USDA-ARS?s Scientific Manuscript database
High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D). HRCT imaging is based on the same principles as medi...
Zhang, Y; Paris, O; Terrill, N J; Gupta, H S
2016-05-23
The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Paris, O.; Terrill, N. J.; Gupta, H. S.
2016-05-01
The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales.
Zhang, Y.; Paris, O.; Terrill, N. J.; Gupta, H. S.
2016-01-01
The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales. PMID:27211574
Electron beam enhanced surface modification for making highly resolved structures
Pitts, John R.
1986-01-01
A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.
Electron beam enhanced surface modification for making highly resolved structures
Pitts, J.R.
1984-10-10
A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.
Use of metallic glasses for fabrication of structures with submicron dimensions
Wiley, John D.; Perepezko, John H.
1986-01-01
Patterned structures of submicron dimension formed of supported or unsupported amorphous metals having submicron feature sizes characterized by etching behavior sufficient to allow delineation of sharp edges and smooth flat flanks, resistance to time-dependent dimensional changes caused by creep, flow, in-diffusion of unwanted impurities, out-diffusion of constituent atoms, void formation, grain growth or phase separation and resistance to phase transformations or compound formation.
Confocal Imaging of porous media
NASA Astrophysics Data System (ADS)
Shah, S.; Crawshaw, D.; Boek, D.
2012-12-01
Carbonate rocks, which hold approximately 50% of the world's oil and gas reserves, have a very complicated and heterogeneous structure in comparison with sandstone reservoir rock. We present advances with different techniques to image, reconstruct, and characterize statistically the micro-geometry of carbonate pores. The main goal here is to develop a technique to obtain two dimensional and three dimensional images using Confocal Laser Scanning Microscopy. CLSM is used in epi-fluorescent imaging mode, allowing for the very high optical resolution of features well below 1μm size. Images of pore structures were captured using CLSM imaging where spaces in the carbonate samples were impregnated with a fluorescent, dyed epoxy-resin, and scanned in the x-y plane by a laser probe. We discuss the sample preparation in detail for Confocal Imaging to obtain sub-micron resolution images of heterogeneous carbonate rocks. We also discuss the technical and practical aspects of this imaging technique, including its advantages and limitation. We present several examples of this application, including studying pore geometry in carbonates, characterizing sub-resolution porosity in two dimensional images. We then describe approaches to extract statistical information about porosity using image processing and spatial correlation function. We have managed to obtain very low depth information in z -axis (~ 50μm) to develop three dimensional images of carbonate rocks with the current capabilities and limitation of CLSM technique. Hence, we have planned a novel technique to obtain higher depth information to obtain high three dimensional images with sub-micron resolution possible in the lateral and axial planes.
Nanoforging - Innovation in three-dimensional processing and shaping of nanoscaled structures.
Landefeld, Andreas; Rösler, Joachim
2014-01-01
This paper describes the shaping of freestanding objects out of metallic structures in the nano- and submicron size. The technique used, called nanoforging, is very similar to the macroscopic forging process. With spring actuated tools produced by focused ion beam milling, controlled forging is demonstrated. With only three steps, a conical bar stock is transformed to a flat- and semicircular bent bar stock. Compared with other forming techniques in the reduced scale, nanoforging represents a beneficial approach in forming freestanding metallic structures, due to its simplicity, and supplements other forming techniques.
Growing Cobalt Silicide Columns In Silicon
NASA Technical Reports Server (NTRS)
Fathauer, Obert W.
1991-01-01
Codeposition by molecular-beam epitaxy yields variety of structures. Proposed fabrication process produces three-dimensional nanometer-sized structures on silicon wafers. Enables control of dimensions of metal and semiconductor epitaxial layers in three dimensions instead of usual single dimension (perpendicular to the plane of the substrate). Process used to make arrays of highly efficient infrared sensors, high-speed transistors, and quantum wires. For fabrication of electronic devices, both shapes and locations of columns controlled. One possible technique for doing this electron-beam lithography, see "Making Submicron CoSi2 Structures on Silicon Substrates" (NPO-17736).
Focused ion beam assisted three-dimensional rock imaging at submicron scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomutsa, Liviu; Radmilovic, Velimir
2003-05-09
Computation of effective flow properties of fluids in porous media based on three dimensional (3D) pore structure information has become more successful in the last few years, due to both improvements in the input data and the network models. Computed X-ray microtomography has been successful in 3D pore imaging at micron scale, which is adequate for many sandstones. For other rocks of economic interest, such as chalk and diatomite, submicron resolution is needed in order to resolve the 3D-pore structure. To achieve submicron resolution, a new method of sample serial sectioning and imaging using Focused Ion Beam (FIB) technology hasmore » been developed and 3D pore images of the pore system for diatomite and chalk have been obtained. FIB was used in the milling of layers as wide as 50 micrometers and as thin as 100 nanometers by sputtering of atoms from the sample surface. The focused ion beam, consisting of gallium ions (Ga+) accelerated by potentials of up to 30 kV and currents up to 20,000 pA, yields very clean, flat surfaces in which the pore-grain boundaries appear in high contrast. No distortion of the pore boundaries due to the ion milling is apparent. After each milling step, as a new surface is exposed, an image of the surface is generated. Using secondary electrons or ions, resolutions as high as 10 nm can be obtained. Afterwards, the series of 2D images can be stacked in the computer and, using appropriate interpolation and surface rendering algorithms, the 3D pore structure is reconstructed.« less
Giant optical rotation in a three-dimensional semiconductor chiral photonic crystal.
Takahashi, S; Tandaechanurat, A; Igusa, R; Ota, Y; Tatebayashi, J; Iwamoto, S; Arakawa, Y
2013-12-02
Optical rotation is experimentally demonstrated in a semiconductor-based three-dimensional chiral photonic crystal (PhC) at a telecommunication wavelength. We design a rotationally-stacked woodpile PhC structure, where neighboring layers are rotated by 45° and four layers construct a single helical unit. The mirror-asymmetric PhC made from GaAs with sub-micron periodicity is fabricated by a micro-manipulation technique. The linearly polarized light incident on the structure undergoes optical rotation during transmission. The obtained results show good agreement with numerical simulations. The measurement demonstrates the largest optical rotation angle as large as ∼ 23° at 1.3 μm wavelength for a single helical unit.
Nanoforging – Innovation in three-dimensional processing and shaping of nanoscaled structures
Rösler, Joachim
2014-01-01
Summary Background: This paper describes the shaping of freestanding objects out of metallic structures in the nano- and submicron size. The technique used, called nanoforging, is very similar to the macroscopic forging process. Results: With spring actuated tools produced by focused ion beam milling, controlled forging is demonstrated. With only three steps, a conical bar stock is transformed to a flat- and semicircular bent bar stock. Conclusion: Compared with other forming techniques in the reduced scale, nanoforging represents a beneficial approach in forming freestanding metallic structures, due to its simplicity, and supplements other forming techniques. PMID:25161840
Biologically Inspired Synthesis Route to Three-Dimensionally Structured Inorganic Thin Films
Schwenzer, Birgit; Morse, Daniel E.
2008-01-01
Inorganic thin films (hydroxide, oxide, and phosphate materials) that are textured on a submicron scale have been prepared from aqueous metal salt solutions at room temperature using vapor-diffusion catalysis. This generic synthesis approach mimics the essential advantages of the catalytic and structure-directing mechanisms observed for the formation of silica skeletons of marine sponges. Chemical composition, crystallinity, and the three-dimensional morphology of films prepared by this method are extremely sensitive to changes in the synthesis conditions, such as concentrations, reaction times, and the presence and nature of substrate materials. Focusing on different materials systems, the reaction mechanism for the formation ofmore » these thin films and the influence of different reaction parameters on the product are explained.« less
NASA Astrophysics Data System (ADS)
Abbaspour, R.; Brown, D. K.; Bakir, M. S.
2017-02-01
This paper presents the fabrication and electrical characterization of high aspect-ratio (AR) sub-micron diameter through silicon vias (TSVs) for densely interconnected three-dimensional (3D) stacked integrated circuits (ICs). The fabricated TSV technology features an AR of 16:1 with 680 nm diameter copper (Cu) core and 920 nm overall diameter. To address the challenges in scaling TSVs, scallop-free low roughness nano-Bosch silicon etching and direct Cu electroplating on a titanium-nitride (TiN) diffusion barrier layer have been developed as key enabling modules. The electrical resistance of the sub-micron TSVs is measured to be on average 1.2 Ω, and the Cu resistivity is extracted to be approximately 2.95 µΩ cm. Furthermore, the maximum achievable current-carrying capacity (CCC) of the scaled TSVs is characterized to be approximately 360 µA for the 680 nm Cu core.
Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy
NASA Astrophysics Data System (ADS)
Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei
2014-09-01
We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.
Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jian; Zheng, Wei; Wang, Zi
2014-09-08
We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.
Wang, Ao; Song, Qiang; Ji, Bingqiang; Yao, Qiang
2015-12-01
As a key mechanism of submicron particle capture in wet deposition and wet scrubbing processes, thermophoresis is influenced by the flow and temperature fields. Three-dimensional direct numerical simulations were conducted to quantify the characteristics of the flow and temperature fields around a droplet at three droplet Reynolds numbers (Re) that correspond to three typical boundary-layer-separation flows (steady axisymmetric, steady plane-symmetric, and unsteady plane-symmetric flows). The thermophoretic motion of submicron particles was simulated in these cases. Numerical results show that the motion of submicron particles around the droplet and the deposition distribution exhibit different characteristics under three typical flow forms. The motion patterns of particles are dependent on their initial positions in the upstream and flow forms. The patterns of particle motion and deposition are diversified as Re increases. The particle motion pattern, initial position of captured particles, and capture efficiency change periodically, especially during periodic vortex shedding. The key effects of flow forms on particle motion are the shape and stability of the wake behind the droplet. The drag force of fluid and the thermophoretic force in the wake contribute jointly to the deposition of submicron particles after the boundary-layer separation around a droplet.
Single crystalline electronic structure and growth mechanism of aligned square graphene sheets
NASA Astrophysics Data System (ADS)
Yang, H. F.; Chen, C.; Wang, H.; Liu, Z. K.; Zhang, T.; Peng, H.; Schröter, N. B. M.; Ekahana, S. A.; Jiang, J.; Yang, L. X.; Kandyba, V.; Barinov, A.; Chen, C. Y.; Avila, J.; Asensio, M. C.; Peng, H. L.; Liu, Z. F.; Chen, Y. L.
2018-03-01
Recently, commercially available copper foil has become an efficient and inexpensive catalytic substrate for scalable growth of large-area graphene films for fundamental research and applications. Interestingly, despite its hexagonal honeycomb lattice, graphene can be grown into large aligned square-shaped sheets on copper foils. Here, by applying angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES) to study the three-dimensional electronic structures of square graphene sheets grown on copper foils, we verified the high quality of individual square graphene sheets as well as their merged regions (with aligned orientation). Furthermore, by simultaneously measuring the graphene sheets and their substrate copper foil, we not only established the (001) copper surface structure but also discovered that the square graphene sheets' sides align with the ⟨110⟩ copper direction, suggesting an important role of copper substrate in the growth of square graphene sheets—which will help the development of effective methods to synthesize high-quality large-size regularly shaped graphene sheets for future applications. This work also demonstrates the effectiveness of micro-ARPES in exploring low-dimensional materials down to atomic thickness and sub-micron lateral size (e.g., besides graphene, it can also be applied to transition metal dichalcogenides and various van der Waals heterostructures)
Yio, M H N; Mac, M J; Wong, H S; Buenfeld, N R
2015-05-01
In this paper, we present a new method to reconstruct large volumes of nontransparent porous materials at submicron resolution. The proposed method combines fluorescence laser scanning confocal microscopy with serial sectioning to produce a series of overlapping confocal z-stacks, which are then aligned and stitched based on phase correlation. The method can be extended in the XY plane to further increase the overall image volume. Resolution of the reconstructed image volume does not degrade with increase in sample size. We have used the method to image cementitious materials, hardened cement paste and concrete and the results obtained show that the method is reliable. Possible applications of the method such as three-dimensional characterization of the pores and microcracks in hardened concrete, three-dimensional particle shape characterization of cementitious materials and three-dimensional characterization of other porous materials such as rocks and bioceramics are discussed. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Kalish-Achrai, N; Monsonego-Ornan, E; Shahar, R
2017-05-01
The structural, compositional and mechanical properties of the spines of the dorsal fin in mature anosteocytic blue tilapia Oreochromis aureus and osteocytic common carp Cyprinus carpio are described, as well as their temporal growth pattern and regenerative capacities. The three-dimensional architecture of both spines, from macro to sub-micron levels, is shown to be axially oriented and therefore highly anisotropic and the spines of both species are able to regenerate after partial amputation. © 2017 The Fisheries Society of the British Isles.
Development of x-ray laminography under an x-ray microscopic condition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa
2011-07-15
An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatialmore » resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.« less
Bénard, Antoine; Palle, Sabine; Doucet, Luc Serge; Ionov, Dmitri A
2011-12-01
We report the first application of multiphoton microscopy (MPM) to generate three-dimensional (3D) images of natural minerals (micron-sized sulfides) in thick (∼120 μm) rock sections. First, reflection mode (RM) using confocal laser scanning microscopy (CLSM), combined with differential interference contrast (DIC), was tested on polished sections. Second, two-photon fluorescence (TPF) and second harmonic signal (SHG) images were generated using a femtosecond-laser on the same rock section without impregnation by a fluorescent dye. CSLM results show that the silicate matrix is revealed with DIC and RM, while sulfides can be imaged in 3D at low resolution by RM. Sulfides yield strong autofluorescence from 392 to 715 nm with TPF, while SHG is only produced by the embedding medium. Simultaneous recording of TPF and SHG images enables efficient discrimination between different components of silicate rocks. Image stacks obtained with MPM enable complete reconstruction of the 3D structure of a rock slice and of sulfide morphology at submicron resolution, which has not been previously reported for 3D imaging of minerals. Our work suggests that MPM is a highly efficient tool for 3D studies of microstructures and morphologies of minerals in silicate rocks, which may find other applications in geosciences.
Kim, Tae-Eon; Kim, Chang Gun; Kim, Jin Soo; Jin, Songwan; Yoon, Sik; Bae, Hae-Rahn; Kim, Jeong-Hwa; Jeong, Young Hun; Kwak, Jong-Young
2016-01-01
An artificial three-dimensional (3D) culture system that mimics the tumor microenvironment in vitro is an essential tool for investigating the cross-talk between immune and cancer cells in tumors. In this study, we developed a 3D culture system using an electrospun poly(ε-caprolactone) (PCL) nanofibrous scaffold (NFS). A hybrid NFS containing an uninterrupted network of nano- and submicron-scale fibers (400 nm to 2 µm) was generated by deposition onto a stainless steel mesh instead of an aluminum plate. The hybrid NFS contained multiplanar pores in a 3D structure. Surface-seeded mouse CT26 colon cancer cells and bone marrow-derived dendritic cells (BM-DCs) were able to infiltrate the hybrid NFS within several hours. BM-DCs cultured on PCL nanofibers showed a baseline inactive form, and lipopolysaccharide (LPS)-activated BM-DCs showed increased expression of CD86 and major histocompatibility complex Class II. Actin and phosphorylated FAK were enriched where unstimulated and LPS-stimulated BM-DCs contacted the fibers in the 3D hybrid NFS. When BM-DCs were cocultured with mitoxantrone-treated CT26 cells in a 3D hybrid NFS, BM-DCs sprouted cytoplasm to, migrated to, synapsed with, and engulfed mitoxantrone-treated CT26 cancer cells, which were similar to the naturally occurring cross-talk between these two types of cells. The 3D hybrid NFS developed here provides a 3D structure for coculture of cancer and immune cells. PMID:27042051
Kim, Tae-Eon; Kim, Chang Gun; Kim, Jin Soo; Jin, Songwan; Yoon, Sik; Bae, Hae-Rahn; Kim, Jeong-Hwa; Jeong, Young Hun; Kwak, Jong-Young
2016-01-01
An artificial three-dimensional (3D) culture system that mimics the tumor microenvironment in vitro is an essential tool for investigating the cross-talk between immune and cancer cells in tumors. In this study, we developed a 3D culture system using an electrospun poly(ε-caprolactone) (PCL) nanofibrous scaffold (NFS). A hybrid NFS containing an uninterrupted network of nano- and submicron-scale fibers (400 nm to 2 µm) was generated by deposition onto a stainless steel mesh instead of an aluminum plate. The hybrid NFS contained multiplanar pores in a 3D structure. Surface-seeded mouse CT26 colon cancer cells and bone marrow-derived dendritic cells (BM-DCs) were able to infiltrate the hybrid NFS within several hours. BM-DCs cultured on PCL nanofibers showed a baseline inactive form, and lipopolysaccharide (LPS)-activated BM-DCs showed increased expression of CD86 and major histocompatibility complex Class II. Actin and phosphorylated FAK were enriched where unstimulated and LPS-stimulated BM-DCs contacted the fibers in the 3D hybrid NFS. When BM-DCs were cocultured with mitoxantrone-treated CT26 cells in a 3D hybrid NFS, BM-DCs sprouted cytoplasm to, migrated to, synapsed with, and engulfed mitoxantrone-treated CT26 cancer cells, which were similar to the naturally occurring cross-talk between these two types of cells. The 3D hybrid NFS developed here provides a 3D structure for coculture of cancer and immune cells.
Thermal tuning the reversible optical band gap of self-assembled polystyrene photonic crystals
NASA Astrophysics Data System (ADS)
Vakili Tahami, S. H.; Pourmahdian, S.; Shirkavand Hadavand, B.; Azizi, Z. S.; Tehranchi, M. M.
2016-11-01
Nano-sized polymeric colloidal particles could undergo self-organization into three-dimensional structures to produce desired optical properties. In this research, a facile emulsifier-free emulsion polymerization method was employed to synthesize highly mono-disperse sub-micron polystyrene colloids. A high quality photonic crystal (PhC) structure was prepared by colloidal polystyrene. The reversible thermal tuning effect on photonic band gap position as well as the attenuation of the band gap was investigated in detail. The position of PBG can be tuned from 420 nm to 400 nm by varying the temperature of the PhC structure, reversibly. This reversible effect provides a reconfigurable PhC structure which could be used as thermo-responsive shape memory polymers.
Laser produced nanocavities in silica and sapphire: a parametric study
NASA Astrophysics Data System (ADS)
Hallo, L.; Bourgeade, A.; Travaillé, G.; Tikhonchuk, V. T.; Nkonga, B.; Breil, J.
2008-05-01
We present a model, that describes a sub-micron cavity formation in a transparent dielectric under a tight focusing of a ultra-short laser pulse. The model solves the full set of Maxwell's equations in the three-dimensional geometry along with non-linear propagation phenomenons. This allows us to initialize hydrodynamic simulations of the sub-micron cavity formation. Cavity characteristics, which depend on 3D energy release and non linear effects, have been investigated and compared with experimental results. For this work, we want to deeply acknowledge the numerical support provided by the CEA Centre de Calcul Recherche et Technologie, whose help guaranteed the achievement of this study.
CNTs in situ attached to α-Fe2O3 submicron spheres for enhancing lithium storage capacity.
Gao, Guo; Zhang, Qiang; Cheng, Xin-Bing; Qiu, Peiyu; Sun, Rongjin; Yin, Ting; Cui, Daxiang
2015-01-14
In this work, we developed a facile hydrothermal method for synthesis of hybrid α-Fe2O3-carbon nanotubes (CNTs) architectures (α-Fe2O3-CNTs-1 and α-Fe2O3-CNTs-2). The CNTs are in situ attached to the α-Fe2O3 submicron spheres and form three-dimensional network robust architectures. The increase in the amount of CNTs in the network α-Fe2O3-CNTs architectures will significantly enhance the cycling and rate performance, as the flexible and robust CNTs could ensure the fast electron transport pathways, enhance the electronic conductivity, and improve the structural stability of the electrode. As for pure α-Fe2O3 submicron spheres, the capacity decreased significantly and retained at 377.4 mAh g(-1) after 11 cycles, and the capacity has a slightly increasing trend at the following cycling. In contrast, the network α-Fe2O3-CNTs-2 electrode shows the most remarkable performance. At the 60th cycle, the capacity of network α-Fe2O3-CNTs-2 (764.5 mAh g(-1)) is 1.78 times than that of α-Fe2O3 submicron spheres (428.3 mAh g(-1)). The long-term cycling performance (1000 cycles) of samples at a high current density of 5 C showed that the capacity of α-Fe2O3 submicron spheres fade to ∼37.3 mAh g(-1) at the 400th cycle and gradually increased to ∼116.7 mAh g(-1) at the 1000th cycle. The capacity of network α-Fe2O3-CNTs-2 maintained at ∼220.2 mAh g(-1) before the 400th cycle, arrived at ∼326.5 mAh g(-1) in the 615th, cycle and retained this value until 1000th cycle. The network α-Fe2O3-CNTs-2 composite could significantly enhance the cycling and rate performance than pure α-Fe2O3 submicron spheres composite.
Fabrication of Three-Dimensional Imprint Lithography Templates by Colloidal Dispersions
2011-03-06
Dispersions A. Marcia Almanza-Workman, Taussig P. Carl, Albert H. Jeans, Robert L. Cobene HP Laboratories HPL-2011-32 Flexible displays, Self aligned...imprint lithography, stamps, fluorothermoplastics, latex Self -aligned imprint lithography (SAIL) enables patterning and alignment of submicron-sized...features on flexible substrates in the roll-to roll (R2R) environment. Soft molds made of elastomers have been used as stamps to pattern three
Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Runguang; Xie, Qingge; Wang, Yan-Dong
Shear banding is a ubiquitous phenomenon of severe plastic deformation, and damage accumulation in shear bands often results in the catastrophic failure of a material. Despite extensive studies, the microscopic mechanisms of strain localization and deformation damage in shear bands remain elusive due to their spatial-temporal complexities embedded in bulk materials. Here we conducted synchrotron-based X-ray microdiffraction (μXRD) experiments to map out the 3D lattice strain field with a submicron resolution around fatigue shear bands in a stainless steel. Both in situ and postmortem μXRD results revealed large lattice strain gradients at intersections of the primary and secondary shear bands.more » Such strain gradients resulted in severe mechanical heterogeneities across the fatigue shear bands, leading to reduced fatigue limits in the high-cycle regime. The ability to spatially quantify the localized strain gradients with submicron resolution through μXRD opens opportunities for understanding the microscopic mechanisms of damage and failure in bulk materials.« less
Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction
Li, Runguang; Xie, Qingge; Wang, Yan-Dong; ...
2017-12-28
Shear banding is a ubiquitous phenomenon of severe plastic deformation, and damage accumulation in shear bands often results in the catastrophic failure of a material. Despite extensive studies, the microscopic mechanisms of strain localization and deformation damage in shear bands remain elusive due to their spatial-temporal complexities embedded in bulk materials. Here we conducted synchrotron-based X-ray microdiffraction (μXRD) experiments to map out the 3D lattice strain field with a submicron resolution around fatigue shear bands in a stainless steel. Both in situ and postmortem μXRD results revealed large lattice strain gradients at intersections of the primary and secondary shear bands.more » Such strain gradients resulted in severe mechanical heterogeneities across the fatigue shear bands, leading to reduced fatigue limits in the high-cycle regime. The ability to spatially quantify the localized strain gradients with submicron resolution through μXRD opens opportunities for understanding the microscopic mechanisms of damage and failure in bulk materials.« less
Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction
Li, Runguang; Xie, Qingge; Wang, Yan-Dong; Liu, Wenjun; Wang, Mingguang; Wu, Guilin; Li, Xiaowu; Zhang, Minghe; Lu, Zhaoping; Geng, Chang; Zhu, Ting
2018-01-01
Shear banding is a ubiquitous phenomenon of severe plastic deformation, and damage accumulation in shear bands often results in the catastrophic failure of a material. Despite extensive studies, the microscopic mechanisms of strain localization and deformation damage in shear bands remain elusive due to their spatial−temporal complexities embedded in bulk materials. Here we conducted synchrotron-based X-ray microdiffraction (μXRD) experiments to map out the 3D lattice strain field with a submicron resolution around fatigue shear bands in a stainless steel. Both in situ and postmortem μXRD results revealed large lattice strain gradients at intersections of the primary and secondary shear bands. Such strain gradients resulted in severe mechanical heterogeneities across the fatigue shear bands, leading to reduced fatigue limits in the high-cycle regime. The ability to spatially quantify the localized strain gradients with submicron resolution through μXRD opens opportunities for understanding the microscopic mechanisms of damage and failure in bulk materials. PMID:29284751
Fabrication of submicron metallic grids with interference and phase-mask holography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Joong-Mok; Kim, Tae-Geun; Constant, Kristen
2011-01-25
Complex, submicron Cu metallic mesh nanostructures are made by electrochemical deposition using polymer templates made from photoresist. The polymer templates are fabricated with photoresist using two-beam interference holography and phase mask holography with three diffracted beams. Freestanding metallic mesh structures are made in two separate electrodepositions with perpendicular photoresist grating templates. Cu mesh square nanostructures having large (52.6%) open areas are also made by single electrodeposition with a photoresist template made with a phase mask. These structures have potential as electrodes in photonic devices.
NASA Astrophysics Data System (ADS)
Tamura, N.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Valek, B.; Bravman, J. C.; Spolenak, R.; Brown, W. L.; Marieb, T.; Fujimoto, H.; Batterman, B. W.; Patel, J. R.
2002-05-01
The availability of high brilliance synchrotron sources, coupled with recent progress in achromatic focusing optics and large area two-dimensional detector technology, has allowed us to develop an x-ray synchrotron technique that is capable of mapping orientation and strain/stress in polycrystalline thin films with submicron spatial resolution. To demonstrate the capabilities of this instrument, we have employed it to study the microstructure of aluminum thin film structures at the granular and subgranular levels. Due to the relatively low absorption of x-rays in materials, this technique can be used to study passivated samples, an important advantage over most electron probes given the very different mechanical behavior of buried and unpassivated materials.
Size-Tuned Plastic Flow Localization in Irradiated Materials at the Submicron Scale
NASA Astrophysics Data System (ADS)
Cui, Yinan; Po, Giacomo; Ghoniem, Nasr
2018-05-01
Three-dimensional discrete dislocation dynamics (3D-DDD) simulations reveal that, with reduction of sample size in the submicron regime, the mechanism of plastic flow localization in irradiated materials transitions from irradiation-controlled to an intrinsic dislocation source controlled. Furthermore, the spatial correlation of plastic deformation decreases due to weaker dislocation interactions and less frequent cross slip as the system size decreases, thus manifesting itself in thinner dislocation channels. A simple model of discrete dislocation source activation coupled with cross slip channel widening is developed to reproduce and physically explain this transition. In order to quantify the phenomenon of plastic flow localization, we introduce a "deformation localization index," with implications to the design of radiation-resistant materials.
3-Dimensional Colloidal Crystals From Hollow Spheres
NASA Astrophysics Data System (ADS)
Zhang, Jian; Work, William J.; Sanyal, Subrata; Lin, Keng-Hui; Yodh, A. G.
2000-03-01
We have succeeded in synthesizing submicron-sized, hollow PMMA spheres and self-assembling them into colloidal crystalline structures using the depletion force. The resulting structures can be used as templates to make high refractive-index contrast, porous, inorganic structures without the need to use calcination or chemical-etching. With the method of emulsion polymerization, we managed to coat a thin PMMA shell around a swellable P(MMA/MAA/EGDMA) core. After neutralization and heating above the glass transition temperature of PMMA, we obtained water-swollen hydrogel particles encapsulated in PMMA shells. These composite particles become hollow spheres after drying. We characterized the particles with both transmission electron microscopy (TEM) and dynamic light scattering (DLS). The TEM results confirmed that each sphere has a hollow core. The DLS results showed that our hollow spheres are submicron-sized, with a swelling ratio of at least 25%, and with a polydispersity less than 5%. We anticipate using this method in the near-future to encapsulate ferrofluid emulsion droplets and liquid crystal droplets.
Preliminary evidence for the involvement of budding bacteria in the origin of Alaskan placer gold
Watterson, J.R.
1992-01-01
Lacelike networks of micrometre-size filiform gold associated wtih Alaskan placer gold particles are interpreted as low-temperature pseudomorphs of a Pedomicrobium-like budding bacterium. Submicron reproductive structures (hyphae) and other morphological features similar to those of Pedomicrobium manganicum occur as detailed three-dimensional facsimiles in high purity gold in and on placer gold particles from Lillian Creek, Alaska. In a scanning electron microscope survey, the majority of gold particles at nine Alaskan placer deposits appear to include gold that has accumulated chemically at low temperatures in and on the cells of P. manganicum. Similar bacterioform gold from a Paleozoic deposit in China and from the Precambrian Witwatersrand deposit in South Africa may indicate that bacterioform gold is widespread. -Author
Material fabrication using acoustic radiation forces
Sinha, Naveen N.; Sinha, Dipen N.; Goddard, Gregory Russ
2015-12-01
Apparatus and methods for using acoustic radiation forces to order particles suspended in a host liquid are described. The particles may range in size from nanometers to millimeters, and may have any shape. The suspension is placed in an acoustic resonator cavity, and acoustical energy is supplied thereto using acoustic transducers. The resulting pattern may be fixed by using a solidifiable host liquid, forming thereby a solid material. Patterns may be quickly generated; typical times ranging from a few seconds to a few minutes. In a one-dimensional arrangement, parallel layers of particles are formed. With two and three dimensional transducer arrangements, more complex particle configurations are possible since different standing-wave patterns may be generated in the resonator. Fabrication of periodic structures, such as metamaterials, having periods tunable by varying the frequency of the acoustic waves, on surfaces or in bulk volume using acoustic radiation forces, provides great flexibility in the creation of new materials. Periodicities may range from millimeters to sub-micron distances, covering a large portion of the range for optical and acoustical metamaterials.
High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure.
Chen, Szu-Hung; Liao, Wen-Shiang; Yang, Hsin-Chia; Wang, Shea-Jue; Liaw, Yue-Gie; Wang, Hao; Gu, Haoshuang; Wang, Mu-Chun
2012-08-01
A three-dimensional (3D) fin-shaped field-effect transistor structure based on III-V metal-oxide-semiconductor field-effect transistor (MOSFET) fabrication has been demonstrated using a submicron GaAs fin as the high-mobility channel. The fin-shaped channel has a thickness-to-width ratio (TFin/WFin) equal to 1. The nano-stacked high-k Al2O3 dielectric was adopted as a gate insulator in forming a metal-oxide-semiconductor structure to suppress gate leakage. The 3D III-V MOSFET exhibits outstanding gate controllability and shows a high Ion/Ioff ratio > 105 and a low subthreshold swing of 80 mV/decade. Compared to a conventional Schottky gate metal-semiconductor field-effect transistor or planar III-V MOSFETs, the III-V MOSFET in this work exhibits a significant performance improvement and is promising for future development of high-performance n-channel devices based on III-V materials.
High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure
2012-01-01
A three-dimensional (3D) fin-shaped field-effect transistor structure based on III-V metal-oxide-semiconductor field-effect transistor (MOSFET) fabrication has been demonstrated using a submicron GaAs fin as the high-mobility channel. The fin-shaped channel has a thickness-to-width ratio (TFin/WFin) equal to 1. The nano-stacked high-k Al2O3 dielectric was adopted as a gate insulator in forming a metal-oxide-semiconductor structure to suppress gate leakage. The 3D III-V MOSFET exhibits outstanding gate controllability and shows a high Ion/Ioff ratio > 105 and a low subthreshold swing of 80 mV/decade. Compared to a conventional Schottky gate metal–semiconductor field-effect transistor or planar III-V MOSFETs, the III-V MOSFET in this work exhibits a significant performance improvement and is promising for future development of high-performance n-channel devices based on III-V materials. PMID:22853458
Three-dimensional cellular deformation analysis with a two-photon magnetic manipulator workstation.
Huang, Hayden; Dong, Chen Y; Kwon, Hyuk-Sang; Sutin, Jason D; Kamm, Roger D; So, Peter T C
2002-04-01
The ability to apply quantifiable mechanical stresses at the microscopic scale is critical for studying cellular responses to mechanical forces. This necessitates the use of force transducers that can apply precisely controlled forces to cells while monitoring the responses noninvasively. This paper describes the development of a micromanipulation workstation integrating two-photon, three-dimensional imaging with a high-force, uniform-gradient magnetic manipulator. The uniform-gradient magnetic field applies nearly uniform forces to a large cell population, permitting statistical quantification of select molecular responses to mechanical stresses. The magnetic transducer design is capable of exerting over 200 pN of force on 4.5-microm-diameter paramagnetic particles and over 800 pN on 5.0-microm ferromagnetic particles. These forces vary within +/-10% over an area 500 x 500 microm2. The compatibility with the use of high numerical aperture (approximately 1.0) objectives is an integral part of the workstation design allowing submicron-resolution, three-dimensional, two-photon imaging. Three-dimensional analyses of cellular deformation under localized mechanical strain are reported. These measurements indicate that the response of cells to large focal stresses may contain three-dimensional global deformations and show the suitability of this workstation to further studying cellular response to mechanical stresses.
Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs
Williamson, Ian A. D.; Mousavi, S. Hossein; Wang, Zheng
2016-01-01
Photonic crystal slabs have been widely used in nanophotonics for light confinement, dispersion engineering, nonlinearity enhancement, and other unusual effects arising from their structural periodicity. Sub-micron device sizes and mode volumes are routine for silicon-based photonic crystal slabs, however spectrally they are limited to operate in the near infrared. Here, we show that two single-layer graphene sheets allow silicon photonic crystal slabs with submicron periodicity to operate in the terahertz regime, with an extreme 100× wavelength reduction from graphene’s large kinetic inductance. The atomically thin graphene further leads to excellent out-of-plane confinement, and consequently photonic-crystal-slab band structures that closely resemble those of ideal two-dimensional photonic crystals, with broad band gaps even when the slab thickness approaches zero. The overall photonic band structure not only scales with the graphene Fermi level, but more importantly scales to lower frequencies with reduced slab thickness. Just like ideal 2D photonic crystals, graphene-cladded photonic crystal slabs confine light along line defects, forming waveguides with the propagation lengths on the order of tens of lattice constants. The proposed structure opens up the possibility to dramatically reduce the size of terahertz photonic systems by orders of magnitude. PMID:27143314
A study of 3-dimensionally periodic carbon nanostructures
NASA Astrophysics Data System (ADS)
Yin, Ming; Bleiweiss, Michael; Amirzadeh, Jafar; Datta, Timir; Arammash, Fouzi
2012-02-01
Electronic structures with intricate periodic 3-dimensional arrangements at the submicron scale were investigated. These may be fabricated using artificial porous opal substrates as the templates in which the targeted conducting medium is introduced. In the past these materials were reported to show interesting electronic behaviors. [Michael Bleiweiss, et al ``Localization and Related Phenomena in Multiply Connected Nanostructured,'' BAPS, Z30.011, Nanostructured Materials Session, March 2001, Seattle]. Several materials were studied in particular disordered carbon which has been reported to show quantum transport including fractional hall steps. The results of these measurements, including the observation of localization phenomena, will be discussed. Comparisons will be made with literature data.
Atom chips with free-standing two-dimensional electron gases: advantages and challenges
NASA Astrophysics Data System (ADS)
Sinuco-León, G. A.; Krüger, P.; Fromhold, T. M.
2018-03-01
In this work, we consider the advantages and challenges of using free-standing two-dimensional electron gases (2DEG) as active components in atom chips for manipulating ultracold ensembles of alkali atoms. We calculate trapping parameters achievable with typical high-mobility 2DEGs in an atom chip configuration and identify advantages of this system for trapping atoms at sub-micron distances from the atom chip. We show how the sensitivity of atomic gases to magnetic field inhomogeneity can be exploited for controlling the atoms with quantum electronic devices and, conversely, using the atoms to probe the structural and transport properties of semiconductor devices.
Inversion layer on the Ge(001) surface from the four-probe conductance measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojtaszek, Mateusz; Lis, Jakub, E-mail: j.lis@uj.edu.pl; Zuzak, Rafal
2014-07-28
We report four-probe conductance measurements with sub-micron resolution on atomically clean Ge(001) surfaces. A qualitative difference between n-type and p-type crystals is observed. The scaling behavior of the resistance on n-type samples indicates two-dimensional current flow, while for the p-type crystal a three-dimensional description is appropriate. We interpret this in terms of the formation of an inversion layer at the surface. This result points to the surface states, i.e., dangling bonds, as the driving force behind band bending in germanium. It also explains the intrinsic character of band bending in germanium.
Separating the signal from the noise: Expanding flow cytometry into the sub-micron range.
Cytometry Part A Special Section: Separating the signal from the noise: Expanding flow cytometry into the sub-micron range. The current Cytometry Part A Special Section presents three studies that utilize cytometers to study sub-micron particles. The three studies involve the 1...
Low Dimensional Modeling of Zero-Net Mass-Flux Actuators
2004-07-01
centerline deflection of the diaphragm is measured using a laser displacement sensor (Micro-Epsilon Model ILD2000-10). Both signals are acquired phase...the flowfield emanating from the ZNMF orifice are acquired using Laser Doppler Anemometry (LDA), the details of which are listed in Table 1. The...synthetic jet actuator is mounted to a three-axis traverse with sub-micron spatial resolution. The 488 and 514.5 nm lines of an argon-ion laser are
Dynamics of submicron aerosol droplets in a robust optical trap formed by multiple Bessel beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thanopulos, Ioannis; Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens 11635; Luckhaus, David
In this paper, we model the three-dimensional escape dynamics of single submicron-sized aerosol droplets in optical multiple Bessel beam traps. Trapping in counter-propagating Bessel beams (CPBBs) is compared with a newly proposed quadruple Bessel beam (QBB) trap, which consists of two perpendicularly arranged CPBB traps. Calculations are performed for perfectly and imperfectly aligned traps. Mie-theory and finite-difference time-domain methods are used to calculate the optical forces. The droplet escape kinetics are obtained from the solution of the Langevin equation using a Verlet algorithm. Provided the traps are perfectly aligned, the calculations indicate very long lifetimes for droplets trapped either inmore » the CPBB or in the QBB trap. However, minor misalignments that are hard to control experimentally already severely diminish the stability of the CPBB trap. By contrast, such minor misalignments hardly affect the extended droplet lifetimes in a QBB trap. The QBB trap is found to be a stable, robust optical trap, which should enable the experimental investigation of submicron droplets with radii down to 100 nm. Optical binding between two droplets and its potential role in preventing coagulation when loading a CPBB trap is briefly addressed.« less
Rybin, Mikhail V.; Samusev, Kirill B.; Lukashenko, Stanislav Yu.; Kivshar, Yuri S.; Limonov, Mikhail F.
2016-01-01
We study experimentally a fine structure of the optical Laue diffraction from two-dimensional periodic photonic lattices. The periodic photonic lattices with the C4v square symmetry, orthogonal C2v symmetry, and hexagonal C6v symmetry are composed of submicron dielectric elements fabricated by the direct laser writing technique. We observe surprisingly strong optical diffraction from a finite number of elements that provides an excellent tool to determine not only the symmetry but also exact number of particles in the finite-length structure and the sample shape. Using different samples with orthogonal C2v symmetry and varying the lattice spacing, we observe experimentally a transition between the regime of multi-order diffraction, being typical for photonic crystals to the regime where only the zero-order diffraction can be observed, being is a clear fingerprint of dielectric metasurfaces characterized by effective parameters. PMID:27491952
Anodically bonded submicron microfluidic chambers.
Dimov, S; Bennett, R G; Córcoles, A; Levitin, L V; Ilic, B; Verbridge, S S; Saunders, J; Casey, A; Parpia, J M
2010-01-01
We demonstrate the use of anodic bonding to fabricate cells with characteristic size as large as 7 x 10 mm(2), with height of approximately 640 nm, and without any internal support structure. The cells were fabricated from Hoya SD-2 glass and silicon wafers, each with 3 mm thickness to maintain dimensional stability under internal pressure. Bonding was carried out at 350 degrees C and 450 V with an electrode structure that excluded the electric field from the open region. We detail fabrication and characterization steps and also discuss the design of the fill line for access to the cavity.
Characterization of Minerals of Geochronological Interest by EPMA and Atom Probe Tomography
NASA Astrophysics Data System (ADS)
Snoeyenbos, D.; Jercinovic, M. J.; Reinhard, D. A.; Hombourger, C.
2012-12-01
Isotopic and chemical dating techniques for zircon and monazite rely on several assumptions: that initial common Pb is low to nonexistent, that the analyzed domain is chronologically homogeneous, and that any relative migration of radiogenic Pb and its parent isotopes has not exceeded the analyzed domain. Yet, both zircon and monazite commonly contain significant submicron heterogeneities that may challenge these assumptions and can complicate the interpretation of chemical and isotopic data. Compositional mapping and submicron quantitative analysis by EPMA and FE-EPMA have been found to be useful techniques both for the characterization of these heterogeneities, and for quantitative geochronological determinations within the analytical limits of these techniques and the statistics of submicron sampling. Complementary to high-resolution EPMA techniques is Atom Probe Tomography (APT), wherein a specimen with dimensions of a few hundreds of nanometers is field evaporated atom by atom. The original position of each atom is identified, along with its atomic species and isotope. The result is a reconstruction allowing quantitative three-dimensional study of the specimen at the atomic scale, with low detection limits and high mass resolution. With the introduction of laser-induced thermal pulsing to achieve field evaporation, the technique is no longer limited to conductive specimens. There exists the capability to explore the compositional and isotopic structure of insulating materials at sub-nanometer resolution. Minerals of geochronological interest have been studied by an analytical method involving first compositional mapping and submicron quantitative analysis by EPMA and FE-EPMA, and subsequent use of these data to select specific sites for APT specimen extraction by FIB. Examples presented include 1) zircon from the Taconian of New England, USA, containing a fossil resorption front included between an unmodified igneous core, and a subsequent metamorphic overgrowth, with significant redistribution of U, Th, P and Y along microfracture arrays extending into the overgrowth, and 2) Paleoproterozoic monazite in thin bands <1μm wide along cleavage planes within much older (Neoarchean) monazite from the Boothia mainland of the Western Churchill Province, Canada.
Three-dimensional patterning in polymer optical waveguides using focused ion beam milling
NASA Astrophysics Data System (ADS)
Kruse, Kevin; Burrell, Derek; Middlebrook, Christopher
2016-07-01
Waveguide (WG) photonic-bridge taper modules are designed for symmetric planar coupling between silicon WGs and single-mode fibers (SMFs) to minimize photonic chip and packaging footprint requirements with improving broadband functionality. Micromachined fabrication and evaluation of polymer WG tapers utilizing high-resolution focused ion beam (FIB) milling is performed and presented. Polymer etch rates utilizing the FIB and optimal methods for milling polymer tapers are identified for three-dimensional patterning. Polymer WG tapers with low sidewall roughness are manufactured utilizing FIB milling and optically tested for fabrication loss. FIB platforms utilize a focused beam of ions (Ga+) to etch submicron patterns into substrates. Fabricating low-loss polymer WG taper prototypes with the FIB before moving on to mass-production techniques provides theoretical understanding of the polymer taper and its feasibility for connectorization devices between silicon WGs and SMFs.
Hwang, Sung Hoon; Shahsavari, Rouzbeh
2018-01-10
Scaffolded porous submicron particles with well-defined diameter, shape, and pore size have profound impacts on drug delivery, bone-tissue replacement, catalysis, sensors, photonic crystals, and self-healing materials. However, understanding the interplay between pore size, particle size, and mechanical properties of such ultrafine particles, especially at the level of individual particles and their ensemble states, is a challenge. Herein, we focus on porous calcium-silicate submicron particles with various diameters-as a model system-and perform extensive 900+ nanoindentations to completely map out their mechanical properties at three distinct structural forms from individual submicron particles to self-assembled ensembles to pressure-induced assembled arrays. Our results demonstrate a notable "intrinsic size effect" for individual porous submicron particles around ∼200-500 nm, induced by the ratio of particle characteristic diameter to pore characteristic size distribution. Increasing this ratio results in a brittle-to-ductile transition where the toughness of the submicron particles increases by 120%. This size effect becomes negligible as the porous particles form superstructures. Nevertheless, the self-assembled arrays collectively exhibit increasing elastic modulus as a function of applied forces, while pressure-induced compacted arrays exhibit no size effect. This study will impact tuning properties of individual scaffolded porous particles and can have implications on self-assembled superstructures exploiting porosity and particle size to impart new functionalities.
NASA Astrophysics Data System (ADS)
Zhang, A. Ping; He, Sailing; Kim, Kyoung Tae; Yoon, Yong-Kyu; Burzynski, Ryszard; Samoc, Marek; Prasad, Paras N.
2008-11-01
We report on the fabrication of nanoparticle/polymer submicron structures by combining holographic lithography and reactive ion etching. Silica nanoparticles are uniformly dispersed in a (SU8) polymer matrix at a high concentration, and in situ polymerization (cross-linking) is used to form a nanoparticle/polymer composite. Another photosensitive SU8 layer cast upon the nanoparticle/SU8 composite layer is structured through holographic lithography, whose pattern is finally transferred to the nanoparticle/SU8 layer by the reactive ion etching process. Honeycomb structures in a submicron scale are experimentally realized in the nanoparticle/SU8 composite.
Three-dimensional-printed gas dynamic virtual nozzles for x-ray laser sample delivery
Nelson, Garrett; Kirian, Richard A.; Weierstall, Uwe; Zatsepin, Nadia A.; Faragó, Tomáš; Baumbach, Tilo; Wilde, Fabian; Niesler, Fabian B. P.; Zimmer, Benjamin; Ishigami, Izumi; Hikita, Masahide; Bajt, Saša; Yeh, Syun-Ru; Rousseau, Denis L.; Chapman, Henry N.; Spence, John C. H.; Heymann, Michael
2016-01-01
Reliable sample delivery is essential to biological imaging using X-ray Free Electron Lasers (XFELs). Continuous injection using the Gas Dynamic Virtual Nozzle (GDVN) has proven valuable, particularly for time-resolved studies. However, many important aspects of GDVN functionality have yet to be thoroughly understood and/or refined due to fabrication limitations. We report the application of 2-photon polymerization as a form of high-resolution 3D printing to fabricate high-fidelity GDVNs with submicron resolution. This technique allows rapid prototyping of a wide range of different types of nozzles from standard CAD drawings and optimization of crucial dimensions for optimal performance. Three nozzles were tested with pure water to determine general nozzle performance and reproducibility, with nearly reproducible off-axis jetting being the result. X-ray tomography and index matching were successfully used to evaluate the interior nozzle structures and identify the cause of off-axis jetting. Subsequent refinements to fabrication resulted in straight jetting. A performance test of printed nozzles at an XFEL provided high quality femtosecond diffraction patterns. PMID:27410079
Mellor, Liliana F.; Huebner, Pedro; Cai, Shaobo; Taylor, Michael A.; Spang, Jeffrey
2017-01-01
Electrospun scaffolds provide a dense framework of nanofibers with pore sizes and fiber diameters that closely resemble the architecture of native extracellular matrix. However, it generates limited three-dimensional structures of relevant physiological thicknesses. 3D printing allows digitally controlled fabrication of three-dimensional single/multimaterial constructs with precisely ordered fiber and pore architecture in a single build. However, this approach generally lacks the ability to achieve submicron resolution features to mimic native tissue. The goal of this study was to fabricate and evaluate 3D printed, electrospun, and combination of 3D printed/electrospun scaffolds to mimic the native architecture of heterogeneous tissue. We assessed their ability to support viability and proliferation of human adipose derived stem cells (hASC). Cells had increased proliferation and high viability over 21 days on all scaffolds. We further tested implantation of stacked-electrospun scaffold versus combined electrospun/3D scaffold on a cadaveric pig knee model and found that stacked-electrospun scaffold easily delaminated during implantation while the combined scaffold was easier to implant. Our approach combining these two commonly used scaffold fabrication technologies allows for the creation of a scaffold with more close resemblance to heterogeneous tissue architecture, holding great potential for tissue engineering and regenerative medicine applications of osteochondral tissue and other heterogeneous tissues. PMID:28536700
Dislocation Multiplication by Single Cross Slip for FCC at Submicron Scales
NASA Astrophysics Data System (ADS)
Cui, Yi-Nan; Liu, Zhan-Li; Zhuang, Zhuo
2013-04-01
The operation mechanism of single cross slip multiplication (SCSM) is investigated by studying the response of one dislocation loop expanding in face-centered-cubic (FCC) single crystal using three-dimensional discrete dislocation dynamic (3D-DDD) simulation. The results show that SCSM can trigger highly correlated dislocation generation in a short time, which may shed some light on understanding the large strain burst observed experimentally. Furthermore, we find that there is a critical stress and material size for the operation of SCSM, which agrees with that required to trigger large strain burst in the compression tests of FCC micropillars.
Electromagnetically induced transparency with hybrid silicon-plasmonic traveling-wave resonators
NASA Astrophysics Data System (ADS)
Ketzaki, Dimitra A.; Tsilipakos, Odysseas; Yioultsis, Traianos V.; Kriezis, Emmanouil E.
2013-09-01
Spectral filtering and electromagnetically induced transparency (EIT) with hybrid silicon-plasmonic traveling-wave resonators are theoretically investigated. The rigorous three-dimensional vector finite element method simulations are complemented with temporal coupled mode theory. We show that ring and disk resonators with sub-micron radii can efficiently filter the lightwave with minimal insertion loss and high quality factors (Q). It is shown that disk resonators feature reduced radiation losses and are thus advantageous. They exhibit unloaded quality factors as high as 1000 in the telecom spectral range, resulting in all-pass filtering components with sharp resonances. By cascading two slightly detuned resonators and providing an additional route for resonator interaction (i.e., a second bus waveguide), a response reminiscent of EIT is observed. The EIT transmission peak can be shaped by means of resonator detuning and interelement separation. Importantly, the respective Q can become higher than that of the single-resonator structure. Thus, the possibility of exploiting this peak in switching applications relying on the thermo-optic effect is, finally, assessed.
Local structure of human hair spatially resolved by sub-micron X-ray beam.
