP/ECG, heart rate monitor 2 and data distribution.

  9. Influence of Very High Breathing Resistance on Exercise Tolerance, Part 1 - Dry Exercise

    DTIC Science & Technology

    2016-01-01

    Influence of Very High Breathing Resistance on Exercise Tolerance, Part 1 – Dry Exercise Authors...Tolerance, Part 1 – Dry Exercise 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Warkander D...exercise (60% of peak O2 consumption) on a cycle ergometer on dry land at sea level. R was such that the work of breathing per volume (volume-averaged

  10. Effects of music tempo upon submaximal cycling performance.

    PubMed

    Waterhouse, J; Hudson, P; Edwards, B

    2010-08-01

    In an in vivo laboratory controlled study, 12 healthy male students cycled at self-chosen work-rates while listening to a program of six popular music tracks of different tempi. The program lasted about 25 min and was performed on three occasions--unknown to the participants, its tempo was normal, increased by 10% or decreased by 10%. Work done, distance covered and cadence were measured at the end of each track, as were heart rate and subjective measures of exertion, thermal comfort and how much the music was liked. Speeding up the music program increased distance covered/unit time, power and pedal cadence by 2.1%, 3.5% and 0.7%, respectively; slowing the program produced falls of 3.8%, 9.8% and 5.9%. Average heart rate changes were +0.1% (faster program) and -2.2% (slower program). Perceived exertion and how much the music was liked increased (faster program) by 2.4% and 1.3%, respectively, and decreased (slower program) by 3.6% and 35.4%. That is, healthy individuals performing submaximal exercise not only worked harder with faster music but also chose to do so and enjoyed the music more when it was played at a faster tempo. Implications of these findings for improving training regimens are discussed.

  11. Ventilatory responses to exercise training in obese adolescents.

    PubMed

    Mendelson, Monique; Michallet, Anne-Sophie; Estève, François; Perrin, Claudine; Levy, Patrick; Wuyam, Bernard; Flore, Patrice

    2012-10-15

    The aim of this study was to examine ventilatory responses to training in obese adolescents. We assessed body composition, pulmonary function and ventilatory responses (among which expiratory flow limitation and operational lung volumes) during progressive cycling exercise in 16 obese adolescents (OB) before and after 12 weeks of exercise training and in 16 normal-weight volunteers. As expected, obese adolescents' resting expiratory reserve volume was lower and inversely correlated with thoraco-abdominal fat mass (r = -0.74, p<0.0001). OB presented lower end expiratory (EELV) and end inspiratory lung volumes (EILV) at rest and during submaximal exercise, and modest expiratory flow limitation. After training, OB increased maximal aerobic performance (+19%) and maximal inspiratory pressure (93.7±31.4 vs. 81.9±28.2 cm H2O, +14%) despite lack of decrease in trunk fat and body weight. Furthermore, EELV and EILV were greater during submaximal exercise (+11% and +9% in EELV and EILV, respectively), expiratory flow limitation delayed but was not accompanied by increased V(T). However, submaximal exertional symptoms (dyspnea and leg discomfort) were significantly decreased (-71.3% and -70.7%, respectively). Our results suggest that exercise training can improve pulmonary function at rest (static inspiratory muscle strength) and exercise (greater operating lung volumes and delayed expiratory flow limitation) but these modifications did not entirely account for improved dyspnea and exercise performance in obese adolescents. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. EMG normalization to study muscle activation in cycling.

    PubMed

    Rouffet, David M; Hautier, Christophe A

    2008-10-01

    The value of electromyography (EMG) is sensitive to many physiological and non-physiological factors. The purpose of the present study was to determine if the torque-velocity test (T-V) can be used to normalize EMG signals into a framework of biological significance. Peak EMG amplitude of gluteus maximus (GMAX), vastus lateralis (VL), rectus femoris (RF), biceps femoris long head (BF), gastrocnemius medialis (GAS) and soleus (SOL) was calculated for nine subjects during isometric maximal voluntary contractions (IMVC) and torque-velocity bicycling tests (T-V). Then, the reference EMG signals obtained from IMVC and T-V bicycling tests were used to normalize the amplitude of the EMG signals collected for 15 different submaximal pedaling conditions. The results of this study showed that the repeatability of the measurements between IMVC (from 10% to 23%) and T-V (from 8% to 20%) was comparable. The amplitude of the peak EMG of VL was 99+/-43% higher (p<0.001) when measured during T-V. Moreover, the inter-individual variability of the EMG patterns calculated for submaximal cycling exercises differed significantly when using T-V bicycling normalization method (GMAX: 0.33+/-0.16 vs. 1.09+/-0.04, VL: 0.07+/-0.02 vs. 0.64+/-0.14, SOL: 0.07+/-0.03 vs. 1.00+/-0.07, RF: 1.21+/-0.20 vs. 0.92+/-0.13, BF: 1.47+/-0.47 vs. 0.84+/-0.11). It was concluded that T-V bicycling test offers the advantage to be less time and energy-consuming and to be as repeatable as IMVC tests to measure peak EMG amplitude. Furthermore, this normalization method avoids the impact of non-physiological factors on the amplitude of the EMG signals so that it allows quantifying better the activation level of lower limb muscles and the variability of the EMG patterns during submaximal bicycling exercises.

  13. Drink composition and cycle-ergometer endurance in men: Carbohydrate, Na(+), osmolality

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Looft-Wilson, R.; Wisherd, J. L.; Marchman, N.; Wells, T.; Barnes, P. R.; Wong, L. G.

    1994-01-01

    Cycle-ergometer endurance performance was determined in 5 untrained men (22-39 yr, 62.4-100.5 kg, 29-55 mL x min(exp -1) x kg(exp -1) peak oxygen uptake) after consuming Nothing (N) or two fluid formulations (10 mL x kg(exp -1), 555-998 mL). Performance 1 (P1), a multi-ionic-glucose rehydration drink, contains 55 mEq/L Na(exp +), 416 mg/dL citrate, 2,049 mg/dL glucose, and 365 mOsm/kgH2O. HyperAde (HA), a sodium chloride-citrate hyperhydration drink, contains 164 mEq/L Na(exp +), 854 mg/dL citrate, less than 0.5 mg/dL glucose, and 253 mOsm/kgH2O. Endurance at a load of 87-91 percent of peak VO2 was 30.50 +/- SE 3.44 min with HA; 24.55 +/- 1.09 min with P1 (p greater than 0.10 from HA); and 24.68 +/- 1.50 min with N (p less than 0.05 from HA). The attenuated endurance performance with P1 and N could not be attributed to differences in exercise metabolism, change or absolute level of rectal and mean skin temperature, or change in perceived exertion. The greater increase in resting plasma volume with HA, compared with P1 or N, probably contributed to the greater endurance with HA.

  14. ACE insertion/deletion polymorphism and submaximal exercise hemodynamics in postmenopausal women.

    PubMed

    Hagberg, James M; McCole, Steve D; Brown, Michael D; Ferrell, Robert E; Wilund, Kenneth R; Huberty, Andrea; Douglass, Larry W; Moore, Geoffrey E

    2002-03-01

    We sought to determine whether the angiotensin-converting enzyme (ACE) insertion (I)/deletion (D) polymorphism is associated with submaximal exercise cardiovascular hemodynamics. Postmenopausal healthy women (20 sedentary, 20 physically active, 22 endurance athletes) had cardiac output (acetylene rebreathing) measured during 40, 60, and 80% VO(2 max) exercise. The interaction of ACE genotype and habitual physical activity (PA) level was significantly associated with submaximal exercise systolic blood pressure, with only sedentary women exhibiting differences among genotypes. No significant effects of ACE genotype or its interaction with PA levels was observed for submaximal exercise diastolic blood pressure. ACE genotype was significantly associated with submaximal exercise heart rate (HR) with ACE II having approximately 10 beats/min higher HR than ACE ID/DD genotype women. ACE genotype did not interact significantly with habitual PA level to associate with submaximal exercise HR. ACE genotype was not independently, but was interactively with habitual PA levels, associated with differences in submaximal exercise cardiac output and stroke volume. For cardiac output, ACE II genotype women athletes had ~25% greater cardiac output than ACE DD genotype women athletes, whereas for stroke volume genotype-dependent differences were observed in both the physically active and athletic women. ACE genotype was not significantly associated, either independently or interactively with habitual PA levels, with submaximal exercise total peripheral resistance or arteriovenous O(2) difference. Thus the common ACE locus polymorphic variation is associated with many submaximal exercise cardiovascular hemodynamic responses.

  15. Recruitment of single muscle fibers during submaximal cycling exercise.

    PubMed

    Altenburg, T M; Degens, H; van Mechelen, W; Sargeant, A J; de Haan, A

    2007-11-01

    In literature, an inconsistency exists in the submaximal exercise intensity at which type II fibers are activated. In the present study, the recruitment of type I and II fibers was investigated from the very beginning and throughout a 45-min cycle exercise at 75% of the maximal oxygen uptake, which corresponded to 38% of the maximal dynamic muscle force. Biopsies of the vastus lateralis muscle were taken from six subjects at rest and during the exercise, two at each time point. From the first biopsy single fibers were isolated and characterized as type I and II, and phosphocreatine-to-creatine (PCr/Cr) ratios and periodic acid-Schiff (PAS) stain intensities were measured. Cross sections were cut from the second biopsy, individual fibers were characterized as type I and II, and PAS stain intensities were measured. A decline in PCr/Cr ratio and in PAS stain intensity was used as indication of fiber recruitment. Within 1 min of exercise both type I and, although to a lesser extent, type II fibers were recruited. Furthermore, the PCr/Cr ratio revealed that the same proportion of fibers was recruited during the whole 45 min of exercise, indicating a rather constant recruitment. The PAS staining, however, proved inadequate to fully demonstrate fiber recruitment even after 45 min of exercise. We conclude that during cycling exercise a greater proportion of type II fibers is recruited than previously reported for isometric contractions, probably because of the dynamic character of the exercise. Furthermore, the PCr/Cr ratio method is more sensitive in determining fiber activation than the PAS stain intensity method.

  16. Intra-session repeatability of lower limb muscles activation pattern during pedaling.

    PubMed

    Dorel, Sylvain; Couturier, Antoine; Hug, François

    2008-10-01

    Assessment of intra-session repeatability of muscle activation pattern is of considerable relevance for research settings, especially when used to determine changes over time. However, the repeatability of lower limb muscles activation pattern during pedaling is not fully established. Thus, we tested the intra-session repeatability of the activation pattern of 10 lower limb muscles during a sub-maximal cycling exercise. Eleven triathletes participated to this study. The experimental session consisted in a reference sub-maximal cycling exercise (i.e. 150 W) performed before and after a 53-min simulated training session (mean power output=200+/-12 W). Repeatability of EMG patterns was assessed in terms of muscle activity level (i.e. RMS of the mean pedaling cycle and burst) and muscle activation timing (i.e. onset and offset of the EMG burst) for the 10 following lower limb muscles: gluteus maximus (GMax), semimembranosus (SM), Biceps femoris (BF), vastus medialis (VM), rectus femoris (RF), vastus lateralis (VL), gastrocnemius medianus (GM) and lateralis (GL), soleus (SOL) and tibialis anterior (TA). No significant differences concerning the muscle activation level were found between test and retest for all the muscles investigated. Only VM, SOL and TA showed significant differences in muscle activation timing parameters. Whereas ICC and SEM values confirmed this weak repeatability, cross-correlation coefficients suggest a good repeatability of the activation timing parameters for all the studied muscles. Overall, the main finding of this work is the good repeatability of the EMG pattern during pedaling both in term of muscle activity level and muscle activation timing.

  17. Physiological differences between cycling and running: lessons from triathletes.

    PubMed

    Millet, Gregoire P; Vleck, V E; Bentley, D J

    2009-01-01

    The purpose of this review was to provide a synopsis of the literature concerning the physiological differences between cycling and running. By comparing physiological variables such as maximal oxygen consumption (V O(2max)), anaerobic threshold (AT), heart rate, economy or delta efficiency measured in cycling and running in triathletes, runners or cyclists, this review aims to identify the effects of exercise modality on the underlying mechanisms (ventilatory responses, blood flow, muscle oxidative capacity, peripheral innervation and neuromuscular fatigue) of adaptation. The majority of studies indicate that runners achieve a higher V O(2max) on treadmill whereas cyclists can achieve a V O(2max) value in cycle ergometry similar to that in treadmill running. Hence, V O(2max) is specific to the exercise modality. In addition, the muscles adapt specifically to a given exercise task over a period of time, resulting in an improvement in submaximal physiological variables such as the ventilatory threshold, in some cases without a change in V O(2max). However, this effect is probably larger in cycling than in running. At the same time, skill influencing motor unit recruitment patterns is an important influence on the anaerobic threshold in cycling. Furthermore, it is likely that there is more physiological training transfer from running to cycling than vice versa. In triathletes, there is generally no difference in V O(2max) measured in cycle ergometry and treadmill running. The data concerning the anaerobic threshold in cycling and running in triathletes are conflicting. This is likely to be due to a combination of actual training load and prior training history in each discipline. The mechanisms surrounding the differences in the AT together with V O(2max) in cycling and running are not largely understood but are probably due to the relative adaptation of cardiac output influencing V O(2max) and also the recruitment of muscle mass in combination with the oxidative capacity of this mass influencing the AT. Several other physiological differences between cycling and running are addressed: heart rate is different between the two activities both for maximal and submaximal intensities. The delta efficiency is higher in running. Ventilation is more impaired in cycling than in running. It has also been shown that pedalling cadence affects the metabolic responses during cycling but also during a subsequent running bout. However, the optimal cadence is still debated. Central fatigue and decrease in maximal strength are more important after prolonged exercise in running than in cycling.

  18. STS-46 Italian Payload Specialist Malerba uses laptop PGSC on OV-104 middeck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Italian Payload Specialist Franco Malerba, wearing communications kit assembly headset (HDST), uses laptop payload and general support computer (PGSC) on the middeck of Atlantis, Orbiter Vehicle (OV) 104. Malerba is positioned in front of the airlock and surrounded by the interdeck access ladder (foreground), a cycle ergometer (directly behind him), the forward lockers (background), and the sleep station (at his left). Food, candy, hygiene kits, beverage containers, and film reels are attached to the forward lockers.

  19. Maximal aerobic power in cycle ergometry in middle-aged men and women, active in sports, in relation to age and physical activity.

    PubMed

    Bovens, A M; van Baak, M A; Vrencken, J G; Wijnen, J A; Saris, W H; Verstappen, F T

    1993-02-01

    Reliable standards of maximal power output in middle-aged and physically active men and women are desirable in sports-medical practice. For this purpose maximal cycle ergometer tests were evaluated in 2038 men and 898 women over 40 years of age (46.8 +/- 6.1 years (mean +/- SD) and 47.5 +/- 6.6 years), who volunteered in a sports-medical check-up and all of whom were active in sports for at least three months in the year preceding the screening (4.3 +/- 3.1 hours/week respectively 3.6 +/- 2.5 hours/week). The range of maximal values for power output (Wmax), heart rate (HRmax), systolic blood pressure (SBPmax) and peak plasma lactate concentrations (PPLa) during progressive cycle ergometer testing are presented for males and females who were divided into groups with a 5-years age difference. Wmax varied with sex (male = 1, female = 0), age (year) and height (cm); Wmax = 65.3 x (sex) + 2.0 x (height) -1.9 x (age) - 67.9 (See = 38.2; r = 0.76). The weighing of different factors that influence performance was also studied by multiple regression analysis to provide improved precision in standards used to interpret exercise tests. In both men and women about half of the variation of Wmax could be explained by the independent variables age, body mass, body fat, smoking habits, vital capacity, heart rate, and physical activity parameters. It is concluded that active involvement in endurance sports and/or the use of the bicycle for transport, contributed substantially to cardiovascular fitness in healthy, middle-aged men and women.

  20. Exercise-induced trace mineral element concentration in regional versus whole-body wash-down sweat.

    PubMed

    Baker, Lindsay B; Stofan, John R; Lukaski, Henry C; Horswill, Craig A

    2011-06-01

    Simultaneous whole-body wash-down (WBW) and regional skin surface sweat collections were completed to compare regional patch and WBW sweat calcium (Ca), magnesium (Mg), copper (Cu), manganese (Mn), iron (Fe), and zinc (Zn) concentrations. Athletes (4 men, 4 women) cycled in a plastic open-air chamber for 90 min in the heat. Before exercise, the subjects and cycle ergometer (covered in plastic) were washed with deionized water. After the onset of sweating, sterile patches were attached to the forearm, back, chest, forehead, and thigh and removed on saturation. After exercise, the subjects and cycle ergometer were washed with 5 L of 15-mM ammonium sulfate solution to collect all sweat minerals and determine the volume of unevaporated sweat. Control trials were performed to measure mineral contamination in regional and WBW methods. Because background contamination in the collection system was high for WBW Mn, Fe, and Zn, method comparisons were not made for these minerals. After correction for minimal background contamination, WBW sweat [Ca], [Mg], and [Cu] were 44.6 ± 20.0, 9.8 ± 4.8, and 0.125 ± 0.069 mg/L, respectively, and 5-site regional (weighted for local sweat rate and body surface area) sweat [Ca], [Mg], and [Cu] were 59.0 ± 15.9, 14.5 ± 4.8, and 0.166 ± 0.031 mg/L, respectively. Five-site regional [Ca], [Mg], and [Cu] overestimated WBW by 32%, 48%, and 33%, respectively. No individual regional patch site or 5-site regional was significantly correlated with WBW sweat [Ca] (r = -.21, p = .65), [Mg] (r = .49, p = .33), or [Cu] (r = .17, p = .74). In conclusion, regional sweat [Ca], [Mg], and [Cu] are not accurate surrogates for or significantly correlated with WBW sweat composition.

  1. COMPARISON OF TRUNK AND LOWER EXTREMITY MUSCLE ACTIVITY AMONG FOUR STATIONARY EQUIPMENT DEVICES: UPRIGHT BIKE, RECUMBENT BIKE, TREADMILL, AND ELLIPTIGO®

    PubMed Central

    Baker, Ryan; Gibson, Chris; Kearney, Andrew; Busemeyer, Tommy

    2016-01-01

    Background Stationary equipment devices are often used to improve fitness. The ElliptiGO® was recently developed that blends the elements of an elliptical trainer and bicycle, allowing reciprocal lower limb pedaling in an upright position. However, it is unknown whether the muscle activity used for the ElliptiGO® is similar to walking or cycling. To date, there is no information comparing muscle activity for exercise on the treadmill, stationary upright and recumbent bikes, and the ElliptiGO®. Purpose/Hypothesis The purpose of this study was to assess trunk and lower extremity muscle activity among treadmill walking, cycling (recumbent and upright) and the ElliptiGO® cycling. It was hypothesized that the ElliptiGO® and treadmill would elicit similar electromyographic muscle activity responses compared to the stationary bike and recumbent bike during an exercise session. Study Design Cohort, repeated measures Methods Twelve recreationally active volunteers participated in the study and were assigned a random order of exercise for each of the four devices (ElliptiGO®, stationary upright cycle ergometer, recumbent ergometer, and a treadmill). Two-dimensional video was used to monitor the start and stop of exercise and surface electromyography (SEMG) were used to assess muscle activity during two minutes of cycling or treadmill walking at 40-50% heart rate reserve (HRR). Eight muscles on the dominant limb were used for analysis: gluteus maximus (Gmax), gluteus medius (Gmed), biceps femoris (BF), lateral head of the gastrocnemius (LG), tibialis anterior (TA), rectus femoris (RF). Two trunk muscles were assessed on the same side; lumbar erector spinae at L3-4 level (LES) and rectus abdominus (RA). Maximal voluntary isometric contractions (MVIC) were determined for each muscle and SEMG data were expressed as %MVIC in order to normalize outputs. Results The %MVIC for RF during ElliptiGO® cycling was higher than recumbent cycling. The LG muscle activity was highest during upright cycling. The TA was higher during walking compared to recumbent cycling and ElliptiGO® cycling. No differences were found among the the LES and remaining lower limb musculature across devices. Conclusion ElliptiGO® cycling was found to elicit sufficient muscle activity to provide a strengthening stimulus for the RF muscle. The LES, RA, Gmax, Gmed, and BF activity were similar across all devices and ranged from low to moderate strength levels of muscle activation. The information gained from this study may assist clinicians in developing low to moderate strengthening exercise protocols when using these four devices. Level of evidence 3 PMID:27104052

  2. COMPARISON OF TRUNK AND LOWER EXTREMITY MUSCLE ACTIVITY AMONG FOUR STATIONARY EQUIPMENT DEVICES: UPRIGHT BIKE, RECUMBENT BIKE, TREADMILL, AND ELLIPTIGO®.

    PubMed

    Bouillon, Lucinda; Baker, Ryan; Gibson, Chris; Kearney, Andrew; Busemeyer, Tommy

    2016-04-01

    Stationary equipment devices are often used to improve fitness. The ElliptiGO® was recently developed that blends the elements of an elliptical trainer and bicycle, allowing reciprocal lower limb pedaling in an upright position. However, it is unknown whether the muscle activity used for the ElliptiGO® is similar to walking or cycling. To date, there is no information comparing muscle activity for exercise on the treadmill, stationary upright and recumbent bikes, and the ElliptiGO®. The purpose of this study was to assess trunk and lower extremity muscle activity among treadmill walking, cycling (recumbent and upright) and the ElliptiGO® cycling. It was hypothesized that the ElliptiGO® and treadmill would elicit similar electromyographic muscle activity responses compared to the stationary bike and recumbent bike during an exercise session. Cohort, repeated measures. Twelve recreationally active volunteers participated in the study and were assigned a random order of exercise for each of the four devices (ElliptiGO®, stationary upright cycle ergometer, recumbent ergometer, and a treadmill). Two-dimensional video was used to monitor the start and stop of exercise and surface electromyography (SEMG) were used to assess muscle activity during two minutes of cycling or treadmill walking at 40-50% heart rate reserve (HRR). Eight muscles on the dominant limb were used for analysis: gluteus maximus (Gmax), gluteus medius (Gmed), biceps femoris (BF), lateral head of the gastrocnemius (LG), tibialis anterior (TA), rectus femoris (RF). Two trunk muscles were assessed on the same side; lumbar erector spinae at L3-4 level (LES) and rectus abdominus (RA). Maximal voluntary isometric contractions (MVIC) were determined for each muscle and SEMG data were expressed as %MVIC in order to normalize outputs. The %MVIC for RF during ElliptiGO® cycling was higher than recumbent cycling. The LG muscle activity was highest during upright cycling. The TA was higher during walking compared to recumbent cycling and ElliptiGO® cycling. No differences were found among the the LES and remaining lower limb musculature across devices. ElliptiGO® cycling was found to elicit sufficient muscle activity to provide a strengthening stimulus for the RF muscle. The LES, RA, Gmax, Gmed, and BF activity were similar across all devices and ranged from low to moderate strength levels of muscle activation. The information gained from this study may assist clinicians in developing low to moderate strengthening exercise protocols when using these four devices. 3.

  3. Haemoglobin saturation during incremental arm and leg exercise.

    PubMed Central

    Powers, S. K.; Dodd, S.; Woodyard, J.; Beadle, R. E.; Church, G.

    1984-01-01

    There are few reports concerning the alterations in the percent of haemoglobin saturated with oxygen (%SO2) during non-steady state incremental exercise. Further, no data exist to describe the %SO2 changes during arm exercise. Therefore, the purpose of this study was made to assess the dynamic changes in %SO2 during incremental arm and leg work. Nine trained subjects (7 males and 2 females) performed incremental arm and leg exercise to exhaustion on an arm crank ergometer and a cycle ergometer, respectively. Ventilation and gas exchange measurements were obtained minute by minute via open circuit spirometry and changes in %SO2 were recorded via an ear oximeter. No significant difference (p greater than 0.05) existed between arm and leg work in end-tidal oxygen (PETO2), end-tidal carbon dioxide (PETCO2), or %SO2 when compared as a function of percent VO2 max. These results provide evidence that arterial O2 desaturation occurs in a similar fashion in both incremental arm and leg work with the greatest changes in %SO2 occurring at work rates greater than 70% VO2 max. PMID:6435715

  4. The effects of salmeterol on power output in nonasthmatic athletes.

    PubMed

    McDowell, S L; Fleck, S J; Storms, W W

    1997-04-01

    Salmeterol xinafoate is a new aerosol inhalant that is used in the treatment of asthma. It is currently banned by the International Olympic Committee because of the concern that it may lend an unfair competitive advantage to the user. The purpose of this study was to determine whether salmeterol improves short-term anaerobic performance in elite nonasthmatic track cyclists. Eleven elite track cyclists volunteered to perform a 30-second all-out cycle ergometer test 3 hours after receiving either 42 micrograms of salmeterol xinafoate or placebo applied in a double-blind crossover procedure. During the ergometer test, peak power output, total work, time to peak power, and percent fatigue (decline in power output) were measured. Pulmonary measurements were also taken before and at various time points after inhalation and the ergometer test. A methacholine challenge was administered to each subject before participation in the study to ensure that none of the subjects had any reactive airway diseases. There were no significant differences (p > 0.05) between the placebo and salmeterol trials for peak power output, total work performed during the 30-second test, percent fatigue, and time to peak power. No differences between trials were observed for the pulmonary function test variables at any of the time points. Blood lactate concentrations before and after administration of drug or placebo were also not significantly different between trials. Additionally, salmeterol did not affect the maximal heart rate achieved during the test as compared with the placebo. Short-term salmeterol use within the prescribed dosage was not shown to increase short-term power output in nonasthmatic cyclists.

  5. Changes in fitness and shipboard task performance following circuit weight training programs featuring continuous or interval running.

    PubMed

    Marcinik, E J; Hodgdon, J A; Englund, C E; O'Brien, J J

    1987-01-01

    Pre- and post-physiological data were collected on 57 Navy men (mean age = 19.5 years) who participated in either circuit weight training/continuous run (CWT/CR) (N = 31) or circuit weight training/interval run (CWT/IR) (N = 26) programs. Measured variables included 4 measures of upper torso dynamic strength (one repetition maximum [1 RM] for arm curl, bench press, shoulder press, and lat pull-down); two measures of lower torso dynamic strength (1 RM) for knee extension and leg press); one measure of power (number of revolutions completed on an arm ergometer (Monark) at maximum drag); three measures of muscular endurance (number of repetitions at 60% 1 RM for bench press and leg press and maximal number of bent-knee sit-ups in 120 s); one stamina measure (time to exhaustion on a cycle ergometer (Monark) maximal work capacity [MWC] test; and three simulated shipboard tasks: manikin shoulder drag, open/secure a water tight door and paint bucket carry. Composite shipboard performance derived from the summed time (s) required to complete the three tasks was also calculated. Results show performance on the manikin shoulder drag and majority of evaluative fitness measures was significantly (p less than 0.05) enhanced following both circuit weight training/run formats. Significantly (p less than 0.05) higher values for shoulder press (F = 7.2), arm ergometer (F = 5.3), and sit-ups (F = 6.8) and lower values for leg press muscular endurance (F = 5.1) were observed in CWT/IR when compared to CWT/CR.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Muscle function during brief maximal exercise: accurate measurements on a friction-loaded cycle ergometer.

    PubMed

    Arsac, L M; Belli, A; Lacour, J R

    1996-01-01

    A friction loaded cycle ergometer was instrumented with a strain gauge and an incremental encoder to obtain accurate measurement of human mechanical work output during the acceleration phase of a cycling sprint. This device was used to characterise muscle function in a group of 15 well-trained male subjects, asked to perform six short maximal sprints on the cycle against a constant friction load. Friction loads were successively set at 0.25, 0.35, 0.45, 0.55, 0.65 and 0.75 N.kg-1 body mass. Since the sprints were performed from a standing start, and since the acceleration was not restricted, the greatest attention was paid to the measurement of the acceleration balancing load due to flywheel inertia. Instantaneous pedalling velocity (v) and power output (P) were calculated each 5 ms and then averaged over each downstroke period so that each pedal downstroke provided a combination of v, force and P. Since an 8-s acceleration phase was composed of about 21 to 34 pedal downstrokes, this many v-P combinations were obtained amounting to 137-180 v-P combinations for all six friction loads in one individual, over the widest functional range of pedalling velocities (17-214 rpm). Thus, the individual's muscle function was characterised by the v-P relationships obtained during the six acceleration phases of the six sprints. An important finding of the present study was a strong linear relationship between individual optimal velocity (vopt) and individual maximal power output (Pmax) (n = 15, r = 0.95, P < 0.001) which has never been observed before. Since vopt has been demonstrated to be related to human fibre type composition both vopt, Pmax and their inter-relationship could represent a major feature in characterising muscle function in maximal unrestricted exercise. It is suggested that the present method is well suited to such analyses.

  7. The influence of evaluation protocol on time spent exercising at a high level of oxygen uptake during continuous cycling.

    PubMed

    Merry, K L; Glaister, M; Howatson, G; Van Someren, K

    2015-10-01

    This study evaluated the effects of protocol variation on the time spent exercising at ≥95% V̇O2max during cycle ergometer trials performed at the exercise intensity associated with V̇O2max (iV̇O2max). Nine male triathletes (age: 32±10 years; body mass: 73.3±6.1 kg; stature: 1.79±0.07 m; V̇O2max: 3.58±0.45 L.min(-1)) performed four exercise tests. During tests 1 and 2, participants performed a maximal incremental cycle ergometer test using different stage durations (1 min and 3 min) for the determination of iV̇O2max (1 min) and iV̇O2max (3 min). During tests 3 and 4, participants performed a continuous bout of exhaustive cycling at iV̇O2max (1 min) (CONT1) and iV̇O2max (3 min) (CONT3). iV̇O2max (1 min) was significantly greater (P<0.001) than iV̇O2max (3 min) (340±31 W vs. 299±44 W). Time to exhaustion (TTE) measured during CONT3 was significantly longer (P<0.001) than CONT1 (529±140 s vs. 214±65 s). Time spent at V̇O2max was significantly longer (P=0.036) during CONT3 than CONT1 (146±158 s vs. 11±20 s), and time spent at ≥95% V̇O2max was significantly longer (P=0.005) during CONT3 than CONT1 (326±211 s vs. 57±51 s). These results show that when exercising continuously at iV̇O2max, time spent at ≥95% V̇O2max is influenced by the initial measurement of iV̇O2max.

  8. External And Internal Work Of A T-6 Paraplegic Propelling A Wheelchair And Arm Cranking A Cycle Ergometer: Case Study

    NASA Astrophysics Data System (ADS)

    Novak, Charles W.

    1982-02-01

    In this, the International Year of the Disabled, attention is directed among other areas toward rehabilitation and sports participation of wheelchair users. As an application of movement analysis in medicine and rehabilitation and as an application of sports research using biomechanics, this investigation was performed to compare the results of two methods of gathering data on the stress of wheelchair propelling at equivalent work loads and to account for differences in physiological responses with a mechanical analysis of wheelchair propelling. Physiological data collected were heart rate, systolic blood pressure, and rate-pressure product. A biomechanical cinematography analysis was used to determine external work in wheelchair propelling and to determine the extent to which modifications in segment actionsoccurred during increasing magnitude of work. A cycle ergometer was adjusted to replicate external work loads performed during wheelchair propelling. A t-test of equivalent external work loads indicated that heart rate was not different between the two exercise modes at the .05 level of significance. The t-test did indicate a significant difference in systolic blood pressure and rate-pressure product at the .05 level of significance. The biomechanical analysis of wheelchair propelling established that an increase in external work was accomplished by a decrease in the range of motion and an increase in the speed of movement. During cycle ergometry the range and speed of movement remained the same while resistance was increased. Results of the study established that while heart rate for equivalent external work loads was the same for wheelchair propelling and arm cranking cycle ergometry, systolic blood pressure and rate-pressure product were not the same. The suggestion was that some means of propelling a wheelchair other than that which is con-sidered "standard" might be considered which produces less stressful responses in wheelchair users.

  9. Total haemoglobin mass, maximal and submaximal power in elite rowers.

    PubMed

    Treff, G; Schmidt, W; Wachsmuth, N; Völzke, C; Steinacker, J M

    2014-06-01

    Elite rowers are highly endurance trained and present with a large lean body mass (LBM), which is closely related to total haemoglobin mass (tHbmass), a major determinant of blood O2-transport. This study aims to determine the magnitude of tHbmass in elite rowers and its relation to performance parameters that are common in rowing worldwide. 13 rowers (3 lightweight) performed a 2000 m test to evaluate maximal performance on the rowing ergometer (P2k) and an incremental test to evaluate power output at lactate 2 and 4 mmol/l (N=15). tHbmass was measured by CO-rebreathing. tHbmass amounted to 1285±123 g (open weight) and 1059±48 g (lightweight). Coefficients of correlation between tHbmass and power output increased with intensity, being highest for P2k (r=0.80). An increase of 100 g tHbmass is associated with an increase of 24 W in P2k between subjects. The ratio between tHbmass/LBM amounted to approximately 16 g/kg. Absolute tHbmass in elite rowers of open weight class is very high. In relation to body mass or LBM, data is similar to other endurance athletes. The relation between P2k performance and tHbmass is very large. However, it is partly mediated by body composition. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Interval training based on ventilatory anaerobic threshold improves aerobic functional capacity and metabolic profile: a randomized controlled trial in coronary artery disease patients.

    PubMed

    Tamburús, Nayara Y; Kunz, Vandeni C; Salviati, Mariana R; Castello Simões, Viviane; Catai, Aparecida M; Da Silva, Ester

    2016-02-01

    Exercise training has been an essential component of cardiac rehabilitation. However, it is not known if interval training (IT) based on the ventilatory anaerobic threshold (VAT) could be effective in improving aerobic functional capacity and metabolic profile in patients without or with coronary artery disease (CAD). To investigate the effects of an IT program, based-intensity between 70-110% of workload reached at the VAT, on the aerobic functional capacity and metabolic profile of patients with and without CAD. Randomized controlled trial. Outpatients from a cardiac rehabilitation. A sample was composed of 32 patients with CAD (CAD group) and 32 patients without CAD (noCAD group) that were randomized into a trained or control groups. Submaximal cardiopulmonary exercise test on the cycle ergometer and blood samples were realized at baseline and post 16 weeks of IT program. The cardiorespiratory variables were obtained at the VAT level. Trained groups (CAD-T, N.=15; noCAD-T, N.=15) underwent a supervised three-week session IT program (30-40 minutes each exercise session, at the intensity workloads equivalent to %VAT [70-110%]) for 16 weeks. After 16 weeks of IT program, there were a significant increase of VO(2VAT) and workload in the trained groups (P<0.05), while in the control groups VO(2VAT) and heart rate decreased (P<0.05). Body mass and body index mass decreased in trained groups (P<0.05), and low-density lipoprotein increased only in noCAD group after 16 weeks (P<0.05). The magnitude of the improvement in VO(2VAT) was related to VO(2VAT) (r=-0.57, P<0.05) and workload (r=-0.52, P<0.05) at baseline. The IT program prescribed with intensities based on VAT improved the aerobic functional capacity and decreased body mass and body index mass loss in patients with and without CAD. IT program based on VAT provides new possibilities for cardiac rehabilitation in relation to individualized exercise prescription of the interval training.

  11. Relationships between older adults' use of time and cardio-respiratory fitness, obesity and cardio-metabolic risk: A compositional isotemporal substitution analysis.

    PubMed

    Dumuid, D; Lewis, L K; Olds, T S; Maher, C; Bondarenko, C; Norton, L

    2018-04-01

    Older adults' health has been linked with time in moderate-to-vigorous physical activity (MVPA), and recent studies suggest time in sedentary behaviour may also be important. Time-use behaviours (MVPA, light physical activity, sedentary time and sleep) are co-dependent, and therefore their associations with health should be examined in an integrated manner. This is the first study to investigate the relationship between older adults' reallocation of time among these time-use behaviours and markers of cardio-respiratory fitness, obesity and cardio-metabolic risk. Cross-sectional study of 122 Australians (65 ± 3 y, 61% female). Daily time use: average daily minutes spent in MVPA, light physical activity, sedentary time and sleep derived from 24-h, 7-day accelerometry, were conceptualised as a time-use composition. Cardio-respiratory fitness: graded submaximal cycle ergometer test. Obesity: objectively measured body mass index (BMI) and waist-to-hip ratio (WHR). Cardio-metabolic risk: sphygmomanometer-measured resting blood pressure and fingertip blood sampling for fasting total cholesterol and glucose. Time-use composition was significantly associated with obesity markers (BMI, p = 0.001; WHR, p < 0.001). The reallocation of 15 min to MVPA from any of the other behaviours was associated with approximately +1.1 (95% confidence interval 0.2; 1.9) ml/kg -1  min -1 VO 2max , -0.7 (-1.0; -0.3) BMI units and -1.2 (-1.8; -0.7) WHR percentage points, while the opposite reallocation (15 min from MVPA to other behaviours) was associated with larger difference estimates of -1.8 (-3.2; -0.4) ml/kg -1  min -1 VO 2max , +1.2 (0.5; 1.9) BMI units and +2.1 (1.2; 3.1) WHR percentage points. These findings reinforce the importance of MVPA for health among older adults. Interventions to maintain MVPA, even without increasing it, may be valuable. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Intra-dialytic training accelerates oxygen uptake kinetics in hemodialysis patients.

    PubMed

    Reboredo, Maycon M; Neder, J Alberto; Pinheiro, Bruno V; Henrique, Diane Mn; Lovisi, Julio Cm; Paula, Rogério B

    2015-07-01

    End-stage renal disease is associated with several hemodynamic and peripheral muscle abnormalities that could slow the rate of change in oxygen uptake ([Formula: see text]O2) at the onset and at the end of exercise. This study was performed to determine whether an intra-dialytic aerobic training program would speed [Formula: see text]O2 kinetics at the transition to and from moderate and high-intensity exercise. This study was a randomized controlled trial. Twenty-four patients with end-stage renal disease (14 females; 47.0 ± 11.9 years) were randomly assigned to either 12-week cycle ergometer-based training at moderate exertion or a similar control period. At initial and final evaluations, patients underwent 6 min moderate and high-intensity tests to exercise intolerance (Tlim). Training improved Tlim by ∼90% (median (inter-quartile range) = 232 (59) s to 445 (451) s, p < 0.05); in contrast, Tlim decreased by ∼30% in controls (291 (134) s to 202 (131) s). [Formula: see text]O2 kinetics at the onset of moderate-intensity exercise were significantly accelerated with training leading to lower oxygen (O2) deficit (mean ± standard deviation (SD) = 3.2 ± 1.3 l vs 2.3 ± 1.2 l). Similar positive effects were found at the high-intensity test either at the onset of, or recovery from, exercise (p < 0.05). "Excess" [Formula: see text]O2 at the high-intensity test was also lessened with training. Changes in Tlim correlated with faster [Formula: see text]O2 kinetics and lower "excess" [Formula: see text]O2 (Spearman's ρ = -0.56 and -0.75, respectively; p < 0.01). A symptom-targeted intra-dialytic training program improved sub-maximal aerobic metabolism and endurance exercise capacity. [Formula: see text]O2 kinetics are valuable in providing relatively effort-independent information on the efficacy of exercise interventions in this patient population. © The European Society of Cardiology 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. Cardiac Autonomic Function during Submaximal Treadmill Exercise in Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Mendonca, Goncalo V.; Pereira, Fernando D.; Fernhall, Bo

    2011-01-01

    This study determined whether the cardiac autonomic function of adults with Down syndrome (DS) differs from that of nondisabled persons during submaximal dynamic exercise. Thirteen participants with DS and 12 nondisabled individuals performed maximal and submaximal treadmill tests with metabolic and heart rate (HR) measurements. Spectral analysis…

  14. High Intensity Interval Training Improves Glycaemic Control and Pancreatic β Cell Function of Type 2 Diabetes Patients.

    PubMed

    Madsen, Søren Møller; Thorup, Anne Cathrine; Overgaard, Kristian; Jeppesen, Per Bendix

    2015-01-01

    Physical activity improves the regulation of glucose homeostasis in both type 2 diabetes (T2D) patients and healthy individuals, but the effect on pancreatic β cell function is unknown. We investigated glycaemic control, pancreatic function and total fat mass before and after 8 weeks of low volume high intensity interval training (HIIT) on cycle ergometer in T2D patients and matched healthy control individuals. Study design/method: Elderly (56 yrs±2), non-active T2D patients (n = 10) and matched (52 yrs±2) healthy controls (CON) (n = 13) exercised 3 times (10×60 sec. HIIT) a week over an 8 week period on a cycle ergometer. Participants underwent a 2-hour oral glucose tolerance test (OGTT). On a separate day, resting blood pressure measurement was conducted followed by an incremental maximal oxygen uptake (VO2max) cycle ergometer test. Finally, a whole body dual X-ray absorptiometry (DXA) was performed. After 8 weeks of training, the same measurements were performed. Results: in the T2D-group, glycaemic control as determined by average fasting venous glucose concentration (p = 0.01), end point 2-hour OGTT (p = 0.04) and glycosylated haemoglobin (p = 0.04) were significantly reduced. Pancreatic homeostasis as determined by homeostatic model assessment of insulin resistance (HOMA-IR) and HOMA β cell function (HOMA-%β) were both significantly ameliorated (p = 0.03 and p = 0.03, respectively). Whole body insulin sensitivity as determined by the disposition index (DI) was significantly increased (p = 0.03). During OGTT, the glucose continuum was significantly reduced at -15 (p = 0.03), 30 (p = 0.03) and 120 min (p = 0.03) and at -10 (p = 0.003) and 0 min (p = 0.003) with an additional improvement (p = 0.03) of its 1st phase (30 min) area under curve (AUC). Significant abdominal fat mass losses were seen in both groups (T2D: p = 0.004 and CON: p = 0.02) corresponding to a percentage change of -17.84%±5.02 and -9.66%±3.07, respectively. Conclusion: these results demonstrate that HIIT improves overall glycaemic control and pancreatic β cell function in T2D patients. Additionally, both groups experienced abdominal fat mass losses. These findings demonstrate that HIIT is a health beneficial exercise strategy in T2D patients. ClinicalTrials.gov NCT02333734 http://clinicaltrials.gov/ct2/show/NCT02333734.

