Cardiac Autonomic Function during Submaximal Treadmill Exercise in Adults with Down Syndrome
ERIC Educational Resources Information Center
Mendonca, Goncalo V.; Pereira, Fernando D.; Fernhall, Bo
2011-01-01
This study determined whether the cardiac autonomic function of adults with Down syndrome (DS) differs from that of nondisabled persons during submaximal dynamic exercise. Thirteen participants with DS and 12 nondisabled individuals performed maximal and submaximal treadmill tests with metabolic and heart rate (HR) measurements. Spectral analysis…
Graded Aerobic Treadmill Testing in Adolescent Traumatic Brain Injury Patients.
Cordingley, Dean M; Girardin, Richard; Morissette, Marc P; Reimer, Karen; Leiter, Jeff; Russell, Kelly; Ellis, Michael J
2017-11-01
To examine the safety and tolerability of clinical graded aerobic treadmill testing in recovering adolescent moderate and severe traumatic brain injury (TBI) patients referred to a multidisciplinary pediatric concussion program. We completed a retrospective case series of two moderate and five severe TBI patients (mean age, 17.3 years) who underwent initial Buffalo Concussion Treadmill Testing at a mean time of 71.6 days (range, 55-87) postinjury. Six patients completed one graded aerobic treadmill test each and one patient underwent initial and repeat testing. There were no complications. Five initial treadmill tests were completely tolerated and allowed an accurate assessment of exercise tolerance. Two initial tests were terminated early by the treatment team because of neurological and cardiorespiratory limitations. As a result of testing, two patients were cleared for aerobic exercise as tolerated and four patients were treated with individually tailored submaximal aerobic exercise programs resulting in subjective improvement in residual symptoms and/or exercise tolerance. Repeat treadmill testing in one patient performed after 1 month of treatment with submaximal aerobic exercise prescription was suggestive of improved exercise tolerance. One patient was able to tolerate aerobic exercise following surgery for posterior glottic stenosis. Preliminary results suggest that graded aerobic treadmill testing is a safe, well tolerated, and clinically useful tool to assess exercise tolerance in appropriately selected adolescent patients with TBI. Future prospective studies are needed to evaluate the effect of tailored submaximal aerobic exercise prescription on exercise tolerance and patient outcomes in recovering adolescent moderate and severe TBI patients.
Submaximal Treadmill Exercise Test to Predict VO[subscript 2]max in Fit Adults
ERIC Educational Resources Information Center
Vehrs, Pat R.; George, James D.; Fellingham, Gilbert W.; Plowman, Sharon A.; Dustman-Allen, Kymberli
2007-01-01
This study was designed to develop a single-stage submaximal treadmill jogging (TMJ) test to predict VO[subscript 2]max in fit adults. Participants (N = 400; men = 250 and women = 150), ages 18 to 40 years, successfully completed a maximal graded exercise test (GXT) at 1 of 3 laboratories to determine VO[subscript 2]max. The TMJ test was completed…
NASA Technical Reports Server (NTRS)
Lee, S. M.; Bennett, B. S.; Hargens, A. R.; Watenpaugh, D. E.; Ballard, R. E.; Murthy, G.; Ford, S. R.; Fortney, S. M.
1997-01-01
Adaptation to bed rest or space flight is accompanied by an impaired ability to exercise in an upright position. We hypothesized that a daily, 30-min bout of intense, interval exercise in upright posture or supine against lower body negative pressure (LBNP) would maintain upright exercise heart rate and respiratory responses after bed rest. Twenty-four men (31 +/- 3 yr) underwent 5 d of 6 degree head-down tilt: eight performed no exercise (CON), eight performed upright treadmill exercise (UPex), and eight performed supine treadmill exercise against LBNP at -51.3 +/- 0.4 mm Hg (LBNPex). Submaximal treadmill exercise responses (56, 74, and 85% of VO2peak) were measured pre- and post-bed rest. In CON, submaximal heart rate, respiratory exchange ratio, and ventilation were significantly greater (P < or = 0.05) after bed rest. In UPex and LBNPex, submaximal exercise responses were similar pre- and post-bed rest. Our results indicate that a daily 30-min bout of intense, interval upright exercise training or supine exercise training against LBNP is sufficient to maintain upright exercise responses after 5 d of bed rest. These results may have important implications for the development of exercise countermeasures during space flight.
Prediction of Maximum Oxygen Uptake Using Both Exercise and Non-Exercise Data
ERIC Educational Resources Information Center
George, James D.; Paul, Samantha L.; Hyde, Annette; Bradshaw, Danielle I.; Vehrs, Pat R.; Hager, Ronald L.; Yanowitz, Frank G.
2009-01-01
This study sought to develop a regression model to predict maximal oxygen uptake (VO[subscript 2max]) based on submaximal treadmill exercise (EX) and non-exercise (N-EX) data involving 116 participants, ages 18-65 years. The EX data included the participants' self-selected treadmill speed (at a level grade) when exercise heart rate first reached…
Weiss, D J; Geor, R J; Burger, K
1996-06-01
To determine whether furosemide treatment altered the blood flow properties and serum and RBC electrolyte concentrations of Thoroughbreds during submaximal treadmill exercise. Thoroughbreds were subjected to submaximal treadmill exercise with and without treatment with furosemide (1 mg/kg of body weight, IV). 5 healthy Throughbreds that had raced within the past year and had no history of exercise-induced pulmonary hemorrhage. Venous blood samples were obtained before exercise, at treadmill speeds of 9 and 13 m/s, and 10 minutes after exercise, and hemorheologic and electrolyte test results were determined. Hemorheologic changes 60 minutes after furosemide administration included increased PCV, plasma total protein concentration, whole blood viscosity, mean RBC volume, and RBC potassium concentration, and decreased serum potassium concentration, serum chloride concentration, and RBC chloride concentration. Furosemide treatment attenuated the exercise-associated changes in RBC size, serum sodium concentration, serum potassium concentration, RBC potassium and chloride concentrations, and RBC density; exacerbated exercise-associated increases in whole blood viscosity; and had no effect on RBC filterability. The hemorheologic effects of furosemide probably occurred secondary to total body and transmembrane fluid and electrolyte fluxes and would not improve blood flow properties. The beneficial effects of furosemide treatment in reducing the severity of bleeding in horses with exercise-induced pulmonary hemorrhage cannot be explained by improved blood flow properties.
Muscle adenine nucleotide degradation during submaximal treadmill exercise to fatigue.
Essén-Gustavsson, B; Gottlieb-Vedi, M; Lindholm, A
1999-07-01
The aim was to investigate metabolic response in muscle during submaximal treadmill exercise to fatigue, with a special emphasis on adenine nucleotide degradation products such as inosine monophosphate (IMP) in muscle and hypoxanthine, xanthine and uric acid in plasma. Five Standardbred trotters performed treadmill exercise on 2 occasions, once at 7 m/s and once at 10 m/s. Venous blood samples were taken at rest, during exercise and at the end of exercise. Muscle biopsies were taken before and after exercise and muscle temperature was measured before and after exercise. Running time differed among horses and was 48-58 min at 7 m/s and 10-15.5 min at 10 m/s. Both lactate and uric acid concentrations in plasma showed a gradual increase during exercise at both 7 and 10 m/s. At the end of exercise, values for uric acid were higher and values for lactate lower at 7 m/s compared with at 10 m/s. No marked changes were seen in plasma concentrations of hypoxanthine or xanthine with exercise. Muscle glycogen decreased after exercise at both 7 and 10 m/s with a marked depletion seen in some fibres. Muscle lactate concentrations increased after exercise at both 7 m/s and at 10 m/s. No significant changes were seen in adenosine triphosphate (ATP), ADP and AMP concentrations, whereas IMP concentrations increased after exercise at both 7 m/s and at 10 m/s. The results of this study indicate that AMP deamination occurs with submaximal exercise and that development of fatigue may be related to adenine nucleotide degradation in muscle.
ERIC Educational Resources Information Center
Nielson, David E.; George, James D.; Vehrs, Pat R.; Hager, Ron L.; Webb, Carrie V.
2010-01-01
The purpose of this study was to develop a multiple linear regression model to predict treadmill VO[subscript 2max] scores using both exercise and non-exercise data. One hundred five college-aged participants (53 male, 52 female) successfully completed a submaximal cycle ergometer test and a maximal graded exercise test on a motorized treadmill.…
Daily Supine LBNP Treadmill Exercise Maintains Upright Exercise Capacity During 14 Days of Bed Rest
NASA Technical Reports Server (NTRS)
Ertl, Andy C.; Watenpaugh, D. E.; Hargens, Alan R.; Fortney, S. M.; Lee, S. M. C.; Ballard, R. E.; William, J. M.
1996-01-01
Exposure to microgravity or bed rest reduces upright exercise capacity. Exercise modes, durations, and intensities which will effectively and efficiently counteract such deconditioning are presently unresolved. We that daily supine treadmill interval training with lower body negative pressure (LBNP) would prevent reduction in upright exercise capacity during 14 days of 6 deg. head-down bed rest (BR). Eight healthy male subjects underwent two 14 day BR protocols separated by 3 months. In a crossover design, subjects either remained at strict BR or performed 40 min of daily exercise consisting of supine walking and running at intensities varying from 40-80% of pre-BR upright peak oxygen uptake (VO2). LBNP during supine exercise was used to provide 1.0 to 1.2 times body weight of footward force. An incremental upright treadmill test to measure submaximal and peak exercise responses was given pre- and post-BR. In the non-exercise condition, peak VO2 and time to exhaustion were reduced 16 +/- 4% and 10 +/- 1% (p less than 0.05), respectively, from pre-BR. With LBNP exercise these variables were not significantly different (NS) from pre-BR. During submaximal treadmill speeds after BR, heart rate was higher (11 +/- 11 bpm, p less than 0.05) and respiratory exchange ratio was elevated (p less than 0.05) in the no exercise condition. Both were maintained at pre-BR levels in the LBNP exercise condition (NS from pre-BR). Since this supine treadmill interval training with addition of LBNP maintained upright exercise responses and capacity during BR, this countermeasure may also be effective during space flight.
Cordingley, Dean; Girardin, Richard; Reimer, Karen; Ritchie, Lesley; Leiter, Jeff; Russell, Kelly; Ellis, Michael J
2016-12-01
OBJECTIVE The objectives of this study were 2-fold: 1) to evaluate the safety, tolerability, and clinical use of graded aerobic treadmill testing in pediatric patients with sports-related concussion (SRC), and 2) to evaluate the clinical outcomes of treatment with a submaximal aerobic exercise program in patients with physiological post-concussion disorder (PCD). METHODS The authors conducted a retrospective chart review of pediatric patients (age < 20 years) with SRC who were referred to a multidisciplinary pediatric concussion program and underwent graded aerobic treadmill testing between October 9, 2014, and February 11, 2016. Clinical assessments were carried out by a single neurosurgeon and included clinical history taking, physical examination, and recording specific patient-reported concussion-related symptoms using the Post-Concussion Symptom Scale (PCSS). Graded aerobic treadmill testing using a modified Balke protocol for incremental increases in intensity was used as a diagnostic tool to assess physiological recovery, classify post-concussion syndrome (PCS) subtype, and reassess patients following treatment. Patients with a symptom-limited threshold on treadmill testing (physiological PCD) were treated with an individually tailored submaximal exercise prescription and multidisciplinary targeted therapies. RESULTS One hundred six patients (mean age 15.1 years, range 11-19 years) with SRC underwent a total of 141 treadmill tests. There were no serious complications related to treadmill testing in this study. Overall, 138 (97.9%) of 141 tests were well tolerated and contributed valuable clinical information. Treadmill testing confirmed physiological recovery in 63 (96.9%) of 65 patients tested, allowing successful return to play in 61 (93.8%). Treadmill testing was used to diagnose physiological PCD in 58 patients and cervicogenic PCD in 1 patient. Of the 41 patients with physiological PCD who had complete follow-up and were treated with tailored submaximal exercise prescription, 37 (90.2%) were classified as clinically improved and 33 (80.5%) successfully returned to sporting activities. Patients who did not respond or experienced an incomplete response to submaximal aerobic exercise treatment included 7 patients with migraine headaches and 1 patient with a postinjury psychiatric disorder. CONCLUSIONS Graded aerobic treadmill testing is a safe, tolerable, and clinically valuable tool that can assist in the evaluation and management of pediatric SRC. Future research is needed to confirm the clinical value of this tool in return-to-play decision making. Studies are also needed to understand the pathophysiology of physiological PCD and the effects of targeted treatment.
NASA Technical Reports Server (NTRS)
Nazar, K.; Greenleaf, J. E.; Pohoska, E.; Turlejska, E.; Kaciuba-Uscilko, H.; Kozlowski, S.
1992-01-01
Physiological effects of restricted activity (RA) and subsequent retraining have been studied. Ten male mongrel dogs performed a submaximal exercise endurance test on a treadmill during kennel control, after 8 weeks of cage confinement and after eight weeks of retraining using the same treadmill protocol 1 h/d for 6 d/week. Data obtained show that RA reduces exercise endurance, the effectiveness of exercise thermoregulation, muscle glycogen stores, and the lipolytic response to exercise and to noradrenaline stimulation.
Muscat, Kristina M; Kotrach, Houssam G; Wilkinson-Maitland, Courtney A; Schaeffer, Michele R; Mendonca, Cassandra T; Jensen, Dennis
2015-11-01
In a randomized cross-over study of 15 healthy men aged 20-30 years, we compared physiological and perceptual responses during treadmill and cycle exercise test protocols matched for increments in work rate - the source of increased locomotor muscle metabolic and contractile demands. The rates of O2 consumption and CO2 production were higher at the peak of treadmill versus cycle testing (p ≤ 0.05). Nevertheless, work rate, minute ventilation, tidal volume (VT), breathing frequency (fR), inspiratory capacity (IC), inspiratory reserve volume (IRV), tidal esophageal (Pes,tidal) and transdiaphragmatic pressure swings (Pdi,tidal), peak expiratory gastric pressures (Pga,peak), the root mean square of the diaphragm electromyogram (EMGdi,rms) expressed as a percentage of maximum EMGdi,rms (EMGdi,rms%max), and dyspnea ratings were similar at the peak of treadmill versus cycle testing (p > 0.05). Ratings of leg discomfort were higher at the peak of cycle versus treadmill exercise (p ≤ 0.05), even though peak O2 consumption was lower during cycling. Oxygen consumption, CO2 production, minute ventilation, fR, Pes,tidal, Pdi,tidal and Pga,peak were higher (p ≤ 0.05), while VT, IC, IRV, EMGdi,rms%max, and ratings of dyspnea and leg discomfort were similar (p > 0.05) at all or most submaximal work rates during treadmill versus cycle exercise. Our findings highlight important differences (and similarities) in physiological and perceptual responses at maximal and submaximal work rates during incremental treadmill and cycle exercise testing protocols. The lack of effect of exercise test modality on peak work rate advocates for the use of this readily available parameter to optimize training intensity determination, regardless of exercise training mode.
Heart rate response to submaximal and maximal workloads during running and swimming.
Hauber, C; Sharp, R L; Franke, W D
1997-07-01
The purpose of the present study was to determine if common indexes of exercise intensity, assessed with land-based exercise, could be applied to swimming. Consequently, the heart rate (HR) and oxygen uptake (VO2) responses to submaximal and maximal treadmill running (TR) and free swimming (SW) in 11 fitness swimmers were assessed to determine if the responses to TR could be used to predict those of SW. A maximal graded exercise test using a discontinuous protocol was used for TR, while four graded submaximal 200 yd swims and one 400 yd maximal swim was used for SW. Rest periods were similar for each mode. Significantly lower (p < 0.05) peak values were found in SW compared to TR for both HR (174 +/- 3 vs 183 +/- 3 bt x min(-1)) and VO2 (3.58 +/- 0.18 vs 3.97 +/- 0.22 L x min(-1)), SW vs TR; +/- SE, respectively. However, regression analyses of submaximal HR vs VO2 for each subject revealed similar slopes for TR and SW (30.5 +/- 1.7 vs 29.9 +/- 3.5 bt x L(-1), p > 0.05) and similar intercepts (67.3 +/- 2.6 vs 66.5 +/- 11.5 bt x min(-1), p > 0.05). At the VO2 equivalent to 50% treadmill VO2max, the heart rate predicted from SW did not differ significantly from TR (118 +/- 5 vs 124 +/- 1 bt x min(-1), p > 0.05). This was also true at 85% treadmill VO2max (171 +/- 4 vs 166 +/- 3 bt x min(-1), SW vs TR, respectively; p > 0.05). These data suggest that peak heart rate and oxygen uptake appear to be mode specific, but exercising at a given submaximal oxygen uptake will elicit a similar heart rate regardless of the mode. Thus, target heart rate ranges designed for land-based exercise appear to be appropriate for fitness swimmers during swimming.
Szczegielniak, Jan; Łuniewski, Jacek; Stanisławski, Rafał; Bogacz, Katarzyna; Krajczy, Marcin; Rydel, Marek
2018-01-01
Background The six-minute walk test (6MWT) is considered to be a simple and inexpensive tool for the assessment of functional tolerance of submaximal effort. The aim of this work was 1) to background the nonlinear nature of the energy expenditure process due to physical activity, 2) to compare the results/scores of the submaximal treadmill exercise test and those of 6MWT in pulmonary patients and 3) to develop nonlinear mathematical models relating the two. Methods The study group included patients with the COPD. All patients were subjected to a submaximal exercise test and a 6MWT. To develop an optimal mathematical solution and compare the results of the exercise test and the 6MWT, the least squares and genetic algorithms were employed to estimate parameters of polynomial expansion and piecewise linear models. Results Mathematical analysis enabled to construct nonlinear models for estimating the MET result of submaximal exercise test based on average walk velocity (or distance) in the 6MWT. Conclusions Submaximal effort tolerance in COPD patients can be effectively estimated from new, rehabilitation-oriented, nonlinear models based on the generalized MET concept and the 6MWT. PMID:29425213
Variability in heart rate recovery measurements over 1 year in healthy, middle-aged adults.
Mellis, M G; Ingle, L; Carroll, S
2014-02-01
This study assessed the longer-term (12-month) variability in post-exercise heart rate recovery following a submaximal exercise test. Longitudinal data was analysed for 97 healthy middle-aged adults (74 male, 23 female) from 2 occasions, 12 months apart. Participants were retrospectively selected if they had stable physical activity habits, submaximal treadmill fitness and anthropometric measurements between the 2 assessment visits. A submaximal Bruce treadmill test was performed to at least 85% age-predicted maximum heart rate. Absolute heart rate and Δ heart rate recovery (change from peak exercise heart rate) were recorded for 1 and 2 min post-exercise in an immediate supine position. Heart rate recovery at both time-points was shown to be reliable with intra-class correlation coefficient values ≥ 0.714. Absolute heart rate 1-min post-exercise showed the strongest agreement between repeat tests (r = 0.867, P < 0.001). Lower coefficient of variation (≤ 10.2%) and narrower limits of agreement were found for actual heart rate values rather than Δ heart rate recovery, and for 1-min rather than 2-min post-exercise recovery time points. Log-transformed values generated better variability with acceptable coefficient of variation for all measures (2.2-10%). Overall, 1 min post-exercise heart rate recovery data had least variability over the 12-month period in apparently healthy middle-aged adults. © Georg Thieme Verlag KG Stuttgart · New York.
Resnick, Portia B
2016-03-01
Postexercise massage can be used to help promote recovery from exercise on the cellular level, as well as systemically by increasing parasympathetic activity. No studies to date have been done to assess the effects of massage on postexercise metabolic changes, including excess postexercise oxygen consumption (EPOC). The purpose of this study was to compare the effects of massage recovery and resting recovery on a subject's heart rate variability and selected metabolic effects following a submaximal treadmill exercise session. One healthy 24-year-old female subject performed 30 minutes of submaximal treadmill exercise prior to resting or massage recovery sessions. Metabolic data were collected throughout the exercise sessions and at three 10 minute intervals postexercise. Heart rate variability was evaluated for 10 minutes after each of two 30-minute recovery sessions, either resting or massage. Heart rate returned to below resting levels (73 bpm) with 30 and 60 minutes of massage recovery (72 bpm and 63 bpm, respectively) compared to 30 and 60 minutes of resting recovery (77 bpm and 74 bpm, respectively). Heart rate variability data showed a more immediate shift to the parasympathetic state following 30 minutes of massage (1.152 LF/HF ratio) versus the 30-minute resting recovery (6.91 LF/HF ratio). It took 60 minutes of resting recovery to reach similar heart rate variability levels (1.216 LF/HF) found after 30 minutes of massage. Ventilations after 30 minutes of massage recovery averaged 7.1 bpm compared to 17.9 bpm after 30 minutes of resting recovery. No differences in EPOC were observed through either the resting or massage recovery based on the metabolic data collected. Massage was used to help the subject shift into parasympathetic activity more quickly than rest alone following a submaximal exercise session.
Westover, Arthur N; Nakonezny, Paul A; Adinoff, Bryon; Brown, Edson Sherwood; Halm, Ethan A
2016-12-01
Inappropriately decreased heart rate (HR) during peak exercise and delayed heart rate recovery (HRR) has been observed in adult users of stimulant medications who underwent exercise testing, suggesting autonomic adaptation to chronic stimulant exposure. In the general population, this pattern of hemodynamic changes is associated with increased mortality risk. Whether the same pattern of hemodynamic changes might be observed in adolescent stimulant medication users undergoing exercise testing is unknown. Among adolescents (aged 12 to 20 years) that underwent submaximal exercise treadmill testing from 1999 to 2004 in the National Health and Nutrition Examination Survey, propensity score matching of stimulant medication users (n = 89) to matched nonusers (n = 267) was conducted. Testing consisted of a 3-minute warm-up period, two 3-minute exercise stages, and three 1-minute recovery periods, with the goal of reaching 75% of the predicted HR maximum. A linear mixed model analysis was used to evaluate the effect of stimulant exposure on each of the exercise outcomes. Stimulant medication users compared to matched nonusers had a lower peak HR in Stage 2 (154.9 vs. 158.3 beats/minute [bpm], p = 0.055) and lower HR at 1-minute recovery (142.2 vs. 146.4 bpm, p = 0.030). However, submaximal HRR at 1 minute did not differ between stimulant users and matched nonusers (13.0 vs. 12.1 bpm, p = 0.38). Duration of stimulant use was not related to these outcomes. Adolescent stimulant medication users compared to matched nonusers demonstrated a trend toward decreased HR during submaximal exercise, which is potential evidence of chronic adaptation with stimulant exposure. There was no evidence for delayed HRR in this study, and thus, no evidence for decreased parasympathetic activity during initial exercise recovery. Exercise testing outcomes may have utility in future research as a method to assess stimulant-associated autonomic nervous system adaptations.
McCole, Steve D; Shuldiner, Alan R; Brown, Michael D; Moore, Geoffrey E; Ferrell, Robert E; Wilund, Kenneth R; Huberty, Andrea; Douglass, Larry W; Hagberg, James M
2004-02-01
We sought to determine whether common genetic variations at the beta2 (beta2-AR, Gln27Glu) and beta3 (beta3-AR, Trp64Arg) adrenergic receptor gene loci were associated with cardiovascular (CV) hemodynamics during maximal and submaximal exercise. CV hemodynamics were assessed in 62 healthy postmenopausal women (20 sedentary, 22 physically active, and 20 endurance athletes) during treadmill exercise at 40, 60, 80, and 100% maximal O2 uptake using acetylene rebreathing to quantify cardiac output. The beta2-AR genotype and habitual physical activity (PA) levels interacted to significantly associate with arteriovenous O2 difference (a-vDO2) during submaximal exercise (P = 0.05), with the highest submaximal exercise a-vDO2 in sedentary women homozygous for the beta2-AR Gln allele and no genotype-dependent differences in submaximal exercise a-vDO2 in physically active and athletic women. The beta2-AR genotype also was independently associated with a-vDO2 during submaximal (P = 0.004) and approximately 100% maximal O2 uptake exercise (P = 0.006), with a 1.2-2 ml/100 ml greater a-vDO2 in the Gln/Gln than in the Glu/Glu genotype women. The beta3-AR genotype, independently or interacting with habitual PA levels, was not significantly associated with any CV hemodynamic variables during submaximal or maximal exercise. Thus it appears that the beta2-AR genotype, both independently and interacting with habitual PA levels, is significantly associated with a-vDO2 during exercise in postmenopausal women, whereas the beta3-AR genotype does not appear to be associated with any maximal or submaximal exercise CV hemodynamic responses in postmenopausal women.
Zurawlew, M J; Walsh, N P; Fortes, M B; Potter, C
2016-07-01
We examined whether daily hot water immersion (HWI) after exercise in temperate conditions induces heat acclimation and improves endurance performance in temperate and hot conditions. Seventeen non-heat-acclimatized males performed a 6-day intervention involving a daily treadmill run for 40 min at 65% V̇O2max in temperate conditions (18 °C) followed immediately by either HWI (N = 10; 40 °C) or thermoneutral (CON, N = 7; 34 °C) immersion for 40 min. Before and after the 6-day intervention, participants performed a treadmill run for 40 min at 65% V̇O2max followed by a 5-km treadmill time trial (TT) in temperate (18 °C, 40% humidity) and hot (33 °C, 40% humidity) conditions. HWI induced heat acclimation demonstrated by lower resting rectal temperature (Tre , mean, -0.27 °C, P < 0.01), and final Tre during submaximal exercise in 18 °C (-0.28 °C, P < 0.01) and 33 °C (-0.36 °C, P < 0.01). Skin temperature, Tre at sweating onset and RPE were lower during submaximal exercise in 18 °C and 33 °C after 6 days in HWI (P < 0.05). Physiological strain and thermal sensation were also lower during submaximal exercise in 33 °C after 6 days in HWI (P < 0.05). HWI improved TT performance in 33 °C (4.9%, P < 0.01) but not in 18 °C. Thermoregulatory measures and performance did not change in CON. Hot water immersion after exercise on 6 days presents a simple, practical, and effective heat acclimation strategy to improve endurance performance in the heat. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
[Acute physical exercise increases homocysteine concentrations in young trained male subjects].
Maroto-Sánchez, Beatriz; Valtueña, Jara; Albers, Ulrike; Benito, Pedro J; González-Gross, Marcela
2013-01-01
High levels of homocysteine (Hcy) have been identified as a cardiovascular risk factor. Regarding physical exercise, the results are contradictory. The aim of this study was to determine the influence of maximal intensity exercise and submaximal constant exercise on total serum homocysteine concentrations (tHcy) and other related parameters. Ten physically active male subjects (mean age: 23.51 ± 1.84), performed two treadmill tests, a maximal test and a stable submaximal test at an intensity of 65% of maximal oxygen uptake (VO2max). Serum concentrations of tHcy, Folate, Vitamin B12 and creatinine were analysed before and after each test. Significant increase in serum tHcy concentrations after the maximal (p < 0.05) and submaximal (p < 0.01) tests were observed. Folate and vitamin B12 concentrations also increased significantly after both tests (p < 0.05). Creatinine levels increased only after the maximal test (p < 0.001). A statistically significant inverse relationship was found between folate and tHcy concentrations (p < 0.05) at all the measurement points. THcy levels increased significantly after acute exercise in both maximum and submaximal intensity exercises. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.
ERIC Educational Resources Information Center
Hetzler, Ronald K.; And Others
1986-01-01
This study examined the effect of preliminary walking on free fatty acid responses and substrate utilization during a 40-minute treadmill run by experienced male distance runners. Conclusions are presented. (Author/MT)
Resnick, Portia B.
2016-01-01
Introduction Postexercise massage can be used to help promote recovery from exercise on the cellular level, as well as systemically by increasing parasympathetic activity. No studies to date have been done to assess the effects of massage on postexercise metabolic changes, including excess postexercise oxygen consumption (EPOC). The purpose of this study was to compare the effects of massage recovery and resting recovery on a subject’s heart rate variability and selected metabolic effects following a submaximal treadmill exercise session. Methods One healthy 24-year-old female subject performed 30 minutes of submaximal treadmill exercise prior to resting or massage recovery sessions. Metabolic data were collected throughout the exercise sessions and at three 10 minute intervals postexercise. Heart rate variability was evaluated for 10 minutes after each of two 30-minute recovery sessions, either resting or massage. Results Heart rate returned to below resting levels (73 bpm) with 30 and 60 minutes of massage recovery (72 bpm and 63 bpm, respectively) compared to 30 and 60 minutes of resting recovery (77 bpm and 74 bpm, respectively). Heart rate variability data showed a more immediate shift to the parasympathetic state following 30 minutes of massage (1.152 LF/HF ratio) versus the 30-minute resting recovery (6.91 LF/HF ratio). It took 60 minutes of resting recovery to reach similar heart rate variability levels (1.216 LF/HF) found after 30 minutes of massage. Ventilations after 30 minutes of massage recovery averaged 7.1 bpm compared to 17.9 bpm after 30 minutes of resting recovery. Conclusions No differences in EPOC were observed through either the resting or massage recovery based on the metabolic data collected. Massage was used to help the subject shift into parasympathetic activity more quickly than rest alone following a submaximal exercise session. PMID:26977215
Roltsch, M H; Brown, M D; Hand, B D; Kostek, M C; Phares, D A; Huberty, A; Douglass, L W; Ferrell, R E; Hagberg, J M
2005-10-01
The ACE I/D polymorphism has been shown to interact with habitual physical activity levels in postmenopausal women to associate with submaximal and with maximal exercise hemodynamics. This investigation was designed to assess the potential relationships between ACE genotype and oxygen consumption (VO2), cardiac output (Q), stroke volume (SV), heart rate (HR), blood pressure (BP), total peripheral resistance (TPR), and arteriovenous oxygen difference ([a-v]O2 diff) during submaximal and maximal exercise in young sedentary and endurance-trained women. Seventy-seven 18-35-yr-old women underwent a maximal exercise test and a number of cardiac output tests on a treadmill using the acetylene rebreathing technique. ACE genotype was not significantly associated with VO2max (II 41.4+/-1.2, ID 39.8+/-0.9, DD 39.8+/-1.1 ml/kg/min, p=ns) or maximal HR (II 191+/-2, ID 191+/-1, DD 193+/-2 bpm, p=ns). In addition, systolic and diastolic BP, (a-v)O2 diff, TPR, SV, and Q during maximal exercise were not significantly associated with ACE genotype. During submaximal exercise, SBP, Q, SV, HR, TPR, and (a-v)O2 diff were not significantly associated with ACE genotype. However, the association between diastolic BP during submaximal exercise and ACE genotype approached significance (p=0.08). In addition, there were no statistically significant interactions between ACE genotype and habitual physical activity (PA) levels for any of the submaximal or the maximal exercise hemodynamic variables. We conclude that the ACE I/D polymorphism was not associated, independently or interacting with habitual PA levels, submaximal, or maximal cardiovascular hemodynamics in young women.
Jalil, Jorge E; Córdova, Samuel; Ocaranza, Marí a; Schumacher, Erwin; Braun, Sandra; Chamorro, Gastón; Fardella, Carlos; Lavandero, Sergio
2002-08-01
The insertion/deletion ACE polymorphism (ACE I/D) regulates different levels of circulating and tissue ACE activities, which may induce diverse adrenergic responses to physiological stimuli. The aim of this study was to evaluate the influence of the ACE I/D polymorphism on the adrenergic response to isotonic exercise in middle-aged hypertensive patients. Submaximal exercise (on a treadmill, using the Naughton protocol at 75% of maximal heart rate) was performed in 34 patients homozygous for the ACE I/D polymorphism (ACE II and ACE DD) with untreated essential hypertension (II = 19, DD = 15). Plasma venous adrenaline and noradrenaline were measured at rest and at submaximal exercise. Plasma ACE activity was significantly higher in the hypertensive patients carrying the ACE DD genotype compared with the ACE II group. Left atrium size, as well as LV dimensions, mass, and function, were similar in both groups. Total exercise time, baseline and 75% maximal heart rate (MHR) and blood pressure were similar in both groups. Baseline plasma adrenaline and noradrenaline levels were similar in both groups and increased significantly (p<0.05) by ca. 300% at submaximal exercise without differences between groups. The presence of the D allele on the ACE gene in middle-aged hypertensive patients determines higher circulating ACE activity but not increased sympathetic activity in response to submaximal exercise.
Angiotensinogen M235T polymorphism associates with exercise hemodynamics in postmenopausal women.
McCole, Steve D; Brown, Michael D; Moore, Geoffrey E; Ferrell, Robert E; Wilund, Kenneth R; Huberty, Andrea; Douglass, Larry W; Hagberg, James M
2002-08-14
We sought to determine whether the M235T angiotensinogen (AGT) polymorphism, either interacting with habitual physical activity (PA) levels or independently, was associated with cardiovascular (CV) hemodynamics during maximal and submaximal exercise. Sixty-one healthy postmenopausal women (16 sedentary, 21 physically active, and 24 endurance athletes) had heart rate (HR), blood pressure (BP), cardiac output, stroke volume (SV), total peripheral resistance (TPR), and arteriovenous O2 difference (a-vDO2) assessed during 40, 60, 80, and approximately 100% of VO2 max treadmill exercise. VO2 max did not differ among AGT genotype groups; however, maximal HR was 14 beats/min higher in AGT TT than MM genotype women (P < 0.05). AGT TT genotype women also had 19 beats/min higher HR during approximately 100% VO2 max exercise than AGT MM genotype women (P = 0.008). AGT genotype also interacted with habitual PA levels to associate with systolic BP and a-vDO2 during approximately 100% VO2 max exercise (both P < 0.01). AGT TT genotype women had 11 beats/min higher HR during submaximal exercise than MM genotype women (P < 0.05). AGT genotype interacted with habitual PA levels to associate with systolic BP during submaximal exercise (P = 0.009). AGT genotype, independently or interacting with habitual PA levels, did not associate significantly with diastolic BP, cardiac output, SV, or TPR during maximal or submaximal exercise. Thus this common genetic variant in the renin-angiotensin system appears to associate, both interactively with habitual PA levels and independently, with HR, systolic BP, and a-vDO2 responses to maximal and submaximal exercise in postmenopausal women.
Health-related physical fitness assessment in a community-based cancer rehabilitation setting.
Kirkham, Amy A; Neil-Sztramko, Sarah E; Morgan, Joanne; Hodson, Sara; Weller, Sarah; McRae, Tasha; Campbell, Kristin L
2015-09-01
Assessment of physical fitness is important in order to set goals, appropriately prescribe exercise, and monitor change over time. This study aimed to determine the utility of a standardized physical fitness assessment for use in cancer-specific, community-based exercise programs. Tests anticipated to be feasible and suitable for a community setting and a wide range of ages and physical function were chosen to measure body composition, aerobic fitness, strength, flexibility, and balance. Cancer Exercise Trainers/Specialists at cancer-specific, community-based exercise programs assessed new clients (n = 60) at enrollment, designed individualized exercise programs, and then performed a re-assessment 3-6 months later (n = 34). Resting heart rate, blood pressure, body mass index, waist circumference, handgrip strength, chair stands, sit-and-reach, back scratch, single-leg standing, and timed up-and-go tests were considered suitable and feasible tests/measures, as they were performed in most (≥88 %) participants. The ability to capture change was also noted for resting blood pressure (-7/-5 mmHg, p = 0.02), chair stands (+4, p < 0.01), handgrip strength (+2 kg, p < 0.01), and sit-and-reach (+3 cm, p = 0.03). While the submaximal treadmill test captured a meaningful improvement in aerobic fitness (+62 s, p = 0.17), it was not completed in 33 % of participants. Change in mobility, using the timed up-and-go was nominal and was not performed in 27 %. Submaximal treadmill testing, handgrip dynamometry, chair stands, and sit-and-reach tests were feasible, suitable, and provided meaningful physical fitness information in a cancer-specific, community-based, exercise program setting. However, a shorter treadmill protocol and more sensitive balance and upper body flexibility tests should be investigated.
Cardiorespiratory response to exercise testing in individuals with Alzheimer's disease.
Billinger, Sandra A; Vidoni, Eric D; Honea, Robyn A; Burns, Jeffrey M
2011-12-01
To examine exercise testing response in Alzheimer's disease (AD) and possible disease-related change over time. Retrospective assessment of a 2-year observational study. University medical center. Individuals without dementia (n=50) and with AD (n=31). Not applicable. Participants underwent a clinical dementia evaluation and performed an incremental exercise test using a treadmill and the modified Bruce protocol at baseline and at a 2-year follow-up. We examined oxygen consumption, minute ventilation, heart rate, and ventilatory equivalents for oxygen and carbon dioxide at submaximal and peak exercise intensities to determine whether the measures were different between groups or over time. Participants with AD and those without dementia performed similarly at submaximal effort, and both groups showed similar changes in exercise response over 2 years. However, nondemented individuals had consistently higher values of oxygen consumption (P≤.02) and minute ventilation at peak effort at baseline (P=.003). Individuals with AD demonstrate physiologic responses to submaximal exercise effort that are not significantly different than individuals without dementia. However, differences are apparent at the extreme of effort. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Carriker, Colin R; Vaughan, Roger A; VanDusseldorp, Trisha A; Johnson, Kelly E; Beltz, Nicholas M; McCormick, James J; Cole, Nathan H; Gibson, Ann L
2016-12-31
to examine the effect of a 4-day NO3- loading protocol on the submaximal oxygen cost of both low fit and high fit participants at five different exercise intensities. participants were initially assigned to a placebo (PL; negligible NO3-) or inorganic nitrate-rich (NR; 6.2 mmol nitrate/day) group; double-blind, placebo-controlled, crossover. Participants completed three trials (T1, T2 and T3). T1 included a maximal aerobic capacity (VO2max) treadmill test. A 6-day washout, minimizing nitrate consumption, preceded T2. Each of the four days prior to T2 and T3, participants consumed either PL or NR; final dose 2.5 hours prior to exercise. A 14-day washout followed T2. T2 and T3 consisted of 5-minute submaximal treadmill bouts (45, 60, 70, 80 and 85% VO2max) determined during T1. Low fit nitrate-supplemented participants consumed less oxygen (p<0.05) at lower workloads (45% and 60% VO2max) compared to placebo trials; changes not observed in high fit participants. The two lowest intensity workloads of 45 and 60% VO2max revealed the greatest correlation (r=0.54, p=0.09 and r=0.79, p<0.05; respectively). No differences were found between conditions for heart rate, respiratory exchange ratio or rating of perceived exertion for either fitness group. Nitrate consumption promotes reduced oxygen consumption at lower exercise intensities in low fit, but not high fit males. Lesser fit individuals may receive greater benefit than higher fit participants exercising at intensities <60% VO2max.
Cerebral Blood Flow Responses to Aquatic Treadmill Exercise.
Parfitt, Rhodri; Hensman, Marianne Y; Lucas, Samuel J E
2017-07-01
Aquatic treadmills are used as a rehabilitation method for conditions such as spinal cord injury, osteoarthritis, and stroke, and can facilitate an earlier return to exercise training for athletes. However, their effect on cerebral blood flow (CBF) responses has not been examined. We tested the hypothesis that aquatic treadmill exercise would augment CBF and lower HR compared with land-based treadmill exercise. Eleven participants completed incremental exercise (crossover design) starting from walking pace (4 km·h, immersed to iliac crest [aquatic], 6 km·h [land]) and increasing 1 km·h every 2 min up to 10 km·h for aquatic (maximum belt speed) or 12 km·h for land. After this, participants completed two 2-min bouts of exercise immersed to midthigh and midchest at constant submaximal speed (aquatic), or were ramped to exhaustion (land; increased gradient 2° every min). Middle cerebral artery blood flow velocity (MCAv) and HR were measured throughout, and the initial 10 min of each protocol and responses at each immersion level were compared. Compared with land-based treadmill, MCAvmean increased more from baseline for aquatic exercise (21% vs 12%, P < 0.001), while being associated with lower overall HR (pooled difference, 11 bpm; P < 0.001). MCAvmean increased similarly during aquatic walking compared with land-based moderate intensity running (~10 cm·s, P = 0.56). Greater water immersion lowered HR (139 vs 178 bpm for midchest vs midthigh), whereas MCAvmean remained constant (P = 0.37). Findings illustrate the potential for aquatic treadmill exercise to enhance exercise-induced elevations in CBF and thus optimize shear stress-mediated adaptation of the cerebrovasculature.
Cardiorespiratory response to exercise testing in individuals with Alzheimer’s disease
Billinger, Sandra A.; Vidoni, Eric D.; Honea, Robyn A.; Burns, Jeffrey M.
2011-01-01
Objective To exercise testing in AD and possible disease-related change over time. Though physical activity and fitness are receiving increased attention as a possible adjunct treatment for Alzheimer’s disease (AD), relatively little work has been done characterizing their physiologic response to exercise Design Retrospective assessment of a 2-year, observational study Setting University medical center Participants 50 nondemented individuals and 31 with AD Interventions None Main Outcome Measures Participants underwent a clinical dementia evaluation and performed an incremental exercise test using a treadmill and the modified Bruce protocol at baseline and at a two year follow-up. We examined oxygen consumption, minute ventilation, heart rate and ventilatory equivalents for oxygen and carbon dioxide at submaximal and peak exercise intensities to determine if the measures were different between groups or over time. Results AD and nondemented participants performed similarly at submaximal effort and both groups showed similar change in exercise response over 2 years. However, nondemented individuals had consistently higher values of oxygen consumption (p≤0.02) and minute ventilation at peak effort at baseline (p=0.003). Conclusions Individuals with AD demonstrate physiologic responses to submaximal exercise effort that are not significantly different than individuals without dementia. However, differences are apparent at the extreme of effort. PMID:22133248
Crowther, Robert G; Leicht, Anthony S; Spinks, Warwick L; Sangla, Kunwarjit; Quigley, Frank; Golledge, Jonathan
2012-01-01
The purpose of this study was to examine the effects of a 6-month exercise program on submaximal walking economy in individuals with peripheral arterial disease and intermittent claudication (PAD-IC). Participants (n = 16) were randomly allocated to either a control PAD-IC group (CPAD-IC, n = 6) which received standard medical therapy, or a treatment PAD-IC group (TPAD-IC; n = 10) which took part in a supervised exercise program. During a graded treadmill test, physiological responses, including oxygen consumption, were assessed to calculate walking economy during submaximal and maximal walking performance. Differences between groups at baseline and post-intervention were analyzed via Kruskal-Wallis tests. At baseline, CPAD-IC and TPAD-IC groups demonstrated similar walking performance and physiological responses. Postintervention, TPAD-IC patients demonstrated significantly lower oxygen consumption during the graded exercise test, and greater maximal walking performance compared to CPAD-IC. These preliminary results indicate that 6 months of regular exercise improves both submaximal walking economy and maximal walking performance, without significant changes in maximal walking economy. Enhanced walking economy may contribute to physiological efficiency, which in turn may improve walking performance as demonstrated by PAD-IC patients following regular exercise programs.
Lewis, Nathan A; Towey, Colin; Bruinvels, Georgie; Howatson, Glyn; Pedlar, Charles R
2016-10-01
Exercise causes alterations in redox homeostasis (ARH). Measuring ARH in elite athletes may aid in the identification of training tolerance, fatigued states, and underperformance. To the best of our knowledge, no studies have examined ARH in elite male and female distance runners at sea level. The monitoring of ARH in athletes is hindered by a lack of reliable and repeatable in-the-field testing tools and by the rapid turnaround of results. We examined the effects of various exercise intensities on ARH in healthy (non-over-reached) elite male and female endurance athletes using clinical point-of-care (POC) redox tests, referred to as the free oxygen radical test (FORT) (pro-oxidant) and the free oxygen radical defence (FORD) (antioxidant). Elite male and female endurance athletes (n = 22) completed a discontinuous incremental treadmill protocol at submaximal running speeds and a test to exhaustion. Redox measures were analyzed via blood sampling at rest, warm-up, submaximal exercise, exhaustion, and recovery. FORD was elevated above rest after submaximal and maximal exercise, and recovery (p < 0.05, d = 0.87-1.55), with only maximal exercise and recovery increasing FORT (p < 0.05, d = 0.23-0.32). Overall, a decrease in oxidative stress in response to submaximal and maximal exercise was evident (p < 0.05, d = 0.46). There were no gender differences for ARH (p > 0.05). The velocity at lactate threshold (vLT) correlated with the FORD response at rest, maximal exercise, and recovery (p < 0.05). Using the clinical POC redox test, an absence of oxidative stress after exhaustive exercise is evident in the nonfatigued elite endurance athlete. The blood antioxidant response (FORD) to exercise appears to be related to a key marker of aerobic fitness: vLT.
Brown, Gregory A; Cook, Chad M; Krueger, Ryan D; Heelan, Kate A
2010-06-01
Treadmills (TM) and elliptical devices (EL) are popular forms of exercise equipment. The differences in the training stimulus presented by TM or EL are unknown. The purpose of this investigation was to evaluate oxygen consumption, energy expenditure, and heart rate on a TM or EL when persons exercise at the same perceived level of exertion. After measuring peak oxygen uptake (VO2peak) in 9 male and 9 female untrained college-aged participants, the subjects performed 2 separate 15-minute submaximal exercise tests on the TM and EL at a rating of perceived exertion (RPE) of 12-13. VO2peak was higher (p<0.05) in the males (48.6+/-1.5 vs. 45.2+/-1.6 ml/kg/min) than the females (41.7+/-1.8 vs. 38.8+/-2.2 ml/kg/min) for both TM and EL (means+/-standard error of the mean; for TM vs. EL respectively), but there were no differences in the measured VO2peak between TM or EL. During submaximal exercise there were no differences in RPE between TM and EL. Total oxygen consumption was higher (p<0.05) in males (30.8+/-2.2 vs. 34.9+/-2.2 L) than females (24.1+/-1.8 vs. 26.9+/-1.7 L) but did not differ between TM and EL. Energy expenditure was not different between TM (569+/-110 J) or EL (636+/-120 kJ). Heart rate was higher (p<0.05) on the EL (164+/-16 beats/min) compared to the TM (145+/-15 beats/min). When subjects exercise at the same RPE on TM or EL, oxygen consumption and energy expenditure are similar in spite of a higher heart rate on the EL. These data indicate that during cross training or noncompetition-specific exercise, an elliptical device is an acceptable alternative to a treadmill.
Savitha, D; Sejil, T V; Rao, Shwetha; Roshan, C J; Roshan, C J
2013-01-01
The purpose of the study was to investigate the effect of vocal and instrumental music on various physiological parameters during submaximal exercise. Each subject underwent three sessions of exercise protocol without music, with vocal music, and instrumental versions of same piece of music. The protocol consisted of 10 min treadmill exercise at 70% HR(max) and 20 min of recovery. Minute to minute heart rate and breath by breath recording of respiratory parameters, rate of energy expenditure and perceived exertion levels were measured. Music, irrespective of the presence or absence of lyrics, enabled the subjects to exercise at a significantly lower heart rate and oxygen consumption, reduced the metabolic cost and perceived exertion levels of exercise (P < 0.05). There was faster recovery of systolic and diastolic blood pressures and exertion levels during the post exercise period. Music having a relaxant effect could have probably increased the parasympathetic activation leading to these effects.
The effects of respiratory-muscle training on exercise in older women.
Watsford, Mark; Murphy, Arona
2008-07-01
This research examined the effects of respiratory-muscle (RM) training on RM function and exercise performance in older women. Twenty-six women (60-69 yr of age) were assessed for spirometry, RM strength (maximal inspiratory and expiratory pressure), inspiratory-muscle endurance, and walking performance to a perceived exertion rating of "hard." They were randomly allocated to a threshold RM training group (RMT) or a nonexercising control group (CON) for 8 wk.After training, the 22% (inspiratory) and 30% (expiratory) improvements in RM strength in the RMT group were significantly higher than in the CON group (p < .05). The RMT group also displayed several significant performance improvements, including improved within-group treadmill performance time (12%) and reductions in submaximal heart rate (5%), percentage of maximum voluntary ventilation (16%), and perceived exertion for breathing (8%). RM training appears to improve RM function in older women. Furthermore, these improvements appear to be related to improved submaximal exercise performance.
Ratter, Julia; Radlinger, Lorenz; Lucas, Cees
2014-09-01
Are submaximal and maximal exercise tests reliable, valid and acceptable in people with chronic pain, fibromyalgia and fatigue disorders? Systematic review of studies of the psychometric properties of exercise tests. People older than 18 years with chronic pain, fibromyalgia and chronic fatigue disorders. Studies of the measurement properties of tests of physical capacity in people with chronic pain, fibromyalgia or chronic fatigue disorders were included. Studies were required to report: reliability coefficients (intraclass correlation coefficient, alpha reliability coefficient, limits of agreements and Bland-Altman plots); validity coefficients (intraclass correlation coefficient, Spearman's correlation, Kendal T coefficient, Pearson's correlation); or dropout rates. Fourteen studies were eligible: none had low risk of bias, 10 had unclear risk of bias and four had high risk of bias. The included studies evaluated: Åstrand test; modified Åstrand test; Lean body mass-based Åstrand test; submaximal bicycle ergometer test following another protocol other than Åstrand test; 2-km walk test; 5-minute, 6-minute and 10-minute walk tests; shuttle walk test; and modified symptom-limited Bruce treadmill test. None of the studies assessed maximal exercise tests. Where they had been tested, reliability and validity were generally high. Dropout rates were generally acceptable. The 2-km walk test was not recommended in fibromyalgia. Moderate evidence was found for reliability, validity and acceptability of submaximal exercise tests in patients with chronic pain, fibromyalgia or chronic fatigue. There is no evidence about maximal exercise tests in patients with chronic pain, fibromyalgia and chronic fatigue. Copyright © 2014. Published by Elsevier B.V.
Maciejczyk, Marcin; Wiecek, Magdalena; Szymura, Jadwiga; Szygula, Zbigniew
2016-01-01
One of the new products which can be used to increase physical activity and energy expenditure is the Torqway vehicle, powered by the upper limbs. The aim of this study was to (1) assess the usefulness and repeatability of the Torqway vehicle for physical exercise, (2) compare energy expenditure and physiological responses during walking on a treadmill and during physical effort while moving on the Torqway at a constant speed. The participants (11 men, aged 20.2 ± 1.3) performed the incremental test and submaximal exercises (walking on the treadmill and moving on the Torqway vehicle at the same speed). Energy expenditure during the exercise on the Torqway was significantly higher (p = 0.001) than during the walking performed at the same speed. The intensity of the exercise performed on the Torqway expressed as %VO2max and %HRmax was significantly ( p < 0.001) higher than during walking (respectively: 35.0 ± 6.0 vs. 29.4 ± 7.4 %VO2max and 65.1 ± 7.3 vs. 47.2 ± 7.4 %HRmax). Exercise on the Torqway vehicle allows for the intensification of the exercise at a low movement speed, comparable to walking. Moving on the Torqway vehicle could be an effective alternative activity for physical fitness and exercise rehabilitation programs.
Carriker, Colin R.; Vaughan, Roger A.; VanDusseldorp, Trisha A.; Johnson, Kelly E.; Beltz, Nicholas M.; McCormick, James J.; Cole, Nathan H.; Gibson, Ann L.
2016-01-01
[Purpose] To examine the effect of a 4-day NO3- loading protocol on the submaximal oxygen cost of both low fit and high fit participants at five different exercise intensities. [Methods] Eleven (6 high fit, VO2max 60.1 ± 4.6ml/kg/min; 5 low fit, VO2max 42.4 ± 3.2ml/ kg/min) participants were initially assigned to a placebo (PL; negligible NO3-) or inorganic nitrate-rich (NR; 6.2 mmol nitrate/day) group using a double-blind, placebo-controlled, crossover design. Participants completed three trials (T1, T2 and T3). T1 included a maximal aerobic capacity (VO2max) treadmill test. A 6-day washout, minimizing nitrate consumption, preceded T2. Each of the four days prior to T2 and T3, participants consumed either PL or NR with the final dose 2.5 hours prior to exercise. A 14-day washout followed T2. T2 and T3 consisted of 5-minute submaximal treadmill bouts (45, 60, 70, 80 and 85% VO2max) determined during T1. [Results] Low fit nitrate-supplemented participants consumed less oxygen (p<0.05) at lower workloads (45% and 60% VO2max) compared to placebo trials; changes were not observed in high fit participants. The two lowest intensity workloads of 45 and 60% VO2max revealed the greatest correlation (r=0.54, p=0.09 and r=0.79, p<0.05; respectively) between VO2max and change in oxygen consumption. No differences were found between conditions for heart rate, respiratory exchange ratio or rating of perceived exertion for either fitness group. [Conclusion] Nitrate consumption promotes reduced oxygen consumption at lower exercise intensities in low fit, but not high fit males. Lesser fit individuals may receive greater benefit than higher fit participants exercising at intensities <60% VO2max. PMID:28150476
Submaximal Exercise Testing Treadmill and Floor Walking.
1978-05-01
Amputations," Archives of Physical Medicine and Rehabilitation, 56:67-71, 1975. 36. van der Walt, W. H., and Wyndham, C. H,, "An Equation for...C. H., van Renaburg, A. J., Rogr, G. G., Greyson, J. S.. and van der Walt, V. H., "Walk or Jog for Health: I, The Energy Cost of Walking or Running at...G., Greyson, J. S., and van der Walt, V. H., "Walk or Jog for Health: II, Iatimating the Maximi Aerobic Capacity for Exercise,* South &frIca Kedical
Effect of Mouthguard Use on Metabolic and Cardiorespiratory Responses to Aerobic Exercise in Males
ERIC Educational Resources Information Center
Green, Michael S.; Benson, Amanda K.; Martin, Tyler D.
2018-01-01
Purpose: This study investigated the physiological effects of wearing a mouthguard during submaximal treadmill exercise. Method: Twenty-four recreationally active males (M[subscript age] = 21.3 ± 2.4 years, M[subscript height] = 1.78 ± 0.06 m, M[subscript weight] = 81.9 ± 10.6 kg, M[subscript body mass index] = 25.8 ± 3.4 kg·m[superscript -2])…
Parazzi, Paloma L F; Marson, Fernando A L; Ribeiro, Maria A G O; Schivinski, Camila I S; Ribeiro, José D
2017-11-29
Volumetric capnography provides the standard CO 2 elimination by the volume expired per respiratory cycle and is a measure to assess pulmonary involvement. Thus, the objective of this study was to evaluate the respiratory dynamics of healthy control subjects and those with cystic fibrosis in a submaximal exercise protocol for six minutes on the treadmill, using volumetric capnography parameters (slope 3 [Slp3], Slp3/tidal volume [Slp3/TV], and slope 2 [Slp2]). This was a cross-sectional study with 128 subjects (cystic fibrosis, 64 subjects; controls, 64 subjects]. Participants underwent volumetric capnography before, during, and after six minutes on the treadmill. Statistical analysis was performed using the Friedman, Mann-Whitney, and Kruskal-Wallis tests, considering age and sex. An alpha=0.05 was considered. Six minutes on the treadmill evaluation: in cystic fibrosis, volumetric capnography parameters were different before, during, and after six minutes on the treadmill; the same was observed for the controls, except for Slp2. Regarding age, an Slp3 difference was observed in cystic fibrosis patients regardless of age, at all moments, and in controls for age≥12 years; a difference in Slp3/TV was observed in cystic fibrosis and controls, regardless of age; and an Slp2 difference in the cystic fibrosis, regardless of age. Regarding sex, Slp3 and Slp3/TV differences were observed in cystic fibrosis regardless of sex, and in controls in male participants; an Slp2 difference was observed in the cystic fibrosis and female participants. The analysis between groups (cystic fibrosis and controls) indicated that Slp3 and Slp3/TV has identified the CF, regardless of age and sex, while the Slp2 showed the CF considering age. Cystic fibrosis showed greater values of the parameters before, during, and after exercise, even when stratified by age and sex, which may indicate ventilation inhomogeneity in the peripheral pathways in the cystic fibrosis. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Exercise Testing Reveals Everyday Physical Challenges of Bariatric Surgery Candidates.
Creel, David B; Schuh, Leslie M; Newton, Robert L; Stote, Joseph J; Cacucci, Brenda M
2017-12-01
Few studies have quantified cardiorespiratory fitness among individuals seeking bariatric surgery. Treadmill testing allows researchers to determine exercise capacity through metabolic equivalents. These findings can assist clinicians in understanding patients' capabilities to carry out various activities of daily living. The purpose of this study was to determine exercise tolerance and the variables associated with fitness, among individuals seeking bariatric surgery. Bariatric surgery candidates completed submaximal treadmill testing and provided ratings of perceived exertion. Each participant also completed questionnaires related to history of exercise, mood, and perceived barriers/benefits of exercise. Over half of participants reported that exercise was "hard to very hard" before reaching 70% of heart rate reserve, and one-third of participants reported that exercise was "moderately hard" at less than 3 metabolic equivalents (light activity). Body mass index and age accounted for the majority of the variance in exercise tolerance, but athletic history, employment status, and perceived health benefits also contributed. Perceived benefit scores were higher than barrier scores. Categories commonly used to describe moderate-intensity exercise (3-6 metabolic equivalents) do not coincide with perceptions of intensity among many bariatric surgery candidates, especially those with a body mass index of 50 or more.
Mays, Ryan J.; Boér, Nicholas F.; Mealey, Lisa M.; Kim, Kevin H.; Goss, Fredric L.
2015-01-01
This investigation compared estimated and predicted peak oxygen consumption (VO2peak) and maximal heart rate (HRmax) among the treadmill, cycle ergometer and elliptical ergometer. Seventeen women (mean ± SE: 21.9 ± .3 yrs) exercised to exhaustion on all modalities. ACSM metabolic equations were used to estimate VO2peak. Digital displays on the elliptical ergometer were used to estimate VO2peak. Two individual linear regression methods were used to predict VO2peak: 1) two steady state heart rate (HR) responses up to 85% of age-predicted HRmax, and 2) multiple steady state/non-steady state HR responses up to 85% of age-predicted HRmax. Estimated VO2peak for the treadmill (46.3 ± 1.3 ml · kg−1 · min−1) and the elliptical ergometer (44.4 ± 1.0 ml · kg−1 · min−1) did not differ. The cycle ergometer estimated VO2peak (36.5 ± 1.0 ml · kg−1 · min−1) was lower (p < .001) than the estimated VO2peak values for the treadmill and elliptical ergometer. Elliptical ergometer VO2peak predicted from steady state (51.4 ± .8 ml · kg−1 · min−1) and steady state/non-steady state (50.3 ± 2.0 ml · kg−1 · min−1) models were higher than estimated elliptical ergometer VO2peak, p < .01. HRmax and estimates of VO2peak were similar between the treadmill and elliptical ergometer, thus cross-modal exercise prescriptions may be generated. The use of digital display estimates of submaximal oxygen uptake for the elliptical ergometer may not be an accurate method for predicting VO2peak. Health-fitness professionals should use caution when utilizing submaximal elliptical ergometer digital display estimates to predict VO2peak. PMID:20393357
Warm-Up Exercises May Not Be So Important for Enhancing Submaximal Running Performance.
Takizawa, Kazuki; Yamaguchi, Taichi; Shibata, Keisuke
2018-05-01
Takizawa, K, Yamaguchi, T, and Shibata, K. Warm-up exercises may not be so important for enhancing submaximal running performance. J Strength Cond Res 32(5): 1383-1390, 2018-The purpose of this study was to determine an appropriate warm-up intensity for enhancing performance in submaximal running at 90% vV[Combining Dot Above]O2max (it assumes 3,000-5,000 m in track events). Seven trained male university athletes took part in this study (age: 21.3 ± 2.1 years, height: 169.3 ± 4.7 cm, body mass: 58.4 ± 5.6 kg, V[Combining Dot Above]O2max: 73.33 ± 5.46 ml·kg·min). Each subject ran on a treadmill at 90% vV[Combining Dot Above]O2max until exhaustion after 1 of 4 warm-up treatments. The 4 warm-up treatments were no warm-up, 15 minutes running at 60% vV[Combining Dot Above]O2max, at 70% vV[Combining Dot Above]O2max, and at 80% vV[Combining Dot Above]O2max. The running performance was evaluated by time to exhaustion (TTE). V[Combining Dot Above]O2, and vastus lateralis muscle temperature were also measured. There were no significant differences in TTE among the warm-up exercises (p > 0.05). V[Combining Dot Above]O2 in no warm-up showed slower reaction than the other warm-up exercises. Regarding, the vastus lateralis muscle temperature immediately after warm-up, no warm-up was significantly (p < 0.01) lower compared with the other warm-up exercises. Our results suggested that submaximal running performance was not affected by the presence or absence of a warm-up or by warm-up intensity, although physiological changes occurred.
Phillips, Devin B; Ehnes, Cameron M; Welch, Bradley G; Lee, Lauren N; Simin, Irina; Petersen, Stewart R
2018-04-01
This study investigated physiological responses and performance during three separate exercise challenges (Parts I, II, and III) with wildland firefighting work clothing ensemble (boots and coveralls) and a 20.4 kg backpack in four conditions: U-EX (no pack, exercise clothing); L-EX (pack, exercise clothing); U-W (no pack, work clothing); and, L-W (pack and work clothing). Part I consisted of randomly-ordered graded exercise tests, on separate days, in U-EX, L-EX and L-W conditions. Part II consisted of randomly-ordered bouts of sub-maximal treadmill exercise in the four conditions. In Part III, subjects completed, in random-order on separate days, 4.83 km Pack Tests in L-EX or L-W conditions. In Part I, peak oxygen uptake was reduced (p < .05) in L-W. In Part II, mass-specific oxygen uptake was significantly higher in both work clothing conditions. In Part III, Pack Test time was slower (p < .05) in L-W. These results demonstrate the negative impact of work clothing and load carriage on physiological responses to exercise and performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evans, B W; Potteiger, J A
1995-06-01
This study compared ventilatory and metabolic responses during exercise using three breathing assemblies: mouthpiece/noseclip (BV); mouth/face mask (MM); and facemask (FM). Ten male runners completed three maximal treadmill tests with breathing assembly randomly assigned. Metabolic and ventilatory data were recorded every 15s, and heart rate (HR) and rating of perceived exertion (RPE) each min. No significant differences were found for treadmill run time, HRmax, respiratory exchange ratio (RER), and RPE, indicating similar efforts on all trials. No significant differences were found at maximal exercise for VO2 minute ventilation (VE), tidal volume (VT), and breathing frequency (f). At ventilatory threshold (TVENT), VO2, VE, and f were not significantly different. However, peak flow (PF) was significantly higher for BV than FM, and VT was significantly higher for BV than MM and FM. Results indicate alterations in ventilatory mechanics occur at TVENT, but type of breathing assembly does not significantly affect maximal values.
Maximal and submaximal endurance performance in adults with severe haemophilia.
Herbsleb, M; Hilberg, T
2009-01-01
Maximal exercise testing, including the determination of maximal performance and maximal oxygen uptake (VO(2max)), is considered the gold standard for assessing maximal endurance performance. The effectiveness of such testing is often reduced in haemophilic adults owing to musculoskeletal impairments or pain rather than because of cardiac exertion. The measurement of submaximal performance parameters overcomes many limitations of maximal exercise testing but a testing standard is still lacking. The aim of this study was to investigate maximal and particularly submaximal endurance performance of adult patients with severe haemophilia A and B. Eleven patients and 11 matched healthy controls were tested by spiroergometry with a specific treadmill test and the power was calculated in Watts. The haemophilic group achieved lower absolute (210 +/- 63 W) and weight-related (2.94 +/- 0.98 W kg(-1)) maximal endurance performance compared with the control group (287 +/- 50 W resp. 3.82 +/- 0.53 W kg(-1); P = 0.05). The patients also showed a lower submaximal endurance performance at the individual anaerobic threshold (IAT = 147 +/- 56 W) and fixed lactate values (2 mmol = 98 +/- 60 W; 4 mmol = 158 +/- 56 W) compared with the healthy controls (IAT = 210 +/- 41 W; 2 mmol = 153 +/- 30 W; 4 mmol = 223 +/- 39 W; all P = 0.05). The heart rate and lactate value at the IAT were not different. The disease-related musculoskeletal changes in haemophilic adults lead to a reduced maximal and submaximal endurance performance, which can be easily measured by the described test procedure.
Bourgit, David; Millet, Guillaume Y; Fuchslocher, Jörg
2008-05-01
The aim of the present study was to compare electromyographic activity during fitness exercises, walking, and running among 3 different dorsiflexion shoes (+2 degrees , +4 degrees , and +10 degrees ) and standard shoes (-4 degrees ). The 3 different dorsiflexion shoes tested in this study have a curvature placed in the middle of the sole. This design was specially projected to decrease the metatarsus flexion. Electromyographic activity of 9 lower limb muscles was measured on 12 healthy female subjects during 5 fitness exercises (unload squat, side and front step, submaximal ballistic plantar flexion, and lunge exercise), and during running (10 km x h(-1)) and walking (4.5 km x h(-1)) on a treadmill. EMG signal was analyzed with the root mean square (RMS) and integrated EMG. All RMS data measured during these exercises were expressed as percentages of maximum voluntary isometric contraction. The results show that dorsiflexion affects muscle recruitment and reorganizes the motor pattern. The general tendency was that the tibialis anterior activity increased with dorsiflexion. However, an optimal dorsiflexion existed for various exercises. It is concluded that shoes with moderate dorsiflexion can activate lower limb muscles differently compared with both standard shoes and shoes with large dorsiflexion during submaximal exercises and locomotion.
AZARBAYJANI, MOHAMMAD ALI; FATOLAHI, HOSEYN; RASAEE, MOHAMMAD JAVAD; PEERI, MAGHSOD; BABAEI, ROHOLAH
2011-01-01
We examined the effect of exercise intensity and mode on the acute responses of free testosterone to cortisol ratio and salivary α-amylase. We also evaluated the relationship between cortisol and salivary α-amylase. Ten healthy young active males participated voluntarily in this study in six single sessions. They exercised on a cycle ergo meter, treadmill, and elliptical instrument at intensities of 70% and 85% maximum heart rate for 25 minutes. Saliva samples were collected 5 minutes before and 5 minutes after each exercise session. No significant changes were observed for cortisol. Free testosterone to cortisol ratio increased during each exercise session (F5, 45=3.15, P=0.02). However, these changes are only significant after exercise on the treadmill at 70% maximum heart rate (t=2.94, P=0.02) and 85% maximum heart rate (t=0.53, P=0.03). Salivary α-amylase significantly varied among exercise sessions (F5, 45=3.97, P=0.005), and a significant decline was observed after exercise on the elliptical instrument (t=2.38, P=0.04) and treadmill (t=3.55, P=0.006) at 85% maximum heart rate. We found that the free testosterone to cortisol ratio is dependent on the exercise mode, while the salivary α-amylase response is dependent on the intensity of exercise. The increase of free testosterone to cortisol ratio in this study may indicate lower physiological stress in response to performing these exercises. Applying muscular strength with moderate intensity weight-bearing exercises possibly activates the anabolic pathways. Although the cortisol and salivary α-amylase responses were opposite in the majority of the exercise sessions, no significant inverse relationship was observed. PMID:27182369
Azarbayjani, Mohammad Ali; Fatolahi, Hoseyn; Rasaee, Mohammad Javad; Peeri, Maghsod; Babaei, Roholah
We examined the effect of exercise intensity and mode on the acute responses of free testosterone to cortisol ratio and salivary α-amylase. We also evaluated the relationship between cortisol and salivary α-amylase. Ten healthy young active males participated voluntarily in this study in six single sessions. They exercised on a cycle ergo meter, treadmill, and elliptical instrument at intensities of 70% and 85% maximum heart rate for 25 minutes. Saliva samples were collected 5 minutes before and 5 minutes after each exercise session. No significant changes were observed for cortisol. Free testosterone to cortisol ratio increased during each exercise session (F 5, 45 =3.15, P=0.02) . However, these changes are only significant after exercise on the treadmill at 70% maximum heart rate ( t=2.94, P=0.02 ) and 85% maximum heart rate ( t=0.53, P=0.03 ). Salivary α-amylase significantly varied among exercise sessions (F 5, 45 =3.97, P=0.005), and a significant decline was observed after exercise on the elliptical instrument (t=2.38, P=0.04) and treadmill ( t=3.55, P=0.006 ) at 85% maximum heart rate. We found that the free testosterone to cortisol ratio is dependent on the exercise mode, while the salivary α-amylase response is dependent on the intensity of exercise. The increase of free testosterone to cortisol ratio in this study may indicate lower physiological stress in response to performing these exercises. Applying muscular strength with moderate intensity weight-bearing exercises possibly activates the anabolic pathways. Although the cortisol and salivary α-amylase responses were opposite in the majority of the exercise sessions, no significant inverse relationship was observed.
Cardiovascular response during submaximal underwater treadmill exercise in stroke patients.
Yoo, Jeehyun; Lim, Kil-Byung; Lee, Hong-Jae; Kwon, Yong-Geol
2014-10-01
To evaluate the cardiovascular response during head-out water immersion, underwater treadmill gait, and land treadmill gait in stroke patients. Ten stroke patients were recruited for underwater and land treadmill gait sessions. Each session was 40 minutes long; 5 minutes for standing rest on land, 5 minutes for standing rest in water or on treadmill, 20 minutes for treadmill walking in water or on land, 5 minutes for standing rest in water or on treadmill, and 5 minutes for standing rest on land. Blood pressure (BP) and heart rate (HR) were measured during each session. In order to estimate the cardiovascular workload and myocardial oxygen demand, the rate pressure product (RPP) value was calculated by multiplying systolic BP (SBP) by HR. SBP, DBP, mean BP (mBP), and RPP decreased significantly after water immersion, but HR was unchanged. During underwater and land treadmill gait, SBP, mBP, DBP, RPP, and HR increased. However, the mean maximum increases in BP, HR and RPP of underwater treadmill walking were significantly lower than that of land treadmill walking. Stroke patients showed different cardiovascular responses during water immersion and underwater gait as opposed to standing and treadmill-walking on land. Water immersion and aquatic treadmill gait may reduce the workload of the cardiovascular system. This study suggested that underwater treadmill may be a safe and useful option for cardiovascular fitness and early ambulation in stroke rehabilitation.
O'Neill, Hayley M; Lally, James S; Galic, Sandra; Pulinilkunnil, Thomas; Ford, Rebecca J; Dyck, Jason R B; van Denderen, Bryce J; Kemp, Bruce E; Steinberg, Gregory R
2015-07-01
During submaximal exercise fatty acids are a predominant energy source for muscle contractions. An important regulator of fatty acid oxidation is acetyl-CoA carboxylase (ACC), which exists as two isoforms (ACC1 and ACC2) with ACC2 predominating in skeletal muscle. Both ACC isoforms regulate malonyl-CoA production, an allosteric inhibitor of carnitine palmitoyltransferase 1 (CPT-1); the primary enzyme controlling fatty acyl-CoA flux into mitochondria for oxidation. AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that is activated during exercise or by pharmacological agents such as metformin and AICAR. In resting muscle the activation of AMPK with AICAR leads to increased phosphorylation of ACC (S79 on ACC1 and S221 on ACC2), which reduces ACC activity and malonyl-CoA; effects associated with increased fatty acid oxidation. However, whether this pathway is vital for regulating skeletal muscle fatty acid oxidation during conditions of increased metabolic flux such as exercise/muscle contractions remains unknown. To examine this we characterized mice lacking AMPK phosphorylation sites on ACC2 (S212 in mice/S221 in humans-ACC2-knock-in [ACC2-KI]) or both ACC1 (S79) and ACC2 (S212) (ACC double knock-in [ACCD-KI]) during submaximal treadmill exercise and/or ex vivo muscle contractions. We find that surprisingly, ACC2-KI mice had normal exercise capacity and whole-body fatty acid oxidation during treadmill running despite elevated muscle ACC2 activity and malonyl-CoA. Similar results were observed in ACCD-KI mice. Fatty acid oxidation was also maintained in muscles from ACC2-KI mice contracted ex vivo. These findings indicate that pathways independent of ACC phosphorylation are important for regulating skeletal muscle fatty acid oxidation during exercise/muscle contractions. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Measurement of myocardial free radical production during exercise using EPR spectroscopy.
Traverse, Jay H; Nesmelov, Yuri E; Crampton, Melanie; Lindstrom, Paul; Thomas, David D; Bache, Robert J
2006-06-01
Exercise is associated with an increase in oxygen flux through the mitochondrial electron transport chain that has recently been demonstrated to increase the production of reactive oxygen species (ROS) in skeletal muscle. This study examined whether exercise also causes free radical production in the heart. We measured ROS production in seven chronically instrumented dogs during rest and treadmill exercise (6.4 km/h at 10 degrees grade; and heart rate, 204 +/- 3 beats/min) using electron paramagnetic resonance spectroscopy in conjunction with the spin trap alpha-phenyl-tert-butylnitrone (PBN) (0.14 mol/l) in blood collected from the aorta and coronary sinus (CS). To improve signal detection, the free radical adducts were deoxygenated over a nitrogen stream for 15 min and extracted with toluene. The hyperfine splitting constants of the radicals were alpha(N) = 13.7 G and alpha(H) = 1.0 G, consistent with an alkoxyl or carbon-centered radical. Resting aortic and CS PBN adduct concentrations were 6.7 and 6.3 x 10(8) arbitrary units (P = not significant). Both aortic and CS adduct concentrations increased during exercise, but there was no significant difference between the aortic and CS concentrations. Thus, in contrast to skeletal muscle, submaximal treadmill exercise did not result in detectable free radical production by the heart.
Effect of different musical tempo on post-exercise recovery in young adults.
Savitha, D; Mallikarjuna, Reddy N; Rao, Chythra
2010-01-01
The role of music in increasing the exercise performance is well recognised. There is very little information about effect of music on time taken for post exercise recovery. We examined the effect of music and different musical tempo on post exercise recovery time, following treadmill work. 30 volunteers (15 male, 15 female) subjected to isotonic exercise (submaximal treadmill work) on three consecutive days. They were allowed to rest in silence on the first day, rest by hearing slow music on second day and rest with fast music on third day. Parameters such as Pulse rate, blood pressure, rating of perceived exertion (RPE) were measured at predetermined intervals. Repeated measures ANOVA test showed that with slow music, recovery time of systolic blood pressure (SBP) (7.9 +/- 2.5), diastolic blood pressure (DBP) (5.5 +/- 3.4) pulse rate recovery (PR) (8.0 +/- 2.3) and recovery from exertion (RPE) (7.7 +/- 2.5) were significantly faster when compared to both no music and fast music. The individual music preference made no significant difference in the relaxation time. The study concluded that music hastens post exercise recovery and slow music has greater relaxation effect than fast or no music, recovery time being independent of the gender and individual music preference.
Ranadive, Sushant M.; Lane-Cordova, Abbi D.; Kappus, Rebecca M.; Behun, Michael A.; Cook, Marc D.; Woods, Jeffrey A.; Wilund, Kenneth R.; Baynard, Tracy; Fernhall, Bo
2017-01-01
African Americans (AA) exhibit exaggerated central blood pressure (BP) and arterial stiffness measured by pulse wave velocity (PWV) in response to an acute bout of maximal exercise compared with Caucasians (CA). However, whether potential racial differences exist in central BP, elastic, or muscular arterial distensibility after submaximal aerobic exercise remains unknown. Histamine receptor activation mediates sustained postexercise hyperemia in CA but the effect on arterial stiffness is unknown. This study sought to determine the effects of an acute bout of aerobic exercise on central BP and arterial stiffness and the role of histamine receptors, in AA and CA. Forty-nine (22 AA, 27 CA) young and healthy subjects completed the study. Subjects were randomly assigned to take either histamine receptor antagonist or control placebo. Central blood BP and arterial stiffness measurements were obtained at baseline, and at 30, 60, and 90 min after 45 min of moderate treadmill exercise. AA exhibited greater central diastolic BP, elevated brachial PWV, and local carotid arterial stiffness after an acute bout of submaximal exercise compared with CA, which may contribute to their higher risk of cardiovascular disease. Unexpectedly, histamine receptor blockade did not affect central BP or PWV in AA or CA after exercise, but it may play a role in mediating local carotid arterial stiffness. Furthermore, histamine may mediate postexercise carotid arterial dilation in CA but not in AA. These observations provide evidence that young and healthy AA exhibit an exaggerated hemodynamic response to exercise and attenuated vasodilator response compared with CA. NEW & NOTEWORTHY African Americans are at greater risk for developing cardiovascular disease than Caucasians. We are the first to show that young and healthy African Americans exhibit greater central blood pressure, elevated brachial stiffness, and local carotid arterial stiffness following an acute bout of submaximal exercise compared with Caucasians, which may contribute to their higher risk of cardiovascular disease. Furthermore, African Americans exhibit attenuated vasodilator response compared with Caucasians. PMID:27979988
Yan, Huimin; Ranadive, Sushant M; Lane-Cordova, Abbi D; Kappus, Rebecca M; Behun, Michael A; Cook, Marc D; Woods, Jeffrey A; Wilund, Kenneth R; Baynard, Tracy; Halliwill, John R; Fernhall, Bo
2017-02-01
African Americans (AA) exhibit exaggerated central blood pressure (BP) and arterial stiffness measured by pulse wave velocity (PWV) in response to an acute bout of maximal exercise compared with Caucasians (CA). However, whether potential racial differences exist in central BP, elastic, or muscular arterial distensibility after submaximal aerobic exercise remains unknown. Histamine receptor activation mediates sustained postexercise hyperemia in CA but the effect on arterial stiffness is unknown. This study sought to determine the effects of an acute bout of aerobic exercise on central BP and arterial stiffness and the role of histamine receptors, in AA and CA. Forty-nine (22 AA, 27 CA) young and healthy subjects completed the study. Subjects were randomly assigned to take either histamine receptor antagonist or control placebo. Central blood BP and arterial stiffness measurements were obtained at baseline, and at 30, 60, and 90 min after 45 min of moderate treadmill exercise. AA exhibited greater central diastolic BP, elevated brachial PWV, and local carotid arterial stiffness after an acute bout of submaximal exercise compared with CA, which may contribute to their higher risk of cardiovascular disease. Unexpectedly, histamine receptor blockade did not affect central BP or PWV in AA or CA after exercise, but it may play a role in mediating local carotid arterial stiffness. Furthermore, histamine may mediate postexercise carotid arterial dilation in CA but not in AA. These observations provide evidence that young and healthy AA exhibit an exaggerated hemodynamic response to exercise and attenuated vasodilator response compared with CA. NEW & NOTEWORTHY African Americans are at greater risk for developing cardiovascular disease than Caucasians. We are the first to show that young and healthy African Americans exhibit greater central blood pressure, elevated brachial stiffness, and local carotid arterial stiffness following an acute bout of submaximal exercise compared with Caucasians, which may contribute to their higher risk of cardiovascular disease. Furthermore, African Americans exhibit attenuated vasodilator response compared with Caucasians. Copyright © 2017 the American Physiological Society.
Lee, Joo-Young; Bakri, Ilham; Kim, Jung-Hyun; Son, Su-Young; Tochihara, Yutaka
2013-01-01
This study investigated the effects of firefighter personal protective equipment (PPE) on the determination of maximal oxygen uptake (VO(2max)) while using two different treadmill protocols: a progressive incline protocol (PIP) and a progressive speed protocol (PSP), with three clothing conditions (Light-light clothing; Boots-PPE with rubber boots; Shoes-PPE with running shoes). Bruce protocol with Light was performed for a reference test. Results showed there was no difference in VO(2max) between Bruce Light, PIP Light, and PSP Light. However, VO(2max) was reduced in Boots and Shoes with shortened maximal performance time (7 and 6 min reduced for PIP Boots and Shoes, respectively; 11 and 9 min reduced for PSP Boots and Shoes, respectively), whereas the increasing rate of VO(2) in Boots and Shoes during submaximal exercise was greater compared with Light. Wearing firefighter boots compared with wearing running shoes also significantly affected submaximal VO(2) but not VO(2max). These results suggest that firefighters' maximal performance determined from a typical VO(2max) test without wearing PPE may overestimate the actual performance capability of firefighters wearing PPE.
Lee, Joo-Young; Bakri, Ilham; Kim, Jung-Hyun; Son, Su-Young; Tochihara, Yutaka
2015-01-01
This study investigated the effects of firefighter personal protective equipment (PPE) on the determination of maximal oxygen uptake (VO2max) while using two different treadmill protocols: a progressive incline protocol (PIP) and a progressive speed protocol (PSP), with three clothing conditions (Light-light clothing; Boots-PPE with rubber boots; Shoes-PPE with running shoes). Bruce protocol with Light was performed for a reference test. Results showed there was no difference in VO2max between Bruce Light, PIP Light, and PSP Light. However, VO2max was reduced in Boots and Shoes with shortened maximal performance time (7 and 6 min reduced for PIP Boots and Shoes, respectively; 11 and 9 min reduced for PSP Boots and Shoes, respectively), whereas the increasing rate of VO2 in Boots and Shoes during submaximal exercise was greater compared with Light. Wearing firefighter boots compared with wearing running shoes also significantly affected submaximal VO2 but not VO2max. These results suggest that firefighters’ maximal performance determined from a typical VO2max test without wearing PPE may overestimate the actual performance capability of firefighters wearing PPE. PMID:23668854
Copp, Steven W.; Inagaki, Tadakatsu; White, Michael J.; Hirai, Daniel M.; Ferguson, Scott K.; Holdsworth, Clark T.; Sims, Gabrielle E.; Poole, David C.
2013-01-01
Consumption of the dietary flavanol (−)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O2 uptake (V̇o2 peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O2 pressure (Po2mv) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓∼5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, V̇o2 peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min−1·100 g−1, P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min−1·100 g−1·mmHg−1, P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓∼16%) but did not impact resting Po2mv or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg−1·day−1) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats. PMID:23144313
Copp, Steven W; Inagaki, Tadakatsu; White, Michael J; Hirai, Daniel M; Ferguson, Scott K; Holdsworth, Clark T; Sims, Gabrielle E; Poole, David C; Musch, Timothy I
2013-01-15
Consumption of the dietary flavanol (-)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O(2) uptake (Vo(2) peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O(2) pressure (Po(2mv)) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓~5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, Vo(2) peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min(-1)·100 g(-1), P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min(-1)·100 g(-1)·mmHg(-1), P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓~16%) but did not impact resting Po(2mv) or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg(-1)·day(-1)) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats.
Beltrame, Thomas; Villar, Rodrigo; Hughson, Richard L
2017-09-01
Previous studies in children and older adults demonstrated faster oxygen uptake (V̇O 2 ) kinetics in males compared with females, but young healthy adults have not been studied. We hypothesized that young men would have faster aerobic system dynamics in response to the onset of exercise than women. Interactions between oxygen supply and utilization were characterized by the dynamics of V̇O 2 , deoxyhemoglobin (HHb), tissue saturation index (TSI), cardiac output (Q̇), and calculated arteriovenous O 2 difference (a-vO 2 diff ) in women and men. Eighteen healthy active young women and men (9 of each sex) with similar aerobic fitness levels volunteered for this study. Participants performed an incremental cardiopulmonary treadmill exercise test and 3 moderate-intensity treadmill exercise tests (at 80% V̇O 2 of gas exchange threshold). Data related to the moderate exercise were submitted to exponential data modelling to obtain parameters related to the aerobic system dynamics. The time constants of V̇O 2 , a-vO 2 diff , HHb, and TSI (30 ± 6, 29 ± 1, 16 ± 1, and 15 ± 2 s, respectively) in women were statistically (p < 0.05) faster than the time constants in men (42 ± 10, 49 ± 21, 19 ± 3, and 20 ± 4 s, respectively). Although Q̇ dynamics were not statistically different (p = 0.06) between groups, there was a trend to slower Q̇ dynamics in men corresponding with the slower V̇O 2 kinetics. These results indicated that the peripheral and pulmonary oxygen extraction dynamics were remarkably faster in women. Thus, contrary to the hypothesis, V̇O 2 dynamics measured at the mouth at the onset of submaximal treadmill walking were faster in women compared with men.
van der Scheer, Jan W; de Groot, Sonja; Vegter, Riemer J K; Hartog, Johanneke; Tepper, Marga; Slootman, Hans; Veeger, DirkJan H E J; van der Woude, Lucas H V
2015-11-01
The objective of this study was to investigate the effects of a low-intensity wheelchair training on propulsion technique in inactive people with long-term spinal cord injury. Participants in this multicenter nonblinded randomized controlled trial were inactive manual wheelchair users with spinal cord injury for at least 10 yrs (N = 29), allocated to exercise (n = 14) or no exercise. The 16-wk training consisted of wheelchair treadmill propulsion at 30%-40% heart rate reserve or equivalent in rate of perceived exertion, twice a week, 30 mins per session. Propulsion technique was assessed at baseline as well as after 8, 16, and 42 wks during two submaximal treadmill-exercise blocks using a measurement wheel attached to a participant's own wheelchair. Changes over time between the groups were analyzed using Mann-Whitney U tests on difference scores (P < 0.05/3). Data of 16 participants could be analyzed (exercise: n = 8). Significant differences between the exercise and control groups were only found in peak force after 8 wks (respective medians, -20 N vs. 1 N; P = 0.01; r(u) = 0.78). Significant training effects on propulsion technique were not found in this group. Perhaps, substantial effects require a higher intensity or frequency. Investigating whether more effective and feasible interventions exist might help reduce the population's risk of upper-body joint damage during daily wheelchair propulsion.
Donath, Lars; Zahner, Lukas; Roth, Ralf; Fricker, Livia; Cordes, Mareike; Hanssen, Henner; Schmidt-Trucksäss, Arno; Faude, Oliver
2013-03-01
Impaired balance and gait performance increase fall-risk in seniors. Acute effects of different exercise bouts on gait and balance were not yet addressed. Therefore, 19 healthy seniors (10 women, 9 men, age: 64.6 ± 3.2 years) were examined on 3 days. After exhaustive treadmill testing, participants randomly completed a 2-km treadmill walking test (76 ± 8 % VO(2max)) and a resting control condition. Standing balance performance (SBALP) was assessed by single limb-eyes opened (SLEO) and double limb-eyes closed (DLEC) stance. Gait parameters were collected at comfortable walking velocity. A condition × time interaction of center of pressure path length (COP(path)) was observed for both balance tasks (p < 0.001). Small (Cohen's d = 0.42, p = 0.05) and large (d = 1.04, p < 0.001) COP(path) increases were found after 2-km and maximal exercise during DLEC. Regarding SLEO, slightly increased COP(path) occurred after 2-km walking (d = 0.29, p = 0.65) and large increases after exhaustive exercise (d = 1.24, p < 0.001). No significant differences were found for gait parameters. Alterations of SBALP after exhaustive exercise might lead to higher fall-risk in seniors. Balance changes upon 2-km testing might be of minor relevance. Gait is not affected during single task walking at given velocities.
Hamlyn-Williams, Charlotte C; Tempest, Gavin; Coombs, Sarah; Parfitt, Gaynor
2015-01-01
Recent research suggests that the Feeling Scale (FS) can be used as a method of exercise intensity regulation to maintain a positive affective response during exercise. However, research to date has been carried out in laboratories and is not representative of natural exercise environments. The purpose of this study was to evaluate whether sedentary women can self-regulate their exercise intensity using the FS to experience positive affective responses in a gym environment using their own choice of exercise mode; cycling or treadmill. Fourteen females (24.9 years ± 5.2; height 166.7 ± 5.7 cm; mass 66.3 ± 13.4 kg; BMI 24.1 ± 5.5)) completed a submaximal exercise test and each individual's ventilatory threshold ([Formula: see text]) was identified. Following this, three 20 min gym-based exercise trials, either on a bike or treadmill were performed at an intensity that was self-selected and perceived to correspond to the FS value of +3 (good). Oxygen uptake, heart rate (HR) and ratings of perceived exertion (RPE) were measured during exercise at the participants chosen intensity. Results indicated that on average participants worked close to their [Formula: see text] and increased their exercise intensity during the 20-min session. Participants worked physiologically harder during cycling exercise. Consistency of oxygen uptake, HR and RPE across the exercise trials was high. The data indicate that previously sedentary women can use the FS in an ecological setting to regulate their exercise intensity and that regulating intensity to feel 'good' should lead to individuals exercising at an intensity that would result in cardiovascular gains if maintained.
Bertucci, W; Duc, S; Villerius, V; Pernin, J N; Grappe, F
2005-12-01
The SRM power measuring crank system is nowadays a popular device for cycling power output (PO) measurements in the field and in laboratories. The PowerTap (CycleOps, Madison, USA) is a more recent and less well-known device that allows mobile PO measurements of cycling via the rear wheel hub. The aim of this study is to test the validity and reliability of the PowerTap by comparing it with the most accurate (i.e. the scientific model) of the SRM system. The validity of the PowerTap is tested during i) sub-maximal incremental intensities (ranging from 100 to 420 W) on a treadmill with different pedalling cadences (45 to 120 rpm) and cycling positions (standing and seated) on different grades, ii) a continuous sub-maximal intensity lasting 30 min, iii) a maximal intensity (8-s sprint), and iiii) real road cycling. The reliability is assessed by repeating ten times the sub-maximal incremental and continuous tests. The results show a good validity of the PowerTap during sub-maximal intensities between 100 and 450 W (mean PO difference -1.2 +/- 1.3 %) when it is compared to the scientific SRM model, but less validity for the maximal PO during sprint exercise, where the validity appears to depend on the gear ratio. The reliability of the PowerTap during the sub-maximal intensities is similar to the scientific SRM model (the coefficient of variation is respectively 0.9 to 2.9 % and 0.7 to 2.1 % for PowerTap and SRM). The PowerTap must be considered as a suitable device for PO measurements during sub-maximal real road cycling and in sub-maximal laboratory tests.
Felismino, Amanda; Corte, Renata Cristina; Silva, Eliane
2017-01-01
Cardiopulmonary assessment through oxygen uptake efficiency slope (OUES) data has shown encouraging results, revealing that we can obtain important clinical information about functional status. Until now, the use of OUES has not been established as a measure of cardiorespiratory capacity in an obese adult population, only in cardiac and pulmonary diseases or pediatric patients. The aim of this study was to characterize submaximal and maximal levels of OUES in a sample of morbidly obese women and analyze its relationship with traditional measures of cardiorespiratory fitness, anthropometry and pulmonary function. Thirty-three morbidly obese women (age 39.1 ± 9.2 years) performed Cardiopulmonary Exercise Testing (CPX) on a treadmill using the ramp protocol. In addition, anthropometric measurements and pulmonary function were also evaluated. Maximal and submaximal OUES were measured, being calculated from data obtained in the first 50% (OUES50%) and 75% (OUES75%) of total CPX duration. In one-way ANOVA analysis, OUES did not significantly differ between the three different exercise intensities, as observed through a Bland-Altman concordance of 58.9 mL/min/log(L/min) between OUES75% and OUES100%, and 0.49 mL/kg/min/log(l/min) between OUES/kg75% and OUES/kg100%. A strong positive correlation between the maximal (r = 0.79) and submaximal (r = 0.81) OUES/kg with oxygen consumption at peak exercise (VO2peak) and ventilatory anaerobic threshold (VO2VAT) was observed, and a moderate negative correlation with hip circumference (r = -0.46) and body adiposity index (r = -0.50) was also verified. There was no significant difference between maximal and submaximal OUES, showing strong correlations with each other and oxygen consumption (peak and VAT). These results indicate that OUES can be a useful parameter which could be used as a cardiopulmonary fitness index in subjects with severe limitations to perform CPX, as for morbidly obese women. PMID:28384329
Onofre, Tatiana; Oliver, Nicole; Carlos, Renata; Felismino, Amanda; Corte, Renata Cristina; Silva, Eliane; Bruno, Selma
2017-01-01
Cardiopulmonary assessment through oxygen uptake efficiency slope (OUES) data has shown encouraging results, revealing that we can obtain important clinical information about functional status. Until now, the use of OUES has not been established as a measure of cardiorespiratory capacity in an obese adult population, only in cardiac and pulmonary diseases or pediatric patients. The aim of this study was to characterize submaximal and maximal levels of OUES in a sample of morbidly obese women and analyze its relationship with traditional measures of cardiorespiratory fitness, anthropometry and pulmonary function. Thirty-three morbidly obese women (age 39.1 ± 9.2 years) performed Cardiopulmonary Exercise Testing (CPX) on a treadmill using the ramp protocol. In addition, anthropometric measurements and pulmonary function were also evaluated. Maximal and submaximal OUES were measured, being calculated from data obtained in the first 50% (OUES50%) and 75% (OUES75%) of total CPX duration. In one-way ANOVA analysis, OUES did not significantly differ between the three different exercise intensities, as observed through a Bland-Altman concordance of 58.9 mL/min/log(L/min) between OUES75% and OUES100%, and 0.49 mL/kg/min/log(l/min) between OUES/kg75% and OUES/kg100%. A strong positive correlation between the maximal (r = 0.79) and submaximal (r = 0.81) OUES/kg with oxygen consumption at peak exercise (VO2peak) and ventilatory anaerobic threshold (VO2VAT) was observed, and a moderate negative correlation with hip circumference (r = -0.46) and body adiposity index (r = -0.50) was also verified. There was no significant difference between maximal and submaximal OUES, showing strong correlations with each other and oxygen consumption (peak and VAT). These results indicate that OUES can be a useful parameter which could be used as a cardiopulmonary fitness index in subjects with severe limitations to perform CPX, as for morbidly obese women.