Stanić, Vesna; Bettini, Jefferson; Montoro, Fabiano Emmanuel; Stein, Aaron; Evans-Lutterodt, Kenneth
2015-11-30
Human hair has three main regions, the medulla, the cortex, and the cuticle. An existing model for the cortex suggests that the α-keratin- based intermediate filaments (IFs) align with the hair's axis, but are orientationally disordered in-plane. We found that there is a new region in the cortex near the cuticle's boundary in which the IFs are aligned with the hair's axis, but additionally, they are orientationally ordered in-plane due to the presence of the cuticle/hair boundary. Further into the cortex, the IF arrangement becomes disordered, eventually losing all in-plane orientation. We also find that in the cuticle, a key diffraction feature is absent, indicating the presence of the β-keratin rather than that of the α-keratin phase. This is direct structural evidence that the cuticle contains β-keratin sheets. This work highlights the importance of using a sub-micron x-ray beam to unravel the structures of poorly ordered, multi-phase systems.
Kwon, Young Woo; Park, Junyong; Kim, Taehoon; Kang, Seok Hee; Kim, Hyowook; Shin, Jonghwa; Jeon, Seokwoo; Hong, Suck Won
2016-04-26
Multilevel hierarchical platforms that combine nano- and microstructures have been intensively explored to mimic superior properties found in nature. However, unless directly replicated from biological samples, desirable multiscale structures have been challenging to efficiently produce to date. Departing from conventional wafer-based technology, new and efficient techniques suitable for fabricating bioinspired structures are highly desired to produce three-dimensional architectures even on nonplanar substrates. Here, we report a facile approach to realize functional nanostructures on uneven microstructured platforms via scalable optical fabrication techniques. The ultrathin form (∼3 μm) of a phase grating composed of poly(vinyl alcohol) makes the material physically flexible and enables full-conformal contact with rough surfaces. The near-field optical effect can be identically generated on highly curved surfaces as a result of superior conformality. Densely packed nanodots with submicron periodicity are uniformly formed on microlens arrays with a radius of curvature that is as low as ∼28 μm. Increasing the size of the gratings causes the production area to be successfully expanded by up to 16 in(2). The "nano-on-micro" structures mimicking real compound eyes are transferred to flexible and stretchable substrates by sequential imprinting, facilitating multifunctional optical films applicable to antireflective diffusers for large-area sheet-illumination displays.
Degradation of CMOS image sensors in deep-submicron technology due to γ-irradiation
NASA Astrophysics Data System (ADS)
Rao, Padmakumar R.; Wang, Xinyang; Theuwissen, Albert J. P.
2008-09-01
In this work, radiation induced damage mechanisms in deep submicron technology is resolved using finger gated-diodes (FGDs) as a radiation sensitive tool. It is found that these structures are simple yet efficient structures to resolve radiation induced damage in advanced CMOS processes. The degradation of the CMOS image sensors in deep-submicron technology due to γ-ray irradiation is studied by developing a model for the spectral response of the sensor and also by the dark-signal degradation as a function of STI (shallow-trench isolation) parameters. It is found that threshold shifts in the gate-oxide/silicon interface as well as minority carrier life-time variations in the silicon bulk are minimal. The top-layer material properties and the photodiode Si-SiO2 interface quality are degraded due to γ-ray irradiation. Results further suggest that p-well passivated structures are inevitable for radiation-hard designs. It was found that high electrical fields in submicron technologies pose a threat to high quality imaging in harsh environments.
Impact of Functionally Graded Cylinders: Theory
NASA Technical Reports Server (NTRS)
Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, S. M. (Technical Monitor)
2001-01-01
This final report summarizes the work funded under the Grant NAG3-2411 during the 04/05/2000-04/04/2001 period. The objective of this one-year project was to generalize the theoretical framework of the two-dimensional higher-order theory for the analysis of cylindrical functionally graded materials/structural components employed in advanced aircraft engines developed under past NASA Glenn funding. The completed generalization significantly broadens the theory's range of applicability through the incorporation of dynamic impact loading capability into its framework. Thus, it makes possible the assessment of the effect of damage due to fuel impurities, or the presence of submicron-level debris, on the life of functionally graded structural components. Applications involving advanced turbine blades and structural components for the reusable-launch vehicle (RLV) currently under development will benefit from the completed work. The theory's predictive capability is demonstrated through a numerical simulation of a one-dimensional wave propagation set up by an impulse load in a layered half-plane. Full benefit of the completed generalization of the higher-order theory described in this report will be realized upon the development of a related computer code.
Carbon Nanofibrous Materials from Electrospinning: Preparation and Energy Applications
NASA Astrophysics Data System (ADS)
Aboagye, Alex
Carbon nanofibers with diameters that fall into submicron and nanometer range have attracted growing attention in recent years due to their superior chemical, electrical, and mechanical properties in combination with their unique one-dimensional nanostructures. Unlike catalytic synthesis, electrospinning polyacrylonitrile (PAN) followed by stabilization and carbonization has become a straightforward and convenient route to make continuous carbon nanofibers. The overall objective of this research was the design and production fiber based carbon nanomaterials, investigation of their structures and use in functional applications. Specifically, these carbon nanofibrous materials were employed as electrode material for energy storage and conversion devices such as dye sensitized solar cells and supercapacitors Morphology and structure of the carbon nanofibrous materials were investigated and their performance in corresponding applications were evaluated.
NASA Technical Reports Server (NTRS)
Tsuchiyama, A.; Nakato, A.; Matsuno, J.; Sugimoto, M.; Uesugi, K.; Takeuchi, A.; Nakano, T.; Vaccaro, E.; Russel, S.; Nakamura-Messenger, K.;
2017-01-01
Pristine carbonaceous chondrites contain fine-grained matrix, which is composed largely of amorphous silicates, sub-micron silicate and sulfide crystals, and organic materials. They are regarded as primitive dust in the early Solar System that have suffered minimal alteration in their parent bodies. The matrix generally has different lithologies; some of them are unaltered but some are more or less aqueously altered. Their textures have been examined in 2D usually by FE-SEM/EDS, TEM/EDS, nano-SIMS and micro-XRD. Observation of their complex fine textures, such as spatial relation between different lithologies in 3D, is important for understanding aggregation and alteration processes. Synchrotron radiation (SR)-based X-ray tomography reveals 3D structures nondestructively with high spatial resolution of approximately greater than 100 nm. We have developed a new technique using absorption contrasts called "dual-energy tomography" (DET) to obtain 3D distribution of minerals at SPring-8, SR facility in Japan, and applied successfully to Itokawa particles. Phase and absorption contrast images can be simultaneously obtained in 3D by using "scanning-imaging x-ray microscopy" (SIXM) at SPring-8, which can discriminate between void, water and organic materials. We applied this technique combined with FIB micro-sampling to carbonaceous chondrites to search for primitive liquid water. In this study, we combined the DET and SIXM to obtain three dimensional submicron-scale association between minerals, organic materials and water and applied this to pristine carbonaceous chondrites.
NASA Astrophysics Data System (ADS)
Keswani, Neeti; Nakajima, Yoshikata; Chauhan, Neha; Kumar, Sakthi; Ohno, H.; Das, Pintu
2018-05-01
In this work, we report the fabrication and transport properties of sub-micron Hall devices to be used for nanomagnetic studies. Hall bars were fabricated using electron-beam lithography followed by wet etching of GaAs/AlGaAs heterostructures containing two-dimensional electron gas (2-DEG). Metallization using multiple metallic layers were used to achieve ohmic contacts with the 2-DEG which is about 240 nm below the surface. Detailed characterization of the metallic layers using X-ray Photoelectron Spectroscopy (XPS) demonstrate the role of alloy formation and diffusion to form ohmic contacts with the 2-DEG. Electronic transport measurements show the metallic character of the 2-DEG. Hall effect and magnetoresistance were measured to estimate the carrier mobility of 4.2×104 cm2/V-s at 5 K in dark.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Kuan-Kan; Woon, Wei Yen; Chang, Ruey-Dar
We investigate the evolution of two dimensional transient enhanced diffusion (TED) of phosphorus in sub-micron scale patterned silicon template. Samples doped with low dose phosphorus with and without high dose silicon self-implantation, were annealed for various durations. Dopant diffusion is probed with plane-view scanning capacitance microscopy. The measurement revealed two phases of TED. Significant suppression in the second phase TED is observed for samples with high dose self-implantation. Transmission electron microscopy suggests the suppressed TED is related to the evolution of end of range defect formed around ion implantation sidewalls.
NASA Astrophysics Data System (ADS)
Hu, Kuan-Kan; Chang, Ruey-Dar; Woon, Wei Yen
2015-10-01
We investigate the evolution of two dimensional transient enhanced diffusion (TED) of phosphorus in sub-micron scale patterned silicon template. Samples doped with low dose phosphorus with and without high dose silicon self-implantation, were annealed for various durations. Dopant diffusion is probed with plane-view scanning capacitance microscopy. The measurement revealed two phases of TED. Significant suppression in the second phase TED is observed for samples with high dose self-implantation. Transmission electron microscopy suggests the suppressed TED is related to the evolution of end of range defect formed around ion implantation sidewalls.
Maxwell, James L; Rose, Chris R; Black, Marcie R; Springer, Robert W
2014-03-11
Microelectronic structures and devices, and method of fabricating a three-dimensional microelectronic structure is provided, comprising passing a first precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures to enhance formation of a first portion of said three-dimensional microelectronic structure; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said first portion of a selected three-dimensional microelectronic structure is formed from said first precursor material; positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs; passing a second precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures whereby a second portion of said three-dimensional microelectronic structure formation is enhanced; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said second portion of a selected three-dimensional microelectronic structure is formed from said second precursor material; and, positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neiman, Aleksei A., E-mail: nasa@ispms.tsc.ru; Lotkov, Aleksandr I.; Gudimova, Ekaterina Y.
The paper reports on a study of regularities of formation gradient nano-, submicron and microstructural conditions in the surface layers of the samples after pulsed electron-beam melting of tantalum coating on the substrate NiTi alloy. Experimentally revealed the presence of submicron columnar structure in the upper layers of the tantalum coating. After irradiation modified NiTi surface takes on a layered structure in which each layer differs in phase composition and structural phase state.
Photonic devices based on patterning by two photon induced polymerization techniques
NASA Astrophysics Data System (ADS)
Fortunati, I.; Dainese, T.; Signorini, R.; Bozio, R.; Tagliazucca, V.; Dirè, S.; Lemercier, G.; Mulatier, J.-C.; Andraud, C.; Schiavuta, P.; Rinaldi, A.; Licoccia, S.; Bottazzo, J.; Franco Perez, A.; Guglielmi, M.; Brusatin, G.
2008-04-01
Two and three dimensional structures with micron and submicron resolution have been achieved in commercial resists, polymeric materials and sol-gel materials by several lithographic techniques. In this context, silicon-based sol-gel materials are particularly interesting because of their versatility, chemical and thermal stability, amount of embeddable active compounds. Compared with other micro- and nano-fabrication schemes, the Two Photon Induced Polymerization is unique in its 3D processing capability. The photopolymerization is performed with laser beam in the near-IR region, where samples show less absorption and less scattering, giving rise to a deeper penetration of the light. The use of ultrashort laser pulses allows the starting of nonlinear processes like multiphoton absorption at relatively low average power without thermally damaging the samples. In this work we report results on the photopolymerization process in hybrid organic-inorganic films based photopolymerizable methacrylate-containing Si-nanobuilding blocks. Films, obtained through sol-gel synthesis, are doped with a photo-initiator allowing a radical polymerization of methacrylic groups. The photo-initiator is activated by femtosecond laser source, at different input energies. The development of the unexposed regions is performed with a suitable solvent and the photopolymerized structures are characterized by microscopy techniques.
Diamond Lattice Colloidal Crystals from Binary DNA-grafted Microspheres
NASA Astrophysics Data System (ADS)
Crocker, John; Wang, Yifan; Jenkins, Ian; McGinley, James; Sinno, Talid
Future optical materials promise to do for photonics what semiconductors did for electronics, but the challenge has long been in creating the structure they require regular, three-dimensional array of transparent microspheres arranged like the atoms in a diamond crystal. Here we demonstrate a simple approach for spontaneously growing double-diamond (or B32) crystals from a binary suspension of sub-micron polymer microspheres with synthetic DNA grafted to their surfaces. While diamond symmetry crystals have previously been grown from much smaller nanoparticles, none of those methods appear workable for the larger particles needed for photonic applications, whose size must be comparable to the wavelength of visible light. Intriguingly, matched simulations fail to nucleate or grow B32 crystals from suspension; nor have they been predicted on the basis of theoretical arguments. We conjecture that the B32 crystals may form via transformation from a precursor with a different lattice structure in the bulk or on its surface. The feasibility of converting our self-assembled crystals into diamond-symmetry photonic templates will be discussed. This finding suggests that still other unexpected microstructures may be accessible using this approach. US National Science Foundation, CBET- 1403237.
Duan, Bo; Shou, Kangquan; Su, Xiaojuan; Niu, Yahui; Zheng, Guan; Huang, Yao; Yu, Aixi; Zhang, Yu; Xia, Hong; Zhang, Lina
2017-07-10
Chitin exists abundantly in crab and shrimp shells as the template of the minerals, which inspired us to mineralize it for fabricating bone grafting materials. In the present work, chitin nanofibrous microspheres were used as the matrix for in situ synthesis of hydroxyapatite (HA) crystals including microflakes, submicron-needles, and submicron-spheres, which were penetrated by long chitin nanofibers, leading to the hierarchical structure. The shape and size of the HA crystals could be controlled by changing the HA synthesis process. The tight interface adhesion between chitin and HA through the noncovanlent bonds occurred in the composite microspheres, and HAs were homogeneously dispersed and bounded to the chitin nanofibers. In our findings, the inherent biocompatibilities of the both chitin and HA contributed the bone cell adhesion and osteoconduction. Moreover, the chitin microsphere with submicron-needle and submicron-sphere HA crystals remarkably promoted in vitro cell adhesion and in vivo bone healing. It was demonstrated that rabbits with 1.5 cm radius defect were almost cured completely within three months in a growth factor- and cell-free state, as a result of the unique surface microstructure and biocompatibilities of the composite microspheres. The microsphere scaffold displayed excellent biofunctions and an appropriate biodegradability. This work opened up a new avenue to construct natural polymer-based organic-inorganic hybrid microspheres for bone regeneration.
ORGANIC COMPOUNDS MEASURED IN PM2.5 DURING NEOPS
Secondary formation of submicron ambient particulate matter occurs when organic and inorganic constituents having sufficiently low volatility condense onto preexisting particles in the atmosphere. The presence of the resulting submicron particles has led to three important env...
Li, Ting [Ventura, CA
2011-04-26
The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.
NASA Astrophysics Data System (ADS)
Fang, Yiqi; Lu, Qinghong; Wang, Xiaolei; Zhang, Wuhong; Chen, Lixiang
2017-02-01
The study of vortex dynamics is of fundamental importance in understanding the structured light's propagation behavior in the realm of singular optics. Here, combining with the large-angle holographic lithography in photoresist, a simple experiment to trace and visualize the vortex birth and splitting of light fields induced by various fractional topological charges is reported. For a topological charge M =1.76 , the recorded microstructures reveal that although it finally leads to the formation of a pair of fork gratings, these two vortices evolve asynchronously. More interestingly, it is observed on the submicron scale that high-order topological charges M =3.48 and 3.52, respectively, give rise to three and four characteristic forks embedded in the samples with one-wavelength resolution of about 450 nm. Numerical simulations based on orbital angular momentum eigenmode decomposition support well the experimental observations. Our method could be applied effectively to study other structured matter waves, such as the electron and neutron beams.
3D holographic polymer photonic crystal for superprism application
NASA Astrophysics Data System (ADS)
Chen, Jiaqi; Jiang, Wei; Chen, Xiaonan; Wang, Li; Zhang, Sasa; Chen, Ray T.
2007-02-01
Photonic crystal based superprism offers a new way to design new optical components for beam steering and DWDM application. 3D photonic crystals are especially attractive as they could offer more control of the light beam based on the needs. A polygonal prism based holographic fabrication method has been demonstrated for a three-dimensional face-centered-cubic (FCC)-type submicron polymer photonic crystal using SU8 as the photo-sensitive material. Therefore antivibration equipment and complicated optical alignment system are not needed and the requirement for the coherence of the laser source is relaxed compared with the traditional holographic setup. By changing the top-cut prism structure, the polarization of the laser beam, the exposure and development conditions we can achieve different kinds of triclinic or orthorhombic photonic crystals on demand. Special fabrication treatments have been introduced to ensure the survivability of the fabricated large area (cm2) nano-structures. Scanning electron microscopy and diffraction results proved the good uniformity of the fabricated structures. With the proper design of the refraction prism we have achieved a partial bandgap for S+C band (1460-1565nm) in the [111] direction. The transmission and reflection spectra obtained by Fourier transform infrared spectroscopy (FTIR) are in good agreement with simulated band structure. The superprism effects around 1550nm wavelength for the fabricated 3D polymer photonic crystal have been theoretically calculated and such effects can be used for beam steering purpose.
Fabrication of submicron proteinaceous structures by direct laser writing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serien, Daniela; Takeuchi, Shoji, E-mail: takeuchi@iis.u-tokyo.ac.jp; ERATO Takeuchi Biohybrid Innovation Project, Japan Science and Technology Agency, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo
In this paper, we provide a characterization of truly free-standing proteinaceous structures with submicron feature sizes depending on the fabrication conditions by model-based analysis. Protein cross-linking of bovine serum albumin is performed by direct laser writing and two-photon excitation of flavin adenine dinucleotide. We analyze the obtainable fabrication resolution and required threshold energy for polymerization. The applied polymerization model allows prediction of fabrication conditions and resulting fabrication size, alleviating the application of proteinaceous structure fabrication.
Saha, Sourabh K.; Divin, Chuck; Cuadra, Jefferson A.; ...
2017-05-12
Two-photon polymerization (TPP) is a laser writing process that enables fabrication of millimeter scale three-dimensional (3D) structures with submicron features. In TPP, writing is achieved via nonlinear two-photon absorption that occurs at high laser intensities. Thus, it is essential to carefully select the incident power to prevent laser damage during polymerization. Currently, the feasible range of laser power is identified by writing small test patterns at varying power levels. Here in this paper, we demonstrate that the results of these tests cannot be generalized, because the damage threshold power depends on the proximity of features and reduces by as muchmore » as 47% for overlapping features. We have identified that this reduction occurs primarily due to an increase in the single-photon absorptivity of the resin after curing. We have captured the damage from proximity effects via X-ray 3D computed tomography (CT) images of a non-homogenous part that has varying feature density. Part damage manifests as internal spherical voids that arise due to boiling of the resist. We have empirically quantified this proximity effect by identifying the damage threshold power at different writing speeds and feature overlap spacings. In addition, we present a first-order analytical model that captures the scaling of this proximity effect. Based on this model and the experiments, we have identified that the proximity effect is more significant at high writing speeds; therefore, it adversely affects the scalability of manufacturing. The scaling laws and the empirical data generated here can be used to select the appropriate TPP writing parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Sourabh K.; Divin, Chuck; Cuadra, Jefferson A.
Two-photon polymerization (TPP) is a laser writing process that enables fabrication of millimeter scale three-dimensional (3D) structures with submicron features. In TPP, writing is achieved via nonlinear two-photon absorption that occurs at high laser intensities. Thus, it is essential to carefully select the incident power to prevent laser damage during polymerization. Currently, the feasible range of laser power is identified by writing small test patterns at varying power levels. Here in this paper, we demonstrate that the results of these tests cannot be generalized, because the damage threshold power depends on the proximity of features and reduces by as muchmore » as 47% for overlapping features. We have identified that this reduction occurs primarily due to an increase in the single-photon absorptivity of the resin after curing. We have captured the damage from proximity effects via X-ray 3D computed tomography (CT) images of a non-homogenous part that has varying feature density. Part damage manifests as internal spherical voids that arise due to boiling of the resist. We have empirically quantified this proximity effect by identifying the damage threshold power at different writing speeds and feature overlap spacings. In addition, we present a first-order analytical model that captures the scaling of this proximity effect. Based on this model and the experiments, we have identified that the proximity effect is more significant at high writing speeds; therefore, it adversely affects the scalability of manufacturing. The scaling laws and the empirical data generated here can be used to select the appropriate TPP writing parameters.« less
Submicron bidirectional all-optical plasmonic switches
Chen, Jianjun; Li, Zhi; Zhang, Xiang; Xiao, Jinghua; Gong, Qihuang
2013-01-01
Ultra-small all-optical switches are of importance in highly integrated optical communication and computing networks. However, the weak nonlinear light-matter interactions in natural materials present an enormous challenge to realize efficiently switching for the ultra-short interaction lengths. Here, we experimentally demonstrate a submicron bidirectional all-optical plasmonic switch with an asymmetric T-shape single slit. Sharp asymmetric spectra as well as significant field enhancements (about 18 times that in the conventional slit case) occur in the symmetry-breaking structure. Consequently, both of the surface plasmon polaritons propagating in the opposite directions on the metal surface are all-optically controlled inversely at the same time with the on/off switching ratios of >6 dB for the device lateral dimension of <1 μm. Moreover, in such a submicron structure, the coupling of free-space light and the on-chip bidirectional switching are integrated together. This submicron bidirectional all-optical switch may find important applications in the highly integrated plasmonic circuits. PMID:23486232
NASA Astrophysics Data System (ADS)
Zuo, Hao-Ran; Fu, Jia-Bei; Cao, Gui-Ping; Hu, Nian; Lu, Hui; Liu, Hui-Qing; Chen, Peng-Peng; Yu, Jie
2018-04-01
Monodisperse surface-charged submicron polystyrene particles were designed, synthesized, and blended into polysulfone (PSF) support layer to prepare forward osmosis (FO) membrane with high performance. The membrane incorporated with particles were characterized with respect to morphology, porosity, and internal osmotic pressure (IOP). Results showed that the polymer particles not only increased the hydrophilicity and porosity of support layer, but also generated considerable IOP, which helped markedly decreasing the structure parameter from 1550 to 670 μm. The measured mass transfer parameters further confirmed the beneficial effects of the surface-charged submicron polymer particles on the performance of FO membrane. For instance, the water permeability coefficient (5.37 L m-2 h-1 bar-1) and water flux (49.7 L m-2 h-1) of the FO membrane incorporated with 5 wt% particles were almost twice as much as that of FO membrane without incorporation. This study suggests that monodisperse surface-charged submicron polymer particles are potential modifiers for improving the performance of FO membranes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ting
The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE processmore » is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.« less
High density submicron magnetoresistive random access memory (invited)
NASA Astrophysics Data System (ADS)
Tehrani, S.; Chen, E.; Durlam, M.; DeHerrera, M.; Slaughter, J. M.; Shi, J.; Kerszykowski, G.
1999-04-01
Various giant magnetoresistance material structures were patterned and studied for their potential as memory elements. The preferred memory element, based on pseudo-spin valve structures, was designed with two magnetic stacks (NiFeCo/CoFe) of different thickness with Cu as an interlayer. The difference in thickness results in dissimilar switching fields due to the shape anisotropy at deep submicron dimensions. It was found that a lower switching current can be achieved when the bits have a word line that wraps around the bit 1.5 times. Submicron memory elements integrated with complementary metal-oxide-semiconductor (CMOS) transistors maintained their characteristics and no degradation to the CMOS devices was observed. Selectivity between memory elements in high-density arrays was demonstrated.
Mode structure of planar optical antennas on dielectric substrates
Word, Robert C.; Konenkamp, Rolf
2016-08-08
Here, we report a numerical study, supported by photoemission electron microscopy (PEEM), of sub-micron planar optical antennas on transparent substrate. We find these antennas generate intricate near-field spatial field distributions with odd and even numbers of nodes. We show that the field distributions are primarily superpositions of planar surface plasmon polariton modes confined to the metal/substrate interface. The mode structure provides opportunities for coherent switching and optical control in sub-micron volumes.
Method for making a bio-compatible scaffold
Cesarano, III, Joseph; Stuecker, John N [Albuquerque, NM; Dellinger, Jennifer G [Champaigne, IL; Jamison, Russell D [Urbana, IL
2006-01-31
A method for forming a three-dimensional, biocompatible, porous scaffold structure using a solid freeform fabrication technique (referred to herein as robocasting) that can be used as a medical implant into a living organism, such as a human or other mammal. Imaging technology and analysis is first used to determine the three-dimensional design required for the medical implant, such as a bone implant or graft, fashioned as a three-dimensional, biocompatible scaffold structure. The robocasting technique is used to either directly produce the three-dimensional, porous scaffold structure or to produce an over-sized three-dimensional, porous scaffold lattice which can be machined to produce the designed three-dimensional, porous scaffold structure for implantation.
A new route for the synthesis of submicron-sized LaB{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lihong, Bao; Wurentuya,; Wei, Wei
Submicron crystalline LaB{sub 6} has been successfully synthesized by a solid-state reaction of La{sub 2}O{sub 3} with NaBH{sub 4} at 1200 °C. The effects of reaction temperature on the crystal structure, grain size and morphology were investigated by X-ray diffraction, scanning electron microscope and transmission electron microscope. It is found that when the reaction temperature is in the range of 1000–1100 °C, there are ultrafine nanoparticles and nanocrystals that coexist. When the reaction temperature elevated to 1200 °C, the grain morphology transformed from ultrafine nanoparticle to submicron crystals completely. High resolution transmission electron microscope images fully confirm the formation ofmore » LaB{sub 6} cubic structure. - Highlights: • Single-phased LaB{sub 6} have been synthesized by a solid-state reaction in a continuous evacuating process. • The reaction temperature has a important effect on the phase composition. • The grain size increase from nano-size to submicron with increasing reaction temperature.« less
Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei
2015-03-01
Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni-Se-O-Cl crystals, zeolites, germanates, metal-organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods will become crucially important in the near future.
Artifacts for Calibration of Submicron Width Measurements
NASA Technical Reports Server (NTRS)
Grunthaner, Frank; Grunthaner, Paula; Bryson, Charles, III
2003-01-01
Artifacts that are fabricated with the help of molecular-beam epitaxy (MBE) are undergoing development for use as dimensional calibration standards with submicron widths. Such standards are needed for calibrating instruments (principally, scanning electron microscopes and scanning probe microscopes) for measuring the widths of features in advanced integrated circuits. Dimensional calibration standards fabricated by an older process that involves lithography and etching of trenches in (110) surfaces of single-crystal silicon are generally reproducible to within dimensional tolerances of about 15 nm. It is anticipated that when the artifacts of the present type are fully developed, their critical dimensions will be reproducible to within 1 nm. These artifacts are expected to find increasing use in the semiconductor-device and integrated- circuit industries as the width tolerances on semiconductor devices shrink to a few nanometers during the next few years. Unlike in the older process, one does not rely on lithography and etching to define the critical dimensions. Instead, one relies on the inherent smoothness and flatness of MBE layers deposited under controlled conditions and defines the critical dimensions as the thicknesses of such layers. An artifact of the present type is fabricated in two stages (see figure): In the first stage, a multilayer epitaxial wafer is grown on a very flat substrate. In the second stage, the wafer is cleaved to expose the layers, then the exposed layers are differentially etched (taking advantage of large differences between the etch rates of the different epitaxial layer materials). The resulting structure includes narrow and well-defined trenches and a shelf with thicknesses determined by the thicknesses of the epitaxial layers from which they were etched. Eventually, it should be possible to add a third fabrication stage in which durable, electronically inert artifacts could be replicated in diamondlike carbon from a master made by MBE and etching as described above.
Krieg, Janina; Chen, Chaoyu; Avila, José; Zhang, Zeying; Sigle, Wilfried; Zhang, Hongbin; Trautmann, Christina; Asensio, Maria Carmen; Toimil-Molares, Maria Eugenia
2016-07-13
Due to their high surface-to-volume ratio, cylindrical Bi2Te3 nanowires are employed as model systems to investigate the chemistry and the unique conductive surface states of topological insulator nanomaterials. We report on nanoangle-resolved photoemission spectroscopy (nano-ARPES) characterization of individual cylindrical Bi2Te3 nanowires with a diameter of 100 nm. The nanowires are synthesized by electrochemical deposition inside channels of ion-track etched polymer membranes. Core level spectra recorded with submicron resolution indicate a homogeneous chemical composition along individual nanowires, while nano-ARPES intensity maps reveal the valence band structure at the single nanowire level. First-principles electronic structure calculations for chosen crystallographic orientations are in good agreement with those revealed by nano-ARPES. The successful application of nano-ARPES on single one-dimensional nanostructures constitutes a new avenue to achieve a better understanding of the electronic structure of topological insulator nanomaterials.
Accurate calculation of field and carrier distributions in doped semiconductors
NASA Astrophysics Data System (ADS)
Yang, Wenji; Tang, Jianping; Yu, Hongchun; Wang, Yanguo
2012-06-01
We use the numerical squeezing algorithm(NSA) combined with the shooting method to accurately calculate the built-in fields and carrier distributions in doped silicon films (SFs) in the micron and sub-micron thickness range and results are presented in graphical form for variety of doping profiles under different boundary conditions. As a complementary approach, we also present the methods and the results of the inverse problem (IVP) - finding out the doping profile in the SFs for given field distribution. The solution of the IVP provides us the approach to arbitrarily design field distribution in SFs - which is very important for low dimensional (LD) systems and device designing. Further more, the solution of the IVP is both direct and much easy for all the one-, two-, and three-dimensional semiconductor systems. With current efforts focused on the LD physics, knowing of the field and carrier distribution details in the LD systems will facilitate further researches on other aspects and hence the current work provides a platform for those researches.
High-Resolution Phase-Contrast Imaging of Submicron Particles in Unstained Lung Tissue
NASA Astrophysics Data System (ADS)
Schittny, J. C.; Barré, S. F.; Mokso, R.; Haberthür, D.; Semmler-Behnke, M.; Kreyling, W. G.; Tsuda, A.; Stampanoni, M.
2011-09-01
To access the risks and chances of deposition of submicron particles in the gas-exchange area of the lung, a precise three-dimensional (3D)-localization of the sites of deposition is essential—especially because local peaks of deposition are expected in the acinar tree and in individual alveoli. In this study we developed the workflow for such an investigation. We administered 200-nm gold particles to young adult rats by intratracheal instillation. After fixation and paraffin embedding, their lungs were imaged unstained using synchrotron radiation x-ray tomographic microscopy (SRXTM) at the beamline TOMCAT (Swiss Light Source, Villigen, Switzerland) at sample detector distances of 2.5 mm (absorption contrast) and of 52.5 mm (phase contrast). A segmentation based on a global threshold of grey levels was successfully done on absorption-contrast images for the gold and on the phase-contrast images for the tissue. The smallest spots containing gold possessed a size of 1-2 voxels of 370-nm side length. We conclude that a combination of phase and absorption contrast SRXTM imaging is necessary to obtain the correct segmentation of both tissue and gold particles. This method will be used for the 3D localization of deposited particles in the gas-exchange area of the lung.
Chew, Xiongyeu; Zhou, Guangya; Yu, Hongbin; Chau, Fook Siong; Deng, Jie; Loke, Yee Chong; Tang, Xiaosong
2010-10-11
Control of photonic crystal resonances in conjunction with large spectral shifting is critical in achieving reconfigurable photonic crystal devices. We propose a simple approach to achieve nano-mechanical control of photonic crystal resonances within a compact integrated on-chip approach. Three different tip designs utilizing an in-plane nano-mechanical tuning approach are shown to achieve reversible and low-loss resonance control on a one-dimensional photonic crystal nanocavity. The proposed nano-mechanical approach driven by a sub-micron micro-electromechanical system integrated on low loss suspended feeding nanowire waveguide, achieved relatively large resonance spectral shifts of up to 18 nm at a driving voltage of 25 V. Such designs may potentially be used as tunable optical filters or switches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, Shusuke, E-mail: shusuke-okada@aist.go.jp; Takagi, Kenta; Ozaki, Kimihiro
Submicron-sized Sm{sub 2}Fe{sub 17} powder samples were fabricated by a non-pulverizing process through reduction-diffusion of precursors prepared by a wet-chemical technique. Three precursors having different morphologies, which were micron-sized porous Sm-Fe oxide-impregnated iron nitrate, acicular goethite impregnated-samarium nitrate, and a conventional Sm-Fe coprecipitate, were prepared and subjected to hydrogen reduction and reduction-diffusion treatment to clarify whether these precursors could be convert to Sm{sub 2}Fe{sub 17} without impurity phases and which precursor is the most attractive for producing submicron-sized Sm{sub 2}Fe{sub 17} powder. As a result, all three precursors were successfully converted to Sm{sub 2}Fe{sub 17} powders without impurity phases, andmore » the synthesis route using iron-oxide particle-impregnated samarium oxide was revealed to have the greatest potential among the three routes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirker, Grant; Zelinka, Sam; Gleber, Sophie -Charlotte
Ions play an important role in the growth and development of filamentous fungi, particularly in the fungal decay process of lignocellulose materials. The role of ions in wood degradation, and more broadly fungal metabolism, have implications for diverse research disciplines ranging from plant pathology and forest ecology, to wood protection. Despite the importance of ions in both enzymatic and non-enzymatic fungal decay mechanisms, the spatial distribution of ions in wood and fungal hyphae during decay is not known. Here we employ synchrotron based X-ray fluorescence microscopy (XFM) to map physiologically relevant ions, such as K, Ca, Mn, Fe, and Zn,more » in wood being decayed by the model brown rot fungus Serpula lacrymans. Two-dimensional XFM maps were obtained to study the ion spatial distributions from mm to submicron length scales in wood and hyphae. Three-dimensional ion volume reconstructions with submicron spatial resolution were also acquired of wood cell walls and fungal hyphae, and an estimation of oxalate concentration at the microscale was made. Results show that the fungus actively transports some ions, such as Fe, into the wood and controls the distribution of ions at both the bulk wood and cellular length scales. Within the fungal hyphae, ion volume reconstructions show inhomogeneous ion distributions at the micron length scale and this localization may be indicative of both physiological status and requirements or in some cases, potentially sites associated with the initiation of metal-catalyzed wood degradation. Finally, these measurements illustrate how synchrotron based XFM is uniquely qualified for probing the role of ions in the growth and metabolic processes of filamentous fungi.« less
Kirker, Grant; Zelinka, Sam; Gleber, Sophie -Charlotte; ...
2017-01-31
Ions play an important role in the growth and development of filamentous fungi, particularly in the fungal decay process of lignocellulose materials. The role of ions in wood degradation, and more broadly fungal metabolism, have implications for diverse research disciplines ranging from plant pathology and forest ecology, to wood protection. Despite the importance of ions in both enzymatic and non-enzymatic fungal decay mechanisms, the spatial distribution of ions in wood and fungal hyphae during decay is not known. Here we employ synchrotron based X-ray fluorescence microscopy (XFM) to map physiologically relevant ions, such as K, Ca, Mn, Fe, and Zn,more » in wood being decayed by the model brown rot fungus Serpula lacrymans. Two-dimensional XFM maps were obtained to study the ion spatial distributions from mm to submicron length scales in wood and hyphae. Three-dimensional ion volume reconstructions with submicron spatial resolution were also acquired of wood cell walls and fungal hyphae, and an estimation of oxalate concentration at the microscale was made. Results show that the fungus actively transports some ions, such as Fe, into the wood and controls the distribution of ions at both the bulk wood and cellular length scales. Within the fungal hyphae, ion volume reconstructions show inhomogeneous ion distributions at the micron length scale and this localization may be indicative of both physiological status and requirements or in some cases, potentially sites associated with the initiation of metal-catalyzed wood degradation. Finally, these measurements illustrate how synchrotron based XFM is uniquely qualified for probing the role of ions in the growth and metabolic processes of filamentous fungi.« less
Kuznetsov, Ilya; Filevich, Jorge; Dong, Feng; Woolston, Mark; Chao, Weilun; Anderson, Erik H.; Bernstein, Elliot R.; Crick, Dean C.; Rocca, Jorge J.; Menoni, Carmen S.
2015-01-01
Analytical probes capable of mapping molecular composition at the nanoscale are of critical importance to materials research, biology and medicine. Mass spectral imaging makes it possible to visualize the spatial organization of multiple molecular components at a sample's surface. However, it is challenging for mass spectral imaging to map molecular composition in three dimensions (3D) with submicron resolution. Here we describe a mass spectral imaging method that exploits the high 3D localization of absorbed extreme ultraviolet laser light and its fundamentally distinct interaction with matter to determine molecular composition from a volume as small as 50 zl in a single laser shot. Molecular imaging with a lateral resolution of 75 nm and a depth resolution of 20 nm is demonstrated. These results open opportunities to visualize chemical composition and chemical changes in 3D at the nanoscale. PMID:25903827
Nanoparticles in liquid crystals, and liquid crystals in nanoparticles
NASA Astrophysics Data System (ADS)
de Pablo, Juan
2015-03-01
Liquid crystals are remarkably sensitive to interfacial interactions. Small perturbations at a liquid crystal interface, for example, can be propagated over relatively long length scales, thereby providing the basis for a wide range of applications that rely on amplification of molecular events into macroscopic observables. Our recent research efforts have focused on the reverse phenomenon; that is, we have sought to manipulate the interfacial assembly of nanoparticles or the organization of surface active molecules by controlling the structure of a liquid crystal. This presentation will consist of a review of the basic principles that are responsible for liquid crystal-mediated interactions, followed by demonstrations of those principles in the context of two types of systems. In the first, a liquid crystal is used to direct the assembly of nanoparticles; through a combination of molecular and continuum models, it is found that minute changes in interfacial energy and particle size lead to liquid-crystal induced attractions that can span multiple orders of magnitude. Theoretical predictions are confirmed by experimental observations, which also suggest that LC-mediated assembly provides an effective means for fabrication of plasmonic devices. In the second type of system, the structure of a liquid crystal is controlled by confinement in submicron droplets. The morphology of the liquid crystal in a drop depends on a delicate balance between bulk and interfacial contributions to the free energy; that balance can be easily perturbed by adsorption of analytes or nanoparticles at the interface, thereby providing the basis for development of hierarchical assembly of responsive, anisotropic materials. Theoretical predictions also indicate that the three-dimensional order of a liquid crystal can be projected onto a two-dimensional interface, and give rise to novel nanostructures that are not found in simple isotropic fluids.
Capabilities of ICP-RIE cryogenic dry etching of silicon: review of exemplary microstructures
NASA Astrophysics Data System (ADS)
Sökmen, Ü.; Stranz, A.; Fündling, S.; Wehmann, H.-H.; Bandalo, V.; Bora, A.; Tornow, M.; Waag, A.; Peiner, E.
2009-10-01
Inductively coupled plasma (ICP) cryogenic dry etching was used to etch submicron pores, nano contact lines, submicron diameter pillars, thin and thick cantilevers, membrane structures and anisotropic deep structures with high aspect ratios in silicon for bio-nanoelectronics, optoelectronics and nano-micro electromechanical systems (NMEMS). The ICP cryogenic dry etching gives us the advantage of switching plasmas between etch rates of 13 nm min-1 and 4 µm min-1 for submicron pores and for membrane structures, respectively. A very thin photoresist mask can endure at -75 °C even during etching 70 µm deep for cantilevers and 300 µm deep for membrane structures. Coating the backsides of silicon membrane substrates with a thin photoresist film inhibited the lateral etching of cantilevers during their front release. Between -95 °C and -140 °C, we realized crystallographic-plane-dependent etching that creates facets only at the etch profile bottom. By varying the oxygen content and the process temperature, we achieved good control over the shape of the etched structures. The formation of black silicon during membrane etching down to 300 µm was delayed by reducing the oxygen content.
Modeling drying of three-dimensional pulp molded structures. Part I, Experimental program
Heike Nyist; John F. Hunt; Margit Tamasy-Bano
1998-01-01
Researchers at the USDA Forest Products Laboratory have developed a new three-dimensional structural panel, called FPL Spaceboard. This panel is formed using a U.S. patented three-dimensional mold capable of using a variety of fibrous materials with either the wet- or dry-forming process. Structurally, the panel departs from the traditional two-dimensional panel by...
Mechanisms of Current Transfer in Electrodeposited Layers of Submicron Semiconductor Particles
NASA Astrophysics Data System (ADS)
Zhukov, N. D.; Mosiyash, D. S.; Sinev, I. V.; Khazanov, A. A.; Smirnov, A. V.; Lapshin, I. V.
2017-12-01
Current-voltage ( I- V) characteristics of conductance in multigrain layers of submicron particles of silicon, gallium arsenide, indium arsenide, and indium antimonide have been studied. Nanoparticles of all semiconductors were obtained by processing initial single crystals in a ball mill and applied after sedimentation onto substrates by means of electrodeposition. Detailed analysis of the I- V curves of electrodeposited layers shows that their behavior is determined by the mechanism of intergranular tunneling emission from near-surface electron states of submicron particles. Parameters of this emission process have been determined. The proposed multigrain semiconductor structures can be used in gas sensors, optical detectors, IR imagers, etc.
Kim, Tae-Wook; Choi, Hyejung; Oh, Seung-Hwan; Jo, Minseok; Wang, Gunuk; Cho, Byungjin; Kim, Dong-Yu; Hwang, Hyunsang; Lee, Takhee
2009-01-14
The resistive switching characteristics of polyfluorene-derivative polymer material in a sub-micron scale via-hole device structure were investigated. The scalable via-hole sub-microstructure was fabricated using an e-beam lithographic technique. The polymer non-volatile memory devices varied in size from 40 x 40 microm(2) to 200 x 200 nm(2). From the scaling of junction size, the memory mechanism can be attributed to the space-charge-limited current with filamentary conduction. Sub-micron scale polymer memory devices showed excellent resistive switching behaviours such as a large ON/OFF ratio (I(ON)/I(OFF) approximately 10(4)), excellent device-to-device switching uniformity, good sweep endurance, and good retention times (more than 10,000 s). The successful operation of sub-micron scale memory devices of our polyfluorene-derivative polymer shows promise to fabricate high-density polymer memory devices.
Wunner, Felix M; Bas, Onur; Saidy, Navid T; Dalton, Paul D; Pardo, Elena M De-Juan; Hutmacher, Dietmar W
2017-12-23
This tutorial reflects on the fundamental principles and guidelines for electrospinning writing with polymer melts, an additive manufacturing technology with great potential for biomedical applications. The technique facilitates the direct deposition of biocompatible polymer fibers to fabricate well-ordered scaffolds in the sub-micron to micro scale range. The establishment of a stable, viscoelastic, polymer jet between a spinneret and a collector is achieved using an applied voltage and can be direct-written. A significant benefit of a typical porous scaffold is a high surface-to-volume ratio which provides increased effective adhesion sites for cell attachment and growth. Controlling the printing process by fine-tuning the system parameters enables high reproducibility in the quality of the printed scaffolds. It also provides a flexible manufacturing platform for users to tailor the morphological structures of the scaffolds to their specific requirements. For this purpose, we present a protocol to obtain different fiber diameters using melt electrospinning writing (MEW) with a guided amendment of the parameters, including flow rate, voltage and collection speed. Furthermore, we demonstrate how to optimize the jet, discuss often experienced technical challenges, explain troubleshooting techniques and showcase a wide range of printable scaffold architectures.
Enhanced performance of a structured cyclo olefin copolymer-based amorphous silicon solar cell
NASA Astrophysics Data System (ADS)
Zhan, Xinghua; Chen, Fei; Gao, Mengyu; Tie, Shengnian; Gao, Wei
2017-07-01
The submicron array was fabricated onto a cyclo olefin copolymer (COC) film by a hot embossing method. An amorphous silicon p-i-n junction and transparent conductive layers were then deposited onto it through a plasma enhanced chemical vapor deposition (PECVD) and magnetron sputtering. The efficiency of the fabricated COC-based solar cell was measured and the result demonstrated 18.6% increase of the solar cell efficiency when compared to the sample without array structure. The imprinted polymer solar cells with submicron array indeed increase their efficiency.
Semiconductor Materials for High Frequency Solid State Sources.
1985-01-18
saturation on near and submicron-scale device performance. The motivation for this is as follows: Presently, individual semiconductors are accepted or...basis of all FET scaling procedures; and is a major motivating factor for going to submicron structures. This scaling was tested with the 4 following...performance. The motivation for this is as follows: Presently, individual semiconductors are accepted or rejected as candidate device materials based, in
Sanchez, Sophie; Dupret, Vincent; Tafforeau, Paul; Trinajstic, Katherine M; Ryll, Bettina; Gouttenoire, Pierre-Jean; Wretman, Lovisa; Zylberberg, Louise; Peyrin, Françoise; Ahlberg, Per E
2013-01-01
Firm attachments binding muscles to skeleton are crucial mechanical components of the vertebrate body. These attachments (entheses) are complex three-dimensional structures, containing distinctive arrangements of cells and fibre systems embedded in the bone, which can be modified during ontogeny. Until recently it has only been possible to obtain 2D surface and thin section images of entheses, leaving their 3D histology largely unstudied except by extrapolation from 2D data. Entheses are frequently preserved in fossil bones, but sectioning is inappropriate for rare or unique fossil material. Here we present the first non-destructive 3D investigation, by propagation phase contrast synchrotron microtomography (PPC-SRµCT), of enthesis histology in extant and fossil vertebrates. We are able to identify entheses in the humerus of the salamander Desmognathus from the organization of bone-cell lacunae and extrinsic fibres. Statistical analysis of the lacunae differentiates types of attachments, and the orientation of the fibres, reflect the approximate alignment of the muscle. Similar histological structures, including ontogenetically related pattern changes, are perfectly preserved in two 380 million year old fossil vertebrates, the placoderm Compagopiscis croucheri and the sarcopterygian fish Eusthenopteron foordi. We are able to determine the position of entheses in fossil vertebrates, the approximate orientation of the attached muscles, and aspects of their ontogenetic histories, from PPC-SRµCT data. Sub-micron microtomography thus provides a powerful tool for studying the structure, development, evolution and palaeobiology of muscle attachments.
NASA Astrophysics Data System (ADS)
Hu, Z. W.; Winarski, R. P.
2016-09-01
Unlocking the 3-D structure and properties of intact chondritic porous interplanetary dust particles (IDPs) in nanoscale detail is challenging, which is also complicated by atmospheric entry heating, but is important for advancing our understanding of the formation and origins of IDPs and planetary bodies as well as dust and ice agglomeration in the outer protoplanetary disk. Here, we show that indigenous pores, pristine grains, and thermal alteration products throughout intact particles can be noninvasively visualized and distinguished morphologically and microstructurally in 3-D detail down to ~10 nm by exploiting phase contrast X-ray nanotomography. We have uncovered the surprisingly intricate, submicron, and nanoscale pore structures of a ~10-μm-long porous IDP, consisting of two types of voids that are interconnected in 3-D space. One is morphologically primitive and mostly submicron-sized intergranular voids that are ubiquitous; the other is morphologically advanced and well-defined intragranular nanoholes that run through the approximate centers of ~0.3 μm or lower submicron hollow grains. The distinct hollow grains exhibit complex 3-D morphologies but in 2-D projections resemble typical organic hollow globules observed by transmission electron microscopy. The particle, with its outer region characterized by rough vesicular structures due to thermal alteration, has turned out to be an inherently fragile and intricately submicron- and nanoporous aggregate of the sub-μm grains or grain clumps that are delicately bound together frequently with little grain-to-grain contact in 3-D space.
Integrated Aeromechanics with Three-Dimensional Solid-Multibody Structures
NASA Technical Reports Server (NTRS)
Datta, Anubhav; Johnson, Wayne
2014-01-01
A full three-dimensional finite element-multibody structural dynamic solver is coupled to a three-dimensional Reynolds-averaged Navier-Stokes solver for the prediction of integrated aeromechanical stresses and strains on a rotor blade in forward flight. The objective is to lay the foundations of all major pieces of an integrated three-dimensional rotor dynamic analysis - from model construction to aeromechanical solution to stress/strain calculation. The primary focus is on the aeromechanical solution. Two types of three-dimensional CFD/CSD interfaces are constructed for this purpose with an emphasis on resolving errors from geometry mis-match so that initial-stage approximate structural geometries can also be effectively analyzed. A three-dimensional structural model is constructed as an approximation to a UH-60A-like fully articulated rotor. The aerodynamic model is identical to the UH-60A rotor. For preliminary validation measurements from a UH-60A high speed flight is used where CFD coupling is essential to capture the advancing side tip transonic effects. The key conclusion is that an integrated aeromechanical analysis is indeed possible with three-dimensional structural dynamics but requires a careful description of its geometry and discretization of its parts.
NASA Astrophysics Data System (ADS)
Lee, Bryan E. J.; Exir, Hourieh; Weck, Arnaud; Grandfield, Kathryn
2018-05-01
Reproducible and controllable methods of modifying titanium surfaces for dental and orthopaedic applications are of interest to prevent poor implant outcomes by improving osseointegration. This study made use of a femtosecond laser to generate laser-induced periodic surface structures with periodicities of 300, 620 and 760 nm on titanium substrates. The reproducible rippled patterns showed consistent submicron scale roughness and relatively hydrophobic surfaces as measured by atomic force microscopy and contact angle, respectively. Transmission electron microscopy and Auger electron spectroscopy identified a thicker oxide layer on ablated surfaces compared to controls. In vitro testing was conducted using osteosarcoma Saos-2 cells. Cell metabolism on the laser-ablated surfaces was comparable to controls and alkaline phosphatase activity was notably increased at late time points for the 620 and 760 nm surfaces compared to controls. Cells showed a more elongated shape on laser-ablated surfaces compared to controls and showed perpendicular alignment to the periodic structures. This work has demonstrated the feasibility of generating submicron features on an implant material with the ability to influence cell response and improve implant outcomes.
Lab on a Chip Packing of Submicron Particles for High Performance EOF Pumping
2010-08-26
and wet etching techniques, using a soda lime glass substrate coated with chromium and photoresist (Nanofilm, Westlake Village, CA). A weir structure...observed previously for these soda lime glass microchips [8]. Images of the three segments of different sized particles con- tainedwithin the packed... Silica beads High pressure Lab on a chip a b s t r a c t The packing of submicrometer sized silica beads inside a microchannel was enabled by a novel
NASA Astrophysics Data System (ADS)
Klimov, A.; Słysz, W.; Guziewicz, M.; Kolkovsky, V.; Wegrzecki, M.; Bar, J.; Marchewka, M.; Seredyński, B.