  15. High Intensity Interval Training Improves Glycaemic Control and Pancreatic β Cell Function of Type 2 Diabetes Patients

    PubMed Central

    Madsen, Søren Møller; Thorup, Anne Cathrine; Overgaard, Kristian; Jeppesen, Per Bendix

    2015-01-01

    Physical activity improves the regulation of glucose homeostasis in both type 2 diabetes (T2D) patients and healthy individuals, but the effect on pancreatic β cell function is unknown. We investigated glycaemic control, pancreatic function and total fat mass before and after 8 weeks of low volume high intensity interval training (HIIT) on cycle ergometer in T2D patients and matched healthy control individuals. Study design/method: Elderly (56 yrs±2), non-active T2D patients (n = 10) and matched (52 yrs±2) healthy controls (CON) (n = 13) exercised 3 times (10×60 sec. HIIT) a week over an 8 week period on a cycle ergometer. Participants underwent a 2-hour oral glucose tolerance test (OGTT). On a separate day, resting blood pressure measurement was conducted followed by an incremental maximal oxygen uptake (V˙O2max) cycle ergometer test. Finally, a whole body dual X-ray absorptiometry (DXA) was performed. After 8 weeks of training, the same measurements were performed. Results: in the T2D-group, glycaemic control as determined by average fasting venous glucose concentration (p = 0.01), end point 2-hour OGTT (p = 0.04) and glycosylated haemoglobin (p = 0.04) were significantly reduced. Pancreatic homeostasis as determined by homeostatic model assessment of insulin resistance (HOMA-IR) and HOMA β cell function (HOMA-%β) were both significantly ameliorated (p = 0.03 and p = 0.03, respectively). Whole body insulin sensitivity as determined by the disposition index (DI) was significantly increased (p = 0.03). During OGTT, the glucose continuum was significantly reduced at -15 (p = 0.03), 30 (p = 0.03) and 120 min (p = 0.03) and at -10 (p = 0.003) and 0 min (p = 0.003) with an additional improvement (p = 0.03) of its 1st phase (30 min) area under curve (AUC). Significant abdominal fat mass losses were seen in both groups (T2D: p = 0.004 and CON: p = 0.02) corresponding to a percentage change of -17.84%±5.02 and -9.66%±3.07, respectively. Conclusion: these results demonstrate that HIIT improves overall glycaemic control and pancreatic β cell function in T2D patients. Additionally, both groups experienced abdominal fat mass losses. These findings demonstrate that HIIT is a health beneficial exercise strategy in T2D patients. Trial Registration ClinicalTrials.gov NCT02333734 http://clinicaltrials.gov/ct2/show/NCT02333734 PMID:26258597

  16. Changes in technique and efficiency after high-intensity exercise in cross-country skiers.

    PubMed

    Åsan Grasaas, Christina; Ettema, Gertjan; Hegge, Ann Magdalen; Skovereng, Knut; Sandbakk, Øyvind

    2014-01-01

    This study investigated changes in technique and efficiency after high-intensity exercise to exhaustion in elite cross-country skiers. Twelve elite male skiers completed 4 min submaximal exercise before and after a high-intensity incremental test to exhaustion with the G3 skating technique on a 5% inclined roller-ski treadmill. Kinematics and kinetics were monitored by instrumented roller skis, work rate was calculated as power against roller friction and gravity, aerobic metabolic cost was determined from gas exchange, and blood lactate values indicated the anaerobic contribution. Gross efficiency was the work rate divided by aerobic metabolic rate. A recovery period of 10 min between the incremental test and the posttest was included to allow the metabolic values to return to baseline. Changes in neuromuscular fatigue in upper and lower limbs before and after the incremental test were indicated by peak power in concentric bench press and squat-jump height. From pretest to posttest, cycle length decreased and cycle rate increased by approximately 5% (P < 0.001), whereas the amount of ski forces did not change significantly. Oxygen uptake increased by 4%, and gross efficiency decreased from 15.5% ± 0.7% to 15.2% ± 0.5% from pretest to posttest (both P < .02). Correspondingly, blood lactate concentration increased from 2.4 ± 1.0 to 6.2 ± 2.5 mmol/L (P < .001). Bench-press and squat-jump performance remained unaltered. Elite cross-country skiers demonstrated a less efficient technique and shorter cycle length during submaximal roller-ski skating after high-intensity exercise. However, there were no changes in ski forces or peak power in the upper and lower limbs that could explain these differences.

  17. Submaximal oxygen uptake kinetics, functional mobility, and physical activity in older adults with heart failure and reduced ejection fraction

    PubMed Central

    Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B

    2016-01-01

    Background Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Methods Older adults with HF and reduced ejection fraction (n = 25, age 75 ± 7 years) were compared to 25 healthy age- and gender-matched controls. Assessments included a maximal treadmill test for peak oxygen uptake (VO2peak), oxygen uptake kinetics at onset of and on recovery from a submaximal treadmill test, functional mobility testing [Get Up and Go (GUG), Comfortable Gait Speed (CGS), Unipedal Stance (US)], and self-reported physical activity (PA). Results Compared to controls, HF had worse performance on GUG, CGS, and US, greater delays in submaximal oxygen uptake kinetics, and lower PA. In controls, VO2peak was more strongly associated with functional mobility and PA than submaximal oxygen uptake kinetics. In HF patients, submaximal oxygen uptake kinetics were similarly associated with GUG and CGS as VO2peak, but weakly associated with PA. Conclusions Based on their mobility performance, older HF patients with reduced ejection fraction are at risk for adverse functional outcomes. In this population, submaximal oxygen uptake measures may be equivalent to VO2 peak in predicting functional mobility, and in addition to being more feasible, may provide better insight into how aerobic function relates to mobility in older adults with HF. PMID:27594875

  18. Submaximal oxygen uptake kinetics, functional mobility, and physical activity in older adults with heart failure and reduced ejection fraction.

    PubMed

    Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B

    2016-07-01

    Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Older adults with HF and reduced ejection fraction (n = 25, age 75 ± 7 years) were compared to 25 healthy age- and gender-matched controls. Assessments included a maximal treadmill test for peak oxygen uptake (VO2peak), oxygen uptake kinetics at onset of and on recovery from a submaximal treadmill test, functional mobility testing [Get Up and Go (GUG), Comfortable Gait Speed (CGS), Unipedal Stance (US)], and self-reported physical activity (PA). Compared to controls, HF had worse performance on GUG, CGS, and US, greater delays in submaximal oxygen uptake kinetics, and lower PA. In controls, VO2peak was more strongly associated with functional mobility and PA than submaximal oxygen uptake kinetics. In HF patients, submaximal oxygen uptake kinetics were similarly associated with GUG and CGS as VO2peak, but weakly associated with PA. Based on their mobility performance, older HF patients with reduced ejection fraction are at risk for adverse functional outcomes. In this population, submaximal oxygen uptake measures may be equivalent to VO2 peak in predicting functional mobility, and in addition to being more feasible, may provide better insight into how aerobic function relates to mobility in older adults with HF.

  19. Submaximal Exercise VO2 and Q During 30-Day 6 degree Head-Down Bed Rest with Isotonic and Isokinetic Exercise Training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bernauer, E. M.; Erti, A. C.

    1995-01-01

    Submaximal exercise (61+3% peak VO2) metabolism was measured before (AC day-2) and on bed rest day 4, 11, and 25 in 19 healthy men (32-42 yr) allocated into no exercise (NOE, N=5) control, and isotonic exercise (ITE, N=7)and isokinetic exercise (IKE, N=7) training groups. Training was conducting supine for two 30-min periods/d for 6 d/wk: ITE was 60-90% peak VO2: IKE was peak knee flexion-extension at 100 deg/s. Supine submaximal exercise 102 decreased significantly (*p<0.05) by 10.3%, with ITE and by 7.3%* with IKE; similar to the submaximal cardiac output (Q) change of -14.5%* (ITE) and -203%* (IKE), but different from change in peak VO2 (+1.4% with ITE and - 10.2%, with IKE) and plasma volume of -3.7% (ITE) and - 18.0% * (IKE). Thus, reduction of submaximal V02 during prolonged bed rest appears to respond to submaximal Q but is not related to change in peak VO2 or plasma volume.

  20. Ergometer

    NASA Technical Reports Server (NTRS)

    Gause, R. L.; Bynum, B. G. (Inventor)

    1973-01-01

    An ergometer is described that has a pedal driven direct current motor as a load and includes a frame for supporting the body of a person in either a sitting or a prone position. The pedals may be operated by either the feet or the hands. The electrical circuitry of the ergometer includes means for limiting the load applied to the pedals as a function of work being performed, heart rate, and increases in heart rate.

  1. The effect of a caffeinated energy drink on various psychological measures during submaximal cycling.

    PubMed

    Duncan, Michael J; Hankey, Joanne

    2013-05-27

    Caffeine containing energy drinks is commonly consumed in the belief that it will enhance the quality of an exercise session and enhance mood. However, studies examining their efficacy are sparse. The aim of this study was to examine the effect of a caffeinated energy drink on leg pain perception, perceived exertion, mood state and readiness to invest effort pre, during and post 60 min cycling exercise. Fourteen active individuals (7 males, 7 females, mean age ± S.D.=23.5 ± 3.5 years), completed two 60 min cycling trials at an intensity of 60% VO2 max preceded by ingestion of solutions containing either a caffeinated energy drink or placebo using a double-blind, deceptive, crossover design. During exercise, RPE (6-20 scale), leg pain (0-10 scale), heart rate (HR) and blood lactate (Bla) were recorded. Participants also completed measures of mood state and readiness to invest physical effort (RTIPE) pre- and post-exercise. Repeated measures analysis of variance was used to assess differences in all variables and across time and treatments, with gender used as a between subjects variable. Results indicate that HR was significantly higher (P=.002) from 30 to 60 min and RPE (P=.0001) and pain perception (P=.0001) were significantly lower from 20 to 60 min in the energy drink condition compared to placebo. Bla was significantly higher (P=.021) in the last 15 min of the energy drink trial and RTIPE (P=.001) increased significantly more from pre-ingestion to pre-exercise post-ingestion in the energy drink condition compared to placebo. No gender differences were evident (P>.05). The data revealed positive effects of energy drink ingestion on perception of exertion, leg muscle pain perception and readiness to invest effort during submaximal cycling in active adults. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Enhanced Endurance Performance by Periodization of Carbohydrate Intake: "Sleep Low" Strategy.

    PubMed

    Marquet, Laurie-Anne; Brisswalter, Jeanick; Louis, Julien; Tiollier, Eve; Burke, Louise M; Hawley, John A; Hausswirth, Christophe

    2016-04-01

    We investigated the effect of a chronic dietary periodization strategy on endurance performance in trained athletes. Twenty-one triathletes (V˙O2max: 58.7 ± 5.7 mL·min(-1)·kg(-1)) were divided into two groups: a "sleep-low" (SL) (n = 11) and a control (CON) group (n = 10) consumed the same daily carbohydrate (CHO) intake (6 g·kg(-1)·d(-1)) but with different timing over the day to manipulate CHO availability before and after training sessions. The SL strategy consisted of a 3-wk training-diet intervention comprising three blocks of diet-exercise manipulations: 1) "train-high" interval training sessions in the evening with high-CHO availability, 2) overnight CHO restriction ("sleeping-low"), and 3) "train-low" sessions with low endogenous and exogenous CHO availability. The CON group followed the same training program but with high CHO availability throughout training sessions (no CHO restriction overnight, training sessions with exogenous CHO provision). There was a significant improvement in delta efficiency during submaximal cycling for SL versus CON (CON, +1.4% ± 9.3%; SL, +11% ± 15%, P < 0.05). SL also improved supramaximal cycling to exhaustion at 150% of peak aerobic power (CON, +1.63% ± 12.4%; SL, +12.5% ± 19.0%; P = 0.06) and 10-km running performance (CON, -0.10% ± 2.03%; SL, -2.9% ± 2.15%; P < 0.05). Fat mass was decreased in SL (CON, -2.6 ± 7.4; SL, -8.5% ± 7.4% before; P < 0.01), but not lean mass (CON, -0.22 ± 1.0; SL, -0.16% ± 1.7% PRE). Short-term periodization of dietary CHO availability around selected training sessions promoted significant improvements in submaximal cycling economy, as well as supramaximal cycling capacity and 10-km running time in trained endurance athletes.

  3. Which instruments can detect submaximal physical and functional capacity in patients with chronic nonspecific back pain? A systematic review.

    PubMed

    van der Meer, Suzan; Trippolini, Maurizio A; van der Palen, Job; Verhoeven, Jan; Reneman, Michiel F

    2013-12-01

    Systematic review. To evaluate the validity of instruments that claim to detect submaximal capacity when maximal capacity is requested in patients with chronic nonspecific musculoskeletal pain. Several instruments have been developed to measure capacity in patients with chronic pain. The detection of submaximal capacity can have major implications for patients. The validity of these instruments has never been systematically reviewed. A systematic literature search was performed including the following databases: Web of Knowledge (including PubMed and Cinahl), Scopus, and Cochrane. Two reviewers independently selected the articles based on the title and abstract according to the study selection criteria. Studies were included when they contained original data and when they objectified submaximal physical or functional capacity when maximal physical or functional capacity was requested. Two authors independently extracted data and rated the quality of the articles. The included studies were scored according to the subscales "Criterion Validity" and "Hypothesis Testing" of the COSMIN checklist. A Best Evidence Synthesis was performed. Seven studies were included, 5 of which used a reference standard for submaximal capacity. Three studies were of good methodological quality and validly detected submaximal capacity with specificity rates between 75% and 100%. There is strong evidence that submaximal capacity can be detected in patients with chronic low back pain with a lumbar motion monitor or visual observations accompanying a functional capacity evaluation lifting test.

  4. Astronauts Exercising in Space Video

    NASA Technical Reports Server (NTRS)

    2001-01-01

    To minimize the effects of weightlessness and partial gravity, astronauts use several counter measures to maintain health and fitness. One counter measure is exercise to help reduce or eliminate muscle atrophy and bone loss, and to improve altered cardiovascular function. This video shows astronauts on the International Space Station (ISS) using the stationary Cycle/ Ergometer Vibration Isolation System (CVIS), the Treadmill Vibration Isolation System (TVIS), and the resistance exercise device. These technologies and activities will be crucial to keeping astronauts healthy and productive during the long missions to the Moon. Mars, and beyond.

  5. Human Physiological Responses to Cycle Ergometer Leg Exercise During +Gz Acceleration

    NASA Technical Reports Server (NTRS)

    Chou, J. L.; Stad, N. J.; Barnes, P. R.; Leftheriotis, G. P. N.; Arndt, N. F.; Simonson, S.; Greenleaf, J. E.

    1998-01-01

    Spaceflight and bed-rest deconditioning decrease maximal oxygen uptake (aerobic power), strength, endurance capacity, and orthostatic tolerance. In addition to extensive use of muscular exercise conditioning as a countermeasure for the reduction in aerobic power (VO(sub 2max)), stimuli from some form of +Gz acceleration conditioning may be necessary to attenuate the orthostatic intolerance component of this deconditioning. Hypothesis: There will be no significant difference in the physiological responses (oxygen uptake, heart rate, ventilation, or respiratory exchange ratio) during supine exercise with moderate +Gz acceleration.

  6. Submaximal exercise VO2 and Qc during 30-day 6 degrees head-down bed rest with isotonic and isokinetic exercise training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Ertl, A. C.; Bernauer, E. M.

    1996-01-01

    BACKGROUND: Maintaining intermediary metabolism is necessary for the health and well-being of astronauts on long-duration spaceflights. While peak oxygen uptake (VO2) is consistently decreased during prolonged bed rest, submaximal VO2 is either unchanged or decreased. METHODS: Submaximal exercise metabolism (61 +/- 3% peak VO2) was measured during ambulation (AMB day-2) and on bed rest days 4, 11, and 25 in 19 healthy men (32-42 yr) allocated into no exercise (NOE, N = 5) control, and isotonic exercise (ITE, N = 7) and isokinetic exercise (IKE, N = 7) training groups. Exercise training was conducted supine for two 30-min periods per day for 6 d per week: ITE training was intermittent at 60-90% peak VO2; IKE training was 10 sets of 5 repetitions of peak knee flexion-extension force at a velocity of 100 degrees s-1. Cardiac output was measured with the indirect Fick CO2 method, and plasma volume with Evans blue dye dilution. RESULTS: Supine submaximal exercise VO2 decreased significantly (*p < 0.05) by 10.3%* with ITE and by 7.3%* with IKE; similar to the submaximal cardiac output decrease of 14.5%* (ITE) and 20.3%* (IKE), but different from change in peak VO2 (+1.4% with ITE and -10.2%* with IKE) and decrease in plasma volume of -3.7% (ITE) and -18.0%* (IKE). Reduction of submaximal VO2 during bed rest correlated 0.79 (p < 0.01) with submaximal Qc, but was not related to change in peak VO2 or plasma volume. CONCLUSION: Reduction in submaximal oxygen uptake during prolonged bed rest is related to decrease in exercise but not resting cardiac output; perturbations in active skeletal muscle metabolism may be involved.

  7. Differences in force normalising procedures during submaximal anisometric contractions.

    PubMed

    Škarabot, Jakob; Ansdell, Paul; Brownstein, Callum; Howatson, Glyn; Goodall, Stuart; Durbaba, Rade

    2018-05-26

    Eccentric contractions are thought to require a unique neural activation strategy. However, due to greater intrinsic force generating capacity of muscle fibres during eccentric contraction, the understanding of neural modulation of different contraction types during submaximal contractions may be impeded by the force normalisation procedure employed. In the present experiment, subjects performed maximal isometric dorsiflexion at shorter (80°), intermediate (90°) and longer (100°) muscle lengths, and maximal concentric and eccentric contractions. Thereafter, submaximal concentric and eccentric contractions were performed normalised to either isometric maximum at 90° (ISO), contraction type specific maximum (CTS) or muscle length specific maximum (MLS). When using ISO or MLS for normalisation, mean submaximal eccentric torque levels were significantly lower when compared to CTS normalisation (11 and 7% lower compared to CTS; p = 0.003 and p = 0.018 for ISO and MLS, respectively). These experimentally observed differences closely matched those expected from the predictive model. During submaximal concentric contraction, mean torque levels were similar between ISO and CTS normalisation with similar discrepancies noted in EMG activity. These findings suggest that normalising to ISO and MLS might not be accurate for assessment and prescription of submaximal eccentric contractions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. A study on nonlinear estimation of submaximal effort tolerance based on the generalized MET concept and the 6MWT in pulmonary rehabilitation

    PubMed Central

    Szczegielniak, Jan; Łuniewski, Jacek; Stanisławski, Rafał; Bogacz, Katarzyna; Krajczy, Marcin; Rydel, Marek

    2018-01-01

    Background The six-minute walk test (6MWT) is considered to be a simple and inexpensive tool for the assessment of functional tolerance of submaximal effort. The aim of this work was 1) to background the nonlinear nature of the energy expenditure process due to physical activity, 2) to compare the results/scores of the submaximal treadmill exercise test and those of 6MWT in pulmonary patients and 3) to develop nonlinear mathematical models relating the two. Methods The study group included patients with the COPD. All patients were subjected to a submaximal exercise test and a 6MWT. To develop an optimal mathematical solution and compare the results of the exercise test and the 6MWT, the least squares and genetic algorithms were employed to estimate parameters of polynomial expansion and piecewise linear models. Results Mathematical analysis enabled to construct nonlinear models for estimating the MET result of submaximal exercise test based on average walk velocity (or distance) in the 6MWT. Conclusions Submaximal effort tolerance in COPD patients can be effectively estimated from new, rehabilitation-oriented, nonlinear models based on the generalized MET concept and the 6MWT. PMID:29425213

  9. Aerobic interval training reduces vascular resistances during submaximal exercise in obese metabolic syndrome individuals.

    PubMed

    Mora-Rodriguez, Ricardo; Fernandez-Elias, V E; Morales-Palomo, F; Pallares, J G; Ramirez-Jimenez, M; Ortega, J F

    2017-10-01

    The aim of this study was to determine the effects of high-intensity aerobic interval training (AIT) on exercise hemodynamics in metabolic syndrome (MetS) volunteers. Thirty-eight, MetS participants were randomly assigned to a training (TRAIN) or to a non-training control (CONT) group. TRAIN consisted of stationary interval cycling alternating bouts at 70-90% of maximal heart rate during 45 min day -1 for 6 months. CONT maintained baseline physical activity and no changes in cardiovascular function or MetS factors were detected. In contrast, TRAIN increased cardiorespiratory fitness (14% in VO 2PEAK ; 95% CI 9-18%) and improved metabolic syndrome (-42% in Z score; 95% CI 83-1%). After TRAIN, the workload that elicited a VO 2 of 1500 ml min -1 increased 15% (95% CI 5-25%; P < 0.001). After TRAIN when subjects pedaled at an identical submaximal rate of oxygen consumption, cardiac output increased by 8% (95% CI 4-11%; P < 0.01) and stroke volume by 10% (95% CI, 6-14%; P < 0.005) being above the CONT group values at that time point. TRAIN reduced submaximal exercise heart rate (109 ± 15-106 ± 13 beats min -1 ; P < 0.05), diastolic blood pressure (83 ± 8-75 ± 8 mmHg; P < 0.001) and systemic vascular resistances (P < 0.01) below CONT values. Double product was reduced only after TRAIN (18.2 ± 3.2-17.4 ± 2.4 bt min -1  mmHg 10 -3 ; P < 0.05). The data suggest that intense aerobic interval training improves hemodynamics during submaximal exercise in MetS patients. Specifically, it reduces diastolic blood pressure, systemic vascular resistances, and the double product. The reduction in double product, suggests decreased myocardial oxygen demands which could prevent the occurrence of adverse cardiovascular events during exercise in this population. CLINICALTRIALS. NCT03019796.

  10. In dubio pro silentio - Even Loud Music Does Not Facilitate Strenuous Ergometer Exercise.

    PubMed

    Kreutz, Gunter; Schorer, Jörg; Sojke, Dominik; Neugebauer, Judith; Bullack, Antje

    2018-01-01

    Background: Music listening is wide-spread in amateur sports. Ergometer exercise is one such activity which is often performed with loud music. Aim and Hypotheses: We investigated the effects of electronic music at different intensity levels on ergometer performance (physical performance, force on the pedal, pedaling frequency), perceived fatigue and heart rate in healthy adults. We assumed that higher sound intensity levels are associated with greater ergometer performance and less perceived effort, particularly for untrained individuals. Methods: Groups of high trained and low trained healthy males ( N = 40; age = 25.25 years; SD = 3.89 years) were tested individually on an ergometer while electronic dance music was played at 0, 65, 75, and 85 dB. Participants assessed their music experience during the experiment. Results: Majorities of participants rated the music as not too loud (65%), motivating (77.50%), appropriate for this sports exercise (90%), and having the right tempo (67.50%). Participants noticed changes in the acoustical environment with increasing intensity levels, but no further effects on any of the physical or other subjective measures were found for neither of the groups. Therefore, the main hypothesis must be rejected. Discussion: These findings suggest that high loudness levels do not positively influence ergometer performance. The high acceptance of loud music and perceived appropriateness could be based on erroneous beliefs or stereotypes. Reasons for the widespread use of loud music in fitness sports needs further investigation. Reducing loudness during fitness exercise may not compromise physical performance or perceived effort.

  11. Influence of arm crank ergometry on development of lymphedema in breast cancer patients after axillary dissection: A randomized controlled trail.

    PubMed

    Schmidt, Thorsten; Berner, Jette; Jonat, Walter; Weisser, Burkhard; Röcken, Christioph; van Mackelenbergh, Marion; Mundhenke, Christoph

    2017-01-19

    To investigate the safety and efficacy of arm crank ergometry in breast cancer patients after axillary lymph node dissection, with regard to changes in bioelectrical impedance analysis, arm circumference, muscular strength, quality of life and fatigue. Randomized controlled clinical intervention trial. Forty-nine patients with breast cancer after axillary lymph node dissection. Arm crank ergometer training twice-weekly was compared with usual care over 12 weeks. The arm crank ergometer group improved significantly in terms of lean body mass and skeletal muscle mass, and showed a significant decrease in body fat. In the arm crank ergometer group, as well as the usual care group, a significant increase in armpit circumference was detected during the training period. The magnitude of the gain was higher in the usual care group. For all other measured regions of the arm a significant decrease in circumference was seen in both groups. Muscular strength of the upper extremity increased significantly in both groups, with a greater improvement in the arm crank ergometer group. In both groups a non-significant trend towards improvement in quality of life was observed. The arm crank ergometer group showed significant improvements in physical functioning, general fatigue and physical fatigue. These results confirm the feasibility of arm crank ergometer training after axillary lymph node dissection and highlight improvements in strength, quality of life and reduced arm symptoms with this training.

  12. [Influence of sports on development of 10 and 11-year-old boys. II. Spiroergometry].

    PubMed

    Popow, C; Haschke, F; Haber, P; Schuster, E; Salzer, H R

    1984-01-01

    We performed ergometric tests on a bicycle ergometer at the beginning and at the end of a nine month training period of track-and field athletics at school in 21 10 to 11 year old boys (8 hours training per week) and in 12 control subjects (3 1/2 hours training per week). With the exception of total work both groups had similar results at the first test. After nine months most test parameters were significantly improved in both groups. Total working time, total and maximal work, systolic blood pressure at maximal work and relative VO2max. were significantly different in the boys with 8 hours training from values obtained in the control subjects. VO2max. per kg body weight increased from a mean of 48.03 to 57.43 ml x min-1 x kg-2 (19.6%) in the boys with 8 hours training and from 44.70 tp 49.20 ml x min-1 x kg-1 (10.1%) in the control subjects. VO2-max. per kg lean body mass increased only in the boys with 8 hours training. VO2max. related to heart rate increased by 33% in the boys with 8 hours training and by 12% in the controls. The maximal minute ventilation and the minute ventilation at different submaximal working loads decreased in both groups. We conclude that the higher physical activity significantly improved the physical performance and the performance of the cardiovascular and respiratory system in preadolescent boys.

  13. Thermoregulatory effects of caffeine ingestion during rest and exercise in men

    NASA Technical Reports Server (NTRS)

    Dunagan, Nancy; Greenleaf, John E.; Cisar, Craig J.

    1994-01-01

    Body temperatures and thermoregulatory responses were measured at rest and during submaximal exercise under normal ambient conditions in 11 aerobically-conditioned men (age = 29.2 +/- 6.2 yr, VO2(max) = 3.73 +/- 0.46 min(sup -1), relative body fat = 12.3 +/- 3.7 percent, mean +/- SD) with (CT) and without (NCT) the ingestion of 10 mg of caffeine per kg of body weight. Oxygen uptake (VO2), heart rate (HR), and rectal (T(sub re)) and mean skin (T-bar(sub sk)) temperatures were recorded for 100 minutes starting one minute after ingestion of caffeine or a placebo. Data were collected throughout 30 minutes of rest (sitting) and the following 70 minutes of sitting leg ergometer exercise using the same constant load (1,088 +/- 153 kgm/min) in both NCT and CT. The load resulted in a mean relative exercise intensity equal to approximately 68 percent of VO2(sub max). Skin heat conductance (H(sub sk)) and sweat rate were calculated. Two-way analysis of covariance revealed no significant (P greater than 0.05) differences between NCT and CT in VO2, HR, T(sub re), T-bar(sub sk), or H(sub sk). A dependent t-test indicated no significant difference between NCT and CT in sweat rate. Thus, a high level of caffeine ingestion has no detrimental effects on body temperatures and thermoregulatory responses during moderately heavy exercise in normal ambient conditions.

  14. [Physical work capacity in coal miners and industrial workers].

    PubMed

    Benavides, R

    1992-10-01

    The aerobic work capacity of 220 coal miners aged 22 to 63 years with a high physical work load and 78 industrial workers aged 19 to 58 years with a relatively light work load was measured to observe if there was a relationship between the work load of these subjects and their aerobic work capacity. All the subjects were subjected to a medical examination, spirometry, chest x Rays and anthropometric measurements. Aerobic work capacity was indirectly estimated extrapolating pulse rates obtained al submaximal work loads in a bicycle ergometer to the calculated maximal cardiac frequency for age. Aerobic work capacity was not different between coal miners and industrial workers, either measured as absolute values (2.43 +/- 0.41 and 2.5 +/- 0.49 l/min respectively) or as relative values (43.2 +/- 6.9 and 43.4 +/- 8.2 ml/kg lean body mass respectively). These values decreased with age in the same proportion in both groups (0.24 l/min per decade). Lean body mass was significantly higher in industrial workers and decreased significantly with age only in coal miners. Considering published energy requirements for mine labors, none of the studied miners should work as digger and a high proportion of the other workers would be exposed to hazardous work loads to their health. The fact that over 50% of these subjects can efficiently fulfill their jobs may indicate that they have a high anaerobic work capacity. This hypothesis needs confirmation with future studies.

  15. Energy metabolism of medium-chain triglycerides versus carbohydrates during exercise.

    PubMed

    Décombaz, J; Arnaud, M J; Milon, H; Moesch, H; Philippossian, G; Thélin, A L; Howald, H

    1983-01-01

    Medium-chain triglycerides (MCT) are known to be rapidly digested and oxidized. Their potential value as a source of dietary energy during exercise was compared with that of maltodextrins (MD). Twelve subjects exercised for 1 h on a bicycle ergometer (60% VO2 max), 1 h after the test meal (1MJ). The metabolism of MCT was followed using 1-13C-octanoate (Oc) as tracer and U-13C-glucose (G) was added to the 13C-naturally enriched MD. After MCT ingestion no insulin peak was observed with some accumulation of ketone bodies (KB), blood levels not exceeding 1 mM. Total losses of KB during exercise in urine, sweat and as breath acetone were small (less than 0.2 mmol X h-1). Hence, the influence of KB loss and storage on gas exchange data was negligible. The partition of fat and carbohydrate utilization during exercise as obtained by indirect calorimetry was practically the same after the MCT and the CHO meals. Oxidation over the 2-h period was 30% of dose for Oc and 45% for G. Glycogen decrements in the Vastus lateralis muscle were equal. It appears that with normal carbohydrate stores, a single meal of MCT or CHO did not alter the contribution of carbohydrates during 1 h of high submaximal exercise. The moderate ketonemia after MCT, despite substantial oxidation of this fat, led to no difference in muscle glycogen sparing between the diets.

  16. Visual Impairment does not Limit Training Effects in Development of Aerobic and Anaerobic Capacity in Tandem Cyclists

    PubMed Central

    Malwina, Kamelska Anna; Krzysztof, Mazurek; Piotr, Zmijewski

    2015-01-01

    The study aimed to investigate the differences in the effects of 7-month training on aerobic and anaerobic capacity in tandem cycling athletes with and without visual impairment. In this study, Polish elite (n=13) and sub-elite (n=13) visually impaired (VI) (n=13; 40.8 ±12.8 years) and properly sighted (PS) (n=13; 36.7 ±12.2 years) tandem-cycling athletes participated voluntarily in 7-month routine training. The following pre-/post-training measurements were conducted on separate days: maximal oxygen uptake (VO2max) was estimated with age correction using the Physical Working Capacity test on a bicycle ergometer according to the Astrand-Ryhming method. Maximal power output (Pmax) was evaluated using the Quebec test on a bicycle ergometer. At baseline, VO2max (47.8 ±14.1 vs 42.0 ±8.3 ml/kg/min, respectively) and Pmax (11.5 ±1.5 vs 11.5 ±1.0 W/kg) did not differ significantly between PS and VI cyclists. However, differences in aerobic capacity were considered as clinically significant. Two-way ANOVA revealed that after 7 month training, there were statistically significant increases in VO2max (p=0.003) and Pmax (p=0.009) among VI (VO2max, +9.1%; Pmax, +6.3%) and PS (VO2max, +9.1%; Pmax, +11.7%) cyclists, however, no time × visual impairment interaction effect was found (VO2max, p=0.467; Pmax, p=0.364). After training, VO2max (p=0.03), but not Pmax (p=0.13), was significantly greater in elite compared to sub-elite tandem cyclists. VI and PS tandem cyclists showed similar rates of improvement in VO2max and Pmax after 7-month training. VO2max was a significant determinant of success in tandem cycling. This is one of the first studies providing reference values for aerobic and anaerobic capacity in visually impaired cyclists. PMID:26834877

  17. Cold water immersion enhances recovery of submaximal muscle function after resistance exercise.

    PubMed

    Roberts, Llion A; Nosaka, Kazunori; Coombes, Jeff S; Peake, Jonathan M

    2014-10-15

    We investigated the effect of cold water immersion (CWI) on the recovery of muscle function and physiological responses after high-intensity resistance exercise. Using a randomized, cross-over design, 10 physically active men performed high-intensity resistance exercise followed by one of two recovery interventions: 1) 10 min of CWI at 10°C or 2) 10 min of active recovery (low-intensity cycling). After the recovery interventions, maximal muscle function was assessed after 2 and 4 h by measuring jump height and isometric squat strength. Submaximal muscle function was assessed after 6 h by measuring the average load lifted during 6 sets of 10 squats at 80% of 1 repetition maximum. Intramuscular temperature (1 cm) was also recorded, and venous blood samples were analyzed for markers of metabolism, vasoconstriction, and muscle damage. CWI did not enhance recovery of maximal muscle function. However, during the final three sets of the submaximal muscle function test, participants lifted a greater load (P < 0.05, Cohen's effect size: 1.3, 38%) after CWI compared with active recovery. During CWI, muscle temperature decreased ∼7°C below postexercise values and remained below preexercise values for another 35 min. Venous blood O2 saturation decreased below preexercise values for 1.5 h after CWI. Serum endothelin-1 concentration did not change after CWI, whereas it decreased after active recovery. Plasma myoglobin concentration was lower, whereas plasma IL-6 concentration was higher after CWI compared with active recovery. These results suggest that CWI after resistance exercise allows athletes to complete more work during subsequent training sessions, which could enhance long-term training adaptations. Copyright © 2014 the American Physiological Society.

  18. Coconut Water Does Not Improve Markers of Hydration During Sub-maximal Exercise and Performance in a Subsequent Time Trial Compared with Water Alone.

    PubMed

    Peart, Daniel J; Hensby, Andy; Shaw, Matthew P

    2017-06-01

    The purpose of this study was to compare markers of hydration during submaximal exercise and subsequent time trial performance when consuming water (PW) or coconut water (CW). There was also a secondary aim to assess the palatability of CW during exercise and voluntary intake during intense exercise. 10 males (age 27.9 ± 4.9 years, body mass 78.1 ± 10.1kg, average max minute power 300.2 ± 28.2W) completed 60-min of submaximal cycling followed by a 10-km time trial on two occasions. During these trials participants consumed either PW or CW in a randomized manner, drinking a 250 ml of the assigned drink between 10-15 min, 25-30 min and 40-45 min, and then drinking ad libitum from 55-min until the end of the time trial. Body mass and urine osmolality were recorded preexercise and then after 30-min, 60-min, and post time trial. Blood glucose, lactate, heart rate, rate of perceived exertion (RPE; 6-20) and ratings of thirst, sweetness, nausea, fullness and stomach upset (1 =very low/none, 5= very high) were recorded during each drink period. CW did not significantly improve time trial performance compared with PW (971.4 ± 50.5 and 966.6 ± 44.8 s respectively; p = .698) and there was also no significant differences between trials for any of the physiological variables measured. However there were subjective differences between the beverages for taste, resulting in a significantly reduced volume of voluntary intake in the CW trial (115 ± 95.41 ml and 208.7 ± 86.22 ml; p < .001).

  19. Metabolic, thermoregulatory, and perceptual responses during exercise after lower vs. whole body precooling.

    PubMed

    White, Andrea T; Davis, Scott L; Wilson, Thad E

    2003-03-01

    The purpose of this investigation was to compare the thermoregulatory, metabolic, and perceptual effects of lower body (LBI) and whole body (WBI) immersion precooling techniques during submaximal exercise. Eleven healthy men completed two 30-min cycling bouts at 60% of maximal O(2) uptake preceded by immersion to the suprailiac crest (LBI) or clavicle (WBI) in 20 degrees C water. WBI produced significantly lower rectal temperature (T(re)) during minutes 24-30 of immersion and lower T(re), mean skin temperature, and mean body temperature for the first 24, 14, and 16 min of exercise, respectively. Body heat storage rates differed significantly for LBI and WBI during immersion and exercise, although no net differences were observed between conditions. For WBI, metabolic heat production and heart rate were significantly higher during immersion but not during exercise. Thermal sensation was significantly lower (felt colder) and thermal discomfort was significantly higher (less comfortable) for WBI during immersion and exercise. In conclusion, WBI and LBI attenuated T(re) increases during submaximal exercise and produced similar net heat storage over the protocol. LBI minimized metabolic increases and negative perceptual effects associated with WBI.

  20. Near-Infrared Spectroscopic Measurement of the Effect of Leg Dominance on Muscle Oxygen Saturation During Cycling

    NASA Technical Reports Server (NTRS)

    Ellerby, Gwenn E. C.; Lee, Stuart M. C.; Paunescu, Lelia Adelina; Pereira, Chelsea; Smith, Charles P.; Soller, Babs R.

    2011-01-01

    The effect of leg dominance on the symmetry of the biomechanics during cycling remains uncertain -- asymmetries have been observed in kinematics and kinetics, while symmetries were found in muscle activation. No studies have yet investigated the symmetry of muscle metabolism during cycling. Near-infrared spectroscopy (NIRS) provides a non-invasive method to investigate the metabolic responses of specific muscles during cycling. PURPOSE: To determine whether there was an effect of leg dominance on thigh muscle oxygen saturation (SmO2) during incrementally loaded submaximal cycling using NIRS. METHODS: Eight right leg dominant, untrained subjects (5 men, 3 women; 31+/-2 yrs; 168.6+/-1.0 cm; 67.2+/-1.8 kg, mean +/- SE) volunteered to participate. Spectra were collected bilaterally from the vastus lateralis (VL) during supine rest and cycling. SmO2 was calculated using previously published methods. Subjects pedaled at 65 rpm while resistance to pedaling was increased in 0.5 kp increments from 0.5 kp every 3 min until the subject reached 80% of age-predicted maximal heart rate. SmO2 was averaged over 3 min for each completed stage. A two-way ANOVA was performed to test for leg differences. A priori contrasts were used to compare work levels to rest. RESULTS: VL SmO2 was not different between the dominant and non-dominant legs at rest and during exercise (p=0.57). How SmO2 changed with workload was also not different between legs (p=0.32). SmO2 at 0.5 kp (60.3+/-4.0, p=0.12) and 1.0 kp (59.5+/-4.0, p=0.10) was not different from rest (69.1+/-4.0). SmO2 at 1.5 kp (55.4 4.0, p=0.02), 2.0 kp (55.7+/-5.0, p=0.04), and 2.5 kp (43.4+/-7.9, p=0.01) was significantly lower than rest. CONCLUSION: VL SmO2 during cycling is not different between dominant and non-dominant legs and decreases with moderate workload in untrained cyclists. Assuming blood flow is directed equally to both legs, similar levels of oxygen extraction (as indicated by SmO2) suggests the metabolic load of cycling is not different between legs. This is in agreement with a recent study demonstrating symmetrical increase of muscle activation of the VL during cycling. Leg dominance did not influence VL SmO2 during submaximal cycling, but may have an effect at higher loads or during other forms of exercise, such as walking and running.

  1. Beta2- and beta3-adrenergic receptor polymorphisms and exercise hemodynamics in postmenopausal women.

    PubMed

    McCole, Steve D; Shuldiner, Alan R; Brown, Michael D; Moore, Geoffrey E; Ferrell, Robert E; Wilund, Kenneth R; Huberty, Andrea; Douglass, Larry W; Hagberg, James M

    2004-02-01

    We sought to determine whether common genetic variations at the beta2 (beta2-AR, Gln27Glu) and beta3 (beta3-AR, Trp64Arg) adrenergic receptor gene loci were associated with cardiovascular (CV) hemodynamics during maximal and submaximal exercise. CV hemodynamics were assessed in 62 healthy postmenopausal women (20 sedentary, 22 physically active, and 20 endurance athletes) during treadmill exercise at 40, 60, 80, and 100% maximal O2 uptake using acetylene rebreathing to quantify cardiac output. The beta2-AR genotype and habitual physical activity (PA) levels interacted to significantly associate with arteriovenous O2 difference (a-vDO2) during submaximal exercise (P = 0.05), with the highest submaximal exercise a-vDO2 in sedentary women homozygous for the beta2-AR Gln allele and no genotype-dependent differences in submaximal exercise a-vDO2 in physically active and athletic women. The beta2-AR genotype also was independently associated with a-vDO2 during submaximal (P = 0.004) and approximately 100% maximal O2 uptake exercise (P = 0.006), with a 1.2-2 ml/100 ml greater a-vDO2 in the Gln/Gln than in the Glu/Glu genotype women. The beta3-AR genotype, independently or interacting with habitual PA levels, was not significantly associated with any CV hemodynamic variables during submaximal or maximal exercise. Thus it appears that the beta2-AR genotype, both independently and interacting with habitual PA levels, is significantly associated with a-vDO2 during exercise in postmenopausal women, whereas the beta3-AR genotype does not appear to be associated with any maximal or submaximal exercise CV hemodynamic responses in postmenopausal women.

  2. Predictors of oxygen desaturation during submaximal exercise in 8,000 patients.

    PubMed

    Hadeli, K O; Siegel, E M; Sherrill, D L; Beck, K C; Enright, P L

    2001-07-01

    To determine predictors of oxygen desaturation during submaximal exercise in patients with various lung diseases. This retrospective case series used pulmonary function laboratory results from all patients referred to a major tertiary-care center. All patients > or = 35 years old who underwent spirometry, diffusing capacity of the lung for carbon monoxide (DLCO), lung volumes, and pulse oximetry during 3-min submaximal step-test exercise during 1996 were included (4,545 men and 3,472 women). Logistic regression models, correcting for gender, age, and weight, determined the odds ratios (ORs) for oxygen desaturation of > or = 4% during exercise for each category of lung function abnormality (compared to those with entirely normal lung function). Approximately 74% of the patients had airways obstruction, while only 5.6% had restriction of lung volumes. One third of those with obstruction had a low DLCO, compared to 56% with restriction, while 2.7% had a low DLCO without obstruction or restriction. The risk of oxygen desaturation during submaximal exercise was very high (OR, 34) in patients with restriction and low DLCO (as in interstitial lung disease) and in patients with obstruction and low DLCO (as in COPD; OR, 18), intermediate (OR, 9) in patients with only a low DLCO, and lowest in those with a normal DLCO (OR, 4 if restricted; OR, 2 if obstructed). A cut point of DLCO < 62% predicted resulted in 75% sensitivity and specificity for exercise desaturation. No untoward cardiac events occurred in any patients during or following the submaximal exercise tests. The risk of oxygen desaturation during submaximal exercise is very high in patients with a low DLCO. Submaximal exercise tests are safe, even in elderly patients with heart and lung diseases.

  3. Systemic inflammatory responses to maximal versus submaximal lengthening contractions of the elbow flexors.

    PubMed

    Peake, Jonathan M; Nosaka, Kazunori; Muthalib, Makii; Suzuki, Katsuhiko

    2006-01-01

    We compared changes in markers of muscle damage and systemic inflammation after submaximal and maximal lengthening muscle contractions of the elbow flexors. Using a cross-over design, 10 healthy young men not involved in resistance training completed a submaximal trial (10 sets of 60 lengthening contractions at 10% maximum isometric strength, 1 min rest between sets), followed by a maximal trial (10 sets of three lengthening contractions at 100% maximum isometric strength, 3 min rest between sets). Lengthening contractions were performed on an isokinetic dynamometer. Opposite arms were used for the submaximal and maximal trials, and the trials were separated by a minimum of two weeks. Blood was sampled before, immediately after, 1 h, 3 h, and 1-4 d after each trial. Total leukocyte and neutrophil numbers, and the serum concentration of soluble tumor necrosis factor-alpha receptor 1 were elevated after both trials (P < 0.01), but there were no differences between the trials. Serum IL-6 concentration was elevated 3 h after the submaximal contractions (P < 0.01). The concentrations of serum tumor necrosis factor-alpha, IL-1 receptor antagonist, IL-10, granulocyte-colony stimulating factor and plasma C-reactive protein remained unchanged following both trials. Maximum isometric strength and range of motion decreased significantly (P < 0.001) after both trials, and were lower from 1-4 days after the maximal contractions compared to the submaximal contractions. Plasma myoglobin concentration and creatine kinase activity, muscle soreness and upper arm circumference all increased after both trials (P < 0.01), but were not significantly different between the trials. Therefore, there were no differences in markers of systemic inflammation, despite evidence of greater muscle damage following maximal versus submaximal lengthening contractions of the elbow flexors.