Fat max as an index of aerobic exercise performance in mice during uphill running
Taniguchi, Hirokazu
2018-01-01
Endurance exercise performance has been used as a representative index in experimental animal models in the field of health sciences, exercise physiology, comparative physiology, food function or nutritional physiology. The objective of the present study was to evaluate the effectiveness of Fatmax (the exercise intensity that elicits maximal fat oxidation) as an additional index of endurance exercise performance that can be measured during running at submaximal exercise intensity in mice. We measured both Fatmax and Vo2 peak of trained ICR mice that voluntary exercised for 8 weeks and compared them with a sedentary group of mice at multiple inclinations of 20, 30, 40, and 50° on a treadmill. The Vo2 at Fatmax of the training group was significantly higher than that of the sedentary group at inclinations of 30 and 40° (P < 0.001). The running speed at Fatmax of the training group was significantly higher than that of the sedentary group at inclinations of 20, 30, and 40° (P < 0.05). Blood lactate levels sharply increased in the sedentary group (7.33 ± 2.58 mM) compared to the training group (3.13 ± 1.00 mM, P < 0.01) when running speeds exceeded the Fatmax of sedentary mice. Vo2 at Fatmax significantly correlated to Vo2 peak, running time to fatigue, and lactic acid level during running (P < 0.05) although the reproducibility of Vo2 peak was higher than that of Vo2 at Fatmax. In conclusion, Fatmax can be used as a functional assessment of the endurance exercise performance of mice during submaximal exercise intensity. PMID:29474428
ACE insertion/deletion polymorphism and submaximal exercise hemodynamics in postmenopausal women.
Hagberg, James M; McCole, Steve D; Brown, Michael D; Ferrell, Robert E; Wilund, Kenneth R; Huberty, Andrea; Douglass, Larry W; Moore, Geoffrey E
2002-03-01
We sought to determine whether the angiotensin-converting enzyme (ACE) insertion (I)/deletion (D) polymorphism is associated with submaximal exercise cardiovascular hemodynamics. Postmenopausal healthy women (20 sedentary, 20 physically active, 22 endurance athletes) had cardiac output (acetylene rebreathing) measured during 40, 60, and 80% VO(2 max) exercise. The interaction of ACE genotype and habitual physical activity (PA) level was significantly associated with submaximal exercise systolic blood pressure, with only sedentary women exhibiting differences among genotypes. No significant effects of ACE genotype or its interaction with PA levels was observed for submaximal exercise diastolic blood pressure. ACE genotype was significantly associated with submaximal exercise heart rate (HR) with ACE II having approximately 10 beats/min higher HR than ACE ID/DD genotype women. ACE genotype did not interact significantly with habitual PA level to associate with submaximal exercise HR. ACE genotype was not independently, but was interactively with habitual PA levels, associated with differences in submaximal exercise cardiac output and stroke volume. For cardiac output, ACE II genotype women athletes had ~25% greater cardiac output than ACE DD genotype women athletes, whereas for stroke volume genotype-dependent differences were observed in both the physically active and athletic women. ACE genotype was not significantly associated, either independently or interactively with habitual PA levels, with submaximal exercise total peripheral resistance or arteriovenous O(2) difference. Thus the common ACE locus polymorphic variation is associated with many submaximal exercise cardiovascular hemodynamic responses.
Warm-up with a weighted vest improves running performance via leg stiffness and running economy.
Barnes, K R; Hopkins, W G; McGuigan, M R; Kilding, A E
2015-01-01
To determine the effects of "strides" with a weighted-vest during a warm-up on endurance performance and its potential neuromuscular and metabolic mediators. A bout of resistance exercise can enhance subsequent high-intensity performance, but little is known about such priming exercise for endurance performance. A crossover with 5-7 days between an experimental and control trial was performed by 11 well-trained distance runners. Each trial was preceded by a warm-up consisting of a 10-min self-paced jog, a 5-min submaximal run to determine running economy, and six 10-s strides with or without a weighted-vest (20% of body mass). After a 10-min recovery period, runners performed a series of jumps to determine leg stiffness and other neuromuscular characteristics, another 5-min submaximal run, and an incremental treadmill test to determine peak running speed. Clinical and non-clinical forms of magnitude-based inference were used to assess outcomes. Correlations and linear regression were used to assess relationships between performance and underlying measures. The weighted-vest condition resulted in a very-large enhancement of peak running speed (2.9%; 90% confidence limits ±0.8%), a moderate increase in leg stiffness (20.4%; ±4.2%) and a large improvement in running economy (6.0%; ±1.6%); there were also small-moderate clear reductions in cardiorespiratory measures. Relationships between change scores showed that changes in leg stiffness could explain all the improvements in performance and economy. Strides with a weighted-vest have a priming effect on leg stiffness and running economy. It is postulated the associated major effect on peak treadmill running speed will translate into enhancement of competitive endurance performance. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Wall, Leona; Mohr, Annika; Ripoli, Florenza Lüder; Schulze, Nayeli; Penter, Camila Duarte; Hungerbuehler, StephanOscar; Bach, Jan-Peter; Lucas, Karin
2018-01-01
Exercise intolerance is the first symptom of heart disease. Yet an objective and standardised method in canine cardiology to assess exercise capacity in a clinical setting is lacking. In contrast, exercise testing is a powerful diagnostic tool in humans, providing valuable information on prognosis and impact of therapeutic intervention. To investigate whether an exercise test reveals differences between dogs with early stage mitral regurgitation (MR) and dogs without cardiac disease, 12 healthy beagles (healthy group, HG) and 12 dogs with presymptomatic MR (CHIEF B1 / B2, patient group, PG) underwent a six-stage submaximal exercise test (ET) on a motorised treadmill. They trotted in their individual comfort speed for three minutes per stage, first without incline, afterwards increasing it by 4% for every subsequent stage. Blood samples were taken at rest and during two 3-minute breaks in the course of the test. Further samples were taken after the completion of the exercise test and again after a 3-hour recovery period. Measured parameters included heart rate, lactate and the cardiac biomarkers N-terminal pro-B-Type natriuretic peptide and cardiac Troponin I. The test was performed again under the same conditions in the same dogs three weeks after the first trial to evaluate individual repeatability. Cardiac biomarkers increased significantly in both HG and PG in the course of the test. The increase was more pronounced in CHIEF B1 / B2 dogs than in the HG. N-terminal pro-B-Type natriuretic peptide increased from 435 ± 195 to 523 ± 239 pmol/L (HG) and from 690 to 815 pmol/L (PG). cTnI increased from 0.020 to 0.024 ng/mL (HG) and from 0.06 to 0.08 ng/ml (PG). The present study provides a method to assess exercise-induced changes in cardiac biomarkers under clinical conditions. The increase of NT-proBNP and cTnI is more pronounced in dogs with early-stage MR than in healthy dogs. Results indicate that measuring the parameters before and after exercise is adequate and taking blood samples between the different stages of the ET does not provide additional information. Also, stress echocardiography was inconclusive. It can be concluded that exercise testing, especially in combination with measuring cardiac biomarkers, could be a helpful diagnostic tool in canine cardiology. PMID:29902265
Wall, Leona; Mohr, Annika; Ripoli, Florenza Lüder; Schulze, Nayeli; Penter, Camila Duarte; Hungerbuehler, StephanOscar; Bach, Jan-Peter; Lucas, Karin; Nolte, Ingo
2018-01-01
Exercise intolerance is the first symptom of heart disease. Yet an objective and standardised method in canine cardiology to assess exercise capacity in a clinical setting is lacking. In contrast, exercise testing is a powerful diagnostic tool in humans, providing valuable information on prognosis and impact of therapeutic intervention. To investigate whether an exercise test reveals differences between dogs with early stage mitral regurgitation (MR) and dogs without cardiac disease, 12 healthy beagles (healthy group, HG) and 12 dogs with presymptomatic MR (CHIEF B1 / B2, patient group, PG) underwent a six-stage submaximal exercise test (ET) on a motorised treadmill. They trotted in their individual comfort speed for three minutes per stage, first without incline, afterwards increasing it by 4% for every subsequent stage. Blood samples were taken at rest and during two 3-minute breaks in the course of the test. Further samples were taken after the completion of the exercise test and again after a 3-hour recovery period. Measured parameters included heart rate, lactate and the cardiac biomarkers N-terminal pro-B-Type natriuretic peptide and cardiac Troponin I. The test was performed again under the same conditions in the same dogs three weeks after the first trial to evaluate individual repeatability. Cardiac biomarkers increased significantly in both HG and PG in the course of the test. The increase was more pronounced in CHIEF B1 / B2 dogs than in the HG. N-terminal pro-B-Type natriuretic peptide increased from 435 ± 195 to 523 ± 239 pmol/L (HG) and from 690 to 815 pmol/L (PG). cTnI increased from 0.020 to 0.024 ng/mL (HG) and from 0.06 to 0.08 ng/ml (PG). The present study provides a method to assess exercise-induced changes in cardiac biomarkers under clinical conditions. The increase of NT-proBNP and cTnI is more pronounced in dogs with early-stage MR than in healthy dogs. Results indicate that measuring the parameters before and after exercise is adequate and taking blood samples between the different stages of the ET does not provide additional information. Also, stress echocardiography was inconclusive. It can be concluded that exercise testing, especially in combination with measuring cardiac biomarkers, could be a helpful diagnostic tool in canine cardiology.
Lim, Hee Sung; Yoon, Sukhoon
2017-05-01
[Purpose] The purpose of this study was to examine the effect of modified Pilates exercise on cardiopulmonary function in chronic stroke patients. [Subjects and Methods] Twenty participants (age, 62.7 ± 7.3 years; height, 163.3 ± 8.5 cm; weight, 68.8 ± 10.3 kg) were recruited for this study, and randomly allocated to the modified Pilates exercise group (n=10) or the control group (n=10). Graded submaximal treadmill exercise test was used to examine the status of patients' cardiopulmonary function, based on maximal oxygen intake, at the end of a patient's exercise tolerance limit. [Results] The resting heart rates, maximal oxygen intake, and maximal oxygen intake per kilogram were significantly different after 8 weeks of modified Pilates exercise. In addition, these variables were also significantly different between the Pilates and control groups after 8 weeks. [Conclusion] This study has demonstrated that 8 weeks of modified Pilates exercise program can have a positive influence on patients with chronic stroke, potentially by enhancing the cardiopulmonary function, which may have positive implications for increasing their functional ability.
Exercise ECG; ECG - exercise treadmill; EKG - exercise treadmill; Stress ECG; Exercise electrocardiography; Stress test - exercise treadmill; CAD - treadmill; Coronary artery disease - treadmill; Chest pain - treadmill; Angina - treadmill; ...
Metabolic cost of running is greater on a treadmill with a stiffer running platform.
Smith, James A H; McKerrow, Alexander D; Kohn, Tertius A
2017-08-01
Exercise testing on motorised treadmills provides valuable information about running performance and metabolism; however, the impact of treadmill type on these tests has not been investigated. This study compared the energy demand of running on two laboratory treadmills: an HP Cosmos (C) and a Quinton (Q) model, with the latter having a 4.5 times stiffer running platform. Twelve experienced runners ran identical bouts on these treadmills at a range of four submaximal velocities (reported data is for the velocity that approximated 75-81% VO 2max ). The stiffer treadmill elicited higher oxygen consumption (C: 46.7 ± 3.8; Q: 50.1 ± 4.3 ml·kg -1 · min -1 ), energy expenditure (C: 16.0 ± 2.5; Q: 17.7 ± 2.9 kcal · min -1 ), carbohydrate oxidation (C: 9.6 ± 3.1; Q: 13.0 ± 3.9 kcal · min -1 ), heart rate (C: 155 ± 16; Q: 163 ± 16 beats · min -1 ) and rating of perceived exertion (C: 13.8 ± 1.2; Q: 14.7 ± 1.2), but lower fat oxidation (C: 6.4 ± 2.3; Q: 4.6 ± 2.5 kcal · min -1 ) (all analysis of variance treadmill comparisons P < 0.01). This study confirms that caution is required when comparing performance and metabolic results between different treadmills and suggests that treadmills will vary in their comparability to over-ground running depending on the running platform stiffness.
Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B
2016-01-01
Background Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Methods Older adults with HF and reduced ejection fraction (n = 25, age 75 ± 7 years) were compared to 25 healthy age- and gender-matched controls. Assessments included a maximal treadmill test for peak oxygen uptake (VO2peak), oxygen uptake kinetics at onset of and on recovery from a submaximal treadmill test, functional mobility testing [Get Up and Go (GUG), Comfortable Gait Speed (CGS), Unipedal Stance (US)], and self-reported physical activity (PA). Results Compared to controls, HF had worse performance on GUG, CGS, and US, greater delays in submaximal oxygen uptake kinetics, and lower PA. In controls, VO2peak was more strongly associated with functional mobility and PA than submaximal oxygen uptake kinetics. In HF patients, submaximal oxygen uptake kinetics were similarly associated with GUG and CGS as VO2peak, but weakly associated with PA. Conclusions Based on their mobility performance, older HF patients with reduced ejection fraction are at risk for adverse functional outcomes. In this population, submaximal oxygen uptake measures may be equivalent to VO2 peak in predicting functional mobility, and in addition to being more feasible, may provide better insight into how aerobic function relates to mobility in older adults with HF. PMID:27594875
Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B
2016-07-01
Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Older adults with HF and reduced ejection fraction (n = 25, age 75 ± 7 years) were compared to 25 healthy age- and gender-matched controls. Assessments included a maximal treadmill test for peak oxygen uptake (VO2peak), oxygen uptake kinetics at onset of and on recovery from a submaximal treadmill test, functional mobility testing [Get Up and Go (GUG), Comfortable Gait Speed (CGS), Unipedal Stance (US)], and self-reported physical activity (PA). Compared to controls, HF had worse performance on GUG, CGS, and US, greater delays in submaximal oxygen uptake kinetics, and lower PA. In controls, VO2peak was more strongly associated with functional mobility and PA than submaximal oxygen uptake kinetics. In HF patients, submaximal oxygen uptake kinetics were similarly associated with GUG and CGS as VO2peak, but weakly associated with PA. Based on their mobility performance, older HF patients with reduced ejection fraction are at risk for adverse functional outcomes. In this population, submaximal oxygen uptake measures may be equivalent to VO2 peak in predicting functional mobility, and in addition to being more feasible, may provide better insight into how aerobic function relates to mobility in older adults with HF.
Physiological differences between cycling and running: lessons from triathletes.
Millet, Gregoire P; Vleck, V E; Bentley, D J
2009-01-01
The purpose of this review was to provide a synopsis of the literature concerning the physiological differences between cycling and running. By comparing physiological variables such as maximal oxygen consumption (V O(2max)), anaerobic threshold (AT), heart rate, economy or delta efficiency measured in cycling and running in triathletes, runners or cyclists, this review aims to identify the effects of exercise modality on the underlying mechanisms (ventilatory responses, blood flow, muscle oxidative capacity, peripheral innervation and neuromuscular fatigue) of adaptation. The majority of studies indicate that runners achieve a higher V O(2max) on treadmill whereas cyclists can achieve a V O(2max) value in cycle ergometry similar to that in treadmill running. Hence, V O(2max) is specific to the exercise modality. In addition, the muscles adapt specifically to a given exercise task over a period of time, resulting in an improvement in submaximal physiological variables such as the ventilatory threshold, in some cases without a change in V O(2max). However, this effect is probably larger in cycling than in running. At the same time, skill influencing motor unit recruitment patterns is an important influence on the anaerobic threshold in cycling. Furthermore, it is likely that there is more physiological training transfer from running to cycling than vice versa. In triathletes, there is generally no difference in V O(2max) measured in cycle ergometry and treadmill running. The data concerning the anaerobic threshold in cycling and running in triathletes are conflicting. This is likely to be due to a combination of actual training load and prior training history in each discipline. The mechanisms surrounding the differences in the AT together with V O(2max) in cycling and running are not largely understood but are probably due to the relative adaptation of cardiac output influencing V O(2max) and also the recruitment of muscle mass in combination with the oxidative capacity of this mass influencing the AT. Several other physiological differences between cycling and running are addressed: heart rate is different between the two activities both for maximal and submaximal intensities. The delta efficiency is higher in running. Ventilation is more impaired in cycling than in running. It has also been shown that pedalling cadence affects the metabolic responses during cycling but also during a subsequent running bout. However, the optimal cadence is still debated. Central fatigue and decrease in maximal strength are more important after prolonged exercise in running than in cycling.
Exercise thermoregulation with bed rest, confinement, and immersion deconditioning
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.
1997-01-01
Altered thermoregulation following exposure to prolonged (12-14 days) of bed rest and 6 hr of head-down thermoneutral water immersion in humans, and cage confinement (8 weeks) in male, mongrel dogs resulted in occasional increased core temperature (Tcore) at rest, but consistent "excessive" increase in Tcore during submaximal exercise. This excessive increase in Tcore in nonexercising and exercising subjects was independent of the mode (isometric or isotonic) of exercise training during bed rest, and was associated with the consistent hypovolemia in men but not in women taking estrogen supplementation (1.25 mg premarin/ day) which restored plasma volume during bed rest to ambulatory control levels. Post-bed rest exercise sweating (evaporative heat loss) was unchanged or higher than control levels; however, calculated tissue heat conductance was significantly lower in men, and forearm venoconstriction was greater (venous volume was reduced) in women during exercise after bed rest. Because sweating appeared proportional to the increased level of Tcore, these findings suggest that one major factor for the excessive hyperthermia is decreased core to periphery heat conduction. Exercising dogs respond like humans with excessive increase in both rectal (Tre) and exercising muscle temperatures (Tmu) after confinement and, after eight weeks of exercise training on a treadmill following confinement, they had an attenuated rate of increase of Tre even below ambulatory control levels. Intravenous infusion of glucose also attenuated not only the rise in Tre during exercise in normal dogs, but also the excessive rise in Tre and exercising Tmu after confinement. Oral glucose also appeared to reduce the rate of increase in excessive Tre in men after immersion deconditioning. There was a greater rate of rise in Tcore in two cosmonauts during supine submaximal exercise (65% VO2 max) on the fifth recovery day after the 115-day Mir 18 mission. Thus, the excessive rise in core temperature after deconditioning appears to be caused by decreased peripheral vasodilation in humans. Factors related to glucose metabolism may influence this mechanism.
Effect of exercise, heat stress and dehydration on myocardial performance.
Fehling, P C; Haller, J M; Lefferts, W K; Hultquist, E M; Wharton, M; Rowland, T W; Smith, D L
2015-06-01
Myocardial dysfunction is a well-documented outcome of extended periods of high cardiac output. Whether similar effects occur during firefighting, an occupation characterized by repeated periods of work compounded by dehydration and heat stress, is uncertain. To investigate the independent and combined effects of moderate heat stress and dehydration on indicators of myocardial performance following intermittent, submaximal treadmill exercise while wearing personal protective equipment (PPE). Twelve aerobically fit young men (age 21.5±2.6 years; maximal oxygen uptake [VO2max] 60.3±4.4ml kg(-1) min(-1)) performed intermittent treadmill walking exercise consisting of three 20min bouts at an intensity of ~40% VO2max separated by two periods of rest in four different conditions in random order: (i) no heat stress-euhydrated, (ii) heat stress-euhydrated (heat stress created by wearing PPE, (iii) no heat stress-dehydrated and (iv) heat stress-dehydrated. We measured core temperature by a telemetric gastrointestinal pill. We determined cardiac variables by standard echocardiographic techniques immediately before and ~30min after exercise. We recorded no significant changes in markers of systolic (ejection fraction, shortening fraction, tissue Doppler-S) or diastolic (mitral peak E velocity, tissue Doppler-E' and E/E') function following exercise in any of the four conditions. In this model of exercise designed to mimic the work, heat stress and dehydration associated with firefighting activities, we observed no negative effects on myocardial inotropic or lusitropic function. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Bitschnau, C; Wiestner, T; Trachsel, D S; Auer, J A; Weishaupt, M A
2010-11-01
Standardised exercise tests are used for fitness evaluation of sports horses. Standards are described for Thoroughbreds and Standardbreds; however, limited information is available for Warmbloods. To establish normative standards of performance parameters and heart rate recovery (HRR) in Warmblood riding horses of different levels of fitness using a submaximal incremental exercise test (SIET) performed on a treadmill. A SIET was carried out with 29 healthy and treadmill-accustomed Warmbloods: eleven 3-day event horses (TDE) and 18 horses from the National Equestrian Centre (NEC) competing in amateur jumping and/or dressage events. After a warm-up phase, horses performed 2 stages at trot and 3-5 stages at gallop at 6% incline. The first stage lasted 120 s, all others 90 s. Velocity (V) and heart rate (HR) were measured continuously and blood lactate concentration (LAC) at the end of each exercise stage. V at HR 150 and 200 beats/min (V(150), V(200)), V and HR at 2 and 4 mmol/l LAC (V(2), V(4) and HR(2), HR(4), respectively) were calculated and compared between discipline groups. For reference values, horses were divided on the basis of the V(4) -results in good (GP) and average performers (AP) (performance groups). Five minute passive HRR was compared between performance groups. Fifteen NEC horses were retested within 1-3 months. Groups were compared with t tests and P < 0.05 considered significant. Three-day event horses had higher V(150), V(2) and V(4) values than NEC. GP had higher values in all performance parameters compared to AP. No differences were found between test and retest. GP mean recovery HR was different from that of AP from 120 s of recovery onwards. Treadmill SIETs are suitable to objectify aerobic capacity in Warmblood riding horses. Normative standards were assessed for well and averagely-trained horses. The results can be referred to when diagnosing patients with exercise intolerance. © 2010 EVJ Ltd.
de Geus, B; Delbeke, F; Meeusen, R; Van Eenoo, P; De Meirleir, K; Busschaert, B
2004-10-01
19-Norandrosterone (19-NA) and 19-noretiocholanolone (19-NE) are the two main urinary indicators used to detect illegal use of nandrolone. Recent studies showed that 19-NA and 19-NE can be endogenously produced in non-treated humans. The concentrations were close to the threshold of the International Olympic Committee (IOC), i.e. 2 ng/ml for men and seem to increase after prolonged intense effort. Androgens are involved in the biosynthesis of estrogens and estrogen has a protective effect against skeletal muscle damage following eccentric exercise. Furthermore, the testicular tissue can synthesize 19-norandrogens from androgens, we hypothetisize that the 19-norandrogen production might be influenced by muscle damage following eccentric exercise. Therefore the purpose of this study is to examine if three different exercise methods will influence the urinary concentration of 19-NA and 19-NE in healthy young subjects. Fifteen amateur hockey players undertook a 30 min submaximal standardized exercise protocol. They were randomised for three different types of exercise, namely a cycle ergometer test (cyclic muscle activity), a treadmill test (concentric muscle activity), or a bench-steptest (eccentric muscle activity) at a target heart rate corresponding to 65 % (+/- 5 %) of Karvonen heart rate. Urine samples were obtained before the test and 60 min and 120 min after the end of exercise. Subjects completed a Likert scale of muscle soreness before and 12 h after exercise. 19-NA and 19-NE were determined by gas chromatography-tandem mass spectrometry (GC-MS-MS). Baseline urinary 19-NA and 19-NE concentrations were under limit of detection of 0.05 ng/ml, except for one sample (0.13 ng/ml). No 19-NA or 19-NE could be detected post exercise. In our experimental conditions, the exercise mode (eccentric or concentric) had no impact on 19-NA or 19-NE excretion. Our findings confirm that the current International Olympic Committee threshold level for nandrolone metabolites is sufficiently high to avoid false positive cases.
Sex differences in oxidative stress after eccentric and concentric exercise.
Wiecek, Magdalena; Maciejczyk, Marcin; Szymura, Jadwiga; Szygula, Zbigniew
2017-11-01
Comparison of redox balance changes in the blood of women and men as a result of submaximal eccentric (ECC) and concentric (CONC) efforts. 10 women and 10 men performed three 45-minute submaximal treadmill runs at constant velocities (downhill run - ECC, uphill run - CONC and level run). Prior to the 45-minute exercises, after their completion and following 24 hours of recovery, the concentration of lactate, oxidized low-density lipoprotein (ox-LDL), 3-nitrotyrosine, uric acid (UA) and the white blood cell count (WBC), neutrophil (NEUT), lymphocyte (LYMPH) and monocyte content in the blood were determined. In women, the ox-LDL increased significantly 10 minutes and 24 hours following ECC (P < 0.05). 10 minutes after ECC, in women, there was an increase in WBC, NEUT and LYMPH (P < 0.05). In the men, WBC and NEUT increased significantly 24 hours after CONC and ECC (P < 0.05). UA in each determination was higher in the men than the women (P < 0.05). ECC cause impaired redox balance only in women. Due to the increase in antioxidant capacity of the blood without accompanying oxidative damage to macromolecules, for both sexes, it is recommended to perform concentric running efforts at the highest possible subliminal intensity.
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Bernauer, E. M.; Erti, A. C.
1995-01-01
Submaximal exercise (61+3% peak VO2) metabolism was measured before (AC day-2) and on bed rest day 4, 11, and 25 in 19 healthy men (32-42 yr) allocated into no exercise (NOE, N=5) control, and isotonic exercise (ITE, N=7)and isokinetic exercise (IKE, N=7) training groups. Training was conducting supine for two 30-min periods/d for 6 d/wk: ITE was 60-90% peak VO2: IKE was peak knee flexion-extension at 100 deg/s. Supine submaximal exercise 102 decreased significantly (*p<0.05) by 10.3%, with ITE and by 7.3%* with IKE; similar to the submaximal cardiac output (Q) change of -14.5%* (ITE) and -203%* (IKE), but different from change in peak VO2 (+1.4% with ITE and - 10.2%, with IKE) and plasma volume of -3.7% (ITE) and - 18.0% * (IKE). Thus, reduction of submaximal V02 during prolonged bed rest appears to respond to submaximal Q but is not related to change in peak VO2 or plasma volume.
Reproducibility of the Self-Controlled Six-Minute Walking Test in Heart Failure Patients
Guimarães, Guilherme Veiga; Carvalho, Vitor Oliveira; Bocchi, Edimar Alcides
2008-01-01
INTRODUCTION The six-minute walk test (6WT) has been proposed to be a submaximal test, but could actually demand a high level of exercise intensity from the patient, expressed by a respiratory quotient >1.0, following the guideline recommendations. Standardizing the 6WT using the Borg scale was proposed to make sure that all patients undergo a submaximal walking test. PURPOSE To test the reproducibility of the six-minute treadmill cardiopulmonary walk test (6CWT) using the Borg scale and to make sure that all patients undergo a submaximal test. METHODS Twenty-three male heart failure patients (50±9 years) were included; these patients had both ischemic (5) and non-ischemic (18) heart failure with a left ventricle ejection fraction of 23±7%, were diagnosed as functional class NYHA II-III and were undergoing optimized drug therapy. Patients were guided to walk at a pace between “relatively easy and slightly tiring” (11 and 13 on Borg scale). The 6CWT using the Borg scale was performed two times on a treadmill with zero inclination and patient control of speed with an interval of 24 hours. During the sixth minute, we analyzed ventilation (VE, L/min), respiratory quotient, Oxygen consumption (VO2, ml/kg/min), VE/VCO2 slope, heart rate (HR, bpm), systolic blood pressure (SBP, mmHg), diastolic (DBP, mmHg) blood pressure and distance. RESULTS The intraclass correlation coefficients at the sixth minute were: HR (ri=0.96, p<0.0001), VE (ri=0.84, p<0.0001), SBP (ri=0.72, p=0.001), distance (ri=0.88, p<0.0001), VO2 (ri=0.92, p<0.0001), SlopeVE/VCO2 (ri=0.86, p<0.0001) and RQ<1 (ri=0.6, p=0.004). CONCLUSION Using the 6CWT with the Borg scale was reproducible, and it seems to be an appropriate method to evaluate the functional capacity of heart failure patients while making sure that they undergo a submaximal walking test. PMID:18438574
Reproducibility of the self-controlled six-minute walking test in heart failure patients.
Guimarães, Guilherme Veiga; Carvalho, Vitor Oliveira; Bocchi, Edimar Alcides
2008-04-01
The six-minute walk test (6WT) has been proposed to be a submaximal test, but could actually demand a high level of exercise intensity from the patient, expressed by a respiratory quotient >1.0, following the guideline recommendations. Standardizing the 6WT using the Borg scale was proposed to make sure that all patients undergo a submaximal walking test. To test the reproducibility of the six-minute treadmill cardiopulmonary walk test (6CWT) using the Borg scale and to make sure that all patients undergo a submaximal test. Twenty-three male heart failure patients (50+/-9 years) were included; these patients had both ischemic (5) and non-ischemic (18) heart failure with a left ventricle ejection fraction of 23+/-7%, were diagnosed as functional class NYHA II-III and were undergoing optimized drug therapy. Patients were guided to walk at a pace between "relatively easy and slightly tiring" (11 and 13 on Borg scale). The 6CWT using the Borg scale was performed two times on a treadmill with zero inclination and patient control of speed with an interval of 24 hours. During the sixth minute, we analyzed ventilation (VE, L/min), respiratory quotient, Oxygen consumption (VO2, ml/kg/min), VE/VCO2 slope, heart rate (HR, bpm), systolic blood pressure (SBP, mmHg), diastolic (DBP, mmHg) blood pressure and distance. The intraclass correlation coefficients at the sixth minute were: HR (r i=0.96, p<0.0001), VE (r i=0.84, p<0.0001), SBP (r i=0.72, p=0.001), distance (r i=0.88, p<0.0001), VO2 (r i=0.92, p<0.0001), SlopeVE/VCO2 (r i=0.86, p<0.0001) and RQ<1 (r i=0.6, p=0.004). Using the 6CWT with the Borg scale was reproducible, and it seems to be an appropriate method to evaluate the functional capacity of heart failure patients while making sure that they undergo a submaximal walking test.
The severity of muscle ischemia during intermittent claudication.
Egun, Anselm; Farooq, Vasim; Torella, Francesco; Cowley, Richard; Thorniley, Maureen S; McCollum, Charles N
2002-07-01
The degree of ischemia during intermittent claudication is difficult to quantify. We evaluated calf muscle ischemia during exercise in patients with claudication with near infrared spectroscopy. A Critikon Cerebral Redox Model 2001 (Johnson & Johnson Medical, Newport, Gwent, United Kingdom) was used to measure calf muscle deoxygenated hemoglobin (HHb), oxygenated hemoglobin (O(2)Hb), and total hemoglobin levels and oxygenation index (HbD; HbD = O(2)Hb - HHb) in 16 patients with claudication and in 14 control subjects before, during, and after walking on a treadmill for 1 minute (submaximal exercise). These measures were repeated after a second maximal exercise in patients with claudication and after 7 minutes walking in control subjects. Near-infrared spectroscopy readings during maximal exercise were then compared with a model of total ischemia induced with tourniquet in 16 young control subjects. Total hemoglobin level changed little during exercise in both patients with claudication and control subjects. HHb levels rose, and O(2)Hb level and HbD falls were more pronounced in patients with claudication than in control subjects after submaximal and maximal exercise. During maximal exercise, HbD fell markedly by a median (interquartile range) of 210.5 micromol/cm (108.2 to 337.0 micromol/cm) in patients with claudication compared with 66.0 micromol/cm (44.0 to 101.0 micromol/cm) in elderly control subjects and 41.0 micromol/cm (36.0 to 65.0 micromol/cm) in young control subjects (P <.001). This fall also was greater than the HbD fall induced with tourniquet ischemia at 90.8 micromol/cm (57.6 to 126.2 micromol/cm; P =.006). Hemoglobin desaturation in exercising calf muscle is profound in patients with claudication, considerably greater even than that induced with three minutes of tourniquet occlusion. Further studies are necessary to investigate the relationship between the inflammatory response and near-infrared spectroscopy during exercise in patients with claudication.
Lim, Hee Sung; Yoon, Sukhoon
2017-01-01
[Purpose] The purpose of this study was to examine the effect of modified Pilates exercise on cardiopulmonary function in chronic stroke patients. [Subjects and Methods] Twenty participants (age, 62.7 ± 7.3 years; height, 163.3 ± 8.5 cm; weight, 68.8 ± 10.3 kg) were recruited for this study, and randomly allocated to the modified Pilates exercise group (n=10) or the control group (n=10). Graded submaximal treadmill exercise test was used to examine the status of patients’ cardiopulmonary function, based on maximal oxygen intake, at the end of a patient’s exercise tolerance limit. [Results] The resting heart rates, maximal oxygen intake, and maximal oxygen intake per kilogram were significantly different after 8 weeks of modified Pilates exercise. In addition, these variables were also significantly different between the Pilates and control groups after 8 weeks. [Conclusion] This study has demonstrated that 8 weeks of modified Pilates exercise program can have a positive influence on patients with chronic stroke, potentially by enhancing the cardiopulmonary function, which may have positive implications for increasing their functional ability. PMID:28603381
Petidis, Konstantinos; Douma, Stella; Doumas, Michael; Basagiannis, Ilias; Vogiatzis, Konstantinos; Zamboulis, Chrysanthos
2008-01-01
Background Acute vigorous exercise, associated with increased release of plasma catecholamines, transiently increases the risk of primary cardiac arrest. We tested the effect of acute submaximal exercise on vasoactive substances and their combined result on platelet function. Methods Healthy volunteers, hypertensive patients and patients with coronary artery disease (CAD) performed a modified treadmill exercise test. We determined plasma catecholamines, thromboxane A2, prostacyclin, endothelin-1 and platelet aggregation induced by adenosine diphosphate (ADP) and collagen at rest and during exercise. Results Our results during exercise showed a) platelet activation (increased thromboxane B2, TXB2), b) increased prostacyclin release from endothelium and c) decreased platelet aggregation in all groups, significantly more in healthy volunteers than in patients with CAD (with hypertensives lying in between these two groups). Conclusion Despite the pronounced activation of Sympathetic Nervous System (SNS) and increased TXB2 levels during acute exercise platelet aggregation decreases, possibly to counterbalance the prothrombotic state. Since this effect seems to be mediated by the normal endothelium (through prostacyclin and nitric oxide), in conditions characterized by endothelial dysfunction (hypertension, CAD) reduced platelet aggregation is attenuated, thus posing such patients in increased risk for thrombotic complications. PMID:18505546
Temperature responses in severely burned children during exercise in a hot environment.
McEntire, Serina J; Chinkes, David L; Herndon, David N; Suman, Oscar E
2010-01-01
The authors have previously described thermoregulatory responses of severely burned children during submaximal exercise in a thermoneutral environment. However, the thermoregulatory response of burned children to exercise in the heat is not well understood and could have important safety implications for rehabilitation. Children (n = 10) with >40% TBSA burns and nonburned children (n = 10) performed a 30-minute bout of treadmill exercise at 75% of their peak aerobic power in a heated environment. Intestinal temperature, burned and unburned skin temperature, and heart rate were recorded pre-exercise, every 2 minutes during exercise, and during recovery. Three of the 10 burned children completed the exercise bout in the heat; however, all the nonburned children completed the 30-minute bout. One burned child reached a core body temperature >39 degrees C at minute 23. Burned children had significantly higher core body temperature through the first 12 minutes of exercise compared with nonburned children. However, nine of 10 (90%) burned children did not become hyperthermic during exercise in the heat. Specific to this study, hyperthermia did not typically occur in burned children, relative to nonburned children. Whether this is due to an intolerance to exercise in the heat or to an inability to generate sufficient heat during exercise needs to be explored further.
The kinetics of lactate production and removal during whole-body exercise
2012-01-01
Background Based on a literature review, the current study aimed to construct mathematical models of lactate production and removal in both muscles and blood during steady state and at varying intensities during whole-body exercise. In order to experimentally test the models in dynamic situations, a cross-country skier performed laboratory tests while treadmill roller skiing, from where work rate, aerobic power and blood lactate concentration were measured. A two-compartment simulation model for blood lactate production and removal was constructed. Results The simulated and experimental data differed less than 0.5 mmol/L both during steady state and varying sub-maximal intensities. However, the simulation model for lactate removal after high exercise intensities seems to require further examination. Conclusions Overall, the simulation models of lactate production and removal provide useful insight into the parameters that affect blood lactate response, and specifically how blood lactate concentration during practical training and testing in dynamical situations should be interpreted. PMID:22413898
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Ertl, A. C.; Bernauer, E. M.
1996-01-01
BACKGROUND: Maintaining intermediary metabolism is necessary for the health and well-being of astronauts on long-duration spaceflights. While peak oxygen uptake (VO2) is consistently decreased during prolonged bed rest, submaximal VO2 is either unchanged or decreased. METHODS: Submaximal exercise metabolism (61 +/- 3% peak VO2) was measured during ambulation (AMB day-2) and on bed rest days 4, 11, and 25 in 19 healthy men (32-42 yr) allocated into no exercise (NOE, N = 5) control, and isotonic exercise (ITE, N = 7) and isokinetic exercise (IKE, N = 7) training groups. Exercise training was conducted supine for two 30-min periods per day for 6 d per week: ITE training was intermittent at 60-90% peak VO2; IKE training was 10 sets of 5 repetitions of peak knee flexion-extension force at a velocity of 100 degrees s-1. Cardiac output was measured with the indirect Fick CO2 method, and plasma volume with Evans blue dye dilution. RESULTS: Supine submaximal exercise VO2 decreased significantly (*p < 0.05) by 10.3%* with ITE and by 7.3%* with IKE; similar to the submaximal cardiac output decrease of 14.5%* (ITE) and 20.3%* (IKE), but different from change in peak VO2 (+1.4% with ITE and -10.2%* with IKE) and decrease in plasma volume of -3.7% (ITE) and -18.0%* (IKE). Reduction of submaximal VO2 during bed rest correlated 0.79 (p < 0.01) with submaximal Qc, but was not related to change in peak VO2 or plasma volume. CONCLUSION: Reduction in submaximal oxygen uptake during prolonged bed rest is related to decrease in exercise but not resting cardiac output; perturbations in active skeletal muscle metabolism may be involved.
Veltmeijer, Matthijs T W; Veeneman, Dineke; Bongers, Coen C C W; Netea, Mihai G; van der Meer, Jos W; Eijsvogels, Thijs M H; Hopman, Maria T E
2017-05-01
Exercise increases core body temperature (T C ) due to metabolic heat production. However, the exercise-induced release of inflammatory cytokines including interleukin-6 (IL-6) may also contribute to the rise in T C by increasing the hypothalamic temperature set point. This study investigated whether the exercise-induced increase in T C is partly caused by an altered hypothalamic temperature set point. Fifteen healthy, active men age 36 ± 14 y were recruited. Subjects performed submaximal treadmill exercise in 3 randomized test conditions: (1) 400 mg ibuprofen and 1000 mg acetaminophen (IBU/APAP), (2) 1000 mg acetaminophen (APAP), and (3) a control condition (CTRL). Acetaminophen and ibuprofen were used to block the effect of IL-6 at a central and peripheral level, respectively. T C , skin temperature, and heart rate were measured continuously during the submaximal exercise tests. Baseline values of T C , skin temperature, and heart rate did not differ across conditions. Serum IL-6 concentrations increased in all 3 conditions. A significantly lower peak T C was observed in IBU/APAP (38.8°C ± 0.4°C) vs CTRL (39.2°C ± 0.5°C, P = .02) but not in APAP (38.9°C ± 0.4°C) vs CTRL. Similarly, a lower ΔT C was observed in IBU/APAP (1.7°C ± 0.3°C) vs CTRL (2.0°C ± 0.5°C, P < .02) but not in APAP (1.7°C ± 0.5°C) vs CTRL. No differences were observed in skin temperature and heart-rate responses across conditions. The combined administration of acetaminophen and ibuprofen resulted in an attenuated increase in T C during exercise compared with a CTRL. This observation suggests that a prostaglandin-E2-induced elevated hypothalamic temperature set point may contribute to the exercise-induced rise in T C .
Erdei, Tamás; Smiseth, Otto A; Marino, Paolo; Fraser, Alan G
2014-12-01
Cardiac function should be assessed during stress in patients with suspected heart failure with preserved ejection fraction (HFPEF), but it is unclear how to define impaired diastolic reserve. We conducted a systematic review to identify which pathophysiological changes serve as appropriate targets for diagnostic imaging. We identified 38 studies of 1111 patients with HFPEF (mean age 65 years), 744 control patients without HFPEF, and 458 healthy subjects. Qualifying EF was >45-55%; diastolic dysfunction at rest was a required criterion in 45% of studies. The initial workload during bicycle exercise (25 studies) varied from 12.5 to 30 W (mean 23.1 ± 4.6), with increments of 10-25 W (mean 19.9 ± 6) and stage duration 1-5 min (mean 2.5 ± 1); targets were submaximal (n = 8) or maximal (n = 17). Other protocols used treadmill exercise, handgrip, dobutamine, lower body negative pressure, nitroprusside, fluid challenge, leg raising, or atrial pacing. Reproducibility of echocardiographic variables during stress and validation against independent reference criteria were assessed in few studies. Change in E/e' was the most frequent measurement, but there is insufficient evidence to establish this or other tests for routine use when evaluating patients with HFPEF. To meet the clinical requirements of performing stress testing in elderly subjects, we propose a ramped exercise protocol on a semi-supine bicycle, starting at 15 W, with increments of 5 W/min to a submaximal target (heart rate 100-110 b.p.m., or symptoms). Measurements during submaximal and recovery stages should include changes from baseline in LV long-axis function and indirect echocardiographic indices of LV diastolic pressure. © 2014 The Authors. European Journal of Heart Failure © 2014 European Society of Cardiology.
Diet and exercise effects on aerobic fitness and body composition in seriously mentally ill adults.
Giannopoulou, Ifigenia; Botonis, Petros; Kostara, Christina; Skouroliakou, Maria
2014-01-01
Low exercise capacity and high obesity levels are the main characteristics of people with serious mental illness (SMI). We conducted a pilot study on the effects of a 3-month exercise and dietary intervention on the aerobic capacity and body composition of obese adults with SMI taking Olanzapine, a second generation antipsychotic medication known to induce weight increments. Fifty adults with SMI (15 males and 35 females) followed a 3-month weight loss intervention programme based on exercise and diet. Pre- and post-intervention, a submaximal [Formula: see text]O2 exercise test was performed in order to assess [Formula: see text]O2max anthropometric and body composition measurements were also performed. All participants were obese (body mass index (BMI): 33.61 ± 0.91 kg/m(2)). Pre- and post-intervention, a submaximal [Formula: see text]O2 exercise test on the treadmill was performed in order to assess [Formula: see text]O2max anthropometric and body composition measurements were also performed. Significant reductions in body weight, BMI, body fat and waist circumference were found from pre to post (p < 0.01). [Formula: see text]O2max was significantly improved in both genders (males: pre: 30.63 ± 2.06 vs. post: 33.19 ± 1.77 ml(.)kg(-1) min(-1), females: pre: 25.93 ± 1.01 vs. post: 29.51 ± 1.06 ml(.)kg(-1) min(-1), p < 0.01). A significant correlation was found between the change in [Formula: see text]O2max and the change in body weight and BMI (p < 0.05). Multiple regression analysis revealed that the relative change in [Formula: see text]O2max explained approximately 26% of the variance in the changes for both BMI (p = 0.07) and body weight (p = 0.06). A treatment of exercise and diet improves the aerobic capacity and body composition of obese adults with SMI, despite the use of Olanzapine.
Parazzi, Paloma Lopes Francisco; Marson, Fernando Augusto de Lima; Ribeiro, Maria Angela Gonçalves de Oliveira; de Almeida, Celize Cruz Bresciani; Martins, Luiz Cláudio; Paschoal, Ilma Aparecida; Toro, Adyleia Aparecida Dalbo Contrera; Schivinski, Camila Isabel Santos; Ribeiro, Jose Dirceu
2015-05-19
Exercise has been studied as a prognostic marker for patients with cystic fibrosis (CF), as well as a tool for improving their quality of life and analyzing lung disease. In this context, the aim of the present study was to evaluate and compare variables of lung functioning. Our data included: (i) volumetric capnography (VCAP) parameters: expiratory minute volume (VE), volume of exhaled carbon dioxide (VCO2), VE/VCO2, ratio of dead space to tidal volume (VD/VT), and end-tidal carbon dioxide (PetCO2); (ii) spirometry parameters: forced vital capacity (FVC), percent forced expiratory volume in the first second of the FVC (FEV1%), and FEV1/FVC%; and (iii) cardiorespiratory parameters: heart rate (HR), respiratory rate, oxygen saturation (SpO2), and Borg scale rating at rest and during exercise. The subjects comprised children, adolescents, and young adults aged 6-25 years with CF (CF group [CFG]) and without CF (control group [CG]). This was a clinical, prospective, controlled study involving 128 male and female patients (64 with CF) of a university hospital. All patients underwent treadmill exercise tests and provided informed consent after study approval by the institutional ethics committee. Linear regression, Kruskal-Wallis test, and Mann-Whitney test were performed to compare the CFG and CG. The α value was set at 0.05. Patients in the CFG showed significantly different VCAP values and spirometry variables throughout the exercise test. Before, during, and after exercise, several variables were different between the two groups; statistically significant differences were seen in the spirometry parameters, SpO2, HR, VCO2, VE/VCO2, PetCO2, and Borg scale rating. VCAP variables changed at each time point analyzed during the exercise test in both groups. VCAP can be used to analyze ventilatory parameters during exercise. All cardiorespiratory, spirometry, and VCAP variables differed between patients in the CFG and CG before, during, and after exercise.
Brief submaximal isometric exercise improves cold pressor pain tolerance.
Foxen-Craft, Emily; Dahlquist, Lynnda M
2017-10-01
Exercise-induced hypoalgesia (EIH), or the inhibition of pain following physical exercise, has been demonstrated in adults, but its mechanisms have remained unclear due to variations in methodology. This study aimed to address methodological imitations of past studies and contribute to the literature demonstrating the generalizability of EIH to brief submaximal isometric exercise and cold pressor pain. Young adults (n = 134) completed a baseline cold pressor trial, maximal voluntary contraction (hand grip strength) assessment, 10-min rest, and either a 2-min submaximal isometric handgrip exercise or a sham exercise in which no force was exerted, followed by a cold pressor posttest. Results indicated that cold pressor pain tolerance significantly increased during the exercise condition, but not during the sham exercise condition. Exercise did not affect pain intensity and marginally affected pain unpleasantness ratings. These findings suggest that submaximal isometric exercise can improve cold pressor pain tolerance but may have an inconsistent analgesic effect on ratings of cold pressor pain.
Predictors of oxygen desaturation during submaximal exercise in 8,000 patients.
Hadeli, K O; Siegel, E M; Sherrill, D L; Beck, K C; Enright, P L
2001-07-01
To determine predictors of oxygen desaturation during submaximal exercise in patients with various lung diseases. This retrospective case series used pulmonary function laboratory results from all patients referred to a major tertiary-care center. All patients > or = 35 years old who underwent spirometry, diffusing capacity of the lung for carbon monoxide (DLCO), lung volumes, and pulse oximetry during 3-min submaximal step-test exercise during 1996 were included (4,545 men and 3,472 women). Logistic regression models, correcting for gender, age, and weight, determined the odds ratios (ORs) for oxygen desaturation of > or = 4% during exercise for each category of lung function abnormality (compared to those with entirely normal lung function). Approximately 74% of the patients had airways obstruction, while only 5.6% had restriction of lung volumes. One third of those with obstruction had a low DLCO, compared to 56% with restriction, while 2.7% had a low DLCO without obstruction or restriction. The risk of oxygen desaturation during submaximal exercise was very high (OR, 34) in patients with restriction and low DLCO (as in interstitial lung disease) and in patients with obstruction and low DLCO (as in COPD; OR, 18), intermediate (OR, 9) in patients with only a low DLCO, and lowest in those with a normal DLCO (OR, 4 if restricted; OR, 2 if obstructed). A cut point of DLCO < 62% predicted resulted in 75% sensitivity and specificity for exercise desaturation. No untoward cardiac events occurred in any patients during or following the submaximal exercise tests. The risk of oxygen desaturation during submaximal exercise is very high in patients with a low DLCO. Submaximal exercise tests are safe, even in elderly patients with heart and lung diseases.
Changes in technique and efficiency after high-intensity exercise in cross-country skiers.
Åsan Grasaas, Christina; Ettema, Gertjan; Hegge, Ann Magdalen; Skovereng, Knut; Sandbakk, Øyvind
2014-01-01
This study investigated changes in technique and efficiency after high-intensity exercise to exhaustion in elite cross-country skiers. Twelve elite male skiers completed 4 min submaximal exercise before and after a high-intensity incremental test to exhaustion with the G3 skating technique on a 5% inclined roller-ski treadmill. Kinematics and kinetics were monitored by instrumented roller skis, work rate was calculated as power against roller friction and gravity, aerobic metabolic cost was determined from gas exchange, and blood lactate values indicated the anaerobic contribution. Gross efficiency was the work rate divided by aerobic metabolic rate. A recovery period of 10 min between the incremental test and the posttest was included to allow the metabolic values to return to baseline. Changes in neuromuscular fatigue in upper and lower limbs before and after the incremental test were indicated by peak power in concentric bench press and squat-jump height. From pretest to posttest, cycle length decreased and cycle rate increased by approximately 5% (P < 0.001), whereas the amount of ski forces did not change significantly. Oxygen uptake increased by 4%, and gross efficiency decreased from 15.5% ± 0.7% to 15.2% ± 0.5% from pretest to posttest (both P < .02). Correspondingly, blood lactate concentration increased from 2.4 ± 1.0 to 6.2 ± 2.5 mmol/L (P < .001). Bench-press and squat-jump performance remained unaltered. Elite cross-country skiers demonstrated a less efficient technique and shorter cycle length during submaximal roller-ski skating after high-intensity exercise. However, there were no changes in ski forces or peak power in the upper and lower limbs that could explain these differences.
Metabolic characteristics of keto-adapted ultra-endurance runners.
Volek, Jeff S; Freidenreich, Daniel J; Saenz, Catherine; Kunces, Laura J; Creighton, Brent C; Bartley, Jenna M; Davitt, Patrick M; Munoz, Colleen X; Anderson, Jeffrey M; Maresh, Carl M; Lee, Elaine C; Schuenke, Mark D; Aerni, Giselle; Kraemer, William J; Phinney, Stephen D
2016-03-01
Many successful ultra-endurance athletes have switched from a high-carbohydrate to a low-carbohydrate diet, but they have not previously been studied to determine the extent of metabolic adaptations. Twenty elite ultra-marathoners and ironman distance triathletes performed a maximal graded exercise test and a 180 min submaximal run at 64% VO2max on a treadmill to determine metabolic responses. One group habitually consumed a traditional high-carbohydrate (HC: n=10, %carbohydrate:protein:fat=59:14:25) diet, and the other a low-carbohydrate (LC; n=10, 10:19:70) diet for an average of 20 months (range 9 to 36 months). Peak fat oxidation was 2.3-fold higher in the LC group (1.54±0.18 vs 0.67±0.14 g/min; P=0.000) and it occurred at a higher percentage of VO2max (70.3±6.3 vs 54.9±7.8%; P=0.000). Mean fat oxidation during submaximal exercise was 59% higher in the LC group (1.21±0.02 vs 0.76±0.11 g/min; P=0.000) corresponding to a greater relative contribution of fat (88±2 vs 56±8%; P=0.000). Despite these marked differences in fuel use between LC and HC athletes, there were no significant differences in resting muscle glycogen and the level of depletion after 180 min of running (-64% from pre-exercise) and 120 min of recovery (-36% from pre-exercise). Compared to highly trained ultra-endurance athletes consuming an HC diet, long-term keto-adaptation results in extraordinarily high rates of fat oxidation, whereas muscle glycogen utilization and repletion patterns during and after a 3 hour run are similar. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Ventilation and Speech Characteristics during Submaximal Aerobic Exercise
ERIC Educational Resources Information Center
Baker, Susan E.; Hipp, Jenny; Alessio, Helaine
2008-01-01
Purpose: This study examined alterations in ventilation and speech characteristics as well as perceived dyspnea during submaximal aerobic exercise tasks. Method: Twelve healthy participants completed aerobic exercise-only and simultaneous speaking and aerobic exercise tasks at 50% and 75% of their maximum oxygen consumption (VO[subscript 2] max).…
NOS3 gene polymorphisms and exercise hemodynamics in postmenopausal women.
Hand, B D; McCole, S D; Brown, M D; Park, J J; Ferrell, R E; Huberty, A; Douglass, L W; Hagberg, J M
2006-12-01
We tested whether the G894T and T-786C NOS3 polymorphisms were associated with exercise cardiovascular (CV) hemodynamics in sedentary, physically active, and endurance-trained postmenopausal women. CV hemodynamic parameters including heart rate (HR), systolic (SBP) and diastolic (DBP) blood pressures and cardiac output (Q), as determined by acetylene rebreathing, stroke volume (SV), arteriovenous oxygen difference (a-vO2 diff), and total peripheral resistance (TPR) were measured during submaximal (40, 60, 80 %) and maximal (approximately 100 % VO2max) exercise. NOS3 G894T genotype was not significantly associated, either independently or interactively with habitual physical activity (PA) level, with SBP, Q, TPR, or a-vO2 diff during submaximal or maximal exercise. However, NOS3 894T non-carriers had a higher submaximal exercise HR than NOS3 894T allele carriers (120 +/- 2 vs. 112 +/- 2 beats/min, p = 0.007). NOS3 894T allele carriers had a higher SV than 894T non-carriers (78 +/- 2 vs. 72 +/- 2 ml/beat, p = 0.03) during submaximal exercise. NOS3 894T non-carriers also had a higher maximal exercise HR averaged across habitual PA groups than T allele carrier women (165 +/- 2 vs. 158 +/- 2 beats/min, p = 0.04). NOS3 894T allele carriers also tended to have a higher SV during maximal exercise than 894T non-carriers (70 +/- 2 vs. 64 +/- 2 ml/beat, p = 0.08). NOS3 T-786C genotype was not significantly associated, either independently or interactively, with any of the CV hemodynamic measures during submaximal or maximal exercise. These results suggest an association of NOS3 G894T genotype with submaximal and maximal exercise CV hemodynamic responses, especially HR, in postmenopausal women.
Effect of Semirecumbent and Upright Body Position on Maximal and Submaximal Exercise Testing
ERIC Educational Resources Information Center
Scott, Alexander; Antonishen, Kevin; Johnston, Chris; Pearce, Terri; Ryan, Michael; Sheel, A. William; McKenzie, Don C.
2006-01-01
The study was designed to determine the effect of upright-posture (UP) versus semirecumbent (SR) cycling on commonly used measures of maximal and submaximal exercise capacity. Nine healthy, untrained men (M age = 27 years, SD = 4.8 years) underwent steady-state submaximal aerobic testing followed by a ramped test to determine maximal oxygen…
NASA Technical Reports Server (NTRS)
Evans, G. F.; Haller, R. G.; Wyrick, P. S.; Parkey, R. W.; Fleckenstein, J. L.; Blomqvist, C. G. (Principal Investigator)
1998-01-01
PURPOSE: To assess correlations between muscle edema on magnetic resonance (MR) images and clinical indexes of muscle injury in delayed-onset muscle soreness (DOMS) produced by submaximal exercise protocols. MATERIALS AND METHODS: Sixteen subjects performed 36 elbow flexions ("biceps curls") at one of two submaximal workloads that emphasized eccentric contractions. Changes in MR imaging findings, plasma levels of creatine kinase, and pain scores were correlated. RESULTS: Both exercise protocols produced DOMS in all subjects. The best correlation was between change in creatine kinase level and volume of muscle edema on MR images, regardless of the workload. Correlations tended to be better with the easier exercise protocol. CONCLUSION: Whereas many previous studies of DOMS focused on intense exercise protocols to ensure positive results, the present investigation showed that submaximal workloads are adequate to produce DOMS and that correlations between conventionally measured indexes of injury may be enhanced at lighter exercise intensities.
Can endurance training improve physical capacity and quality of life in young Fontan patients?
Hedlund, Eva R; Lundell, Bo; Söderström, Liselott; Sjöberg, Gunnar
2018-03-01
Children after Fontan palliation have reduced exercise capacity and quality of life. Our aim was to study whether endurance training could improve physical capacity and quality of life in Fontan patients. Fontan patients (n=30) and healthy age- and gender-matched control subjects (n=25) performed a 6-minute walk test at submaximal capacity and a maximal cycle ergometer test. Quality of life was assessed with Pediatric Quality of Life Inventory Version 4.0 questionnaires for children and parents. All tests were repeated after a 12-week endurance training programme and after 1 year. Patients had decreased submaximal and maximal exercise capacity (maximal oxygen uptake 35.0±5.1 ml/minute per·kg versus 43.7±8.4 ml/minute·per·kg, p<0.001) and reported a lower quality of life score (70.9±9.9 versus 85.7±8.0, p<0.001) than controls. After training, patients improved their submaximal exercise capacity in a 6-minute walk test (from 590.7±65.5 m to 611.8±70.9 m, p<0.05) and reported a higher quality of life (p<0.01), but did not improve maximal exercise capacity. At follow-up, submaximal exercise capacity had increased further and improved quality of life was sustained. The controls improved their maximal exercise capacity (p<0.05), but not submaximal exercise capacity or quality of life after training. At follow-up, improvement of maximal exercise capacity was sustained. We believe that an individualised endurance training programme for Fontan patients improves submaximal exercise capacity and quality of life in Fontan patients and the effect on quality of life appears to be long-lasting.
Effect of dietary fat source and exercise on odorant-detecting ability of canine athletes.
Altom, Eric K; Davenport, Gary M; Myers, Lawrence J; Cummins, Keith A
2003-10-01
Eighteen male English Pointers (2-4 years of age, 23.94+/-0.54 kg body weight) were allotted to three diet and two physical conditioning groups to evaluate the effect of level and source of dietary fat on the olfactory acuity of canine athletes subjected to treadmill exercise. Diet groups (6 dogs/diet) consisted of commercially prepared diets (minimum of 26% crude protein) containing 12% fat as beef tallow (A), 16% fat provided by equivalent amounts of beef tallow and corn oil (B), or 16% fat provided by equivalent amounts of beef tallow and coconut oil (C). This dietary formulation resulted in approximately 60% of the total fatty acid being saturated for diets A and C, while approximately 72% of the total fatty acids were unsaturated in diet B. One-half of the dogs within each dietary group were subjected to treadmill exercise 3 times per week for 30 min (8.05 km/h, 0% grade) for 12 weeks. All dogs were subjected to a submaximal exercise stress test (8.05 km/h, 10% slope for 60 min) every four weeks beginning at week 0. Olfactory acuity was measured utilizing behavioral olfactometry before and after each physical stress test. Non-conditioned (NON) dogs displayed a greater decrease (P<0.05) in olfactory acuity following exercise, while physically conditioned (EXE) dogs did not show a change from pre-test values. A diet by treatment interaction (P<0.10) was detected over the course of the study. NON dogs fed coconut oil had decreased odorant-detecting capabilities when week 4 values were compared with week 12 values. Feeding a diet that is predominately high in saturated fat may affect the odorant-detecting capabilities of working dogs. Additionally, these data indicate that utilization of a moderate physical conditioning program can assist canine athletes in maintaining olfactory acuity during periods of intense exercise.
Macko, Richard F; Ivey, Frederick M; Forrester, Larry W; Hanley, Daniel; Sorkin, John D; Katzel, Leslie I; Silver, Kenneth H; Goldberg, Andrew P
2005-10-01
Physical inactivity propagates disability after stroke through physical deconditioning and learned nonuse. We investigated whether treadmill aerobic training (T-AEX) is more effective than conventional rehabilitation to improve ambulatory function and cardiovascular fitness in patients with chronic stroke. Sixty-one adults with chronic hemiparetic gait after ischemic stroke (>6 months) were randomized to 6 months (3x/week) progressive T-AEX or a reference rehabilitation program of stretching plus low-intensity walking (R-CONTROL). Peak exercise capacity (Vo2 peak), o2 consumption during submaximal effort walking (economy of gait), timed walks, Walking Impairment Questionnaire (WIQ), and Rivermead Mobility Index (RMI) were measured before and after 3 and 6 months of training. Twenty-five patients completed T-AEX and 20 completed R-CONTROL. Only T-AEX increased cardiovascular fitness (17% versus 3%, delta% T-AEX versus R-CONTROL, P<0.005). Group-by-time analyses revealed T-AEX improved ambulatory performance on 6-minute walks (30% versus 11%, P<0.02) and mobility function indexed by WIQ distance scores (56% versus 12%, P<0.05). In the T-AEX group, increasing training velocity predicted improved Vo2 peak (r=0.43, P<0.05), but not walking function. In contrast, increasing training session duration predicted improved 6-minute walk (r=0.41, P<0.05), but not fitness gains. T-AEX improves both functional mobility and cardiovascular fitness in patients with chronic stroke and is more effective than reference rehabilitation common to conventional care. Specific characteristics of training may determine the nature of exercise-mediated adaptations.
Burt, Dean Gareth; Lamb, Kevin; Nicholas, Ceri; Twist, Craig
2014-01-01
Exercise-induced muscle damage (EIMD), described as the acute weakness of the musculature after unaccustomed eccentric exercise, increases oxidative metabolism at rest and during endurance exercise. However, it is not known whether oxygen uptake during recovery from endurance exercise is increased when experiencing symptoms of EIMD. Therefore, the purpose of this study was to investigate the effects of EIMD on physiological and metabolic responses before, during and after sub-maximal running. After a 12 h fast, eight healthy male participants completed baseline measurements comprising resting metabolic rate (RMR), indirect markers of EIMD, 10 min of sub-maximal running and 30 min of recovery to ascertain excess post-exercise oxygen consumption (EPOC). Measurements were then repeated at 24 and 48 h after 100 Smith-machine squats. Data analysis revealed significant (P<0.05) increases in muscle soreness and creatine kinase (CK) and decreases in peak knee extensor torque at 24 and 48 h after squatting exercise. Moreover, RMR, physiological, metabolic and perceptual responses during sub-maximal running and EPOC were increased in the two days after squatting exercise (P<0.05). It is suggested that the elevated RMR was a consequence of a raised energy requirement for the degradation and resynthesis of damaged muscle fibres. The increased oxygen demand during sub-maximal running after muscle damage was responsible for the increase in EPOC. Individuals engaging in unaccustomed resistance exercise that results in muscle damage should be mindful of the increases in resting energy expenditure and increased metabolic demand to exercise in the days that follow.
Exercise training for intermittent claudication.
McDermott, Mary M
2017-11-01
The objective of this study was to provide an overview of evidence regarding exercise therapies for patients with lower extremity peripheral artery disease (PAD). This manuscript summarizes the content of a lecture delivered as part of the 2016 Crawford Critical Issues Symposium. Multiple randomized clinical trials demonstrate that supervised treadmill exercise significantly improves treadmill walking performance in people with PAD and intermittent claudication symptoms. A meta-analysis of 25 randomized trials demonstrated a 180-meter increase in treadmill walking distance in response to supervised exercise interventions compared with a nonexercising control group. Supervised treadmill exercise has been inaccessible to many patients with PAD because of lack of medical insurance coverage. However, in 2017, the Centers for Medicare and Medicaid Services issued a decision memorandum to support health insurance coverage of 12 weeks of supervised treadmill exercise for patients with walking impairment due to PAD. Recent evidence also supports home-based walking exercise to improve walking performance in people with PAD. Effective home-exercise programs incorporate behavioral change interventions such as a remote coach, goal setting, and self-monitoring. Supervised treadmill exercise programs preferentially improve treadmill walking performance, whereas home-based walking exercise programs preferentially improve corridor walking, such as the 6-minute walk test. Clinical trial evidence also supports arm or leg ergometry exercise to improve walking endurance in people with PAD. Treadmill walking exercise appears superior to resistance training alone for improving walking endurance. Supervised treadmill exercise significantly improves treadmill walking performance in people with PAD by approximately 180 meters compared with no exercise. Recent evidence suggests that home-based exercise is also effective and preferentially improves over-ground walking performance, such as the 6-minute walk test. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Lee, Yong Ki; Kim, Bo Ryun; Han, Eun Young
2017-05-01
The aim of this work was to investigate the cardiorespiratory responses of patients with subacute stroke to exercise stress tests with aquatic and land treadmills. Twenty-one consecutive patients who presented with first-ever subacute stroke in 2013-2015. All subjects underwent symptom-limited incremental exercise testing with aquatic and land treadmills. Land treadmill speed started at 1.5 km/h and increased 0.5 km/h every 1 to 2 minutes until maximal tolerable speed was achieved. Thereafter, the grade was elevated by 2% every 2 minutes. In the aquatic treadmill test, subjects were submerged to the xiphoid in 28°C water. Treadmill speed started at 1.5 km/h and was increased 0.5 km/h every 2 minutes thereafter. Cardiorespiratory responses were recorded with aquatic and land treadmills. Compared to land treadmill exercise, aquatic treadmill exercise achieved significantly better peak VO2 (22.0 vs 20.0; P = 0.02), peak metabolic equivalents (6.3 vs 5.8; P = 0.02), and peak rating of perceived exertion (17.6 vs 18.4, P = 0.01). Heart rate and VO2 correlated significantly during both tests (land treadmill: r = 0.96, P < 0.001; aquatic treadmill: r = 0.99, P < 0.001). Aquatic treadmill exercise elicited significantly better peak cardiorespiratory responses than land treadmill exercise and may be as effective for early intensive aerobic training in subacute stroke patients.
Do current sports brassiere designs impede respiratory function?
Bowles, Kelly-Ann; Steele, Julie R; Chaunchaiyakul, Rungchai
2005-09-01
Although sports brassieres are more effective in limiting breast motion and related breast pain when compared with standard fashion brassieres, some females do not wear sports brassieres during physical activity, as they perceive them to be too tight around the torso, possibly impeding their performance during physical activity. The purpose of this study was to determine whether breast hypertrophy, breast momentum, and/or wearing a sports brassiere impeded respiratory function at rest and during physical activity. Twenty-two active women completed standard resting spirometry maneuvers while not wearing a brassiere. All subjects then completed maximal cycle ergometer testing in two breast support conditions (sports brassiere and no brassiere (NB)), followed by submaximal treadmill exercise tests under three breast support conditions (sports brassiere, no brassiere and fashion brassiere) while standard spirometry, brassiere pressure and comfort were measured. The sports brassiere imparted significantly more pressure on smaller breasted females' torsos when compared with the fashion brassiere (0.861 +/- 0.247 and 0.672 +/- 0.254 N.cm(-2), respectively), although this increased pressure did not appear to significantly affect measured lung volumes or brassiere comfort scores. Brassiere size affected maximal exercise ability (relative VO(2peak): smaller breasted NB: 49.84 +/- 6.15 mL.kg(-1).min(-1); larger breasted NB: 40.76 +/- 4.47 mL.kg(-1).min(-1)) as well as some temporal measures of resting and submaximal respiration. However, no significant difference was found between the no brassiere and brassiere conditions in regards to measured lung volumes. As no significant restriction to exercise performance or respiratory mechanics was found when subjects wore sports brassieres, it was concluded that active females should wear a sports brassiere during physical activity to reduce breast motion and related breast pain.
Lunt, Heather; Roiz De Sa, Daniel; Roiz De Sa, Julia; Allsopp, Adrian
2013-07-01
To provide an accurate estimate of peak oxygen uptake (VO2 peak) for British Royal Navy Personnel aged between 18 and 39, comparing a gold standard treadmill based maximal exercise test with a submaximal one-mile walk test. Two hundred military personnel consented to perform a treadmill-based VO2 peak test and two one-mile walk tests round an athletics track. The estimated VO2 peak values from three different one-mile walk equations were compared to directly measured VO2 peak values from the treadmill-based test. One hundred participants formed a validation group from which a new equation was derived and the other 100 participants formed the cross-validation group. Existing equations underestimated the VO2 peak values of the fittest personnel and overestimated the VO2 peak of the least aerobically fit by between 2% and 18%. The new equation derived from the validation group has less bias, the highest correlation with the measured values (r = 0.83), and classified the most people correctly according to the Royal Navy's Fitness Test standards, producing the fewest false positives and false negatives combined (9%). The new equation will provide a more accurate estimate of VO2 peak for a British military population aged 18 to 39. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.
Sternberg, Leonard; Wald, Robert W.; Feiglin, David H.I.; Morch, John E.
1978-01-01
Myocardial perfusion imaging with thallium-201 and electrocardiography with the subject at rest and undergoing submaximal treadmill exercise were performed in 19 men and 3 women. Selective coronary arteriography and left ventriculography showed that 7 had normal coronary arteries and 15 had coronary artery disease. The 11 persons with electrocardiographic evidence of an old myocardial infarct (q waves) had a perfusion defect at rest in the area of the infarct and a segmental abnormality of wall motion apparent on the left ventriculogram corresponding to the perfusion defect. Myocardial perfusion imaging and electrocardiography were equally sensitive in detecting coronary artery disease in exercising individuals: perfusion defects were noted in 7 of the 15 persons with coronary artery disease, and diagnostic ST-segment depression was present in 8 of the 15. Combination of the results of the two tests with exercise permitted the identification of 11 of the 15 persons and improved the sensitivity. Combination of the results of rest and exercise imaging and electrocardiography permitted the identification of 94% of the patients with coronary artery disease. Myocardial perfusion imaging with 201TI in the subject at rest is a sensitive indicator of previous myocardial infarction. Imaging after the subject has exercised is a useful adjunct to conventional exercise electrocardiography, especially in those whose exercise electrocardiogram is non-interpretable. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5 PMID:630487
Ferguson, Scott K; Hirai, Daniel M; Copp, Steven W; Holdsworth, Clark T; Allen, Jason D; Jones, Andrew M; Musch, Timothy I; Poole, David C
2013-01-15
Dietary nitrate (NO(3)(-)) supplementation, via its reduction to nitrite (NO(2)(-)) and subsequent conversion to nitric oxide (NO) and other reactive nitrogen intermediates, reduces blood pressure and the O(2) cost of submaximal exercise in humans. Despite these observations, the effects of dietary NO(3)(-) supplementation on skeletal muscle vascular control during locomotory exercise remain unknown. We tested the hypotheses that dietary NO(3)(-) supplementation via beetroot juice (BR) would reduce mean arterial pressure (MAP) and increase hindlimb muscle blood flow in the exercising rat. Male Sprague-Dawley rats (3-6 months) were administered either NO(3)(-) (via beetroot juice; 1 mmol kg(-1) day(-1), BR n = 8) or untreated (control, n = 11) tap water for 5 days. MAP and hindlimb skeletal muscle blood flow and vascular conductance (radiolabelled microsphere infusions) were measured during submaximal treadmill running (20 m min(-1), 5% grade). BR resulted in significantly lower exercising MAP (control: 137 ± 3, BR: 127 ± 4 mmHg, P < 0.05) and blood [lactate] (control: 2.6 ± 0.3, BR: 1.9 ± 0.2 mm, P < 0.05) compared to control. Total exercising hindlimb skeletal muscle blood flow (control: 108 ± 8, BR: 150 ± 11 ml min(-1) (100 g)(-1), P < 0.05) and vascular conductance (control: 0.78 ± 0.05, BR: 1.16 ± 0.10 ml min(-1) (100 g)(-1) mmHg(-1), P < 0.05) were greater in rats that received BR compared to control. The relative differences in blood flow and vascular conductance for the 28 individual hindlimb muscles and muscle parts correlated positively with their percentage type IIb + d/x muscle fibres (blood flow: r = 0.74, vascular conductance: r = 0.71, P < 0.01 for both). These data support the hypothesis that NO(3)(-) supplementation improves vascular control and elevates skeletal muscle O(2) delivery during exercise predominantly in fast-twitch type II muscles, and provide a potential mechanism by which NO(3)(-) supplementation improves metabolic control.
Ferguson, Scott K; Hirai, Daniel M; Copp, Steven W; Holdsworth, Clark T; Allen, Jason D; Jones, Andrew M; Musch, Timothy I; Poole, David C
2013-01-01
Dietary nitrate (NO3−) supplementation, via its reduction to nitrite (NO2−) and subsequent conversion to nitric oxide (NO) and other reactive nitrogen intermediates, reduces blood pressure and the O2 cost of submaximal exercise in humans. Despite these observations, the effects of dietary NO3− supplementation on skeletal muscle vascular control during locomotory exercise remain unknown. We tested the hypotheses that dietary NO3− supplementation via beetroot juice (BR) would reduce mean arterial pressure (MAP) and increase hindlimb muscle blood flow in the exercising rat. Male Sprague–Dawley rats (3–6 months) were administered either NO3− (via beetroot juice; 1 mmol kg−1 day−1, BR n= 8) or untreated (control, n= 11) tap water for 5 days. MAP and hindlimb skeletal muscle blood flow and vascular conductance (radiolabelled microsphere infusions) were measured during submaximal treadmill running (20 m min−1, 5% grade). BR resulted in significantly lower exercising MAP (control: 137 ± 3, BR: 127 ± 4 mmHg, P < 0.05) and blood [lactate] (control: 2.6 ± 0.3, BR: 1.9 ± 0.2 mm, P < 0.05) compared to control. Total exercising hindlimb skeletal muscle blood flow (control: 108 ± 8, BR: 150 ± 11 ml min−1 (100 g)−1, P < 0.05) and vascular conductance (control: 0.78 ± 0.05, BR: 1.16 ± 0.10 ml min−1 (100 g)−1 mmHg−1, P < 0.05) were greater in rats that received BR compared to control. The relative differences in blood flow and vascular conductance for the 28 individual hindlimb muscles and muscle parts correlated positively with their percentage type IIb + d/x muscle fibres (blood flow: r= 0.74, vascular conductance: r= 0.71, P < 0.01 for both). These data support the hypothesis that NO3− supplementation improves vascular control and elevates skeletal muscle O2 delivery during exercise predominantly in fast-twitch type II muscles, and provide a potential mechanism by which NO3− supplementation improves metabolic control. PMID:23070702
Hirai, Daniel M; Copp, Steven W; Schwagerl, Peter J; Haub, Mark D; Poole, David C; Musch, Timothy I
2011-04-01
Age-related increases in oxidative stress contribute to impaired skeletal muscle vascular control. However, recent evidence indicates that antioxidant treatment with tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) attenuates flow-mediated vasodilation in isolated arterioles from the highly oxidative soleus muscle of aged rats. Whether antioxidant treatment with tempol evokes similar responses in vivo at rest and during exercise in senescent individuals and whether this effect varies based on muscle fiber type composition are unknown. We tested the hypothesis that redox modulation via acute systemic tempol administration decreases vascular conductance (VC) primarily in oxidative hindlimb locomotor muscles at rest and during submaximal whole body exercise (treadmill running at 20 m/min, 5% grade) in aged rats. Eighteen old (25-26 mo) male Fischer 344 x Brown Norway rats were assigned to either rest (n = 8) or exercise (n = 10) groups. Regional VC was determined via radiolabeled microspheres before and after intra-arterial administration of tempol (302 μmol/kg). Tempol decreased mean arterial pressure significantly by 9% at rest and 16% during exercise. At rest, similar VC in 26 out of 28 individual hindlimb muscles or muscle parts following tempol administration compared with control resulted in unchanged total hindlimb muscle VC (control: 0.18 ± 0.02; tempol: 0.17 ± 0.05 ml·min(-1)·100 g(-1)·mmHg(-1); P > 0.05). During exercise, all individual hindlimb muscles or muscle parts irrespective of fiber type composition exhibited either an increase or no change in VC with tempol (i.e., ↑11 and ↔17 muscles or muscle parts), such that total hindlimb VC increased by 25% (control: 0.93 ± 0.04; tempol: 1.15 ± 0.09 ml·min(-1)·100 g(-1)·mmHg(-1); P ≤ 0.05). These results demonstrate that acute systemic administration of the antioxidant tempol significantly impacts the control of regional vascular tone in vivo presumably via redox modulation and improves skeletal muscle vasodilation independently of fiber type composition during submaximal whole body exercise in aged rats.
Jin, Chan-Ho; Paik, Il-Young; Kwak, Yi-Sub; Jee, Yong-Seok; Kim, Joo-Young
2015-01-01
Regular running and strength training are the best ways to improve aerobic capacity and develop the size of skeletal muscles. However, uncontrolled physical activities can often lead to an undertraining or over-training syndrome. In particular, overtraining causes persistent fatigue and reduces physical performance due to changes in the various physiological and immunological factors. In this study, we gave an exhaustive submaximal endurance or resistance exercise to participants and investigated the relationship between physical stress (cortisol level in blood), oxidative stress (intracellular ROS accumulation), and adaptive immune response (CD4:CD8 ratio). Materials and Methods Ten male volunteers were recruited, and performed a submaximal endurance or resistance exercise with 85% of VO2max or 1-repetition maximum until exhaustion. Blood samples were collected at rest, and at 0 and 30 min after the exercise. Cortisol levels, oxidative stress, and immune cell phenotypes in peripheral blood were evaluated. Cortisol levels in the sera increased after the exhaustive endurance and resistance exercises and such increments were maintained through the recovery. Intra-cellular ROS levels also increased after the exhaustive endurance and resistance exercises. The ratio of CD4+ T cells to CD8+ T cells after each type of submaximal exercise decreased compared with that at the resting stage, and returned to the resting level at 30 min after the exercise. In this study, an exhaustive endurance or a resistance exercise with submaximal intensity caused excessive physical stress, intra-cellular oxidative stress, and post-exercise immunosuppression. This result suggests that excessive physical stress induced temporary immune dysfunction via physical and oxidative stress. PMID:26331134
Spee, Ruud F; Niemeijer, Victor M; Wijn, Pieter F; Doevendans, Pieter A; Kemps, Hareld M
2016-12-01
Background High-intensity interval training (HIT) improves exercise capacity in patients with chronic heart failure (CHF). Moreover, HIT was associated with improved resting cardiac function. However, the extent to which these improvements actually contribute to training-induced changes in exercise capacity remains to be elucidated. Therefore, we evaluated the effects of HIT on exercising central haemodynamics and skeletal muscle oxygenation. Methods Twenty-six CHF patients were randomised to a 12-week 4 × 4 minute HIT program at 85-95% of peak VO 2 or usual care. Patients performed maximal and submaximal cardiopulmonary exercise testing with simultaneous assessment of cardiac output and skeletal muscle oxygenation by near infrared spectroscopy, using the amplitude of the tissue saturation index (TSIamp). Results Peak workload increased by 11% after HIT ( p between group = 0.01) with a non-significant increase in peak VO 2 (+7%, p between group = 0.19). Cardiac reserve increased by 37% after HIT ( p within group = 0.03, p between group = 0.08); this increase was not related to improvements in peak workload. Oxygen uptake recovery kinetics after submaximal exercise were accelerated by 20% ( p between group = 0.02); this improvement was related to a decrease in TSIamp ( r = 0.71, p = 0.03), but not to changes in cardiac output kinetics. Conclusion HIT induced improvements in maximal exercise capacity and exercising haemodynamics at peak exercise. Improvements in recovery after submaximal exercise were associated with attenuated skeletal muscle deoxygenation during submaximal exercise, but not with changes in cardiac output kinetics, suggesting that the effect of HIT on submaximal exercise capacity is mediated by improved microvascular oxygen delivery-to-utilisation matching.
Sielski, Łukasz; Sutkowy, Paweł; Skopowska, Agnieszka; Pawlak-Osińska, Katarzyna; Augustyńska, Zofia; Hewelt, Katarzyna; Drapała, Radosław; Woźniak, Alina
2018-01-01
The AlterG antigravity treadmill allows running with a considerable weight reduction. Physical exercise practiced on this treadmill is an innovative method supporting the treatment of injuries in sports and rehabilitation of patients. The aim of the study was to investigate the effect of a 30 min run on the AlterG treadmill with 80% body weight reduction comparing the effect to the similar effort on the classic treadmill on the redox equilibrium and the activity of selected lysosomal enzymes and a serine protease inhibitor in the blood of amateur minor female volleyball players. Venous blood samples were taken before the exercise and 30 minutes and 24 hours after its completion. The obtained results were analysed using Tukey's test and Pearson's linear correlations were calculated. 24 h after the running test on classic treadmill, the erythrocytic superoxide dismutase activity was higher than before and 30 min after it, as well as compared to the run on AlterG treadmill ( p < 0.001). The erythrocytic-conjugated diene concentration 24 h after the exercise on the classic treadmill was meaningly higher compared to that after the exercise on the AlterG treadmill ( p < 0.001). The cathepsin D activity was significantly lower after the exercise in AlterG conditions compared to the baseline value and that measured after the exercise on classic treadmill ( p < 0.001). It seems that the exercise on the AlterG treadmill keeps the oxidant-antioxidant equilibrium and stabilizes lysosomal membranes in young, physically active women in contrast to the exercise on the classic treadmill. This trial is registered with CTRI/2018/01/011344.
Sielski, Łukasz; Skopowska, Agnieszka; Pawlak-Osińska, Katarzyna; Augustyńska, Zofia; Hewelt, Katarzyna; Drapała, Radosław
2018-01-01
The AlterG antigravity treadmill allows running with a considerable weight reduction. Physical exercise practiced on this treadmill is an innovative method supporting the treatment of injuries in sports and rehabilitation of patients. The aim of the study was to investigate the effect of a 30 min run on the AlterG treadmill with 80% body weight reduction comparing the effect to the similar effort on the classic treadmill on the redox equilibrium and the activity of selected lysosomal enzymes and a serine protease inhibitor in the blood of amateur minor female volleyball players. Venous blood samples were taken before the exercise and 30 minutes and 24 hours after its completion. The obtained results were analysed using Tukey's test and Pearson's linear correlations were calculated. 24 h after the running test on classic treadmill, the erythrocytic superoxide dismutase activity was higher than before and 30 min after it, as well as compared to the run on AlterG treadmill (p < 0.001). The erythrocytic-conjugated diene concentration 24 h after the exercise on the classic treadmill was meaningly higher compared to that after the exercise on the AlterG treadmill (p < 0.001). The cathepsin D activity was significantly lower after the exercise in AlterG conditions compared to the baseline value and that measured after the exercise on classic treadmill (p < 0.001). It seems that the exercise on the AlterG treadmill keeps the oxidant–antioxidant equilibrium and stabilizes lysosomal membranes in young, physically active women in contrast to the exercise on the classic treadmill. This trial is registered with CTRI/2018/01/011344. PMID:29765494
NASA Technical Reports Server (NTRS)
Boda, Wanda; Hargens, Alan R.; Aratow, Michael; Ballard, Richard E.; Hutchinson, Karen; Murthy, Gita; Campbell, James
1994-01-01
The purpose of this study is to compare footward forces, gait kinematics, and muscle activation patterns (EMG) generated during supine treadmill exercise against LBNP with the same parameters during supine bungee resistance exercise and upright treadmill exercise. We hypothesize that the three conditions will be similar. These results will help validate treadmill exercise during LBNP as a viable technique to simulate gravity during space flight. We are evaluating LBNP as a means to load the musculoskeletal and cardiovascular systems without gravity. Such loading should help prevent physiologic deconditioning during space flight. The best ground-based simulation of LBNP treadmill exercise in microgravity is supine LBNP treadmill exercise on Earth because the supine footward force vector is neither directed nor supplemented by Earth's gravity.
A phenomenological model of muscle fatigue and the power-endurance relationship.
James, A; Green, S
2012-11-01
The relationship between power output and the time that it can be sustained during exercise (i.e., endurance) at high intensities is curvilinear. Although fatigue is implicit in this relationship, there is little evidence pertaining to it. To address this, we developed a phenomenological model that predicts the temporal response of muscle power during submaximal and maximal exercise and which was based on the type, contractile properties (e.g., fatiguability), and recruitment of motor units (MUs) during exercise. The model was first used to predict power outputs during all-out exercise when fatigue is clearly manifest and for several distributions of MU type. The model was then used to predict times that different submaximal power outputs could be sustained for several MU distributions, from which several power-endurance curves were obtained. The model was simultaneously fitted to two sets of human data pertaining to all-out exercise (power-time profile) and submaximal exercise (power-endurance relationship), yielding a high goodness of fit (R(2) = 0.96-0.97). This suggested that this simple model provides an accurate description of human power output during submaximal and maximal exercise and that fatigue-related processes inherent in it account for the curvilinearity of the power-endurance relationship.
Ramel, A; Wagner, K; Elmadfa, I
2004-01-01
Objectives: To investigate noradrenaline concentrations, neutrophil counts, plasma antioxidants, and lipid oxidation products before and after acute resistance exercise. Methods: 17 male participants undertook a submaximal resistance exercise circuit (10 exercises; 75% of the one repetition maximum; mean (SD) exercise time, 18.6 (1.1) minutes). Blood samples were taken before and immediately after exercise and analysed for plasma antioxidants, noradrenaline, neutrophils, and lipid oxidation products. Wilcoxon's signed-rank test and Pearson's correlation coefficient were used for calculations. Results: Neutrophils, noradrenaline, fat soluble antioxidants, and lipid oxidation products increased after exercise. Noradrenaline concentrations were associated with higher antioxidant concentrations. Neutrophils were related to higher concentrations of conjugated dienes. Conclusions: Submaximal resistance exercise increases plasma antioxidants. This might reflect enhanced antioxidant defence in response to the oxidative stress of exercise, though this is not efficient for inhibiting lipid oxidation. The correlation between noradrenaline concentrations and plasma antioxidants suggests a modulating role of the stress hormone. Neutrophils are a possible source of oxidative stress after resistance exercise. PMID:15388566
Cortisol levels during prolonged exercise: the influence of menstrual phase and menstrual status.
Kanaley, J A; Boileau, R A; Bahr, J M; Misner, J E; Nelson, R A
1992-05-01
The purpose of this study was to determine the influence of menstrual phase and menstrual status on the cortisol response during 90 minutes of treadmill running at 60% VO2max. Eight eumenhorrheic athletes were tested in the early follicular (EF) (day 3-5), late follicular (LF) (day 13-15) and mid-luteal (ML) (day 22-24) phases. Six amenorrheic athletes were tested on two separate occasions. The resting cortisol levels were similar in each menstrual phase and overall a decreasing pattern of cortisol response to exercise was observed in all menstrual phases (P greater than .05). The amenorrheic athletes had a significantly greater (P less than .01) pattern of cortisol response than was observed in eumenorrheic athletes. The net increment in cortisol levels during exercise were distinctly greater (P less than .01) in amenorrheic than eumenorrheic athletes (amenorrheic: 413.8 +/- 113.1, eumenorrheic: EF: -482.8 +/- 88.3, LF: -311.8 +/- 102.1, ML: -386.3 +/- 146.2 nmol.l-1). In conclusion the cortisol levels are independent of menstrual phase. Also a larger cortisol increment is observed in amenorrheic athletes in response to prolonged submaximal exercise. The elevated cortisol levels in amenorrheics at rest and throughout exercise provides further evidence that disturbances in the hypothalamic-pituitary-adrenal function are associated with exercise-induced amenorrhea, although the site(s) of physiological disturbance have not been identified.
Use of atropine in patients with submaximal heart rate during exercise myocardial perfusion SPECT.
De Lorenzo, Andrea; Foerster, James; Sciammarella, Maria G; Suey, Cathy; Hayes, Sean W; Friedman, John D; Berman, Daniel S
2003-01-01
Failure to reach 85% of maximal predicted heart rate (MPHR) during exercise may render a myocardial perfusion single photon emission computed tomography (MPS) study nondiagnostic for ischemia detection. Although commonly used to increase heart rate (HR) during dobutamine stress, the administration of atropine for patients failing to achieve 85% of MPHR during exercise performed for MPS is still infrequent. Patients undergoing dual-isotope MPS were considered candidates for the study when, during exercise treadmill testing, they had less than 85% of MPHR and were unable to continue because of fatigue, without an ischemic response. Forty-seven patients (aged 65.3 +/- 12.5 years, 78.7% men) received atropine (0.6-1.2 mg). Maximal HR achieved before and after atropine was 118.0 +/- 14.8 beats/min (76.3% +/- 6.2% of MPHR) and 146.4 +/- 12.6 beats/min (94.4% +/- 8.1% of MPHR), respectively (P < .001). Of patients, 44 (93.6%) reached at least 85% of MPHR after atropine and had diagnostic MPS studies. After atropine, arrhythmias occurred in 14 patients (29.8%) and other minor side effects in 1 (2.1%). Atropine allows patients initially failing to achieve 85% of MPHR during exercise to increase HR and have a diagnostic MPS study, without major complications. It may provide an alternative to pharmacologic stress for patients with a blunted HR response to exercise.
Low-level carbon monoxide exposure and work capacity at 1600 meters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiser, P.C.; Cropp, G.J.A.; Morrill, C.G.
At sea level, low-level carbon monoxide (CO) exposure impairs exercise performance. To determine if altitude residence at 1600 m augments this CO effect, two studies of graded treadmill work capacity were done. The Initial Study investigated nine, non-smoking male subjects breathing either filtered air (FA) or 28 ppm CO in filtered air. End-exercise carboxyhemoglobin (HbCO) levels averaged 0.9 %HbCO breathing FA and 4.7 %HbCO breathing CO. Total work performance and aerobic work capacity were reduced. Work heart rate was elevated, and post-exercise left ventricular ejection time breathing CO did not shorten to the same degree as with FA exposure. COmore » exposure resulted in a lower anaerobic threshold, and a greater minute ventilation occurred at work rates heavier than the anaerobic threshold due to an increased blood lactate level. The Dose-Response Study exposed twelve subjects to FA or CO such that the end-exercise HbCO levels were 0.7, 3.5, 5.4 and 8.7 %HbCO. Exercise performance and aerobic work capacity were impaired in proportion to the CO exposure. In both studies, maximal cardio-pulmonary responses were not different, but submaximal exercise changes were elevated breathing CO. Thus, in healthy young men residing near 1600 m, an increase in low-level CO exposure produced a linear decrement in maximal aerobic performance similar to that reported at sea level.« less
Prescribing water-based exercise from treadmill and arm ergometry in cardiac patients.