2016-12-01
Critical current and current-voltage characteristics of epitaxial Nb(Ti)N submicron ultrathin structures were measured as function of temperature. For 700-nm-wide bridge we found current-driven vortex de-pinning at low temperatures and thermally activated flux flow closer to the transition temperature, as the limiting factors for the critical current density. For 100-nm-wide meander we observed combination of phase-slip activation and vortex-anti-vortex pair (VAP) thermal excitation. Our Nb(Ti)N meander structure demonstrates high de-pairing critical current densities 107 A/cm2 at low temperatures, but the critical currents are much smaller due to presence of the local constrictions.
Continuum modeling of three-dimensional truss-like space structures
NASA Technical Reports Server (NTRS)
Nayfeh, A. H.; Hefzy, M. S.
1978-01-01
A mathematical and computational analysis capability has been developed for calculating the effective mechanical properties of three-dimensional periodic truss-like structures. Two models are studied in detail. The first, called the octetruss model, is a three-dimensional extension of a two-dimensional model, and the second is a cubic model. Symmetry considerations are employed as a first step to show that the specific octetruss model has four independent constants and that the cubic model has two. The actual values of these constants are determined by averaging the contributions of each rod element to the overall structure stiffness. The individual rod member contribution to the overall stiffness is obtained by a three-dimensional coordinate transformation. The analysis shows that the effective three-dimensional elastic properties of both models are relatively close to each other.
ERIC Educational Resources Information Center
Urhahne, Detlef; Nick, Sabine; Schanze, Sascha
2009-01-01
In a series of three experimental studies, the effectiveness of three-dimensional computer simulations to aid the understanding of chemical structures and their properties was investigated. Arguments for the usefulness of three-dimensional simulations were derived from Mayer's generative theory of multimedia learning. Simulations might lead to a…
Song, Guanying; Li, Zhenjiang; Li, Kaihua; Zhang, Lina; Meng, Alan
2017-02-24
In this work, SiO2/ZnO composite hollow sub-micron fibers were fabricated by a facile single capillary electrospinning technique followed by calcination, using tetraethyl orthosilicate (TEOS), polyvinylpyrrolidone (PVP) and ZnO nanoparticles as raw materials. The characterization results of the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) spectra indicated that the asprepared composite hollow fibers consisted of amorphous SiO2 and hexagonal wurtzite ZnO. The products revealed uniform tubular structure with outer diameters of 400-500 nm and wall thickness of 50-60 nm. The gases generated and the directional escaped mechanism was proposed to illustrate the formation of SiO2/ZnO composite hollow sub-micron fibers. Furthermore, a broad blue emission band was observed in the photoluminescence (PL) of SiO2/ZnO composite hollow sub-micron fibers, exhibiting great potential applications as blue light-emitting candidate materials.
Getmanskii, Iliya V; Minyaev, Ruslan M; Steglenko, Dmitrii V; Koval, Vitaliy V; Zaitsev, Stanislav A; Minkin, Vladimir I
2017-08-14
With help of the DFT calculations and imposing of periodic boundary conditions the geometrical and electronic structures were investigated of two- and three-dimensional boron systems designed on the basis of graphane and diamond lattices in which carbons were replaced with boron tetrahedrons. The consequent studies of two- and three-layer systems resulted in the construction of a three-dimensional supertetrahedral borane crystal structure. The two-dimensional supertetrahedral borane structures with less than seven layers are dynamically unstable. At the same time the three-dimensional superborane systems were found to be dynamically stable. Lack of the forbidden electronic zone for the studied boron systems testifies that these structures can behave as good conductors. The low density of the supertetrahedral borane crystal structures (0.9 g cm -3 ) is close to that of water, which offers the perspective for their application as aerospace and cosmic materials. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Simplified energy-balance model for pragmatic multi-dimensional device simulation
NASA Astrophysics Data System (ADS)
Chang, Duckhyun; Fossum, Jerry G.
1997-11-01
To pragmatically account for non-local carrier heating and hot-carrier effects such as velocity overshoot and impact ionization in multi-dimensional numerical device simulation, a new simplified energy-balance (SEB) model is developed and implemented in FLOODS[16] as a pragmatic option. In the SEB model, the energy-relaxation length is estimated from a pre-process drift-diffusion simulation using the carrier-velocity distribution predicted throughout the device domain, and is used without change in a subsequent simpler hydrodynamic (SHD) simulation. The new SEB model was verified by comparison of two-dimensional SHD and full HD DC simulations of a submicron MOSFET. The SHD simulations yield detailed distributions of carrier temperature, carrier velocity, and impact-ionization rate, which agree well with the full HD simulation results obtained with FLOODS. The most noteworthy feature of the new SEB/SHD model is its computational efficiency, which results from reduced Newton iteration counts caused by the enhanced linearity. Relative to full HD, SHD simulation times can be shorter by as much as an order of magnitude since larger voltage steps for DC sweeps and larger time steps for transient simulations can be used. The improved computational efficiency can enable pragmatic three-dimensional SHD device simulation as well, for which the SEB implementation would be straightforward as it is in FLOODS or any robust HD simulator.
Softly-confined water cluster between freestanding graphene sheets
NASA Astrophysics Data System (ADS)
Agustian, Rifan; Akaishi, Akira; Nakamura, Jun
2018-01-01
Confined water could adopt new forms not seen in the open air, such as a two-dimensional (2D) square ice trapped between two graphene sheets [Algara-Siller et al., Nature 519, 443-445 (2015)]. In this study, in order to investigate how the flexibility of graphene affects the confined structure of water molecules, we employed classical molecular dynamics simulations with Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential to produce a soft-confining property of graphene. We discovered various solid-like structures of water molecules ranging from two-dimensional to three-dimensional structure encapsulated between two freestanding graphene sheets even at room temperature (300K). A small amount of water encapsulation leads to a layered two-dimensional form with triangular structure. On the other hand, large amounts of water molecules take a three-dimensional flying-saucer-like form with the square ice intra-layer structure. There is also a metastable state where both two-dimensional and three-dimensional structures coexist.
Quantum Transport Properties in Two-Dimensional and Low Dimensional Systems
NASA Astrophysics Data System (ADS)
Fang, Hao
1991-02-01
The quantum transport properties in quasi two -dimensional and zero-dimensional systems have been studied at magnetic field of 0 - 8T and low temperatures down to 1.3K. In the (100) Si inversion layer, we investigated the effect of valley splitting on the value of the enhanced effective g factor by the tilted magnetic field measurement. The valley splitting is determined from the beat effect on samples with measurable valley splitting behavior due to misorientation effects. Experimental results illustrate that the effective g factor is enhanced by many body interactions and that the valley splitting has no obvious effect on the g-value. A simulation calculation with a Gaussian distribution of density of states has been carried out and the simulated results are in an excellent agreement with the experimental data. A new and very simple technique has been developed for fabricating two-dimensional periodic submicron structures with feature sizes down to about 300 A. The etching mask is made by coating the material surface with a monolayer of close-packed uniform latex particles. We have demonstrated the formation of a quasi zero-dimensional quantum dot array and performed capacitance measurements on GaAs/AlGaAs heterostructure samples with periodicities ranging from 3000 to 4000 A. A series of nearly equally spaced peaks in a curve of the derivative of capacitance with respect to gate voltage, which corresponds to the energy levels formed by the lateral electric confining potential, is observed. The energy spacings and effective dot widths estimated from a simple parabolic potential model are consistent with the experimental data. Novel magnetoresistance oscillations in a two -dimensional electron gas modulated by a two-dimensional triangular superlattice potential are observed in GaAs/AlGaAs heterostructures. The new oscillations appear at very low magnetic fields and the peak positions are directly determined by the magnetic field and the periodicity of the modulation structure. New oscillation results from the modulation-broadened Landau bandwidth and the induced density of states variation with magnetic field. Physical explanations and theoretical approaches for the commensurability problem in a two-dimensional triangular superlattice potential are presented. The differences in oscillation frequencies and phase factors for two kinds of samples correlate with structures differing in degree of depletion and the resulting geometry.
Macroporous Hydrogel Scaffolds for Three-Dimensional Cell Culture and Tissue Engineering.
Fan, Changjiang; Wang, Dong-An
2017-10-01
Hydrogels have been promising candidate scaffolds for cell delivery and tissue engineering due to their tissue-like physical properties and capability for homogeneous cell loading. However, the encapsulated cells are generally entrapped and constrained in the submicron- or nanosized gel networks, seriously limiting cell growth and tissue formation. Meanwhile, the spatially confined settlement inhibits attachment and spreading of anchorage-dependent cells, leading to their apoptosis. In recent years, macroporous hydrogels have attracted increasing attention in use as cell delivery vehicles and tissue engineering scaffolds. The introduction of macropores within gel scaffolds not only improves their permeability for better nutrient transport but also creates space/interface for cell adhesion, proliferation, and extracellular matrix deposition. Herein, we will first review the development of macroporous gel scaffolds and outline the impact of macropores on cell behaviors. In the first part, the advantages and challenges of hydrogels as three-dimensional (3D) cell culture scaffolds will be described. In the second part, the fabrication of various macroporous hydrogels will be presented. Third, the enhancement of cell activities within macroporous gel scaffolds will be discussed. Finally, several crucial factors that are envisaged to propel the improvement of macroporous gel scaffolds are proposed for 3D cell culture and tissue engineering.
Agarwal, Nitin; Biancardi, Alberto M; Patten, Florence W; Reeves, Anthony P; Seibel, Eric J
2014-04-01
Aneuploidy is typically assessed by flow cytometry (FCM) and image cytometry (ICM). We used optical projection tomographic microscopy (OPTM) for assessing cellular DNA content using absorption and fluorescence stains. OPTM combines some of the attributes of both FCM and ICM and generates isometric high-resolution three-dimensional (3-D) images of single cells. Although the depth of field of the microscope objective was in the submicron range, it was extended by scanning the objective's focal plane. The extended depth of field image is similar to a projection in a conventional x-ray computed tomography. These projections were later reconstructed using computed tomography methods to form a 3-D image. We also present an automated method for 3-D nuclear segmentation. Nuclei of chicken, trout, and triploid trout erythrocyte were used to calibrate OPTM. Ratios of integrated optical densities extracted from 50 images of each standard were compared to ratios of DNA indices from FCM. A comparison of mean square errors with thionin, hematoxylin, Feulgen, and SYTOX green was done. Feulgen technique was preferred as it showed highest stoichiometry, least variance, and preserved nuclear morphology in 3-D. The addition of this quantitative biomarker could further strengthen existing classifiers and improve early diagnosis of cancer using 3-D microscopy.
Experiments on an unsteady, three-dimensional separation
NASA Technical Reports Server (NTRS)
Henk, R. W.; Reynolds, W. C.; Reed, H. L.
1992-01-01
Unsteady, three-dimensional flow separation occurs in a variety of technical situations including turbomachinery and low-speed aircraft. An experimental program at Stanford in unsteady, three-dimensional, pressure-driven laminar separation has investigated the structure and time-scaling of these flows; of particular interest is the development, washout, and control of flow separation. Results reveal that a two-dimensional, laminar boundary layer passes through several stages on its way to a quasi-steady three-dimensional separation. The quasi-steady state of the separation embodies a complex, unsteady, vortical structure.
Koppes, Abigail N; Kamath, Megha; Pfluger, Courtney A; Burkey, Daniel D; Dokmeci, Mehmet; Wang, Lin; Carrier, Rebecca L
2016-08-22
Native small intestine possesses distinct multi-scale structures (e.g., crypts, villi) not included in traditional 2D intestinal culture models for drug delivery and regenerative medicine. The known impact of structure on cell function motivates exploration of the influence of intestinal topography on the phenotype of cultured epithelial cells, but the irregular, macro- to submicron-scale features of native intestine are challenging to precisely replicate in cellular growth substrates. Herein, we utilized chemical vapor deposition of Parylene C on decellularized porcine small intestine to create polymeric intestinal replicas containing biomimetic irregular, multi-scale structures. These replicas were used as molds for polydimethylsiloxane (PDMS) growth substrates with macro to submicron intestinal topographical features. Resultant PDMS replicas exhibit multiscale resolution including macro- to micro-scale folds, crypt and villus structures, and submicron-scale features of the underlying basement membrane. After 10 d of human epithelial colorectal cell culture on PDMS substrates, the inclusion of biomimetic topographical features enhanced alkaline phosphatase expression 2.3-fold compared to flat controls, suggesting biomimetic topography is important in induced epithelial differentiation. This work presents a facile, inexpensive method for precisely replicating complex hierarchal features of native tissue, towards a new model for regenerative medicine and drug delivery for intestinal disorders and diseases.
NASA Astrophysics Data System (ADS)
Nomura, Kazuya; Okada, Akiko; Shoji, Shuichi; Ogashiwa, Toshinori; Mizuno, Jun
2016-10-01
We propose hermetic sealing of a glass-to-glass structure with an I-structure through-glass interconnect via (TGV) filled with submicron Au particles. The top and bottom bumps and the TGV were formed by a simple filling process with a bump-patterned dry film resist. The sealing devices consisting of two glass substrates were bonded via Au interlayers. Vacuum ultraviolet irradiation in the presence of oxygen gas (VUV/O3) pretreatment was used for low-temperature Au-Au bonding at 200 °C. The bonded samples showed He leakage rates of less than 1.3 × 10-9 Pa m3 s-1. The cross-sectional scanning electron microscope images of the fabricated I-structure TGV showed perfect adhesion between the I-structure TGV and glass substrate. These results indicate that the proposed I-structure TGV is suitable for hermetic sealing devices.
Tian, Junlong; Zhang, Wang; Zhang, Yuan; Xue, Ruiyang; Wang, Yuhua; Zhang, Zhijian; Zhang, Di
2015-06-03
In this work, Au-Bi(2)Te(3) nanocomposite thermoelectric film with a hierarchical sub-micron antireflection quasi-periodic structure was synthesized via a low-temperature chemical route using Troides helena (Linnaeus) forewing (T_FW) as the biomimetic template. This method combines chemosynthesis with biomimetic techniques, without the requirement of expensive equipment and energy intensive processes. The microstructure and the morphology of the Au-Bi(2)Te(3) nanocomposite thermoelectric film was analyzed by X-ray diffraction (XRD), field-emission scanning-electron microscopy (FESEM), and transmission electron microscopy (TEM). Coupled the plasmon resonances of the Au nanoparticles with the hierarchical sub-micron antireflection quasi-periodic structure, the Au-Bi(2)Te(3) nanocomposite thermoelectric film possesses an effective infrared absorption and infrared photothermal conversion performance. Based on the finite difference time domain method and the Joule effect, the heat generation and the heat source density distribution of the Au-Bi(2)Te(3) nanocomposite thermoelectric film were studied. The heterogeneity of heat source density distribution of the Au-Bi(2)Te(3) nanocomposite thermoelectric film opens up a novel promising technique for generating thermoelectric power under illumination.
Parallel computation of three-dimensional aeroelastic fluid-structure interaction
NASA Astrophysics Data System (ADS)
Sadeghi, Mani
This dissertation presents a numerical method for the parallel computation of aeroelasticity (ParCAE). A flow solver is coupled to a structural solver by use of a fluid-structure interface method. The integration of the three-dimensional unsteady Navier-Stokes equations is performed in the time domain, simultaneously to the integration of a modal three-dimensional structural model. The flow solution is accelerated by using a multigrid method and a parallel multiblock approach. Fluid-structure coupling is achieved by subiteration. A grid-deformation algorithm is developed to interpolate the deformation of the structural boundaries onto the flow grid. The code is formulated to allow application to general, three-dimensional, complex configurations with multiple independent structures. Computational results are presented for various configurations, such as turbomachinery blade rows and aircraft wings. Investigations are performed on vortex-induced vibrations, effects of cascade mistuning on flutter, and cases of nonlinear cascade and wing flutter.
Three dimensional electron microscopy and in silico tools for macromolecular structure determination
Borkotoky, Subhomoi; Meena, Chetan Kumar; Khan, Mohammad Wahab; Murali, Ayaluru
2013-01-01
Recently, structural biology witnessed a major tool - electron microscopy - in solving the structures of macromolecules in addition to the conventional techniques, X-ray crystallography and nuclear magnetic resonance (NMR). Three dimensional transmission electron microscopy (3DTEM) is one of the most sophisticated techniques for structure determination of molecular machines. Known to give the 3-dimensional structures in its native form with literally no upper limit on size of the macromolecule, this tool does not need the crystallization of the protein. Combining the 3DTEM data with in silico tools, one can have better refined structure of a desired complex. In this review we are discussing about the recent advancements in three dimensional electron microscopy and tools associated with it. PMID:27092033
ERIC Educational Resources Information Center
Lazarowitz, Reuven; Naim, Raphael
2014-01-01
The cell topic was taught to 9th-grade students in three modes of instruction: (a) students "hands-on," who constructed three-dimensional cell organelles and macromolecules during the learning process; (b) teacher demonstration of the three-dimensional model of the cell structures; and (c) teaching the cell topic with the regular…
Elastic properties of protein functionalized nanoporous polymer films
Charles T. Black; Wang, Haoyu; Akcora, Pinar
2015-12-16
Retaining the conformational structure and bioactivity of immobilized proteins is important for biosensor designs and drug delivery systems. Confined environments often lead to changes in conformation and functions of proteins. In this study, lysozyme is chemically tethered into nanopores of polystyrene thin films, and submicron pores in poly(methyl methacrylate) films are functionalized with streptavidin. Nanoindentation experiments show that stiffness of streptavidin increases with decreasing submicron pore sizes. Lysozymes in polystyrene nanopores are found to behave stiffer than the submicron pore sizes and still retain their specific bioactivity relative to the proteins on flat surfaces. Lastly, our results show that proteinmore » functionalized ordered nanoporous polystyrene/poly(methyl methacrylate) films present heterogeneous elasticity and can be used to study interactions between free proteins and designed surfaces.« less
NASA Astrophysics Data System (ADS)
Ian, Ka Wa; Exarchos, Michael; Missous, Mohamed
2013-02-01
We report a new and simple low temperature soft reflow process using solvent vapour. The combination of this soft reflow and conventional i-line lithography enables low cost, highly efficient fabrication at the deep-submicron scale. Compared to the conventional thermal reflow process, the key benefits of the new soft reflow process are its low temperature operation (<50 °C), greater shrinkage of the structure size (up to 75%) and better controllability. Gate openings reflowed from 1 μm to 250 nm have been routinely and reproducibly achieved by utilizing the saturation characteristics of the process. The feasibility of this soft reflow process is demonstrated in the fabrication of a 350 nm T-gate pseudomorphic high electron mobility transistor. By shrinking the gate length by a factor of three (from a 1 μm initial opening), the output current is improved by 60% (500 mA mm-1 from 300 mA mm-1) and fT and fMAX are increased to 70 GHz (from 20 GHz) and 120 GHz (from 40 GHz) respectively. The proposed soft reflow could potentially be applied on other compatible substrates such as polymer based material for organic or thin film devices, potentially leading to many new possible applications.
Bone bonding at natural and biomaterial surfaces.
Davies, John E
2007-12-01
Bone bonding is occurring in each of us and all other terrestrial vertebrates throughout life at bony remodeling sites. The surface created by the bone-resorbing osteoclast provides a three-dimensionally complex surface with which the cement line, the first matrix elaborated during de novo bone formation, interdigitates and is interlocked. The structure and composition of this interfacial bony matrix has been conserved during evolution across species; and we have known for over a decade that this interfacial matrix can be recapitulated at a biomaterial surface implanted in bone, given appropriate healing conditions. No evidence has emerged to suggest that bone bonding to artificial materials is any different from this natural biological process. Given this understanding it is now possible to explain why bone-bonding biomaterials are not restricted to the calcium-phosphate-based bioactive materials as was once thought. Indeed, in the absence of surface porosity, calcium phosphate biomaterials are not bone bonding. On the contrary, non-bonding materials can be rendered bone bonding by modifying their surface topography. This paper argues that the driving force for bone bonding is bone formation by contact osteogenesis, but that this has to occur on a sufficiently stable recipient surface which has micron-scale surface topography with undercuts in the sub-micron scale-range.
NASA Astrophysics Data System (ADS)
Hsieh, Dong-Ru; Kuo, Po-Yi; Lin, Jer-Yi; Chen, Yi-Hsuan; Chang, Tien-Shun; Chao, Tien-Sheng
2017-02-01
In this paper, strained channel-sidewall damascened tri-gate polycrystalline silicon thin-film transistors (SC-SWDTG TFTs) have been successfully fabricated and then demonstrated by an innovative process flow. This process flow without the use of advanced lithography processes combines the sidewall damascened technique (SWDT) and two strain techniques, namely, the strain proximity free technique (SPFT), and the stress memorization technique (SMT), in the poly-Si channels. It has some advantages: (1) the channel shapes and dimensions can be effectively controlled by the wet etching processes and the deposition thickness of the tetraethoxysilane (TEOS) oxide; (2) the source/drain (S/D) resistance can be significantly decreased by the formation of the raised S/D structures; (3) the SPFT, SMT, and the rapid thermal annealing (RTA) treatment can enhance the performance of the SC-SWDTG TFTs without the limitation of the highly scaling stress liner thickness in deep-submicron TFTs. Thus, the SC-SWDTG TFTs exhibit a steep subthreshold swing (S.S.) ˜ 110 mV/dec., an extremely small drain induced barrier lowing (DIBL) ˜12.2 mV V-1, and a high on/off ratio ˜107 (V D = 1 V) without plasma treatments for future three-dimensional integrated circuits (3D ICs) applications.
Three Dimensional Immobilization of Beta-Galactosidase on a Silicon Surface (Preprint)
2006-12-01
initial activity after 10 days at 24°C. The ability to generate three- dimensional structures with enhanced loading capacity for biosensing molecules...dimensional structures for biosensors (Charles et al. 2004). Silicon samples that had been washed but not activated with APTS did not retain any enzyme...preparation. The use of silica particles to build a 3-dimensional structure not only provides an increased capacity for the immobilization of β
NASA Technical Reports Server (NTRS)
Sondergaard, R.; Cantwell, B.; Mansour, N.
1997-01-01
Direct numerical simulations have been used to examine the effect of the initial disturbance field on the development of three-dimensionality and the transition to turbulence in the incompressible plane wake. The simulations were performed using a new numerical method for solving the time-dependent, three-dimensional, incompressible Navier-Stokes equations in flows with one infinite and two periodic directions. The method uses standard Fast Fourier Transforms and is applicable to cases where the vorticity field is compact in the infinite direction. Initial disturbances fields examined were combinations of two-dimensional waves and symmetric pairs of 60 deg oblique waves at the fundamental, subharmonic, and sub-subharmonic wavelengths. The results of these simulations indicate that the presence of 60 deg disturbances at the subharmonic streamwise wavelength results in the development of strong coherent three-dimensional structures. The resulting strong three-dimensional rate-of-strain triggers the growth of intense fine scale motions. Wakes initiated with 60 deg disturbances at the fundamental streamwise wavelength develop weak coherent streamwise structures, and do not develop significant fine scale motions, even at high Reynolds numbers. The wakes which develop strong three-dimensional structures exhibit growth rates on par with experimentally observed turbulent plane wakes. Wakes which develop only weak three-dimensional structures exhibit significantly lower late time growth rates. Preliminary studies of wakes initiated with an oblique fundamental and a two-dimensional subharmonic, which develop asymmetric coherent oblique structures at the subharmonic wavelength, indicate that significant fine scale motions only develop if the resulting oblique structures are above an angle of approximately 45 deg.
NASA Astrophysics Data System (ADS)
Diabil, Hayder Azeez; Li, Xin Kai; Abdalla, Ibrahim Elrayah
2017-09-01
Large-scale organized motions (commonly referred to coherent structures) and flow topology of a transitional separated-reattached flow have been visualised and investigated using flow visualisation techniques. Two geometrical shapes including two-dimensional flat plate with rectangular leading edge and three-dimensional square cylinder are chosen to shed a light on the flow topology and present coherent structures of the flow over these shapes. For both geometries and in the early stage of the transition, two-dimensional Kelvin-Helmholtz rolls are formed downstream of the leading edge. They are observed to be twisting around the square cylinder while they stay flat in the case of the two-dimensional flat plate. For both geometrical shapes, the two-dimensional Kelvin-Helmholtz rolls move downstream of the leading edge and they are subjected to distortion to form three-dimensional hairpin structures. The flow topology in the flat plate is different from that in the square cylinder. For the flat plate, there is a merging process by a pairing of the Kelvin-Helmholtz rolls to form a large structure that breaks down directly into many hairpin structures. For the squire cylinder case, the Kelvin-Helmholtz roll evolves topologically to form a hairpin structure. In the squire cylinder case, the reattachment length is much shorter and a forming of the three-dimensional structures is closer to the leading edge than that in the flat plate case.
Vfold: a web server for RNA structure and folding thermodynamics prediction.
Xu, Xiaojun; Zhao, Peinan; Chen, Shi-Jie
2014-01-01
The ever increasing discovery of non-coding RNAs leads to unprecedented demand for the accurate modeling of RNA folding, including the predictions of two-dimensional (base pair) and three-dimensional all-atom structures and folding stabilities. Accurate modeling of RNA structure and stability has far-reaching impact on our understanding of RNA functions in human health and our ability to design RNA-based therapeutic strategies. The Vfold server offers a web interface to predict (a) RNA two-dimensional structure from the nucleotide sequence, (b) three-dimensional structure from the two-dimensional structure and the sequence, and (c) folding thermodynamics (heat capacity melting curve) from the sequence. To predict the two-dimensional structure (base pairs), the server generates an ensemble of structures, including loop structures with the different intra-loop mismatches, and evaluates the free energies using the experimental parameters for the base stacks and the loop entropy parameters given by a coarse-grained RNA folding model (the Vfold model) for the loops. To predict the three-dimensional structure, the server assembles the motif scaffolds using structure templates extracted from the known PDB structures and refines the structure using all-atom energy minimization. The Vfold-based web server provides a user friendly tool for the prediction of RNA structure and stability. The web server and the source codes are freely accessible for public use at "http://rna.physics.missouri.edu".
NASA Astrophysics Data System (ADS)
Manstetten, Paul; Filipovic, Lado; Hössinger, Andreas; Weinbub, Josef; Selberherr, Siegfried
2017-02-01
We present a computationally efficient framework to compute the neutral flux in high aspect ratio structures during three-dimensional plasma etching simulations. The framework is based on a one-dimensional radiosity approach and is applicable to simulations of convex rotationally symmetric holes and convex symmetric trenches with a constant cross-section. The framework is intended to replace the full three-dimensional simulation step required to calculate the neutral flux during plasma etching simulations. Especially for high aspect ratio structures, the computational effort, required to perform the full three-dimensional simulation of the neutral flux at the desired spatial resolution, conflicts with practical simulation time constraints. Our results are in agreement with those obtained by three-dimensional Monte Carlo based ray tracing simulations for various aspect ratios and convex geometries. With this framework we present a comprehensive analysis of the influence of the geometrical properties of high aspect ratio structures as well as of the particle sticking probability on the neutral particle flux.
Modification of insulating diamond-like films by pulsed UV laser emission
NASA Astrophysics Data System (ADS)
Ageev, V. P.; Glushko, T. N.; Dorfman, V. F.; Kuzmichev, A. V.; Pypkin, B. N.
1991-07-01
The basic regimes of the modification of diamond-like a-C/Si/O:H films by the emission of the KrF laser are investigated. In particular, attention is given to the effect of the graphitization process on the spatial resolution of the dimensional treament. The possibility of the submicron cross-linking of the films using the methods of ablative UV laser lithography is demonstrated.
[Corrosion resistant properties of different anodized microtopographies on titanium surfaces].
Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian
2015-12-01
To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.
Oxygen-Barrier Coating for Titanium
NASA Technical Reports Server (NTRS)
Clark, Ronald K.; Unnam, Jalaiah
1987-01-01
Oxygen-barrier coating for titanium developed to provide effective and low-cost means for protecting titanium alloys from oxygen in environment when alloys used in high-temperature mechanical or structural applications. Provides protective surface layer, which reduces extent of surface oxidation of alloy and forms barrier to diffusion of oxygen, limiting contamination of substrate alloy by oxygen. Consists of submicron layer of aluminum deposited on surface of titanium by electron-beam evaporation, with submicron layer of dioxide sputtered onto aluminum to form coat.
Functionally Graded Metal-Metal Composite Structures
NASA Technical Reports Server (NTRS)
Brice, Craig A. (Inventor)
2017-01-01
Methods and devices are disclosed for creating a multiple alloy composite structure by forming a three-dimensional arrangement of a first alloy composition in which the three-dimensional arrangement has a substantially open and continuous porosity. The three-dimensional arrangement of the first alloy composition is infused with at least a second alloy composition, where the second alloy composition comprises a shape memory alloy. The three-dimensional arrangement is consolidated into a fully dense solid structure, and the original shape of the second alloy composition is set for reversible transformation. Strain is applied to the fully dense solid structure, which is treated with heat so that the shape memory alloy composition becomes memory activated to recover the original shape. An interwoven composite of the first alloy composition and the memory-activated second alloy composition is thereby formed in the multiple alloy composite structure.
Three-dimensional biofilm structure quantification.
Beyenal, Haluk; Donovan, Conrad; Lewandowski, Zbigniew; Harkin, Gary
2004-12-01
Quantitative parameters describing biofilm physical structure have been extracted from three-dimensional confocal laser scanning microscopy images and used to compare biofilm structures, monitor biofilm development, and quantify environmental factors affecting biofilm structure. Researchers have previously used biovolume, volume to surface ratio, roughness coefficient, and mean and maximum thicknesses to compare biofilm structures. The selection of these parameters is dependent on the availability of software to perform calculations. We believe it is necessary to develop more comprehensive parameters to describe heterogeneous biofilm morphology in three dimensions. This research presents parameters describing three-dimensional biofilm heterogeneity, size, and morphology of biomass calculated from confocal laser scanning microscopy images. This study extends previous work which extracted quantitative parameters regarding morphological features from two-dimensional biofilm images to three-dimensional biofilm images. We describe two types of parameters: (1) textural parameters showing microscale heterogeneity of biofilms and (2) volumetric parameters describing size and morphology of biomass. The three-dimensional features presented are average (ADD) and maximum diffusion distances (MDD), fractal dimension, average run lengths (in X, Y and Z directions), aspect ratio, textural entropy, energy and homogeneity. We discuss the meaning of each parameter and present the calculations in detail. The developed algorithms, including automatic thresholding, are implemented in software as MATLAB programs which will be available at site prior to publication of the paper.
NASA Astrophysics Data System (ADS)
Ulibarrena, Manuel; Carretero, Luis; Acebal, Pablo; Madrigal, Roque; Blaya, Salvador; Fimia, Antonio
2004-09-01
Holographic techniques have been used for manufacturing multiple band one-dimensional, two-dimensional, and three-dimensional photonic crystals with different configurations, by multiplexing reflection and transmission setups on a single layer of holographic material. The recording material used for storage is an ultra fine grain silver halide emulsion, with an average grain size around 20 nm. The results are a set of photonic crystals with the one-dimensional, two-dimensional, and three-dimensional index modulation structure consisting of silver halide particles embedded in the gelatin layer of the emulsion. The characterisation of the fabricated photonic crystals by measuring their transmission band structures has been done and compared with theoretical calculations.
Fabrication of 3D nano-structures using reverse imprint lithography
NASA Astrophysics Data System (ADS)
Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-woo; Lee, Heon
2013-02-01
In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures. UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.
Fabrication of 3D nano-structures using reverse imprint lithography.
Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-Woo; Lee, Heon
2013-02-01
In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures.UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.
Preparation and characterization of SiO2-coated submicron-sized L10 Fe-Pt particles
NASA Astrophysics Data System (ADS)
Hayashi, Yoshiaki; Ogawa, Tomoyuki; Ishiyama, Kazushi
2018-05-01
The development of magnets with higher performance is attracting increasing interest. The optimization of their microstructure is essential to enhance their properties, and a microstructure comprising magnetically isolated hard magnetic grains of a single-domain size has been proposed as an ideal structure for enhancing the coercivity of magnets. To obtain magnets with an ideal structure, we consider the fabrication of magnets by an approach based on core/shell nanoparticles with a hard magnetic core and a non-magnetic shell. In this study, to obtain particles for our proposed approach, we attempted to fabricate L10 Fe-Pt/SiO2-core/shell particles with submicron-sized cores less than the critical single-domain size. The fabrication of such core/shell particles was confirmed from morphology observations and XRD analysis of the particles. Although the formation of more desirable core/shell particles with submicron-sized single-crystal cores in the single-domain size range was not achieved, the fabricated core/shell particles showed a high coercivity of 25 kOe.
More About The Farley Three-Dimensional Braider
NASA Technical Reports Server (NTRS)
Farley, Gary L.
1993-01-01
Farley three-dimensional braider, undergoing development, is machine for automatic fabrication of three-dimensional braided structures. Incorporates yarns into structure at arbitrary braid angles to produce complicated shape. Braiding surface includes movable braiding segments containing pivot points, along which yarn carriers travel during braiding process. Yarn carrier travels along sequence of pivot points as braiding segments move. Combined motions position yarns for braiding onto preform. Intended for use in making fiber preforms for fiber/matrix composite parts, such as multiblade propellers. Machine also described in "Farley Three-Dimensional Braiding Machine" (LAR-13911).
X-Ray Nanofocus CT: Visualising Of Internal 3D-Structures With Submicrometer Resolution
NASA Astrophysics Data System (ADS)
Weinekoetter, Christian
2008-09-01
High-resolution X-ray Computed Tomography (CT) allows the visualization and failure analysis of the internal micro structure of objects—even if they have complicated 3D-structures where 2D X-ray microscopy would give unclear information. During the past several years, computed tomography has progressed to higher resolution and quicker reconstruction of the 3D-volume. Most recently it even allows a three-dimensional look into the inside of materials with submicron resolution. With the use of nanofocus® tube technology, nanoCT®-systems are pushing forward into application fields that were exclusive to high cost and rare available synchrotron techniques. The study was performed with the new nanotom, a very compact laboratory system which allows the analysis of samples up to 120 mm in diameter and weighing up to 1 kg with exceptional voxel-resolution down to <500 nm (<0.5 microns). It is the first 180 kV nanofocus® computed tomography system in the world which is tailored specifically to the highest-resolution applications in the fields of material science, micro electronics, geology and biology. Therefore it is particularly suitable for nanoCT-examinations e.g. of synthetic materials, metals, ceramics, composite materials, mineral and organic samples. There are a few physical effects influencing the CT quality, such as beam-hardening within the sample or ring-artefacts, which can not be completely avoided. To optimize the quality of high resolution 3D volumes, the nanotom® includes a variety of effective software tools to reduce ring-artefacts and correct beam hardenings or drift effects which occurred during data acquisition. The resulting CT volume data set can be displayed in various ways, for example by virtual slicing and sectional views in any direction of the volume. By the fact that this requires only a mouse click, this technique will substitute destructive mechanical slicing and cutting in many applications. The initial CT results obtained with the nanotom® demonstrate that it is now possible to analyze the three-dimensional micro structure of materials and small objects with submicrometer resolution. Any internal difference in material, density or porosity within a sample can be visualized and data like distances can be measured. NanoCT® widely expands the spectrum of detectable micro-structures. The nanotom® opens a new dimension of 3D-microanalysis and will replace more destructive methods—saving costs and time per sample inspected.
Three-dimensional structural analysis using interactive graphics
NASA Technical Reports Server (NTRS)
Biffle, J.; Sumlin, H. A.
1975-01-01
The application of computer interactive graphics to three-dimensional structural analysis was described, with emphasis on the following aspects: (1) structural analysis, and (2) generation and checking of input data and examination of the large volume of output data (stresses, displacements, velocities, accelerations). Handling of three-dimensional input processing with a special MESH3D computer program was explained. Similarly, a special code PLTZ may be used to perform all the needed tasks for output processing from a finite element code. Examples were illustrated.
Waiwijit, Uraiwan; Maturos, Thitima; Pakapongpan, Saithip; Phokharatkul, Ditsayut; Wisitsoraat, Anurat; Tuantranont, Adisorn
2016-08-01
Recently, three-dimensional graphene interconnected network has attracted great interest as a scaffold structure for tissue engineering due to its high biocompatibility, high electrical conductivity, high specific surface area and high porosity. However, free-standing three-dimensional graphene exhibits poor flexibility and stability due to ease of disintegration during processing. In this work, three-dimensional graphene is composited with polydimethylsiloxane to improve the structural flexibility and stability by a new simple two-step process comprising dip coating of polydimethylsiloxane on chemical vapor deposited graphene/Ni foam and wet etching of nickel foam. Structural characterizations confirmed an interconnected three-dimensional multi-layer graphene structure with thin polydimethylsiloxane scaffold. The composite was employed as a substrate for culture of L929 fibroblast cells and its cytocompatibility was evaluated by cell viability (Alamar blue assay), reactive oxygen species production and vinculin immunofluorescence imaging. The result revealed that cell viability on three-dimensional graphene/polydimethylsiloxane composite increased with increasing culture time and was slightly different from a polystyrene substrate (control). Moreover, cells cultured on three-dimensional graphene/polydimethylsiloxane composite generated less ROS than the control at culture times of 3-6 h. The results of immunofluorescence staining demonstrated that fibroblast cells expressed adhesion protein (vinculin) and adhered well on three-dimensional graphene/polydimethylsiloxane surface. Good cell adhesion could be attributed to suitable surface properties of three-dimensional graphene/polydimethylsiloxane with moderate contact angle and small negative zeta potential in culture solution. The results of electrochemical study by cyclic voltammetry showed that an oxidation current signal with no apparent peak was induced by fibroblast cells and the oxidation current at an oxidation potential of +0.9 V increased linearly with increasing cell number. Therefore, the three-dimensional graphene/polydimethylsiloxane composite exhibits high cytocompatibility and can potentially be used as a conductive substrate for cell-based electrochemical sensing. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Stolker, T.; Min, M.; Stam, D. M.; Mollière, P.; Dominik, C.; Waters, L. B. F. M.
2017-11-01
Context. Direct imaging has paved the way for atmospheric characterization of young and self-luminous gas giants. Scattering in a horizontally-inhomogeneous atmosphere causes the disk-integrated polarization of the thermal radiation to be linearly polarized, possibly detectable with the newest generation of high-contrast imaging instruments. Aims: We aim to investigate the effect of latitudinal and longitudinal cloud variations, circumplanetary disks, atmospheric oblateness, and cloud particle properties on the integrated degree and direction of polarization in the near-infrared. We want to understand how 3D atmospheric asymmetries affect the polarization signal in order to assess the potential of infrared polarimetry for direct imaging observations of planetary-mass companions. Methods: We have developed a three-dimensional Monte Carlo radiative transfer code (ARTES) for scattered light simulations in (exo)planetary atmospheres. The code is applicable to calculations of reflected light and thermal radiation in a spherical grid with a parameterized distribution of gas, clouds, hazes, and circumplanetary material. A gray atmosphere approximation is used for the thermal structure. Results: The disk-integrated degree of polarization of a horizontally-inhomogeneous atmosphere is maximal when the planet is flattened, the optical thickness of the equatorial clouds is large compared to the polar clouds, and the clouds are located at high altitude. For a flattened planet, the integrated polarization can both increase or decrease with respect to a spherical planet which depends on the horizontal distribution and optical thickness of the clouds. The direction of polarization can be either parallel or perpendicular to the projected direction of the rotation axis when clouds are zonally distributed. Rayleigh scattering by submicron-sized cloud particles will maximize the polarimetric signal whereas the integrated degree of polarization is significantly reduced with micron-sized cloud particles as a result of forward scattering. The presence of a cold or hot circumplanetary disk may also produce a detectable degree of polarization (≲1%) even with a uniform cloud layer in the atmosphere.
Magnetoresistance and magnetization in submicron ferromagnetic gratings
NASA Astrophysics Data System (ADS)
Shearwood, C.; Blundell, S. J.; Baird, M. J.; Bland, J. A. C.; Gester, M.; Ahmed, H.; Hughes, H. P.
1994-05-01
A technique for engineering micron and submicron scale structures from magnetic films of transition metals has been developed using a combination of electron- and ion-beam lithography enabling high-quality arrays of submicron magnetic Fe wires to be fabricated. This process can be used to fabricate novel devices from a variety of metal combinations which would not be possible by the usual liftoff metallization method. The structure and magnetic properties are reported of an epitaxial 25 nm Fe(001)/GaAs(001) film and the wire gratings which are fabricated from it. The width of the wires in the grating is 0.5 μm for all structures studied, but the separation of each wire is varied in the range 0.5 to 16 μm. An artificially induced shape anisotropy field of around 1 kG, consistent with a magnetostatic calculation, was observed for all separations studied. The field dependence of the magneto-optic Kerr effect and magnetoresistance (MR) data is consistent with a twisted magnetization configuration across the width of the sample beneath saturation for transverse applied fields. In this case, the detailed form of the field dependence of the MR is strikingly modified from that observed in the continuous film and is consistent with coherent rotation of the magnetization.
Micro and sub-micron surface structuring of AZ31 by laser re-melting and dimpling
NASA Astrophysics Data System (ADS)
Furlan, Valentina; Demir, Ali Gökhan; Previtali, Barbara
2015-12-01
In this work, the use of ns-pulsed fibre laser for surface structuring of AZ31 Mg alloy is investigated. Surface re-melting was employed to change surface morphology, especially in terms of surface roughness. Dimpling by percussion microdrilling was investigated to control the hole geometry.. With surface remelting mono-directional and homogeneous surfaces were obtained with Fl<500 J/cm2. Above 500 J/cm2 particle generation was observed, which induced sub-micron structure growth with nano-fibrous features. Moreover, surface roughness could be controlled below the initial value and much higher. With dimpling, transformation from gentle to strong ablation was observed at F0=10.3 J/cm2. XRD analysis was employed to link oxide growth to the surface morphology. Tensile tests were carried out to assess the damage on the mechanical properties after surface structuring.
NASA Astrophysics Data System (ADS)
Yamauchi, Toyohiko; Iwai, Hidenao; Yamashita, Yutaka
2013-03-01
We succeeded in utilizing our low-coherent quantitative phase microscopy (LC-QPM) to achieve label-free and three-dimensional imaging of string-like structures bridging the free-space between live cells. In past studies, three dimensional morphology of the string-like structures between cells had been investigated by electron microscopies and fluorescence microscopies and these structures were called "membrane nanotubes" or "tunneling nanotubes." However, use of electron microscopy inevitably kills these cells and fluorescence microscopy is itself a potentially invasive method. To achieve noninvasive imaging of live cells, we applied our LC-QPM which is a reflection-type, phase resolved and full-field interference microscope employing a low-coherent light source. LC-QPM is able to visualize the three-dimensional morphology of live cells without labeling by means of low-coherence interferometry. The lateral (diffraction limit) and longitudinal (coherence-length) spatial resolution of LC-QPM were respectively 0.49 and 0.93 micrometers and the repeatability of the phase measurement was 0.02 radians (1.0 nm). We successfully obtained three-dimensional morphology of live cultured epithelial cells (cell type: HeLa, derived from cervix cancer) and were able to clearly observe the individual string-like structures interconnecting the cells. When we performed volumetric imaging, a 80 micrometer by 60 micrometer by 6.5 micrometer volume was scanned every 5.67 seconds and 70 frames of a three-dimensional movie were recorded for a duration of 397 seconds. Moreover, the optical phase images gave us detailed information about the three-dimensional morphology of the string-like structure at sub-wavelength resolution. We believe that our LC-QPM will be a useful tool for the study of three-dimensional morphology of live cells.
Hydrodynamic pumping of a quantum Fermi liquid in a semiconductor heterostructure
NASA Astrophysics Data System (ADS)
Heremans, J. J.; Kantha, D.; Chen, H.; Govorov, A. O.
2003-03-01
We present experimental results for a pumping mechanism observed in mesoscopic structures patterned on two-dimensional electron systems in GaAs/AlGaAs heterostructures. The experiments are performed at low temperatures, in the ballistic regime. The effect is observed as a voltage or current signal corresponding to carrier extraction from sub-micron sized apertures, when these apertures are swept by a beam of ballistic electrons. The carrier extraction, phenomenologically reminiscent of the Bernoulli pumping effect in classical fluids, has been observed in various geometries. We ascertained linearity between measured voltage and injected current in all experiments, thereby excluding rectification effects. The linear response, however, points to a fundamental difference from the Bernoulli effect in classical liquids, where the response is nonlinear and quadratic in terms of the velocity. The temperature dependence of the effect will also be presented. We thank M. Shayegan (Princeton University) for the heterostructure growth, and acknowledge support from NSF DMR-0094055.
NASA Astrophysics Data System (ADS)
Li, Yajie; Pu, Hongting
2018-04-01
Polypropylene (PP)/polyethylene (PE) multilayer separators with cellular-like submicron pore structure for lithium-ion battery are efficiently fabricated by the combination of multilayer coextrusion (MC) and thermal induced phase separation (TIPS). The as-prepared separators, referred to as MC-TIPS PP/PE, not only show efficacious thermal shutdown function and wider shutdown temperature window, but also exhibit higher thermal stability than the commercial separator with trilayer construction of PP and PE (Celgard® 2325). The dimensional shrinkage of MC-TIPS PP/PE can be negligible until 160 °C. In addition, compared to the commercial separator, MC-TIPS PP/PE exhibits higher porosity and electrolyte uptake, leading to higher ionic conductivity and better battery performances. The above-mentioned fascinating characteristics with the convenient preparation process make MC-TIPS PP/PE a promising candidate for the application as high performance lithium-ion battery separators.
Gain in three-dimensional metamaterials utilizing semiconductor quantum structures
NASA Astrophysics Data System (ADS)
Schwaiger, Stephan; Klingbeil, Matthias; Kerbst, Jochen; Rottler, Andreas; Costa, Ricardo; Koitmäe, Aune; Bröll, Markus; Heyn, Christian; Stark, Yuliya; Heitmann, Detlef; Mendach, Stefan
2011-10-01
We demonstrate gain in a three-dimensional metal/semiconductor metamaterial by the integration of optically active semiconductor quantum structures. The rolling-up of a metallic structure on top of strained semiconductor layers containing a quantum well allows us to achieve a tightly bent superlattice consisting of alternating layers of lossy metallic and amplifying gain material. We show that the transmission through the superlattice can be enhanced by exciting the quantum well optically under both pulsed or continuous wave excitation. This points out that our structures can be used as a starting point for arbitrary three-dimensional metamaterials including gain.
Boeyens, Jan C.A.; Levendis, Demetrius C.
2012-01-01
Molecular symmetry is intimately connected with the classical concept of three-dimensional molecular structure. In a non-classical theory of wave-like interaction in four-dimensional space-time, both of these concepts and traditional quantum mechanics lose their operational meaning, unless suitably modified. A required reformulation should emphasize the importance of four-dimensional effects like spin and the symmetry effects of space-time curvature that could lead to a fundamentally different understanding of molecular symmetry and structure in terms of elementary number theory. Isolated single molecules have no characteristic shape and macro-biomolecules only develop robust three-dimensional structure in hydrophobic response to aqueous cellular media. PMID:22942753
Investigating anomalous transport of electrolytes in charged porous media
NASA Astrophysics Data System (ADS)
Skjøde Bolet, Asger Johannes; Mathiesen, Joachim
2017-04-01
Surface charge is know to play an important role in microfluidics devices when dealing with electrolytes and their transport properties. Similarly, surface charge could play a role for transport in porous rock with submicron pore sizes. Estimates of the streaming potentials and electro osmotic are mostly considered in simple geometries both using analytic and numerical tools, however it is unclear at present how realistic complex geometries will modify the dynamics. Our work have focused on doing numerical studies of the full three-dimensional Stokes-Poisson-Nernst-Planck problem for electrolyte transport in porous rock. As the numerical implementation, we have used a finite element solver made using the FEniCS project code base, which can both solve for a steady state configuration and the full transient. In the presentation, we will show our results on anomalous transport due to electro kinetic effects such as the streaming potential or the electro osmotic effect.
Superresolved digital in-line holographic microscopy for high-resolution lensless biological imaging
NASA Astrophysics Data System (ADS)
Micó, Vicente; Zalevsky, Zeev
2010-07-01
Digital in-line holographic microscopy (DIHM) is a modern approach capable of achieving micron-range lateral and depth resolutions in three-dimensional imaging. DIHM in combination with numerical imaging reconstruction uses an extremely simplified setup while retaining the advantages provided by holography with enhanced capabilities derived from algorithmic digital processing. We introduce superresolved DIHM incoming from time and angular multiplexing of the sample spatial frequency information and yielding in the generation of a synthetic aperture (SA). The SA expands the cutoff frequency of the imaging system, allowing submicron resolutions in both transversal and axial directions. The proposed approach can be applied when imaging essentially transparent (low-concentration dilutions) and static (slow dynamics) samples. Validation of the method for both a synthetic object (U.S. Air Force resolution test) to quantify the resolution improvement and a biological specimen (sperm cells biosample) are reported showing the generation of high synthetic numerical aperture values working without lenses.
Recent developments in structural proteomics for protein structure determination.
Liu, Hsuan-Liang; Hsu, Jyh-Ping
2005-05-01
The major challenges in structural proteomics include identifying all the proteins on the genome-wide scale, determining their structure-function relationships, and outlining the precise three-dimensional structures of the proteins. Protein structures are typically determined by experimental approaches such as X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. However, the knowledge of three-dimensional space by these techniques is still limited. Thus, computational methods such as comparative and de novo approaches and molecular dynamic simulations are intensively used as alternative tools to predict the three-dimensional structures and dynamic behavior of proteins. This review summarizes recent developments in structural proteomics for protein structure determination; including instrumental methods such as X-ray crystallography and NMR spectroscopy, and computational methods such as comparative and de novo structure prediction and molecular dynamics simulations.
Three-dimensional imaging of porous media using confocal laser scanning microscopy.