  4. Intra-individual psychological and physiological responses to acute laboratory stressors of different intensity.

    PubMed

    Skoluda, Nadine; Strahler, Jana; Schlotz, Wolff; Niederberger, Larissa; Marques, Sofia; Fischer, Susanne; Thoma, Myriam V; Spoerri, Corinne; Ehlert, Ulrike; Nater, Urs M

    2015-01-01

    The phenomenon of stress is understood as a multidimensional concept which can be captured by psychological and physiological measures. There are various laboratory stress protocols which enable stress to be investigated under controlled conditions. However, little is known about whether these protocols differ with regard to the induced psycho-physiological stress response pattern. In a within-subjects design, 20 healthy young men underwent four of the most common stress protocols (Stroop test [Stroop], cold pressor test [CPT], Trier Social Stress Test [TSST], and bicycle ergometer test [Ergometer]) and a no-stress control condition (rest) in a randomized order. For the multidimensional assessment of the stress response, perceived stress, endocrine and autonomic biomarkers (salivary cortisol, salivary alpha-amylase, and heart rate) were obtained during the experiments. All stress protocols evoked increases in perceived stress levels, with the highest levels in the TSST, followed by Ergometer, Stroop, and CPT. The highest HPA axis response was found in the TSST, followed by Ergometer, CPT, and Stroop, whilst the highest autonomic response was found in the Ergometer, followed by TSST, Stroop, and CPT. These findings suggest that different stress protocols differentially stimulate various aspects of the stress response. Physically demanding stress protocols such as the Ergometer test appear to be particularly suitable for evoking autonomic stress responses, whereas uncontrollable and social-evaluative threatening stressors (such as the TSST) are most likely to elicit HPA axis stress responses. The results of this study may help researchers in deciding which stress protocol to use, depending on the individual research question. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. In dubio pro silentio – Even Loud Music Does Not Facilitate Strenuous Ergometer Exercise

    PubMed Central

    Kreutz, Gunter; Schorer, Jörg; Sojke, Dominik; Neugebauer, Judith; Bullack, Antje

    2018-01-01

    Background: Music listening is wide-spread in amateur sports. Ergometer exercise is one such activity which is often performed with loud music. Aim and Hypotheses: We investigated the effects of electronic music at different intensity levels on ergometer performance (physical performance, force on the pedal, pedaling frequency), perceived fatigue and heart rate in healthy adults. We assumed that higher sound intensity levels are associated with greater ergometer performance and less perceived effort, particularly for untrained individuals. Methods: Groups of high trained and low trained healthy males (N = 40; age = 25.25 years; SD = 3.89 years) were tested individually on an ergometer while electronic dance music was played at 0, 65, 75, and 85 dB. Participants assessed their music experience during the experiment. Results: Majorities of participants rated the music as not too loud (65%), motivating (77.50%), appropriate for this sports exercise (90%), and having the right tempo (67.50%). Participants noticed changes in the acoustical environment with increasing intensity levels, but no further effects on any of the physical or other subjective measures were found for neither of the groups. Therefore, the main hypothesis must be rejected. Discussion: These findings suggest that high loudness levels do not positively influence ergometer performance. The high acceptance of loud music and perceived appropriateness could be based on erroneous beliefs or stereotypes. Reasons for the widespread use of loud music in fitness sports needs further investigation. Reducing loudness during fitness exercise may not compromise physical performance or perceived effort. PMID:29867622

  6. Ambulation During Periods of Supersaturation Increase Decompression Stress in Spacewalk Simulations

    NASA Technical Reports Server (NTRS)

    Pollock, N. W.; Natoli, M. J.; Martina, S. D.; Conkin, J.; Wessel, J. H., III; Gernhardt, M. L.

    2016-01-01

    Musculoskeletal activity accelerates inert gas elimination during oxygen breathing prior to decompression (prebreathe), but may also promote bubble formation (nucleation) and increase the risk of decompression sickness (DCS). The timing, pattern and intensity of musculoskeletal activity and the level of tissue supersaturation are likely critical to the net effect. Understanding the relationships is important to evaluate exercise prebreathe protocols and quantify decompression risk in gravity and microgravity environments. The NASA Prebreathe Reduction Program (PRP) combined oxygen prebreathe and exercise preceding a low pressure (4.3 psia; altitude equivalent of 30,300 ft [9,235 m]) simulation exposure of non-ambulatory subjects (a microgravity analog) to produce two protocols now used by astronauts preparing for extravehicular activity. One protocol included both upright cycling and non-cycling exercise (CEVIS: 'cycle ergometer vibration isolation system') and one protocol relied on non-cycling exercise only (ISLE: 'in-suit light exercise'). CEVIS trial data serve as control data for the current study to investigate the influence of ambulation exercise in 1G environments on bubble formation and the subsequent risk of DCS.

  7. A comparison of head motion and prefrontal haemodynamics during upright and recumbent cycling exercise.

    PubMed

    Tempest, Gavin D; Eston, Roger G; Parfitt, Gaynor

    2017-11-01

    The aim of this observational study was to compare head motion and prefrontal haemodynamics during exercise using three commercial cycling ergometers. Participants (n = 12) completed an incremental exercise test to exhaustion during upright, recumbent and semi-recumbent cycling. Head motion (using accelerometry), physiological data (oxygen uptake, end-tidal carbon dioxide [P ET CO 2 ] and heart rate) and changes in prefrontal haemodynamics (oxygenation, deoxygenation and blood volume using near infrared spectroscopy [NIRS]) were recorded. Despite no difference in oxygen uptake and heart rate, head motion was higher and P ET CO 2 was lower during upright cycling at maximal exercise (P<0·05). Analyses of covariance (covariates: head motion P>0·05; P ET CO 2 , P<0·01) revealed that prefrontal oxygenation was higher during semi-recumbent than recumbent cycling and deoxygenation and blood volume were higher during upright than recumbent and semi-recumbent cycling (respectively; P<0·05). This work highlights the robustness of the utility of NIRS to head motion and describes the potential postural effects upon the prefrontal haemodynamic response during upright and recumbent cycling exercise. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  8. Peak Oxygen Uptake during and after Long-duration Space Flight

    NASA Technical Reports Server (NTRS)

    Moore, Alan D., Jr.; Downs, Meghan E.; Lee, Stuart M. C.; Feiveson, Alan H.; Knudsen, Poul; Evetts, Simon N.; Ploutz-Snyder, Lori

    2014-01-01

    Aerobic capacity (VO2peak) previously has not been measured during or after long-duration spaceflight. PURPOSE: To measure VO2peak and submaximal exercise responses during and after International Space Station (ISS) missions. METHODS: Astronauts (9 M, 5 F: 49 +/- 5 yr, 175 +/- 7 cm, 77.2 +/- 15.1 kg, 40.6 +/- 6.4 mL/kg/min [mean +/-SD]) performed graded peak cycle tests 90 days before spaceflight, 15 d (FD15) after launch and every 30 d thereafter during flight, and 1 (R+1), 10 (R+10), and 30 d (R+30) after landing. Oxygen consumption (VO2) and heart rate (HR) were measured from rest to peak exercise, while cardiac output (Q), stroke volume (SV), and arterial-venous oxygen difference (a-vO2diff) were measured only during rest and submaximal exercise. Data were analyzed using mixed-model linear regression. Body mass contributed significantly to statistical models, and thus results are reported as modeled estimates for an average subject. RESULTS: Early inflight (FD15) VO2peak was 17% lower (95% CI = - 22%, -13%) than preflight. VO2peak increased during spaceflight (0.001 L/min/d, P = 0.02) but did not return to preflight levels. On R+1 VO2peak was 15% (95% CI = -19%, -10%) lower than preflight but recovered to within 2% of preflight by R+30 (95% CI = -6%, +3%). Peak HR was not significantly different from preflight at any time. Inflight submaximal VO2 and a-vO2diff were generally lower than preflight, but the Q vs. VO2 slope was unchanged. In contrast, the SV vs. VO2 slope was lower (P < 0.001), primarily due to elevated SV at rest, and the HR vs. VO2 slope was greater (P < 0.001), largely due to elevated HR during more intense exercise. On R+1 although the relationships between VO2 and Q, SV, and HR were not statistically different than preflight, resting and submaximal exercise SV was lower (P < 0.001), resting and submaximal exercise HR was higher (P < 0.002), and a-vO2diff was unchanged. HR and SV returned to preflight levels by R+30. CONCLUSION: In the average astronaut VO2peak was reduced during spaceflight and immediately after landing but factors contributing to lower VO2peak may be different during spaceflight and recovery. Maintaining Q while VO2 is reduced inflight may be suggestive of an elevated blood flow to vascular beds other than exercising muscles, but decreased SV after flight likely reduces Q at peak exertion.

  9. SKYLAB (SL)-2 PRIME CREW - BLDG. 5 - JSC

    NASA Image and Video Library

    1973-03-20

    S73-20713 (1 March 1973) --- Astronaut Charles Conrad Jr., commander of the first manned Skylab mission, wipes perspiration from his face following an exercise session on the bicycle ergometer during Skylab training at Johnson Space Center. Conrad is in the work and experiments compartment of the crew quarters of the Skylab Orbital Workshop (OWS) trainer at JSC. In addition to being the prime exercise for the crewmen, the ergometer is also used for the vector-cardiogram test and the metabolic activity experiment. The bicycle ergometer produces measured workloads for use in determining man's metabolic effectiveness. Photo credit: NASA

  10. Skylab-3 Mission Onboard Photograph - Astronaut Bean on Ergometer

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This Skylab-3 onboard photograph shows Astronaut Allen Bean on the ergometer, breathing into the metabolic analyzer. Skylab's Metabolic Activity experiment (M171), a medical evaluation facility, was designed to measure astronauts' metabolic changes while on long-term space missions. The experiment obtained information on astronauts' physiological capabilities and limitations and provided data useful in the design of future spacecraft and work programs. Physiological responses to physical activity was deduced by analyzing inhaled and exhaled air, pulse rate, blood pressure, and other selected variables of the crew while they performed controlled amounts of physical work with a bicycle ergometer.

  11. Development of Three Versions of a Wheelchair Ergometer for Curvilinear Manual Wheelchair Propulsion Using Virtual Reality.

    PubMed

    Salimi, Zohreh; Ferguson-Pell, Martin

    2018-06-01

    Although wheelchair ergometers provide a safe and controlled environment for studying or training wheelchair users, until recently they had a major disadvantage in only being capable of simulating straight-line wheelchair propulsion. Virtual reality has helped overcome this problem and broaden the usability of wheelchair ergometers. However, for a wheelchair ergometer to be validly used in research studies, it needs to be able to simulate the biomechanics of real world wheelchair propulsion. In this paper, three versions of a wheelchair simulator were developed. They provide a sophisticated wheelchair ergometer in an immersive virtual reality environment. They are intended for manual wheelchair propulsion and all are able to simulate simple translational inertia. In addition, each of the systems reported uses a different approach to simulate wheelchair rotation and accommodate rotational inertial effects. The first system does not provide extra resistance against rotation and relies on merely linear inertia, hypothesizing that it can provide acceptable replication of biomechanics of wheelchair maneuvers. The second and third systems, however, are designed to simulate rotational inertia. System II uses mechanical compensation, and System III uses visual compensation simulating the influence that rotational inertia has on the visual perception of wheelchair movement in response to rotation at different speeds.

  12. Impact of a Submaximal Warm-Up on Endurance Performance in Highly Trained and Competitive Male Runners

    ERIC Educational Resources Information Center

    Zourdos, Michael C.; Bazyler, Caleb D.; Jo, Edward; Khamoui, Andy V.; Park, Bong-Sup; Lee, Sang-Rok; Panton, Lynn B.; Kim, Jeong-Su

    2017-01-01

    Purpose: The purpose of this investigation was to examine the effects of a submaximal running warm-up on running performance in male endurance athletes (n = 16, M[subscript age] = 21 ± 2 years, M[subscript VO2max] = 69.3 ± 5.1 mL/kg/min). Method: Endurance performance was determined by a 30-min distance trial after control and submaximal running…

  13. Effects of self-paced interval and continuous training on health markers in women.

    PubMed

    Connolly, Luke J; Bailey, Stephen J; Krustrup, Peter; Fulford, Jonathan; Smietanka, Chris; Jones, Andrew M

    2017-11-01

    To compare the effects of self-paced high-intensity interval and continuous cycle training on health markers in premenopausal women. Forty-five inactive females were randomised to a high-intensity interval training (HIIT; n = 15), continuous training (CT; n = 15) or an inactive control (CON; n = 15) group. HIIT performed 5 × 5 min sets comprising repetitions of 30-s low-, 20-s moderate- and 10-s high-intensity cycling with 2 min rest between sets. CT completed 50 min of continuous cycling. Training was completed self-paced, 3 times weekly for 12 weeks. Peak oxygen uptake (16 ± 8 and 21 ± 12%), resting heart rate (HR) (-5 ± 9 and -4 ± 7 bpm) and visual and verbal learning improved following HIIT and CT compared to CON (P < 0.05). Total body mass (-0.7 ± 1.4 kg), submaximal walking HR (-3 ± 4 bpm) and verbal memory were enhanced following HIIT (P < 0.05), whereas mental well-being, systolic (-5 ± 6 mmHg) and mean arterial (-3 ± 5 mmHg) blood pressures were improved following CT (P < 0.05). Participants reported similar levels of enjoyment following HIIT and CT, and there were no changes in fasting serum lipids, fasting blood [glucose] or [glucose] during an oral glucose tolerance test following either HIIT or CT (P > 0.05). No outcome variable changed in the CON group (P > 0.05). Twelve weeks of self-paced HIIT and CT were similarly effective at improving cardiorespiratory fitness, resting HR and cognitive function in inactive premenopausal women, whereas blood pressure, submaximal HR, well-being and body mass adaptations were training-type-specific. Both training methods improved established health markers, but the adaptations to HIIT were evoked for a lower time commitment.

  14. Evidence of direct cardiac damage following high-intensity exercise in chronic energy restriction: A case report and literature review.

    PubMed

    Baird, Marianne F; Grace, Fergal; Sculthorpe, Nicholas; Graham, Scott M; Fleming, Audrey; Baker, Julien S

    2017-07-01

    Following prolonged endurance events such as marathons, elevated levels of cardiospecific biomarkers are commonly reported. Although transiently raised levels are generally not considered to indicate clinical myocardial damage, comprehension of this phenomenon remains incomplete. The popularity of high-intensity interval training highlights a paucity of research measuring cardiac biomarker response to this type of exercise. This a posteriori case report discusses the elevation of cardiac troponins (cTn) associated with short interval, high-intensity exercise. In this case report, an apparently healthy 29-year-old recreationally active female presented clinically raised cardiac troponin I (cTnI) levels (>0.04 ng/mL), after performing high-intensity cycle ergometer sprints. As creatine kinase (CK) is expressed by multiple organs (e.g., skeletal muscle, brain, and myocardium), cTnI assays were performed to determine any changes in total serum CK levels not originating from skeletal muscle damage. A posteriori the individual's daily energy expenditure indicated chronically low-energy availability. Psychometric testing suggested that the individual scored positive for disordered eating, highly for fatigue levels, and low in mental health components. The current case report provides novel evidence of elevated cTnI occurring as a result of performing short duration, high intensity, cycle ergometer exercise in an individual with self-reported chronically depleted energy balance. A schematic to identify potentially "at risk" individuals is presented. Considering this as a case report, results cannot be generalized; however, the main findings suggest that individuals who habitually restrict their calorie intake below their bodies' daily energy requirements, may have elevated biomarkers of exercise induced myocardial stress from performing high-intensity exercise.

  15. EFFECTS OF SHORT-TERM FREE-WEIGHT AND SEMI-BLOCK PERIODIZATION RESISTANCE TRAINING ON METABOLIC SYNDROME

    PubMed Central

    South, Mark; Layne, Andrew; Stuart, Charles A.; Triplett, N. Travis; Ramsey, Michael; Howell, Mary; Sands, William; Mizuguchi, Satoshi; Hornsby, Guy; Kavanaugh, Ashley; Stone, Michael H.

    2016-01-01

    The effects of short-term resistance training on performance and health variables associated with prolonged sedentary lifestyle and metabolic syndrome were investigated. Resistance training may alter a number of health-related, physiological and performance variables. As a result, resistance training can be used as a valuable tool in ameliorating the effects of a sedentary lifestyle including those associated with metabolic syndrome. Nineteen previously sedentary subjects (10 metabolic syndrome, 9 non-metabolic syndrome) underwent 8 weeks of supervised resistance training. Maximum strength was measured using an isometric mid-thigh pull and resulting force-time curve. Vertical jump height and power were measured using a force plate. Muscle cross-sectional area (CSA) and type were examined using muscle biopsy and standard analysis techniques. Aerobic power was measured on a cycle ergometer using a ParvoMedics 2400 Metabolic system. Endurance was measured as time to exhaustion on a cycle ergometer. After training, maximum isometric strength, jump height, jump power and V̇O2 peak increased by approximately 10% (or more) in both the metabolic and non-metabolic syndrome groups (both male and female subjects). Over 8 weeks of training, body mass did not change statistically, but percent body fat decreased in subjects with the metabolic syndrome and in females, and lean body mass increased in all groups (p<0.05). Few alterations were noted in fiber type. Males had larger CSA’s compared to females and there was a fiber-specific trend toward hypertrophy over time. In summary eight weeks of semi-block free-weight resistance training improved several performance variables and some cardiovascular factors associated with metabolic syndrome. PMID:27465635

  16. Type 2 diabetes elicits lower nitric oxide, bradykinin concentration and kallikrein activity together with higher DesArg(9)-BK and reduced post-exercise hypotension compared to non-diabetic condition.

    PubMed

    Simões, Herbert Gustavo; Asano, Ricardo Yukio; Sales, Marcelo Magalhães; Browne, Rodrigo Alberto Vieira; Arsa, Gisela; Motta-Santos, Daisy; Puga, Guilherme Morais; Lima, Laila Cândida de Jesus; Campbell, Carmen Sílvia Grubert; Franco, Octavio Luiz

    2013-01-01

    This study compared the plasma kallikrein activity (PKA), bradykinin concentration (BK), DesArg(9)-BK production, nitric oxide release (NO) and blood pressure (BP) response after moderate-intensity aerobic exercise performed by individuals with and without type 2 diabetes. Ten subjects with type 2 diabetes (T2D) and 10 without type 2 diabetes (ND) underwent three sessions: 1) maximal incremental test on cycle ergometer to determine lactate threshold (LT); 2) 20-min of constant-load exercise on cycle ergometer, at 90% LT and; 3) control session. BP and oxygen uptake were measured at rest and at 15, 30 and 45 min post-exercise. Venous blood samples were collected at 15 and 45 minutes of the recovery period for further analysis of PKA, BK and DesArg(9)-BK. Nitrite plus nitrate (NOx) was analyzed at 15 minutes post exercise. The ND group presented post-exercise hypotension (PEH) of systolic blood pressure and mean arterial pressure on the 90% LT session but T2D group did not. Plasma NOx increased ~24.4% for ND and ~13.8% for T2D group 15 min after the exercise session. Additionally, only ND individuals showed increases in PKA and BK in response to exercise and only T2D group showed increased DesArg(9)-BK production. It was concluded that T2D individuals presented lower PKA, BK and NOx release as well as higher DesArg(9)-BK production and reduced PEH in relation to ND participants after a single exercise session.

  17. Type 2 Diabetes Elicits Lower Nitric Oxide, Bradykinin Concentration and Kallikrein Activity Together with Higher DesArg9-BK and Reduced Post-Exercise Hypotension Compared to Non-Diabetic Condition

    PubMed Central

    Browne, Rodrigo Alberto Vieira; Arsa, Gisela; Motta-Santos, Daisy; Puga, Guilherme Morais; Lima, Laila Cândida de Jesus; Campbell, Carmen Sílvia Grubert; Franco, Octavio Luiz

    2013-01-01

    This study compared the plasma kallikrein activity (PKA), bradykinin concentration (BK), DesArg9-BK production, nitric oxide release (NO) and blood pressure (BP) response after moderate-intensity aerobic exercise performed by individuals with and without type 2 diabetes. Ten subjects with type 2 diabetes (T2D) and 10 without type 2 diabetes (ND) underwent three sessions: 1) maximal incremental test on cycle ergometer to determine lactate threshold (LT); 2) 20-min of constant-load exercise on cycle ergometer, at 90% LT and; 3) control session. BP and oxygen uptake were measured at rest and at 15, 30 and 45 min post-exercise. Venous blood samples were collected at 15 and 45 minutes of the recovery period for further analysis of PKA, BK and DesArg9-BK. Nitrite plus nitrate (NOx) was analyzed at 15 minutes post exercise. The ND group presented post-exercise hypotension (PEH) of systolic blood pressure and mean arterial pressure on the 90% LT session but T2D group did not. Plasma NOx increased ~24.4% for ND and ~13.8% for T2D group 15min after the exercise session. Additionally, only ND individuals showed increases in PKA and BK in response to exercise and only T2D group showed increased DesArg9-BK production. It was concluded that T2D individuals presented lower PKA, BK and NOx release as well as higher DesArg9-BK production and reduced PEH in relation to ND participants after a single exercise session. PMID:24265812

  18. Identification of anaerobic threshold by analysis of heart rate variability during discontinuous dynamic and resistance exercise protocols in healthy older men.

    PubMed

    Simões, Rodrigo Polaquini; Castello-Simões, Viviane; Mendes, Renata Gonçalves; Archiza, Bruno; Dos Santos, Daniel Augusto; Bonjorno, José Carlos; de Oliveira, Claudio Ricardo; Catai, Aparecida Maria; Arena, Ross; Borghi-Silva, Audrey

    2014-03-01

    The purposes of this study were to determine anaerobic threshold (AT) during discontinuous dynamic and resistive exercise protocols by analysing of heart rate variability (HRV) and blood lactate (BL) in healthy elderly subjects and compare the cardiovascular, metabolic and autonomic variables obtained from these two forms of exercise. Fourteen elderly (70 ± 4 years) apparently healthy males underwent the following tests: (i) incremental ramp test on cycle ergometer, (ii) one repetition maximum (1RM) leg press at 45°, (iii) a discontinuous exercise test on a cycle ergometer (DET-C) protocol and (iv) a resistance exercise leg press (DET-L) protocol. Heart rate, blood pressure and BL were obtained during each increment of exercise intensity. No significant differences (P>0·05) were found between methods of AT determination (BL and HRV) nor the relative intensity corresponding to AT (30% of maximum intensity) between the types of exercise (DET-C and DET-L). Furthermore, no significant differences (P>0·05) were found between the DET-C and DET-L in relation to HRV, however, the DET-L provided higher values of systolic blood pressure and BL (P<0·05) from the intensity corresponding to AT. We conclude that HRV was effective in determination of AT, and the parasympathetic modulation responses obtained during dynamic and resistive exercise protocols were similar when compared at the same relative intensity. However, DET-L resulted in higher values of blood pressure and BL at workloads beyond AT. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  19. High-Intensity Intermittent Training Positively Affects Aerobic and Anaerobic Performance in Judo Athletes Independently of Exercise Mode

    PubMed Central

    Franchini, Emerson; Julio, Ursula F.; Panissa, Valéria L. G.; Lira, Fábio S.; Gerosa-Neto, José; Branco, Braulio H. M.

    2016-01-01

    Purpose: The present study investigated the effects of high-intensity intermittent training (HIIT) on lower- and upper-body graded exercise and high-intensity intermittent exercise (HIIE, four Wingate bouts) performance, and on physiological and muscle damage markers responses in judo athletes. Methods: Thirty-five subjects were randomly allocated to a control group (n = 8) or to one of the following HIIT groups (n = 9 for each) and tested pre- and post-four weeks (2 training d·wk−1): (1) lower-body cycle-ergometer; (2) upper-body cycle-ergometer; (3) uchi-komi (judo technique entrance). All HIIT were constituted by two blocks of 10 sets of 20 s of all out effort interspersed by 10 s set intervals and 5-min between blocks. Results: For the upper-body group there was an increase in maximal aerobic power in graded upper-body exercise test (12.3%). The lower-body group increased power at onset blood lactate in graded upper-body exercise test (22.1%). The uchi-komi group increased peak power in upper- (16.7%) and lower-body (8.5%), while the lower-body group increased lower-body mean power (14.2%) during the HIIE. There was a decrease in the delta blood lactate for the uchi-komi training group and in the third and fourth bouts for the upper-body training group. Training induced testosterone-cortisol ratio increased in the lower-body HIIE for the lower-body (14.9%) and uchi-komi (61.4%) training groups. Conclusion: Thus, short-duration low-volume HIIT added to regular judo training was able to increase upper-body aerobic power, lower- and upper-body HIIE performance. PMID:27445856

  20. Does chewing coca leaves influence physiology at high altitude?

    PubMed

    Casikar, V; Mujica, E; Mongelli, M; Aliaga, J; Lopez, N; Smith, C; Bartholomew, F

    2010-07-01

    Andean Indians have used coca leaves (Erythroxylon coca and related species) for centuries to enhance physical performance. The benefits and disadvantages of using coca leaf have been a subject of many political debates. The aim of this study was to investigate the effects of chewing coca leaves on biochemical and physiological parameters. Cutaneous microdialysis catheters were used to estimate systemic biochemical changes. We subjected 10 healthy adult males (local residents) in Cajamarca (Peru, altitude 2700 m) to a standardised exercise routine on a stationary cycle ergometer. The blood pressure, oxygen saturation (digital), pulse, VO2 max and ECG (Holter monitor) were recorded before the exercise. Cutaneous microdialysis catheters were introduced in the forearm. The subjects were given to chew 8 g of coca leaves with a small amount of lime. They were then placed on the cycle ergometer for 20 min. Blood pressure, oxygen saturation, pulse, ECG and VO2 max were recorded. Pyruvate, glucose, lactate, glycerol and glutamate levels were estimated. Oxygen saturation, blood pressure, and pulse rate did not show any significant changes between the two groups. Glucose levels showed hyperglycaemic response. Glycerol, Lactate and Pyruvate increased. Glutamate remained unchanged. Similar changes were not seen in the controls. These results suggest that coca leaves have blocked the glycolytic pathway of glucose oxidation resulting in accumulation of glucose and pyruvate. The energy requirement for exercise is being met with beta-oxidation of fatty acids. The glycerol released was also getting accumulated since its pathway for oxidation was blocked. These experimental findings suggest that chewing coca leaves is beneficial during exercise and that the effects are felt over a prolonged period of sustained physical activity.

  1. Validity and reliability of the Ergomopro powermeter.

    PubMed

    Kirkland, A; Coleman, D; Wiles, J D; Hopker, J

    2008-11-01

    The aim of this investigation was to assess the validity and reliability of the Ergomopro powermeter. Nine participants completed trials on a Monark ergometer fitted with Ergomopro and SRM powermeters simultaneously recording power output. Each participant completed multiple trials at power outputs ranging from 50 to 450 W. The work stages recorded were 60 s in duration and were repeated three times. Participants also completed a single trial on a cycle ergometer designed to assess bilateral contributions to work output (Lode Excaliber Sport PFM). The power output during the trials was significantly different between all three systems, (p < 0.01) 231.2 +/- 114.2 W, 233.0 +/- 112.4 W, 227.8 +/- 108.8 W for the Monark, SRM and Ergomopro system, respectively. When the bilateral contributions were factored into the analysis, there were no significant differences between the powermeters (p = 0.58). The reliability of the Ergomopro system (CV%) was 2.31 % (95 % CI 2.13 - 2.52 %) compared to 1.59 % (95 % CI 1.47 to 1.74 %) for the Monark, and 1.37 % (95 % CI 1.26 - 1.50 %) for the SRM powermeter. These results indicate that the Ergomopro system has acceptable accuracy under these conditions. However, based on the reliability data, the increased variability of the Ergomopro system and bilateral balance issues have to be considered when using this device.

  2. Aerobic Exercise Training in Post-Polio Syndrome: Process Evaluation of a Randomized Controlled Trial.

    PubMed

    Voorn, Eric L; Koopman, Fieke S; Brehm, Merel A; Beelen, Anita; de Haan, Arnold; Gerrits, Karin H L; Nollet, Frans

    2016-01-01

    To explore reasons for the lack of efficacy of a high intensity aerobic exercise program in post-polio syndrome (PPS) on cardiorespiratory fitness by evaluating adherence to the training program and effects on muscle function. A process evaluation using data from an RCT. Forty-four severely fatigued individuals with PPS were randomized to exercise therapy (n = 22) or usual care (n = 22). Participants in the exercise group were instructed to exercise 3 times weekly for 4 months on a bicycle ergometer (60-70% heart rate reserve). The attendance rate was high (median 89%). None of the participants trained within the target heart rate range during >75% of the designated time. Instead, participants exercised at lower intensities, though still around the anaerobic threshold (AT) most of the time. Muscle function did not improve in the exercise group. Our results suggest that severely fatigued individuals with PPS cannot adhere to a high intensity aerobic exercise program on a cycle ergometer. Despite exercise intensities around the AT, lower extremity muscle function nor cardiorespiratory fitness improved. Improving the aerobic capacity in PPS is difficult through exercise primarily focusing on the lower extremities, and may require a more individualized approach, including the use of other large muscle groups instead. Netherlands National Trial Register NTR1371.

  3. Helms exercises on the middeck ergometer

    NASA Image and Video Library

    2001-08-16

    STS105-E-5226 (16 August 2001) --- Now a member of the STS-105 crew, departing Expedition Two flight engineer Susan J. Helms works out on the ergometer device on the mid deck of the Space Shuttle Discovery. The image was recorded with a digital still camera.

  4. Methodological framework for heart rate variability analysis during exercise: application to running and cycling stress testing.

    PubMed

    Hernando, David; Hernando, Alberto; Casajús, Jose A; Laguna, Pablo; Garatachea, Nuria; Bailón, Raquel

    2018-05-01

    Standard methodologies of heart rate variability analysis and physiological interpretation as a marker of autonomic nervous system condition have been largely published at rest, but not so much during exercise. A methodological framework for heart rate variability (HRV) analysis during exercise is proposed, which deals with the non-stationary nature of HRV during exercise, includes respiratory information, and identifies and corrects spectral components related to cardiolocomotor coupling (CC). This is applied to 23 male subjects who underwent different tests: maximal and submaximal, running and cycling; where the ECG, respiratory frequency and oxygen consumption were simultaneously recorded. High-frequency (HF) power results largely modified from estimations with the standard fixed band to those obtained with the proposed methodology. For medium and high levels of exercise and recovery, HF power results in a 20 to 40% increase. When cycling, HF power increases around 40% with respect to running, while CC power is around 20% stronger in running.

  5. Addition of Work Rate and Temperature Information to the Augmented NMRI Standard (ANS) Data Files in the NMR198 Subset of the USN N2-O2 Primary Data Set

    DTIC Science & Technology

    2011-01-01

    0.20, 2, 0.50, 15, 2.60, 114, 2.70, 117,,, 1.0|1|1|1|P ! 1 L/min VO2 cycle ergometer, immersed, upright, persist...2.00, 100.00,,, 1|2|1|1 ! 1 L/min VO2 , weight lifting, immersed, upright 85.00, 100.00, 88.00, 30.00, 94.00...Unit, Dec 1956. A-1 APPENDIX A DATA FILE SUMMARIES SINGLE AIR EDU885A Prof. ID Max Depth BT Asc. Time Num. Dvrs DCS T1 T2 VO2

  6. Calibration Variability of 15 High Use Life Fitness Cycle Ergometers

    DTIC Science & Technology

    2013-12-02

    minutes Table 6.0: ACSM Predicted 10 Minute Calories Watts 10 Min Indicated Kcal Predicted VO2 (L/Min) ACSM Predicted 10 Min...144 13 322 20 6 49 7.5 171 13.5 361 19.5 8 63 7 198 13.5 400 19.5 10 77 7 224 13 440 20 Total 71 132 197 RPM 60 60.7...min 300w Kcal/min Hours on Bike 0 45 138 285 3474 2 59 7 163 12.5 323 19 4 73 7 189 13 361 19 6 87 7 215 13 400 19.5 8 102 7.5 141

  7. Effect of Physical Exercise on Platelet Reactivity in Patients with Dual Antiplatelet Therapy.

    PubMed

    Brunner, Stefan; Rizas, Konstantinos; Hamm, Wolfgang; Mehr, Michael; Lackermair, Korbinian

    2018-06-14

    It is known that physical exercise may increase platelet activity. However, the effect of exercise on platelet reactivity in patients on dual antiplatelet therapy has not been investigated yet. In our study, 21 patients with coronary artery disease on dual antiplatelet therapy and 10 controls were enrolled. We performed an exercise test using a cycle ergometer and determined the adenosine diphosphate-induced platelet reactivity before and immediately after exercise testing. Additionally, we analysed maximal exercise capacity and an electrocardiogram. Further, we assessed chromogranin A and P-selectin levels and platelet counts. © Georg Thieme Verlag KG Stuttgart · New York.

  8. An evaluation of the Exer-Genie exerciser and the Collins pedal mode ergometer for developing physical fitness

    NASA Technical Reports Server (NTRS)

    Olree, H. D.

    1973-01-01

    Experiments that were conducted over a 52-month period showed that isometric and isotonic training on the Exer-Genie gave negligible increases in cardiorespiratory fitness whereas training on the ergometer at a programmed pulse rate increased fitness moderately.

  9. MS Dunbar exercises on an ergometer

    NASA Image and Video Library

    1998-03-03

    S89-E-5202 (25 Jan 1998) --- This Electronic Still Camera (ESC) image shows mission specialist, Bonnie J. Dunbar, payload commander, working out on the bicycle ergometer onboard the Earth-orbiting Space Shuttle Endeavour. This ESC view was taken on January 25, 1998, at 18:36:52 GMT.

  10. Acute physical exercise affected processing efficiency in an auditory attention task more than processing effectiveness.

    PubMed

    Dutke, Stephan; Jaitner, Thomas; Berse, Timo; Barenberg, Jonathan

    2014-02-01

    Research on effects of acute physical exercise on performance in a concurrent cognitive task has generated equivocal evidence. Processing efficiency theory predicts that concurrent physical exercise can increase resource requirements for sustaining cognitive performance even when the level of performance is unaffected. This hypothesis was tested in a dual-task experiment. Sixty young adults worked on a primary auditory attention task and a secondary interval production task while cycling on a bicycle ergometer. Physical load (cycling) and cognitive load of the primary task were manipulated. Neither physical nor cognitive load affected primary task performance, but both factors interacted on secondary task performance. Sustaining primary task performance under increased physical and/or cognitive load increased resource consumption as indicated by decreased secondary task performance. Results demonstrated that physical exercise effects on cognition might be underestimated when only single task performance is the focus.

  11. Maintaining physical fitness and function in Alzheimer's disease: a pilot study.

    PubMed

    Yu, Fang; Savik, Kay; Wyman, Jean F; Bronas, Ulf G

    2011-08-01

    Little is known about how aerobic exercise affects physical functioning in persons with Alzheimer's disease (AD). This pilot study used a 1-group repeated measures design to examine the feasibility and impact of a 6-month individualized moderate intensity cycling intervention on cardiorespiratory fitness and lower extremity function in 8 participants aged 81.4 ± 3.58. Cardiorespiratory fitness was measured using the shuttle walk and modified YMCA cycle ergometer tests, and lower extremity function was measured using the Short Physical Performance Battery (SPPB) at baseline, 3 months and 6 months. The YMCA test showed a significant reduction in heart rate at stage 2 (103.4 vs 90.9 vs 91.6; P = .01), while no significant changes were observed in the shuttle walk and SPPB tests. Persons with AD are able to improve cardiorespiratory conditioning from aerobic exercise. Randomized, controlled trials are needed to confirm these findings. Implications for future research are detailed.

  12. Submaximal delayed-onset muscle soreness: correlations between MR imaging findings and clinical measures

    NASA Technical Reports Server (NTRS)

    Evans, G. F.; Haller, R. G.; Wyrick, P. S.; Parkey, R. W.; Fleckenstein, J. L.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    PURPOSE: To assess correlations between muscle edema on magnetic resonance (MR) images and clinical indexes of muscle injury in delayed-onset muscle soreness (DOMS) produced by submaximal exercise protocols. MATERIALS AND METHODS: Sixteen subjects performed 36 elbow flexions ("biceps curls") at one of two submaximal workloads that emphasized eccentric contractions. Changes in MR imaging findings, plasma levels of creatine kinase, and pain scores were correlated. RESULTS: Both exercise protocols produced DOMS in all subjects. The best correlation was between change in creatine kinase level and volume of muscle edema on MR images, regardless of the workload. Correlations tended to be better with the easier exercise protocol. CONCLUSION: Whereas many previous studies of DOMS focused on intense exercise protocols to ensure positive results, the present investigation showed that submaximal workloads are adequate to produce DOMS and that correlations between conventionally measured indexes of injury may be enhanced at lighter exercise intensities.

  13. Effect of strength training with blood flow restriction on muscle power and submaximal strength in eumenorrheic women.

    PubMed

    Gil, Ana L S; Neto, Gabriel R; Sousa, Maria S C; Dias, Ingrid; Vianna, Jeferson; Nunes, Rodolfo A M; Novaes, Jefferson S

    2017-03-01

    Blood flow restriction (BFR) training stimulates muscle size and strength by increasing muscle activation, accumulation of metabolites and muscle swelling. This method has been used in different populations, but no studies have evaluated the effects of training on muscle power and submaximal strength (SS) in accounted for the menstrual cycle. The aim of this study was to analyse the effect of strength training (ST) with BFR on the muscle power and SS of upper and lower limbs in eumenorrheic women. Forty untrained women (18-40 years) were divided randomly and proportionally into four groups: (i) high-intensity ST at 80% of 1RM (HI), (ii) low-intensity ST at 20% of 1RM combined with partial blood flow restriction (LI + BFR), (iii) low-intensity ST at 20% of 1RM (LI) and d) control group (CG). Each training group performed eight training sessions. Tests with a medicine ball (MB), horizontal jump (HJ), vertical jump (VJ), biceps curls (BC) and knee extension (KE) were performed during the 1st day follicular phase (FP), 14th day (ovulatory phase) and 26-28th days (luteal phase) of the menstrual cycle. There was no significant difference among groups in terms of the MB, HJ, VJ or BC results at any time point (P>0·05). SS in the KE exercise was significantly greater in the LI + BFR group compared to the CG group (P = 0·014) during the LP. Therefore, ST with BFR does not appear to improve the power of upper and lower limbs and may be an alternative to improve the SS of lower limbs of eumenorrheic women. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  14. The physiological and biomechanical effects of forwards and reverse sports wheelchair propulsion.

    PubMed

    Mason, Barry S; Lenton, John P; Goosey-Tolfrey, Victoria L

    2015-07-01

    To explore the physiological and biomechanical differences between forwards (FOR) and reverse (REV) sports wheelchair propulsion. Fourteen able-bodied males with previous wheelchair propulsion experience pushed a sports wheelchair on a single-roller ergometer in a FOR and REV direction at three sub-maximal speeds (4, 6, and 8 km/hour). Each trial lasted 3 minutes, and during the final minute physiological and biomechanical measures was collected. The physiological results revealed that oxygen uptake (1.51 ± 0.29 vs. 1.38 ± 0.26 L/minute, P = 0.005) and heart rate (121 ± 19 vs. 109 ± 14 beats/minute, P < 0.0005) were significantly greater during REV than FOR only during the 8 km/hour trials. From a biomechanical perspective, push frequencies were similar between FOR and REV across all speeds (P > 0.05). However, greater mean resultant forces were applied during FOR (P < 0.0005) at 4 km/hour (66.7 ± 19.5 vs. 49.2 ± 10.3 N), 6 km/hour (90.7 ± 21.9 vs. 65.3 ± 18.6 N), and 8 km/hour (102.5 ± 17.6 vs. 68.7 ± 13.5 N) compared to REV. Alternatively, push times and push angles were significantly lower (P ≤ 0.001) during FOR at each speed. The current study demonstrated that at higher speeds physiological demand becomes elevated during REV. This was likely to be associated with an inability to apply sufficient force to the wheels, thus requiring kinematic adaptations in order to maintain constant speeds in REV.

  15. Social structure and intracohort variation in physical fitness among elderly males in a traditional Third World society.

    PubMed

    Beall, C M; Goldstein, M C; Feldman, E S

    1985-06-01

    This paper examines the relationship between physical fitness and activity among elderly males in the traditional rural community of Chetbesi, Nepal. It takes advantage of the unique character of the Hindu caste system to implement a quasiexperimental research design that approximates random assignment to high and low activity levels. The members of the Sarki caste have lower heart rates and systolic blood pressure, relative to other castes, at each of three submaximal workloads and during recovery from bicycle ergometer exercise. Direct observation and physiologic monitoring show that the Sarkis engage in more frequent and extended periods of heavy labor. Thus intracohort variation in physical fitness and activity patterns among the Chetbesi elderly is a function of birth into a socially defined group rather than of self-selection. This pattern of differential fitness may typify the process of aging in many stratified traditional and modernizing societies where socially delimited segments of the population perform the bulk of the hard work. Intrapopulation differences aside, comparison of Sarkis and non-Sarkis with other samples reveals that both lie within the reported range of variation. The rural, unmechanized, agricultural lifestyle and mountain environment of Chetbesi do not result in exceptional fitness for residents. The Chetbesi data suggest that the popular notion that aging is less debilitating in traditional agrarian societies located in rugged mountain terrains may be a myth. The demonstration of the influence of social forces on physical fitness suggests that future research might concentrate profitably on identifying social structures that produce high levels of physical fitness.

  16. Attenuation of Exaggerated Exercise Blood Pressure Response in African-American Women by Regular Aerobic Physical Activity

    PubMed Central

    Bond, Vernon; Millis, Richard M.; Adams, R. George; Oke, Luc M.; Enweze, Larry; Blakely, Raymond; Banks, Marshall; Thompson, Terry; Obisesan, Thomas; Sween, Jennifer C.

    2011-01-01

    Introduction A hyperreactive blood pressure response to exercise is a predictor of developing hypertension. The present study determined the influence of physical activity on an exaggerated exercise blood pressure response (EEBPR) in normotensive African-American women. Methods We screened 36 women 18–26 years of age for EEBPR defined as a ≥50 mm Hg difference in systolic blood pressure at rest and during exercise at 50% peak oxygen uptake (VO2peak). Seven subjects demonstrated an EEBPR and participated in the study. Study participants trained for eight weeks on a bicycle ergometer at a work intensity of 70% VO2peak. Blood pressure, heart rate, cardiac output (CO), stroke volume (SV), and total peripheral vascular resistance (TPR) were determined at baseline and during submaximal exercise at power outputs of 30 W and 50% VO2peak. Subjects served as their own controls, and data were evaluated by using a paired t test at P<.05. Results Effectiveness of the intervention was shown by a significantly greater VO2peak associated with significant decrements in systolic and mean arterial pressures at power outputs of 30 W and 50% VO2peak. A significant decrement in heart rate was observed during exercise at 30 W. Significant increments in CO and SV and decrement in TPR were found during exercise at 50% VO2peak. Conclusion The reduction in TPR associated with regular aerobic physical activity may attenuate the EEBPR and decrease the risk for hypertension in normotensive, young-adult, African-American women. PMID:16315376

  17. Whole-body pre-cooling does not alter human muscle metabolism during sub-maximal exercise in the heat.

    PubMed

    Booth, J; Wilsmore, B R; Macdonald, A D; Zeyl, A; Mcghee, S; Calvert, D; Marino, F E; Storlien, L H; Taylor, N A

    2001-06-01

    Muscle metabolism was investigated in seven men during two 35 min cycling trials at 60% peak oxygen uptake, at 35 degrees C and 50% relative humidity. On one occasion, exercise was preceded by whole-body cooling achieved by immersion in water during a reduction in temperature from 29 to 24 degrees C, and, for the other trial, by immersion in water at a thermoneutral temperature (control, 34.8 degrees C). Pre-cooling did not alter oxygen uptake during exercise (P > 0.05), whilst the change in cardiac frequency and body mass both tended to be lower following pre-cooling (0.05 < P < 0.10). When averaged over the exercise period, muscle and oesophageal temperatures after pre-cooling were reduced by 1.5 and 0.6 degrees C respectively, compared with control (P < 0.05). Pre-cooling had a limited effect on muscle metabolism, with no differences between the two conditions in muscle glycogen, triglyceride, adenosine triphosphate, creatine phosphate, creatine or lactate contents at rest, or following exercise. These data indicate that whole-body pre-cooling does not alter muscle metabolism during submaximal exercise in the heat. It is more likely that thermoregulatory and cardiovascular strain are reduced, through lower muscle and core temperatures.