Fernhall, B; Manfredi, T G; Congdon, K
1992-01-01
This study investigated the appropriateness of prescribing upright water-based exercise from treadmill and arm ergometry in uncomplicated, trained patients with cardiovascular disease (CVD) who were accustomed to water-based activities. Ten male patients with established CVD (mean age 59.4 +/- 8.7 yr) underwent maximal treadmill and arm ergometry in randomized counterbalanced order (half of the patients completed the treadmill test first and the other half completed the arm ergometer test first). Electrocardiographic (ECG), rating of perceived exertion (RPE), and oxygen uptake (VO2) measurements were made during both tests. Patients performed upright water-based exercise at 60, 70, and 80% of their maximal treadmill heart rate for 6 min at each intensity in a heated pool with a water temperature of 28-30 degrees C. They also performed an easy tethered swim, defined as performing at a comfortable exercise intensity, eliciting a heart rate of 86% of the treadmill maximum. VO2 and RPE were collected for all water-based exercise. To compare the RPE and VO2 between water-based, treadmill, and arm ergometry exercise, individual regression equations were constructed between heart rate, VO2, and RPE for both treadmill and arm ergometry tests. VO2 and RPE were then compared at the same heart rates between the three exercise modes. At 60% intensity, treadmill exercise exhibited a higher VO2 than water-based and arm ergometry exercise (P less than 0.05) but similar RPE. At 70%, treadmill exercise still yielded higher VO2, but also lower RPE than (P less than 0.05) and arm ergometry exercise (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)
Physical activity and pregnancy: cardiovascular adaptations, recommendations and pregnancy outcomes.
Melzer, Katarina; Schutz, Yves; Boulvain, Michel; Kayser, Bengt
2010-06-01
Regular physical activity is associated with improved physiological, metabolic and psychological parameters, and with reduced risk of morbidity and mortality. Current recommendations aimed at improving the health and well-being of nonpregnant subjects advise that an accumulation of > or =30 minutes of moderate physical activity should occur on most, if not all, days of the week. Regardless of the specific physiological changes induced by pregnancy, which are primarily developed to meet the increased metabolic demands of mother and fetus, pregnant women benefit from regular physical activity the same way as nonpregnant subjects. Changes in submaximal oxygen uptake (VO(2)) during pregnancy depend on the type of exercise performed. During maternal rest or submaximal weight-bearing exercise (e.g. walking, stepping, treadmill exercise), absolute maternal VO(2) is significantly increased compared with the nonpregnant state. The magnitude of change is approximately proportional to maternal weight gain. When pregnant women perform submaximal weight-supported exercise on land (e.g. level cycling), the findings are contradictory. Some studies reported significantly increased absolute VO(2), while many others reported unchanged or only slightly increased absolute VO(2) compared with the nonpregnant state. The latter findings may be explained by the fact that the metabolic demand of cycle exercise is largely independent of the maternal body mass, resulting in no absolute VO(2) alteration. Few studies that directly measured changes in maternal maximal VO(2) (VO(2max)) showed no difference in the absolute VO(2max) between pregnant and nonpregnant subjects in cycling, swimming or weight-bearing exercise. Efficiency of work during exercise appears to be unchanged during pregnancy in non-weight-bearing exercise. During weight-bearing exercise, the work efficiency was shown to be improved in athletic women who continue exercising and those who stop exercising during pregnancy. When adjusted for weight gain, the increased efficiency is maintained throughout the pregnancy, with the improvement being greater in exercising women. Regular physical activity has been proven to result in marked benefits for mother and fetus. Maternal benefits include improved cardiovascular function, limited pregnancy weight gain, decreased musculoskeletal discomfort, reduced incidence of muscle cramps and lower limb oedema, mood stability, attenuation of gestational diabetes mellitus and gestational hypertension. Fetal benefits include decreased fat mass, improved stress tolerance, and advanced neurobehavioural maturation. In addition, few studies that have directly examined the effects of physical activity on labour and delivery indicate that, for women with normal pregnancies, physical activity is accompanied with shorter labour and decreased incidence of operative delivery. However, a substantial proportion of women stop exercising after they discover they are pregnant, and only few begin participating in exercise activities during pregnancy. The adoption or continuation of a sedentary lifestyle during pregnancy may contribute to the development of certain disorders such as hypertension, maternal and childhood obesity, gestational diabetes, dyspnoea, and pre-eclampsia. In view of the global epidemic of sedentary behaviour and obesity-related pathology, prenatal physical activity was shown to be useful for the prevention and treatment of these conditions. Further studies with larger sample sizes are required to confirm the association between physical activity and outcomes of labour and delivery.
Electromyographic analysis of exercise resulting in symptoms of muscle damage.
McHugh, M P; Connolly, D A; Eston, R G; Gleim, G W
2000-03-01
Surface electromyographic (EMG) signals were recorded from the hamstring muscles during six sets of submaximal isokinetic (2.6 rad x s(-1)) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions. The EMG per unit torque increased during eccentric (P < 0.01) but not during concentric exercise. Similarly, the median frequency increased during eccentric (P < 0.01) but not during concentric exercise. The EMG per unit torque was lower for submaximal eccentric than maximum isometric contractions (P < 0.001), and lower for submaximal concentric than maximum isometric contractions (P < 0.01). The EMG per unit torque was lower for eccentric than concentric contractions (P < 0.05). The median frequency was higher for submaximal eccentric than maximum isometric contractions (P < 0.001); it was similar, however, between submaximal concentric and maximum isometric contractions (P = 0.07). Eccentric exercise resulted in significant isometric strength loss (P < 0.01), pain (P < 0.01) and muscle tenderness (P < 0.05). The greatest strength loss was seen 1 day after eccentric exercise, while the most severe pain and muscle tenderness occurred 2 days after eccentric exercise. A lower EMG per unit torque is consistent with the selective recruitment of a small number of motor units during eccentric exercise. A higher median frequency during eccentric contractions may be explained by selective recruitment of fast-twitch motor units. The present results are consistent with the theory that muscle damage results from excessive stress on a small number of active fibres during eccentric contractions.
Choi, Jun Hwan; Kim, Bo Ryun; Joo, Seung Jae; Han, Eun Young; Kim, Song Yi; Kim, Sun Mi; Lee, So Young; Yoon, Ho Min
2015-01-01
To investigate cardiorespiratory responses during exercise stress tests using an aquatic treadmill and a land-based treadmill in patients with coronary artery disease (CAD). Twenty-one stable CAD patients were enrolled. All patients participated in 2 symptom-limited incremental exercise tests, using both an aquatic and a land treadmill. For the aquatic treadmill protocol, patients were submerged to the upper waist in 28°C water. The treadmill speed started at 2.0 km/h and increased 0.5 km/h every minute thereafter. For the land treadmill protocol, the speed and gradient were started at 2.4 km/h and 1.5%, respectively. The speed was increased by 0.3 km/h and grade by 1% every minute thereafter. Oxygen consumption ((Equation is included in full-text article.)O2), heart rate (HR), and respiratory exchange ratio were measured continuously and peak values recorded. Rating of perceived exertion, percentage of age-predicted maximal HR, and total exercise duration were also recorded. Peak cardiorespiratory responses during both protocols were compared. The peak (Equation is included in full-text article.)O2 and peak HR did not show any significant differences. The peak respiratory exchange ratio was significantly greater using the land treadmill than the aquatic treadmill protocol. Rating of perceived exertion, age-predicted maximal HR percentage, and total exercise duration were similar for both protocols. There was a significant linear relationship between HR and (Equation is included in full-text article.)O2 with both protocols. This study demonstrated that aquatic treadmill exercise elicits similar peak cardiorespiratory responses compared with land treadmill exercise, suggesting that aquatic treadmill exercise may be effective for CAD patients in cardiac rehabilitation.
Zhang, Rubin; Zhan, Likui; Sun, Shaoming; Peng, Wei; Sun, Yining
2017-01-01
The maximum oxygen uptake (V̇O2 max), determined from graded maximal or submaximal exercise tests, is used to classify the cardiorespiratory fitness level of individuals. The purpose of this study was to examine the validity and reliability of the YMCA submaximal exercise test protocol performed on a newly-designed rectilinear stepping ergometer (RSE) that used up and down reciprocating vertical motion in place of conventional circular motion and giving precise measurement of workload, to determine V̇O2 max in young healthy male adults. Thirty-two young healthy male adults (32 males; age range: 20-35 years; height: 1.75 ± 0.05 m; weight: 67.5 ± 8.6 kg) firstly participated in a maximal-effort graded exercise test using a cycle ergometer (CE) to directly obtain measured V̇O2 max. Subjects then completed the progressive multistage test on the RSE beginning at 50W and including additional stages of 70, 90, 110, 130, and 150W, and the RSE YMCA submaximal test consisting of a workload increase every 3 minutes until the termination criterion was reached. A metabolic equation was derived from the RSE multistage exercise test to predict oxygen consumption (V̇O2) from power output (W) during the submaximal exercise test (V̇O2 (mL·min-1 )=12.4 ×W(watts)+3.5 mL·kg-1·min-1×M+160mL·min-1, R2= 0.91, standard error of the estimate (SEE) = 134.8mL·min-1). A high correlation was observed between the RSE YMCA estimated V̇O2 max and the CE measured V̇O2 max (r=0.87). The mean difference between estimated and measured V̇O2 max was 2.5 mL·kg-1·min-1, with an SEE of 3.55 mL·kg-1·min-1. The data suggest that the RSE YMCA submaximal exercise test is valid for predicting V̇O2 max in young healthy male adults. The findings show that the rectilinear stepping exercise is an effective submaximal exercise for predicting V̇O2 max. The newly-designed RSE may be potentially further developed as an alternative ergometer for assessing cardiorespiratory fitness and the promotion of personalized health interventions for health care professionals. Key points The rectilinear stepping exercise is a simple modality of exercise, which requires only up and down movements of the legs. It overcomes the mechanical dead centers of circular motion and is mechanically efficient. It is potentially applicable to a large group of populations. The RSE gives an accurate measurement of power output and ensures a constant power output independent of stepping cadence. The RSE submaximal exercise test is valid and feasible for estimating V̇O2 max in young healthy male adults compared with the CE maximal exercise test. The rectilinear stepping exercise is an effective submaximal exercise mode for predicting V̇O2 max. The RSE designed for this study may be potentially developed as a new and alternative ergometer to assess cardiorespiratory fitness and could be used in the future by healthcare professionals to promote personalized health interventions. PMID:28912653
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeJemtel, T.H.; Scortichini, D.; Katz, S.
In patients with chronic congestive heart failure (CHF), skeletal muscle blood flow can be measured directly by the continuous thermodilution technique and by the xenon-133 clearance method. The continuous thermodilution technique requires retrograde catheterization of the femoral vein and, thus, cannot be repeated conveniently in patients during evaluation of pharmacologic interventions. The xenon-133 clearance, which requires only an intramuscular injection, allows repeated determination of skeletal muscle blood flow. In patients with severe CHF, a fixed capacity of the skeletal muscle vasculature to dilate appears to limit maximal exercise performance. Moreover, the changes in peak skeletal muscle blood flow noted duringmore » long-term administration of captopril, an angiotensin-converting enzyme inhibitor, appears to correlate with the changes in aerobic capacity. In patients with CHF, resting supine deep femoral vein oxygen content can be used as an indirect measurement of resting skeletal muscle blood flow. The absence of a steady state complicates the determination of peak skeletal muscle blood flow reached during graded bicycle or treadmill exercise in patients with chronic CHF. Indirect assessments of skeletal muscle blood flow and metabolism during exercise performed at submaximal work loads are currently developed in patients with chronic CHF.« less
Eves, Neil D; Petersen, Stewart R; Jones, Richard L
2003-10-01
The self-contained breathing apparatus (SCBA) used by firefighters, and other working in dangerous environments, adds an external resistance to expiration, which increases expiratory work during heavy exercise. Compressed air is typically used with the SCBA and we hypothesized that changing the inspired oxygen concentration and/or gas density with helium would reduce the external expiratory resistance. On separate days, 15 men completed four 30-min bouts of treadmill exercise dressed in protective clothing and breathing the test gases through the SCBA. Four different gas mixtures were assigned in random order: [compressed air (NOX: 21% O2, 79% N2), hyperoxia (HOX: 40% O2, 60% N2), normoxic-helium (HE-OX: 21% O2, 79% He), and helium-hyperoxia (HE-HOX: 40% O2, 60% He)]. Compared with NOX, the two helium mixtures (but not HOX), decreased the external breathing resistance and all three gas mixtures decreased the peak expired mask pressure and the ventilatory mass moved. Both hyperoxic mixtures decreased blood lactate and the rating of perceived exertion was decreased at 30 min with HE-HOX. These results demonstrate that the helium-based gas mixtures, and to a lesser extent HOX, reduce the expiratory work associated with the SCBA during strenuous exercise.
Effects of endurance training and competition on exercise tests in relatively untrained people.
Verstappen, F T; Janssen, G M; Does, R J
1989-10-01
One hundred fourteen subjects (34 +/- 8 years) without any competition background took part in an endurance training study to be completed after 1.5 years with running a marathon. Ultimately, 60 males and 18 females achieved that goal. The training program, carefully supervised, was divided into three phases with a maximum of 45, 70, and 110 km/week training volume and concluded with a performance race of 15, 25, and 42.195 km, respectively. Three days before and 3 and 5 days after each race, 35 subjects were selected to perform a progressive treadmill test and the remaining subjects participated in performing field tests of running 400 and 1000 m. The maximal velocity achieved in the treadmill test was 4.75 +/- 0.36 m.s-1 for males and 4.18 +/- 0.28 m.s-1 for females; it remained constant throughout the study. However, the running velocity at 4 mmol.1(-1) plasma lactate concentration increased about 10% from phase 1 to 3. In the females this rise already appeared to be completed in phase 2. Heart rate showed a tendency to increase at both submaximal and maximal exercise from training phase 1 to 2 and 3, whereas plasma lactate concentration showed a decreasing tendency. Three days after the 25 km and the marathon race the maximal running velocity in the exercise test was 2%-4% lower compared with the pre-race test (P less than 0.05). Five days after the race this difference again faded away. This small decline in running performance was not reflected in changes of physiologic responses such as heart rate or plasma lactate concentration.
Zhang, Rubin; Zhan, Likui; Sun, Shaoming; Peng, Wei; Sun, Yining
2017-09-01
The maximum oxygen uptake (V̇O 2 max), determined from graded maximal or submaximal exercise tests, is used to classify the cardiorespiratory fitness level of individuals. The purpose of this study was to examine the validity and reliability of the YMCA submaximal exercise test protocol performed on a newly-designed rectilinear stepping ergometer (RSE) that used up and down reciprocating vertical motion in place of conventional circular motion and giving precise measurement of workload, to determine V̇O 2 max in young healthy male adults. Thirty-two young healthy male adults (32 males; age range: 20-35 years; height: 1.75 ± 0.05 m; weight: 67.5 ± 8.6 kg) firstly participated in a maximal-effort graded exercise test using a cycle ergometer (CE) to directly obtain measured V̇O 2 max. Subjects then completed the progressive multistage test on the RSE beginning at 50W and including additional stages of 70, 90, 110, 130, and 150W, and the RSE YMCA submaximal test consisting of a workload increase every 3 minutes until the termination criterion was reached. A metabolic equation was derived from the RSE multistage exercise test to predict oxygen consumption (V̇O 2 ) from power output (W) during the submaximal exercise test (V̇O 2 (mL·min -1 )=12.4 ×W(watts)+3.5 mL·kg -1 ·min -1 ×M+160mL·min -1 , R 2 = 0.91, standard error of the estimate (SEE) = 134.8mL·min -1 ). A high correlation was observed between the RSE YMCA estimated V̇O 2 max and the CE measured V̇O 2 max (r=0.87). The mean difference between estimated and measured V̇O 2 max was 2.5 mL·kg -1 ·min -1 , with an SEE of 3.55 mL·kg -1 ·min -1 . The data suggest that the RSE YMCA submaximal exercise test is valid for predicting V̇O 2 max in young healthy male adults. The findings show that the rectilinear stepping exercise is an effective submaximal exercise for predicting V̇O 2 max. The newly-designed RSE may be potentially further developed as an alternative ergometer for assessing cardiorespiratory fitness and the promotion of personalized health interventions for health care professionals.
Ji, Eun-Sang; Kim, Chang-Ju; Park, Jun Heon; Bahn, Geon Ho
2014-04-01
Attention-deficit hyperactivity disorder (ADHD) is a common neurobehavioral disorder, and its symptoms are hyperactivity and deficits in learning and memory. Physical exercise increases dopamine synthesis and neuronal activity in various brain regions. In the present study, we investigate the duration-dependence of the treadmill exercise on hyperactivity in relation with dopamine expression in ADHD. Spontaneously hypertensive rats were used for the ADHD rats and Wistar-Kyoto rats were used for the control rats. The rats in the exercise groups were forced to run on a treadmill for 10 min, 30 min, and 60 min once daily for 28 consecutive days. For this experiment, open field test and immunohistochemistry for tyrosine hydroxylase were conducted. The present results revealed that ADHD rats showed hyperactivity, and tyrosine hydroxylase expression in the striatum and substantia nigra were decreased in ADHD rats. Treadmill exercise alleviated hyperactivity and also increased TH expression in ADHD rats. Treadmill exercise for 30 min per day showed most potent suppressing effect on hyperactivity, and this dose of treadmill exercise also most potently inhibited tyrosine hydroxylase expression. The present study suggests that treadmill exercise for 30 min once a day is the most effective therapeutic intervention for ADHD patients.
Determinants of Time to Fatigue during Non-Motorized Treadmill Exercise
NASA Technical Reports Server (NTRS)
DeWitt, John K.; Lee, M. C.; Wilson, Cassie A.; Hagan, R. Donald
2007-01-01
Treadmill exercise is commonly used for aerobic and anaerobic conditioning. During non-motorized treadmill exercise, the subject must provide the power necessary to drive the treadmill belt. The purpose of this study was to determine what factors affected the time to fatigue on a pair of non-motorized treadmills. Twenty subjects (10 males/10 females) attempted to complete five minutes of locomotion during separate trials at 3.22, 4.83, 6.44, 8.05, 9.66, and 11.27 km (raised dot) h(sup -1). Total exercise time (less than or equal to 5 min) was recorded. Exercise time was converted to the amount of 15 second intervals completed. Peak oxygen uptake (VO2) was measured using a graded exercise test on a standard treadmill, and anthropometric measures were collected from each subject before entering into the study. A Cox proportional hazards regression model was used to determine significant predictive factors in a multivariate analysis. Non-motorized treadmill speed and absolute peak VO2 were found to be significant predictors of exercise time, but there was no effect of anthropometric characteristics. Gender was found to be a predictor of treadmill time, but this was likely due to a higher peak VO2 in males than in females. These results were not affected by the type of treadmill tested in this study. Coaches and therapists should consider the cardiovascular fitness of an athlete or client when prescribing target speed since these factors are related to the total exercise time than can be achieved on a non-motorized treadmill.
Ahn, Ji Hyeon; Shin, Myoung Cheol; Park, Joon Ha; Kim, In Hye; Cho, Jeong-Hwi; Lee, Tae-Kyeong; Lee, Jae-Chul; Chen, Bai Hui; Shin, Bich Na; Tae, Hyun-Jin; Park, Jinseu; Choi, Soo Young; Lee, Yun Lyul; Kim, Dae Won; Kim, Yang Hee; Won, Moo-Ho; Cho, Jun Hwi
2017-01-01
Therapeutic exercise is an integral component of the rehabilitation of patients who have suffered a stroke. The objective of the present study was to use immunohistochemistry to investigate the effects of post-ischemic exercise on neuronal damage or death and gliosis in the aged gerbil hippocampus following transient cerebral ischemia. Aged gerbils (male; age, 22–24 months) underwent ischemia and were subjected to treadmill exercise for 1 or 4 weeks. Neuronal death was detected in the stratum pyramidale of the hippocampal CA1 region and in the polymorphic layer of the dentate gyrus using cresyl violet and Fluoro-Jade B histofluorescence staining. No significant difference in neuronal death was identified following 1 or 4 weeks of post-ischemic treadmill exercise. However, post-ischemic treadmill exercise affected gliosis (the activation of astrocytes and microglia). Glial fibrillary acidic protein-immunoreactive astrocytes and ionized calcium binding adaptor molecule 1-immunoreactive microglia were activated in the CA1 and polymorphic layer of the dentate gyrus of the group without treadmill exercise. Conversely, 4 weeks of treadmill exercise significantly alleviated ischemia-induced astrocyte and microglial activation; however, 1 week of treadmill exercise did not alleviate gliosis. These findings suggest that long-term post-ischemic treadmill exercise following transient cerebral ischemia does not influence neuronal protection; however, it may effectively alleviate transient cerebral ischemia-induced astrocyte and microglial activation in the aged hippocampus. PMID:28440411
Analysis of physical exercises and exercise protocols for space transportation system operation
NASA Technical Reports Server (NTRS)
Coleman, A. E.
1982-01-01
A quantitative evaluation of the Thornton-Whitmore treadmill was made so that informed management decisions regarding the role of this treadmill in operational flight crew exercise programs could be made. Specific tasks to be completed were: The Thornton-Whitmore passive treadmill as an exercise device at one-g was evaluated. Hardware, harness and restraint systems for use with the Thornton-Whitmore treadmill in the laboratory and in Shuttle flights were established. The quantitative and qualitative performance of human subjects on the Thorton-Whitmore treadmill with forces in excess of one-g, was evaluated. The performance of human subjects on the Thornton-Whitmore treadmill in weightlessness (onboard Shuttle flights) was also determined.
Cardiovascular responses to a high-volume continuous circuit resistance training protocol.
Gotshalk, Lincoln A; Berger, Richard A; Kraemer, William J
2004-11-01
The purpose of this investigation was to determine the level of cardiovascular stress elicited by continuous and prolonged circuit resistance training (CRT). Each of the 11 men who volunteered as a subject were tested to determine oxygen consumption and heart rate responses to a submaximal and maximal treadmill protocol and a CRT session consisting of 10 exercises and 10 repetitions at 40% of 1 repetition maximum (1RM) for each station with 4.6 circuits performed. The physiological stress of the CRT in this study was evident by the sustained heart rate of more than 70% of maximum for 16.6 minutes, with the last 12 minutes at more than 80%. Despite the large anaerobic component in CRT, Vo(2) was sustained at 50% or more of maximum for the final 12 minutes. Treadmill running, involving large muscle groups, increased Vo(2) more rapidly than CRT, where alternating larger and smaller muscle groups were used. In addition, at the same Vo(2) heart rate differed significantly between the 2 modes of activity. Heart rate in CRT was higher (at 165) than the heart rate of 150 found during treadmill running at the same 50% Vo(2). Such workouts may be used in a training cycle in classical linear periodization or in a nonlinear program day targeting local muscular endurance under intense cardiorespiratory conditions, which may help individuals develop enhanced toleration of physiological environments where high cardiovascular demands and higher lactate concentrations are present.
Rice, Treva K; Sarzynski, Mark A; Sung, Yun Ju; Argyropoulos, George; Stütz, Adrian M; Teran-Garcia, Margarita; Rao, D C; Bouchard, Claude; Rankinen, Tuomo
2012-08-01
Although regular exercise improves submaximal aerobic capacity, there is large variability in its response to exercise training. While this variation is thought to be partly due to genetic differences, relatively little is known about the causal genes. Submaximal aerobic capacity traits in the current report include the responses of oxygen consumption (ΔVO(2)60), power output (ΔWORK60), and cardiac output (ΔQ60) at 60% of VO2max to a standardized 20-week endurance exercise training program. Genome-wide linkage analysis in 475 HERITAGE Family Study Caucasians identified a locus on chromosome 13q for ΔVO(2)60 (LOD = 3.11). Follow-up fine mapping involved a dense marker panel of over 1,800 single-nucleotide polymorphisms (SNPs) in a 7.9-Mb region (21.1-29.1 Mb from p-terminus). Single-SNP analyses found 14 SNPs moderately associated with both ΔVO(2)60 at P ≤ 0.005 and the correlated traits of ΔWORK60 and ΔQ60 at P < 0.05. Haplotype analyses provided several strong signals (P < 1.0 × 10(-5)) for ΔVO(2)60. Overall, association analyses narrowed the target region and included potential biological candidate genes (MIPEP and SGCG). Consistent with maximal heritability estimates of 23%, up to 20% of the phenotypic variance in ΔVO(2)60 was accounted for by these SNPs. These results implicate candidate genes on chromosome 13q12 for the ability to improve submaximal exercise capacity in response to regular exercise. Submaximal exercise at 60% of maximal capacity is an exercise intensity that falls well within the range recommended in the Physical Activity Guidelines for Americans and thus has potential public health relevance.
Rice, Treva K.; Sarzynski, Mark A.; Sung, Yun Ju; Argyropoulos, George; Stütz, Adrian M.; Teran-Garcia, Margarita; Rao, D. C.; Bouchard, Claude
2014-01-01
Although regular exercise improves submaximal aerobic capacity, there is large variability in its response to exercise training. While this variation is thought to be partly due to genetic differences, relatively little is known about the causal genes. Submaximal aerobic capacity traits in the current report include the responses of oxygen consumption (ΔVO260), power output (ΔWORK60), and cardiac output (ΔQ60) at 60% of VO2max to a standardized 20-week endurance exercise training program. Genome-wide linkage analysis in 475 HERITAGE Family Study Caucasians identified a locus on chromosome 13q for ΔVO260 (LOD = 3.11). Follow-up fine mapping involved a dense marker panel of over 1,800 single-nucleotide polymorphisms (SNPs) in a 7.9-Mb region (21.1–29.1 Mb from p-terminus). Single-SNP analyses found 14 SNPs moderately associated with both ΔVO260 at P ≤ 0.005 and the correlated traits of ΔWORK60 and ΔQ60 at P < 0.05. Haplotype analyses provided several strong signals (P<1.0 × 10−5) for ΔVO260. Overall, association analyses narrowed the target region and included potential biological candidate genes (MIPEP and SGCG). Consistent with maximal heritability estimates of 23%, up to 20% of the phenotypic variance in ΔVO260 was accounted for by these SNPs. These results implicate candidate genes on chromosome 13q12 for the ability to improve submaximal exercise capacity in response to regular exercise. Submaximal exercise at 60% of maximal capacity is an exercise intensity that falls well within the range recommended in the Physical Activity Guidelines for Americans and thus has potential public health relevance. PMID:22170014
Triiodothyronine, beta-adrenergic receptors, agonist responses, and exercise capacity.
Martin, W H
1993-07-01
Although thyroid hormone excess results in increased beta-adrenergic receptor density or agonist responses in some cells of experimental animals, the role of these effects in contributing to clinical manifestations of hyperthyroidism in human subjects is unclear. To shed further light on this issue, we characterized the effect of 2 weeks of excess triiodothyronine administration on cardiac and metabolic responses to graded-dose isoproterenol infusion, skeletal muscle beta-adrenergic receptor density, and physiologic determinants of exercise capacity in young healthy subjects. The slope of the heart rate response to isoproterenol was 36% greater (p < 0.05) after triiodothyronine administration. In addition, beta-adrenergic receptor density was increased (p < 0.01) in all types of skeletal muscle fibers. Maximal oxygen uptake during treadmill exercise declined 5% (p < 0.001) after triiodothyronine administration because of a decrease in the arteriovenous oxygen difference (p < 0.05). The plasma lactate response to submaximal exercise was 25% greater (p < 0.01) in the hyperthyroid state. These effects were paralleled by a decrement in skeletal muscle oxidative capacity and a decrease in cross-sectional area of type 2A skeletal myocytes. Thus, thyroid hormone excess enhances cardiac beta-adrenergic sensitivity under in vivo conditions in human subjects. Nevertheless, exercise capacity is diminished in the hyperthyroid state, an effect that may be related to reduced skeletal muscle oxidative capacity and type 2A fiber atrophy.
Influence of respiratory muscle work on VO(2) and leg blood flow during submaximal exercise.
Wetter, T J; Harms, C A; Nelson, W B; Pegelow, D F; Dempsey, J A
1999-08-01
The work of breathing (W(b)) normally incurred during maximal exercise not only requires substantial cardiac output and O(2) consumption (VO(2)) but also causes vasoconstriction in locomotor muscles and compromises leg blood flow (Q(leg)). We wondered whether the W(b) normally incurred during submaximal exercise would also reduce Q(leg). Therefore, we investigated the effects of changing the W(b) on Q(leg) via thermodilution in 10 healthy trained male cyclists [maximal VO(2) (VO(2 max)) = 59 +/- 9 ml. kg(-1). min(-1)] during repeated bouts of cycle exercise at work rates corresponding to 50 and 75% of VO(2 max). Inspiratory muscle work was 1) reduced 40 +/- 6% via a proportional-assist ventilator, 2) not manipulated (control), or 3) increased 61 +/- 8% by addition of inspiratory resistive loads. Increasing the W(b) during submaximal exercise caused VO(2) to increase; decreasing the W(b) was associated with lower VO(2) (DeltaVO(2) = 0.12 and 0.21 l/min at 50 and 75% of VO(2 max), respectively, for approximately 100% change in W(b)). There were no significant changes in leg vascular resistance (LVR), norepinephrine spillover, arterial pressure, or Q(leg) when W(b) was reduced or increased. Why are LVR, norepinephrine spillover, and Q(leg) influenced by the W(b) at maximal but not submaximal exercise? We postulate that at submaximal work rates and ventilation rates the normal W(b) required makes insufficient demands for VO(2) and cardiac output to require any cardiovascular adjustment and is too small to activate sympathetic vasoconstrictor efferent output. Furthermore, even a 50-70% increase in W(b) during submaximal exercise, as might be encountered in conditions where ventilation rates and/or inspiratory flow resistive forces are higher than normal, also does not elicit changes in LVR or Q(leg).
Gottlieb-Vedi, M; Lindholm, A
1997-05-17
The responses in heart rate, plasma lactate and rectal temperature of standardbred trotters to draught loaded interval exercise on a treadmill and a race track were studied. The horses were exercised with incrementally increasing trotting speeds for two-minute intervals with draught loads of 10, 20 and 30 kilopond (kp) in three different tests. Each trotting interval was followed by two-minute periods at a walk without a draught load. Measurements of heart rate and plasma lactate were made at the end of each interval and the rectal temperature was taken at the end of the exercise. The heart rate and plasma lactate levels were significantly lower on the treadmill than on the track in the tests with 10 kp, but no significant differences were found between the treadmill and track exercise tests with the heavier draught resistances. No differences were observed in rectal temperature between treadmill and track conditions. From these findings it was concluded that the workload was significantly greater on the race track compared to the treadmill when the draught resistance was low (10 kp). Although the workload increased on both the race track and the treadmill as draught resistance increased, at the heavier draught resistances track exercise was no longer more demanding than exercise on the treadmill.
USDA-ARS?s Scientific Manuscript database
Background: Studies in youth show an association between systolic blood-pressure (SBP) reactivity to acute psychological stress and carotid artery intima-media thickness (CIMT). However, it has not yet been determined whether SBP reactivity during submaximal exercise is also associated with CIMT i...
Effects of prior exercise on the action of insulin-like growth factor I in skeletal muscle
NASA Technical Reports Server (NTRS)
Henriksen, E. J.; Louters, L. L.; Stump, C. S.; Tipton, C. M.
1992-01-01
Prior exercise increases insulin sensitivity for glucose and system A neutral amino acid transport activities in skeletal muscle. Insulin-like growth factor I (IGF-I) also activates these transport processes in resting muscle. It is not known, however, whether prior exercise increases IGF-I action in muscle. Therefore we determined the effect of a single exhausting bout of swim exercise on IGF-I-stimulated glucose transport activity [assessed by 2-deoxy-D-glucose (2-DG) uptake] and system A activity [assessed by alpha-(methylamino)isobutyric acid (MeAIB) uptake] in the isolated rat epitrochlearis muscle. When measured 3.5 h after exercise, the responses to a submaximal concentration (0.2 nM), but not a maximal concentration (13.3 nM), of insulin for activation of 2-DG uptake and MeAIB uptake were enhanced. In contrast, prior exercise increased markedly both the submaximal (5 nM) and maximal (20 nM) responses to IGF-I for activation of 2-DG uptake, whereas only the submaximal response to IGF-I (3 nM) for MeAIB uptake was enhanced after exercise. We conclude that 1) prior exercise significantly enhances the response to a submaximal concentration of IGF-I for activation of the glucose transport and system A neutral amino acid transport systems in skeletal muscle and 2) the enhanced maximal response for IGF-I action after exercise is restricted to the signaling pathway for activation of the glucose transport system.
Oxygen Uptake Responses to Submaximal Exercise Loads Do Not Change During Long-Duration Space Flight
NASA Technical Reports Server (NTRS)
Moore, Alan D., Jr.; Evetts, Simon N.; Feiveson, Alan H.; Lee, S. M. C.; McCleary, Frank A.; Platts, Steven H.; Ploutz-Snyder, Lori
2011-01-01
In previous publications we have reported that the heart rate (HR) responses to graded submaximal exercise tests are elevated during long-duration International Space Station (ISS) flights. Furthermore, the elevation in HR appears greater earlier, rather than later, during the missions. A potential confounder in the interpretation of HR results from graded exercise tests on ISS is that the cycle ergometer used (CEVIS) is vibration-isolated from the station structure. This feature causes the CEVIS assembly to sway slightly during its use and debriefing comments by some crewmembers indicate that there is a "learning curve" associated with CEVIS use. Therefore, one could not exclude the possibility that the elevated HRs experienced in the early stages of ISS missions were related to a lowered metabolic efficiency of CEVIS exercise that would raise the submaximal oxygen uptake (VO2) associated with graded exercise testing work rates.
VO[subscript 2] Prediction and Cardiorespiratory Responses during Underwater Treadmill Exercise
ERIC Educational Resources Information Center
Greene, Nicholas P.; Greene, Elizabeth S.; Carbuhn, Aaron F.; Green, John S.; Crouse, Stephen F.
2011-01-01
We compared cardiorespiratory responses to exercise on an underwater treadmill (UTM) and land treadmill (LTM) and derived an equation to estimate oxygen consumption (VO[subscript 2]) during UTM exercise. Fifty-five men and women completed one LTM and five UTM exercise sessions on separate days. The UTM sessions consisted of chest-deep immersion,…
Michael, Scott; Jay, Ollie; Graham, Kenneth S; Davis, Glen M
2018-02-12
This study investigated indirect measures of post-exercise parasympathetic reactivation (using heart-rate-variability, HRV) and sympathetic withdrawal (using systolic-time-intervals, STI) following upper- and lower-body exercise. Randomized, counter-balanced, crossover. 13 males (age 26.4±4.7years) performed maximal arm-cranking (MAX-ARM) and leg-cycling (MAX-LEG). Subsequently, participants undertook separate 8-min bouts of submaximal HR-matched exercise of each mode (ARM and LEG). HRV (including natural-logarithm of root-mean-square-of-successive-differences, Ln-RMSSD) and STI (including pre-ejection-period, PEP) were assessed throughout 10-min seated recovery. Peak-HR was higher (p=0.001) during MAX-LEG (182±7beatsmin -1 ) compared with MAX-ARM (171±12beatsmin -1 ), while HR (p<0.001) and Ln-RMSSD (p=0.010) recovered more rapidly following MAX-ARM. PEP recovery was similar between maximal bouts (p=0.106). HR during submaximal exercise was 146±7 (LEG) and 144±8beatsmin -1 (LEG) (p=0.139). Recovery of HR and Ln-RMSSD was also similar between submaximal modalities, remaining below baseline throughout recovery (p<0.001). PEP was similar during submaximal exercise (LEG 70±6ms; ARM 72±9ms; p=0.471) although recovery was slower following ARM (p=0.021), with differences apparent from 1- to 10-min recovery (p≤0.036). By 10-min post-exercise, PEP recovered to baseline (132±21ms) following LEG (130±21ms; p=0.143), but not ARM (121±17ms; p=0.001). Compared with submaximal lower-body exercise, HR-matched upper-body exercise elicited a similar recovery of HR and HRV indices of parasympathetic reactivation, but delayed recovery of PEP (reflecting sympathetic withdrawal). Exercise modality appears to influence post-exercise parasympathetic reactivation and sympathetic withdrawal in an intensity-dependent manner. These results highlight the need for test standardization and may be relevant to multi-discipline athletes and in clinical applications with varying modes of exercise testing. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Mendonca, Goncalo V; Teixeira, Micael S; Heffernan, Kevin S; Fernhall, Bo
2013-06-01
Ingestion of water attenuates the chronotropic response to submaximal exercise. However, it is not known whether this effect is equally manifested during dynamic exercise below and above the ventilatory threshold (VT). We explored the effects of water ingestion on the heart rate response to an incremental cycle-ergometer protocol. In a randomized fashion, 19 healthy adults (10 men and nine women, age 20.9 ± 1.8 years) ingested 50 and 500 ml of water before completing a cycle-ergometer protocol on two separate days. The heart rate and oxygen uptake ( ) responses to water ingestion were analysed both at rest and during exercise performed below and above the VT. The effects of water intake on brachial blood pressure were measured only at rest. Resting mean arterial pressure increased and resting heart rate decreased, but only after 500 ml of water (P < 0.05). Compared with that seen after 50 ml of water, the 500 ml volume elicited an overall decrease in submaximal heart rate (P < 0.05). In contrast, drinking 500 ml of water did not affect submaximal . The participants' maximal heart rate, maximal and VT were similar between conditions. Our results therefore indicate that, owing to its effects on submaximal heart rate over a broad spectrum of intensities, the drinking of water should be recognized as a potential confounder in cardiovascular exercise studies. However, by showing no differences between conditions for submaximal , they also suggest that the magnitude of heart rate reduction after drinking 500 ml of water may be of minimal physiological significance for exercise cardiorespiratory capacity.
Schaun, Gustavo Zaccaria; Alberton, Cristine Lima; Ribeiro, Diego Oliveira; Pinto, Stephanie Santana
2017-07-01
The aim of the present study was to compare the energy expenditure (EE) during and after two treadmill protocols, high-intensity interval training (HIIT) and moderate continuous training (CONT), in young adult men. The sample was comprised by 26 physically active men aged between 18 and 35 years engaged in aerobic training programs. They were divided into two groups: HIIT (n = 14) which performed eight 20 s bouts at 130% of the velocity associated with the maximal oxygen consumption on a treadmill with 10 s of passive rest, or CONT (n = 12) which performed 30 min running on a treadmill at a submaximal velocity equivalent to 90-95% of the heart rate associated with the anaerobic threshold. Data related to oxygen consumption ([Formula: see text]) and EE were measured during the protocols and the excess post-exercise oxygen consumption (EPOC) was calculated for both sessions. No difference was found between groups for mean [Formula: see text] (HIIT: 2.84 ± 0.46 L min -1 ; CONT: 2.72 ± 0.43 L min -1 ) and EE per minute (HIIT: 14.36 ± 2.34 kcal min -1 ; CONT: 13.21 ± 2.08 kcal min -1 ) during protocols. Regarding total EE during session, CONT resulted in higher values compared to HIIT (390.45 ± 65.15; 55.20 ± 9.33 kcal, respectively). However, post-exercise EE and EPOC values were higher after HIIT (69.31 ± 10.88; 26.27 ± 2.28 kcal, respectively) compared to CONT (55.99 ± 10.20; 13.43 ± 10.45 kcal, respectively). These data suggest that supramaximal HIIT has a higher impact on EE and EPOC in the early phase of recovery when compared to CONT.
Prediction of Maximum Oxygen Consumption from Walking, Jogging, or Running.
ERIC Educational Resources Information Center
Larsen, Gary E.; George, James D.; Alexander, Jeffrey L.; Fellingham, Gilbert W.; Aldana, Steve G.; Parcell, Allen C.
2002-01-01
Developed a cardiorespiratory endurance test that retained the inherent advantages of submaximal testing while eliminating reliance on heart rate measurement in predicting maximum oxygen uptake (VO2max). College students completed three exercise tests. The 1.5-mile endurance test predicted VO2max from submaximal exercise without requiring heart…
Blood rheology effect of submaximal exercise on young subjects.
Romagnoli, Marco; Alis, Rafael; Martinez-Bello, Vladimir; Sanchis-Gomar, Fabian; Aranda, Rafael; Gómez-Cabrera, Mari-Carmen
2014-01-01
Nowadays cardiac and metabolic diseases are a matter of concern. Exercise is a valid treatment and method of prevention for not only adults, but also young subjects. Physical activity causes transient blood rheology impairment in adults. However little is known about the effects of exercise on blood flow characteristics in young subjects. The aim of the study was to assess the effects of a light aerobic exercise session on blood rheology in young subjects. Ten young subjects (aged 12-16 years) performed 1 hour of submaximal aerobic exercise (70% HRmax). Blood samples were drawn just before and after exercise. We determined blood and plasma viscosity, fibrinogen, erythrocyte deformability and aggregability. No changes in blood viscosity (p > 0.05), erythrocyte aggregation (p > 0.05) and fibrinogen (p > 0.05) were observed. Hematocrit (p = 0.025) and plasma viscosity (p = 0.018) rose with exercise, while erythrocyte elongation index lowered (p < 0.001). Plasma volume slightly reduced which may explain the lack of changes in blood viscosity. The results of the present study indicate a similar hemorheological response to submaximal exercise in both young people and adults.
Lu, Yujiao; Dong, Yan; Tucker, Donovan; Wang, Ruimin; Ahmed, Mohammad Ejaz; Brann, Darrell; Zhang, Quanguang
2017-01-01
Recent work has suggested that exercise may be beneficial in preventing or ameliorating symptoms of several neurological disorders, although the mechanism is not entirely understood. The current study was designed to examine the potential beneficial effect of treadmill exercise upon cognitive function in a streptozotocin (STZ)-induced rat model of Alzheimer’s disease (AD). Animals underwent treadmill exercise (30 min/day, 5 days/week) for 4 weeks after bilateral STZ intracerebroventricular injection (2.4 mg/kg). We demonstrated that treadmill exercise significantly attenuated STZ-induced neurodegeneration in the rat hippocampal CA1 region and strongly preserved hippocampal-dependent cognitive functioning. Further mechanistic investigation displayed a marked suppression of STZ-induced amyloid-β accumulation and tau phosphorylation. Intriguingly, treadmill exercise remarkably inhibited reactive gliosis following STZ insult and effectively shifted activated microglia from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype, which was correlated with a significantly reduced expression of pro-inflammatory mediators and a corresponding enhancement of anti-inflammatory cytokine expression in the hippocampus. Furthermore, treadmill exercise caused a robust suppression of oxidative damage as evidenced by significantly reduced peroxynitrite production, lipid peroxidation, and oxidized DNA damage. Finally, treadmill exercise strongly attenuated STZ-induced mitochondrial dysfunction manifested by a dramatically elevated intra-mitochondrial cytochrome c oxidase activity and ATP synthesis, and markedly inhibited neuronal apoptosis in the hippocampus. These findings demonstrate that treadmill exercise has a multifactorial effect to attenuate many of the pathological processes that play a key role in AD, and provide further support for the beneficial role of exercise as a potential therapeutic option in AD treatment. PMID:28157094
Lu, Yujiao; Dong, Yan; Tucker, Donovan; Wang, Ruimin; Ahmed, Mohammad Ejaz; Brann, Darrell; Zhang, Quanguang
2017-01-01
Recent work has suggested that exercise may be beneficial in preventing or ameliorating symptoms of several neurological disorders, although the mechanism is not entirely understood. The current study was designed to examine the potential beneficial effect of treadmill exercise upon cognitive function in a streptozotocin (STZ)-induced rat model of Alzheimer's disease (AD). Animals underwent treadmill exercise (30 min/day, 5 days/week) for 4 weeks after bilateral STZ intracerebroventricular injection (2.4 mg/kg). We demonstrated that treadmill exercise significantly attenuated STZ-induced neurodegeneration in the rat hippocampal CA1 region and strongly preserved hippocampal-dependent cognitive functioning. Further mechanistic investigation displayed a marked suppression of STZ-induced amyloid-β accumulation and tau phosphorylation. Intriguingly, treadmill exercise remarkably inhibited reactive gliosis following STZ insult and effectively shifted activated microglia from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype, which was correlated with a significantly reduced expression of pro-inflammatory mediators and a corresponding enhancement of anti-inflammatory cytokine expression in the hippocampus. Furthermore, treadmill exercise caused a robust suppression of oxidative damage as evidenced by significantly reduced peroxynitrite production, lipid peroxidation, and oxidized DNA damage. Finally, treadmill exercise strongly attenuated STZ-induced mitochondrial dysfunction manifested by a dramatically elevated intra-mitochondrial cytochrome c oxidase activity and ATP synthesis, and markedly inhibited neuronal apoptosis in the hippocampus. These findings demonstrate that treadmill exercise has a multifactorial effect to attenuate many of the pathological processes that play a key role in AD, and provide further support for the beneficial role of exercise as a potential therapeutic option in AD treatment.
Koskinen, Satu O A; Kyröläinen, Heikki; Flink, Riina; Selänne, Harri P; Gagnon, Sheila S; Ahtiainen, Juha P; Nindl, Bradley C; Lehti, Maarit
2017-11-01
Early responses of stress-sensing proteins, muscle LIM protein (MLP), ankyrin repeat proteins (Ankrd1/CARP and Ankrd2/Arpp) and muscle-specific RING finger proteins (MuRF1 and MuRF2), along the titin molecule were investigated in the present experiment after submaximal exhaustive exercise. Ten healthy men performed continuous drop jumping unilaterally on a sledge apparatus with a submaximal height until complete exhaustion. Five stress-sensing proteins were analysed by mRNA measurements from biopsies obtained immediately and 3 h after the exercise from exercised vastus lateralis muscle while control biopsies were obtained from non-exercised legs before the exercise. Decreased maximal jump height and increased serum creatine kinase activities as indirect markers for muscle damage and HSP27 immunostainings on muscle biopsies as a direct marker for muscle damage indicated that the current exercised protocol caused muscle damage. mRNA levels for four (MLP, Ankrd1/CARP, MuRF1 and MuRF2) out of the five studied stress sensors significantly (p < 0.05) increased 3 h after fatiguing exercise. The magnitude of MLP and Ankrd2 responses was related to the proportion of type 1 myofibres. Our data showed that the submaximal exhaustive exercise with subject's own physical fitness level activates titin-based stretch-sensing proteins. These results suggest that both degenerative and regenerative pathways are activated in very early phase after the exercise or probably already during the exercise. Activation of these proteins represents an initial step forward adaptive remodelling of the exercised muscle and may also be involved in the initiation of myofibre repair.
Influence of simulated microgravity on the VO2 max of nontrained and trained rats
NASA Technical Reports Server (NTRS)
Woodman, C. R.; Monnin, K. A.; Sebastian, L. A.; Tipton, C. M.
1993-01-01
Head-down suspension (HDS) of rats has evolved as a useful model for the simulation of a microgravity environment. Previous HDS experiments with rats have shown an impaired capacity to perform aerobic exercise as demonstrated by reductions in maximum oxygen consumption (VO2 max), treadmill run time (RT), and mechanical efficiency (ME) of treadmill running at submaximal conditions. To determine whether endurance training (TR) before HDS would modify exercise performance, male Sprague-Dawley rats were assigned to nontrained (NT) or TR groups for 6 wk and exposed to HDS or cage control (CC) conditions for 29 days. The rats were tested for VO2 max, RT, and ME before treatment and on days 7, 14, 21, and 28. In addition, water and electrolyte excretion was measured on days 1 and 21 of the experimental period. Before HDS, the TR rats had significantly higher measures of VO2 max (15%) and RT (22%) than the NT rats. On day 28, HDS was associated with significant reductions in absolute VO2 max (ml/min) in TR (-30%) and NT (-14%) rats. Relative VO2 max (ml.min-1.kg-1) was significantly reduced in TR (-15%) but not NT rats. Similar reductions in RT occurred in TR (-37%) and NT (-35%) rats by day 28. ME was reduced 22% in both TR and NT rats after 28 days of suspension. HDS elicited diuresis, natriuresis, and kaliuresis in TR rats after 21 days but not after 24 h. In contrast, HDS-NT rats exhibited no diuretic, natriuretic, or kaliuretic responses.(ABSTRACT TRUNCATED AT 250 WORDS).
Validation of the firefighter WFI treadmill protocol for predicting VO2 max.
Dolezal, B A; Barr, D; Boland, D M; Smith, D L; Cooper, C B
2015-03-01
The Wellness-Fitness Initiative submaximal treadmill exercise test (WFI-TM) is recommended by the US National Fire Protection Agency to assess aerobic capacity (VO2 max) in firefighters. However, predicting VO2 max from submaximal tests can result in errors leading to erroneous conclusions about fitness. To investigate the level of agreement between VO2 max predicted from the WFI-TM against its direct measurement using exhaled gas analysis. The WFI-TM was performed to volitional fatigue. Differences between estimated VO2 max (derived from the WFI-TM equation) and direct measurement (exhaled gas analysis) were compared by paired t-test and agreement was determined using Pearson Product-Moment correlation and Bland-Altman analysis. Statistical significance was set at P < 0.05. Fifty-nine men performed the WFI-TM. Mean (standard deviation) values for estimated and measured VO2 max were 44.6 (3.4) and 43.6 (7.9) ml/kg/min, respectively (P < 0.01). The mean bias by which WFI-TM overestimated VO2 max was 0.9ml/kg/min with a 95% prediction interval of ±13.1. Prediction errors for 22% of subjects were within ±5%; 36% had errors greater than or equal to ±15% and 7% had greater than ±30% errors. The correlation between predicted and measured VO2 max was r = 0.55 (standard error of the estimate = 2.8ml/kg/min). WFI-TM predicts VO2 max with 11% error. There is a tendency to overestimate aerobic capacity in less fit individuals and to underestimate it in more fit individuals leading to a clustering of values around 42ml/kg/min, a criterion used by some fire departments to assess fitness for duty. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Park, Hun-Young; Kim, Jisu; Park, Miyoung; Chung, Nana; Lim, Kiwon
2018-03-30
The purpose of our study was to determine the effectiveness of carbohydrate loading by additional carbohydrate supplements for 7 days after prolonged interval exercise on exercise performance and energy metabolism during submaximal exercise in team-sports athletes. Twenty male team-sports athletes (14 soccer and 6 rugby players) volunteered to participate in the study and were equally divided into the experimental group (EXP, n=10) performing additional carbohydrate supplementation for 7 days after prolonged interval exercise until blood glucose level reaches 50 mg/dL or less and the control group (CON, n=10). Then, maximal oxygen consumption (VO2max) and minute ventilation (VE), oxygen consumption (VO2), carbon dioxide excretion (VCO2), respiratory exchange ratio (RER), blood glucose level, and blood lactate level were measured in all team-sports players during submaximal exercise corresponding to 70% VO2max before and after intervention. There was no significant interaction in all parameters, but team-sports players in the EXP presented more improved VO2max (CON vs EXP = vs 5.3% vs 6.3%), VE (CON vs EXP = vs 3.8% vs 6.6%), VO2 (CON vs EXP = vs 8.5% vs 9.9%), VCO2 (CON vs EXP = vs 2.8% vs 4.0%), blood glucose level (CON vs EXP = vs -12.9% vs -7.6%), and blood lactate level (CON vs EXP = -18.2% vs -25%) compared to those in the CON. These findings showed that additional carbohydrate supplementation conducted in our study is not effective in exercise performance and energy metabolism during submaximal exercise. ©2018 The Korean Society for Exercise Nutrition.
ERIC Educational Resources Information Center
Maud, Peter J.
A pulmonary function ratio describing oxygen extraction from alveolar ventilation was used for an intergroup comparison between three groups of athletes (rugby, basketball, and football players) and one group of sedentary subjects during steady-state submaximal exercise. The ratio and its component parts are determined from only three gas…
Running-specific prostheses permit energy cost similar to nonamputees.
Brown, Mary Beth; Millard-Stafford, Mindy L; Allison, Andrew R
2009-05-01
Improvements in prosthesis design have facilitated participation in competitive running for persons with lower limb loss (AMP). The purpose of this study was to examine the physiological responses of AMP using a run-specific prosthesis (RP) versus a traditional prosthesis (P) and cross-referenced with nonamputee controls (C) matched by training status, age, gender, and body composition during level treadmill running (TM). Twelve trained runners completed a multistage submaximal TM exercise during which HR and oxygen uptake (VO(2)) were obtained. Steady state measures at 134 m x min(-1) were compared between RP and P in AMP. AMP using RP (AMP-RP) and C also performed a continuous speed-incremented maximal TM test until volitional fatigue. RP elicited lower HR and VO(2) compared with P in AMP. Using RP, AMP achieved similar VO(2max) and peak TM speed compared with C but with higher HR(max). Relative HR (%HR(max)) and oxygen uptake (%VO(2max)), the regression intercept, slope, SEE, and Pearson's r correlation were not different between AMP-RP and C. %HR(max) calculated with the published equation, %HR(max) = 0.73(%VO(2max)) + 30, was not significantly different from actual %HR(max) for AMP-RP or C in any stage. RP permits AMP to attain peak TM speed and aerobic capacity similar to trained nonamputees and significantly attenuates HR and energy cost of submaximal running compared with a P. Use of RP confers no physiological advantage compared with nonamputee runners because energy cost at the set speed was not significantly different for AMP-RP. Current equations on the basis of the relative HR-VO(2) relationship seem appropriate to prescribe exercise intensity for persons with transtibial amputations using RP.
El-Sayed, M S; Rattu, A J
1996-01-01
This study examined the effect of prolonged submaximal exercise followed by a self-paced maximal performance test on cholesterol (T-Chol), triglycerides (TG), and high-density lipoprotein cholesterol (HDLC). Nine trained male athletes cycled at 70 percent of maximal oxygen consumption for 60 min, followed by a self-paced maximal ride for 10 min. Venous blood samples were obtained at rest, at 30 and 60 min during submaximal exercise, and immediately after the performance test. Lactic acid, haematocrit (Hct), haemoglobin (Hb), T-Chol and TG were measured in the blood, while plasma was assayed for HDL-C. Plasma volume changes in response to exercise were calculated from Hct and Hb values and all lipid measurements were corrected accordingly. In order to ascertain the repeatability of lipid responses to exercise, all subjects were re-tested under identical testing conditions and experimental protocols. When data obtained during the two exercise trials were analysed by two-way ANOVA no significant differences (P > 0.05) between tests were observed. Consequently the data obtained during the two testing trials were pooled and analysed by one-way ANOVA. Blood lactic acid increased nonsignificantly (P > 0.05) during the prolonged submaximal test, but rose markedly (P <0.05) following the performance ride. Lipid variables ascertained at rest were within the normal range for healthy subjects. ANOVA showed that blood T-Chol and TG were unchanged (P > 0.05), whereas HDL-C rose significantly (P <0.05) in response to exercise. Post hoc analyses indicated that the latter change was due to a significant rise in HDL-C after the performance ride. It is concluded that apparent favourable changes in lipid profile variables occur in response to prolonged submaximal exercise followed by maximal effort, and these changes showed a good level of agreement over the two testing occasions.
Gait, Balance, Leg Strength, and Sprint Speed After Bedrest with LBNP Exercise
NASA Technical Reports Server (NTRS)
Boda, Wanda L.; Watenbaugh, D. E.; Ballard, R. E.; Fortney, S. M.; Ertl, A. C.; Lee, S. M. C.; William, J. M.; Hargens, Alan R.
1997-01-01
Microgravity and bedrest (BR) result in similar physiological decrements such as loss of muscle mass, muscle strength and balance. Previous studies analyzing exercise within lower body negative pressure (LBNP) have found that gait is similar in LBNP on a vertical treadmill and overground exercise on a horizontal treadmill. Since treadmill exercise is known to increase muscular strength and endurance, we tested the hypothesis that LBNP exercise on a vertical treadmill would prevent or attenuate many of the physical decrements which occur during bedrest. Based on our positive results from diverse tests of post-BR function, we believe that exercise within LBNP is worth pursuing as a countermeasure for reducing the physical deterioration that occurs during bedrest and microgravity.
Inflight Exercise Regimen for the 2-Hour Prebreathe Protocol
NASA Technical Reports Server (NTRS)
Foster, Philip P.; Gernhardt, Michael L.; Woodruff, Kristin K.; Schneider, Susan M.; Homick, Jerry L. (Technical Monitor)
2000-01-01
A 10 min aerobic prebreathe exercise up to 75% V-O2(sub max) on a dual-cycle ergometer, included in the 2-hour prebreathe protocol, has been shown to dramatically reduce the incidence of decompression sickness (DCS) at altitude. In-flight only leg ergometry will be available. A balanced exercise was developed using surgical tubing with the ergometer on-orbit. We hypothesize that a 75% V02max workload, individually prescribed, would be achieved using a target heart rate to regulate the intensity of the arm exercise. VO2, heart rate (HR) / ECG, V-CO2 /V-O2, V(sub E), and V(sub T), and rate of perceived exertion (Borg scale) were measured in eleven healthy subjects who passed a US Air Force Class III Physical examination. A V-O2 peak test was performed to assess the sub-maximal exercise prescription. Two series of sub-maximal tests were performed: (1) leg ergometer/hand ergometer and (2) leg ergometer/surgical tubes. We found no significant differences (P > 0.05) in comparing the means for V-O2 and HR between the predicted and measured values during the final 4 minute-stage at "75% V-O2 workload" or between the two types of sub-maximal tests. The prescribed prebreathe sub-maximal exercise performed with flight certified surgical tubes was achieved using the target HR.
Serum S100B level increases after running but not cycling exercise.
Stocchero, Cintia Mussi Alvim; Oses, Jean Pierre; Cunha, Giovani Santos; Martins, Jocelito Bijoldo; Brum, Liz Marina; Zimmer, Eduardo Rigon; Souza, Diogo Onofre; Portela, Luis Valmor; Reischak-Oliveira, Alvaro
2014-03-01
The objective of this study was to investigate the effect of running versus cycling exercises upon serum S100B levels and typical markers of skeletal muscle damage such as creatine kinase (CK), aspartate aminotransferase (AST) and myoglobin (Mb). Although recent work demonstrates that S100B is highly expressed and exerts functional properties in skeletal muscle, there is no previous study that tries to establish a relationship between muscle damage and serum S100B levels after exercise. We conducted a cross-sectional study on 13 male triathletes. They completed 2 submaximal exercise protocols at anaerobic threshold intensity. Running was performed on a treadmill with no inclination (RUN) and cycling (CYC) using a cycle-simulator. Three blood samples were taken before (PRE), immediately after (POST) and 1 h after exercise for CK, AST, Mb and S100B assessments. We found a significant increase in serum S100B levels and muscle damage markers in RUN POST compared with RUN PRE. Comparing groups, POST S100B, CK, AST and Mb serum levels were higher in RUN than CYC. Only in RUN, the area under the curve (AUC) of serum S100B is positively correlated with AUC of CK and Mb. Therefore, immediately after an intense exercise such as running, but not cycling, serum levels of S100B protein increase in parallel with levels of CK, AST and Mb. Additionally, the positive correlation between S100B and CK and Mb points to S100B as an acute biomarker of muscle damage after running exercise.
Responsive measures to prehabilitation in patients undergoing bowel resection surgery.
Kim, Do Jun; Mayo, Nancy E; Carli, Franco; Montgomery, David L; Zavorsky, Gerald S
2009-02-01
Surgical patients often show physiological and metabolic distress, muscle weakness, and long hospital stays. Physical conditioning might help recovery. We attempted to identify the most responsive measure of aerobic fitness from a four-week pre-surgical aerobic exercise program (prehabilitation) in patients undergoing major bowel resection. Twenty-one subjects randomized two to one (exercise: control) scheduled for colorectal surgery. Fourteen subjects [Body Mass Index (BMI) = 27 +/- 6 kg/m(2); maximal oxygen uptake (VO(2max)) = 22 +/- 10 ml/kg/min] underwent 3.8 +/- 1.2 weeks (27 +/- 8 sessions) of progressive, structured pre-surgical aerobic exercise training at 40 to 65% of heart rate reserve (%HRR). Peak power output was the only maximal measure that was responsive to training [26 +/- 27%, Effects Size (ES) = 0.24; Standardized Response Mean (SRM) = 1.05; p < 0.05]. For the submaximal measures, heart rate and oxygen uptake during submaximal exercise was most responsive to training (decrease by 13% +/- 15%, ES = -0.24; SRM = -0.57; and 7% +/- 6%, ES = -0.40; SRM -0.97; p < 0.05) at an exercise intensity of 76 +/- 47 W. There was no change to maximal or submaximal measures in the control group. The distance walked over six minutes improved in both groups (by approximately 30 m), but the effect size and t-statistic were higher in the exercise group. Heart rate and oxygen uptake during submaximal exercise, and peak power output are the most responsive measures to four weeks of prehabilitation in subjects with low initial fitness.
Park, Hun-Young; Kim, Jisu; Park, Miyoung; Chung, Nana; Lim, Kiwon
2018-01-01
[Purpose] The purpose of our study was to determine the effectiveness of carbohydrate loading by additional carbohydrate supplements for 7 days after prolonged interval exercise on exercise performance and energy metabolism during submaximal exercise in team-sports athletes. [Methods] Twenty male team-sports athletes (14 soccer and 6 rugby players) volunteered to participate in the study and were equally divided into the experimental group (EXP, n=10) performing additional carbohydrate supplementation for 7 days after prolonged interval exercise until blood glucose level reaches 50 mg/dL or less and the control group (CON, n=10). Then, maximal oxygen consumption (VO2max) and minute ventilation (VE), oxygen consumption (VO2), carbon dioxide excretion (VCO2), respiratory exchange ratio (RER), blood glucose level, and blood lactate level were measured in all team-sports players during submaximal exercise corresponding to 70% VO2max before and after intervention. [Results] There was no significant interaction in all parameters, but team-sports players in the EXP presented more improved VO2max (CON vs EXP = vs 5.3% vs 6.3%), VE (CON vs EXP = vs 3.8% vs 6.6%), VO2 (CON vs EXP = vs 8.5% vs 9.9%), VCO2 (CON vs EXP = vs 2.8% vs 4.0%), blood glucose level (CON vs EXP = vs -12.9% vs -7.6%), and blood lactate level (CON vs EXP = -18.2% vs -25%) compared to those in the CON. [Conclusion] These findings showed that additional carbohydrate supplementation conducted in our study is not effective in exercise performance and energy metabolism during submaximal exercise. PMID:29673243
Brisswalter, Jeanick; Bouhlel, Ezzedine; Falola, Jean Marie; Abbiss, Christopher R; Vallier, Jean Marc; Hausswirth, Christophe; Hauswirth, Christophe
2011-09-01
To assess whether Ramadan intermittent fasting (RIF) affects 5000-m running performance and physiological parameters classically associated with middle-distance performance. Two experimental groups (Ramadan fasting, n = 9, vs control, n = 9) participated in 2 experimental sessions, one before RIF and the other at the last week of fasting. For each session, subjects completed 4 tests in the same order: a maximal running test, a maximal voluntary contraction (MVC) of knee extensor, 2 rectangular submaximal exercises on treadmill for 6 minutes at an intensity corresponding to the first ventilatory threshold (VT1), and a running performance test (5000 m). Eighteen, well-trained, middle-distance runners. Maximal oxygen consumption, MVC, running performance, running efficiency, submaximal VO(2) kinetics parameters (VO(2), VO(2)b, time constant τ, and amplitude A1) and anthropometric parameters were recorded or calculated. At the end of Ramadan fasting, a decrease in MVC was observed (-3.2%; P < 0.00001; η, 0.80), associated with an increase in the time constant of oxygen kinetics (+51%; P < 0.00007; η, 0.72) and a decrease in performance (-5%; P < 0.0007; η, 0.51). No effect was observed on running efficiency or maximal aerobic power. These results suggest that Ramadan changes in muscular performance and oxygen kinetics could affect performance during middle-distance events and need to be considered to choose training protocols during RIF.
Kim, Dae-Young; Jung, Sun-Young; Kim, Tae-Woon; Lee, Kwang-Sik; Kim, Kijeong
2015-04-01
Diabetes is a metabolic disorder, and it is considered as a major risk factor for Alzheimer's disease (AD). In the present study, we evaluated whether treadmill exercise ameliorates progression of AD in relation with glycogen synthase kinase-3β (GSK-3β) activity using streptozotocin (STZ)-induced diabetic rats. For this study, step-down avoidance task, immunohistochemistry for glycogen synthase kinase-3β (GSK-3β) and tau, and western blot for phosphor-phosphoinositide 3 kinase (p-PI3K)/PI3K and phosphor-Akt (p-Akt)/Akt were performed. Diabetes mellitus was induced by intraperitoneal injection of STZ. The rats in the exercise groups were made to run on the treadmill for 30 min per one day, five times a week, during 12 weeks. The present results showed that short-term and long-term latencies in the step-down avoidance task were decreased by induction of diabetes, and treadmill exercise inhibited these latencies in the diabetic rats. Induction of diabetes suppressed the ratio of p-PI3K to PI3K and the ratio of p-Akt to Akt, and treadmill exercise increased these ratios in the diabetic rats. The numbers of GSK-3β-positive and tau-positive cells in the hippocampal dentate gyrus was higher in the diabetes-induction group than that in the control group, and treadmill exercise inhibited these numbers in the diabetic rats. In the present study, treadmill exercise suppressed hyperphosphorylation of tau in the hippocampus by decreased GSK-3β activity through PI3K/Akt pathway activation in the diabetic rats. Based on the present results, treadmill exercise may helpful to prevent diabetes-associated AD occurrence.
Kim, Dae-Young; Jung, Sun-Young; Kim, Kijeong; Kim, Chang-Ju
2016-08-01
Diabetes mellitus is considered as a risk factor for Alzheimer disease. The aim of the present study was to evaluate the possibility whether treadmill exercise ameliorates Alzheimer disease-associated memory loss in the diabetes mellitus. For this study, the effects of treadmill exercise on short-term memory and spatial learning ability in relation with Wnt signaling pathway were evaluated using the streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by intraperitoneal injection of STZ. Step-down avoidance task and 8-arm radial maze test were performed for the memory function. Immunohistochemistry for 5-bro-mo-2'-deoxyridine (BrdU) and doublecortin (DCX) and Western blot for Wnt3 and glycogen synthase kinase-3β (GSK-3β) were conducted. The rats in the exercise groups were made to run on the treadmill for 30 min per one day, 5 times a week, during 12 weeks. In the present results, short-term memory and spatial learning ability were deteriorated by induction of diabetes. Treadmill exercise improved short-term memory and spatial learning ability in the diabetic rats. The numbers of BrdU-positive and DCX-positive cells in the hippocampal dentate gyrus were decreased by induction of diabetes. Treadmill exercise increased these numbers in the diabetic rats. Wnt3 expression in the hippocampus was decreased and GSK-3β expression in the hippocampus was increased by induction of diabetes. Treadmill exercise increased Wnt3 expression and suppressed GSK-3β expression in the diabetic rats. The present study suggests that treadmill exercise alleviates Alzheimer disease-associated memory loss by increasing neurogenesis through activating Wnt signaling pathway in the diabetic rats.
2017-03-17
Submaximal Invasive Cardiopulmonary Exercise Testing iCPET in AD Soldiers presented at/published to American College of Cardiology’s 661h Annual...disclaimer statement for research involving animals . as required by AFMAN 40-401 IP : " The experiments reported herein were conducted according to the...principles set forth in the National Institute of Health Publication No. 80-23, Guide for the Care and Use of Laboratory Animals and the Animal
No influence of ischemic preconditioning on running economy.
Kaur, Gungeet; Binger, Megan; Evans, Claire; Trachte, Tiffany; Van Guilder, Gary P
2017-02-01
Many of the potential performance-enhancing properties of ischemic preconditioning suggest that the oxygen cost for a given endurance exercise workload will be reduced, thereby improving the economy of locomotion. The aim of this study was to identify whether ischemic preconditioning improves exercise economy in recreational runners. A randomized sham-controlled crossover study was employed in which 18 adults (age 27 ± 7 years; BMI 24.6 ± 3 kg/m 2 ) completed two, incremental submaximal (65-85% VO 2max ) treadmill running protocols (3 × 5 min stages from 7.2-14.5 km/h) coupled with indirect calorimetry to assess running economy following ischemic preconditioning (3 × 5 min bilateral upper thigh ischemia) and sham control. Running economy was expressed as mlO 2 /kg/km and as the energy in kilocalories required to cover 1 km of horizontal distance (kcal/kg/km). Ischemic preconditioning did not influence steady-state heart rate, oxygen consumption, minute ventilation, respiratory exchange ratio, energy expenditure, and blood lactate. Likewise, running economy was similar (P = 0.647) between the sham (from 201.6 ± 17.7 to 204.0 ± 16.1 mlO 2 /kg/km) and ischemic preconditioning trials (from 202.8 ± 16.2 to 203.1 ± 15.6 mlO 2 /kg/km). There was no influence (P = 0.21) of ischemic preconditioning on running economy expressed as the caloric unit cost (from 0.96 ± 0.12 to 1.01 ± 0.11 kcal/kg/km) compared with sham (from 1.00 ± 0.10 to 1.00 ± 0.08 kcal/kg/km). The properties of ischemic preconditioning thought to affect exercise performance at vigorous to severe exercise intensities, which generate more extensive physiological challenge, are ineffective at submaximal workloads and, therefore, do not change running economy.
Acute aquatic treadmill exercise improves gait and pain in people with knee osteoarthritis.
Roper, Jaimie A; Bressel, Eadric; Tillman, Mark D
2013-03-01
To examine the acute effects of aquatic and land treadmill exercise on gait kinematics as well as the level of disease-specific and movement-related pain for individuals with osteoarthritis. Quasi-experimental crossover design. Biomechanics laboratory. Participants (N=14; age, 43-64y) diagnosed with osteoarthritis at the knee (n=12), osteoarthritis at the knee and ankle (n=1), or osteoarthritis at the knee and hip (n=1). Participants performed 3 exercise sessions separated by at least 24 hours in 1 week for each mode of exercise (aquatic treadmill and land treadmill). Gait kinematics and pain were measured before and after each intervention. The angular velocity gain score during stance for left knee extension was improved by 38% after aquatic treadmill exercise (P=.004). Similarly, during swing, the gain scores for angular velocity were also greater for left knee internal rotation and extension by 65% and 20%, respectively (P=.004, P=.008, respectively). During stance, the joint angle gain score for left hip flexion was 7.23% greater after land exercise (P=.007). During swing, the angular velocity gain score for right hip extension was significantly greater for aquatic exercise by 28% (P=.01). Only the joint angle gain score for left ankle abduction during stance was significantly higher after land exercise (4.72%, P=.003). No other joint angle gain scores for either stance or swing were significantly different for either condition (P=.06-.96). Perceived pain was 100% greater after land than aquatic treadmill exercise (P=.02). Step rate and step length were not different between conditions (P=.31-.92). An acute training period on an aquatic treadmill positively influenced joint angular velocity and arthritis-related joint pain. Acute aquatic treadmill exercise may be useful as a conservative treatment to improve angular speed of the lower-extremity joints and pain related to osteoarthritis. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Acute Exercise and Oxidative Stress: CrossFit™ vs. Treadmill Bout
Kliszczewicz, Brian; Quindry, C. John; Blessing, L. Daniel; Oliver, D. Gretchen; Esco, R. Michael; Taylor, J. Kyle
2015-01-01
CrossFit™, a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit™ bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit™ experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit™ and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit™=+143%, Treadmill=+115%) and 2-HP (CrossFit™=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit™=−16%, Treadmill=−8%) and 2-HP (CF=−16%, TM=−1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit™ and Treadmill: IPE (CrossFit™=+25%, Treadmill=+17%), 1-HP (CrossFit™=+26%, Treadmill=+4.8%), 2-HP (CrossFit™=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit™=−10%, Treadmill=−12%), 1-HP (CrossFit™=−12%, Treadmill=−6%), 2-HP (CrossFit™=−7%, Treadmill=−11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit™ bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses. PMID:26557192
Acute Exercise and Oxidative Stress: CrossFit(™) vs. Treadmill Bout.
Kliszczewicz, Brian; Quindry, C John; Blessing, L Daniel; Oliver, D Gretchen; Esco, R Michael; Taylor, J Kyle
2015-09-29
CrossFit(™), a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit(™) bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit(™) experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit(™) and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit(™)=+143%, Treadmill=+115%) and 2-HP (CrossFit(™)=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit(™)=-16%, Treadmill=-8%) and 2-HP (CF=-16%, TM=-1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit(™) and Treadmill: IPE (CrossFit(™)=+25%, Treadmill=+17%), 1-HP (CrossFit(™)=+26%, Treadmill=+4.8%), 2-HP (CrossFit(™)=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit(™)=-10%, Treadmill=-12%), 1-HP (CrossFit(™)=-12%, Treadmill=-6%), 2-HP (CrossFit(™)=-7%, Treadmill=-11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit(™) bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses.
Treadmill exercise alleviates depressive symptoms in rotenone-induced Parkinson disease rats
Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Sung, Yun-Hee; Lim, Baek-Vin
2017-01-01
Parkinson disease (PD) is characterized by selective loss of the dopaminergic neurons. The symptoms of depression following PD are closely associated with reduced activity of the serotonergic system in the dorsal raphe. We explored the antidepressive effect of exercise and its possible mechanism using the rotenone-induced PD rats. PD rats were induced by subcutaneously injection with rotenone for 14 days. The rats in the exercise groups were made to run on a treadmill for 30 min once a day during 14 consecutive days. Forced swimming test, immunohistochemistry for serotonin (5-hydroxytryptamine, 5-HT), tryptophan hydroxylase (TPH), and western blot for serotonin 1A (5-HT1A) receptor were conducted. Injection of rotenone induced PD rats. PD rats showed depressive state and treadmill exercise ameliorated this depressive state. 5-HT, TPH, and 5-HT1A receptor expressions in the dorsal raphe were suppressed by rotenone injection and treadmill exercise increased the expressions of 5-HT, TPH, and 5-HT1A receptor in the rotenone-injected rats. The present results show that treadmill exercise ameliorated depressive symptoms in the rotenone-induced PD rats. The antidepressive effect of treadmill exercise might be ascribed to the enhancement of serotonergic function through upregulation of 5-HT1A expression in the dorsal raphe. PMID:28503522
Treadmill exercise alleviates depressive symptoms in rotenone-induced Parkinson disease rats.
Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Sung, Yun-Hee; Lim, Baek-Vin
2017-04-01
Parkinson disease (PD) is characterized by selective loss of the dopaminergic neurons. The symptoms of depression following PD are closely associated with reduced activity of the serotonergic system in the dorsal raphe. We explored the antidepressive effect of exercise and its possible mechanism using the rotenone-induced PD rats. PD rats were induced by subcutaneously injection with rotenone for 14 days. The rats in the exercise groups were made to run on a treadmill for 30 min once a day during 14 consecutive days. Forced swimming test, immunohistochemistry for serotonin (5-hydroxytryptamine, 5-HT), tryptophan hydroxylase (TPH), and western blot for serotonin 1A (5-HT1A) receptor were conducted. Injection of rotenone induced PD rats. PD rats showed depressive state and treadmill exercise ameliorated this depressive state. 5-HT, TPH, and 5-HT1A receptor expressions in the dorsal raphe were suppressed by rotenone injection and treadmill exercise increased the expressions of 5-HT, TPH, and 5-HT1A receptor in the rotenone-injected rats. The present results show that treadmill exercise ameliorated depressive symptoms in the rotenone-induced PD rats. The antidepressive effect of treadmill exercise might be ascribed to the enhancement of serotonergic function through upregulation of 5-HT1A expression in the dorsal raphe.
Guilkey, J P; Overstreet, M; Mahon, A D
2015-10-01
This study examined heart rate recovery (HRR) and heart rate variability (HRV) following submaximal and maximal exercise in boys (n = 13; 10.1 ± 0.8 years) and girls (n = 12; 10.1 ± 0.7 years). Participants completed 10 min of supine rest followed by a graded exercise test to maximal effort. On a separate day, participants performed submaximal exercise at ventilatory threshold. Immediately following both exercise bouts, 1-min HRR was assessed in the supine position. HRV variables were analyzed under controlled breathing in the time and frequency domains over the final 5 min of rest and recovery. There were no significant differences in HRR following maximal and submaximal exercise between boys (58 ± 8 and 59 ± 8 beats min(-1), respectively) and girls (54 ± 6 and 52 ± 19 beats min(-1), respectively). There also were no significant interactions between groups from rest to recovery from maximal exercise for any HRV variables. However, there was a difference in the response between sexes from rest to recovery from submaximal exercise for log transformed standard deviation of NN intervals (lnSDNN) and log transformed total power (lnTP). No differences were observed for lnSDNN at rest (boys = 4.61 ± 0.28 vs. girls = 4.28 ± 0.52 ms) or during recovery (lnSDNN: boys 3.78 ± 0.46 vs. girls 3.87 ± 0.64 ms and lnTP: boys 7.33 ± 1.09 vs. girls; 7.44 ± 1.24 ms(2)). Post hoc pairwise comparisons showed a significant difference between boys and girls for lnTP at rest (boys = 9.14 ± 0.42 vs. girls = 8.30 ± 1.05 ms(2)). Parasympathetic modulation was similar between boys and girls at rest and during recovery from exercise, which could explain similarities observed in HRR.
Kletzien, Heidi; Russell, John A; Leverson, Glen E; Connor, Nadine P
2013-02-15
Age-associated changes in tongue muscle structure and strength may contribute to dysphagia in elderly people. Tongue exercise is a current treatment option. We hypothesized that targeted tongue exercise and nontargeted exercise that activates tongue muscles as a consequence of increased respiratory drive, such as treadmill running, are associated with different patterns of tongue muscle contraction and genioglossus (GG) muscle biochemistry. Thirty-one young adult, 34 middle-aged, and 37 old Fischer 344/Brown Norway rats received either targeted tongue exercise, treadmill running, or no exercise (5 days/wk for 8 wk). Protrusive tongue muscle contractile properties and myosin heavy chain (MHC) composition in the GG were examined at the end of 8 wk across groups. Significant age effects were found for maximal twitch and tetanic tension (greatest in young adult rats), MHCIIb (highest proportion in young adult rats), MHCIIx (highest proportion in middle-aged and old rats), and MHCI (highest proportion in old rats). The targeted tongue exercise group had the greatest maximal twitch tension and the highest proportion of MHCI. The treadmill running group had the shortest half-decay time, the lowest proportion of MHCIIa, and the highest proportion of MHCIIb. Fatigue was significantly less in the young adult treadmill running group and the old targeted tongue exercise group than in other groups. Thus, tongue muscle structure and contractile properties were affected by both targeted tongue exercise and treadmill running, but in different ways. Studies geared toward optimizing dose and manner of providing targeted and generalized tongue exercise may lead to alternative tongue exercise delivery strategies.
Kletzien, Heidi; Russell, John A.; Leverson, Glen E.
2013-01-01
Age-associated changes in tongue muscle structure and strength may contribute to dysphagia in elderly people. Tongue exercise is a current treatment option. We hypothesized that targeted tongue exercise and nontargeted exercise that activates tongue muscles as a consequence of increased respiratory drive, such as treadmill running, are associated with different patterns of tongue muscle contraction and genioglossus (GG) muscle biochemistry. Thirty-one young adult, 34 middle-aged, and 37 old Fischer 344/Brown Norway rats received either targeted tongue exercise, treadmill running, or no exercise (5 days/wk for 8 wk). Protrusive tongue muscle contractile properties and myosin heavy chain (MHC) composition in the GG were examined at the end of 8 wk across groups. Significant age effects were found for maximal twitch and tetanic tension (greatest in young adult rats), MHCIIb (highest proportion in young adult rats), MHCIIx (highest proportion in middle-aged and old rats), and MHCI (highest proportion in old rats). The targeted tongue exercise group had the greatest maximal twitch tension and the highest proportion of MHCI. The treadmill running group had the shortest half-decay time, the lowest proportion of MHCIIa, and the highest proportion of MHCIIb. Fatigue was significantly less in the young adult treadmill running group and the old targeted tongue exercise group than in other groups. Thus, tongue muscle structure and contractile properties were affected by both targeted tongue exercise and treadmill running, but in different ways. Studies geared toward optimizing dose and manner of providing targeted and generalized tongue exercise may lead to alternative tongue exercise delivery strategies. PMID:23264540
Effects of cigarette smoking on cardiac autonomic function during dynamic exercise.
Mendonca, Goncalo V; Pereira, Fernando D; Fernhall, Bo
2011-06-01
The purpose of this study was to investigate the acute effect of cigarette smoking on cardiac autonomic function in young adult smokers during dynamic exercise. Fourteen healthy young smokers (21.4 ± 3.4 years) performed peak and submaximal exercise protocols under control and smoking conditions. Resting and submaximal beat-to-beat R-R series were recorded and spectrally decomposed using the fast Fourier transformation. Smoking resulted in a significant decrease in work time, VO(2peak) and peak O(2) pulse (P < 0.05). Heart rate increased at rest and during submaximal exercise after smoking (P < 0.05). The raw high frequency and low frequency power were significantly reduced by smoking, both at rest and during exercise (P < 0.05). The low to high frequency ratio was higher after smoking (P < 0.05). The normalised low frequency power was also significantly increased by smoking, but only at rest (P < 0.05). These data demonstrate that the tachycardic effect elicited by smoking is accompanied by acute changes in heart rate spectral components both at rest and during exercise. Therefore, the cardiac autonomic control is altered by smoking not only at rest, but also during exercise, resulting in reduced vagal modulation and increased sympathetic dominance.
Macaulay, Timothy R; Macias, Brandon R; Lee, Stuart MC; Boda, Wanda L; Watenpaugh, Donald E; Hargens, Alan R
2016-01-01
Spaceflight causes sensorimotor adaptations that result in balance deficiencies on return to a gravitational environment. Treadmill exercise within lower-body negative pressure (LBNP) helps protect physiological function during microgravity as simulated by bed rest. Therefore, we hypothesized that treadmill exercise within LBNP would prevent balance losses in both male and female identical twins during 30 days of 6° head-down tilt bed rest. Fifteen (seven female and eight male) identical twin sets participated in this simulation of microgravity. Within each twin pair, one twin was randomly assigned to an exercise group that performed 40 min of supine treadmill exercise within LBNP set to generate 1.0–1.2 body weight, followed by 5 min of static feet-supported LBNP, 6 days per week. Their identical sibling was assigned to a non-exercise control group with all other bed rest conditions equivalent. Before and immediately after bed rest, subjects completed standing and walking rail balance tests with eyes open and eyes closed. In control subjects, standing rail balance times (men: −42%, women: −40%), rail walk distances (men: −44%, women: −32%) and rail walk times (men: −34%, women: −31%) significantly decreased after bed rest. Compared with controls, treadmill exercise within LBNP significantly attenuated losses of standing rail balance time by 63% in men, but the 41% attenuation in women was not significant. Treadmill exercise within LBNP did not affect rail walk abilities in men or women. Treadmill exercise within LBNP during simulated spaceflight attenuates loss of balance control in men but not in women. PMID:28725733
Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Ji, Eun-Sang; Lim, Baek-Vin
2017-02-01
Parkinson disease is one of the common brain diseases caused by dopaminergic neuronal loss in the substantia nigra and dopaminergic fiber loss in the striatum. In the present study, the effects of treadmill exercise on motor performance, dopaminergic loss of neurons and fibers, and α-synuclein expression in the nigrostriatum were evaluated using rotenone-induced Parkinson rats. For the induction of Parkinson rats, 3-mg/kg rotenone was injected, once a day for 14 consecutive days. Treadmill running was conducted for 30 min once a day during 14 consecutive days. Rota-rod test for motor balance and coordination and immunohistochemistry for tyrosine hydroxylase and α-synuclein in the nigrostriatum were performed. In the present study, motor balance and coordination was disturbed by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated motor dysfunction in the rotenone-induced Parkinson rats. Nigrostriatal dopaminergic loss of neurons and fibers was occurred by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated nigrostriatal dopaminergic loss of neurons and fibers in the rotenone-induced Parkinson rats. α-Synuclein expression in the nigrostriatum was enhanced by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise suppressed α-synuclein expression in the rotenone-induced Parkinson rats. Treadmill exercise improved motor function through preservation of nigrostriatal dopaminergic neurons and fibers and suppression of nigrostriatal formation of Lewy bodies in rotenone-induced Parkinson rats.
Lindinger, Michael I; Ecker, Gayle L
2013-01-01
Horses lose considerably more electrolytes through sweating during prolonged exercise than can be readily replaced through feeds. The present study tested an oral electrolyte supplement (ES) designed to replace sweat electrolyte losses. We measured gastric emptying of 3 litres of ES (using gamma imaging of (99)Tc-sulfide colloid), the absorption of Na(+) and K(+) from the gastrointestinal tract using (24)Na(+) and (42)K(+), and the distribution of these ions in the body by measuring radioactivity within plasma and sweat during exercise. Three litres of ES emptied from the stomach as fast as water, with a half-time of 47 min, and appeared in plasma by 10 min after administration (n = 4 horses). Peak values of plasma (24)Na(+) and (42)K(+) radioactivity occurred at 20-40 min, and a more rapid disappearance of K(+) radioactivity from plasma was indicative of movement of K(+) into cells (n = 3 horses). In a randomized crossover experiment (n = 4 horses), 1 h after administration of placebo (water), 1 or 3 litres of ES containing (24)Na(+), horses exercised on a treadmill at 30% of peak oxygen uptake until voluntary fatigue. The (24)Na(+) appeared in sweat at 10 min of exercise, and when horses received 3 litres of ES the duration to voluntary fatigue was increased in all horses by 33 ± 10%. It is concluded that an oral ES designed to replace sweat ion losses was rapidly emptied from the gastrointestinal tract, rapidly absorbed in the upper intestinal tract and rapidly distributed within the body. The ES clearly served as a reservoir to replace sweat ion losses during exercise, and administration of ES prior to exercise resulted in increased duration of submaximal exercise.
A study of exercise modality and physical self-esteem in breast cancer survivors.
Musanti, Rita
2012-02-01
This study, theoretically based on the Exercise Self-Esteem Model, EXSEM, examined effects of exercise modality on physical and global self-esteem (PSE, GSE) in breast cancer survivors. The EXSEM posits GSE at the apex with PSE feeding into GSE. PSE has three subdomains: physical condition (PC), attractive body (AB), and physical strength (PS). The goals were to compare the effect of combination modality versus single-modality exercise on PSE and GSE and to explore the relationship between exercise modality and the subdomains of PSE. Survivors were randomly allocated to flexibility (F), aerobic (A), resistance (R), or aerobic plus resistance (AR), 12-wk, individualized, home-based exercise program. Pre/posttesting included submaximal treadmill test, six-repetition maximum chest press and leg press, YMCA bench press, shoulder/hip flexibility, and bioelectric impedance analysis body composition. Esteem measures were the Physical Self-Perception Profile and the Rosenberg Self-Esteem Scale. Forty-two women completed the study (F = 12, A = 10, R = 9, and AR = 11). Fitness improvements congruent with exercise modality were seen in all groups. PSE and GSE outcomes did not reveal a greater effect from the combination modality program, AR, compared with the single-modality programs A and R. The relationships between the single-modality groups and the subdomains of PC, PS, and AB were supported in the R group (PS and AB increased) and were partially supported in the A group (PC, not AB, increased). A single-modality R program significantly improved all domains of PSE, and participation in the A program improved the PC subdomain. The combination exercise program did not enhance PSE greater than the single-modality programs. EXSEM was a useful framework for exploring esteem in breast cancer survivors.
A Comparison between Different Methods of Estimating Anaerobic Energy Production
Andersson, Erik P.; McGawley, Kerry
2018-01-01
Purpose: The present study aimed to compare four methods of estimating anaerobic energy production during supramaximal exercise. Methods: Twenty-one junior cross-country skiers competing at a national and/or international level were tested on a treadmill during uphill (7°) diagonal-stride (DS) roller-skiing. After a 4-minute warm-up, a 4 × 4-min continuous submaximal protocol was performed followed by a 600-m time trial (TT). For the maximal accumulated O2 deficit (MAOD) method the V.O2-speed regression relationship was used to estimate the V.O2 demand during the TT, either including (4+Y, method 1) or excluding (4-Y, method 2) a fixed Y-intercept for baseline V.O2. The gross efficiency (GE) method (method 3) involved calculating metabolic rate during the TT by dividing power output by submaximal GE, which was then converted to a V.O2 demand. An alternative method based on submaximal energy cost (EC, method 4) was also used to estimate V.O2 demand during the TT. Results: The GE/EC remained constant across the submaximal stages and the supramaximal TT was performed in 185 ± 24 s. The GE and EC methods produced identical V.O2 demands and O2 deficits. The V.O2 demand was ~3% lower for the 4+Y method compared with the 4-Y and GE/EC methods, with corresponding O2 deficits of 56 ± 10, 62 ± 10, and 63 ± 10 mL·kg−1, respectively (P < 0.05 for 4+Y vs. 4-Y and GE/EC). The mean differences between the estimated O2 deficits were −6 ± 5 mL·kg−1 (4+Y vs. 4-Y, P < 0.05), −7 ± 1 mL·kg−1 (4+Y vs. GE/EC, P < 0.05) and −1 ± 5 mL·kg−1 (4-Y vs. GE/EC), with respective typical errors of 5.3, 1.9, and 6.0%. The mean difference between the O2 deficit estimated with GE/EC based on the average of four submaximal stages compared with the last stage was 1 ± 2 mL·kg−1, with a typical error of 3.2%. Conclusions: These findings demonstrate a disagreement in the O2 deficits estimated using current methods. In addition, the findings suggest that a valid estimate of the O2 deficit may be possible using data from only one submaximal stage in combination with the GE/EC method. PMID:29472871
Vibration Isolation and Stabilization System for Spacecraft Exercise Treadmill Devices
NASA Technical Reports Server (NTRS)
Fialho, Ian; Tyer, Craig; Murphy, Bryan; Cotter, Paul; Thampi, Sreekumar
2011-01-01
A novel, passive system has been developed for isolating an exercise treadmill device from a spacecraft in a zero-G environment. The Treadmill 2 Vibration Isolation and Stabilization System (T2-VIS) mechanically isolates the exercise treadmill from the spacecraft/space station, thereby eliminating the detrimental effect that high impact loads generated during walking/running would have on the spacecraft structure and sensitive microgravity science experiments. This design uses a second stage spring, in series with the first stage, to achieve an order of magnitude higher exercise- frequency isolation than conventional systems have done, while maintaining desirable low-frequency stability performance. This novel isolator design, in conjunction with appropriately configured treadmill platform inertia properties, has been shown (by on-orbit zero-G testing onboard the International Space Station) to deliver exceedingly high levels of isolation/ stability performance.
Long-term moderate treadmill exercise promotes stress-coping strategies in male and female rats.
Lalanza, Jaume F; Sanchez-Roige, Sandra; Cigarroa, Igor; Gagliano, Humberto; Fuentes, Silvia; Armario, Antonio; Capdevila, Lluís; Escorihuela, Rosa M
2015-11-05
Recent evidence has revealed the impact of exercise in alleviating anxiety and mood disorders; however, the exercise protocol that exerts such benefit is far from known. The current study was aimed to assess the effects of long-term moderate exercise on behavioural coping strategies (active vs. passive) and Hypothalamic-Pituitary-Adrenal response in rats. Sprague-Dawley male and female rats were exposed to 32-weeks of treadmill exercise and then tested for two-way active avoidance learning (shuttle-box). Two groups were used as controls: a non-handled sedentary group, receiving no manipulation, and a control group exposed to a stationary treadmill. Female rats displayed shorter escape responses and higher number of avoidance responses, reaching criterion for performance earlier than male rats. In both sexes, exercise shortened escape latencies, increased the total number of avoidances and diminished the number of trials needed to reach criterion for performance. Those effects were greater during acquisition in female rats, but remained over the shuttle-box sessions in treadmill trained male rats. In females, exercise did not change ACTH and corticosterone levels after shuttle-box acquisition. Collectively, treadmill exercise improved active coping strategies in a sex-dependent manner. In a broader context, moderate exercise could serve as a therapeutic intervention for anxiety and mood disorders.
Long-term moderate treadmill exercise promotes stress-coping strategies in male and female rats
Lalanza, Jaume F.; Sanchez-Roige, Sandra; Cigarroa, Igor; Gagliano, Humberto; Fuentes, Silvia; Armario, Antonio; Capdevila, Lluís; Escorihuela, Rosa M.