Shah, S M; Crawshaw, J P; Boek, E S
2017-02-01
In the last decade, imaging techniques capable of reconstructing three-dimensional (3-D) pore-scale model have played a pivotal role in the study of fluid flow through complex porous media. In this study, we present advances in the application of confocal laser scanning microscopy (CLSM) to image, reconstruct and characterize complex porous geological materials with hydrocarbon reservoir and CO 2 storage potential. CLSM has a unique capability of producing 3-D thin optical sections of a material, with a wide field of view and submicron resolution in the lateral and axial planes. However, CLSM is limited in the depth (z-dimension) that can be imaged in porous materials. In this study, we introduce a 'grind and slice' technique to overcome this limitation. We discuss the practical and technical aspects of the confocal imaging technique with application to complex rock samples including Mt. Gambier and Ketton carbonates. We then describe the complete workflow of image processing to filtering and segmenting the raw 3-D confocal volumetric data into pores and grains. Finally, we use the resulting 3-D pore-scale binarized confocal data obtained to quantitatively determine petrophysical pore-scale properties such as total porosity, macro- and microporosity and single-phase permeability using lattice Boltzmann (LB) simulations, validated by experiments. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Faulwetter, Sarah; Chatzinikolaou, Eva; Michalakis, Nikitas; Filiopoulou, Irene; Minadakis, Nikos; Panteri, Emmanouela; Perantinos, George; Gougousis, Alexandros; Arvanitidis, Christos
2016-01-01
Abstract Background During recent years, X-ray microtomography (micro-CT) has seen an increasing use in biological research areas, such as functional morphology, taxonomy, evolutionary biology and developmental research. Micro-CT is a technology which uses X-rays to create sub-micron resolution images of external and internal features of specimens. These images can then be rendered in a three-dimensional space and used for qualitative and quantitative 3D analyses. However, the online exploration and dissemination of micro-CT datasets are rarely made available to the public due to their large size and a lack of dedicated online platforms for the interactive manipulation of 3D data. Here, the development of a virtual micro-CT laboratory (Micro-CTvlab) is described, which can be used by everyone who is interested in digitisation methods and biological collections and aims at making the micro-CT data exploration of natural history specimens freely available over the internet. New information The Micro-CTvlab offers to the user virtual image galleries of various taxa which can be displayed and downloaded through a web application. With a few clicks, accurate, detailed and three-dimensional models of species can be studied and virtually dissected without destroying the actual specimen. The data and functions of the Micro-CTvlab can be accessed either on a normal computer or through a dedicated version for mobile devices. PMID:27956848
Keklikoglou, Kleoniki; Faulwetter, Sarah; Chatzinikolaou, Eva; Michalakis, Nikitas; Filiopoulou, Irene; Minadakis, Nikos; Panteri, Emmanouela; Perantinos, George; Gougousis, Alexandros; Arvanitidis, Christos
2016-01-01
During recent years, X-ray microtomography (micro-CT) has seen an increasing use in biological research areas, such as functional morphology, taxonomy, evolutionary biology and developmental research. Micro-CT is a technology which uses X-rays to create sub-micron resolution images of external and internal features of specimens. These images can then be rendered in a three-dimensional space and used for qualitative and quantitative 3D analyses. However, the online exploration and dissemination of micro-CT datasets are rarely made available to the public due to their large size and a lack of dedicated online platforms for the interactive manipulation of 3D data. Here, the development of a virtual micro-CT laboratory (Micro-CT vlab ) is described, which can be used by everyone who is interested in digitisation methods and biological collections and aims at making the micro-CT data exploration of natural history specimens freely available over the internet. The Micro-CT vlab offers to the user virtual image galleries of various taxa which can be displayed and downloaded through a web application. With a few clicks, accurate, detailed and three-dimensional models of species can be studied and virtually dissected without destroying the actual specimen. The data and functions of the Micro-CT vlab can be accessed either on a normal computer or through a dedicated version for mobile devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, N., E-mail: rossn2282@gmail.com; Kostylev, M., E-mail: mikhail.kostylev@uwa.edu.au; Stamps, R. L.
2014-09-21
Standing spin wave mode frequencies and linewidths in partially disordered perpendicular magnetized arrays of sub-micron Permalloy discs are measured using broadband ferromagnetic resonance and compared to analytical results from a single, isolated disc. The measured mode structure qualitatively reproduces the structure expected from the theory. Fitted demagnetizing parameters decrease with increasing array disorder. The frequency difference between the first and second radial modes is found to be higher in the measured array systems than predicted by theory for an isolated disc. The relative frequencies between successive spin wave modes are unaffected by reduction of the long-range ordering of discs inmore » the array. An increase in standing spin wave resonance linewidth at low applied magnetic fields is observed and grows more severe with increased array disorder.« less
Using a micro-molding process to fabricate polymeric wavelength filters
NASA Astrophysics Data System (ADS)
Chuang, Wei-Ching; Lee, An-Chen; Ho, Chi-Ting
2008-08-01
A procedure for fabricating a high aspect ratio periodic structure on a UV polymer at submicron order using holographic interferometry and molding processes is described. First, holographic interferometry using a He-Cd (325 nm) laser was used to create the master of the periodic line structure on an i-line sub-micron positive photoresist film. A 20 nm nickel thin film was then sputtered on the photoresist. The final line pattern on a UV polymer was obtained from casting against the master mold. Finally, a SU8 polymer was spun on the polymer grating to form a planar waveguide or a channel waveguide. The measurement results show that the waveguide length could be reduced for the waveguide having gratings with a high aspect ratio.
Gómez-Ortiz, Olga; Ortega-Ruiz, Rosario; Jolliffe, Darrick; Romera, Eva M.
2017-01-01
Objectives (1) To examine the psychometric properties of the Basic Empathy Scale (BES) with Spanish adolescents, comparing a two and a three-dimensional structure;(2) To analyse the relationship between the three-dimensional empathy and social and normative adjustment in school. Design Transversal and ex post facto retrospective study. Confirmatory factorial analysis, multifactorial invariance analysis and structural equations models were used. Participants 747 students (51.3% girls) from Cordoba, Spain, aged 12–17 years (M=13.8; SD=1.21). Results The original two-dimensional structure was confirmed (cognitive empathy, affective empathy), but a three-dimensional structure showed better psychometric properties, highlighting the good fit found in confirmatory factorial analysis and adequate internal consistent valued, measured with Cronbach’s alpha and McDonald’s omega. Composite reliability and average variance extracted showed better indices for a three-factor model. The research also showed evidence of measurement invariance across gender. All the factors of the final three-dimensional BES model were direct and significantly associated with social and normative adjustment, being most strongly related to cognitive empathy. Conclusions This research supports the advances in neuroscience, developmental psychology and psychopathology through a three-dimensional version of the BES, which represents an improvement in the original two-factorial model. The organisation of empathy in three factors benefits the understanding of social and normative adjustment in adolescents, in which emotional disengagement favours adjusted peer relationships. Psychoeducational interventions aimed at improving the quality of social life in schools should target these components of empathy. PMID:28951400
Severcan, Isil; Geary, Cody; Chworos, Arkadiusz; Voss, Neil; Jacovetty, Erica; Jaeger, Luc
2010-09-01
Supramolecular assembly is a powerful strategy used by nature to build nanoscale architectures with predefined sizes and shapes. With synthetic systems, however, numerous challenges remain to be solved before precise control over the synthesis, folding and assembly of rationally designed three-dimensional nano-objects made of RNA can be achieved. Here, using the transfer RNA molecule as a structural building block, we report the design, efficient synthesis and structural characterization of stable, modular three-dimensional particles adopting the polyhedral geometry of a non-uniform square antiprism. The spatial control within the final architecture allows the precise positioning and encapsulation of proteins. This work demonstrates that a remarkable degree of structural control can be achieved with RNA structural motifs for the construction of thermostable three-dimensional nano-architectures that do not rely on helix bundles or tensegrity. RNA three-dimensional particles could potentially be used as carriers or scaffolds in nanomedicine and synthetic biology.
NASA Astrophysics Data System (ADS)
Davis, L. J.; Boggess, M.; Kodpuak, E.; Deutsch, M.
2012-11-01
We report on a model for the deposition of three dimensional, aggregated nanocrystalline silver films, and an efficient numerical simulation method developed for visualizing such structures. We compare our results to a model system comprising chemically deposited silver films with morphologies ranging from dilute, uniform distributions of nanoparticles to highly porous aggregated networks. Disordered silver films grown in solution on silica substrates are characterized using digital image analysis of high resolution scanning electron micrographs. While the latter technique provides little volume information, plane-projected (two dimensional) island structure and surface coverage may be reliably determined. Three parameters governing film growth are evaluated using these data and used as inputs for the deposition model, greatly reducing computing requirements while still providing direct access to the complete (bulk) structure of the films throughout the growth process. We also show how valuable three dimensional characteristics of the deposited materials can be extracted using the simulated structures.
WebCSD: the online portal to the Cambridge Structural Database
Thomas, Ian R.; Bruno, Ian J.; Cole, Jason C.; Macrae, Clare F.; Pidcock, Elna; Wood, Peter A.
2010-01-01
WebCSD, a new web-based application developed by the Cambridge Crystallographic Data Centre, offers fast searching of the Cambridge Structural Database using only a standard internet browser. Search facilities include two-dimensional substructure, molecular similarity, text/numeric and reduced cell searching. Text, chemical diagrams and three-dimensional structural information can all be studied in the results browser using the efficient entry summaries and embedded three-dimensional viewer. PMID:22477776
Helical structures in vertically aligned dust particle chains in a complex plasma
NASA Astrophysics Data System (ADS)
Hyde, Truell W.; Kong, Jie; Matthews, Lorin S.
2013-05-01
Self-assembly of structures from vertically aligned, charged dust particle bundles within a glass box placed on the lower, powered electrode of a Gaseous Electronics Conference rf reference cell were produced and examined experimentally. Self-organized formation of one-dimensional vertical chains, two-dimensional zigzag structures, and three-dimensional helical structures of triangular, quadrangular, pentagonal, hexagonal, and heptagonal symmetries are shown to occur. System evolution is shown to progress from a one-dimensional chain structure, through a zigzag transition to a two-dimensional, spindlelike structure, and then to various three-dimensional, helical structures exhibiting multiple symmetries. Stable configurations are found to be dependent upon the system confinement, γ2=ω0h/ω0v2 (where ω0h,v are the horizontal and vertical dust resonance frequencies), the total number of particles within a bundle, and the rf power. For clusters having fixed numbers of particles, the rf power at which structural phase transitions occur is repeatable and exhibits no observable hysteresis. The critical conditions for these structural phase transitions as well as the basic symmetry exhibited by the one-, two-, and three-dimensional structures that subsequently develop are in good agreement with the theoretically predicted configurations of minimum energy determined employing molecular dynamics simulations for charged dust particles confined in a prolate, spheroidal potential as presented theoretically by Kamimura and Ishihara [Kamimura and Ishihara, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.85.016406 85, 016406 (2012)].
Coherent diffraction imaging: consistency of the assembled three-dimensional distribution.
Tegze, Miklós; Bortel, Gábor
2016-07-01
The short pulses of X-ray free-electron lasers can produce diffraction patterns with structural information before radiation damage destroys the particle. From the recorded diffraction patterns the structure of particles or molecules can be determined on the nano- or even atomic scale. In a coherent diffraction imaging experiment thousands of diffraction patterns of identical particles are recorded and assembled into a three-dimensional distribution which is subsequently used to solve the structure of the particle. It is essential to know, but not always obvious, that the assembled three-dimensional reciprocal-space intensity distribution is really consistent with the measured diffraction patterns. This paper shows that, with the use of correlation maps and a single parameter calculated from them, the consistency of the three-dimensional distribution can be reliably validated.
NASA Astrophysics Data System (ADS)
Inovenkov, Igor; Echkina, Eugenia; Ponomarenko, Loubov
Magnetic reconnection is a fundamental process in astrophysical, space and laboratory plasma. In essence, it represents a change of topology of the magnetic field caused by readjustment of the structure of the magnetic field lines. This change leads to release of energy accumulated in the field. We consider transformation process of structurally unstable magnetic configurations into the structurally steady ones from the point of view of the Catastrophe theory. Special attention is paid to modeling of evolution of the structurally unstable three-dimensional magnetic fields.
Schiek, Richard [Albuquerque, NM
2006-06-20
A method of generating two-dimensional masks from a three-dimensional model comprises providing a three-dimensional model representing a micro-electro-mechanical structure for manufacture and a description of process mask requirements, reducing the three-dimensional model to a topological description of unique cross sections, and selecting candidate masks from the unique cross sections and the cross section topology. The method further can comprise reconciling the candidate masks based on the process mask requirements description to produce two-dimensional process masks.
Ray tracing a three-dimensional scene using a hierarchical data structure
Wald, Ingo; Boulos, Solomon; Shirley, Peter
2012-09-04
Ray tracing a three-dimensional scene made up of geometric primitives that are spatially partitioned into a hierarchical data structure. One example embodiment is a method for ray tracing a three-dimensional scene made up of geometric primitives that are spatially partitioned into a hierarchical data structure. In this example embodiment, the hierarchical data structure includes at least a parent node and a corresponding plurality of child nodes. The method includes a first act of determining that a first active ray in the packet hits the parent node and a second act of descending to each of the plurality of child nodes.
NASA Technical Reports Server (NTRS)
Luo, Ming (Inventor); Sha, Bingdong (Inventor)
2000-01-01
The matrix protein, M1, of influenza virus strain A/PR/8/34 has been purified from virions and crystallized. The crystals consist of a stable fragment (18 Kd) of the M1 protein. X-ray diffraction studies indicated that the crystals have a space group of P3.sub.t 21 or P3.sub.2 21. Vm calculations showed that there are two monomers in an asymmetric unit. A crystallized N-terminal domain of M1, wherein the N-terminal domain of M1 is crystallized such that the three dimensional structure of the crystallized N-terminal domain of M1 can be determined to a resolution of about 2.1 .ANG. or better, and wherein the three dimensional structure of the uncrystallized N-terminal domain of M1 cannot be determined to a resolution of about 2.1 .ANG. or better. A method of purifying M1 and a method of crystallizing M1. A method of using the three-dimensional crystal structure of M1 to screen for antiviral, influenza virus treating or preventing compounds. A method of using the three-dimensional crystal structure of M1 to screen for improved binding to or inhibition of influenza virus M1. The use of the three-dimensional crystal structure of the M1 protein of influenza virus in the manufacture of an inhibitor of influenza virus M1. The use of the three-dimensional crystal structure of the M1 protein of influenza virus in the screening of candidates for inhibition of influenza virus M1.
Microreplication of laser-fabricated surface and three-dimensional structures
NASA Astrophysics Data System (ADS)
Koroleva, Anastasia; Schlie, Sabrina; Fadeeva, Elena; Gittard, Shaun D.; Miller, Philip; Ovsianikov, Aleksandr; Koch, Jürgen; Narayan, Roger J.; Chichkov, Boris N.
2010-12-01
The fabrication of defined surface topographies and three-dimensional structures is a challenging process for various applications, e.g. in photonics and biomedicine. Laser-based technologies provide a promising approach for the production of such structures. The advantages of femtosecond laser ablation and two-photon polymerization for microstructuring are well known. However, these methods cannot be applied to all materials and are limited by their high cost and long production time. In this study, biomedical applications of an indirect rapid prototyping, molding microreplication of laser-fabricated two- and three-dimensional structures are examined. We demonstrate that by this method any laser-generated surface topography as well as three-dimensional structures can be replicated in various materials without losing the original geometry. The replication into multiple copies enables fast and perfect reproducibility of original microstructures for investigations of cell-surface interactions. Compared to unstructured materials, we observe that microstructures have strong influence on morphology and localization of fibroblasts, whereas neuroblastoma cells are not negatively affected.
A Numerical Model of Exchange Chromatography Through 3D Lattice Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salloum, Maher; Robinson, David B.
Rapid progress in the development of additive manufacturing technologies is opening new opportunities to fabricate structures that control mass transport in three dimensions across a broad range of length scales. We describe a structure that can be fabricated by newly available commercial 3D printers. It contains an array of regular three-dimensional flow paths that are in intimate contact with a solid phase, and thoroughly shuffle material among the paths. We implement a chemically reacting flow model to study its behavior as an exchange chromatography column, and compare it to an array of one-dimensional flow paths that resemble more traditional honeycombmore » monoliths. A reaction front moves through the columns and then elutes. Here, the front is sharper at all flow rates for the structure with three-dimensional flow paths, and this structure is more robust to channel width defects than the one-dimensional array.« less
A Numerical Model of Exchange Chromatography Through 3D Lattice Structures
Salloum, Maher; Robinson, David B.
2018-01-30
Rapid progress in the development of additive manufacturing technologies is opening new opportunities to fabricate structures that control mass transport in three dimensions across a broad range of length scales. We describe a structure that can be fabricated by newly available commercial 3D printers. It contains an array of regular three-dimensional flow paths that are in intimate contact with a solid phase, and thoroughly shuffle material among the paths. We implement a chemically reacting flow model to study its behavior as an exchange chromatography column, and compare it to an array of one-dimensional flow paths that resemble more traditional honeycombmore » monoliths. A reaction front moves through the columns and then elutes. Here, the front is sharper at all flow rates for the structure with three-dimensional flow paths, and this structure is more robust to channel width defects than the one-dimensional array.« less
ERIC Educational Resources Information Center
Battle, Gary M.; Allen, Frank H.; Ferrence, Gregory M.
2010-01-01
A series of online interactive teaching units have been developed that illustrate the use of experimentally measured three-dimensional (3D) structures to teach fundamental chemistry concepts. The units integrate a 500-structure subset of the Cambridge Structural Database specially chosen for their pedagogical value. The units span a number of key…
ERIC Educational Resources Information Center
Battle, Gary M.; Allen, Frank H.; Ferrence, Gregory M.
2011-01-01
Parts 1 and 2 of this series described the educational value of experimental three-dimensional (3D) chemical structures determined by X-ray crystallography and retrieved from the crystallographic databases. In part 1, we described the information content of the Cambridge Structural Database (CSD) and discussed a representative teaching subset of…
ERIC Educational Resources Information Center
Battle, Gary M.; Allen, Frank H.; Ferrence, Gregory M.
2011-01-01
Parts 1 and 2 of this series described the educational value of experimental three-dimensional (3D) chemical structures determined by X-ray crystallography and retrieved from the crystallographic databases. In part 1, we described the information content of the Cambridge Structural Database (CSD) and discussed a representative teaching subset of…
Confinement and Structural Changes in Vertically Aligned Dust Structures
NASA Astrophysics Data System (ADS)
Hyde, Truell
2013-10-01
In physics, confinement is known to influence collective system behavior. Examples include coulomb crystal variants such as those formed from ions or dust particles (classical), electrons in quantum dots (quantum) and the structural changes observed in vertically aligned dust particle systems formed within a glass box placed on the lower electrode of a Gaseous Electronics Conference (GEC) rf reference cell. Recent experimental studies have expanded the above to include the biological domain by showing that the stability and dynamics of proteins confined through encapsulation and enzyme molecules placed in inorganic cavities such as those found in biosensors are also directly influenced by their confinement. In this paper, the self-assembly and subsequent collective behavior of structures formed from n, charged dust particles interacting with one another and located within a glass box placed on the lower, powered electrode of a GEC rf reference cell is discussed. Self-organized formation of vertically aligned one-dimensional chains, two-dimensional zigzag structures, and three-dimensional helical structures of triangular, quadrangular, pentagonal, hexagonal, and heptagonal symmetries are shown to occur. System evolution is shown to progress from one-dimensional chain structures, through a zigzag transition to a two-dimensional, spindle like structures, and then to various three-dimensional, helical structures exhibiting various symmetries. Stable configurations are shown to be strongly dependent upon system confinement. The critical conditions for structural transitions as well as the basic symmetry exhibited by the one-, two-, and three-dimensional structures that subsequently develop will be shown to be in good agreement with molecular dynamics simulations.
NASA Astrophysics Data System (ADS)
Cicek, Paul-Vahe; Elsayed, Mohannad; Nabki, Frederic; El-Gamal, Mourad
2017-11-01
An above-IC compatible multi-level MEMS surface microfabrication technology based on a silicon carbide structural layer is presented. The fabrication process flow provides optimal electrostatic transduction by allowing the creation of independently controlled submicron vertical and lateral gaps without the need for high resolution lithography. Adopting silicon carbide as the structural material, the technology ensures material, chemical and thermal compatibility with modern semiconductor nodes, reporting the lowest peak processing temperature (i.e. 200 °C) of all comparable works. This makes this process ideally suited for integrating capacitive-based MEMS directly above standard CMOS substrates. Process flow design and optimization are presented in the context of bulk-mode disk resonators, devices that are shown to exhibit improved performance with respect to previous generation flexural beam resonators, and that represent relatively complex MEMS structures. The impact of impending improvements to the fabrication technology is discussed.
The three-dimensional genome organization of Drosophila melanogaster through data integration.
Li, Qingjiao; Tjong, Harianto; Li, Xiao; Gong, Ke; Zhou, Xianghong Jasmine; Chiolo, Irene; Alber, Frank
2017-07-31
Genome structures are dynamic and non-randomly organized in the nucleus of higher eukaryotes. To maximize the accuracy and coverage of three-dimensional genome structural models, it is important to integrate all available sources of experimental information about a genome's organization. It remains a major challenge to integrate such data from various complementary experimental methods. Here, we present an approach for data integration to determine a population of complete three-dimensional genome structures that are statistically consistent with data from both genome-wide chromosome conformation capture (Hi-C) and lamina-DamID experiments. Our structures resolve the genome at the resolution of topological domains, and reproduce simultaneously both sets of experimental data. Importantly, this data deconvolution framework allows for structural heterogeneity between cells, and hence accounts for the expected plasticity of genome structures. As a case study we choose Drosophila melanogaster embryonic cells, for which both data types are available. Our three-dimensional genome structures have strong predictive power for structural features not directly visible in the initial data sets, and reproduce experimental hallmarks of the D. melanogaster genome organization from independent and our own imaging experiments. Also they reveal a number of new insights about genome organization and its functional relevance, including the preferred locations of heterochromatic satellites of different chromosomes, and observations about homologous pairing that cannot be directly observed in the original Hi-C or lamina-DamID data. Our approach allows systematic integration of Hi-C and lamina-DamID data for complete three-dimensional genome structure calculation, while also explicitly considering genome structural variability.
NASA Astrophysics Data System (ADS)
Berezhnoi, D. V.; Balafendieva, I. S.; Sachenkov, A. A.; Sekaeva, L. R.
2017-06-01
In work the technique of calculation of elements of three-dimensional reinforced concrete substructures located in a soil, interacting with each other through rubber linings is realized. To describe the interaction of deformable structures with the ground, special “semi-infinite” finite elements are used. A technique has been implemented that allows one to describe the contact interaction of three-dimensional structures by means of a special contact finite element with specific properties. The obtained numerical results are compared with the experimental data, their good agreement is noted.
Experimental Investigation of the Unsteady Flow Structures of Two Interacting Pitching Wings
NASA Astrophysics Data System (ADS)
Kurt, Melike; Moored, Keith
2015-11-01
Birds, insects and fish propel themselves with unsteady motions of their wings and fins. Many of these animals are also found to fly or swim in three-dimensional flocks and schools. Numerous studies have explored the three-dimensional steady flow interactions and the two-dimensional unsteady flow interactions in collectives. Yet, the characterization of the three-dimensional unsteady interactions remains relatively unexplored. This study aims to characterize the flow structures and interactions between two sinusoidally pitching finite-span wings. The arrangement of the wings varies from a tandem to a bi-plane configuration. The vortex structures for these various arrangements are quantified by using particle image velocimetry. The vortex-wing interactions are also characterized as the synchrony between the wings is modified.
Herrera-López, Mauricio; Gómez-Ortiz, Olga; Ortega-Ruiz, Rosario; Jolliffe, Darrick; Romera, Eva M
2017-09-25
(1) To examine the psychometric properties of the Basic Empathy Scale (BES) with Spanish adolescents, comparing a two and a three-dimensional structure;(2) To analyse the relationship between the three-dimensional empathy and social and normative adjustment in school. Transversal and ex post facto retrospective study. Confirmatory factorial analysis, multifactorial invariance analysis and structural equations models were used. 747 students (51.3% girls) from Cordoba, Spain, aged 12-17 years (M=13.8; SD=1.21). The original two-dimensional structure was confirmed (cognitive empathy, affective empathy), but a three-dimensional structure showed better psychometric properties, highlighting the good fit found in confirmatory factorial analysis and adequate internal consistent valued, measured with Cronbach's alpha and McDonald's omega. Composite reliability and average variance extracted showed better indices for a three-factor model. The research also showed evidence of measurement invariance across gender. All the factors of the final three-dimensional BES model were direct and significantly associated with social and normative adjustment, being most strongly related to cognitive empathy. This research supports the advances in neuroscience, developmental psychology and psychopathology through a three-dimensional version of the BES, which represents an improvement in the original two-factorial model. The organisation of empathy in three factors benefits the understanding of social and normative adjustment in adolescents, in which emotional disengagement favours adjusted peer relationships. Psychoeducational interventions aimed at improving the quality of social life in schools should target these components of empathy. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Technical Reports Server (NTRS)
Kobayashi, H.
1978-01-01
Two dimensional, quasi three dimensional and three dimensional theories for the prediction of pure tone fan noise due to the interaction of inflow distortion with a subsonic annular blade row were studied with the aid of an unsteady three dimensional lifting surface theory. The effects of compact and noncompact source distributions on pure tone fan noise in an annular cascade were investigated. Numerical results show that the strip theory and quasi three-dimensional theory are reasonably adequate for fan noise prediction. The quasi three-dimensional method is more accurate for acoustic power and model structure prediction with an acoustic power estimation error of about plus or minus 2db.
Power-scaling performance of a three-dimensional tritium betavoltaic diode
NASA Astrophysics Data System (ADS)
Liu, Baojun; Chen, Kevin P.; Kherani, Nazir P.; Zukotynski, Stefan
2009-12-01
Three-dimensional diodes fabricated by electrochemical etching are exposed to tritium gas at pressures from 0.05 to 33 atm at room temperature to examine its power scaling performance. It is shown that the three-dimensional microporous structure overcomes the self-absorption limited saturation of beta flux at high tritium pressures. These results are contrasted against the three-dimensional device powered in one instance by tritium absorbed in the near surface region of the three-dimensional microporous network, and in another by a planar scandium tritide foil. These findings suggest that direct tritium occlusion in the near surface of three-dimensional diode can improve the specific power production.
NASA Astrophysics Data System (ADS)
Brawn, A. D.; Wheal, H. V.
1986-07-01
A system is described which can be used to create a three-dimensional model of a neurone from the central nervous system. This model can then be used to obtain quantitative data on the physical and electrical pro, perties of the neurone. Living neurones are either raised in culture, or taken from in vitro preparations of brain tissue and optically sectioned. These two-dimensional sections are digitised, and input to a 68008-based microcomputer. The system reconstructs the three-dimensional structure of the neurone, both geanetrically and electrically. The user can a) View the structure fran any point at any angle b) "Move through" the structure along any given vector c) Nave through" the structure following a neurone process d) Fire the neurone at any point, and "watch" the action potentials propagate e) Vary the parameters of the electrical model of a process element. The system is targeted to a research programme on epilepsy, which makes frequent use of both geometric and electrical neurone modelling. Current techniques which may involve crude histology and two-dimensional drawings have considerable short camings.
NASA Technical Reports Server (NTRS)
Kennedy, Ronald; Padovan, Joe
1987-01-01
In a three-part series of papers, a generalized finite element solution strategy is developed to handle traveling load problems in rolling, moving and rotating structure. The main thrust of this section consists of the development of three-dimensional and shell type moving elements. In conjunction with this work, a compatible three-dimensional contact strategy is also developed. Based on these modeling capabilities, extensive analytical and experimental benchmarking is presented. Such testing includes traveling loads in rotating structure as well as low- and high-speed rolling contact involving standing wave-type response behavior. These point to the excellent modeling capabilities of moving element strategies.
ERIC Educational Resources Information Center
Penny, Matthew R.; Cao, Zi Jing; Patel, Bhaven; dos Santos, Bruno Sil; Asquith, Christopher R. M.; Szulc, Blanka R.; Rao, Zenobia X.; Muwaffak, Zaid; Malkinson, John P.; Hilton, Stephen T.
2017-01-01
Three-dimensional (3D) chemical models are a well-established learning tool used to enhance the understanding of chemical structures by converting two-dimensional paper or screen outputs into realistic three-dimensional objects. While commercial atom model kits are readily available, there is a surprising lack of large molecular and orbital models…
Structure and topology of three-dimensional hydrocarbon polymers.
Kondrin, Mikhail V; Lebed, Yulia B; Brazhkin, Vadim V
2016-08-01
A new family of three-dimensional hydrocarbon polymers which are more energetically favorable than benzene is proposed. Although structurally these polymers are closely related to well known diamond and lonsdaleite carbon structures, using topological arguments we demonstrate that they have no known structural analogs. Topological considerations also give some indication of possible methods of synthesis. Taking into account their exceptional optical, structural and mechanical properties these polymers might have interesting applications.
Density functional study of molecular interactions in secondary structures of proteins.
Takano, Yu; Kusaka, Ayumi; Nakamura, Haruki
2016-01-01
Proteins play diverse and vital roles in biology, which are dominated by their three-dimensional structures. The three-dimensional structure of a protein determines its functions and chemical properties. Protein secondary structures, including α-helices and β-sheets, are key components of the protein architecture. Molecular interactions, in particular hydrogen bonds, play significant roles in the formation of protein secondary structures. Precise and quantitative estimations of these interactions are required to understand the principles underlying the formation of three-dimensional protein structures. In the present study, we have investigated the molecular interactions in α-helices and β-sheets, using ab initio wave function-based methods, the Hartree-Fock method (HF) and the second-order Møller-Plesset perturbation theory (MP2), density functional theory, and molecular mechanics. The characteristic interactions essential for forming the secondary structures are discussed quantitatively.
Three-Dimensional Model of Holographic Formation of Inhomogeneous PPLC Diffraction Structures
NASA Astrophysics Data System (ADS)
Semkin, A. O.; Sharangovich, S. N.
2018-05-01
A three-dimensional theoretical model of holographic formation of inhomogeneous diffraction structures in composite photopolymer - liquid crystal materials is presented considering both the nonlinearity of recording and the amplitude-phase inhomogeneity of the recording light field. Based on the results of numerical simulation, the kinematics of formations of such structures and their spatial profile are investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jianjun, E-mail: jjchern@pku.edu.cn; Sun, Chengwei; Gong, Qihuang
A submicron asymmetric dielectric-coated metal slit with a Fabry–Perot (FP) nano-resonator is experimentally fabricated to realize an ultra-small on-chip polarization splitter. In the hybrid plasmonic structure, both of the transverse-electric (TE) and transverse-magnetic (TM) modes can be efficiently generated on the front metal surface. Based on the quite different resonant conditions and the different field confinements of the two orthogonal polarization modes in the FP resonator, the TM and TE modes are generated to propagate in the opposite directions along the metal surface. In this device, there are no coupling waveguide regions, and the excitation and the splitting of themore » TE and TM modes are integrated into the same asymmetric nano-slit. This considerably shrinks the device dimension to only about 850 nm (about one wavelength). In such a submicron asymmetric slit, the measured extinction ratios for the two opposite directions can reach up to (η{sub L}/η{sub R}){sup TM} ≈ 1:14 and (η{sub L}/η{sub R}){sup TE} ≈ 11:1 at λ = 820 nm. This on-chip submicron polarization splitter is of importance in highly integrated photonic circuits.« less
Yang, You; Sun, Jing; Liu, Xiaolu; Guo, Zhenzhen; He, Yunhu; Wei, Dan; Zhong, Meiling; Guo, Likun; Zhang, Xingdong
2017-01-01
Abstract Native tissue is naturally comprised of highly-ordered cell-matrix assemblies in a multi-hierarchical way, and the nano/submicron alignment of fibrous matrix is found to be significant in supporting cellular functionalization. In this study, a self-designed wet-spinning device appended with a rotary receiving pool was used to continuously produce shear-patterned hydrogel microfibers with aligned submicron topography. The process that the flow-induced shear force reshapes the surface of hydrogel fiber into aligned submicron topography was systematically analysed. Afterwards, the effect of fiber topography on cellular longitudinal spread and elongation was investigated by culturing rat neuron-like PC12 cells and human osteosarcoma MG63 cells with the spun hydrogel microfibers, respectively. The results suggested that the stronger shear flow force would lead to more distinct aligned submicron topography on fiber surface, which could induce cell orientation along with fiber axis and therefore form the cell-matrix dual-alignment. Finally, a multi-hierarchical tissue-like structure constructed by dual-oriented cell-matrix assemblies was fabricated based on this wet-spinning method. This work is believed to be a potentially novel biofabrication scheme for bottom-up constructing of engineered linear tissue, such as nerve bundle, cortical bone, muscle and hepatic cord. PMID:29026644
NASA Astrophysics Data System (ADS)
Wu, Zi Liang; Moshe, Michael; Greener, Jesse; Therien-Aubin, Heloise; Nie, Zhihong; Sharon, Eran; Kumacheva, Eugenia
2013-03-01
Although Nature has always been a common source of inspiration in the development of artificial materials, only recently has the ability of man-made materials to produce complex three-dimensional (3D) structures from two-dimensional sheets been explored. Here we present a new approach to the self-shaping of soft matter that mimics fibrous plant tissues by exploiting small-scale variations in the internal stresses to form three-dimensional morphologies. We design single-layer hydrogel sheets with chemically distinct, fibre-like regions that exhibit differential shrinkage and elastic moduli under the application of external stimulus. Using a planar-to-helical three-dimensional shape transformation as an example, we explore the relation between the internal architecture of the sheets and their transition to cylindrical and conical helices with specific structural characteristics. The ability to engineer multiple three-dimensional shape transformations determined by small-scale patterns in a hydrogel sheet represents a promising step in the development of programmable soft matter.
Gkioulekas, Eleftherios
2016-09-01
Using the fusion-rules hypothesis for three-dimensional and two-dimensional Navier-Stokes turbulence, we generalize a previous nonperturbative locality proof to multiple applications of the nonlinear interactions operator on generalized structure functions of velocity differences. We call this generalization of nonperturbative locality to multiple applications of the nonlinear interactions operator "multilocality." The resulting cross terms pose a new challenge requiring a new argument and the introduction of a new fusion rule that takes advantage of rotational symmetry. Our main result is that the fusion-rules hypothesis implies both locality and multilocality in both the IR and UV limits for the downscale energy cascade of three-dimensional Navier-Stokes turbulence and the downscale enstrophy cascade and inverse energy cascade of two-dimensional Navier-Stokes turbulence. We stress that these claims relate to nonperturbative locality of generalized structure functions on all orders and not the term-by-term perturbative locality of diagrammatic theories or closure models that involve only two-point correlation and response functions.
The study on the entrapment efficiency and in vitro release of puerarin submicron emulsion.
Yue, Peng-Fei; Lu, Xiu-Yun; Zhang, Zeng-Zhu; Yuan, Hai-Long; Zhu, Wei-Feng; Zheng, Qin; Yang, Ming
2009-01-01
The entrapment efficiency (EE) and release in vitro are very important physicochemical characteristics of puerarin submicron emulsion (SME). In this paper, the performance of ultrafiltration (UF), ultracentrifugation (UC), and microdialysis (MD) for determining the EE of SME were evaluated, respectively. The release study in vitro of puerarin from SME was studied by using MD and pressure UF technology. The EE of SME was 86.5%, 72.8%, and 55.8% as determined by MD, UF, and UC, respectively. MD was not suitable for EE measurements of puerarin submicron oil droplet, which could only determine the total EE of submicron oil droplet and liposomes micelles, but it could be applied to determine the amount of free drug in SMEs. Although UC was the fastest and simplest to use, its results were the least reliable. UF was still the relatively accurate method for EE determination of puerarin SME. The release of puerarin SME could be evaluated by using MD and pressure UF, but MD seemed to be more suitable for the release study of puerarin emulsion. The drug release from puerarin SME at three drug concentrations was initially rapid, but reached a plateau value within 30 min. Drug release of puerarin from the SME occurred via burst release.
Validating two-dimensional leadership models on three-dimensionally structured fish schools
Nagy, Máté; Holbrook, Robert I.; Biro, Dora; Burt de Perera, Theresa
2017-01-01
Identifying leader–follower interactions is crucial for understanding how a group decides where or when to move, and how this information is transferred between members. Although many animal groups have a three-dimensional structure, previous studies investigating leader–follower interactions have often ignored vertical information. This raises the question of whether commonly used two-dimensional leader–follower analyses can be used justifiably on groups that interact in three dimensions. To address this, we quantified the individual movements of banded tetra fish (Astyanax mexicanus) within shoals by computing the three-dimensional trajectories of all individuals using a stereo-camera technique. We used these data firstly to identify and compare leader–follower interactions in two and three dimensions, and secondly to analyse leadership with respect to an individual's spatial position in three dimensions. We show that for 95% of all pairwise interactions leadership identified through two-dimensional analysis matches that identified through three-dimensional analysis, and we reveal that fish attend to the same shoalmates for vertical information as they do for horizontal information. Our results therefore highlight that three-dimensional analyses are not always required to identify leader–follower relationships in species that move freely in three dimensions. We discuss our results in terms of the importance of taking species' sensory capacities into account when studying interaction networks within groups. PMID:28280582
Chen, Hao; Shi, Shuai; Zhao, Mingming; Zhang, Ling; He, Haibing; Tang, Xing
2010-12-01
To develop a submicron emulsion for etoposide with a high drug loading capacity using a drug-phospholipid complex combined with drug freeze-drying techniques. An etoposide-phospholipid complex (EPC) was prepared and its structure was confirmed by X-ray diffraction and differential scanning calorimetry analysis. A freeze-drying technique was used to produce lyophilized etoposide emulsions (LEPE), and LEPE was investigated with regard to their appearance, particle size, and zeta potential. The pharmacokinetic study in vivo was determined by the UPLC/MS/MS system. It showed that EPC significantly improved the liposolubility of etoposide, indicating a high drug loading intravenous emulsion could be easily prepared by EPC. Moreover, the obtained loading of etoposide in the submicron emulsion was 3.0 mg/mL, which was three times higher than that of the previous liquid emulsions. The optimum cryoprotectant was trehalose (15%) in freeze-drying test. The median diameter, polydispersity index, and zeta potential of the optimum formulation of LEPE were 226.1 ± 5.1 nm, 0.107 ± 0.011, and -36.20 ± 1.13 mV, respectively. In addition, these parameters had no significant change during 6 months storage at 4 ± 2°C. The main pharmacokinetic parameters exhibited no significant differences between LEPE and etoposide commercial solution except for area under the concentration-time curve and clearance. The stable etoposide emulsion with a high drug loading was successfully prepared, indicating the amount of excipients such as the oil phase and emulsifiers significantly decreased following administration of the same dose of drug, effectively reducing the metabolism by patients while increasing their compliance. Therefore, LEPE has a great potential for clinical applications.
Wang, Zhili; Liu, Pan; Han, Jiuhui; Cheng, Chun; Ning, Shoucong; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei
2017-10-20
Tuning surface structures by bottom-up synthesis has been demonstrated as an effective strategy to improve the catalytic performances of nanoparticle catalysts. Nevertheless, the surface modification of three-dimensional nanoporous metals, fabricated by a top-down dealloying approach, has not been achieved despite great efforts devoted to improving the catalytic performance of three-dimensional nanoporous catalysts. Here we report a surfactant-modified dealloying method to tailor the surface structure of nanoporous gold for amplified electrocatalysis toward methanol oxidation and oxygen reduction reactions. With the assistance of surfactants, {111} or {100} faceted internal surfaces of nanoporous gold can be realized in a controllable manner by optimizing dealloying conditions. The surface modified nanoporous gold exhibits significantly enhanced electrocatalytic activities in comparison with conventional nanoporous gold. This study paves the way to develop high-performance three-dimensional nanoporous catalysts with a tunable surface structure by top-down dealloying for efficient chemical and electrochemical reactions.
X-ray diffraction study of Penicillium Vitale catalase in the complex with aminotriazole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovik, A. A.; Grebenko, A. I.; Melik-Adamyan, V. R., E-mail: mawr@ns.crys.ras.ru
2011-07-15
The three-dimensional structure of the enzyme catalase from Penicillium vitale in a complex with the inhibitor aminotriazole was solved and refined by protein X-ray crystallography methods. An analysis of the three-dimensional structure of the complex showed that the inhibition of the enzyme occurs as a result of the covalent binding of aminotriazole to the amino-acid residue His64 in the active site of the enzyme. An investigation of the three-dimensional structure of the complex resulted in the amino-acid residues being more precisely identified. The binding sites of saccharide residues and calcium ions in the protein molecule were found.
John F. Hunt; Margit Tamasy-Bano; Heike Nyist
1999-01-01
A three-dimensional structural panel, called FPL Spaceboard, was developed at the USDA Forest Products Laboratory. Spaceboard panels have been formed using a variety of fibrous materials using either a wet- or dry-forming process. Geometrically, the panel departs from the traditional two-dimensional flat panel by integrally forming an array of perpendicular ribs and...
Balancing Newtonian gravity and spin to create localized structures
NASA Astrophysics Data System (ADS)
Bush, Michael; Lindner, John
2015-03-01
Using geometry and Newtonian physics, we design localized structures that do not require electromagnetic or other forces to resist implosion or explosion. In two-dimensional Euclidean space, we find an equilibrium configuration of a rotating ring of massive dust whose inward gravity is the centripetal force that spins it. We find similar solutions in three-dimensional Euclidean and hyperbolic spaces, but only in the limit of vanishing mass. Finally, in three-dimensional Euclidean space, we generalize the two-dimensional result by finding an equilibrium configuration of a spherical shell of massive dust that supports itself against gravitational collapse by spinning isoclinically in four dimensions so its three-dimensional acceleration is everywhere inward. These Newtonian ``atoms'' illuminate classical physics and geometry.
Gold nanocrystals with DNA-directed morphologies.
Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P; Kwon, Young Jik; Sim, Sang Jun
2016-09-16
Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.
Gold nanocrystals with DNA-directed morphologies
NASA Astrophysics Data System (ADS)
Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P.; Kwon, Young Jik; Sim, Sang Jun
2016-09-01
Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.
Single-crystal and textured polycrystalline Nd2Fe14B flakes with a submicron or nanosize thickness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, BZ; Zheng, LY; Li, WF
2012-02-01
This paper reports on the fabrication, structure and magnetic property optimization of Nd2Fe14B single-crystal and [0 0 1] textured poly-nanocrystalline flakes prepared by surfactant-assisted high-energy ball milling (HEBM). Single-crystal Nd2Fe14B flakes first with micron and then with submicron thicknesses were formed via continuous basal cleavage along the (1 1 0) planes of the irregularly shaped single-crystal microparticles during the early stage of HEBM. With further milling, [0 0 1] textured polycrystalline submicron Nd2Fe14B flakes were formed. Finally, crystallographically anisotropic polycrystalline Nd2Fe14B nanoflakes were formed after milling for 5-6 h. Anisotropic magnetic behavior was found in all of the flake samples.more » Nd2Fe14B flakes prepared with either oleic acid (OA) or oleylamine (OY) as the surfactant exhibited similar morphology, structure and magnetic properties. Both the addition of some low-melting-point eutectic Nd70Cu30 alloy and an appropriate post-annealing can increase the coercivity of the Nd2Fe14B flakes. The coercivity of Nd2Fe14B nanoflakes with an addition of 16.7 wt.% Nd70Cu30 by milling for 5 h in heptane with 20 wt.% OY increased from 3.7 to 6.8 kOe after annealing at 450 degrees C for 0.5 h. The mechanism for formation and coercivity enhancement of Nd2Fe14B single-crystal and textured poly-nanocrystalline flakes with a submicron or nanosize thickness was discussed. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less
Three-dimensional confocal microscopy of the living cornea and ocular lens
NASA Astrophysics Data System (ADS)
Masters, Barry R.
1991-07-01
The three-dimensional reconstruction of the optic zone of the cornea and the ocular crystalline lens has been accomplished using confocal microscopy and volume rendering computer techniques. A laser scanning confocal microscope was used in the reflected light mode to obtain the two-dimensional images from the cornea and the ocular lens of a freshly enucleated rabbit eye. The light source was an argon ion laser with a 488 nm wavelength. The microscope objective was a Leitz X25, NA 0.6 water immersion lens. The 400 micron thick cornea was optically sectioned into 133 three micron sections. The semi-transparent cornea and the in-situ ocular lens was visualized as high resolution, high contrast two-dimensional images. The structures observed in the cornea include: superficial epithelial cells and their nuclei, basal epithelial cells and their 'beaded' cell borders, basal lamina, nerve plexus, nerve fibers, nuclei of stromal keratocytes, and endothelial cells. The structures observed in the in- situ ocular lens include: lens capsule, lens epithelial cells, and individual lens fibers. The three-dimensional data sets of the cornea and the ocular lens were reconstructed in the computer using volume rendering techniques. Stereo pairs were also created of the two- dimensional ocular images for visualization. The stack of two-dimensional images was reconstructed into a three-dimensional object using volume rendering techniques. This demonstration of the three-dimensional visualization of the intact, enucleated eye provides an important step toward quantitative three-dimensional morphometry of the eye. The important aspects of three-dimensional reconstruction are discussed.
Quasi-three-dimensional particle imaging with digital holography.
Kemppinen, Osku; Heinson, Yuli; Berg, Matthew
2017-05-01
In this work, approximate three-dimensional structures of microparticles are generated with digital holography using an automated focus method. This is done by stacking a collection of silhouette-like images of a particle reconstructed from a single in-line hologram. The method enables estimation of the particle size in the longitudinal and transverse dimensions. Using the discrete dipole approximation, the method is tested computationally by simulating holograms for a variety of particles and attempting to reconstruct the known three-dimensional structure. It is found that poor longitudinal resolution strongly perturbs the reconstructed structure, yet the method does provide an approximate sense for the structure's longitudinal dimension. The method is then applied to laboratory measurements of holograms of single microparticles and their scattering patterns.
Single Mode ZnO Whispering-Gallery Submicron Cavity and Graphene Improved Lasing Performance.
Li, Jitao; Lin, Yi; Lu, Junfeng; Xu, Chunxiang; Wang, Yueyue; Shi, Zengliang; Dai, Jun
2015-07-28
Single-mode ultraviolet (UV) laser of ZnO is still in challenge so far, although it has been paid great attention along the past decades. In this work, single-mode lasing resonance was realized in a submicron-sized ZnO rod based on serially varying the dimension of the whispering-gallery mode (WGM) cavities. The lasing performance, such as the lasing quality factor (Q) and the lasing intensity, was remarkably improved by facilely covering monolayer graphene on the ZnO submicron-rod. The mode structure evolution from multimodes to single-mode was investigated systematically based on the total internal-wall reflection of the ZnO microcavities. Graphene-induced optical field confinement and lasing emission enhancement were revealed, indicating an energy coupling between graphene SP and ZnO exciton emission. This result demonstrated the response of graphene in the UV wavelength region and extended its potential applications besides many previous reports on the multifunctional graphene/semiconductor hybrid materials and devices in advanced electronics and optoelectronics areas.
1993-08-01
measure the inherent fracture toughness of a material. A thor- ough understanding of the test specimen behavior is a prerequisite to the application of...measured material properties in structural applications . Three- dimensional dynamic analyses are performed for three different specimen configurations...derstanding of the test specimen behavior is a prerequisite to the application of measured ma- terial properties in structural applications . Three
Automated integration of lidar into the LANDFIRE product suite
Birgit Peterson; Kurtis J. Nelson; Carl Seielstad; Jason Stoker; W. Matt Jolly; Russell Parsons
2015-01-01
Accurate information about three-dimensional canopy structure and wildland fuel across the landscape is necessary for fire behaviour modelling system predictions. Remotely sensed data are invaluable for assessing these canopy characteristics over large areas; lidar data, in particular, are uniquely suited for quantifying three-dimensional canopy structure. Although...
Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shi-Jie; Li, Yan, E-mail: li@pku.edu.cn; Liu, Zhao-Pei
The focus of a beam with orbital angular momentum exhibits internal structure instead of an elliptical intensity distribution of a Gaussian beam, and the superposition of Gauss-Laguerre beams realized by two-dimensional phase modulation can generate a complex three-dimensional (3D) focus. By taking advantage of the flexibility of this 3D focus tailoring, we have fabricated a 3D microstructure with high resolution by two-photon polymerization with a single exposure. Furthermore, we have polymerized an array of double-helix structures that demonstrates optical chirality.
Three-dimensional nanomagnetism
Fernandez-Pacheco, Amalio; Streubel, Robert; Fruchart, Olivier; ...
2017-06-09
Magnetic nanostructures are being developed for use in many aspects of our daily life, spanning areas such as data storage, sensing and biomedicine. Whereas patterned nanomagnets are traditionally two-dimensional planar structures, recent work is expanding nanomagnetism into three dimensions; a move triggered by the advance of unconventional synthesis methods and the discovery of new magnetic effects. In three-dimensional nanomagnets more complex magnetic configurations become possible, many with unprecedented properties. Here we review the creation of these structures and their implications for the emergence of new physics, the development of instrumentation and computational methods, and exploitation in numerous applications.
Topology of large-scale structure. IV - Topology in two dimensions
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Cohen, Alexander P.; Hamilton, Andrew J. S.; Gott, J. Richard, III; Weinberg, David H.
1989-01-01
In a recent series of papers, an algorithm was developed for quantitatively measuring the topology of the large-scale structure of the universe and this algorithm was applied to numerical models and to three-dimensional observational data sets. In this paper, it is shown that topological information can be derived from a two-dimensional cross section of a density field, and analytic expressions are given for a Gaussian random field. The application of a two-dimensional numerical algorithm for measuring topology to cross sections of three-dimensional models is demonstrated.
Hydroelastic behaviour of a structure exposed to an underwater explosion
Colicchio, G.; Greco, M.; Brocchini, M.; Faltinsen, O. M.