  18. Superior exercise performance in lifelong Tibetan residents of 4,400 m compared with Tibetan residents of 3,658 m.

    PubMed

    Curran, L S; Zhuang, J; Droma, T; Moore, L G

    1998-01-01

    Few environments challenge human populations more than high altitude, since the accompanying low oxygen pressures (hypoxia) are pervasive and impervious to cultural modification. Work capacity is an important factor in a population's ability to thrive in such an environment. The performance of work or exercise is a measure of the integrated functioning of the O2 transport system, with maximal O2 uptake (.VO2max) a convenient index of that function. Hypoxia limits the ability to transport oxygen: maximal O2 uptake decreases with ascent to high altitude, and years of high altitude residence do not restore sea level .VO2max values. Since Tibetans live and work at some of the highest altitudes in the world, their ability to exercise at very high altitude (>4,000 m) may define the limits of human adaptation to hypoxia. We transported 20 Tibetan lifelong residents of > or =4,400 m down to 3,658 m in order to compare them with 16 previously studied Tibetan residents of Lhasa (3,658 m). The two groups of Tibetans were matched for age, weight, and height. All studies were performed in Lhasa within 3 days of the 4,400 m Tibetans' arrival. Standard test protocol and criteria were used for attaining .VO2max on a Monark bicycle ergometer, while measuring oxygen uptake (.VO2, ml/kg - min STPD), heart rate (bpm), minute ventilation (VE, 1/min BTPS), and arterial oxygen saturation (SaO2, %). The 4,400 m compared with 3,658 m residents had, at maximal effort, similar .VO2 (48.5 +/- 1.2 vs. 51.2 +/- 1.4 ml/kg - min, P = NS), higher workload attained (211 +/- 6 vs. 177 +/- 7 watts, P < 0.01), lower heart rate(176 +/- 2 vs. 191 +/- 2 bpm, P < 0.01), lower ventilation (127 +/- 5 vs. 149 +/- 5 l/min BTPS, P < 0.01), and similar SaO2(81.9 +/- 1.0 vs. 83.7 +/- 1.2%, P = NS). Furthermore, over the range of submaximal workloads, 4,400 m compared with 3,658 m Tibetans had lower .VO2 (P < 0.01), lower heart rates (P < 0.01), and lower ventilation (P < 0.01) and SaO2 (P < 0.05). We conclude that Tibetans living at 4,400 m compared with those residing at 3,658 m achieve greater work performance for a given .VO2 at submaximal and maximal workloads with less cardiorespiratory effort.

  19. Tribute to Dr Jacques Rogge: muscle activity and fatigue during hiking in Olympic dinghy sailing.

    PubMed

    Bourgois, Jan G; Dumortier, Jasmien; Callewaert, Margot; Celie, Bert; Capelli, Carlo; Sjøgaard, Gisela; De Clercq, Dirk; Boone, Jan

    2017-06-01

    'A tribute to Dr J. Rogge' aims to systematically review muscle activity and muscle fatigue during sustained submaximal quasi-isometric knee extension exercise (hiking) related to Olympic dinghy sailing as a tribute to Dr Rogge's merits in the world of sports. Dr Jacques Rogge is not only the former President of the International Olympic Committee, he was also an orthopaedic surgeon and a keen sailor, competing at three Olympic Games. In 1972, in fulfilment of the requirements for the degree of Master in Sports Medicine, he was the first who studied a sailors' muscle activity by means of invasive needle electromyography (EMG) during a specific sailing technique (hiking) on a self-constructed sailing ergometer. Hiking is a bilateral and multi-joint submaximal quasi-isometric movement which dinghy sailors use to optimize boat speed and to prevent the boat from capsizing. Large stresses are generated in the anterior muscles that cross the knee and hip joint, mainly employing the quadriceps at an intensity of 30-40% maximal voluntary contraction (MVC), sometimes exceeding 100% MVC. Better sailing level is partially determined by a lower rate of neuromuscular fatigue during hiking and for ≈60% predicted by a higher maximal isometric quadriceps strength. Although useful in exercise testing, prediction of hiking endurance capacity based on the changes in surface EMG in thigh and trunk muscles during a hiking maintenance task is not reliable. This could probably be explained by the varying exercise intensity and joint angles, and the great number of muscles and joints involved in hiking. Highlights Dr Jacques Rogge, former president of the International Olympic Committee and Olympic Finn sailor, was the first to study muscle activity during sailing using invasive needle EMG to obtain his Master degree in Sports Medicine at the Ghent University. Hiking is a critical bilateral and multi-joint movement during dinghy racing, accounting for >60% of the total upwind leg time. Hiking generates large stresses in the anterior muscles that cross the knee and hip joint. Hiking is considered as a quasi-isometric bilateral knee extension exercise. Muscle activity measurements during sailing, recorded by means of EMG, show a mean contraction intensity of 30-40% maximal voluntary contraction with peaks exceeding 100%. Hiking performance is strongly related to the development of neuromuscular fatigue in the quadriceps muscle. Since maximal strength is an important determinant of neuromuscular fatigue during hiking, combined strength and endurance training should be incorporated in the training program of dinghy sailors.

  20. Effect of virtual reality games on stroke patients’ balance, gait, depression, and interpersonal relationships

    PubMed Central

    Song, Gui bin; Park, Eun cho

    2015-01-01

    [Purpose] The purpose of the study was to determine the effects of training using virtual reality games on balance and gait ability, as well as the psychological characteristics of stroke patients, such as depression and interpersonal relationships, by comparing them with the effects of ergometer training. [Subjects] Forty stroke patients were randomly divided into a virtual reality group (VRG, N = 20) and an ergometer training group (ETG, N = 20). [Methods] VRG performed training using the Xbox Kinect. ETG performed training using an ergometer bicycle. Both groups received training 30 min per day, five times per week, for eight weeks. [Results] Both the VRG and ETG subjects exhibited a significant difference in weight distribution ratio on the paralyzed side and balance ability. Both the VRG and ETG patients showed significant improvement in psychological measures BDI and RCS, after the intervention, and the VRG sowed a more significant increase in BDI than the ETG. [Conclusion] According to the result of this study, virtual reality training and ergometer training were both effective at improving balance, gait abilities, depression, and interpersonal relationships among stroke patients. PMID:26311925

  1. A new mechanically braked bicycle ergometer with electronic read out.

    PubMed

    Bonde-Petersen, F

    1983-01-01

    The ergometer is mechanically braked by a band in series with a spring. Each end of the band passes over one of two spherical ball bearings, and is attached to the free end of a spring steel bar mounted on the same plate as the two ball bearings. By means of a spindle and cogwheel the plate can be tilted in such a way as to vary the tension in the braking band. The spring steel bar is furnished with four strain-gauges coupled as a Wheatstone's bridge. The system forms a differential force transducer measuring the differences in tension between the two ends of the band. A force is, therefore, only recorded if the flywheel is moving, because at rest forces influencing the bar from the band will be opposite and equal. The ergometer offers certain advantages over the conventional mechanically braked ergometers because it has an electronic read out, and it can be used in field studies. It is independent of the attitude in relation to the vertical, and can thus be used on tilting platforms or in weightless conditions.

  2. NOS3 gene polymorphisms and exercise hemodynamics in postmenopausal women.

    PubMed

    Hand, B D; McCole, S D; Brown, M D; Park, J J; Ferrell, R E; Huberty, A; Douglass, L W; Hagberg, J M

    2006-12-01

    We tested whether the G894T and T-786C NOS3 polymorphisms were associated with exercise cardiovascular (CV) hemodynamics in sedentary, physically active, and endurance-trained postmenopausal women. CV hemodynamic parameters including heart rate (HR), systolic (SBP) and diastolic (DBP) blood pressures and cardiac output (Q), as determined by acetylene rebreathing, stroke volume (SV), arteriovenous oxygen difference (a-vO2 diff), and total peripheral resistance (TPR) were measured during submaximal (40, 60, 80 %) and maximal (approximately 100 % VO2max) exercise. NOS3 G894T genotype was not significantly associated, either independently or interactively with habitual physical activity (PA) level, with SBP, Q, TPR, or a-vO2 diff during submaximal or maximal exercise. However, NOS3 894T non-carriers had a higher submaximal exercise HR than NOS3 894T allele carriers (120 +/- 2 vs. 112 +/- 2 beats/min, p = 0.007). NOS3 894T allele carriers had a higher SV than 894T non-carriers (78 +/- 2 vs. 72 +/- 2 ml/beat, p = 0.03) during submaximal exercise. NOS3 894T non-carriers also had a higher maximal exercise HR averaged across habitual PA groups than T allele carrier women (165 +/- 2 vs. 158 +/- 2 beats/min, p = 0.04). NOS3 894T allele carriers also tended to have a higher SV during maximal exercise than 894T non-carriers (70 +/- 2 vs. 64 +/- 2 ml/beat, p = 0.08). NOS3 T-786C genotype was not significantly associated, either independently or interactively, with any of the CV hemodynamic measures during submaximal or maximal exercise. These results suggest an association of NOS3 G894T genotype with submaximal and maximal exercise CV hemodynamic responses, especially HR, in postmenopausal women.

  3. No association between ACE I/D polymorphism and cardiovascular hemodynamics during exercise in young women.

    PubMed

    Roltsch, M H; Brown, M D; Hand, B D; Kostek, M C; Phares, D A; Huberty, A; Douglass, L W; Ferrell, R E; Hagberg, J M

    2005-10-01

    The ACE I/D polymorphism has been shown to interact with habitual physical activity levels in postmenopausal women to associate with submaximal and with maximal exercise hemodynamics. This investigation was designed to assess the potential relationships between ACE genotype and oxygen consumption (VO2), cardiac output (Q), stroke volume (SV), heart rate (HR), blood pressure (BP), total peripheral resistance (TPR), and arteriovenous oxygen difference ([a-v]O2 diff) during submaximal and maximal exercise in young sedentary and endurance-trained women. Seventy-seven 18-35-yr-old women underwent a maximal exercise test and a number of cardiac output tests on a treadmill using the acetylene rebreathing technique. ACE genotype was not significantly associated with VO2max (II 41.4+/-1.2, ID 39.8+/-0.9, DD 39.8+/-1.1 ml/kg/min, p=ns) or maximal HR (II 191+/-2, ID 191+/-1, DD 193+/-2 bpm, p=ns). In addition, systolic and diastolic BP, (a-v)O2 diff, TPR, SV, and Q during maximal exercise were not significantly associated with ACE genotype. During submaximal exercise, SBP, Q, SV, HR, TPR, and (a-v)O2 diff were not significantly associated with ACE genotype. However, the association between diastolic BP during submaximal exercise and ACE genotype approached significance (p=0.08). In addition, there were no statistically significant interactions between ACE genotype and habitual physical activity (PA) levels for any of the submaximal or the maximal exercise hemodynamic variables. We conclude that the ACE I/D polymorphism was not associated, independently or interacting with habitual PA levels, submaximal, or maximal cardiovascular hemodynamics in young women.

  4. Physiological responses of elite Laser sailors to 30 minutes of simulated upwind sailing.

    PubMed

    Cunningham, Peter; Hale, Tudor

    2007-08-01

    In this study, we tested the hypothesis that elite dinghy sailing is a whole-body, dynamic, repeated-effort sport, and that increased heart rate and oxygen consumption reflect its dynamic element. Six elite male Laser sailors (mean age 19.7 years, s = 1.82; height 1.81 m, s = 0.03; body mass 78.0 kg, s = 4.1) performed a cycle ergometer test to volitional exhaustion to determine peak oxygen uptake (VO(2peak)) and a simulated 30-min upwind leg sail on a specially constructed Laser sailing ergometer. The simulation protocol was based on video analysis of previous Laser World Championships. Expired gases were collected in Douglas bags, heart rate recorded at rest and after every 5 min, and pre- and post-simulation capillary blood samples taken for blood lactate analysis. Results were analysed with a one-way analysis of variance. Mean VO(2peak) was 4.32 l . min(-1) (s = 0.16). Mean simulation VO(2) was 2.51 l . min(-1) (s = 0.24) and peaked at 2.58 l . min(-1) (s = 0.25) during the 5th minute. Mean simulation heart rate was 156 beats . min(-1) (s = 8), peaking during the final minute at 160 beats . min(-1) (s = 10). These results suggest that, unlike pseudo-isometric static hiking, elite dinghy sailing demands a substantial proportion (58%VO(2peak), s = 5.6) of aerobic capacity.

  5. Aerobic Exercise Training in Post-Polio Syndrome: Process Evaluation of a Randomized Controlled Trial

    PubMed Central

    Voorn, Eric L.; Koopman, Fieke S.; Brehm, Merel A.; Beelen, Anita; de Haan, Arnold; Gerrits, Karin H. L.; Nollet, Frans

    2016-01-01

    Objective To explore reasons for the lack of efficacy of a high intensity aerobic exercise program in post-polio syndrome (PPS) on cardiorespiratory fitness by evaluating adherence to the training program and effects on muscle function. Design A process evaluation using data from an RCT. Patients Forty-four severely fatigued individuals with PPS were randomized to exercise therapy (n = 22) or usual care (n = 22). Methods Participants in the exercise group were instructed to exercise 3 times weekly for 4 months on a bicycle ergometer (60–70% heart rate reserve). Results The attendance rate was high (median 89%). None of the participants trained within the target heart rate range during >75% of the designated time. Instead, participants exercised at lower intensities, though still around the anaerobic threshold (AT) most of the time. Muscle function did not improve in the exercise group. Conclusion Our results suggest that severely fatigued individuals with PPS cannot adhere to a high intensity aerobic exercise program on a cycle ergometer. Despite exercise intensities around the AT, lower extremity muscle function nor cardiorespiratory fitness improved. Improving the aerobic capacity in PPS is difficult through exercise primarily focusing on the lower extremities, and may require a more individualized approach, including the use of other large muscle groups instead. Trial Registration Netherlands National Trial Register NTR1371 PMID:27419388

  6. Brief submaximal isometric exercise improves cold pressor pain tolerance.

    PubMed

    Foxen-Craft, Emily; Dahlquist, Lynnda M

    2017-10-01

    Exercise-induced hypoalgesia (EIH), or the inhibition of pain following physical exercise, has been demonstrated in adults, but its mechanisms have remained unclear due to variations in methodology. This study aimed to address methodological imitations of past studies and contribute to the literature demonstrating the generalizability of EIH to brief submaximal isometric exercise and cold pressor pain. Young adults (n = 134) completed a baseline cold pressor trial, maximal voluntary contraction (hand grip strength) assessment, 10-min rest, and either a 2-min submaximal isometric handgrip exercise or a sham exercise in which no force was exerted, followed by a cold pressor posttest. Results indicated that cold pressor pain tolerance significantly increased during the exercise condition, but not during the sham exercise condition. Exercise did not affect pain intensity and marginally affected pain unpleasantness ratings. These findings suggest that submaximal isometric exercise can improve cold pressor pain tolerance but may have an inconsistent analgesic effect on ratings of cold pressor pain.

  7. Neuromuscular fatigue following constant versus variable-intensity endurance cycling in triathletes.

    PubMed

    Lepers, R; Theurel, J; Hausswirth, C; Bernard, T

    2008-07-01

    The aim of this study was to determine whether or not variable power cycling produced greater neuromuscular fatigue of knee extensor muscles than constant power cycling at the same mean power output. Eight male triathletes (age: 33+/-5 years, mass: 74+/-4 kg, VO2max: 62+/-5 mL kg(-1) min(-1), maximal aerobic power: 392+/-17 W) performed two 30 min trials on a cycle ergometer in a random order. Cycling exercise was performed either at a constant power output (CP) corresponding to 75% of the maximal aerobic power (MAP) or a variable power output (VP) with alternating +/-15%, +/-5%, and +/-10% of 75% MAP approximately every 5 min. Maximal voluntary contraction (MVC) torque, maximal voluntary activation level and excitation-contraction coupling process of knee extensor muscles were evaluated before and immediately after the exercise using the technique of electrically evoked contractions (single and paired stimulations). Oxygen uptake, ventilation and heart rate were also measured at regular intervals during the exercise. Averaged metabolic variables were not significantly different between the two conditions. Similarly, reductions in MVC torque (approximately -11%, P<0.05) after cycling were not different (P>0.05) between CP and VP trials. The magnitude of central and peripheral fatigue was also similar at the end of the two cycling exercises. It is concluded that, following 30 min of endurance cycling, semi-elite triathletes experienced no additional neuromuscular fatigue by varying power (from +/-5% to 15%) compared with a protocol that involved a constant power.

  8. Effect of menstrual cycle phase on the ventilatory response to rising body temperature during exercise.

    PubMed

    Hayashi, Keiji; Kawashima, Takayo; Suzuki, Yuichi

    2012-07-01

    To examine the effect of menstrual cycle on the ventilatory sensitivity to rising body temperature, ten healthy women exercised for ~60 min on a cycle ergometer at 50% of peak oxygen uptake during the follicular and luteal phases of their cycle. Esophageal temperature, mean skin temperature, mean body temperature, minute ventilation, and tidal volume were all significantly higher at baseline and during exercise in the luteal phase than the follicular phase. On the other hand, end-tidal partial pressure of carbon dioxide was significantly lower during exercise in the luteal phase than the follicular phase. Plotting ventilatory parameters against esophageal temperature revealed there to be no significant menstrual cycle-related differences in the slopes or intercepts of the regression lines, although minute ventilation and tidal volume did significantly differ during exercise with mild hyperthermia. To evaluate the cutaneous vasodilatory response, relative laser-Doppler flowmetry values were plotted against mean body temperature, which revealed that the mean body temperature threshold for cutaneous vasodilation was significantly higher in the luteal phase than the follicular phase, but there were no significant differences in the sensitivity or peak values. These results suggest that the menstrual cycle phase influences the cutaneous vasodilatory response during exercise and the ventilatory response at rest and during exercise with mild hyperthermia, but it does not influence ventilatory responses during exercise with moderate hyperthermia.

  9. Morning-to-evening differences in oxygen uptake kinetics in short-duration cycling exercise.

    PubMed

    Brisswalter, Jeanick; Bieuzen, François; Giacomoni, Magali; Tricot, Véronique; Falgairette, Guy

    2007-01-01

    This study analyzed diurnal variations in oxygen (O(2)) uptake kinetics and efficiency during a moderate cycle ergometer exercise. Fourteen physically active diurnally active male subjects (age 23+/-5 yrs) not specifically trained at cycling first completed a test to determine their ventilatory threshold (T(vent)) and maximal oxygen consumption (VO(2max)); one week later, they completed four bouts of testing in the morning and evening in a random order, each separated by at least 24 h. For each period of the day (07:00-08:30 h and 19:00-20:30 h), subjects performed two bouts. Each bout was composed of a 5 min cycling exercise at 45 W, followed after 5 min rest by a 10 min cycling exercise at 80% of the power output associated with T(vent). Gas exchanges were analyzed breath-by-breath and fitted using a mono-exponential function. During moderate exercise, the time constant and amplitude of VO(2) kinetics were significantly higher in the morning compared to the evening. The net efficiency increased from the morning to evening (17.3+/-4 vs. 20.5+/-2%; p<0.05), and the variability of cycling cadence was greater during the morning than evening (+34%; p<0.05). These findings suggest that VO(2) responses are affected by the time of day and could be related to variability in muscle activity pattern.

  10. Use of the International Space Station as an Exercise Physiology Lab

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Lori

    2013-01-01

    The International Space Station (ISS) is now in its prime utilization phase with great opportunity to use the ISS as a lab. With respect to exercise physiology there is considerable research opportunity. Crew members exercise for up to 2 hours per day using a cycle ergometer, treadmill, and advanced resistive exercise device (ARED). There are several ongoing exercise research studies by NASA, ESA and CSA. These include studies related to evaluation of new exercise prescriptions (SPRINT), evaluation of aerobic capacity (VO2max), biomechanics (Treadmill Kinematics), energy expenditure during spaceflight (Energy), evaluation of cartilage (Cartilage), and evaluation of cardiovascular health (Vascular). Examples of how ISS is used for exercise physiology research will be presented.

  11. Biomechanics of Submaximal Recumbent Cycling in Adolescents With and Without Cerebral Palsy

    PubMed Central

    Johnston, Therese E; Barr, Ann E; Lee, Samuel CK

    2011-01-01

    Background and Purpose The purpose of this study was to compare the biomechanics of recumbent cycling between adolescents with cerebral palsy (CP) classified at Gross Motor Function Classification System (GMFCS) levels III and IV and adolescents with typical development (TD). Subjects Twenty subjects, ages (X̄±SD) 15.2±1.6 years (10 with TD, 10 with CP), participated. Methods Lower-extremity kinematics and muscle activity were measured at 30 and 60 rpm while subjects pedaled on a recumbent cycle. Energy expenditure and perceived exertion were measured during a 5-minute test, and efficiency was calculated. Noncircular data were analyzed with analyses of variance. Circular data were analyzed using circular t tests. Results Differences were found between groups for joint kinematics for all motions. Subjects with CP displayed earlier onsets and later offsets of muscle activity, increased co-contraction of agonist and antagonist muscles, and decreased efficiency compared with subjects with TD. There were no differences in perceived exertion. Discussion and Conclusion Differences in cycling biomechanics between children with CP and children with TD may be due to decreased strength and motor control in the children with CP. PMID:17405804

  12. Systolic blood pressure reactivity during submaximal exercise and acute psychological stress in youth

    USDA-ARS?s Scientific Manuscript database

    Background: Studies in youth show an association between systolic blood-pressure (SBP) reactivity to acute psychological stress and carotid artery intima-media thickness (CIMT). However, it has not yet been determined whether SBP reactivity during submaximal exercise is also associated with CIMT i...

  13. Ventilation and Speech Characteristics during Submaximal Aerobic Exercise

    ERIC Educational Resources Information Center

    Baker, Susan E.; Hipp, Jenny; Alessio, Helaine

    2008-01-01

    Purpose: This study examined alterations in ventilation and speech characteristics as well as perceived dyspnea during submaximal aerobic exercise tasks. Method: Twelve healthy participants completed aerobic exercise-only and simultaneous speaking and aerobic exercise tasks at 50% and 75% of their maximum oxygen consumption (VO[subscript 2] max).…

  14. Shoulder muscle strength in paraplegics before and after kayak ergometer training.

    PubMed

    Bjerkefors, Anna; Jansson, Anna; Thorstensson, Alf

    2006-07-01

    The purpose was to investigate if shoulder muscle strength in post-rehabilitated persons with spinal cord injury (SCI) was affected by kayak ergometer training and to compare shoulder strength in persons with SCI and able-bodied persons. Ten persons with SCI (7 males and 3 females, injury levels T3-T12) performed 60 min kayak ergometer training three times a week for 10 weeks with progressively increased intensity. Maximal voluntary concentric contractions were performed during six shoulder movements: flexion and extension (range of motion 65 degrees ), abduction and adduction (65 degrees ), and external and internal rotation (60 degrees ), with an angular velocity of 30 degrees s(-1). Position specific strength was assessed at three shoulder angles (at the beginning, middle and end of the range of motion) in the respective movements. Test-retests were performed for all measurements before the training and the mean intraclass correlation coefficient was 0.941 (95% CI 0.928-0.954). There was a main effect of kayak ergometer training with increased shoulder muscle strength after training in persons with SCI. The improvements were independent of shoulder movement, and occurred in the beginning and middle positions. A tendency towards lower shoulder muscle strength was observed in the SCI group compared to a matched reference group of able-bodied persons. Thus, it appears that post-rehabilitated persons with SCI have not managed to fully regain/maintain their shoulder muscle strength on a similar level as that of able-bodied persons, and are able to improve their shoulder muscle strength after a period of kayak ergometer training.

  15. The Reliability of Pedalling Rates Employed in Work Tests on the Bicycle Ergometer.

    ERIC Educational Resources Information Center

    Bolonchuk, W. W.

    The purpose of this study was to determine whether a group of volunteer subjects could produce and maintain a pedalling cadence within an acceptable range of error. This, in turn, would aid in determining the reliability of pedalling rates employed in work tests on the bicycle ergometer. Forty male college students were randomly given four…

  16. Modeling of breath methane concentration profiles during exercise on an ergometer*

    PubMed Central

    Szabó, Anna; Unterkofler, Karl; Mochalski, Pawel; Jandacka, Martin; Ruzsanyi, Vera; Szabó, Gábor; Mohácsi, Árpád; Teschl, Susanne; Teschl, Gerald; King, Julian

    2016-01-01

    We develop a simple three compartment model based on mass balance equations which quantitatively describes the dynamics of breath methane concentration profiles during exercise on an ergometer. With the help of this model it is possible to estimate the endogenous production rate of methane in the large intestine by measuring breath gas concentrations of methane. PMID:26828421

  17. Effects of Age on Maximal Work Capacity in Women Aged 18-48 Years.

    ERIC Educational Resources Information Center

    Hartung, G. Harley; And Others

    Fifty-six healthy nontrained women aged 18 to 48 were tested for maximal work capacity on a bicycle ergometer. The women were divided into three age groups. A continuous step-increment bicycle ergometer work test was administered with the workload starting at 150 kpm (kilometers per minute) and 50 pedal rpm (revolutions per minute). The workload…

  18. Relationship between body composition, leg strength, anaerobic power, and on-ice skating performance in division I men's hockey athletes.

    PubMed

    Potteiger, Jeffrey A; Smith, Dean L; Maier, Mark L; Foster, Timothy S

    2010-07-01

    The purpose of this study was to examine relationships between laboratory tests and on-ice skating performance in division I men's hockey athletes. Twenty-one men (age 20.7 +/- 1.6 years) were assessed for body composition, isokinetic force production in the quadriceps and hamstring muscles, and anaerobic muscle power via the Wingate 30-second cycle ergometer test. Air displacement plethysmography was used to determine % body fat (%FAT), fat-free mass (FFM), and fat mass. Peak torque and total work during 10 maximal effort repetitions at 120 degrees .s were measured during concentric muscle actions using an isokinetic dynamometer. Muscle power was measured using a Monark cycle ergometer with resistance set at 7.5% of body mass. On-ice skating performance was measured during 6 timed 89-m sprints with subjects wearing full hockey equipment. First length skate (FLS) was 54 m, and total length skate (TLS) was 89 m with fastest and average skating times used in the analysis. Correlation coefficients were used to determine relationships between laboratory testing and on-ice performance. Subjects had a body mass of 88.8 +/- 7.8 kg and %FAT of 11.9 +/- 4.6. First length skate-Average and TLS-Average skating times were moderately correlated to %FAT ([r = 0.53; p = 0.013] and [r = 0.57; p = 0.007]) such that a greater %FAT was related to slower skating speeds. First length skate-Fastest was correlated to Wingate percent fatigue index (r = -0.48; p = 0.027) and FLS-Average was correlated to Wingate peak power per kilogram body mass (r = -0.43; p = 0.05). Laboratory testing of select variables can predict skating performance in ice hockey athletes. This information can be used to develop targeted and effective strength and conditioning programs that will improve on-ice skating speed.

  19. Relation of oxygen uptake to work rate in prepubertal healthy children - reference for VO2/W-slope and effect on cardiorespiratory fitness assessment.

    PubMed

    Tompuri, Tuomo; Lintu, Niina; Laitinen, Tomi; Lakka, Timo A

    2017-08-09

    Exercise testing by cycle ergometer allows to observe the interaction between oxygen uptake (VO 2 ) and workload (W), and VO 2 /W-slope can be used as a diagnostic tool. Respectively, peak oxygen uptake (VO 2 PEAK ) can be estimated by maximal workload. We aim to determine reference for VO 2 /W-slope among prepubertal children and define agreement between estimated and measured VO 2 PEAK . A total of 38 prepubertal children (20 girls) performed a maximal cycle ergometer test with respiratory gas analysis. VO 2 /W-slopes were computed using linear regression. Agreement analysis by Bland and Altman for estimated and measured VO 2 PEAK was carried out including limits of agreement (LA). Determinants for VO 2 /W-slopes and estimation bias were defined. VO2/W-slope was in both girls and boys ≥9·4 and did not change with exercise level, but the oxygen cost of exercise was higher among physically more active children. Estimated VO 2 PEAK had 6·4% coefficient of variation, and LA varied from 13% underestimation to 13% overestimation. Bias had a trend towards underestimation along lean mass proportional VO 2 PEAK . The primary determinant for estimation bias was VO2/W-slope (β = -0·65; P<0·001). The reference values for VO 2 /W-slope among healthy prepubertal children were similar to those published for adults and among adolescents. Estimated and measured VO 2 PEAK should not be considered to be interchangeable because of the variation in the relationship between VO 2 and W. On other hand, variation in the relationship between VO 2 and W enables that VO 2 /W-slope can be used as a diagnostic tool. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  20. Similar metabolic response to lower- versus upper-body interval exercise or endurance exercise.

    PubMed

    Francois, Monique E; Graham, Matthew J; Parr, Evelyn B; Rehrer, Nancy J; Lucas, Samuel J E; Stavrianeas, Stasinos; Cotter, James D

    2017-03-01

    To compare energy use and substrate partitioning arising from repeated lower- versus upper-body sprints, or endurance exercise, across a 24-h period. Twelve untrained males (24±4 y) completed three trials in randomized order: (1) repeated sprints (five 30-s Wingate, 4.5-min recovery) on a cycle ergometer (SIT Legs ); (2) 50-min continuous cycling at 65% V̇O 2 max (END); (3) repeated sprints on an arm-crank ergometer (SIT Arms ). Respiratory gas exchange was assessed before and during exercise, and at eight points across 22h of recovery. Metabolic rate was elevated to greater extent in the first 8h after SIT Legs than SIT Arms (by 0.8±1.1kJ/min, p=0.03), and tended to be greater than END (by 0.7±1.3kJ/min, p=0.08). Total 24-h energy use (exercise+recovery) was equivalent between SIT Legs and END (p = 0.55), and SIT Legs and SIT Arms (p=0.13), but 24-h fat use was higher with SIT Legs than END (by 26±38g, p=0.04) and SIT Arms (by 27±43g, p=0.05), whereas carbohydrate use was higher with SIT Arms than SIT Legs (by 32±51g, p=0.05). Plasma volume-corrected post-exercise and fasting glucose and lipid concentrations were unchanged. Despite much lower energy use during five sprints than 50-min continuous exercise, 24-h energy use was not reliably different. However, (i) fat metabolism was greater after sprints, and (ii) carbohydrate metabolism was greater in the hours after sprints with arms than legs, while 24-h energy usage was comparable. Thus, sprints using arms or legs may be an important adjunct exercise mode for metabolic health. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Effects of Short-Term Free-Weight and Semiblock Periodization Resistance Training on Metabolic Syndrome.

    PubMed

    South, Mark A; Layne, Andrew S; Stuart, Charles A; Triplett, N Travis; Ramsey, Michael; Howell, Mary E; Sands, William A; Mizuguchi, Satoshi; Hornsby, W Guy; Kavanaugh, Ashley A; Stone, Michael H

    2016-10-01

    South, MA, Layne, AS, Stuart, CA, Triplett, NT, Ramsey, MW, Howell, ME, Sands, WA, Mizuguchi, S, Hornsby, WG, Kavanaugh, AA, and Stone, MH. Effects of short-term free-weight and semiblock periodization resistance training on metabolic syndrome. J Strength Cond Res 30(10): 2682-2696, 2016-The effects of short-term resistance training on performance and health variables associated with prolonged sedentary lifestyle and metabolic syndrome (MS) were investigated. Resistance training may alter a number of health-related, physiological, and performance variables. As a result, resistance training can be used as a valuable tool in ameliorating the effects of a sedentary lifestyle including those associated with MS. Nineteen previously sedentary subjects (10 with MS and 9 with nonmetabolic syndrome [NMS]) underwent 8 weeks of supervised resistance training. Maximum strength was measured using an isometric midthigh pull and resulting force-time curve. Vertical jump height (JH) and power were measured using a force plate. The muscle cross-sectional area (CSA) and type were examined using muscle biopsy and standard analysis techniques. Aerobic power was measured on a cycle ergometer using a ParvoMedics 2400 Metabolic system. Endurance was measured as time to exhaustion on a cycle ergometer. After training, maximum isometric strength, JH, jump power, and V[Combining Dot Above]O2peak increased by approximately 10% (or more) in both the metabolic and NMS groups (both male and female subjects). Over 8 weeks of training, body mass did not change statistically, but percent body fat decreased in subjects with the MS and in women, and lean body mass increased in all groups (p ≤ 0.05). Few alterations were noted in the fiber type. Men had larger CSAs compared those of with women, and there was a fiber-specific trend toward hypertrophy over time. In summary, 8 weeks of semiblock free-weight resistance training improved several performance variables and some cardiovascular factors associated with MS.

  2. The development of rating of perceived exertion-based tests of physical working capacity.

    PubMed

    Mielke, Michelle; Housh, Terry J; Malek, Moh H; Beck, Travis W; Schmidt, Richard J; Johnson, Glen O

    2008-01-01

    The purpose of the present study was to use ratings of perceived exertion (RPE) from the Borg (6-20) and OMNI-Leg (0-10) scales to determine the Physical Working Capacity at the Borg and OMNI thresholds (PWC(BORG) and PWC(OMNI)). PWC(BORG) and PWC(OMNI) were compared with other fatigue thresholds determined from the measurement of heart rate (the Physical Working Capacity at the Heart Rate Threshold: PWC(HRT)), and oxygen consumption (the Physical Working Capacity at the Oxygen Consumption Threshold, PWC(VO2)), as well as the ventilatory threshold (VT). Fifteen men and women volunteers (mean age +/- SD = 22 +/- 1 years) performed an incremental test to exhaustion on an electronically braked ergometer for the determination of VO2 peak and VT. The subjects also performed 4 randomly ordered workbouts to exhaustion at different power outputs (ranging from 60 to 206W) for the determination of PWC(BORG), PWC(OMNI), PWC(HRT), and PWC(VO2). The results indicated that there were no significant mean differences among the fatigue thresholds: PWC(BORG) (mean +/- SD = 133 +/- 37W; 67 +/- 8% of VO2 peak), PWC(OMNI) (137 +/- 44W; 68 +/- 9% of VO2 peak), PWC(HRT) (135 +/- 36W; 68 +/- 8% of VO2 peak), PWC(VO2) (145 +/- 41W; 72 +/- 7% of VO2 peak) and VT (131 +/- 45W; 66 +/- 8% of VO2 peak). The results of this study indicated that the mathematical model used to estimate PWC(HRT) and PWC(VO2) can be applied to ratings of perceived exertion to determine PWC(BORG) and PWC(OMNI) during cycle ergometry. Salient features of the PWC(BORG) and PWC(OMNI) tests are that they are simple to administer and require the use of only an RPE scale, a stopwatch, and a cycle ergometer. Furthermore, the power outputs at the PWC(BORG) and PWC(OMNI) may be useful to estimate the VT noninvasively and without the need for expired gas analysis.

  3. Early exercise in critically ill patients enhances short-term functional recovery.

    PubMed

    Burtin, Chris; Clerckx, Beatrix; Robbeets, Christophe; Ferdinande, Patrick; Langer, Daniel; Troosters, Thierry; Hermans, Greet; Decramer, Marc; Gosselink, Rik

    2009-09-01

    : To investigate whether a daily exercise session, using a bedside cycle ergometer, is a safe and effective intervention in preventing or attenuating the decrease in functional exercise capacity, functional status, and quadriceps force that is associated with prolonged intensive care unit stay. A prolonged stay in the intensive care unit is associated with muscle dysfunction, which may contribute to an impaired functional status up to 1 yr after hospital discharge. No evidence is available concerning the effectiveness of an early exercise training intervention to prevent these detrimental complications. : Randomized controlled trial. : Medical and surgical intensive care unit at University Hospital Gasthuisberg. : Ninety critically ill patients were included as soon as their cardiorespiratory condition allowed bedside cycling exercise (starting from day 5), given they still had an expected prolonged intensive care unit stay of at least 7 more days. : Both groups received respiratory physiotherapy and a daily standardized passive or active motion session of upper and lower limbs. In addition, the treatment group performed a passive or active exercise training session for 20 mins/day, using a bedside ergometer. : All outcome data are reflective for survivors. Quadriceps force and functional status were assessed at intensive care unit discharge and hospital discharge. Six-minute walking distance was measured at hospital discharge. No adverse events were identified during and immediately after the exercise training. At intensive care unit discharge, quadriceps force and functional status were not different between groups. At hospital discharge, 6-min walking distance, isometric quadriceps force, and the subjective feeling of functional well-being (as measured with "Physical Functioning" item of the Short Form 36 Health Survey questionnaire) were significantly higher in the treatment group (p < .05). : Early exercise training in critically ill intensive care unit survivors enhanced recovery of functional exercise capacity, self-perceived functional status, and muscle force at hospital discharge.

  4. Prediction of Maximum Oxygen Consumption from Walking, Jogging, or Running.

    ERIC Educational Resources Information Center

    Larsen, Gary E.; George, James D.; Alexander, Jeffrey L.; Fellingham, Gilbert W.; Aldana, Steve G.; Parcell, Allen C.

    2002-01-01

    Developed a cardiorespiratory endurance test that retained the inherent advantages of submaximal testing while eliminating reliance on heart rate measurement in predicting maximum oxygen uptake (VO2max). College students completed three exercise tests. The 1.5-mile endurance test predicted VO2max from submaximal exercise without requiring heart…

  5. Perceived exertion during submaximal G exposures before and after physical training.

    PubMed

    Balldin, U I; Kuronen, P; Rusko, H; Svensson, E

    1994-03-01

    Ratings of perceived exertion (RPE) were registered at submaximal levels in G endurance tests of a combined strength and endurance training program in 17 pilots. After 12 months of physical training, the endurance G tolerance (time to exhaustion during simulated aerial combat maneuver), increased by a mean of 40% (p < 0.001), while the mean RPE at 5 min submaximal G exposure decreased by 1.2 units (p < 0.02). Following 12 months of physical training, a significant relationship was observed between the improvement of the endurance G tolerance and the decrease of the RPE at 5 min (p = 0.05). Mean SaO2 at 5 min increased from 84 to 90% (p < 0.01) after training, while heart rate responses to G stress did not change. It is concluded that mean RPE and, to some extent, mean SaO2 during submaximal G exposures may be used as indicators of shifts in endurance G tolerance. The procedure may reduce the need for exhaustive G tolerance tests with associated risks and discomfort.

  6. Responses to Exercise Differ For Chronic Fatigue Syndrome Patients with Fibromyalgia

    PubMed Central

    Cook, Dane B.; Stegner, Aaron J.; Nagelkirk, Paul R.; Meyer, Jacob D.; Togo, Fumiharu; Natelson, Benjamin H.

    2011-01-01

    Chronic fatigue syndrome (CFS) and fibromyalgia (FM) are chronic multisymptom illnesses with substantial clinical and diagnostic overlap. We have previously shown that when controlling for aerobic fitness and accounting for comorbid FM, CFS patients do not exhibit abnormal cardiorespiratory responses during maximal aerobic exercise compared to healthy controls, despite differences in pain and exertion. Purpose The purpose of the present study was to examine cardiac and perceptual responses to steady-state, submaximal exercise in CFS patients and healthy controls. Methods Twenty-one CFS patients [13 CFS with comorbid FM (CFS+FM)] and 14 controls completed 20 minutes of submaximal cycling exercise. Impedance cardiography was used to determine cardiac responses during exercise. Systolic blood pressure (SBP), perceived exertion (RPE) and leg-muscle pain were also measured. Data were analyzed using a doubly-multivariate, repeated-measures MANOVA to model the exercise response. Results There was a significant multivariate Time by Group interaction (p < 0.05). The CFS+FM group exhibited an exercise response characterized by higher stoke index, ventilatory equivalents for oxygen and carbon dioxide and RPE, lower SBP and similar HR responses. Conclusions The present results extend upon our previous work with maximal exercise and show that CFS and CFS+FM differ in their responses to steady-state exercise. These results highlight the importance of accounting for comorbid conditions when conducting CFS research, particularly when examining psychophysiological responses to exercise. PMID:22157881

  7. Reduced Modulation of Pain in Older Adults After Isometric and Aerobic Exercise.

    PubMed

    Naugle, Kelly M; Naugle, Keith E; Riley, Joseph L

    2016-06-01

    Laboratory-based studies show that acute aerobic and isometric exercise reduces sensitivity to painful stimuli in young healthy individuals, indicative of a hypoalgesic response. However, little is known regarding the effect of aging on exercise-induced hypoalgesia (EIH). The purpose of this study was to examine age differences in EIH after submaximal isometric exercise and moderate and vigorous aerobic exercise. Healthy older and younger adults completed 1 training session and 4 testing sessions consisting of a submaximal isometric handgrip exercise, vigorous or moderate intensity stationary cycling, or quiet rest (control). The following measures were taken before and after exercise/quiet rest: 1) pressure pain thresholds, 2) suprathreshold pressure pain ratings, 3) pain ratings during 30 seconds of prolonged noxious heat stimulation, and 4) temporal summation of heat pain. The results revealed age differences in EIH after isometric and aerobic exercise, with younger adults experiencing greater EIH compared with older adults. The age differences in EIH varied across pain induction techniques and exercise type. These results provide evidence for abnormal pain modulation after acute exercise in older adults. This article enhances our understanding of the influence of a single bout of exercise on pain sensitivity and perception in healthy older compared with younger adults. This knowledge could help clinicians optimize exercise as a method of pain management. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  8. T wave alternans during exercise and atrial pacing in humans

    NASA Technical Reports Server (NTRS)

    Hohnloser, S. H.; Klingenheben, T.; Zabel, M.; Li, Y. G.; Albrecht, P.; Cohen, R. J.

    1997-01-01

    INTRODUCTION: Evidence is accumulating that microvolt T wave alternans (TWA) is a marker of increased risk for ventricular tachyarrhythmias. Initially, atrial pacing was used to elevate heart rate and elicit TWA. More recently, a noninvasive approach has been developed that elevates heart rate using exercise. METHODS AND RESULTS: In 30 consecutive patients with a history of ventricular tachyarrhythmias, the spectral method was used to detect TWA during both atrial pacing and submaximal exercise testing. The concordance rate for the presence or absence of TWA using the two measurement methods was 84%. There was a patient-specific heart rate threshold for the detection of TWA that averaged 100 +/- 14 beats/min during exercise compared with 97 +/- 9 beats/min during right atrial pacing (P = NS). Beyond this threshold, there was a significant and comparable increase in level of TWA with decreasing pacing cycle length and increasing exercise heart rates. CONCLUSIONS: The present study is the first to demonstrate that microvolt TWA can be assessed reliably and noninvasively during exercise stress. There is a patient-specific heart rate threshold beyond which TWA continues to increase with increasing heart rates. Heart rate thresholds for the onset of TWA measured during atrial pacing and exercise stress were comparable, indicating that heart rate alone appears to be the main factor of determining the onset of TWA during submaximal exercise stress.

  9. Skylab

    NASA Image and Video Library

    1973-01-01

    This Skylab-2 onboard photograph shows astronaut Charles "Pete" Conrad exercising on a stationary bicycle (ergometer) used for monitoring the metabolism of the astronauts. The ergometer was used to conduct both Vectorcardiogram experiment (M093) and Metabolic Activity experiment (M171). Experiment M093 was a medical evaluation designed to monitor changes in astronauts' cardiovascular systems, while Experiment M171 was to measure astronauts' metabolic changes during long-duration space missions.