2015-01-01
Recent evidence has revealed the impact of exercise in alleviating anxiety and mood disorders; however, the exercise protocol that exerts such benefit is far from known. The current study was aimed to assess the effects of long-term moderate exercise on behavioural coping strategies (active vs. passive) and Hypothalamic-Pituitary-Adrenal response in rats. Sprague-Dawley male and female rats were exposed to 32-weeks of treadmill exercise and then tested for two-way active avoidance learning (shuttle-box). Two groups were used as controls: a non-handled sedentary group, receiving no manipulation, and a control group exposed to a stationary treadmill. Female rats displayed shorter escape responses and higher number of avoidance responses, reaching criterion for performance earlier than male rats. In both sexes, exercise shortened escape latencies, increased the total number of avoidances and diminished the number of trials needed to reach criterion for performance. Those effects were greater during acquisition in female rats, but remained over the shuttle-box sessions in treadmill trained male rats. In females, exercise did not change ACTH and corticosterone levels after shuttle-box acquisition. Collectively, treadmill exercise improved active coping strategies in a sex-dependent manner. In a broader context, moderate exercise could serve as a therapeutic intervention for anxiety and mood disorders. PMID:26538081
NASA Technical Reports Server (NTRS)
Boda, Wanda; Hargens, Alan R.; Aratow, Michael; Ballard, Richard E.; Hutchinson, Karen; Murthy, Gita; Campbell, James
1994-01-01
The purpose of this study is to compare footward forces, gait kinematics, and muscle activation patterns (EMG) generated during supine treadmill exercise against LBNP with the same parameters during supine bungee resistance exercise and upright treadmill exercise. We hypothesize that the three conditions will be similar. These results will help validate treadmill exercise during LBNP as a viable technique to simulate gravity during space flight. We are evaluating LBNP as a means to load the musculoskeletal and cardiovascular systems without gravity. Such loading should help prevent physiologic deconditioning during space flight. The best ground-based simulation of LBNP treadmill exercise in microgravity is supine LBNP treadmill exercise on Earth because the supine footward force vector is neither directed nor supplemented by Earth's gravity. Previous results from HR-95 ("Dynamics of footward force and leg intramuscular pressure during exercise against supine LBNP and upright standing in normal gravity") indicate that supine plantar-/dorsiflexion exercise in LBNP at 100 mm Hg produces similar ground reaction forces, musculoskeletal stress, and VO2 to those during upright exercise against Earth's gravity. However, elevations of leg volume and heart rate indicate that cardiovascular stress during 100 mm Hg LBNP exercise exceeds that during 1 g exercise. Therefore, the need arose to reduce the cardiovascular stress of LBNP, while maintaining LBNP-induced reaction forces. To this end, we determined that mild plantar-/dorsiflexion exercise during LBNP significantly improves tolerance to LBNP via musculovenous pumping and sympathoexcitation; more intense exercise such as walking and running may further improve LBNP tolerance. In addition, two methodological advances have permited us to simulate upright 1 g exercise better with supine LBNP exercise. First, a newly-designed waist seal allows decreased levels of LBNP (50-60 mm Hg) to produce a footward force equaling one body weight
Ye, Xin; Beck, Travis W; DeFreitas, Jason M; Wages, Nathan P
2015-04-01
The aim of this study was to compare the acute effects of concentric versus eccentric exercise on motor control strategies. Fifteen men performed six sets of 10 repetitions of maximal concentric exercises or eccentric isokinetic exercises with their dominant elbow flexors on separate experimental visits. Before and after the exercise, maximal strength testing and submaximal trapezoid isometric contractions (40% of the maximal force) were performed. Both exercise conditions caused significant strength loss in the elbow flexors, but the loss was greater following the eccentric exercise (t=2.401, P=.031). The surface electromyographic signals obtained from the submaximal trapezoid isometric contractions were decomposed into individual motor unit action potential trains. For each submaximal trapezoid isometric contraction, the relationship between the average motor unit firing rate and the recruitment threshold was examined using linear regression analysis. In contrast to the concentric exercise, which did not cause significant changes in the mean linear slope coefficient and y-intercept of the linear regression line, the eccentric exercise resulted in a lower mean linear slope and an increased mean y-intercept, thereby indicating that increasing the firing rates of low-threshold motor units may be more important than recruiting high-threshold motor units to compensate for eccentric exercise-induced strength loss. Copyright © 2014 Elsevier B.V. All rights reserved.
Physiologic and Endocrine Correlates of Overweightness in African Americans and Caucasians
2009-03-27
aerobic graded exercise test (VO2 max test ) on a treadmill ( Philips StressVue Exercise Stress Testing System with Trackmaster Full Vision Inc...Pediatrics, 118 (6), 2434-42. Wang, J., Thornton, J.C., Bari, S., Williamson, B., Gallagher, D., Heymsfield, S.B., Horlick, M., Kotler , D...on a treadmill ( Philips StressVue Exercise Stress System, Trackmaster Full Vision Inc. Treadmill; Waltham, MA) to assess cardiovascular fitness. The
Reliability and day-to-day variability of peak fat oxidation during treadmill ergometry.
De Souza Silveira, Raul; Carlsohn, Anja; Langen, Georg; Mayer, Frank; Scharhag-Rosenberger, Friederike
2016-01-01
Exercising at intensities where fat oxidation rates are high has been shown to induce metabolic benefits in recreational and health-oriented sportsmen. The exercise intensity (Fatpeak) eliciting peak fat oxidation rates is therefore of particular interest when aiming to prescribe exercise for the purpose of fat oxidation and related metabolic effects. Although running and walking are feasible and popular among the target population, no reliable protocols are available to assess Fatpeak as well as its actual velocity (VPFO) during treadmill ergometry. Our purpose was therefore, to assess the reliability and day-to-day variability of VPFO and Fatpeak during treadmill ergometry running. Sixteen recreational athletes (f = 7, m = 9; 25 ± 3 y; 1.76 ± 0.09 m; 68.3 ± 13.7 kg; 23.1 ± 2.9 kg/m(2)) performed 2 different running protocols on 3 different days with standardized nutrition the day before testing. At day 1, peak oxygen uptake (VO2peak) and the velocities at the aerobic threshold (VLT) and respiratory exchange ratio (RER) of 1.00 (VRER) were assessed. At days 2 and 3, subjects ran an identical submaximal incremental test (Fat-peak test) composed of a 10 min warm-up (70 % VLT) followed by 5 stages of 6 min with equal increments (stage 1 = VLT, stage 5 = VRER). Breath-by-breath gas exchange data was measured continuously and used to determine fat oxidation rates. A third order polynomial function was used to identify VPFO and subsequently Fatpeak. The reproducibility and variability of variables was verified with an intraclass correlation coefficient (ICC), Pearson's correlation coefficient, coefficient of variation (CV) and the mean differences (bias) ± 95 % limits of agreement (LoA). ICC, Pearson's correlation and CV for VPFO and Fatpeak were 0.98, 0.97, 5.0 %; and 0.90, 0.81, 7.0 %, respectively. Bias ± 95 % LoA was -0.3 ± 0.9 km/h for VPFO and -2 ± 8 % of VO2peak for Fatpeak. In summary, relative and absolute reliability indicators for VPFO and Fatpeak were found to be excellent. The observed LoA may now serve as a basis for future training prescriptions, although fat oxidation rates at prolonged exercise bouts at this intensity still need to be investigated.
Costa, Marcelo S; Ardais, Ana Paula; Fioreze, Gabriela T; Mioranzza, Sabrina; Botton, Paulo Henrique S; Portela, Luis Valmor; Souza, Diogo O; Porciúncula, Lisiane O
2012-01-10
Physical exercise protocols have varied widely across studies raising the question of whether there is an optimal intensity, duration and frequency that would produce maximal benefits in attenuating symptoms related to anxiety disorders. Although physical exercise causes modifications in neurotransmission systems, the involvement of neuromodulators such as adenosine has not been investigated after chronic exercise training. Anxiety-related behavior was assessed in the elevated plus-maze in adult and middle-aged rats submitted to 8 weeks of treadmill running 1, 3 or 7 days/week. The speed of running was weekly adjusted to maintain moderate intensity. The hippocampal adenosine A1 and A2A receptors densities were also assessed. Treadmill running protocol was efficient in increasing physical exercise capacity in adult and middle-aged rats. All frequencies of treadmill running equally decreased the time spent in the open arms in adult animals. Middle-aged treadmill control rats presented lower time spent in the open arms than adult treadmill control rats. However, treadmill running one day/week reversed this age effect. Adenosine A1 receptor was not changed between groups, but treadmill running counteracted the age-related increase in adenosine A2A receptors. Although treadmill running, independent from frequency, triggered anxiety in adult rats and treadmill running one day/week reversed the age-related anxiety, no consistent relationship was found with hippocampal adenosine receptors densities. Thus, our data suggest that as a complementary therapy in the management of mental disturbances, the frequency and intensity of physical exercise should be taken into account according to age. Besides, this is the first study reporting the modulation of adenosine receptors after chronic physical exercise, which could be important to prevent neurological disorders associated to increase in adenosine A2A receptors. Copyright © 2011. Published by Elsevier Inc.
Biomechanical Analysis of Treadmill Locomotion on the International Space Station
NASA Technical Reports Server (NTRS)
De Witt, J. K.; Fincke, R. S.; Guilliams, M. E.; Ploutz-Snyder, L. L.
2011-01-01
Treadmill locomotion exercise is an important aspect of ISS exercise countermeasures. It is widely believed that an optimized treadmill exercise protocol could offer benefits to cardiovascular and bone health. If training heart rate is high enough, treadmill exercise is expected to lead to improvements in aerobic fitness. If impact or bone loading forces are high enough, treadmill exercise may be expected to contribute to improved bone outcomes. Ground-based research suggests that joint loads increase with increased running speed. However, it is unknown if increases in locomotion speed results in similar increases in joint loads in microgravity. Although data exist regarding the biomechanics of running and walking in microgravity, a majority were collected during parabolic flight or during investigations utilizing a microgravity analog. The Second Generation Treadmill (T2) has been in use on the International Space Station (ISS) and records the ground reaction forces (GRF) produced by crewmembers during exercise. Biomechanical analyses will aid in understanding potential differences in typical gait motion and allow for modeling of the human body to determine joint and muscle forces during exercise. By understanding these mechanisms, more appropriate exercise prescriptions can be developed that address deficiencies. The objective of this evaluation is to collect biomechanical data from crewmembers during treadmill exercise prior to and during flight. The goal is to determine if locomotive biomechanics differ between normal and microgravity environments and to determine how combinations of subject load and speed influence joint loading during in-flight treadmill exercise. Further, the data will be used to characterize any differences in specific bone and muscle loading during locomotion in these two gravitational conditions. This project maps to the HRP Integrated Research Plan risks including Risk of Bone Fracture (Gap B15), Risk of Early Onset Osteoporosis Due to Spaceflight (Gap B15), Risk of Impaired Performance Due to Reduced Muscle Mass, Strength, and Endurance (Gaps M3, M4, M6, Ml, M8, M9) and Risk of reduced Physical Performance Capabilities Due to Reduce Aerobic Capacity (Gaps M7, M8, M9).
Albuquerque, Plínio Luna; Campêlo, Mayara; Mendonça, Thyciane; Fontes, Luís Augusto Mendes; Brito, Rodrigo de Mattos
2018-01-01
Repetitive transcranial magnetic stimulation (rTMS) over motor cortex and trans-spinal direct current stimulation (tsDCS) modulate corticospinal circuits in healthy and injured subjects. However, their associated effects with physical exercise is still not defined. This study aimed to investigate the effect of three different settings of rTMS and tsDCS combined with treadmill exercise on spinal cord and cortical excitability of healthy subjects. We performed a triple blind, randomized, sham-controlled crossover study with 12 healthy volunteers who underwent single sessions of rTMS (1Hz, 20Hz and Sham) and tsDCS (anodal, cathodal and Sham) associated with 20 minutes of treadmill walking. Cortical excitability was assessed by motor evoked potential (MEP) and spinal cord excitability by the Hoffmann reflex (Hr), nociceptive flexion reflex (NFR) and homosynaptic depression (HD). All measures were assessed before, immediately, 30 and 60 minutes after the experimental procedures. Our results demonstrated that anodal tsDCS/treadmill exercise reduced MEP’s amplitude and NFR’s area compared to sham condition, conversely, cathodal tsDCS/treadmill exercise increased NFR’s area. High-frequency rTMS increased MEP’s amplitude and NFR’s area compared to sham condition. Anodal tsDCS/treadmill exercise and 20Hz rTMS/treadmill exercise reduced Hr amplitude up to 30 minutes after stimulation offset and no changes were observed in HD measures. We demonstrated that tsDCS and rTMS combined with treadmill exercise modulated cortical and spinal cord excitability through different mechanisms. tsDCS modulated spinal reflexes in a polarity-dependent way acting at local spinal circuits while rTMS probably promoted changes in the presynaptic inhibition of spinal motoneurons. In addition, the association of two neuromodulatory techniques induced long-lasting changes. PMID:29596524
Albuquerque, Plínio Luna; Campêlo, Mayara; Mendonça, Thyciane; Fontes, Luís Augusto Mendes; Brito, Rodrigo de Mattos; Monte-Silva, Katia
2018-01-01
Repetitive transcranial magnetic stimulation (rTMS) over motor cortex and trans-spinal direct current stimulation (tsDCS) modulate corticospinal circuits in healthy and injured subjects. However, their associated effects with physical exercise is still not defined. This study aimed to investigate the effect of three different settings of rTMS and tsDCS combined with treadmill exercise on spinal cord and cortical excitability of healthy subjects. We performed a triple blind, randomized, sham-controlled crossover study with 12 healthy volunteers who underwent single sessions of rTMS (1Hz, 20Hz and Sham) and tsDCS (anodal, cathodal and Sham) associated with 20 minutes of treadmill walking. Cortical excitability was assessed by motor evoked potential (MEP) and spinal cord excitability by the Hoffmann reflex (Hr), nociceptive flexion reflex (NFR) and homosynaptic depression (HD). All measures were assessed before, immediately, 30 and 60 minutes after the experimental procedures. Our results demonstrated that anodal tsDCS/treadmill exercise reduced MEP's amplitude and NFR's area compared to sham condition, conversely, cathodal tsDCS/treadmill exercise increased NFR's area. High-frequency rTMS increased MEP's amplitude and NFR's area compared to sham condition. Anodal tsDCS/treadmill exercise and 20Hz rTMS/treadmill exercise reduced Hr amplitude up to 30 minutes after stimulation offset and no changes were observed in HD measures. We demonstrated that tsDCS and rTMS combined with treadmill exercise modulated cortical and spinal cord excitability through different mechanisms. tsDCS modulated spinal reflexes in a polarity-dependent way acting at local spinal circuits while rTMS probably promoted changes in the presynaptic inhibition of spinal motoneurons. In addition, the association of two neuromodulatory techniques induced long-lasting changes.
Enjuanes, Cristina; Bruguera, Jordi; Grau, María; Cladellas, Mercé; Gonzalez, Gina; Meroño, Oona; Moliner-Borja, Pedro; Verdú, José M; Farré, Nuria; Comín-Colet, Josep
2016-03-01
To evaluate the effect of iron deficiency and anemia on submaximal exercise capacity in patients with chronic heart failure. We undertook a single-center cross-sectional study in a group of stable patients with chronic heart failure. At recruitment, patients provided baseline information and completed a 6-minute walk test to evaluate submaximal exercise capacity and exercise-induced symptoms. At the same time, blood samples were taken for serological evaluation. Iron deficiency was defined as ferritin < 100 ng/mL or transferrin saturation < 20% when ferritin is < 800 ng/mL. Additional markers of iron status were also measured. A total of 538 heart failure patients were eligible for inclusion, with an average age of 71 years and 33% were in New York Heart Association class III/IV. The mean distance walked in the test was 285 ± 101 meters among those with impaired iron status, vs 322 ± 113 meters (P=.002). Symptoms during the test were more frequent in iron deficiency patients (35% vs 27%; P=.028) and the most common symptom reported was fatigue. Multivariate logistic regression analyses showed that increased levels of soluble transferrin receptor indicating abnormal iron status were independently associated with advanced New York Heart Association class (P < .05). Multivariable analysis using generalized additive models, soluble transferrin receptor and ferritin index, both biomarkers measuring iron status, showed a significant, independent and linear association with submaximal exercise capacity (P=.03 for both). In contrast, hemoglobin levels were not significantly associated with 6-minute walk test distance in the multivariable analysis. In patients with chronic heart failure, iron deficiency but not anemia was associated with impaired submaximal exercise capacity and symptomatic functional limitation. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
TSUBONE, Hirokazu; HANAFUSA, Masakazu; ENDO, Maiko; MANABE, Noboru; HIRAGA, Atsushi; OHMURA, Hajime; AIDA, Hiroko
2013-01-01
The present study aimed to clarify changes of oxidative stress and antioxidative functions in treadmill-exercised Thoroughbred horses (n=5, 3 to 7 years old), using recently developed techniques for measurement of serum d-ROMs for oxidative stress, and BAP for antioxidative markers. Also, the effect of nasogastric administration of hydrogen-rich water (HW) or placebo water preceding the treadmill exercise on these parameters was examined. Each horse was subjected to a maximum level of treadmill exercise in which the horses were exhausted at an average speed of 13.2 ± 0.84 m/sec. Blood samples were taken 4 times, immediately before the intake of HW or placebo water at 30 min preceding the treadmill exercise, immediately before the exercise (pre-exercise), immediately after the exercise (post-exercise) and at 30 min following the exercise. In all horses, both d-ROMs and BAP values significantly increased at post-exercise. The increase in d-ROMs tended to be lower in the HW trial, as compared to the placebo trial at pre-exercise. The increase in BAP was considerable at approximately 150% of the pre-exercise values in both the HW and placebo treatment trials. The BAP/d-ROMs ratio was significantly elevated at post-exercise in both treatment trials, while a significant elevation was also observed at pre-exercise in the HW trial. BAP, d-ROM, and the BAP/d-ROM ratio tended to decline at 30 min after the exercise, except BAP and BAP/d-ROMs in the placebo trial. These results demonstrate that the marked elevation of oxidative stress and anitioxidative functions occurred simultaneously in the intensively exercised horses, and suggest a possibility that HW has some antioxidative efficacy. PMID:24833996
Tsubone, Hirokazu; Hanafusa, Masakazu; Endo, Maiko; Manabe, Noboru; Hiraga, Atsushi; Ohmura, Hajime; Aida, Hiroko
2013-01-01
The present study aimed to clarify changes of oxidative stress and antioxidative functions in treadmill-exercised Thoroughbred horses (n=5, 3 to 7 years old), using recently developed techniques for measurement of serum d-ROMs for oxidative stress, and BAP for antioxidative markers. Also, the effect of nasogastric administration of hydrogen-rich water (HW) or placebo water preceding the treadmill exercise on these parameters was examined. Each horse was subjected to a maximum level of treadmill exercise in which the horses were exhausted at an average speed of 13.2 ± 0.84 m/sec. Blood samples were taken 4 times, immediately before the intake of HW or placebo water at 30 min preceding the treadmill exercise, immediately before the exercise (pre-exercise), immediately after the exercise (post-exercise) and at 30 min following the exercise. In all horses, both d-ROMs and BAP values significantly increased at post-exercise. The increase in d-ROMs tended to be lower in the HW trial, as compared to the placebo trial at pre-exercise. The increase in BAP was considerable at approximately 150% of the pre-exercise values in both the HW and placebo treatment trials. The BAP/d-ROMs ratio was significantly elevated at post-exercise in both treatment trials, while a significant elevation was also observed at pre-exercise in the HW trial. BAP, d-ROM, and the BAP/d-ROM ratio tended to decline at 30 min after the exercise, except BAP and BAP/d-ROMs in the placebo trial. These results demonstrate that the marked elevation of oxidative stress and anitioxidative functions occurred simultaneously in the intensively exercised horses, and suggest a possibility that HW has some antioxidative efficacy.
Daly, Patrick; Kayse, Regina; Rudick, Steven; Robbins, Nathan; Scheler, Jennifer; Harris, David; O'Donnell, Robert; Dwivedi, Alok K; Gerson, Myron C
2017-08-31
Exercise is the AHA/ACC guideline-recommended stress modality for myocardial perfusion imaging, but many patients are unable to exercise to target heart rate on a conventional treadmill. We examined the feasibility and safety of stress imaging using an anti-gravity treadmill in patients with perceived poor exercise capacity. 49 patients were recruited for stress testing by anti-gravity treadmill (n = 29) or to a regadenoson control group (n = 20). Seventeen anti-gravity test patients (59%) reached target heart rate obviating the need for a pharmacologic stress agent. Adverse effects of the anti-gravity treadmill were limited to minor muscle aches in 5 subjects. Stress myocardial perfusion image quality judged by 3 blinded readers on a 5-point scale was comparable for the anti-gravity treadmill (4.30 ± SD 0.87) vs pharmacologic stress (4.28 ± SD 0.66). Stress testing using an anti-gravity treadmill is feasible and may help some patients safely achieve target heart rate.
Böger, R H; Bode-Böger, S M; Schröder, E P; Tsikas, D; Frölich, J C
1995-05-01
The influence of a submaximal exercise on urinary 2,3-dinor-6-ketoprostaglandin F1 alpha (2,3-dinor-6-keto-PGF1 alpha), 2,3-dinor-thromboxane B2 (2,3-dinor-TxB2), and prostaglandin E2 excretion and on platelet aggregation was compared in untrained and trained subjects before and after low-dose aspirin administration (50 mg/day, 7 days). 2,3-Dinor-TxB2 excretion was significantly higher in the athletes at rest (P < 0.05). Submaximal exercise selectively increased 2,3-dinor-6-keto-PGF1 alpha excretion without affecting 2,3-dinor-TxB2 or prostaglandin E2 excretion rates or platelet aggregation. Low-dose aspirin inhibited platelet aggregation and 2,3-dinor-TxB2 excretion but reduced 2,3-dinor-6-keto-PGF1 alpha by only 24% in the untrained and by 51% in the trained subjects (P < 0.05). After low-dose aspirin administration, the selective stimulatory effect of submaximal exercise on urinary 2,3-dinor-6-keto-PGF1 alpha excretion was even more pronounced than before. The ratio of 2,3-dinor-6-keto-PGF1 alpha to 2,3-dinor-TxB2 was increased by exercise; this effect was significantly enhanced by low-dose aspirin (P < 0.05). Our results suggest that the stimulatory effect of submaximal exercise on prostacyclin production is mostly due to an activation of prostacyclin synthesis from endogenous precursors rather than the result of an enhanced endoperoxide shift from activated platelets to the endothelium. This effect is potentiated by low-dose aspirin pretreatment, indicating that 50 mg/day of aspirin do not impair exercise-induced endothelial prostacyclin production.
Biological Effects of Space Radiation and Development of Effective Countermeasures
Kennedy, Ann R.
2014-01-01
As part of a program to assess the adverse biological effects expected from astronaut exposure to space radiation, numerous different biological effects relating to astronaut health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronaut vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation. PMID:25258703
Biological effects of space radiation and development of effective countermeasures
NASA Astrophysics Data System (ADS)
Kennedy, Ann R.
2014-04-01
As part of a program to assess the adverse biological effects expected from astronauts' exposure to space radiation, numerous different biological effects relating to astronauts' health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronauts' vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation.
Metabolic Rate and Ground Reaction Force During Motorized and Non-Motorized Treadmill Exercise
NASA Technical Reports Server (NTRS)
Everett, Meghan E.; Loehr, James A.; DeWitt, John K.; Laughlin, Mitzi; Lee, Stuart M. C.
2010-01-01
PURPOSE: To measure vertical ground reaction force (vGRF) and oxygen consumption (VO2) at several velocities during exercise using a ground-based version of the ISS treadmill in the M and NM modes. METHODS: Subjects (n = 20) walked or ran at 0.89, 1.34, 1.79, 2.24, 2.68, and 3.12 m/s while VO2 and vGRF data were collected. VO2 was measured using open-circuit spirometry (TrueOne 2400, Parvo-Medics). Data were averaged over the last 2 min of each 5-min stage. vGRF was measured in separate 15-s bouts at 125 Hz using custom-fitted pressure-sensing insoles (F-Scan Sport Sensors, Tekscan, Inc). A repeated-measures ANOVA was used to test for differences in VO2 and vGRF between M and NM and across speeds. Significance was set at P < 0.05. RESULTS: Most subjects were unable to exercise for 5 min at treadmill speeds above 1.79 m/s in the NM mode; however, vGRF data were obtained for all subjects at each speed in both modes. VO2 was approx.40% higher during NM than M exercise across treadmill speeds. vGRF increased with treadmill speed but was not different between modes. CONCLUSION: Higher VO2 with no change in vGRF suggests that the additional metabolic cost associated with NM treadmill exercise is accounted for in the horizontal forces required to move the treadmill belt. Although this may limit the exercise duration at faster speeds, high-intensity NM exercise activates the hamstrings and plantarflexors, which are not specifically targeted or well protected by other in-flight countermeasures.
Frequency-dependent baroreflex control of blood pressure and heart rate during physical exercise.
Spadacini, Giammario; Passino, Claudio; Leuzzi, Stefano; Valle, Felice; Piepoli, Massimo; Calciati, Alessandro; Sleight, Peter; Bernardi, Luciano
2006-02-15
It is widely recognised that during exercise vagal heart rate control is markedly impaired but blood pressure control may or may not be retained. We hypothesised that this uncertainty arose from the differing responses of the vagus (fast) and sympathetic (slow) arms of the autonomic effectors, and to differing sympatho-vagal balance at different exercise intensities. We studied 12 normals at rest, during moderate (50% maximal heart rate) and submaximal (80% maximal heart rate) exercise. The carotid baroreceptors were stimulated by sinusoidal neck suction at the frequency of the spontaneous high- (during moderate exercise) and low-frequency (during submaximal) fluctuations in heart period and blood pressure. The increases in these oscillations induced by neck suction were measured by autoregressive spectral analysis. At rest neck stimulation increased variability at low frequency (RR: from 6.99+/-0.24 to 8.87+/-0.18 ln-ms2; systolic pressure: from 3.05+/-1.7 to 4.09+/-0.17 ln-mm Hg2) and high frequency (RR: from 4.67+/-0.25 to 6.79+/-0.31 ln-ms2; systolic pressure: from 1.93+/-0.2 to 2.67+/-0.125 ln-mm Hg2) (all p<0.001). During submaximal exercise RR variability decreased but systolic pressure variability rose (p<0.01 vs rest); during submaximal exercise low-frequency neck stimulation increased the low-frequency fluctuations in blood pressure (2.35+/-0.51 to 4.25+/-0.38 ln-mm Hg2, p<0.05) and RR. Conversely, neck suction at high frequency was ineffective on systolic pressure, and had only minor effects on RR interval during moderate exercise. During exercise baroreflex control is active on blood pressure, but the efferent response on blood pressure and heart rate is only detected during low frequency stimulation, indicating a frequency-dependent effect.
Ventilatory responses to exercise training in obese adolescents.
Mendelson, Monique; Michallet, Anne-Sophie; Estève, François; Perrin, Claudine; Levy, Patrick; Wuyam, Bernard; Flore, Patrice
2012-10-15
The aim of this study was to examine ventilatory responses to training in obese adolescents. We assessed body composition, pulmonary function and ventilatory responses (among which expiratory flow limitation and operational lung volumes) during progressive cycling exercise in 16 obese adolescents (OB) before and after 12 weeks of exercise training and in 16 normal-weight volunteers. As expected, obese adolescents' resting expiratory reserve volume was lower and inversely correlated with thoraco-abdominal fat mass (r = -0.74, p<0.0001). OB presented lower end expiratory (EELV) and end inspiratory lung volumes (EILV) at rest and during submaximal exercise, and modest expiratory flow limitation. After training, OB increased maximal aerobic performance (+19%) and maximal inspiratory pressure (93.7±31.4 vs. 81.9±28.2 cm H2O, +14%) despite lack of decrease in trunk fat and body weight. Furthermore, EELV and EILV were greater during submaximal exercise (+11% and +9% in EELV and EILV, respectively), expiratory flow limitation delayed but was not accompanied by increased V(T). However, submaximal exertional symptoms (dyspnea and leg discomfort) were significantly decreased (-71.3% and -70.7%, respectively). Our results suggest that exercise training can improve pulmonary function at rest (static inspiratory muscle strength) and exercise (greater operating lung volumes and delayed expiratory flow limitation) but these modifications did not entirely account for improved dyspnea and exercise performance in obese adolescents. Copyright © 2012 Elsevier B.V. All rights reserved.
Treadmill Exercise Within LBNP as an Integrated Coutermeasure to Microgravity
NASA Technical Reports Server (NTRS)
Lee, Stuart; Hargens, A. R.; Schneider, S. M.; Watenpaugh, D. E.
2010-01-01
An integrated exercise countermeasure for microgravity is needed to protect multiple physiologic systems and save crew time. Such a countermeasure should protect orthostatic tolerance, upright ambulatory capability (including sprinting), aerobic capacity, muscle strength/endurance, and other physiologic parameters relevant to human performance. We developed a novel physiologic countermeasure, treadmill exercise within LBNP, for preventing cardiovascular and musculoskeletal deconditioning associated with prolonged bed rest and spaceflight. We evaluated 40 min of daily LBNP treadmill exercise by a battery of physiologic parameters relevant to maintaining exercise performance and health of both women and men during bed-rest (simulated microgravity) studies lasting from 5 to 60 days. For 30 day studies, we employed identical twins with one twin as the control and the other twin as the exerciser to improve comparative power. During the WISE 60-day HDT study, the treadmill exercise within LBNP was performed 3-4 days each week and resistive exercise was performed 2-3 days each week. Our treadmill within LBNP protocol maintained plasma volume and sprint speed (30 day HDT bed-rest studies of identical twins), orthostatic tolerance to a degree, upright exercise capacity, muscle strength and endurance, and some bone parameters during 30 day (twin studies) and 60 day (WISE-2005) bed-rest simulations of microgravity. When combining treadmill exercise within LBNP and resistive exercise (WISE), cardiac mass increased significantly in the exercise (EX) group during bed rest relative to controls (CON). Upright peak VO2, and knee extensor strength and endurance decreased significantly in CON subjects; but these parameters were preserved in the EX group. In the 60 day WISE study, each LBNP exercise session was followed immediately by 10 minutes of static LBNP, and the last such session occurred three days before the end of bed rest. Still, orthostatic tolerance was better maintained in the EX group than in the CON group. Therefore, these collective peer-reviewed results document that our treadmill exercise within LBNP countermeasure safely and efficiently protects multiple physiologic systems in women and men during bed-rest studies of up to 60 days. Supported by NASA grants NNJ04HF71G and NAG 9-1425, NIH grant GCRC M01 RR00827 and by WISE support from ESA, NASA, CSA, and CNES.
Kim, Jong Whi; Chae, Junghyun; Nam, Sung Min; Kim, Yo Na; Yoo, Dae Young; Choi, Jung Hoon; Jung, Hyo Young; Song, Wook; Hwang, In Koo; Seong, Je Kyung; Yoon, Yeo Sung
2015-01-01
In the present study, we investigated the effects of treadmill exercise on lipid peroxidation and Cu,Zn-superoxide dismutase (SOD1) levels in the hippocampus of Zucker diabetic fatty (ZDF) rats and lean control rats (ZLC) during the onset of diabetes. At 7 weeks of age, ZLC and ZDF rats were either placed on a stationary treadmill or made to run for 1 h/day for 5 consecutive days at 16~22 m/min for 5 weeks. At 12 weeks of age, the ZDF rats had significantly higher blood glucose levels and body weight than the ZLC rats. In addition, malondialdehyde (MDA) levels in the hippocampus of the ZDF rats were significantly higher than those of the ZLC rats whereas SOD1 levels in the hippocampus of the ZDF rats were moderately decreased. Notably, treadmill exercise prevented the increase of blood glucose levels in ZDF rats. In addition, treadmill exercise significantly ameliorated changes in MDA and SOD1 levels in the hippocampus although SOD activity was not altered. These findings suggest that diabetes increases lipid peroxidation and decreases SOD1 levels, and treadmill exercise can mitigate diabetes-induced oxidative damage in the hippocampus.
Van Oosterwijck, Jessica; Nijs, Jo; Meeus, Mira; Van Loo, Michel; Paul, Lorna
2012-03-01
A controlled experimental study was performed to examine the efficacy of the endogenous pain inhibitory systems and whether this (mal)functioning is associated with symptom increases following exercise in patients with chronic whiplash-associated disorders (WAD). In addition, 2 types of exercise were compared. Twenty-two women with chronic WAD and 22 healthy controls performed a submaximal and a self-paced, physiologically limited exercise test on a cycle ergometer with cardiorespiratory monitoring on 2 separate occasions. Pain pressure thresholds (PPT), health status, and activity levels were assessed in response to the 2 exercise bouts. In chronic WAD, PPT decreased following submaximal exercise, whereas they increased in healthy subjects. The same effect was established in response to the self-paced, physiologically limited exercise, with exception of the PPT at the calf which increased. A worsening of the chronic WAD symptom complex was reported post-exercise. Fewer symptoms were reported in response to the self-paced, physiologically limited exercise. These observations suggest abnormal central pain processing during exercise in patients with chronic WAD. Submaximal exercise triggers post-exertional malaise, while a self-paced and physiologically limited exercise will trigger less severe symptoms, and therefore seems more appropriate for chronic WAD patients. The results from this exercise study suggest impaired endogenous pain inhibition during exercise in people with chronic WAD. This finding highlights the fact that one should be cautious when evaluating and recommending exercise in people with chronic WAD, and that the use of more individual, targeted exercise therapies is recommended. Copyright © 2012 American Pain Society. Published by Elsevier Inc. All rights reserved.
Papathanasiou, George; Georgakopoulos, Dimitris; Papageorgiou, Effie; Zerva, Efthimia; Michalis, Lampros; Kalfakakou, Vasiliki; Evangelou, Angelos
2013-01-01
There is an established link between smoking, abnormal heart rate (HR) values, and impaired cardiovascular health in middle-aged or older populations. The purpose of this study was to examine the effects of smoking on resting HR and on HR responses during and after exercise in young adults. A sample of 298 young adults (159 men), aged 20-29 years old, were selected from a large population of health-science students based on health status, body mass index, physical activity, and smoking habit. All subjects underwent a maximal Bruce treadmill test and their HR was recorded during, at peak, and after termination of exercise. Smokers had significantly higher resting HR values than non-smokers. Both female and male smokers showed a significantly slower HR increase during exercise. Female smokers failed to reach their age-predicted maximum HR by 6.0 bpm and males by 3.6 bpm. The actual maximum HR achieved (HRmax) was significantly lower for both female smokers (191.0 bpm vs.198.0 bpm) and male smokers (193.2 bpm vs.199.3 bpm), compared to non-smokers. Heart rate reserve was also significantly lower in female (114.6 bpm vs. 128.1 bpm) and male smokers (120.4 bpm vs. 133.0 bpm). During recovery, the HR decline was significantly attenuated, but only in female smokers. Females had a higher resting HR and showed a higher HR response during sub-maximal exercise compared to males. Smoking was found to affect young smokers' HR, increasing HR at rest, slowing HR increase during exercise and impairing their ability to reach the age-predicted HRmax. In addition, smoking was associated with an attenuated HR decline during recovery, but only in females.
Developmental Effects Determine Submaximal Arterial Oxygen Saturation in Peruvian Quechua
León-Velarde, Fabiola; Rivera-Chira, María; Elías, Gianpietro; Brutsaert, Tom D.
2015-01-01
Abstract Kiyamu, Melisa, Fabiola León-Velarde, María Rivera-Chira, Gianpietro Elías, and Tom D. Brutsaert. Developmental effects determine submaximal arterial oxygen saturation in Peruvian Quechua. High Alt Med Biol 16, 138–146, 2015.—Andean high altitude natives show higher arterial oxygen saturation (Sao2) during exercise in hypoxia, compared to acclimatized sojourners. In order to evaluate the effects of life-long exposure to high altitude on Sao2, we studied two groups of well-matched, self-identified Peruvian Quechua natives who differed in their developmental exposure to hypoxia before and after a 2-month training period. Male and female volunteers (18–35 years) were recruited in Lima, Peru (150 m). The two groups were: a) Individuals who were born and raised at sea-level (BSL, n=34) and b) Individuals who were born and raised at high altitude (BHA, n=32), but who migrated to sea-level as adults (>16 years old). Exercise testing was conducted using a submaximal exercise protocol in normobaric hypoxia in Lima (BP=750 mmHg, Fio2=0.12), in order to measure Sao2 (%), ventilation (VE L/min) and oxygen consumption (Vo2, L/min). Repeated-measures ANOVA, controlling for VE/VO2 (L/min) and sex during the submaximal protocol showed that BHA maintained higher Sao2 (%) compared to BSL at all workloads before (p=0.005) and after training (p=0.017). As expected, both groups showed a decrease in Sao2 (%) (p<0.001), as workload increased. Resting Sao2 levels were not found to be different between groups. The results suggest that developmental exposure to altitude contributes to the maintenance of higher Sao2 levels during submaximal exercise at hypoxia. PMID:25977978
Developmental Effects Determine Submaximal Arterial Oxygen Saturation in Peruvian Quechua.
Kiyamu, Melisa; León-Velarde, Fabiola; Rivera-Chira, María; Elías, Gianpietro; Brutsaert, Tom D
2015-06-01
Kiyamu, Melisa, Fabiola León-Velarde, María Rivera-Chira, Gianpietro Elías, and Tom D. Brutsaert. Developmental effects determine submaximal arterial oxygen saturation in Peruvian Quechua. High Alt Med Biol 16, 138-146, 2015.--Andean high altitude natives show higher arterial oxygen saturation (Sao(2)) during exercise in hypoxia, compared to acclimatized sojourners. In order to evaluate the effects of life-long exposure to high altitude on Sao(2), we studied two groups of well-matched, self-identified Peruvian Quechua natives who differed in their developmental exposure to hypoxia before and after a 2-month training period. Male and female volunteers (18-35 years) were recruited in Lima, Peru (150 m). The two groups were: a) Individuals who were born and raised at sea-level (BSL, n=34) and b) Individuals who were born and raised at high altitude (BHA, n=32), but who migrated to sea-level as adults (>16 years old). Exercise testing was conducted using a submaximal exercise protocol in normobaric hypoxia in Lima (BP=750 mmHg, Fio(2)=0.12), in order to measure Sao(2) (%), ventilation (VE L/min) and oxygen consumption (Vo(2), L/min). Repeated-measures ANOVA, controlling for VE/VO(2) (L/min) and sex during the submaximal protocol showed that BHA maintained higher Sao(2) (%) compared to BSL at all workloads before (p=0.005) and after training (p=0.017). As expected, both groups showed a decrease in Sao(2) (%) (p<0.001), as workload increased. Resting Sao(2) levels were not found to be different between groups. The results suggest that developmental exposure to altitude contributes to the maintenance of higher Sao(2) levels during submaximal exercise at hypoxia.
Vande Hei exercises on COLBERT/T2 Treadmill
2017-09-23
iss053e040103 (ept. 23, 2017) --- Astronaut Mark Vande Hei, Expedition 53 Flight Engineer, exercises on the COLBERT (Combined Operational Load Bearing External Resistance Treadmill) in the Tranquility module.
Voice Function Differences Following Resting Breathing vs. Submaximal Exercise
Sandage, Mary J.; Connor, Nadine P.; Pascoe, David D.
2013-01-01
Objectives/Hypothesis There is little known about how physical exercise may alter physiological parameters of voice production. In this investigation, vocal function and upper airway temperature were examined following a bout of submaximal exercise and compared with a resting breathing condition. It was hypothesized that phonation threshold pressure and perceived phonatory effort would increase, and pharyngeal temperature would decrease following an exercise bout. Study Design Using a within-participant repeated measures design, 18 consented participants (9 men, 9 women) completed the study. Methods A 20-minute equilibration task was immediately followed by 8 minutes of submaximal exercise on a stationary bike in a thermally neutral environment (25°C/40% RH). At the end of the equilibration trial and the exercise trial measures were taken in the following order: pharyngeal temperature, phonation threshold pressure, and perceived phonatory effort. Data were analyzed using paired t-tests with significance set at α<0.05. Results Significantly increased phonation threshold pressure and perceived phonatory effort and significantly decreased pharyngeal temperature (1.9°C) were found, supporting the initial hypotheses. Conclusions Findings from this investigation support the widely held belief that voice use associated with physical activity requires additional laryngeal effort and closure forces. The effect of the temperature reduction in the upper airway on voice function requires further study. PMID:23849683
Forbes, Scott C; Harber, Vicki; Bell, Gordon J
2013-08-01
L-arginine may enhance endurance performance mediated by two primary mechanisms including enhanced secretion of endogenous growth hormone (GH) and as a precursor of nitric oxide (NO); however, research in trained participants has been equivocal. The purpose was to investigate the effect of acute L-arginine ingestion on the hormonal and metabolic response during submaximal exercise in trained cyclists. Fifteen aerobically trained men (age: 28 ± 5 y; body mass: 77.4 ± 9.5 kg; height: 180.9 ± 7.9 cm; VO2max: 59.6 ± 5.9 ml·kg- 1·min-1) participated in a randomized, double-blind, crossover study. Subjects consumed L-arginine (ARG; 0. 075 g·kg-1 body mass) or a placebo (PLA) before performing an acute bout of submaximal exercise (60 min at 80% of power output achieved at ventilatory threshold). The ARG condition significantly increased plasma L-arginine concentrations (~146%), while no change was detected in the PLA condition. There were no differences between conditions for GH, nonesterified fatty acids (NEFA), lactate, glucose, VO2, VCO2, RER, CHO oxidation, and NOx. There was reduced fat oxidation at the start of exercise (ARG: 0.36 ± 0.25 vs. PLA: 0.42 ± 0.23 g·min-1, p < .05) and an elevated plasma glycerol concentrations at the 45-min time point (ARG: 340.3 vs. PLA: 288.5 μmol·L-1, p < .05) after L-arginine consumption. In conclusion, the acute ingestion of L-arginine did not alter any hormonal, metabolic, or cardio-respiratory responses during submaximal exercise except for a small but significant increase in glycerol at the 45-min time point and a reduction in fat oxidation at the start of exercise.
Effects of pre-cooling procedures on intermittent-sprint exercise performance in warm conditions.
Duffield, Rob; Marino, Frank E
2007-08-01
The aim of this study was to determine whether pre-cooling procedures improve both maximal sprint and sub-maximal work during intermittent-sprint exercise. Nine male rugby players performed a familiarisation session and three testing sessions of a 2 x 30-min intermittent sprint protocol, which consisted of a 15-m sprint every min separated by free-paced hard-running, jogging and walking in 32 degrees C and 30% humidity. The three sessions included a control condition, Ice-vest condition and Ice-bath/Ice-vest condition, with respective cooling interventions imposed for 15-min pre-exercise and 10-min at half-time. Performance measures of sprint time and % decline and distance covered during sub-maximal exercise were recorded, while physiological measures of core temperature (T (core)), mean skin temperature (T (skin)), heart rate, heat storage, nude mass, rate of perceived exertion, rate of thermal comfort and capillary blood measures of lactate [La(-)], pH, Sodium (Na(+)) and Potassium (K(+)) were recorded. Results for exercise performance indicated no significant differences between conditions for the time or % decline in 15-m sprint efforts or the distance covered during sub-maximal work bouts; however, large effect size data indicated a greater distance covered during hard running following Ice-bath cooling. Further, lowered T (core), T (skin), heart rate, sweat loss and thermal comfort following Ice-bath cooling than Ice-vest or Control conditions were present, with no differences present in capillary blood measures of [La(-)], pH, K(+) or Na(+). As such, the ergogenic benefits of effective pre-cooling procedures in warm conditions for team-sports may be predominantly evident during sub-maximal bouts of exercise.
Salbutamol intake and substrate oxidation during submaximal exercise.
Arlettaz, A; Le Panse, B; Portier, H; Lecoq, A-M; Thomasson, R; De Ceaurriz, J; Collomp, K
2009-01-01
In order to test the hypothesis that salbutamol would change substrate oxidation during submaximal exercise, eight recreationally trained men twice performed 1 h at 60% VO(2) peak after ingestion of placebo or 4 mg of salbutamol. Gas exchange was monitored and blood samples were collected during exercise for GH, ACTH, insulin, and blood glucose and lactate determination. With salbutamol versus placebo, there was no significant difference in total energy expenditure and substrate oxidation, but the substrate oxidation balance was significantly modified after 40 min of exercise. ACTH was significantly decreased with salbutamol during the last 10 min of exercise, whereas no difference was found between the two treatments in the other hormonal and metabolic parameters. The theory that the ergogenic effect of salbutamol results from a change in substrate oxidation has little support during relatively short term endurance exercise, but it is conceivable that longer exercise duration can generate positive findings.
Cardiorespiratory deconditioning with static and dynamic leg exercise during bed rest
NASA Technical Reports Server (NTRS)
Stremel, R. W.; Convertino, V. A.; Bernauer, E. M.; Greenleaf, J. E.
1976-01-01
Results are presented for an experimental study designed to compare the effects of heavy static and dynamic exercise training during 14 days of bed rest on the cardiorespiratory responses to submaximal and maximal exercise performed by seven healthy men aged 19-22 yr. The parameters measured were submaximal and maximal oxygen uptake, minute ventilation, heart rate, and plasma volume. The results indicate that exercise alone during bed rest reduces but does not eliminate the reduction in maximal oxygen uptake. An additional positive hydrostatic effect is therefore necessary to restore maximal oxygen uptake to ambulatory control levels. The greater protective effect of static exercise on maximal oxygen uptake is probably due to a greater hydrostatic component from the isometric muscular contraction. Neither the static nor the dynamic exercise training regimes are found to minimize the changes in all the variables studied, thereby suggesting a combination of static and dynamic exercises.
A model for nonexercising hindlimb muscles in exercising animals.
Bonen, A; Blewett, C; McDermott, J C; Elder, G C
1990-07-01
Nonexercising muscles appear to be metabolically active during exercise. Animal models for this purpose have not been established. However, we have been able to teach animals to run on their forelimbs while their hindlimbs are suspended above the treadmill with no visible limb movement. To document that indeed this mode of exercise does not provoke additional muscle activity, we have compared the levels of neural activation of the soleus and plantaris muscles using a computer analysis of the electromyographic interference pattern, recorded from bipolar fine wire electrodes implanted across each muscle. Via computer analyses of the electromyographic interference patterns the frequencies and amplitudes of motor unit action potentials were obtained. The data were sampled during 20 s of every minute of observation. Comparisons were made in four conditions: (i) resting on the treadmill while bearing weight on the hindlimbs (normal rest), (ii) running on the treadmill (15 m/min, 8% grade) on all four limbs (normal exercise), (iii) resting while the hindlimbs were suspended in a harness above the treadmill (suspended rest), and (iv) exercising with the forelimbs (15 m/min, 8% grade) while the hindlimbs were suspended above the treadmill (suspended exercise). All four experimental conditions were carried out for 90 min each and were performed by each animal. The results clearly show that muscle activities (frequencies and amplitudes), when the hindlimbs are suspended above the treadmill, at rest or during exercise, are lower than the activities in these same muscles when the animals are at rest, supporting only their body weight. Activities in the same muscles during exercise were from 300 to 2000% greater than during hindlimb suspension.(ABSTRACT TRUNCATED AT 250 WORDS)
Increasing physician activity with treadmill desks.
Thompson, Warren G; Koepp, Gabriel A; Levine, James A
2014-01-01
Prolonged sitting has been shown to increase mortality and obesity. We sought to determine whether physicians would use a treadmill desk, increase their daily physical activity and lose weight. 20 overweight and obese physicians aged 25 to 70 with Body Mass Index > 25. Participants used a treadmill desk, a triaxial accelerometer, and received exercise counseling in a randomized, cross-over trial over 24 weeks. Group 1 received exercise counseling, accelerometer feedback, and a treadmill desk for 12 weeks and then accelerometer only for 12 weeks. Group 2 received an accelerometer without feedback for 12 weeks followed by exercise counseling, accelerometer feedback, and the treadmill desk for 12 weeks. Daily physical activity increased while using the treadmill desk compared to not using the desk by 197 kcal per day (p=0.003). The difference in weight during the two 12 week periods was 1.85 kg (p=0.03). Percent body fat was 1.9% lower while using the treadmill desk (p=0.02). There were no differences in metabolic or well-being measures. This study suggests that physicians will use a treadmill desk, that it does increase their activity, and that it may help with weight loss. Further studies are warranted.
Heritability, linkage, and genetic associations of exercise treadmill test responses.
Ingelsson, Erik; Larson, Martin G; Vasan, Ramachandran S; O'Donnell, Christopher J; Yin, Xiaoyan; Hirschhorn, Joel N; Newton-Cheh, Christopher; Drake, Jared A; Musone, Stacey L; Heard-Costa, Nancy L; Benjamin, Emelia J; Levy, Daniel; Atwood, Larry D; Wang, Thomas J; Kathiresan, Sekar
2007-06-12
The blood pressure (BP) and heart rate responses to exercise treadmill testing predict incidence of cardiovascular disease, but the genetic determinants of hemodynamic and chronotropic responses to exercise are largely unknown. We assessed systolic BP, diastolic BP, and heart rate during the second stage of the Bruce protocol and at the third minute of recovery in 2982 Framingham Offspring participants (mean age 43 years; 53% women). With use of residuals from multivariable models adjusted for clinical correlates of exercise treadmill testing responses, we estimated the heritability (variance-components methods), genetic linkage (multipoint quantitative trait analyses), and association with 235 single-nucleotide polymorphisms in 14 candidate genes selected a priori from neurohormonal pathways for their potential role in exercise treadmill testing responses. Heritability estimates for heart rate during exercise and during recovery were 0.32 and 0.34, respectively. Heritability estimates for BP variables during exercise were 0.25 and 0.26 (systolic and diastolic BP) and during recovery, 0.16 and 0.13 (systolic and diastolic BP), respectively. Suggestive linkage was found for systolic BP during recovery from exercise (locus 1q43-44, log-of-the-odds score 2.59) and diastolic BP during recovery from exercise (locus 4p15.3, log-of-the-odds score 2.37). Among 235 single-nucleotide polymorphisms tested for association with exercise treadmill testing responses, the minimum nominal probability value was 0.003, which was nonsignificant after adjustment for multiple testing. Hemodynamic and chronotropic responses to exercise are heritable and demonstrate suggestive linkage to select loci. Genetic mapping with newer approaches such as genome-wide association may yield novel insights into the physiological responses to exercise.
Cho, Jung-Wan; Jung, Sun-Young; Lee, Sang-Won; Lee, Sam-Jun; Seo, Tae-Beom; Kim, Young-Pyo; Kim, Dae-Young
2017-12-01
Social isolation is known to induce emotional and behavioral changes in animals and humans. The effect of treadmill exercise on depression was investigated using social isolated rat pups. The rat pups in the social isolation groups were housed individually. The rat pups in the exercise groups were forced to run on treadmill for 30 min once a day from postnatal day 21 to postnatal day 34. In order to evaluate depression state of rat pups, forced swimming test was performed. Newly generated cells in the hippocampal dentate gyrus were determined by 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry. We examined the expression of 5-hydroxytryptamine (5-HT) and tryptophan hydroxylase (TPH) in the dorsal raphe using immunofluorescence. The expression of brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) was detected by Western blot analysis. The present results demonstrated that social isolation increased resting time and decreased mobility time. Expression of 5-HT and TPH in the dorsal raphe and expression of BDNF and TrkB in the hippocampus were decreased by social isolation. The number of BrdU-positive cells in the hippocampal dentate gyrus was suppressed by social isolation. Treadmill exercise decreased resting time and increased mobility in the social isolated rat pups. Expression of 5-HT, TPH, BDNF, and TrkB was increased by treadmill exercise. The present results suggested that treadmill exercise may ameliorates social isolation-induced depression through increasing neuronal generation.
Goldberg, Natalie R.S.; Meshul, Charles K.
2011-01-01
Our goal was to extend our understanding of the neural changes behind motor recovery with treadmill exercise in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse. We determined the extent of dopamine (DA) terminal changes using western immunoblotting [striatal dopamine transporter (DAT) and tyrosine hydroxylase (TH)] and alterations in the mean number of DA cells/section by immunohistochemistry and Nissl staining [TH-labeled cells and thionin-stained cells in the substantia nigra pars compacta (SN-PC)]. We measured recovery of gait performance and amount of spontaneous physical activity using the parallel rod activity chamber (PRAC). We hypothesized that the decrease in TH-labeled neurons in the SN-PC due to MPTP will be partially reversed by treadmill exercise, leading to recovery of motor behavior as measured by the PRAC. Following MPTP or vehicle administration, mice ran on the treadmill for 1 hour per day at 18 cm/s, 5 days per week. Results showed that treadmill exercise improves gait performance and increases physical activity while promoting increased protein expression of striatal DAT and TH. Exercise was effective for all mice, however effects of early treadmill-based intervention appear to have an additional and unique benefit in mice who received MPTP. We are the first to show that, even following a nearly 50% decrease in the mean number of TH-labeled neurons/section in the SN-PC following MPTP, treadmill exercise leads to an increase of neurons in the SN-PC and improved motor behavior. PMID:21315689
Yun, Hyo-Soon; Park, Mi-Sook; Ji, Eun-Sang; Kim, Tae-Woon; Ko, Il-Gyu; Kim, Hyun-Bae; Kim, Hong
2014-01-01
Attention deficit/hyperactivity disorder (ADHD) is a neurobehavioral disorder of cognition. We investigated the effects of treadmill exercise on Purkinje cell and astrocytic reaction in the cerebellum of the ADHD rat. Adult male spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKYR) weighing 210± 10 g were used. The animals were randomly divided into four groups (n= 15): control group, ADHD group, ADHD and methylphenidate (MPH)-treated group, ADHD and treadmill exercise group. The rats in the MPH-treated group as a positive control received 1 mg/kg MPH orally once a day for 28 consecutive days. The rats in the treadmill exercise group were made to run on a treadmill for 30 min once a day for 28 days. Motor coordination and balance were determined by vertical pole test. Immunohistochemistry for the expression of calbindinD-28 and glial fibrillary acidic protein (GFAP) in the cerebellar vermis and Western blot for GFAP, Bax, and Bcl-2 were conducted. In the present results, ADHD significantly decreased balance and the number of calbindin-positive cells, while GFAP expression and Bax/Bcl-2 ratio in the cerebellum were significantly increased in the ADHD group compared to the control group (P< 0.05, respectively). In contrast, treadmill exercise and MPH alleviated the ADHD-induced the decrease of balance and the number of calbindine-positive cells, and the increase of GFAP expression and Bax/Bcl-2 ratio in the cerebellum (P< 0.05, respectively). Therefore, the present results suggested that treadmill exercise might exert ameliorating effect on ADHD through reduction of Purkinje cell loss and astrocytic reaction in the cerebellum. PMID:24678501
Zhang, Qi; Zhang, Jingjun; Yan, Yuzhong; Zhang, Pengyue; Zhang, Wei; Xia, Rong
2017-11-01
Stroke may cause neuropsychiatric problems, which have negative effects on cognitive functions and behavior. Exercise plays an important role in reducing the occurrence and development of stroke, the concrete mechanism is not fully clarified. In this study, we attempted to determine whether early treadmill exercise attenuates anxiety-like behavior by regulation of inflammation after brain ischemia. We subjected adult male rats to middle cerebral artery occlusion (MCAO) for 90 min and trained rats started to run on a treadmill from postoperative day 1 to day 14. The effects of treadmill on cognitive functions, anxiety-like behavior, and immune activation were analyzed by Morris water maze test, open field test, elevated plus maze test, and enzyme-linked immunosorbent assay. Early treadmill exercise significantly improved cognitive function, alleviated anxiety-like behavior in ischemic rats model; this improvement was associated with significantly decreased activation of astrocytes and microglia cells and proinflammatory markers (platelet-activating factor [PAF], interleukin-6 [IL-6], tumor necrosis factor-alpha [TNF-α], intercellular adhesion molecule-1 [ICAM-1], and vascular cell adhesion molecule-1 [VCAM-1]). Our results indicated that early treadmill exercise attenuated anxiety-like behavior by decreasing inflammation response, exercise conferred a great benefit of attenuating anxiety-like behavior via anti-inflammatory treatment may prove to be a novel neuroprotective strategy for stroke.
Executive Function and the P300 after Treadmill Exercise and Futsal in College Soccer Players
Won, Junyeon; Wu, Shanshan; Ji, Hongqing; Smith, J. Carson; Park, Jungjun
2017-01-01
(1) Background: Although a body of evidence demonstrates that acute exercise improves executive function, few studies have compared more complex, laboratory-based modes of exercise, such as soccer that involve multiple aspects of the environment. (2) Methods: Twelve experienced soccer players (24.8 ± 2 years) completed three counterbalanced 20 min sessions of (1) seated rest; (2) moderate intensity treadmill exercise; and (3) a game of futsal. Once heart rate returned to within 10% of pre-activity levels, participants completed the Stroop Color Word Conflict Task while reaction time (RT) and P300 event-related potentials were measured. (3) Results: Reaction time during Stroop performance was significantly faster following the futsal game and treadmill exercise compared to the seated rest. The P300 amplitude during Stroop performance was significantly greater following futsal relative to both treadmill and seated-rest conditions. (4) Conclusions: These findings suggest that single bouts of indoor soccer among college-aged soccer players, compared to treadmill and seated-rest conditions, may engender the greatest effect on brain networks controlling attention allocation and classification speed during the performance of an inhibitory control task. Future research is needed to determine if cognitively engaging forms of aerobic exercise may differentially impact executive control processes in less experienced and older adult participants.
Treadmill exercise alleviates chronic mild stress-induced depression in rats.
Lee, Taeck-Hyun; Kim, Kijeong; Shin, Mal-Soon; Kim, Chang-Ju; Lim, Baek-Vin
2015-12-01
Depression is a major cause of disability and one of the most common public health problems. In the present study, antidepressive effect of treadmill exercise on chronic mild stress (CMS)-induced depression in rats was investigated. For this, sucrose intake test, immunohistochemistry for 5-bromo-2'-deoxyuridine, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining, and Western blot analysis for brain-derived neurotrophic factor, cyclic adenosine monophosphate response element binding protein, and endothelial nitric oxide synthase were conducted. Following adaptation to the animal vivarium and two baseline fluid intake tests, the animals were divided into four groups: the control group, the CMS-induced depression group, the CMS-induced depression and exercise group, and the CMS-induced depression and fluoxetine-treated group. The animals in the CMS groups were exposed to the CMS conditions for 8 weeks and those in the control group were exposed to the control conditions for 8 weeks. After 4 weeks of CMS, the rats in the CMS-induced depression and exercise group were made to run on a motorized treadmill for 30 min once a day for 4 weeks. In the present results, treadmill exercise alleviated CMS-induced depressive symptoms. Treadmill exercise restored sucrose consumption, increased cell proliferation, and decreased apoptotic cell death. The present results suggest the possibility that exercise may improve symptoms of depression.
Hawthorn Extract Randomized Blinded Chronic Heart Failure (HERB CHF) trial.
Zick, Suzanna M; Vautaw, Bonnie Motyka; Gillespie, Brenda; Aaronson, Keith D
2009-10-01
Hawthorn's efficacy when added to contemporary evidence-based heart failure therapy is unknown. We aimed to determine whether hawthorn increases submaximal exercise capacity when added to standard medical therapy. We performed a randomized, double-blind, placebo-controlled trial in 120 ambulatory patients aged > or = 18 years with New York Heart Association (NYHA) class II-III chronic heart failure. All patients received conventional medical therapy, as tolerated, and were randomized to either hawthorn 450 mg twice daily or placebo for 6 months. The primary outcome was change in 6 min walk distance at 6 months. Secondary outcomes included quality of life (QOL) measures, peak oxygen consumption, and anaerobic threshold during maximal treadmill exercise testing, NYHA classification, left ventricular ejection fraction (LVEF), neurohormones, and measures of oxidative stress and inflammation. There were no significant differences between groups in the change in 6 min walk distance (P = 0.61), or on measures of QOL, functional capacity, neurohormones, oxidative stress, or inflammation. A modest difference in LVEF favoured hawthorn (P = 0.04). There were significantly more adverse events reported in the hawthorn group (P = 0.02), although most were non-cardiac. Hawthorn provides no symptomatic or functional benefit when given with standard medical therapy to patients with heart failure. This trial is registered in ClinicalTrials.gov ID: NCT00343902.
Carriker, Colin R; Mermier, Christine M; Van Dusseldorp, Trisha A; Johnson, Kelly E; Beltz, Nicholas M; Vaughan, Roger A; McCormick, James J; Cole, Nathan H; Witt, Christopher C; Gibson, Ann L
2016-08-01
Reduced partial pressure of oxygen impairs exercise performance at altitude. Acute nitrate supplementation, at sea level, may reduce oxygen cost during submaximal exercise in hypobaric hypoxia. Therefore, we investigated the metabolic response during exercise at altitude following acute nitrate consumption. Ten well-trained (61.0 ± 7.4 ml/kg/min) males (age 28 ± 7 yr) completed 3 experimental trials (T1, T2, T3). T1 included baseline demographics, a maximal aerobic capacity test (VO2max) and five submaximal intensity cycling determination bouts at an elevation of 1600 m. A 4-day dietary washout, minimizing consumption of nitrate-rich foods, preceded T2 and T3. In a randomized, double-blind, placebo-controlled, crossover fashion, subjects consumed either a nitrate-depleted beetroot juice (PL) or ~12.8 mmol nitrate rich (NR) beverage 2.5 hr before T2 and T3. Exercise at 3500 m (T2 and T3) via hypobaric hypoxia consisted of a 5-min warm-up (25% of normobaric VO2max) and four 5-min cycling bouts (40, 50, 60, 70% of normobaric VO2max) each separated by a 4-min rest period. Cycling RPM and watts for each submaximal bout during T2 and T3 were determined during T1. Preexercise plasma nitrite was elevated following NR consumption compared with PL (1.4 ± 1.2 and 0.7 ± 0.3 uM respectively; p < .05). There was no difference in oxygen consumption (-0.5 ± 1.8, 0.1 ± 1.7, 0.7 ± 2.1, and 1.0 ± 3.0 ml/kg/min) at any intensity (40, 50, 60, 70% of VO2max, respectively) between NR and PL. Further, respiratory exchange ratio, oxygen saturation, heart rate and rating of perceived exertion were not different at any submaximal intensity between NR and PL either. Blood lactate, however, was reduced following NR consumption compared with PL at 40 and 60% of VO2max (p < .0.05). Our findings suggest that acute nitrate supplementation before exercise at 3500 m does not reduce oxygen cost but may reduce blood lactate accumulation at lower intensity workloads.
Overspeed HIIT in Lower-Body Positive Pressure Treadmill Improves Running Performance.
Gojanovic, Boris; Shultz, Rebecca; Feihl, Francois; Matheson, Gordon
2015-12-01
Optimal high-intensity interval training (HIIT) regimens for running performance are unknown, although most protocols result in some benefit to key performance factors (running economy (RE), anaerobic threshold (AT), or maximal oxygen uptake (VO2max)). Lower-body positive pressure (LBPP) treadmills offer the unique possibility to partially unload runners and reach supramaximal speeds. We studied the use of LBPP to test an overspeed HIIT protocol in trained runners. Eleven trained runners (35 ± 8 yr, VO2max, 55.7 ± 6.4 mL·kg⁻¹·min⁻¹) were randomized to an LBPP (n = 6) or a regular treadmill (CON, n = 5), eight sessions over 4 wk of HIIT program. Four to five intervals were run at 100% of velocity at VO2max (vVO2max) during 60% of time to exhaustion at vVO2max (Tlim) with a 1:1 work:recovery ratio. Performance outcomes were 2-mile track time trial, VO2max, vVO2max, vAT, Tlim, and RE. LBPP sessions were carried out at 90% body weight. Group-time effects were present for vVO2max (CON, 17.5 vs. 18.3, P = 0.03; LBPP, 19.7 vs. 22.3 km·h⁻¹; P < 0.001) and Tlim (CON, 307.0 vs. 404.4 s, P = 0.28; LBPP, 444.5 vs. 855.5, P < 0.001). Simple main effects for time were present for field performance (CON, -18; LBPP, -25 s; P = 0.002), VO2max (CON, 57.6 vs. 59.6; LBPP, 54.1 vs. 55.1 mL·kg⁻¹·min⁻¹; P = 0.04) and submaximal HR (157.7 vs. 154.3 and 151.4 vs. 148.5 bpm; P = 0.002). RE was unchanged. A 4-wk HIIT protocol at 100% vVO2max improves field performance, vVO2max, VO2max and submaximal HR in trained runners. Improvements are similar if intervals are run on a regular treadmill or at higher speeds on a LPBB treadmill with 10% body weight reduction. LBPP could provide an alternative for taxing HIIT sessions.
Locomotor exercise in weightlessness
NASA Technical Reports Server (NTRS)
Thornton, W.; Whitmore, H.
1991-01-01
The requirements for exercise in space by means of locomotion are established and addressed with prototype treadmills for use during long-duration spaceflight. The adaptation of the human body to microgravity is described in terms of 1-G locomotor biomechanics, the effects of reduced activity, and effective activity-replacement techniques. The treadmill is introduced as a complement to other techniques of force replacement with reference given to the angle required for exercise. A motor-driven unit is proposed that can operate at a variety of controlled speeds and equivalent grades. The treadmills permit locomotor exercise as required for long-duration space travel to sustain locomotor and cardiorespiratory capacity at a level consistent with postflight needs.
Macho-Azcarate, T; Marti, A; González, A; Martinez, J A; Ibañez, J
2002-11-01
The Glu27Glu genotype in the beta-2-adrenergic receptor (ADRB2) is associated with fat mass, body mass index and obesity in females. In our population, we previously found an association of higher body mass index (BMI) among women who reported more physical activity and carried the Glu27 allele as compared to non carriers with the same level of activity. To examine the lipid metabolism differences, both at rest and during submaximal exercise in ADRB2 Glu27Glu vs Gln27Gln obese women. Eight obese women with the Glu27Glu genotype (age, 43+/-5 y; body mass index (BMI), 31.7+/-0.9 kg/m(2); percentage fat mass, 42.0+/-1.3; WHR, 0.83+/-0.02; and VO(2max), 21.6+/-0.9 ml/kg/min) were compared with seven obese women with the Gln27Gln genotype (age, 43+/-5 y; BMI, 33.9+/-1.3 kg/m(2); percentage fat mass, 41.6+/-1.2; WHR, 0.83+/-0.02; and VO(2max), 20.6+/-0.8 ml/kg/min). The ADRB2 polymorphism was identified by PCR-RFLP. Respiratory quotient was determined by indirect calorimetry at baseline, during 1 h of walking on a treadmill and 1 h after the exercise. Plasma triglycerides, glycerol, FFA, hydroxybutyrate, glucose and lactate were assayed by spectrophotometric methods. Insulin, leptin and progesterone were measured by radioimmunoassay. Adrenaline and noradrenaline were quantified by high performance liquid chromatography. The ADRB2 Glu27Glu subjects had lower plasma glycerol (P=0.047) and lower hydroxybutyrate (P=0.001) throughout the study than the Gln27Gln group. Plasma triglycerides (P=0.001), lactate (P<0.05) and serum insulin (P<0.05) remained higher in the Glu27Glu group vs the Gln27Gln group. The respiratory quotient (RQ) was higher in the Glu27Glu obese women along the study (P=0.046), and fat oxidation was significantly lower in this group during the recovery (P=0.048). The other variables did not differ statistically between groups. These data suggest that both lipolysis and fat oxidation promoted by an acute submaximal exercise intervention could be blunted in the polymorphic ADRB2 Glu27Glu group of our female obese population.
Schrack, Jennifer A; Simonsick, Eleanor M; Ferrucci, Luigi
2010-02-18
Recent introduction of the Cosmed K4b(2) portable metabolic analyzer allows measurement of oxygen consumption outside of a laboratory setting in more typical clinical or household environments and thus may be used to obtain information on the metabolic costs of specific daily life activities. The purpose of this study was to assess the accuracy of the Cosmed K4b(2) portable metabolic analyzer against a traditional, stationary gas exchange system (the Medgraphics D-Series) during steady-state, submaximal walking exercise. Nineteen men and women (9 women, 10 men) with an average age of 39.8 years (+/-13.8) completed two 400 meter walk tests using the two systems at a constant, self-selected pace on a treadmill. Average oxygen consumption (VO2) and carbon dioxide production (VCO2) from each walk were compared. Intraclass Correlation Coefficient (ICC) and Pearson correlation coefficients between the two systems for weight indexed VO2 (ml/kg/min), total VO2 (ml/min), and VCO2 (ml/min) ranged from 0.93 to 0.97. Comparison of the average values obtained using the Cosmed K4b(2) and Medgraphics systems using paired t-tests indicate no significant difference for VO2 (ml/kg/min) overall (p = 0.25), or when stratified by sex (p = 0.21 women, p = 0.69 men). The mean difference between analyzers was - 0.296 ml/kg/min (+/-0.26). Results were not significantly different for VO(2) (ml/min) or VCO2) (ml/min) within the study population (p = 0.16 and p = 0.08, respectively), or when stratified by sex (VO(2): p = 0.51 women, p = 0.16 men; VCO2: p = .11 women, p = 0.53 men). The Cosmed K4b(2) portable metabolic analyzer provides measures of VO2 and VCO2 during steady-state, submaximal exercise similar to a traditional, stationary gas exchange system.
Kenny, G P; Reardon, F D; Marion, A; Thoden, J S
1995-01-01
The purpose of this study was to evaluate the relationships between heart rate (fc), oxygen consumption (VO2), peak force and average force developed at the crank in response to submaximal exercise employing a racing bicycle which was attached to an ergometer (RE), ridden on a treadmill (TC) and ridden on a 400-m track (FC). Eight male trained competitive cyclists rode at three pre-determined work intensities set at a proportion of their maximal oxygen consumption (VO2max): (1) below lactate threshold [work load that produces a VO2 which is 10% less than the lactate threshold VO2 (sub-LT)], (2) lactate threshold VO2 (LT), and (3) above lactate threshold [workload that produces a VO2 which is 10% greater than lactate threshold VO2 (supra-LT)], and equated across exercise modes on the basis of fc. Voltage signals from the crank arm were recorded as FM signals for subsequent representation of peak and average force. Open circuit VO2 measurements were done in the field by Douglas bag gas collection and in the laboratory by automated gas collection and analysis. fc was recorded with a telemeter (Polar Electro Sport Tester, PE3000). Significant differences (P < 0.05) were observed: (1) in VO2 between FC and both laboratory conditions at sub-LT intensity and LT intensities, (2) in peak force between FC and TC at sub-LT intensity, (3) in average force between FC and RE at sub-LT. No significant differences were demonstrated at supra-LT intensity for VO2. Similarly no significant differences were observed in peak and average force for either LT or supra-LT intensities. These data indicate that equating work intensities on the basis of fc measured in laboratory conditions would overestimate the VO2 which would be generated in the field and conversely, that using fc measured in the laboratory to establish field work intensity would underestimate mechanical workload experienced in the field.
Heres, H M; Schoots, T; Tchang, B C Y; Rutten, M C M; Kemps, H M C; van de Vosse, F N; Lopata, R G P
2018-06-01
Assessment of limitations in the perfusion dynamics of skeletal muscle may provide insight in the pathophysiology of exercise intolerance in, e.g., heart failure patients. Power doppler ultrasound (PDUS) has been recognized as a sensitive tool for the detection of muscle blood flow. In this volunteer study (N = 30), a method is demonstrated for perfusion measurements in the vastus lateralis muscle, with PDUS, during standardized cycling exercise protocols, and the test-retest reliability has been investigated. Fixation of the ultrasound probe on the upper leg allowed for continuous PDUS measurements. Cycling exercise protocols included a submaximal and an incremental exercise to maximal power. The relative perfused area (RPA) was determined as a measure of perfusion. Absolute and relative reliability of RPA amplitude and kinetic parameters during exercise (onset, slope, maximum value) and recovery (overshoot, decay time constants) were investigated. A RPA increase during exercise followed by a signal recovery was measured in all volunteers. Amplitudes and kinetic parameters during exercise and recovery showed poor to good relative reliability (ICC ranging from 0.2-0.8), and poor to moderate absolute reliability (coefficient of variation (CV) range 18-60%). A method has been demonstrated which allows for continuous (Power Doppler) ultrasonography and assessment of perfusion dynamics in skeletal muscle during exercise. The reliability of the RPA amplitudes and kinetics ranges from poor to good, while the reliability of the RPA increase in submaximal cycling (ICC = 0.8, CV = 18%) is promising for non-invasive clinical assessment of the muscle perfusion response to daily exercise.
Shi, Ping; Hu, Sijung; Yu, Hongliu
2018-02-01
The aim of this study was to analyze the recovery of heart rate variability (HRV) after treadmill exercise and to investigate the autonomic nervous system response after exercise. Frequency domain indices, i.e., LF(ms 2 ), HF(ms 2 ), LF(n.u.), HF(n.u.) and LF/HF, and lagged Poincaré plot width (SD1 m ) and length (SD2 m ) were introduced for comparison between the baseline period (Pre-E) before treadmill running and two periods after treadmill running (Post-E1 and Post-E2). The correlations between lagged Poincaré plot indices and frequency domain indices were applied to reveal the long-range correlation between linear and nonlinear indices during the recovery of HRV. The results suggested entirely attenuated autonomic nervous activity to the heart following the treadmill exercise. After the treadmill running, the sympathetic nerves achieved dominance and the parasympathetic activity was suppressed, which lasted for more than 4 min. The correlation coefficients between lagged Poincaré plot indices and spectral power indices could separate not only Pre-E and two sessions after the treadmill running, but also the two sessions in recovery periods, i.e., Post-E1 and Post-E2. Lagged Poincaré plot as an innovative nonlinear method showed a better performance over linear frequency domain analysis and conventional nonlinear Poincaré plot.
Stoller, Oliver; de Bruin, Eling D; Schuster-Amft, Corina; Schindelholz, Matthias; de Bie, Rob A; Hunt, Kenneth J
2013-09-22
After experiencing a stroke, most individuals also suffer from cardiac disease, are immobile and thus have low endurance for exercise. Aerobic capacity is seriously reduced in these individuals and does not reach reasonable levels after conventional rehabilitation programmes. Cardiovascular exercise is beneficial for improvement of aerobic capacity in mild to moderate stroke. However, less is known about its impact on aerobic capacity, motor recovery, and quality-of-life in severely impaired individuals. The aim of this pilot study is to explore the clinical efficacy and feasibility of cardiovascular exercise with regard to aerobic capacity, motor recovery, and quality-of-life using feedback-controlled robotics-assisted treadmill exercise in non-ambulatory individuals soon after experiencing a stroke. This will be a single-centred single blind, randomised control trial with a pre-post intervention design. Subjects will be recruited early after their first stroke (≤20 weeks) at a neurological rehabilitation clinic and will be randomly allocated to an inpatient cardiovascular exercise programme that uses feedback-controlled robotics-assisted treadmill exercise (experimental) or to conventional robotics-assisted treadmill exercise (control). Intervention duration depends on the duration of each subject's inpatient rehabilitation period. Aerobic capacity, as the primary outcome measure, will be assessed using feedback-controlled robotics-assisted treadmill-based cardiopulmonary exercise testing. Secondary outcome measures will include gait speed, walking endurance, standing function, and quality-of-life. Outcome assessment will be conducted at baseline, after each 4-week intervention period, and before clinical discharge. Ethical approval has been obtained. Whether cardiovascular exercise in non-ambulatory individuals early after stroke has an impact on aerobic capacity, motor recovery, and quality-of-life is not yet known. Feedback-controlled robotics-assisted treadmill exercise is a relatively recent intervention method and might be used to train and evaluate aerobic capacity in this population. The present pilot trial is expected to provide new insights into the implementation of early cardiovascular exercise for individuals with severe motor impairment. The findings of this study may guide future research to explore the effects of early cardiovascular activation after severe neurological events. This trial is registered with the Clinical Trials.gov Registry (NCT01679600).
The Impact of a Submaximal Level of Exercise on Balance Performance in Older Persons
2014-01-01
Objective. The purpose of this study was to determine the impact of a submaximal level of exercise on balance performance under a variety of conditions. Material and Method. Thirteen community-dwelling older persons with intact foot sensation (age = 66.69 ± 8.17 years, BMI = 24.65 ± 4.08 kg/m2, female, n = 6) volunteered to participate. Subjects' balance performances were measured using the Modified Clinical Test of Sensory Integration of Balance (mCTSIB) at baseline and after test, under four conditions of stance: (1) eyes-opened firm-surface (EOF), (2) eyes-closed firm-surface (ECF), (3) eyes-opened soft-surface (EOS), and (4) eyes-closed soft-surface (ECS). The 6-minute walk test (6MWT) protocol was used to induce the submaximal level of exercise. Data was analyzed using the Wilcoxon Signed-Rank Test. Results. Balance changes during EOF (z = 0.00, P = 1.00) and ECF (z = −1.342, P = 0.180) were not significant. However, balance changes during EOS (z = −2.314, P = 0.021) and ECS (z = −3.089, P = 0.02) were significantly dropped after the 6MWT. Conclusion. A submaximal level of exercise may influence sensory integration that in turn affects balance performance, particularly on an unstable surface. Rehabilitation should focus on designing intervention that may improve sensory integration among older individuals with balance deterioration in order to encourage functional activities. PMID:25383386
Kim, Tae Woon; Lim, Baek Vin; Baek, Dongjin; Ryu, Dong-Soo; Seo, Jin Hee
2015-03-01
Stress is associated with depression, which induces many psychiatric disorders. Serotonin, also known as 5-hydroxy-tryptamine (5-HT), acts as a biochemical messenger and regulator in the brain. It also mediates several important physiological functions. Depression is closely associated with an overactive bladder. In the present study, we investigated the effect of treadmill exercise on stress-induced depression while focusing on the expression of 5-HT 1A (5-H1A) receptors in the dorsal raphe. Stress was induced by applying a 0.2-mA electric foot shock to rats. Each set of electric foot shocks comprised a 6-second shock duration that was repeated 10 times with a 30-second interval. Three sets of electric foot shocks were applied each day for 7 days. For the confirmation of depressive state, a forced swimming test was performed. To visualize the expression of 5-HT and tryptophan hydroxylase (TPH), immunohistochemistry for 5-HT and TPH in the dorsal raphe was performed. Expression of 5-H1A receptors was determined by western blot analysis. A depressive state was induced by stress, and treadmill exercise alleviated the depression symptoms in the stress-induced rats. Expressions of 5-HT, TPH, and HT 1A in the dorsal raphe were reduced by the induction of stress. Treadmill exercise increased 5-HT, TPH, and HT 1A expressions in the stress-induced rats. Treadmill exercise enhanced 5-HT synthesis through the up-regulation of 5-HT1A receptors, and improved the stress-induced depression. In the present study, treadmill exercise improved depression symptoms by enhancing 5-HT1A receptor expression. The present results suggest that treadmill exercise might be helpful for the alleviation of overactive bladder and improve sexual function.
Lan, Xiaofang; Zhang, Meng; Yang, Wan; Zheng, Zongju; Wu, Yuan; Zeng, Qian; Liu, Shudong; Liu, Ke; Li, Guangqin
2014-05-01
It has been well documented that exercise promotes neurological rehabilitation in patients with cerebral ischemia. However, the exact mechanisms have not been fully elucidated. This study aimed to discuss the effect of treadmill exercise on expression levels of 5-HT, 5-HT1A receptor (5-HT1AR) and brain derived neurophic factor (BDNF) in rat brains after permanent middle cerebral artery occlusion (pMCAO). A total of 55 rats were randomly divided into 3 groups: pMCAO group, pMCAO and treadmill exercise (pMCAO + Ex) group, and sham-operated group. Rats in pMCAO + Ex group underwent treadmill exercise for 16 days. Neurological function was evaluated by modified Neurological Severity Scores (mNSS). High-performance liquid chromatography-electrochemical detection system was used to determine the content of 5-HT in cortex tissues. The protein levels of 5-HT1AR, BDNF and synaptophysin were measured by Western blot. The mNSS in pMCAO + Ex group was lower than that in pMCAO group on day 19 post-MCAO (p < 0.001). The content of 5-HT dropped to 3.81 ± 1.86 ng/ml in pMCAO group (43.84 ± 2.05 ng/ml in sham-operated group), but increased in pMCAO + Ex group (10.06 ± 1.80 ng/ml). The protein expressions levels of synaptophysin, 5-HT1AR and BDNF were downregulated after cerebral ischemia (p < 0.05), and upregulated after treadmill exercise (p < 0.05). These results indicate that treadmill exercise improves neurologic function, enhances neuronal plasticity and upregulates the levels of 5-HT, 5-HT1AR and BDNF in rats with pMCAO.
Häussermann, Sabine; Schulze, Anja; Katz, Ira M; Martin, Andrew R; Herpich, Christiane; Hunger, Theresa; Texereau, Joëlle
2015-01-01
Helium/oxygen therapies have been studied as a means to reduce the symptoms of obstructive lung diseases with inconclusive results in clinical trials. To better understand this variability in results, an exploratory physiological study was performed comparing the effects of helium/oxygen mixture (78%/22%) to that of medical air. The gas mixtures were administered to healthy, asthmatic, and chronic obstructive pulmonary disease (COPD) participants, both moderate and severe (6 participants in each disease group, a total of 30); at rest and during submaximal cycling exercise with equivalent work rates. Measurements of ventilatory parameters, forced spirometry, and ergospirometry were obtained. There was no statistical difference in ventilatory and cardiac responses to breathing helium/oxygen during submaximal exercise. For asthmatics, but not for the COPD participants, there was a statistically significant benefit in reduced metabolic cost, determined through measurement of oxygen uptake, for the same exercise work rate. However, the individual data show that there were a mixture of responders and nonresponders to helium/oxygen in all of the groups. The inconsistent response to helium/oxygen between individuals is perhaps the key drawback to the more effective and widespread use of helium/oxygen to increase exercise capacity and for other therapeutic applications.
Orbital Fitness: An Overview of Space Shuttle Cardiopulmonary Exercise Physiology Findings
NASA Technical Reports Server (NTRS)
Moore, Alan D.
2011-01-01
Limited observations regarding the cardiopulmonary responses to aerobic exercise had been conducted during short-duration spaceflight before the Space Shuttle program. This presentation focuses on the findings regarding changes observed in the cardiopulmonary exercise responses during and following Shuttle flights. During flight, maximum oxygen uptake (VO2max) remained unchanged as did the maximum work rate achievable during cycle exercise testing conducted during the last full flight day. Immediately following flight, the ubiquitous finding, confirmed by investigations conducted during the Spacelab Life Sciences missions 1 and 2 and by NASA Detailed Supplemental Objective studies, indicated that VO2max was reduced; however, the reduction in VO2max was transient and returned to preflight levels within 7 days following return. Studies regarding the influence of aerobic exercise countermeasures performed during flight on postflight performance were mostly limited to the examination of the heart rate (HR) response to submaximal exercise testing on landing day. These studies revealed that exercise HR was elevated in individuals who performed little to no exercise during their missions as compared to individuals who performed regular exercise. In addition, astronauts who performed little to no aerobic exercise during flight demonstrated an increased HR and lowered pulse pressure response to the standard stand test on landing day, indicating a decrease in orthostatic function in these individuals. With regard to exercise modality, four devices were examined during the Shuttle era: two treadmills, a cycle ergometer, and a rowing device. Although there were limited investigations regarding the use of these devices for exercise training aboard the Shuttle, there was no clear consensus reached regarding which proved to be a "superior" device. Each device had a unique operational or physiologic limitation associated with its use. In conclusion, exercise research conducted during the Shuttle Program demonstrated that attenuation of postflight deconditioning was possible through use of exercise countermeasures and the Shuttle served as a test bed for equipment destined for use on the International Space Station. Learning Objective: Overview of the Space Shuttle Program research results related to aerobic capacity and performance, including what was learned from research and effectiveness of exercise countermeasures.
Kim, Young Hoon; Sung, Yun-Hee; Lee, Hee-Hyuk; Ko, Il-Gyu; Kim, Sung-Eun; Shin, Mal-Soon; Kim, Bo-Kyun
2014-08-01
During pregnancy, diabetes mellitus exerts detrimental effects on the development of the fetus, especially the central nervous system. In the current study, we evaluated the effects of postnatal treadmill exercise on short-term memory in relation with cell proliferation and apoptosis in the hippocampus of rat pups born to streptozotocin (STZ)-induced diabetic maternal rats. Adult female rats were mated with male rats for 24 h. Two weeks after mating, the pregnant female rats were divided into two groups: control group and STZ injection group. The pregnant rats in the STZ injection group were administered 40 mg/kg of STZ intraperitoneally. After birth, the rat pups were divided into the following four groups: control group, control with postnatal exercise group, maternal STZ-injection group, and maternal STZ-injection with postnatal exercise group. The rat pups in the postnatal exercise groups were made to run on a treadmill for 30 min once a day, 5 times per week for 2 weeks beginning 4 weeks after birth. The rat pups born to diabetic rats were shown to have short-term memory impairment with suppressed cell proliferation and increased apoptosis in the hippocampal dentate gyrus. Postnatal treadmill exercise alleviated short-term memory impairment by increased cell proliferation and suppressed apoptosis in the rat pups born to diabetic rats. These findings indicate that postnatal treadmill exercise may be used as a valuable strategy to ameliorate neurodevelopmental problems in children born to diabetics.
Fruth, Stacie J; Clifford, Anne; Hine, Stephanie; Huckstep, Jeremy; Merkel, Heidi; Wilkinson, Hilary; Yoder, Jason
2011-01-01
Purpose: The purpose of this study was to determine the effects of a 6-week interactive video dance game (IVDG) program on adult participants’ cardiorespiratory status and body mass index (BMI). Methods: Twenty-seven healthy adult participants attended IVDG sessions over a 6-week period. Participants completed pre- and post-testing consisting of a submaximal VO2 treadmill test, assessment of resting heart rate (RHR) and blood pressure (BP), BMI, and general health questionnaires. Data were analyzed using descriptives, paired t-tests to assess pre-to post-testing differences, and one-way ANOVAs to analyze variables among select groups of participants. Questionnaire data was manually coded and assessed. Results: Twenty participants attended at least 75% of available sessions and were used in data analysis. Mean BMI decreased significantly (from 26.96 kg/m2 to 26.21 kg/m2; 2.87%) and cardiorespiratory fitness measured by peak VO2 increased significantly (from 20.63 ml/kg/min to 21.69 ml/kg/min; 5.14%). Most participants reported that the IVDG program was a good workout, and that they were encouraged to continue or start an exercise routine. Forty percent reported improvements in sleep, and nearly half stated they had or were considering purchasing a home version of a video dance game. Conclusions: Interactive video dance game is an effective and enjoyable exercise program for adults who wish to decrease their BMI and improve components of cardiorespiratory fitness. PMID:22163175
Why Is It Harder to Run on an Inclined Exercise Treadmill?
ERIC Educational Resources Information Center
Nave, Carla M. A. P. F.; Amoreira, Luis J. M.
2014-01-01
It is a known fact that it takes a greater effort to run on an exercise treadmill when it is inclined with positive slope than when it is in a horizontal position. The reason seems simple: walking on an inclined treadmill is somehow equivalent to walking up a hill with the same inclination; when we walk up a hill, our own weight does negative work…
Cho, Han-Sam; Shin, Mal-Soon; Song, Wook; Jun, Tae-Won; Lim, Baek-Vin; Kim, Young-Pyo; Kim, Chang-Ju
2013-01-01
Progressive loss of dopaminergic neurons in substantia nigra is a key pathogenesis of Parkinson's disease. In the present study, we investigated the effects of treadmill exercise on short-term memory, apoptotic dopaminergic neuronal cell death and fiber loss in the nigrostriatum, and cell proliferation in the hippocampal dentate gyrus of Parkinson's rats. Parkinson's rats were made by injection of 6-hydroxydopamine (6-OHDA) into the striatum using stereotaxic instrument. Four weeks after 6-OHDA injection, the rats in the 6-OHDA-injection group exhibited significant rotational asymmetry following apomorphine challenge. The rats in the exercise groups were put on the treadmill to run for 30 min once a day for 14 consecutive days starting 4 weeks after 6-OHDA injection. In the present results, extensive degeneration of the dopaminergic neurons in the substantia nigra with loss of dopaminergic fibers in the striatum were produced in the rats without treadmill running, which resulted in short-term memory impairment. However, the rats performing treadmill running for 2 weeks alleviated nigrostriatal dopaminergic cell loss and alleviated short-term memory impairment with increasing cell proliferation in the hippocampal dentate gyrus of Parkinson's rats. The present results show that treadmill exercise may provide therapeutic value for the Parkinson's disease.
Lee, Jae-Min; Park, Jong-Min; Song, Min Kyung; Oh, Yoo Joung; Kim, Chang-Ju; Kim, Youn-Jung
2017-01-18
Vascular dementia is the progressive change in blood vessels that leads to neuronal injuries in vulnerable areas induced by chronic cerebral hypoperfusion (CCH). CCH induces disruption of blood-brain barrier (BBB), and this BBB disruption can initiate the cognitive impairment and white matter injury. In the present study, we evaluated the effect of treadmill exercise on the cognitive impairment, white matter injury, and BBB disruption induced by CCH. Vascular dementia was induced by permanent bilateral common carotid arteries occlusion (BCCAO) in rats. The rats in the exercise group were made to run on a treadmill for 30min once a day for 14 weeks, starting 4 weeks after birth. Our results revealed that treadmill exercise group was alleviated the cognitive impairment and myelin degradation induced by CCH. The disruption of BBB after CCH indicates degradation of occludin, zonula occluden-1 (ZO-1), and up-regulation of matrix metalloproteinases (MMPs). Treadmill exercise may provide protective effects on BBB disruption from degradation of occludin, ZO-1, and overexpression of MMP-9 after CCH. These findings suggest that treadmill exercise ameliorates cognitive impairment and white matter injury from BBB disruption induced by CCH in rats. The present study will be valuable for means of prophylactic and therapeutic intervention for patients with CCH. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Peres, Paulo; Carvalho, Antônio C; Perez, Ana Beatriz A; Medeiros, Wladimir M
2016-10-01
Marfan syndrome patients present important cardiac structural changes, ventricular dysfunction, and electrocardiographic changes. An abnormal heart rate response during or after exercise is an independent predictor of mortality and autonomic dysfunction. The aim of the present study was to compare heart rate recovery and chronotropic response obtained by cardiac reserve in patients with Marfan syndrome subjected to submaximal exercise. A total of 12 patients on β-blocker therapy and 13 off β-blocker therapy were compared with 12 healthy controls. They were subjected to submaximal exercise with lactate measurements. The heart rate recovery was obtained in the first minute of recovery and corrected for cardiac reserve and peak lactate concentration. Peak heart rate (141±16 versus 155±17 versus 174±8 bpm; p=0.001), heart rate reserve (58.7±9.4 versus 67.6±14.3 versus 82.6±4.8 bpm; p=0.001), heart rate recovery (22±6 versus 22±8 versus 34±9 bpm; p=0.001), and heart rate recovery/lactate (3±1 versus 3±1 versus 5±1 bpm/mmol/L; p=0.003) were different between Marfan groups and controls, respectively. All the patients with Marfan syndrome had heart rate recovery values below the mean observed in the control group. The absolute values of heart rate recovery were strongly correlated with the heart rate reserve (r=0.76; p=0.001). Marfan syndrome patients have reduced heart rate recovery and chronotropic deficit after submaximal exercise, and the chronotropic deficit is a strong determinant of heart rate recovery. These changes are suggestive of autonomic dysfunction.