2015-01-01
The hydroelastic interaction between an underwater explosion and an elastic plate is investigated num- erically through a domain-decomposition strategy. The three-dimensional features of the problem require a large computational effort, which is reduced through a weak coupling between a one-dimensional radial blast solver, which resolves the blast evolution far from the boundaries, and a three-dimensional compressible flow solver used where the interactions between the compression wave and the boundaries take place and the flow becomes three-dimensional. The three-dimensional flow solver at the boundaries is directly coupled with a modal structural solver that models the response of the solid boundaries like elastic plates. This enables one to simulate the fluid–structure interaction as a strong coupling, in order to capture hydroelastic effects. The method has been applied to the experimental case of Hung et al. (2005 Int. J. Impact Eng. 31, 151–168 (doi:10.1016/j.ijimpeng.2003.10.039)) with explosion and structure sufficiently far from other boundaries and successfully validated in terms of the evolution of the acceleration induced on the plate. It was also used to investigate the interaction of an underwater explosion with the bottom of a close-by ship modelled as an orthotropic plate. In the application, the acoustic phase of the fluid–structure interaction is examined, highlighting the need of the fluid–structure coupling to capture correctly the possible inception of cavitation. PMID:25512585
Ionizing radiation effects on CMOS imagers manufactured in deep submicron process
NASA Astrophysics Data System (ADS)
Goiffon, Vincent; Magnan, Pierre; Bernard, Frédéric; Rolland, Guy; Saint-Pé, Olivier; Huger, Nicolas; Corbière, Franck
2008-02-01
We present here a study on both CMOS sensors and elementary structures (photodiodes and in-pixel MOSFETs) manufactured in a deep submicron process dedicated to imaging. We designed a test chip made of one 128×128-3T-pixel array with 10 μm pitch and more than 120 isolated test structures including photodiodes and MOSFETs with various implants and different sizes. All these devices were exposed to ionizing radiation up to 100 krad and their responses were correlated to identify the CMOS sensor weaknesses. Characterizations in darkness and under illumination demonstrated that dark current increase is the major sensor degradation. Shallow trench isolation was identified to be responsible for this degradation as it increases the number of generation centers in photodiode depletion regions. Consequences on hardness assurance and hardening-by-design are discussed.
Photonic crystals: Theory and device applications
NASA Astrophysics Data System (ADS)
Fan, Shanhui
In this thesis, first-principle frequency-domain and time-domain methods are developed and applied to investigate various properties and device applications of photonic crystals. In Chapter 2, I discuss the two numerical methods used to investigate the properties of photonic crystals. The first solves Maxwell's equations in the frequency domain, while the second solves the equations in the time domain. The frequency-domain method yields the frequency, polarization, symmetry, and field distribution of every eigenmode of the system; the time-domain method allows one to determine the temporal behavior of the modes. In Chapter 3, a new class of three-dimensional photonic crystal structures is introduced that is amenable for fabrication at submicron-length scales. The structures give rise to a 3D photonic bandgap. They consist of a layered structure in which a series of cylindrical air holes are etched at normal incidence. The calculation demonstrates the existence of a gap as large as 14% of the mid-gap frequency using Si, SiO2, and air; and 23% using Si and air. In Chapter 4, the bandstructure and transmission properties of three-dimensional metallodielectric photonic crystals are presented. The metallodielectric crystals are modeled as perfect electrical conducting objects embedded in dielectric media. We investigate the face-centered-cubic (fcc) lattice, and the diamond lattice. Partial gaps are predicted in the fcc lattice, in excellent agreement with recent experiments. Complete gaps are found in a diamond lattice of isolated metal spheres. The gaps appear between the second and third bands, and their sizes can be larger than 60% when the radius of the spheres exceeds 21% of the cubic unit cell size. In Chapter 5, I investigate the properties of resonant modes which arise from the introduction of local defects in two-dimensional (2D) and 3D photonic crystals. The properties of these modes can be controlled by changing the nature and the size of the defects. The symmetry associated with these modes translates into an orbital angular momentum for each photon. In Chapter 6, a new type of high-Q microcavity is introduced that consists of a channel waveguide and a one-dimensional photonic crystal. A band gap for the guided modes is opened and a sharp resonant state is created by adding a defect in the periodic system. Strong field confinement of the defect can be achieved with a modal volume less than half of a cubic wavelength. The coupling efficiency to this mode from a channel waveguide exceeds 80%. In Chapter 7, a tunable single-mode waveguide microcavity is proposed that is well suited for frequency modulations and switching. The cavity mode has a volume of less than one cubic half-wavelength, and the resonant frequency is tuned by refractive-index modulation. Picosecond on-off switching times are achievable when two of these cavities are placed in series. In Chapter 8, I show that a thin slab of two-dimensional photonic crystal can alter drastically the radiation pattern of spontaneous emission. By eliminating all guided modes at the transition frequencies, spontaneous emission can be coupled entirely to free space modes. (Copies available exclusively from MIT Libraries, Rm. 14- 0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.) (Abstract shortened by UMI.)
Dimensionally stable and bioactive membrane for guided bone regeneration: An in vitro study
Rowe, Matthew J.; Kamocki, Krzysztof; Pankajakshan, Divya; Li, Ding; Bruzzaniti, Angela; Thomas, Vinoy; Blanchard, Steve B.; Bottino, Marco C.
2015-01-01
Composite fibrous electrospun membranes based on poly(DL-lactide) (PLA) and poly(ε-caprolactone) (PCL) were engineered to include borate bioactive glass (BBG) for the potential purposes of guided bone regeneration (GBR). The fibers were characterized using scanning and transmission electron microscopies, which respectively confirmed the submicron fibrous arrangement of the membranes and the successful incorporation of BBG particles. Selected mechanical properties of the membranes were evaluated using the suture pullout test. The addition of BBG at 10 wt.% led to similar stiffness, but more importantly, it led to a significantly stronger (2.37±0.51 N*mm) membrane when compared to the commercially available Epiguide® (1.06±0.24 N*mm) under hydrated conditions. Stability (shrinkage) was determined after incubation in a phosphate buffer solution from 24 h up to 9 days. The dimensional stability of the PLA:PCL-based membranes with or without BBG incorporation (10.07-16.08%) was similar to that of Epiguide® (14.28%). Cell proliferation assays demonstrated a higher rate of pre-osteoblasts proliferation on BBG-containing membranes (6.4-fold) over BBG-free membranes (4-5.8-fold) and EpiGuide® (4.5-fold), following 7 days of in vitro culture. Collectively, our results demonstrated the ability to synthesize, via electrospinning, stable, polymer-based submicron fibrous BBG-containing membranes capable of sustaining osteoblastic attachment and proliferation—a promising attribute in guided bone regeneration. PMID:25953329
NASA Astrophysics Data System (ADS)
Kirker, Grant; Zelinka, Sam; Gleber, Sophie-Charlotte; Vine, David; Finney, Lydia; Chen, Si; Hong, Young Pyo; Uyarte, Omar; Vogt, Stefan; Jellison, Jody; Goodell, Barry; Jakes, Joseph E.
2017-01-01
The role of ions in the fungal decay process of lignocellulose biomaterials, and more broadly fungal metabolism, has implications for diverse research disciplines ranging from plant pathology and forest ecology, to carbon sequestration. Despite the importance of ions in fungal decay mechanisms, the spatial distribution and quantification of ions in lignocellulosic cell walls and fungal hyphae during decay is not known. Here we employ synchrotron-based X-ray fluorescence microscopy (XFM) to map and quantify physiologically relevant ions, such as K, Ca, Mn, Fe, and Zn, in wood being decayed by the model brown rot fungus Serpula lacrymans. Two-dimensional XFM maps were obtained to study the ion spatial distributions from mm to submicron length scales in wood, fungal hyphae with the dried extracellular matrix (ECM) from the fungus, and Ca oxalate crystals. Three-dimensional ion volume reconstructions were also acquired of wood cell walls and hyphae with ECM. Results show that the fungus actively transports some ions, such as Fe, into the wood and controls the distribution of ions at both the bulk wood and cell wall length scales. These measurements provide new insights into the movement of ions during decay and illustrate how synchrotron-based XFM is uniquely suited study these ions.
NASA Astrophysics Data System (ADS)
Lee, El-Hang; Lee, Seung-Gol; O, Beom Hoan; Park, Se Geun
2004-08-01
Scientific and technological issues and considerations regarding the integration of miniaturized microphotonic devices, circuits and systems in micron, submicron, and quantum scale, are presented. First, we examine the issues regarding the miniaturization of photonic devices including the size effect, proximity effect, energy confinement effect, microcavity effect, optical and quantum interference effect, high field effect, nonlinear effect, noise effect, quantum optical effect, and chaotic effect. Secondly, we examine the issues regarding the interconnection including the optical alignment, minimizing the interconnection losses, and maintaining optical modes. Thirdly, we address the issues regarding the two-dimensional or three-dimensional integration either in a hybrid format or in a monolithic format between active devices and passive devices of varying functions. We find that the concept of optical printed circuit board (O-PCB) that we propose is highly attractive as a platform for micro/nano/quantum-scale photonic integration. We examine the technological issues to be addressed in the process of fabrication, characterization, and packaging for actual implementation of the miniaturization, interconnection and integration. Devices that we have used for our study include: mode conversion schemes, micro-ring and micro-racetrack resonator devices, multimode interference devices, lasers, vertical cavity surface emitting microlasers, and their arrays. Future prospects are also discussed.
Zheng, X; Xue, Q; Mittal, R; Beilamowicz, S
2010-11-01
A new flow-structure interaction method is presented, which couples a sharp-interface immersed boundary method flow solver with a finite-element method based solid dynamics solver. The coupled method provides robust and high-fidelity solution for complex flow-structure interaction (FSI) problems such as those involving three-dimensional flow and viscoelastic solids. The FSI solver is used to simulate flow-induced vibrations of the vocal folds during phonation. Both two- and three-dimensional models have been examined and qualitative, as well as quantitative comparisons, have been made with established results in order to validate the solver. The solver is used to study the onset of phonation in a two-dimensional laryngeal model and the dynamics of the glottal jet in a three-dimensional model and results from these studies are also presented.
Three dimensional contact/impact methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulak, R.F.
1987-01-01
The simulation of three-dimensional interface mechanics between reactor components and structures during static contact or dynamic impact is necessary to realistically evaluate their structural integrity to off-normal loads. In our studies of postulated core energy release events, we have found that significant structure-structure interactions occur in some reactor vessel head closure designs and that fluid-structure interactions occur within the reactor vessel. Other examples in which three-dimensional interface mechanics play an important role are: (1) impact response of shipping casks containing spent fuel, (2) whipping pipe impact on reinforced concrete panels or pipe-to-pipe impact after a pipe break, (3) aircraft crashmore » on secondary containment structures, (4) missiles generated by turbine failures or tornados, and (5) drops of heavy components due to lifting accidents. The above is a partial list of reactor safety problems that require adequate treatment of interface mechanics and are discussed in this paper.« less
Visualization of molecular structures using HoloLens-based augmented reality
Hoffman, MA; Provance, JB
2017-01-01
Biological molecules and biologically active small molecules are complex three dimensional structures. Current flat screen monitors are limited in their ability to convey the full three dimensional characteristics of these molecules. Augmented reality devices, including the Microsoft HoloLens, offer an immersive platform to change how we interact with molecular visualizations. We describe a process to incorporate the three dimensional structures of small molecules and complex proteins into the Microsoft HoloLens using aspirin and the human leukocyte antigen (HLA) as examples. Small molecular structures can be introduced into the HoloStudio application, which provides native support for rotating, resizing and performing other interactions with these molecules. Larger molecules can be imported through the Unity gaming development platform and then Microsoft Visual Developer. The processes described here can be modified to import a wide variety of molecular structures into augmented reality systems and improve our comprehension of complex structural features. PMID:28815109
Three-Dimensional Temperature Field Simulation for the Rotor of an Asynchronous Motor
ERIC Educational Resources Information Center
Wang, Yanwu; Fan, Chunli; Yang, Li; Sun, Fengrui
2010-01-01
A three-dimensional heat transfer model is built according to the rotor structure of an asynchronous motor, and three-dimensional temperature fields of the rotor under different working conditions, such as the unloaded, rated loaded and that with broken rotor bars, are studied based on the finite element numerical method and experiments. The…
Fabrication of three-dimensional collagen scaffold using an inverse mould-leaching process.
Ahn, SeungHyun; Lee, SuYeon; Cho, Youngseok; Chun, Wook; Kim, GeunHyung
2011-09-01
Natural biopolymers, such as collagen or chitosan, are considered ideal for biomedical scaffolds. However, low processability of the materials has hindered the fabrication of designed pore structures controlled by various solid freeform-fabrication methods. A new technique to fabricate a biomedical three-dimensional collagen scaffold, supplemented with a sacrificial poly(ethylene oxide) mould is proposed. The fabricated collagen scaffold shows a highly porous surface and a three-dimensional structure with high porosity as well as mechanically stable structure. To show its feasibility for biomedical applications, fibroblasts/keratinocytes were co-cultured on the scaffold, and the cell proliferation and cell migration of the scaffold was more favorable than that obtained with a spongy-type collagen scaffold.
Ultra-Rapid 2-D and 3-D Laser Microprinting of Proteins
NASA Astrophysics Data System (ADS)
Scott, Mark Andrew
When viewed under the microscope, biological tissues reveal an exquisite microarchitecture. These complex patterns arise during development, as cells interact with a multitude of chemical and mechanical cues in the surrounding extracellular matrix. Tissue engineers have sought for decades to repair or replace damaged tissue, often relying on porous scaffolds as an artificial extracellular matrix to support cell development. However, these grafts are unable to recapitulate the complexity of the in vivo environment, limiting our ability to regenerate functional tissue. Biomedical engineers have developed several methods for printing two- and three-dimensional patterns of proteins for studying and directing cell development. Of these methods, laser microprinting of proteins has shown the most promise for printing sub-cellular resolution gradients of cues, but the photochemistry remains too slow to enable large-scale applications for screening and therapeutics In this work, we demonstrate a novel high-speed photochemistry based on multi-photon photobleaching of fluorescein, and we build the fastest 2-D and 3-D laser microprinter for proteins to date. First, we show that multiphoton photobleaching of a deoxygenated solution of biotin-4-fluorescein onto a PEG monolayer with acrylate end-group can enable print speeds of almost 20 million pixels per second at 600 nanometer resolution. We discovered that the mechanism of fluorescein photobleaching evolves from a 2-photon to 3- and 4-photon regime at higher laser intensities, unlocking faster printing kinetics. Using this 2-D printing system, we develop a novel triangle-ratchet method for directing the polarization of single hippocampal neurons. This ability to determine which neurite becomes an axon, and which neuritis become dendrites is an essential step for developing defined in vitro neural networks. Next, we modify our multiphoton photobleaching system to print in three dimensions. For the first time, we demonstrate 3-D printing of full length proteins in collagen, fibrin and gelatin methacrylate scaffolds, as well as printing in agarose and agarose methacrylate scaffolds. We also present a novel method for 3-D printing collagen scaffolds at unprecedented speeds, up to 14layers per second, generating complex shapes in seconds with sub-micron resolution. Finally, we demonstrate that 3-D printing of scaffold architecture and protein cues inside the scaffold can be combined, for the first time enabling structures with complex sub-micron architectures and chemical cues for directing development. We believe that the ultra-rapid printing technology presented in this thesis will be a key enabler in the development of complex, artificially engineered tissues and organs. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)
Li, Angsheng; Yin, Xianchen; Pan, Yicheng
2016-01-01
In this study, we propose a method for constructing cell sample networks from gene expression profiles, and a structural entropy minimisation principle for detecting natural structure of networks and for identifying cancer cell subtypes. Our method establishes a three-dimensional gene map of cancer cell types and subtypes. The identified subtypes are defined by a unique gene expression pattern, and a three-dimensional gene map is established by defining the unique gene expression pattern for each identified subtype for cancers, including acute leukaemia, lymphoma, multi-tissue, lung cancer and healthy tissue. Our three-dimensional gene map demonstrates that a true tumour type may be divided into subtypes, each defined by a unique gene expression pattern. Clinical data analyses demonstrate that most cell samples of an identified subtype share similar survival times, survival indicators and International Prognostic Index (IPI) scores and indicate that distinct subtypes identified by our algorithms exhibit different overall survival times, survival ratios and IPI scores. Our three-dimensional gene map establishes a high-definition, one-to-one map between the biologically and medically meaningful tumour subtypes and the gene expression patterns, and identifies remarkable cells that form singleton submodules. PMID:26842724
Three-dimensional water impact at normal incidence to a blunt structure
Cooker, M. J.; Korobkin, A. A.
2016-01-01
The three-dimensional water impact onto a blunt structure with a spreading rectangular contact region is studied. The structure is mounted on a flat rigid plane with the impermeable curved surface of the structure perpendicular to the plane. Before impact, the water region is a rectangular domain of finite thickness bounded from below by the rigid plane and above by the flat free surface. The front free surface of the water region is vertical, representing the front of an advancing steep wave. The water region is initially advancing towards the structure at a constant uniform speed. We are concerned with the slamming loads acting on the surface of the structure during the initial stage of water impact. Air, gravity and surface tension are neglected. The problem is analysed by using some ideas of pressure-impulse theory, but including the time-dependence of the wetted area of the structure. The flow caused by the impact is three-dimensional and incompressible. The distribution of the pressure-impulse (the time-integral of pressure) over the surface of the structure is analysed and compared with the distributions provided by strip theories. The total impulse exerted on the structure during the impact stage is evaluated and compared with numerical and experimental predictions. An example calculation is presented of water impact onto a vertical rigid cylinder. Three-dimensional effects on the slamming loads are the main concern in this study. PMID:27616912
NASA Astrophysics Data System (ADS)
Kumar, Asish; Singh, Prabal P.; Thapa, Khem B.
2018-05-01
The optical properties of one-dimensional periodic structure composed by SiO2 and dielectric (air) layers with asymmetric and symmetric forms studied. The transmittance for symmetric periodic defective structure analyzed by introducing one, two, three layers of magnetized cold plasma (MCP) in one-dimensional periodic structure. We found better result for symmetric defect of three layer of the MCP compare to the other defective structures. On the basis of our calculated results, we proposed a new idea for broadband reflector at lower frequency range as well as the multichannel filter at higher frequency range.
M553 sphere forming experiment: Pure nickel specimen evaluation
NASA Technical Reports Server (NTRS)
Johnson, P. C.; Peters, E. T.
1973-01-01
A region or cap of very fine two-dimensional surface growth structure was observed at the top of three of the six pure nickel flight specimens. Such two-dimensional surface growth structures have been observed both on the ground-based specimens and on other surface areas of the flight specimens. However, the fine structures observed on the three flight samples are at least an order of magnitude finer than those previously observed, and resemble similar localized, fine, two-dimensional surface structures observed in both ground and flight specimens for the nickel alloys. The two-dimensional growth areas consist primarily of fine equiaxed grains, specimen SL-2.6, fine dendrites, specimen SL-2.5, or a core of fine equiaxed grains surrounded by a ring of fine dendrites, specimen SL-1.9.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawai, Kotaro, E-mail: s135016@stn.nagaokaut.ac.jp; Sakamoto, Moritsugu; Noda, Kohei
2016-03-28
A diffractive optical element with a three-dimensional liquid crystal (LC) alignment structure for advanced control of polarized beams was fabricated by a highly efficient one-step photoalignment method. This study is of great significance because different two-dimensional continuous and complex alignment patterns can be produced on two alignment films by simultaneously irradiating an empty glass cell composed of two unaligned photocrosslinkable polymer LC films with three-beam polarized interference beam. The polarization azimuth, ellipticity, and rotation direction of the diffracted beams from the resultant LC grating widely varied depending on the two-dimensional diffracted position and the polarization states of the incident beams.more » These polarization diffraction properties are well explained by theoretical analysis based on Jones calculus.« less
ERIC Educational Resources Information Center
Remmele, Martin; Schmidt, Elena; Lingenfelder, Melissa; Martens, Andreas
2018-01-01
Gross anatomy is located in a three-dimensional space. Visualizing aspects of structures in gross anatomy education should aim to provide information that best resembles their original spatial proportions. Stereoscopic three-dimensional imagery might offer possibilities to implement this aim, though some research has revealed potential impairments…
Polyimide Aerogels with Three-Dimensional Cross-Linked Structure
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor)
2016-01-01
A method for creating a three dimensional cross-linked polyimide structure includes dissolving a diamine, a dianhydride, and a triamine in a solvent, imidizing a polyamic acid gel by heating the gel, extracting the gel in a second solvent, supercritically drying the gel, and removing the solvent to create a polyimide aerogel.
Ha, Kyungyeon; Jang, Eunseok; Jang, Segeun; Lee, Jong-Kwon; Jang, Min Seok; Choi, Hoseop; Cho, Jun-Sik; Choi, Mansoo
2016-02-05
We report three-dimensionally assembled nanoparticle structures inducing multiple plasmon resonances for broadband light harvesting in nanocrystalline silicon (nc-Si:H) thin-film solar cells. A three-dimensional multiscale (3DM) assembly of nanoparticles generated using a multi-pin spark discharge method has been accomplished over a large area under atmospheric conditions via ion-assisted aerosol lithography. The multiscale features of the sophisticated 3DM structures exhibit surface plasmon resonances at multiple frequencies, which increase light scattering and absorption efficiency over a wide spectral range from 350-1100 nm. The multiple plasmon resonances, together with the antireflection functionality arising from the conformally deposited top surface of the 3D solar cell, lead to a 22% and an 11% improvement in power conversion efficiency of the nc-Si:H thin-film solar cells compared to flat cells and cells employing nanoparticle clusters, respectively. Finite-difference time-domain simulations were also carried out to confirm that the improved device performance mainly originates from the multiple plasmon resonances generated from three-dimensionally assembled nanoparticle structures.
NASA Astrophysics Data System (ADS)
Russell, L. M.; Leaitch, W. R.; Liu, J.; Desiree, T. S.; Huang, L.; Sharma, S.; Chivulescu, A.; Veber, D.; Zhang, W.
2016-12-01
Long-term measurements of submicron aerosol particle chemical composition and size distributions are essential for evaluating whether global climate models correctly transport particles from lower latitudes to polar regions, especially in the winter months when satellite retrieval of aerosol properties is limited. In collaboration with ongoing measurements by the Dr. Neil Trivett Global Atmospheric Watch observatory at Alert, Nunavut (82.5°N; elevation 185 m-ASL), we measured the organic functional group composition of submicron aerosol particles sampled from the 10-m inlet from April 2012 to October 2014. The sampling site is approximately 10 km from the Alert station, and vehicle traffic is restricted except when filter sampling is stopped, making the impact of local emissions on submicron particle mass concentrations small. The organic functional group (OFG) composition is measured by Fourier Transform Infrared spectroscopy of samples collected on pre-loaded Teflon filters and stored and shipped frozen to La Jolla, California, for analysis. Samples were collected weekly to complement the twice hourly online measurements of non-refractory organic and inorganic composition by an Aerodyne ACSM. Organic components are shown to contribute a substantial fraction of the measured aerosol submicron mass year round. These measurements illustrate the seasonal contributions to the aerosol size distribution from OFG and illustrate the potential sources of the OFG at this remote site. The three largest OFG sources are transported fossil fuel combustion emissions from lower latitudes, sea spray and other marine particles, and episodic contributions from wildfires, volcanoes, and other high-latitude events. These sources are similar to those identified from earlier OFG measurements at Barrow, Alaska, and during the ICEALOT cruise in the Arctic Ocean.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Guang-hao; Bai, Yu-hang; Cui, Guo-xin
2016-07-15
Ferroelectric domain inversion and its effect on the stability of lithium niobate thin films on insulator (LNOI) are experimentally characterized. Two sets of specimens with different thicknesses varying from submicron to microns are selected. For micron thick samples (∼28 μm), domain structures are achieved by pulsed electric field poling with electrodes patterned via photolithography. No domain structure deterioration has been observed for a month as inspected using polarizing optical microscopy and etching. As for submicron (540 nm) films, large-area domain inversion is realized by scanning a biased conductive tip in a piezoelectric force microscope. A graphic processing method is takenmore » to evaluate the domain retention. A domain life time of 25.0 h is obtained and possible mechanisms are discussed. Our study gives a direct reference for domain structure-related applications of LNOI, including guiding wave nonlinear frequency conversion, nonlinear wavefront tailoring, electro-optic modulation, and piezoelectric devices.« less
NASA Astrophysics Data System (ADS)
Roqué Rosell, Josep; Portillo Serra, Joaquim; Aiglsperger, Thomas; Plana-Ruiz, Sergi; Trifonov, Trifon; Proenza, Joaquín A.
2018-02-01
In the present work, a lamella from an Au-Ag aggregate found in Ni-laterites has been examined using Transmission Electron Microscope to produce a series of Precision Electron Diffraction (PED) patterns. The analysis of the structural data obtained, coupled with Energy Dispersive X-ray microanalysis, made it possible to determine the orientation of twinned native gold growing on the Au-Ag aggregate. The native Au crystal domains are found to have grown at the outermost part of the aggregate whereas the inner core of the aggregate is an Au-Ag alloy (∼4 wt% Ag). The submicron structural study of the natural occurring Au aggregate points to the mobilization and precipitation of gold in laterites and provides insights on Au aggregates development at supergene conditions. This manuscript demonstrates the great potential of electron crystallographic analysis, and in particular, PED to study submicron structural features of micron sized mineral aggregates by using the example of a gold grain found in a Ni-laterite deposits.
Electron beam induced current in the high injection regime.
Haney, Paul M; Yoon, Heayoung P; Koirala, Prakash; Collins, Robert W; Zhitenev, Nikolai B
2015-07-24
Electron beam induced current (EBIC) is a powerful technique which measures the charge collection efficiency of photovoltaics with sub-micron spatial resolution. The exciting electron beam results in a high generation rate density of electron-hole pairs, which may drive the system into nonlinear regimes. An analytic model is presented which describes the EBIC response when the total electron-hole pair generation rate exceeds the rate at which carriers are extracted by the photovoltaic cell, and charge accumulation and screening occur. The model provides a simple estimate of the onset of the high injection regime in terms of the material resistivity and thickness, and provides a straightforward way to predict the EBIC lineshape in the high injection regime. The model is verified by comparing its predictions to numerical simulations in one- and two-dimensions. Features of the experimental data, such as the magnitude and position of maximum collection efficiency versus electron beam current, are consistent with the three-dimensional model.
Transient electro-thermal characterization of Si-Ge heterojunction bipolar transistors
NASA Astrophysics Data System (ADS)
Sahoo, Amit Kumar; Weiß, Mario; Fregonese, Sébastien; Malbert, Nathalie; Zimmer, Thomas
2012-08-01
In this paper, a comprehensive evaluation of the transient self-heating in microwave heterojunction bipolar transistors (HBTs) have been carried out through simulations and measurements. Three dimensional thermal TCAD simulations have been performed to investigate precisely the influence of backend metallization on transient thermal behavior of a submicron SiGe:C BiCMOS technology with fT and fmax of 230 GHz and 290 GHz, respectively. Transient variation of Collector current caused by self-heating is obtained through pulse measurements. For thermal characterization, different electro-thermal networks have been employed at the temperature node of HiCuM compact model. Thermal parameters have been extracted by means of compact model simulation using a scalable transistor library. It has been shown that, the conventional R-C thermal network is not sufficient to accurately model the transient thermal spreading behavior and therefore a recursive network needs to be used. Recursive network is verified with device simulations as well as measurements and found to be in excellent agreement.
The geometry of structural equilibrium
2017-01-01
Building on a long tradition from Maxwell, Rankine, Klein and others, this paper puts forward a geometrical description of structural equilibrium which contains a procedure for the graphic analysis of stress resultants within general three-dimensional frames. The method is a natural generalization of Rankine’s reciprocal diagrams for three-dimensional trusses. The vertices and edges of dual abstract 4-polytopes are embedded within dual four-dimensional vector spaces, wherein the oriented area of generalized polygons give all six components (axial and shear forces with torsion and bending moments) of the stress resultants. The relevant quantities may be readily calculated using four-dimensional Clifford algebra. As well as giving access to frame analysis and design, the description resolves a number of long-standing problems with the incompleteness of Rankine’s description of three-dimensional trusses. Examples are given of how the procedure may be applied to structures of engineering interest, including an outline of a two-stage procedure for addressing the equilibrium of loaded gridshell rooves. PMID:28405361
Deep-submicron Graphene Field-Effect Transistors with State-of-Art fmax
Lyu, Hongming; Lu, Qi; Liu, Jinbiao; Wu, Xiaoming; Zhang, Jinyu; Li, Junfeng; Niu, Jiebin; Yu, Zhiping; Wu, Huaqiang; Qian, He
2016-01-01
In order to conquer the short-channel effects that limit conventional ultra-scale semiconductor devices, two-dimensional materials, as an option of ultimate thin channels, receive wide attention. Graphene, in particular, bears great expectations because of its supreme carrier mobility and saturation velocity. However, its main disadvantage, the lack of bandgap, has not been satisfactorily solved. As a result, maximum oscillation frequency (fmax) which indicates transistors’ power amplification ability has been disappointing. Here, we present submicron field-effect transistors with specially designed low-resistance gate and excellent source/drain contact, and therefore significantly improved fmax. The fabrication was assisted by the advanced 8-inch CMOS back-end-of-line technology. A 200-nm-gate-length GFET achieves fT/fmax = 35.4/50 GHz. All GFET samples with gate lengths ranging from 200 nm to 400 nm possess fmax 31–41% higher than fT, closely resembling Si n-channel MOSFETs at comparable technology nodes. These results re-strengthen the promise of graphene field-effect transistors in next generation semiconductor electronics. PMID:27775009
Solar selective absorption coatings
Mahoney, Alan R [Albuquerque, NM; Reed, Scott T [Albuquerque, NM; Ashley, Carol S [Albuquerque, NM; Martinez, F Edward [Horseheads, NY
2004-08-31
A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.
Solar selective absorption coatings
Mahoney, Alan R [Albuquerque, NM; Reed, Scott T [Albuquerque, NM; Ashley, Carol S [Albuquerque, NM; Martinez, F Edward [Horseheads, NY
2003-10-14
A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.
NASA Astrophysics Data System (ADS)
Lazarowitz, Reuven; Naim, Raphael
2013-08-01
The cell topic was taught to 9th-grade students in three modes of instruction: (a) students "hands-on," who constructed three-dimensional cell organelles and macromolecules during the learning process; (b) teacher demonstration of the three-dimensional model of the cell structures; and (c) teaching the cell topic with the regular learning material in an expository mode (which use one- or two-dimensional cell structures as are presented in charts, textbooks and microscopic slides). The sample included 669, 9th-grade students from 25 classes who were taught by 22 Biology teachers. Students were randomly assigned to the three modes of instruction, and two tests in content knowledge in Biology were used. Data were treated with multiple analyses of variance. The results indicate that entry behavior in Biology was equal for all the study groups and types of schools. The "hands-on" learning group who build three-dimensional models through the learning process achieved significantly higher on academic achievements and on the high and low cognitive questions' levels than the other two groups. The study indicates the advantages students may have being actively engaged in the learning process through the "hands-on" mode of instruction/learning.
Three-dimensional metamaterials
Burckel, David Bruce [Albuquerque, NM
2012-06-12
A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.
Munroe, Jeffrey S.; Doolittle, James A.; Kanevskiy, Mikhail; Hinkel, Kenneth M.; Nelson, Frederick E.; Jones, Benjamin M.; Shur, Yuri; Kimble, John M.
2007-01-01
Three-dimensional ground-penetrating radar (3D GPR) was used to investigate the subsurface structure of ice-wedge polygons and other features of the frozen active layer and near-surface permafrost near Barrow, Alaska. Surveys were conducted at three sites located on landscapes of different geomorphic age. At each site, sediment cores were collected and characterised to aid interpretation of GPR data. At two sites, 3D GPR was able to delineate subsurface ice-wedge networks with high fidelity. Three-dimensional GPR data also revealed a fundamental difference in ice-wedge morphology between these two sites that is consistent with differences in landscape age. At a third site, the combination of two-dimensional and 3D GPR revealed the location of an active frost boil with ataxitic cryostructure. When supplemented by analysis of soil cores, 3D GPR offers considerable potential for imaging, interpreting and 3D mapping of near-surface soil and ice structures in permafrost environments.
NASA Technical Reports Server (NTRS)
Anderson, E. H.; Moore, D. M.; Fanson, J. L.; Ealey, M. A.
1990-01-01
The design and development of a zero stiction active member containing piezoelectric and electrostrictive actuator motors is presented. The active member is intended for use in submicron control of structures. Experimental results are shown which illustrate actuator and device characteristics relevant to precision control applications.
Cornea and ocular lens visualized with three-dimensional confocal microscopy
NASA Astrophysics Data System (ADS)
Masters, Barry R.
1992-08-01
This paper demonstrates the advantages of three-dimensional reconstruction of the cornea and the ocular crystalline lens by confocal microscopy and volume rendering computer techniques. The advantages of noninvasive observation of ocular structures in living, unstained, unfixed tissue include the following: the tissue is in a natural living state without the artifacts of fixation, mechanical sectioning, and staining; the three-dimensional structure can be observed from any view point and quantitatively analyzed; the dynamics of morphological changes can be studied; and the use of confocal microscopic observation results in a reduction of the number of animals required for ocular morphometric studies. The main advantage is that the dynamic morphology of ocular structures can be investigated in living ocular tissue. A laser scanning confocal microscope was used in the reflected light mode to obtain the two- dimensional images from the cornea and the ocular lens of a freshly enucleated rabbit eye. The light source was an argon ion laser with 488 nm wavelength. The microscope objective was a Leitz 25X, NA 0.6 water immersion lens. The 400 micron thick cornea was optically sectioned into 133, three micron sections. The semi-transparent cornea and the in-situ ocular lens was visualized as high resolution, high contrast two-dimensional images. The under sampling resulted in a three-dimensional visualization rendering in which the corneal thickness (z-axis) is compressed. The structures observed in the cornea include: superficial epithelial cells and their nuclei, basal epithelial cells and their `beaded' cell borders, basal lamina, nerve plexus, nerve fibers, free nerve endings in the basal epithelial cells, nuclei of stromal keratocytes, and endothelial cells. The structures observed in the in-situ ocular lens include: lens capsule, lens epithelial cells, and individual lens fibers.
Hydroelastic behaviour of a structure exposed to an underwater explosion.
Colicchio, G; Greco, M; Brocchini, M; Faltinsen, O M
2015-01-28
The hydroelastic interaction between an underwater explosion and an elastic plate is investigated num- erically through a domain-decomposition strategy. The three-dimensional features of the problem require a large computational effort, which is reduced through a weak coupling between a one-dimensional radial blast solver, which resolves the blast evolution far from the boundaries, and a three-dimensional compressible flow solver used where the interactions between the compression wave and the boundaries take place and the flow becomes three-dimensional. The three-dimensional flow solver at the boundaries is directly coupled with a modal structural solver that models the response of the solid boundaries like elastic plates. This enables one to simulate the fluid-structure interaction as a strong coupling, in order to capture hydroelastic effects. The method has been applied to the experimental case of Hung et al. (2005 Int. J. Impact Eng. 31, 151-168 (doi:10.1016/j.ijimpeng.2003.10.039)) with explosion and structure sufficiently far from other boundaries and successfully validated in terms of the evolution of the acceleration induced on the plate. It was also used to investigate the interaction of an underwater explosion with the bottom of a close-by ship modelled as an orthotropic plate. In the application, the acoustic phase of the fluid-structure interaction is examined, highlighting the need of the fluid-structure coupling to capture correctly the possible inception of cavitation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Three-dimensional boron particle loaded thermal neutron detector
Nikolic, Rebecca J.; Conway, Adam M.; Graff, Robert T.; Kuntz, Joshua D.; Reinhardt, Catherine; Voss, Lars F.; Cheung, Chin Li; Heineck, Daniel
2014-09-09
Three-dimensional boron particle loaded thermal neutron detectors utilize neutron sensitive conversion materials in the form of nano-powders and micro-sized particles, as opposed to thin films, suspensions, paraffin, etc. More specifically, methods to infiltrate, intersperse and embed the neutron nano-powders to form two-dimensional and/or three-dimensional charge sensitive platforms are specified. The use of nano-powders enables conformal contact with the entire charge-collecting structure regardless of its shape or configuration.
Three-dimensional cardiac architecture determined by two-photon microtomy
NASA Astrophysics Data System (ADS)
Huang, Hayden; MacGillivray, Catherine; Kwon, Hyuk-Sang; Lammerding, Jan; Robbins, Jeffrey; Lee, Richard T.; So, Peter
2009-07-01
Cardiac architecture is inherently three-dimensional, yet most characterizations rely on two-dimensional histological slices or dissociated cells, which remove the native geometry of the heart. We previously developed a method for labeling intact heart sections without dissociation and imaging large volumes while preserving their three-dimensional structure. We further refine this method to permit quantitative analysis of imaged sections. After data acquisition, these sections are assembled using image-processing tools, and qualitative and quantitative information is extracted. By examining the reconstructed cardiac blocks, one can observe end-to-end adjacent cardiac myocytes (cardiac strands) changing cross-sectional geometries, merging and separating from other strands. Quantitatively, representative cross-sectional areas typically used for determining hypertrophy omit the three-dimensional component; we show that taking orientation into account can significantly alter the analysis. Using fast-Fourier transform analysis, we analyze the gross organization of cardiac strands in three dimensions. By characterizing cardiac structure in three dimensions, we are able to determine that the α crystallin mutation leads to hypertrophy with cross-sectional area increases, but not necessarily via changes in fiber orientation distribution.
Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells
Rodriguez, Jose A.; Xu, Rui; Chen, Chien-Chun; Huang, Zhifeng; Jiang, Huaidong; Chen, Allan L.; Raines, Kevin S.; Pryor Jr, Alan; Nam, Daewoong; Wiegart, Lutz; Song, Changyong; Madsen, Anders; Chushkin, Yuriy; Zontone, Federico; Bradley, Peter J.; Miao, Jianwei
2015-01-01
A structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 keV X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and the three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. It is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres. PMID:26306199
Da Cruz, M J; Francis, H W
2015-07-01
To assess the face and content validity of a novel synthetic, three-dimensional printed temporal bone for surgical skills development and training. A synthetic temporal bone was printed using composite materials and three-dimensional printing technology. Surgical trainees were asked to complete three structured temporal bone dissection exercises. Attitudes and impressions were then assessed using a semi-structured questionnaire. Previous cadaver and real operating experiences were used as a reference. Trainees' experiences of the synthetic temporal bone were analysed in terms of four domains: anatomical realism, usefulness as a training tool, task-based usefulness and overall reactions. Responses across all domains indicated a high degree of acceptance, suggesting that the three-dimensional printed temporal bone was a useful tool in skills development. A sophisticated three-dimensional printed temporal bone that demonstrates face and content validity was developed. The efficiency in cost savings coupled with low associated biohazards make it likely that the printed temporal bone will be incorporated into traditional temporal bone skills development programmes in the near future.
Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells
Rodriguez, Jose A.; Xu, Rui; Chen, Chien -Chun; ...
2015-09-01
Here, a structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 Kev X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and themore » three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. Finally, it is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres.« less
Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells.
Rodriguez, Jose A; Xu, Rui; Chen, Chien-Chun; Huang, Zhifeng; Jiang, Huaidong; Chen, Allan L; Raines, Kevin S; Pryor, Alan; Nam, Daewoong; Wiegart, Lutz; Song, Changyong; Madsen, Anders; Chushkin, Yuriy; Zontone, Federico; Bradley, Peter J; Miao, Jianwei
2015-09-01
A structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 keV X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and the three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. It is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres.
Nano characterization of gunshot residues from Brazilian ammunition.
Melo, Lis G A; Martiny, Andrea; Pinto, André L
2014-07-01
Gunshot residues (GSR) from a total of nine different caliber ammunitions produced in Brazil were analyzed and characterized by transmission (TEM) and scanning electron microscopy (SEM). GSR particles are composed of spherical particles of several micrometers of diameter containing distinct amounts of lead, barium and antimony, along with other organic and inorganic elements arising from the primer, gunpowder, the gun and the bullet itself. This study was carried out to obtain additional information on the properties of GSR nanoparticles originated from different types of regular ammunition produced in Brazil by CBC. Besides the SEM, we have used a TEM, exploring its high magnification capability and ability to explore internal structure and chemical composition of submicron particles. We observed that CBC ammunition generated smaller particles than usually reported for other ammunitions and that the three component particles are not a majority. TEM analysis revealed that GSR are partially composed of sub-micron particles as well. The electron diffraction pattern from these particles confirmed them to be mainly composed of lead oxides crystalline nanoparticles that may be agglomerated into larger particles. Energy dispersive X-ray spectroscopy revealed that most of them were composed of two elements, especially PbSb. Ba was not a common element found in the nanoparticles. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Fully-Enclosed Ceramic Micro-burners Using Fugitive Phase and Powder-based Processing
NASA Astrophysics Data System (ADS)
Do, Truong; Shin, Changseop; Kwon, Patrick; Yeom, Junghoon
2016-08-01
Ceramic-based microchemical systems (μCSs) are more suitable for operation under harsh environments such as high temperature and corrosive reactants compared to the more conventional μCS materials such as silicon and polymers. With the recent renewed interests in chemical manufacturing and process intensification, simple, inexpensive, and reliable ceramic manufacturing technologies are needed. The main objective of this paper is to introduce a new powder-based fabrication framework, which is a one-pot, cost-effective, and versatile process for ceramic μCS components. The proposed approach employs the compaction of metal-oxide sub-micron powders with a graphite fugitive phase that is burned out to create internal cavities and microchannels before full sintering. Pure alumina powder has been used without any binder phase, enabling more precise dimensional control and less structure shrinkage upon sintering. The key process steps such as powder compaction, graphite burnout during partial sintering, machining in a conventional machine tool, and final densification have been studied to characterize the process. This near-full density ceramic structure with the combustion chamber and various internal channels was fabricated to be used as a micro-burner for gas sensing applications.
Fully-Enclosed Ceramic Micro-burners Using Fugitive Phase and Powder-based Processing
Do, Truong; Shin, Changseop; Kwon, Patrick; Yeom, Junghoon
2016-01-01
Ceramic-based microchemical systems (μCSs) are more suitable for operation under harsh environments such as high temperature and corrosive reactants compared to the more conventional μCS materials such as silicon and polymers. With the recent renewed interests in chemical manufacturing and process intensification, simple, inexpensive, and reliable ceramic manufacturing technologies are needed. The main objective of this paper is to introduce a new powder-based fabrication framework, which is a one-pot, cost-effective, and versatile process for ceramic μCS components. The proposed approach employs the compaction of metal-oxide sub-micron powders with a graphite fugitive phase that is burned out to create internal cavities and microchannels before full sintering. Pure alumina powder has been used without any binder phase, enabling more precise dimensional control and less structure shrinkage upon sintering. The key process steps such as powder compaction, graphite burnout during partial sintering, machining in a conventional machine tool, and final densification have been studied to characterize the process. This near-full density ceramic structure with the combustion chamber and various internal channels was fabricated to be used as a micro-burner for gas sensing applications. PMID:27546059
Rauf, Abdul; Bhatnagar, Aseem; Sisodia, S S; Khar, Roop K; Ahmad, Farhan J
2017-01-01
The purpose of the present investigation was to study the aerosolization, lungs deposition and pharmacokinetic study of inhalable submicron particles of budesonide in male Wistar rats. Submicron particles were prepared by antisolvent nanoprecipitation method and freeze-dried to obtain free flowing powder. The freeze-drying process yielded dry powder with desirable aerodynamic properties for inhalation therapy. An in-house model inhaler was designed to deliver medicine to lungs, optimized at dose level of 10 mg for 30 sec of fluidization. The in vitro aerosolization study demonstrates that submicron particles dissolve faster with improved aerosolization effect as compared to micronized budesonide. Both submicron and micron particles were compared for in vivo lungs deposition. The results showed that relatively high quantity of submicron particles reaches deep into the lungs as compared to micron particles. Most pronounced effect observed with submicron particles from pharmacokinetic parameters was the enhancement in peak plasma concentration (C max ) by 28.85 %, and increase in area under concentration curve (AUC 0-8h ) by 30.33 % compared to micron sized particles. The results suggested that developed submicronized formulation of budesonide can be used for pulmonary drug delivery for high deposition to deep lungs tissues.
Photodeposition Method For Fabricating A Three-Dimensional, Patterned Polymer Microstructure
Walt, David R.; Healey, Brian G.
2001-03-13
The present invention is a photodeposition methodology for fabricating a three-dimensional patterned polymer microstructure. A variety of polymeric structures can be fabricated on solid substrates using unitary fiber optic arrays for light delivery. The methodology allows micrometer-scale photopatterning for the fabricated structures using masks substantially larger than the desired dimensions of the microstructure.
Argyros, A; Manos, S; Large, M C J; McKenzie, D R; Cox, G C; Dwarte, D M
2002-01-01
A combination of transmission electron tomography and computer modelling has been used to determine the three-dimensional structure of the photonic crystals found in the wing-scales of the Kaiser-I-Hind butterfly (Teinopalpus imperialis). These scales presented challenges for electron microscopy because the periodicity of the structure was comparable to the thickness of a section and because of the complex connectivity of the object. The structure obtained has been confirmed by taking slices of the three-dimensional computer model constructed from the tomography and comparing these with transmission electron microscope (TEM) images of microtomed sections of the actual scale. The crystal was found to have chiral tetrahedral repeating units packed in a triclinic lattice.
Structure of turbulence in three-dimensional boundary layers
NASA Technical Reports Server (NTRS)
Subramanian, Chelakara S.
1993-01-01
This report provides an overview of the three dimensional turbulent boundary layer concepts and of the currently available experimental information for their turbulence modeling. It is found that more reliable turbulence data, especially of the Reynolds stress transport terms, is needed to improve the existing modeling capabilities. An experiment is proposed to study the three dimensional boundary layer formed by a 'sink flow' in a fully developed two dimensional turbulent boundary layer. Also, the mean and turbulence field measurement procedure using a three component laser Doppler velocimeter is described.
NASA Technical Reports Server (NTRS)
Yang, Ren; Feeback, Daniel L.; Wang, Wan-Jun
2005-01-01
This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was microfabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, microfabricated, and tested. Three-dimensional hydrofocusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily microfabricated and integrated with other polymer microfluidic structures. Keywords: SU-8, three-dimensional hydro-focusing, microfluidic, microchannel, cytometer
Particle Simulations on Plasma and Dust Environment near Lunar Vertical Holes
NASA Astrophysics Data System (ADS)
Miyake, Y.; Funaki, Y.; Nishino, M. N.
2016-12-01
The Japanese lunar orbiter KAGUYA has revealed the existence of vertical holes on the Moon, which have spatial scales of tens of meters and are possible lava tube skylights. The hole structure has recently received particular attention, because the structure is regarded as evidence for past existence of underground lava flows. Furthermore, the holes have high potential as locations for constructing future lunar bases, because of fewer extra-lunar rays/particles and micrometeorites reaching the hole bottoms. In this sense, these holes are not only of significance in selenology, but are also interesting from the viewpoint of plasma environments. The dayside electrostatic environment near the lunar surface is governed by interactions among the solar wind plasma, photoelectrons, and the charged lunar surface, providing topologically complex boundaries to the plasma. Thus we applied three-dimensional, massively-parallelized, particle-in-cell simulations to the near-hole environment on the Moon. This year we have introduced a horizontal cavern opened at the vertical wall of the hole, assuming the presence of a subsurface lave tube. We will show some preliminary results on the surface potential and its nearly plasma environments. We also started to study the dynamics of submicron-sized charged dust grains around the distinctive landscape. We particularly focus on an effect of a stochastic charging process of such small dust grains. Because of their small surface areas, the dusts will get/lose one elementary charge infrequently, and thus charge amount owned by each dust should be a stochastic variable unlike a widely-known spacecraft charging process. We develop a numerical model of such a charging process, which will be embedded into the test particle analysis of the dust dynamics. We report some results from our simulations on the dust charging process and dynamics around the lunar hole.
NASA Astrophysics Data System (ADS)
Maleki, Milad; Cugnoni, Joë; Botsis, John
2014-04-01
Due to the high homologous temperature and fast cooling rates, the microstructures of SnAgCu (SAC) solders are in a meta-stable state in most applications, which is the cause of significant microstructural evolution and continuous variation in the mechanical behavior of the joints during service. The link between microstructures evolution and deformation behavior of Sn-4.0Ag-0.5Cu solder during isothermal ageing is investigated. The evolution of the microstructures in SAC solders are visualized at different scales in 3D by using a combination of synchrotron x-ray and focused ion beam/scanning electron microscopy tomography techniques at different states of ageing. The results show that, although the grain structure, morphology of dendrites, and overall volume fraction of intermetallics remain almost constant during ageing, considerable coarsening occurs in the Ag3Sn and Cu6Sn5 phases to lower the interfacial energy. The change in the morphometrics of sub-micron intermetallics is quantified by 3D statistical analyses and the kinetic of coarsening is discussed. The mechanical behavior of SAC solders is experimentally measured and shows a continuous reduction in the yield resistance of solder during ageing. For comparison, the mechanical properties and grain structure of β-tin are evaluated at different annealing conditions. Finally, the strengthening effect due to the intermetallics at different ageing states is evaluated by comparing the deformation behaviors of SAC solder and β-tin with similar grain size and composition. The relationship between the morphology and the strengthening effect due to intermetallics particles is discussed and the causes for the strength degradation in SAC solder during ageing are identified.
Three-dimensional macro-structures of two-dimensional nanomaterials.
Shehzad, Khurram; Xu, Yang; Gao, Chao; Duan, Xiangfeng
2016-10-21
If two-dimensional (2D) nanomaterials are ever to be utilized as components of practical, macroscopic devices on a large scale, there is a complementary need to controllably assemble these 2D building blocks into more sophisticated and hierarchical three-dimensional (3D) architectures. Such a capability is key to design and build complex, functional devices with tailored properties. This review provides a comprehensive overview of the various experimental strategies currently used to fabricate the 3D macro-structures of 2D nanomaterials. Additionally, various approaches for the decoration of the 3D macro-structures with organic molecules, polymers, and inorganic materials are reviewed. Finally, we discuss the applications of 3D macro-structures, especially in the areas of energy, environment, sensing, and electronics, and describe the existing challenges and the outlook for this fast emerging field.
Applications to car bodies - Generalized layout design of three-dimensional shells
NASA Technical Reports Server (NTRS)
Fukushima, Junichi; Suzuki, Katsuyuki; Kikuchi, Noboru
1993-01-01
We shall describe applications of the homogenization method, formulated in Part 1, to design layout of car bodies represented by three-dimensional shell structures based on a multi-loading optimization.