  10. Maximal and submaximal endurance performance in adults with severe haemophilia.

    PubMed

    Herbsleb, M; Hilberg, T

    2009-01-01

    Maximal exercise testing, including the determination of maximal performance and maximal oxygen uptake (VO(2max)), is considered the gold standard for assessing maximal endurance performance. The effectiveness of such testing is often reduced in haemophilic adults owing to musculoskeletal impairments or pain rather than because of cardiac exertion. The measurement of submaximal performance parameters overcomes many limitations of maximal exercise testing but a testing standard is still lacking. The aim of this study was to investigate maximal and particularly submaximal endurance performance of adult patients with severe haemophilia A and B. Eleven patients and 11 matched healthy controls were tested by spiroergometry with a specific treadmill test and the power was calculated in Watts. The haemophilic group achieved lower absolute (210 +/- 63 W) and weight-related (2.94 +/- 0.98 W kg(-1)) maximal endurance performance compared with the control group (287 +/- 50 W resp. 3.82 +/- 0.53 W kg(-1); P

  11. Electromyographic analysis of exercise resulting in symptoms of muscle damage.

    PubMed

    McHugh, M P; Connolly, D A; Eston, R G; Gleim, G W

    2000-03-01

    Surface electromyographic (EMG) signals were recorded from the hamstring muscles during six sets of submaximal isokinetic (2.6 rad x s(-1)) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions. The EMG per unit torque increased during eccentric (P < 0.01) but not during concentric exercise. Similarly, the median frequency increased during eccentric (P < 0.01) but not during concentric exercise. The EMG per unit torque was lower for submaximal eccentric than maximum isometric contractions (P < 0.001), and lower for submaximal concentric than maximum isometric contractions (P < 0.01). The EMG per unit torque was lower for eccentric than concentric contractions (P < 0.05). The median frequency was higher for submaximal eccentric than maximum isometric contractions (P < 0.001); it was similar, however, between submaximal concentric and maximum isometric contractions (P = 0.07). Eccentric exercise resulted in significant isometric strength loss (P < 0.01), pain (P < 0.01) and muscle tenderness (P < 0.05). The greatest strength loss was seen 1 day after eccentric exercise, while the most severe pain and muscle tenderness occurred 2 days after eccentric exercise. A lower EMG per unit torque is consistent with the selective recruitment of a small number of motor units during eccentric exercise. A higher median frequency during eccentric contractions may be explained by selective recruitment of fast-twitch motor units. The present results are consistent with the theory that muscle damage results from excessive stress on a small number of active fibres during eccentric contractions.

  12. The physiological and biomechanical effects of forwards and reverse sports wheelchair propulsion

    PubMed Central

    Mason, Barry S.; Lenton, John P.; Goosey-Tolfrey, Victoria L.

    2015-01-01

    Objective To explore the physiological and biomechanical differences between forwards (FOR) and reverse (REV) sports wheelchair propulsion. Design Fourteen able-bodied males with previous wheelchair propulsion experience pushed a sports wheelchair on a single-roller ergometer in a FOR and REV direction at three sub-maximal speeds (4, 6, and 8 km/hour). Each trial lasted 3 minutes, and during the final minute physiological and biomechanical measures was collected. Results The physiological results revealed that oxygen uptake (1.51 ± 0.29 vs. 1.38 ± 0.26 L/minute, P = 0.005) and heart rate (121 ± 19 vs. 109 ± 14 beats/minute, P < 0.0005) were significantly greater during REV than FOR only during the 8 km/hour trials. From a biomechanical perspective, push frequencies were similar between FOR and REV across all speeds (P > 0.05). However, greater mean resultant forces were applied during FOR (P < 0.0005) at 4 km/hour (66.7 ± 19.5 vs. 49.2 ± 10.3 N), 6 km/hour (90.7 ± 21.9 vs. 65.3 ± 18.6 N), and 8 km/hour (102.5 ± 17.6 vs. 68.7 ± 13.5 N) compared to REV. Alternatively, push times and push angles were significantly lower (P ≤ 0.001) during FOR at each speed. Conclusions The current study demonstrated that at higher speeds physiological demand becomes elevated during REV. This was likely to be associated with an inability to apply sufficient force to the wheels, thus requiring kinematic adaptations in order to maintain constant speeds in REV. PMID:24593797

  13. Hand-rim forces and gross mechanical efficiency in asynchronous and synchronous wheelchair propulsion: a comparison.

    PubMed

    Lenton, J P; van der Woude, L; Fowler, N; Nicholson, G; Tolfrey, K; Goosey-Tolfrey, V

    2014-03-01

    To compare the force application characteristics at various push frequencies of asynchronous (ASY) and synchronous (SYN) hand-rim propulsion, 8 able-bodied participants performed a separate sub-maximal exercise test on a wheelchair roller ergometer for each propulsion mode. Each test consisted of a series of 5, 4-min exercise blocks at 1.8 m · s-1 - initially at their freely chosen frequency (FCF), followed by four counter-balanced trials at 60, 80, 120 and 140% FCF. Kinetic data was obtained using a SMARTWheel, measuring forces and moments. The gross efficiency (GE) was determined as the ratio of external work done and the total energy expended. The ASY propulsion produced higher force measures for FRES, FTAN, rate of force development & FEF (P<0.05), while there was no difference in GE values (P=0.518). In pair-matched push frequencies (ASY80:SYN60, ASY100:SYN80, ASY120:SYN100 and ASY140:SYN120), ASY propulsion forces remained significantly higher (FRES, FTAN, rate of force development & FEF P<0.05), and there was no significant effect on GE (P=0.456). Both ASY and SYN propulsion demonstrate similar trends: changes in push frequency are accompanied by changes in absolute force even without changes in the gross pattern/trend of force application, FEF or GE. Matched push frequencies continue to produce significant differences in force measures but not GE. This suggests ASY propulsion is the predominant factor in force application differences. The ASY would appear to offer a kinetic disadvantage to SYN propulsion and no physiological advantage under current testing conditions. © Georg Thieme Verlag KG Stuttgart · New York.

  14. The leveling-off of oxygen uptake is related to blood lactate accumulation. Retrospective study of 94 elite rowers.

    PubMed

    Lacour, Jean-René; Messonnier, Laurent; Bourdin, Muriel

    2007-09-01

    To assess whether the ability to demonstrate a plateau in oxygen consumption VO2 could be related to adaptation to exercise, the data obtained over a period of 10 years on 94 elite oarsmen who had participated in annual testing were re-evaluated. The test consisted in an incremental step protocol until volitional exhaustion. VO2, heart rate (HR), blood lactate ([La]b) and respiratory exchange ratio (RER) were measured at each step. The maximal oxygen consumption (VO2max), the power corresponding to VO2maxPamax and the maximal power achieved (Ppeak) were recorded. Thirty-eight oarsmen achieved a VO2 plateau and were designated as Pla; 56 did not and were designed as N-Pla. The Pla and N-Pla VO2max, Pamax and maximal HR values were similar. In comparison with N-Pla, the Pla group displayed a rightward shift of the [La]b versus power curve, accounted for by both the increased percentage of VO2max corresponding to 4 mmol l(-1) and the decreased value of [La]b corresponding to Pamax (P<0.05). Pla oarsmen attained a higher Ppeak expressed as % of Pamax (P<0.05) and also showed better ergometer performance (P<0.05). In a sub-group of 53 oarsmen constituted on the basis of Pamax values close to 400 W, for a given power output, the Pla subjects had significantly lower HR, RER, and [La]b values at each sub-maximal stage of the test. These results suggest that achieving a [Formula: see text] plateau during completion of an incremental step protocol accounts for greater muscle ability to maintain homeostasis during exercise. These differences give the oarsmen an advantage in rowing competitions.

  15. EFFECTIVENESS OF AN UPPER EXTREMITY EXERCISE DEVICE AND TEXT MESSAGE REMINDERS TO EXERCISE IN ADULTS WITH SPINA BIFIDA: A PILOT STUDY

    PubMed Central

    Crytzer, Theresa M.; Dicianno, Brad E.; Fairman, Andrea D.

    2013-01-01

    Background Obesity, deconditioning, cognitive impairment, and poor exercise tolerance are health issues concerning adults with spina bifida (SB). Our aim is to describe exercise participation and identify motivating tactics and exercise devices that increase participation. Design In a quasi-experimental randomized crossover design, the GameCycle was compared to a Saratoga Silver I arm ergometer. Personalized free or low cost text/voice message reminders to exercise were sent. Methods Nineteen young adults with SB were assigned to either the GameCycle or Saratoga exercise group. Within each group, participants were randomized to receive reminders to exercise, or no reminders, then crossed over to the opposite message group after eight weeks. Before and after a 16 week exercise program we collected anthropometric, metabolic, exercise testing and questionnaire data, and recorded participation. Results Miles traveled by the GameCycle group were significantly higher than the Saratoga exercise groups. No significant differences were found in participation between the message reminder groups. Low participation rates were seen overall. Conclusions Those using the GameCycle traveled more miles. Barriers to exercise participation may have superseded ability to motivate adults with SB to exercise even with electronic reminders. Support from therapists to combat deconditioning and develop coping skills may be needed. PMID:24620701

  16. Methodological Considerations on the Relationship Between the 1,500-M Rowing Ergometer Performance and Vertical Jump in National-Level Adolescent Rowers.

    PubMed

    Maciejewski, Hugo; Rahmani, Abderrahmane; Chorin, Frédéric; Lardy, Julien; Samozino, Pierre; Ratel, Sébastien

    2018-03-12

    The purpose of the present study was to investigate whether three different approaches for evaluating squat jump performance were correlated to rowing ergometer performance in elite adolescent rowers. Fourteen young male competitive rowers (15.3 ± 0.6 years), who took part in the French rowing national championships, performed a 1,500-m all-out rowing ergometer performance (P1500) and a squat jump (SJ) test. The performance in SJ was determined by calculating the jump height (HSJ in cm), a jump index (ISJ = HSJ · body mass · gravity, in J) and the mean power output (PSJ in W) from the Samozino et al.'s method. Furthermore, allometric modelling procedures were used to consider the importance of body mass (BM) in the assessment of HSJ, ISJ and PSJ, and their relationships with between P1500 and jump scores. P1500 was significantly correlated to HSJ (r2 = 0.29, P < 0.05), ISJ (r2 = 0.72, P < 0.0001) and PSJ (r2 = 0.86, P < 0.0001). Furthermore, BM explained at least 96% of the relationships between SJ and rowing performances. However, the similarity between both allometric exponents for PSJ and P1500 (1.15 and 1.04, respectively) indicates that BM could influence jump and rowing ergometer performances at the same rate, and that PSJ could be the best correlate of P1500. Therefore, the calculation of power seems to be more relevant than HSJ and ISJ to (i) evaluate jump performance, and (ii) infer the capacity of adolescent rowers to perform 1,500-m all-out rowing ergometer performance, irrespective of their body mass. This could help coaches to improve their training program and potentially identify talented young rowers.

  17. A pilot study of activity-based therapy in the arm motor recovery post stroke: a randomized controlled trial.

    PubMed

    Rabadi, Mh; Galgano, M; Lynch, D; Akerman, M; Lesser, M; Volpe, Bt

    2008-12-01

    To determine the efficacy of activity-based therapies using arm ergometer or robotic or group occupational therapy for motor recovery of the paretic arm in patients with an acute stroke (< or =4 weeks) admitted to an inpatient rehabilitation facility, and to obtain information to plan a large randomized controlled trial. Prospective, randomized controlled study. Stroke unit in a rehabilitation hospital. Thirty patients with an acute stroke (< or =4 weeks) who had arm weakness (Medical Research Council grade 2 or less at the shoulder joint). Occupational therapy (OT) group (control) (n = 10), arm ergometer (n = 10) or robotic (n = 10) therapy group. All patients received standard, inpatient, post-stroke rehabilitation training for 3 hours a day, plus 12 additional 40-minute sessions of the activity-based therapy. The primary outcome measures were discharge scores in the Fugl-Meyer Assessment Scale for upper limb impairment, Motor Status Scale, total Functional Independence Measure (FIM) and FIM-motor and FIM-cognition subscores. The three groups (OT group versus arm ergometer versus robotic) were comparable on clinical demographic measures except the robotic group was significantly older and there were more haemorrhagic stroke patients in the arm ergometer group. After adjusting for age, stroke type and outcome measures at baseline, a similar degree of improvement in the discharge scores was found in all of the primary outcome measures. This study suggests that activity-based therapies using an arm ergometer or robot when used over shortened training periods have the same effect as OT group therapy in decreasing impairment and improving disability in the paretic arm of severely affected stroke patients in the subacute phase.

  18. Athletes and Sedentary Individuals: An Intergroup Comparison Utilizing a Pulmonary Function Ratio Obtained During Submaximal Exercise.

    ERIC Educational Resources Information Center

    Maud, Peter J.

    A pulmonary function ratio describing oxygen extraction from alveolar ventilation was used for an intergroup comparison between three groups of athletes (rugby, basketball, and football players) and one group of sedentary subjects during steady-state submaximal exercise. The ratio and its component parts are determined from only three gas…

  19. Effects of Training on the Estimation of Muscular Moment in Submaximal Exercise

    ERIC Educational Resources Information Center

    Leverrier, Celine; Gauthier, Antoine; Nicolas, Arnaud; Molinaro, Corinne

    2011-01-01

    The purpose of this study was to observe the effects of a submaximal isometric training program on estimation capacity at 25, 50, and 75% of maximal contraction in isometric action and at two angular velocities. The second purpose was to study the variability of isometric action. To achieve these purposes, participants carried out an isokinetic…

  20. Total protein of whole saliva as a biomarker of anaerobic threshold.

    PubMed

    Bortolini, Miguel Junior Sordi; De Agostini, Guilherme Gularte; Reis, Ismair Teodoro; Lamounier, Romeu Paulo Martins Silva; Blumberg, Jeffrey B; Espindola, Foued Salmen

    2009-09-01

    Saliva provides a convenient and noninvasive matrix for assessing specific physiological parameters, including some biomarkers of exercise. We investigated whether the total protein concentration of whole saliva (TPWS) would reflect the anaerobic threshold during an incremental exercise test. After a warm-up period, 13 nonsmoking men performed a maximum incremental exercise on a cycle ergometer. Blood and stimulated saliva were collected during the test. The TPWS anaerobic threshold (PAT) was determined using the Dmax method. The PAT was correlated with the blood lactate anaerobic threshold (AT; r = .93, p < .05). No significant difference (p = .16) was observed between PAT and AT. Thus, TPWS provides a convenient and noninvasive matrix for determining the anaerobic threshold during incremental exercise tests.

  1. Countermeasures for Maintenance of Cardiovascular and Muscle Function in Space Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session FA2, the discussion focuses on the following topics: Effects of Repeated Long Duration +2Gz Load on Man's Cardiovascular Function; Certain Approaches to the Development of On-Board Automated Training System; Cardiac, Arterial, and Venous Adaptation to Og during 6 Month MIR-Spaceflights with and without "Thigh Cuffs" (93-95); Space Cycle(TM) Induced Physiologic Responses; Muscular Deconditioning During Long-term Spaceflight Exercise Recommendations to Optimize Crew Performance; Structure And Function of Knee Extensors After Long-Duration Spaceflight in Man, Effects of Countermeasure Exercise Training; Force and power characteristics of an exercise ergometer designed for use in space; and The simulating of overgravity conditions for astronauts' motor apparatus at the conditions of the training for orbital flights.

  2. Implementation of structured physical activity in the pediatric stem cell transplantation.

    PubMed

    Rosenhagen, A; Bernhörster, M; Vogt, L; Weiss, B; Senn, A; Arndt, S; Siegler, K; Jung, M; Bader, P; Banzer, W

    2011-05-01

    The peripheral blood stem cell transplantation (PBSCT) represents a specific, but stressful therapy for hemato-oncological diseases. While for adults, data suggest positive eff ects for a supportive sport therapy, this question is not evaluated sufficiently for children. The objective of this study was to examine the integration of sports activity into pediatric PBSCT and to indicate attainable results. This 2-step case-control-study included 23 children and adolescents from the PBSCT: During the isolation phase 13 patients trained 3 times per week on a cycle ergometer and passed a course with different sports equipment. Apart from recording physiologic adaptations, quality of live was inquired in a pre-post design using questionnaires. Guided interviews according to necessity and requirements for sports activity at the PBSCT unit completed the evaluation and were used for the intervention as well as for the control group (n = 10) without sports therapy. On the ergometer, patients trained average 25 min with 0.6 watt / kg. In the majority, a loss of muscular power could be avoided. Quality of life and fatigue symptoms improved by trend. Interview analysis showed general acceptance of physical activity during PBSCT. After initial skepticism due to the additional burden, our implementation study showed the feasibility of supportive sports therapy in PBSCT. Quality and flexibility of the equipment should be higher than normal and different physical and psychological conditions of the patients should be anticipated and integrated into the training program.

  3. The reliability and validity of fatigue measures during short-duration maximal-intensity intermittent cycling.

    PubMed

    Glaister, Mark; Stone, Michael H; Stewart, Andrew M; Hughes, Michael; Moir, Gavin L

    2004-08-01

    The purpose of the present study was to assess the reliability and validity of fatigue measures, as derived from 4 separate formulae, during tests of repeat sprint ability. On separate days over a 3-week period, 2 groups of 7 recreationally active men completed 6 trials of 1 of 2 maximal (20 x 5 seconds) intermittent cycling tests with contrasting recovery periods (10 or 30 seconds). All trials were conducted on a friction-braked cycle ergometer, and fatigue scores were derived from measures of mean power output for each sprint. Apart from formula 1, which calculated fatigue from the percentage difference in mean power output between the first and last sprint, all remaining formulae produced fatigue scores that showed a reasonably good level of test-retest reliability in both intermittent test protocols (intraclass correlation range: 0.78-0.86; 95% likely range of true values: 0.54-0.97). Although between-protocol differences in the magnitude of the fatigue scores suggested good construct validity, within-protocol differences highlighted limitations with each formula. Overall, the results support the use of the percentage decrement score as the most valid and reliable measure of fatigue during brief maximal intermittent work.

  4. Does power indicate capacity? 30-s Wingate anaerobic test vs. maximal accumulated O2 deficit.

    PubMed

    Minahan, C; Chia, M; Inbar, O

    2007-10-01

    The purpose of this study was to evaluate the relationship between anaerobic power and capacity. Seven men and seven women performed a 30-s Wingate Anaerobic Test on a cycle ergometer to determine peak power, mean power, and the fatigue index. Subjects also cycled at a work rate predicted to elicit 120 % of peak oxygen uptake to exhaustion to determine the maximal accumulated O (2) deficit. Peak power and the maximal accumulated O (2) deficit were significantly correlated (r = 0.782, p = 0.001). However, when the absolute difference in exercise values between groups (men and women) was held constant using a partial correlation, the relationship diminished (r = 0.531, p = 0.062). In contrast, we observed a significant correlation between fatigue index and the maximal accumulated O (2) deficit when controlling for gender (r = - 0.597, p = 0.024) and the relationship remained significant when values were expressed relative to active muscle mass. A higher anaerobic power does not indicate a greater anaerobic capacity. Furthermore, we suggest that the ability to maintain power output during a 30-s cycle sprint is related to anaerobic capacity.

  5. Does Virtual Reality-based Kinect Dance Training Paradigm Improve Autonomic Nervous System Modulation in Individuals with Chronic Stroke?

    PubMed

    Sampaio, Luciana Maria Malosá; Subramaniam, Savitha; Arena, Ross; Bhatt, Tanvi

    2016-10-01

    Physical inactivity and low resting heart rate variability (HRV) are associated with an increased cardiovascular deconditioning, risk of secondary stroke and mortality. Aerobic dance is a multidimensional physical activity and recent research supports its application as a valid alternative cardiovascular training. Furthermore, technological advances have facilitated the emergence of new approaches for exercise training holding promise, especially those methods that integrate rehabilitation with virtual gaming. The purpose of this study was to evaluate cardiac autonomic modulation in individuals with chronic stroke post-training using a virtual reality - based aerobic dance training paradigm. Eleven community-dwelling individuals with hemiparetic stroke [61.7( ± 4.3) years] received a virtual reality-based dance paradigm for 6 weeks using the commercially available Kinect dance video game "Just Dance 3." The training was delivered in a high-intensity tapering method with the first two weeks consisting of 5 sessions/week, next two weeks of 3 sessions/week and last two weeks of 2 sessions/week, with a total of 20 sessions. Data obtained for HRV analysis pre- and post-intervention consists of HRV for ten minutes in (1) supine resting position; (2) quiet standing. High-frequency (HF) power measures as indicators of cardiac parasympathetic activity, low-frequency (LF) power of parasympathetic-sympathetic balance and LF/HF of sympatho-vagal balance were calculated. YMCA submaximal cycle Ergometer test was used to acquire VO 2 max pre- and post-intervention. Changes in physical activity during dance training were assessed using Omran HJ-321 Tri-Axis Pedometer. After training, participants demonstrated a significant improvement in autonomic modulation in the supine position, indicating an improvement in LF=48.4 ( ± 20.1) to 40.3 ( ± 8.0), p =0.03; HF=51.5 ( ± 19) to 59.7 ( ± 8), p = 0.02 and LF/HF=1.6 ( ± 1.9) to 0.8 ( ± 0.26), p =0.05]. Post-training the participants had significantly higher VO 2max . Number of steps during dance intervention significantly increased from the 1 st to the 20 th session ( p <0.05). The current study is the first to assess the effect of a virtual reality-based aerobic dance training paradigm on HRV among individuals with chronic stroke. Given that the paradigm used in this study improves cardiac autonomic control, future studies should incorporate dance as an adjuvant therapy into clinical treatment program and assess its long-term efficacy.

  6. Physical activity, aerobic fitness and parental socio-economic position among adolescents: the German Health Interview and Examination Survey for Children and Adolescents 2003-2006 (KiGGS).

    PubMed

    Finger, Jonas D; Mensink, Gert B M; Banzer, Winfried; Lampert, Thomas; Tylleskär, Thorkild

    2014-03-22

    The positive association between parental socio-economic position (PSEP) and health among adolescents may be partly explained by physical activity behaviour. We investigated the associations between physical activity, aerobic fitness and PSEP in a population based sample of German adolescents. 5,251 participants, aged 11-17 years, in the German Health Interview and Examination Survey for Children and Adolescents 2003-2006 (KiGGS) underwent a sub-maximal cycle ergometer test and completed a questionnaire obtaining information on physical activity and media use. The associations between physical activity, media use, aerobic fitness and PSEP were analysed with multivariate logistic regression models for boys and girls separately. Odds ratios (ORs) of PSEP (education, occupation and income) on the outcomes were calculated adjusted for age, region, and other influencing factors. Parental education was more strongly associated with the outcome variables than parental occupation and income. After adjusting for age and region, a higher parental education level was associated with better aerobic fitness - with an OR of 1.5 (95% CI 1.2-1.9) for girls whose parents had secondary education and 1.9 (1.4-2.5) for girls whose parents had tertiary education compared to girls whose parents had primary education. The corresponding ORs for boys were 1.3 (1.0-1.6) and 1.6 (1.2-2.1), respectively. Higher parental education level was associated with lower media use: an OR of 2.1 (1.5-3.0) for girls whose parents had secondary education and 2.7 (1.8-4.1) for girls whose parents had primary education compared to girls whose parents had tertiary education. The corresponding ORs for boys were 1.5 (1.2-1.9) and 1.9 (1.5-2.5), respectively. Higher parental education level was associated with a higher physical activity level only among girls: an OR of 1.3 (1.0-1.6) for girls whose parents had secondary education and 1.2 (0.9-1.5) for girls whose parents had tertiary education compared to girls whose parents had primary education. The corresponding ORs for boys were 0.9 (0.8-1.2) and 0.8 (0.6-1.0), respectively. Adolescents of parents with low SEP showed a lower level of aerobic fitness and higher levels of media use than adolescents of parents with higher SEP. Health-promotion interventions need to reach adolescents of parents with low PSEP and stimulate physical activity.

  7. Human thermoregulatory function during exercise and immersion after 35 days of horizontal bed-rest and recovery.

    PubMed

    Mekjavic, Igor B; Golja, Petra; Tipton, Michael J; Eiken, Ola

    2005-10-01

    The present study evaluated the effect of 35 days of experimental horizontal bed-rest on exercise and immersion thermoregulatory function. Fifteen healthy male volunteers were assigned to either a Control (n = 5) or Bed-rest (n = 10) group. Thermoregulatory function was evaluated during a 30-min bout of submaximal exercise on a cycle ergometer, followed immediately by a 100-min immersion in 28 degrees C water. For the Bed-rest group, exercise and immersion thermoregulatory responses observed post-bed-rest were compared with those after a 5 week supervised active recovery period. In both trials, the absolute work load during the exercise portion of the test was identical. During the exercise and immersion, we recorded skin temperature, rectal temperature, the difference in temperature between the forearm and third digit of the right hand (DeltaT(forearm-fingertip))--an index of skin blood flow, sweating rate from the forehead, oxygen uptake and heart rate at minute intervals. Subjects provided ratings of temperature perception and thermal comfort at 5-min intervals. Exercise thermoregulatory responses after bed-rest and recovery were similar. Subjective ratings of temperature perception and thermal comfort during immersion indicated that subjects perceived similar combinations of Tsk and Tre to be warmer and thermally less uncomfortable after bed-rest. The average (SD) exercise-induced increase in Tre relative to resting values was not significantly different between the Post-bed-rest (0.4 (0.2) degrees C) and Recovery (0.5 (0.2) degrees C) trials. During the post-exercise immersion, the decrease in Tre, relative to resting values, was significantly (P < 0.05) greater in the Post-bed-rest trial (0.9 (0.5) degrees C) than after recovery (0.4 (0.3) degrees C). DeltaT(forearm-fingertip) was 5.2 (0.9) degrees C and 5.8 (1.0) degrees C at the end of the post-bed-rest and recovery immersions, respectively. The gain of the shivering response (increase in VO(2) relative to the decrease in Tre; VO(2)/Tre) was 1.19 l min(-1) degrees C(-1) in the Recovery trial, and was significantly attenuated to 0.51 l min(-1) degrees C(-1) in the Post-bed-rest trial. The greater cooling rate observed in the post-bed-rest trial is attributed to the greater heat loss and reduced heat production. The former is the result of attenuated cold-induced vasoconstriction and enhanced sweating rate, and the latter a result of a lower shivering VO(2) response.

  8. Altered myocardial force generation in end-stage human heart failure.

    PubMed

    Papp, Zoltán; van der Velden, Jolanda; Borbély, Attila; Édes, István; Stienen, Ger J M

    2014-12-01

    This study aimed to elucidate the molecular background of increased Ca 2+ sensitivity of force production in cardiomyocytes of end-stage human heart failure. Ca 2+ -activated isometric force and the cross-bridge specific rate of force redevelopment (k tr ) were determined in Triton-skinned myocytes from end-stage failing and non-failing donor hearts. Measurements (control: pH 7.2, 0 mM inorganic phosphate (P i )) were performed under test conditions that probed either the Ca 2+ -regulatory function of the thin filaments (pH 6.5), the kinetics of the actin-myosin cross-bridge cycle (10 mM P i ), or both (pH 6.5, 10 mM P i ). The control maximal Ca 2+ -activated force (F o ) and k trmax did not differ between failing and non-failing myocytes. At submaximal [Ca 2+ ], however, both force and k tr were higher in failing than in donor myocytes. The difference in the Ca 2+ sensitivities of force production was preserved when the thin filament regulatory function was perturbed by acidosis (pH 6.5) but was abolished by cross-bridge modulation (i.e. by P i ) both at pH 7.2 and at pH 6.5. P i induced a larger reduction in force but a smaller increase in k tr in the failing myocytes than in the non-failing myocytes at submaximal [Ca 2+ ]. The enhanced P i sensitivity of the actin-myosin interaction suggests that the P i release step of the actin-myosin cross-bridge cycle is modified during end-stage human heart failure. This might be of functional importance when P i accumulates (e.g. during cardiac ischaemia). Moreover, this alteration can influence cardiac energetics and the clinical efficacy of sarcomere targeted agents in human heart failure. © 2015 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.

  9. Differential Motor Unit Changes after Endurance or High-Intensity Interval Training.

    PubMed

    Martinez-Valdes, Eduardo; Falla, Deborah; Negro, Francesco; Mayer, Frank; Farina, Dario

    2017-06-01

    Using a novel technique of high-density surface EMG decomposition and motor unit (MU) tracking, we compared changes in the properties of vastus medialis and vastus lateralis MU after endurance (END) and high-intensity interval training (HIIT). Sixteen men were assigned to the END or the HIIT group (n = 8 each) and performed six training sessions for 14 d. Each session consisted of 8-12 × 60-s intervals at 100% peak power output separated by 75 s of recovery (HIIT) or 90-120 min continuous cycling at ~65% V˙O2peak (END). Pre- and postintervention, participants performed 1) incremental cycling to determine V˙O2peak and peak power output and 2) maximal, submaximal (10%, 30%, 50%, and 70% maximum voluntary contraction [MVC]), and sustained (until task failure at 30% MVC) isometric knee extensions while high-density surface EMG signals were recorded from the vastus medialis and vastus lateralis. EMG signals were decomposed (submaximal contractions) into individual MU by convolutive blind source separation. Finally, MU were tracked across sessions by semiblind source separation. After training, END and HIIT improved V˙O2peak similarly (by 5.0% and 6.7%, respectively). The HIIT group showed enhanced maximal knee extension torque by ~7% (P = 0.02) and was accompanied by an increase in discharge rate for high-threshold MU (≥50% knee extension MVC) (P < 0.05). By contrast, the END group increased their time to task failure by ~17% but showed no change in MU discharge rates (P > 0.05). HIIT and END induce different adjustments in MU discharge rate despite similar improvements in cardiopulmonary fitness. Moreover, the changes induced by HIIT are specific for high-threshold MU. For the first time, we show that HIIT and END induce specific neuromuscular adaptations, possibly related to differences in exercise load intensity and training volume.

  10. Exhaustive submaximal endurance and resistance exercises induce temporary immunosuppression via physical and oxidative stress

    PubMed Central

    Jin, Chan-Ho; Paik, Il-Young; Kwak, Yi-Sub; Jee, Yong-Seok; Kim, Joo-Young

    2015-01-01

    Regular running and strength training are the best ways to improve aerobic capacity and develop the size of skeletal muscles. However, uncontrolled physical activities can often lead to an undertraining or over-training syndrome. In particular, overtraining causes persistent fatigue and reduces physical performance due to changes in the various physiological and immunological factors. In this study, we gave an exhaustive submaximal endurance or resistance exercise to participants and investigated the relationship between physical stress (cortisol level in blood), oxidative stress (intracellular ROS accumulation), and adaptive immune response (CD4:CD8 ratio). Materials and Methods Ten male volunteers were recruited, and performed a submaximal endurance or resistance exercise with 85% of VO2max or 1-repetition maximum until exhaustion. Blood samples were collected at rest, and at 0 and 30 min after the exercise. Cortisol levels, oxidative stress, and immune cell phenotypes in peripheral blood were evaluated. Cortisol levels in the sera increased after the exhaustive endurance and resistance exercises and such increments were maintained through the recovery. Intra-cellular ROS levels also increased after the exhaustive endurance and resistance exercises. The ratio of CD4+ T cells to CD8+ T cells after each type of submaximal exercise decreased compared with that at the resting stage, and returned to the resting level at 30 min after the exercise. In this study, an exhaustive endurance or a resistance exercise with submaximal intensity caused excessive physical stress, intra-cellular oxidative stress, and post-exercise immunosuppression. This result suggests that excessive physical stress induced temporary immune dysfunction via physical and oxidative stress. PMID:26331134

  11. Cardiorespiratory, neuromuscular and kinematic responses to stationary running performed in water and on dry land.

    PubMed

    Alberton, Cristine Lima; Cadore, Eduardo Lusa; Pinto, Stephanie Santana; Tartaruga, Marcus Peikriszwili; da Silva, Eduardo Marczwski; Kruel, Luiz Fernando Martins

    2011-06-01

    The purpose of this study was to analyze the cardiorespiratory, neuromuscular and kinematic responses obtained during the stationary running in aquatic and dry land environments. Twelve women took part in the experimental protocol. Stationary running was performed for 4 min at three submaximal cadences and for 15 s at maximal velocity, with the collection of kinematic (peak hip angular velocity (AV)), cardiorespiratory (oxygen uptake (VO(2))) and neuromuscular variables (electromyographic (EMG) signal from the rectus femoris (RF), vastus lateralis (VL), semitendinosus (ST) and short head of the biceps femoris (BF) muscles) in land-based and water-based test protocols. Factorial ANOVA was used, with an alpha level of 0.05. AV was significantly higher when the exercise was performed on land, and became significantly higher as the execution cadence increased. Similarly, VO(2) was significantly higher in the land-based exercise and rose as cadence increased. With the increase in the submaximal execution cadences, there was no corresponding increase in the EMG signal from the VL, BF, RF and ST muscles in either environment, though such a significantly increase was seen between the submaximal cadences and the maximal velocity. Dry land presented significantly greater EMG signal responses for all muscles at the submaximal cadences, except for the ST muscle. However, at the maximal velocity, all the analyzed muscle groups showed similar responses in both environments. In summary, for both environments, cardiorespiratory responses can be maximized by increasing the submaximal cadences, while neuromuscular responses are only optimized by using maximal velocity.

  12. Effects of exercise-induced muscle damage on resting metabolic rate, sub-maximal running and post-exercise oxygen consumption.

    PubMed

    Burt, Dean Gareth; Lamb, Kevin; Nicholas, Ceri; Twist, Craig

    2014-01-01

    Exercise-induced muscle damage (EIMD), described as the acute weakness of the musculature after unaccustomed eccentric exercise, increases oxidative metabolism at rest and during endurance exercise. However, it is not known whether oxygen uptake during recovery from endurance exercise is increased when experiencing symptoms of EIMD. Therefore, the purpose of this study was to investigate the effects of EIMD on physiological and metabolic responses before, during and after sub-maximal running. After a 12 h fast, eight healthy male participants completed baseline measurements comprising resting metabolic rate (RMR), indirect markers of EIMD, 10 min of sub-maximal running and 30 min of recovery to ascertain excess post-exercise oxygen consumption (EPOC). Measurements were then repeated at 24 and 48 h after 100 Smith-machine squats. Data analysis revealed significant (P<0.05) increases in muscle soreness and creatine kinase (CK) and decreases in peak knee extensor torque at 24 and 48 h after squatting exercise. Moreover, RMR, physiological, metabolic and perceptual responses during sub-maximal running and EPOC were increased in the two days after squatting exercise (P<0.05). It is suggested that the elevated RMR was a consequence of a raised energy requirement for the degradation and resynthesis of damaged muscle fibres. The increased oxygen demand during sub-maximal running after muscle damage was responsible for the increase in EPOC. Individuals engaging in unaccustomed resistance exercise that results in muscle damage should be mindful of the increases in resting energy expenditure and increased metabolic demand to exercise in the days that follow.

  13. Medical Aspects of Harsh Environments. Volume 2

    DTIC Science & Technology

    2002-01-01

    Fulco CS, Trad LA, Forte VA, Cymerman A. Altitude acclimatization attenuates plasma ammonia accumulation during submaximal exercise. J Appl Physiol...107 and decreased ammonia accumulation66 and dependence on muscle glyco- gen.109 These hypoxia-produced changes in oxygen delivery and metabolic profile...Young PM, Rock PB, Fulco CS, Trad LA, Forte VA Jr, Cymerman A. Altitude acclimatization attenuates plasma ammonia accumulation during submaximal

  14. A phenomenological model of muscle fatigue and the power-endurance relationship.

    PubMed

    James, A; Green, S

    2012-11-01

    The relationship between power output and the time that it can be sustained during exercise (i.e., endurance) at high intensities is curvilinear. Although fatigue is implicit in this relationship, there is little evidence pertaining to it. To address this, we developed a phenomenological model that predicts the temporal response of muscle power during submaximal and maximal exercise and which was based on the type, contractile properties (e.g., fatiguability), and recruitment of motor units (MUs) during exercise. The model was first used to predict power outputs during all-out exercise when fatigue is clearly manifest and for several distributions of MU type. The model was then used to predict times that different submaximal power outputs could be sustained for several MU distributions, from which several power-endurance curves were obtained. The model was simultaneously fitted to two sets of human data pertaining to all-out exercise (power-time profile) and submaximal exercise (power-endurance relationship), yielding a high goodness of fit (R(2) = 0.96-0.97). This suggested that this simple model provides an accurate description of human power output during submaximal and maximal exercise and that fatigue-related processes inherent in it account for the curvilinearity of the power-endurance relationship.

  15. [Acute physical exercise increases homocysteine concentrations in young trained male subjects].

    PubMed

    Maroto-Sánchez, Beatriz; Valtueña, Jara; Albers, Ulrike; Benito, Pedro J; González-Gross, Marcela

    2013-01-01

    High levels of homocysteine (Hcy) have been identified as a cardiovascular risk factor. Regarding physical exercise, the results are contradictory. The aim of this study was to determine the influence of maximal intensity exercise and submaximal constant exercise on total serum homocysteine concentrations (tHcy) and other related parameters. Ten physically active male subjects (mean age: 23.51 ± 1.84), performed two treadmill tests, a maximal test and a stable submaximal test at an intensity of 65% of maximal oxygen uptake (VO2max). Serum concentrations of tHcy, Folate, Vitamin B12 and creatinine were analysed before and after each test. Significant increase in serum tHcy concentrations after the maximal (p < 0.05) and submaximal (p < 0.01) tests were observed. Folate and vitamin B12 concentrations also increased significantly after both tests (p < 0.05). Creatinine levels increased only after the maximal test (p < 0.001). A statistically significant inverse relationship was found between folate and tHcy concentrations (p < 0.05) at all the measurement points. THcy levels increased significantly after acute exercise in both maximum and submaximal intensity exercises. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  16. STS-109 PLT Carey on middeck with ergometer

    NASA Image and Video Library

    2002-03-07

    STS109-E-5479 (7 March 2002)-- Astronaut Duane G. Carey, STS-109 pilot, takes a leisurely "spin" on the bicycle ergometer on the mid deck of the Space Shuttle Columbia, while waiting to assist Flight Day 7's assigned space walkers--astronaut James H. Newman and Michael J. Massimino. The extravehicular mobility unit (EMU) space suits of the two can be seen in the background. The image was recorded with a digital still camera.

  17. VALIDATION OF ADULT OMNI PERCEIVED EXERTION SCALES FOR ELLIPTICAL ERGOMETRY12

    PubMed Central

    MAYS, RYAN J.; GOSS, FREDRIC L.; SCHAFER, MARK A.; KIM, KEVIN H.; NAGLE-STILLEY, ELIZABETH F.; ROBERTSON, ROBERT J.

    2012-01-01

    Summary This investigation examined the validity of newly developed Adult OMNI Elliptical Ergometer Ratings of Perceived Exertion Scales. Sixty men and women performed a graded exercise test on an elliptical ergometer. Oxygen consumption (VO2), heart rate (HR) and ratings of perceived exertion were recorded each stage from the Borg 15 Category Scale and two different OMNI scales. One scale employed an elliptical ergometer format of the OMNI Picture System of Perceived Exertion. The second scale modified verbal, numerical, and pictorial descriptors at the low end of the response range. Concurrent and construct validity were established by the positive relation between ratings of perceived exertion from each OMNI scale with VO2, HR and Borg Scale ratings of perceived exertion (men, r = .94–.97; women, r = .93–.98). Validity was established for both OMNI scales, indicating either metric can be used to estimate ratings of perceived exertion during partial weight bearing exercise. PMID:21319623

  18. Correlation Between Cycling Power and Muscle Thickness in Cyclists.

    PubMed

    Lee, Hyung-Jin; Lee, Kang-Woo; Lee, Yong-Woo; Kim, Hee-Jin

    2018-05-17

    The aim of this study was to determine the correlation between muscle thickness (MT) and cycling power in varsity cyclists using ultrasonography (US) and to identify any differences in MT between short- and long-distance cyclists. Twelve cyclists participated in this study. Real-time two-dimensional B-mode US was used to measure the MT in the anterior thigh, anterior lower leg, and trunk, especially in the abdominal and lumbar regions. A Wattbike cycle ergometer was used to measure cycling power parameters such as maximum anaerobic power (over 5 s), mean anaerobic power (over 30 s), and aerobic power (over 3 min). This study was approved by the Ethics Committee of Korea National Sports University. There was a significant relationship between the MT and cycling power for the rectus femoris (RF) and vastus lateralis (VL) in the thigh, the rectus abdominis (RA) in the abdominal region, and the erector spinae (ES) in the lower back. The MT values of the RF, VL, and ES were strongly associated with the maximum and mean anaerobic power. There were significant differences between short- and long-distance cyclists in the MT of the RF in the thigh, the RA, the external abdominal oblique, the internal abdominal oblique, and the transverse abdominis muscle in the abdomen. We suggest that training programs attempting to improve cycling performance focus on improving the VL and ES via resistance weight or cycle training and also the core muscles for short-distance cyclists. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  19. Physical activity and pregnancy: cardiovascular adaptations, recommendations and pregnancy outcomes.

    PubMed

    Melzer, Katarina; Schutz, Yves; Boulvain, Michel; Kayser, Bengt

    2010-06-01

    Regular physical activity is associated with improved physiological, metabolic and psychological parameters, and with reduced risk of morbidity and mortality. Current recommendations aimed at improving the health and well-being of nonpregnant subjects advise that an accumulation of > or =30 minutes of moderate physical activity should occur on most, if not all, days of the week. Regardless of the specific physiological changes induced by pregnancy, which are primarily developed to meet the increased metabolic demands of mother and fetus, pregnant women benefit from regular physical activity the same way as nonpregnant subjects. Changes in submaximal oxygen uptake (VO(2)) during pregnancy depend on the type of exercise performed. During maternal rest or submaximal weight-bearing exercise (e.g. walking, stepping, treadmill exercise), absolute maternal VO(2) is significantly increased compared with the nonpregnant state. The magnitude of change is approximately proportional to maternal weight gain. When pregnant women perform submaximal weight-supported exercise on land (e.g. level cycling), the findings are contradictory. Some studies reported significantly increased absolute VO(2), while many others reported unchanged or only slightly increased absolute VO(2) compared with the nonpregnant state. The latter findings may be explained by the fact that the metabolic demand of cycle exercise is largely independent of the maternal body mass, resulting in no absolute VO(2) alteration. Few studies that directly measured changes in maternal maximal VO(2) (VO(2max)) showed no difference in the absolute VO(2max) between pregnant and nonpregnant subjects in cycling, swimming or weight-bearing exercise. Efficiency of work during exercise appears to be unchanged during pregnancy in non-weight-bearing exercise. During weight-bearing exercise, the work efficiency was shown to be improved in athletic women who continue exercising and those who stop exercising during pregnancy. When adjusted for weight gain, the increased efficiency is maintained throughout the pregnancy, with the improvement being greater in exercising women. Regular physical activity has been proven to result in marked benefits for mother and fetus. Maternal benefits include improved cardiovascular function, limited pregnancy weight gain, decreased musculoskeletal discomfort, reduced incidence of muscle cramps and lower limb oedema, mood stability, attenuation of gestational diabetes mellitus and gestational hypertension. Fetal benefits include decreased fat mass, improved stress tolerance, and advanced neurobehavioural maturation. In addition, few studies that have directly examined the effects of physical activity on labour and delivery indicate that, for women with normal pregnancies, physical activity is accompanied with shorter labour and decreased incidence of operative delivery. However, a substantial proportion of women stop exercising after they discover they are pregnant, and only few begin participating in exercise activities during pregnancy. The adoption or continuation of a sedentary lifestyle during pregnancy may contribute to the development of certain disorders such as hypertension, maternal and childhood obesity, gestational diabetes, dyspnoea, and pre-eclampsia. In view of the global epidemic of sedentary behaviour and obesity-related pathology, prenatal physical activity was shown to be useful for the prevention and treatment of these conditions. Further studies with larger sample sizes are required to confirm the association between physical activity and outcomes of labour and delivery.