Taylor, Bryan J; Smetana, Michael R; Frantz, Robert P; Johnson, Bruce D
2015-08-01
We determined whether pulmonary gas exchange indices during submaximal exercise are different in heart failure (HF) patients with combined post- and pre-capillary pulmonary hypertension (PPC-PH) versus HF patients with isolated post-capillary PH (IPC-PH) or no PH. Pulmonary hemodynamics and pulmonary gas exchange were assessed during rest and submaximal exercise in 39 HF patients undergoing right heart catheterization. After hemodynamic evaluation, patients were classified as having no PH (n = 11), IPC-PH (n = 12), or PPC-PH (n = 16). At an equivalent oxygen consumption, end-tidal CO2 (PETCO2) and arterial oxygen saturation (SaO2) were greater in no-PH and IPC-PH versus PPC-PH patients (36.1 ± 3.2 vs. 31.7 ± 4.5 vs. 26.2 ± 4.7 mm Hg and 97 ± 2 vs. 96 ± 3 vs. 91 ± 1%, respectively). Conversely, dead-space ventilation (VD/VT) and the ventilatory equivalent for carbon dioxide (V˙(E)/V˙CO2 ratio) were lower in no-PH and IPC-PH versus PPC-PH patients (0.37 ± 0.05 vs. 0.38 ± 0.04 vs. 0.47 ± 0.03 and 38 ± 5 vs. 42 ± 8 vs. 51 ± 8, respectively). The exercise-induced change in V(D)/V(T), V˙(E)/V˙CO2 ratio, and PETCO2 correlated significantly with the change in mean pulmonary arterial pressure, diastolic pressure difference, and transpulmonary pressure gradient in PPC-PH patients only. Noninvasive pulmonary gas exchange indices during submaximal exercise are different in HF patients with combined post- and pre-capillary PH compared with patients with isolated post-capillary PH or no PH. Copyright © 2015 Elsevier Inc. All rights reserved.
Physiological characteristics of elite short- and long-distance triathletes.
Millet, Grégoire P; Dréano, Patrick; Bentley, David J
2003-01-01
The purpose of this study was to compare the physiological responses in cycling and running of elite short-distance (ShD) and long-distance (LD) triathletes. Fifteen elite male triathletes participating in the World Championships were divided into two groups (ShD and LD) and performed a laboratory trial that comprised submaximal treadmill running, maximal then submaximal ergometry cycling and then an additional submaximal run. "In situ" best ShD triathlon performances were also analysed for each athlete. ShD demonstrated a significantly faster swim time than LD whereas .VO(2max) (ml kg(-1) min(-1)), cycling economy (W l(-1) min(-1)), peak power output (.W(peak),W) and ventilatory threshold (%.VO(2max)) were all similar between ShD and LD. Moreover, there were no differences between the two groups in the change (%) in running economy from the first to the second running bout. Swimming time was correlated to .W(peak)(r=-0.76; P<0.05) and economy ( r=-0.89; P<0.01) in the ShD athletes. Also, cycling time in the triathlon was correlated to .W(peak)(r=-0.83; P<0.05) in LD. In conclusion, ShD triathletes had a faster swimming time but did not exhibit different maximal or submaximal physiological characteristics measured in cycling and running than LD triathletes.
Endoscopy of the upper respiratory tract during treadmill exercise: a clinical study of 100 horses.
Kannegieter, N J; Dore, M L
1995-03-01
Endoscopy of the upper respiratory tract was performed in 100 horses during high speed treadmill exercise. Reasons for endoscopy were a history of an abnormal noise during exercise in 75 horses, poor performance in 17 horses and to evaluate the results of upper respiratory tract surgery in 8 horses. Of the 75 horses with a history of an abnormal noise during exercise the cause was determined in 67 (89%). Endoscopic abnormalities were detected at rest in 40 of these 75 horses (53%). In these 40 horses, a similar diagnosis as to the cause of the abnormal noise was made at rest and during exercise on the treadmill in 19 cases, while in the remaining 21 the endoscopic findings during exercise varied from that seen at rest. This included 3 horses in which a diagnosis was made at rest but no abnormalities were detected during exercise. Some of the findings during treadmill endoscopy included laryngeal dysfunction, grades 3, 4 and 5 (22 cases), dorsal displacement of the soft palate (20), epiglottic entrapment (8), epiglottic flutter (4), aryepiglottic fold flutter (4), pharyngeal collapse (3), arytenoiditis (3), vocal cord flutter (3), false nostril noise (2), pharyngeal lymphoid hyperplasia (2), soft palate haemorrhage (1) and positional arytenoid collapse (1). More than one abnormality was observed during exercise in 7 horses. A complete and correct diagnosis based on the resting endoscopy findings alone was made in 19 (25%) of these 75 cases. In the 17 horses examined because of poor performance, no abnormalities were detected during treadmill endoscopy that were not evident at rest.(ABSTRACT TRUNCATED AT 250 WORDS)
Dao, An T; Zagaar, Munder A; Alkadhi, Karim A
2015-12-01
The dentate gyrus (DG) of the hippocampus is known to be more resistant to the effects of various external factors than other hippocampal areas. This study investigated the neuroprotective effects of moderate treadmill exercise on early-phase long-term potentiation (E-LTP) and its molecular signaling pathways in the DG of amyloid β rat model of sporadic Alzheimer's disease (AD). Animals were preconditioned to run on treadmill for 4 weeks and concurrently received ICV infusion of Aβ₁₋₄₂ peptides (250 pmol/day) during the third and fourth weeks of exercise training. We utilized in vivo electrophysiological recordings to assess the effect of exercise and/or AD pathology on basal synaptic transmission and E-LTP magnitude of the perforant pathway synapses in urethane-anesthetized rats. Immunoblotting analysis was used to quantify changes in the levels of learning and memory-related key signaling molecules. The AD-impaired basal synaptic transmission and suppression of E-LTP in the DG were prevented by prior moderate treadmill exercise. In addition, exercise normalized the basal levels of memory and E-LTP-related signaling molecules including Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), calcineurin (PP2B), and brain-derived neurotrophic factor (BDNF). Exercise also prevented the reduction of phosphorylated CaMKII and aberrant increase of PP2B seen after E-LTP induction in amyloid-infused rats. Our data suggests that by restoring the balance of kinase-phosphatase, 4 weeks of moderate treadmill exercise prevents DG synaptic deficits and deleterious alterations in signaling pathways associated with AD.
Hall, Katharine E; McDonald, Matthew W; Grisé, Kenneth N; Campos, Oscar A; Noble, Earl G; Melling, C W James
2013-10-01
Individuals with Type 1 Diabetes Mellitus (T1DM) can develop insulin resistance. Regular exercise may improve insulin resistance partially through increased expression of skeletal muscle GLUT4 content. To examine if different exercise training modalities can alter glucose tolerance through changes in skeletal muscle GLUT4 content in T1DM rats. Fifty rats were divided into 5 groups; control, diabetic control, diabetic resistance exercised, and diabetic high and low intensity treadmill exercised. Diabetes was induced using multiple low dose Streptozotocin (20 mg/kg/day) injections and blood glucose concentrations were maintained moderately hyperglycemic through subcutaneous insulin pellets. Resistance trained rats climbed a ladder with incremental loads, while treadmill trained rats ran on a treadmill at 27 or 15 m/min, respectively, all for 6 weeks. At weeks 3 and 6, area under the curve measurements following an intravenous glucose tolerance test (AUC-IVGTT) in all diabetic groups were higher than control rats (p<0.05). At 6 weeks, all exercise groups had significantly lower AUC-IVGTT values than diabetic control animals (p<0.05). Treadmill trained rats had the lowest insulin dose requirement of the T1DM rats and the greatest reduction in insulin dosage was evident in high intensity treadmill exercise. Concomitant with improvements in glucose handling improvements, tissue-specific elevations in GLUT4 content were demonstrated in both red and white portions of vastus lateralis and gastrocnemius muscles, suggesting that glucose handling capacity was altered in the skeletal muscle of exercised T1DM rats. These results suggest that, while all exercise modalities can improve glucose tolerance, each mode leads to differential improvements in insulin requirements and protein content alterations. Copyright © 2013 Elsevier Inc. All rights reserved.
Variability in energy cost and walking gait during race walking in competitive race walkers.
Brisswalter, J; Fougeron, B; Legros, P
1998-09-01
The aim of this study was to examine the variability of energy cost (Cw) and race walking gait after a 3-h walk at the competition pace in race walkers of the same performance level. Nine competitive race walkers were studied. In the same week, after a first test of VO2max determination, each subject completed two submaximal treadmill walks (6 min length, 0% grade, 12 km X h(-1) speed) before and after a 3-h overground test completed at the individual competition speed of the race walker. During the two submaximal tests, subjects were filmed between the 2nd and the 4th min, and physiological parameters were recorded between the 4th and the 6th min. Results showed two trends. On the one hand, we observed a significant and systematic increase in energy cost of walking (mean deltaCw = 8.4%), whereas no variation in the gait kinematics prescribed by the rules of race walking was recorded. On the other hand, this increase in metabolic energy demand was accompanied by variations of different magnitude and direction of stride length, of the excursion of the heel and of the maximal ankle flexion at toe-off among the race walkers. These results indicated that competitive race walkers are able to maintain their walking gait with exercise duration apart from a systematic increase in energy cost. Moreover, in this form of locomotion the effect of fatigue on the gait variability seems to be an individual function of the race walk constraints and the constraints of the performer.
Exercise Equipment Usability Assessment for a Deep Space Concept Vehicle
NASA Technical Reports Server (NTRS)
Rhodes, Brooke M.; Reynolds, David W.
2015-01-01
With international aspirations to send astronauts to deep space, the world is now faced with the complex problem of keeping astronauts healthy in unexplored hostile environments for durations of time never before attempted by humans. The great physical demands imparted by space exploration compound the problem of astronaut health, as the astronauts must not only be healthy, but physically fit upon destination arrival in order to perform the scientific tasks required of them. Additionally, future deep space exploration necessitates the development of environments conducive to long-duration habitation that would supplement propulsive vehicles. Space Launch System (SLS) core stage barrel sections present large volumes of robust structure that can be recycled and used for long duration habitation. This assessment will focus on one such conceptual craft, referred to as the SLS Derived Habitat (SLS-DH). Marshall Space Flight Center's (MSFC) Advanced Concepts Office (ACO) has formulated a high-level layout of this SLS-DH with parameters such as floor number and orientation, floor designations, grid dimensions, wall placement, etc. Yet to be determined, however, is the layout of the exercise area. Currently the SLS-DH features three floors laid out longitudinally, leaving 2m of height between the floor and ceilings. This short distance between levels introduces challenges for proper placement of exercise equipment such as treadmills and stationary bicycles, as the dynamic envelope for the 95th percentile male astronauts is greater than 2m. This study aims to assess the optimal equipment layout and sizing for the exercise area of this habitat. Figure 1 illustrates the layout of the DSH concept demonstrator located at MSFC. The exercise area is located on the lower level, seen here as the front half of the level occupied by a crew member. This small volume does not allow for numerous or bulky exercise machines, so the conceptual equipment has been limited to a treadmill and stationary bicycle. With the most current treadmill aboard the International Space Station (ISS), the Combined Operational Load-Bearing External Resistance Treadmill (COLBERT), being located in an International Standard Payload Rack (ISPR), the bottom of the conceptual treadmill features a height of 38in. Making the treadmill flush with the floor would be impossible in this rack configuration, as the distance from the outer wall of the spacecraft to the bottom floor would be too shallow. From preliminary sizing, the 38in required for the bottom of the treadmill combined with a 78in operational envelope for a 95th percentile may not be accommodated in the exercise area in a vertical orientation. Figure 2 demonstrates the volume required (in maroon) for an ISPR-bound treadmill in the concept demonstrator. Early indications as seen in this figure indicate that the crew members would contact the ceiling in such an arrangement. An assessment will be conducted to evaluate various orientations of exercise equipment in the concept demonstrator. Orientations to be tested include putting the bottom of the treadmill on the wall, having the treadmill at an angle in the floor both horizontally and vertically, and having a shorter (non-rack bound) treadmill in a vertical orientation on the floor. This assessment will yield findings regarding sizing of the area and how well participants feel they could exercise in such an environment. Due to the restrictions of assessing a microgravity vehicle in a normal-gravity environment, simulations in MSFC's Virtual Environments Lab (VEL) may be necessary. Final deliverables will include recommendations regarding the location and size of possible exercise equipment aboard the SLS-Derived DSH.
Preferred Exertion across Three Common Modes of Exercise Training.
ERIC Educational Resources Information Center
Glass, Stephen C.; Chvala, Angela M.
2001-01-01
Examined the influence of exercise mode on self-selected exercise intensities. Participants performed three types of intensity tests. Researchers collected data on VO2 values continuously and recorded 1-minute averages several times for each submaximal test. Participants allowed to self-select exercise intensity chose work rates within the…
Improving the Accuracy of Predicting Maximal Oxygen Consumption (VO2pk)
NASA Technical Reports Server (NTRS)
Downs, Meghan E.; Lee, Stuart M. C.; Ploutz-Snyder, Lori; Feiveson, Alan
2016-01-01
Maximal oxygen (VO2pk) is the maximum amount of oxygen that the body can use during intense exercise and is used for benchmarking endurance exercise capacity. The most accurate method to determineVO2pk requires continuous measurements of ventilation and gas exchange during an exercise test to maximal effort, which necessitates expensive equipment, a trained staff, and time to set-up the equipment. For astronauts, accurate VO2pk measures are important to assess mission critical task performance capabilities and to prescribe exercise intensities to optimize performance. Currently, astronauts perform submaximal exercise tests during flight to predict VO2pk; however, while submaximal VO2pk prediction equations provide reliable estimates of mean VO2pk for populations, they can be unacceptably inaccurate for a given individual. The error in current predictions and logistical limitations of measuring VO2pk, particularly during spaceflight, highlights the need for improved estimation methods.
Anti-gravity treadmill can promote aerobic exercise for lower limb osteoarthritis patients
Kawae, Toshihiro; Mikami, Yukio; Fukuhara, Kouki; Kimura, Hiroaki; Adachi, Nobuo
2017-01-01
[Purpose] The anti-gravity treadmill (Alter-G®) allows the load on the lower limbs to be adjusted, which is considered useful for patients with lower limb osteoarthritis. The aim of the present study was to examine the effects of aerobic exercise using an anti-gravity treadmill in patients with lower limb osteoarthritis by using a cardiopulmonary exercise load monitoring system. [Subjects and Methods] The subjects were 20 patients with lower limb osteoarthritis. These subjects walked naturally for 8 minutes and then walked on the Alter-G for 8 minutes at their fastest speed at a load where lower limb pain was alleviated. [Results] Subjective and objective exercise intensity did not differ significantly between level ground walking and Alter-G walking neither before nor after walking. Pain before walking did not differ significantly between level ground walking and Alter-G walking, but pain after walking was significantly greater with level ground walking than with Alter-G walking. [Conclusion] Exercise therapy using an anti-gravity treadmill was useful for patients with lower limb osteoarthritis in terms of cardiopulmonary function, which suggested that this could become a new form of exercise therapy. PMID:28878480
Anti-gravity treadmill can promote aerobic exercise for lower limb osteoarthritis patients.
Kawae, Toshihiro; Mikami, Yukio; Fukuhara, Kouki; Kimura, Hiroaki; Adachi, Nobuo
2017-08-01
[Purpose] The anti-gravity treadmill (Alter-G ® ) allows the load on the lower limbs to be adjusted, which is considered useful for patients with lower limb osteoarthritis. The aim of the present study was to examine the effects of aerobic exercise using an anti-gravity treadmill in patients with lower limb osteoarthritis by using a cardiopulmonary exercise load monitoring system. [Subjects and Methods] The subjects were 20 patients with lower limb osteoarthritis. These subjects walked naturally for 8 minutes and then walked on the Alter-G for 8 minutes at their fastest speed at a load where lower limb pain was alleviated. [Results] Subjective and objective exercise intensity did not differ significantly between level ground walking and Alter-G walking neither before nor after walking. Pain before walking did not differ significantly between level ground walking and Alter-G walking, but pain after walking was significantly greater with level ground walking than with Alter-G walking. [Conclusion] Exercise therapy using an anti-gravity treadmill was useful for patients with lower limb osteoarthritis in terms of cardiopulmonary function, which suggested that this could become a new form of exercise therapy.
Carter, Stephen J; Hunter, Gary R; McAuley, Edward; Courneya, Kerry S; Anton, Philip M; Rogers, Laura Q
2016-10-01
Research showing a link between exercise-induced changes in aerobic fitness and reduced fatigue after a cancer diagnosis has been inconsistent. We evaluated associations of fatigue and rate-pressure product (RPP), a reliable index of myocardial oxygen demand, at rest and during submaximal walking following a physical activity intervention among post-primary treatment breast cancer survivors (BCS). Secondary analyses of 152 BCS in a randomized controlled trial testing a physical activity intervention (INT) versus usual care (UC) were performed. The INT group completed counseling/group discussions along with supervised exercise sessions tapered to unsupervised exercise. Evaluations were made at baseline and immediately post-intervention (M3) on measures of physical activity (accelerometry), graded walk test, and average fatigue over the previous 7 days. RPP was calculated by dividing the product of heart rate and systolic blood pressure by 100. Resting and submaximal RPPs were significantly improved in both groups at M3; however, the magnitude of change (∆) was greater in the INT group from stage 1 (∆RPP1; INT -13 ± 17 vs. UC -7 ± 18; p = 0.03) through stage 4 (∆RPP4; INT -21 ± 26 vs. UC -9 ± 24; p < 0.01) of the walk test. The INT group reported significantly reduced fatigue (INT -0.7 ± 2.0 vs. UC +0.1 ± 2.0; p = 0.02) which was positively associated with ∆RPP during stages 2-4 of the walk test but not ∆aerobic fitness. Lower RPP during submaximal walking was significantly associated with reduced fatigue in BCS. Exercise/physical activity training programs that lower the physiological strain during submaximal walking may produce the largest improvements in reported fatigue.
NASA Astrophysics Data System (ADS)
Lee, Jong Cheol; Kim, Il Yong; Son, Yeri; Byeon, Seul Kee; Yoon, Dong Hyun; Son, Jun Seok; Song, Han Sol; Song, Wook; Seong, Je Kyung; Moon, Myeong Hee
2016-07-01
We compare comprehensive quantitative profiling of lipids at the molecular level from skeletal muscle tissues (gastrocnemius and soleus) of Zucker diabetic fatty rats and Zucker lean control rats during treadmill exercise by nanoflow liquid chromatography-tandem mass spectrometry. Because type II diabetes is caused by decreased insulin sensitivity due to excess lipids accumulated in skeletal muscle tissue, lipidomic analysis of muscle tissues under treadmill exercise can help unveil the mechanism of lipid-associated insulin resistance. In total, 314 lipid species, including phospholipids, sphingolipids, ceramides, diacylglycerols (DAGs), and triacylglycerols (TAGs), were analyzed to examine diabetes-related lipid species and responses to treadmill exercise. Most lysophospholipid levels increased with diabetes. While DAG levels (10 from the gastrocnemius and 13 from the soleus) were >3-fold higher in diabetic rats, levels of most of these decreased after exercise in soleus but not in gastrocnemius. Levels of 5 highly abundant TAGs (52:1 and 54:3 in the gastrocnemius and 48:2, 50:2, and 52:4 in the soleus) displaying 2-fold increases in diabetic rats decreased after exercise in the soleus but not in the gastrocnemius in most cases. Thus, aerobic exercise has a stronger influence on lipid levels in the soleus than in the gastrocnemius in type 2 diabetic rats.
Alizadeh, Maryam; Zahedi-Khorasani, Mahdi; Miladi-Gorji, Hossein
2018-05-30
This study was designed to examine whether treadmill exercise would attenuate the severity of physical dependence, methadone-induced anxiety, depression and voluntary morphine consumption in morphine withdrawn rats receiving methadone maintenance treatment (MMT). The rats were chronically treated with bi-daily doses (10 mg/kg, at 12 h intervals) of morphine for 14 days. The exercising rats receiving MMT were forced to run on a motorized treadmill for 30 days during morphine withdrawal. Then, rats were tested for the severity of morphine dependence, the elevated plus-maze (EPM), sucrose preference test (SPT) and voluntary morphine consumption using a two-bottle choice (TBC) paradigm. The results showed that naloxone- precipitated opioid withdrawal signs were decreased in exercising morphine-dependent rats receiving MMT than sedentary rats. Also, the exercising morphine-dependent rats receiving MMT exhibited an increased time on open arms, preference for sucrose and a lower morphine preference ratio than sedentary rats. We conclude that treadmill exercise decreased the severity of physical dependence, anxiety/depressive-like behaviors and also the voluntary morphine consumption in morphine withdrawn rats receiving MMT. Thus, exercise may benefit in the treatment of addicts during MMT. Copyright © 2018. Published by Elsevier B.V.
Vashdi, E; Hutzler, Y; Roth, D
2008-05-01
Individuals with Intellectual Disability (ID) exhibit reduced levels of compliance to exercise, including treadmill walking. The purpose of this study was to measure the effects of several training conditions on compliance to participation in treadmill walking of children with moderate to severe ID. Criteria for compliance were the averaged number of times participants attempted to discontinue walking during two 5-min exercise sessions of treadmill walking at an intensity of 65-75% of predicted maximal HR. Fifteen children aged 5-11 with moderate to severe ID participated in the study. Training conditions were (a) close supervisor's position, (b) distant supervisor's position, (c) positive reinforcement, and (d) paired modeling. General linear mixed model statistics revealed significant differences in favor of the paired modeling and positive reinforcement compared to the other conditions. Leaning forward was the most frequent type of participants' attempt to stop exercising. Paired modeling and positive reinforcement should be considered within treadmill training programs for children with moderate to severe ID.
2013-01-01
Background After experiencing a stroke, most individuals also suffer from cardiac disease, are immobile and thus have low endurance for exercise. Aerobic capacity is seriously reduced in these individuals and does not reach reasonable levels after conventional rehabilitation programmes. Cardiovascular exercise is beneficial for improvement of aerobic capacity in mild to moderate stroke. However, less is known about its impact on aerobic capacity, motor recovery, and quality-of-life in severely impaired individuals. The aim of this pilot study is to explore the clinical efficacy and feasibility of cardiovascular exercise with regard to aerobic capacity, motor recovery, and quality-of-life using feedback-controlled robotics-assisted treadmill exercise in non-ambulatory individuals soon after experiencing a stroke. Methods/Design This will be a single-centred single blind, randomised control trial with a pre-post intervention design. Subjects will be recruited early after their first stroke (≤20 weeks) at a neurological rehabilitation clinic and will be randomly allocated to an inpatient cardiovascular exercise programme that uses feedback-controlled robotics-assisted treadmill exercise (experimental) or to conventional robotics-assisted treadmill exercise (control). Intervention duration depends on the duration of each subject’s inpatient rehabilitation period. Aerobic capacity, as the primary outcome measure, will be assessed using feedback-controlled robotics-assisted treadmill-based cardiopulmonary exercise testing. Secondary outcome measures will include gait speed, walking endurance, standing function, and quality-of-life. Outcome assessment will be conducted at baseline, after each 4-week intervention period, and before clinical discharge. Ethical approval has been obtained. Discussion Whether cardiovascular exercise in non-ambulatory individuals early after stroke has an impact on aerobic capacity, motor recovery, and quality-of-life is not yet known. Feedback-controlled robotics-assisted treadmill exercise is a relatively recent intervention method and might be used to train and evaluate aerobic capacity in this population. The present pilot trial is expected to provide new insights into the implementation of early cardiovascular exercise for individuals with severe motor impairment. The findings of this study may guide future research to explore the effects of early cardiovascular activation after severe neurological events. Trial registration This trial is registered with the Clinical Trials.gov Registry (NCT01679600). PMID:24053609
NASA Technical Reports Server (NTRS)
Woodruff, Kristin K.; Johnson, Anyika N.; Lee, Stuart M. C.; Gernhardt, Michael; Schneider, Suzanne M.; Foster, Philip P.
2000-01-01
Decompression sickness (DCS) is a serious risk to astronauts performing extravehicular activity (EVA). To reduce this risk, the addition of ten minutes of moderate exercise (75% VO2pk) during prebreathe has been shown to decrease the total prebreathe time from 4 to 2 hours and to decrease the incidence of DCS. The overall purpose of this pilot study was to develop an exercise protocol using flight hardware and an in-flight physical fitness cycle test to perform prebreathe exercise before an EVA. Eleven subjects volunteered to participate in this study. The first objective of this study was to compare the steady-state heart rate (HR) and oxygen consumption (VO2) from a submaximal arm and leg exercise (ALE) session with those predicted from a maximal ALE test. The second objective was to compare the steady-state HR and V02 from a submaximal elastic tube and leg exercise (TLE) session with those predicted from the maximal ALE test. The third objective involved a comparison of the maximal ALE test with a maximal leg-only (LE) test to conform to the in- flight fitness assessment test. The 75% VO2pk target HR from the LE test was significantly less than the target HR from the ALE test. Prescribing exercise using data from the maximal ALE test resulted in the measured submaximal values being higher than predicted VO2 and HR. The results of this pilot study suggest that elastic tubing is valid during EVA prebreathe as a method of arm exercise with the flight leg ergometer and it is recommended that prebreathe countermeasure exercise protocol incorporate this method.
The impact of cell phone use on the intensity and liking of a bout of treadmill exercise.
Rebold, Michael J; Lepp, Andrew; Sanders, Gabriel J; Barkley, Jacob E
2015-01-01
This study used a within-subjects design to assess the effect of three common cellular telephone (cell phone) functions (texting, talking, listening to music) on planned exercise. Forty-four young adults (n = 33 females, 21.8 ± 1.3 years) each participated in four, separate, 30-minute exercise conditions on a treadmill in a random order. During each condition, the treadmill speed display was covered and grade was fixed at zero. However, participants were able to alter treadmill speed as desired. Throughout the texting and talking conditions, research personnel used a pre-determined script to simulate cell phone conversations. During the music condition, participants used their cell phone to listen to music of their choice. Finally, participants completed a control condition with no cell phone access. For each condition, average treadmill speed, heart rate and liking (via visual analog scale) were assessed. Treadmill speed (3.4 ± 1.3 miles∙hour(-1)), heart rate (122.3 ± 24.3 beats∙min(-1)) and liking (7.5 ± 1.5 cm) in the music condition were significantly (p ≤ 0.014) greater than all other conditions. Treadmill speed in the control condition (3.1 ± 1.2 miles∙hour(-1)) was significantly (p = 0.04) greater than both texting and talking (2.8 ± 1.1 miles∙hour(-1) each). Heart rate during the control condition (115.4 ± 22.8 beats∙min(-1)) was significantly (p = 0.04) greater than texting (109.9 ± 16.4 beats∙min(-1)) but not talking (112.6 ± 16.1 beats∙min(-1)). Finally, liking during the talking condition (5.4 ± 2.2 cm) was greater (p = 0.05) than the control (4.3 ± 2.2 cm) but not the texting (5.1 ± 2.2 cm) conditions. In conclusion, using a cell phone for listening to music can increase the intensity (speed and heart rate) and liking of a bout of treadmill exercise. However, other common cell phone uses (texting and talking) can interfere with treadmill exercise and reduce intensity.
The Impact of Cell Phone Use on the Intensity and Liking of a Bout of Treadmill Exercise
Rebold, Michael J.; Lepp, Andrew; Sanders, Gabriel J.; Barkley, Jacob E.
2015-01-01
This study used a within-subjects design to assess the effect of three common cellular telephone (cell phone) functions (texting, talking, listening to music) on planned exercise. Forty-four young adults (n = 33 females, 21.8 ± 1.3 years) each participated in four, separate, 30-minute exercise conditions on a treadmill in a random order. During each condition, the treadmill speed display was covered and grade was fixed at zero. However, participants were able to alter treadmill speed as desired. Throughout the texting and talking conditions, research personnel used a pre-determined script to simulate cell phone conversations. During the music condition, participants used their cell phone to listen to music of their choice. Finally, participants completed a control condition with no cell phone access. For each condition, average treadmill speed, heart rate and liking (via visual analog scale) were assessed. Treadmill speed (3.4 ± 1.3 miles∙hour-1), heart rate (122.3 ± 24.3 beats∙min-1) and liking (7.5 ± 1.5 cm) in the music condition were significantly (p ≤ 0.014) greater than all other conditions. Treadmill speed in the control condition (3.1 ± 1.2 miles∙hour-1) was significantly (p = 0.04) greater than both texting and talking (2.8 ± 1.1 miles∙hour-1 each). Heart rate during the control condition (115.4 ± 22.8 beats∙min-1) was significantly (p = 0.04) greater than texting (109.9 ± 16.4 beats∙min-1) but not talking (112.6 ± 16.1 beats∙min-1). Finally, liking during the talking condition (5.4 ± 2.2 cm) was greater (p = 0.05) than the control (4.3 ± 2.2 cm) but not the texting (5.1 ± 2.2 cm) conditions. In conclusion, using a cell phone for listening to music can increase the intensity (speed and heart rate) and liking of a bout of treadmill exercise. However, other common cell phone uses (texting and talking) can interfere with treadmill exercise and reduce intensity. PMID:25970553
Screening adolescent athletes for exercise-induced asthma.
Feinstein, R A; LaRussa, J; Wang-Dohlman, A; Bartolucci, A A
1996-04-01
To pilot test an exercise-induced asthma (EIA) screening program using a submaximal step-test and pulmonary function test (PFT) to identify athletes with EIA and to determine if a physical examination or self-reported history could be used to predict the existence of EIA. Screening and diagnostic testing using a convenience sample. Birmingham, Alabama, during athletic preparticipation examination (PPE). Fifty-two African-American, male football players aged 14-18 years being evaluated for participation in scholastic athletics. No athlete refused participation. Four were excluded because of need for further evaluation unrelated to any pulmonary condition. Each athlete completed a medical history, allergy history, physical examination, preexercise pulmonary function test (PFT), submaximal step-test, and a series of postexercise PFTs. Major outcome measurements were changes in forced expiration volume in 1s (FEV1) or peak expiratory flow rate (PEFR) after completing an exercise challenge. Seventeen of 48 athletes had a > or = 15% decrease in PEFR after exercise. Nine of 48 athletes had a > or = 15% decrease in FEV1 after exercise. The only self-reported item that differentiated subjects with normal and abnormal PFTs was a personal history of asthma (p < 0.05). Many athletes can be identified as having abnormal PFTs by use of a submaximal step-test as an exercise challenge. Self-reporting questionnaires and PPEs do not appear to be sensitive enough to identify athletes with this condition. If validated by future studies, this protocol could be used for the diagnosis of EIA.
ERIC Educational Resources Information Center
Johnston, Therese E.; Watson, Kyle E.; Ross, Sandy A.; Gates, Philip E.; Gaughan, John P.; Lauer, Richard T.; Tucker, Carole A.; Engsberg, Jack R.
2011-01-01
Aim: To compare the effects of a supported speed treadmill training exercise program (SSTTEP) with exercise on spasticity, strength, motor control, gait spatiotemporal parameters, gross motor skills, and physical function. Method: Twenty-six children (14 males, 12 females; mean age 9y 6mo, SD 2y 2mo) with spastic cerebral palsy (CP; diplegia, n =…
Aghaie, Fatemeh; Khazali, Homayoun; Hedayati, Mehdi; Akbarnejad, Ali
2018-01-01
Polycystic ovarian syndrome (PCOS) is the most frequent female endocrine disorder that affects 5-10% of women. PCOS is characterized by hyperandrogenism, oligo-/anovulation, and polycystic ovaries. The aim of the present research is to evaluate the expression of steroidogenic acute regulatory protein (StAR) and aromatase (CYP19) mRNA in the ovaries of an estradiol valerate (EV)-induced PCOS rat model, and the effect of treadmill and running wheel (voluntary) exercise on these parameters. In this experimental study, we divided adult female Wistar rats that weighed approximately 220 ± 20 g initially into control (n=10) and PCOS (n=30). Subsequently, PCOS group were divided to PCOS, PCOS with treadmill exercise (P-ExT), and PCOS with running wheel exercise (P-ExR) groups (n=10 per group). The expressions of StAR and CYP19 mRNA in the ovaries were determined by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). Data were analyzed by one-way ANOVA using SPSS software, version 16. The data were assessed at α=0.05. There was significantly lower mRNA expression of CYP19 in the EV-induced PCOS, running wheel and treadmill exercise rats compared to the control group (P<0.001). Treadmill exercise (P=0.972) and running wheel exercise (P=0.839) had no significant effects on CYP19 mRNA expression compared to the PCOS group. mRNA expression of StAR in the ovaries of the PCOS group indicated an increasing trend compared to the control group, however this was not statistically significant (P=0.810). We observed that 8 weeks of running wheel and treadmill exercises could not statistically decrease StAR mRNA expression compared to the PCOS group (P=0.632). EV-induced PCOS in rats decreased CYP19 mRNA expression, but had no effect on StAR mRNA expression. We demonstrated that running wheel and moderate treadmill exercise could not modify CYP19 and StAR mRNA expressions. Copyright© by Royan Institute. All rights reserved.
Effect of caffeine ingestion on anaerobic capacity quantified by different methods
Arcoverde, Lucyana; Silveira, Rodrigo; Tomazini, Fabiano; Sansonio, André; Bertuzzi, Romulo; Andrade-Souza, Victor Amorim
2017-01-01
We investigated whether caffeine ingestion before submaximal exercise bouts would affect supramaximal oxygen demand and maximal accumulated oxygen deficit (MAOD), and if caffeine-induced improvement on the anaerobic capacity (AC) could be detected by different methods. Nine men took part in several submaximal and supramaximal exercise bouts one hour after ingesting caffeine (5 mg·kg-1) or placebo. The AC was estimated by MAOD, alternative MAOD, critical power, and gross efficiency methods. Caffeine had no effect on exercise endurance during the supramaximal bout (caffeine: 131.3 ± 21.9 and placebo: 130.8 ± 20.8 s, P = 0.80). Caffeine ingestion before submaximal trials did not affect supramaximal oxygen demand and MAOD compared to placebo (7.88 ± 1.56 L and 65.80 ± 16.06 kJ vs. 7.89 ± 1.30 L and 62.85 ± 13.67 kJ, P = 0.99). Additionally, MAOD was similar between caffeine and placebo when supramaximal oxygen demand was estimated without caffeine effects during submaximal bouts (67.02 ± 16.36 and 62.85 ± 13.67 kJ, P = 0.41) or when estimated by alternative MAOD (56.61 ± 8.49 and 56.87 ± 9.76 kJ, P = 0.91). The AC estimated by gross efficiency was also similar between caffeine and placebo (21.80 ± 3.09 and 20.94 ± 2.67 kJ, P = 0.15), but was lower in caffeine when estimated by critical power method (16.2 ± 2.6 vs. 19.3 ± 3.5 kJ, P = 0.03). In conclusion, caffeine ingestion before submaximal bouts did not affect supramaximal oxygen demand and consequently MAOD. Otherwise, caffeine seems to have no clear positive effect on AC. PMID:28617848
Aisbett, B; Le Rossignol, P
2003-09-01
The VO2-power regression and estimated total energy demand for a 6-minute supra-maximal exercise test was predicted from a continuous incremental exercise test. Sub-maximal VO2-power co-ordinates were established from the last 40 seconds (s) of 150-second exercise stages. The precision of the estimated total energy demand was determined using the 95% confidence interval (95% CI) of the estimated total energy demand. The linearity of the individual VO2-power regression equations was determined using Pearson's correlation coefficient. The mean 95% CI of the estimated total energy demand was 5.9 +/- 2.5 mL O2 Eq x kg(-1) x min(-1), and the mean correlation coefficient was 0.9942 +/- 0.0042. The current study contends that the sub-maximal VO2-power co-ordinates from a continuous incremental exercise test can be used to estimate supra-maximal energy demand without compromising the precision of the accumulated oxygen deficit (AOD) method.
Effects of Training on the Estimation of Muscular Moment in Submaximal Exercise
ERIC Educational Resources Information Center
Leverrier, Celine; Gauthier, Antoine; Nicolas, Arnaud; Molinaro, Corinne
2011-01-01
The purpose of this study was to observe the effects of a submaximal isometric training program on estimation capacity at 25, 50, and 75% of maximal contraction in isometric action and at two angular velocities. The second purpose was to study the variability of isometric action. To achieve these purposes, participants carried out an isokinetic…
Kim, Tae Woon; Lim, Baek Vin; Baek, Dongjin; Ryu, Dong-Soo; Seo, Jin Hee
2015-01-01
Purpose: Stress is associated with depression, which induces many psychiatric disorders. Serotonin, also known as 5-hydroxy-tryptamine (5-HT), acts as a biochemical messenger and regulator in the brain. It also mediates several important physiological functions. Depression is closely associated with an overactive bladder. In the present study, we investigated the effect of treadmill exercise on stress-induced depression while focusing on the expression of 5-HT 1A (5-H1A) receptors in the dorsal raphe. Methods: Stress was induced by applying a 0.2-mA electric foot shock to rats. Each set of electric foot shocks comprised a 6-second shock duration that was repeated 10 times with a 30-second interval. Three sets of electric foot shocks were applied each day for 7 days. For the confirmation of depressive state, a forced swimming test was performed. To visualize the expression of 5-HT and tryptophan hydroxylase (TPH), immunohistochemistry for 5-HT and TPH in the dorsal raphe was performed. Expression of 5-H1A receptors was determined by western blot analysis. Results: A depressive state was induced by stress, and treadmill exercise alleviated the depression symptoms in the stress-induced rats. Expressions of 5-HT, TPH, and HT 1A in the dorsal raphe were reduced by the induction of stress. Treadmill exercise increased 5-HT, TPH, and HT 1A expressions in the stress-induced rats. Conclusions: Treadmill exercise enhanced 5-HT synthesis through the up-regulation of 5-HT1A receptors, and improved the stress-induced depression. In the present study, treadmill exercise improved depression symptoms by enhancing 5-HT1A receptor expression. The present results suggest that treadmill exercise might be helpful for the alleviation of overactive bladder and improve sexual function. PMID:25833478
Influence of Different Kinds of Music on Walking in Children.
Reychler, Gregory; Fabre, Justine; Lux, Amandine; Caty, Gilles; Pieters, Thierry; Liistro, Giuseppe
The aim of this study was to evaluate the effect of different kinds of music on submaximal performance and exercise tolerance in healthy children by means of the 6-minute walking test (6MWT) and to explore the influence of gender. Cross-over study. Ninety-seven children performed 6MWT in four conditions (without music, with their preferred music, with slow and with fast music). Distance, cardio-respiratory parameters, perceived exertion rate, and amount of dyspnea were measured. Walked distance depended on the kind of music (p = .022). To listen to fast music promoted a longer distance when compared with slow music. Walked distance was not influenced by gender (p = .721) and there was no interaction between music and gender for walked distances (p = .069). The other parameters were not modified by music and gender. Music influences submaximal performances without modifying exercise tolerance in healthy children. Music does modify submaximal performance in children.
Kordi, Ramin; Mazaheri, Reza; Rostami, Mohsen; Mansournia, Mohammad Ali
2012-01-01
The pathophysiology of primary benign exertional headache (EH) is not still clearly defined. Some researchers have suggested an impaired vascular response as the etiology of this disorder. In this study we investigated whether there are any differences in blood pressure (BP) and heart rate (HR) of the subjects in course of the static and dynamic exercises and the treadmill stress test between those with and without EH. From university students, 22 patients with EH (mean age: 19.8 ± 2.10, Female to Male: 7:15) and 20 normal subjects (mean age: 19.3 ± 1.97, Female: Male: 8:12) were recruited. All the subjects performed the static and dynamic exercises at 30 and 20 percent of the maximal voluntary contraction (MVC) and Bruce treadmill stress test according to the standard protocols. HR and BP of all the cases at the baseline and during and immediately after each test were measured. No significant difference was found between the mean rise of HR, systolic and diastolic BP of the subjects with and without EH in static and dynamic exercises and also treadmill stress test. It seems that between those with and without EH, there is no significant difference in rise of HR and BP response to static and dynamic exercises and treadmill stress test. Further studies are required to find the pathophysiology and risk factors of EH.
Ground Reaction Forces During Reduced Gravity Running in Parabolic Flight.
Cavanagh, Peter; Rice, Andrea; Glauberman, Molly; Sudduth, Amanda; Cherones, Arien; Davis, Shane; Lewis, Michael; Hanson, Andrea; Wilt, Grier
2017-08-01
Treadmills have been employed as both a form of exercise and a countermeasure to prevent changes in the musculoskeletal system on almost all NASA missions and many Russian missions since the early Space Shuttle flights. It is possible that treadmills may also be part of exercise programs on future Mars missions and that they may be a component of exercise facilities in lunar or Martian habitats. In order to determine if the ambient gravity on these destinations will provide osteogenic effects while performing exercise on a treadmill, ground reactions forces (GRFs) were measured on eight subjects (six women and two men) running at 6 mph during parabolic flight in Martian and lunar gravity conditions. On average, stride length increased as gravity decreased. The first and second peaks of the GRFs decreased by 0.156 and 0.196 bodyweights, respectively, per 1/10 g change in ambient gravity. Based on comparisons with previously measured GRF during loaded treadmill running on the International Space Station, we conclude that unloaded treadmill running under lunar and Martian conditions during exploration missions is not likely to be an osteo-protective exercise.Cavanagh P, Rice A, Glauberman M, Sudduth A, Cherones A, Davis S, Lewis M, Hanson A, Wilt G. Ground reaction forces during reduced gravity running in parabolic flight. Aerosp Med Hum Perform. 2017; 88(8):730-736.
Exercise intolerance in Type 2 diabetes: is there a cardiovascular contribution?
Poitras, Veronica J; Hudson, Robert W; Tschakovsky, Michael E
2018-05-01
Physical activity is critically important for Type 2 diabetes management, yet adherence levels are poor. This might be partly due to disproportionate exercise intolerance. Submaximal exercise tolerance is highly sensitive to muscle oxygenation; impairments in exercising muscle oxygen delivery may contribute to exercise intolerance in Type 2 diabetes since there is considerable evidence for the existence of both cardiac and peripheral vascular dysfunction. While uncompromised cardiac output during submaximal exercise is consistently observed in Type 2 diabetes, it remains to be determined whether an elevated cardiac sympathetic afferent reflex could sympathetically restrain exercising muscle blood flow. Furthermore, while deficits in endothelial function are common in Type 2 diabetes and are often cited as impairing exercising muscle oxygen delivery, no direct evidence in exercise exists, and there are several other vasoregulatory mechanisms whose dysfunction could contribute. Finally, while there are findings of impaired oxygen delivery, conflicting evidence also exists. A definitive conclusion that Type 2 diabetes compromises exercising muscle oxygen delivery remains premature. We review these potentially dysfunctional mechanisms in terms of how they could impair oxygen delivery in exercise, evaluate the current literature on whether an oxygen delivery deficit is actually manifest, and correspondingly identify key directions for future research.
NASA Astrophysics Data System (ADS)
Vogelaere, P.; Brasseur, M.; Quirion, A.; Leclercq, R.; Laurencelle, L.; Bekaert, S.
1990-03-01
The affect of negative thermal stress on hematological variables at rest, and during submaximal (sub ex) and maximal exercise (max ex) were observed for young males who volunteered in two experimental sessions, performed in cold (0°C) and in normal room temperature (20°C). At rest, hematological variables such as RBC and derivates Hb and Hct were significantly increased ( P<0.05) during cold stress exposure, while plasma volume decreased. The findings of this study suggest that the major factor inducing hypovolemia during low thermal stress can be imputed to local plasma water-shift mechanisms and especially to a transient shift of plasma water from intrato extravascular compartments. Rest values for WBC and platelets (Pla) were also slightly increased during cold stress exposure. However this increase can partly be related to hemoconcentration but also to the cold induced hyperventilation activating the lung circulation. Maximal exhaustive exercise induced, in both experimental temperatures, significant ( P<0.05) increments of RBC, Hb, Hct, and WBC while plasma volume decreased. However, Pla increase was less marked. On the other hand, cold stress raised slightly the observed variations of the different hematological variables. Submaximal exercise induced a similar, though non-significant, pattern for the different hematological variables in both experimental conditions. Observed plasma volume (Δ PV%) reduction appears during exercise. However cold stress induced resting plasma volume variations that are transferred at every exercise level. Neither exercise nor cold inducement significantly modified the hematological indices (MCH, MCV, MCHC). In conclusion hematological variables are affected by cold stress exposure, even when subjects perform a physical activity.
Influence of slope on subtalar pronation in submaximal running performance
de Oliveira, Vinicius Machado; Detoni, Guilherme Cesca; Ferreira, Cristhian; Portela, Bruno Sergio; Queiroga, Marcos Roberto; Tartaruga, Marcus Peikriszwili
2013-01-01
OBJECTIVE : To investigate the slope influence on the maximal subtalar pronation in submaximal running speeds. METHODS : Sixteen endurance runners participated of a running economy (RE) test in a treadmill with different slopes (+1%, +5%, +10%, +15%). For each slope a 4-minute run was performed with no rest break for the purpose of measuring the magnitude of kinematic variables by means of a high frequency video camera positioned in a frontal-posterior plane of the individual. RESULTS : No significant differences were verified in maximal subtalar pronation between legs and between the slopes adopted, showing that changes of running technique due to modifications of slope aren't enough to modify the behavior of maximum subtalar pronation. CONCLUSION : The subtalar pronation is independent of slope, which may be influenced by other intervening variables. Level of Evidence II, Diagnostic Study PMID:24453662
2017-07-31
When you live in a place where your heart doesn’t even have to work against the pull of gravity, you need help with exercise: the astronauts on the International Space Station have a suite of exercise equipment at their disposal, including a treadmill. In this “SpeedyTime” segment Expedition 52 flight engineer Jack Fischer runs through the workout they get on the Combined Operational Load Bearing External Resistance Treadmill (COLBERT) in the station’s Tranquility module. HD Link: https://archive.org/details/jsc2017m000676_SpeedyTime_3_Treadmill_2 _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
A comparison of VO2max and metabolic variables between treadmill running and treadmill skating.
Koepp, Kriston K; Janot, Jeffrey M
2008-03-01
The purpose of this study was to determine differences in VO2max and metabolic variables between treadmill running and treadmill skating. This study also examined VO2max responses during a continuous skating treadmill protocol and a discontinuous skating treadmill protocol. Sixteen male high school hockey players, who had a mean age of 16 +/- 1 years and were of an above-average fitness level, participated in this study. All subjects completed 4 exercise trials: a 1-hour skating treadmill familiarization trial, a treadmill running trial, and 2 randomized skating treadmill trials. Minute ventilation (VE), oxygen consumption VO2), carbon dioxide production VCO2), respiratory exchange ratio (RER), and heart rate were averaged every 15 seconds up to VO2max for each exercise test. The results showed that there was a significant difference (P < 0.05) for VO2max (mL.kg.min) and maximal VCO2 (L.min) between the running treadmill protocol and discontinuous skating treadmill protocol. There was also a significant difference for maximal RER between the discontinuous and continuous skating treadmill protocol and between the discontinuous skating treadmill protocol and running treadmill protocol. In conclusion, the running treadmill elicited a greater VO2max (mL.kg.min) than the skating treadmill did, but when it comes to specificity of ice skating, the skating treadmill may be ideal. Also, there was no significant difference between the discontinuous and continuous skating treadmill protocols. Therefore, a continuous protocol is possible on the skating treadmill without compromising correct skating position and physiologic responses. However, the continuous skating treadmill protocol should undergo validation before other scientists, coaches, and strength and conditioning professionals can apply it correctly.
Kinematic Differences Between Motorized and Nonmotorized Treadmill Locomotion
NASA Technical Reports Server (NTRS)
DeWitt, John K.; Bentley, Jason R.; Lee, Stuart M. C.; Norcross, Jason; Smith, Cassie; Hagan, R. Donald
2006-01-01
There are few scientific publications comparing human locomotion between motorized and nonmotorized treadmills. Lakomy (1987) and Gamble et al (1988) reported that forward lean is greater on a nonmotorized treadmill to aid in the generation of horizontal force necessary for belt propulsion, but there are no data concerning lower limb kinematics. During long-term spaceflight, astronauts use locomotive exercise to mitigate the physiological effects caused by long-term exposure to microgravity. A critical decision for mission planners concerns the requirements for a treadmill to be used during potential trips to the Moon and Mars. Treadmill operation in an un-powered configuration could reduce mission resource demands, but also may impact the efficacy of treadmill exercise countermeasures. To ascertain the most appropriate type of treadmill to be used, it is important to understand biomechanical differences between motorized (M) and nonmotorized (NM) locomotion. The purpose of this evaluation was to test for differences in lower limb kinematics that occur during M and NM treadmill locomotion at two speeds. It was hypothesized that hip and knee joint angle trajectories would differ between the conditions.
Mikami, Yukio; Fukuhara, Kouki; Kawae, Toshihiro; Kimura, Hiroaki; Ochi, Mitsuo
2015-12-01
The aim of this case study was to verify the efficacy and safety of anti-gravity treadmill training for prosthetic rehabilitation following below-knee amputation. The patient underwent left below-knee amputation as a result of diabetic foot gangrene. Since his physical strength and vitality had declined during the perioperative period, anti-gravity treadmill training was introduced for his outpatient prosthetic rehabilitation. Stable prosthetic gait exercise could be carried out under guidance on the anti-gravity treadmill, quickly resulting in improved gait. Furthermore, the patient's self-efficacy and exercise tolerance were elevated after the period of anti-gravity treadmill training. At the final evaluation following 6 weeks of rehabilitation with the anti-gravity treadmill, he had acquired prosthetic gait with the assistance of a T-cane. The anti-gravity treadmill was found to be a useful instrument for prosthetic rehabilitation following below-knee amputation. Anti-gravity treadmill training has the potential to support the prosthetic rehabilitation of below-knee amputees, especially for patients whose physical strength and vitality are decreased. © The International Society for Prosthetics and Orthotics 2014.
Hawthorn Extract Randomized Blinded Chronic Heart Failure (HERB CHF) Trial
Zick, Suzanna M.; Vautaw, Bonnie Motyka; Gillespie, Brenda; Aaronson, Keith D.
2009-01-01
Aims Hawthorn's efficacy when added to contemporary evidence-based heart failure therapy is unknown. We aimed to determine whether hawthorn increases submaximal exercise capacity when added to standard medical therapy. Methods and results We performed a randomized, double-blind, placebo-controlled trial in 120 ambulatory patients aged ≥18 years with New York Heart Association (NYHA) class II-III chronic heart failure. All patients received conventional medical therapy, as tolerated, and were randomized to either hawthorn 450 mg twice daily or placebo for 6 months. The primary outcome was change in 6 min walk distance at 6 months. Secondary outcomes included quality of life (QOL) measures, peak oxygen consumption, and anaerobic threshold during maximal treadmill exercise testing, NYHA classification, left ventricular ejection fraction (LVEF), neurohormones, and measures of oxidative stress and inflammation. There were no significant differences between groups in the change in 6 min walk distance (P = 0.61), or on measures of QOL, functional capacity, neurohormones, oxidative stress, or inflammation. A modest difference in LVEF favoured hawthorn (P = 0.04). There were significantly more adverse events reported in the hawthorn group (P = 0.02), although most were non-cardiac. Conclusion Hawthorn provides no symptomatic or functional benefit when given with standard medical therapy to patients with heart failure. This trial is registered in ClinicalTrials.gov ID: NCT00343902. PMID:19789403
Hanssen, H; Minghetti, A; Magon, S; Rossmeissl, A; Rasenack, M; Papadopoulou, A; Klenk, C; Faude, O; Zahner, L; Sprenger, T; Donath, L
2018-03-01
Aerobic exercise training is a promising complementary treatment option in migraine and can reduce migraine days and improve retinal microvascular function. Our aim was to elucidate whether different aerobic exercise programs at high vs moderate intensities distinctly affect migraine days as primary outcome and retinal vessel parameters as a secondary. In this randomized controlled trial, migraine days were recorded by a validated migraine diary in 45 migraineurs of which 36 (female: 28; age: 36 (SD:10)/BMI: 23.1 (5.3) completed the training period (dropout: 20%). Participants were assigned (Strata: age, gender, fitness and migraine symptomatology) to either high intensity interval training (HIT), moderate continuous training (MCT), or a control group (CON). Intervention groups trained twice a week over a 12-week intervention period. Static retinal vessel analysis, central retinal arteriolar (CRAE) and venular (CRVE) diameters, as well as the arteriolar-to-venular diameter ratio (AVR) were obtained for cerebrovascular health assessment. Incremental treadmill testing yielded maximal and submaximal fitness parameters. Overall, moderate migraine day reductions were observed (ηP2 = .12): HIT revealed 89% likely beneficial effects (SMD = 1.05) compared to MCT (SMD = 0.50) and CON (SMD = 0.59). Very large intervention effects on AVR improvement (ηP2 = 0.27), slightly favoring HIT (SMD=-0.43) over CON (SMD=0), were observed. HIT seems more effective for migraine day reduction and improvement of cerebrovascular health compared to MCT. Intermittent exercise programs of higher intensities may need to be considered as an additional treatment option in migraine patients. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Farris, Samantha G; Uebelacker, Lisa A; Brown, Richard A; Price, Lawrence H; Desaulniers, Julie; Abrantes, Ana M
2017-12-01
Smoking increases risk of early morbidity and mortality, and risk is compounded by physical inactivity. Anxiety sensitivity (fear of anxiety-relevant somatic sensations) is a cognitive factor that may amplify the subjective experience of exertion (effort) during exercise, subsequently resulting in lower engagement in physical activity. We examined the effect of anxiety sensitivity on ratings of perceived exertion (RPE) and physiological arousal (heart rate) during a bout of exercise among low-active treatment-seeking smokers. Adult daily smokers (n = 157; M age = 44.9, SD = 11.13; 69.4% female) completed the Rockport 1.0 mile submaximal treadmill walk test. RPE and heart rate were assessed during the walk test. Multi-level modeling was used to examine the interactive effect of anxiety sensitivity × time on RPE and on heart rate at five time points during the walk test. There were significant linear and cubic time × anxiety sensitivity effects for RPE. High anxiety sensitivity was associated with greater initial increases in RPE during the walk test, with stabilized ratings towards the last 5 min, whereas low anxiety sensitivity was associated with lower initial increase in RPE which stabilized more quickly. The linear time × anxiety sensitivity effect for heart rate was not significant. Anxiety sensitivity is associated with increasing RPE during moderate-intensity exercise. Persistently rising RPE observed for smokers with high anxiety sensitivity may contribute to the negative experience of exercise, resulting in early termination of bouts of prolonged activity and/or decreased likelihood of future engagement in physical activity.
Cho, Min Soo; Jang, Sun-Joo; Lee, Chang Hoon; Park, Chong-Hun
2012-09-01
The relationship between blood pressure (BP) response during exercise and future cardiovascular events remains unclear. We assessed the association between an increase in early systolic BP (SBP) during exercise tests and future cardiovascular events in patients with sustained hypertension (sHT). Between 2002 and 2005, we enrolled 300 patients newly diagnosed with mild-to-moderate sHT without complications from the Asan Ambulatory Blood Pressure Monitoring registry. All the patients successfully performed treadmill tests, achieving target heart rate according to the Naughton/Balke protocol. The patients were divided into quartiles according to their SBP at 8 min (7.4 metabolic equivalent tasks). The primary outcome was the composite of all-cause death, new-onset ischemic heart disease and stroke. The 5-year survival rates did not differ significantly among quartiles 1-4 (100% vs. 96.6% vs. 94.4% vs. 98.3%, P=0.211). Relative to quartile 1, the 5-year event-free survival rates were significantly lower in patients in quartiles 3 (86.9% vs. 98.3%, P=0.023) and 4 (88.2% vs. 98.3%, P=0.023). After multivariable adjustment for covariates, the risk for the composite end point was higher for patients in quartiles 3 (Hazard ratio (HR) 4.69, 95% confidence interval (CI) 1.28-17.13, P=0.020) and 4 (HR 3.65, 95% CI 0.92-14.50, P=0.065) than in quartiles 1 and 2. Cardiovascular risk was significantly higher in patients with stage 4 SBP (>180 mm Hg) even after adjustment (HR 4.00, 95% CI 1.19-13.44, P=0.025). Increased submaximal SBP response to exercise may be a predictor of future cardiovascular events in patients with mild-to-moderate sHT.
Mila-Kierzenkowska, Celestyna; Jurecka, Alicja; Woźniak, Alina; Szpinda, Michał; Augustyńska, Beata; Woźniak, Bartosz
2013-01-01
The aim of the study was to determine the effect of single whole-body cryotherapy (WBC) session applied prior to submaximal exercise on the activity of antioxidant enzymes, the concentration of lipid peroxidation products, total oxidative status, and the level of cytokines in blood of volleyball players. The study group consisted of 18 male professional volleyball players, who were subjected to extremely cold air (-130°C) prior to exercise performed on cycloergometer. Blood samples were taken five times: before WBC, after WBC procedure, after exercise preceded by cryotherapy (WBC exercise), and before and after exercise without WBC (control exercise). The activity of catalase statistically significantly increased after control exercise. Moreover, the activity of catalase and superoxide dismutase was lower after WBC exercise than after control exercise (P < 0.001). After WBC exercise, the level of IL-6 and IL-1β was also lower (P < 0.001) than after control exercise. The obtained results may suggest that cryotherapy prior to exercise may have some antioxidant and anti-inflammatory properties. The relations between the level of studied oxidative stress and inflammatory markers may testify to the contribution of reactive oxygen species in cytokines release into the blood system in response to exercise and WBC.
Mila-Kierzenkowska, Celestyna; Szpinda, Michał; Augustyńska, Beata; Woźniak, Bartosz
2013-01-01
The aim of the study was to determine the effect of single whole-body cryotherapy (WBC) session applied prior to submaximal exercise on the activity of antioxidant enzymes, the concentration of lipid peroxidation products, total oxidative status, and the level of cytokines in blood of volleyball players. The study group consisted of 18 male professional volleyball players, who were subjected to extremely cold air (−130°C) prior to exercise performed on cycloergometer. Blood samples were taken five times: before WBC, after WBC procedure, after exercise preceded by cryotherapy (WBC exercise), and before and after exercise without WBC (control exercise). The activity of catalase statistically significantly increased after control exercise. Moreover, the activity of catalase and superoxide dismutase was lower after WBC exercise than after control exercise (P < 0.001). After WBC exercise, the level of IL-6 and IL-1β was also lower (P < 0.001) than after control exercise. The obtained results may suggest that cryotherapy prior to exercise may have some antioxidant and anti-inflammatory properties. The relations between the level of studied oxidative stress and inflammatory markers may testify to the contribution of reactive oxygen species in cytokines release into the blood system in response to exercise and WBC. PMID:24489985
Kim, Ki-Hyun; Hwangbo, Gak; Kim, Seong-Gil
2015-04-01
[Purpose] The purpose of this study was to access the effect of weight bearing exercise (treadmill exercise) and non-weight-bearing exercise (swimming exercise) on gait in the recovery process after a sciatic nerve crush injury. [Subjects and Methods] Rats were randomly divided into a swimming group (n=3) with non-weight-bearing exercise after a sciatic nerve crush and a treadmill group (n=3) with weight bearing exercise after a sciatic nerve crush. Dartfish is a program that can analyze and interpret motion through video images. The knee lateral epicondyle, lateral malleolus, and metatarsophalangeal joint of the fifth toe were marked by black dots before recording. [Results] There were significant differences in TOK (knee angle toe off) and ICK (knee angle at initial contact) in the swimming group and in TOK, ICA (ankle angle at initial contact), and ICK in the treadmill group. In comparison between groups, there were significant differences in TOA (ankle angle in toe off) and ICA at the 7th day. [Conclusion] There was no difference between weight bearing and non-weight-bearing exercise in sciatic nerve damage, and both exercises accelerated the recovery process in this study.
Medical Aspects of Harsh Environments. Volume 2
2002-01-01
Fulco CS, Trad LA, Forte VA, Cymerman A. Altitude acclimatization attenuates plasma ammonia accumulation during submaximal exercise. J Appl Physiol...107 and decreased ammonia accumulation66 and dependence on muscle glyco- gen.109 These hypoxia-produced changes in oxygen delivery and metabolic profile...Young PM, Rock PB, Fulco CS, Trad LA, Forte VA Jr, Cymerman A. Altitude acclimatization attenuates plasma ammonia accumulation during submaximal
PREDICTION OF VO2PEAK USING OMNI RATINGS OF PERCEIVED EXERTION FROM A SUBMAXIMAL CYCLE EXERCISE TEST
Mays, Ryan J.; Goss, Fredric L.; Nagle-Stilley, Elizabeth F.; Gallagher, Michael; Schafer, Mark A.; Kim, Kevin H.; Robertson, Robert J.
2015-01-01
Summary The primary aim of this study was to develop statistical models to predict peak oxygen consumption (VO2peak) using OMNI Ratings of Perceived Exertion measured during submaximal cycle ergometry. Men (mean ± standard error: 20.90 ± 0.42 yrs) and women (21.59 ± 0.49 yrs) participants (n = 81) completed a load-incremented maximal cycle ergometer exercise test. Simultaneous multiple linear regression was used to develop separate VO2peak statistical models using submaximal ratings of perceived exertion for the overall body, legs, and chest/breathing as predictor variables. VO2peak (L·min−1) predicted for men and women from ratings of perceived exertion for the overall body (3.02 ± 0.06; 2.03 ± 0.04), legs (3.02 ± 0.06; 2.04 ± 0.04) and chest/breathing (3.02 ± 0.05; 2.03 ± 0.03) were similar with measured VO2peak (3.02 ± 0.10; 2.03 ± 0.06, ps > .05). Statistical models based on submaximal OMNI Ratings of Perceived Exertion provide an easily administered and accurate method to predict VO2peak. PMID:25068750
The Kinematics of Treadmill Locomotion in Space
NASA Technical Reports Server (NTRS)
Thornton, W. E.; Cavanagh, P. R.; Buczek, F. L.; Burgess-Milliron, M. J.; Davis, B. L.
1997-01-01
Locomotion on a treadmill in 0 G will probably remain a centerpiece of NASA's exercise countermeasures programme. This form of physical activity has the potential to cause large bone and muscle forces as well as loading during a period of continuous treadmill exercise. A critical concern is the provision of a treadmill which can approximate 1 G performance in space. At this point, no adequate objective measurements of in-flight treadmill kinetics or of the human response to this activity have been made. Interpretation of the results obtained in the present study is limited by the following: (1) bungee tensions were not measured; (2) ground reaction forces were not measured in parallel with the kinematic measurements; and (3) the instrumentation used to film the astronauts could itself have been affected by microgravity. Despite these shortcomings, what is apparent is that exercise during NASA missions STS 7 and STS 8 resulted in leg motions that were similar to those found during 1 G locomotion on an inclined passive treadmill and on an active treadmill at an even steeper grade. In addition, it was apparent that the majority of the loads were transmitted through the forefoot, and one can surmise that this style of running would result in physiologically significant tensions in the calf musculature and resultant ankle compressive loading. Further speculation regarding limb loading is complicated by the fact that varying amounts of force are transmitted through (1) the treadmill handle and (2) bungee cords that act as a tether. New generations of treadmills are being manufactured that could provide I important information for planners of long-duration space missions. If these types of treadmill are flown on future missions, it will be possible to control bungee tensions more precisely, control for grade and speed, and, most importantly, provide data on the rates and magnitudes of limb loading. These data could then be incorporated into biomechanical models of the lower limb to more fully understand mechanisms of load transmission from distal to proximal structures and to optimize in-flight exercise protocols in such a way that muscle and bone loss could be reduced.
The Effects of Treadmill Running on Aging Laryngeal Muscle Structure
Kletzien, Heidi; Russell, John A.; Connor, Nadine P.
2015-01-01
Levels of Evidence NA (animal study) Objective Age-related changes in laryngeal muscle structure and function may contribute to deficits in voice and swallowing observed in elderly people. We hypothesized that treadmill running, an exercise that increases respiratory drive to upper airway muscles, would induce changes in thyroarytenoid muscle myosin heavy chain (MHC) isoforms consistent with a fast-slow transformation in muscle fiber type. Study Design Randomized parallel group controlled trial. Methods Fifteen young adult and 14 old Fischer 344/Brown Norway rats received either treadmill running or no exercise (5 days/week/8 weeks). Myosin heavy chain isoform composition in the thyroarytenoid muscle was examined at the end of 8 weeks. Results Significant age and treatment effects were found. The young adult group had the greatest proportion of superfast contracting MHCIIL. The treadmill running group had the lowest proportion of MHCIIL and the greatest proportion of MHCIIx. Conclusion Thyroarytenoid muscle structure was affected both by age and treadmill running in a fast-slow transition that is characteristic of exercise manipulations in other skeletal muscles. PMID:26256100
Autonomic Recovery Is Delayed in Chinese Compared with Caucasian following Treadmill Exercise.
Sun, Peng; Yan, Huimin; Ranadive, Sushant M; Lane, Abbi D; Kappus, Rebecca M; Bunsawat, Kanokwan; Baynard, Tracy; Hu, Min; Li, Shichang; Fernhall, Bo
2016-01-01
Caucasian populations have a higher prevalence of cardiovascular disease (CVD) when compared with their Chinese counterparts and CVD is associated with autonomic function. It is unknown whether autonomic function during exercise recovery differs between Caucasians and Chinese. The present study investigated autonomic recovery following an acute bout of treadmill exercise in healthy Caucasians and Chinese. Sixty-two participants (30 Caucasian and 32 Chinese, 50% male) performed an acute bout of treadmill exercise at 70% of heart rate reserve. Heart rate variability (HRV) and baroreflex sensitivity (BRS) were obtained during 5-min epochs at pre-exercise, 30-min, and 60-min post-exercise. HRV was assessed using frequency [natural logarithm of high (LnHF) and low frequency (LnLF) powers, normalized high (nHF) and low frequency (nLF) powers, and LF/HF ratio] and time domains [Root mean square of successive differences (RMSSD), natural logarithm of RMSSD (LnRMSSD) and R-R interval (RRI)]. Spontaneous BRS included both up-up and down-down sequences. At pre-exercise, no group differences were observed for any HR, HRV and BRS parameters. During exercise recovery, significant race-by-time interactions were observed for LnHF, nHF, nLF, LF/HF, LnRMSSD, RRI, HR, and BRS (up-up). The declines in LnHF, nHF, RMSSD, RRI and BRS (up-up) and the increases in LF/HF, nLF and HR were blunted in Chinese when compared to Caucasians from pre-exercise to 30-min to 60-min post-exercise. Chinese exhibited delayed autonomic recovery following an acute bout of treadmill exercise. This delayed autonomic recovery may result from greater sympathetic dominance and extended vagal withdrawal in Chinese. Chinese Clinical Trial Register ChiCTR-IPR-15006684.
Autonomic Recovery Is Delayed in Chinese Compared with Caucasian following Treadmill Exercise
Sun, Peng; Yan, Huimin; Ranadive, Sushant M.; Lane, Abbi D.; Kappus, Rebecca M.; Bunsawat, Kanokwan; Baynard, Tracy; Hu, Min; Li, Shichang; Fernhall, Bo
2016-01-01
Caucasian populations have a higher prevalence of cardiovascular disease (CVD) when compared with their Chinese counterparts and CVD is associated with autonomic function. It is unknown whether autonomic function during exercise recovery differs between Caucasians and Chinese. The present study investigated autonomic recovery following an acute bout of treadmill exercise in healthy Caucasians and Chinese. Sixty-two participants (30 Caucasian and 32 Chinese, 50% male) performed an acute bout of treadmill exercise at 70% of heart rate reserve. Heart rate variability (HRV) and baroreflex sensitivity (BRS) were obtained during 5-min epochs at pre-exercise, 30-min, and 60-min post-exercise. HRV was assessed using frequency [natural logarithm of high (LnHF) and low frequency (LnLF) powers, normalized high (nHF) and low frequency (nLF) powers, and LF/HF ratio] and time domains [Root mean square of successive differences (RMSSD), natural logarithm of RMSSD (LnRMSSD) and R–R interval (RRI)]. Spontaneous BRS included both up-up and down-down sequences. At pre-exercise, no group differences were observed for any HR, HRV and BRS parameters. During exercise recovery, significant race-by-time interactions were observed for LnHF, nHF, nLF, LF/HF, LnRMSSD, RRI, HR, and BRS (up-up). The declines in LnHF, nHF, RMSSD, RRI and BRS (up-up) and the increases in LF/HF, nLF and HR were blunted in Chinese when compared to Caucasians from pre-exercise to 30-min to 60-min post-exercise. Chinese exhibited delayed autonomic recovery following an acute bout of treadmill exercise. This delayed autonomic recovery may result from greater sympathetic dominance and extended vagal withdrawal in Chinese. Trial Registration: Chinese Clinical Trial Register ChiCTR-IPR-15006684 PMID:26784109
Graded Exercise Testing in a Pediatric Weight Management Center: The DeVos Protocol.
Eisenmann, Joey C; Guseman, Emily Hill; Morrison, Kyle; Tucker, Jared; Smith, Lucie; Stratbucker, William
2015-12-01
In this article, we describe a protocol used to test the functional capacity of the obese pediatric patient and describe the peak oxygen consumption (VO2peak) of patients seeking treatment at a pediatric weight management center. One hundred eleven (mean age, 12.5 ± 3.0 years) patients performed a multistage exercise test on a treadmill, of which 90 (81%) met end-test criteria and provided valid VO2peak data. Peak VO2 was expressed: (1) in absolute terms (L·min(-1)); (2) as the ratio of the volume of oxygen consumed per minute relative to total body mass (mL·kg(-1)·min(-1)); and (3) as the ratio of the volume of oxygen consumed per minute relative to fat-free mass (mL·FFM·kg(-1)·min(-1)). Mean BMI z-score was 2.4 ± 0.3 and the mean percent body fat was 36.5 ± 9.7%. Absolute VO2peak (L·min(-1)) was significantly different between sexes; however, relative values were similar between sexes. Mean VO2peak was 25.7 ± 4.8 mL·kg(-1)·min(-1) with a range of 13.5-36.7 mL·kg(-1)·min(-1). Obese youth seeking treatment at a stage 3 pediatric weight management center exhibit low VO2peak. The protocol outlined here should serve as a model for similar programs interested in the submaximal and peak responses to exercise in obese pediatric patients.
Ground Reaction Forces During Locomotion in Simulated Microgravity
NASA Technical Reports Server (NTRS)
Davis, B. L.; Cavanagh, Peter R.; Sommer, H. J., III; Wu, G.
1996-01-01
Significant losses in bone density and mineral, primarily in the lower extremities have been reported following exposure to weightlessness. Recent investigations suggest that mechanical influences such as bone deformation and strain rate may be critically important in stimulating new bone formation. It was hypothesized that velocity, cadence and harness design would significantly affect lower limb impact forces during treadmill exercise in simulated zero gravity (0G). A ground-based hypogravity simulator was used to investigate which factors affect limb loading during tethered treadmill exercise. A fractional factorial design was used and 12 subjects were studied. The results showed that running on active and passive treadmills in the simulator with a tethering force close to the maximum comfortable level produced similar magnitudes for the peak ground reaction force. It was also found that these maximum forces were significantly lower than those obtained during overground trials, even when the speeds of locomotion in the simulator were 66 % greater than those in 1 G. Cadence had no effect on any of the response variables. The maximum rate of force application (DFDT-Max) was similar for overground running and exercise in simulated 0G, provided that the "weightless subjects ran on a motorized treadmill. These findings have implications for the use of treadmill exercise as a countermeasure for hypokinetic osteoporosis. As the relationship between mechanical factors and osteogenesis becomes better understood, results from human experiments in 0G simulators will help to design in-flight exercise programs that are more closely targeted to generate appropriate mechanical stimuli.
Cevik, Ozge Selin; Sahin, Leyla; Tamer, Lulufer
2018-05-01
The type and duration of exposure to stress is an important influence on emotional and cognitive functions. Learning is the adaptive response of the central nervous system that occurs in hippocampus which affects from environmental factors like exercise. In this study, we investigated effects of long term treadmill exercise on learning and behavior on chronic social isolated rat. Male Wistar rats (n = 32) randomly assigned into four groups: control, exercised, social isolation, social isolation + exercise during postnatal days (PNDs) 21-34. Social isolation protocol was applied during 14 days by placing rat in a cage one by one. Rats were exercised during 5 days, days were chosen randomly for overall 4 weeks (20, 30, 50, 60 min respectively). Finally, learning performance was evaluated by Morris water maze (MWM). Anxiety behavior was evaluated by Open field and elevated plus maze test. At the end of learning and behavior tests, the rats were decapitated to collect blood samples via intracardiac puncture and corticosterone analysis was performed with ELISA method. Animal weights and water consumption did not change significantly but food intake differed among groups. Corticosterone level did not change between groups. The frequency of entering to the target quadrant increased in exercised rat significantly. However, there was no difference in learning and memory in rats. Treadmill exercise reduced anxiety behavior significantly. Taken together these findings may point out that, long term treadmill exercise did not change learning and memory but reduced anxiety level of rat without changing corticosterone level. Copyright © 2018 Elsevier Inc. All rights reserved.
Queiroz, R W; Silva, V L; Rocha, D R; Costa, D S; Turco, S H N; Silva, M T B; Santos, A A; Oliveira, M B L; Pereira, A S R; Palheta-Junior, R C
2018-02-01
Changes in physiological parameters that are induced by acute exercise on a treadmill in healthy military dogs have not been thoroughly investigated, especially with regard to age. This study investigated the effects of acute exercise on a treadmill on cardiovascular function, biochemical parameters and gastric antral motility in military dogs. Thermography was used to assess variations in superficial hindlimb muscle temperature. Nine healthy dogs were distributed into three groups according to their age (Group I: 25 ± 7 months; Group II: 51 ± 12 months; Group III: 95 ± 10 months) and sequentially subjected to running exercise on a treadmill for 12 min (3.2 km/h at 0° incline for 4 min, 6.4 km/h at 0° incline for 4 min and 6.4 km/h at 10° incline for 4 min). Heart rate, systolic and diastolic arterial pressure (DAP), gastric motility, haematocrit and biochemical analyses were performed at rest and after each session of treadmill exercise. Infrared thermographic images of muscles in the pelvic member were taken. Exercise decreased DAP in Group I, increased systolic arterial pressure in Groups II and III and increased mean arterial pressure in Group III (all p < 0.05). After the exercise protocol, plasma creatine kinase and aspartate aminotransferase levels increased only in Group I (p < 0.05). Exercise increased heart rate and decreased the gastric motility of a solid meal at 180 min in all groups (all p < 0.05). Exercise also elevated temperature in the femoral biceps muscles in Group I compared with the older dogs. The results indicate that acute exercise decreased gastric motility in dogs, regardless of age, and caused more pronounced cardiovascular changes in older dogs than in younger dogs. Acute exercise also altered biochemical parameters and superficial hindlimb muscle temperature in younger military dogs. © 2016 Blackwell Verlag GmbH.
Vaegter, H B; Hoeger Bement, M; Madsen, A B; Fridriksson, J; Dasa, M; Graven-Nielsen, T
2017-01-01
Exercise causes an acute decrease in the pain sensitivity known as exercise-induced hypoalgesia (EIH), but the specificity to certain pain modalities remains unknown. This study aimed to compare the effect of isometric exercise on the heat and pressure pain sensitivity. On three different days, 20 healthy young men performed two submaximal isometric knee extensions (30% maximal voluntary contraction in 3 min) and a control condition (quiet rest). Before and immediately after exercise and rest, the sensitivity to heat pain and pressure pain was assessed in randomized and counterbalanced order. Cuff pressure pain threshold (cPPT) and pain tolerance (cPTT) were assessed on the ipsilateral lower leg by computer-controlled cuff algometry. Heat pain threshold (HPT) was recorded on the ipsilateral foot by a computer-controlled thermal stimulator. Cuff pressure pain tolerance was significantly increased after exercise compared with baseline and rest (p < 0.05). Compared with rest, cPPT and HPT were not significantly increased by exercise. No significant correlation between exercise-induced changes in HPT and cPPT was found. Test-retest reliability before and after the rest condition was better for cPPT and CPTT (intraclass correlation > 0.77) compared with HPT (intraclass correlation = 0.54). The results indicate that hypoalgesia after submaximal isometric exercise is primarily affecting tolerance of pressure pain compared with the pain threshold. These data contribute to the understanding of how isometric exercise influences pain perception, which is necessary to optimize the clinical utility of exercise in management of chronic pain. The effect of isometric exercise on pain tolerance may be relevant for patients in chronic musculoskeletal pain as a pain-coping strategy. WHAT DOES THIS STUDY ADD?: The results indicate that hypoalgesia after submaximal isometric exercise is primarily affecting tolerance of pressure pain compared with the heat and pressure pain threshold. These data contribute to the understanding of how isometric exercise influences pain perception, which is necessary to optimize the clinical utility of exercise in management of chronic pain. © 2016 European Pain Federation - EFIC®.
Use of the International Space Station as an Exercise Physiology Lab
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, Lori
2013-01-01
The International Space Station (ISS) is now in its prime utilization phase with great opportunity to use the ISS as a lab. With respect to exercise physiology there is considerable research opportunity. Crew members exercise for up to 2 hours per day using a cycle ergometer, treadmill, and advanced resistive exercise device (ARED). There are several ongoing exercise research studies by NASA, ESA and CSA. These include studies related to evaluation of new exercise prescriptions (SPRINT), evaluation of aerobic capacity (VO2max), biomechanics (Treadmill Kinematics), energy expenditure during spaceflight (Energy), evaluation of cartilage (Cartilage), and evaluation of cardiovascular health (Vascular). Examples of how ISS is used for exercise physiology research will be presented.
NASA Technical Reports Server (NTRS)
Smith, Cassie; Lee, Stuart MC; Laughlin, Mitzi; Loehr, James; Norcross, Jason; DeWitt, John; Hagan, R. D.
2006-01-01
Treadmill locomotion is used onboard the International Space Station (ISS) as a countermeasure to the effects of prolonged weightlessness. The treadmill operates in two modes: motorized (T-M) and non-motorized (T-NM). Little is known about the potential physiologic differences between modes which may affect countermeasure exercise prescription. PURPOSE: To quantify heart rate (HR), oxygen consumption (VO2), perceived exertion (RPE), and blood lactate (BLa) during T-M and T-NM locomotion at 2 and 4 mph in normal ambulatory subjects. METHODS: Twenty subjects (10 men, 10 women; 31+/-5 yr, 172+/-10 cm, 68+/-13 kg, mean SD) with a treadmill peakVO2 of 45.5+/-5.4 ml/kg/min (mean+/-SD) exercised on the ground-based ISS treadmill. Following a familiarization session in each mode, subjects completed two data collection sessions, T-M and T-NM in random order, at 2 and 4 mph. Subjects attempted to complete 5 min of exercise at each speed; if they could not maintain the speed, the trial was discontinued. At least 5 minutes of rest separated each speed trial, and at least 48 hrs separated each session. VO2 was measured continuously (metabolic gas analysis), while HR (HR monitor) and RPE (Borg Chart, 6-20 scale) were recorded each min. Not all subjects completed 5 min during each condition, therefore the mean of the min 3 and 4 was taken as representative of steady-state. BLa was measured (finger stick) within 2 min post-exercise. Paired t-tests were used to test for differences (p<0.05) between treadmill modes within the same speed. RESULTS: All twenty subjects completed at least 4 min of exercise during all conditions, except T-NM 4 mph when only 11 subjects completed the minimum exercise duration. VO2, HR, RPE and BLa were significantly higher during T-NM locomotion at both speeds.
Glaister, Mark; Williams, Benjamin Henley; Muniz-Pumares, Daniel; Balsalobre-Fernández, Carlos; Foley, Paul
2016-01-01
The aim of this study was to evaluate the effects of caffeine on physiological responses to submaximal exercise, with a focus on blood lactate concentration ([BLa]). Using a randomised, single-blind, crossover design; 16 endurance-trained, male cyclists (age: 38 ± 8 years; height: 1.80 ± 0.05 m; body mass: 76.6 ± 7.8 kg; [Formula: see text]: 4.3 ± 0.6 L∙min-1) completed four trials on an electromagnetically-braked cycle ergometer. Each trial consisted of a six-stage incremental test (3 minute stages) followed by 30 minutes of passive recovery. One hour before trials 2-4, participants ingested a capsule containing 5 mg∙kg-1 of either caffeine or placebo (maltodextrin). Trials 2 and 3 were designed to evaluate the effects of caffeine on various physiological responses during exercise and recovery. In contrast, Trial 4 was designed to evaluate the effects of caffeine on [BLa] during passive recovery from an end-exercise concentration of 4 mmol∙L-1. Relative to placebo, caffeine increased [BLa] during exercise, independent of exercise intensity (mean difference: 0.33 ± 0.41 mmol∙L-1; 95% likely range: 0.11 to 0.55 mmol∙L-1), but did not affect the time-course of [BLa] during recovery (p = 0.604). Caffeine reduced ratings of perceived exertion (mean difference: 0.5 ± 0.7; 95% likely range: 0.1 to 0.9) and heart rate (mean difference: 3.6 ± 4.2 b∙min-1; 95% likely range: 1.3 to 5.8 b∙min-1) during exercise, with the effect on the latter dissipating as exercise intensity increased. Supplement × exercise intensity interactions were observed for respiratory exchange ratio (p = 0.004) and minute ventilation (p = 0.034). The results of the present study illustrate the clear, though often subtle, effects of caffeine on physiological responses to submaximal exercise. Researchers should be aware of these responses, particularly when evaluating the physiological effects of various experimental interventions.
Stangier, Carolin; Abel, Thomas; Hesse, Clemens; Claen, Stephanie; Mierau, Julia; Hollmann, Wildor; Strüder, Heiko K
2016-06-01
Winter weather conditions restrict regular sport-specific endurance training in inline speed skating. As a result, this study was designed to compare the effects of cycling and running training programs on inline speed skaters' endurance performance. Sixteen (8 men, 8 women) high-level athletes (mean ± SD 24 ± 8 years) were randomly assigned to 1 of 2 groups (running and cycling). Both groups trained twice a week for 8 weeks, one group on a treadmill and the other on a cycle ergometer. Training intensity and duration was individually calculated (maximal fat oxidation: ∼52% of V[Combining Dot Above]O2peak: 500 kcal per session). Before and after the training intervention, all athletes performed an incremental specific (inline speed skating) and 1 nonspecific (cycling or running) step test according to the group affiliation. In addition to blood lactate concentration, oxygen uptake (V[Combining Dot Above]O2), ventilatory equivalent (VE/V[Combining Dot Above]O2), respiratory exchange ratio (RER), and heart rate were measured. The specific posttest revealed significantly increased absolute V[Combining Dot Above]O2peak values (2.9 ± 0.4, 3.4 ± 0.7, p = 0.01) and submaximal V[Combining Dot Above]O2 values (p ≤ 0.01). VE/V[Combining Dot Above]O2 and RER significantly decreased at maximal (46.6 ± 6.6, 38.5 ± 3.4, p = 0.005; 1.1 ± 0.03, 1.0 ± 0.04, p = 0.001) and submaximal intensities (p ≤ 0.04). None of the analysis revealed a significant group effect (p ≥ 0.15). The results indicate that both cycling vs. running exercise at ∼52% of V[Combining Dot Above]O2peak had a positive effect on the athletes' endurance performance. The increased submaximal V[Combining Dot Above]O2 values indicate a reduction in athletes' inline speed skating technique. Therefore, athletes would benefit from a focus on technique training in the subsequent period.
Shaltout, Hossam A; Eggebeen, Joel; Marsh, Anthony P; Brubaker, Peter H; Laurienti, Paul J; Burdette, Jonathan H; Basu, Swati; Morgan, Ashley; Dos Santos, Patricia C; Norris, James L; Morgan, Timothy M; Miller, Gary D; Rejeski, W Jack; Hawfield, Amret T; Diz, Debra I; Becton, J Thomas; Kim-Shapiro, Daniel B; Kitzman, Dalane W
2017-09-30
Aerobic exercise training is an effective therapy to improve peak aerobic power (peak VO 2 ) in individuals with hypertension (HTN, AHA/ACC class A) and heart failure patients with preserved ejection fraction (HFpEF). High nitrate containing beetroot juice (BRJ) also improves sub-maximal endurance and decreases blood pressure in both HTN and HFpEF. We hypothesized that combining an aerobic exercise and dietary nitrate intervention would result in additive or even synergistic positive effects on exercise tolerance and blood pressure in HTN or HFpEF. We report results from two pilot studies examining the effects of supervised aerobic exercise combined with dietary nitrate in patients with controlled HTN (n = 26, average age 65 ± 5 years) and in patients with HFpEF (n = 20, average age 69 ± 7 years). All patients underwent an aerobic exercise training regimen; half were randomly assigned to consume a high nitrate-containing beet juice beverage (BRJ containing 6.1 mmol nitrate for the HFpEF study consumed three times a week and 8 mmol nitrate for the HTN study consumed daily) while the other half consumed a beet juice beverage with the nitrate removed (placebo). The main result was that there was no added benefit observed for any outcomes when comparing BRJ to placebo in either HTN or HFpEF patients undergoing exercise training (p ≥ 0.14). There were within-group benefits. In the pilot study in patients with HFpEF, aerobic endurance (primary outcome), defined as the exercise time to volitional exhaustion during submaximal cycling at 75% of maximal power output, improved during exercise training within each group from baseline to end of study, 369 ± 149 s vs 520 ± 257 s (p = 0.04) for the placebo group and 384 ± 129 s vs 483 ± 258 s for the BRJ group (p = 0.15). Resting systolic blood pressure in patients with HFpEF also improved during exercise training in both groups, 136 ± 16 mm Hg vs 122 ± 3 mm Hg for the placebo group (p < 0.05) and 132 ± 12 mm Hg vs 119 ± 9 mm Hg for the BRJ group (p < 0.05). In the HTN pilot study, during a treadmill graded exercise test, peak oxygen consumption (primary outcome) did not change significantly, but time to exhaustion (also a primary outcome) improved in both groups, 504 ± 32 s vs 601 ± 38 s (p < 0.05) for the placebo group and 690 ± 38 s vs 772 ± 95 s for the BRJ group (p < 0.05) which was associated with a reduction in supine resting systolic blood pressure in BRJ group. Arterial compliance also improved during aerobic exercise training in both the HFpEF and the HTN patients for both BRJ and placebo groups. Future work is needed to determine if larger nitrate doses would provide an added benefit to supervised aerobic exercise in HTN and HFpEF patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Biomechanical Analysis of T2 Exercise
NASA Technical Reports Server (NTRS)
DeWitt, John K.; Ploutz-Snyder, Lori; Everett, Meghan; Newby, Nathaniel; Scott-Pandorf, Melissa; Guilliams, Mark E.
2010-01-01
Crewmembers regularly perform treadmill exercise on the ISS. With the implementation of T2 on ISS, there is now the capacity to obtain ground reaction force (GRF) data GRF data combined with video motion data allows biomechanical analyses to occur that generate joint torque estimates from exercise conditions. Knowledge of how speed and load influence joint torque will provide quantitative information on which exercise prescriptions can be based. The objective is to determine the joint kinematics, ground reaction forces, and joint kinetics associated with treadmill exercise on the ISS. This study will: 1) Determine if specific exercise speed and harness load combinations are superior to others in exercise benefit; and 2) Aid in the design of exercise prescriptions that will be most beneficial in maintaining crewmember health.
Effects of treadmill exercise intensity on spatial working memory and long-term memory in rats.
Wang, Xiao-Qin; Wang, Gong-Wu
2016-03-15
Moderate exercise promotes learning and memory. Most studies mainly focused on memory exercise effects of in the ageing and patients. There is lack of quantitative research about effect of regular exercise intensity on different memory types in normal subjects. Present study investigated the effects of different intensities of treadmill exercise on working memory and long-term memory. Fifty female Wistar rats were trained by T-maze delayed spatial alternation (DSA) task with 3 delays (10s, 60s and 300s). Then they got a 30min treadmill exercise for 30days in 4 intensities (control, 0m/min; lower, 15m/min; middle, 20m/min, and higher, 30m/min). Then animals were tested in DSA, passive avoidance and Morris water maze tasks. 1. Exercise increased the neuronal density of hippocampal subregions (CA1, CA3 and dentate gyrus) vs. naïve/control. 2. In DSA task, all groups have similar baseline, lower intensity improved 10s delay accuracy vs. baseline/control; middle and higher intensities improved 300s delay accuracy vs. baseline/control. 3. In water maze learning, all groups successfully found the platform, but middle intensity improved platform field crossing times vs. control in test phase. Present results suggested that treadmill exercise can improve long-term spatial memory and working memory; lower intensity benefits to short-term delayed working memory, and middle or higher intensity benefits to long-term delayed working memory. There was an inverted U dose-effect relationship between exercise intensity and memory performance, but exercise -working memory effect was impacted by delay duration. Copyright © 2016 Elsevier Inc. All rights reserved.
Mokhtari-Zaer, Amin; Ghodrati-Jaldbakhan, Shahrbanoo; Vafaei, Abbas Ali; Miladi-Gorji, Hossein; Akhavan, Maziar M; Bandegi, Ahmad Reza; Rashidy-Pour, Ali
2014-09-01
Chronic exposure to morphine results in cognitive deficits and alterations of apoptotic proteins in favor of cell death in the hippocampus, a brain region critically involved in learning and memory. Physical activity has been shown to have beneficial effects on brain health. In the current work, we examined the effects of voluntary and treadmill exercise on spontaneous withdrawal signs, the associated cognitive defects, and changes of apoptotic proteins in morphine-dependent rats. Morphine dependence was induced through bi-daily administrations of morphine (10mg/kg) for 10 days. Then, the rats were trained under two different exercise protocols: mild treadmill exercise or voluntary wheel exercise for 10 days. After exercise training, their spatial learning and memory and aversive memory were examined by a water maze and by an inhibitory avoidance task, respectively. The expression of the pro-apoptotic protein Bax and the anti-apoptotic protein Bcl-2 in the hippocampus were determined by immunoblotting. We found that chronic exposure to morphine impaired spatial and aversive memory and remarkably suppressed the expression of Bcl-2, but Bax expression remained constant. Both voluntary and treadmill exercise alleviated memory impairment, increased the expression of Bcl-2 protein, and only the later suppressed the expression of Bax protein in morphine-dependent animals. Moreover, both exercise protocols diminished the occurrence of spontaneous morphine withdrawal signs. Our findings showed that exercise reduces the spontaneous morphine-withdrawal signs, blocks the associated impairment of cognitive performance, and overcomes morphine-induced alterations in apoptotic proteins in favor of cell death. Thus, exercise may be a useful therapeutic strategy for cognitive and behavioral deficits in addict individuals. Copyright © 2014 Elsevier B.V. All rights reserved.