Yang, Suixing; Feng, Jing; Zhang, Zuo; Qu, Aili; Gong, Miao; Tang, Jie; Fan, Junheng; Li, Songqing; Zhao, Yanling
2013-04-01
To construct a three-dimensional finite element model of the upper airway and adjacent structure of an obstructive sleep apnea hypopnea syndrome (OSAHS) patient for biomechanical analysis. And to study the influence of glossopharyngeum of an OSAHS patient with three-dimensional finite element model during titrated mandible advancement. DICOM format image information of an OSAHS patient's upper airway was obtained by thin-section CT scanning and digital image processing were utilized to construct a three-dimensional finite element model by Mimics 10.0, Imageware 10.0 and Ansys software. The changes and the law of glossopharyngeum were observed by biomechanics and morphology after loading with titrated mandible advancement. A three-dimensional finite element model of the adjacent upper airway structure of OSAHS was established successfully. After loading, the transverse diameter of epiglottis tip of glossopharyngeum increased significantly, although the sagittal diameter decreased correspondingly. The principal stress was mainly distributed in anterior wall of the upper airway. The location of principal stress concentration did not change significantly with the increasing of distance. The stress of glossopharyngeum increased during titrated mandible advancement. A more precise three-dimensional finite model of upper airway and adjacent structure of an OSAHS patient is established and improved efficiency by Mimics, Imageware and Ansys software. The glossopharyngeum of finite element model of OSAHS is analyzed by titrated mandible advancement and can effectively show the relationship between mandible advancement and the glossopharyngeum.
NASA Astrophysics Data System (ADS)
Kinoshita, T.; Sato, K.
2016-12-01
The Transformed Eulerian-Mean (TEM) equations were derived by Andrews and McIntyre (1976, 1978) and have been widely used to examine wave-mean flow interaction in the meridional cross section. According to previous studies, the Brewer-Dobson circulation in the stratosphere is driven by planetary waves, baroclinic waves, and inertia-gravity waves, and that the meridional circulation from the summer hemisphere to the winter hemisphere in the mesosphere is mainly driven by gravity waves (e.g., Garcia and Boville 1994; Plumb and Semeniuk 2003; Watanabe et al. 2008; Okamoto et al. 2011). However, the TEM equations do not provide the three-dimensional view of the transport, so that the three dimensional TEM equations have been formulated (Hoskins et al. 1983, Trenberth 1986, Plumb 1985, 1986, Takaya and Nakamura 1997, 2001, Miyahara 2006, Kinoshita et al. 2010, Noda 2010, Kinoshita and Sato 2013a, b, and Noda 2014). On the other hand, the TEM equations cannot properly treat the lower boundary and unstable waves. The Mass-weighted Isentropic Mean (MIM) equations derived by Iwasaki (1989, 1990) are the equations that overcome those problems and the formulation of three-dimensional MIM equations have been studied. The present study applies the three-dimensional TEM and MIM equations to the ERA-Interim reanalysis data and examines the climatological character of three-dimensional structure of Stratospheric Brewer-Dobson circulation. Next, we will discuss how to treat the flow associated with spatial structure of stationary waves.
Three-dimensional periodic dielectric structures having photonic Dirac points
Bravo-Abad, Jorge; Joannopoulos, John D.; Soljacic, Marin
2015-06-02
The dielectric, three-dimensional photonic materials disclosed herein feature Dirac-like dispersion in quasi-two-dimensional systems. Embodiments include a face-centered cubic (fcc) structure formed by alternating layers of dielectric rods and dielectric slabs patterned with holes on respective triangular lattices. This fcc structure also includes a defect layer, which may comprise either dielectric rods or a dielectric slab with patterned with holes. This defect layer introduces Dirac cone dispersion into the fcc structure's photonic band structure. Examples of these fcc structures enable enhancement of the spontaneous emission coupling efficiency (the .beta.-factor) over large areas, contrary to the conventional wisdom that the .beta.-factor degrades as the system's size increases. These results enable large-area, low-threshold lasers; single-photon sources; quantum information processing devices; and energy harvesting systems.
Nagata, Koji
2010-01-01
Peptides and proteins with similar amino acid sequences can have different biological functions. Knowledge of their three-dimensional molecular structures is critically important in identifying their functional determinants. In this review, I describe the results of our and other groups' structure-based functional characterization of insect insulin-like peptides, a crustacean hyperglycemic hormone-family peptide, a mammalian epidermal growth factor-family protein, and an intracellular signaling domain that recognizes proline-rich sequence.
Three-dimensional reconstruction of single-cell chromosome structure using recurrence plots.
Hirata, Yoshito; Oda, Arisa; Ohta, Kunihiro; Aihara, Kazuyuki
2016-10-11
Single-cell analysis of the three-dimensional (3D) chromosome structure can reveal cell-to-cell variability in genome activities. Here, we propose to apply recurrence plots, a mathematical method of nonlinear time series analysis, to reconstruct the 3D chromosome structure of a single cell based on information of chromosomal contacts from genome-wide chromosome conformation capture (Hi-C) data. This recurrence plot-based reconstruction (RPR) method enables rapid reconstruction of a unique structure in single cells, even from incomplete Hi-C information.
Three-dimensional reconstruction of single-cell chromosome structure using recurrence plots
NASA Astrophysics Data System (ADS)
Hirata, Yoshito; Oda, Arisa; Ohta, Kunihiro; Aihara, Kazuyuki
2016-10-01
Single-cell analysis of the three-dimensional (3D) chromosome structure can reveal cell-to-cell variability in genome activities. Here, we propose to apply recurrence plots, a mathematical method of nonlinear time series analysis, to reconstruct the 3D chromosome structure of a single cell based on information of chromosomal contacts from genome-wide chromosome conformation capture (Hi-C) data. This recurrence plot-based reconstruction (RPR) method enables rapid reconstruction of a unique structure in single cells, even from incomplete Hi-C information.
Dorello's Canal for Laymen: A Lego-Like Presentation.
Ezer, Haim; Banerjee, Anirban Deep; Thakur, Jai Deep; Nanda, Anil
2012-06-01
Objective Dorello's canal was first described by Gruber in 1859, and later by Dorello. Vail also described the anatomy of Dorello's canal. In the preceding century, Dorello's canal was clinically important, in understanding sixth nerve palsy and nowadays it is mostly important for skull base surgery. The understanding of the three dimensional anatomy, of this canal is very difficult to understand, and there is no simple explanation for its anatomy and its relationship with adjacent structures. We present a simple, Lego-like, presentation of Dorello's canal, in a stepwise manner. Materials and Methods Dorello's canal was dissected in five formalin-fixed cadaver specimens (10 sides). The craniotomy was performed, while preserving the neural and vascular structures associated with the canal. A 3D model was created, to explain the canal's anatomy. Results Using the petrous pyramid, the sixth nerve, the cavernous sinus, the trigeminal ganglion, the petorclival ligament and the posterior clinoid, the three-dimensional structure of Dorello's canal was defined. This simple representation aids in understanding the three dimensional relationship of Dorello's canal to its neighboring structures. Conclusion Dorello's canal with its three dimensional structure and relationship to its neighboring anatomical structures could be reconstructed using a few anatomical building blocks. This method simplifies the understanding of this complex anatomical structure, and could be used for teaching purposes for aspiring neurosurgeons, and anatomy students.
Dorello's Canal for Laymen: A Lego-Like Presentation
Ezer, Haim; Banerjee, Anirban Deep; Thakur, Jai Deep; Nanda, Anil
2012-01-01
Objective Dorello's canal was first described by Gruber in 1859, and later by Dorello. Vail also described the anatomy of Dorello's canal. In the preceding century, Dorello's canal was clinically important, in understanding sixth nerve palsy and nowadays it is mostly important for skull base surgery. The understanding of the three dimensional anatomy, of this canal is very difficult to understand, and there is no simple explanation for its anatomy and its relationship with adjacent structures. We present a simple, Lego-like, presentation of Dorello's canal, in a stepwise manner. Materials and Methods Dorello's canal was dissected in five formalin-fixed cadaver specimens (10 sides). The craniotomy was performed, while preserving the neural and vascular structures associated with the canal. A 3D model was created, to explain the canal's anatomy. Results Using the petrous pyramid, the sixth nerve, the cavernous sinus, the trigeminal ganglion, the petorclival ligament and the posterior clinoid, the three-dimensional structure of Dorello's canal was defined. This simple representation aids in understanding the three dimensional relationship of Dorello's canal to its neighboring structures. Conclusion Dorello's canal with its three dimensional structure and relationship to its neighboring anatomical structures could be reconstructed using a few anatomical building blocks. This method simplifies the understanding of this complex anatomical structure, and could be used for teaching purposes for aspiring neurosurgeons, and anatomy students. PMID:23730547
RNA-Puzzles: A CASP-like evaluation of RNA three-dimensional structure prediction
Cruz, José Almeida; Blanchet, Marc-Frédérick; Boniecki, Michal; Bujnicki, Janusz M.; Chen, Shi-Jie; Cao, Song; Das, Rhiju; Ding, Feng; Dokholyan, Nikolay V.; Flores, Samuel Coulbourn; Huang, Lili; Lavender, Christopher A.; Lisi, Véronique; Major, François; Mikolajczak, Katarzyna; Patel, Dinshaw J.; Philips, Anna; Puton, Tomasz; Santalucia, John; Sijenyi, Fredrick; Hermann, Thomas; Rother, Kristian; Rother, Magdalena; Serganov, Alexander; Skorupski, Marcin; Soltysinski, Tomasz; Sripakdeevong, Parin; Tuszynska, Irina; Weeks, Kevin M.; Waldsich, Christina; Wildauer, Michael; Leontis, Neocles B.; Westhof, Eric
2012-01-01
We report the results of a first, collective, blind experiment in RNA three-dimensional (3D) structure prediction, encompassing three prediction puzzles. The goals are to assess the leading edge of RNA structure prediction techniques; compare existing methods and tools; and evaluate their relative strengths, weaknesses, and limitations in terms of sequence length and structural complexity. The results should give potential users insight into the suitability of available methods for different applications and facilitate efforts in the RNA structure prediction community in ongoing efforts to improve prediction tools. We also report the creation of an automated evaluation pipeline to facilitate the analysis of future RNA structure prediction exercises. PMID:22361291
Analysis and testing of a soft actuation system for segmented reflector articulation and isolation
NASA Technical Reports Server (NTRS)
Jandura, Louise; Agronin, Michael L.
1991-01-01
Segmented reflectors have been proposed for space-based applications such as optical communication and large-diameter telescopes. An actuation system for mirrors in a space-based segmented mirror array has been developed as part of the National Aeronautics and Space Administration-sponsored Precision Segmented Reflector program. The actuation system, called the Articulated Panel Module (APM), articulates a mirror panel in 3 degrees of freedom in the submicron regime, isolates the panel from structural motion, and simplifies space assembly of the mirrors to the reflector backup truss. A breadboard of the APM has been built and is described. Three-axis modeling, analysis, and testing of the breadboard is discussed.
Intravital third harmonic generation microscopy of collective melanoma cell invasion
Weigelin, Bettina; Bakker, Gert-Jan; Friedl, Peter
2012-01-01
Cancer cell invasion is an adaptive process based on cell-intrinsic properties to migrate individually or collectively, and their adaptation to encountered tissue structure acting as barrier or providing guidance. Whereas molecular and physical mechanisms of cancer invasion are well-studied in 3D in vitro models, their topographic relevance, classification and validation toward interstitial tissue organization in vivo remain incomplete. Using combined intravital third and second harmonic generation (THG, SHG), and three-channel fluorescence microscopy in live tumors, we here map B16F10 melanoma invasion into the dermis with up to 600 µm penetration depth and reconstruct both invasion mode and tissue tracks to establish invasion routes and outcome. B16F10 cells preferentially develop adaptive invasion patterns along preformed tracks of complex, multi-interface topography, combining single-cell and collective migration modes, without immediate anatomic tissue remodeling or destruction. The data suggest that the dimensionality (1D, 2D, 3D) of tissue interfaces determines the microanatomy exploited by invading tumor cells, emphasizing non-destructive migration along microchannels coupled to contact guidance as key invasion mechanisms. THG imaging further detected the presence and interstitial dynamics of tumor-associated microparticles with submicron resolution, revealing tumor-imposed conditioning of the microenvironment. These topographic findings establish combined THG, SHG and fluorescence microscopy in intravital tumor biology and provide a template for rational in vitro model development and context-dependent molecular classification of invasion modes and routes. PMID:29607252
Short-Range-Order Mineral Physical Protection On Black Carbon Stabilization
NASA Astrophysics Data System (ADS)
Liang, B.; Weng, Y. T.; Wang, C. C.; Song, Y. F.; Lehmann, J.; Wang, C. H.
2015-12-01
Soil organic matter is one of the largest reservoirs in global carbon cycle, and black carbon (BC) represents a chemical resistant component. Black C plays an important role in global climate change. Generally considered recalcitrant due to high aromaticity, the reactive surface and functional groups of BC are crucial for carbon sequestration in soils. Mineral sorption and physical protection is an important mechanism for BC long term stabilization and sequestration in environments. Previous studies on mineral protection of BC were limited to analysis techniques in two-dimensions, for example, by SEM, TEM, and NanoSIMS. Little is known about the scope of organo-mineral association, the in-situ distribution and forms of minerals, and the ultimate interplay of BC and minerals. The aim of this study is to investigate the three-dimensional interaction of organic C and minerals in submicron scale using synchrotron-based Transmission X-ray Microcopy (TXM) and Fourier-Transform Infrared Spectroscopy (FTIR). Abundant poorly-crystallined nano-minerals particles were observed. These short-range-order (SRO) minerals also aggregate into clusters and sheets, and form envelops-like structures on the surface of BC. On top of large surface contact area, the intimate interplay between BC and minerals reinforces the stability of both organic C and minerals, resulting from chemical bonding through cation bridging and ligand exchange. The mineral protection enhances BC stabilization and sequestration and lowers its bioavailability in environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding.
Suga, Hiroki; Kikuchi, Sakiko; Takeichi, Yasuo; Miyamoto, Chihiro; Miyahara, Masaaki; Mitsunobu, Satoshi; Ohigashi, Takuji; Mase, Kazuhiko; Ono, Kanta; Takahashi, Yoshio
2017-09-27
Natural bacteriogenic iron oxides (BIOS) were investigated using local-analyzable synchrotron-based scanning transmission X-ray microscopy (STXM) with a submicron-scale resolution. Cell, cell sheath interface (EPS), and sheath in the BIOS were clearly depicted using C-, N-, and O- near edge X-ray absorption fine structure (NEXAFS) obtained through STXM measurements. Fe-NEXAFS obtained from different regions of BIOS indicated that the most dominant iron mineral species was ferrihydrite. Fe(II)- and/or Fe(III)-acidic polysaccharides accompanied ferrihydrite near the cell and EPS regions. Our STXM/NEXAFS analysis showed that Fe species change continuously between the cell, EPS, and sheath under several 10-nm scales.
Three-dimensional spiral CT during arterial portography: comparison of three rendering techniques.
Heath, D G; Soyer, P A; Kuszyk, B S; Bliss, D F; Calhoun, P S; Bluemke, D A; Choti, M A; Fishman, E K
1995-07-01
The three most common techniques for three-dimensional reconstruction are surface rendering, maximum-intensity projection (MIP), and volume rendering. Surface-rendering algorithms model objects as collections of geometric primitives that are displayed with surface shading. The MIP algorithm renders an image by selecting the voxel with the maximum intensity signal along a line extended from the viewer's eye through the data volume. Volume-rendering algorithms sum the weighted contributions of all voxels along the line. Each technique has advantages and shortcomings that must be considered during selection of one for a specific clinical problem and during interpretation of the resulting images. With surface rendering, sharp-edged, clear three-dimensional reconstruction can be completed on modest computer systems; however, overlapping structures cannot be visualized and artifacts are a problem. MIP is computationally a fast technique, but it does not allow depiction of overlapping structures, and its images are three-dimensionally ambiguous unless depth cues are provided. Both surface rendering and MIP use less than 10% of the image data. In contrast, volume rendering uses nearly all of the data, allows demonstration of overlapping structures, and engenders few artifacts, but it requires substantially more computer power than the other techniques.
Nonlinear geometric scaling of coercivity in a three-dimensional nanoscale analog of spin ice
NASA Astrophysics Data System (ADS)
Shishkin, I. S.; Mistonov, A. A.; Dubitskiy, I. S.; Grigoryeva, N. A.; Menzel, D.; Grigoriev, S. V.
2016-08-01
Magnetization hysteresis loops of a three-dimensional nanoscale analog of spin ice based on the nickel inverse opal-like structure (IOLS) have been studied at room temperature. The samples are produced by filling nickel into the voids of artificial opal-like films. The spin ice behavior is induced by tetrahedral elements within the IOLS, which have the same arrangement of magnetic moments as a spin ice. The thickness of the films vary from a two-dimensional, i.e., single-layered, antidot array to a three-dimensional, i.e., multilayered, structure. The coercive force, the saturation, and the irreversibility field have been measured in dependence of the thickness of the IOLS for in-plane and out-of-plane applied fields. The irreversibility and saturation fields change abruptly from the antidot array to the three-dimensional IOLS and remain constant upon further increase of the number of layers n . The coercive force Hc seems to increase logarithmically with increasing n as Hc=Hc 0+α ln(n +1 ) . The logarithmic law implies the avalanchelike remagnetization of anisotropic structural elements connecting tetrahedral and cubic nodes in the IOLS. We conclude that the "ice rule" is the base of mechanism regulating this process.
Kumar, Yadhu; Westram, Ralf; Kipfer, Peter; Meier, Harald; Ludwig, Wolfgang
2006-01-01
Background Availability of high-resolution RNA crystal structures for the 30S and 50S ribosomal subunits and the subsequent validation of comparative secondary structure models have prompted the biologists to use three-dimensional structure of ribosomal RNA (rRNA) for evaluating sequence alignments of rRNA genes. Furthermore, the secondary and tertiary structural features of rRNA are highly useful and successfully employed in designing rRNA targeted oligonucleotide probes intended for in situ hybridization experiments. RNA3D, a program to combine sequence alignment information with three-dimensional structure of rRNA was developed. Integration into ARB software package, which is used extensively by the scientific community for phylogenetic analysis and molecular probe designing, has substantially extended the functionality of ARB software suite with 3D environment. Results Three-dimensional structure of rRNA is visualized in OpenGL 3D environment with the abilities to change the display and overlay information onto the molecule, dynamically. Phylogenetic information derived from the multiple sequence alignments can be overlaid onto the molecule structure in a real time. Superimposition of both statistical and non-statistical sequence associated information onto the rRNA 3D structure can be done using customizable color scheme, which is also applied to a textual sequence alignment for reference. Oligonucleotide probes designed by ARB probe design tools can be mapped onto the 3D structure along with the probe accessibility models for evaluation with respect to secondary and tertiary structural conformations of rRNA. Conclusion Visualization of three-dimensional structure of rRNA in an intuitive display provides the biologists with the greater possibilities to carry out structure based phylogenetic analysis. Coupled with secondary structure models of rRNA, RNA3D program aids in validating the sequence alignments of rRNA genes and evaluating probe target sites. Superimposition of the information derived from the multiple sequence alignment onto the molecule dynamically allows the researchers to observe any sequence inherited characteristics (phylogenetic information) in real-time environment. The extended ARB software package is made freely available for the scientific community via . PMID:16672074
Kinetics of Sub-Micron Grain Size Refinement in 9310 Steel
NASA Astrophysics Data System (ADS)
Kozmel, Thomas; Chen, Edward Y.; Chen, Charlie C.; Tin, Sammy
2014-05-01
Recent efforts have focused on the development of novel manufacturing processes capable of producing microstructures dominated by sub-micron grains. For structural applications, grain refinement has been shown to enhance mechanical properties such as strength, fatigue resistance, and fracture toughness. Through control of the thermo-mechanical processing parameters, dynamic recrystallization mechanisms were used to produce microstructures consisting of sub-micron grains in 9310 steel. Starting with initial bainitic grain sizes of 40 to 50 μm, various levels of grain refinement were observed following hot deformation of 9310 steel samples at temperatures and strain rates ranging from 755 K to 922 K (482 °C and 649 °C) and 1 to 0.001/s, respectively. The resulting deformation microstructures were characterized using scanning electron microscopy and electron backscatter diffraction techniques to quantify the extent of carbide coarsening and grain refinement occurring during deformation. Microstructural models based on the Zener-Holloman parameter were developed and modified to include the effect of the ferrite/carbide interactions within the system. These models were shown to effectively correlate microstructural attributes to the thermal mechanical processing parameters.
NASA Technical Reports Server (NTRS)
White, Mark; Huang, Bing; Qin, Jin; Gur, Zvi; Talmor, Michael; Chen, Yuan; Heidecker, Jason; Nguyen, Duc; Bernstein, Joseph
2005-01-01
As microelectronics are scaled in to the deep sub-micron regime, users of advanced technology CMOS, particularly in high-reliability applications, should reassess how scaling effects impact long-term reliability. An experimental based reliability study of industrial grade SRAMs, consisting of three different technology nodes, is proposed to substantiate current acceleration models for temperature and voltage life-stress relationships. This reliability study utilizes step-stress techniques to evaluate memory technologies (0.25mum, 0.15mum, and 0.13mum) embedded in many of today's high-reliability space/aerospace applications. Two acceleration modeling approaches are presented to relate experimental FIT calculations to Mfr's qualification data.
Impedance Eduction in Sound Fields With Peripherally Varying Liners and Flow
NASA Technical Reports Server (NTRS)
Watson, W. R.; Jones, M. G.
2015-01-01
A two-dimensional impedance eduction theory is extended to three-dimensional sound fields and peripherally varying duct liners. The approach is to first measure the acoustic pressure field at a series of flush-mounted wall microphones located around the periphery of the flow duct. The numerical solution for the acoustic pressure field at these microphones is also obtained by solving the three-dimensional convected Helmholtz equation using the finite element method. A quadratic objective function based on the difference between the measured and finite element solution is constructed and the unknown impedance function is obtained by minimizing this objective function. Impedance spectra educed for two uniform-structure liners (a wire-mesh and a conventional liner) and a hard-soft-hard peripherally varying liner (for which the soft segment is that of the conventional liner) are presented. Results are presented at three mean flow Mach numbers and fourteen sound source frequencies. The impedance spectra of the uniform-structure liners are also computed using a two-dimensional impedance eduction theory. The primary conclusions of the study are: 1) when measured data is used with the uniform-structure liners, the three-dimensional theory reproduces the same impedance spectra as the two-dimensional theory except for frequencies corresponding to very low or very high liner attenuation; and 2) good agreement between the educed impedance spectra of the uniform structure conventional liner and the soft segment of the peripherally varying liner is obtained.
NASA Astrophysics Data System (ADS)
Müller, Markus; Eichler, Philipp; D'Anna, Barbara; Tan, Wen; Wisthaler, Armin
2017-04-01
We used a novel chemical analytical method for measuring submicron particulate organic matter in the atmosphere of three European cities (Innsbruck, Lyon, Valencia). Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) was used in combination with the "chemical analysis of aerosol online" (CHARON) inlet for detecting particulate organic compounds on-line (i.e. without filter pre-collection), in real-time (1-min time resolution), at ng m-3 concentrations, with molecular-level resolution (i.e. obtaining molecular weight and elemental composition information). The CHARON-PTR-ToF-MS system monitored molecular tracers associated with different particle sources including levoglucosan from biomass combustion, PAHs from vehicular traffic, nicotine from cigarette smoking, and monoterpene oxidation products secondarily formed from biogenic emissions. The tracer information was used for interpreting positive matrix factorization (PMF) data which allowed us to apportion the sources of submicron particulate organic matter in the different urban environments. This work was funded through the PIMMS ITN, which was supported by the European Commission's 7th Framework Programme under grant agreement number 287382.
NASA Astrophysics Data System (ADS)
Shobeiri, Vahid; Ahmadi-Nedushan, Behrouz
2017-12-01
This article presents a method for the automatic generation of optimal strut-and-tie models in reinforced concrete structures using a bi-directional evolutionary structural optimization method. The methodology presented is developed for compliance minimization relying on the Abaqus finite element software package. The proposed approach deals with the generation of truss-like designs in a three-dimensional environment, addressing the design of corbels and joints as well as bridge piers and pile caps. Several three-dimensional examples are provided to show the capabilities of the proposed framework in finding optimal strut-and-tie models in reinforced concrete structures and verifying its efficiency to cope with torsional actions. Several issues relating to the use of the topology optimization for strut-and-tie modelling of structural concrete, such as chequerboard patterns, mesh-dependency and multiple load cases, are studied. In the last example, a design procedure for detailing and dimensioning of the strut-and-tie models is given according to the American Concrete Institute (ACI) 318-08 provisions.
Particle-filled microporous materials
McAllister, Jerome W.; Kinzer, Kevin E.; Mrozinski, James S.; Johnson, Eric J.; Dyrud, James F.
1990-01-01
A microporous particulate-filled thermoplastic polymeric article is provided. The article can be in the form of a film, a fiber, or a tube. The article has a thermoplastic polymeric structure having a plurality of interconnected passageways to provide a network of communicating pores. The microporous structure contains discrete submicron or low micron-sized particulate filler, the particulate filler being substantially non-agglomerated.
Particle-filled microporous materials
McAllister, Jerome W.; Kinzer, Kevin E.; Mrozinski, James S.; Johnson, Eric J.
1992-07-14
A microporous particulate-filled thermoplastic polymeric article is provided. The article can be in the form of a film, a fiber, or a tube. The article has a thermoplastic polymeric structure having a plurality of interconnected passageways to provide a network of communicating pores. The microporous structure contains discrete submicron or low micron-sized particulate filler, the particulate filler being substantially non-agglomerated.
Park, Jae-Hyeung; Kim, Hak-Rin; Kim, Yunhee; Kim, Joohwan; Hong, Jisoo; Lee, Sin-Doo; Lee, Byoungho
2004-12-01
A depth-enhanced three-dimensional-two-dimensional convertible display that uses a polymer-dispersed liquid crystal based on the principle of integral imaging is proposed. In the proposed method, a lens array is located behind a transmission-type display panel to form an array of point-light sources, and a polymer-dispersed liquid crystal is electrically controlled to pass or to scatter light coming from these point-light sources. Therefore, three-dimensional-two-dimensional conversion is accomplished electrically without any mechanical movement. Moreover, the nonimaging structure of the proposed method increases the expressible depth range considerably. We explain the method of operation and present experimental results.
ERIC Educational Resources Information Center
Giorgis, Scott
2015-01-01
Three-dimensional thinking skills are extremely useful for geoscientists, and at the undergraduate level, these skills are often emphasized in structural geology courses. Google Earth is a powerful tool for visualizing the three-dimensional nature of data collected on the surface of Earth. The results of a 5 y pre- and posttest study of the…
NASA Technical Reports Server (NTRS)
Dodge, W. G.
1968-01-01
Computer program determines the forced vibration in three dimensional space of a multiple degree of freedom beam type structural system. Provision is made for the longitudinal axis of the analytical model to change orientation at any point along its length. This program is used by industries in which structural design dynamic analyses are performed.
Three-dimensional flow visualization and vorticity dynamics in revolving wings
NASA Astrophysics Data System (ADS)
Cheng, Bo; Sane, Sanjay P.; Barbera, Giovanni; Troolin, Daniel R.; Strand, Tyson; Deng, Xinyan
2013-01-01
We investigated the three-dimensional vorticity dynamics of the flows generated by revolving wings using a volumetric 3-component velocimetry system. The three-dimensional velocity and vorticity fields were represented with respect to the base axes of rotating Cartesian reference frames, and the second invariant of the velocity gradient was evaluated and used as a criterion to identify two core vortex structures. The first structure was a composite of leading, trailing, and tip-edge vortices attached to the wing edges, whereas the second structure was a strong tip vortex tilted from leading-edge vortices and shed into the wake together with the vorticity generated at the tip edge. Using the fundamental vorticity equation, we evaluated the convection, stretching, and tilting of vorticity in the rotating wing frame to understand the generation and evolution of vorticity. Based on these data, we propose that the vorticity generated at the leading edge is carried away by strong tangential flow into the wake and travels downwards with the induced downwash. The convection by spanwise flow is comparatively negligible. The three-dimensional flow in the wake also exhibits considerable vortex tilting and stretching. Together these data underscore the complex and interconnected vortical structures and dynamics generated by revolving wings.
NASA Astrophysics Data System (ADS)
Kim, Duckhoe; Sahin, Ozgur
2015-03-01
Scanning probe microscopes can be used to image and chemically characterize surfaces down to the atomic scale. However, the localized tip-sample interactions in scanning probe microscopes limit high-resolution images to the topmost atomic layer of surfaces, and characterizing the inner structures of materials and biomolecules is a challenge for such instruments. Here, we show that an atomic force microscope can be used to image and three-dimensionally reconstruct chemical groups inside a protein complex. We use short single-stranded DNAs as imaging labels that are linked to target regions inside a protein complex, and T-shaped atomic force microscope cantilevers functionalized with complementary probe DNAs allow the labels to be located with sequence specificity and subnanometre resolution. After measuring pairwise distances between labels, we reconstruct the three-dimensional structure formed by the target chemical groups within the protein complex using simple geometric calculations. Experiments with the biotin-streptavidin complex show that the predicted three-dimensional loci of the carboxylic acid groups of biotins are within 2 Å of their respective loci in the corresponding crystal structure, suggesting that scanning probe microscopes could complement existing structural biological techniques in solving structures that are difficult to study due to their size and complexity.
NASA Astrophysics Data System (ADS)
Tian, Suyun; Zhu, Guannan; Tang, Yanping; Xie, Xiaohua; Wang, Qian; Ma, Yufei; Ding, Guqiao; Xie, Xiaoming
2018-03-01
Various graphene-based Si nanocomposites have been reported to improve the performance of active materials in Li-ion batteries. However, these candidates still yield severe capacity fading due to the electrical disconnection and fractures caused by the huge volume changes over extended cycles. Therefore, we have designed a novel three-dimensional cross-linked graphene and single-wall carbon nanotube structure to encapsulate the Si nanoparticles. The synthesized three-dimensional structure is attributed to the excellent self-assembly of carbon nanotubes with graphene oxide as well as a thermal treatment process at 900 °C. This special structure provides sufficient void spaces for the volume expansion of Si nanoparticles and channels for the diffusion of ions and electrons. In addition, the cross-linking of the graphene and single-wall carbon nanotubes also strengthens the stability of the structure. As a result, the volume expansion of the Si nanoparticles is restrained. The specific capacity remains at 1450 mAh g-1 after 100 cycles at 200 mA g-1. This well-defined three-dimensional structure facilitates superior capacity and cycling stability in comparison with bare Si and a mechanically mixed composite electrode of graphene, single-wall carbon nanotubes and silicon nanoparticles.
Method of using triaxial magnetic fields for making particle structures
Martin, James E.; Anderson, Robert A.; Williamson, Rodney L.
2005-01-18
A method of producing three-dimensional particle structures with enhanced magnetic susceptibility in three dimensions by applying a triaxial energetic field to a magnetic particle suspension and subsequently stabilizing said particle structure. Combinations of direct current and alternating current fields in three dimensions produce particle gel structures, honeycomb structures, and foam-like structures.
Graphic kinematics, visual virtual work and elastographics
Konstantatou, Marina; Athanasopoulos, Georgios; Hannigan, Laura
2017-01-01
In this paper, recent progress in graphic statics is combined with Williot displacement diagrams to create a graphical description of both statics and kinematics for two- and three-dimensional pin-jointed trusses. We begin with reciprocal form and force diagrams. The force diagram is dissected into its component cells which are then translated relative to each other. This defines a displacement diagram which is topologically equivalent to the form diagram (the structure). The various contributions to the overall Virtual Work appear as parallelograms (for two-dimensional trusses) or parallelopipeds (for three-dimensional trusses) that separate the force and the displacement pieces. Structural mechanisms can be identified by translating the force cells such that their shared faces slide across each other without separating. Elastic solutions can be obtained by choosing parallelograms or parallelopipeds of the appropriate aspect ratio. Finally, a new type of ‘elastographic’ diagram—termed a deformed Maxwell–Williot diagram (two-dimensional) or a deformed Rankine–Williot diagram (three-dimensional)—is presented which combines the deflected structure with the forces carried by its members. PMID:28573030
Maxwell Strata and Cut Locus in the Sub-Riemannian Problem on the Engel Group
NASA Astrophysics Data System (ADS)
Ardentov, Andrei A.; Sachkov, Yuri L.
2017-12-01
We consider the nilpotent left-invariant sub-Riemannian structure on the Engel group. This structure gives a fundamental local approximation of a generic rank 2 sub-Riemannian structure on a 4-manifold near a generic point (in particular, of the kinematic models of a car with a trailer). On the other hand, this is the simplest sub-Riemannian structure of step three. We describe the global structure of the cut locus (the set of points where geodesics lose their global optimality), the Maxwell set (the set of points that admit more than one minimizer), and the intersection of the cut locus with the caustic (the set of conjugate points along all geodesics). The group of symmetries of the cut locus is described: it is generated by a one-parameter group of dilations R+ and a discrete group of reflections Z2 × Z2 × Z2. The cut locus admits a stratification with 6 three-dimensional strata, 12 two-dimensional strata, and 2 one-dimensional strata. Three-dimensional strata of the cut locus are Maxwell strata of multiplicity 2 (for each point there are 2 minimizers). Two-dimensional strata of the cut locus consist of conjugate points. Finally, one-dimensional strata are Maxwell strata of infinite multiplicity, they consist of conjugate points as well. Projections of sub-Riemannian geodesics to the 2-dimensional plane of the distribution are Euler elasticae. For each point of the cut locus, we describe the Euler elasticae corresponding to minimizers coming to this point. Finally, we describe the structure of the optimal synthesis, i. e., the set of minimizers for each terminal point in the Engel group.
A three-dimensional wide-angle BPM for optical waveguide structures.
Ma, Changbao; Van Keuren, Edward
2007-01-22
Algorithms for effective modeling of optical propagation in three- dimensional waveguide structures are critical for the design of photonic devices. We present a three-dimensional (3-D) wide-angle beam propagation method (WA-BPM) using Hoekstra's scheme. A sparse matrix algebraic equation is formed and solved using iterative methods. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation, along with a technique for shifting the simulation window to reduce the dimension of the numerical equation and a threshold technique to further ensure its convergence. These techniques can ensure the implementation of iterative methods for waveguide structures by relaxing the convergence problem, which will further enable us to develop higher-order 3-D WA-BPMs based on Padé approximant operators.
A three-dimensional wide-angle BPM for optical waveguide structures
NASA Astrophysics Data System (ADS)
Ma, Changbao; van Keuren, Edward
2007-01-01
Algorithms for effective modeling of optical propagation in three- dimensional waveguide structures are critical for the design of photonic devices. We present a three-dimensional (3-D) wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme. A sparse matrix algebraic equation is formed and solved using iterative methods. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation, along with a technique for shifting the simulation window to reduce the dimension of the numerical equation and a threshold technique to further ensure its convergence. These techniques can ensure the implementation of iterative methods for waveguide structures by relaxing the convergence problem, which will further enable us to develop higher-order 3-D WA-BPMs based on Padé approximant operators.
NASA Technical Reports Server (NTRS)
Ansari, R. R.; Suh, K. I.; Dunker, S.; Kitaya, N.; Sebag, J.
2001-01-01
The non-invasive technique of dynamic light scattering (DLS) was used to quantitatively characterize vitreous and lens structure on a molecular level by measuring the sizes of the predominant particles and mapping the three-dimensional topographic distribution of these structural macromolecules in three spatial dimensions. The results of DLS measurements in five fresh adult bovine eyes were compared to DLS measurements in model solutions of hyaluronan (HA) and collagen (Coll). In the bovine eyes DLS measurements were obtained from excised samples of gel and liquid vitreous and compared to the model solutions. Measurements in whole vitreous were obtained at multiple points posterior to the lens to generate a three-dimensional 'map' of molecular structure. The macromolecule distribution in bovine lens was similarly characterized.In each bovine vitreous (Bo Vit) specimen, DLS predominantly detected two distinct particles, which differed in diffusion properties and hence size. Comparisons with model vitreous solutions demonstrated that these most likely corresponded to the Coll and HA components of vitreous. Three-dimensional mapping of Bo Vit found heterogeneity throughout the vitreous body, with different particle size distributions for Coll and HA at different loci. In contrast, the three-dimensional distribution of lens macromolecules was more homogeneous. Thus, the non-invasive DLS technique can quantitate the average sizes of vitreous and lens macromolecules and map their three-dimensional distribution. This method to assess quantitatively the macromolecular structure of vitreous and lens should be useful for clinical as well as experimental applications in health and disease. Copyright 2001 Academic Press.
Topology of three-dimensional separated flows
NASA Technical Reports Server (NTRS)
Tobak, M.; Peake, D. J.
1981-01-01
Based on the hypothesis that patterns of skin-friction lines and external streamlines reflect the properties of continuous vector fields, topology rules define a small number of singular points (nodes, saddle points, and foci) that characterize the patterns on the surface and on particular projections of the flow (e.g., the crossflow plane). The restricted number of singular points and the rules that they obey are considered as an organizing principle whose finite number of elements can be combined in various ways to connect together the properties common to all steady three dimensional viscous flows. Introduction of a distinction between local and global properties of the flow resolves an ambiguity in the proper definition of a three dimensional separated flow. Adoption of the notions of topological structure, structural stability, and bifurcation provides a framework to describe how three dimensional separated flows originate and succeed each other as the relevant parameters of the problem are varied.
Karasick, Michael S.; Strip, David R.
1996-01-01
A parallel computing system is described that comprises a plurality of uniquely labeled, parallel processors, each processor capable of modelling a three-dimensional object that includes a plurality of vertices, faces and edges. The system comprises a front-end processor for issuing a modelling command to the parallel processors, relating to a three-dimensional object. Each parallel processor, in response to the command and through the use of its own unique label, creates a directed-edge (d-edge) data structure that uniquely relates an edge of the three-dimensional object to one face of the object. Each d-edge data structure at least includes vertex descriptions of the edge and a description of the one face. As a result, each processor, in response to the modelling command, operates upon a small component of the model and generates results, in parallel with all other processors, without the need for processor-to-processor intercommunication.
Fujisaki, K; Yokota, H; Nakatsuchi, H; Yamagata, Y; Nishikawa, T; Udagawa, T; Makinouchi, A
2010-01-01
A three-dimensional (3D) internal structure observation system based on serial sectioning was developed from an ultrasonic elliptical vibration cutting device and an optical microscope combined with a high-precision positioning device. For bearing steel samples, the cutting device created mirrored surfaces suitable for optical metallography, even for long-cutting distances during serial sectioning of these ferrous materials. Serial sectioning progressed automatically by means of numerical control. The system was used to observe inclusions in steel materials on a scale of several tens of micrometers. Three specimens containing inclusions were prepared from bearing steels. These inclusions could be detected as two-dimensional (2D) sectional images with resolution better than 1 mum. A three-dimensional (3D) model of each inclusion was reconstructed from the 2D serial images. The microscopic 3D models had sharp edges and complicated surfaces.
A comparison of VRML and animation of rotation for teaching 3-dimensional crystal lattice structures
NASA Astrophysics Data System (ADS)
Sauls, Barbara Lynn
Chemistry students often have difficulty visualizing abstract concepts of molecules and atoms, which may lead to misconceptions. The three-dimensionality of these structures presents a challenge to educators. Typical methods of teaching include text with two-dimensional graphics and structural models. Improved methods to allow visualization of 3D structures may improve learning of these concepts. This research compared the use of Virtual Reality Modeling Language (VRML) and animation of rotation for teaching three-dimensional structures. VRML allows full control of objects by altering angle, size, rotation, and provides the ability to zoom into and through objects. Animations may only be stopped, restarted and replayed. A web-based lesson teaching basic concepts of crystals, which requires comprehension of their three-dimensional structure was given to 100 freshmen chemistry students. Students were stratified by gender then randomly to one of two lessons, which were identical except for the multimedia method used to show the lattices and unit cells. One method required exploration of the structures using VRML, the other provided animations of the same structures rotating. The students worked through an examination as the lesson progressed. A Welch t' test was used to compare differences between groups. No significant difference in mean achievement was found between the two methods, between genders, or within gender. There was no significant difference in mean total SAT in the animation and VRML group. Total time on task had no significant difference nor did enjoyment of the lesson. Students, however, spent 14% less time maneuvering VRML structures than viewing the animations of rotation. Neither method proved superior for presenting three-dimensional information. The students spent less time maneuvering the VRML structures with no difference in mean score so the use of VRML may be more efficient. The investigator noted some manipulation difficulties using VRML to rotate structures. Some students had difficulty obtaining the correct angle required to properly interpret spatial relationships. This led to frustration and caused some students to quit trying before they could answer questions fully. Even though there were some difficulties, outcomes were not affected. Higher scores, however, may have been achieved had the students been proficient in VRML maneuvering.
Formation of bulk refractive index structures
Potter, Jr., Barrett George; Potter, Kelly Simmons; Wheeler, David R.; Jamison, Gregory M.
2003-07-15
A method of making a stacked three-dimensional refractive index structure in photosensitive materials using photo-patterning where first determined is the wavelength at which a photosensitive material film exhibits a change in refractive index upon exposure to optical radiation, a portion of the surfaces of the photosensitive material film is optically irradiated, the film is marked to produce a registry mark. Multiple films are produced and aligned using the registry marks to form a stacked three-dimensional refractive index structure.
Compact 3D photonic crystals sensing platform with 45 degree angle polished fibers
NASA Astrophysics Data System (ADS)
Guo, Yuqing; Chen, Lu; Zhu, Jiali; Ni, Haibin; Xia, Wei; Wang, Ming
2017-07-01
Three dimensional photonic crystals are a kind of promising sensing materials in biology and chemistry. A compact structure, consists of planner colloidal crystals and 45 degree angle polished fiber, is proposed as a platform for accurate, fast, reliable three dimensional photonic crystals sensing in practice. This structure show advantages in compact size for integration and it is ease for large scale manufacture. Reflectivity of the 45 degree angle polished surface with and without a layer of Ag film are simulated by FDTD simulation. Refractive index sensing properties as well as mode distribution of this structure consists of both polystyrene opal and silica inverse opal film is investigated, and an experimental demonstration of silica inverse opal film is performed, which shows a sensitivity of 733 nm/RIU. Different kinds of three dimensional photonic crystals can also be applied in this structure for particular purpose.
Process for Making Single-Domain Magnetite Crystals
NASA Technical Reports Server (NTRS)
Golden, D. C.; Ming, Douglas W.; Morris, Richard V.; Lofgren, Gary E.; McKay, Gordan A.; Schwandt, Craig S.; Lauer, Howard V., Jr.; Socki, Richard A.
2004-01-01
A process for making chemically pure, single-domain magnetite crystals substantially free of structural defects has been invented as a byproduct of research into the origin of globules in a meteorite found in Antarctica and believed to have originated on Mars. The globules in the meteorite comprise layers of mixed (Mg, Fe, and Ca) carbonates, magnetite, and iron sulfides. Since the discovery of the meteorite was announced in August 1996, scientists have debated whether the globules are of biological origin or were formed from inorganic materials by processes that could have taken place on Mars. While the research that led to the present invention has not provided a definitive conclusion concerning the origin of the globules, it has shown that globules of a different but related chemically layered structure can be grown from inorganic ingredients in a multistep precipitation process. As described in more detail below, the present invention comprises the multistep precipitation process plus a subsequent heat treatment. The multistep precipitation process was demonstrated in a laboratory experiment on the growth of submicron ankerite crystals, overgrown by submicron siderite and pyrite crystals, overgrown by submicron magnesite crystals, overgrown by submicron siderite and pyrite. In each step, chloride salts of appropriate cations (Ca, Fe, and Mg) were dissolved in deoxygenated, CO2- saturated water. NaHCO3 was added as a pH buffer while CO2 was passed continuously through the solution. A 15-mL aliquot of the resulting solution was transferred into each of several 20 mL, poly(tetrafluoroethylene)-lined hydrothermal pressure vessels. The vessels were closed in a CO2 atmosphere, then transferred into an oven at a temperature of 150 C. After a predetermined time, the hydrothermal vessels were removed from the oven and quenched in a freezer. Supernatant solutions were decanted, and carbonate precipitates were washed free of soluble salts by repeated decantations with deionized water.
[Research progress of three-dimensional digital model for repair and reconstruction of knee joint].
Tong, Lu; Li, Yanlin; Hu, Meng
2013-01-01
To review recent advance in the application and research of three-dimensional digital knee model. The recent original articles about three-dimensional digital knee model were extensively reviewed and analyzed. The digital three-dimensional knee model can simulate the knee complex anatomical structure very well. Based on this, there are some developments of new software and techniques, and good clinical results are achieved. With the development of computer techniques and software, the knee repair and reconstruction procedure has been improved, the operation will be more simple and its accuracy will be further improved.
[Advances in the research of application of hydrogels in three-dimensional bioprinting].
Yang, J; Zhao, Y; Li, H H; Zhu, S H
2016-08-20
Hydrogels are three-dimensional networks made of hydrophilic polymer crosslinked through covalent bonds or physical intermolecular attractions, which can contain growth media and growth factors to support cell growth. In bioprinting, hydrogels are used to provide accurate control over cellular microenvironment and to dramatically reduce experimental repetition times, meanwhile we can obtain three-dimensional cell images of high quality. Hydrogels in three-dimensional bioprinting have received a considerable interest due to their structural similarities to the natural extracellular matrix and polyporous frameworks which can support the cellular proliferation and survival. Meanwhile, they are accompanied by many challenges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hao; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000; Guo, Zhiguang, E-mail: zguo@licp.cas.cn
Hierarchical TiO{sub 2} submicron-sized sphere scattering layer, with relatively large surface area and effective light scattering, shows enhanced power conversion efficiency in dye-sensitized solar cells. - Highlights: • Hierarchical TiO{sub 2} submicron-sized spheres (TiO{sub 2} HSSs) with diameters of 400–600 nm were synthesized. • The HSSs composed of nanoparticles of ∼14 nm have a relatively large surface area of ∼35 m{sup 2}/g. • DSC exhibited the highest cell efficiency (6.23%) compared with ones with pure P25 (5.50%) or HSS (2.00%) photoanodes. - Abstract: Hierarchical TiO{sub 2} submicron-sized spheres (TiO{sub 2} HSSs) with diameters of 400–600 nm were synthesized by amore » facile one-step solvothermal method in ethanol solvent. The HSSs composed of nanoparticles of ∼14 nm have a relatively large surface area of ∼35 m{sup 2}/g. When applied as the scattering overlayer in dye-sensitized solar cells (DSCs), such TiO{sub 2} HSSs effectively improved light harvesting and led to the increase of photocurrent in DSCs. Furthermore, bilayer-structured photoanode also provided fast electron transportation and long electron lifetime as confirmed by electrochemical impedance spectra. As a result, DSC based on P25 nanoparticle underlayer and HSS-2 overlayer exhibited the highest cell efficiency (6.23%) compared with ones with pure P25 (5.50%) or HSS-2 (2.00%) photoanodes.« less
Three-dimensional behavior of ice crystals and biological cells during freezing of cell suspensions.
Ishiguro, H; Koike, K
1998-09-11
Behavior of ice crystals and human red blood cells during extracellular-freezing was investigated in three-dimensions using a confocal laser scanning microscope(CLSM), which noninvasively produces tomograms of biological materials. Physiological saline and physiological saline with 2.4 M glycerol were used for suspension. Various cooling rates for directional solidification were used for distinctive morphology of the ice crystals. Addition of acridine orange as a fluorescent dye into the cell suspension enabled ice crystal, cells and unfrozen solution to be distinguished by different colors. The results indicate that the microscopic structure is three-dimensional for flat, cellular, and dendritic solid-liquid interfaces and that a CLSM is very effective in studying three-dimensional structure during the freezing of cell suspensions.
Fu, Feng; Qin, Zhe; Xu, Chao; Chen, Xu-yi; Li, Rui-xin; Wang, Li-na; Peng, Ding-wei; Sun, Hong-tao; Tu, Yue; Chen, Chong; Zhang, Sai; Zhao, Ming-liang; Li, Xiao-hong
2017-01-01
Conventional fabrication methods lack the ability to control both macro- and micro-structures of generated scaffolds. Three-dimensional printing is a solid free-form fabrication method that provides novel ways to create customized scaffolds with high precision and accuracy. In this study, an electrically controlled cortical impactor was used to induce randomized brain tissue defects. The overall shape of scaffolds was designed using rat-specific anatomical data obtained from magnetic resonance imaging, and the internal structure was created by computer-aided design. As the result of limitations arising from insufficient resolution of the manufacturing process, we magnified the size of the cavity model prototype five-fold to successfully fabricate customized collagen-chitosan scaffolds using three-dimensional printing. Results demonstrated that scaffolds have three-dimensional porous structures, high porosity, highly specific surface areas, pore connectivity and good internal characteristics. Neural stem cells co-cultured with scaffolds showed good viability, indicating good biocompatibility and biodegradability. This technique may be a promising new strategy for regenerating complex damaged brain tissues, and helps pave the way toward personalized medicine. PMID:28553343
Toward atomic-scale bright-field electron tomography for the study of fullerene-like nanostructures.
Bar Sadan, Maya; Houben, Lothar; Wolf, Sharon G; Enyashin, Andrey; Seifert, Gotthard; Tenne, Reshef; Urban, Knut
2008-03-01
We present the advancement of electron tomography for three-dimensional structure reconstruction of fullerene-like particles toward atomic-scale resolution. The three-dimensional reconstruction of nested molybdenum disulfide nanooctahedra is achieved by the combination of low voltage operation of the electron microscope with aberration-corrected phase contrast imaging. The method enables the study of defects and irregularities in the three-dimensional structure of individual fullerene-like particles on the scale of 2-3 A. Control over shape, size, and atomic architecture is a key issue in synthesis and design of functional nanoparticles. Transmission electron microscopy (TEM) is the primary technique to characterize materials down to the atomic level, albeit the images are two-dimensional projections of the studied objects. Recent advancements in aberration-corrected TEM have demonstrated single atom sensitivity for light elements at subångström resolution. Yet, the resolution of tomographic schemes for three-dimensional structure reconstruction has not surpassed 1 nm3, preventing it from becoming a powerful tool for characterization in the physical sciences on the atomic scale. Here we demonstrate that negative spherical aberration imaging at low acceleration voltage enables tomography down to the atomic scale at reduced radiation damage. First experimental data on the three-dimensional reconstruction of nested molybdenum disulfide nanooctahedra is presented. The method is applicable to the analysis of the atomic architecture of a wide range of nanostructures where strong electron channeling is absent, in particular to carbon fullerenes and inorganic fullerenes.
Tonal Interface to MacroMolecules (TIMMol): A Textual and Tonal Tool for Molecular Visualization
ERIC Educational Resources Information Center
Cordes, Timothy J.; Carlson, C. Britt; Forest, Katrina T.