  20. Ergometric and psychological findings during overtraining: a long-term follow-up study in endurance athletes.

    PubMed

    Urhausen, A; Gabriel, H H; Weiler, B; Kindermann, W

    1998-02-01

    In the present prospective longitudinal study 17 male endurance trained athletes (cyclists and triathletes; age 23.4+/-6.7 years, VO2max 61.2+/-7.5 ml x min(-1) x kg(-1); means+/-SD) were investigated both during a state of overtraining syndrome (OT: N=15), mainly induced by an increase of exercise intensity, as well as several times in a state of regular physical ability (NS: N=62). Cycle-ergometric and psychological data were compared for a period of approximately 19 months. On 2 separate days, each subject performed a maximum incremental graded exercise, two anaerobic tests (10 s and 30 s) as well as a short-endurance "stress test" with the intensity of 110% of the individual anaerobic threshold until volitional exhaustion. The mood state was recorded by a psychological questionnaire including 40 basic items. During OT the submaximal lactate concentrations were slightly decreased. The performance of the 10 s- and 30 s-tests was unaffected. In contrast, the duration of the "stress test" decreased significantly by approximately 27% during OT compared to the individual NS. The submaximal oxygen uptake measured during the incremental graded exercise was slightly higher during OT as compared to NS, whereas the submaximal and maximal respiratory exchange ratio, maximal heart rate and maximal lactate concentrations were decreased. At the 10th minute of the "stress test", ammonia tended to be increased during OT (P=0.048). The parameters of mood state at rest as well as the subjective rating of perceived exertion during exercise were significantly impaired during OT. In conclusion, the results indicate a decreased intramuscular utilization of carbohydrates with diminished maximal anaerobic lactacid energy supply during OT. Neither the lactate-performance relationship during incremental graded exercise nor the anaerobic alactacid performance showed alterations. The duration of the short-endurance "stress test", the maximal lactate concentration of the incremental graded exercise as well as the altered mood profile turned out to be the most sensitive parameters for the diagnosis of OT.

  1. Low-dose caffeine administered in chewing gum does not enhance cycling to exhaustion.

    PubMed

    Ryan, Edward J; Kim, Chul-Ho; Muller, Matthew D; Bellar, David M; Barkley, Jacob E; Bliss, Matthew V; Jankowski-Wilkinson, Andrea; Russell, Morgan; Otterstetter, Ronald; Macander, Daniela; Glickman, Ellen L; Kamimori, Gary H

    2012-03-01

    Low-dose caffeine administered in chewing gum does not enhance cycling to exhaustion. The purpose of the current investigation was to examine the effect of low-dose caffeine (CAF) administered in chewing gum at 3 different time points during submaximal cycling exercise to exhaustion. Eight college-aged (26 ± 4 years), physically active (45.5 ± 5.7 ml·kg(-1)·min(-1)) volunteers participated in 4 experimental trials. Two pieces of caffeinated chewing gum (100 mg per piece, total quantity of 200 mg) were administered in a double-blind manner at 1 of 3 time points (-35, -5, and +15 minutes) with placebo at the other 2 points and at all 3 points in the control trial. The participants cycled at 85% of maximal oxygen consumption until volitional fatigue and time to exhaustion (TTE) were recorded in minutes. Venous blood samples were obtained at -40, -10, and immediately postexercise and analyzed for serum-free fatty acid and plasma catecholamine concentrations. Oxygen consumption, respiratory exchange ratio, heart rate, glucose, lactate, ratings of perceived exertion, and perceived leg pain measures were obtained at baseline and every 10 minutes during cycling. The results showed that there were no significant differences between the trials for any of the parameters measured including TTE. These findings suggest that low-dose CAF administered in chewing gum has no effect on TTE during cycling in recreational athletes and is, therefore, not recommended.

  2. Submaximal Treadmill Exercise Test to Predict VO[subscript 2]max in Fit Adults

    ERIC Educational Resources Information Center

    Vehrs, Pat R.; George, James D.; Fellingham, Gilbert W.; Plowman, Sharon A.; Dustman-Allen, Kymberli

    2007-01-01

    This study was designed to develop a single-stage submaximal treadmill jogging (TMJ) test to predict VO[subscript 2]max in fit adults. Participants (N = 400; men = 250 and women = 150), ages 18 to 40 years, successfully completed a maximal graded exercise test (GXT) at 1 of 3 laboratories to determine VO[subscript 2]max. The TMJ test was completed…

  3. Influence of the world's most challenging mountain ultra-marathon on energy cost and running mechanics.

    PubMed

    Vernillo, Gianluca; Savoldelli, Aldo; Zignoli, Andrea; Trabucchi, Pietro; Pellegrini, Barbara; Millet, Grégoire P; Schena, Federico

    2014-05-01

    To examine the effects of the world's most challenging mountain ultra-marathon (Tor des Géants(®) 2012) on the energy cost of three types of locomotion (cycling, level and uphill running) and running kinematics. Before (pre-) and immediately after (post-) the competition, a group of ten male experienced ultra-marathon runners performed in random order three submaximal 4-min exercise trials: cycling at a power of 1.5 W kg(-1) body mass; level running at 9 km h(-1) and uphill running at 6 km h(-1) at an inclination of +15 % on a motorized treadmill. Two video cameras recorded running mechanics at different sampling rates. Between pre- and post-, the uphill-running energy cost decreased by 13.8 % (P = 0.004); no change was noted in the energy cost of level running or cycling (NS). There was an increase in contact time (+10.3 %, P = 0.019) and duty factor (+8.1 %, P = 0.001) and a decrease in swing time (-6.4 %, P = 0.008) in the uphill-running condition. After this extreme mountain ultra-marathon, the subjects modified only their uphill-running patterns for a more economical step mechanics.

  4. Changes in Corticospinal and Spinal Excitability to the Biceps Brachii with a Neutral vs. Pronated Handgrip Position Differ between Arm Cycling and Tonic Elbow Flexion

    PubMed Central

    Forman, Davis A.; Richards, Mark; Forman, Garrick N.; Holmes, Michael W. R.; Power, Kevin E.

    2016-01-01

    The purpose of this study was to examine the influence of neutral and pronated handgrip positions on corticospinal excitability to the biceps brachii during arm cycling. Corticospinal and spinal excitability were assessed using motor evoked potentials (MEPs) elicited via transcranial magnetic stimulation (TMS) and cervicomedullary-evoked potentials (CMEPs) elicited via transmastoid electrical stimulation (TMES), respectively. Participants were seated upright in front on arm cycle ergometer. Responses were recorded from the biceps brachii at two different crank positions (6 and 12 o’clock positions relative to a clock face) while arm cycling with neutral and pronated handgrip positions. Responses were also elicited during tonic elbow flexion to compare/contrast the results to a non-rhythmic motor output. MEP and CMEP amplitudes were significantly larger at the 6 o’clock position while arm cycling with a neutral handgrip position compared to pronated (45.6 and 29.9%, respectively). There were no differences in MEP and CMEP amplitudes at the 12 o’clock position for either handgrip position. For the tonic contractions, MEPs were significantly larger with a neutral vs. pronated handgrip position (32.6% greater) while there were no difference in CMEPs. Corticospinal excitability was higher with a neutral handgrip position for both arm cycling and tonic elbow flexion. While spinal excitability was also higher with a neutral handgrip position during arm cycling, no difference was observed during tonic elbow flexion. These findings suggest that not only is corticospinal excitability to the biceps brachii modulated at both the supraspinal and spinal level, but that it is influenced differently between rhythmic arm cycling and tonic elbow flexion. PMID:27826236

  5. Acute effect of cycling intervention on carotid arterial hemodynamics: basketball athletes versus sedentary controls

    PubMed Central

    2015-01-01

    Objective To compare the acute effects of a cycling intervention on carotid arterial hemodynamics between basketball athletes and sedentary controls. Methods Ten young long-term trained male basketball athletes (BA) and nine age-matched male sedentary controls (SC) successively underwent four bouts of exercise on a bicycle ergometer at the same workload. Hemodynamic variables at right common carotid artery were determined at rest and immediately following each bout of exercise. An ANCOVA was used to compare differences between the BA and SC groups at rest and immediately following the cycling intervention. The repeated ANOVA was used to assess differences between baseline and each bout of exercise within the BA or SC group. Results In both groups, carotid hemodynamic variables showed significant differences at rest and immediately after the cycling intervention. At rest, carotid arterial stiffness was significantly decreased and carotid arterial diameter was significantly increased in the BA group as compared to the SC group. Immediately following the cycling intervention, carotid arterial stiffness showed no obvious changes in the BA group but significantly increased in the SC group. It is worth noting that while arterial stiffness was lower in the BA group than in the SC group, the oscillatory shear index (OSI) was significantly higher in the BA group than in the SC group both at rest and immediately following the cycling intervention. Conclusion Long-term basketball exercise had a significant impact on common carotid arterial hemodynamic variables not only at rest but also after a cycling intervention. The role of OSI in the remodeling of arterial structure and function in the BA group at rest and after cycling requires clarification. PMID:25602805

  6. The repeated bout effect of typical lower body strength training sessions on sub-maximal running performance and hormonal response.

    PubMed

    Doma, Kenji; Schumann, Moritz; Sinclair, Wade H; Leicht, Anthony S; Deakin, Glen B; Häkkinen, Keijo

    2015-08-01

    This study examined the effects of two typical strength training sessions performed 1 week apart (i.e. repeated bout effect) on sub-maximal running performance and hormonal. Fourteen resistance-untrained men (age 24.0 ± 3.9 years; height 1.83 ± 0.11 m; body mass 77.4 ± 14.0 kg; VOpeak 48.1 ± 6.1 M kg(-1) min(-1)) undertook two bouts of high-intensity strength training sessions (i.e. six-repetition maximum). Creatine kinase (CK), delayed-onset muscle soreness (DOMS), counter-movement jump (CMJ) as well as concentrations of serum testosterone, cortisol and testosterone/cortisol ratio (T/C) were examined prior to and immediately post, 24 (T24) and 48 (T48) h post each strength training bout. Sub-maximal running performance was also conducted at T24 and T48 of each bout. When measures were compared between bouts at T48, the degree of elevation in CK (-58.4 ± 55.6 %) and DOMS (-31.43 ± 42.9 %) and acute reduction in CMJ measures (4.1 ± 5.4 %) were attenuated (p < 0.05) following the second bout. Cortisol was increased until T24 (p < 0.05) although there were no differences between bouts and no differences were found for testosterone and T/C ratio (p > 0.05). Sub-maximal running performance was impaired until T24, although changes were not attenuated following the second bout. The initial bout appeared to provide protection against a number of muscle damage indicators suggesting a greater need for recovery following the initial session of typical lower body resistance exercises in resistance-untrained men although sub-maximal running should be avoided following the first two sessions.

  7. Angiotensinogen M235T polymorphism associates with exercise hemodynamics in postmenopausal women.

    PubMed

    McCole, Steve D; Brown, Michael D; Moore, Geoffrey E; Ferrell, Robert E; Wilund, Kenneth R; Huberty, Andrea; Douglass, Larry W; Hagberg, James M

    2002-08-14

    We sought to determine whether the M235T angiotensinogen (AGT) polymorphism, either interacting with habitual physical activity (PA) levels or independently, was associated with cardiovascular (CV) hemodynamics during maximal and submaximal exercise. Sixty-one healthy postmenopausal women (16 sedentary, 21 physically active, and 24 endurance athletes) had heart rate (HR), blood pressure (BP), cardiac output, stroke volume (SV), total peripheral resistance (TPR), and arteriovenous O2 difference (a-vDO2) assessed during 40, 60, 80, and approximately 100% of VO2 max treadmill exercise. VO2 max did not differ among AGT genotype groups; however, maximal HR was 14 beats/min higher in AGT TT than MM genotype women (P < 0.05). AGT TT genotype women also had 19 beats/min higher HR during approximately 100% VO2 max exercise than AGT MM genotype women (P = 0.008). AGT genotype also interacted with habitual PA levels to associate with systolic BP and a-vDO2 during approximately 100% VO2 max exercise (both P < 0.01). AGT TT genotype women had 11 beats/min higher HR during submaximal exercise than MM genotype women (P < 0.05). AGT genotype interacted with habitual PA levels to associate with systolic BP during submaximal exercise (P = 0.009). AGT genotype, independently or interacting with habitual PA levels, did not associate significantly with diastolic BP, cardiac output, SV, or TPR during maximal or submaximal exercise. Thus this common genetic variant in the renin-angiotensin system appears to associate, both interactively with habitual PA levels and independently, with HR, systolic BP, and a-vDO2 responses to maximal and submaximal exercise in postmenopausal women.

  8. Electromyographic activity of selected scapular stabilizers during glenohumeral internal and external rotation contractions.

    PubMed

    Schachter, Aaron K; McHugh, Malachy P; Tyler, Timothy F; Kreminic, Ian J; Orishimo, Karl F; Johnson, Christopher; Ben-Avi, Simon; Nicholas, Stephen J

    2010-09-01

    An important synergistic relationship exists between the scapular stabilizers and the glenohumeral rotators. Information on the relative contribution of the scapular stabilizers to glenohumeral rotation would be useful for exercise prescription for overhead athletes and for patients with shoulder pathology. We hypothesized that the scapular stabilizers would be highly active during both maximal and submaximal internal and external rotation. Eight healthy male volunteers (16 shoulders) performed internal and external glenohumeral rotation testing at maximal and submaximal intensities. They also performed a scapular retraction rowing exercise at maximal and submaximal levels. Electromyographic (EMG) signals were recorded from the infraspinatus, pectoralis major, serratus anterior, and middle trapezius. Values were compared among muscle groups, among individual muscles at different intensity levels, and among individual muscles at different points in the arc of motion. For submaximal glenohumeral internal rotation, activity in the scapular stabilizers was not different (P = .1-.83) from activity in the internal rotator throughout the range of motion. For the initial two-thirds of maximal internal rotation, middle trapezius activity and pectoralis major activity were higher (P < .05) than serratus anterior activity. For submaximal external rotation, activity in the scapular stabilizers during the middle phase of the motion was higher (P < .05) than activity in the external rotators. For maximal external rotation these differences were present throughout the motion with middle trapezius activity exceeding 100% maximal voluntary contraction. The scapular stabilizers functioned at a similar or higher intensity than the glenohumeral rotators during internal and external rotation. This highlights the importance of training the scapular stabilizers in upper extremity athletes and in patients with shoulder pathology. (c) 2010 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  9. Effect of inspiratory muscle warm-up on submaximal rowing performance.

    PubMed

    Arend, Mati; Mäestu, Jarek; Kivastik, Jana; Rämson, Raul; Jürimäe, Jaak

    2015-01-01

    Performing inspiratory muscle warm-up might increase exercise performance. The aim of this study was to investigate the impact of inspiratory muscle warm-up to submaximal rowing performance and to find if there is an effect on lactic acid accumulation and breathing parameters. Ten competitive male rowers aged between 19 and 27 years (age, 23.1 ± 3.8 years; height, 188.1 ± 6.3 cm; body mass, 85.6 ± 6.6 kg) were tested 3 times. During the first visit, maximal inspiratory pressure (MIP) assessment and the incremental rowing test were performed to measure maximal oxygen consumption and maximal aerobic power (Pamax). A submaximal intensity (90% Pamax) rowing test was performed twice with the standard rowing warm-up as test 1 and with the standard rowing warm-up and specific inspiratory muscle warm-up as test 2. During the 2 experimental tests, distance, duration, heart rate, breathing frequency, ventilation, peak oxygen consumption, and blood lactate concentration were measured. The only value that showed a significant difference between the test 1 and test 2 was breathing frequency (52.2 ± 6.8 vs. 53.1 ± 6.8, respectively). Heart rate and ventilation showed a tendency to decrease and increase, respectively, after the inspiratory muscle warm-up (p < 0.1). Despite some changes in respiratory parameters, the use of 40% MIP intensity warm-up is not suggested if the mean intensity of the competition is at submaximal level (at approximately 90% maximal oxygen consumption). In conclusion, the warm-up protocol of the respiratory muscles used in this study does not have a significant influence on submaximal endurance performance in highly trained male rowers.

  10. The repeated bout effect of traditional resistance exercises on running performance across 3 bouts.

    PubMed

    Doma, Kenji; Schumann, Moritz; Leicht, Anthony Scott; Heilbronn, Brian Edward; Damas, Felipe; Burt, Dean

    2017-09-01

    This study investigated the repeated bout effect of 3 typical lower body resistance-training sessions on maximal and submaximal effort running performance. Twelve resistance-untrained men (age, 24 ± 4 years; height, 1.81 ± 0.10 m; body mass, 79.3 ± 10.9 kg; peak oxygen uptake, 48.2 ± 6.5 mL·kg -1 ·min -1 ; 6-repetition maximum squat, 71.7 ± 12.2 kg) undertook 3 bouts of resistance-training sessions at 6-repetitions maximum. Countermovement jump (CMJ), lower-body range of motion (ROM), muscle soreness, and creatine kinase (CK) were examined prior to and immediately, 24 h (T24), and 48 h (T48) after each resistance-training bout. Submaximal (i.e., below anaerobic threshold (AT)) and maximal (i.e., above AT) running performances were also conducted at T24 and T48. Most indirect muscle damage markers (i.e., CMJ, ROM, and muscle soreness) and submaximal running performance were significantly improved (P < 0.05; 1.9%) following the third resistance-training bout compared with the second bout. Whilst maximal running performance was also improved following the third bout (P < 0.05; 9.8%) compared with other bouts, the measures were still reduced by 12%-20% versus baseline. However, the increase in CK was attenuated following the second bout (P < 0.05) with no further protection following the third bout (P > 0.05). In conclusion, the initial bout induced the greatest change in CK; however, at least 2 bouts were required to produce protective effects on other indirect muscle damage markers and submaximal running performance measures. This suggests that submaximal running sessions should be avoided for at least 48 h after resistance training until the third bout, although a greater recovery period may be required for maximal running sessions.

  11. Developmental Effects Determine Submaximal Arterial Oxygen Saturation in Peruvian Quechua

    PubMed Central

    León-Velarde, Fabiola; Rivera-Chira, María; Elías, Gianpietro; Brutsaert, Tom D.

    2015-01-01

    Abstract Kiyamu, Melisa, Fabiola León-Velarde, María Rivera-Chira, Gianpietro Elías, and Tom D. Brutsaert. Developmental effects determine submaximal arterial oxygen saturation in Peruvian Quechua. High Alt Med Biol 16, 138–146, 2015.—Andean high altitude natives show higher arterial oxygen saturation (Sao2) during exercise in hypoxia, compared to acclimatized sojourners. In order to evaluate the effects of life-long exposure to high altitude on Sao2, we studied two groups of well-matched, self-identified Peruvian Quechua natives who differed in their developmental exposure to hypoxia before and after a 2-month training period. Male and female volunteers (18–35 years) were recruited in Lima, Peru (150 m). The two groups were: a) Individuals who were born and raised at sea-level (BSL, n=34) and b) Individuals who were born and raised at high altitude (BHA, n=32), but who migrated to sea-level as adults (>16 years old). Exercise testing was conducted using a submaximal exercise protocol in normobaric hypoxia in Lima (BP=750 mmHg, Fio2=0.12), in order to measure Sao2 (%), ventilation (VE L/min) and oxygen consumption (Vo2, L/min). Repeated-measures ANOVA, controlling for VE/VO2 (L/min) and sex during the submaximal protocol showed that BHA maintained higher Sao2 (%) compared to BSL at all workloads before (p=0.005) and after training (p=0.017). As expected, both groups showed a decrease in Sao2 (%) (p<0.001), as workload increased. Resting Sao2 levels were not found to be different between groups. The results suggest that developmental exposure to altitude contributes to the maintenance of higher Sao2 levels during submaximal exercise at hypoxia. PMID:25977978

  12. Developmental Effects Determine Submaximal Arterial Oxygen Saturation in Peruvian Quechua.

    PubMed

    Kiyamu, Melisa; León-Velarde, Fabiola; Rivera-Chira, María; Elías, Gianpietro; Brutsaert, Tom D

    2015-06-01

    Kiyamu, Melisa, Fabiola León-Velarde, María Rivera-Chira, Gianpietro Elías, and Tom D. Brutsaert. Developmental effects determine submaximal arterial oxygen saturation in Peruvian Quechua. High Alt Med Biol 16, 138-146, 2015.--Andean high altitude natives show higher arterial oxygen saturation (Sao(2)) during exercise in hypoxia, compared to acclimatized sojourners. In order to evaluate the effects of life-long exposure to high altitude on Sao(2), we studied two groups of well-matched, self-identified Peruvian Quechua natives who differed in their developmental exposure to hypoxia before and after a 2-month training period. Male and female volunteers (18-35 years) were recruited in Lima, Peru (150 m). The two groups were: a) Individuals who were born and raised at sea-level (BSL, n=34) and b) Individuals who were born and raised at high altitude (BHA, n=32), but who migrated to sea-level as adults (>16 years old). Exercise testing was conducted using a submaximal exercise protocol in normobaric hypoxia in Lima (BP=750 mmHg, Fio(2)=0.12), in order to measure Sao(2) (%), ventilation (VE L/min) and oxygen consumption (Vo(2), L/min). Repeated-measures ANOVA, controlling for VE/VO(2) (L/min) and sex during the submaximal protocol showed that BHA maintained higher Sao(2) (%) compared to BSL at all workloads before (p=0.005) and after training (p=0.017). As expected, both groups showed a decrease in Sao(2) (%) (p<0.001), as workload increased. Resting Sao(2) levels were not found to be different between groups. The results suggest that developmental exposure to altitude contributes to the maintenance of higher Sao(2) levels during submaximal exercise at hypoxia.

  13. Effect of caffeine ingestion on anaerobic capacity quantified by different methods

    PubMed Central

    Arcoverde, Lucyana; Silveira, Rodrigo; Tomazini, Fabiano; Sansonio, André; Bertuzzi, Romulo; Andrade-Souza, Victor Amorim

    2017-01-01

    We investigated whether caffeine ingestion before submaximal exercise bouts would affect supramaximal oxygen demand and maximal accumulated oxygen deficit (MAOD), and if caffeine-induced improvement on the anaerobic capacity (AC) could be detected by different methods. Nine men took part in several submaximal and supramaximal exercise bouts one hour after ingesting caffeine (5 mg·kg-1) or placebo. The AC was estimated by MAOD, alternative MAOD, critical power, and gross efficiency methods. Caffeine had no effect on exercise endurance during the supramaximal bout (caffeine: 131.3 ± 21.9 and placebo: 130.8 ± 20.8 s, P = 0.80). Caffeine ingestion before submaximal trials did not affect supramaximal oxygen demand and MAOD compared to placebo (7.88 ± 1.56 L and 65.80 ± 16.06 kJ vs. 7.89 ± 1.30 L and 62.85 ± 13.67 kJ, P = 0.99). Additionally, MAOD was similar between caffeine and placebo when supramaximal oxygen demand was estimated without caffeine effects during submaximal bouts (67.02 ± 16.36 and 62.85 ± 13.67 kJ, P = 0.41) or when estimated by alternative MAOD (56.61 ± 8.49 and 56.87 ± 9.76 kJ, P = 0.91). The AC estimated by gross efficiency was also similar between caffeine and placebo (21.80 ± 3.09 and 20.94 ± 2.67 kJ, P = 0.15), but was lower in caffeine when estimated by critical power method (16.2 ± 2.6 vs. 19.3 ± 3.5 kJ, P = 0.03). In conclusion, caffeine ingestion before submaximal bouts did not affect supramaximal oxygen demand and consequently MAOD. Otherwise, caffeine seems to have no clear positive effect on AC. PMID:28617848

  14. Effects of high-intensity interval training on central haemodynamics and skeletal muscle oxygenation during exercise in patients with chronic heart failure.

    PubMed

    Spee, Ruud F; Niemeijer, Victor M; Wijn, Pieter F; Doevendans, Pieter A; Kemps, Hareld M

    2016-12-01

    Background High-intensity interval training (HIT) improves exercise capacity in patients with chronic heart failure (CHF). Moreover, HIT was associated with improved resting cardiac function. However, the extent to which these improvements actually contribute to training-induced changes in exercise capacity remains to be elucidated. Therefore, we evaluated the effects of HIT on exercising central haemodynamics and skeletal muscle oxygenation. Methods Twenty-six CHF patients were randomised to a 12-week 4 × 4 minute HIT program at 85-95% of peak VO 2 or usual care. Patients performed maximal and submaximal cardiopulmonary exercise testing with simultaneous assessment of cardiac output and skeletal muscle oxygenation by near infrared spectroscopy, using the amplitude of the tissue saturation index (TSIamp). Results Peak workload increased by 11% after HIT ( p between group = 0.01) with a non-significant increase in peak VO 2 (+7%, p between group = 0.19). Cardiac reserve increased by 37% after HIT ( p within group = 0.03, p between group = 0.08); this increase was not related to improvements in peak workload. Oxygen uptake recovery kinetics after submaximal exercise were accelerated by 20% ( p between group = 0.02); this improvement was related to a decrease in TSIamp ( r = 0.71, p = 0.03), but not to changes in cardiac output kinetics. Conclusion HIT induced improvements in maximal exercise capacity and exercising haemodynamics at peak exercise. Improvements in recovery after submaximal exercise were associated with attenuated skeletal muscle deoxygenation during submaximal exercise, but not with changes in cardiac output kinetics, suggesting that the effect of HIT on submaximal exercise capacity is mediated by improved microvascular oxygen delivery-to-utilisation matching.

  15. Fine mapping of a QTL on chromosome 13 for submaximal exercise capacity training response: the HERITAGE Family Study.

    PubMed

    Rice, Treva K; Sarzynski, Mark A; Sung, Yun Ju; Argyropoulos, George; Stütz, Adrian M; Teran-Garcia, Margarita; Rao, D C; Bouchard, Claude; Rankinen, Tuomo

    2012-08-01

    Although regular exercise improves submaximal aerobic capacity, there is large variability in its response to exercise training. While this variation is thought to be partly due to genetic differences, relatively little is known about the causal genes. Submaximal aerobic capacity traits in the current report include the responses of oxygen consumption (ΔVO(2)60), power output (ΔWORK60), and cardiac output (ΔQ60) at 60% of VO2max to a standardized 20-week endurance exercise training program. Genome-wide linkage analysis in 475 HERITAGE Family Study Caucasians identified a locus on chromosome 13q for ΔVO(2)60 (LOD = 3.11). Follow-up fine mapping involved a dense marker panel of over 1,800 single-nucleotide polymorphisms (SNPs) in a 7.9-Mb region (21.1-29.1 Mb from p-terminus). Single-SNP analyses found 14 SNPs moderately associated with both ΔVO(2)60 at P ≤ 0.005 and the correlated traits of ΔWORK60 and ΔQ60 at P < 0.05. Haplotype analyses provided several strong signals (P < 1.0 × 10(-5)) for ΔVO(2)60. Overall, association analyses narrowed the target region and included potential biological candidate genes (MIPEP and SGCG). Consistent with maximal heritability estimates of 23%, up to 20% of the phenotypic variance in ΔVO(2)60 was accounted for by these SNPs. These results implicate candidate genes on chromosome 13q12 for the ability to improve submaximal exercise capacity in response to regular exercise. Submaximal exercise at 60% of maximal capacity is an exercise intensity that falls well within the range recommended in the Physical Activity Guidelines for Americans and thus has potential public health relevance.

  16. Fine mapping of a QTL on chromosome 13 for submaximal exercise capacity training response: the HERITAGE Family Study

    PubMed Central

    Rice, Treva K.; Sarzynski, Mark A.; Sung, Yun Ju; Argyropoulos, George; Stütz, Adrian M.; Teran-Garcia, Margarita; Rao, D. C.; Bouchard, Claude

    2014-01-01

    Although regular exercise improves submaximal aerobic capacity, there is large variability in its response to exercise training. While this variation is thought to be partly due to genetic differences, relatively little is known about the causal genes. Submaximal aerobic capacity traits in the current report include the responses of oxygen consumption (ΔVO260), power output (ΔWORK60), and cardiac output (ΔQ60) at 60% of VO2max to a standardized 20-week endurance exercise training program. Genome-wide linkage analysis in 475 HERITAGE Family Study Caucasians identified a locus on chromosome 13q for ΔVO260 (LOD = 3.11). Follow-up fine mapping involved a dense marker panel of over 1,800 single-nucleotide polymorphisms (SNPs) in a 7.9-Mb region (21.1–29.1 Mb from p-terminus). Single-SNP analyses found 14 SNPs moderately associated with both ΔVO260 at P ≤ 0.005 and the correlated traits of ΔWORK60 and ΔQ60 at P < 0.05. Haplotype analyses provided several strong signals (P<1.0 × 10−5) for ΔVO260. Overall, association analyses narrowed the target region and included potential biological candidate genes (MIPEP and SGCG). Consistent with maximal heritability estimates of 23%, up to 20% of the phenotypic variance in ΔVO260 was accounted for by these SNPs. These results implicate candidate genes on chromosome 13q12 for the ability to improve submaximal exercise capacity in response to regular exercise. Submaximal exercise at 60% of maximal capacity is an exercise intensity that falls well within the range recommended in the Physical Activity Guidelines for Americans and thus has potential public health relevance. PMID:22170014

  17. The most economical cadence increases with increasing workload.

    PubMed

    Foss, Øivind; Hallén, Jostein

    2004-08-01

    Several studies have suggested that the most economical cadence in cycling increases with increasing workload. However, none of these studies have been able to demonstrate this relationship with experimental data. The purpose of this study was to test the hypothesis that the most economical cadence in elite cyclists increases with increasing workload and to explore the effect of cadence on performance. Six elite road cyclists performed submaximal and maximal tests at four different cadences (60, 80, 100 and 120 rpm) on separate days. Respiratory data was measured at 0, 50, 125, 200, 275 and 350 W during the submaximal test and at the end of the maximal test. The maximal test was carried out as an incremental test, conducted to reveal differences in maximal oxygen uptake and time to exhaustion (short-term performance) between cadences. The results showed that the lowest oxygen uptake, i.e. the best work economy, shifted from 60 rpm at 0 W to 80 rpm at 350 W ( P<0.05). No difference was found in maximal oxygen uptake among cadences ( P>0.05), while the best performance was attained at the same cadence that elicited the best work economy (80 rpm) at 350 W ( P<0.05). This study demonstrated that the most economical cadence increases with increasing workload in elite cyclists. It was further shown that work economy and performance are related during short efforts (approximately 5 min) over a wide range of cadences.

  18. Transfer of piano practice in fast performance of skilled finger movements.

    PubMed

    Furuya, Shinichi; Nakamura, Ayumi; Nagata, Noriko

    2013-11-01

    Transfer of learning facilitates the efficient mastery of various skills without practicing all possible sensory-motor repertoires. The present study assessed whether motor practice at a submaximal speed, which is typical in sports and music performance, results in an increase in a maximum speed of finger movements of trained and untrained skills. Piano practice of sequential finger movements at a submaximal speed over days progressively increased the maximum speed of trained movements. This increased maximum speed of finger movements was maintained two months after the practice. The learning transferred within the hand to some extent, but not across the hands. The present study confirmed facilitation of fast finger movements following a piano practice at a submaximal speed. In addition, the findings indicated the intra-manual transfer effects of piano practice on the maximum speed of skilled finger movements.

  19. Does a bout of strength training affect 2,000 m rowing ergometer performance and rowing-specific maximal power 24 h later?

    PubMed

    Gee, Thomas I; French, Duncan N; Howatson, Glyn; Payton, Stephen J; Berger, Nicolas J; Thompson, Kevin G

    2011-11-01

    Rowers regularly undertake rowing training within 24 h of performing bouts of strength training; however, the effect of this practice has not been investigated. This study evaluated the impact of a bout of high-intensity strength training on 2,000 m rowing ergometer performance and rowing-specific maximal power. Eight highly trained male club rowers performed baseline measures of five separate, static squat jumps (SSJ) and countermovement jumps (CMJ), maximal rowing ergometer power strokes (PS) and a single 2,000 m rowing ergometer test (2,000 m). Subsequently, participants performed a high-intensity strength training session consisting of various multi-joint barbell exercises. The 2,000 m test was repeated at 24 and 48 h post-ST, in addition SSJ, CMJ and PS tests were performed at these time points and also at 2 h post-ST. Muscle soreness, serum creatine kinase (CK) and lactate dehydrogenase (LDH) were assessed pre-ST and 2, 24 and 48 h post-ST. Following the ST, there were significant elevations in muscle soreness (2 and 24 h, P < 0.01), CK (2, 24 and 48 h, P < 0.01), and LDH (2 h, P < 0.05) in comparison to baseline values. There were significant decrements across all time points for SSJ, CMJ and PS, which ranged between 3 and 10% (P < 0.05). However, 2,000 m performance and related measurements of heart rate and blood lactate were not significantly affected by ST. In summary, a bout of high-intensity strength training resulted in symptoms of muscle damage and decrements in rowing-specific maximal power, but this did not affect 2,000 m rowing ergometer performance in highly trained rowers.

  20. Clinical application of a nomogram based on age, serum FSH and AMH to select the FSH starting dose in IVF/ICSI cycles: a retrospective two-centres study.

    PubMed

    Papaleo, Enrico; Zaffagnini, Stefano; Munaretto, Maria; Vanni, Valeria Stella; Rebonato, Giorgia; Grisendi, Valentina; Di Paola, Rossana; La Marca, Antonio

    2016-12-01

    To externally validate a nomogram based on ovarian reserve markers as a tool to optimize the FSH starting dose in IVF/ICSI cycles. A two-centres retrospective study including 398 infertile women undergoing their first IVF/ICSI cycle (June 2013-June 2014). IVF data were retrieved from two independent IVF centres in Italy (San Raffaele Hospital, Centre 1; Verona Hospital, Centre 2). A central lab for the routine measurement of AMH and FSH was used for both centres. All women were treated based on physical and hormonal characteristics according to locally adopted protocols. The nomogram was then retrospectively applied to the patients comparing the calculated starting dose to the one actually given. In Centre 1, 64/131 women (48.8%) had an ovarian response below the target. While 45 of these patients were treated with a maximal FSH starting dose (≥225 IU), n=19/131 (14.5%) were treated with a submaximal dose. The vast majority of them (n=17/19) would have received a higher FSH starting dose by using the nomogram. Seventeen patients (n=17/131) had hyper response and about half of them would have been treated with a reduced FSH starting dose according to the nomogram. In Centre 2, 142/267 patients (53.2%) had an ovarian response below the target. While 136 of these were treated with a maximal FSH starting dose (≥225 IU), n=6/267 were treated with a submaximal dose. The majority of them (n=5/6) would have received a higher FSH starting dose. Thirty-two (n=32/267) patients had hyper response and more than half of them would have been treated with a reduced FSH dose. In both Centres, applying the nomogram would have resulted in more appropriate FSH starting doses compared to the the ones actually given based on clinicians choices. The use of an objective algorithm based on patient's age, serum FSH and AMH levels may thus be an effective advice on the selection of the tailored FSH starting dose. Hence, the use of this easily available nomogram could increase the proportion of patients achieving the optimal ovarian response. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Fat oxidation after acipimox-induced reduction in plasma nonesterified fatty acids during exercise at 0 degrees C and 20 degrees C.

    PubMed

    Layden, Joseph D; Malkova, Dalia; Nimmo, Myra A

    2004-09-01

    The main aim of this study was to investigate if whole body fat oxidation, after acipimox administration, during submaximal exercise in the cold, is different from that at temperate environments. Seven healthy recreationally active male subjects cycled at 70% Vo(2peak) for 60 minutes; once at 0 degrees C and once at 20 degrees C. To exclude availability, and therefore oxidation of plasma-derived nonesterified fatty acids (NEFA), 90 minutes before each cycling bout, subjects ingested 250 mg of the antilipolytic drug, acipimox. Blood and expired gas measurements were obtained at rest, immediately before exercise, and at 15, 30, 45, and 60 minutes of exercise. In both trials, after the ingestion of acipimox, plasma NEFA concentrations fell dramatically and immediately before and during exercise were lower than 0.05 mmol. L(-1) in both trials. Pre-exercise and exercise values of glycerol, glucose, triacylglycerol (TG), and rectal temperature (T(re)) were not different between the 0 degrees C and 20 degrees C trials. During exercise at 0 degrees C, skin temperature (T(sk)) was significantly reduced from pre-exercise values (P <.05) and at all time points was significantly lower than during exercise at 20 degrees C. Muscle temperature did not differ between trials but in both trials was lower (P <.05) at 1 cm depth than at 3 cm and 2 cm. Gross energy expenditure of cycling (0 degrees C trial, 3.6 +/- 0.1 MJ; 20 degrees C trial, 3.6 +/- 0.1 MJ), the oxidation rates of carbohydrate (0 degrees C, 32.4 +/- 0.5 KJ. min(-1); 20 degrees C, 32.6 +/- 0.7 KJ. min(-1)) and fat (0 degrees C, 24.6 +/- 1.2 KJ. min(-1); 20 degrees C, 23.0 +/- 1.8 KJ. min(-1)), and the proportion of energy derived from fat (0 degrees C, 45 +/- 1 %; 20 degrees C, 40 +/- 4%) and carbohydrate (0 degrees C, 55 +/- 1%; 20 degrees C, 58 +/- 3%) were not different between the 2 trials. In conclusion, after acipimox administration, whole body fat oxidation during exercise, designed to avoid adjustment of core temperature or thermogenesis, is not different at 0 degrees C compared with 20 degrees C. This allows the inference that during submaximal exercise, cold has no effect on the utilization of intramuscular TG (IMTG).

  2. The development and reliability of a repeated anaerobic cycling test in female ice hockey players.

    PubMed

    Wilson, Kier; Snydmiller, Gary; Game, Alex; Quinney, Art; Bell, Gordon

    2010-02-01

    The purpose of this study was to develop and assess the reliability of a repeated anaerobic power cycling test designed to mimic the repeated sprinting nature of the sport of ice hockey. Nineteen female varsity ice hockey players (mean X +/- SD age, height and body mass = 21 +/- 2 yr, 166.6 +/- 6.3 cm and 62.3 +/- 7.3) completed 3 trials of a repeated anaerobic power test on a Monark cycle ergometer on different days. The test consisted of "all-out" cycling for 5 seconds separated by 10 seconds of low-intensity cycling, repeated 4 times. The relative load factor used for the resistance setting was equal to 0.095 kg per kilogram body mass. There was no significant difference between the peak 5-second power output (PO), mean PO, or the fatigue index (%) among the 3 different trials. The peak 5-second PO was 702.6 +/- 114.8 w and 11.3 +/- 1.1 w x kg, whereas the mean PO across the 4 repeats was 647.1 +/- 96.3 w and 10.4 +/- 1.0 w x kg averaged for the 3 different tests. The fatigue index averaged 17.8 +/- 6.5%. The intraclass correlation coefficient for peak 5-second, mean PO, and fatigue index was 0.82, 0.86, and 0.82, respectively. This study reports the methodology of a repeated anaerobic power cycling test that was reliable for the measurement of PO and calculated fatigue index in varsity women ice hockey players and can be used as a laboratory-based assessment of repeated anaerobic fitness.

  3. Loading, electromyograph, and motion during exercise

    NASA Technical Reports Server (NTRS)

    Todd, Beth A.

    1993-01-01

    A bicycle ergometer system has been developed to determine forces acting in specific muscles and muscle groups for both cycling and isometric exercise. The bicycle has been instrumented with encoders, accelerometers, and load cells. A harnessing system has been developed to keep subjects in place during isometric exercise. EMG data will also be collected with electrodes attached to various muscles on the subject's leg. Data has been collected for static loading and will be collected for cycling in both an earth-based laboratory and on the KC-135. Once the data is analyzed, the forces will be entered into finite element models of bones of the lower extremities. A finite element model of the tibia-fibula has been generated from the experimental subject's MRI data. The linear elastic isoparametric brick elements representing the bones are connected by linear elastic isoparametric shell elements placed at the locations of ligaments. Models will be generated for the calcaneus and the femur. Material properties for the various tissues will be taken from the literature. The experimentally determined muscle forces will be applied to the models to determine the stress distribution which is created in the bones.

  4. Lower Extremity Muscle Thickness During 30-Day 6 degrees Head-Down Bed Rest with Isotonic and Isokinetic Exercise Training

    NASA Technical Reports Server (NTRS)

    Ellis, S.; Kirby, L. C.; Greenleaf, J. E.

    1993-01-01

    Muscle thickness was measured in 19 Bed-Rested (BR) men (32-42 year) subjected to IsoTonic (ITE, cycle orgometer) and IsoKi- netic (IKE, torque orgometer) lower extremity exercise training, and NO Exercise (NOE) training. Thickness was measured with ultrasonography in anterior thigh-Rectus Femoris (RF) and Vastus Intermadius (VI), and combined posterior log-soleus, flexor ballucis longus, and tibialis posterior (S + FHL +TP) - muscles. Compared with ambulatory control values, thickness of the (S + FHL + TP) decreased by 90%-12% (p less than 0.05) In all three test groups. The (RF) thickness was unchanged in the two exercise groups, but decreased by 10% (p less than 0.05) in the NOE. The (VI) thickness was unchanged In the ITE group, but decreased by 12%-l6% (p less than 0.05) in the IKE and NOE groups. Thus, intensive, alternating, isotonic cycle ergometer exercise training is as effective as intensive, intermittent, isokinetic exercise training for maintaining thicknesses of rectus femoris and vastus lntermedius anterior thigh muscles, but not posterior log muscles, during prolonged BR deconditioning.

  5. Eccentric Ergometer Training Promotes Locomotor Muscle Strength but Not Mitochondrial Adaptation in Patients with Severe Chronic Obstructive Pulmonary Disease.

    PubMed

    MacMillan, Norah J; Kapchinsky, Sophia; Konokhova, Yana; Gouspillou, Gilles; de Sousa Sena, Riany; Jagoe, R Thomas; Baril, Jacinthe; Carver, Tamara E; Andersen, Ross E; Richard, Ruddy; Perrault, Hélène; Bourbeau, Jean; Hepple, Russell T; Taivassalo, Tanja

    2017-01-01

    Eccentric ergometer training (EET) is increasingly being proposed as a therapeutic strategy to improve skeletal muscle strength in various cardiorespiratory diseases, due to the principle that lengthening muscle actions lead to high force-generating capacity at low cardiopulmonary load. One clinical population that may particularly benefit from this strategy is chronic obstructive pulmonary disease (COPD), as ventilatory constraints and locomotor muscle dysfunction often limit efficacy of conventional exercise rehabilitation in patients with severe disease. While the feasibility of EET for COPD has been established, the nature and extent of adaptation within COPD muscle is unknown. The aim of this study was therefore to characterize the locomotor muscle adaptations to EET in patients with severe COPD, and compare them with adaptations gained through conventional concentric ergometer training (CET). Male patients were randomized to either EET ( n = 8) or CET ( n = 7) for 10 weeks and matched for heart rate intensity. EET patients trained on average at a workload that was three times that of CET, at a lower perception of leg fatigue and dyspnea. EET led to increases in isometric peak strength and relative thigh mass ( p < 0.01) whereas CET had no such effect. However, EET did not result in fiber hypertrophy, as morphometric analysis of muscle biopsies showed no increase in mean fiber cross-sectional area ( p = 0.82), with variability in the direction and magnitude of fiber-type responses (20% increase in Type 1, p = 0.18; 4% decrease in Type 2a, p = 0.37) compared to CET (26% increase in Type 1, p = 0.04; 15% increase in Type 2a, p = 0.09). EET had no impact on mitochondrial adaptation, as revealed by lack of change in markers of mitochondrial biogenesis, content and respiration, which contrasted to improvements ( p < 0.05) within CET muscle. While future study is needed to more definitively determine the effects of EET on fiber hypertrophy and associated underlying molecular signaling pathways in COPD locomotor muscle, our findings promote the implementation of this strategy to improve muscle strength. Furthermore, contrasting mitochondrial adaptations suggest evaluation of a sequential paradigm of eccentric followed by concentric cycling as a means of augmenting the training response and attenuating skeletal muscle dysfunction in patients with advanced COPD.