O'Leary, Kevin C; Pontifex, Matthew B; Scudder, Mark R; Brown, Michael L; Hillman, Charles H
2011-08-01
The effects of single bouts of aerobic exercise, exergaming, and action videogame play on event-related brain potentials (ERPs) and task performance indices of cognitive control were investigated using a modified flanker task that manipulated demands of attentional inhibition. Participants completed four counterbalanced sessions of 20 min of activity intervention (i.e., seated rest, seated videogame play, and treadmill-based and exergame-based aerobic exercise at 60% HR(max)) followed by cognitive testing once heart rate (HR) returned to within 10% of pre-activity levels. Results indicated decreased RT interference following treadmill exercise relative to seated rest and videogame play. P3 amplitude was increased following treadmill exercise relative to rest, suggesting an increased allocation of attentional resources during stimulus engagement. The seated videogame and exergame conditions did not differ from any other condition. The findings indicate that single bouts of treadmill exercise may improve cognitive control through an increase in the allocation of attentional resources and greater interference control during cognitively demanding tasks. However, similar benefits may not be derived following short bouts of aerobic exergaming or seated videogame participation. Although exergames may increase physical activity participation, they may not exert the same benefits to brain and cognition as more traditional physical activity behaviors. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Mission Specialist (MS) Bluford exercises on middeck treadmill
1983-09-05
STS008-13-0361 (30 Aug.-5 Sept. 1983) --- Astronaut Guion S. Bluford, STS-8 mission specialist, assists Dr. William E. Thornton (out of frame) with a medical test that requires use of the treadmill exercising device designed for spaceflight by the STS-8 medical doctor. This frame was shot with a 35mm camera. Photo credit: NASA
Foot Forces during Treadmill Exercise on the International Space Station
NASA Technical Reports Server (NTRS)
Cavanagh, Peter R.; Rice, Andrea J.; Maender, Christian C.; Gopalakrishnan, Raghavan; Genc, Kerim O.; Kuklis, Matthew
2006-01-01
Exercise has been the primary countermeasure to combat musculoskeletal changes during the approximately 6 month missions to the International Space Station (ISS). However, these countermeasures have not been successful in preventing loss of bone mineral density in the spine and hip of astronauts. We examined lower extremity loading during typical bouts of on-orbit exercise performed by 4 ISS crew members on the ISS treadmill (TVIS) and during locomotor activities on earth (1g). In-shoe forces were monitored at 128Hz using force-measuring insoles placed inside the shoes of the exercising crewmember, stored temporarily on Flash cards, and down-linked via satellite for analysis. Custom software extracted peak forces from up to 30 minutes of locomotor activity. All on-orbit loading conditions for walking and running resulted in peak forces and impact loading rates that were significantly less than those measured in 1g. Typical single leg loads on-orbit in walking and running were 0.860 plus or minus 0.04 body weights (BW) and 1.339 plus or minus 0.07 BW compared to 1.2 plus or minus 0.036 BW and 2.36 plus or minus 0.07 BW in 1g BW respectively. These results indicate that typical exercise on the ISS treadmill does not generate 1g-like loading conditions. This may be partly responsible for the loss of bone mineral density that has been observed in these and other crew members. Since on-orbit treadmill exercise requires a restraining load to return the crew member to the treadmill surface, more studies are required to enable comfortable full body weight loading to be applied.
Kinematic and EMG Comparison of Gait in Normal and Microgravity
NASA Technical Reports Server (NTRS)
DeWitt, John K.; Edwards, W. Brent; Perusek, Gail P.; Lewandowski, Beth E.; Samorezov, Sergey
2009-01-01
Astronauts regularly perform treadmill locomotion as a part of their exercise prescription while onboard the International Space Station. Although locomotive exercise has been shown to be beneficial for bone, muscle, and cardiovascular health, astronauts return to Earth after long duration missions with net losses in all three areas [1]. These losses might be partially explained by fundamental differences in locomotive performance between normal gravity (NG) and microgravity (MG) environments. During locomotive exercise in MG, the subject must wear a waist and shoulder harness that is attached to elastomer bungees. The bungees are attached to the treadmill, and provide forces that are intended to replace gravity. However, unlike gravity, which provides a constant force upon all body parts, the bungees provide a spring force only to the harness. Therefore, subjects are subjected to two fundamental differences in MG: 1) forces returning the subject to the treadmill are not constant, and 2) forces are only applied to the axial skeleton at the waist and shoulders. The effectiveness of the exercise may also be affected by the magnitude of the gravity replacement load. Historically, astronauts have difficulty performing treadmill exercise with loads that approach body weight (BW) due to comfort and inherent stiffness in the bungee system. Although locomotion can be executed in MG, the unique requirements could result in performance differences as compared to NG. These differences may help to explain why long term training effects of treadmill exercise may differ from those found in NG. The purpose of this investigation was to compare locomotion in NG and MG to determine if kinematic or muscular activation pattern differences occur between gravitational environments.
Tucci, Helga T; Ciol, Marcia A; de Araújo, Rodrigo C; de Andrade, Rodrigo; Martins, Jaqueline; McQuade, Kevin J; Oliveira, Anamaria S
2011-07-01
Controlled laboratory study. To assess the activation of 7 shoulder muscles under 2 closed kinetic chain (CKC) tasks for the upper extremity using submaximal isometric effort, thus providing relative quantification of muscular isometric effort for these muscles across the CKC exercises, which may be applied to rehabilitation protocols for individuals with shoulder weakness. CKC exercises favor joint congruence, reduce shear load, and promote joint dynamic stability. Additionally, knowledge about glenohumeral and periscapular muscle activity elicited during CKC exercises may help clinicians to design protocols for shoulder rehabilitation. Using surface electromyography, activation level was measured across 7 shoulder muscles in 20 healthy males, during the performance of a submaximal isometric wall press and bench press. Signals were normalized to the maximal voluntary isometric contraction, and, using paired t tests, data were analyzed between the exercises for each muscle. Compared to the wall press, the bench press elicited higher activity for most muscles, except for the upper trapezius. Levels of activity were usually low but were above 20% maximal voluntary isometric contraction for the serratus anterior on both tasks, and for the long head triceps brachii on the bench press. Both the bench press and wall press, as performed in this study, led to relatively low EMG activation levels for the muscles measured and may be considered for use in the early phases of rehabilitation.
Physical and Emotional Benefits of Different Exercise Environments Designed for Treadmill Running
Churchill, Sarah M.; Brymer, Eric; Davids, Keith
2017-01-01
(1) Background: Green physical activity promotes physical health and mental wellbeing and interesting questions concern effects of this information on designing indoor exercise environments. This study examined the physical and emotional effects of different nature-based environments designed for indoor treadmill running; (2) Methods: In a counterbalanced experimental design, 30 participants performed three, twenty-minute treadmill runs at a self-selected pace while viewing either a static nature image, a dynamic nature image or self-selected entertainment. Distance ran, heart rate (HR) and five pre-and post-exercise emotional states were measured; (3) Results: Participants ran farther, and with higher HRs, with self-selected entertainment compared to the two nature-based environment designs. Participants attained lowered anger, dejection, anxiety and increased excitement post exercise in all of the designed environments. Happiness increased during the two nature-based environment designs compared with self-selected entertainment; (4) Conclusions: Self-selected entertainment encouraged greater physical performances whereas running in nature-based exercise environments elicited greater happiness immediately after running. PMID:28696384
Physical and Emotional Benefits of Different Exercise Environments Designed for Treadmill Running.
Yeh, Hsiao-Pu; Stone, Joseph A; Churchill, Sarah M; Brymer, Eric; Davids, Keith
2017-07-11
(1) Background: Green physical activity promotes physical health and mental wellbeing and interesting questions concern effects of this information on designing indoor exercise environments. This study examined the physical and emotional effects of different nature-based environments designed for indoor treadmill running; (2) Methods: In a counterbalanced experimental design, 30 participants performed three, twenty-minute treadmill runs at a self-selected pace while viewing either a static nature image, a dynamic nature image or self-selected entertainment. Distance ran, heart rate (HR) and five pre-and post-exercise emotional states were measured; (3) Results: Participants ran farther, and with higher HRs, with self-selected entertainment compared to the two nature-based environment designs. Participants attained lowered anger, dejection, anxiety and increased excitement post exercise in all of the designed environments. Happiness increased during the two nature-based environment designs compared with self-selected entertainment; (4) Conclusions: Self-selected entertainment encouraged greater physical performances whereas running in nature-based exercise environments elicited greater happiness immediately after running.
Influence of exercise on nutritional requirements.
Pendergast, D R; Meksawan, K; Limprasertkul, A; Fisher, N M
2011-03-01
There is no consensus on the best diet for exercise, as many variables influence it. We propose an approach that is based on the total energy expenditure of exercise and the specific macro- and micronutrients used. di Prampero quantified the impact of intensity and duration on the energy cost of exercise. This can be used to determine the total energy needs and the balance of fats and carbohydrates (CHO). There are metabolic differences between sedentary and trained persons, thus the total energy intake to prevent overfeeding of sedentary persons and underfeeding athletes is important. During submaximal sustained exercise, fat oxidation (FO) plays an important role. This role is diminished and CHO's role increases as exercise intensity increases. At super-maximal exercise intensities, anaerobic glycolysis dominates. In the case of protein and micronutrients, specific recommendations are required. We propose that for submaximal exercise, the balance of CHO and fat favors fat for longer exercise and CHO for shorter exercise, while always maintaining the minimal requirements of each (CHO: 40% and fat: 30%). A case for higher protein (above 15%) as well as creatine supplementation for resistance exercise has been proposed. One may also consider increasing bicarbonate intake for exercise that relies on anaerobic glycolysis, whereas there appears to be little support for antioxidant supplementation. Insuring minimal levels of substrate will prevent exercise intolerance, while increasing some components may increase exercise tolerance.
Peak Oxygen Uptake during and after Long-duration Space Flight
NASA Technical Reports Server (NTRS)
Moore, Alan D., Jr.; Downs, Meghan E.; Lee, Stuart M. C.; Feiveson, Alan H.; Knudsen, Poul; Evetts, Simon N.; Ploutz-Snyder, Lori
2014-01-01
Aerobic capacity (VO2peak) previously has not been measured during or after long-duration spaceflight. PURPOSE: To measure VO2peak and submaximal exercise responses during and after International Space Station (ISS) missions. METHODS: Astronauts (9 M, 5 F: 49 +/- 5 yr, 175 +/- 7 cm, 77.2 +/- 15.1 kg, 40.6 +/- 6.4 mL/kg/min [mean +/-SD]) performed graded peak cycle tests 90 days before spaceflight, 15 d (FD15) after launch and every 30 d thereafter during flight, and 1 (R+1), 10 (R+10), and 30 d (R+30) after landing. Oxygen consumption (VO2) and heart rate (HR) were measured from rest to peak exercise, while cardiac output (Q), stroke volume (SV), and arterial-venous oxygen difference (a-vO2diff) were measured only during rest and submaximal exercise. Data were analyzed using mixed-model linear regression. Body mass contributed significantly to statistical models, and thus results are reported as modeled estimates for an average subject. RESULTS: Early inflight (FD15) VO2peak was 17% lower (95% CI = - 22%, -13%) than preflight. VO2peak increased during spaceflight (0.001 L/min/d, P = 0.02) but did not return to preflight levels. On R+1 VO2peak was 15% (95% CI = -19%, -10%) lower than preflight but recovered to within 2% of preflight by R+30 (95% CI = -6%, +3%). Peak HR was not significantly different from preflight at any time. Inflight submaximal VO2 and a-vO2diff were generally lower than preflight, but the Q vs. VO2 slope was unchanged. In contrast, the SV vs. VO2 slope was lower (P < 0.001), primarily due to elevated SV at rest, and the HR vs. VO2 slope was greater (P < 0.001), largely due to elevated HR during more intense exercise. On R+1 although the relationships between VO2 and Q, SV, and HR were not statistically different than preflight, resting and submaximal exercise SV was lower (P < 0.001), resting and submaximal exercise HR was higher (P < 0.002), and a-vO2diff was unchanged. HR and SV returned to preflight levels by R+30. CONCLUSION: In the average astronaut VO2peak was reduced during spaceflight and immediately after landing but factors contributing to lower VO2peak may be different during spaceflight and recovery. Maintaining Q while VO2 is reduced inflight may be suggestive of an elevated blood flow to vascular beds other than exercising muscles, but decreased SV after flight likely reduces Q at peak exertion.
Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad Reza; Hosseini, Nasrin
2015-04-01
Previous results indicated that stress impairs learning and memory. In this research, the effects of preventive, therapeutic and regular continually running activity on chronic stress-induced memory deficit in rats were investigated. 70 male rats were randomly divided into seven groups as follows: Control, Sham, Stress-Rest, Rest-Stress, Stress-Exercise, Exercise-Stress and Exercise-Stress & Exercise groups. Chronic restraint stress was applied 6 h/day for 21days and treadmill running 1 h/day. Memory function was evaluated by the passive avoidance test. The results revealed that running activities had therapeutic effect on mid and long-term memory deficit and preventive effects on short and mid-term memory deficit in stressed rats. Regular continually running activity improved mid and long-term memory compared to Exercise-Stress group. The beneficial effects of exercise were time-dependent in stress conditions. Finally, data corresponded to the possibility that treadmill running had a more important role on treatment rather than on prevention on memory impairment induced by stress. Copyright © 2014 Elsevier Ltd. All rights reserved.
Han, Eun Young; Im, Sang Hee
2017-03-15
To assess the feasibility and safety of a 6-week course of water walking performed using a motorized aquatic treadmill in individuals with subacute stroke for cardiorespiratory fitness, walking endurance, and activities of daily living. Twenty subacute stroke patents were randomly assigned to aquatic treadmill exercise (ATE) or land-based exercise (LBE). The ATE group (n = 10) performed water-based aerobic exercise on a motorized aquatic treadmill, and the LBE group (n = 10) performed land-based aerobic exercise on a cycle ergometer. Both groups performed aerobic exercise for 30 minutes, 5 times per week for 6 weeks. Primary outcome measures were 6-minute walk test for walking endurance and cardiopulmonary fitness parameters of a symptom-limited exercise tolerance test, and secondary measures were Korean version of the Modified Barthel Index (K-MBI) for activities of daily living. All variables were assessed at baseline and at the end of the intervention. The ATE group showed significant improvements in 6-minute walk test (P = .005), peak oxygen uptake (V·o2peak; P = .005), peak heart rate (P = .007), exercise tolerance test duration (P = .005), and K-MBI (P = .008). The LBE group showed a significant improvement only in K-MBI (P = .012). In addition, improvement in V·o2peak was greater in the ATE than in the LBE group. This preliminary study showed that a 6-week ATE program improved peak aerobic capacity and walking endurance in patients with subacute stroke. The improvement in V·o2peak after an ATE exercise program was greater than that observed after an LBE program. Therefore, ATE effectively improves cardiopulmonary fitness in patients with subacute stroke.
Exercise activates compensatory thermoregulatory reaction in rats: a modeling study
Yoo, Yeonjoo; LaPradd, Michelle; Kline, Hannah; Zaretskaia, Maria V.; Behrouzvaziri, Abolhassan; Rusyniak, Daniel E.; Molkov, Yaroslav I.
2015-01-01
The importance of exercise is increasingly emphasized for maintaining health. However, exercise itself can pose threats to health such as the development of exertional heat shock in warm environments. Therefore, it is important to understand how the thermoregulation system adjusts during exercise and how alterations of this can contribute to heat stroke. To explore this we measured the core body temperature of rats (Tc) running for 15 min on a treadmill at various speeds in two ambient temperatures (Ta = 25°C and 32°C). We assimilated the experimental data into a mathematical model that describes temperature changes in two compartments of the body, representing the muscles and the core. In our model the core body generates heat to maintain normal body temperature, and dissipates it into the environment. The muscles produce additional heat during exercise. According to the estimation of model parameters, at Ta = 25°C, the heat generation in the core was progressively reduced with the increase of the treadmill speed to compensate for a progressive increase in heat production by the muscles. This compensation was ineffective at Ta = 32°C, which resulted in an increased rate of heat accumulation with increasing speed, as opposed to the Ta = 25°C case. Interestingly, placing an animal on a treadmill increased heat production in the muscles even when the treadmill speed was zero. Quantitatively, this “ready-to-run” phenomenon accounted for over half of the heat generation in the muscles observed at maximal treadmill speed. We speculate that this anticipatory response utilizes stress-related circuitry. PMID:26472864
Phototherapy during treadmill training improves quadriceps performance in postmenopausal women.
Paolillo, F R; Corazza, A V; Paolillo, A R; Borghi-Silva, A; Arena, R; Kurachi, C; Bagnato, V S
2014-06-01
To evaluate the effects of infrared-light-emitting diode (LED) during treadmill training on functional performance. Thirty postmenopausal women aged 50-60 years were randomly assigned to one of three groups and successfully completed the full study. The three groups were: (1) the LED group, which performed treadmill training associated with phototherapy (n = 10); (2) the exercise group, which carried out treadmill training only (n = 10); and (3) the sedentary group, which neither performed physical training nor underwent phototherapy (n = 10). Training was performed over a period of 6 months, twice a week for 45 min per session at 85-90% of maximal heart rate, which was obtained during progressive exercise testing. The irradiation parameters were 100 mW, 39 mW/cm(2) and 108 J/cm(2) for 45 min. Quadriceps performance was measured during isokinetic exercise testing at 60°/s and 300°/s. Peak torque did not differ amongst the groups. However, the results showed significantly higher values of power and total work for the LED group (∆ = 21 ± 6 W and ∆ = 634 ± 156 J, p < 0.05) when compared to both the exercise group (∆ = 13 ± 10 W and = 410 ± 270 J) and the sedentary group (∆ = 10 ± 9 W and ∆ = 357 ± 327 J). Fatigue was also significantly lower in the LED group (∆ = -7 ± 4%, p < 0.05) compared to both the exercise group (∆ = 3 ± 8%) and the sedentary group (∆ = -2 ± 6%). Infrared-LED during treadmill training may improve quadriceps power and reduce peripheral fatigue in postmenopausal women.
Stoller, O; de Bruin, E D; Schindelholz, M; Schuster, C; de Bie, R A; Hunt, K J
2013-01-01
Robotics-assisted treadmill exercise (RATE) with focus on motor recovery has become popular in early post-stroke rehabilitation but low endurance for exercise is highly prevalent in these individuals. This study aimed to develop an exercise testing method using robotics-assisted treadmill exercise to evaluate aerobic capacity after severe stroke. Constant load testing (CLT) based on body weight support (BWS) control, and incremental exercise testing (IET) based on guidance force (GF) control were implemented during RATE. Analyses focussed on step change, step response kinetics, and peak performance parameters of oxygen uptake. Three subjects with severe motor impairment 16-23 days post-stroke were included. CLT yielded reasonable step change values in oxygen uptake, whereas response kinetics of oxygen uptake showed low goodness of fit. Peak performance parameters were not obtained during IET. Exercise testing in post-stroke individuals with severe motor impairments using a BWS control strategy for CLT is deemed feasible and safe. Our approach yielded reasonable results regarding cardiovascular performance parameters. IET based on GF control does not provoke peak cardiovascular performance due to uncoordinated walking patterns. GF control needs further development to optimally demand active participation during RATE. The findings warrant further research regarding the evaluation of exercise capacity after severe stroke.
ERIC Educational Resources Information Center
Pfeiffer, Karin A.; Pivarnik, James M.; Womack, Christopher J.; Reeves, Mathew J.; Malina, Robert M.
2002-01-01
Investigated the reliability and validity of the Borg and OMNI rating of perceived exertion (RPE) scales in adolescent girls during treadmill exercise. Girls were randomly assigned to one of the RPE scales during various treadmill exercise conditions. Results indicated that the OMNI cycle pictorial scale was reliable and valid for use with…
Krakowiak, Joey; Liu, Caiyue; Papudesu, Chandana; Ward, P. Jillian; Wilhelm, Jennifer C.; English, Arthur W.
2015-01-01
The withdrawal of synaptic inputs from the somata and proximal dendrites of spinal motoneurons following peripheral nerve injury could contribute to poor functional recovery. Decreased availability of neurotrophins to afferent terminals on axotomized motoneurons has been implicated as one cause of the withdrawal. No reduction in contacts made by synaptic inputs immunoreactive to the vesicular glutamate transporter 1 and glutamic acid decarboxylase 67 is noted on axotomized motoneurons if modest treadmill exercise, which stimulates the production of neurotrophins by spinal motoneurons, is applied after nerve injury. In conditional, neuron-specific brain-derived neurotrophic factor (BDNF) knockout mice, a reduction in synaptic contacts onto motoneurons was noted in intact animals which was similar in magnitude to that observed after nerve transection in wild-type controls. No further reduction in coverage was found if nerves were cut in knockout mice. Two weeks of moderate daily treadmill exercise following nerve injury in these BDNF knockout mice did not affect synaptic inputs onto motoneurons. Treadmill exercise has a profound effect on synaptic inputs to motoneurons after peripheral nerve injury which requires BDNF production by those postsynaptic cells. PMID:25918648
White, Andrea T; Davis, Scott L; Wilson, Thad E
2003-03-01
The purpose of this investigation was to compare the thermoregulatory, metabolic, and perceptual effects of lower body (LBI) and whole body (WBI) immersion precooling techniques during submaximal exercise. Eleven healthy men completed two 30-min cycling bouts at 60% of maximal O(2) uptake preceded by immersion to the suprailiac crest (LBI) or clavicle (WBI) in 20 degrees C water. WBI produced significantly lower rectal temperature (T(re)) during minutes 24-30 of immersion and lower T(re), mean skin temperature, and mean body temperature for the first 24, 14, and 16 min of exercise, respectively. Body heat storage rates differed significantly for LBI and WBI during immersion and exercise, although no net differences were observed between conditions. For WBI, metabolic heat production and heart rate were significantly higher during immersion but not during exercise. Thermal sensation was significantly lower (felt colder) and thermal discomfort was significantly higher (less comfortable) for WBI during immersion and exercise. In conclusion, WBI and LBI attenuated T(re) increases during submaximal exercise and produced similar net heat storage over the protocol. LBI minimized metabolic increases and negative perceptual effects associated with WBI.
Petersen, Nora; Jaekel, Patrick; Rosenberger, Andre; Weber, Tobias; Scott, Jonathan; Castrucci, Filippo; Lambrecht, Gunda; Ploutz-Snyder, Lori; Damann, Volker; Kozlovskaya, Inessa; Mester, Joachim
2016-01-01
To counteract microgravity (µG)-induced adaptation, European Space Agency (ESA) astronauts on long-duration missions (LDMs) to the International Space Station (ISS) perform a daily physical exercise countermeasure program. Since the first ESA crewmember completed an LDM in 2006, the ESA countermeasure program has strived to provide efficient protection against decreases in body mass, muscle strength, bone mass, and aerobic capacity within the operational constraints of the ISS environment and the changing availability of on-board exercise devices. The purpose of this paper is to provide a description of ESA's individualised approach to in-flight exercise countermeasures and an up-to-date picture of how exercise is used to counteract physiological changes resulting from µG-induced adaptation. Changes in the absolute workload for resistive exercise, treadmill running and cycle ergometry throughout ESA's eight LDMs are also presented, and aspects of pre-flight physical preparation and post-flight reconditioning outlined. With the introduction of the advanced resistive exercise device (ARED) in 2009, the relative contribution of resistance exercise to total in-flight exercise increased (33-46 %), whilst treadmill running (42-33 %) and cycle ergometry (26-20 %) decreased. All eight ESA crewmembers increased their in-flight absolute workload during their LDMs for resistance exercise and treadmill running (running speed and vertical loading through the harness), while cycle ergometer workload was unchanged across missions. Increased or unchanged absolute exercise workloads in-flight would appear contradictory to typical post-flight reductions in muscle mass and strength, and cardiovascular capacity following LDMs. However, increased absolute in-flight workloads are not directly linked to changes in exercise capacity as they likely also reflect the planned, conservative loading early in the mission to allow adaption to µG exercise, including personal comfort issues with novel exercise hardware (e.g. the treadmill harness). Inconsistency in hardware and individualised support concepts across time limit the comparability of results from different crewmembers, and questions regarding the difference between cycling and running in µG versus identical exercise here on Earth, and other factors that might influence in-flight exercise performance, still require further investigation.
Reduced Modulation of Pain in Older Adults After Isometric and Aerobic Exercise.
Naugle, Kelly M; Naugle, Keith E; Riley, Joseph L
2016-06-01
Laboratory-based studies show that acute aerobic and isometric exercise reduces sensitivity to painful stimuli in young healthy individuals, indicative of a hypoalgesic response. However, little is known regarding the effect of aging on exercise-induced hypoalgesia (EIH). The purpose of this study was to examine age differences in EIH after submaximal isometric exercise and moderate and vigorous aerobic exercise. Healthy older and younger adults completed 1 training session and 4 testing sessions consisting of a submaximal isometric handgrip exercise, vigorous or moderate intensity stationary cycling, or quiet rest (control). The following measures were taken before and after exercise/quiet rest: 1) pressure pain thresholds, 2) suprathreshold pressure pain ratings, 3) pain ratings during 30 seconds of prolonged noxious heat stimulation, and 4) temporal summation of heat pain. The results revealed age differences in EIH after isometric and aerobic exercise, with younger adults experiencing greater EIH compared with older adults. The age differences in EIH varied across pain induction techniques and exercise type. These results provide evidence for abnormal pain modulation after acute exercise in older adults. This article enhances our understanding of the influence of a single bout of exercise on pain sensitivity and perception in healthy older compared with younger adults. This knowledge could help clinicians optimize exercise as a method of pain management. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.
Cade, W Todd; Nabar, Sharmila R; Keyser, Randall E
2004-05-01
The purpose of this study was to determine the reproducibility of the indirect Fick method for the measurement of mixed venous carbon dioxide partial pressure (P(v)CO(2)) and venous carbon dioxide content (C(v)CO(2)) for estimation of cardiac output (Q(c)), using the exponential rise method of carbon dioxide rebreathing, during non-steady-state treadmill exercise. Ten healthy participants (eight female and two male) performed three incremental, maximal exercise treadmill tests to exhaustion within 1 week. Non-invasive Q(c) measurements were evaluated at rest, during each 3-min stage, and at peak exercise, across three identical treadmill tests, using the exponential rise technique for measuring mixed venous PCO(2) and CCO(2) and estimating venous-arterio carbon dioxide content difference (C(v-a)CO(2)). Measurements were divided into measured or estimated variables [heart rate (HR), oxygen consumption (VO(2)), volume of expired carbon dioxide (VCO(2)), end-tidal carbon dioxide (P(ET)CO(2)), arterial carbon dioxide partial pressure (P(a)CO(2)), venous carbon dioxide partial pressure ( P(v)CO(2)), and C(v-a)CO(2)] and cardiorespiratory variables derived from the measured variables [Q(c), stroke volume (V(s)), and arteriovenous oxygen difference ( C(a-v)O(2))]. In general, the derived cardiorespiratory variables demonstrated acceptable (R=0.61) to high (R>0.80) reproducibility, especially at higher intensities and peak exercise. Measured variables, excluding P(a)CO(2) and C(v-a)CO(2), also demonstrated acceptable (R=0.6 to 0.79) to high reliability. The current study demonstrated acceptable to high reproducibility of the exponential rise indirect Fick method in measurement of mixed venous PCO(2) and CCO(2) for estimation of Q(c) during incremental treadmill exercise testing, especially at high-intensity and peak exercise.
Ahmed, Haitham M; Al-Mallah, Mouaz H; McEvoy, John W; Nasir, Khurram; Blumenthal, Roger S; Jones, Steven R; Brawner, Clinton A; Keteyian, Steven J; Blaha, Michael J
2015-03-01
To determine which routinely collected exercise test variables most strongly correlate with survival and to derive a fitness risk score that can be used to predict 10-year survival. This was a retrospective cohort study of 58,020 adults aged 18 to 96 years who were free of established heart disease and were referred for an exercise stress test from January 1, 1991, through May 31, 2009. Demographic, clinical, exercise, and mortality data were collected on all patients as part of the Henry Ford ExercIse Testing (FIT) Project. Cox proportional hazards models were used to identify exercise test variables most predictive of survival. A "FIT Treadmill Score" was then derived from the β coefficients of the model with the highest survival discrimination. The median age of the 58,020 participants was 53 years (interquartile range, 45-62 years), and 28,201 (49%) were female. Over a median of 10 years (interquartile range, 8-14 years), 6456 patients (11%) died. After age and sex, peak metabolic equivalents of task and percentage of maximum predicted heart rate achieved were most highly predictive of survival (P<.001). Subsequent addition of baseline blood pressure and heart rate, change in vital signs, double product, and risk factor data did not further improve survival discrimination. The FIT Treadmill Score, calculated as [percentage of maximum predicted heart rate + 12(metabolic equivalents of task) - 4(age) + 43 if female], ranged from -200 to 200 across the cohort, was near normally distributed, and was found to be highly predictive of 10-year survival (Harrell C statistic, 0.811). The FIT Treadmill Score is easily attainable from any standard exercise test and translates basic treadmill performance measures into a fitness-related mortality risk score. The FIT Treadmill Score should be validated in external populations. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
2013-01-01
Background Training of young Thoroughbred horses must balance development of cardiopulmonary function and aerobic capacity with loading of the musculoskeletal system that can potentially cause structural damage and/or lameness. High-speed equine treadmills are sometimes used to supplement exercise on a track in the training of young Thoroughbreds because the horse can run at high speeds but without the added weight of a rider. We tested the hypothesis that intermittent high-intensity exercise on a treadmill of young Thoroughbred horses entering training can enhance development of aerobic capacity (Vo2max) and running performance more than conventional training under saddle, and do so without causing lameness. Results Twelve yearling Thoroughbreds trained for 8 months with conventional riding (C) only, conventional riding plus a short (2 month, S) interval of once-per-week high-intensity treadmill exercise, or a long (8 month, L) interval of once-per-week high-intensity treadmill exercise. Three treadmill exercise tests evaluated Vo2max, oxygen transport and running performance variables in June of the yearling year (only for L), October of the yearling year and April of the 2-year-old year. No horses experienced lameness during the study. Aerobic capacity increased in all groups after training. In both October and April, Vo2max in L was higher than in C, but did not differ between L and S or S and C. Running speeds eliciting Vo2max also increased in all groups after training, with S (809 ± 3 m/s) and L (804 ± 9 m/s) higher than C (764 ± 27 m/s). Maximum heart rate decreased for all groups after training. Hematocrit and hemoglobin concentration increased for L throughout training. Conclusions Young Thoroughbred horses can increase aerobic capacity and running performance more than by strictly using track training under saddle with the addition of intermittent high-intensity treadmill exercise, and they can do so without experiencing lameness. This finding suggests that young racehorses might be able to achieve higher aerobic fitness during training without subjecting their musculoskeletal systems to increased loading and risk of developing lameness. The findings of this preliminary study do not indicate a specific protocol to best achieve this goal. PMID:23957961
Lauer, Michael S; Pothier, Claire E; Magid, David J; Smith, S Scott; Kattan, Michael W
2007-12-18
The exercise treadmill test is recommended for risk stratification among patients with intermediate to high pretest probability of coronary artery disease. Posttest risk stratification is based on the Duke treadmill score, which includes only functional capacity and measures of ischemia. To develop and externally validate a post-treadmill test, multivariable mortality prediction rule for adults with suspected coronary artery disease and normal electrocardiograms. Prospective cohort study conducted from September 1990 to May 2004. Exercise treadmill laboratories in a major medical center (derivation set) and a separate HMO (validation set). 33,268 patients in the derivation set and 5821 in the validation set. All patients had normal electrocardiograms and were referred for evaluation of suspected coronary artery disease. The derivation set patients were followed for a median of 6.2 years. A nomogram-illustrated model was derived on the basis of variables easily obtained in the stress laboratory, including age; sex; history of smoking, hypertension, diabetes, or typical angina; and exercise findings of functional capacity, ST-segment changes, symptoms, heart rate recovery, and frequent ventricular ectopy in recovery. The derivation data set included 1619 deaths. Although both the Duke treadmill score and our nomogram-illustrated model were significantly associated with death (P < 0.001), the nomogram was better at discrimination (concordance index for right-censored data, 0.83 vs. 0.73) and calibration. We reclassified many patients with intermediate- to high-risk Duke treadmill scores as low risk on the basis of the nomogram. The model also predicted 3-year mortality rates well in the validation set: Based on an optimal cut-point for a negative predictive value of 0.97, derivation and validation rates were, respectively, 1.7% and 2.5% below the cut-point and 25% and 29% above the cut-point. Blood test-based measures or left ventricular ejection fraction were not included. The nomogram can be applied only to patients with a normal electrocardiogram. Clinical utility remains to be tested. A simple nomogram based on easily obtained pretest and exercise test variables predicted all-cause mortality in adults with suspected coronary artery disease and normal electrocardiograms.
Vernillo, Gianluca; Savoldelli, Aldo; Zignoli, Andrea; Trabucchi, Pietro; Pellegrini, Barbara; Millet, Grégoire P; Schena, Federico
2014-05-01
To examine the effects of the world's most challenging mountain ultra-marathon (Tor des Géants(®) 2012) on the energy cost of three types of locomotion (cycling, level and uphill running) and running kinematics. Before (pre-) and immediately after (post-) the competition, a group of ten male experienced ultra-marathon runners performed in random order three submaximal 4-min exercise trials: cycling at a power of 1.5 W kg(-1) body mass; level running at 9 km h(-1) and uphill running at 6 km h(-1) at an inclination of +15 % on a motorized treadmill. Two video cameras recorded running mechanics at different sampling rates. Between pre- and post-, the uphill-running energy cost decreased by 13.8 % (P = 0.004); no change was noted in the energy cost of level running or cycling (NS). There was an increase in contact time (+10.3 %, P = 0.019) and duty factor (+8.1 %, P = 0.001) and a decrease in swing time (-6.4 %, P = 0.008) in the uphill-running condition. After this extreme mountain ultra-marathon, the subjects modified only their uphill-running patterns for a more economical step mechanics.
Schenkman, Margaret; Moore, Charity G; Kohrt, Wendy M; Hall, Deborah A; Delitto, Anthony; Comella, Cynthia L; Josbeno, Deborah A; Christiansen, Cory L; Berman, Brian D; Kluger, Benzi M; Melanson, Edward L; Jain, Samay; Robichaud, Julie A; Poon, Cynthia; Corcos, Daniel M
2018-02-01
Parkinson disease is a progressive neurologic disorder. Limited evidence suggests endurance exercise modifies disease severity, particularly high-intensity exercise. To examine the feasibility and safety of high-intensity treadmill exercise in patients with de novo Parkinson disease who are not taking medication and whether the effect on motor symptoms warrants a phase 3 trial. The Study in Parkinson Disease of Exercise (SPARX) was a phase 2, multicenter randomized clinical trial with 3 groups and masked assessors. Individuals from outpatient and community-based clinics were enrolled from May 1, 2012, through November 30, 2015, with the primary end point at 6 months. Individuals with idiopathic Parkinson disease (Hoehn and Yahr stages 1 or 2) aged 40 to 80 years within 5 years of diagnosis who were not exercising at moderate intensity greater than 3 times per week and not expected to need dopaminergic medication within 6 months participated in this study. A total of 384 volunteers were screened by telephone; 128 were randomly assigned to 1 of 3 groups (high-intensity exercise, moderate-intensity exercise, or control). High-intensity treadmill exercise (4 days per week, 80%-85% maximum heart rate [n = 43]), moderate-intensity treadmill exercise (4 days per week, 60%-65% maximum heart rate [n = 45]), or wait-list control (n = 40) for 6 months. Feasibility measures were adherence to prescribed heart rate and exercise frequency of 3 days per week and safety. The clinical outcome was 6-month change in Unified Parkinson's Disease Rating Scale motor score. A total of 128 patients were included in the study (mean [SD] age, 64 [9] years; age range, 40-80 years; 73 [57.0%] male; and 108 [84.4%] non-Hispanic white). Exercise rates were 2.8 (95% CI, 2.4-3.2) days per week at 80.2% (95% CI, 78.8%-81.7%) maximum heart rate in the high-intensity group and 3.2 (95% CI, 2.8-3.6; P = .13) days per week at 65.9% (95% CI, 64.2%-67.7%) maximum heart rate in the moderate-intensity group (P < .001). The mean change in Unified Parkinson's Disease Rating Scale motor score in the high-intensity group was 0.3 (95% CI, -1.7 to 2.3) compared with 3.2 (95% CI, 1.4 to 5.1) in the usual care group (P = .03). The high-intensity group, but not the moderate-intensity group, reached the predefined nonfutility threshold compared with the control group. Anticipated adverse musculoskeletal events were not severe. High-intensity treadmill exercise may be feasible and prescribed safely for patients with Parkinson disease. An efficacy trial is warranted to determine whether high-intensity treadmill exercise produces meaningful clinical benefits in de novo Parkinson disease. clinicaltrials.gov Identifier: NCT01506479.
Leak, Rehana K.; Garbett, Krassimira A.; Dettmer, Amanda M.; Zhang, Zhiming; Mirnics, Károly; Cameron, Judy L.
2013-01-01
Ceruloplasmin is a protective ferroxidase. Although some studies suggest that plasma ceruloplasmin levels are raised by exercise, the impact of exercise on brain ceruloplasmin is unknown. The present study examined whether striatal ceruloplasmin is raised with treadmill exercise and/or is correlated with spontaneous physical activity in rhesus monkeys. Parkinson’s disease is characterized by a loss in ceruloplasmin and, similarly, Parkinson’s models lead to a loss in antioxidant defenses. Exercise may protect against Parkinson’s disease and is known to prevent antioxidant loss in experimental models. We therefore examined whether treadmill exercise prevents ceruloplasmin loss in monkeys treated unilaterally with the dopaminergic neurotoxin MPTP. We found that exercise raised ceruloplasmin expression in the caudate and accumbens, but not the putamen of intact monkeys. However, putamen ceruloplasmin was correlated with spontaneous activity in a home pen. MPTP alone did not cause unilateral loss of ceruloplasmin but blocked the impact of exercise on ceruloplasmin. Similarly, the correlation between putamen ceruloplasmin and activity was also lost with MPTP. MPTP elicited loss of tyrosine hydroxylase in the treated hemisphere and the remaining tyrosine hydroxylase was correlated with overall daily activity (spontaneous activity plus that induced by the treadmill). These data reveal that treadmill activity can raise ceruloplasmin, but that this impact and the link with spontaneous activity are both diminished in parkinsonian primates. Furthermore, low overall physical activity predicts greater loss of dopaminergic phenotype in MPTP-treated primates. These data have implications for the maintenance of active lifestyles in both healthy and neurodegenerative conditions. PMID:22940761
Clinical Usefulness of Response Profiles to Rapidly Incremental Cardiopulmonary Exercise Testing
Ramos, Roberta P.; Alencar, Maria Clara N.; Treptow, Erika; Arbex, Flávio; Ferreira, Eloara M. V.; Neder, J. Alberto
2013-01-01
The advent of microprocessed “metabolic carts” and rapidly incremental protocols greatly expanded the clinical applications of cardiopulmonary exercise testing (CPET). The response normalcy to CPET is more commonly appreciated at discrete time points, for example, at the estimated lactate threshold and at peak exercise. Analysis of the response profiles of cardiopulmonary responses at submaximal exercise and recovery, however, might show abnormal physiologic functioning which would not be otherwise unraveled. Although this approach has long been advocated as a key element of the investigational strategy, it remains largely neglected in practice. The purpose of this paper, therefore, is to highlight the usefulness of selected submaximal metabolic, ventilatory, and cardiovascular variables in different clinical scenarios and patient populations. Special care is taken to physiologically justify their use to answer pertinent clinical questions and to the technical aspects that should be observed to improve responses' reproducibility and reliability. The most recent evidence in favor of (and against) these variables for diagnosis, impairment evaluation, and prognosis in systemic diseases is also critically discussed. PMID:23766901
Exercise Responses after Inactivity
NASA Technical Reports Server (NTRS)
Convertino, Victor A.
1986-01-01
The exercise response after bed rest inactivity is a reduction in the physical work capacity and is manifested by significant decreases in oxygen uptake. The magnitude of decrease in maximal oxygen intake V(dot)O2max is related to the duration of confinement and the pre-bed-rest level of aerobic fitness; these relationships are relatively independent of age and gender. The reduced exercise performance and V(dot)O2max following bed rest are associated with various physiological adaptations including reductions in blood volume, submaximal and maximal stroke volume, maximal cardiac output, sceletal muscle tone and strength, and aerobic enzyme capacities, as well as increases in venous compliance and submaximal and maximal heart rate. This reduction in physiological capacity can be partially restored by specific countermeasures that provide regular muscular activity or orhtostatic stress or both during the bed rest exposure. The understanding of these physiological and physical responses to exercise following bed rest inactivity has important implications for the solution to safety and health problems that arise in clinical medicine, aerospace medicine, sedentary living, and aging.
Effects of treadmill running on rat gastrocnemius function following botulinum toxin A injection.
Tsai, Sen-Wei; Chen, Chun-Jung; Chen, Hsiao-Lin; Chen, Chuan-Mu; Chang, Yin-Yi
2012-02-01
Exercise can improve and maintain neural or muscular function, but the effects of exercise in physiological adaptation to paralysis caused by botulinum toxin A has not been well studied. Twenty-four rats were randomly assigned into control and treadmill groups. The rats assigned to the treadmill group were trained on a treadmill three times per week with the running speed set at 15 m/min. The duration of training was 20 min/session. Muscle strength, nerve conduction study and sciatic functional index (SFI) were used for functional analysis. Treadmill training improved the SFI at 2, 3, and 4 weeks (p = 0.01, 0.004, and 0.01, respectively). The maximal contraction force of the gastrocnemius muscle in the treadmill group was greater than in the control group (p < 0.05). The percentage of activated fibers was higher in the treadmill botox group than the percentage for the control botox group, which was demonstrated by differences in amplitude and area of compound muscle action potential (CMAP) under the curve between the groups (p < 0.05). After BoNT-A injection, treadmill improved the physiological properties of muscle contraction strength, CMAP amplitude, and the recovery of SFI. Copyright © 2011 Orthopaedic Research Society.
Douris, Peter C; McDonald, Brittany; Vespi, Frank; Kelley, Nancy C; Herman, Lawrence
2012-04-01
Exergaming is becoming a popular recreational activity for young adults. The purpose was to compare the physiologic and psychological responses of college students playing Nintendo Wii Fit, an active video game console, vs. an equal duration of moderate-intensity brisk walking. Twenty-one healthy sedentary college-age students (mean age 23.2 ± 1.8 years) participated in a randomized, double cross-over study, which compared physiologic and psychological responses to 30 minutes of brisk walking exercise on a treadmill vs. 30 minutes playing Nintendo Wii Fit "Free Run" program. Physiologic parameters measured included heart rate, rate pressure product, respiratory rate, and rating of perceived exertion. Participants' positive well-being, psychological distress, and level of fatigue associated with each exercise modality were quantified using the Subjective Exercise Experience Scale. The mean maximum heart rate (HRmax) achieved when exercising with Wii Fit (142.4 ± 20.5 b·min(-1)) was significantly greater (p = 0.001) compared with exercising on the treadmill (123.2 ± 13.7 b·min(-1)). Rate pressure product was also significantly greater (p = 0.001) during exercise on the Wii Fit. Participants' rating of perceived exertion when playing Wii Fit (12.7 ± 3.0) was significantly greater (p = 0.014) when compared with brisk walking on the treadmill (10.1 ± 3.3). However, psychologically when playing Wii Fit, participants' positive well-being decreased significantly (p = 0.018) from preexercise to postexercise when compared with exercising on the treadmill. College students have the potential to surpass exercise intensities achieved when performing a conventional standard for moderate-intensity exercise when playing Nintendo Wii Fit "Free Run" with a self-selected intensity. We concluded that Nintendo Wii Fit "Free Run" may act as an alternative to traditional moderate-intensity aerobic exercise in fulfilling the American College of Sports Medicine requirements for physical activity.
Hypothalamic GABAergic influences on treadmill exercise responses in rats.
Overton, J M; Redding, M W; Yancey, S L; Stremel, R W
1994-01-01
Microinjection of GABAergic antagonists in the posterior hypothalamus (PH) produces exercise-like adjustments in cardiovascular function. To test the hypothesis that a hypothalamic GABAergic mechanism within the PH modulates the cardiovascular adjustments to dynamic exercise in conscious animals, Sprague-Dawley rats (n = 10) were instrumented with bilateral guide cannula directed at the pH, an arterial cannula, and Doppler flow probes on the iliac and mesenteric arteries. Saline (100 nl) or the GABAA receptor agonist muscimol (125 ng.100 nl-1) was bilaterally injected into the PH during treadmill exercise (20 m.min-1). Microinjection of saline had no effect on mean arterial pressure (MAP), heart rate (HR), mesenteric vascular resistance (MR), or iliac vascular resistance (IR) during exercise. Microinjection of muscimol during exercise produced no significant changes in MAP (mean change +/- SE; +0 +/- 1 mmHg), HR (+17 +/- 12 b.min-1), or MR (+7 +/- 13%). However, microinjection of muscimol produced a significant increase in IR during exercise (16 +/- 6%). In addition, muscimol significantly decreased treadmill run time (saline = 19.6 +/- 0.4 min; muscimol = 17.8 +/- 0.6 min) and produced behavioral effects (including mild sedation) that were most evident after exercise. The results of these experiments suggest that while the posterior hypothalamic GABAergic system may modulate iliac blood flow during exercise in rats, this system does not modulate HR and MR responses to dynamic exercise.
Oxygen uptake kinetics of constant-load work - Upright vs. supine exercise
NASA Technical Reports Server (NTRS)
Convertino, V. A.; Goldwater, D. J.; Sandler, H.
1984-01-01
Supine and upright positions were used in a comparitive study of the effects of constant load exercise on oxygen uptake (VO2), O2 deficit, steady-state VO2 and VO2 following recovery from constant load work. Ten male subjects (36-40 yr.) performed one submaximal exercise test in the supine and one test in the upright position consisting of 5 min rest and 5 min cycle ergometer exercise at 700 kg/min followed by ten minutes of recovery. It is found that the significant difference in VO2 kinetics during exercise in the upright compared to supine position resulted from changes in oxygen transport and utilization mechanisms rather than changes in mechanical efficiency. To the extent that data measured in the supine position can be used to estimate physiological responses to zero gravity, it is suggested that limitation of systemic O2 consumption may be the result of slow rates of oxygen uptake during transient periods of muscular work. Significant reductions in the rate of steady-state VO2 attainment at submaximal work intensities may produce an onset of muscle fatigue and exhaustion.
Cheung, Leo Chin-Ting; Jones, Alice Yee-Men
2007-06-01
This study aims to investigate the effect of transcutaneous electrical nerve stimulation, applied at bilateral acupuncture points PC6 (Acu-TENS), on recovery heart rate (HR) in healthy subjects after treadmill running exercise. A single blinded, randomized controlled trial. Laboratory with healthy male subjects (n=28). Each subject participated in three separate protocols in random order. PROTOCOL A: The subject followed the Bruce protocol and ran on a treadmill until their HR reached 70% of their maximum (220-age). At this 'target' HR, the subject adopted the supine position and Acu-TENS to bilateral PC6 was commenced. PROTOCOL B: Identical to protocol A except that Acu-TENS was applied in the supine position for 45min prior to, but not after exercise. PROTOCOL C: Identical to protocol A except that placebo Acu-TENS was applied. Heart rate was recorded before and at 30s intervals after exercise until it returned to the pre-exercise baseline. The time for HR to return to baseline was compared for each protocol. Acu-TENS applied to bilateral PC6 resulted in a faster return to pre-exercise HR compared to placebo. Time required for HR to return to pre-exercise level in protocols A-C was 5.5+/-3.0; 4.8+/-3.3; 9.4+/-3.7 min, respectively (p<0.001). There was no statistical difference in HR recovery time between protocols A and B. Subjects expressed the lowest rate of perceived exertion score (RPE) at 70% maximum HR with protocol B. This study suggests that Acu-TENS applied to PC6 may facilitate HR recovery after high intensity treadmill exercise.
Run Economy on a Normal and Lower Body Positive Pressure Treadmill.
Temple, Corey; Lind, Erik; VAN Langen, Deborah; True, Larissa; Hupman, Saige; Hokanson, James F
2017-01-01
Lower body positive pressure (LBPP) treadmill running is used more frequently in clinical and athletic settings. Accurate caloric expenditure is required for proper exercise prescription, especially for obese patients performing LBPP exercise. It is unclear if running on LBPP changes running economy (RE) in proportion to the changes in body weight. The purpose of the study was to measure the oxygen consumption (VO 2 ) and running economy (RE) of treadmill running at normal body weight and on LBPP. Twenty-three active, non-obese participants (25.8±7.2 years; BMI = 25.52±3.29 kg·m -2 ) completed two bouts of running exercise in a counterbalanced manner: (a) on a normal treadmill (NT) and (b) on a LBPP treadmill at 60% (40% of body weight supported) for 4 min at 2.24 (5 mph), 2.68 (6 mph), and 3.13 m·s -1 (7 mph). Repeated measures ANOVA showed a statistically significant interaction in RE among trials, F(2, 44) = 6.510, p <.0005, partial η 2 = 0.228. An examination of pairwise comparisons indicated that RE was significantly greater for LBPP across the three speeds ( p < 0.005). As expected, LBPP treadmill running resulted in significantly lower oxygen consumption at all three running speeds. We conclude that RE (ml O 2 ·kg -1 ·km -1 ) of LBPP running is significantly poorer than normal treadmill running, and the ~30% change in absolute energy cost is not as great as predicted by the change in body weight (40%).
The effects of a supportive knee brace on leg performance in healthy subjects.
Veldhuizen, J W; Koene, F M; Oostvogel, H J; von Thiel, T P; Verstappen, F T
1991-12-01
Eight healthy volunteers were fitted with a supportive knee brace (Push Brace 'Heavy') to one knee for a duration of four weeks wherein they were tested before, during and after the application to establish the effect of bracing on performance. The tests consisted of isokinetic strength measurement of knee flexion and extension, 60 meter dash, vertical jump height and a progressive horizontal treadmill test until exhaustion (Vmax) with determination of oxygen uptake, heart rate and plasma lactate concentration. Wearing the brace for one day, the performance indicators showed a decline compared with the test before application (base values). Sprint time was 4% longer (p less than 0.01) and Vmax 6% slower (p less than 0.01). Peak torque of knee flexion at 60 and 240 deg.sec-1 was 6% (p less than 0.05) respectively 9% (p less than 0.05) less. Peak extension torque at 60 deg.sec-1 was 9% less (p less than 0.05). While wearing the brace for four weeks, the test performances were practically identical to their base values. After removal of the brace, all test parameters were statistically similar to the base values. Heart rate at submaximal exercise levels was even lower (p less than 0.05). In conclusion, performance in sports with test-like exercise patterns is not affected by the brace tested. Bracing does not "weaken the knee" as it is widely believed in sports practice.
Book Analysis of Arms and Insecurity in the Persian Gulf.
1988-04-01
AND P. Exercise induced changes in blood ammonia levels in humans. Eur. VANAmEE. Respiratory alkalosis accompanying ammonia toxicity. J. AppL PhysioL...HA. to ensure uniform exercise intensity. Respiratory gas exchange and ventilation during ex- Submaximal Exercise ercise were measured using a...BTPS, 02 consumption (Vo 2) and CO2 group. Relative exercise intensity (%Vo, mx) was not production converted to STPD, and respiratory exchange
LeBlanc, P J; Parolin, M L; Jones, N L; Heigenhauser, G J F
2002-10-01
The purpose of this study was to examine the effects of respiratory alkalosis on human skeletal muscle metabolism at rest and during submaximal exercise. Subjects exercised on two occasions for 15 min at 55 % of their maximal oxygen uptake while either hyperventilating (R-Alk) or breathing normally (Con). Muscle biopsies were taken at rest and after 1 and 15 min of exercise. At rest, no effects on muscle metabolism were observed in response to R-Alk. In the first minute of exercise, there was a delayed activation of pyruvate dehydrogenase (PDH) in R-Alk compared with Con, resulting in a reduced rate of pyruvate oxidation. Also, glycogenolysis was higher in R-Alk compared with Con, which was attributed to a higher availability of the monoprotonated form of inorganic phosphate (P(i)), resulting in an elevated rate of pyruvate production. The mismatch between pyruvate production and its oxidation resulted in net lactate accumulation. These effects were not seen after 15 min of exercise, with no further differences in muscle metabolism between conditions. The results from the present study suggest that respiratory alkalosis may play an important role in lactate accumulation during the transition from rest to exercise in acute hypoxic conditions, but that other factors mediate lactate accumulation during steady-state exercise.
LeBlanc, P J; Parolin, M L; Jones, N L; Heigenhauser, G J F
2002-01-01
The purpose of this study was to examine the effects of respiratory alkalosis on human skeletal muscle metabolism at rest and during submaximal exercise. Subjects exercised on two occasions for 15 min at 55 % of their maximal oxygen uptake while either hyperventilating (R-Alk) or breathing normally (Con). Muscle biopsies were taken at rest and after 1 and 15 min of exercise. At rest, no effects on muscle metabolism were observed in response to R-Alk. In the first minute of exercise, there was a delayed activation of pyruvate dehydrogenase (PDH) in R-Alk compared with Con, resulting in a reduced rate of pyruvate oxidation. Also, glycogenolysis was higher in R-Alk compared with Con, which was attributed to a higher availability of the monoprotonated form of inorganic phosphate (Pi), resulting in an elevated rate of pyruvate production. The mismatch between pyruvate production and its oxidation resulted in net lactate accumulation. These effects were not seen after 15 min of exercise, with no further differences in muscle metabolism between conditions. The results from the present study suggest that respiratory alkalosis may play an important role in lactate accumulation during the transition from rest to exercise in acute hypoxic conditions, but that other factors mediate lactate accumulation during steady-state exercise. PMID:12356901
Stütz, Adrian M; Teran-Garcia, Margarita; Rao, D C; Rice, Treva; Bouchard, Claude; Rankinen, Tuomo
2009-11-01
The sodium bicarbonate cotransporter gene SLC4A5, associated earlier with cardiovascular phenotypes, was tested for associations in the HERITAGE Family Study, and possible mechanisms were investigated. Twelve tag-single nucleotide polymorphisms (SNPs) covering the SLC4A5 gene were analyzed in 276 Black and 503 White healthy, sedentary subjects. Associations were tested using a variance components-based (QTDT) method with data adjusted for age, sex and body size. In Whites, rs6731545 and rs7571842 were significantly associated with resting and submaximal exercise pulse pressure (PP) (0.0004
Stütz, Adrian M; Teran-Garcia, Margarita; Rao, D C; Rice, Treva; Bouchard, Claude; Rankinen, Tuomo
2009-01-01
The sodium bicarbonate cotransporter gene SLC4A5, associated earlier with cardiovascular phenotypes, was tested for associations in the HERITAGE Family Study, and possible mechanisms were investigated. Twelve tag-single nucleotide polymorphisms (SNPs) covering the SLC4A5 gene were analyzed in 276 Black and 503 White healthy, sedentary subjects. Associations were tested using a variance components-based (QTDT) method with data adjusted for age, sex and body size. In Whites, rs6731545 and rs7571842 were significantly associated with resting and submaximal exercise pulse pressure (PP) (0.0004
Alberton, Cristine Lima; Cadore, Eduardo Lusa; Pinto, Stephanie Santana; Tartaruga, Marcus Peikriszwili; da Silva, Eduardo Marczwski; Kruel, Luiz Fernando Martins
2011-06-01
The purpose of this study was to analyze the cardiorespiratory, neuromuscular and kinematic responses obtained during the stationary running in aquatic and dry land environments. Twelve women took part in the experimental protocol. Stationary running was performed for 4 min at three submaximal cadences and for 15 s at maximal velocity, with the collection of kinematic (peak hip angular velocity (AV)), cardiorespiratory (oxygen uptake (VO(2))) and neuromuscular variables (electromyographic (EMG) signal from the rectus femoris (RF), vastus lateralis (VL), semitendinosus (ST) and short head of the biceps femoris (BF) muscles) in land-based and water-based test protocols. Factorial ANOVA was used, with an alpha level of 0.05. AV was significantly higher when the exercise was performed on land, and became significantly higher as the execution cadence increased. Similarly, VO(2) was significantly higher in the land-based exercise and rose as cadence increased. With the increase in the submaximal execution cadences, there was no corresponding increase in the EMG signal from the VL, BF, RF and ST muscles in either environment, though such a significantly increase was seen between the submaximal cadences and the maximal velocity. Dry land presented significantly greater EMG signal responses for all muscles at the submaximal cadences, except for the ST muscle. However, at the maximal velocity, all the analyzed muscle groups showed similar responses in both environments. In summary, for both environments, cardiorespiratory responses can be maximized by increasing the submaximal cadences, while neuromuscular responses are only optimized by using maximal velocity.
Effects of posture on upper and lower limb peripheral resistance following submaximal cycling.
Swan, P D; Spitler, D L; Todd, M K; Maupin, J L; Lewis, C L; Darragh, P M
1989-09-01
The purpose of this study was to determine postural effects on upper and lower limb peripheral resistance (PR) after submaximal exercise. Twelve subjects (six men and six women) completed submaximal cycle ergometer tests (60% age-predicted maximum heart rate) in the supine and upright seated positions. Each test included 20 minutes of rest, 20 minutes of cycling, and 15 minutes of recovery. Stroke volume and heart rate were determined by impedance cardiography, and blood pressure was measured by auscultation during rest, immediately after exercise, and at minutes 1-5, 7.5, 10, 12.5, and 15 of recovery. Peripheral resistance was calculated from values of mean arterial pressure and cardiac output. No significant (p less than 0.05) postural differences in PR were noted during rest for either limb. Immediately after exercise, PR decreased (55% to 61%) from resting levels in both limbs, independent of posture. Recovery ankle PR values were significantly different between postures. Upright ankle PR returned to 92% of the resting level within four minutes of recovery, compared to 76% of the resting level after 15 minutes in the supine posture. Peripheral resistance values in the supine and upright arm were not affected by posture and demonstrated a gradual pattern of recovery similar to the supine ankle recovery response (85% to 88% of rest within 15 minutes). The accelerated recovery rate of PR after upright exercise may result from local vasoconstriction mediated by a central regulatory response to stimulation from gravitational pressure on lower body circulation.
Morin, Jean-Benoit; Tomazin, Katja; Samozino, Pierre; Edouard, Pascal; Millet, Guillaume Y
2012-04-01
We investigated the changes in constant velocity spring-mass behavior after high intensity sprint fatigue in order to better interpret the results recently reported after ultra-long distance (ULD) exercises. Our hypothesis was that after repeated sprints (RS), subjects may likely experience losses of force such as after ULD, but the necessity to modify their running pattern to attenuate the overall impact at each step (such as after ULD) may not be present. Eleven male subjects performed four sets of five 6-s sprints with 24-s recovery between sprints and 3 min between sets, on a sprint treadmill and on a bicycle ergometer. For each session, their running mechanics and spring-mass characteristics were measured at 10 and 20 km h(-1) on an instrumented treadmill before and after RS. Two-way (period and velocity) ANOVAs showed that high-intensity fatigue did not induce any change in the constant velocity running pattern at low or high velocity, after both running and cycling RS, despite significant decreases (P < 0.001) in maximal power (-27.1 ± 8.2% after running RS and -15.4 ± 11.5 % after cycling RS) and knee extensors maximal voluntary force (-18.8 ± 6.7 % after running RS and -15.0 ± 7.6 % after cycling RS). These results bring indirect support to the hypothesis put forward in recent ULD studies that the changes in running mechanics observed after ULD are likely not related to the decrease in strength capabilities, but rather to the necessity for subjects to adopt a protective running pattern.
A new standardized treadmill walking test requiring low motor skills in children aged 4-10 years.
Wäffler-Kammermann, Nathalie; Lacorcia, Ruth Stauffer; Wettstein, Markus; Radlinger, Lorenz; Frey, Urs
2008-02-01
Exercise intolerance may be reported by parents of young children with respiratory diseases. There is, however, a lack of standardized exercise protocols which allow verification of these reports especially in younger children. Consequently the aims of this pilot study were to develop a standardized treadmill walking test for children aged 4-10 years demanding low sensorimotor skills and achieving high physical exhaustion. In a prospective experimental cross sectional pilot study, 33 healthy Caucasian children were separated into three groups: G1 (4-6 years, n = 10), G2 (7-8 years, n = 12), and G3 (9-10 years, n = 11). Children performed the treadmill walking test with increasing exercise levels up to peak condition with maximal exhaustion. Gas exchange, heart rate, and lactate were measured during the test, spirometry before and after. Parameters were statistically calculated at all exercise levels as well as at 2 and 4 mmol/L lactate level for group differences (Kruskal-Wallis H-test, alpha = 0.05; post hoc: Mann-Whitney U-test with Bonferroni correction alpha = 0.05/n) and test-retest differences (Wilcoxon-rank-sum test) with SPSS. The treadmill walking test could be demonstrated to be feasible with a good repeatability within groups for most of the parameters. All children achieved a high exhaustion level. At peak level under exhaustion condition only the absolute VO2 and VCO2 differed significantly between age groups. In conclusion this newly designed treadmill walking test indicates a good feasibility, safety, and repeatability. It suggests the potential usefulness of exercise capacity monitoring for children aged from early 4 to 10 years. Various applications and test modifications will be investigated in further studies. Copyright 2007 Wiley-Liss, Inc.
Mora-Rodriguez, Ricardo; Fernandez-Elias, V E; Morales-Palomo, F; Pallares, J G; Ramirez-Jimenez, M; Ortega, J F
2017-10-01
The aim of this study was to determine the effects of high-intensity aerobic interval training (AIT) on exercise hemodynamics in metabolic syndrome (MetS) volunteers. Thirty-eight, MetS participants were randomly assigned to a training (TRAIN) or to a non-training control (CONT) group. TRAIN consisted of stationary interval cycling alternating bouts at 70-90% of maximal heart rate during 45 min day -1 for 6 months. CONT maintained baseline physical activity and no changes in cardiovascular function or MetS factors were detected. In contrast, TRAIN increased cardiorespiratory fitness (14% in VO 2PEAK ; 95% CI 9-18%) and improved metabolic syndrome (-42% in Z score; 95% CI 83-1%). After TRAIN, the workload that elicited a VO 2 of 1500 ml min -1 increased 15% (95% CI 5-25%; P < 0.001). After TRAIN when subjects pedaled at an identical submaximal rate of oxygen consumption, cardiac output increased by 8% (95% CI 4-11%; P < 0.01) and stroke volume by 10% (95% CI, 6-14%; P < 0.005) being above the CONT group values at that time point. TRAIN reduced submaximal exercise heart rate (109 ± 15-106 ± 13 beats min -1 ; P < 0.05), diastolic blood pressure (83 ± 8-75 ± 8 mmHg; P < 0.001) and systemic vascular resistances (P < 0.01) below CONT values. Double product was reduced only after TRAIN (18.2 ± 3.2-17.4 ± 2.4 bt min -1 mmHg 10 -3 ; P < 0.05). The data suggest that intense aerobic interval training improves hemodynamics during submaximal exercise in MetS patients. Specifically, it reduces diastolic blood pressure, systemic vascular resistances, and the double product. The reduction in double product, suggests decreased myocardial oxygen demands which could prevent the occurrence of adverse cardiovascular events during exercise in this population. CLINICALTRIALS. NCT03019796.
Metabolic, respiratory, and cardiological measurements during exercise and rest
NASA Technical Reports Server (NTRS)
1971-01-01
Low concentration effects of CO2 on metabolic respiration and circulation were measured during work and at rest. The relationship between heart rate and metabolic rate is examined, as well as calibration procedures, and rate measurement during submaximal and standard exercise tests. Alterations in acid base and electrolytes were found during exhaustive exercise, including changes in ECG and metabolic alkalosis effects.
Responses to Exercise Differ For Chronic Fatigue Syndrome Patients with Fibromyalgia
Cook, Dane B.; Stegner, Aaron J.; Nagelkirk, Paul R.; Meyer, Jacob D.; Togo, Fumiharu; Natelson, Benjamin H.
2011-01-01
Chronic fatigue syndrome (CFS) and fibromyalgia (FM) are chronic multisymptom illnesses with substantial clinical and diagnostic overlap. We have previously shown that when controlling for aerobic fitness and accounting for comorbid FM, CFS patients do not exhibit abnormal cardiorespiratory responses during maximal aerobic exercise compared to healthy controls, despite differences in pain and exertion. Purpose The purpose of the present study was to examine cardiac and perceptual responses to steady-state, submaximal exercise in CFS patients and healthy controls. Methods Twenty-one CFS patients [13 CFS with comorbid FM (CFS+FM)] and 14 controls completed 20 minutes of submaximal cycling exercise. Impedance cardiography was used to determine cardiac responses during exercise. Systolic blood pressure (SBP), perceived exertion (RPE) and leg-muscle pain were also measured. Data were analyzed using a doubly-multivariate, repeated-measures MANOVA to model the exercise response. Results There was a significant multivariate Time by Group interaction (p < 0.05). The CFS+FM group exhibited an exercise response characterized by higher stoke index, ventilatory equivalents for oxygen and carbon dioxide and RPE, lower SBP and similar HR responses. Conclusions The present results extend upon our previous work with maximal exercise and show that CFS and CFS+FM differ in their responses to steady-state exercise. These results highlight the importance of accounting for comorbid conditions when conducting CFS research, particularly when examining psychophysiological responses to exercise. PMID:22157881
Mahesh Kumar, Koratagere Nagaraju; Ramu, Periasamy; Rajan, Subramanian; Shewade, Deepak Gopal; Balachander, Jayaraman; Adithan, Chandrasekaran
2008-11-01
Beta-blockers show interindividual and interethnic variability in their response. Such variability might be due to the polymorphic variations in the beta1 adrenergic receptor genes viz, Ser49Gly and Arg389Gly. The study evaluated the influence of Ser49Gly and Arg389Gly polymorphisms on the cardiovascular responses to metoprolol in a South Indian population. Forty-one genetically prescreened healthy male volunteers participated in the study. They were divided on the basis of genotype of each polymorphism: Ser49Ser, Ser49Gly, and Gly49Gly and Arg389Arg, Arg389Gly, and Gly389Gly. They were also grouped into combination genotypes viz, S49S R389R, S49G R389R, G49G R389R, S49S R389G, S49S G389G, and S49G R389G. They were subjected to treadmill exercise testing, and cardiovascular parameters were measured before and after metoprolol administration. Metoprolol concentration was determined by reversed phase high-performance liquid chromatography method. The diastolic blood pressure (DBP) was significantly lower in S49S/G389G group when compared to S49S/A389A group. The cardiac parameters were significantly increased in all the genotype groups during treadmill exercise test done for a period of 9 minutes. During predrug treadmill exercise at the end of third and sixth minute, Gly49Gly showed a higher increase in heart rate and volume of oxygen consumption compared to Ser49Ser. Same group showed a higher increase of volume of oxygen consumption at the end of ninth minute of exercise compared to the Ser49Ser. Systolic and diastolic blood pressures were not different between Ser49Gly polymorphisms. However, there was no statistical difference between the genotype groups of both polymorphisms at any stage of post-drug treadmill exercise. The analysis of combination of genotypes showed no significant difference during predrug and postdrug exercise testing. The increase in cardiac responses to treadmill test was influenced by Ser49Gly polymorphism. Nevertheless, the above polymorphisms did not alter the beta-blocker response during treadmill exercise in South Indian population.
Wright, Katherine E; Lyons, Thomas S; Navalta, James W
2013-05-01
The authors of this study examined the effects of muscle fatigue on balance indices and recovery time in recreationally trained individuals after incremental tests on a treadmill and a cycle ergometer. Sixteen participants (male N = 11, female N = 5) (mean age = 21.2 ± 2 years) completed this study. Balance measures were performed on a Biodex Balance System via the Dynamic Balance Test. Balance was measured pre-exercise, immediately post-exercise, and at 3-, 6-, 9-, 12-, 15-, 18-, and 21-min post-exercise. Immediately following the fatiguing treadmill test, balance increased significantly in the overall stability index (SI) (from 4.38 ± 2.48 to 6.09 ± 1.80) and the anterior/posterior index (API) (from 3.49 ± 2.18 to 5.28 ± 1.81) (p < 0.01). Immediately following the fatiguing cycle test, balance was not altered significantly in SI or API. Balance was not altered significantly for the medial/lateral index for either exercise test at any time point. Additionally, there were no significant differences in time to recovery. At 12-min post-exercise, all indices were below pre-exercise values, indicating that fatiguing exercise has a positive effect on balance over time. These results are consistent with previous research, suggesting that any effects of fatigue on balance are seen immediately and are diminished as time after exercise increases.
Effects of treadmill exercise on the LiCl-induced conditioned taste aversion in rats.
Tsuboi, Hisanori; Hirai, Yoshiyuki; Maezawa, Hitoshi; Notani, Kenji; Inoue, Nobuo; Funahashi, Makoto
2015-01-01
Studies have shown that exercise can enhance learning and memory. Conditioned taste aversion (CTA) is an avoidance behavior induced by associative memory of the taste sensation for something pleasant or neutral with a negative visceral reaction caused by the coincident action of a toxic substance that is tasteless or administered systemically. We sought to measure the effects of treadmill exercise on CTA in rats by investigating the effects of exercise on acquisition, extinction and spontaneous recovery of CTA. We made two groups of rats: an exercise group that ran on a treadmill, and a control group that did not have structured exercise periods. To condition rats to disfavor a sweet taste, consumption of a 0.1% saccharin solution in place of drinking water was paired with 0.15M LiCl (2% body weight, i.p.) to induce visceral discomfort. We measured changes of saccharin consumption during acquisition and extinction of CTA. The exercise and no-exercise groups both acquired CTA to similar levels and showed maximum extinction of CTA around 6 days after acquisition. This result indicates that exercise affects neither acquisition nor extinction of CTA. However, in testing for preservation of CTA after much longer extinction periods that included exercise or not during the intervening period, exercising animals showed a significantly lower saccharin intake, irrespective of having exercised or not during the conditioning phase of the trial. This result suggests that exercise may help to preserve aversive memory (taste aversion in this example) as evidence by the significant spontaneous recovery of aversion in exercising animals. Copyright © 2014 Elsevier Inc. All rights reserved.
Kang, Taewook; Lee, Jaeseok; Seo, Junghoon; Han, Dongwook
2017-04-01
[Purpose] The purpose of this research is to investigate the effect of the method of bridge exercise on the change of rectus abdominis muscle and the muscle activity of paraspinal muscles while doing treadmill walking with high heels. [Subjects and Methods] The subjects of this research are healthy female students consisting of 10 persons performing bridge exercises in a supine group, 10 persons performing bridge exercises in a prone group, and 10 persons in a control group while in S university in Busan. Bridge exercise in supine position is performed in hook lying position. Bridge exercise in prone position is plank exercise in prostrate position. To measure the strength of rectus abdominis muscle, maintaining times of the posture was used. To measure the muscle activity of paraspinal muscles, EMG (4D-MT & EMD-11, Relive, Korea) was used. [Results] The strength of rectus abdominis muscle of both bridge exercises in the supine group and bridge exercises in the prone group increases significantly after exercise. The muscle activity of paraspinal muscle such as thoracic parts and lumbar parts in bridge exercises in the prone group decreases statistically while walking on a treadmill with high heels. Muscle activity of thoracic parts paraspinal muscle and bridge exercises in the supine group decreased significantly. [Conclusion] According to this study, we noticed that bridge exercise in a prone position is desirable for women who prefer wearing high heels as a back pain prevention exercise method.
Mini Treadmill for Musculoskeletal Health
NASA Technical Reports Server (NTRS)
Humphreys, Bradley
2015-01-01
Because NASA's approach to space exploration calls for long-term extended missions, there is a pressing need to equip astronauts with effective exercise regimens that will maintain musculoskeletal and cardiovascular health. ZIN Technologies, Inc., has developed an innovative miniature treadmill for use in both zero-gravity and terrestrial environments. The treadmill offers excellent periodic impact exercise to stimulate cardiovascular activity and bone remodeling as well as resistive capability to encourage full-body muscle maintenance. A novel speed-control algorithm allows users to modulate treadmill speed by adjusting stride, and a new subject load device provides a more Earth-like gravity replacement load. This new and compact treadmill offers a unique approach to managing astronaut health while addressing the inherent and stringent challenges of space flight. The innovation also has the potential to offer numerous terrestrial applications, as a real-time daily load stimulus (DLS) measurement feature provides an effective mechanism to combat or manage osteoporosis, a major public health threat for 55 percent of Americans over the age of 50.
Developing a Low-Cost Force Treadmill via Dynamic Modeling.
Hong, Chih-Yuan; Guo, Lan-Yuen; Song, Rong; Nagurka, Mark L; Sung, Jia-Li; Yen, Chen-Wen
2017-01-01
By incorporating force transducers into treadmills, force platform-instrumented treadmills (commonly called force treadmills) can collect large amounts of gait data and enable the ground reaction force (GRF) to be calculated. However, the high cost of force treadmills has limited their adoption. This paper proposes a low-cost force treadmill system with force sensors installed underneath a standard exercise treadmill. It identifies and compensates for the force transmission dynamics from the actual GRF applied on the treadmill track surface to the force transmitted to the force sensors underneath the treadmill body. This study also proposes a testing procedure to assess the GRF measurement accuracy of force treadmills. Using this procedure in estimating the GRF of "walk-on-the-spot motion," it was found that the total harmonic distortion of the tested force treadmill system was about 1.69%, demonstrating the effectiveness of the approach.
ERIC Educational Resources Information Center
Vashdi, E.; Hutzler, Y.; Roth, D.
2008-01-01
Background: Individuals with Intellectual Disability (ID) exhibit reduced levels of compliance to exercise, including treadmill walking. The purpose of this study was to measure the effects of several training conditions on compliance to participation in treadmill walking of children with moderate to severe ID. Method: Criteria for compliance were…
A unique problem of muscle adaptation from weightlessness: The deceleration deficiency
NASA Technical Reports Server (NTRS)
Stauber, William T.
1989-01-01
Decelerator problems of the knee are emphasized since the lower leg musculature is known to atrophy in response to weightlessness. However, other important decelerator functions are served by the shoulder muscles, in particular the rotator cuff muscles. Problems in these muscles often result in tears and dislocations as seen in baseball pitchers. It is noteworthy that at least one device currently exists that can measure concentric and eccentric muscle loading including a submaximal simulated free weight exercise (i.e., force-controlled) and simultaneously record integrated EMG analysis appropriate for assessment of all muscle functional activities. Studies should be undertaken to provide information as to the performance of maximal and submaximal exercise in space travelers to define potential problems and provide rationale for prevention.
Jędrzejko, Maciej; Nowosielski, Krzysztof; Poręba, Ryszard; Ulman-Włodarz, Izabela; Bobiński, Rafał
2016-12-01
To evaluate physical efficiency and activity energy expenditure (AEE) in term pregnancy females during cardiopulmonary exercise tests with a supine cycle ergometer. The study comprised 22 healthy full-term pregnancy women with uncomplicated pregnancies hospitalized in the Department of Gynecology and Obstetrics, Specialist Teaching Hospital in Tychy, Poland. All subjects underwent cardiopulmonary exercise tests (CPET) on a supine cycle ergometer. The 12-min, three-stage, progressive, symptom-limited submaximal test protocol (up to 80% HRmax) was used. Pulsometry was used to record HR on a beat-to-beat analysis and to calculate AEE. Respiratory responses were measured by ergospirometer and a computer system on a breath-by-breath basis at rest, during exercise and at restitution. In the studied population, VO2max was established at the level of 2.19 ± 0.33 L/min in ergospirometry and 2.04 ± 025 L/min in pulsometry. Physical efficiency calculated for sub-maximal exercise by use of the Davis equation was 30.52 ± 0.12%. AEE, based on VO2 in various phases of the CPET, was 0.47, 0.71 and 0.88 L/min for phases 25, 50 and 75 W. Based on ergospirometer readouts, AEE was 10.60, 16.11 and 20.94 kJ/min for phases 25, 50 and 75 W. Overall mean AEE (determined by pulsometry) was 10.59 kJ/min. CPET testing did not have any negative effect upon the health or life of the neonates involved in the study. Submaximal CPET up to 80% HRmax with a supine cycle ergometer is a safe and precise method for assessing work efficiency in term pregnancy women.
Earhart, Gammon M; Duncan, Ryan P; Huang, John L; Perlmutter, Joel S; Pickett, Kristen A
2015-02-05
Effective treatment of locomotor dysfunction in Parkinson disease (PD) is essential, as gait difficulty is an early and major contributor to disability. Exercise is recommended as an adjunct to traditional treatments for improving gait, balance, and quality of life. Among the exercise approaches known to improve walking, tango and treadmill training have recently emerged as two promising therapies for improving gait, disease severity and quality of life, yet these two interventions have not been directly compared to each other. Prior studies have been helpful in identifying interventions effective in improving gait function, but have done little to elucidate the neural mechanisms underlying functional improvements. The primary objective of the proposed work is to compare the effects of three community-based exercise programs, tango, treadmill training and stretching, on locomotor function in individuals with PD. In addition, we aim to determine whether and how these interventions alter functional connectivity of locomotor control networks in the brain. One hundred and twenty right-handed individuals with idiopathic PD who are at least 30 years of age will be assigned in successive waves to one of three community-based exercise groups: tango dancing, treadmill training or stretching (control). Each group will receive three months of exercise training with twice weekly one-hour group classes. Each participant will be evaluated at three time points: pre-intervention (baseline), post-intervention (3 months), and follow-up (6 months). All evaluations will include assessment of gait, balance, disease severity, and quality of life. Baseline and post-intervention evaluations will also include task-based functional magnetic resonance imaging (fMRI) and resting state functional connectivity MRI. All MRI and behavioral measures will be conducted with participants OFF anti-Parkinson medication, with behavioral measures also assessed ON medication. This study will provide important insights regarding the effects of different modes of exercise on locomotor function in PD. The protocol is innovative because it: 1) uses group exercise approaches for all conditions including treadmill training, 2) directly compares tango to treadmill training and stretching, 3) tests participants OFF medication, and 4) utilizes two distinct neuroimaging approaches to explore mechanisms of the effects of exercise on the brain. ClinicalTrials.gov NCT01768832 .
Huang, Tung-Yi; Lin, Lung-Sheng; Cho, Keng-Chi; Chen, Shean-Jen; Kuo, Yu-Min; Yu, Lung; Wu, Fong-Sen; Chuang, Jih-Ing; Chen, Hsiun-Ing; Jen, Chauying J
2012-09-01
Although exercise usually improves motor performance, the underlying cellular changes in the cerebellum remain to be elucidated. This study aimed to investigate whether and how chronic treadmill exercise in young rats induced Purkinje cell changes to improve motor performance and rendered the cerebellum less vulnerable to toxin insults. After 1-wk familiarization of treadmill running, 6-wk-old male Wistar rats were divided into exercise and sedentary groups. The exercise group was then subjected to 8 wk of exercise training at moderate intensity. The rotarod test was carried out to evaluate motor performance. Purkinje cells in cerebellar slices were visualized by lucifer yellow labeling in single neurons and by calbindin immunostaining in groups of neurons. Compared with sedentary control rats, exercised rats not only performed better in the rotarod task, but also showed finer Purkinje cell structure (higher dendritic volume and spine density with the same dendritic field). The exercise-improved cerebellar functions were further evaluated by monitoring the long-lasting effects of intraventricular application of OX7-saporin. In the sedentary group, OX7-saporin treatment retarded the rotarod performance and induced ∼60% Purkinje cell loss in 3 wk. As a comparison, the exercise group showed much milder injuries in the cerebellum by the same toxin treatment. In conclusion, exercise training in young rats increased the dendritic density of Purkinje cells, which might play an important role in improving the motor performance. Furthermore, as Purkinje cells in the exercise group were relatively toxin resistant, the exercised rats showed good motor performance, even under toxin-treated conditions.
NASA Technical Reports Server (NTRS)
Macias, B. R.; Schneider, S. M.; Lee, S. M. C.; Guinet, P.; Hughson, R. L.; Smith, Scott M.; Watenpaugh, D. E.; Hargens, A. R.
2008-01-01
We hypothesized that supine LBNP treadmill exercise combined with Flywheel resistive exercise maintains upright physiologic responses following 60-days of head-down tilt (HDT) bed rest (BR). METHODS: 16 healthy women (age 25-40 years) underwent 60-days HDT (-6deg.) BR. Women were assigned to either a non-exercise control group (CON, n=8) or to an exercise group (EX, n=8). EX subjects performed a 40-min, variable intensity LBNP exercise protocol at foot-ward forces between 1.0-1.1 times body weight, followed by 10- min of resting LBNP 3-4 days/week. Resistive exercise of maximal concentric and eccentric supine leg press and heel raise exercises were performed using a flywheel ergometer 2-3 days/week. IRBs approved this study with informed/written consent. RESULTS: Post-BR VO2pk was not different in EX (-3.3+/-1.2%) but decreased significantly in CON (-21.2+/-2.1%), p< 0.05. Post-BR orthostatic tolerance time (mean se) decreased significantly less in EX (19.3+/-1.3 to 14.4+/-1.5 min) than in CON (17.5+/-0.1 to 9.1+/- 1.5 min), p=0.03. Post-BR muscle strength decreased significantly in CON, but was preserved in EX. Post-BR bone resorption was greater than pre-BR in both groups (p<0.05). Bone formation markers, were significantly elevated (p<0.05) in EX than in CON. CONCLUSIONS: Supine LBNP treadmill exercise along with flywheel resistive exercise maintains upright exercise capacity, orthostatic responses and muscle strength during 60-days HDT BR.
Arcoverde, Cynthia; Deslandes, Andrea; Moraes, Helena; Almeida, Cloyra; Araujo, Narahyana Bom de; Vasques, Paulo Eduardo; Silveira, Heitor; Laks, Jerson
2014-03-01
To assess the effect of aerobic exercise on the cognition and functional capacity in Alzheimer's disease (AD) patients. Elderly (n=20) with mild dementia (NINCDS-ADRDA/CDR1) were randomly assigned to an exercise group (EG) on a treadmill (30 minutes, twice a week and moderate intensity of 60% VO₂max) and control group (GC) 10 patients. The primary outcome measure was the cognitive function using Cambridge Cognitive Examination (CAMCOG). Specifics instruments were also applied to evaluate executive function, memory, attention and concentration, cognitive flexibility, inhibitory control and functional capacity. After 16 weeks, the EG showed improvement in cognition CAMCOG whereas the CG declined. Compared to the CG, the EG presented significant improvement on the functional capacity. The analysis of the effect size has shown a favorable response to the physical exercise in all dependent variables. Walking on treadmill may be recommended as an augmentation treatment for patients with AD.
Treadmill Exercise with Increased Body Loading Enhances Post Flight Functional Performance
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Laurie, S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.;
2014-01-01
The goals of the Functional Task Test (FTT) study were to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We have previously shown that for Shuttle, ISS and bed rest subjects functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. The bed rest analog allows us to investigate the impact of axial body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance and then compare them with the results obtained in our space flight study. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. Given the importance of body-support loading we set out to determine if there is a relationship between the load experienced during inflight treadmill exercise (produced by a harness and bungee system) and postflight functional performance. ISS crewmembers (n=13) were tested using the FTT protocol before and after 6 months in space. Crewmembers were tested three times before flight, and on 1, 6, and 30 days after landing. To determine how differences in body-support loading experienced during inflight treadmill exercise impacts postflight functional performance, the loading history for each subject during inflight treadmill (T2) exercise was correlated with postflight measures of performance. Crewmembers who walked on the treadmill with higher pull-down loads had less decrement in postflight postural stability and dynamic locomotor control than those subjects who exercised with lighter loads. These data point to the importance of providing significant body loading during inflight treadmill exercise. This and the addition of specific balance training may further mitigate decrements in critical mission tasks that require dynamic postural stability and mobility. Inflight treadmill exercise provides a multi-disciplinary platform to provide sensorimotor, aerobic and bone mechanical stimuli benefits. Forward work will focus on the development of an inflight training system that will integrate aerobic, resistive and balance training modalities into a single interdisciplinary countermeasure system for exploration class missions.
Low-intensity treadmill exercise promotes rat dorsal wound healing.
Zhou, Wu; Liu, Guo-hui; Yang, Shu-hua; Mi, Bo-bin; Ye, Shu-nan
2016-02-01
In order to investigate the promoting effect of low-intensity treadmill exercise on rat dorsal wound healing and the mechanism, 20 Sprague-Dawley rats were randomly divided into two groups: exercise group (Ex) and non-exercise group (non-ex). The rats in Ex group were given treadmill exercise for one month, and those in non-ex group raised on the same conditions without treadmill exercise. Both groups received dorsal wound operation with free access to food and water. By two-week continuous observation and recording of the wound area, the healing rate was analyzed. The blood sample was collected at day 14 post-operation via cardiac puncture for determination of the number of endothelial progenitor cells (EPCs) by flow cytometry, and the concentrations of relevant cytokines such as basic fibroblast growth factor (bFGF), endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) were measured by ELISA. The skin tissue around the wound was dissected to observe the vascular density under the microscope after HE staining, to detect the mRNA level of VEGFR2 and angiopoietin-1 (Ang-1) receptor using RT-qPCR, and protein expression of a-smooth muscle actin (αSMA) and type III collagen (ColIII) using Western blotting. It was found that the wound area in Ex group was smaller at the same time point than in non-ex group. The number of circulating EPCs was greater and the concentrations of vasoactive factors such as VEGF, eNOS and bFGF were higher in Ex group than in non-ex group. HE staining displayed a higher vessel density in Ex group than in non-ex group. Moreover, the mRNA expression of VEGFR2 and Ang-1 detected in the wound tissue in Ex group was higher than in non-ex group. Meanwhile, the protein expression of αSMA and ColIII was more abundant in Ex group than in non-ex group. Conclusively, the above results demonstrate Ex rats had a higher wound healing rate, suggesting low-intensity treadmill exercise accelerates wound healing. The present work may provide some hint for future study of treating refractory wound.
Berzosa, C; Gómez-Trullén, E M; Piedrafita, E; Cebrián, I; Martínez-Ballarín, E; Miana-Mena, F J; Fuentes-Broto, L; García, J J
2011-06-01
Optimal levels of membrane fluidity are essential for numerous cell functions including cell growth, solute transport and signal transduction. Since exercise enhances free radical production, our aim was to evaluate in healthy male subjects the effects of an acute bout of maximal and submaximal exercise on the erythrocyte membrane fluidity and its possible relation to the oxidative damage overproduction due to exercise. Subjects (n = 34) performed three cycloergometric tests: a continuous progressive exercise, a strenuous exercise until exhaustion and an acute bout of exercise at an intensity corresponding to 70% of maximal work capacity for 30 min. Venous blood samples were collected before and immediately after these exercises. Erythrocyte membrane fluidity was assessed by fluorescence spectroscopy. Plasma malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations and carbonyl content of plasmatic proteins were used as an index of lipid and protein oxidation, respectively. Exercise produced a dramatic drop in the erythrocyte membrane fluidity as compared to resting time, but this was not accompanied by significant changes in the plasmatic MDA and 4-HDA concentrations. The highest erythrocyte membrane rigidity was detected immediately after strenuous exercise until exhaustion was performed. Protein carbonyl levels were higher after exhaustive exercises than at rest. Continuous progressive and strenuous exercises until exhaustion, but not submaximal workload, resulted in a significant enhanced accumulation of carbonylated proteins in the plasma. These findings are consistent with the idea that exercise exaggerates oxidative damage, which may contribute, at least partially, to explain the rigidity in the membrane of the erythrocytes due to acute exercise.
Reduced exercise capacity in persons with Down syndrome: cause, effect, and management
Mendonca, Goncalo V; Pereira, Fernando D; Fernhall, Bo
2010-01-01
Persons with Down syndrome (DS) have reduced peak and submaximal exercise capacity. Because ambulation is one predictor of survival among adults with DS, a review of the current knowledge of the causes, effects, and management of reduced exercise capacity in these individuals would be important. Available data suggest that reduced exercise capacity in persons with DS results from an interaction between low peak oxygen uptake (VO2peak) and poor exercise economy. Of several possible explanations, chronotropic incompetence has been shown to be the primary cause of low VO2peak in DS. In contrast, poor exercise economy is apparently dependent on disturbed gait kinetics and kinematics resulting from joint laxity and muscle hypotonia. Importantly, there is enough evidence to suggest that such low levels of physical fitness (reduced exercise capacity and muscle strength) limit the ability of adults with DS to perform functional tasks of daily living. Consequently, clinical management of reduced exercise capacity in DS seems important to ensure that these individuals remain productive and healthy throughout their lives. However, few prospective studies have examined the effects of structured exercise training in this population. Existent data suggest that exercise training is beneficial for improving exercise capacity and physiological function in persons with DS. This article reviews the current knowledge of the causes, effects, and management of reduced exercise capacity in DS. This review is limited to the acute and chronic responses to submaximal and peak exercise intensities because data on supramaximal exercise capacity of persons with DS have been shown to be unreliable. PMID:21206759
Schachter, Aaron K; McHugh, Malachy P; Tyler, Timothy F; Kreminic, Ian J; Orishimo, Karl F; Johnson, Christopher; Ben-Avi, Simon; Nicholas, Stephen J
2010-09-01
An important synergistic relationship exists between the scapular stabilizers and the glenohumeral rotators. Information on the relative contribution of the scapular stabilizers to glenohumeral rotation would be useful for exercise prescription for overhead athletes and for patients with shoulder pathology. We hypothesized that the scapular stabilizers would be highly active during both maximal and submaximal internal and external rotation. Eight healthy male volunteers (16 shoulders) performed internal and external glenohumeral rotation testing at maximal and submaximal intensities. They also performed a scapular retraction rowing exercise at maximal and submaximal levels. Electromyographic (EMG) signals were recorded from the infraspinatus, pectoralis major, serratus anterior, and middle trapezius. Values were compared among muscle groups, among individual muscles at different intensity levels, and among individual muscles at different points in the arc of motion. For submaximal glenohumeral internal rotation, activity in the scapular stabilizers was not different (P = .1-.83) from activity in the internal rotator throughout the range of motion. For the initial two-thirds of maximal internal rotation, middle trapezius activity and pectoralis major activity were higher (P < .05) than serratus anterior activity. For submaximal external rotation, activity in the scapular stabilizers during the middle phase of the motion was higher (P < .05) than activity in the external rotators. For maximal external rotation these differences were present throughout the motion with middle trapezius activity exceeding 100% maximal voluntary contraction. The scapular stabilizers functioned at a similar or higher intensity than the glenohumeral rotators during internal and external rotation. This highlights the importance of training the scapular stabilizers in upper extremity athletes and in patients with shoulder pathology. (c) 2010 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Understanding the factors that effect maximal fat oxidation.
Purdom, Troy; Kravitz, Len; Dokladny, Karol; Mermier, Christine
2018-01-01
Lipids as a fuel source for energy supply during submaximal exercise originate from subcutaneous adipose tissue derived fatty acids (FA), intramuscular triacylglycerides (IMTG), cholesterol and dietary fat. These sources of fat contribute to fatty acid oxidation (FAox) in various ways. The regulation and utilization of FAs in a maximal capacity occur primarily at exercise intensities between 45 and 65% VO 2max , is known as maximal fat oxidation (MFO), and is measured in g/min. Fatty acid oxidation occurs during submaximal exercise intensities, but is also complimentary to carbohydrate oxidation (CHOox). Due to limitations within FA transport across the cell and mitochondrial membranes, FAox is limited at higher exercise intensities. The point at which FAox reaches maximum and begins to decline is referred to as the crossover point. Exercise intensities that exceed the crossover point (~65% VO 2max ) utilize CHO as the predominant fuel source for energy supply. Training status, exercise intensity, exercise duration, sex differences, and nutrition have all been shown to affect cellular expression responsible for FAox rate. Each stimulus affects the process of FAox differently, resulting in specific adaptions that influence endurance exercise performance. Endurance training, specifically long duration (>2 h) facilitate adaptations that alter both the origin of FAs and FAox rate. Additionally, the influence of sex and nutrition on FAox are discussed. Finally, the role of FAox in the improvement of performance during endurance training is discussed.
T wave alternans during exercise and atrial pacing in humans
NASA Technical Reports Server (NTRS)
Hohnloser, S. H.; Klingenheben, T.; Zabel, M.; Li, Y. G.; Albrecht, P.; Cohen, R. J.
1997-01-01
INTRODUCTION: Evidence is accumulating that microvolt T wave alternans (TWA) is a marker of increased risk for ventricular tachyarrhythmias. Initially, atrial pacing was used to elevate heart rate and elicit TWA. More recently, a noninvasive approach has been developed that elevates heart rate using exercise. METHODS AND RESULTS: In 30 consecutive patients with a history of ventricular tachyarrhythmias, the spectral method was used to detect TWA during both atrial pacing and submaximal exercise testing. The concordance rate for the presence or absence of TWA using the two measurement methods was 84%. There was a patient-specific heart rate threshold for the detection of TWA that averaged 100 +/- 14 beats/min during exercise compared with 97 +/- 9 beats/min during right atrial pacing (P = NS). Beyond this threshold, there was a significant and comparable increase in level of TWA with decreasing pacing cycle length and increasing exercise heart rates. CONCLUSIONS: The present study is the first to demonstrate that microvolt TWA can be assessed reliably and noninvasively during exercise stress. There is a patient-specific heart rate threshold beyond which TWA continues to increase with increasing heart rates. Heart rate thresholds for the onset of TWA measured during atrial pacing and exercise stress were comparable, indicating that heart rate alone appears to be the main factor of determining the onset of TWA during submaximal exercise stress.