2008-01-01
We developed the three-dimensional visualization software, Tonal Interface to MacroMolecules or TIMMol, for studying atomic coordinates of protein structures. Key features include audio tones indicating x, y, z location, identification of the cursor location in one-dimensional and three-dimensional space, textual output that can be easily linked…
Creating 3D Physical Models to Probe Student Understanding of Macromolecular Structure
ERIC Educational Resources Information Center
Cooper, A. Kat; Oliver-Hoyo, M. T.
2017-01-01
The high degree of complexity of macromolecular structure is extremely difficult for students to process. Students struggle to translate the simplified two-dimensional representations commonly used in biochemistry instruction to three-dimensional aspects crucial in understanding structure-property relationships. We designed four different physical…
Three-Dimensional Magnetic Resonance Imaging of Velopharyngeal Structures
ERIC Educational Resources Information Center
Bae, Youkyung; Kuehn, David P.; Sutton, Bradley P.; Conway, Charles A.; Perry, Jamie L.
2011-01-01
Purpose: To report the feasibility of using a 3-dimensional (3D) magnetic resonance imaging (MRI) protocol for examining velopharyngeal structures. Using collected 3D MRI data, the authors investigated the effect of sex on the midsagittal velopharyngeal structures and the levator veli palatini (levator) muscle configurations. Method: Ten Caucasian…
NASA Astrophysics Data System (ADS)
Agapov, Vladimir
2018-03-01
The necessity of new approaches to the modeling of rods in the analysis of high-rise constructions is justified. The possibility of the application of the three-dimensional superelements of rods with rectangular cross section for the static and dynamic calculation of the bar and combined structures is considered. The results of the eighteen-story spatial frame free vibrations analysis using both one-dimensional and three-dimensional models of rods are presented. A comparative analysis of the obtained results is carried out and the conclusions on the possibility of three-dimensional superelements application in static and dynamic analysis of high-rise constructions are given on its basis.
Sculpting Cells with Play Doh.
ERIC Educational Resources Information Center
Way, Virginia A.
1982-01-01
Suggests using Play Doh to mold models of the nucleus, mitochondria, and inner cellular structures. Students can conceptualize the cell's structures as three-dimensional even though they appear two-dimensional under a microscope. Includes instructions for preparing homemade dough. (Author/JN)
1978-12-31
Koyanagi, Three-dimensional crust and mantle structure of Kilauea Volcano , Hawaii , J. Geophys. Res., 82, 5379-5394, 1977. Engdahl, E.R., J.G. Sindorf, and...Johnson, 1967), in Japan (Zandt, 1975; Hirahara, 1977), at NORSAR (Aki, 1977), in Yellowstone National Park (1yer, 1975; Zandt, 1978), in Hawaii ...1962. Ellsworth, W.L., Three-dimensional structure of the crust and mantle beneath the island of Hawaii , unpublished Ph.D. thesis, Massachusetts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marri, Subba R.; Behera, J.N., E-mail: jnbehera@niser.ac.in
2014-02-15
Two organically-templated bismuth sulfates of the compositions, [C{sub 6}N{sub 2}H{sub 14}] [Bi(SO{sub 4}){sub 2}(NO{sub 3})], (1) and [C{sub 4}N{sub 2}H{sub 12}]{sub 4}[Bi{sub 4}(SO{sub 4}){sub 10}(H{sub 2}O){sub 4}], (2), with open architecture have been synthesized and their structures determined by single crystal X-ray diffraction. 1 has a corrugated layered structure with 8-membered aperture wherein the SO{sub 4} tetrahedra and the BiO{sub 8} polyhedra join together to form (4, 4) net sheets of the metal centers while 2 has a three-dimensional structure possessing 8- and 12-membered channels. Both the compounds show good fluorescence properties exhibiting blue luminescence. Time-resolved fluorescence behavior of 1more » and 2 shows mean fluorescence life time of 0.9 and 1.0 ns, respectively. - Graphical abstract: Two open-framework bismuth sulfates with the layered and three-dimensional structures have been synthesized and characterized. Both the compounds show good fluorescence properties exhibiting blue luminescence. Display Omitted - Highlights: • Two organically-templated bismuth sulfates with open architecture have been synthesized and characterized. • One has a corrugated layered structure while the other one has a three-dimensional structure possessing channels. • They are novel in that open-framework three-dimensional main group metal sulfates are first to be reported. • They show good fluorescence properties exhibiting blue luminescence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiser, D.; Ohno, N.; Tanaka, H.
2014-03-15
Three-dimensional global drift fluid simulations are carried out to analyze coherent plasma structures appearing in the NAGDIS-II linear device (nagoya divertor plasma Simulator-II). The numerical simulations reproduce several features of the intermittent spiraling structures observed, for instance, statistical properties, rotation frequency, and the frequency of plasma expulsion. The detailed inspection of the three-dimensional plasma dynamics allows to identify the key mechanism behind the formation of these intermittent events. The resistive coupling between electron pressure and parallel electric field in the plasma source region gives rise to a quasilinear predator-prey like dynamics where the axisymmetric mode represents the prey and themore » spiraling structure with low azimuthal mode number represents the predator. This interpretation is confirmed by a reduced one-dimensional quasilinear model derived on the basis of the findings in the full three-dimensional simulations. The dominant dynamics reveals certain similarities to the classical Lotka-Volterra cycle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ju-Wen; Gong, Chun-Hua; Hou, Li-Li
2013-09-15
Three new metal-organic coordination polymers [Co(4-bbc){sub 2}(bbbm)] (1), [Co(3,5-pdc)(bbbm)]·2H{sub 2}O (2) and [Co(1,4-ndc)(bbbm)] (3) (4-Hbbc=4-bromobenzoic acid, 3,5-H{sub 2}pdc=3,5-pyridinedicarboxylic acid, 1,4-H{sub 2}ndc=1,4-naphthalenedicarboxylic acid and bbbm=1,1-(1,4-butanediyl)bis-1H-benzimidazole) were hydrothermally synthesized and structurally characterized. Polymer 1 is a 1D chain formed by the bbbm ligands and Co{sup II} ions. Polymer 2 exhibits a 2D network with a (3·4·5)(3{sup 2}·4·5·6{sup 2}·7{sup 4}) topology. Polymer 3 possesses a 3D three-fold interpenetrating framework. The versatile structures of title polymers indicate that the aromatic carboxylates have an important influence on the dimensionality of 1–3. Moreover, the thermal stability, electrochemical and luminescent properties of 1–3 were investigated. - graphicalmore » abstract: Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were hydrothermally synthesized and structurally characterized. The aromatic carboxylates play a key role in the dimensionality of three polymers. The electrochemical and luminescent properties of three polymers were investigated. Display Omitted - Highlights: • Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were obtained. • The aromatic carboxylates have an important influence on the dimensionality of three polymers. • The electrochemical and luminescent properties of three polymers were investigated.« less
Feiten, Mirian Cristina; Di Luccio, Marco; Santos, Karine F; de Oliveira, Débora; Oliveira, J Vladimir
2017-06-01
The study of enzyme function often involves a multi-disciplinary approach. Several techniques are documented in the literature towards determining secondary and tertiary structures of enzymes, and X-ray crystallography is the most explored technique for obtaining three-dimensional structures of proteins. Knowledge of three-dimensional structures is essential to understand reaction mechanisms at the atomic level. Additionally, structures can be used to modulate or improve functional activity of enzymes by the production of small molecules that act as substrates/cofactors or by engineering selected mutants with enhanced biological activity. This paper presentes a short overview on how to streamline sample preparation for crystallographic studies of treated enzymes. We additionally revise recent developments on the effects of pressurized fluid treatment on activity and stability of commercial enzymes. Future directions and perspectives on the the role of crystallography as a tool to access the molecular mechanisms underlying enzymatic activity modulation upon treatment in pressurized fluids are also addressed.
Micrometer-scale fabrication of complex three dimensional lattice + basis structures in silicon
Burckel, D. Bruce; Resnick, Paul J.; Finnegan, Patrick S.; ...
2015-01-01
A complementary metal oxide semiconductor (CMOS) compatible version of membrane projection lithography (MPL) for fabrication of micrometer-scale three-dimensional structures is presented. The approach uses all inorganic materials and standard CMOS processing equipment. In a single layer, MPL is capable of creating all 5 2D-Bravais lattices. Furthermore, standard semiconductor processing steps can be used in a layer-by-layer approach to create fully three dimensional structures with any of the 14 3D-Bravais lattices. The unit cell basis is determined by the projection of the membrane pattern, with many degrees of freedom for defining functional inclusions. Here we demonstrate several unique structural motifs, andmore » characterize 2D arrays of unit cells with split ring resonators in a silicon matrix. The structures exhibit strong polarization dependent resonances and, for properly oriented split ring resonators (SRRs), coupling to the magnetic field of a normally incident transverse electromagnetic wave, a response unique to 3D inclusions.« less
Laboratory-size three-dimensional water-window x-ray microscope with Wolter type I mirror optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohsuka, Shinji; The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu-City, 431-1202; Ohba, Akira
2016-01-28
We constructed a laboratory-size three-dimensional water-window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques. It consists of an electron-impact x-ray source emitting oxygen Kα x-rays, Wolter type I grazing incidence mirror optics, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit better than 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm-scale three-dimensional fine structures were resolved.
Self-assembly of three-dimensional open structures using patchy colloidal particles.
Rocklin, D Zeb; Mao, Xiaoming
2014-10-14
Open structures can display a number of unusual properties, including a negative Poisson's ratio, negative thermal expansion, and holographic elasticity, and have many interesting applications in engineering. However, it is a grand challenge to self-assemble open structures at the colloidal scale, where short-range interactions and low coordination number can leave them mechanically unstable. In this paper we discuss the self-assembly of three-dimensional open structures using triblock Janus particles, which have two large attractive patches that can form multiple bonds, separated by a band with purely hard-sphere repulsion. Such surface patterning leads to open structures that are stabilized by orientational entropy (in an order-by-disorder effect) and selected over close-packed structures by vibrational entropy. For different patch sizes the particles can form into either tetrahedral or octahedral structural motifs which then compose open lattices, including the pyrochlore, the hexagonal tetrastack and the perovskite lattices. Using an analytic theory, we examine the phase diagrams of these possible open and close-packed structures for triblock Janus particles and characterize the mechanical properties of these structures. Our theory leads to rational designs of particles for the self-assembly of three-dimensional colloidal structures that are possible using current experimental techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alden, D.; Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin; Guo, W.
Periodically poled AlN thin films with submicron domain widths were fabricated for nonlinear applications in the UV-VIS region. A procedure utilizing metalorganic chemical vapor deposition growth of AlN in combination with laser interference lithography was developed for making a nanoscale lateral polarity structure (LPS) with domain size down to 600 nm. The Al-polar and N-polar domains were identified by wet etching the periodic LPS in a potassium hydroxide solution and subsequent scanning electron microscopy (SEM) characterization. Fully coalesced and well-defined vertical interfaces between the adjacent domains were established by cross-sectional SEM. AlN LPSs were mechanically polished and surface roughness with amore » root mean square value of ∼10 nm over a 90 μm × 90 μm area was achieved. 3.8 μm wide and 650 nm thick AlN LPS waveguides were fabricated. The achieved domain sizes, surface roughness, and waveguides are suitable for second harmonic generation in the UVC spectrum.« less
Three-dimensional magnetophotonic crystals based on artificial opals
NASA Astrophysics Data System (ADS)
Baryshev, A. V.; Kodama, T.; Nishimura, K.; Uchida, H.; Inoue, M.
2004-06-01
We fabricated and experimentally investigated three-dimensional magnetophotonic crystals (3D MPCs) based on artificial opals. Opal samples with three-dimensional dielectric lattices were impregnated with different types of magnetic material. Magnetic and structural properties of 3D MPCs were studied by field emission scanning electron microscopy, x-ray diffraction analysis, and vibrating sample magnetometer. We have shown that magnetic materials synthesized in voids of opal lattices and the composites obtained have typical magnetic properties.
Aizenberg, Joanna; Burgess, Ian B.; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko
2016-03-08
A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.
2008-05-01
4 ). The three-dimensional spatial orientation of the atoms for these resolved solution structures (Protein Data Bank accession codes: 2gt3...Crystal structure of the Escherichia coli peptide methionine sulphoxide reductase at 1.9 Å resolution . Struct. Fold. Des. 8: 1167 – 1178. 2 . Brot...sources (8). There is a 67% sequence identity between the E.coli and human MsrA ( 2 ). N-terminus C-terminus Figure 2 . Three-dimensional structure
Aizenberg, Joanna; Burgess, Ian; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko
2017-12-26
A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.
Particle-filled microporous materials
McAllister, J.W.; Kinzer, K.E.; Mrozinski, J.S.; Johnson, E.J.; Dyrud, J.F.
1990-09-18
A microporous particulate-filled thermoplastic polymeric article is provided. The article can be in the form of a film, a fiber, or a tube. The article has a thermoplastic polymeric structure having a plurality of interconnected passageways to provide a network of communicating pores. The microporous structure contains discrete submicron or low micron-sized particulate filler, the particulate filler being substantially non-agglomerated. 3 figs.
Carbonized Micro- and Nanostructures: Can Downsizing Really Help?
Naraghi, Mohammad; Chawla, Sneha
2014-01-01
In this manuscript, we discuss relationships between morphology and mechanical strength of carbonized structures, obtained via pyrolysis of polymeric precursors, across multiple length scales, from carbon fibers (CFs) with diameters of 5–10 μm to submicron thick carbon nanofibers (CNFs). Our research points to radial inhomogeneity, skin–core structure, as a size-dependent feature of polyacrylonitrile-based CFs. This inhomogeneity is a surface effect, caused by suppressed diffusion of oxygen and stabilization byproducts during stabilization through skin. Hence, reducing the precursor diameters from tens of microns to submicron appears as an effective strategy to develop homogeneous carbonized structures. Our research establishes the significance of this downsizing in developing lightweight structural materials by comparing intrinsic strength of radially inhomogeneous CFs with that of radially homogeneous CNF. While experimental studies on the strength of CNFs have targeted randomly oriented turbostratic domains, via continuum modeling, we have estimated that strength of CNFs can reach 14 GPa, when the basal planes of graphitic domains are parallel to nanofiber axis. The CNFs in our model are treated as composites of amorphous carbon (matrix), reinforced with turbostratic domains, and their strength is predicted using Tsai–Hill criterion. The model was calibrated with existing experimental data. PMID:28788651
Fabrication of dielectric elastomer stack transducers (DEST) by liquid deposition modeling
NASA Astrophysics Data System (ADS)
Klug, Florian; Solano-Arana, Susana; Mößinger, Holger; Förster-Zügel, Florentine; Schlaak, Helmut F.
2017-04-01
Established fabrication methods for dielectric elastomer stack transducers (DEST) are mostly based on twodimensional thin-film technology. Because of this, DEST are based on simple two-dimensionally structured shapes. For certain applications, like valves or Braille displays, these structures are suited well enough. However, a more flexible fabrication method allows for more complex actuator designs, which would otherwise require extra processing steps. Fabrication methods with the possibility of three-dimensional structuring allow e.g. the integration of electrical connections, cavities, channels, sensor and other structural elements during the fabrication. This opens up new applications, as well as the opportunity for faster prototype production of individually designed DEST for a given application. In this work, a manufacturing system allowing three dimensional structuring is described. It enables the production of multilayer and three-dimensional structured DEST by liquid deposition modelling. The system is based on a custom made dual extruder, connected to a commercial threeaxis positioning system. It allows a computer controlled liquid deposition of two materials. After tuning the manufacturing parameters the production of thin layers with at thickness of less than 50 μm, as well as stacking electrode and dielectric materials is feasible. With this setup a first DEST with dielectric layer thickness less than 50 μm is build successfully and its performance is evaluated.
Submicron diameter single crystal sapphire optical fiber
Hill, Cary; Homa, Daniel; Liu, Bo; ...
2014-10-02
In this work, a submicron-diameter single crystal sapphire optical fiber was demonstrated via wet acid etching at elevated temperatures. Etch rates on the order 2.3 µm/hr were achievable with a 3:1 molar ratio sulfuric-phosphoric acid solution maintained at a temperature of 343°C. A sapphire fiber with an approximate diameter of 800 nm was successfully fabricated from a commercially available fiber with an original diameter of 50 µm. The simple and controllable etching technique provides a feasible approach to the fabrication of unique waveguide structures via traditional silica masking techniques. The ability to tailor the geometry of sapphire optical fibers ismore » the first step in achieving optical and sensing performance on par with its fused silica counterpart.« less
NASA Astrophysics Data System (ADS)
Kadyshevich, E. A.; Dzyabchenko, A. V.; Ostrovskii, V. E.
2014-04-01
Size compatibility of the CH4-hydrate structure II and multi-component DNA fragments is confirmed by three-dimensional simulation; it is validation of the Life Origination Hydrate Theory (LOH-Theory).
Submicron Emulsions and Their Applications in Oral Delivery.
Mundada, Veenu; Patel, Mitali; Sawant, Krutika
2016-01-01
A "submicron emulsion" is an isotropic mixture of drug, lipids, and surfactants, usually with hydrophilic cosolvents and with droplet diameters ranging from 10 to 500 nm. Submicron emulsions are of increasing interest in medicine due to their kinetic stability, high solubilizing capacity, and tiny globule size. Because of these properties, they have been applied in various fields, such as personal care, cosmetics, health care, pharmaceuticals, and agrochemicals. Submicron emulsions are by far the most advanced nanoparticulate systems for the systemic delivery of biologically active agents for controlled drug delivery and targeting. They are designed mainly for pharmaceutical formulations suitable for various routes of administration like parenteral, ocular, transdermal, and oral. This review article describes the marked potential of submicron emulsions for oral drug delivery owing to their numerous advantages like reduced first pass metabolism, inhibition of P-glycoprotein efflux system, and enhanced absorption via intestinal lymphatic pathway. To overcome the limitations of liquid dosage forms, submicron emulsions can be formulated into solid dosage forms such as solid self-emulsifying systems. This article covers various types of submicron emulsions like microemulsion, nanoemulsion, and self-emulsifying drug delivery system (SEDDS), and their potential pharmaceutical applications in oral delivery with emphasis on their advantages, limitations, and advancements.
Filling schemes at submicron scale: Development of submicron sized plasmonic colour filters
Rajasekharan, Ranjith; Balaur, Eugeniu; Minovich, Alexander; Collins, Sean; James, Timothy D.; Djalalian-Assl, Amir; Ganesan, Kumaravelu; Tomljenovic-Hanic, Snjezana; Kandasamy, Sasikaran; Skafidas, Efstratios; Neshev, Dragomir N.; Mulvaney, Paul; Roberts, Ann; Prawer, Steven
2014-01-01
The pixel size imposes a fundamental limit on the amount of information that can be displayed or recorded on a sensor. Thus, there is strong motivation to reduce the pixel size down to the nanometre scale. Nanometre colour pixels cannot be fabricated by simply downscaling current pixels due to colour cross talk and diffraction caused by dyes or pigments used as colour filters. Colour filters based on plasmonic effects can overcome these difficulties. Although different plasmonic colour filters have been demonstrated at the micron scale, there have been no attempts so far to reduce the filter size to the submicron scale. Here, we present for the first time a submicron plasmonic colour filter design together with a new challenge - pixel boundary errors at the submicron scale. We present simple but powerful filling schemes to produce submicron colour filters, which are free from pixel boundary errors and colour cross- talk, are polarization independent and angle insensitive, and based on LCD compatible aluminium technology. These results lay the basis for the development of submicron pixels in displays, RGB-spatial light modulators, liquid crystal over silicon, Google glasses and pico-projectors. PMID:25242695
Filling schemes at submicron scale: development of submicron sized plasmonic colour filters.
Rajasekharan, Ranjith; Balaur, Eugeniu; Minovich, Alexander; Collins, Sean; James, Timothy D; Djalalian-Assl, Amir; Ganesan, Kumaravelu; Tomljenovic-Hanic, Snjezana; Kandasamy, Sasikaran; Skafidas, Efstratios; Neshev, Dragomir N; Mulvaney, Paul; Roberts, Ann; Prawer, Steven
2014-09-22
The pixel size imposes a fundamental limit on the amount of information that can be displayed or recorded on a sensor. Thus, there is strong motivation to reduce the pixel size down to the nanometre scale. Nanometre colour pixels cannot be fabricated by simply downscaling current pixels due to colour cross talk and diffraction caused by dyes or pigments used as colour filters. Colour filters based on plasmonic effects can overcome these difficulties. Although different plasmonic colour filters have been demonstrated at the micron scale, there have been no attempts so far to reduce the filter size to the submicron scale. Here, we present for the first time a submicron plasmonic colour filter design together with a new challenge - pixel boundary errors at the submicron scale. We present simple but powerful filling schemes to produce submicron colour filters, which are free from pixel boundary errors and colour cross- talk, are polarization independent and angle insensitive, and based on LCD compatible aluminium technology. These results lay the basis for the development of submicron pixels in displays, RGB-spatial light modulators, liquid crystal over silicon, Google glasses and pico-projectors.
Three dimensional fabrication at small size scales
Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.
2010-01-01
Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446
Three dimensional canonical singularity and five dimensional N = 1 SCFT
NASA Astrophysics Data System (ADS)
Xie, Dan; Yau, Shing-Tung
2017-06-01
We conjecture that every three dimensional canonical singularity defines a five dimensional N = 1 SCFT. Flavor symmetry can be found from singularity structure: non-abelian flavor symmetry is read from the singularity type over one dimensional singular locus. The dimension of Coulomb branch is given by the number of compact crepant divisors from a crepant resolution of singularity. The detailed structure of Coulomb branch is described as follows: a) a chamber of Coulomb branch is described by a crepant resolution, and this chamber is given by its Nef cone and the prepotential is computed from triple intersection numbers; b) Crepant resolution is not unique and different resolutions are related by flops; Nef cones from crepant resolutions form a fan which is claimed to be the full Coulomb branch.
Novel Translucent and Strong Submicron Alumina Ceramics for Dental Restorations.
Zhao, M; Sun, Y; Zhang, J; Zhang, Y
2018-03-01
An ideal ceramic restorative material should possess excellent aesthetic and mechanical properties. We hypothesize that the high translucency and strength of polycrystalline ceramics can be achieved through microstructural tailoring. The aim of this study is to demonstrate the superior optical and mechanical properties of a new class of submicron grain-sized alumina ceramics relative to the current state-of-the-art dental ceramic materials. The translucency, the in-line transmission ( T IT ) in particular, of these submicron alumina ceramics has been examined with the Rayleigh-Gans-Debye light-scattering model. The theoretical predictions related very well with the measured T IT values. The translucency parameter ( TP) and contrast ratio ( CR) of the newly developed aluminas were measured with a reflectance spectrophotometer on a black-and-white background. For comparison, the T IT , TP, and CR values for a variety of dental ceramics, mostly measured in-house but also cited from the literature, were included. The flexural strength of the aluminas was determined with the 4-point bending test. Our findings have shown that for polycrystalline alumina ceramics, an average grain size <1 µm coupled with a porosity level <0.7% could yield translucency values ( T IT , TP, CR) similar to those of the commercial high-translucency porcelains. These values are far superior to the high-translucency lithium disilicate glass-ceramic and zirconias, including the most translucent cubic-containing zirconias. The strength of these submicron grain-sized aluminas was significantly higher than that of the cubic-containing zirconia (e.g., Zpex Smile) and lithia-based glass-ceramics (e.g., IPS e.max CAD HT). A coarse-grained alumina could also reach a translucency level comparable to that of dental porcelain. However, the relatively low strength of this material has limited its clinical indications to structurally less demanding applications, such as orthodontic brackets. With a combined high strength and translucency, the newly developed submicron grain-sized alumina may be considered a suitable material for dental restorations.
Three-dimensional vortex wake structure of flapping wings in hovering flight.
Cheng, Bo; Roll, Jesse; Liu, Yun; Troolin, Daniel R; Deng, Xinyan
2014-02-06
Flapping wings continuously create and send vortices into their wake, while imparting downward momentum into the surrounding fluid. However, experimental studies concerning the details of the three-dimensional vorticity distribution and evolution in the far wake are limited. In this study, the three-dimensional vortex wake structure in both the near and far field of a dynamically scaled flapping wing was investigated experimentally, using volumetric three-component velocimetry. A single wing, with shape and kinematics similar to those of a fruitfly, was examined. The overall result of the wing action is to create an integrated vortex structure consisting of a tip vortex (TV), trailing-edge shear layer (TESL) and leading-edge vortex. The TESL rolls up into a root vortex (RV) as it is shed from the wing, and together with the TV, contracts radially and stretches tangentially in the downstream wake. The downwash is distributed in an arc-shaped region enclosed by the stretched tangential vorticity of the TVs and the RVs. A closed vortex ring structure is not observed in the current study owing to the lack of well-established starting and stopping vortex structures that smoothly connect the TV and RV. An evaluation of the vorticity transport equation shows that both the TV and the RV undergo vortex stretching while convecting downwards: a three-dimensional phenomenon in rotating flows. It also confirms that convection and secondary tilting and stretching effects dominate the evolution of vorticity.
NASA Astrophysics Data System (ADS)
Wheatland, Jonathan; Bushby, Andy; Droppo, Ian; Carr, Simon; Spencer, Kate
2015-04-01
Suspended estuarine sediments form flocs that are compositionally complex, fragile and irregularly shaped. The fate and transport of suspended particulate matter (SPM) is determined by the size, shape, density, porosity and stability of these flocs and prediction of SPM transport requires accurate measurements of these three-dimensional (3D) physical properties. However, the multi-scaled nature of flocs in addition to their fragility makes their characterisation in 3D problematic. Correlative microscopy is a strategy involving the spatial registration of information collected at different scales using several imaging modalities. Previously, conventional optical microscopy (COM) and transmission electron microscopy (TEM) have enabled 2-dimensional (2D) floc characterisation at the gross (> 1 µm) and sub-micron scales respectively. Whilst this has proven insightful there remains a critical spatial and dimensional gap preventing the accurate measurement of geometric properties and an understanding of how structures at different scales are related. Within life sciences volumetric imaging techniques such as 3D micro-computed tomography (3D µCT) and focused ion beam scanning electron microscopy [FIB-SEM (or FIB-tomography)] have been combined to characterise materials at the centimetre to micron scale. Combining these techniques with TEM enables an advanced correlative study, allowing material properties across multiple spatial and dimensional scales to be visualised. The aims of this study are; 1) to formulate an advanced correlative imaging strategy combining 3D µCT, FIB-tomography and TEM; 2) to acquire 3D datasets; 3) to produce a model allowing their co-visualisation; 4) to interpret 3D floc structure. To reduce the chance of structural alterations during analysis samples were first 'fixed' in 2.5% glutaraldehyde/2% formaldehyde before being embedding in Durcupan resin. Intermediate steps were implemented to improve contrast and remove pore water, achieved by the addition of heavy metal stains and washing samples in a series of ethanol solutions and acetone. Gross-scale characterisation involved scanning samples using a Nikon Metrology HM X 225 µCT. For micro-scale analysis a working surface was revealed by microtoming the sample. Ultrathin sections were then collected and analysed using a JEOL 1200 Ex II TEM, and FIB-tomography datasets obtained using an FEI Quanta 3D FIB-SEM. Finally, to locate the surface and relate TEM and FIB-tomography datasets to the original floc, samples were rescanned using the µCT. Image processing was initially conducted in ImageJ. Following this datasets were imported into Amira 5.5 where pixel intensity thresholding allowed particle-matrix boundaries to be defined. Using 'landmarks' datasets were then registered to enable their co-visualisation in 3D models. Analysis of registered datasets reveals the complex non-fractal nature of flocs, whose properties span several of orders of magnitude. Primary particles are organised into discrete 'bundles', the arrangement of which directly influences their gross morphology. This strategy, which allows the co-visualisation of spatially registered multi-scale 3D datasets, provides unique insights into the true nature floc which would other have been impossible.
NASA Technical Reports Server (NTRS)
Rhodes, M. D.; Selberg, B. P.
1982-01-01
An investigation was performed to compare closely coupled dual wing and swept forward swept rearward wing aircraft to corresponding single wing 'baseline' designs to judge the advantages offered by aircraft designed with multiple wing systems. The optimum multiple wing geometry used on the multiple wing designs was determined in an analytic study which investigated the two- and three-dimensional aerodynamic behavior of a wide range of multiple wing configurations in order to find the wing geometry that created the minimum cruise drag. This analysis used a multi-element inviscid vortex panel program coupled to a momentum integral boundary layer analysis program to account for the aerodynamic coupling between the wings and to provide the two-dimensional aerodynamic data, which was then used as input for a three-dimensional vortex lattice program, which calculated the three-dimensional aerodynamic data. The low drag of the multiple wing configurations is due to a combination of two dimensional drag reductions, tailoring the three dimensional drag for the swept forward swept rearward design, and the structural advantages of the two wings that because of the structural connections permitted higher aspect ratios.
Lee, Hye Jin; Jung, Dae-Han; Kil, Tae-Hyeon; Kim, Sang Hyeon; Lee, Ki-Suk; Baek, Seung-Hyub; Choi, Won Jun; Baik, Jeong Min
2017-05-31
A facile method to fabricate a mechanically robust, stretchable solar absorber for stretchable heat generation and an enhanced thermoelectric generator (TEG) is demonstrated. This strategy is very simple: it uses a multilayer film made of titanium and magnesium fluoride optimized by a two-dimensional finite element frequency-domain simulation, followed by the application of mechanical stresses such as bending and stretching to the film. This process produces many microsized sheets with submicron thickness (∼500 nm), showing great adhesion to any substrates such as fabrics and polydimethylsiloxane. It exhibits a quite high light absorption of approximately 85% over a wavelength range of 0.2-4.0 μm. Under 1 sun illumination, the solar absorber on various stretchable substrates increased the substrate temperature to approximately 60 °C, irrespective of various mechanical stresses such as bending, stretching, rubbing, and even washing. The TEG with the absorber on the top surface also showed an enhanced output power of 60%, compared with that without the absorber. With an incident solar radiation flux of 38.3 kW/m 2 , the output power significantly increased to 24 mW/cm 2 because of the increase in the surface temperature to 141 °C.
Decoupling Principle Analysis and Development of a Parallel Three-Dimensional Force Sensor
Zhao, Yanzhi; Jiao, Leihao; Weng, Dacheng; Zhang, Dan; Zheng, Rencheng
2016-01-01
In the development of the multi-dimensional force sensor, dimension coupling is the ubiquitous factor restricting the improvement of the measurement accuracy. To effectively reduce the influence of dimension coupling on the parallel multi-dimensional force sensor, a novel parallel three-dimensional force sensor is proposed using a mechanical decoupling principle, and the influence of the friction on dimension coupling is effectively reduced by making the friction rolling instead of sliding friction. In this paper, the mathematical model is established by combining with the structure model of the parallel three-dimensional force sensor, and the modeling and analysis of mechanical decoupling are carried out. The coupling degree (ε) of the designed sensor is defined and calculated, and the calculation results show that the mechanical decoupling parallel structure of the sensor possesses good decoupling performance. A prototype of the parallel three-dimensional force sensor was developed, and FEM analysis was carried out. The load calibration and data acquisition experiment system are built, and then calibration experiments were done. According to the calibration experiments, the measurement accuracy is less than 2.86% and the coupling accuracy is less than 3.02%. The experimental results show that the sensor system possesses high measuring accuracy, which provides a basis for the applied research of the parallel multi-dimensional force sensor. PMID:27649194
Park, Jin Seo; Shin, Dong Sun; Chung, Min Suk; Hwang, Sung Bae; Chung, Jinoh
2007-11-01
This article describes the technique of semiautomatic surface reconstruction of anatomic structures using widely available commercial software. This technique would enable researchers to promptly and objectively perform surface reconstruction, creating three-dimensional anatomic images without any assistance from computer engineers. To develop the technique, we used data from the Visible Korean Human project, which produced digitalized photographic serial images of an entire cadaver. We selected 114 anatomic structures (skin [1], bones [32], knee joint structures [7], muscles [60], arteries [7], and nerves [7]) from the 976 anatomic images which were generated from the left lower limb of the cadaver. Using Adobe Photoshop, the selected anatomic structures in each serial image were outlined, creating a segmented image. The Photoshop files were then converted into Adobe Illustrator files to prepare isolated segmented images, so that the contours of the structure could be viewed independent of the surrounding anatomy. Using Alias Maya, these isolated segmented images were then stacked to construct a contour image. Gaps between the contour lines were filled with surfaces, and three-dimensional surface reconstruction could be visualized with Rhinoceros. Surface imperfections were then corrected to complete the three-dimensional images in Alias Maya. We believe that the three-dimensional anatomic images created by these methods will have widespread application in both medical education and research. 2007 Wiley-Liss, Inc
Kuz'mina, N E; Iashkir, V A; Merkulov, V A; Osipova, E S
2012-01-01
Created by means alternative strategy of structural similarity search universal three-dimensional model of the nonselective opiate pharmacophore and the estimation method of agonistic and antagonistic properties of opiate receptors ligands based on its were described. The examples of the present method use are given for opiate activity estimation of compounds essentially distinguished on the structure from opiates and traditional opioids.
Some characteristics of the three-dimensional structure of Santa Ana winds
Michael A. Fosberg; Clyde A. O' Dell; Mark J. Schroeder
1966-01-01
The three-dimensional structure of the Santa Ana was investigated in two case studies. Incorporated into a descriptive model of the Santa Ana were: (a) a bispectral gravity wave flow with a lee trough, produced by conservation of potential vorticity having a wave length of the order of 300 km. and short waves 6 to 10 km. long; (b) intensity of the foehn related to the...
Temporal focusing microscopy combined with three-dimensional structured illumination
NASA Astrophysics Data System (ADS)
Isobe, Keisuke; Toda, Keisuke; Song, Qiyuan; Kannari, Fumihiko; Kawano, Hiroyuki; Miyawaki, Atsushi; Midorikawa, Katsumi
2017-05-01
Temporal focusing microscopy provides the optical sectioning capability in wide-field two-photon fluorescence imaging. Here, we demonstrate temporal focusing microscopy combined with three-dimensional structured illumination, which enables us to enhance the three-dimensional spatial resolution and reject the background fluorescence. Experimentally, the periodic pattern of the illumination was produced not only in the lateral direction but also in the axial direction by the interference between three temporal focusing pulses, which were easily generated using a digital micromirror device. The lateral resolution and optical sectioning capability were successfully enhanced by factors of 1.6 and 3.6, respectively, compared with those of temporal focusing microscopy. In the two-photon fluorescence imaging of a tissue-like phantom, the out-of-focus background fluorescence and the scattered background fluorescence could also be rejected.
Optimum Particle Size for Gold-Catalyzed CO Oxidation
2018-01-01
The structure sensitivity of gold-catalyzed CO oxidation is presented by analyzing in detail the dependence of CO oxidation rate on particle size. Clusters with less than 14 gold atoms adopt a planar structure, whereas larger ones adopt a three-dimensional structure. The CO and O2 adsorption properties depend strongly on particle structure and size. All of the reaction barriers relevant to CO oxidation display linear scaling relationships with CO and O2 binding strengths as main reactivity descriptors. Planar and three-dimensional gold clusters exhibit different linear scaling relationship due to different surface topologies and different coordination numbers of the surface atoms. On the basis of these linear scaling relationships, first-principles microkinetics simulations were conducted to determine CO oxidation rates and possible rate-determining step of Au particles. Planar Au9 and three-dimensional Au79 clusters present the highest CO oxidation rates for planar and three-dimensional clusters, respectively. The planar Au9 cluster is much more active than the optimum Au79 cluster. A common feature of optimum CO oxidation performance is the intermediate binding strengths of CO and O2, resulting in intermediate coverages of CO, O2, and O. Both these optimum particles present lower performance than maximum Sabatier performance, indicating that there is sufficient room for improvement of gold catalysts for CO oxidation. PMID:29707098
Effects of types of ventilation system on indoor particle concentrations in residential buildings.
Park, J S; Jee, N-Y; Jeong, J-W
2014-12-01
The objective of this study was to quantify the influence of ventilation systems on indoor particle concentrations in residential buildings. Fifteen occupied, single-family apartments were selected from three sites. The three sites have three different ventilation systems: unbalanced mechanical ventilation, balanced mechanical ventilation, and natural ventilation. Field measurements were conducted between April and June 2012, when outdoor air temperatures were comfortable. Number concentrations of particles, PM2.5 and CO2 , were continuously measured both outdoors and indoors. In the apartments with natural ventilation, I/O ratios of particle number concentrations ranged from 0.56 to 0.72 for submicron particles, and from 0.25 to 0.60 for particles larger than 1.0 μm. The daily average indoor particle concentration decreased to 50% below the outdoor level for submicron particles and 25% below the outdoor level for fine particles, when the apartments were mechanically ventilated. The two mechanical ventilation systems reduced the I/O ratios by 26% for submicron particles and 65% for fine particles compared with the natural ventilation. These results showed that mechanical ventilation can reduce exposure to outdoor particles in residential buildings. Results of this study confirm that mechanical ventilation with filtration can significantly reduce indoor particle levels compared with natural ventilation. The I/O ratios of particles substantially varied at the naturally ventilated apartments because of the influence of variable window opening conditions and unsteadiness of wind flow on the penetration of outdoor air particles. For better prediction of the exposure to outdoor particles in naturally ventilated residential buildings, it is important to understand the penetration of outdoor particles with variable window opening conditions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Real-time Three-dimensional Echocardiography: From Diagnosis to Intervention.
Orvalho, João S
2017-09-01
Echocardiography is one of the most important diagnostic tools in veterinary cardiology, and one of the greatest recent developments is real-time three-dimensional imaging. Real-time three-dimensional echocardiography is a new ultrasonography modality that provides comprehensive views of the cardiac valves and congenital heart defects. The main advantages of this technique, particularly real-time three-dimensional transesophageal echocardiography, are the ability to visualize the catheters, and balloons or other devices, and the ability to image the structure that is undergoing intervention with unprecedented quality. This technique may become one of the main choices for the guidance of interventional cardiology procedures. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Joshi, A.; LAL, S.
2017-12-01
Attenuation property of the medium determines the amplitude of seismic waves at different locations during an earthquake. Attenuation can be defined by the inverse of the parameter known as quality factor `Q' (Knopoff, 1964). It has been observed that the peak ground acceleration in the strong motion accelerogram is associated with arrival of S-waves which is controlled mainly by the shear wave attenuation characteristics of the medium. In the present work attenuation structure is obtained using the modified inversion algorithm given by Joshi et al. (2010). The modified inversion algorithm is designed to provide three dimensional attenuation structure of the region at different frequencies. A strong motion network is installed in the Kumaon Himalaya by the Department of Earth Sciences, Indian Institute of Technology Roorkee under a major research project sponsored by the Ministry of Earth Sciences, Government of India. In this work the detailed three dimensional shear wave quality factor has been determined for the Kumaon Himalaya using strong motion data obtained from this network. In the present work 164 records from 26 events recorded at 15 stations located in an area of 129 km x 62 km has been used. The shear wave attenuation structure for the Kumaon Himalaya has been calculated by dividing the study region into 108 three dimensional rectangular blocks of size 22 km x 11 km x 5 km. The input to the inversion algorithm is the acceleration spectra of S wave identified from each record. A total of 164 spectra from equal number of accelerograms with sampling frequency of .024 Hz is used as an input to the algorithms. A total of 2048 three dimensional attenuation structure is obtained upto frequency of 50 Hz. The obtained structure at various frequencies is compared with the existing geological models in the region and it is seen that the obtained model correlated well with the geological model of the region. References: Joshi, A., Mohanty, M., Bansal, A. R., Dimri, V. P. and Chadha, R. K., 2010, Use of spectral acceleration data for determination of three dimensional attenuation structure in the Pithoragarh region of Kumaon Himalaya, J Seismol., 14, 247-272. Knopoff, L., 1964, Q, Reviews of Geophysics, 2, 625-660.
Application of MSCTA combined with VRT in the operation of cervical dumbbell tumors
Wang, Wan; Lin, Jia; Knosp, Engelbert; Zhao, Yuanzheng; Xiu, Dianhui; Guo, Yongchuan
2015-01-01
Cervical dumbbell tumor poses great difficulties for neurosurgical treatment and incurs remarkable local recurrence rate as the formidable problem for neurosurgery. However, as the routine preoperative evaluation scheme, MRI and CT failed to reveal the mutual three-dimensional relationships between tumor and adjacent structures. Here, we report the clinical application of MSCTA and VRT in three-dimensional reconstruction of cervical dumbbell tumors. From January 2012 to July 2014, 24 patients diagnosed with cervical dumbbell tumor were retrospectively analyzed. All patients enrolled were indicated for preoperative MSCTA/VRT image reconstruction to explore the three-dimensional stereoscopic anatomical relationships among neuroma, spinal cord and vertebral artery to achieve optimal surgical approach from multiple configurations and surgical practice. Three-dimensional mutual anatomical relationships among tumor, adjacent vessels and vertebrae were vividly reconstructed by MSCTA/VRT in all patients in accordance with intraoperative findings. Multiple configurations for optimal surgical approach contribute to total resection of tumor, minimal damage to vessels and nerves, and maximal maintenance of cervical spine stability. Preoperative MSCTA/VRT contributes to reconstruction of three-dimensional stereoscopic anatomical relationships between cervical dumbbell tumor and adjacent structures for optimal surgical approach by multiple configurations and reduction of intraoperative damages and postoperative complications. PMID:26550385
Application of MSCTA combined with VRT in the operation of cervical dumbbell tumors.
Wang, Wan; Lin, Jia; Knosp, Engelbert; Zhao, Yuanzheng; Xiu, Dianhui; Guo, Yongchuan
2015-01-01
Cervical dumbbell tumor poses great difficulties for neurosurgical treatment and incurs remarkable local recurrence rate as the formidable problem for neurosurgery. However, as the routine preoperative evaluation scheme, MRI and CT failed to reveal the mutual three-dimensional relationships between tumor and adjacent structures. Here, we report the clinical application of MSCTA and VRT in three-dimensional reconstruction of cervical dumbbell tumors. From January 2012 to July 2014, 24 patients diagnosed with cervical dumbbell tumor were retrospectively analyzed. All patients enrolled were indicated for preoperative MSCTA/VRT image reconstruction to explore the three-dimensional stereoscopic anatomical relationships among neuroma, spinal cord and vertebral artery to achieve optimal surgical approach from multiple configurations and surgical practice. Three-dimensional mutual anatomical relationships among tumor, adjacent vessels and vertebrae were vividly reconstructed by MSCTA/VRT in all patients in accordance with intraoperative findings. Multiple configurations for optimal surgical approach contribute to total resection of tumor, minimal damage to vessels and nerves, and maximal maintenance of cervical spine stability. Preoperative MSCTA/VRT contributes to reconstruction of three-dimensional stereoscopic anatomical relationships between cervical dumbbell tumor and adjacent structures for optimal surgical approach by multiple configurations and reduction of intraoperative damages and postoperative complications.
Tolkatchev, Dmitri; Shaykhutdinov, Rustem; Xu, Ping; Plamondon, Josée; Watson, David C; Young, N Martin; Ni, Feng
2006-10-01
A putative low molecular weight protein tyrosine phosphatase (LMW-PTP) was identified in the genome sequence of the bacterial pathogen, Campylobacter jejuni. This novel gene, cj1258, has sequence homology with a distinctive class of phosphatases widely distributed among prokaryotes and eukaryotes. We report here the solution structure of Cj1258 established by high-resolution NMR spectroscopy using NOE-derived distance restraints, hydrogen bond data, and torsion angle restraints. The three-dimensional structure consists of a central four-stranded parallel beta-sheet flanked by five alpha-helices, revealing an overall structural topology similar to those of the eukaryotic LMW-PTPs, such as human HCPTP-A, bovine BPTP, and Saccharomyces cerevisiae LTP1, and to those of the bacterial LMW-PTPs MPtpA from Mycobacterium tuberculosis and YwlE from Bacillus subtilis. The active site of the enzyme is flexible in solution and readily adapts to the binding of ligands, such as the phosphate ion. An NMR-based screen was carried out against a number of potential inhibitors and activators, including phosphonomethylphenylalanine, derivatives of the cinnamic acid, 2-hydroxy-5-nitrobenzaldehyde, cinnamaldehyde, adenine, and hypoxanthine. Despite its bacterial origin, both the three-dimensional structure and ligand-binding properties of Cj1258 suggest that this novel phosphatase may have functional roles close to those of eukaryotic and mammalian tyrosine phosphatases. The three-dimensional structure along with mapping of small-molecule binding will be discussed in the context of developing high-affinity inhibitors of this novel LMW-PTP.
Forced free-shear layer measurements
NASA Technical Reports Server (NTRS)
Leboeuf, Richard L.
1994-01-01
Detailed three-dimensional three-component phase averaged measurements of the spanwise and streamwise vorticity formation and evolution in acoustically forced plane free-shear flows have been obtained. For the first time, phase-averaged measurements of all three velocity components have been obtained in both a mixing layer and a wake on three-dimensional grids, yielding the spanwise and streamwise vorticity distributions without invoking Taylor's hypothesis. Initially, two-frequency forcing was used to phase-lock the roll-up and first pairing of the spanwise vortical structures in a plane mixing layer. The objective of this study was to measure the near-field vortical structure morphology in a mixing layer with 'natural' laminar initial boundary layers. For the second experiment the second and third subharmonics of the fundamental roll-up frequency were added to the previous two-frequency forcing in order to phase-lock the roll-up and first three pairings of the spanwise rollers in the mixing layer. The objective of this study was to determine the details of spanwise scale changes observed in previous time-averaged measurements and flow visualization of unforced mixing layers. For the final experiment, single-frequency forcing was used to phase-lock the Karman vortex street in a plane wake developing from nominally two-dimensional laminar initial boundary layers. The objective of this study was to compare measurements of the three-dimensional structure in a wake developing from 'natural' initial boundary layers to existing models of wake vortical structure.
Introscopy in nano- and mesoscopic physics: Single electronics and quantum ballistics
NASA Astrophysics Data System (ADS)
Tkachenko, V. A.; Tkachenko, O. A.; Kvon, Z. D.; Latyshev, A. V.; Aseev, A. L.
2016-09-01
A method is presented to be used in a computational experiment aimed at studying the internal structure of nano- and mesoscopic objects, i.e., conducting subsystems and quantum phenomena in solid submicron objects, which demonstrate an individual behavior of low-temperature resistance.
Surface representations of two- and three-dimensional fluid flow topology
NASA Technical Reports Server (NTRS)
Helman, James L.; Hesselink, Lambertus
1990-01-01
We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.
Geometrical Vortex Lattice Pinning and Melting in YBaCuO Submicron Bridges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papari, G. P.; Glatz, A.; Carillo, F.
Since the discovery of high-temperature superconductors (HTSs), most efforts of researchers have been focused on the fabrication of superconducting devices capable of immobilizing vortices, hence of operating at enhanced temperatures and magnetic fields. Recent findings that geometric restrictions may induce self-arresting hypervortices recovering the dissipation-free state at high fields and temperatures made superconducting strips a mainstream of superconductivity studies. Here in this paper we report on the geometrical melting of the vortex lattice in a wide YBCO submicron bridge preceded by magnetoresistance (MR) oscillations fingerprinting the underlying regular vortex structure. Combined magnetoresistance measurements and numerical simulations unambiguously relate the resistancemore » oscillations to the penetration of vortex rows with intermediate geometrical pinning and uncover the details of geometrical melting. Our findings offer a reliable and reproducible pathway for controlling vortices in geometrically restricted nanodevices and introduce a novel technique of geometrical spectroscopy, inferring detailed information of the structure of the vortex system through a combined use of MR curves and large-scale simulations.« less
Geometrical Vortex Lattice Pinning and Melting in YBaCuO Submicron Bridges.
Papari, G. P.; Glatz, A.; Carillo, F.; ...
2016-12-23
Since the discovery of high-temperature superconductors (HTSs), most efforts of researchers have been focused on the fabrication of superconducting devices capable of immobilizing vortices, hence of operating at enhanced temperatures and magnetic fields. Recent findings that geometric restrictions may induce self-arresting hypervortices recovering the dissipation-free state at high fields and temperatures made superconducting strips a mainstream of superconductivity studies. Here in this paper we report on the geometrical melting of the vortex lattice in a wide YBCO submicron bridge preceded by magnetoresistance (MR) oscillations fingerprinting the underlying regular vortex structure. Combined magnetoresistance measurements and numerical simulations unambiguously relate the resistancemore » oscillations to the penetration of vortex rows with intermediate geometrical pinning and uncover the details of geometrical melting. Our findings offer a reliable and reproducible pathway for controlling vortices in geometrically restricted nanodevices and introduce a novel technique of geometrical spectroscopy, inferring detailed information of the structure of the vortex system through a combined use of MR curves and large-scale simulations.« less
Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components
NASA Astrophysics Data System (ADS)
Ong, Luvena L.; Hanikel, Nikita; Yaghi, Omar K.; Grun, Casey; Strauss, Maximilian T.; Bron, Patrick; Lai-Kee-Him, Josephine; Schueder, Florian; Wang, Bei; Wang, Pengfei; Kishi, Jocelyn Y.; Myhrvold, Cameron; Zhu, Allen; Jungmann, Ralf; Bellot, Gaetan; Ke, Yonggang; Yin, Peng
2017-12-01
Nucleic acids (DNA and RNA) are widely used to construct nanometre-scale structures with ever increasing complexity, with possible application in fields such as structural biology, biophysics, synthetic biology and photonics. The nanostructures are formed through one-pot self-assembly, with early kilodalton-scale examples containing typically tens of unique DNA strands. The introduction of DNA origami, which uses many staple strands to fold one long scaffold strand into a desired structure, has provided access to megadalton-scale nanostructures that contain hundreds of unique DNA strands. Even larger DNA origami structures are possible, but manufacturing and manipulating an increasingly long scaffold strand remains a challenge. An alternative and more readily scalable approach involves the assembly of DNA bricks, which each consist of four short binding domains arranged so that the bricks can interlock. This approach does not require a scaffold; instead, the short DNA brick strands self-assemble according to specific inter-brick interactions. First-generation bricks used to create three-dimensional structures are 32 nucleotides long, consisting of four eight-nucleotide binding domains. Protocols have been designed to direct the assembly of hundreds of distinct bricks into well formed structures, but attempts to create larger structures have encountered practical challenges and had limited success. Here we show that DNA bricks with longer, 13-nucleotide binding domains make it possible to self-assemble 0.1-1-gigadalton, three-dimensional nanostructures from tens of thousands of unique components, including a 0.5-gigadalton cuboid containing about 30,000 unique bricks and a 1-gigadalton rotationally symmetric tetramer. We also assembled a cuboid that contains around 10,000 bricks and about 20,000 uniquely addressable, 13-base-pair ‘voxels’ that serves as a molecular canvas for three-dimensional sculpting. Complex, user-prescribed, three-dimensional cavities can be produced within this molecular canvas, enabling the creation of shapes such as letters, a helicoid and a teddy bear. We anticipate that with further optimization of structure design, strand synthesis and assembly procedure even larger structures could be accessible, which could be useful for applications such as positioning functional components.