  6. Changes in physical performance among construction workers during extended workweeks with 12-hour workdays.

    PubMed

    Faber, Anne; Strøyer, Jesper; Hjortskov, Nis; Schibye, Bente

    2010-01-01

    To investigate changes of physical performance during long working hours and extended workweeks among construction workers with temporary accommodation in camps. Nineteen construction workers with 12-h workdays and extended workweeks participated. Physical performance in the morning and evening of the second and eleventh workdays was tested by endurance, ability to react to a sudden load, flexibility of the back, handgrip strength and sub-maximal HR during a bicycle test. HR was registered throughout two separate workdays. HR during each of the two separate workdays corresponded to a relative workload of 25%. Sub-maximal HR was lower, reaction time faster and handgrip strength higher in the end of each test day. In the end of the work period, sub-maximal HR was lower, reaction time faster and sitting balance was better. No trends of decreased physical performance were found after a workday or a work period.

  7. Transfer of piano practice in fast performance of skilled finger movements

    PubMed Central

    2013-01-01

    Background Transfer of learning facilitates the efficient mastery of various skills without practicing all possible sensory-motor repertoires. The present study assessed whether motor practice at a submaximal speed, which is typical in sports and music performance, results in an increase in a maximum speed of finger movements of trained and untrained skills. Results Piano practice of sequential finger movements at a submaximal speed over days progressively increased the maximum speed of trained movements. This increased maximum speed of finger movements was maintained two months after the practice. The learning transferred within the hand to some extent, but not across the hands. Conclusions The present study confirmed facilitation of fast finger movements following a piano practice at a submaximal speed. In addition, the findings indicated the intra-manual transfer effects of piano practice on the maximum speed of skilled finger movements. PMID:24175946

  8. Influence of Different Kinds of Music on Walking in Children.

    PubMed

    Reychler, Gregory; Fabre, Justine; Lux, Amandine; Caty, Gilles; Pieters, Thierry; Liistro, Giuseppe

    The aim of this study was to evaluate the effect of different kinds of music on submaximal performance and exercise tolerance in healthy children by means of the 6-minute walking test (6MWT) and to explore the influence of gender. Cross-over study. Ninety-seven children performed 6MWT in four conditions (without music, with their preferred music, with slow and with fast music). Distance, cardio-respiratory parameters, perceived exertion rate, and amount of dyspnea were measured. Walked distance depended on the kind of music (p = .022). To listen to fast music promoted a longer distance when compared with slow music. Walked distance was not influenced by gender (p = .721) and there was no interaction between music and gender for walked distances (p = .069). The other parameters were not modified by music and gender. Music influences submaximal performances without modifying exercise tolerance in healthy children. Music does modify submaximal performance in children.

  9. A low-cost Mr compatible ergometer to assess post-exercise phosphocreatine recovery kinetics.

    PubMed

    Naimon, Niels D; Walczyk, Jerzy; Babb, James S; Khegai, Oleksandr; Che, Xuejiao; Alon, Leeor; Regatte, Ravinder R; Brown, Ryan; Parasoglou, Prodromos

    2017-06-01

    To develop a low-cost pedal ergometer compatible with ultrahigh (7 T) field MR systems to reliably quantify metabolic parameters in human lower leg muscle using phosphorus magnetic resonance spectroscopy. We constructed an MR compatible ergometer using commercially available materials and elastic bands that provide resistance to movement. We recruited ten healthy subjects (eight men and two women, mean age ± standard deviation: 32.8 ± 6.0 years, BMI: 24.1 ± 3.9 kg/m 2 ). All subjects were scanned on a 7 T whole-body magnet. Each subject was scanned on two visits and performed a 90 s plantar flexion exercise at 40% maximum voluntary contraction during each scan. During the first visit, each subject performed the exercise twice in order for us to estimate the intra-exam repeatability, and once during the second visit in order to estimate the inter-exam repeatability of the time constant of phosphocreatine recovery kinetics. We assessed the intra and inter-exam reliability in terms of the within-subject coefficient of variation (CV). We acquired reliable measurements of PCr recovery kinetics with an intra- and inter-exam CV of 7.9% and 5.7%, respectively. We constructed a low-cost pedal ergometer compatible with ultrahigh (7 T) field MR systems, which allowed us to quantify reliably PCr recovery kinetics in lower leg muscle using 31 P-MRS.

  10. Effects of stroke resistance on rowing economy in club rowers post-season.

    PubMed

    Kane, D A; Mackenzie, S J; Jensen, R L; Watts, P B

    2013-02-01

    In the sport of rowing, increasing the impulse applied to the oar handle during the stroke can result in greater boat velocities; this may be facilitated by increasing the surface area of the oar blade and/or increasing the length of the oars. The purpose of this study was to compare the effects of different rowing resistances on the physiological response to rowing. 5 male and 7 female club rowers completed progressive, incremental exercise tests on an air-braked rowing ergometer, using either low (LO; 100) or high (HI; 150) resistance (values are according to the adjustable "drag factor" setting on the ergometer). Expired air, blood lactate concentration, heart rate, rowing cadence, and ergometer power output were monitored during the tests. LO rowing elicited significantly greater cadences (P<0.01) and heart rates (P<0.05), whereas rowing economy (J · L O(2) equivalents(-1)) was significantly greater during HI rowing (P<0.05). These results suggest that economically, rowing with a greater resistance may be advantageous for performance. Moreover, biomechanical analysis of ergometer rowing support the notion that the impulse generated during the stroke increases positively as a function of rowing resistance. We conclude that an aerobic advantage associated with greater resistance parallels the empirical trend toward larger oar blades in competitive rowing. This may be explained by a greater stroke impulse at the higher resistance. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Cycling peak power in obese and lean 6- to 8-year-old girls and boys.

    PubMed

    Aucouturier, Julien; Lazaar, Nordine; Doré, Eric; Meyer, Martine; Ratel, Sebastien; Duché, Pascale

    2007-06-01

    The purpose of this study was to investigate the possible effect of the difference in percentage body fat (%BF) and fat-free mass (FFM) on cycling peak power (CPP) in 6- to 8-year-old obese and lean untrained girls and boys. Obese (35 girls, 35 boys) and lean (35 girls, 35 boys) children were measured for obesity, %BF, calculated from skinfold measurements. FFM was calculated as body mass (BM) minus body fat. A force-velocity test on a cycle ergometer was used to measure CPP. CPP was related to anthropometric variables using standard and allometric models. CPP in absolute terms was higher in obese children than in lean children irrespective of gender. BM-related CPP was significantly lower in obese children than in lean ones, whereas no effect of obesity appeared on FFM-related CPP. Velocity at CPP (Vopt) was significantly lower and force at CPP (Fopt) was significantly higher in girls than in boys. Muscle power production was unaffected by obesity in children. Low BM-related CPP could explain the difficulty of taking up physical activities that are body-mass related in obese children. Gender difference for Vopt and Fopt shows that girls and boys may have different maturation patterns affecting CPP.

  12. Assessing exercise cardiac reserve using real-time cardiovascular magnetic resonance.

    PubMed

    Le, Thu-Thao; Bryant, Jennifer Ann; Ting, Alicia Er; Ho, Pei Yi; Su, Boyang; Teo, Raymond Choon Chye; Gan, Julian Siong-Jin; Chung, Yiu-Cho; O'Regan, Declan P; Cook, Stuart A; Chin, Calvin Woon-Loong

    2017-01-23

    Exercise cardiovascular magnetic resonance (ExCMR) has great potential for clinical use but its development has been limited by a lack of compatible equipment and robust real-time imaging techniques. We developed an exCMR protocol using an in-scanner cycle ergometer and assessed its performance in differentiating athletes from non-athletes. Free-breathing real-time CMR (1.5T Aera, Siemens) was performed in 11 athletes (5 males; median age 29 [IQR: 28-39] years) and 16 age- and sex-matched healthy volunteers (7 males; median age 26 [interquartile range (IQR): 25-33] years). All participants underwent an in-scanner exercise protocol on a CMR compatible cycle ergometer (Lode BV, the Netherlands), with an initial workload of 25W followed by 25W-increment every minute. In 20 individuals, exercise capacity was also evaluated by cardiopulmonary exercise test (CPET). Scan-rescan reproducibility was assessed in 10 individuals, at least 7 days apart. The exCMR protocol demonstrated excellent scan-rescan (cardiac index (CI): 0.2 ± 0.5L/min/m 2 ) and inter-observer (ventricular volumes: 1.2 ± 5.3mL) reproducibility. CI derived from exCMR and CPET had excellent correlation (r = 0.83, p < 0.001) and agreement (1.7 ± 1.8L/min/m 2 ). Despite similar values at rest (P = 0.87), athletes had increased exercise CI compared to healthy individuals (at peak exercise: 12.2 [IQR: 10.2-13.5] L/min/m 2 versus 8.9 [IQR: 7.5-10.1] L/min/m 2 , respectively; P < 0.001). Peak exercise CI, where image acquisition lasted 13-17 s, outperformed that at rest (c-statistics = 0.95 [95% confidence interval: 0.87-1.00] versus 0.48 [95% confidence interval: 0.23-0.72], respectively; P < 0.0001 for comparison) in differentiating athletes from healthy volunteers; and had similar performance as VO 2max (c-statistics = 0.84 [95% confidence interval = 0.62-1.00]; P = 0.29 for comparison). We have developed a novel in-scanner exCMR protocol using real-time CMR that is highly reproducible. It may now be developed for clinical use for physiological studies of the heart and circulation.

  13. Operational Implementation of a 2-Hour Prebreathe Protocol for International Space Station

    NASA Technical Reports Server (NTRS)

    Waligora, James M.; Conkin, J.; Foster, P. P.; Schneider, S.; Loftin, Karin C.; Gernhardt, Michael L.; Vann, R.

    2000-01-01

    Procedures, equipment, and analytical techniques were developed to implement the ground tested 2-hour protocol in-flight operations. The methods are: 1) The flight protocol incorporates additional safety margin over the ground tested protocol. This includes up to 20 min of additional time on enriched O2 during suit purge and pressure check, increased duration of extravehicular activity (EVA) preparation exercise during O2 prebreathing (up to 90 min vs; the tested 24 min), and reduced rates of depressurization. The ground test observations were combined with model projections of the conservative measures (using statistical models from Duke University and NASA JSQ to bound the risk of Type I and Type II decompression sickness (DCS). 2) An inflight exercise device using the in-flight ergometer and elastic tubes for upper body exercise was developed to replicate the dual cycle exercise in the ground trials. 3) A new in-flight breathing system was developed and man-tested. 4) A process to monitor inflight experience with the protocol, including the use of an in-suit Doppler bubble monitor when available, was developed. The results are: 1) The model projections of the conservative factors of the operational protocol were shown to reduce the risk of DCS to levels consistent with the observations of no DCS to date in the shuttle program. 2) Cross over trials of the dual cycle ergometer used in ground tests and the in-flight exercise system verified that02consumption and the % division of work between upper and lower body was not significantly different at the p= 0.05 level. 3) The in-flight breathing system was demonstrated to support work rates generating 75% O2(max) in 95 percentile subjects. 4) An in-flight monitoring plan with acceptance criteria was put in place for the 2-hour prebreathe protocol. And the conclusions are: The 2-hour protocol has been approved for flight, and all implementation efforts are in place to allow use of the protocol as early as flight ISS 7A, now scheduled in November of 2000.

  14. Effects of four weeks of high-intensity interval training and creatine supplementation on critical power and anaerobic working capacity in college-aged men.

    PubMed

    Kendall, Kristina L; Smith, Abbie E; Graef, Jennifer L; Fukuda, David H; Moon, Jordan R; Beck, Travis W; Cramer, Joel T; Stout, Jeffrey R

    2009-09-01

    The critical power test provides 2 measures, critical power (CP) and anaerobic working capacity (AWC). In theory, the CP measurement represents the maximal power output that can be maintained without fatigue, and AWC is an estimate of work capacity associated with muscle energy reserves. High-intensity interval training (HIIT) has been shown to be an effective training method for improving endurance performance, including VO2PEAK. In addition, creatine (Cr) supplementation has been reported to improve AWC without training; however, it has shown no effect on CP. The purpose of this study was to examine the effects of 4 weeks of HIIT with Cr supplementation on CP and AWC. Forty-two recreationally active men volunteered to participate in this study. Participants were randomly assigned to 1 of 3 groups: Cr (n = 16), 10 g Cr + 10 g dextrose; placebo (PL, n = 16), 20 g dextrose; control (CON, n = 10), no treatment. Before and after supplementation, each participant performed a maximal oxygen consumption test VO2PEAK on a cycle ergometer to establish peak power output (PPO). Participants then completed a CP test involving 3 exercise bouts with the workloads set as a percentage of their PPO to determine CP and AWC. After a 2-week familiarization period of training and supplementing, PPO, CP, and AWC were remeasured before an additional 4 weeks of HIIT and supplementation were completed. Training consisted of 5 sets of 2-minute exercise bouts with 1 minute rest in between performed on the cycle ergometer, with intensities based on PPO. A significant improvement in CP was observed in the Cr group (6.72% +/- 2.54%), whereas PL showed no significant change (3.87% +/- 2.30%), and CON significantly decreased (6.27% +/- 2.38%). Furthermore, no changes in AWC were observed in any of the groups after treatment. The current findings suggest that Cr supplementation may enhance the effects of intense interval endurance training on endurance performance changes.

  15. Lack of concordance amongst measurements of individual anaerobic threshold and maximal lactate steady state on a cycle ergometer.

    PubMed

    Arratibel-Imaz, Iñaki; Calleja-González, Julio; Emparanza, Jose Ignacio; Terrados, Nicolas; Mjaanes, Jeffrey M; Ostojic, Sergej M

    2016-01-01

    The calculation of exertion intensity, in which a change is produced in the metabolic processes which provide the energy to maintain physical work, has been defined as the anaerobic threshold (AT). The direct calculation of maximal lactate steady state (MLSS) would require exertion intensities over a long period of time and with sufficient rest periods which would prove significantly difficult for daily practice. Many protocols have been used for the indirect calculation of MLSS. The aim of this study is to determine if the results of measurements with 12 different AT calculation methods and calculation software [Keul, Simon, Stegmann, Bunc, Dickhuth (TKM and WLa), Dmax, Freiburg, Geiger-Hille, Log-Log, Lactate Minimum] can be used interchangeably, including the method of the fixed threshold of Mader/OBLA's 4 mmol/l and then to compare them with the direct measurement of MLSS. There were two parts to this research. Phase 1: results from 162 exertion tests chosen at random from the 1560 tests. Phase 2: sixteen athletes (n = 16) carried out different tests on five consecutive days. There was very high concordance among all the methods [intraclass correlation coefficient (ICC) > 0.90], except Log-Log in relation to the Stegamnn, Dmax, Dickhuth-WLa and Geiger-Hille. The Dickhuth-TKM showed a high tendency towards concordance, with Dmax (2.2 W) and Dickhuth-WLa (0.1 W). The Dickhuth-TKM method presented a high tendency to concordance with Dickhuth-WLa (0.5 W), Freiburg (7.4 W), MLSS (2.0 W), Bunc (8.9 W), Dmax (0.1 W). The calculation of MLSS power showed a high tendency to concordance, with Dickhuth-TKM (2 W), Dmax (2.1 W), Dickhuth-WLa (1.5 W). The fixed threshold of 4 mmol/l or OBLA produces slightly different and higher results than those obtained with all the methods analyzed, including MLSS, meaning an overestimation of power in the individual anaerobic threshold. The Dickhuth-TKM, Dmax and Dickhuth-WLa methods defined a high concordance on a cycle ergometer. Dickhuth-TKM, Dmax, Dickhuth-WLa described a high concordance with the power calculated to know the MLSS.

  16. Physical fitness of 9 year olds in England: related factors.

    PubMed

    Kikuchi, S; Rona, R J; Chinn, S

    1995-04-01

    To examine the influence of social factors, passive smoking, and other parental health related factors, as well as anthropometric and other measurements on children's cardiorespiratory fitness. This was a cross sectional study. The analysis was based on 22 health areas in England. The subjects were 299 boys and 282 girls aged 8 to 9 years. Parents did not give positive consent for 15% of the eligible sample. A further 25% of the eligible sample did not participate because the cycle-ergometer broke down, study time was insufficient, or they were excluded from the analysis because they were from ethnic minority groups or had missing data on one continuous variable. Cardiorespiratory fitness was determined using the cycle-ergometer test. It was measured in terms of PWC85%-that is, power output per body weight (watt/kg) assessed at 85% of maximum heart rate. The association between children's fitness and biological and social factors was analysed in two stages. Firstly, multiple logistic analysis was used to examine the factors associated with the children's ability to complete the test for at least four minutes. Secondly, multiple linear regression analysis was used to examine the independent association of the factors with PWC85%. In the logistic analysis, shorter children, children with higher blood pressure, and boys with a larger sibship size had poorer fitness. In the multiple regression analysis, only height (p < 0.001) was positively associated, and the sum of skinfold thicknesses at four sites (p = 0.001) was negatively associated with fitness in both sexes. In girls, a positive association was found with pre-exercise peak expiratory flow rate (p < 0.05), and there were negative associations with systolic blood pressure (p < 0.05) and family history of heart attack (p < 0.05). In boys an association was found with skinfold distribution and fitness (p < 0.05), so that children with relatively less body fat were fitter. Social and health behaviour factors such as father's social class, father's employment status, or parents' smoking habits were unrelated to child's fitness. Height and obesity are strongly associated, and systolic blood pressure to a small extent, with children's fitness, but social factors are unrelated.

  17. Sinusoidal high-intensity exercise does not elicit ventilatory limitation in chronic obstructive pulmonary disease.

    PubMed

    Porszasz, Janos; Rambod, Mehdi; van der Vaart, Hester; Rossiter, Harry B; Ma, Shuyi; Kiledjian, Rafi; Casaburi, Richard

    2013-06-01

    During exercise at critical power (CP) in chronic obstructive pulmonary disease (COPD) patients, ventilation approaches its maximum. As a result of the slow ventilatory dynamics in COPD, ventilatory limitation during supramaximal exercise might be escaped using rapid sinusoidal forcing. Nine COPD patients [age, 60.2 ± 6.9 years; forced expiratory volume in the first second (FEV(1)), 42 ± 17% of predicted; and FEV(1)/FVC, 39 ± 12%] underwent an incremental cycle ergometer test and then four constant work rate cycle ergometer tests; tolerable duration (t(lim)) was recorded. Critical power was determined from constant work rate testing by linear regression of work rate versus 1/t(lim). Patients then completed fast (FS; 60 s period) and slow (SS; 360 s period) sinusoidally fluctuating exercise tests with mean work rate at CP and peak at 120% of peak incremental test work rate, and one additional test at CP; each for a 20 min target. The value of t(lim) did not differ between CP (19.8 ± 0.6 min) and FS (19.0 ± 2.5 min), but was shorter in SS (13.2 ± 4.2 min; P < 0.05). The sinusoidal ventilatory amplitude was minimal (37.4 ± 34.9 ml min(-1) W(-1)) during FS but much larger during SS (189.6 ± 120.4 ml min(-1) W(-1)). The total ventilatory response in SS reached 110 ± 8.0% of the incremental test peak, suggesting ventilatory limitation. Slow components in ventilation during constant work rate and FS exercises were detected in most subjects and contributed appreciably to the total response asymptote. The SS exercise was associated with higher mid-exercise lactate concentrations (5.2 ± 1.7, 7.6 ± 1.7 and 4.5 ± 1.3 mmol l(-1) in FS, SS and CP). Large-amplitude, rapid sinusoidal fluctuation in work rate yields little fluctuation in ventilation despite reaching 120% of the incremental test peak work rate. This high-intensity exercise strategy might be suitable for programmes of rehabilitative exercise training in COPD.

  18. Impact of a Submaximal Warm-Up on Endurance Performance in Highly Trained and Competitive Male Runners.

    PubMed

    Zourdos, Michael C; Bazyler, Caleb D; Jo, Edward; Khamoui, Andy V; Park, Bong-Sup; Lee, Sang-Rok; Panton, Lynn B; Kim, Jeong-Su

    2017-03-01

    The purpose of this investigation was to examine the effects of a submaximal running warm-up on running performance in male endurance athletes (n = 16, M age  = 21 ± 2 years, M VO2max  = 69.3 ± 5.1 mL/kg/min). Endurance performance was determined by a 30-min distance trial after control and submaximal running warm-up conditions in a randomized crossover fashion. The warm-up began with 5 min of quiet sitting, followed by 6 min of submaximal running split into 2-min intervals at speeds corresponding to 45%, 55%, and 65% maximal oxygen consumption (VO 2 max). A 2-min walk at 3.2 km/hr concluded the 13-min warm-up protocol. For the control condition, participants sat quietly for 13 min. VO 2 and heart rate (HR) were determined at Minutes 0, 5, and 13 of the pre-exercise protocol in each condition. At the end of 13 min prior to the distance trial, mean VO 2 (warm-up = 14.1 ± 2.2 mL/kg/min vs. control = 5.5 ± 1.7 mL/kg/min) and mean HR (warm-up = 105 ± 11 bpm vs. control = 67 ± 11 bpm) were statistically greater (p < .001) in the warm-up condition compared with the control condition. The distance run did not statistically differ (p = .37) between the warm-up (7.8 ± 0.5 km) and control (7.7 ± 0.6 km) conditions; however, effect size calculation revealed a small effect (d = 0.2) in favor of the warm-up condition. Thus, the warm-up employed may have important and practical implications to determine placing among high-level athletes in close races. These findings suggest a submaximal running warm-up may have a small but critical effect on a 30-min distance trial in competitive endurance athletes. Further, the warm-up elicited increases in physiological variables VO 2 and HR prior to performance; thus, a submaximal specific warm-up should warrant consideration.

  19. Applied physiology of cycling.

    PubMed

    Faria, I E

    1984-01-01

    Historically, the bicycle has evolved through the stages of a machine for efficient human transportation, a toy for children, a finely-tuned racing machine, and a tool for physical fitness development, maintenance and testing. Recently, major strides have been made in the aerodynamic design of the bicycle. These innovations have resulted in new land speed records for human powered machines. Performance in cycling is affected by a variety of factors, including aerobic and anaerobic capacity, muscular strength and endurance, and body composition. Bicycle races range from a 200m sprint to approximately 5000km. This vast range of competitive racing requires special attention to the principle of specificity of training. The physiological demands of cycling have been examined through the use of bicycle ergometers, rollers, cycling trainers, treadmill cycling, high speed photography, computer graphics, strain gauges, electromyography, wind tunnels, muscle biopsy, and body composition analysis. These techniques have been useful in providing definitive data for the development of a work/performance profile of the cyclist. Research evidence strongly suggests that when measuring the cyclist's aerobic or anaerobic capacity, a cycling protocol employing a high pedalling rpm should be used. The research bicycle should be modified to resemble a racing bicycle and the cyclist should wear cycling shoes. Prolonged cycling requires special nutritional considerations. Ingestion of carbohydrates, in solid form and carefully timed, influences performance. Caffeine appears to enhance lipid metabolism. Injuries, particularly knee problems which are prevalent among cyclists, may be avoided through the use of proper gearing and orthotics. Air pollution has been shown to impair physical performance. When pollution levels are high, training should be altered or curtailed. Effective training programmes simulate competitive conditions. Short and long interval training, blended with long distance tempo cycling, will exploit both the anaerobic and aerobic systems. Strength training, to be effective, must be performed with the specific muscle groups used in cycling, and at specific angles of involvement.

  20. Effects of Standing and Light-Intensity Activity on Ambulatory Blood Pressure.

    PubMed

    Zeigler, Zachary S; Mullane, Sarah L; Crespo, Noe C; Buman, Matthew P; Gaesser, Glenn A

    2016-02-01

    This study aimed to compare ambulatory blood pressure (ABP) response to accumulated standing (STAND), cycling (CYCLE), and walking (WALK) to a sitting-only (SIT) day in adults. Nine overweight or obese (body mass index, 28.7 ± 2.7 kg · m(-2)) adults (30 ± 15 yr) participated in this randomized crossover full-factorial study. Four conditions (WALK, STAND, CYCLE, and SIT) were randomly performed 1 wk apart. WALK, STAND, and CYCLE conditions consisted of progressively increasing activity time to accumulate 2.5 h during an 8-h simulated workday. WALK (1.0 mph) and STAND (0.0 mph) were completed on a treadmill placed underneath a standing-height desk. During CYCLE, participants pedaled on a Monark cycle ergometer at a cadence and energy expenditure equivalent to WALK. Participants remained seated during the SIT condition. Participants wore an ABP cuff from 0800 h until 2200 h on all conditions. Linear mixed models were used to test condition differences in systolic (SBP) and diastolic (DBP) blood pressure. Chi-square was used to detect frequency difference of BP load. There was a whole-day (during and after work hours) SBP and DBP treatment effect (P < 0.01). Systolic blood pressure during STAND (132 ± 17 mm Hg), WALK (133 ± 17 mm Hg), and CYCLE (130 ± 16 mm Hg) were lower compared with that during SIT (137 ± 17 mm Hg) (all P < 0.01). CYCLE was lower than STAND (P = 0.04) and WALK (P < 0.01). For DBP, only CYCLE (69 ± 12 mm Hg) was lower than SIT (71 ± 13 mm Hg; P < 0.01). Compared with SIT, WALK, STAND, and CYCLE reduced SBP load by 4%, 4%, and 13%, respectively (all P < 0.01). Compared with sitting, accumulating 2.5 h of light-intensity physical activity or standing during an 8-h workday may reduce ABP during and after work hours.

  1. Angiotensin I-converting enzyme insertion/deletion polymorphism and adrenergic response to exercise in hypertensive patients.

    PubMed

    Jalil, Jorge E; Córdova, Samuel; Ocaranza, Marí a; Schumacher, Erwin; Braun, Sandra; Chamorro, Gastón; Fardella, Carlos; Lavandero, Sergio

    2002-08-01

    The insertion/deletion ACE polymorphism (ACE I/D) regulates different levels of circulating and tissue ACE activities, which may induce diverse adrenergic responses to physiological stimuli. The aim of this study was to evaluate the influence of the ACE I/D polymorphism on the adrenergic response to isotonic exercise in middle-aged hypertensive patients. Submaximal exercise (on a treadmill, using the Naughton protocol at 75% of maximal heart rate) was performed in 34 patients homozygous for the ACE I/D polymorphism (ACE II and ACE DD) with untreated essential hypertension (II = 19, DD = 15). Plasma venous adrenaline and noradrenaline were measured at rest and at submaximal exercise. Plasma ACE activity was significantly higher in the hypertensive patients carrying the ACE DD genotype compared with the ACE II group. Left atrium size, as well as LV dimensions, mass, and function, were similar in both groups. Total exercise time, baseline and 75% maximal heart rate (MHR) and blood pressure were similar in both groups. Baseline plasma adrenaline and noradrenaline levels were similar in both groups and increased significantly (p<0.05) by ca. 300% at submaximal exercise without differences between groups. The presence of the D allele on the ACE gene in middle-aged hypertensive patients determines higher circulating ACE activity but not increased sympathetic activity in response to submaximal exercise.

  2. The bilateral movement condition facilitates maximal but not submaximal paretic-limb grip force in people with post-stroke hemiparesis

    PubMed Central

    DeJong, Stacey L.; Lang, Catherine E.

    2012-01-01

    Objectives Although healthy individuals have less force production capacity during bilateral muscle contractions compared to unilateral efforts, emerging evidence suggests that certain aspects of paretic upper limb task performance after stroke may be enhanced by moving bilaterally instead of unilaterally. We investigated whether the bilateral movement condition affects grip force differently on the paretic side of people with post-stroke hemiparesis, compared to their non-paretic side and both sides of healthy young adults. Methods Within a single session, we compared: 1) maximal grip force during unilateral vs. bilateral contractions on each side, and 2) force contributed by each side during a 30% submaximal bilateral contraction. Results Healthy controls produced less grip force in the bilateral condition, regardless of side (- 2.4% difference), and similar findings were observed on the non-paretic side of people with hemiparesis (- 4.5% difference). On the paretic side, however, maximal grip force was increased by the bilateral condition in most participants (+11.3% difference, on average). During submaximal bilateral contractions in each group, the two sides each contributed the same percentage of unilateral maximal force. Conclusions The bilateral condition facilitates paretic limb grip force at maximal, but not submaximal levels. Significance In some people with post-stroke hemiparesis, the paretic limb may benefit from bilateral training with high force requirements. PMID:22248812

  3. Skylab

    NASA Image and Video Library

    1973-01-01

    This Skylab-3 onboard photograph shows Astronaut Allen Bean on the ergometer, breathing into the metabolic analyzer. Skylab's Metabolic Activity experiment (M171), a medical evaluation facility, was designed to measure astronauts' metabolic changes while on long-term space missions. The experiment obtained information on astronauts' physiological capabilities and limitations and provided data useful in the design of future spacecraft and work programs. Physiological responses to physical activity was deduced by analyzing inhaled and exhaled air, pulse rate, blood pressure, and other selected variables of the crew while they performed controlled amounts of physical work with a bicycle ergometer.

  4. Heart rate response to submaximal and maximal workloads during running and swimming.

    PubMed

    Hauber, C; Sharp, R L; Franke, W D

    1997-07-01

    The purpose of the present study was to determine if common indexes of exercise intensity, assessed with land-based exercise, could be applied to swimming. Consequently, the heart rate (HR) and oxygen uptake (VO2) responses to submaximal and maximal treadmill running (TR) and free swimming (SW) in 11 fitness swimmers were assessed to determine if the responses to TR could be used to predict those of SW. A maximal graded exercise test using a discontinuous protocol was used for TR, while four graded submaximal 200 yd swims and one 400 yd maximal swim was used for SW. Rest periods were similar for each mode. Significantly lower (p < 0.05) peak values were found in SW compared to TR for both HR (174 +/- 3 vs 183 +/- 3 bt x min(-1)) and VO2 (3.58 +/- 0.18 vs 3.97 +/- 0.22 L x min(-1)), SW vs TR; +/- SE, respectively. However, regression analyses of submaximal HR vs VO2 for each subject revealed similar slopes for TR and SW (30.5 +/- 1.7 vs 29.9 +/- 3.5 bt x L(-1), p > 0.05) and similar intercepts (67.3 +/- 2.6 vs 66.5 +/- 11.5 bt x min(-1), p > 0.05). At the VO2 equivalent to 50% treadmill VO2max, the heart rate predicted from SW did not differ significantly from TR (118 +/- 5 vs 124 +/- 1 bt x min(-1), p > 0.05). This was also true at 85% treadmill VO2max (171 +/- 4 vs 166 +/- 3 bt x min(-1), SW vs TR, respectively; p > 0.05). These data suggest that peak heart rate and oxygen uptake appear to be mode specific, but exercising at a given submaximal oxygen uptake will elicit a similar heart rate regardless of the mode. Thus, target heart rate ranges designed for land-based exercise appear to be appropriate for fitness swimmers during swimming.

  5. Iron Status in Chronic Heart Failure: Impact on Symptoms, Functional Class and Submaximal Exercise Capacity.

    PubMed

    Enjuanes, Cristina; Bruguera, Jordi; Grau, María; Cladellas, Mercé; Gonzalez, Gina; Meroño, Oona; Moliner-Borja, Pedro; Verdú, José M; Farré, Nuria; Comín-Colet, Josep

    2016-03-01

    To evaluate the effect of iron deficiency and anemia on submaximal exercise capacity in patients with chronic heart failure. We undertook a single-center cross-sectional study in a group of stable patients with chronic heart failure. At recruitment, patients provided baseline information and completed a 6-minute walk test to evaluate submaximal exercise capacity and exercise-induced symptoms. At the same time, blood samples were taken for serological evaluation. Iron deficiency was defined as ferritin < 100 ng/mL or transferrin saturation < 20% when ferritin is < 800 ng/mL. Additional markers of iron status were also measured. A total of 538 heart failure patients were eligible for inclusion, with an average age of 71 years and 33% were in New York Heart Association class III/IV. The mean distance walked in the test was 285 ± 101 meters among those with impaired iron status, vs 322 ± 113 meters (P=.002). Symptoms during the test were more frequent in iron deficiency patients (35% vs 27%; P=.028) and the most common symptom reported was fatigue. Multivariate logistic regression analyses showed that increased levels of soluble transferrin receptor indicating abnormal iron status were independently associated with advanced New York Heart Association class (P < .05). Multivariable analysis using generalized additive models, soluble transferrin receptor and ferritin index, both biomarkers measuring iron status, showed a significant, independent and linear association with submaximal exercise capacity (P=.03 for both). In contrast, hemoglobin levels were not significantly associated with 6-minute walk test distance in the multivariable analysis. In patients with chronic heart failure, iron deficiency but not anemia was associated with impaired submaximal exercise capacity and symptomatic functional limitation. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  6. Assessment of muscle endurance of the knee extensor muscles in adolescents with spastic cerebral palsy using a submaximal repetitions-to-fatigue protocol.

    PubMed

    Eken, Maaike M; Dallmeijer, Annet J; Doorenbosch, Caroline A; Dekkers, Hurnet; Becher, Jules G; Houdijk, Han

    2014-10-01

    To compare muscle endurance in adolescents with spastic cerebral palsy (CP) with typically developing (TD) peers using a submaximal repetitions-to-fatigue (RTF) protocol. Cross sectional. Human motion laboratory. Adolescents with spastic CP (n=16; Gross Motor Function Classification System levels I or II) and TD adolescents (n=18) within the age range of 12 to 19 years old. Not applicable. Each participant performed 3 RTF tests at different submaximal loads, ranging from 50% to 90% of their maximal voluntary knee extension torque. The relation between the number of repetitions (repetition maximum [RM]) and imposed submaximal relative (percent of maximal voluntary torque [%MVT]) and absolute (Nm/kg) torque was quantified. To compare adolescents with CP with TD adolescents, a mixed linear model was used to construct load endurance curves. Surface electromyography of quadriceps muscles was measured to assess changes in normalized amplitude and median frequency (MF) as physiological indicators of muscle fatigue. Adolescents with CP showed a larger decrease in %MVT per RM than TD adolescents (P<.05). TD adolescents showed substantial higher absolute (Nm/kg) load endurance curves than adolescents with CP (P<.001), but they did not show a difference in slope. Electromyographic normalized amplitude increased significantly (P<.05) in the quadriceps muscles in all tests for both groups. Electromyographic MF decreased significantly (P<.05) in tests with the low and medium loads. Electromyographic responses did not differ between groups, indicating that similar levels of muscle fatigue were reached. Adolescents with CP show slightly lower muscle endurance compared with TD adolescents on a submaximal RTF protocol, which is in contrast with earlier findings in a maximal voluntary fatigue protocol. Accordingly, adolescents with CP have a reduced capacity to endure activities at similar relative loads compared with TD adolescents. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. Lower rate-pressure product during submaximal walking: a link to fatigue improvement following a physical activity intervention among breast cancer survivors.

    PubMed

    Carter, Stephen J; Hunter, Gary R; McAuley, Edward; Courneya, Kerry S; Anton, Philip M; Rogers, Laura Q

    2016-10-01

    Research showing a link between exercise-induced changes in aerobic fitness and reduced fatigue after a cancer diagnosis has been inconsistent. We evaluated associations of fatigue and rate-pressure product (RPP), a reliable index of myocardial oxygen demand, at rest and during submaximal walking following a physical activity intervention among post-primary treatment breast cancer survivors (BCS). Secondary analyses of 152 BCS in a randomized controlled trial testing a physical activity intervention (INT) versus usual care (UC) were performed. The INT group completed counseling/group discussions along with supervised exercise sessions tapered to unsupervised exercise. Evaluations were made at baseline and immediately post-intervention (M3) on measures of physical activity (accelerometry), graded walk test, and average fatigue over the previous 7 days. RPP was calculated by dividing the product of heart rate and systolic blood pressure by 100. Resting and submaximal RPPs were significantly improved in both groups at M3; however, the magnitude of change (∆) was greater in the INT group from stage 1 (∆RPP1; INT -13 ± 17 vs. UC -7 ± 18; p = 0.03) through stage 4 (∆RPP4; INT -21 ± 26 vs. UC -9 ± 24; p < 0.01) of the walk test. The INT group reported significantly reduced fatigue (INT -0.7 ± 2.0 vs. UC +0.1 ± 2.0; p = 0.02) which was positively associated with ∆RPP during stages 2-4 of the walk test but not ∆aerobic fitness. Lower RPP during submaximal walking was significantly associated with reduced fatigue in BCS. Exercise/physical activity training programs that lower the physiological strain during submaximal walking may produce the largest improvements in reported fatigue.

  8. Fatigue reduces the complexity of knee extensor torque fluctuations during maximal and submaximal intermittent isometric contractions in man

    PubMed Central

    Pethick, Jamie; Winter, Samantha L; Burnley, Mark

    2015-01-01

    Neuromuscular fatigue increases the amplitude of fluctuations in torque output during isometric contractions, but the effect of fatigue on the temporal structure, or complexity, of these fluctuations is not known. We hypothesised that fatigue would result in a loss of temporal complexity and a change in fractal scaling of the torque signal during isometric knee extensor exercise. Eleven healthy participants performed a maximal test (5 min of intermittent maximal voluntary contractions, MVCs), and a submaximal test (contractions at a target of 40% MVC performed until task failure), each with a 60% duty factor (6 s contraction, 4 s rest). Torque and surface EMG signals were sampled continuously. Complexity and fractal scaling of torque were quantified by calculating approximate entropy (ApEn), sample entropy (SampEn) and the detrended fluctuation analysis (DFA) scaling exponent α. Fresh submaximal contractions were more complex than maximal contractions (mean ± SEM, submaximal vs. maximal: ApEn 0.65 ± 0.09 vs. 0.15 ± 0.02; SampEn 0.62 ± 0.09 vs. 0.14 ± 0.02; DFA α 1.35 ± 0.04 vs. 1.55 ± 0.03; all P < 0.005). Fatigue reduced the complexity of submaximal contractions (ApEn to 0.24 ± 0.05; SampEn to 0.22 ± 0.04; DFA α to 1.55 ± 0.03; all P < 0.005) and maximal contractions (ApEn to 0.10 ± 0.02; SampEn to 0.10 ± 0.02; DFA α to 1.63 ± 0.02; all P < 0.01). This loss of complexity and shift towards Brownian-like noise suggests that as well as reducing the capacity to produce torque, fatigue reduces the neuromuscular system's adaptability to external perturbations. PMID:25664928

  9. Anthropometric and physiological profiles of active blind Malaysian males.

    PubMed

    Singh, R; Singh, H J

    1993-12-01

    Cardiopulmonary capacities of twelve adults (aged between 14 to 44 years) with varying degrees of blindness engaged in regular recreational activities were compared with twelve age-matched normal sighted healthy males (control group) who were also involved in regular recreational activities. Maximum oxygen consumption (VO2max) was measured directly during exhaustive exercise test on a cycle ergometer. Forced vital capacity, leg strength and power were determined by spirometry, standing long jump and vertical jump respectively. No significant differences in VO2max, forced vital capacity and leg strength and power were observed between the blind and the control groups. No anthropometric differences were evident between the two groups. The results show therefore that the visually handicapped who are active can have a similar level of physical fitness, lung function and explosive leg strength as those of their active sighted counterparts.

  10. Vascular Uptake of Six Rehydration Drinks at Rest and Exercise

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Geelen, G.; Jackson, C. G. R.; Saumet, J.-L.; Juhos, L. T.; Keil, L. C.; Fegan-Meyer, D.; Dearborn, A.; Hinghofer-Szalkay, H.; Whittam, J. H.

    1996-01-01

    A report presents data on the effectiveness of each of six rehydration fluids in restoring total body water and plasma volume in human subjects during rest and exercise. One of the six fluids was water sweetened with aspartame: the others were water containing various amounts of sodium chloride and/or sodium citrate, plus various amounts of aspartame and/or other carbohydrates. In one experiment, five men who had previously dehydrated themselves for 24 hours drank one of the rehydration fluids, then sat for 70 minutes. Pretest plasma volumes were measured and changes in plasma volumes were calculated. This procedure was repeated at weekly intervals until all six rehydration fluids had been tested. Another similar experiment involved four men who exercised on a cycle ergometer for 70 minutes in the supine position after drinking the fluids.

  11. Development of a wearable measurement and control unit for personal customizing machine-supported exercise.

    PubMed

    Wang, Zhihui; Tamura, Naoki; Kiryu, Tohru

    2005-01-01

    Wearable technology has been used in various health-related fields to develop advanced monitoring solutions. However, the monitoring function alone cannot meet all the requirements of personal customizing machine-supported exercise that have biosignal-based controls. In this paper, we propose a new wearable unit design equipped with measurement and control functions to support the personal customization process. The wearable unit can measure the heart rate and electromyogram signals during exercise and output workload control commands to the exercise machines. We then applied a prototype of the wearable unit to an Internet-based cycle ergometer system. The wearable unit was examined using twelve young people to check its feasibility. The results verified that the unit could successfully adapt to the control of the workload and was effective for continuously supporting gradual changes in physical activities.

  12. Muscle coordination, activation and kinematics of world-class and elite breaststroke swimmers during submaximal and maximal efforts.

    PubMed

    Olstad, Bjørn Harald; Vaz, João Rocha; Zinner, Christoph; Cabri, Jan M H; Kjendlie, Per-Ludvik

    2017-06-01

    The aims of this study were to describe muscular activation patterns and kinematic variables during the complete stroke cycle (SC) and the different phases of breaststroke swimming at submaximal and maximal efforts. Surface electromyography (sEMG) was collected from eight muscles in nine elite swimmers; five females (age 20.3 ± 5.4 years; Fédération Internationale de Natation [FINA] points 815 ± 160) and four males (27.7 ± 7.1 years; FINA points 879 ± 151). Underwater cameras were used for 3D kinematic analysis with automatic motion tracking. The participants swam 25 m of breaststroke at 60%, 80% and 100% effort and each SC was divided into three phases: knee extension, knee extended and knee flexion. With increasing effort, the swimmers decreased their SC distance and increased their velocity and stroke rate. A decrease during the different phases was found for duration during knee extended and knee flexion, distance during knee extended and knee angle at the beginning of knee extension with increasing effort. Velocity increased for all phases. The mean activation pattern remained similar across the different effort levels, but the muscles showed longer activation periods relative to the SC and increased integrated sEMG (except trapezius) with increasing effort. The muscle activation patterns, muscular participation and kinematics assessed in this study with elite breaststroke swimmers contribute to a better understanding of the stroke and what occurs at different effort levels. This could be used as a reference for optimising breaststroke training to improve performance.

  13. Norepinephrine spillover at rest and during submaximal exercise in young and old subjects.

    PubMed

    Mazzeo, R S; Rajkumar, C; Jennings, G; Esler, M

    1997-06-01

    Aging is associated with elevations in plasma norepinephrine concentrations. The purpose of this investigation was to examine total body and regional norepinephrine spillover as an indicator of sympathetic nerve activity. Eight young (26 +/- 3 yr) and seven old (69 +/- 5 yr) male subjects were studied at rest and during 20 min of submaximal cycling exercise at 50% of peak work capacity. Norepinephrine spillover was determined by continuous intravenous infusion of [3H]norepinephrine. Arterial norepinephrine concentrations were significantly greater at rest for old vs. young subjects (280 +/- 36 vs. 196 +/- 27 ng/ml, respectively). Whereas total norepinephrine spillover did not differ between groups at rest, hepatomesenteric norepinephrine spillover was 50% greater in old subjects compared with their young counterparts (51 +/- 7 vs. 34 +/- 5 ng/min, respectively). Additionally, norepinephrine clearance rates at rest were significantly lower for the old subjects (-23%). During exercise, plasma norepinephrine concentrations increased compared with rest, with old subjects again demonstrating greater values than the young group. Hepatomesenteric norepinephrine spillover was significantly greater (+36%) during exercise for old subjects compared with young; however, no difference was found for whole body spillover rates between age groups. Norepinephrine clearance rates remained depressed (-80%) in the old subjects during exercise. Clearance of epinephrine mirrored that for norepinephrine both at rest and during exercise across age groups. It was concluded that in old subjects, a reduction in norepinephrine clearance and an increase in regional norepinephrine spillover can account for the higher plasma norepinephrine concentrations observed at rest. This relationship is not exacerbated by the stress imposed during an acute bout of exercise.