Effects of chronic nitric oxide synthase inhibition on responses to acute exercise in swine
McAllister, Richard M.; Newcomer, Sean C.; Pope, Eric R.; Turk, James R.; Laughlin, M. Harold
2012-01-01
Nitric oxide (NO) is potentially involved in several responses to acute exercise. We tested the hypotheses that inhibition of NO formation reduces maximal O2 delivery to muscle, but does not affect O2 utilization by muscle, therefore lowering maximal O2 consumption. To test these hypotheses, swine (~30 kg) drank either tap water (Con, n = 25) or water with NG-nitro-L-arginine methyl ester (8.0 ± 0.4 mg · kg−1 · day−1 for ≥4 wk; LN, n = 24). Treatment efficacy was reflected by higher mean arterial pressure and lower plasma NO metabolite concentration in LN than Con (both P < 0.05). Swine completed two graded treadmill running tests to maximum. In the first test, O2 consumption was determined at rest through maximal exercise intensity. O2 consumption did not differ between groups at rest or at most exercise intensities, including maximum (Con, 40.8 ± 1.8 ml · min−1 · kg−1; LN, 40.4 ± 2.9; not significant). In the second test, tissue-specific blood flows were determined using the radiolabeled-microsphere technique. At rest, blood flows were lower (P < 0.05) in LN compared with Con for a number of tissues, including kidney, adrenal, lung, and several skeletal muscles. During both submaximal and maximal exercise, however, blood flows were similar between Con and LN for all 16 muscles examined; only blood flows to kidney (Con, 99 ± 16 ml · min−1 · 100 g; LN, 55 ± 15; P < 0.05) and pancreas (Con, 25 ± 7; LN, 6 ± 2; P < 0.05) were lower in LN at maximum. Endothelium-dependent, but not -independent, relaxation of renal arterial segments was reduced (P < 0.05) in vitro. These data indicate that exercise-induced increases in muscle blood flows are maintained with chronic inhibition of NO formation and that maximal O2 consumption is therefore preserved. Redundant vasodilatory pathways and/or upregulation of these pathways may underlie these findings. PMID:17975123
Aerobic exercise improves oxidant-antioxidant balance in patients with rheumatoid arthritis
Tuna, Zeynep; Duger, Tulin; Atalay-Guzel, Nevin; Aral, Arzu; Basturk, Bilkay; Haznedaroglu, Seminur; Goker, Berna
2015-01-01
[Purpose] Although oxidative stress is known to be present in rheumatoid arthritis (RA), the effects of exercise on oxidative parameters are unknown. The aim of this study was to investigate the effects of acute aerobic exercise on serum oxidant and antioxidant levels in patients with RA. [Subjects and Methods] Sixteen patients with RA and 10 age-matched healthy volunteers participated in this study. All participants wore polar telemeters and walked on a treadmill for 30 minutes at a speed eliciting 60–75% of maximal heart rates. Blood samples were obtained before, immediately and 24 hours after exercise and malondialdehyde (MDA) and total sulfhydrile group (RSH) levels were measured. [Results] Both groups had similar heart rates during the test but the treadmill speed of the RA patients was significantly lower than that of the healthy volunteers. Serum MDA levels were lower than in both groups immediately after exercise, with greater decrements in the RA patients than controls. MDA levels returned to baseline 24 hours after the exercise only in the controls; they remained low in the RA patients. There was a slight increase in serum RSH levels after exercise compared to baseline in both groups. [Conclusion] Moderate intensity treadmill exercise did not have any adverse effect on the oxidant-antioxidant balance. The results suggest that such an exercise may be safely added to the rehabilitation program of RA for additional antioxidant effects. Morever, this antioxidant environment is maintained longer in RA patients. PMID:25995597
Gaibazzi, Nicola; Petrucci, Nicola; Ziacchi, Vigilio
2004-03-01
Previous work showed a strong inverse association between 1-min heart rate recovery (HRR) after exercising on a treadmill and all-cause mortality. The aim of this study was to determine whether the results could be replicated in a wide population of real-world exercise ECG candidates in our center, using a standard bicycle exercise test. Between 1991 and 1997, 1420 consecutive patients underwent ECG exercise testing performed according to our standard cycloergometer protocol. Three pre-specified cut-point values of 1-min HRR, derived from previous studies in the medical literature, were tested to see whether they could identify a higher-risk group for all-cause mortality; furthermore, we tested the possible association between 1-min HRR as a continuous variable and mortality using logistic regression. Both methods showed a lack of a statistically significant association between 1-min HRR and all-cause mortality. A weak trend toward an inverse association, although not statistically significant, could not be excluded. We could not validate the clear-cut results from some previous studies performed using the treadmill exercise test. The results in our study may only "not exclude" a mild inverse association between 1-min HRR measured after cycloergometer exercise testing and all-cause mortality. The 1-min HRR measured after cycloergometer exercise testing was not clinically useful as a prognostic marker.
NASA Astrophysics Data System (ADS)
Wanner, Samuel Penna; Costa, Kátia Anunciação; Soares, Anne Danieli Nascimento; Cardoso, Valbert Nascimento; Coimbra, Cândido Celso
2014-08-01
The mechanisms underlying physical exercise-induced hyperthermia may be species specific. Therefore, the present study aimed to investigate the effects of exercise intensity and ambient temperature on the core body temperature ( T core) of running mice, which provide an important experimental model for advancing the understanding of thermal physiology. We evaluated the influence of different protocols (constant- or incremental-speed exercises), treadmill speeds and ambient temperatures ( T a) on the magnitude of exercise-induced hyperthermia. To measure T core, a telemetric sensor was implanted in the abdominal cavity of male adult Swiss mice under anesthesia. After recovering from the surgery, the animals were familiarized to running on a treadmill and then subjected to the different running protocols and speeds at two T a: 24 °C or 34 °C. All of the experimental trials resulted in marked increases in T core. As expected, the higher-temperature environment increased the magnitude of running-induced hyperthermia. For example, during incremental exercise at 34 °C, the maximal T core achieved was increased by 1.2 °C relative to the value reached at 24 °C. However, at the same T a, neither treadmill speed nor exercise protocol altered the magnitude of exercise-induced hyperthermia. We conclude that T core of running mice is influenced greatly by T a, but not by the exercise protocols or intensities examined in the present report. These findings suggest that the magnitude of hyperthermia in running mice may be regulated centrally, independently of exercise intensity.
Wanner, Samuel Penna; Costa, Kátia Anunciação; Soares, Anne Danieli Nascimento; Cardoso, Valbert Nascimento; Coimbra, Cândido Celso
2014-08-01
The mechanisms underlying physical exercise-induced hyperthermia may be species specific. Therefore, the present study aimed to investigate the effects of exercise intensity and ambient temperature on the core body temperature (T core) of running mice, which provide an important experimental model for advancing the understanding of thermal physiology. We evaluated the influence of different protocols (constant- or incremental-speed exercises), treadmill speeds and ambient temperatures (T a) on the magnitude of exercise-induced hyperthermia. To measure T core, a telemetric sensor was implanted in the abdominal cavity of male adult Swiss mice under anesthesia. After recovering from the surgery, the animals were familiarized to running on a treadmill and then subjected to the different running protocols and speeds at two T a: 24 °C or 34 °C. All of the experimental trials resulted in marked increases in T core. As expected, the higher-temperature environment increased the magnitude of running-induced hyperthermia. For example, during incremental exercise at 34 °C, the maximal T core achieved was increased by 1.2 °C relative to the value reached at 24 °C. However, at the same T a, neither treadmill speed nor exercise protocol altered the magnitude of exercise-induced hyperthermia. We conclude that T core of running mice is influenced greatly by T a, but not by the exercise protocols or intensities examined in the present report. These findings suggest that the magnitude of hyperthermia in running mice may be regulated centrally, independently of exercise intensity.
Wakefield, Benjamin R; Glaister, Mark
2009-12-01
The purpose of this study was to examine the effect of work-interval duration (WID) and intensity on the time spent at, or above, 95% VO2max (T95 VO2max) during intermittent bouts of supramaximal exercise. Over a 5-week period, 7 physically active men with a mean (+/-SD) age, height, body mass, and VO2max of 22 +/- 5 years, 181.5 +/- 5.6 cm, 86.4 +/- 11.4 kg, and 51.5 +/- 1.5 ml.kg-1.min-1, respectively, attended 7 testing sessions. After completing a submaximal incremental test on a treadmill to identify individual oxygen uptake/running velocity relationships, subjects completed a maximal incremental test to exhaustion to VO2max and subsequently (from the aforementioned relationship) the minimum velocity required to elicit VO2max (vVO2max). In a random order, subjects then carried out 3 intermittent runs to exhaustion at both 105% and 115% vVO2max. Each test used a different WID (20 s, 25 s, or 30 s) interspersed with 20-second passive recovery periods. Results revealed no significant difference in T95 vVO2max for intermittent runs at 105% versus 115% vVO2max (p = 0.142). There was, however, a significant effect (p < 0.001) of WID on T95 VO2max, with WIDs of 30 seconds enabling more time relative to WIDs of 20 seconds (p = 0.018) and 25 seconds (p = 0.009). Moreover, there was an interaction between intensity and duration such that the effect of WID was magnified at the lower exercise intensity (p = 0.046). In conclusion, despite a number of limitations, the results of this investigation suggest that exercise intensities of approximately 105% vVO2max combined with WIDs greater than 25 seconds provide the best way of optimizing T95 VO2max when using fixed 20-second stationary rest periods.
Hausen, Matheus; Soares, Pedro Paulo; Araujo, Marcus Paulo; Esteves, Débora; Julio, Hilbert; Tauil, Roberto; Junca, Marcus; Porto, Flávia; Franchini, Emerson; Bridge, Craig Alan; Gurgel, Jonas
2018-05-10
The purpose of the present study was to propose and validate new taekwondo-specific cardiopulmonary exercise tests. Twelve male national-level taekwondo athletes (age 20 ± 2 yrs; body mass 67.5 ± 5.7 kg; height 175 ± 8 cm; training experience 7 ± 3 yrs) performed three separate exercise tests in a randomized counterbalanced order: 1) a Treadmill Running Cardiopulmonary Exercise Test (CPET); 2) Continuous and 3) Interval Taekwondo Cardiopulmonary Exercise Tests (cTKDet and iTKDet, respectively). The CPET was administered using an individualized ramp protocol. Taekwondo tests comprised sequences of turning kicks performed upon a stationary target. The impacts were recorded via an electronic scoring sensor used in official competition. Stages on the cTKDet and iTKDet lasted 1-min and progressively reduced the kick interval duration. These were guided by a sound signal, starting with 4.6s between kicks and reducing by 0.4s every minute until the test ended. Oxygen uptake (V̇O 2 ), heart rate (HR), capillary blood lactate and ratings of perceived exertion were measured. Modest differences were identified in V̇O 2MAX between the tests (F 2,22 =3.54; p=0.046; ES=0.16). HR MAX was higher during both taekwondo tests (F 2,22 =14.3; p=0.001; ES=1.14) compared with CPET. Specific tests also yielded higher responses in the 1 st ventilatory threshold V̇O 2 (F 2,22 =6.5; p=0.04; ES=0.27) and HR (F 2,22 =12.3; p<0.001; ES=1.06), and HR at the 2 nd ventilatory threshold (F 2,22 =5.7; p=0.02; ES=0.72). Taekwondo-specific cardiopulmonary tests enhance the validity of some cardiopulmonary responses, and might therefore be considered to optimise routine diagnostic testing and training prescription for this athletic group.
Tchekalarova, J; Shishmanova, M; Atanasova, D; Stefanova, M; Alova, L; Lazarov, N; Georgieva, K
2015-11-02
The therapeutic efficacy of regular physical exercises in an animal model of epilepsy and depression comorbidity has been confirmed previously. In the present study, we examined the effects of endurance training on susceptibility to kainate (KA)-induced status epilepticus (SE), behavioral changes and neuronal damage in spontaneously hypertensive rats (SHRs). Male SHRs were randomly divided into two groups. One group was exercised on a treadmill with submaximal loading for four weeks and the other group was sedentary. Immediately after the training period, SE was evoked in half of the sedentary and trained rats by KA, while the other half of the two groups received saline. Basal systolic (SP), diastolic (DP) and mean arterial pressure (MAP) of all rats were measured at the beginning and at the end of the training period. Anxiety, memory and depression-like behaviour were evaluated a month after SE. The release of 5-HT in the hippocampus was measured using a liquid scintillation method and neuronal damage was analyzed by hematoxylin and eosin staining. SP and MAP of exercised SHRs decreased in comparison with the initial values. The increased resistance of SHRs to KA-induced SE was accompanied by an elongated latent seizure-free period, improved object recognition memory and antidepressant effect after the training program. While the anticonvulsant and positive behavioral effects of endurance training were accompanied by an increase of 5-HT release in the hippocampus, it did not exert neuroprotective activity. Our results indicate that prior exercise is an effective means to attenuate KA-induced seizures and comorbid behavioral changes in a model of hypertension and epilepsy suggesting a potential influence of hippocampal 5-HT on a comorbid depression. However, this beneficial impact does not prevent the development of epilepsy and concomitant brain damage. Copyright © 2015 Elsevier B.V. All rights reserved.
Oxidative stress and metabolism at rest and during exercise in persons with Down syndrome.
Flore, Patrice; Bricout, Véronique-A; van Biesen, Debbie; Guinot, Michel; Laporte, François; Pépin, Jean-Louis; Eberhard, Yves; Favre-Juvin, Anne; Wuyam, Bernard; van de Vliet, Peter; Faure, Patrice
2008-02-01
Down syndrome (DS) is a risk factor for metabolic syndrome and cardiovascular disease. The greater oxidative stress described in DS can increase this risk owing to its potential deleterious effects on insulin sensitivity. We hypothesized that metabolic syndrome or its markers, at rest and during exercise, are more pronounced in young adults with DS. The study design is that of a controlled study. Thirteen physically active young adults with DS, after overnight polysomnography, plasma-lipid profile, and insulin-resistance [Homeostasis Model Assessment Insulin Resistance (HOMA-IR)] assessments, underwent a submaximal progressive treadmill exercise (10 min at 30 and 50%, and 20 min at 75% of V O2max), allowing for maximal fat-oxidation rate and blood-oxidative stress determinations. They were compared with 15 healthy control participants (C). V O2max of DS participants was lower than that of C (60.8+/-2.4 versus 44.4+/-3.3 ml/kg/min; P<0.001) but was close to the predicted value (95+/-6%). In DS participants, as expected, oxidative stress was greater than in C (+15%; P<0.001) at rest and all through the exercise protocol. Although a greater fat mass (DS: 19.9+/-1.3%; C: 13.5+/-0.9%; P<0.001), and a lower insulin sensitivity (HOMA-IR in DS: 1.09+/-0.16; in C: 0.64+/-0.13; P<0.05) was observed for DS participants, a metabolic syndrome could not be shown. Maximal fat-oxidation rate was lower in DS participants (394.2+/-69.9 versus 486.1+/-134.8 mg/min in C; P<0.01), but it was in the normal range. Despite greater oxidative stress and lower insulin sensitivity, the DS group involved in our study did not display clear metabolic abnormalities. The young age and lifestyle of this group might, partially, have accounted for this apparently healthy metabolic status.
Saber, Rana; Liu, Kiang; Ferrucci, Luigi; Criqui, Michael H.; Zhao, Lihui; Tian, Lu; Guralnik, Jack; Liao, Yihua; Domanchuk, Kathryn; Kibbe, Melina R.; Green, David; Perlman, Harris; McDermott, Mary M.
2017-01-01
AIMS The extent and clinical significance of stem and progenitor cell (SPC) increases in response to lower extremity ischemia in people with peripheral artery disease (PAD) are unclear. We compared changes in SPC levels immediately following a treadmill exercise test between individuals with and without PAD. Among participants with PAD, we determined whether more severe PAD was associated with greater increases in SPCs following treadmill exercise induced lower extremity ischemia. APPROACH AND RESULTS We measured SPC levels in 25 participants with PAD and 20 without PAD before and immediately after a treadmill exercise test. Participants with PAD, compared to participants without PAD, had greater increases in CD34+CD45dim (+0.08±0.03 vs. −0.06±0.04, p=0.008), CD34+CD45dimCD133+ (+0.08±0.05 vs. −0.08±0.04, p=0.014), CD34+CD45dimCD31+ (+0.10±0.03 vs. −0.07±0.04, p=0.002), and CD34+CD45dimALDH+ SPCs (+0.18±0.07 vs. −0.05±0.08, p=0.054) measured as a percentage of all white blood cells. Among participants with PAD, those with any increases in the percent of SPCs immediately after the treadmill exercise test compared to those with no change or a decrease in SPCs had lower baseline ABI values (0.65±0.17 vs. 0.90±0.19, p=0.004) and shorter treadmill times to onset of ischemic leg symptoms (2.17±1.54 vs. 5.25±3.72 minutes, p=0.012). CONCLUSIONS In conclusion, treadmill exercise-induced lower extremity ischemia is associated with acute increases in circulating SPCs among people with PAD. More severe PAD is associated with a higher prevalence of SPC increases in response to lower extremity ischemia. Further prospective study is needed to establish the prognostic significance of ischemia related increases in SPCs among patients with PAD. PMID:26324152
Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats
Zhang, Jianying; Yuan, Ting; Wang, James H-C.
2016-01-01
The effect of exercise on wound healing in aging tendon was tested using a rat moderate treadmill running (MTR) model. The rats were divided into an MTR group that ran on a treadmill for 4 weeks and a control group that remained in cages. After MTR, a window defect was created in the patellar tendons of all rats and wound healing was analyzed. We found that MTR accelerated wound healing by promoting quicker closure of wounds, improving the organization of collagen fibers, and decreasing senescent cells in the wounded tendons when compared to the cage control. MTR also lowered vascularization, increased the numbers of tendon stem/progenitor cells (TSCs) and TSC proliferation than the control. Besides, MTR significantly increased the expression of stem cell markers, OCT-4 and Nanog, and tenocyte genes, Collagen I, Collagen III and tenomodulin, and down-regulated PPAR-γ, Collagen II and Runx-2 (non-tenocyte genes). These findings indicated that moderate exercise enhances healing of injuries in aging tendons through TSC based mechanisms, through which exercise regulates beneficial effects in tendons. This study reveals that appropriate exercise may be used in clinics to enhance tendon healing in aging patients. PMID:26885754
Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats.
Zhang, Jianying; Yuan, Ting; Wang, James H-C
2016-02-23
The effect of exercise on wound healing in aging tendon was tested using a rat moderate treadmill running (MTR) model. The rats were divided into an MTR group that ran on a treadmill for 4 weeks and a control group that remained in cages. After MTR, a window defect was created in the patellar tendons of all rats and wound healing was analyzed. We found that MTR accelerated wound healing by promoting quicker closure of wounds, improving the organization of collagen fibers, and decreasing senescent cells in the wounded tendons when compared to the cage control. MTR also lowered vascularization, increased the numbers of tendon stem/progenitor cells (TSCs) and TSC proliferation than the control. Besides, MTR significantly increased the expression of stem cell markers, OCT-4 and Nanog, and tenocyte genes, Collagen I, Collagen III and tenomodulin, and down-regulated PPAR-γ, Collagen II and Runx-2 (non-tenocyte genes). These findings indicated that moderate exercise enhances healing of injuries in aging tendons through TSC based mechanisms, through which exercise regulates beneficial effects in tendons. This study reveals that appropriate exercise may be used in clinics to enhance tendon healing in aging patients.
Moderate treadmill exercise prevents oxidative stress-induced anxiety-like behavior in rats.
Salim, Samina; Sarraj, Nada; Taneja, Manish; Saha, Kaustuv; Tejada-Simon, Maria Victoria; Chugh, Gaurav
2010-04-02
Recent work has suggested correlation of oxidative stress with anxiety-like behavior. There also is evidence for anxiolytic effects of physical exercise. However, a direct role of oxidative stress in anxiety is not clear and a protective role of physical exercise in oxidative stress-mediated anxiety has never been addressed. In this study, we have utilized rats to test direct involvement of oxidative stress with anxiety-like behavior and have identified oxidative stress mechanisms likely involved in anxiolytic effects of physical exercise. Intraperitoneal injections at non-toxic dose of l-buthionine-(S,R)-sulfoximine (BSO), an agent that increases oxidative stress markers, increased anxiety-like behavior of rats compared to vehicle-treated control rats. Prior 2 weeks treatment with the antioxidant, tempol attenuated BSO-induced anxiety-like behavior of rats suggesting a role of oxidative stress in this phenomenon. Moreover, moderate treadmill exercise prevented BSO-induced anxiety-like behavior of rats and also prevented BSO-mediated increase in oxidative stress markers in serum, urine and brain tissue homogenates from hippocampus, amygdala and locus coeruleus. Thus increasing oxidative stress increases anxiety-like behavior of rats. Moreover, antioxidant or treadmill exercise training both reduce oxidative stress in the rat brain regions implicated in anxiety response and prevent anxiety-like behavior of rats. Published by Elsevier B.V.
Ghodrati-Jaldbakhan, Shahrbanoo; Ahmadalipour, Ali; Rashidy-Pour, Ali; Vafaei, Abbas Ali; Miladi-Gorji, Hossein; Alizadeh, Maryam
2017-05-15
Previous studies from our laboratory have shown that treadmill exercise alleviates the deficits in cognitive functions and anxiety behaviors induced by chronic exposure to morphine in male rats. In this study, we investigated the effects of low and high intensities of treadmill exercise on spatial memory, anxiety-like behaviors, and biochemical changes in the hippocampus and serum of morphine-treated female rats. The adult virgin female rats were injected with bi-daily doses (10mg/kg, at 12h intervals) of morphine over a period of 10days. Following these injections, the rats were exercised under low or high intensities for 30min per session on five days a week for four weeks. After exercise training, object location memory, anxiety profile, hippocampal BDNF, and serum corticosterone and BDNF were examined. Morphine-treated animals exhibited increased anxiety levels, impaired object location memory, and reduced hippocampal BDNF. Exercise alleviated these impairing effects on anxiety profile and memory but not hippocampal BDNF. The high-intensity exercise even further reduced the hippocampal BDNF. Additionally, both exercise regimens in the morphine group and the high exercise in the saline group reduced serum BDNF. Finally, the high-intensity exercise enhanced corticosterone serum. These findings indicate that the negative cognitive and behavioral effects of chronic exposure to morphine could be relieved by forced exercise in female rats. However, the exercise intensity is an important factor to be considered during exercise training. Finally, the correlation between changes of brain and serum BDNF and cognitive functions following morphine exposure needs further research. Copyright © 2017 Elsevier B.V. All rights reserved.
Bentley, Robert F; Jones, Joshua H; Hirai, Daniel M; Zelt, Joel T; Giles, Matthew D; Raleigh, James P; Quadrilatero, Joe; Gurd, Brendon J; Neder, J Alberto; Tschakovsky, Michael E
2018-01-01
Considerable interindividual differences in the Q˙-V˙O2 relationship during exercise have been documented but implications for submaximal exercise tolerance have not been considered. We tested the hypothesis that these interindividual differences were associated with differences in exercising muscle deoxygenation and ratings of perceived exertion (RPE) across a range of submaximal exercise intensities. A total of 31 (21 ± 3 years) healthy recreationally active males performed an incremental exercise test to exhaustion 24 h following a resting muscle biopsy. Cardiac output (Q˙ L/min; inert gas rebreathe), oxygen uptake (V˙O2 L/min; breath-by-breath pulmonary gas exchange), quadriceps saturation (near infrared spectroscopy) and exercise tolerance (6-20; Borg Scale RPE) were measured. The Q˙-V˙O2 relationship from 40 to 160 W was used to partition individuals post hoc into higher (n = 10; 6.3 ± 0.4) versus lower (n = 10; 3.7 ± 0.4, P < 0.001) responders. The Q˙-V˙O2 difference between responder types was not explained by arterial oxygen content differences (P = 0.5) or peripheral skeletal muscle characteristics (P from 0.1 to 0.8) but was strongly associated with stroke volume (P < 0.05). Despite considerable Q˙-V˙O2 difference between groups, no difference in quadriceps deoxygenation was observed during exercise (all P > 0.4). Lower cardiac responders had greater leg (P = 0.027) and whole body (P = 0.03) RPE only at 185 W, but this represented a higher %peak V˙O2 in lower cardiac responders (87 ± 15% vs. 66 ± 12%, P = 0.005). Substantially lower Q˙-V˙O2 in the lower responder group did not result in altered RPE or exercising muscle deoxygenation. This suggests substantial recruitment of blood flow redistribution in the lower responder group as part of protecting matching of exercising muscle oxygen delivery to demand. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Sasaki, Hiroyuki; Hattori, Yuta; Ikeda, Yuko; Kamagata, Mayo; Iwami, Shiho; Yasuda, Shinnosuke; Tahara, Yu; Shibata, Shigenobu
2016-01-01
Exercise during the inactive period can entrain locomotor activity and peripheral circadian clock rhythm in mice; however, mechanisms underlying this entrainment are yet to be elucidated. Here, we showed that the bioluminescence rhythm of peripheral clocks in PER2::LUC mice was strongly entrained by forced treadmill and forced wheel-running exercise rather than by voluntary wheel-running exercise at middle time during the inactivity period. Exercise-induced entrainment was accompanied by increased levels of serum corticosterone and norepinephrine in peripheral tissues, similar to the physical stress-induced response. Adrenalectomy with norepinephrine receptor blockers completely blocked the treadmill exercise-induced entrainment. The entrainment of the peripheral clock by exercise is independent of the suprachiasmatic nucleus clock, the main oscillator in mammals. The present results suggest that the response of forced exercise, but not voluntary exercise, may be similar to that of stress, and possesses the entrainment ability of peripheral clocks through the activation of the adrenal gland and the sympathetic nervous system. PMID:27271267
Booth, J; Wilsmore, B R; Macdonald, A D; Zeyl, A; Mcghee, S; Calvert, D; Marino, F E; Storlien, L H; Taylor, N A
2001-06-01
Muscle metabolism was investigated in seven men during two 35 min cycling trials at 60% peak oxygen uptake, at 35 degrees C and 50% relative humidity. On one occasion, exercise was preceded by whole-body cooling achieved by immersion in water during a reduction in temperature from 29 to 24 degrees C, and, for the other trial, by immersion in water at a thermoneutral temperature (control, 34.8 degrees C). Pre-cooling did not alter oxygen uptake during exercise (P > 0.05), whilst the change in cardiac frequency and body mass both tended to be lower following pre-cooling (0.05 < P < 0.10). When averaged over the exercise period, muscle and oesophageal temperatures after pre-cooling were reduced by 1.5 and 0.6 degrees C respectively, compared with control (P < 0.05). Pre-cooling had a limited effect on muscle metabolism, with no differences between the two conditions in muscle glycogen, triglyceride, adenosine triphosphate, creatine phosphate, creatine or lactate contents at rest, or following exercise. These data indicate that whole-body pre-cooling does not alter muscle metabolism during submaximal exercise in the heat. It is more likely that thermoregulatory and cardiovascular strain are reduced, through lower muscle and core temperatures.
FAIRMAN, CIARAN M.; KENDALL, KRISTINA L.; HARRIS, BRANDONN S.; CRANDALL, KENNETH J.; MCMILLAN, JIM
2016-01-01
Breast Cancer survivors can experience a myriad of physical and psychological benefits as a result of regular exercise. This study aimed to build on previous research using lower impact exercise programs by using an antigravity (Alter-G®) treadmill to administer cardiovascular training. The purpose of this study was to determine the effectiveness a physical activity program, including an Alter-G® treadmill, for improving physiological and psychosocial measures in female breast cancer survivors. A 14-week intervention using an AB-AB study design was employed. Six female breast cancer survivors were recruited to participate in the study. Participants attended three 60-minute sessions per week, consisting of a combination of muscular strength/endurance, and cardiovascular endurance exercises. Consistent with current literature and guidelines, exercise interventions were individualized and tailored to suit individuals. Data was collected and analyzed in 2013. Visual inspection of results found improvements in cardiovascular endurance and measures of body composition. Quality of life was maintained and in some cases, improved. Finally, no adverse effects were reported from the participants, and adherence to the program for those who completed the study was 97%. The results of this study suggest that the use of a physical activity program in combination with an Alter-G® treadmill may provide practical and meaningful improvements in measures of cardiovascular endurance and body composition. PMID:27293508
Fairman, Ciaran M; Kendall, Kristina L; Harris, Brandonn S; Crandall, Kenneth J; McMillan, Jim
Breast Cancer survivors can experience a myriad of physical and psychological benefits as a result of regular exercise. This study aimed to build on previous research using lower impact exercise programs by using an antigravity (Alter-G ® ) treadmill to administer cardiovascular training. The purpose of this study was to determine the effectiveness a physical activity program, including an Alter-G ® treadmill, for improving physiological and psychosocial measures in female breast cancer survivors. A 14-week intervention using an AB-AB study design was employed. Six female breast cancer survivors were recruited to participate in the study. Participants attended three 60-minute sessions per week, consisting of a combination of muscular strength/endurance, and cardiovascular endurance exercises. Consistent with current literature and guidelines, exercise interventions were individualized and tailored to suit individuals. Data was collected and analyzed in 2013. Visual inspection of results found improvements in cardiovascular endurance and measures of body composition. Quality of life was maintained and in some cases, improved. Finally, no adverse effects were reported from the participants, and adherence to the program for those who completed the study was 97%. The results of this study suggest that the use of a physical activity program in combination with an Alter-G ® treadmill may provide practical and meaningful improvements in measures of cardiovascular endurance and body composition.
Effect of menstrual cycle phase on exercise performance of high-altitude native women at 3600 m.
Brutsaert, Tom D; Spielvogel, Hilde; Caceres, Esperanza; Araoz, Mauricio; Chatterton, Robert T; Vitzthum, Virginia J
2002-01-01
At sea level normally menstruating women show increased ventilation (VE) and hemodynamic changes due to increased progesterone (P) and estrogen (E2) levels during the mid-luteal (L) compared to the mid-follicular (F) phase of the ovarian cycle. Such changes may affect maximal exercise performance. This repeated-measures, randomized study, conducted at 3600 m, tests the hypothesis that a P-mediated increase in VE increases maximal oxygen consumption (V(O(2)max)) during the L phase relative to the F phase in Bolivian women, either born and raised at high altitude (HA), or resident at HA since early childhood. Subjects (N=30) enrolled in the study were aged 27.7 +/- 0.7 years (mean +/- S.E.M.) and non-pregnant, non-lactating, relatively sedentary residents of La Paz, Bolivia, who were not using hormonal contraceptives. Mean salivary P levels at the time of the exercise tests were 63.3 pg ml(-1) and 22.9 pg ml(-1) for the L and F phases, respectively. Subset analyses of submaximal (N=23) and maximal (N=13) exercise responses were conducted only with women showing increased P levels from F to L and, in the latter case, with those also achieving true (V(O(2)max)). Submaximal exercise VE and ventilatory equivalents were higher in the L phase (P<0.001). P levels were significantly correlated to the submaximal exercise VE (r=0.487, P=0.006). Maximal work output (W) was higher (approximately 5 %) during the L phase (P=0.044), but (V(O(2)max)) (l min(-1)) was unchanged (P=0.063). Post-hoc analyses revealed no significant relationship between changes in P levels and changes in (V(O(2)max))) from F to L (P=0.072). In sum, the menstrual cycle phase has relatively modest effects on ventilation, but no effect on (V(O(2)max)) of HA native women.
On-Orbit Evaluation of a New Treadmill Harness for Improved Crewmember Comfort and Load Distribution
NASA Technical Reports Server (NTRS)
Perusek, G. P.; Sheehan, C. C.; Savina, M. C.; Owings, T. M.; Davis, B. L.; Ryder, J. W.
2011-01-01
The current design of the International Space Station (ISS) Treadmill Harness has been reported to cause pain and discomfort to crewmembers during exercise. The Harness Station Development Test Objective (SDTO) provided participating crewmembers (n = 6) with a new harness design, the "Glenn Harness," to evaluate for comfort and loading as compared to the current Treadmill Harness. A novel suite of load-sensing instrumentation was developed to noninvasively measure load distribution and provided a first-ever quantification of actual dynamic loads during treadmill exercise. In addition, crew debriefs provided feedback on harness preference and overall impressions. Conclusions: Post-flight analysis in returned Glenn Harnesses (n = 3) showed minimal wear and tear. Four of the six subjects found the Glenn Harness to be more comfortable in this on-orbit, side-by-side comparison as measured by the crew comfort questionnaire and crew debriefs. Specific areas for improvement have been identified, and forward recommendations will be provided to the Human Research Program. The protocol developed for the SDTO provided valuable insight into crew comfort issues, design improvements, and loading preferences for exercise harnessing, which lays the groundwork for better harnessing systems and training protocols.
Lundgaard, E; Wouda, M F; Strøm, V
2017-10-01
This is a comparative study of two exercise testing protocols. The objective of this study was to compare maximal oxygen uptake (VO 2 max) and achieved criteria for maximal exercise testing between the Sunnaas Protocol-a newly designed treadmill exercise test protocol-and the Modified Bruce Protocol in persons with incomplete spinal cord injury (SCI). This study was conducted in Sunnaas Rehabilitation Hospital, Norway. Twenty persons (19 men) with incomplete SCI (AIS D) capable of ambulating without assistive devices performed two treadmill walking exercise tests (Sunnaas Protocol and Modified Bruce Protocol) until exhaustion 1-3 days apart. The key differences between the protocols are the smaller increments in speed and shorter duration on each workload in the Sunnaas Protocol. Cardiovascular responses were measured continuously throughout both tests. The subjects exhibited statistically significantly higher VO 2 max when using the Sunnaas Protocol (37.1±9.9 vs 35.4±9.8 ml kg -1 min -1 , P=0.01), with a mean between-test difference of 1.8 ml kg -1 min -1 (95% confidence interval: 0.49-3.16). There was no significant difference in mean maximal heart rate (HR max). Nineteen (95%) subjects achieved at least three of the four criteria for maximal oxygen uptake using the Sunnaas Protocol. Thirteen (65%) subjects achieved at least three of the criteria using a Modified Bruce protocol. The small differences in both VO 2 max and achieved criteria in favor of the Sunnaas Protocol suggest that it could be a useful alternative treadmill exercise test protocol for ambulating persons with incomplete SCI.
Greco-Otto, Persephone; Bond, Stephanie; Sides, Raymond; Kwong, Grace P S; Bayly, Warwick; Léguillette, Renaud
2017-11-28
Despite the use of water treadmills (WT) in conditioning horses, the intensity of WT exercise has not been well documented. The workload on a WT is a function of water height and treadmill speed. Therefore, the purpose of this study was to determine the effects of these factors on workload during WT exercise. Fifteen client-owned Quarter Horses were used in a randomized, controlled study. Three belt speeds and three water heights (mid cannon, carpus and stifle), along with the control condition (dry treadmill, all three speeds), were tested. Measured outcomes were oxygen consumption (V̇O 2 ), ventilation (respiratory frequency, tidal volume (V T )), heart rate (HR), and blood lactate. An ergospirometry system was used to measure V̇O 2 and ventilation. Linear mixed effects models were used to examine the effects of presence or absence of water, water height and speed (as fixed effects) on measured outcomes. Water height and its interaction with speed had a significant effect on V̇O 2 , V T and HR, all peaking at the highest water level and speed (stifle at 1.39 m/s, median V̇O 2 = 16.70 ml/(kg.min), V T = 6 L, HR = 69 bpm). Respiratory frequency peaked with water at the carpus at 1.39 m/s (median 49 breaths/min). For a given water height, the small increments in speed did not affect the measured outcomes. Post-exercise blood lactate concentration did not change. Varying water height and speed affects the workload associated with WT exercise. The conditions utilized in this study were associated with low intensity exercise. Water height had a greater impact on exercise intensity than speed.
Cocking, Scott; Cable, N. T.; Wilson, Mathew G.; Green, Daniel J.; Thijssen, Dick H. J.; Jones, Helen
2018-01-01
Introduction: The ability of ischemic preconditioning (IPC) to enhance exercise capacity may be mediated through altering exercise-induced blood flow and/or vascular function. This study investigated the hypothesis that (local) IPC enhances exercise-induced blood flow responses and prevents decreases in vascular function following exercise. Methods: Eighteen healthy, recreationally trained, male participants (mean ±SD: age 32 ± 8 years; BMI 24.2 ± 2.3; blood pressure 122 ± 10/72 ± 8 mmHg; resting HR 58 ± 9 beats min-1) received IPC (220 mmHg; 4 × 5-min bilateral arms), REMOTE IPC (220 mmHg; 4 × 5-min bilateral legs), or SHAM (20 mmHg; 4 × 5-min bilateral arms) in a counterbalanced order prior to 30-min of submaximal (25% maximal voluntary contraction) unilateral rhythmic handgrip exercise. Brachial artery diameter and blood flow were assessed every 5-min throughout the 30-min submaximal exercise using high resolution ultrasonography. Pre- and post-exercise vascular function was measured using flow-mediated dilation (FMD). Results: IPC resulted in enlarged brachial artery diameter during exercise [0.016 cm (0.003–0.03 cm), P = 0.015] compared to REMOTE IPC, but blood flow during exercise was similar between conditions (P > 0.05). Blood flow (l/min) increased throughout exercise (time: P < 0.005), but there was no main effect of condition (P = 0.29) or condition ∗ time interaction (P = 0.83). Post-exercise FMD was similar between conditions (P > 0.05). Conclusion: Our data show that local (but not remote) IPC, performed as a strategy prior to exercise, enhanced exercise-induced conduit artery diameter dilation, but these changes do not translate into increased blood flow during exercise nor impact post-exercise vascular function. PMID:29740345
Parfitt, Gaynor; Alrumh, Amnah; Rowlands, Alex V
2012-11-01
Affect-regulated exercise to feel 'good' can be used to control exercise intensity amongst both active and sedentary individuals and should support exercise adherence. It is not known, however, whether affect-regulated exercise training can lead to physical health gains. The aim of this study was to examine if affect-regulated exercise to feel 'good' leads to improved fitness over the course of an 8-week training programme. A repeated measures design (pretest-posttest) with independent groups (training and control). 20 sedentary females completed a submaximal graded exercise test and were then allocated to either a training group or control group. The training group completed two supervised sessions and one unsupervised session per week for 8 weeks. Exercise intensity was affect-regulated to feel 'good'. Following the 8 weeks of training, both groups completed a second submaximal graded exercise test. Repeated measures analyses of variance indicated a significant increase in the time to reach ventilatory threshold in the training group (318 ± 23.7s) compared to control (248 ± 16.9s). Overall compliance to training was high (>92%). Participants in the training group exercised at intensities that would be classified as being in the lower range of the recommended guidelines (≈ 50% V˙O(2) max) for cardiovascular health. Affect-regulated exercise to feel 'good' can be used in a training programme to regulate exercise intensity. This approach led to a 19% increase in time to reach ventilatory threshold, which is indicative of improved fitness. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Real, Caroline Cristiano; Garcia, Priscila Crespo; Britto, Luiz R G
2017-09-01
Parkinson's disease (PD) involves loss of dopaminergic neurons in the substantia nigra (SN), which can be correlated to neuroinflammatory changes with the aging of the nervous system. On the other hand, exercise can reduce the deleterious effects promoted by age, but the mechanism involved is still unclear. This study investigated the preventive exercise-induced changes on neuroinflammatory processes in a rat model of PD induced by unilateral striatal injections of 6-hydroxydopamine (6-OHDA). Adult male Wistar rats were divided into two groups: (1) sedentary (SED) or (2) exercised (EX), animals that did treadmill exercise three times per week, every other day, for 4 weeks prior to 6-OHDA or saline injection. The rats were then divided into four sub-groups: (1) sedentary saline (SED), (2) sedentary 6-OHDA (SED + 6-OHDA), (3) exercised saline (EX), and (4) exercised 6-OHDA (EX + 6-OHDA). Seven and 30 days after surgery, brains were collected for immunohistochemistry and immunoblotting for dopaminergic and neuroinflammatory markers into SN and striatum. The SED + 6-OHDA animals presented an increase in the astrocyte, microglial, and oxidative species activation. On the other hand, EX + 6-OHDA animals did not present neuroinflammatory responses and performed better apormorphine test. Our data suggest that treadmill exercise throughout life can markedly reduce the chances of dopamine decrease, reinforcing studies that showed a lower incidence of Parkinson's disease in patients who were active during life.
Chen, C C; Chang, M W; Chang, C P; Chan, S C; Chang, W Y; Yang, C L; Lin, M T
2014-10-01
We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use.
Chen, C.C.; Chang, M.W.; Chang, C.P.; Chan, S.C.; Chang, W.Y.; Yang, C.L.; Lin, M.T.
2014-01-01
We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use. PMID:25140816
Pasquini, Guido; Vannetti, Federica; Molino-Lova, Raffaele
2015-05-01
During maximal incremental exercise, the ability to work in the anaerobic condition, expressed by the respiratory exchange ratio, is associated with physical performance. Further, peak respiratory exchange ratio is regarded as the best non-invasive measure of a patient's actual exercise effort. This study examined whether ability to work in the anaerobic condition is also associated with physical performance in submaximal constant work rate exercise. A total of 75 older patients (51 men, 24 women), mean age 71.1 years (standard deviation 6.7 years), who had recently undergone cardiac surgery, performed cardiopulmonary exercise testing in a 6-min walk test before and after rehabilitation. The distance walked, steady-state oxygen uptake, carbon dioxide output and respiratory exchange ratio increased significantly after rehabilitation (p < 0.001 for all). In multivariable models predicting the distance walked before and after rehabilitation, higher steady-state respiratory exchange ratio was independently associated with longer distance (p < 0.001 for both). In older patients receiving post-acute cardiac rehabilitation the ability to work in the anaerobic condition is associated with physical performance in submaximal constant work rate exercises. Thus the steady-state respiratory exchange ratio might be regarded as a measure of the patient's actual exercise effort. This information may prove useful in customizing exercise prescription and assessing the effects of rehabilitation.
Temperature responses to infusion of electrolytes during exercise
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Kozlowski, S.; Kaciuba-Uscilko, H.; Nazar, K.; Brzezinska, Z.
1975-01-01
Past studies on the influence of various metal ions on heat regulation in mammals are reviewed, and results of a study on the effect of Na and citrate in isotonic and hypertonic concentrations on temperature elevation during exercise in dogs are presented. Hypertonic administration of Na before or during treadmill running and dosis of citrate during treadmill running significantly raised core temperature over controls and isotonic cases. Thus the higher the plasma Na-osmotic concentration, the greater the inhibition of heat dissipation.
Jesus, Íncare Correa de; Alle, Lupe Furtado; Munhoz, Eva Cantalejo; Silva, Larissa Rosa da; Lopes, Wendell Arthur; Tureck, Luciane Viater; Purim, Katia Sheylla Malta; Titski, Ana Claudia Kapp; Leite, Neiva
2017-09-21
To analyze the association between the Trp64Arg polymorphism of the ADRB3 gene, maximal fat oxidation rates and the lipid profile levels in non-obese adolescents. 72 schoolchildren, of both genders, aged between 11 and 17 years, participated in the study. The anthropometric and body composition variables, in addition to total cholesterol, HDL-c, LDL-c, triglycerides, insulin, and basal glycemia, were evaluated. The sample was divided into two groups according to the presence or absence of the polymorphism: non-carriers of the Arg64 allele, i.e., homozygous (Trp64Trp: n=54), and carriers of the Arg64 allele (Trp64Arg+Arg64Arg: n=18), in which the frequency of the Arg64 allele was 15.2%. The maximal oxygen uptake and peak of oxygen uptake during exercise were obtained through the symptom-limited, submaximal treadmill test. Maximal fat oxidation was determined according to the ventilatory ratio proposed in Lusk's table. Adolescents carrying the less frequent allele (Trp64Arg and Arg64Arg) had higher LDL-c levels (p=0.031) and lower maximal fat oxidation rates (p=0.038) when compared with non-carriers (Trp64Trp). Although the physiological processes related to lipolysis and lipid metabolism are complex, the presence of the Arg 64 allele was associated with lower rates of FATMAX during aerobic exercise, as well as with higher levels of LDL-c in adolescents. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Sandbakk, Øyvind; Leirdal, Stig; Ettema, Gertjan
2015-03-01
The current study compared differences in cycle characteristics, energy expenditure and peak speed between double poling (DP) and G3 skating. Eight world class male sprint skiers performed a 5-min submaximal test at 16 km h(-1) and an incremental test to exhaustion at a 5% incline during treadmill roller skiing with two different techniques: DP where all propulsion comes from poling, and G3 skating where leg skating is added to each double poling movement. Video analyses determined cycle characteristics; respiratory parameters and blood lactate concentration determined the physiological responses. G3 skating resulted in 16% longer cycle lengths at 16% lower cycle rates, whereas oxygen uptake was independent of technique during submaximal roller skiing. The corresponding advantages for G3 skating during maximal roller skiing were reflected in 14% higher speed, 30% longer cycle length at 16% lower cycle rate and 11% higher peak oxygen uptake (all p < 0.05). Compared to DP approximately 14% higher speed was achieved when leg push-offs were added in G3 skating. This was done by major increases in cycle lengths at slightly lower cycle rates and a higher aerobic energy delivery. However, the oxygen uptake for a given submaximal speed was not affected by technique although higher cycle rate was used in DP.
Shafia, Sakineh; Vafaei, Abbas Ali; Samaei, Seyed Afshin; Bandegi, Ahmad Reza; Rafiei, Alireza; Valadan, Reza; Hosseini-Khah, Zahra; Mohammadkhani, Raziyeh; Rashidy-Pour, Ali
2017-03-01
Post-traumatic stress disorder (PTSD) is a condition that develops after an individual has experienced a major trauma. Currently, selective serotonin reuptake inhibitors (SSRIs) like fluoxetine are the first-line choice in PTSD drug treatment but their moderate response rates and side effects indicate an urgent need for the development of new treatment. Physical activity is known to improve symptoms of certain neuropsychiatric disorders. The present study investigated the effects of moderate treadmill exercise, the antidepressant fluoxetine and the combined treatment on behavioural deficits, and hypothalamic-pituitary-adrenal (HPA) axis dysfunction. We also examined alternations in hippocampal brain-derived neurotrophic factor (BDNF) and mRNA expression of apoptosis - related proteins in a rat model of PTSD: the single prolonged stress (SPS) model. Rats were exposed to SPS (restraint for 2h, forced swimming for 20min and ether anaesthesia) and were then kept undisturbed for 14days. After that, SPS rats were subjected to chronic treatment with fluoxetine (10mg/kg/day, for 4weeks), moderate treadmill running (4weeks, 5day per week) and the combined treatment (fluoxetine plus treadmill exercise), followed by behavioural, biochemical and apoptosis markers assessments. SPS rats exhibited increased anxiety levels in the elevated plus maze and light/dark box, impaired fear conditioning and extinction in inhibitory avoidance (IA) task, impaired spatial memory in a recognition location memory task and enhanced negative feedback on the HPA axis following a dexamethasone suppression test. SPS rats also showed reduced hippocampal BDNF and enhanced apoptosis. Moderate treadmill exercise, fluoxetine and the combined treatment alleviated the SPS-induced alterations in terms of anxiety levels, HPA axis inhibition, IA conditioning and extinction, hippocampal BDNF and apoptosis markers. Furthermore, the combined treatment was more effective than fluoxetine alone, but in most tests, the effects of the combined treatment were similar to those of exercise alone, suggesting that exercise is the main factor in the beneficial effects of the combined therapy in PTSD patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Design and Validation of an Instrumented Uneven Terrain Treadmill.
Voloshina, Alexandra S; Ferris, Daniel P
2018-06-01
Studying human and animal locomotion on an uneven terrain can be beneficial to basic science and applied studies for clinical and robotic applications. Traditional biomechanical analysis of human locomotion has often been limited to laboratory environments with flat, smooth runways and treadmills. The authors modified a regular exercise treadmill by attaching wooden blocks to the treadmill belt to yield an uneven locomotion surface. To ensure that these treadmill modifications facilitated biomechanical measurements, the authors compared ground reaction force data collected while a subject ran on the modified instrumented treadmill with a smooth surface with data collected using a conventional instrumented treadmill. Comparisons showed only minor differences. These results suggest that adding an uneven surface to a modified treadmill is a viable option for studying human or animal locomotion on an uneven terrain. Other types of surfaces (eg, compliant blocks) could be affixed in a similar manner for studies on other types of locomotion surfaces.
Xu, Lin; Zhao, Hui; Qiu, Jian; Zhu, Wei; Lei, Hongqiang; Cai, Zekun; Huang, Wenhua; Zhang, Heye; Zhang, Yuan-Ting
2015-01-01
One of the purposes of cardiac rehabilitation (CR) after acute coronary syndrome (ACS) is to monitor and control weight of the patient. Our study is to compare the different obesity indexes, body mass index (BMI), and waist circumference (WC), through one well-designed CR program (CRP) with ACS in Guangzhou city of Guangdong Province, China, in order to identify different effects of BMI and WC on organ damage. In our work, sixty-one patients between October 2013 and January 2014 fulfilled our study. We collected the vital signs by medical records, the clinical variables of body-metabolic status by fasting blood test, and the organ damage variables by submaximal exercise treadmill test (ETT) and ultrasonic cardiogram (UCG) both on our inpatient and four-to-five weeks of outpatient part of CRP after ACS. We mainly used two-tailed Pearson's test and liner regression to evaluate the relationship of BMI/WC and organ damage. Our results confirmed that WC could be more accurate than BMI to evaluate the cardiac function through the changes of left ventricular structure on the CRP after ACS cases. It makes sense of early diagnosis, valid evaluation, and proper adjustment to ACS in CRP of the obesity individuals in the future. PMID:26247035
The influence of grip on oxygen consumption and leg forces when using classical style roller skis.
Ainegren, M; Carlsson, P; Laaksonen, M S; Tinnsten, M
2014-04-01
The purpose of this study was to investigate the influence of classical style roller skis' grip (static friction coefficients, μS) on cross-country skiers' oxygen consumption and leg forces during treadmill roller skiing, when using the diagonal stride and kick double poling techniques. The study used ratcheted wheel roller skis from the open market and a uniquely designed roller ski with an adjustable camber and grip function. The results showed significantly (P ≤ 0.05) higher oxygen consumption (∼ 14%), heart rate (∼ 7%), and lower propulsive forces from the legs during submaximal exercise and a shorter time to exhaustion (∼ 30%) in incremental maximal tests when using roller skis with a μS similar to on-snow skiing, while there was no difference between tests when using different pairs of roller skis with a similar, higher μS. Thus, we concluded that oxygen consumption (skiing economy), propulsive leg forces, and performance time are highly changed for the worse when using roller skis with a lower μS, such as for on-snow skiing with grip-waxed cross-country skis, in comparison to ratcheted wheel roller skis with several times higher μS. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Shafer, K M; Janssen, L; Carrick-Ranson, G; Rahmani, S; Palmer, D; Fujimoto, N; Livingston, S; Matulevicius, S A; Forbess, L W; Brickner, B; Levine, B D
2015-01-01
We aimed to assess the haemodynamic effects of exercise training in transposition of the great arteries (TGA) patients with systemic right ventricles (SRVs). TGA patients have limited exercise tolerance and early mortality due to systemic (right) ventricular failure. Whether exercise training enhances or injures the SRV is unclear. Fourteen asymptomatic patients (34 ± 10 years) with TGA and SRV were enrolled in a 12 week exercise training programme (moderate and high-intensity workouts). Controls were matched on age, gender, BMI and physical activity. Exercise testing pre- and post- training included: (a) submaximal and peak; (b) prolonged (60 min) submaximal endurance and (c) high-intensity intervals. Oxygen uptake (; Douglas bag technique), cardiac output (, foreign-gas rebreathing), ventricular function (echocardiography and cardiac MRI) and serum biomarkers were assessed. TGA patients had lower peak , , and stroke volume (SV), a blunted / slope, and diminished SV response to exercise (SV increase from rest: TGA = 15.2%, controls = 68.9%, P < 0.001) compared with controls. After training, TGA patients increased peak by 6 ± 8.5%, similar to controls (interaction P = 0.24). The magnitude of SV reserve on initial testing correlated with training response (r = 0.58, P = 0.047), though overall, no change in peak was observed. High-sensitivity troponin T (hs-TnT) and N-terminal prohormone of brain naturetic peptide (NT pro-BNP) were low and did not change with acute exercise or after training. Our data show that TGA patients with SRVs in this study safely participated in exercise training and improved peak . Neither prolonged submaximal exercise, nor high-intensity intervals, nor short-term exercise training seem to injure the systemic right ventricle. Key Points Patients with transposition of the great arteries (TGA) and systemic right ventricles have premature congestive heart failure; there is also a growing concern that athletes who perform extraordinary endurance exercise may injure the right ventricle. Therefore we felt it essential to determine whether exercise training might injure a systemic right ventricle which is loaded with every heartbeat. Previous studies have shown that short term exercise training is feasible in TGA patients, but its effect on ventricular function is unclear. We demonstrate that systemic right ventricular function is preserved (and may be improved) in TGA patients with exercise training programmes that are typical of recreational and sports participation, with no evidence of injury on biomarker assessment. Stroke volume reserve during exercise correlates with exercise training response in our TGA patients, identifying this as a marker of a systemic right ventricle (SRV) that may most tolerate (and possibly even be improved by) exercise training. PMID:25809342
Supported treadmill ambulation for amyotrophic lateral sclerosis: a pilot study.
Sanjak, Mohammed; Bravver, Elena; Bockenek, William L; Norton, H James; Brooks, Benjamin R
2010-12-01
To determine the feasibility, tolerability, safety, and exercise treatment-effect size of repetitive rhythmic exercise mediated by supported treadmill ambulation training (STAT) for patients with amyotrophic lateral sclerosis (ALS). Interventional with repeated-measures design. Multidisciplinary ALS clinic at academic medical center. Convenience sample of patients with ALS (N=9) who were ambulatory with assistive devices (Sinaki-Mulder stages II-III). Repetitive rhythmic exercise-STAT (30min total; 5min of exercise intercalated with 5min of rest) performed 3 times a week for 8 weeks. ALS Functional Rating Scale-Revised (ALSFRS-R), percentage of predicted vital capacity (VC), total lower-extremities manual muscle test (MMT), rate of perceived exertion (RPE), Fatigue Severity Scale (FSS), and maximum voluntary isometric contraction (MVIC) in 10 lower and 10 upper extremities. Gait performance, which included walking distance, speed, steps, and stride length, was evaluated during treadmill and ground 6-minute walk tests (6MWTs) and 25-foot walk test (25FWT). Feasibility issues decreased screened participants by 4 patients (31%). Nine patients were enrolled, but 6 patients (67%) completed the study and 3 (23% of original cohort; 33% of enrolled cohort) could not complete the exercise intervention because of non-ALS-related medical problems. Tolerability of the intervention measures during the treadmill 6MWT showed improvement in RPE (P≤.05) and FSS score (P≥.05). Safety measures (ALSFRS-R, VC, MMT) showed no decrease and showed statistical improvement in ALSFRS-R score (P≤.05) during the study interval. Exercise treatment-effect size showed variable improvements. Gait speed, distance, and stride length during the treadmill 6MWT improved significantly (P≤.05) after 4 weeks and improvements were maintained after 8 weeks compared with baseline. Walking distance during the ground 6MWT increased significantly after 4 weeks and was maintained after 8 weeks compared with baseline (P≤.05). Walking speed during the 25FWT and lower-extremity MVIC improved, but were not statistically significant. Repetitive rhythmic exercise-STAT is feasible, tolerated, and safe for patients with ALS. Repetitive rhythmic exercise-STAT treatment-effect size across a number of ALS-related measures was consistent with improved work capacity and gait function in patients with ALS who are dependent on assistive devices for ambulation. Repetitive rhythmic exercise-STAT should be evaluated further in larger studies to determine the stability of this improved function in relation to the rate of progression of the underlying ALS. Copyright © 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Zanaboni, Paolo; Dinesen, Birthe; Hjalmarsen, Audhild; Hoaas, Hanne; Holland, Anne E; Oliveira, Cristino Carneiro; Wootton, Richard
2016-08-22
Pulmonary rehabilitation (PR) is an effective intervention for the management of people with chronic obstructive pulmonary disease (COPD). However, available resources are often limited, and many patients bear with poor availability of programmes. Sustaining PR benefits and regular exercise over the long term is difficult without any exercise maintenance strategy. In contrast to traditional centre-based PR programmes, telerehabilitation may promote more effective integration of exercise routines into daily life over the longer term and broaden its applicability and availability. A few studies showed promising results for telerehabilitation, but mostly with short-term interventions. The aim of this study is to compare long-term telerehabilitation with unsupervised exercise training at home and with standard care. An international multicentre randomised controlled trial conducted across sites in three countries will recruit 120 patients with COPD. Participants will be randomly assigned to telerehabilitation, treadmill and control, and followed up for 2 years. The telerehabilitation intervention consists of individualised exercise training at home on a treadmill, telemonitoring by a physiotherapist via videoconferencing using a tablet computer, and self-management via a customised website. Patients in the treadmill arm are provided with a treadmill only to perform unsupervised exercise training at home. Patients in the control arm are offered standard care. The primary outcome is the combined number of hospitalisations and emergency department presentations. Secondary outcomes include changes in health status, quality of life, anxiety and depression, self-efficacy, subjective impression of change, physical performance, level of physical activity, and personal experiences in telerehabilitation. This trial will provide evidence on whether long-term telerehabilitation represents a cost-effective strategy for the follow-up of patients with COPD. The delivery of telerehabilitation services will also broaden the availability of PR and maintenance strategies, especially to those living in remote areas and with no access to centre-based exercise programmes. ClinicalTrials.gov: NCT02258646 .
Effects of lead and exercise on endurance and learning in young herring gulls.
Burger, Joanna; Gochfeld, Michael
2004-02-01
In this paper, we report the use of young herring gulls, Larus argentatus, to examine the effect of lead and exercise on endurance, performance, and learning on a treadmill. Eighty 1-day-old herring gull chicks were randomly assigned to either a control group or a lead treatment group that received a single dose of lead acetate solution (100mg/kg) at day 2. Controls were injected with an equal volume of isotonic saline at the same age. Half of the lead treatment group and half of the control group were randomly assigned to an exercise regime of walking on a treadmill twice each day. The other group remained in their cages. We test the null hypotheses that neither lead nor exercise affected performance of herring gull chicks when subsequently tested on the treadmill at 7, 11, and 17 days post-injection. Performance measures included latency to orient forward initially, to move continuously, forward on the treadmill, and to avoiding being bumped against the back of the test chamber. Also measured were the number of calls per 15 s, and the time to tire out. Latency to face forward and avoiding being bumped against the back of the test chamber were measures of learning, and time to tire out was a measure of endurance. We found significant differences as a function of lead, exercise, and their interaction, and rejected the null hypotheses. For all measures of behavior and endurance, lead had the greatest contribution to accounting for variability. In general, lead-treated birds showed better performance improvement from the daily exercise than did controlled non-lead birds, with respect to endurance and learning. We suggest that in nature, exercise can improve performance of lead-exposed birds by partially mitigating the effects of lead, thereby increasing survival of lead-impaired chicks.
Effects of Parental Smoking on Exercise Systolic Blood Pressure in Adolescents
Hacke, Claudia; Weisser, Burkhard
2015-01-01
Background In adults, exercise blood pressure seems to be more closely related to cardiovascular risk than resting blood pressure; however, few data are available on the effects of familial risk factors, including smoking habits, on exercise blood pressure in adolescents. Methods and Results Blood pressure at rest and during exercise, parental smoking, and other familial risk factors were investigated in 532 adolescents aged 12 to 17 years (14.6±1.5 years) in the Kiel EX.PRESS. (EXercise PRESSure) Study. Exercise blood pressure was determined at 1.5 W/kg body weight using a standardized submaximal cycle ergometer test. Mean resting blood pressure was 113.1±12.8/57.2±7.1 mm Hg, and exercise blood pressure was 149.9±19.8/54.2±8.6 mm Hg. Parental smoking increased exercise systolic blood pressure (+4.0 mm Hg, 3.1 to 4.9; P=0.03) but not resting blood pressure of the subjects (adjusted for age, sex, height, body mass index percentile, fitness). Parental overweight and familial hypertension were related to both higher resting and exercise systolic blood pressure values, whereas associations with an inactive lifestyle and a low educational level of the parents were found only with adolescents’ blood pressure during exercise. The cumulative effect of familial risk factors on exercise systolic blood pressure was more pronounced than on blood pressure at rest. Conclusions Parental smoking might be a novel risk factor for higher blood pressure, especially during exercise. In addition, systolic blood pressure during a submaximal exercise test was more closely associated with familial risk factors than was resting blood pressure, even in adolescents. PMID:25964207
Effects of parental smoking on exercise systolic blood pressure in adolescents.
Hacke, Claudia; Weisser, Burkhard
2015-05-11
In adults, exercise blood pressure seems to be more closely related to cardiovascular risk than resting blood pressure; however, few data are available on the effects of familial risk factors, including smoking habits, on exercise blood pressure in adolescents. Blood pressure at rest and during exercise, parental smoking, and other familial risk factors were investigated in 532 adolescents aged 12 to 17 years (14.6±1.5 years) in the Kiel EX.PRESS. (EXercise PRESSure) Study. Exercise blood pressure was determined at 1.5 W/kg body weight using a standardized submaximal cycle ergometer test. Mean resting blood pressure was 113.1±12.8/57.2±7.1 mm Hg, and exercise blood pressure was 149.9±19.8/54.2±8.6 mm Hg. Parental smoking increased exercise systolic blood pressure (+4.0 mm Hg, 3.1 to 4.9; P=0.03) but not resting blood pressure of the subjects (adjusted for age, sex, height, body mass index percentile, fitness). Parental overweight and familial hypertension were related to both higher resting and exercise systolic blood pressure values, whereas associations with an inactive lifestyle and a low educational level of the parents were found only with adolescents' blood pressure during exercise. The cumulative effect of familial risk factors on exercise systolic blood pressure was more pronounced than on blood pressure at rest. Parental smoking might be a novel risk factor for higher blood pressure, especially during exercise. In addition, systolic blood pressure during a submaximal exercise test was more closely associated with familial risk factors than was resting blood pressure, even in adolescents. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Falcone, Paul H; Tai, Chih-Yin; Carson, Laura R; Joy, Jordan M; Mosman, Matt M; McCann, Tyler R; Crona, Kevin P; Kim, Michael P; Moon, Jordan R
2015-03-01
Although exercise regimens vary in content and duration, few studies have compared the caloric expenditure of multiple exercise modalities with the same duration. The purpose of this study was to compare the energy expenditure of single sessions of resistance, aerobic, and combined exercise with the same duration. Nine recreationally active men (age: 25 ± 7 years; height: 181.6 ± 7.6 cm; weight: 86.6 ± 7.5 kg) performed the following 4 exercises for 30 minutes: a resistance training session using 75% of their 1-repetition maximum (1RM), an endurance cycling session at 70% maximum heart rate (HRmax), an endurance treadmill session at 70% HRmax, and a high-intensity interval training (HIIT) session on a hydraulic resistance system (HRS) that included repeating intervals of 20 seconds at maximum effort followed by 40 seconds of rest. Total caloric expenditure, substrate use, heart rate (HR), and rating of perceived exertion (RPE) were recorded. Caloric expenditure was significantly (p ≤ 0.05) greater when exercising with the HRS (12.62 ± 2.36 kcal·min), compared with when exercising with weights (8.83 ± 1.55 kcal·min), treadmill (9.48 ± 1.30 kcal·min), and cycling (9.23 ± 1.25 kcal·min). The average HR was significantly (p ≤ 0.05) greater with the HRS (156 ± 9 b·min), compared with that using weights (138 ± 16 b·min), treadmill (137 ± 5 b·min), and cycle (138 ± 6 b·min). Similarly, the average RPE was significantly (p ≤ 0.05) higher with the HRS (16 ± 2), compared with that using weights (13 ± 2), treadmill (10 ± 2), and cycle (11 ± 1). These data suggest that individuals can burn more calories performing an HIIT session with an HRS than spending the same amount of time performing a steady-state exercise session. This form of exercise intervention may be beneficial to individuals who want to gain the benefits of both resistance and cardiovascular training but have limited time to dedicate to exercise.
Vaghef, Ladan; Bafandeh Gharamaleki, Hassan
2017-09-01
Either exercise or Ginkgo biloba is reported to improve cognitive functioning. The aim of this study is to compare the protective effects of forced exercise and Ginkgo biloba on oxidative stress as well as memory impairments induced by transient cerebral ischemia. Adult male Wistar rats were treated with treadmill running or Ginkgo biloba extract for 2 weeks before cerebral ischemia. Memory was assessed using a Morris water maze (MWM) task. At the end of the behavioral testing, oxidative stress biomarkers were evaluated in the hippocampus tissue. As expected, the cerebral ischemia induced memory impairment in the MWM task, and oxidative stress in the hippocampus. These effects were significantly prevented by treadmill running. Indeed, it ameliorated oxidative stress and memory deficits induced by ischemia. In contrast, Ginkgo biloba was not as effective as exercise in preventing ischemia-induced memory impairments. The results confirmed the neuroprotective effects of treadmill running on hippocampus-dependent memory.
Cigarroa, Igor; Lalanza, Jaume F.; Caimari, Antoni; del Bas, Josep M.; Capdevila, Lluís; Arola, Lluís; Escorihuela, Rosa M.
2016-01-01
The current prevalence of diet-induced overweight and obesity in adolescents and adults is continuously growing. Although the detrimental biochemical and metabolic consequences of obesity are widely studied, its impact on stress-coping behavior and its interaction with specific exercise doses (in terms of intensity, duration and frequency) need further investigation. To this aim, we fed adolescent rats either an obesogenic diet (cafeteria diet, CAF) or standard chow (ST). Each group was subdivided into four subgroups according to the type of treadmill intervention as follows: a sedentary group receiving no manipulation; a control group exposed to a stationary treadmill; a low-intensity treadmill group trained at 12 m/min; and a higher intensity treadmill group trained at 17 m/min. Both the diet and treadmill interventions started at weaning and lasted for 8 weeks. Subjects were tested for anxiety-like behavior in the open field test and for coping strategies in the two-way active avoidance paradigm at week 7 and were sacrificed at week 8 for biometric and metabolic characterization. CAF feeding increased the weight gain, relative retroperitoneal white adipose tissue (RWAT %), and plasma levels of glucose, insulin, triglycerides and leptin and decreased the insulin sensitivity. Treadmill intervention partially reversed the RWAT% and triglyceride alterations; at higher intensity, it decreased the leptin levels of CAF-fed animals. CAF feeding decreased the motor activity and impaired the performance in a two-way active avoidance assessment. Treadmill intervention reduced defecation in the shuttle box, suggesting diminished anxiety. CAF feeding combined with treadmill training at 17 m/min increased the time spent in the center of the open field and more importantly, partially reversed the two-way active avoidance deficit. In conclusion, this study demonstrates that at doses that decreased anxiety-like behavior, treadmill exercise partially improved the coping strategy in terms of active avoidance behavior in the CAF-fed animals. This effect was not observed at lower doses of treadmill training. PMID:27099927
Cigarroa, Igor; Lalanza, Jaume F; Caimari, Antoni; del Bas, Josep M; Capdevila, Lluís; Arola, Lluís; Escorihuela, Rosa M
2016-01-01
The current prevalence of diet-induced overweight and obesity in adolescents and adults is continuously growing. Although the detrimental biochemical and metabolic consequences of obesity are widely studied, its impact on stress-coping behavior and its interaction with specific exercise doses (in terms of intensity, duration and frequency) need further investigation. To this aim, we fed adolescent rats either an obesogenic diet (cafeteria diet, CAF) or standard chow (ST). Each group was subdivided into four subgroups according to the type of treadmill intervention as follows: a sedentary group receiving no manipulation; a control group exposed to a stationary treadmill; a low-intensity treadmill group trained at 12 m/min; and a higher intensity treadmill group trained at 17 m/min. Both the diet and treadmill interventions started at weaning and lasted for 8 weeks. Subjects were tested for anxiety-like behavior in the open field test and for coping strategies in the two-way active avoidance paradigm at week 7 and were sacrificed at week 8 for biometric and metabolic characterization. CAF feeding increased the weight gain, relative retroperitoneal white adipose tissue (RWAT %), and plasma levels of glucose, insulin, triglycerides and leptin and decreased the insulin sensitivity. Treadmill intervention partially reversed the RWAT% and triglyceride alterations; at higher intensity, it decreased the leptin levels of CAF-fed animals. CAF feeding decreased the motor activity and impaired the performance in a two-way active avoidance assessment. Treadmill intervention reduced defecation in the shuttle box, suggesting diminished anxiety. CAF feeding combined with treadmill training at 17 m/min increased the time spent in the center of the open field and more importantly, partially reversed the two-way active avoidance deficit. In conclusion, this study demonstrates that at doses that decreased anxiety-like behavior, treadmill exercise partially improved the coping strategy in terms of active avoidance behavior in the CAF-fed animals. This effect was not observed at lower doses of treadmill training.
Functional capacity following univentricular repair--midterm outcome.
Sen, Supratim; Bandyopadhyay, Biswajit; Eriksson, Peter; Chattopadhyay, Amitabha
2012-01-01
Previous studies have seldom compared functional capacity in children following Fontan procedure alongside those with Glenn operation as destination therapy. We hypothesized that Fontan circulation enables better midterm submaximal exercise capacity as compared to Glenn physiology and evaluated this using the 6-minute walk test. Fifty-seven children aged 5-18 years with Glenn (44) or Fontan (13) operations were evaluated with standard 6-minute walk protocols. Baseline SpO(2) was significantly lower in Glenn patients younger than 10 years compared to Fontan counterparts and similar in the two groups in older children. Postexercise SpO(2) fell significantly in Glenn patients compared to the Fontan group. There was no statistically significant difference in baseline, postexercise, or postrecovery heart rates (HRs), or 6-minute walk distances in the two groups. Multiple regression analysis revealed lower resting HR, higher resting SpO(2) , and younger age at latest operation to be significant determinants of longer 6-minute walk distance. Multiple regression analysis also established that younger age at operation, higher resting SpO(2) , Fontan operation, lower resting HR, and lower postexercise HR were significant determinants of higher postexercise SpO(2) . Younger age at operation and exercise, lower resting HR and postexercise HR, higher resting SpO(2) and postexercise SpO(2) , and dominant ventricular morphology being left ventricular or indeterminate/mixed had significant association with better 6-minute work on multiple regression analysis. Lower resting HR had linear association with longer 6-minute walk distances in the Glenn patients. Compared to Glenn physiology, Fontan operation did not have better submaximal exercise capacity assessed by walk distance or work on multiple regression analysis. Lower resting HR, higher resting SpO(2) , and younger age at operation were factors uniformly associated with better submaximal exercise capacity. © 2012 Wiley Periodicals, Inc.
Cold water immersion enhances recovery of submaximal muscle function after resistance exercise.
Roberts, Llion A; Nosaka, Kazunori; Coombes, Jeff S; Peake, Jonathan M
2014-10-15
We investigated the effect of cold water immersion (CWI) on the recovery of muscle function and physiological responses after high-intensity resistance exercise. Using a randomized, cross-over design, 10 physically active men performed high-intensity resistance exercise followed by one of two recovery interventions: 1) 10 min of CWI at 10°C or 2) 10 min of active recovery (low-intensity cycling). After the recovery interventions, maximal muscle function was assessed after 2 and 4 h by measuring jump height and isometric squat strength. Submaximal muscle function was assessed after 6 h by measuring the average load lifted during 6 sets of 10 squats at 80% of 1 repetition maximum. Intramuscular temperature (1 cm) was also recorded, and venous blood samples were analyzed for markers of metabolism, vasoconstriction, and muscle damage. CWI did not enhance recovery of maximal muscle function. However, during the final three sets of the submaximal muscle function test, participants lifted a greater load (P < 0.05, Cohen's effect size: 1.3, 38%) after CWI compared with active recovery. During CWI, muscle temperature decreased ∼7°C below postexercise values and remained below preexercise values for another 35 min. Venous blood O2 saturation decreased below preexercise values for 1.5 h after CWI. Serum endothelin-1 concentration did not change after CWI, whereas it decreased after active recovery. Plasma myoglobin concentration was lower, whereas plasma IL-6 concentration was higher after CWI compared with active recovery. These results suggest that CWI after resistance exercise allows athletes to complete more work during subsequent training sessions, which could enhance long-term training adaptations. Copyright © 2014 the American Physiological Society.
Peart, Daniel J; Hensby, Andy; Shaw, Matthew P
2017-06-01
The purpose of this study was to compare markers of hydration during submaximal exercise and subsequent time trial performance when consuming water (PW) or coconut water (CW). There was also a secondary aim to assess the palatability of CW during exercise and voluntary intake during intense exercise. 10 males (age 27.9 ± 4.9 years, body mass 78.1 ± 10.1kg, average max minute power 300.2 ± 28.2W) completed 60-min of submaximal cycling followed by a 10-km time trial on two occasions. During these trials participants consumed either PW or CW in a randomized manner, drinking a 250 ml of the assigned drink between 10-15 min, 25-30 min and 40-45 min, and then drinking ad libitum from 55-min until the end of the time trial. Body mass and urine osmolality were recorded preexercise and then after 30-min, 60-min, and post time trial. Blood glucose, lactate, heart rate, rate of perceived exertion (RPE; 6-20) and ratings of thirst, sweetness, nausea, fullness and stomach upset (1 =very low/none, 5= very high) were recorded during each drink period. CW did not significantly improve time trial performance compared with PW (971.4 ± 50.5 and 966.6 ± 44.8 s respectively; p = .698) and there was also no significant differences between trials for any of the physiological variables measured. However there were subjective differences between the beverages for taste, resulting in a significantly reduced volume of voluntary intake in the CW trial (115 ± 95.41 ml and 208.7 ± 86.22 ml; p < .001).
The oxygen uptake slow component at submaximal intensities in breaststroke swimming
Oliveira, Diogo R.; Gonçalves, Lio F.; Reis, António M.; Fernandes, Ricardo J.; Garrido, Nuno D.
2016-01-01
Abstract The present work proposed to study the oxygen uptake slow component (VO2 SC) of breaststroke swimmers at four different intensities of submaximal exercise, via mathematical modeling of a multi-exponential function. The slow component (SC) was also assessed with two different fixed interval methods and the three methods were compared. Twelve male swimmers performed a test comprising four submaximal 300 m bouts at different intensities where all expired gases were collected breath by breath. Multi-exponential modeling showed values above 450 ml·min−1 of the SC in the two last bouts of exercise (those with intensities above the lactate threshold). A significant effect of the method that was used to calculate the VO2 SC was revealed. Higher mean values were observed when using mathematical modeling compared with the fixed interval 3rd min method (F=7.111; p=0.012; η2=0.587); furthermore, differences were detected among the two fixed interval methods. No significant relationship was found between the SC determined by any method and the blood lactate measured at each of the four exercise intensities. In addition, no significant association between the SC and peak oxygen uptake was found. It was concluded that in trained breaststroke swimmers, the presence of the VO2 SC may be observed at intensities above that corresponding to the 3.5 mM-1 threshold. Moreover, mathematical modeling of the oxygen uptake on-kinetics tended to show a higher slow component as compared to fixed interval methods. PMID:28149379
Hong, Young-Pyo; Lee, Hyo-Chul; Kim, Hyun-Tae
2015-01-01
[Purpose] We investigated the effects of 8 weeks of treadmill exercise on nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and synapsin I protein expression and on the number of 5-bromo-2'-deoxyuridine-5'-mono-phosphate (BrdU)-positive cells in the dentate gyrus of the hippocampus in socially isolated rats. Additionally, we examined the effects of exercise on the number of serotonin (5-HT)- and tryptophan hydroxylase (TPH)-positive cells in the raphe nuclei and on depression behaviors induced by social isolation. [Methods] Forty male Sprague-Dawley rats were divided into four groups: (1) group housing and control group (GCG, n = 10); (2) group housing and exercise group (GEG, n = 10); (3) isolated housing and control group (ICG, n = 10); and (4) isolated housing and exercise group (IEG, n = 10). After 1 week of housing under the normal condition of 3 animals per cage, rats were socially isolated via transfer to individual cages for 8 weeks. Rats were then subjected to treadmill exercise for 5 days per week for 8 weeks during which time the speed of the treadmill was gradually increased. [Results] Compared to the GCG, levels of NGF, BDNF, and synapsin I were significantly decreased in the ICG and significantly increased in the IEG (p < 0.001 respectively). Significantly more BrdU-positive cells in the GEG were present as compared to the GCG and ICG, and more BrdU-positive cells were found in the IEG as compared to the ICG (p < 0.001). 5-HT-positive cells in the GEG were significantly increased compared to the GCG and ICG, and more of these cells were found in the IEG as compared to the ICG (p < 0.01). TPH-positive cells in the GEG were significantly increased compared to those in the GCG and ICG (p < 0.05). In the forced swim test, immobility time was significantly increased in the ICG and significantly decreased in the IEG as compared to the ICG (p < 0.01). [Conclusion] These results showed that regular treadmill exercise following social isolation not only increased the levels of NGF, BDNF, and synapsin I to induce survival of neurons in the hippocampus but also improved depression by increasing the number of serotonergic cells in the raphe nuclei. PMID:25960950
Effect of added mass on treadmill performance and pulmonary function.
Walker, Rachel E; Swain, David P; Ringleb, Stacie I; Colberg, Sheri R
2015-04-01
Military personnel engage in strenuous physical activity and load carriage. This study evaluated the role of body mass and of added mass on aerobic performance (uphill treadmill exercise) and pulmonary function. Performance on a traditional unloaded run test (4.8 km) was compared with performance on loaded tasks. Subjects performed an outdoor 4.8-km run and 4 maximal treadmill tests wearing loads of 0, 10, 20, and 30 kg. Subjects' pulmonary function (forced expired volume in 1 second [FEV1], forced vital capacity [FVC], and maximal voluntary ventilation [MVV]) was tested with each load, and peak values of heart rate, oxygen consumption ((Equation is included in full-text article.)), ventilation (VE), and respiratory exchange ratio (RER) were measured during each treadmill test. Performance on the 4.8-km run was correlated with treadmill performance, measured as time to exhaustion (TTE), with the strength of the correlation decreasing with load (r = 0.87 for 0 kg to 0.76 for 30 kg). Body mass was not correlated with TTE, other than among men with the 30-kg load (r = 0.48). During treadmill exercise, all peak responses other than RER decreased with load. Pulmonary function measures (FEV1, FVC, and MVV) decreased with load. Body mass was poorly correlated with treadmill performance, but added mass decreased performance. The decreased performance may be in part because of decreased pulmonary function. Unloaded 4.8-km run performance was correlated to unloaded uphill treadmill performance, but less so as load increased. Therefore, traditional run tests may not be an effective means of evaluating aerobic performance for military field operations.
2013-01-01
Background This study compared the effects of ingesting water (W), a flavored carbohydrate-electrolyte (CE) or a flavored non-caloric electrolyte (NCE) beverage on mood, ratings of perceived exertion (RPE), and sprint power during cycling in recreational exercisers. Methods Men (n = 23) and women (n = 13) consumed a 24–h standardized diet and reported 2–4 h post-prandial for all test sessions. After a familiarization session, participants completed 50 min of stationary cycling in a warm environment (wet bulb globe temperature = 25.0°C) at ~ 60-65% of heart rate reserve (146 ± 4 bpm) interspersed with 5 rest periods of 2 min each. During exercise, participants consumed W, CE, or NCE, served in a counterbalanced cross-over design. Beverage volume was served in 3 aliquots equaling each individual’s sweat losses (mean 847 ± 368 mL) during the familiarization session. Profiles of Mood States questionnaires (POMS) were administered and blood glucose levels were determined pre- and post- sub-maximal cycling. Following sub-maximal exercise, participants completed 3 30–s Wingate anaerobic tests (WAnT) with 2.5 min rest between tests to assess performance. Results Blood glucose was higher (p < 0.05) after 50 min of submaximal cycling just prior to the WAnT for CE (6.1 ± 1.7 mmol/L) compared to W (4.9 ± 1.5 mmol/L) and NCE (4.6 ± 1.2 mmol/L). Nonetheless, there were no differences among treatments in peak (642 ± 153, 635 ± 143, 650 ± 141 watts for W, NCE, and CE, respectively; p = 0.44) or mean (455 ± 100, 458 ± 95, 454 ± 95 watts for W, NCE, and CE, respectively; p = 0.62) power for the first WAnT or mean (414 ± 92, 425 ± 85, 423 ± 82 watts, respectively; p = 0.13) power output averaged across all 3 WAnT. Likewise, RPE during submaximal exercise, session RPE, and fatigue and vigor assessed by POMS did not differ among beverage treatments (p > 0.05). Conclusions Carbohydrate ingestion consumed by recreational exercisers during a 1–h, moderate-intensity aerobic workout did not alter mood or perceived exertion, nor did it affect subsequent anaerobic performance under the conditions of this study. Drinking caloric sport beverages does not benefit recreational exercisers in a non-fasted state. PMID:23347391
Kraemer, William J; Fragala, Maren S; van Henegouwen, Wendy R H Beijersbergen; Gordon, Scott E; Bush, Jill A; Volek, Jeff S; Triplett, N Travis; Dunn-Lewis, Courtenay; Comstock, Brett A; Szivak, Tunde K; Flanagan, Shawn D; Hooper, David R; Luk, Hui-Ying; Mastro, Andrea M
2013-04-01
Proenkephalin Peptide F [107-140] is an enkephalin-containing peptide found predominantly within the adrenal medulla, co-packaged with epinephrine within the chromaffin granules. In vivo studies indicate that Peptide F has classic opioid analgesia effects; in vitro studies suggest potential immune cell interactions. In this investigation we examined patterns of Peptide F concentrations in different bio-compartments of the blood at rest and following sub-maximal cycle exercise to determine if Peptide F interacts with the white blood cell (WBC) bio-compartment during aerobic exercise. Eight physically active men (n=8) performed sub-maximal (80-85% V˙O2peak) cycle ergometer exercise for 30 min. Plasma Peptide F and WBC Peptide F immunoreactivity were examined pre-exercise, mid-exercise and immediately post-, 5-min post-, 15-min post-, 30-min post- and 60-min post-exercise and at similar time-points during a control condition (30 min rest). Peptide F concentrations significantly (p<0.05) increased at 5 and 60 min post-exercise, compared to pre-exercise concentrations. No significant increases in Peptide F concentrations in the WBC fraction were observed during or after exercise. However, a significant decrease was observed at 30 min post-exercise. An ultradian pattern of Peptide F distribution was apparent during rest. Furthermore, concentrations of T cells, B cells, NK cells, and total WBCs demonstrated significant changes in response to aerobic exercise. Data indicated that Peptide F was bound in significant molar concentrations in the WBC fraction and that this biocompartment may be one of the tissue targets for binding interactions. These data indicate that Peptide F is involved with immune cell modulation in the white blood circulatory biocompartment of blood. Copyright © 2013. Published by Elsevier Inc.
Loading Configurations and Ground Reaction Forces During Treadmill Running in Weightlessness
NASA Technical Reports Server (NTRS)
DeWitt, John; Schaffner, Grant; Blazine, Kristi; Bentley, Jason; Laughlin, Mitzi; Loehr, James; Hagan, Donald
2003-01-01
Studies have shown losses in bone mineral density of 1-2% per month in critical weight bearing areas such as the proximal femur during long-term space flight (Grigoriev, 1998). The astronauts currently onboard the International Space Station (ISS) use a treadmill as an exercise countermeasure to bone loss that occurs as a result of prolonged exposure to weightlessness. A crewmember exercising on the treadmill is attached by a harness and loading device. Ground reaction forces are obtained through the loading device that pulls the crewn1ember towards the treadmill surface during locomotion. McCrory et al. (2002) found that the magnitude of the peak ground reaction force (pGRF) during horizontal suspension running, or simulated weightlessness, was directly related to the load applied to the subject. It is thought that strain magnitude and strain rate affects osteogenesis, and is a function of the magnitude and rate of change of the ground reaction force. While it is not known if a minimum stimulus exists for osteogenesis, it has been hypothesized that in order to replicate the bone formation occurring in normal gravity (1 G), the exercise in weightlessness should mimic the forces that occur on earth. Specifically, the pGRF obtained in weightlessness should be comparable to that achieved in 1 G.
A Comparison of the Physiology and Mechanics of Exercise in LBNP and Upright Gait
NASA Technical Reports Server (NTRS)
Boda, W. L.; Watenpaugh, D. E.; Ballard, R. E.; Chang, D.; Looft-Wilson, R.; Hargens, A. R.
1996-01-01
Bone, muscular strength, aerobic capacity, and normal fluid pressure gradients within the body are lost during bed rest and spaceflight. Lower Body Negative Pressure (LBNP) exercise may create musculoskeletal and cardiovascular strains equal to a greater than those experienced on Earth and elucidate some of the mechanisms for maintaining bone integrity. LBNP exercise simulates gravity during supine posture by using negative pressure to pull subjects inward against a treadmill generating footward forces and increasing transmural pressures. Footward forces are generated which equal the product of the pressure differential and the cross-sectional area of the LBNP waist seal. Subjects lie supine within the chamber with their legs suspended from one another via cuffs, bungee cords, and pulleys, such that each leg acts as a counterweight to the other leg during the gait cycle. The subjects then walk or run on a treadmill which is positioned vertically within the chamber. Supine orientation allows only footward force production due to the negative pressure within the chamber. The purpose of this study was to determine if the kinematics, kinetics, and metabolic rate during supine walking and slow running on a vertical treadmill within LBNP are similar to those on a treadmill in 1-g environment in an upright posture.
[Russian treadmill BD-1 as a backup of the NASA TVIS].
Iarmanova, E N; Kozlovskaia, I B; Bogomolov, V V; Rumiantseva, O N; Sukhachev, V I; Mel'nik, K A
2006-01-01
Already during the early ISS increments malfunctioning of NASA TVIS (treadmill with vibration isolation system) posed major problems for regular crew training and particularly scamper, one of the key exercises on the Russian physical training program. During ISS increment-3, TVIS unscheduled repairs took virtually all the training time. In search for TVIS backup, Russian and NASA engineers considered jointly Russian treadmill BD-1, originally designed for Russian "shuttle" Buran and accepted it as a suitable backup in case of complete TVIS failure. To enter into the "dialogue" with BD-1, i.e., to record and downlink training data, the treadmill speed indicator, a part of the treadmill stand, was replaced by PC.
1997-01-01
would exercise and two who were controls). The control included either playing bingo or remaining inactive. The tests were administered again after...15 added benefits may be outweighed by muscle fatigue (Tomporowski & Ellis, 1986). Altitude and Exercise Performance The interplay among hypoxia...an inevitable part of aviation. With the benefits and convenience of ascending into the sky 35 in an aircraft, come the risks of operating in what
Effect of Peer Influence on Exercise Behavior and Enjoyment in Recreational Runners.
Carnes, Andrew J; Petersen, Jennifer L; Barkley, Jacob E
2016-02-01
Fitness professionals and popular media sources often recommend exercising with a partner to increase exercise motivation, adherence, intensity, and/or duration. Although competition with peers has been shown to enhance maximal athletic performance, experimental research examining the impact of peer influence on submaximal exercise behavior in adults is limited. The purpose of this study was to determine the effects of the presence of familiar and unfamiliar peers, vs. running alone, on recreational runners' voluntary running duration, distance, intensity, liking (i.e., enjoyment), and ratings of perceived exertion (RPEs). Recreational runners (n = 12 males, n = 12 females) completed 3 experimental trials, each under a different social condition, in a randomized order. Each trial consisted of self-paced running for a duration voluntarily determined by the participant. The 3 social conditions were running alone, with a sex- and fitness-matched familiar peer, or with a sex- and fitness-matched unfamiliar peer. A wrist-worn global positioning system was used to record running duration, distance, and average speed. Liking and RPE were assessed at the end of each trial. Mixed model regression analysis showed no significant effects of social condition (p ≥ 0.40) for any of the dependent variables. The presence of a familiar or unfamiliar peer did not alter recreational runners' running behavior, liking, or perceived exertion during submaximal exercise. However, exercising with others may have other benefits (e.g., reduced attrition) not examined herein.
Randomized Controlled Trial Considering Varied Exercises for Reducing Proactive Memory Interference.
Frith, Emily; Sng, Eveleen; Loprinzi, Paul D
2018-06-11
We evaluated the effects of exercise on proactive memory interference. Study 1 ( n = 88) employed a 15-min treadmill walking protocol, while Study 2 ( n = 88) included a 15-min bout of progressive maximal exertion treadmill exercise. Each study included four distinct groups, in which groups of 22 participants each were randomly assigned to: (a) exercise before memory encoding, (b) a control group with no exercise, (c) exercise during memory encoding, and (d) exercise after memory encoding (i.e., during memory consolidation). We used the Rey Auditory Verbal Learning Test (RAVLT) to assess proactive memory interference. In both studies, the group that exercised prior to memory encoding recalled the most words from list B (distractor list) of the RAVLT, though group differences were not statistically significant for Study 1 (walking exercise) ( p = 0.521) or Study 2 (high-intensity exercise) ( p = 0.068). In this sample of young adults, high intensity exercise prior to memory encoding showed a non-significant tendency to attenuate impairments in recall attributable to proactive memory interference. Thus, future work with larger samples is needed to clarify potential beneficial effects of exercise for reducing proactive memory interference.
2009-02-12
ISS018-E-030101 (12 Feb. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, equipped with a bungee harness, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station.
2009-02-12
ISS018-E-030096 (12 Feb. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, equipped with a bungee harness, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station.
Rankinen, T; Rice, T; Pérusse, L; Chagnon, Y C; Gagnon, J; Leon, A S; Skinner, J S; Wilmore, J H; Rao, D C; Bouchard, C
2000-11-01
Endothelium-dependent vasodilation is a mechanism that may affect blood pressure response to endurance training. Because NO plays a central role in this process, the endothelial NO synthase gene is a good candidate for the regulation of exercise blood pressure. We investigated the associations between an endothelial NO synthase gene polymorphism (Glu298Asp) and endurance training-induced changes in resting and submaximal exercise blood pressure in 471 white subjects of the HERITAGE Family Study. Two submaximal exercise tests at 50 W were conducted both before and after a 20-week endurance training program. Steady-state exercise blood pressure was measured twice in each test with an automated unit. The Glu298Asp polymorphism was typed with a PCR-based method and digestion with BAN:II. Both systolic and diastolic blood pressure at 50 W decreased in response to the training program, whereas resting blood pressure remained unchanged. The decrease in diastolic blood pressure at 50 W was greater (P=0.0005, adjusted for age, gender, baseline body mass index, and baseline diastolic blood pressure at 50 W) in the Glu/Glu homozygotes (4.4 [SEM 0.4] mm Hg, n=187) than in the heterozygotes (3.1 [0.4] mm Hg, n=213) and the Asp/Asp homozygotes (1.3 [0.7] mm Hg, n=71). The genotype accounted for 2.3% of the variance in diastolic blood pressure at 50 W training response. Both the Glu298 homozygotes and the heterozygotes had a greater (P=0.013) training-induced reduction in rate-pressure product at 50 W than the Asp298 homozygotes. These data suggest that DNA sequence variation in the endothelial NO synthase gene locus is associated with the endurance training-induced decreases in submaximal exercise diastolic blood pressure and rate-pressure product in sedentary normotensive white subjects.