  14. The effect of the oxygen uptake-power output relationship on the prediction of supramaximal oxygen demands.

    PubMed

    Muniz-Pumares, Daniel; Pedlar, Charles; Godfrey, Richard; Glaister, Mark

    2017-01-01

    The aim of this study was to investigate the relationship between oxygen uptake (V̇O2) and power output at intensities below and above the lactate threshold (LT) in cyclists; and to determine the reliability of supramaximal power outputs linearly projected from these relationships. Nine male cyclists (mean±standard deviation age: 41±8 years; mass: 77±6 kg, height: 1.79±0.05 m and V̇O2max: 54±7 mL∙kg-1∙min-1) completed two cycling trials each consisting of a step test (10×3 min stages at submaximal incremental intensities) followed by a maximal test to exhaustion. The lines of best fit for V̇O2 and power output were determined for: the entire step test; stages below and above the LT, and from rolling clusters of five consecutive stages. Lines were projected to determine a power output predicted to elicit 110% peak V̇O2. There were strong linear correlations (r≥0.953; P<0.01) between V̇O2 and power output using the three approaches; with the slope, intercept, and projected values of these lines unaffected (P≥0.05) by intensity. The coefficient of variation of the predicted power output at 110% V̇O2max was 6.7% when using all ten submaximal stages. Cyclists exhibit a linear V̇O2 and power output relationship when determined using 3 min stages, which allows for prediction of a supramaximal intensity with acceptable reliability.

  15. Anaerobic cycling performance characteristics in prepubescent, adolescent and young adult females.

    PubMed

    Doré, E; Bedu, M; França, N M; Van Praagh, E

    2001-05-01

    The purpose of this study was to determine whether the relationships between short-term power and body dimensions in young females were similar whatever the age of the individuals. A cohort of 189 prepubescent (mean age 9.5 years), adolescent (mean age 14.4 years) and young adult (mean age 18.2 years) females performed three all-out sprints on a friction-loaded cycle ergometer against three braking forces corresponding to applied loads of 25, 50 and 75 g.kg-1 body mass (BM). For each sprint, peak power including flywheel inertia was calculated. Results showed that a braking load of 75 g.kg-1 BM was too high for prepubescent and adolescent girls. Therefore, when measuring short-term cycling performance in heterogeneous female populations, a braking load of 50 g.kg-1 BM (0.495 N.kg-1 BM) is recommended. During growth, cycling peak power (CPP; defined as the highest peak power obtained during the three sprints) increased, as did total BM, fat-free mass (FFM) and lean leg volume (LLV) (P < 0.001). Analysis of covariance revealed that the slopes of the linear relationships between CPP and biometric characteristics were similar in the three groups (P > 0.7 for the CPP/BM and CPP/FFM relationships, and P > 0.2 for the CPP/LLV relationship). However, the adjusted means were always significantly higher in young women (P < 0.001) compared with both of the other groups. Although differences in performance during anaerobic cycling in growing females are primarily dependent upon body dimensions, other as yet undetermined factors may be involved during late adolescence.

  16. Single and combined effects of beetroot juice and caffeine supplementation on cycling time trial performance.

    PubMed

    Lane, Stephen C; Hawley, John A; Desbrow, Ben; Jones, Andrew M; Blackwell, James R; Ross, Megan L; Zemski, Adam J; Burke, Louise M

    2014-09-01

    Both caffeine and beetroot juice have ergogenic effects on endurance cycling performance. We investigated whether there is an additive effect of these supplements on the performance of a cycling time trial (TT) simulating the 2012 London Olympic Games course. Twelve male and 12 female competitive cyclists each completed 4 experimental trials in a double-blind Latin square design. Trials were undertaken with a caffeinated gum (CAFF) (3 mg·kg(-1) body mass (BM), 40 min prior to the TT), concentrated beetroot juice supplementation (BJ) (8.4 mmol of nitrate (NO3(-)), 2 h prior to the TT), caffeine plus beetroot juice (CAFF+BJ), or a control (CONT). Subjects completed the TT (females: 29.35 km; males: 43.83 km) on a laboratory cycle ergometer under conditions of best practice nutrition: following a carbohydrate-rich pre-event meal, with the ingestion of a carbohydrate-electrolyte drink and regular oral carbohydrate contact during the TT. Compared with CONT, power output was significantly enhanced after CAFF+BJ and CAFF (3.0% and 3.9%, respectively, p < 0.01). There was no effect of BJ supplementation when used alone (-0.4%, p = 0.6 compared with CONT) or when combined with caffeine (-0.9%, p = 0.4 compared with CAFF). We conclude that caffeine (3 mg·kg(-1) BM) administered in the form of a caffeinated gum increased cycling TT performance lasting ∼50-60 min by ∼3%-4% in both males and females. Beetroot juice supplementation was not ergogenic under the conditions of this study.

  17. Analysis of muscular activity and dynamic response of the lower limb adding vibration to cycling.

    PubMed

    Munera, Marcela; Bertucci, William; Duc, Sebastien; Chiementin, Xavier

    2018-07-01

    Vibration in cycling has been proved to have undesirable effects over health, comfort and performance of the rider. In this study, 15 participants performed eight 6-min sub-maximal pedalling exercises at a constant power output (150W) and pedalling cadence (80 RPM) being exposed to vibration at different frequencies (20, 30, 40, 50, 60, 70 Hz) or without vibration. Oxygen uptake (VO2), heart rate (HR), surface EMG activity of seven lower limb muscles (GMax, RF, BF, VM, GAS, SOL and TA) and 3-dimentional accelerations at ankle, knee and hip were measured during the exercises. To analyse the dynamic response, the influence of the pedalling movement was taken into account. The results show that there was not significant influence of vibrations on HR and VO2 during this pedalling exercise. However, muscular activity presents a significant increase with the presence of vibration that is influenced by the frequency, but this increase was very low (< 1%). Also, the dynamic response shows an influence of the frequency as well as an influence of the different parts of the pedalling cycle. Those results help to explain the effects of vibration on the human body and the influence of the rider/bike interaction in those effects.

  18. Evaluation of Exercise Response in a Young, High Risk Population: Submaximal Invasive Cardiopulmonary Exercise Testing (ICPET) in Active Duty Soldiers

    DTIC Science & Technology

    2017-03-17

    Submaximal Invasive Cardiopulmonary Exercise Testing iCPET in AD Soldiers presented at/published to American College of Cardiology’s 661h Annual...disclaimer statement for research involving animals . as required by AFMAN 40-401 IP : " The experiments reported herein were conducted according to the...principles set forth in the National Institute of Health Publication No. 80-23, Guide for the Care and Use of Laboratory Animals and the Animal

  19. Cycle training modulates satellite cell and transcriptional responses to a bout of resistance exercise.

    PubMed

    Murach, Kevin A; Walton, R Grace; Fry, Christopher S; Michaelis, Sami L; Groshong, Jason S; Finlin, Brian S; Kern, Philip A; Peterson, Charlotte A

    2016-09-01

    This investigation evaluated whether moderate-intensity cycle ergometer training affects satellite cell and molecular responses to acute maximal concentric/eccentric resistance exercise in middle-aged women. Baseline and 72 h postresistance exercise vastus lateralis biopsies were obtained from seven healthy middle-aged women (56 ± 5 years, BMI 26 ± 1, VO2max 27 ± 4) before and after 12 weeks of cycle training. Myosin heavy chain (MyHC) I- and II-associated satellite cell density and cross-sectional area was determined via immunohistochemistry. Expression of 93 genes representative of the muscle-remodeling environment was also measured via NanoString. Overall fiber size increased ~20% with cycle training (P = 0.052). MyHC I satellite cell density increased 29% in response to acute resistance exercise before endurance training and 50% with endurance training (P < 0.05). Following endurance training, MyHC I satellite cell density decreased by 13% in response to acute resistance exercise (acute resistance × training interaction, P < 0.05). Genes with an interaction effect tracked with satellite cell behavior, increasing in the untrained state and decreasing in the endurance trained state in response to resistance exercise. Similar satellite cell and gene expression response patterns indicate coordinated regulation of the muscle environment to promote adaptation. Moderate-intensity endurance cycle training modulates the response to acute resistance exercise, potentially conditioning the muscle for more intense concentric/eccentric activity. These results suggest that cycle training is an effective endurance exercise modality for promoting growth in middle-aged women, who are susceptible to muscle mass loss with progressing age. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  20. Change in VO2max and time trial performance in response to high-intensity interval training prescribed using ventilatory threshold.

    PubMed

    Astorino, Todd A; deRevere, Jamie; Anderson, Theodore; Kellogg, Erin; Holstrom, Patrick; Ring, Sebastian; Ghaseb, Nicholas

    2018-06-19

    Completion of high-intensity interval training (HIIT) leads to significant increases in maximal oxygen uptake (VO 2max ) and oxidative capacity. However, individual responses to HIIT have been identified as approximately 20-40% of individuals show no change in VO 2max , which may be due to the relatively homogeneous approach to implementing HIIT. This study tested the effects of HIIT prescribed using ventilatory threshold (VT) on changes in VO 2max and cycling performance. Fourteen active men and women (age and VO 2max  = 27 ± 8 year and 38 ± 4 mL/kg/min) underwent nine sessions of HIIT, and 14 additional men and women (age and VO 2max  = 22 ± 3 year and 40 ± 5 mL/kg/min) served as controls. Training was performed on a cycle ergometer at a work rate equal to 130%VT and consisted of eight to ten 1 min bouts interspersed with 75 s of recovery. At baseline and post-testing, they completed progressive cycling to exhaustion to determine VO 2max , and on a separate day, a 5 mile cycling time trial. Compared to the control group, HIIT led to significant increases in VO 2max (6%, p = 0.007), cycling performance (2.5%, p = 0.003), and absolute VT (9 W, p = 0.005). However, only 57% of participants revealed meaningful increases in VO 2max and cycling performance in response to training, and two showed no change in either outcome. A greater volume of HIIT may be needed to maximize the training response for all individuals.

  1. Physical activity when riding an electric assisted bicycle.

    PubMed

    Berntsen, Sveinung; Malnes, Lena; Langåker, Aleksander; Bere, Elling

    2017-04-26

    The objectives of the present study were to compare time spent cycling, exercise intensity, and time spent in moderate- (MPA) and vigorous intensity physical activity (VPA) when cycling on an E-bike and a conventional bicycle on two "cycling-to-work" routes with differences in topography, defined as a hilly and a flat route. Eight adults (23-54 years, two women) cycled outdoors on a conventional bicycle and an E-bike, on a flat (8.2 km) and a hilly (7.1 km) route, resulting in 32 journeys. Duration, elevation, and oxygen consumption were recorded using a portable oxygen analyser with GPS. A maximal cardiorespiratory fitness test was performed on a cycle ergometer. Resting metabolic rate was obtained by indirect calorimetry with a canopy hood. The participants spent less time (median (IQR)) cycling on the E-bike compared with the conventional bicycle, on both the hilly (18.8 (4.9) vs. 26.3 (6.4) minutes) and the flat (20.0 (2.9) vs. 23.8 (1.8) minutes) routes. Lower exercise intensity was observed with the E-bike compared with the conventional bicycle, both on the hilly (50 (18) vs. 60 (22) % of maximal oxygen uptake) and the flat (52 (19) vs. 55 (12) % of maximal oxygen uptake) routes. In both cycling modes, most time was spent in MVPA (92-99%). However, fewer minutes were spent in MVPA with the E-bike than the conventional bicycle, for both the hilly (26% lower) and the flat (17% lower) routes. Cycling on the E-bike also resulted in 35 and 15% fewer minutes in vigorous intensity, respectively on the hilly and flat routes. Cycling on the E-bike resulted in lower trip duration and exercise intensity, compared with the conventional bicycle. However, most of the time was spent in MVPA. This suggests that changing the commuting mode from car to E-bike will significantly increase levels of physical activity while commuting.

  2. Respiratory drives and exercise in menstrual cycles of athletic and nonathletic women.

    PubMed

    Schoene, R B; Robertson, H T; Pierson, D J; Peterson, A P

    1981-06-01

    To investigate the influence of the midluteal and midfollicular phases of the menstrual cycle on exercise performance and ventilatory drives, we studied six outstanding female athletes, six controls with normal menstrual cycles, and six outstanding athletes who were amenorrheic. In all menstruating subjects resting minute ventilation (Ve) and mouth occlusion pressures (P0.1) were higher in the luteal phase (p less than k0.0001 and p less than 0.02, respectively),. Hypoxic (expressed as the hyperbolic shape parameter A) and hypercapnic (expressed as S, deltaVE/delta PAco2) ventilatory responses were increase in the luteal phase (p less than 0.01). The athletes had lower A values during the luteal phase than the nonathletes (p less than 0.001). Maximal exercise response, expressed either as total exercise time or maximum O2 consumption or CO2 production (VO2 max or Vco2 max) was decreased during the luteal phase but was significantly different at a p less than 0.05 level only among the nonathletes. Ventilatory equivalent (VE/VO2) during progressive exercise on a bicycle ergometer was significantly increased during the luteal phase. The amenorrheic athletes showed no changes between the two test periods. The luteal phase of the menstrual cycle induced increases in ventilatory drives and exercise ventilation in both athletes and controls, but the athletes, in contrast to controls, demonstrated no significant decrease in exercise performance in the luteal phase.

  3. Non-invasive ventilation during cycle exercise training in patients with chronic respiratory failure on long-term ventilatory support: A randomized controlled trial.

    PubMed

    Vitacca, Michele; Kaymaz, Dicle; Lanini, Barbara; Vagheggini, Guido; Ergün, Pınar; Gigliotti, Francesco; Ambrosino, Nicolino; Paneroni, Mara

    2018-02-01

    The role of non-invasive ventilation (NIV) during exercise training (ET) in patients with chronic respiratory failure (CRF) is still unclear. The aim of this study was to test whether NIV during ET had an additional effect in increasing the 6-min walking distance (6MWD) and cycle endurance time compared with ET alone. All patients underwent 20 sessions of cycle training over 3 weeks and were randomly assigned to ET with NIV or ET alone. Outcome measures were 6MWD (primary outcome), incremental and endurance cycle ergometer exercise time, respiratory muscle function, quality of life by the Maugeri Respiratory Failure questionnaire (MRF-28), dyspnoea (Medical Research Council scale) and leg fatigue at rest. Forty-two patients completed the study. Following training, no significant difference in 6MWD changes were found between groups. Improvement in endurance time was significantly greater in the NIV group compared with the non-NIV training group (754 ± 973 vs 51 ± 406 s, P = 0.0271); dyspnoea improved in both groups, while respiratory muscle function and leg fatigue improved only in the NIV ET group. MRF-28 improved only in the group training without NIV. In CRF patients on long-term NIV and long-term oxygen therapy (LTOT), the addition of NIV to ET sessions resulted in an improvement in endurance time, but not in 6MWD. © 2017 Asian Pacific Society of Respirology.

  4. Active travel to school and cardiovascular fitness in Danish children and adolescents.

    PubMed

    Cooper, Ashley R; Wedderkopp, Niels; Wang, Han; Andersen, Lars Bo; Froberg, Karsten; Page, Angie S

    2006-10-01

    Active travel to school provides an opportunity for daily physical activity. Previous studies have shown that walking and cycling to school are associated with higher physical activity levels. The purpose of this study was to investigate whether the way that children and adolescents travel to school is associated with level of cardiovascular fitness. Participants were recruited via a proportional, two-stage cluster sample of schools (N = 25) in the region of Odense, Denmark as part of the European Youth Heart Study (EYHS). Nine hundred nineteen participants (529 children, age 9.7 +/- 0.5 yr; 390 adolescents, age 15.5 +/- 0.4 yr) completed a maximal cycle ergometer test to assess cardiorespiratory fitness (Wmax x kg(-1)). Mode of travel to school was investigated by questionnaire. Physical activity was measured in 531 participants using an accelerometer. Regression analyses with robust standard errors and adjustment for confounders (gender, age, body composition (skinfolds), pubertal status, and physical activity) and the cluster sampling procedure were used to compare fitness levels for different travel modes. Multinomial logistic regression was applied to assess the odds for belonging to quartiles of fitness. Children and adolescents who cycled to school were significantly more fit than those who walked or traveled by motorized transport and were nearly five times as likely (OR 4.8; 95% CI 2.8-8.4) to be in the top quartile of fitness. Cycling to school may contribute to higher cardiovascular fitness in young people.

  5. Effects of rehydration and food consumption on salivary flow, pH and buffering capacity in young adult volunteers during ergometer exercise.

    PubMed

    Tanabe, Mai; Takahashi, Toshiyuki; Shimoyama, Kazuhiro; Toyoshima, Yukako; Ueno, Toshiaki

    2013-10-28

    The aim of this study was to investigate the influences of rehydration and food consumption on salivary flow, pH, and buffering capacity during bicycle ergometer exercise in participants. Ten healthy volunteers exercised on a bicycle ergometer at 80% of their maximal heart rate. These sessions lasted for two periods of 20 min separated by 5-min rest intervals. Volunteers were subjected to one of the following conditions: (1) no water (mineral water) or food consumption, (2) only water for rehydration, (3) water and food consumption, (4) a sports drink only for rehydration, and (5) rehydration with a sports drink and food. Statistical significance was assessed using one-way analysis of variance and Dunnett's test (p < 0.05). The salivary pH decreased significantly during and after exercise in conditions 4 and 5. The salivary buffering capacity decreased significantly during exercise and/or after the exercise in conditions 1, 3, 4, and 5. The results showed that salivary pH and buffering capacity decreased greatly depending on the combination of a sports drink and food.

  6. The Effects of Acute Interval Exercise and Strawberry Intake on Postprandial Lipemia.

    PubMed

    O'Doherty, Alasdair F; Jones, Huw S; Sathyapalan, Thozhukat; Ingle, Lee; Carroll, Sean

    2017-11-01

    Raised postprandial triglycerides (TAG) and related oxidative stresses are strongly associated with increased cardiovascular disease risk. Acute exercise and strawberry ingestion independently ameliorate postprandial lipid excursions and oxidative stress. However, the combined effects of these lifestyle interventions are unknown. We investigated whether acute exercise and strawberry consumption improved postprandial responses to an oral fat tolerance test (OFTT) in overweight/obese males. Overweight/obese adult males underwent four separate OFTT (73 g fat, 33 g carbohydrate) with blood sampled at baseline and hourly for 4 h after OFTT. Two OFTT contained 25 g freeze-dried strawberries and two contained strawberry flavoring (placebo). Participants performed 40 min of submaximal high-intensity interval cycling exercise 16 h before one strawberry and one placebo OFTT and rested before the remaining two OFTT. Serum TAG was analyzed, and TAG area under the curve (AUC) and incremental AUC (iAUC) were calculated. Oxidative stress markers were measured at baseline and 4 h. Differences between conditions (strawberry/placebo and exercise/rest) were assessed using repeated-measures ANOVA. Ten males (age = 31.5, interquartile range = 17.8 yr, body mass index = 29.9 ± 1.8 kg·m) completed the study. TAG AUC was 1.5 mmol per 4 h·L lower for the exercise conditions compared with the rest conditions (95% confidence interval [CI] = -2.3 to -0.8 mmol per 4 h·L, P = 0.001). TAG AUC was not different between strawberry and placebo conditions (95% CI = -1.3 to 0.6 mmol per 4 h·L, P = 0.475). TAG iAUC was 0.5 mmol per 4 h·L greater for the strawberry compared with the placebo conditions (95% CI = 0.1 to 1.0 mmol per 4 h·L, P = 0.021). There were no changes in markers of lipid related oxidative stress (P > 0.05). Acute submaximal high-intensity interval cycling exercise appears effective in reducing postprandial lipemia in overweight/obese adult males. However, strawberry ingestion did not improve postprandial TAG.

  7. Correlations between plasma noradrenaline concentrations, antioxidants, and neutrophil counts after submaximal resistance exercise in men

    PubMed Central

    Ramel, A; Wagner, K; Elmadfa, I

    2004-01-01

    Objectives: To investigate noradrenaline concentrations, neutrophil counts, plasma antioxidants, and lipid oxidation products before and after acute resistance exercise. Methods: 17 male participants undertook a submaximal resistance exercise circuit (10 exercises; 75% of the one repetition maximum; mean (SD) exercise time, 18.6 (1.1) minutes). Blood samples were taken before and immediately after exercise and analysed for plasma antioxidants, noradrenaline, neutrophils, and lipid oxidation products. Wilcoxon's signed-rank test and Pearson's correlation coefficient were used for calculations. Results: Neutrophils, noradrenaline, fat soluble antioxidants, and lipid oxidation products increased after exercise. Noradrenaline concentrations were associated with higher antioxidant concentrations. Neutrophils were related to higher concentrations of conjugated dienes. Conclusions: Submaximal resistance exercise increases plasma antioxidants. This might reflect enhanced antioxidant defence in response to the oxidative stress of exercise, though this is not efficient for inhibiting lipid oxidation. The correlation between noradrenaline concentrations and plasma antioxidants suggests a modulating role of the stress hormone. Neutrophils are a possible source of oxidative stress after resistance exercise. PMID:15388566

  8. The effect of six weeks endurance training on dynamic muscular control of the knee following fatiguing exercise.

    PubMed

    Hassanlouei, H; Falla, D; Arendt-Nielsen, L; Kersting, U G

    2014-10-01

    The aim of the study was to examine whether six weeks of endurance training minimizes the effects of fatigue on postural control during dynamic postural perturbations. Eighteen healthy volunteers were assigned to either a 6-week progressive endurance training program on a cycle ergometer or a control group. At week 0 and 7, dynamic exercise was performed on an ergometer until exhaustion and immediately after, the anterior-posterior centre of pressure (COP) sway was analyzed during full body perturbations. Maximal voluntary contractions (MVC) of the knee flexors and extensors, muscle fiber conduction velocity (MFCV) of the vastus lateralis and medialis during sustained isometric knee extension contractions, and power output were measured. Following the training protocol, maximum knee extensor and flexor force and power output increased significantly for the training group with no changes observed for the control group. Moreover, the reduction of MFCV due to fatigue changed for the training group only (from 8.6% to 3.4%). At baseline, the fatiguing exercise induced an increase in the centre of pressure sway during the perturbations in both groups (>10%). The fatiguing protocol also impaired postural control in the control group when measured at week 7. However, for the training group, sway was not altered after the fatiguing exercise when assessed at week 7. In summary, six weeks of endurance training delayed the onset of muscle fatigue and improved the ability to control balance in response to postural perturbations in the presence of muscle fatigue. Results implicate that endurance training should be included in any injury prevention program. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Effects of 16-week high-intensity interval training using upper and lower body ergometers on aerobic fitness and morphological changes in healthy men: a preliminary study

    PubMed Central

    Osawa, Yusuke; Azuma, Koichiro; Tabata, Shogo; Katsukawa, Fuminori; Ishida, Hiroyuki; Oguma, Yuko; Kawai, Toshihide; Itoh, Hiroshi; Okuda, Shigeo; Matsumoto, Hideo

    2014-01-01

    It is unclear whether combined leg and arm high-intensity interval training (HIIT) improves fitness and morphological characteristics equal to those of leg-based HIIT programs. The aim of this study was to compare the effects of HIIT using leg-cycling (LC) and arm-cranking (AC) ergometers with an HIIT program using only LC. Effects on aerobic capacity and skeletal muscle were analyzed. Twelve healthy male subjects were assigned into two groups. One performed LC-HIIT (n=7) and the other LC- and AC-HIIT (n=5) twice weekly for 16 weeks. The training programs consisted of eight to 12 sets of >90% VO2 (the oxygen uptake that can be utilized in one minute) peak for 60 seconds with a 60-second active rest period. VO2 peak, watt peak, and heart rate were measured during an LC incremental exercise test. The cross-sectional area (CSA) of trunk and thigh muscles as well as bone-free lean body mass were measured using magnetic resonance imaging and dual-energy X-ray absorptiometry. The watt peak increased from baseline in both the LC (23%±38%; P<0.05) and the LC–AC groups (11%±9%; P<0.05). The CSA of the quadriceps femoris muscles also increased from baseline in both the LC (11%±4%; P<0.05) and the LC–AC groups (5%±5%; P<0.05). In contrast, increases were observed in the CSA of musculus psoas major (9%±11%) and musculus anterolateral abdominal (7%±4%) only in the LC–AC group. These results suggest that a combined LC- and AC-HIIT program improves aerobic capacity and muscle hypertrophy in both leg and trunk muscles. PMID:25395872

  10. Effects of 16-week high-intensity interval training using upper and lower body ergometers on aerobic fitness and morphological changes in healthy men: a preliminary study.

    PubMed

    Osawa, Yusuke; Azuma, Koichiro; Tabata, Shogo; Katsukawa, Fuminori; Ishida, Hiroyuki; Oguma, Yuko; Kawai, Toshihide; Itoh, Hiroshi; Okuda, Shigeo; Matsumoto, Hideo

    2014-01-01

    It is unclear whether combined leg and arm high-intensity interval training (HIIT) improves fitness and morphological characteristics equal to those of leg-based HIIT programs. The aim of this study was to compare the effects of HIIT using leg-cycling (LC) and arm-cranking (AC) ergometers with an HIIT program using only LC. Effects on aerobic capacity and skeletal muscle were analyzed. Twelve healthy male subjects were assigned into two groups. One performed LC-HIIT (n=7) and the other LC- and AC-HIIT (n=5) twice weekly for 16 weeks. The training programs consisted of eight to 12 sets of >90% VO2 (the oxygen uptake that can be utilized in one minute) peak for 60 seconds with a 60-second active rest period. VO2 peak, watt peak, and heart rate were measured during an LC incremental exercise test. The cross-sectional area (CSA) of trunk and thigh muscles as well as bone-free lean body mass were measured using magnetic resonance imaging and dual-energy X-ray absorptiometry. The watt peak increased from baseline in both the LC (23%±38%; P<0.05) and the LC-AC groups (11%±9%; P<0.05). The CSA of the quadriceps femoris muscles also increased from baseline in both the LC (11%±4%; P<0.05) and the LC-AC groups (5%±5%; P<0.05). In contrast, increases were observed in the CSA of musculus psoas major (9%±11%) and musculus anterolateral abdominal (7%±4%) only in the LC-AC group. These results suggest that a combined LC- and AC-HIIT program improves aerobic capacity and muscle hypertrophy in both leg and trunk muscles.

  11. Effects of prior exercise on the action of insulin-like growth factor I in skeletal muscle

    NASA Technical Reports Server (NTRS)

    Henriksen, E. J.; Louters, L. L.; Stump, C. S.; Tipton, C. M.

    1992-01-01

    Prior exercise increases insulin sensitivity for glucose and system A neutral amino acid transport activities in skeletal muscle. Insulin-like growth factor I (IGF-I) also activates these transport processes in resting muscle. It is not known, however, whether prior exercise increases IGF-I action in muscle. Therefore we determined the effect of a single exhausting bout of swim exercise on IGF-I-stimulated glucose transport activity [assessed by 2-deoxy-D-glucose (2-DG) uptake] and system A activity [assessed by alpha-(methylamino)isobutyric acid (MeAIB) uptake] in the isolated rat epitrochlearis muscle. When measured 3.5 h after exercise, the responses to a submaximal concentration (0.2 nM), but not a maximal concentration (13.3 nM), of insulin for activation of 2-DG uptake and MeAIB uptake were enhanced. In contrast, prior exercise increased markedly both the submaximal (5 nM) and maximal (20 nM) responses to IGF-I for activation of 2-DG uptake, whereas only the submaximal response to IGF-I (3 nM) for MeAIB uptake was enhanced after exercise. We conclude that 1) prior exercise significantly enhances the response to a submaximal concentration of IGF-I for activation of the glucose transport and system A neutral amino acid transport systems in skeletal muscle and 2) the enhanced maximal response for IGF-I action after exercise is restricted to the signaling pathway for activation of the glucose transport system.

  12. The aerobic demand of backstroke swimming, and its relation to body size, stroke technique, and performance.

    PubMed

    Smith, H K; Montpetit, R R; Perrault, H

    1988-01-01

    Few studies have examined the aerobic demand of backstroke swimming, and its relation to body morphology, technique, or performance. The aims of this study were thus to: i) describe the aerobic demand of backstroke swimming in proficient swimmers at high velocities; ii) assess the effects of body size and stroke technique on submaximal and maximal O2 costs, and; iii) test for a relationship between submaximal O2 costs and maximal performance. Sixteen male competitive swimmers were tested during backstroke swimming at velocities from 1.0 to 1.4 m.s-1. Results showed that VO2 increased linearly with velocity (m.s-1) following the equation VO2 = 6.28v - 3.81 (r = 0.77, SEE/Y = 14.9%). VO2 was also related to the subjects' body mass, height, and armspan. Longer distances per stroke were associated with lower O2 costs, and better maximal performances. A significant relation was found between VO2 at 1.1 m.s-1, adjusted for body mass, and 400 m performance (r = -0.78). Submaximal VO2 was also related to reported times for 100 m and 200 m races. Multiple correlation analyses indicated that VO2 at 1.1 m.s-1 and VO2max accounted for up to 78% of the variance in maximal performances. These results suggest that the assessment of submaximal and maximal VO2 during backstroke swimming may be of value in the training and testing programs of competitive swimmers.

  13. Glucose-fructose likely improves gastrointestinal comfort and endurance running performance relative to glucose-only.

    PubMed

    Wilson, P B; Ingraham, S J

    2015-12-01

    This study aimed to determine whether glucose-fructose (GF) ingestion, relative to glucose-only, would alter performance, metabolism, gastrointestinal (GI) symptoms, and psychological affect during prolonged running. On two occasions, 20 runners (14 men) completed a 120-min submaximal run followed by a 4-mile time trial (TT). Participants consumed glucose-only (G) or GF (1.2:1 ratio) beverages, which supplied ∼ 1.3 g/min of carbohydrate. Substrate use, blood lactate, psychological affect [Feeling Scale (FS)], and GI distress were measured. Differences between conditions were assessed using magnitude-based inferential statistics. Participants completed the TT 1.9% (-1.9; -4.2, 0.4) faster with GF, representing a likely benefit. FS ratings were possibly higher and GI symptoms were possibly-to-likely lower with GF during the submaximal period and TT. Effect sizes for GI distress and FS ratings were relatively small (Cohen's d = ∼0.2 to 0.4). GF resulted in possibly higher fat oxidation during the submaximal period. No clear differences in lactate were observed. In conclusion, GF ingestion - compared with glucose-only - likely improves TT performance after 2 h of submaximal running, and GI distress and psychological affect are likely mechanisms. These results apply to runners consuming fluid at 500-600 mL/h and carbohydrate at 1.0-1.3 g/min during running at 60-70% VO2peak . © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Responsive measures to prehabilitation in patients undergoing bowel resection surgery.

    PubMed

    Kim, Do Jun; Mayo, Nancy E; Carli, Franco; Montgomery, David L; Zavorsky, Gerald S

    2009-02-01

    Surgical patients often show physiological and metabolic distress, muscle weakness, and long hospital stays. Physical conditioning might help recovery. We attempted to identify the most responsive measure of aerobic fitness from a four-week pre-surgical aerobic exercise program (prehabilitation) in patients undergoing major bowel resection. Twenty-one subjects randomized two to one (exercise: control) scheduled for colorectal surgery. Fourteen subjects [Body Mass Index (BMI) = 27 +/- 6 kg/m(2); maximal oxygen uptake (VO(2max)) = 22 +/- 10 ml/kg/min] underwent 3.8 +/- 1.2 weeks (27 +/- 8 sessions) of progressive, structured pre-surgical aerobic exercise training at 40 to 65% of heart rate reserve (%HRR). Peak power output was the only maximal measure that was responsive to training [26 +/- 27%, Effects Size (ES) = 0.24; Standardized Response Mean (SRM) = 1.05; p < 0.05]. For the submaximal measures, heart rate and oxygen uptake during submaximal exercise was most responsive to training (decrease by 13% +/- 15%, ES = -0.24; SRM = -0.57; and 7% +/- 6%, ES = -0.40; SRM -0.97; p < 0.05) at an exercise intensity of 76 +/- 47 W. There was no change to maximal or submaximal measures in the control group. The distance walked over six minutes improved in both groups (by approximately 30 m), but the effect size and t-statistic were higher in the exercise group. Heart rate and oxygen uptake during submaximal exercise, and peak power output are the most responsive measures to four weeks of prehabilitation in subjects with low initial fitness.

  15. The Impact of a Submaximal Level of Exercise on Balance Performance in Older Persons

    PubMed Central

    2014-01-01

    Objective. The purpose of this study was to determine the impact of a submaximal level of exercise on balance performance under a variety of conditions. Material and Method. Thirteen community-dwelling older persons with intact foot sensation (age = 66.69 ± 8.17 years, BMI = 24.65 ± 4.08 kg/m2, female, n = 6) volunteered to participate. Subjects' balance performances were measured using the Modified Clinical Test of Sensory Integration of Balance (mCTSIB) at baseline and after test, under four conditions of stance: (1) eyes-opened firm-surface (EOF), (2) eyes-closed firm-surface (ECF), (3) eyes-opened soft-surface (EOS), and (4) eyes-closed soft-surface (ECS). The 6-minute walk test (6MWT) protocol was used to induce the submaximal level of exercise. Data was analyzed using the Wilcoxon Signed-Rank Test. Results. Balance changes during EOF (z = 0.00, P = 1.00) and ECF (z = −1.342, P = 0.180) were not significant. However, balance changes during EOS (z = −2.314, P = 0.021) and ECS (z = −3.089, P = 0.02) were significantly dropped after the 6MWT. Conclusion. A submaximal level of exercise may influence sensory integration that in turn affects balance performance, particularly on an unstable surface. Rehabilitation should focus on designing intervention that may improve sensory integration among older individuals with balance deterioration in order to encourage functional activities. PMID:25383386

  16. Physical activity, aerobic fitness and parental socio-economic position among adolescents: the German Health Interview and Examination Survey for Children and Adolescents 2003–2006 (KiGGS)

    PubMed Central

    2014-01-01

    Background The positive association between parental socio-economic position (PSEP) and health among adolescents may be partly explained by physical activity behaviour. We investigated the associations between physical activity, aerobic fitness and PSEP in a population based sample of German adolescents. Methods 5,251 participants, aged 11–17 years, in the German Health Interview and Examination Survey for Children and Adolescents 2003–2006 (KiGGS) underwent a sub-maximal cycle ergometer test and completed a questionnaire obtaining information on physical activity and media use. The associations between physical activity, media use, aerobic fitness and PSEP were analysed with multivariate logistic regression models for boys and girls separately. Odds ratios (ORs) of PSEP (education, occupation and income) on the outcomes were calculated adjusted for age, region, and other influencing factors. Results Parental education was more strongly associated with the outcome variables than parental occupation and income. After adjusting for age and region, a higher parental education level was associated with better aerobic fitness – with an OR of 1.5 (95% CI 1.2-1.9) for girls whose parents had secondary education and 1.9 (1.4-2.5) for girls whose parents had tertiary education compared to girls whose parents had primary education. The corresponding ORs for boys were 1.3 (1.0-1.6) and 1.6 (1.2-2.1), respectively. Higher parental education level was associated with lower media use: an OR of 2.1 (1.5-3.0) for girls whose parents had secondary education and 2.7 (1.8-4.1) for girls whose parents had primary education compared to girls whose parents had tertiary education. The corresponding ORs for boys were 1.5 (1.2-1.9) and 1.9 (1.5-2.5), respectively. Higher parental education level was associated with a higher physical activity level only among girls: an OR of 1.3 (1.0-1.6) for girls whose parents had secondary education and 1.2 (0.9-1.5) for girls whose parents had tertiary education compared to girls whose parents had primary education. The corresponding ORs for boys were 0.9 (0.8-1.2) and 0.8 (0.6-1.0), respectively. Conclusions Adolescents of parents with low SEP showed a lower level of aerobic fitness and higher levels of media use than adolescents of parents with higher SEP. Health-promotion interventions need to reach adolescents of parents with low PSEP and stimulate physical activity. PMID:24656205

  17. Physical Activity Might Be of Greater Importance for Good Spinal Control Than If You Have Had Pain or Not: A Longitudinal Study.

    PubMed

    Aasa, Ulrika; Lundell, Sara; Aasa, Björn; Westerståhl, Maria

    2015-12-01

    Longitudinal design. A cohort followed in 3 waves of data collection. The aim of the study was to describe the relationships between the performance of 2 tests of spinal control at the age of 52 years and low back pain, physical activity level, and fitness earlier in life, as well as to describe the cross-sectional relationships between these measures. Altered spinal control has been linked to pain; however, other stimuli may also lead to inability to control the movements of the spine. Participants answered questions about physical activity and low back pain, and performed physical fitness tests at the age of 16, 34, and 52 years. The fitness test battery included tests of endurance in the back and abdominal muscles, a submaximal bicycle ergometer test to estimate maximal oxygen uptake, and measurements of hip flexion, thoracic spine flexibility, and anthropometrics. Two tests were aggregated to a physical fitness index. At the age of 52, also 2 tests of spinal control, the standing Waiter's bow (WB) and the supine double leg lower (LL) were performed. Logistic regression analyses showed that higher back muscle endurance at the age of 34 years could positively predict WB performance at 52 years and higher physical fitness at the age of 34 could positively predict LL performance at 52 years. Regarding cross-sectional relationships, an inability to perform the WB correctly was associated with lower physical fitness, flexibility and physical activity, and larger waist circumference. An inability to correctly perform the LL was associated with lower physical fitness. One-year prevalence of pain was not significantly associated with WB or LL test performance. An active life resulting in higher physical fitness is related to better spinal control in middle-aged men and women. This further strengthens the importance of physical activity throughout the life span. 3.

  18. Effects of dietary fat on muscle substrates, metabolism, and performance in athletes.

    PubMed

    Vogt, Michael; Puntschart, Adrian; Howald, Hans; Mueller, Bruno; Mannhart, Christoph; Gfeller-Tuescher, Liliane; Mullis, Primus; Hoppeler, Hans

    2003-06-01

    The present investigation aimed at identifying differences in muscle structural composition, substrate selection, and performance capacity in highly trained endurance athletes as a consequence of consuming a high-fat or a low-fat diet. Eleven duathletes ingested high-fat (53% fat; HF) or high-carbohydrate diets (17% fat; LF) for 5 wk in a randomized crossover design. In m. vastus lateralis, oxidative capacity estimated as volume of mitochondria per volume of muscle fiber (HF: 9.86 +/- 0.36 vs LF: 9.79 +/- 0.52%, mean +/- SE) was not different after the two diet periods. Intramyocellular lipid (IMCL) was significantly increased after HF compared with LF (1.54 +/- 0.27% vs 0.69 +/- 0.09%, P = 0.0076). Glycogen content was lower after HF than after LF, but this difference was not statistically significant (487.8 +/- 38.2 vs 534.4 +/- 32.6 mmol x kg-1 dry weight, P = 0.2454). Maximal power and [OV0312]O(2max) (63.6 +/- 0.9 vs 63.9 +/- 1.2 mL O(2) x min-1 x kg-1 on HF and LF) during an incremental exercise test to exhaustion were not different between the two diet periods. Total work output during a 20-min all-out time trial (298 +/- 6 vs 297 +/- 7 W) on a bicycle ergometer as well as half-marathon running time (80 min 12 s +/- 86 s vs 80 min 24 s +/- 82 s) were not different between HF and LF. Blood lactate concentrations and respiratory exchange ratios (RER) were significantly lower after HF than after LF at rest and during all submaximal exercise loads. Muscle glycogen stores were maintained after a 5-wk high-fat diet period whereas IMCL content was more than doubled. Endurance performance capacity was maintained at moderate to high-exercise intensities with a significantly larger contribution of lipids to total energy turnover.

  19. Aerobic capacity over 16 years in patients with rheumatoid arthritis: Relationship to disease activity and risk factors for cardiovascular disease

    PubMed Central

    Sundström, Björn; Innala, Lena; Rantapää-Dahlqvist, Solbritt; Wållberg-Jonsson, Solveig

    2017-01-01

    The aim of this study was to analyse the change in aerobic capacity from disease onset of rheumatoid arthritis (RA) over 16.2 years, and its associations with disease activity and cardiovascular risk factors. Twenty-five patients (20 f/5 m), diagnosed with RA 1995-2002 were tested at disease onset and after mean 16.2 years. Parameters measured were: sub-maximal ergometer test for aerobic capacity, functional ability, self-efficacy, ESR, CRP and DAS28. At follow-up, cardiovascular risk factors were assessed as blood lipids, glucose concentrations, waist circumference, body mass index (BMI), body composition, pulse wave analysis and carotid intima-media thickness. Aerobic capacity [median (IQR)] was 32.3 (27.9-42.1) ml O2/kg x min at disease onset, and 33.2 (28.4-38.9) at follow-up (p>0.05). Baseline aerobic capacity was associated with follow-up values of: BMI (rs = -.401, p = .047), waist circumference (rs = -.498, p = .011), peripheral pulse pressure (rs = -.415, p = .039) self-efficacy (rs = .420, p = .037) and aerobic capacity (rs = .557, p = .004). In multiple regression models adjusted for baseline aerobic capacity, disease activity at baseline and over time predicted aerobic capacity at follow-up (AUC DAS28, 0-24 months; β = -.14, p = .004). At follow-up, aerobic capacity was inversely associated with blood glucose levels (rs = -.508, p = .016), BMI (rs = -.434, p = .030), body fat% (rs = -.419, p = .037), aortic pulse pressure (rs = -.405, p = .044), resting heart rate (rs = -.424, p = .034) and self-efficacy (rs = .464, p = .020) at follow-up. We conclude that the aerobic capacity was maintained over 16 years. High baseline aerobic capacity associated with favourable measures of cardiovascular risk factors at follow-up. Higher disease activity in early stages of RA predicted lower aerobic capacity after 16.2 years. PMID:29272303

  20. Aerobic capacity over 16 years in patients with rheumatoid arthritis: Relationship to disease activity and risk factors for cardiovascular disease.

    PubMed

    Hörnberg, Kristina; Sundström, Björn; Innala, Lena; Rantapää-Dahlqvist, Solbritt; Wållberg-Jonsson, Solveig

    2017-01-01

    The aim of this study was to analyse the change in aerobic capacity from disease onset of rheumatoid arthritis (RA) over 16.2 years, and its associations with disease activity and cardiovascular risk factors. Twenty-five patients (20 f/5 m), diagnosed with RA 1995-2002 were tested at disease onset and after mean 16.2 years. Parameters measured were: sub-maximal ergometer test for aerobic capacity, functional ability, self-efficacy, ESR, CRP and DAS28. At follow-up, cardiovascular risk factors were assessed as blood lipids, glucose concentrations, waist circumference, body mass index (BMI), body composition, pulse wave analysis and carotid intima-media thickness. Aerobic capacity [median (IQR)] was 32.3 (27.9-42.1) ml O2/kg x min at disease onset, and 33.2 (28.4-38.9) at follow-up (p>0.05). Baseline aerobic capacity was associated with follow-up values of: BMI (rs = -.401, p = .047), waist circumference (rs = -.498, p = .011), peripheral pulse pressure (rs = -.415, p = .039) self-efficacy (rs = .420, p = .037) and aerobic capacity (rs = .557, p = .004). In multiple regression models adjusted for baseline aerobic capacity, disease activity at baseline and over time predicted aerobic capacity at follow-up (AUC DAS28, 0-24 months; β = -.14, p = .004). At follow-up, aerobic capacity was inversely associated with blood glucose levels (rs = -.508, p = .016), BMI (rs = -.434, p = .030), body fat% (rs = -.419, p = .037), aortic pulse pressure (rs = -.405, p = .044), resting heart rate (rs = -.424, p = .034) and self-efficacy (rs = .464, p = .020) at follow-up. We conclude that the aerobic capacity was maintained over 16 years. High baseline aerobic capacity associated with favourable measures of cardiovascular risk factors at follow-up. Higher disease activity in early stages of RA predicted lower aerobic capacity after 16.2 years.

Top