The diagnostic accuracy of exercise electrocardiography - A review
NASA Technical Reports Server (NTRS)
Johnson, R. L.; Bungo, M. W.
1983-01-01
The cardiovascular 'stress test', and particularly the graded treadmill exercist test, has gained wide acceptance as a diagnostic aid in searching for ischemic heart disease and as a prognostic indicator for those with known coronary artery disease. Controversies still exist, however, in its use in mass screening and in interpreting equivocal tests. A review of the use and value of electrocardiographic exercise testing is presented. Topics such as its use in asymptomatic individuals, the adjuvant use of clinical examination, and the examination of ancillary treadmill parameters are presented. No attempt is made to detail the very significant contributions of radionuclide scanning. The positive exercise electrocardiogram in the asymptomatic subject is discussed and guidelines for clinical management are offered.
Recruitment of single muscle fibers during submaximal cycling exercise.
Altenburg, T M; Degens, H; van Mechelen, W; Sargeant, A J; de Haan, A
2007-11-01
In literature, an inconsistency exists in the submaximal exercise intensity at which type II fibers are activated. In the present study, the recruitment of type I and II fibers was investigated from the very beginning and throughout a 45-min cycle exercise at 75% of the maximal oxygen uptake, which corresponded to 38% of the maximal dynamic muscle force. Biopsies of the vastus lateralis muscle were taken from six subjects at rest and during the exercise, two at each time point. From the first biopsy single fibers were isolated and characterized as type I and II, and phosphocreatine-to-creatine (PCr/Cr) ratios and periodic acid-Schiff (PAS) stain intensities were measured. Cross sections were cut from the second biopsy, individual fibers were characterized as type I and II, and PAS stain intensities were measured. A decline in PCr/Cr ratio and in PAS stain intensity was used as indication of fiber recruitment. Within 1 min of exercise both type I and, although to a lesser extent, type II fibers were recruited. Furthermore, the PCr/Cr ratio revealed that the same proportion of fibers was recruited during the whole 45 min of exercise, indicating a rather constant recruitment. The PAS staining, however, proved inadequate to fully demonstrate fiber recruitment even after 45 min of exercise. We conclude that during cycling exercise a greater proportion of type II fibers is recruited than previously reported for isometric contractions, probably because of the dynamic character of the exercise. Furthermore, the PCr/Cr ratio method is more sensitive in determining fiber activation than the PAS stain intensity method.
Hemodynamic responses to single sessions of aerobic exercise and resistance exercise in pregnancy.
Petrov Fieril, Karolina; Glantz, Anna; Fagevik Olsen, Monika
2016-09-01
Previous research on maternal hemodynamic responses to a single exercise session during pregnancy is sparse, especially considering immediate responses to resistance exercise. The aim of the study was to examine blood pressure, heart rate, body temperature, and Rating of Perceived Exertion in healthy pregnant women during single sessions of continuous submaximal exercise in pregnancy week 21. A cross-over design was used. Twenty healthy pregnant women from four prenatal clinics in Gothenburg, Sweden, were included. On day 1, the women did 30 min of aerobic exercise and on day 3 they did 30 min of resistance exercise. Blood pressure, heart rate, and Rating of Perceived Exertion were measured after 15 and 30 min of exercise. After 15 and 30 min of exercise, there was a significant increase in systolic blood pressure and heart rate (p < 0.001). Diastolic blood pressure increased slightly more after 15 and 30 min of aerobic exercise (p = 0.01) than resistance exercise (p = 0.03). Resistance exercise was perceived as more intense than aerobic exercise after 15 min (p = 0.02) and 30 min (p = 0.001) of exercise. Five minutes after completing the exercise, blood pressure quickly reverted to normal although heart rate was still increased (p = 0.001). There was no correlation between heart rate and Rating of Perceived Exertion (rs = 0.05-0.43). Maternal hemodynamic responses were essentially the same, regardless of whether the exercise was submaximal aerobic or resistance exercise, although resistance exercise was perceived as more intense. Aerobic and resistance exercise corresponding to "somewhat hard" seems to have no adverse effect with regard to maternal hemodynamic responses in healthy pregnancy. © 2016 Nordic Federation of Societies of Obstetrics and Gynecology.
Ueno, Hiromasa; Suga, Tadashi; Takao, Kenji; Tanaka, Takahiro; Misaki, Jun; Miyake, Yuto; Nagano, Akinori; Isaka, Tadao
2018-02-01
This study aimed to determine the relationship between Achilles tendon (AT) length and running performance, including running economy, in well-trained endurance runners. We also examined the reasonable portion of the AT related to running performance among AT lengths measured in three different portions. The AT lengths at three portions and cross-sectional area (CSA) of 30 endurance runners were measured using magnetic resonance imaging. Each AT length was calculated as the distance from the calcaneal tuberosity to the muscle-tendon junction of the soleus, gastrocnemius medialis (GM AT ), and gastrocnemius lateralis, respectively. These AT lengths were normalized with shank length. The AT CSA was calculated as the average of 10, 20, and 30 mm above the distal insertion of the AT and normalized with body mass. Running economy was evaluated by measuring energy cost during three 4-minutes submaximal treadmill running trials at 14, 16, and 18 km/h, respectively. Among three AT lengths, only a GM AT correlated significantly with personal best 5000-m race time (r=-.376, P=.046). Furthermore, GM AT correlated significantly with energy cost during submaximal treadmill running trials at 14 km/h and 18 km/h (r=-.446 and -.429, respectively, P<.05 for both), and a trend toward such significance was observed at 16 km/h (r=-.360, P=.050). In contrast, there was no correlation between AT CSA and running performance. These findings suggest that longer AT, especially GM AT , may be advantageous to achieve superior running performance, with better running economy, in endurance runners. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Subject Load-Harness Interaction During Zero-Gravity Treadmill Exercise
NASA Technical Reports Server (NTRS)
McCrory, Jean L.; Baron, Heidi A.; Derr, Janice A.; Davis, Brian L.; Cavanagh, Peter R.
1996-01-01
When astronauts exercise on orbit, a subject load device (SLD) must be used to return the subject back to the supporting surface. The load in the SLD needs to be transferred the body by a harness which typically distributes this load between the pelvis and We shoulders. Through the use of a zero-gravity simulator, this research compared subject comfort and ground reaction forces during treadmill running at three levels of subject load (60%,80%, and 100% of body weight) in two harness designs ("shoulder only" and "waist "and shoulder ").
Sinha, Dhurjati Prasad; Das, Munna; Banerjee, Amal Kumar; Ahmed, Shageer; Majumdar, Sonali
2008-02-01
Anginal symptoms are less predictive of abnormal coronary anatomy in women. The diagnostic accuracy of exercise treadmill test for obstructive coronary artery disease is less in young and middle aged women. High sensitive C-reactive protein has shown a strong and consistent relationship to the risk of incident cardiovascular events. Carotid intima media thickness is a non-invasive marker of atherosclerosis burden and also predicts prognosis in patients with coronary artery disease. We investigated whether incorporation of high sensitive C-reactive protein and carotid intima media thickness along with exercise stress results improved the predictive accuracy in perimenopausal non-diabetic women subset. Fifty perimenopausal non-diabetic patients (age 45 +/- 7 years) presenting with typical angina were subjected to treadmill test (Bruce protocol). Also carotid artery images at both sides of neck were acquired by B-mode ultrasound and carotid intima media thickness were measured. High sensitive C-reactive protein was measured. Of 50 patients, 22 had a positive exercise stress result. Coronary angiography done in all 50 patients revealed coronary artery disease in 10 patients with positive exercise stress result and in 4 patients with negative exercise stress result. Treadmill exercise stress test had a sensitivity of 71.4%, specificity of 66.7% and a negative predictive accuracy of 85.7% in this study group. High sensitive C-reactive protein in patients with documented coronary artery disease was not significantly different from those without coronary artery disease (4.8 +/- 0.9 mg/l versus 3.9 +/- 1.7 mg/l, p=NS). Also carotid intima media thickness was not significantly different between either of the groups with coronary artery disease positivity and negativity respectively (left: 1.25 +/- 0.55 versus 1.20 +/- 0.51 mm, p=NS; right:1.18 +/- 0.54 versus 1.15 +/- 0.41 mm, p=NS). High sensitive C-reactive protein and carotid intima media thickness were not helpful in further adding to the predictability of coronary artery disease in perimenopausal patients with typical angina as assessed by treadmill exercise stress test.
Lai, Byron; Jeng, Brenda; Vrongistinos, Konstantinos; Jung, Taeyou
2015-06-01
The purpose of this study is to investigate the effects of a single-bout of aquatic treadmill walking (ATW) and overground treadmill walking (OTW) on the magnitude and duration of post-exercise ambulatory blood pressure (BP) in people post-stroke. Seven people post-stroke participated in a cross-sectional comparative study. BP was monitored for up to 9 hours after a 15-minute bout of ATW and OTW at approximately 70% of maximal oxygen consumption (VO2max), performed on separate days. Mean systolic and diastolic BP values were compared between both exercise conditions and a day without exercise (control). Three hours after OTW, mean SBP increased by 9% from pre-exercise baseline compared to a 3% decrease during the control day (P < 0.05). A similar trend was observed after the third hour of ATW (P = 0.06). However, ATW demonstrated a 3% overall decline in DBP after exercise compared to a 1% DBP increase of the control day (P < 0.05). Additionally, ATW showed a 6% reduction in mean systolic BP at the ninth hour post-exercise (P < 0.05) compared to baseline. Our results indicate people post-stroke can sustain sufficient walking intensities necessary to reduce BP following cardiovascular exercise. Also, these data suggest that ATW can elicit clinically meaningful reductions in DBP and night-time SBP. Thus, it is recommended for clinicians to consider ATW as a non-pharmaceutical means to regulate DBP and promote nighttime dipping of SBP in people post-stroke. However, caution is advised during the immediate hours after exercise, a period of possible BP inflation.
NASA Technical Reports Server (NTRS)
Lee, S. M. C.; Streeper, T.; Spiering, B. A.; Loehr, J. A.; Guilliams, M. E.; Bloomberg, J. J.; Mulavara, A. P.; Cavanagh, P. R.; Lang, T.
2010-01-01
Musculoskeletal, cardiovascular, and sensorimotor deconditioning have been observed consistently in astronauts and cosmonauts following long-duration spaceflight. Studies in bed rest, a spaceflight analog, have shown that high intensity resistive or aerobic exercise attenuates or prevents musculoskeletal and cardiovascular deconditioning, respectively, but complete protection has not been achieved during spaceflight. Exercise countermeasure hardware used during earlier International Space Station (ISS) missions included a cycle ergometer, a treadmill, and the interim resistive exercise device (iRED). Effectiveness of the countermeasures may have been diminished by limited loading characteristics of the iRED as well as speed restrictions and subject harness discomfort during treadmill exercise. The Advanced Resistive Exercise Device (ARED) and the second generation treadmill were designed to address many of the limitations of their predecessors, and anecdotal reports from ISS crews suggest that their conditioning is better preserved since the new hardware was delivered in 2009. However, several countermeasure devices to protect different physiologic systems will not be practical during exploration missions when the available volume and mass will be severely restricted. The combined countermeasure device (CCD) integrates a suite of hardware into one device intended to prevent spaceflight-induced musculoskeletal, cardiovascular, and sensorimotor deconditioning. The CCD includes pneumatic loading devices with attached cables for resistive exercise, a cycle for aerobic exercise, and a 6 degree of freedom motion platform for balance training. In a proof of concept test, ambulatory untrained subjects increased muscle strength (58%) as well as aerobic capacity (26%) after 12-weeks of exercise training with the CCD (without balance training), improvements comparable to those observed with traditional exercise training. These preliminary results suggest that this CCD can concurrently improve musculoskeletal and cardiovascular conditioning in ambulatory subjects, but further work is required to validate its use as countermeasure to spaceflight-induced deconditioning.
Ulrich, Silvia; Schneider, Simon R; Bloch, Konrad E
2017-12-01
Exercise performance is determined by oxygen supply to working muscles and vital organs. In healthy individuals, exercise performance is limited in the hypoxic environment at altitude, when oxygen delivery is diminished due to the reduced alveolar and arterial oxygen partial pressures. In patients with pulmonary hypertension (PH), exercise performance is already reduced near sea level due to impairments of the pulmonary circulation and gas exchange, and, presumably, these limitations are more pronounced at altitude. In studies performed near sea level in healthy subjects, as well as in patients with PH, maximal performance during progressive ramp exercise and endurance of submaximal constant-load exercise were substantially enhanced by breathing oxygen-enriched air. Both in healthy individuals and in PH patients, these improvements were mediated by a better arterial, muscular, and cerebral oxygenation, along with a reduced sympathetic excitation, as suggested by the reduced heart rate and alveolar ventilation at submaximal isoloads, and an improved pulmonary gas exchange efficiency, especially in patients with PH. In summary, in healthy individuals and in patients with PH, alterations in the inspiratory Po 2 by exposure to hypobaric hypoxia or normobaric hyperoxia reduce or enhance exercise performance, respectively, by modifying oxygen delivery to the muscles and the brain, by effects on cardiovascular and respiratory control, and by alterations in pulmonary gas exchange. The understanding of these physiological mechanisms helps in counselling individuals planning altitude or air travel and prescribing oxygen therapy to patients with PH.
Phosphocreatine resynthesis during recovery in different muscles of the exercising leg by 31P-MRS.
Yoshida, T; Abe, D; Fukuoka, Y
2013-10-01
To investigate the high-energy phosphate metabolism by (31) P-nuclear magnetic resonance spectroscopy during off-transition of exercise in different muscle groups, such as calf muscles and biceps femoris muscles, seven male long-distance runners (LDR) and nine untrained males (UT) performed both submaximal constant and incremental exercises. The relative exercise intensity was set at 60% of the maximal work rate (60%W max) during both knee flexion and plantar flexion submaximal constant load exercises. The relative areas under the inorganic phosphate (Pi ) and phosphocreatine (PCr) peaks were determined. During the 5-min recovery following the 60%W max, the time constant for the PCr off-kinetics was significantly faster in the plantar flexion (LDR: 17.3 ± 3.6 s, UT: 26.7 ± 6.7 s) than in the knee flexion (LDR: 29.7 ± 4.7 s, UT: 42.7 ± 2.8 s, P < 0.05). In addition, a significantly faster PCr off-kinetics was observed in LDR than in UT for both exercises. The ratio of Pi to PCr (Pi /PCr) during exercise was significantly lower during the plantar flexion than during the knee flexion (P < 0.01). These findings indicated that the calf muscles had relatively higher potential for oxidative capacity than that of biceps femoris muscles with an association of training status. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
de Bruin, Eling D.; Schindelholz, Matthias; Schuster-Amft, Corina; de Bie, Rob A.; Hunt, Kenneth J.
2015-01-01
Background and Purpose: Cardiovascular fitness is greatly reduced after stroke. Although individuals with mild to moderate impairments benefit from conventional cardiovascular exercise interventions, there is a lack of effective approaches for persons with severely impaired physical function. This randomized controlled pilot trial investigated efficacy and feasibility of feedback-controlled robotics-assisted treadmill exercise (FC-RATE) for cardiovascular rehabilitation in persons with severe impairments early after stroke. Methods: Twenty individuals (age 61 ± 11 years; 52 ± 31 days poststroke) with severe motor limitations (Functional Ambulation Classification 0-2) were recruited for FC-RATE or conventional robotics-assisted treadmill exercise (RATE) (4 weeks, 3 × 30-minute sessions/wk). Outcome measures focused on peak cardiopulmonary performance parameters, training intensity, and feasibility, with examiners blinded to allocation. Results: All 14 allocated participants (70% of recruited) completed the intervention (7/group, withdrawals unrelated to intervention), without serious adverse events occurring. Cardiovascular fitness increased significantly in both groups, with peak oxygen uptake increasing from 14.6 to 17.7 mL · kg−1 · min−1 (+17.8%) after 4 weeks (45.8%-55.7% of predicted maximal aerobic capacity; time effect P = 0.01; no group-time interaction). Training intensity (% heart rate reserve) was significantly higher for FC-RATE (40% ± 3%) than for conventional RATE (14% ± 2%) (P = 0.001). Discussion and Conclusions: Substantive overall increases in the main cardiopulmonary performance parameters were observed, but there were no significant between-group differences when comparing FC-RATE and conventional RATE. Feedback-controlled robotics-assisted treadmill exercise significantly increased exercise intensity, but recommended intensity levels for cardiovascular training were not consistently achieved. Future research should focus on appropriate algorithms within advanced robotic systems to promote optimal cardiovascular stress. Video abstract available for more insights from the authors (Supplemental Digital Content 1, http://links.lww.com/JNPT/A107). PMID:26050073
Stoller, Oliver; de Bruin, Eling D; Schindelholz, Matthias; Schuster-Amft, Corina; de Bie, Rob A; Hunt, Kenneth J
2015-07-01
Cardiovascular fitness is greatly reduced after stroke. Although individuals with mild to moderate impairments benefit from conventional cardiovascular exercise interventions, there is a lack of effective approaches for persons with severely impaired physical function. This randomized controlled pilot trial investigated efficacy and feasibility of feedback-controlled robotics-assisted treadmill exercise (FC-RATE) for cardiovascular rehabilitation in persons with severe impairments early after stroke. Twenty individuals (age 61 ± 11 years; 52 ± 31 days poststroke) with severe motor limitations (Functional Ambulation Classification 0-2) were recruited for FC-RATE or conventional robotics-assisted treadmill exercise (RATE) (4 weeks, 3 × 30-minute sessions/wk). Outcome measures focused on peak cardiopulmonary performance parameters, training intensity, and feasibility, with examiners blinded to allocation. All 14 allocated participants (70% of recruited) completed the intervention (7/group, withdrawals unrelated to intervention), without serious adverse events occurring. Cardiovascular fitness increased significantly in both groups, with peak oxygen uptake increasing from 14.6 to 17.7 mL · kg · min (+17.8%) after 4 weeks (45.8%-55.7% of predicted maximal aerobic capacity; time effect P = 0.01; no group-time interaction). Training intensity (% heart rate reserve) was significantly higher for FC-RATE (40% ± 3%) than for conventional RATE (14% ± 2%) (P = 0.001). Substantive overall increases in the main cardiopulmonary performance parameters were observed, but there were no significant between-group differences when comparing FC-RATE and conventional RATE. Feedback-controlled robotics-assisted treadmill exercise significantly increased exercise intensity, but recommended intensity levels for cardiovascular training were not consistently achieved. Future research should focus on appropriate algorithms within advanced robotic systems to promote optimal cardiovascular stress.Video abstract available for more insights from the authors (Supplemental Digital Content 1, http://links.lww.com/JNPT/A107).
Stefanko, D P; Shah, V D; Yamasaki, W K; Petzinger, G M; Jakowec, M W
2017-09-01
Depression, cognitive impairments, and other neuropsychiatric disturbances are common during the prodromal phase of Huntington's disease (HD) well before the onset of classical motor symptoms of this degenerative disorder. The purpose of this study was to examine the potential impact of physical activity in the form of exercise on a motorized treadmill on non-motor behavioral features including depression-like behavior and cognition in the CAG 140 knock-in (KI) mouse model of HD. The CAG 140 KI mouse model has a long lifespan compared to other HD rodent models with HD motor deficits emerging after 12months of age and thus provides the opportunity to investigate early life interventions such as exercise on disease progression. Motorized treadmill running was initiated at 4weeks of age (1h per session, 3 times per week) and continued for 6months. Non-motor behaviors were assessed up to 6months of age and included analysis of depression-like behavior (using the tail-suspension and forced-swim tests) and cognition (using the T-maze and object recognition tests). At both 4 and 6months of age, CAG 140 KI mice displayed significant depression-like behavior in the forced swim and tail suspension tests and cognitive impairment by deficits in reversal relearning in the T-maze test. These deficits were not evident in mice engaged in treadmill running. In addition, exercise restored striatal dopamine D2 receptor expression and dopamine neurotransmitter levels both reduced in sedentary HD mice. Finally, we examined the pattern of striatal expression of mutant huntingtin (mHTT) protein and showed that the number and intensity of immunohistochemical staining patterns of intranuclear aggregates were significantly reduced with exercise. Altogether these findings begin to address the potential impact of lifestyle and early intervention such as exercise on modifying HD progression. Copyright © 2017 Elsevier Inc. All rights reserved.
Lactate Accumulation in Muscle and Blood during Submaximal Exercise
1981-09-21
exercise, fast and slow twitch fibers Short title: Lactate in muscle and blood P.A. Tesch, W.L. Daniels and D.S. Sharp Exercise Physiology Division, U.S...KIRBY, R.L. & BELCASTRO, A.N. 1978. Relationship between slow - twitch muscle fibres and lactic acid removal. Can J Appl Sports Sci 3:160-162. BRODAL, P...oxygen uptake (Karlsson 1971, Knuttgen & Saltin 1972). It is generally agreed that the main muscle fiber type to be recruited below this level is the slow
Weisgerber, Michael; Danduran, Michael; Meurer, John; Hartmann, Kathryn; Berger, Stuart; Flores, Glenn
2009-07-01
To evaluate Cooper 12-minute run/walk test (CT12) as a one-time estimate of cardiorespiratory fitness and marker of fitness change compared with treadmill fitness testing in young children with persistent asthma. A cohort of urban children with asthma participated in the asthma and exercise program and a subset completed pre- and postintervention fitness testing. Treadmill fitness testing was conducted by an exercise physiologist in the fitness laboratory at an academic children's hospital. CT12 was conducted in a college recreation center gymnasium. Forty-five urban children with persistent asthma aged 7 to 14 years participated in exercise interventions. A subset of 19 children completed pre- and postintervention exercise testing. Participants completed a 9-week exercise program where they participated in either swimming or golf 3 days a week for 1 hour. A subset of participants completed fitness testing by 2 methods before and after program completion. CT12 results (meters), maximal oxygen consumption ((.)Vo2max) (mL x kg(-1) x min(-1)), and treadmill exercise time (minutes). CT12 and maximal oxygen consumption were moderately correlated (preintervention: 0.55, P = 0.003; postintervention: 0.48, P = 0.04) as one-time measures of fitness. Correlations of the tests as markers of change over time were poor and nonsignificant. In children with asthma, CT12 is a reasonable one-time estimate of fitness but a poor marker of fitness change over time.
Imbalance in SOD/CAT activities in rat skeletal muscles submitted to treadmill training exercise.
Pinho, Ricardo A; Andrades, Michael E; Oliveira, Marcos R; Pirola, Aline C; Zago, Morgana S; Silveira, Paulo C L; Dal-Pizzol, Felipe; Moreira, José Cláudio F
2006-10-01
The association between physical exercise and oxidative damage in the skeletal musculature has been the focus of many studies in literature, but the balance between superoxide dismutase and catalase activities and its relation to oxidative damage is not well established. Thus, the aim of the present study was to investigate the association between regular treadmill physical exercise, oxidative damage and antioxidant defenses in skeletal muscle of rats. Fifteen male Wistar rats (8-12 months) were randomly separated into two groups (trained n=9 and untrained n=6). Trained rats were treadmill-trained for 12 weeks in progressive exercise (velocity, time, and inclination). Training program consisted in a progressive exercise (10 m/min without inclination for 10 min/day). After 1 week the speed, time and inclination were gradually increased until 17 m/min at 10% for 50 min/day. After the training period animals were killed, and gastrocnemius and quadriceps were surgically removed to the determination of biochemical parameters. Lipid peroxidation, protein oxidative damage, catalase, superoxide dismutase and citrate synthase activities, and muscular glycogen content were measured in the isolated muscles. We demonstrated that there is a different modulation of CAT and SOD in skeletal muscle in trained rats when compared to untrained rats (increased SOD/CAT ratio). TBARS levels were significantly decreased and, in contrast, a significant increase in protein carbonylation was observed. These results suggest a non-described adaptation of skeletal muscle against exercise-induced oxidative stress.
Effects of harmane during treadmill exercise on spatial memory of restraint-stressed mice.
Nasehi, Mohammad; Shahini, Faezeh; Ebrahimi-Ghiri, Mohaddeseh; Azarbayjani, MohammadAli; Zarrindast, Mohammad-Reza
2018-06-08
Chronic stress induces hippocampal-dependent memory deficits, which can be counterbalanced with prolonged exercise. On the other hand, the β-carboline alkaloid harmane exerts potential in therapies for Alzheimer's and depression diseases and modulating neuronal responses to stress. The present study investigated the effect of chronic treatment of harmane alone or during treadmill running on spatial memory deficit in restraint-stressed mice. To examine spatial memory, adult male NMRI mice were subjected to the Y-maze. Intraperitoneal administration of harmane (0.6 mg/kg, once/ 48 h for 25 days) decreased the percentage of time in the novel arm and the number of novel arm visits, indicating a spatial memory deficit. A 9-day restraint stress (3 h/day) also produced spatial learning impairment. However, a 4-week regime of treadmill running (10 m/min for 30 min/day, 5 days/week) aggravated the stress impairing effect on spatial learning of 3-day stressed mice compared to exercise/non-stressed mice. Moreover, harmane (0.3 mg/kg) associated with exercise increased the number of novel arm visits in 9-day stressed mice compared to harmane/exercise/non-stressed or 9-day stressed group. It should be noted that none of these factors alone or in combination with each other had no effect on locomotor activity. Taken together, these data suggest that there is no interaction between harmane and exercise on spatial memory in stress condition. Copyright © 2018. Published by Elsevier Inc.
Adachi, H; Sakurai, S; Tanehata, M; Oshima, S; Taniguchi, K
2000-11-01
Blood viscosity (etaB) is low in athletes, but the effect of exercise training on etaB during endurance exercise at an anaerobic threshold (AT) intensity in non-athletes is not well known, although it is known that exercise training sometimes induces the hyperviscosity syndrome. Fourteen subjects were recruited and divided into 2 groups: those who trained at an AT intensity for 30 min/day, 3 times weekly for 1 year (Group T, n=8), and sedentary subjects (Group C, n=6). The test protocol consisted of a single 30-min treadmill exercise at each individual's AT intensity, which was determined in advance. The etaB, plasma viscosity (etaP), and hematocrit were measured just before and at the end of the treadmill exercise. The subjects were not allowed to drink any water before exercise. In the Group C subjects, the hematocrit and etaP increased significantly and the etaB tended to increase. However, in the Group T subjects, the hematocrit and etaP did not increase and the etaB decreased significantly. These data indicate that long-term exercise training attenuates the increase in blood viscosity during exercise.
Urhausen, A; Gabriel, H H; Weiler, B; Kindermann, W
1998-02-01
In the present prospective longitudinal study 17 male endurance trained athletes (cyclists and triathletes; age 23.4+/-6.7 years, VO2max 61.2+/-7.5 ml x min(-1) x kg(-1); means+/-SD) were investigated both during a state of overtraining syndrome (OT: N=15), mainly induced by an increase of exercise intensity, as well as several times in a state of regular physical ability (NS: N=62). Cycle-ergometric and psychological data were compared for a period of approximately 19 months. On 2 separate days, each subject performed a maximum incremental graded exercise, two anaerobic tests (10 s and 30 s) as well as a short-endurance "stress test" with the intensity of 110% of the individual anaerobic threshold until volitional exhaustion. The mood state was recorded by a psychological questionnaire including 40 basic items. During OT the submaximal lactate concentrations were slightly decreased. The performance of the 10 s- and 30 s-tests was unaffected. In contrast, the duration of the "stress test" decreased significantly by approximately 27% during OT compared to the individual NS. The submaximal oxygen uptake measured during the incremental graded exercise was slightly higher during OT as compared to NS, whereas the submaximal and maximal respiratory exchange ratio, maximal heart rate and maximal lactate concentrations were decreased. At the 10th minute of the "stress test", ammonia tended to be increased during OT (P=0.048). The parameters of mood state at rest as well as the subjective rating of perceived exertion during exercise were significantly impaired during OT. In conclusion, the results indicate a decreased intramuscular utilization of carbohydrates with diminished maximal anaerobic lactacid energy supply during OT. Neither the lactate-performance relationship during incremental graded exercise nor the anaerobic alactacid performance showed alterations. The duration of the short-endurance "stress test", the maximal lactate concentration of the incremental graded exercise as well as the altered mood profile turned out to be the most sensitive parameters for the diagnosis of OT.
Meeus, Mira; Hermans, Linda; Ickmans, Kelly; Struyf, Filip; Van Cauwenbergh, Deborah; Bronckaerts, Laura; De Clerck, Luc S; Moorken, Greta; Hans, Guy; Grosemans, Sofie; Nijs, Jo
2015-02-01
Temporal summation (TS) of pain, conditioned pain modulation (CPM), and exercise-induced analgesia (EIA) are often investigated in chronic pain populations as an indicator for enhanced pain facilitation and impaired endogenous pain inhibition, respectively, but interactions are not yet clear both in healthy controls and in chronic pain patients. Therefore, the present double-blind randomized placebo-controlled study evaluates pains cores, TS, and CPM in response to exercise in healthy controls, patients with chronic fatigue syndrome and comorbid fibromyalgia (CFS/FM), and patients with rheumatoid arthritis (RA), both under placebo and paracetamol condition. Fifty-three female volunteers - of which 19 patients with CFS/FM, 16 patients with RA, and 18 healthy controls - underwent a submaximal exercise test on a bicycle ergometer on 2 different occasions (paracetamol vs. placebo), with an interval of 7 days. Before and after exercise, participants rated pain intensity during TS and CPM. Patients with rheumatoid arthritis showed decreased TS after exercise, both after paracetamol and placebo (P < 0.05). In patients with CFS/FM, results were less univocal. A nonsignificant decrease in TS was only observed after taking paracetamol. CPM responses to exercise are inconclusive, but seem to worsen after exercise. No adverse effects were seen. This study evaluates pain scores, TS, and CPM in response to submaximal exercise in 2 different chronic pain populations and healthy controls. In patients with RA, exercise had positive effects on TS, suggesting normal EIA. In patients with CFS/FM, these positive effects were only observed after paracetamol and results were inconsistent. © 2014 World Institute of Pain.
THE EFFECT OF CAFFEINE SUPPLEMENTATION ON TRAINED INDIVIDUALS SUBJECTED TO MAXIMAL TREADMILL TEST.
Salicio, Viviane Martins Mana; Fett, Carlos Alexandre; Salicio, Marcos Adriano; Brandäo, Camila Fernanda Costa Cunha Moraes; Stoppiglia, Luiz Fabrizio; Fett, Waléria Christiane Rezende; Botelho, and Clovis
2017-01-01
Background: Intense physical training increases oxidative stress and inflammation, resulting into muscle and cellular damage. The aim of this study was to analyze the effect of caffeine supplementation on trained young individuals subjected to two treadmill maximal tests. Materials and Methods: It was a double-blind and crossover study comprising 24 active individuals within the age group 18-30 years. The comparisons were conducted: the effect of exercise (week 1 x 2) and caffeine intake (GC x GP) on thiobarbituric acid (TBARS), interleukin 6 (IL-6), interleukin 10 (IL-10) and superoxide dismutase (SOD) variables during pre-exercise time (30 min. after caffeine or placebo intake) and post-exercise (5 min after treadmill test). Results: The comparison between weeks 1 and 2 showed increase in the first week, in the following items: TBARS, IL-6 and IL-10 in the GC and GP groups. The comparison within the same week showed that GC individuals presented lower post-exercise TBARS values in the first and second weeks; IL- 6 presented higher post-exercise values in the GC group in both weeks. The paired analysis comparing pre- and post-exercise, with and without caffeine showed that IL-6 presented higher post-exercise values in the GC group. Conclusion: Caffeine used by athletes can decrease oxidative stress. The increased IL-6 suggest that this ergogenic supplement may stimulate muscle hypertrophy, since IL-6 has myokine effect. However, the caffeine effect on IL-6 level and muscle hypertrophy increase should be better investigated in future studies. PMID:28480382
NASA Technical Reports Server (NTRS)
Smorawinski, J.; Nazar, K.; Kaciuza-Uscilko; Kaminska, E.; Kodrzycka, A.; Bicz, B.; Greenleaf, J. E.
2001-01-01
To test the hypotheses that short-term bed rest (BR) deconditioning influences metabolic, cardiorespiratory and neurohormonal responses to exercise and that these effects depend on the subjects' training status, 12 sedentary men, and 10 endurance- and 10 strength-trained athletes were submitted to three-day BR. Before and after BR they performed incremental exercise tests until volitional exhaustion. Respiratory gas exchange and HR were recorded continuously and stroke volume (SV) was measured at submaximal loads. Blood was taken for lactate [LA], adrenaline [A], noradrenaline [NA], renin activity (PRA), growth hormone [hGH], testosterone and cortisol determination. Reduction of peak oxygen uptake (V02peak) after BR was greater in the endurance athletes than in the remaining groups (17 % vs. 10%). Decrements in VO2peak correlated positively with the initial values (r = 0.73, p is less than 0.001). Resting and exercise respiratory exchange ratios were increased in athletes. Cardiac output was unchanged by BR in all groups, but exercise HR was increased and SV diminished in the sedentary subjects. The submaximal [LA] and [LA] thresholds were decreased the in endurance athletes from 71 to 60% V02 peak (p is less than0.001), they also had an earlier increase in [NA], an attenuated increase in [hGH], and accentuated PRA and cortisol elevations during exercise. These effects were insignificant in the remaining subjects. In conclusion: reduction of exercise performance and modifications in neurohormonal response to exercise after BR depend on the previous level and mode of physical training, being the most pronounced in the endurance athletes.
NASA Technical Reports Server (NTRS)
Smorawinski, J.; Nazar, K.; Kaciuza-Uscilko, H.; Kaminska, E.; Cybulski, G.; Kodrzycka, A.; Bice, B.; Greenleaf, J. E.; Sun, Sid (Technical Monitor)
2001-01-01
To test the hypotheses that short-term bed rest (BR) deconditioning influences metabolic, cardiorespiratory and neurohormonal responses to exercise and that these effects depend on the subjects' training status 12 sedentary men, and 10 endurance- and 10 strength-trained athletes were submitted to three-day BR. Before and after BR they performed incremental exercise test until volitional exhaustion. Respiratory gas exchange and HR were recorded continuously and stroke volume (SV) was measured at submaximal loads. Blood was taken for lactate [LA], adrenaline [A], noradrenaline, [NA], renting activity (PRA), growth hormone [hGH], testosterone and cortisol determination. Reduction of peak oxygen uptake (VO2peak) after BR was greater in the endurance athletes (than in the remaining groups (17 % vs. 100%). Decrements in VO2peak correlated positively with the initial values (r = 0.73, p less than 0.001). Resting and exercise respiratory exchange ratios were increased in athletes. Cardiac output was unchanged by BR in all groups, but exercise HR was increased and SV diminished in the sedentary subjects. The submaximal [LA] and [LA] thresholds were decreased the in endurance athletes from 71 to 60 %VO2 peak (p less than 0.001); they also had an earlier increase in [NA], and an attenuated increase in [hGH), and accentuated PRA and cortisol elevations during exercise. These effects were insignificant in the remaining subjects. In conclusion: reduction of exercise performance and modifications in neurohormonal response to exercise after BR depend on the previous level and mode of physical training, being the most pronounced in the endurance athletes.
NASA Technical Reports Server (NTRS)
Smorawinski, J.; Nazar, K.; Kaciuba-Uscilko, H.; Kaminska, E.; Cybulski, G.; Kodrzycka, A.; Bicz, B.; Greenleaf, J. E.
2001-01-01
To test the hypotheses that short-term bed-rest (BR) deconditioning influences metabolic, cardiorespiratory, and neurohormonal responses to exercise and that these effects depend on the subjects' training status, 12 sedentary men and 10 endurance- and 10 strength-trained athletes were submitted to 3-day BR. Before and after BR they performed incremental exercise test until volitional exhaustion. Respiratory gas exchange and heart rate (HR) were recorded continuously, and stroke volume (SV) was measured at submaximal loads. Blood was taken for lactate concentration ([LA]), epinephrine concentration ([Epi]), norepinephrine concentration ([NE]), plasma renin activity (PRA), human growth hormone concentration ([hGH]), testosterone, and cortisol determination. Reduction of peak oxygen uptake (VO(2 peak)) after BR was greater in the endurance athletes than in the remaining groups (17 vs. 10%). Decrements in VO(2 peak) correlated positively with the initial values (r = 0.73, P < 0.001). Resting and exercise respiratory exchange ratios were increased in athletes. Cardiac output was unchanged by BR in all groups, but exercise HR was increased and SV diminished in the sedentary subjects. The submaximal [LA] and [LA] thresholds were decreased in the endurance athletes from 71 to 60% VO(2 peak) (P < 0.001); they also had an earlier increase in [NE], an attenuated increase in [hGH], and accentuated PRA and cortisol elevations during exercise. These effects were insignificant in the remaining subjects. In conclusion, reduction of exercise performance and modifications in neurohormonal response to exercise after BR depend on the previous level and mode of physical training, being the most pronounced in the endurance athletes.
Smorawiński, J; Nazar, K; Kaciuba-Uscilko, H; Kamińska, E; Cybulski, G; Kodrzycka, A; Bicz, B; Greenleaf, J E
2001-07-01
To test the hypotheses that short-term bed-rest (BR) deconditioning influences metabolic, cardiorespiratory, and neurohormonal responses to exercise and that these effects depend on the subjects' training status, 12 sedentary men and 10 endurance- and 10 strength-trained athletes were submitted to 3-day BR. Before and after BR they performed incremental exercise test until volitional exhaustion. Respiratory gas exchange and heart rate (HR) were recorded continuously, and stroke volume (SV) was measured at submaximal loads. Blood was taken for lactate concentration ([LA]), epinephrine concentration ([Epi]), norepinephrine concentration ([NE]), plasma renin activity (PRA), human growth hormone concentration ([hGH]), testosterone, and cortisol determination. Reduction of peak oxygen uptake (VO(2 peak)) after BR was greater in the endurance athletes than in the remaining groups (17 vs. 10%). Decrements in VO(2 peak) correlated positively with the initial values (r = 0.73, P < 0.001). Resting and exercise respiratory exchange ratios were increased in athletes. Cardiac output was unchanged by BR in all groups, but exercise HR was increased and SV diminished in the sedentary subjects. The submaximal [LA] and [LA] thresholds were decreased in the endurance athletes from 71 to 60% VO(2 peak) (P < 0.001); they also had an earlier increase in [NE], an attenuated increase in [hGH], and accentuated PRA and cortisol elevations during exercise. These effects were insignificant in the remaining subjects. In conclusion, reduction of exercise performance and modifications in neurohormonal response to exercise after BR depend on the previous level and mode of physical training, being the most pronounced in the endurance athletes.
Pre-exercise glycerol hydration improves cycling endurance time
NASA Technical Reports Server (NTRS)
Montner, P.; Stark, D. M.; Riedesel, M. L.; Murata, G.; Robergs, R.; Timms, M.; Chick, T. W.
1996-01-01
The effects of glycerol ingestion (GEH) on hydration and subsequent cycle ergometer submaximal load exercise were examined in well conditioned subjects. We hypothesized that GEH would reduce physiologic strain and increase endurance. The purpose of Study I (n = 11) was to determine if pre-exercise GEH (1.2 gm/kg glycerol in 26 ml/kg solution) compared to pre-exercise placebo hydration (PH) (26 ml/kg of aspartame flavored water) lowered heart rate (HR), lowered rectal temperature (Tc), and prolonged endurance time (ET) during submaximal load cycle ergometry. The purpose of Study II (n = 7) was to determine if the same pre-exercise regimen followed by carbohydrate oral replacement solution (ORS) during exercise also lowered HR, Tc, and prolonged ET. Both studies were double-blind, randomized, crossover trials, performed at an ambient temperature of 23.5-24.5 degrees C, and humidity of 25-27%. Mean HR was lower by 2.8 +/- 0.4 beats/min (p = 0.05) after GEH in Study I and by 4.4 +/- 1.1 beats/min (p = 0.01) in Study II. Endurance time was prolonged after GEH in Study I (93.8 +/- 14 min vs. 77.4 +/- 9 min, p = 0.049) and in Study II (123.4 +/- 17 min vs. 99.0 +/- 11 min, p = 0.03). Rectal temperature did not differ between hydration regimens in both Study I and Study II. Thus, pre-exercise glycerol-enhanced hyperhydration lowers HR and prolongs ET even when combined with ORS during exercise. The regimens tested in this study could potentially be adapted for endurance activities.
Comparison of two progressive treadmill tests in patients with peripheral arterial disease.
Riebe, D; Patterson, R B; Braun, C M
2001-11-01
In a vascular rehabilitation program, 28% of our frail elderly patients are unable to be tested with traditional progressive exercise protocols at program entry due to the high (2.0 miles/h or 3.2 km/h) initial treadmill speeds. The purpose of this investigation was to compare a new progressive treadmill protocol which has a reduced initial speed (1.0 mile/h or 1.6 km/h) to an established protocol performed at 2.0 miles/h (3.2 km/h) to determine the comparability and reproducibility of the new protocol. Eleven patients with arterial claudication performed three symptom-limited exercise tests in random order. Two tests used the new protocol while the remaining trial used the established protocol. Claudication pain was measured using a 5-point scale. Oxygen consumption, heart rate, minute ventilation, respiratory exchange ratio and blood pressure at peak exercise were similar among the three trials. There were strong intraclass correlations for peak oxygen consumption (r = 0.97), onset of claudication (r = 0.96) and maximum walking time (r = 0.98) between the two trials using the new protocol. There was also a significant correlation between the new protocol and the established protocol for peak oxygen consumption (r = 0.90) and maximum walking time (r = 0.89). The new progressive treadmill protocol represents a valid, reliable protocol for patients with arterial claudication. This protocol may be useful for testing patients with a low functional capacity so that clinically appropriate exercise prescriptions can be established and the efficacy of treatments can be determined.
Cushman, Daniel; Rho, Monica E
2015-07-01
Case report. Proximal hamstring tendinopathy in runners is characterized by pain with passive hip flexion with the knee extended, active hip extension, and pain with sitting. Relatively little literature exists on the condition, and publications on nonsurgical treatment protocols are even more scarce. Surgical intervention, which comprises the majority of literature for treatment of this condition, is an option for cases that fail to respond to nonsurgical treatment. The patient was a 34-year-old, otherwise healthy male triathlete with unilateral proximal hamstring tendinopathy diagnosed by ultrasound, who had pain only with running and prolonged sitting. After he failed to respond to 4 weeks of eccentric knee flexion and lumbopelvic musculature strengthening exercises, an eccentric hip extensor strengthening program using a treadmill was initiated. This treadmill exercise was performed on a daily basis, in addition to a lumbopelvic musculature strengthening program. The patient noted a decrease in pain within 2 weeks of initiating the new exercise, and was able to return to gradual running after 4 weeks and to speed training after 12 weeks. He returned to competition shortly thereafter and had no recurrence for 12 months after the initiation of therapy. His score on the Victorian Institute of Sport Assessment-proximal hamstring tendons improved from 23 on initial presentation to 83 at 12 weeks after the initiation of therapy. We described the management of a triathlete with subacute proximal hamstring tendinopathy, who responded well to nonsurgical treatment using eccentric hip extension strengthening using a treadmill. Therapy, level 4.
CUSHMAN, DANIEL; RHO, MONICA E.
2015-01-01
STUDY DESIGN Case report. BACKGROUND Proximal hamstring tendinopathy in runners is characterized by pain with passive hip flexion with the knee extended, active hip extension, and pain with sitting. Relatively little literature exists on the condition, and publications on nonsurgical treatment protocols are even more scarce. Surgical intervention, which comprises the majority of literature for treatment of this condition, is an option for cases that fail to respond to nonsurgical treatment. CASE DESCRIPTION The patient was a 34-year-old, otherwise healthy male triathlete with unilateral proximal hamstring tendinopathy diagnosed by ultrasound, who had pain only with running and prolonged sitting. After he failed to respond to 4 weeks of eccentric knee flexion and lumbopelvic musculature strengthening exercises, an eccentric hip extensor strengthening program using a treadmill was initiated. This treadmill exercise was performed on a daily basis, in addition to a lumbopelvic musculature strengthening program. OUTCOMES The patient noted a decrease in pain within 2 weeks of initiating the new exercise, and was able to return to gradual running after 4 weeks and to speed training after 12 weeks. He returned to competition shortly thereafter and had no recurrence for 12 months after the initiation of therapy. His score on the Victorian Institute of Sport Assessment-proximal hamstring tendons improved from 23 on initial presentation to 83 at 12 weeks after the initiation of therapy. DISCUSSION We described the management of a triathlete with subacute proximal hamstring tendinopathy, who responded well to nonsurgical treatment using eccentric hip extension strengthening using a treadmill. LEVEL OF EVIDENCE Therapy, level 4. PMID:25996362
Home-based treadmill training improved seminal quality in adults with type 2 diabetes.
Rosety-Rodriguez, M; Rosety, J M; Fornieles, G; Rosety, M A; Diaz, A J; Rosety, I; Rodríguez-Pareja, A; Rosety, M; Ordonez, F J; Elosegui, S
2014-11-01
This was the first study conducted to determine the influence of home-based treadmill training on seminal quality in adults with type 2 diabetes. Sixty sedentary adults with type 2 diabetes volunteered for the current study. Thirty were randomly allocated to the intervention group and performed a a 14-week, home-based, treadmill training program, 3 sessions per week, consisting of a warm-up (10-15min), 40min treadmill exercise at a work intensity of 55-70% of peak heart rate (increasing by 2.5% each two weeks) measured during a maximal treadmill test, and cooling-down (5-10min). The control group included 30, age and BMI matched adults with type 2 diabetes who did not take part in any training program. Seminal quality analysis included semen volume, sperm concentration, motility and normal morphologic features. Furthermore, total antioxidant status (TAS) as well as glutathione peroxidase (GPX) activity were assessed in seminal plasma. This protocol was approved by an Institutional Ethics Committee. The home-based treadmill training significantly increased sperm concentration as well as percentages of total sperm motility and normal spermatozoa. Furthermore, TAS and GPX activity were increased after the completion of the training program. No significant changes in any of the measured variables were found in the control group. Home-based treadmill training improved seminal quality in adults with type 2 diabetes. A secondary finding was that seminal antioxidant defense system was significantly increased after being exercised. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.
Sartor, Francesco; Vernillo, Gianluca; de Morree, Helma M; Bonomi, Alberto G; La Torre, Antonio; Kubis, Hans-Peter; Veicsteinas, Arsenio
2013-09-01
Assessment of the functional capacity of the cardiovascular system is essential in sports medicine. For athletes, the maximal oxygen uptake [Formula: see text] provides valuable information about their aerobic power. In the clinical setting, the (VO(2max)) provides important diagnostic and prognostic information in several clinical populations, such as patients with coronary artery disease or heart failure. Likewise, VO(2max) assessment can be very important to evaluate fitness in asymptomatic adults. Although direct determination of [VO(2max) is the most accurate method, it requires a maximal level of exertion, which brings a higher risk of adverse events in individuals with an intermediate to high risk of cardiovascular problems. Estimation of VO(2max) during submaximal exercise testing can offer a precious alternative. Over the past decades, many protocols have been developed for this purpose. The present review gives an overview of these submaximal protocols and aims to facilitate appropriate test selection in sports, clinical, and home settings. Several factors must be considered when selecting a protocol: (i) The population being tested and its specific needs in terms of safety, supervision, and accuracy and repeatability of the VO(2max) estimation. (ii) The parameters upon which the prediction is based (e.g. heart rate, power output, rating of perceived exertion [RPE]), as well as the need for additional clinically relevant parameters (e.g. blood pressure, ECG). (iii) The appropriate test modality that should meet the above-mentioned requirements should also be in line with the functional mobility of the target population, and depends on the available equipment. In the sports setting, high repeatability is crucial to track training-induced seasonal changes. In the clinical setting, special attention must be paid to the test modality, because multiple physiological parameters often need to be measured during test execution. When estimating VO(2max), one has to be aware of the effects of medication on heart rate-based submaximal protocols. In the home setting, the submaximal protocols need to be accessible to users with a broad range of characteristics in terms of age, equipment, time available, and an absence of supervision. In this setting, the smart use of sensors such as accelerometers and heart rate monitors will result in protocol-free VO(2max) assessments. In conclusion, the need for a low-risk, low-cost, low-supervision, and objective evaluation of VO(2max) has brought about the development and the validation of a large number of submaximal exercise tests. It is of paramount importance to use these tests in the right context (sports, clinical, home), to consider the population in which they were developed, and to be aware of their limitations.
Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad-Reza; Hosseini, Nasrin
2013-03-01
Impairment of learning and memory processes has been demonstrated by many studies using different stressors. Other reports suggested that exercise has a powerful behavioral intervention to improve cognitive function and brain health. In this research, we investigated protective effects of treadmill running on chronic stress-induced memory deficit in rats. Fifty male Wistar rats were randomly divided into five groups (n=10) as follows: Control (Co), Sham (Sh), Stress (St), Exercise (Ex) and Stress and Exercise (St & Ex) groups. Chronic restraint stress was applied by 6h/day/21days and also treadmill running at a speed 20-21m/min for 1h/day/21days. Memory function was evaluated by the passive avoidance test in different intervals (1, 7 and 21 days) after foot shock. OUR RESULTS SHOWED THAT: 1) Although exercise alone showed beneficial effects especially on short and mid-term memory (P<0.05) in comparison with control group, but synchronized exercise with stress had not significantly improved short, mid and long-term memory deficit in stressed rats. 2) Short and mid-term memory deficit was significantly (P<0.05) observed in synchronized exercise with stress and stress groups with respect to normal rats. 3) Memory deficit in synchronized exercise with stress group was nearly similar to stressed rats. 4) Helpful effects of exercise were less than harmful effects of stress when they were associated together. The data correspond to the possibility that although treadmill running alone has helpful effects on learning and memory consolidation, but when it is synchronized with stress there is no significant benefit and protective effects in improvement of memory deficit induced by chronic stress. However, it is has a better effect than no training on memory deficit in stressed rats.
Bailón, Raquel; Garatachea, Nuria; de la Iglesia, Ignacio; Casajús, Jose Antonio; Laguna, Pablo
2013-07-01
The analysis and interpretation of heart rate variability (HRV) during exercise is challenging not only because of the nonstationary nature of exercise, the time-varying mean heart rate, and the fact that respiratory frequency exceeds 0.4 Hz, but there are also other factors, such as the component centered at the pedaling frequency observed in maximal cycling tests, which may confuse the interpretation of HRV analysis. The objectives of this study are to test the hypothesis that a component centered at the running stride frequency (SF) appears in the HRV of subjects during maximal treadmill exercise testing, and to study its influence in the interpretation of the low-frequency (LF) and high-frequency (HF) components of HRV during exercise. The HRV of 23 subjects during maximal treadmill exercise testing is analyzed. The instantaneous power of different HRV components is computed from the smoothed pseudo-Wigner-Ville distribution of the modulating signal assumed to carry information from the autonomic nervous system, which is estimated based on the time-varying integral pulse frequency modulation model. Besides the LF and HF components, the appearance is revealed of a component centered at the running SF as well as its aliases. The power associated with the SF component and its aliases represents 22±7% (median±median absolute deviation) of the total HRV power in all the subjects. Normalized LF power decreases as the exercise intensity increases, while normalized HF power increases. The power associated with the SF does not change significantly with exercise intensity. Consideration of the running SF component and its aliases is very important in HRV analysis since stride frequency aliases may overlap with LF and HF components.
Zaretsky, Dmitry V; Zaretskaia, Maria V; Durant, Pamela J; Rusyniak, Daniel E
2015-01-01
The contribution of exercise to hyperthermia mediated by MDMA is not known. We recently showed that inhibiting the dorsomedial hypothalamus (DMH) attenuated spontaneous locomotion and hyperthermia and prevented deaths in rats given MDMA in a warm environment. The goal of this study was to confirm that restoring locomotion through a treadmill would reverse these effects thereby confirming that locomotion mediated by the DMH contributes to MDMA-mediated hyperthermia. Rats were randomized to receive bilateral microinjections, into the region of the DMH, of muscimol (80 pmol/100nl) or artificial CSF followed by a systemic dose of either MDMA (7.5 mg/kg, i.v.) or saline. Immediately after the systemic injection, rats were placed on a motorized treadmill maintained at 32°C. Rats were exercised at a fixed speed (10 m/min) until their core temperature reached 41°C. Our results showed that a fixed exercise load abolished the decreases in temperature and mortality, seen previously with inhibition of the DMH in freely moving rats. Therefore, locomotion mediated by neurons in the DMH is critical to the development of hyperthermia from MDMA. PMID:25725382
Hwang, Dong-Joo; Koo, Jung-Hoon; Kwon, Ki-Cheon; Choi, Dong-Hoon; Shin, Sung-Deuk; Jeong, Jae-Hoon; Um, Hyun-Seob; Cho, Joon-Yong
2017-12-19
Dysfunction of mitophagy, which is a selective degradation of defective mitochondria for quality control, is known to be implicated in the pathogenesis of Parkinson's disease (PD). However, how treadmill exercise (TE) regulates mitophagy-related molecules in PD remains to be elucidated. Therefore, we aimed to investigate how TE regulates α-synuclein (α-syn)-induced neurotoxicity and mitophagy-related molecules in the nigro-striatal region of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mice. Our data showed that TE exhibited a significant restoration of tyrosine hydroxylase and motor coordination with suppression of α-syn expression, hallmarks of PD, possibly via up-regulation of lysosomal degradation molecules, LAMP-2 and cathepsin L, with down-regulation of p62, LC3-II/LC3-I ratio, PINK1 and parkin in the substantia nigra of MPTP mice. Therefore, these results suggest that treadmill exercise can be used as a non-invasive intervention to improve the pathological features and maintain a healthier mitochondrial network through appropriate elimination of defective mitochondria in PD.
ter Steege, Rinze W F; Geelkerken, Robert H; Huisman, Ad B; Kolkman, Jeroen J
2012-10-01
Gastrointestinal (GI) symptoms during exercise may be caused by GI ischaemia. The authors report their experience with the diagnostic protocol and management of athletes with symptomatic exercise-induced GI ischaemia. The value of prolonged exercise tonometry in the diagnostic protocol of these patients was evaluated. Patients referred for GI symptoms during physical exercise underwent a standardised diagnostic protocol, including prolonged exercise tonometry. Indicators of GI ischaemia, as measured by tonometry, were related to the presence of symptoms during the exercise test (S+ and S- tests) and exercise intensity. 12 athletes were specifically referred for GI symptoms during exercise (five males and seven females; median age 29 years (range 15-46 years)). Type of sport was cycling, long-distance running and triathlon. Median duration of symptoms was 32 months (range 7-240 months). Splanchnic artery stenosis was found in one athlete. GI ischaemia was found in six athletes during submaximal exercise. All athletes had gastric and jejunal ischaemia during maximum intensity exercise. No significant difference was found in gastric and jejunal Pco(2) or gradients between S+ and S- tests during any phase of the exercise protocol. In S+ tests, but not in S- tests, a significant correlation between lactate and gastric gradient was found. In S+ tests, the regression coefficients of gradients were higher than those in S- tests. Treatment advice aimed at limiting GI ischaemia were successful in reducing complaints in the majority of the athletes. GI ischaemia was present in all athletes during maximum intensity exercise and in 50% during submaximal exercise. Athletes with GI symptoms had higher gastric gradients per mmol/l increase in lactate, suggesting an increased susceptibility for the development of ischaemia during exercise. Treatment advice aimed at limiting GI ischaemia helped the majority of the referred athletes to reduce their complaints. Our results suggest an important role for GI ischaemia in the pathophysiology of their complaints.
Regular moist snuff dipping does not affect endurance exercise performance.
Björkman, Frida; Edin, Fredrik; Mattsson, C Mikael; Larsen, Filip; Ekblom, Björn
2017-01-01
Physiological and medical effects of snuff have previously been obtained either in cross-sectional studies or after snuff administration to non-tobacco users. The effects of snuff cessation after several years of daily use are unknown. 24 participants with >2 years of daily snuff-use were tested before and after >6 weeks snuff cessation (SCG). A control group (CO) of 11 snuff users kept their normal habits. Resting heart rate (HR) and blood pressure (BP) were significantly lower in SCG after snuff cessation, and body mass was increased by 1.4 ± 1.7 kg. Total cholesterol increased from 4.12 ± 0.54 (95% CI 3.89-4.35) to 4.46 ± 0.70 (95% CI 4.16-4.75) mM L-1 in SCG, due to increased LDL, and this change was significantly different from CO. Resting values of HDL, C-reactive protein, and free fatty acids (FFA) remained unchanged in both groups. In SCG group, both HR and BP were reduced during a four-stage incremental cycling test (from 50 to 80% of VO2max) and a prolonged cycling test (60 min at 50% of VO2max). Oxygen uptake (VO2), respiratory exchange ratio, blood lactate (bLa) and blood glucose (bGlu) concentration, and rate of perceived exertion (RPE) were unchanged. In CO group, all measurements were unchanged. During the prolonged cycling test, FFA was reduced, but with no significant difference between groups. During the maximal treadmill running test peak values of VO2, pulmonary ventilation (VE), time to exhaustion and bLa were unchanged in both groups. In conclusion, endurance exercise performance (VO2max and maximal endurance time) does not seem to be affected by prolonged snuff use, while effects on cardiovascular risk factors are contradictory. HR and BP during rest and submaximal exercise are reduced after cessation of regular use of snuff. Evidently, the long-time adrenergic stress on circulation is reversible.
Wasmund, Stephen L.; Yanowitz, Frank G.; Adams, Ted D.; Hunt, Steven C.; Hamdan, Mohamed H.; Litwin, Sheldon E.
2010-01-01
Background Obesity is associated with significantly increased cardiovascular mortality that has been attributed, in part, to sympathetic activation. Gastric bypass surgery (GBS) appears to increase long-term survival in the severely obese, but mechanisms responsible for this increase are still being sought. Heart rate (HR) recovery after exercise reflects the balance of cardiac autonomic input from the sympathetic and parasympathetic systems. Blunted HR recovery is a very powerful predictor of increased mortality while enhanced HR recovery portends a good prognosis. Objectives To evaluate the effect of marked weight loss achieved via GBS on HR recovery. Methods Severely obese patients underwent submaximal exercise testing (80% predicted maximum HR) at baseline and 2 years after GBS (n=153) or nonsurgical treatment (n=188). Results Patients in the GBS group lost an average of 100±37 lbs compared to 3±22 lbs in the nonsurgical group (p<0.001, GBS vs. nonsurgical). Resting HR decreased from 73 beats/minute (bpm) to 60 bpm in the GBS group and from 74 bpm to 68 bpm in nonsurgical patients (p<0.001). Heart rate recovery improved by 13 bpm in the GBS group and did not change in the nonsurgical group (p<0.001 GBS vs. nonsurgical). In multivariable analysis, the independent correlates of HR recovery at the 2-year time point were resting HR, treadmill time, age, body mass index and HOMA-IR. Conclusion Marked weight loss 2 years after GBS resulted in a significant decrease in resting HR and an enhancement in HR recovery after exercise. These changes are likely attributable to improvement in insulin sensitivity and cardiac autonomic balance. Whether and to what extent this contributes to a reduction in cardiovascular mortality with GBS remains to be determined. PMID:20970524
Plasma cell-free mitochondrial DNA declines in response to prolonged moderate aerobic exercise.
Shockett, Penny E; Khanal, Januka; Sitaula, Alina; Oglesby, Christopher; Meachum, William A; Castracane, V Daniel; Kraemer, Robert R
2016-01-01
Increased plasma cell-free mitochondrial DNA (cf-mDNA), a damage-associated molecular pattern (DAMP) produced by cellular injury, contributes to neutrophil activation/inflammation in trauma patients and arises in cancer and autoimmunity. To further understand relationships between cf-mDNA released by tissue injury, inflammation, and health benefits of exercise, we examined cf-mDNA response to prolonged moderate aerobic exercise. Seven healthy moderately trained young men (age = 22.4 ± 1.2) completed a treadmill exercise trial for 90 min at 60% VO2 max and a resting control trial. Blood was sampled immediately prior to exercise (0 min = baseline), during (+18, +54 min), immediately after (+90 min), and after recovery (R40). Plasma was analyzed for cf-mDNA, IL-6, and lactate. A significant difference in cf-mDNA response was observed between exercise and control trials, with cf-mDNA levels reduced during exercise at +54 and +90 (with or without plasma volume shift correction). Declines in cf-mDNA were accompanied by increased lactate and followed by an increase in IL-6, suggesting a temporal association with muscle stress and inflammatory processes. Our novel finding of cf-mDNA decline with prolonged moderate treadmill exercise provides evidence for increased clearance from or reduced release of cf-mDNA into the blood with prolonged exercise. These studies contrast with previous investigations involving exhaustive short-term treadmill exercise, in which no change in cf-mDNA levels were reported, and contribute to our understanding of differences between exercise- and trauma-induced inflammation. We propose that transient declines in cf-mDNA may induce health benefits, by reducing systemic inflammation. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Pervaiz, Nabeel; Hoffman-Goetz, Laurie
2012-01-01
Exhaustive exercise induces apoptosis and oxidative stress in systemic organs and tissues and is associated with increased levels of pro-inflammatory cytokines. The effects of acute exercise on cytokine expression and apoptosis of immune cells in the central nervous system (CNS) have not been well characterized. We investigated the effects of a single bout of strenuous exercise on the expression of TNF-alpha, IL-6, and IL-beta, as well as the apoptotic status of cells in the hippocampus of healthy mice. To compare central vs. systemic differences, cytokine expression in the intestinal lymphocytes of a subset of mice were also assessed. Female C57BL/6 mice were divided into three groups: sedentary controls (NOTREAD) (n = 22), treadmill exercise with immediate sacrifice (TREAD-Imm) (n = 21), or treadmill exercise with sacrifice after 2 hours (TREAD-2h). TNF-alpha, IL-6, and IL-1beta expression in the hippocampus and intestinal lymphocytes were measured by Western blot analysis. Percentages of hippocampal cells undergoing apoptosis (Annexin+) or necrosis (Propidium Iodide+) were determined through flow cytometry. Plasma levels of 8-isoprostane and corticosterone were measured using commercially available EIA kits. Acute treadmill exercise led to significant decreases in TNF-alpha (p<0.05) and increases in IL-6 (p<0.05) expression in the hippocampus of healthy mice. No effects of acute exercise on the apoptotic status of hippocampal cells were observed. In intestinal lymphocytes, the exercise bout led to significant increases in TNF-alpha (p<0.05), IL-6 (p<0.05), and IL-1beta (p<0.05). Acute exercise was associated with a significant increase in both plasma 8-isoprostane (p<0.05) and corticosterone (p<0.05) levels. Acute exercise differentially affects the pattern ofpro-inflammatory cytokine expression in the hippocampus compared to intestinal lymphocytes and, further, does not induce apoptosis in hippocampal cells.
Wakata uses Treadmill Vibration Isolation and Stabilization (TVIS)
2009-03-22
ISS018-E-042662 (22 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18 flight engineer, equipped with a bungee harness, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station.
Emergency department-reported injuries associated with mechanical home exercise equipment in the USA
Graves, Janessa M; Iyer, Krithika R; Willis, Margaret M; Ebel, Beth E; Rivara, Frederick P; Vavilala, Monica S
2015-01-01
The goal of this study was to generate national estimates of injuries associated with mechanical home exercise equipment, and to describe these injuries across all ages. Emergency department (ED)-treated injuries associated with mechanical home exercise equipment were identified from 2007 to 2011 from the National Electronic Injury Surveillance System. Text narratives provided exercise equipment type (treadmill, elliptical, stationary bicycle, unspecified/other exercise machine). Approximately 70 302 (95% CI 59 086 to 81 519) mechanical exercise equipment-related injuries presented to US EDs nationally during 2007–2011, of which 66% were attributed to treadmills. Most injuries among children (≤4 years) were lacerations (34%) or soft tissue injuries (48%); among adults (≥25 years) injuries were often sprains/strains (30%). Injured older adults (≥65 years) had greater odds of being admitted, held for observation, or transferred to another hospital, compared with younger ages (OR: 2.58; 95% CI 1.45 to 4.60). Mechanical exercise equipment is a common cause of injury across ages. Injury awareness and prevention are important complements to active lifestyles. PMID:24061163
NASA Astrophysics Data System (ADS)
Boudreaux, R. D.; Metzger, C. E.; Macias, B. R.; Shirazi-Fard, Y.; Hogan, H. A.; Bloomfield, S. A.
2014-06-01
Astronauts on long duration missions continue to experience bone loss, as much as 1-2% each month, for up to 4.5 years after a mission. Mechanical loading of bone with exercise has been shown to increase bone formation, mass, and geometry. The aim of this study was to compare the efficacy of two exercise protocols during a period of reduced gravitational loading (1/6th body weight) in mice. Since muscle contractions via resistance exercise impart the largest physiological loads on the skeleton, we hypothesized that resistance training (via vertical tower climbing) would better protect against the deleterious musculoskeletal effects of reduced gravitational weight bearing when compared to endurance exercise (treadmill running). Young adult female BALB/cBYJ mice were randomly assigned to three groups: 1/6 g (G/6; n=6), 1/6 g with treadmill running (G/6+RUN; n=8), or 1/6 g with vertical tower climbing (G/6+CLB; n=9). Exercise was performed five times per week. Reduced weight bearing for 21 days was achieved through a novel harness suspension system. Treadmill velocity (12-20 m/min) and daily run time duration (32-51 min) increased incrementally throughout the study. Bone geometry and volumetric bone mineral density (vBMD) at proximal metaphysis and mid-diaphysis tibia were assessed by in vivo peripheral quantitative computed tomography (pQCT) on days 0 and 21 and standard dynamic histomorphometry was performed on undemineralized sections of the mid-diaphysis after tissue harvest. G/6 caused a significant decrease (P<0.001) in proximal tibia metaphysis total vBMD (-9.6%). These reductions of tibia metaphyseal vBMD in G/6 mice were mitigated in both G/6+RUN and G/6+CLB groups (P<0.05). After 21 days of G/6, we saw an absolute increase in tibia mid-diaphysis vBMD and in distal metaphysis femur vBMD in both G/6+RUN and G/6+CLB mice (P<0.05). Substantial increases in endocortical and periosteal mineralizing surface (MS/BS) at mid-diaphysis tibia in G/6+CLB demonstrate that bone formation can be increased even in the presence of reduced weight bearing. These data suggest that moderately vigorous endurance exercise and resistance training, through treadmill running or climb training mitigates decrements in vBMD during 21 days of reduced weight bearing. Consistent with our hypothesis, tower climb training, most pronounced in the tibia mid-diaphysis, provides a more potent osteogenic response compared to treadmill running.
NASA Astrophysics Data System (ADS)
Hamaoka, Takatumi; Mizuno, Masano; Osada, Takuya; Ratkevicius, Aivaras; Nielsen, Alexander N.; Nakagawa, Yoshinao; Katsumura, Toshihito; Shimomitsu, Teruichi; Quistorff, Bjorn
1998-01-01
The purpose of this study was to examine the relationship between histochemical characteristics obtained from the gastrocnemius and changes in muscle energetics. Muscle oxygenation was determined by near infrared spectroscopy, and phosphocreatine (PCr) by 31-phosphorus magnetic resonance spectroscopy (31P-MRS) during a submaximal plantar flexion exercise and recovery. The relative occurrence (%) of slow-twitch fibers (ST), fast-twitch oxidative fibers (FTa), fast-twitch glycolytic fibers (FTb), and the number of capillaries per fiber (Cap/Fiber) were also determined. The sum of %ST and %FTa (%ST + %FTa) was 85.8 +/- 8.74% (mean +/- SD), while the number of Cap/Fiber was 2.52 +/- 0.63. The initial rate of deoxygenation (Ratedeoxy) at the beginning of the exercise was 2.43 +/- 0.95 %(DOT)sec-1. The time constants (Tc) for the recovery of PCr and muscle oxygenation after exercise were 22.1 +/- 6.3 sec. and 20.3 +/- 13.6 sec., respectively. The %ST + FTa, and the number of Cap/Fiber were each positively correlated to the Ratedeoxy (P < 0.05). The %ST + %FTa, and the number of Cap/Fiber were negatively correlated to the Tc for PCr recovery (P < 0.05), but not correlated to that for muscle oxygenation recovery. In conclusion, the Ratedeoxy during localized submaximal exercise, and the Tc for PCr recovery are indicators of the muscle's oxidative capacity.
NASA Astrophysics Data System (ADS)
Hamaoka, Takatumi; Mizuno, Masano; Osada, Takuya; Ratkevicius, Aivaras; Nielsen, Alexander N.; Nakagawa, Yoshinao; Katsumura, Toshihito; Shimomitsu, Teruichi; Quistorff, Bjorn
1997-12-01
The purpose of this study was to examine the relationship between histochemical characteristics obtained from the gastrocnemius and changes in muscle energetics. Muscle oxygenation was determined by near infrared spectroscopy, and phosphocreatine (PCr) by 31-phosphorus magnetic resonance spectroscopy (31P-MRS) during a submaximal plantar flexion exercise and recovery. The relative occurrence (%) of slow-twitch fibers (ST), fast-twitch oxidative fibers (FTa), fast-twitch glycolytic fibers (FTb), and the number of capillaries per fiber (Cap/Fiber) were also determined. The sum of %ST and %FTa (%ST + %FTa) was 85.8 +/- 8.74% (mean +/- SD), while the number of Cap/Fiber was 2.52 +/- 0.63. The initial rate of deoxygenation (Ratedeoxy) at the beginning of the exercise was 2.43 +/- 0.95 %(DOT)sec-1. The time constants (Tc) for the recovery of PCr and muscle oxygenation after exercise were 22.1 +/- 6.3 sec. and 20.3 +/- 13.6 sec., respectively. The %ST + FTa, and the number of Cap/Fiber were each positively correlated to the Ratedeoxy (P < 0.05). The %ST + %FTa, and the number of Cap/Fiber were negatively correlated to the Tc for PCr recovery (P < 0.05), but not correlated to that for muscle oxygenation recovery. In conclusion, the Ratedeoxy during localized submaximal exercise, and the Tc for PCr recovery are indicators of the muscle's oxidative capacity.
Cardiorespiratory benefits of group exercise among adults with serious mental illness.
Jerome, Gerald J; Young, Deborah Rohm; Dalcin, Arlene T; Wang, Nae-Yuh; Gennusa, Joseph; Goldsholl, Stacy; Appel, Lawrence J; Daumit, Gail L
2017-10-01
This study examined cardiorespiratory fitness (CRF) among adults with serious mental illness (SMI) participating in group exercise classes. Overweight and obese adults with SMI were randomized to either a control condition or a weight management condition with group exercise classes (n = 222). Submaximal bicycle ergometry was used to assess CRF at baseline, 6 and 18 months. Those with ≥ 66% participation in the exercise classes had a lower heart rate response at 6 and 18 month follow-up. Participation in group exercise classes was associated with improved short and long term cardiovascular fitness among adults with SMI. Copyright © 2017 Elsevier B.V. All rights reserved.
Duffield, Rob; Portus, Marc
2007-01-01
Objective To compare the effects of three types of full‐body compression garments (Skins, Adidas and Under Armour) on repeat‐sprint and throwing performance in cricket players. Methods Following familiarisation, 10 male cricket players performed four randomised exercise sessions (3 garments and a control). Each session involved a 30 min repeat‐sprint exercise protocol comprising 20 m sprints every minute, separated by submaximal exercise. Throwing tests included a pre‐exercise and a postexercise maximal distance test and accuracy throwing tests. During each session, measures of heart rate, skin temperature, change in body mass, rate of perceived exertion and perceived muscle soreness were recorded. Capillary blood samples were analysed before and after exercise for lactate, pH, O2 saturation and O2 partial pressure, and 24 h after exercise for creatine kinase (CK). Ratings of perceived muscle soreness were also obtained 24 h after exercise. Results No significant differences (p>0.05) were evident in repeat‐sprint performance (10 m, 20 m time or total submaximal distance covered) or throwing performance (maximum distance or accuracy). No significant differences (p>0.05) were observed in heart rate, body mass change or blood measures during exercise. Significant differences (p<0.05) were observed by way of higher mean skin temperature, lower 24 h postexercise CK values and lower 24 h postexercise ratings of muscle soreness when wearing compression garments. Analysis between respective brands of compression garments revealed no statistical differences (p>0.05). Conclusions No benefit was noted when wearing compression garments for repeat‐sprint or throwing performance; however, the use of the garments as a recovery tool, when worn after exercise, may be beneficial to reduce postexercise trauma and perceived muscle soreness. PMID:17341589
Bisson, Michèle; Rhéaume, Caroline; Bujold, Emmanuel; Tremblay, Angelo; Marc, Isabelle
2014-07-01
To determine whether physical activity and blood pressure (BP) response to exercise in early pregnancy are related to resting BP at the end of pregnancy. Understanding physiological BP responses to exercise during pregnancy will help in improving BP profile and guiding exercise recommendations in pregnant women. Maternal physical activity, cardiorespiratory fitness (VO2peak) and BP (systolic and diastolic) at rest and during exercise (submaximal and relative response) were assessed at 16 weeks of gestation in 61 normotensive pregnant women. BP at 36 weeks of gestation and obstetrical outcomes were collected from maternal charts. Related to resting DBP at 16 weeks (r = -0.28, P = 0.028), total energy expenditure spend at any physical activity in early pregnancy was also associated with resting SBP at 36 weeks (r = -0.27, P = 0.038). On the contrary, although related to VO2peak (r = -0.57, P < 0.0001) and energy expenditure spent at sports and exercise (r = -0.29, P = 0.024), the relative SBP response to exercise at 16 weeks was not associated with resting BP at 36 weeks. Strongly associated with resting BP at 16 weeks and also with total energy expenditure, submaximal BP response to exercise at 16 weeks was related to resting SBP and DBP at 36 weeks (r = 0.41, P = 0.001 and r = 0.26, P = 0.051, respectively). In normotensive women, physical activity performed in early pregnancy appears to slightly modulate resting BP in early and late pregnancy. However, further investigations are needed to determine which physical activity-related parameter in response to exercise best predicts BP variations during pregnancy.
Duffield, Rob; Portus, Marc
2007-07-01
To compare the effects of three types of full-body compression garments (Skins, Adidas and Under Armour) on repeat-sprint and throwing performance in cricket players. Following familiarisation, 10 male cricket players performed four randomised exercise sessions (3 garments and a control). Each session involved a 30 min repeat-sprint exercise protocol comprising 20 m sprints every minute, separated by submaximal exercise. Throwing tests included a pre-exercise and a postexercise maximal distance test and accuracy throwing tests. During each session, measures of heart rate, skin temperature, change in body mass, rate of perceived exertion and perceived muscle soreness were recorded. Capillary blood samples were analysed before and after exercise for lactate, pH, O(2) saturation and O(2) partial pressure, and 24 h after exercise for creatine kinase (CK). Ratings of perceived muscle soreness were also obtained 24 h after exercise. No significant differences (p>0.05) were evident in repeat-sprint performance (10 m, 20 m time or total submaximal distance covered) or throwing performance (maximum distance or accuracy). No significant differences (p>0.05) were observed in heart rate, body mass change or blood measures during exercise. Significant differences (p<0.05) were observed by way of higher mean skin temperature, lower 24 h postexercise CK values and lower 24 h postexercise ratings of muscle soreness when wearing compression garments. Analysis between respective brands of compression garments revealed no statistical differences (p>0.05). No benefit was noted when wearing compression garments for repeat-sprint or throwing performance; however, the use of the garments as a recovery tool, when worn after exercise, may be beneficial to reduce postexercise trauma and perceived muscle soreness.
Reliability and intensity of the six-minute walk test in healthy elderly subjects.
Kervio, Gaelle; Carre, Francois; Ville, Nathalie S
2003-01-01
The 6-min walk test (6-MWT) is an easy and validated field test, generally used in patients to assess their physical capacity. We think that the 6-MWT could also be conducted in the same perspective in healthy subjects, aged 60-70 yr. However, little is known about the effect of the familiarization on the 6-MWT performance and the relative intensity of this test. The aims of this study were therefore to bring precision to the 6-MWT reliability and intensity in this population. METHODS; Over 3 d, 12 subjects performed two maximal exercise tests on treadmill and five 6-MWT (two in the morning and three in the afternoon) with a portable metabolic measurement system (Cosmed K4, Rome, Italy). The distance, walking speed, oxygen uptake (VO2 (max)), and heart rate (HR) values were measured during the 6-MWT. Distance, walking speed, and VO2(max) were only lower during the first two 6-MWT (respectively, P< 0.001, P< 0.001, and P< 0.05). HR was reliable from the first 6-MWT and was higher during the tests performed in the afternoon (P< 0.001). The intensity of the 6-MWT corresponded to 79.6 +/- 4.5% of the VO2(max), 85.8 +/- 2.5% of the HR (max), and 78.0 +/- 6.3% of the HR (reserve). Moreover, it was higher than the ventilatory threshold in each subject (P< 0.01). In healthy elderly subjects, the 6-MWT represents a submaximal exercise, but at almost 80% of the VO2(max). To be exploitable, two familiarization attempts are required to limit the learning effect. Finally, the 6-MWT time of day must be taken into account when assessing HR.
Chao, T.P.; Sperandio, E.F.; Ostolin, T.L.V.P.; Almeida, V.R.; Romiti, M.; Gagliardi, A.R.T.; Arantes, R.L.; Dourado, V.Z.
2018-01-01
Spirometry has been used as the main strategy for assessing ventilatory changes related to occupational exposure to particulate matter (OEPM). However, in some cases, as one of its limitations, it may not be sensitive enough to show abnormalities before extensive damage, as seen in restrictive lung diseases. Therefore, we hypothesized that cardiopulmonary exercise testing (CPET) may be better than spirometry to detect early ventilatory impairment caused by OEPM. We selected 135 male workers with at least one year of exposure. After collection of self-reported socioeconomic status, educational level, and cardiovascular risk data, participants underwent spirometry, CPET, body composition assessment (bioelectrical impedance), and triaxial accelerometry (for level of physical activity in daily life). CPET was performed using a ramp protocol on a treadmill. Metabolic, cardiovascular, ventilatory, and submaximal relationships were measured. We compared 52 exposed to 83 non-exposed workers. Multiple linear regressions were developed using spirometry and CPET variables as outcomes and OEPM as the main predictor, and adjusted by the main covariates. Our results showed that OEPM was associated with significant reductions in peak minute ventilation, peak tidal volume, and breathing reserve index. Exposed participants presented shallower slope of ΔVT/ΔlnV̇E (breathing pattern), i.e., increased tachypneic breathing pattern. The OEPM explained 7.4% of the ΔVT/ΔlnV̇E variability. We found no significant influence of spirometric indices after multiple linear regressions. We conclude that CPET might be a more sensitive feature of assessing early pulmonary impairment related to OEPM. Our cross-sectional results suggested that CPET is a promising tool for the screening of asymptomatic male workers. PMID:29590255
O'Dwyer, Tom; O'Shea, Finbar; Wilson, Fiona
2016-06-01
(1) Assess the health-related physical fitness of adults with ankylosing spondylitis (AS) and compare these to the general population, and (2) examine the relationships between physical fitness and condition-specific outcomes. Cross-sectional, controlled study. Exercise research laboratory. Thirty-nine adults with AS (32 men, 7 women) and 39 age- and gender-matched controls. Comprehensive physical fitness assessment, and completion of questionnaires assessing disease activity, physical function and quality-of-life. Body composition was assessed by bio-impedance analysis. Flexibility was measured with the Bath AS Metrology Index (BASMI). Cardiorespiratory fitness was assessed by submaximal treadmill test with breath-by-breath gas analysis and heart rate monitoring. Muscular strength and endurance were measured by isokinetic dynamometry of concentric knee flexion/extension. The AS group demonstrated significantly lower cardiorespiratory fitness [mean difference -1.3mLmin(-1)kg(-1) (95% CI -1.1 to -1.4)], flexibility [0.4 BASMI units (0.2 to 0.7)], muscular strength [-31.6 peak torque per body weight dominant knee extension (-56.1 to -7.1)], and increased body fat [0.4% (0.0 to 1.2)] compared to population controls (p<.05). There were significant associations between each fitness component and physical function (p<.05). Higher aerobic capacity was significantly associated with improved quality-of-life. Fitness was not significantly associated with disease activity. Adults with AS have significantly reduced health-related physical fitness compared to population controls. Decreased body fat, and higher aerobic capacity, muscular fitness and flexibility are significantly associated with improved function. These findings have implications for clinicians assessing adults with AS, and for targeted-exercise prescription in this cohort. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Conventional testing methods produce submaximal values of maximum oxygen consumption.
Beltrami, Fernando G; Froyd, Christian; Mauger, Alexis R; Metcalfe, Alan J; Marino, Frank; Noakes, Timothy D
2012-01-01
This study used a novel protocol to test the hypothesis that a plateau in oxygen consumption (VO(2 max)) during incremental exercise testing to exhaustion represents the maximal capacity of the cardiovascular system to transport oxygen. Twenty-six subjects were randomly divided into two groups matched by their initial VO(2 max). On separate days, the reverse group performed (i) an incremental uphill running test on a treadmill (INC(1)) plus verification test (VER) at a constant workload 1 km h(-1) higher than the last completed stage in INC(1); (ii) a decremental test (DEC) in which speed started as same as the VER but was reduced progressively and (iii) a final incremental test (INC(F)). The control group performed only INC on the same days that the reverse group was tested. VO(2 max) remained within 0.6 ml kg(-1) min(-1) across the three trials for the control group (p=0.93) but was 4.4% higher during DEC compared with INC(1) (63.9 ± 3.8 vs 61.2 ± 4.8 ml kg(-1) min(-1), respectively, p=0.004) in the reverse group, even though speed at VO(2 max) was lower (14.3 ± 1.1 vs 16.2 ± 0.7 km h(-1) for DEC and INC(1), respectively, p=0.0001). VO(2 max) remained significantly higher during INC(F) (63.6 ± 3.68 ml kg(-1) min(-1), p=0.01), despite an unchanged exercise time between INC(1) and INC(F). These findings go against the concept that a plateau in oxygen consumption measured during the classically described INC and VER represents a systemic limitation to oxygen use. The reasons for a higher VO(2) during INC(F) following the DEC test are unclear.
Stucky, Frédéric; Vesin, Jean-Marc; Kayser, Bengt; Uva, Barbara
2018-01-01
Anti-gravity treadmills facilitate locomotion by lower-body positive pressure (LBPP). Effects on cardiorespiratory regulation are unknown. Healthy men (30 ± 8 y, 178.3 ± 5.7 cm, 70.3 ± 8.0 kg; mean ± SD) stood upright ( n = 10) or ran ( n = 9) at 9, 11, 13, and 15 km.h -1 (5 min stages) with LBPP (0, 15, 40 mmHg). Cardiac output (CO), stroke volume (SV), heart rate (HR), blood pressure (BP), peripheral resistance (PR), and oxygen uptake (VO 2 ) were monitored continuously. During standing, LBPP increased SV [by +29 ± 13 (+41%) and +42 ± 15 (+60%) ml, at 15 and 40 mmHg, respectively ( p < 0.05)] and decreased HR [by -15 ± 6 (-20%) and -22 ± 9 (-29%) bpm ( p < 0.05)] resulting in a transitory increase in CO [by +1.6 ± 1.0 (+32%) and +2.0 ± 1.0 (+39%) l.min -1 ( p < 0.05)] within the first seconds of LBPP. This was accompanied by a transitory decrease in end-tidal PO 2 [by -5 ± 3 (-5%) and -10 ± 4 (-10%) mmHg ( p < 0.05)] and increase in VO 2 [by +66 ± 53 (+26%) and +116 ± 64 (+46%) ml.min -1 ( p < 0.05)], suggesting increased venous return and pulmonary blood flow. The application of LBPP increased baroreflex sensitivity (BRS) [by +1.8 ± 1.6 (+18%) and +4.6 ± 3.7 (+47%) at 15 and 40 mmHg LBPP, respectively P < 0.05]. After reaching steady-state exercise CO vs. VO 2 relationships remained linear with similar slope and intercept for each participant (mean R 2 = 0.84 ± 0.13) while MAP remained unchanged. It follows that (1) LBPP affects cardiorespiratory integration at the onset of exercise; (2) at a given LBPP, once reaching steady-state exercise, the cardiorespiratory load is reduced proportionally to the lower metabolic demand resulting from the body weight support; (3) the balance between cardiovascular response, oxygen delivery to the exercising muscles and blood pressure regulation is maintained at exercise steady-state; and (4) changes in baroreflex sensitivity may be involved in the regulation of cardiovascular parameters during LBPP.
Stucky, Frédéric; Vesin, Jean-Marc; Kayser, Bengt; Uva, Barbara
2018-01-01
Anti-gravity treadmills facilitate locomotion by lower-body positive pressure (LBPP). Effects on cardiorespiratory regulation are unknown. Healthy men (30 ± 8 y, 178.3 ± 5.7 cm, 70.3 ± 8.0 kg; mean ± SD) stood upright (n = 10) or ran (n = 9) at 9, 11, 13, and 15 km.h−1 (5 min stages) with LBPP (0, 15, 40 mmHg). Cardiac output (CO), stroke volume (SV), heart rate (HR), blood pressure (BP), peripheral resistance (PR), and oxygen uptake (VO2) were monitored continuously. During standing, LBPP increased SV [by +29 ± 13 (+41%) and +42 ± 15 (+60%) ml, at 15 and 40 mmHg, respectively (p < 0.05)] and decreased HR [by −15 ± 6 (−20%) and −22 ± 9 (−29%) bpm (p < 0.05)] resulting in a transitory increase in CO [by +1.6 ± 1.0 (+32%) and +2.0 ± 1.0 (+39%) l.min−1 (p < 0.05)] within the first seconds of LBPP. This was accompanied by a transitory decrease in end-tidal PO2 [by −5 ± 3 (−5%) and −10 ± 4 (−10%) mmHg (p < 0.05)] and increase in VO2 [by +66 ± 53 (+26%) and +116 ± 64 (+46%) ml.min−1 (p < 0.05)], suggesting increased venous return and pulmonary blood flow. The application of LBPP increased baroreflex sensitivity (BRS) [by +1.8 ± 1.6 (+18%) and +4.6 ± 3.7 (+47%) at 15 and 40 mmHg LBPP, respectively P < 0.05]. After reaching steady-state exercise CO vs. VO2 relationships remained linear with similar slope and intercept for each participant (mean R2 = 0.84 ± 0.13) while MAP remained unchanged. It follows that (1) LBPP affects cardiorespiratory integration at the onset of exercise; (2) at a given LBPP, once reaching steady-state exercise, the cardiorespiratory load is reduced proportionally to the lower metabolic demand resulting from the body weight support; (3) the balance between cardiovascular response, oxygen delivery to the exercising muscles and blood pressure regulation is maintained at exercise steady-state; and (4) changes in baroreflex sensitivity may be involved in the regulation of cardiovascular parameters during LBPP. PMID:29441025
Jung, Taeyou; Ozaki, Yoshi; Lai, Byron; Vrongistinos, Konstantinos
2014-03-01
This study aimed to compare the cardiorespiratory responses between aquatic treadmill walking (ATW) and overground treadmill walking (OTW) in people with hemiparesis post-stroke. Eight participants post-stroke aged 58.5 ± 11.4 years and eight healthy adult controls aged 56.1 ± 8.6 years participated in a cross-sectional comparative study. Participants completed three 8-minute walking sessions separated by at least 72-hour rest. On the first visit, participants identified their comfortable walking speed on an aquatic and overground treadmill. The second and third visit consisted of either ATW or OTW at a matched speed. Oxygen consumption (VO2), carbon dioxide production (VCO2 ), minute ventilation (VE) and energy expenditure (EE) were measured at rest and during walking in both exercise modes. Mean steady-state cardiorespiratory responses during ATW showed a significant decrease compared with OTW at a matched speed. During ATW, mean VO2 values decreased by 39% in the stroke group and 21% in the control group, mean VCO2 values decreased by 42% in the stroke group and 30% in the control group, and mean EE decreased by 40% in the stroke group and 25% in the control group. Mean steady-state VE values and resting cardiorespiratory response values showed no significant change between the two conditions. This study demonstrated a decreased metabolic cost when ATW at matched speeds to that of OTW. Reduced metabolic cost during ATW may allow for longer durations of treadmill-induced gait training compared with OTW for improved outcomes. This knowledge may aid clinicians when prescribing aquatic treadmill exercise for people post-stroke with goals of improving gait and functional mobility. However, decreased metabolic cost during ATW suggests that to improve cardiovascular fitness, ATW may not be a time-efficient method of cardiovascular exercise for healthy adults and people post-stroke. Copyright © 2013 John Wiley & Sons, Ltd.
Kim, Min-Hee; Yoo, Won-Gyu
2014-06-01
[Purpose] This study investigated the effects of inclined treadmill walking on pelvic anterior tilt angle, hamstring muscle length, and back muscle endurance of seated workers with flat-back syndrome. [Subjects] Eight seated workers with flat-back syndrome who complained of low-back pain in the L3-5 region participated in this study. [Methods] The subjects performed a walking exercise on a 30° inclined treadmill. We measured the pelvic anterior tilt angle, hamstring muscle length, and back muscle endurance before and after inclined treadmill walking. [Results] Anterior pelvic tilt angle and active knee extension angle significantly increased after inclined treadmill walking. Trunk extensor and flexor muscle endurance times were also significantly increased compared to the baseline. [Conclusion] Inclined treadmill walking may be an effective approach for the prevention or treatment of low-back pain in flat-back syndrome.
Baker, Ryan; Gibson, Chris; Kearney, Andrew; Busemeyer, Tommy
2016-01-01
Background Stationary equipment devices are often used to improve fitness. The ElliptiGO® was recently developed that blends the elements of an elliptical trainer and bicycle, allowing reciprocal lower limb pedaling in an upright position. However, it is unknown whether the muscle activity used for the ElliptiGO® is similar to walking or cycling. To date, there is no information comparing muscle activity for exercise on the treadmill, stationary upright and recumbent bikes, and the ElliptiGO®. Purpose/Hypothesis The purpose of this study was to assess trunk and lower extremity muscle activity among treadmill walking, cycling (recumbent and upright) and the ElliptiGO® cycling. It was hypothesized that the ElliptiGO® and treadmill would elicit similar electromyographic muscle activity responses compared to the stationary bike and recumbent bike during an exercise session. Study Design Cohort, repeated measures Methods Twelve recreationally active volunteers participated in the study and were assigned a random order of exercise for each of the four devices (ElliptiGO®, stationary upright cycle ergometer, recumbent ergometer, and a treadmill). Two-dimensional video was used to monitor the start and stop of exercise and surface electromyography (SEMG) were used to assess muscle activity during two minutes of cycling or treadmill walking at 40-50% heart rate reserve (HRR). Eight muscles on the dominant limb were used for analysis: gluteus maximus (Gmax), gluteus medius (Gmed), biceps femoris (BF), lateral head of the gastrocnemius (LG), tibialis anterior (TA), rectus femoris (RF). Two trunk muscles were assessed on the same side; lumbar erector spinae at L3-4 level (LES) and rectus abdominus (RA). Maximal voluntary isometric contractions (MVIC) were determined for each muscle and SEMG data were expressed as %MVIC in order to normalize outputs. Results The %MVIC for RF during ElliptiGO® cycling was higher than recumbent cycling. The LG muscle activity was highest during upright cycling. The TA was higher during walking compared to recumbent cycling and ElliptiGO® cycling. No differences were found among the the LES and remaining lower limb musculature across devices. Conclusion ElliptiGO® cycling was found to elicit sufficient muscle activity to provide a strengthening stimulus for the RF muscle. The LES, RA, Gmax, Gmed, and BF activity were similar across all devices and ranged from low to moderate strength levels of muscle activation. The information gained from this study may assist clinicians in developing low to moderate strengthening exercise protocols when using these four devices. Level of evidence 3 PMID:27104052