Dimensional Effects on the Charge Density Waves in Ultrathin Films of TiSe 2
Chen, P.; Chan, Y. -H.; Wong, M. -H.; ...
2016-09-20
Charge density wave (CDW) formation in solids is a critical phenomenon involving the collective reorganization of the electrons and atoms in the system into a wave structure, and it is expected to be sensitive to the geometric constraint of the system at the nanoscale. Here, we study the CDW transition in TiSe 2, a quasi-two-dimensional layered material, to determine the effects of quantum confinement and changing dimensions in films ranging from a single layer to multilayers. Of key interest is the characteristic length scale for the transformation from a two-dimensional case to the three-dimensional limit. Angle-resolved photoemission (ARPES) measurements ofmore » films with thicknesses up to six layers reveal substantial variations in the energy structure of discrete quantum well states; however, the temperature-dependent band-gap renormalization converges at just three layers. The results indicate a layer-dependent mixture of two transition temperatures and a very-short-range CDW interaction within a three-dimensional framework.« less
Sun, C.; Kirk, M.; Li, M.; ...
2015-06-14
Nickel superalloys with cubic L12 structured γ' (Ni 3(Al, Ti)) precipitates exhibit high strength at high temperatures and excellent corrosion resistance when exposed to water. Unlike prior studies on irradiation damage of other Ni-based superalloys, our study on Rene N4 involves much larger γ' precipitates, ~450 nm in size, a size regime where the irradiation-induced disordering and dissolution kinetics and the corresponding mechanical property evolution are unknown. Under heavy ion irradiation at room temperature, the submicron-sized γ' precipitates were fully disordered at ~0.3 dpa and only later partially dissolved after 75 dpa irradiation. Nanoindentation experiments indicate that the mechanical propertiesmore » of the alloy change significantly, with a dramatic decrease in hardness, with irradiation dose. Three contributions to the change in hardness were examined: defect clusters, disordering and dissolution. Moreover, the generation of defect clusters in the matrix and precipitates slightly increased the indentation hardness, while disordering of the submicron-sized γ' precipitates resulted in a dramatic decrease in the total hardness, which decreased further during the early stages of the intermixing between γ' precipitates and matrix (<18 dpa). As a result, controlling the long-range-ordering and chemical intermixing can be used to tailor the mechanical properties of Ni-based superalloys under irradiation.« less
NASA Astrophysics Data System (ADS)
Matveev, A. D.
2016-11-01
To calculate the three-dimensional elastic body of heterogeneous structure under static loading, a method of multigrid finite element is provided, when implemented on the basis of algorithms of finite element method (FEM), using homogeneous and composite threedimensional multigrid finite elements (MFE). Peculiarities and differences of MFE from the currently available finite elements (FE) are to develop composite MFE (without increasing their dimensions), arbitrarily small basic partition of composite solids consisting of single-grid homogeneous FE of the first order can be used, i.e. in fact, to use micro approach in finite element form. These small partitions allow one to take into account in MFE, i.e. in the basic discrete models of composite solids, complex heterogeneous and microscopically inhomogeneous structure, shape, the complex nature of the loading and fixation and describe arbitrarily closely the stress and stain state by the equations of three-dimensional elastic theory without any additional simplifying hypotheses. When building the m grid FE, m of nested grids is used. The fine grid is generated by a basic partition of MFE, the other m —1 large grids are applied to reduce MFE dimensionality, when m is increased, MFE dimensionality becomes smaller. The procedures of developing MFE of rectangular parallelepiped, irregular shape, plate and beam types are given. MFE generate the small dimensional discrete models and numerical solutions with a high accuracy. An example of calculating the laminated plate, using three-dimensional 3-grid FE and the reference discrete model is given, with that having 2.2 milliards of FEM nodal unknowns.
Anusha, J R; Fleming, Albin T; Kim, Hee-Je; Kim, Byung Chul; Yu, Kook-Hyun; Raj, C Justin
2015-08-01
An effective enzymatic glucose biosensor was developed by immobilizing glucose oxidase on chitosan submicron particles synthesized from the gladius of Todarodes pacificus (GCSP). The chemically synthesized chitosan from gladius was pulverized to submicron particles by ball milling technique, which was further characterized and compared with the standard chitosan (SCS). The degree of deacetylation of GCSP was determined using FTIR spectroscopy which was comparable to the value of standard chitosan. The glucose oxidase (GOx) was immobilized over GCSP on porous zinc oxide/platinum nanoparticle (ZnO/Pt) based electrode. The morphological and structural properties of the electrodes were analyzed using scanning electron microscopy and X-ray diffraction analysis. The glucose sensing behavior of electrode was estimated using electrochemical analysis and showed an excellent analytical performance. The electrode ZnO/Pt/GCSP conjugated with GOx displayed high sensitivity (88.76 μA mM(-1) cm(-2)) with low detection limit in short response time. In addition, the very low value of Michaelis-Menten constant for GCSP based electrode contributes a better affinity of the electrode surface towards glucose oxidase. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mancic, L.; Marinkovic, B. A.; Marinkovic, K.; Dramicanin, M.; Milosevic, O.
2011-11-01
Phosphors of (Y0.75Gd0.25)2O3:Eu3+ (5 at.%) have been prepared through soft chemistry routes. Conversion of the starting nitrates mixture into oxide is performed through two approaches: (a) hydrothermal treatment (HT) at 200 °C/3 h of an ammonium hydrogen carbonate precipitated mixture and (b) by thermally decomposition of pure nitrate precursor solution at 900 °C in dispersed phase (aerosol) within a tubular flow reactor by spray pyrolysis process (SP). The powders are additionally thermally treated at different temperatures: 600, 1000, and 1100 °C for either 3 or 12 h. HT—derived particles present exclusively one-dimensional morphology (nanorods) up to the temperatures of 600 °C, while the leaf-like particles start to grow afterward. SP—derived particles maintain their spherical shape up to the temperatures of 1100 °C. These submicron sized spheres were actually composed of randomly aggregated nanoparticles. All powders exhibits cubic Ia- 3 structure (Y0.75Gd0.25)2O3:Eu and have improved optical characteristics due to their nanocrystalline nature. The detailed study of the influence of structural and morphological powder characteristics on their emission properties is performed based on the results of X-ray powder diffractometry, scanning electron microscopy, X-ray energy dispersive spectroscopy, transmission electron microscopy, and photoluminescence measurements.
Micro-precision control/structure interaction technology for large optical space systems
NASA Technical Reports Server (NTRS)
Sirlin, Samuel W.; Laskin, Robert A.
1993-01-01
The CSI program at JPL is chartered to develop the structures and control technology needed for sub-micron level stabilization of future optical space systems. The extreme dimensional stability required for such systems derives from the need to maintain the alignment and figure of critical optical elements to a small fraction (typically 1/20th to 1/50th) of the wavelength of detected radiation. The wavelength is about 0.5 micron for visible light and 0.1 micron for ultra-violet light. This lambda/50 requirement is common to a broad class of optical systems including filled aperture telescopes (with monolithic or segmented primary mirrors), sparse aperture telescopes, and optical interferometers. The challenge for CSI arises when such systems become large, with spatially distributed optical elements mounted on a lightweight, flexible structure. In order to better understand the requirements for micro-precision CSI technology, a representative future optical system was identified and developed as an analytical testbed for CSI concepts and approaches. An optical interferometer was selected as a stressing example of the relevant mission class. The system that emerged was termed the Focus Mission Interferometer (FMI). This paper will describe the multi-layer control architecture used to address the FMI's nanometer level stabilization requirements. In addition the paper will discuss on-going and planned experimental work aimed at demonstrating that multi-layer CSI can work in practice in the relevant performance regime.
Algebraic multigrid methods applied to problems in computational structural mechanics
NASA Technical Reports Server (NTRS)
Mccormick, Steve; Ruge, John
1989-01-01
The development of algebraic multigrid (AMG) methods and their application to certain problems in structural mechanics are described with emphasis on two- and three-dimensional linear elasticity equations and the 'jacket problems' (three-dimensional beam structures). Various possible extensions of AMG are also described. The basic idea of AMG is to develop the discretization sequence based on the target matrix and not the differential equation. Therefore, the matrix is analyzed for certain dependencies that permit the proper construction of coarser matrices and attendant transfer operators. In this manner, AMG appears to be adaptable to structural analysis applications.
Three-dimensional study of the vector potential of magnetic structures.
Phatak, Charudatta; Petford-Long, Amanda K; De Graef, Marc
2010-06-25
The vector potential is central to a number of areas of condensed matter physics, such as superconductivity and magnetism. We have used a combination of electron wave phase reconstruction and electron tomographic reconstruction to experimentally measure and visualize the three-dimensional vector potential in and around a magnetic Permalloy structure. The method can probe the vector potential of the patterned structures with a resolution of about 13 nm. A transmission electron microscope operated in the Lorentz mode is used to record four tomographic tilt series. Measurements for a square Permalloy structure with an internal closure domain configuration are presented.
Three-dimensional microbubble streaming flows
NASA Astrophysics Data System (ADS)
Rallabandi, Bhargav; Marin, Alvaro; Rossi, Massimiliano; Kaehler, Christian; Hilgenfeldt, Sascha
2014-11-01
Streaming due to acoustically excited bubbles has been used successfully for applications such as size-sorting, trapping and focusing of particles, as well as fluid mixing. Many of these applications involve the precise control of particle trajectories, typically achieved using cylindrical bubbles, which establish planar flows. Using astigmatic particle tracking velocimetry (APTV), we show that, while this two-dimensional picture is a useful description of the flow over short times, a systematic three-dimensional flow structure is evident over long time scales. We demonstrate that this long-time three-dimensional fluid motion can be understood through asymptotic theory, superimposing secondary axial flows (induced by boundary conditions at the device walls) onto the two-dimensional description. This leads to a general framework that describes three-dimensional flows in confined microstreaming systems, guiding the design of applications that profit from minimizing or maximizing these effects.
Michael, A.J.
1988-01-01
A three-dimensional velocity model for the area surrounding the 24 April 1984 Morgan Hill earthquake has been developed by simultaneously inverting local earthquake and refraction arrival-time data. This velocity model corresponds well to the surface geology of the region, predominantly showing a low-velocity region associated with the sedimentary sequence to the south-west of the Madrone Springs fault. The focal mechanisms were also determined for 946 earthquakes using both the one-dimensional and three-dimensional earth models. Both earth models yield similar focal mechanisms for these earthquakes. -from Author
NASA Technical Reports Server (NTRS)
Alvarado, Matthew J.; Lonsdale, Chantelle R.; Macintyre, Helen L.; Bian, Huisheng; Chin, Mian; Ridley, David A.; Heald, Colette L.; Thornhill, Kenneth L.; Anderson, Bruce E.; Cubison, Michael J.;
2016-01-01
Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The four models are the NASA Global Modeling Initiative (GMI) Combo model, GEOS-Chem v9- 02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT), and the Optical Properties of Aerosol and Clouds (OPAC v3.1) package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1) to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC) on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10-23 percent, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GCRT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass fraction throughout the aerosol size distribution. Using a core-shell mixing rule in ASP overestimates aerosol absorption, especially for the fresh biomass burning aerosol measured in ARCTAS-B, suggesting the need for modeling the time-varying mixing states of aerosols in future versions of ASP.
NASA Astrophysics Data System (ADS)
Alvarado, Matthew J.; Lonsdale, Chantelle R.; Macintyre, Helen L.; Bian, Huisheng; Chin, Mian; Ridley, David A.; Heald, Colette L.; Thornhill, Kenneth L.; Anderson, Bruce E.; Cubison, Michael J.; Jimenez, Jose L.; Kondo, Yutaka; Sahu, Lokesh K.; Dibb, Jack E.; Wang, Chien
2016-07-01
Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The four models are the NASA Global Modeling Initiative (GMI) Combo model, GEOS-Chem v9-02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT), and the Optical Properties of Aerosol and Clouds (OPAC v3.1) package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1) to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC) on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10-23 %, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GC-RT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass fraction throughout the aerosol size distribution. Using a core-shell mixing rule in ASP overestimates aerosol absorption, especially for the fresh biomass burning aerosol measured in ARCTAS-B, suggesting the need for modeling the time-varying mixing states of aerosols in future versions of ASP.
Modern cosmology and the origin of our three dimensionality.
Woodbury, M A; Woodbury, M F
1998-01-01
We are three dimensional egocentric beings existing within a specific space/time continuum and dimensionality which we assume wrongly is the same for all times and places throughout the entire universe. Physicists name Omnipoint the origin of the universe at Dimension zero, which exploded as a Big Bang of energy proceeding at enormous speed along one dimension which eventually curled up into matter: particles, atoms, molecules and Galaxies which exist in two dimensional space. Finally from matter spread throughout the cosmos evolved life generating eventually the DNA molecules which control the construction of brains complex enough to construct our three dimensional Body Representation from which is extrapolated what we perceive as a 3-D universe. The whole interconnected structures which conjure up our three dimensionality are as fragile as Humpty Dumpty, capable of breaking apart with terrifying effects for the individual patient during a psychotic panic, revealing our three dimensionality to be but "maya", an illusion, which we psychiatrists work at putting back together.
Fabrication of 2D and 3D photonic structures using laser lithography
NASA Astrophysics Data System (ADS)
Gaso, P.; Jandura, D.; Pudis, D.
2016-12-01
In this paper we demonstrate possibilities of three-dimensional (3D) printing technology based on two photon polymerization. We used three-dimensional dip-in direct-laser-writing (DLW) optical lithography to fabricate 2D and 3D optical structures for optoelectronics and for optical sensing applications. DLW lithography allows us use a non conventional way how to couple light into the waveguide structure. We prepared ring resonator and we investigated its transmission spectral characteristic. We present 3D inverse opal structure from its design to printing and scanning electron microscope (SEM) imaging. Finally, SEM images of some prepared photonic crystal structures were performed.
Nierenberger, Mathieu; Fargier, Guillaume; Ahzi, Saïd; Rémond, Yves
2015-08-01
The collagen fibers' three-dimensional architecture has a strong influence on the mechanical behavior of biological tissues. To accurately model this behavior, it is necessary to get some knowledge about the structure of the collagen network. In the present paper, we focus on the in situ characterization of the collagenous structure, which is present in porcine jugular vein walls. An observation of the vessel wall is first proposed in an unloaded configuration. The vein is then put into a mechanical tensile testing device. As the vein is stretched, three-dimensional images of its collagenous structure are acquired using multiphoton microscopy. Orientation analyses are provided for the multiple images recorded during the mechanical test. From these analyses, the reorientation of the two families of collagen fibers existing in the vein wall is quantified. We noticed that the reorientation of the fibers stops as the tissue stiffness starts decreasing, corresponding to the onset of damage. Besides, no relevant evolutions of the out of plane collagen orientations were observed. Due to the applied loading, our analysis also allowed for linking the stress relaxation within the tissue to its internal collagenous structure. Finally, this analysis constitutes the first mechanical test performed under a multiphoton microscope with a continuous three-dimensional observation of the tissue structure all along the test. It allows for a quantitative evaluation of microstructural parameters combined with a measure of the global mechanical behavior. Such data are useful for the development of structural mechanical models for living tissues.
Karasick, M.S.; Strip, D.R.
1996-01-30
A parallel computing system is described that comprises a plurality of uniquely labeled, parallel processors, each processor capable of modeling a three-dimensional object that includes a plurality of vertices, faces and edges. The system comprises a front-end processor for issuing a modeling command to the parallel processors, relating to a three-dimensional object. Each parallel processor, in response to the command and through the use of its own unique label, creates a directed-edge (d-edge) data structure that uniquely relates an edge of the three-dimensional object to one face of the object. Each d-edge data structure at least includes vertex descriptions of the edge and a description of the one face. As a result, each processor, in response to the modeling command, operates upon a small component of the model and generates results, in parallel with all other processors, without the need for processor-to-processor intercommunication. 8 figs.
Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications.
Castles, F; Day, F V; Morris, S M; Ko, D-H; Gardiner, D J; Qasim, M M; Nosheen, S; Hands, P J W; Choi, S S; Friend, R H; Coles, H J
2012-05-13
A promising approach to the fabrication of materials with nanoscale features is the transfer of liquid-crystalline structure to polymers. However, this has not been achieved in systems with full three-dimensional periodicity. Here we demonstrate the fabrication of self-assembled three-dimensional nanostructures by polymer templating blue phase I, a chiral liquid crystal with cubic symmetry. Blue phase I was photopolymerized and the remaining liquid crystal removed to create a porous free-standing cast, which retains the chiral three-dimensional structure of the blue phase, yet contains no chiral additive molecules. The cast may in turn be used as a hard template for the fabrication of new materials. By refilling the cast with an achiral nematic liquid crystal, we created templated blue phases that have unprecedented thermal stability in the range -125 to 125 °C, and that act as both mirrorless lasers and switchable electro-optic devices. Blue-phase templated materials will facilitate advances in device architectures for photonics applications in particular.
Park, Hyun Soon; Yu, Xiuzhen; Aizawa, Shinji; Tanigaki, Toshiaki; Akashi, Tetsuya; Takahashi, Yoshio; Matsuda, Tsuyoshi; Kanazawa, Naoya; Onose, Yoshinori; Shindo, Daisuke; Tonomura, Akira; Tokura, Yoshinori
2014-05-01
Skyrmions are nanoscale spin textures that are viewed as promising candidates as information carriers in future spintronic devices. Skyrmions have been observed using neutron scattering and microscopy techniques. Real-space imaging using electrons is a straightforward way to interpret spin configurations by detecting the phase shifts due to electromagnetic fields. Here, we report the first observation by electron holography of the magnetic flux and the three-dimensional spin configuration of a skyrmion lattice in Fe(0.5)Co(0.5)Si thin samples. The magnetic flux inside and outside a skyrmion was directly visualized and the handedness of the magnetic flux flow was found to be dependent on the direction of the applied magnetic field. The electron phase shifts φ in the helical and skyrmion phases were determined using samples with a stepped thickness t (from 55 nm to 510 nm), revealing a linear relationship (φ = 0.00173 t). The phase measurements were used to estimate the three-dimensional structures of both the helical and skyrmion phases, demonstrating that electron holography is a useful tool for studying complex magnetic structures and for three-dimensional, real-space mapping of magnetic fields.
NASA Astrophysics Data System (ADS)
Xiao, Jian; He, Xinhua; Hao, Jialong; Zhou, Ying; Zheng, Lirong; Ran, Wei; Shen, Qirong; Yu, Guanghui
2016-06-01
Mineral binding is a major mechanism for soil carbon (C) stabilization. However, the submicron information about the in situ mechanisms of different fertilization practices affecting organo-mineral complexes and associated C preservation remains unclear. Here, we applied nano-scale secondary ion mass spectrometry (NanoSIMS), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure spectroscopy (XAFS) to examine differentiating effects of inorganic versus organic fertilization on interactions between highly reactive minerals and soil C preservation. To examine such interactions, soils and their extracted colloids were collected during a 24-year long-term fertilization period (1990-2014) (no fertilization, control; chemical nitrogen (N), phosphorus (P), and potassium (K) fertilization, NPK; and NPK plus swine manure fertilization, NPKM). The results for different fertilization conditions showed a ranked soil organic matter concentration with NPKM > NPK > control. Meanwhile, oxalate-extracted Al (Alo), Fe (Feo), short-range ordered Al (Alxps), Fe (Fexps), and dissolved organic carbon (DOC) ranked with NPKM > control > NPK, but the ratios of DOC / Alxps and DOC / Fexps ranked with NPKM > NPK > control. Compared with the NPK treatment, the NPKM treatment enhanced the C-binding loadings of Al and Fe minerals in soil colloids at the submicron scale. Furthermore, a greater concentration of highly reactive Al and Fe minerals was presented under NPKM than under NPK. Together, these submicron-scale findings suggest that both the reactive mineral species and their associations with C are differentially affected by 24-year long-term inorganic and organic fertilization.
Humplik, Thomas; Stirrup, Emily K.; Grillet, Anne M.; ...
2016-04-30
The transient transport of electrolytes in thermally-activated batteries is studied in this paper using electron probe micro-analysis (EPMA), demonstrating the robust capability of EPMA as a useful tool for studying and quantifying mass transport within porous materials, particularly in difficult environments where classical flow measurements are challenging. By tracking the mobility of bromine and potassium ions from the electrolyte stored within the separator into the lithium silicon anode and iron disulfide cathode, we are able to quantify the transport mechanisms and physical properties of the electrodes including permeability and tortuosity. Due to the micron to submicron scale porous structure ofmore » the initially dry anode, a fast capillary pressure driven flow is observed into the anode from which we are able to set a lower bound on the permeability of 10 -1 mDarcy. The transport into the cathode is diffusion-limited because the cathode originally contained some electrolyte before activation. Finally, using a transient one-dimensional diffusion model, we estimate the tortuosity of the cathode electrode to be 2.8 ± 0.8.« less
Impact of environment on dynamics of exciton complexes in a WS2 monolayer
NASA Astrophysics Data System (ADS)
Jakubczyk, Tomasz; Nogajewski, Karol; Molas, Maciej R.; Bartos, Miroslav; Langbein, Wolfgang; Potemski, Marek; Kasprzak, Jacek
2018-07-01
Scientific curiosity to uncover original optical properties and functionalities of atomically thin semiconductors, stemming from unusual Coulomb interactions in the two-dimensional geometry and multi-valley band structure, drives the research on monolayers of transition metal dichalcogenides (TMDs). While recent works ascertained the exotic energetic schemes of exciton complexes in TMDs, we here infer their unusual coherent dynamics occurring on subpicosecond time scale. The dynamics is largely affected by the disorder landscape on the submicron scale, thus can be uncovered using four-wave mixing in the frequency domain, which enables microscopic investigations and imaging. Focusing on a WS2 monolayer, we observe that exciton coherence is lost primarily due to interaction with phonons and relaxation processes towards optically dark excitonic states. Notably, when temperature is low and disorder weak, excitons large coherence volume results in enhanced oscillator strength, allowing to reach the regime of radiatively limited dephasing. Additionally, we observe long valley coherence for the negatively charged exciton complex. We therefore elucidate the crucial role of exciton environment in the TMDs on its dynamics and show that revealed mechanisms are ubiquitous within this family.
Matrix-Assisted Three-Dimensional Printing of Cellulose Nanofibers for Paper Microfluidics.
Shin, Sungchul; Hyun, Jinho
2017-08-09
A cellulose nanofiber (CNF), one of the most attractive green bioresources, was adopted for construction of microfluidic devices using matrix-assisted three-dimensional (3D) printing. CNF hydrogels can support structures printed using CAD design in a 3D hydrogel environment with the appropriate combination of rheological properties between the CNF hydrogel and ink materials. Amazingly, the structure printed freely in the bulky CNF hydrogels was able to retain its highly resolved 3D features in an ultrathin two-dimensional (2D) paper using a simple drying process. The dimensional change in the CNF hydrogels from 3D to 2D resulted from simple dehydration of the CNFs and provided transparent, stackable paper-based 3D channel devices. As a proof of principle, the rheological properties of the CNF hydrogels, the 3D structure of the ink, the formation of channels by evacuation of the ink, and the highly localized selectivity of the devices are described.
Three-dimensional compound comparison methods and their application in drug discovery.
Shin, Woong-Hee; Zhu, Xiaolei; Bures, Mark Gregory; Kihara, Daisuke
2015-07-16
Virtual screening has been widely used in the drug discovery process. Ligand-based virtual screening (LBVS) methods compare a library of compounds with a known active ligand. Two notable advantages of LBVS methods are that they do not require structural information of a target receptor and that they are faster than structure-based methods. LBVS methods can be classified based on the complexity of ligand structure information utilized: one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D). Unlike 1D and 2D methods, 3D methods can have enhanced performance since they treat the conformational flexibility of compounds. In this paper, a number of 3D methods will be reviewed. In addition, four representative 3D methods were benchmarked to understand their performance in virtual screening. Specifically, we tested overall performance in key aspects including the ability to find dissimilar active compounds, and computational speed.
Three-dimensional elastic-plastic finite-element analysis of fatigue crack propagation
NASA Technical Reports Server (NTRS)
Goglia, G. L.; Chermahini, R. G.
1985-01-01
Fatigue cracks are a major problem in designing structures subjected to cyclic loading. Cracks frequently occur in structures such as aircraft and spacecraft. The inspection intervals of many aircraft structures are based on crack-propagation lives. Therefore, improved prediction of propagation lives under flight-load conditions (variable-amplitude loading) are needed to provide more realistic design criteria for these structures. The main thrust was to develop a three-dimensional, nonlinear, elastic-plastic, finite element program capable of extending a crack and changing boundary conditions for the model under consideration. The finite-element model is composed of 8-noded (linear-strain) isoparametric elements. In the analysis, the material is assumed to be elastic-perfectly plastic. The cycle stress-strain curve for the material is shown Zienkiewicz's initial-stress method, von Mises's yield criterion, and Drucker's normality condition under small-strain assumptions are used to account for plasticity. The three-dimensional analysis is capable of extending the crack and changing boundary conditions under cyclic loading.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Lei, Dongsheng; Smith, Jessica M.; Zhang, Meng; Tong, Huimin; Zhang, Xing; Lu, Zhuoyang; Liu, Jiankang; Alivisatos, A. Paul; Ren, Gang
2016-03-01
DNA base pairing has been used for many years to direct the arrangement of inorganic nanocrystals into small groupings and arrays with tailored optical and electrical properties. The control of DNA-mediated assembly depends crucially on a better understanding of three-dimensional structure of DNA-nanocrystal-hybridized building blocks. Existing techniques do not allow for structural determination of these flexible and heterogeneous samples. Here we report cryo-electron microscopy and negative-staining electron tomography approaches to image, and three-dimensionally reconstruct a single DNA-nanogold conjugate, an 84-bp double-stranded DNA with two 5-nm nanogold particles for potential substrates in plasmon-coupling experiments. By individual-particle electron tomography reconstruction, we obtain 14 density maps at ~2-nm resolution. Using these maps as constraints, we derive 14 conformations of dsDNA by molecular dynamics simulations. The conformational variation is consistent with that from liquid solution, suggesting that individual-particle electron tomography could be an expected approach to study DNA-assembling and flexible protein structure and dynamics.
Dynamic analysis of geometrically non-linear three-dimensional beams under moving mass
NASA Astrophysics Data System (ADS)
Zupan, E.; Zupan, D.
2018-01-01
In this paper, we present a coupled dynamic analysis of a moving particle on a deformable three-dimensional frame. The presented numerical model is capable of considering arbitrary curved and twisted initial geometry of the beam and takes into account geometric non-linearity of the structure. Coupled with dynamic equations of the structure, the equations of moving particle are solved. The moving particle represents the dynamic load and varies the mass distribution of the structure and at the same time its path is adapting due to deformability of the structure. A coupled geometrically non-linear behaviour of beam and particle is studied. The equation of motion of the particle is added to the system of the beam dynamic equations and an additional unknown representing the coordinate of the curvilinear path of the particle is introduced. The specially designed finite-element formulation of the three-dimensional beam based on the weak form of consistency conditions is employed where only the boundary conditions are affected by the contact forces.
NASA Astrophysics Data System (ADS)
Wang, Xinlong; Qin, Chao; Wang, Enbo; Hu, Changwen; Xu, Lin
2004-07-01
A novel metal-organic coordination polymer, [Zn(PDB)(H 2O) 2] 4 n (H 2PDB=pyridine-2,5-dicarboxylic acid), has been hydrothermally synthesized and characterized by elemental analysis, IR, TG and single crystal X-ray diffraction. Colorless crystals crystallized in the triclinic system, space group P-1, a=7.0562(14) Å, b=7.38526(15) Å, c=18.4611(4) Å, α=90.01(3)°, β=96.98(3)°, γ=115.67(3)°, V=859.1(3) Å 3, Z=1 and R=0.0334. The structure of the compound exhibits a novel three-dimensional supramolecular network, mainly based on multipoint hydrogen bonds originated from within and outside of a large 24-membered ring. Interestingly, the three-dimensional network consists of one-dimensional parallelogrammic channels in which coordinated water molecules point into the channel wall.
Three-dimensional electron diffraction of plant light-harvesting complex
Wang, Da Neng; Kühlbrandt, Werner
1992-01-01
Electron diffraction patterns of two-dimensional crystals of light-harvesting chlorophyll a/b-protein complex (LHC-II) from photosynthetic membranes of pea chloroplasts, tilted at different angles up to 60°, were collected to 3.2 Å resolution at -125°C. The reflection intensities were merged into a three-dimensional data set. The Friedel R-factor and the merging R-factor were 21.8 and 27.6%, respectively. Specimen flatness and crystal size were critical for recording electron diffraction patterns from crystals at high tilts. The principal sources of experimental error were attributed to limitations of the number of unit cells contributing to an electron diffraction pattern, and to the critical electron dose. The distribution of strong diffraction spots indicated that the three-dimensional structure of LHC-II is less regular than that of other known membrane proteins and is not dominated by a particular feature of secondary structure. ImagesFIGURE 1FIGURE 2 PMID:19431817
Yuan, Qun-Hui; Wan, Li-Jun; Jude, Hershel; Stang, Peter J
2005-11-23
The structure and conformation of three self-assembled supramolecular species, a rectangle, a square, and a three-dimensional cage, on Au111 surfaces were investigated by scanning tunneling microscopy. These supramolecular assemblies adsorb on Au111 surfaces and self-organize to form highly ordered adlayers with distinct conformations that are consistent with their chemical structures. The faces of the supramolecular rectangle and square lie flat on the surface, preserving their rectangle and square conformations, respectively. The three-dimensional cage also forms well-ordered adlayers on the gold surface, forming regular molecular rows of assemblies. When the rectangle and cage were mixed together, the assemblies separated into individual domains, and no mixed adlayers were observed. These results provide direct evidence of the noncrystalline solid-state structures of these assemblies and information about how they self-organize on Au111 surfaces, which is of importance in the potential manufacturing of functional nanostructures and devices.
Three-dimensional density and compressible magnetic structure in solar wind turbulence
NASA Astrophysics Data System (ADS)
Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe
2018-03-01
The three-dimensional structure of both compressible and incompressible components of turbulence is investigated at proton characteristic scales in the solar wind. Measurements of the three-dimensional structure are typically difficult, since the majority of measurements are performed by a single spacecraft. However, the Cluster mission consisting of four spacecraft in a tetrahedral formation allows for a fully three-dimensional investigation of turbulence. Incompressible turbulence is investigated by using the three vector components of the magnetic field. Meanwhile compressible turbulence is investigated by considering the magnitude of the magnetic field as a proxy for the compressible fluctuations and electron density data deduced from spacecraft potential. Application of the multi-point signal resonator technique to intervals of fast and slow wind shows that both compressible and incompressible turbulence are anisotropic with respect to the mean magnetic field direction P⟂ ≫ P∥ and are sensitive to the value of the plasma beta (β; ratio of thermal to magnetic pressure) and the wind type. Moreover, the incompressible fluctuations of the fast and slow solar wind are revealed to be different with enhancements along the background magnetic field direction present in the fast wind intervals. The differences in the fast and slow wind and the implications for the presence of different wave modes in the plasma are discussed.
NASA Astrophysics Data System (ADS)
Li, Dong; Wei, Zhen; Song, Dawei; Sun, Wenfeng; Fan, Xiaoyan
2016-11-01
With the development of space technology, the number of spacecrafts and debris are increasing year by year. The demand for detecting and identification of spacecraft is growing strongly, which provides support to the cataloguing, crash warning and protection of aerospace vehicles. The majority of existing approaches for three-dimensional reconstruction is scattering centres correlation, which is based on the radar high resolution range profile (HRRP). This paper proposes a novel method to reconstruct the threedimensional scattering centre structure of target from a sequence of radar ISAR images, which mainly consists of three steps. First is the azimuth scaling of consecutive ISAR images based on fractional Fourier transform (FrFT). The later is the extraction of scattering centres and matching between adjacent ISAR images using grid method. Finally, according to the coordinate matrix of scattering centres, the three-dimensional scattering centre structure is reconstructed using improved factorization method. The three-dimensional structure is featured with stable and intuitive characteristic, which provides a new way to improve the identification probability and reduce the complexity of the model matching library. A satellite model is reconstructed using the proposed method from four consecutive ISAR images. The simulation results prove that the method has gotten a satisfied consistency and accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katayama, Naoyuki; Onari, Seiichiro; Matsubayashi, Kazuyuki
We report the comprehensive studies between synchrotron X-ray diffraction, electrical resistivity and magnetic susceptibility experiments for the iron arsenides Can(n+1)/2(Fe1-xPtx)(2+3n)Ptn(n -1)/2As(n+1)(n+2)/2 for n=2 and 3. Both structures crystallize in the monoclinic space group P21/m (#11) with three-dimensional FeAs structures. The horizontal FeAs layers are bridged by inclined FeAs planes through edge-sharing FeAs5 square pyramids, resulting in triangular tunneling structures rather than the simple layered structures found in conventional iron arsenides. n=3 system shows a sign of superconductivity with a small volume fraction. Our first-principles calculations of these systems clearly indicate that the Fermi surfaces originate from strong Fe-3d characters andmore » the three-dimensional nature of the electric structures for both systems, thus offering the playgrounds to study the effects of dimensionality on high Tc superconductivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jyegal, Jang, E-mail: jjyegal@inu.ac.kr
Velocity overshoot is a critically important nonstationary effect utilized for the enhanced performance of submicron field-effect devices fabricated with high-electron-mobility compound semiconductors. However, the physical mechanisms of velocity overshoot decay dynamics in the devices are not known in detail. Therefore, a numerical analysis is conducted typically for a submicron GaAs metal-semiconductor field-effect transistor in order to elucidate the physical mechanisms. It is found that there exist three different mechanisms, depending on device bias conditions. Specifically, at large drain biases corresponding to the saturation drain current (dc) region, the velocity overshoot suddenly begins to drop very sensitively due to the onsetmore » of a rapid decrease of the momentum relaxation time, not the mobility, arising from the effect of velocity-randomizing intervalley scattering. It then continues to drop rapidly and decays completely by severe mobility reduction due to intervalley scattering. On the other hand, at small drain biases corresponding to the linear dc region, the velocity overshoot suddenly begins to drop very sensitively due to the onset of a rapid increase of thermal energy diffusion by electrons in the channel of the gate. It then continues to drop rapidly for a certain channel distance due to the increasing thermal energy diffusion effect, and later completely decays by a sharply decreasing electric field. Moreover, at drain biases close to a dc saturation voltage, the mechanism is a mixture of the above two bias conditions. It is suggested that a large secondary-valley energy separation is essential to increase the performance of submicron devices.« less
High Efficiency Thermoelectric Materials and Devices
NASA Technical Reports Server (NTRS)
Kochergin, Vladimir (Inventor)
2013-01-01
Growth of thermoelectric materials in the form of quantum well super-lattices on three-dimensionally structured substrates provide the means to achieve high conversion efficiency of the thermoelectric module combined with inexpensiveness of fabrication and compatibility with large scale production. Thermoelectric devices utilizing thermoelectric materials in the form of quantum well semiconductor super-lattices grown on three-dimensionally structured substrates provide improved thermoelectric characteristics that can be used for power generation, cooling and other applications..
Moroz, Olga V.; Maranta, Michelle; Shaghasi, Tarana; Harris, Paul V.; Wilson, Keith S.; Davies, Gideon J.
2015-01-01
The enzymatic degradation of plant cell-wall cellulose is central to many industrial processes, including second-generation biofuel production. Key players in this deconstruction are the fungal cellobiohydrolases (CBHs), notably those from family GH7 of the carbohydrate-active enzymes (CAZY) database, which are generally known as CBHI enzymes. Here, three-dimensional structures are reported of the Aspergillus fumigatus CBHI Cel7A solved in uncomplexed and disaccharide-bound forms at resolutions of 1.8 and 1.5 Å, respectively. The product complex with a disaccharide in the +1 and +2 subsites adds to the growing three-dimensional insight into this family of industrially relevant biocatalysts. PMID:25615982
Three-dimensional structure of Erwinia carotovora L-asparaginase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kislitsyn, Yu. A.; Kravchenko, O. V.; Nikonov, S. V.
2006-10-15
Three-dimensional structure of Erwinia carotovora L-asparaginase, which has antitumor activity and is used for the treatment of acute lymphoblastic leukemia, was solved at 3 A resolution and refined to R{sub cryst} = 20% and R{sub free} = 28%. Crystals of recombinant Erwinia carotovora L-asparaginase were grown by the hanging-drop vapor-diffusion method from protein solutions in a HEPES buffer (pH 6.5) and PEG MME 5000 solutions in a cacodylate buffer (pH 6.5) as the precipitant. Three-dimensional X-ray diffraction data were collected up to 3 A resolution from one crystal at room temperature. The structure was solved by the molecular replacement methodmore » using the coordinates of Erwinia chrysanthemi L-asparaginase as the starting model. The coordinates refined with the use of the CNS program package were deposited in the Protein Data Bank (PDB code 1ZCF)« less
Nishida, Tomoki; Yoshimura, Ryoichi; Endo, Yasuhisa
2017-09-01
Neurite varicosities are highly specialized compartments that are involved in neurotransmitter/ neuromodulator release and provide a physiological platform for neural functions. However, it remains unclear how microtubule organization contributes to the form of varicosity. Here, we examine the three-dimensional structure of microtubules in varicosities of a differentiated PC12 neural cell line using ultra-high voltage electron microscope tomography. Three-dimensional imaging showed that a part of the varicosities contained an accumulation of organelles that were separated from parallel microtubule arrays. Further detailed analysis using serial sections and whole-mount tomography revealed microtubules running in a spindle shape of swelling in some other types of varicosities. These electron tomographic results showed that the structural diversity and heterogeneity of microtubule organization supported the form of varicosities, suggesting that a different distribution pattern of microtubules in varicosities is crucial to the regulation of varicosities development.
A rudimentary database for three-dimensional objects using structural representation
NASA Technical Reports Server (NTRS)
Sowers, James P.
1987-01-01
A database which enables users to store and share the description of three-dimensional objects in a research environment is presented. The main objective of the design is to make it a compact structure that holds sufficient information to reconstruct the object. The database design is based on an object representation scheme which is information preserving, reasonably efficient, and yet economical in terms of the storage requirement. The determination of the needed data for the reconstruction process is guided by the belief that it is faster to do simple computations to generate needed data/information for construction than to retrieve everything from memory. Some recent techniques of three-dimensional representation that influenced the design of the database are discussed. The schema for the database and the structural definition used to define an object are given. The user manual for the software developed to create and maintain the contents of the database is included.
Spin texture of the surface state of three-dimensional Dirac material Ca3PbO
NASA Astrophysics Data System (ADS)
Kariyado, Toshikaze
2015-04-01
The bulk and surface electronic structures of a candidate three-dimensional Dirac material Ca3PbO and its family are discussed especially focusing on the spin texture on the surface states. We first explain the basic features of the bulk band structure of Ca3PbO, such as emergence of Dirac fermions near the Fermi energy, and compare it with the other known three-dimensional Dirac semimetals. Then, the surface bands and spin-texture on them are investigated in detail. It is shown that the surface bands exhibit strong momentum-spin locking, which may be useful in some application for spin manipulation, induced by a combination of the inversion symmetry breaking at the surface and the strong spin-orbit coupling of Pb atoms. The surface band structure and the spin-textures are sensitive to the surface types.
Coarse-grained mechanics of viral shells
NASA Astrophysics Data System (ADS)
Klug, William S.; Gibbons, Melissa M.
2008-03-01
We present an approach for creating three-dimensional finite element models of viral capsids from atomic-level structural data (X-ray or cryo-EM). The models capture heterogeneous geometric features and are used in conjunction with three-dimensional nonlinear continuum elasticity to simulate nanoindentation experiments as performed using atomic force microscopy. The method is extremely flexible; able to capture varying levels of detail in the three-dimensional structure. Nanoindentation simulations are presented for several viruses: Hepatitis B, CCMV, HK97, and φ29. In addition to purely continuum elastic models a multiscale technique is developed that combines finite-element kinematics with MD energetics such that large-scale deformations are facilitated by a reduction in degrees of freedom. Simulations of these capsid deformation experiments provide a testing ground for the techniques, as well as insight into the strength-determining mechanisms of capsid deformation. These methods can be extended as a framework for modeling other proteins and macromolecular structures in cell biology.
NASA Technical Reports Server (NTRS)
Jin, Jian-Ming; Volakis, John L.; Collins, Jeffery D.
1991-01-01
A review of a hybrid finite element-boundary integral formulation for scattering and radiation by two- and three-dimensional composite structures is presented. In contrast to other hybrid techniques involving the finite element method, the proposed one is in principle exact and can be implemented using a low O(N) storage. This is of particular importance for large scale applications and is a characteristic of the boundary chosen to terminate the finite element mesh, usually as close to the structure as possible. A certain class of these boundaries lead to convolutional boundary integrals which can be evaluated via the fast Fourier transform (FFT) without a need to generate a matrix; thus, retaining the O(N) storage requirement. The paper begins with a general description of the method. A number of two- and three-dimensional applications are then given, including numerical computations which demonstrate the method's accuracy, efficiency, and capability.
Simmons, Cameron S.; Knouf, Emily Christine; Tewari, Muneesh; Lin, Lih Y.
2011-01-01
A method to manipulate the position and orientation of submicron particles nondestructively would be an incredibly useful tool for basic biological research. Perhaps the most widely used physical force to achieve noninvasive manipulation of small particles has been dielectrophoresis(DEP).1 However, DEP on its own lacks the versatility and precision that are desired when manipulating cells since it is traditionally done with stationary electrodes. Optical tweezers, which utilize a three dimensional electromagnetic field gradient to exert forces on small particles, achieve this desired versatility and precision.2 However, a major drawback of this approach is the high radiation intensity required to achieve the necessary force to trap a particle which can damage biological samples.3 A solution that allows trapping and sorting with lower optical intensities are optoelectronic tweezers (OET) but OET's have limitations with fine manipulation of small particles; being DEP-based technology also puts constraint on the property of the solution.4,5 This video article will describe two methods that decrease the intensity of the radiation needed for optical manipulation of living cells and also describe a method for orientation control. The first method is plasmonic tweezers which use a random gold nanoparticle (AuNP) array as a substrate for the sample as shown in Figure 1. The AuNP array converts the incident photons into localized surface plasmons (LSP) which consist of resonant dipole moments that radiate and generate a patterned radiation field with a large gradient in the cell solution. Initial work on surface plasmon enhanced trapping by Righini et al and our own modeling have shown the fields generated by the plasmonic substrate reduce the initial intensity required by enhancing the gradient field that traps the particle.6,7,8 The plasmonic approach allows for fine orientation control of ellipsoidal particles and cells with low optical intensities because of more efficient optical energy conversion into mechanical energy and a dipole-dependent radiation field. These fields are shown in figure 2 and the low trapping intensities are detailed in figures 4 and 5. The main problems with plasmonic tweezers are that the LSP's generate a considerable amount of heat and the trapping is only two dimensional. This heat generates convective flows and thermophoresis which can be powerful enough to expel submicron particles from the trap.9,10 The second approach that we will describe is utilizing periodic dielectric nanostructures to scatter incident light very efficiently into diffraction modes, as shown in figure 6.11 Ideally, one would make this structure out of a dielectric material to avoid the same heating problems experienced with the plasmonic tweezers but in our approach an aluminum-coated diffraction grating is used as a one-dimensional periodic dielectric nanostructure. Although it is not a semiconductor, it did not experience significant heating and effectively trapped small particles with low trapping intensities, as shown in figure 7. Alignment of particles with the grating substrate conceptually validates the proposition that a 2-D photonic crystal could allow precise rotation of non-spherical micron sized particles.10 The efficiencies of these optical traps are increased due to the enhanced fields produced by the nanostructures described in this paper. PMID:21988841
NASA Astrophysics Data System (ADS)
Buda, A.; Demco, D. E.; Jagadeesh, B.; Blümich, B.
2005-01-01
The molecular dynamic heterogeneity of monolayer to submonolayer thin lecithin films confined to submicron cylindrical pores were investigated by 1H magnetization exchange nuclear magnetic resonance. In this experiment a z-magnetization gradient was generated by a double-quantum dipolar filter. The magnetization-exchange decay and buildup curves were interpreted with the help of a theoretical model based on the approximation of a one-dimensional spin-diffusion process in a three-domain morphology. The dynamic heterogeneity of the fatty acid chains and the effects of the surface area per molecule, the diameter of the pores, and the temperature were characterized with the help of local spin-diffusion coefficients. The effect of various parameters on the molecular dynamics of the mobile region of the fatty acid chains was quantified by introducing an ad hoc Gaussian distribution function of the 1H residual dipolar couplings. For the lipid films investigated in this study, the surface induced order and the geometrical confinement affect the chain dynamics of the entire molecule. Therefore, each part of the chain independently reflects the effect of surface coverage, pore size, and temperature.
Charge transport kinetics in a robust radical-substituted polymer/nanocarbon composite electrode
NASA Astrophysics Data System (ADS)
Sato, Kan; Oyaizu, Kenichi; Nishide, Hiroyuki
We have reported a series of organic radical-substituted polymers as new-type charge storage and transport materials which could be used for energy related devices such as batteries and solar cells. Redox-active radical moieties introduced to the non-conjugated polymer backbones enable the rapid electron transfer among the adjacent radical sites, and thus large diffusive flux of electrical charge at a bulk scale. Here we present the elucidated charge transport kinetics in a radical polymer/single-walled carbon nanotube (SWNT) composite electrode. The synergetic effect of electrical conduction by a three-dimensional SWNT network and electron self-exchange reaction by radical polymers contributed to the 105-fold (per 1 g of added SWNT) boosting of electrochemical reactions and exceptionally large current density (greater than 1 A/cm2) as a rechargeable electrode. A totally organic-based secondary battery with a submicron thickness was fabricated to demonstrate the splendid electrochemical performances. Grants-in-Aid for Scientific Research (No. 24225003, 15J00888) and the Leading Graduate Program in Science and Engineering, from the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT).
Fabrication of three-focal diffractive lenses by two-photon polymerization technique
NASA Astrophysics Data System (ADS)
Osipov, Vladimir; Doskolovich, Leonid L.; Bezus, Evgeni A.; Cheng, Wei; Gaidukeviciute, Arune; Chichkov, Boris
2012-06-01
Fabrication of submicron-height relief of three-focal diffractive lenses using two-photon polymerization is studied. Optical properties of the designed lenses are investigated theoretically and experimentally. The proposed design of the combined diffractive-refractive lenses is promising for the realization of three-focal optical ophthalmological implants with predetermined light intensity distribution between the foci. The realized three-focal optical element has a diameter size of 2.7 mm with the focal distances in the range of 27-34 mm.
NASA Technical Reports Server (NTRS)
Yang, Ren; Feeback, Daniel L.; Wang, Wanjun
2004-01-01
This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was microfabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, microfabricated, and tested. Three-dimensional hydro-focusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily microfabricated and integrated with other polymer microfluidic structures.
Binary Colloidal Alloy Test-5: Three-Dimensional Melt
NASA Technical Reports Server (NTRS)
Yodh, Arjun G.
2008-01-01
Binary Colloidal Alloy Test - 5: Three-Dimensional Melt (BCAT-5-3DMelt) photographs initially randomized colloidal samples in microgravity to determine their resulting structure over time. BCAT-5-3D-Melt will allow the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-3D-Melt will look at the mechanisms of melting using three-dimensional temperature sensitive colloidal crystals. Results will help scientists develop fundamental physics concepts previously shadowed by the effects of gravity.
NASA Technical Reports Server (NTRS)
Yang, Ren; Feedback, Daniel L.; Wang, Wanjun
2004-01-01
This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was micro-fabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, micro-fabricated, and tested. Three-dimensional hydrofocusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily micro-fabricated and integrated with other polymer microfluidic structures.
Three-dimensional imaging of the craniofacial complex.
Nguyen, Can X.; Nissanov, Jonathan; Öztürk, Cengizhan; Nuveen, Michiel J.; Tuncay, Orhan C.
2000-02-01
Orthodontic treatment requires the rearrangement of craniofacial complex elements in three planes of space, but oddly the diagnosis is done with two-dimensional images. Here we report on a three-dimensional (3D) imaging system that employs the stereoimaging method of structured light to capture the facial image. The images can be subsequently integrated with 3D cephalometric tracings derived from lateral and PA films (www.clinorthodres.com/cor-c-070). The accuracy of the reconstruction obtained with this inexpensive system is about 400 µ.
Farley Three-Dimensional-Braiding Machine
NASA Technical Reports Server (NTRS)
Farley, Gary L.
1991-01-01
Process and device known as Farley three-dimensional-braiding machine conceived to fabricate dry continuous fiber-reinforced preforms of complex three-dimensional shapes for subsequent processing into composite structures. Robotic fiber supply dispenses yarn as it traverses braiding surface. Combines many attributes of weaving and braiding processes with other attributes and capabilities. Other applications include decorative cloths, rugs, and other domestic textiles. Concept could lead to large variety of fiber layups and to entirely new products as well as new fiber-reinforcing applications.
Unique sail-like structure of cor triatriatum dexter in three-dimensional echocardiogram.
Low, Ting Ting; Uy, Celia Catherine C; Wong, Raymond Ching Chiew
2014-08-01
Cor triatriatum dexter (CTD) is an extremely rare congenital condition arising from the persistence of the right valve of the sinus venosus. It divides the right atrium (RA) into 2 separate chambers. We report a case of a 50-year-old man who had an incidental finding of CTD on transesophageal echocardiogram. An incomplete membrane of the RA was seen, and three-dimensional echocardiogram delineated the structure clearly as a triangular sail-like structure with multiple orifices and a fenestration. © 2013, Wiley Periodicals, Inc.
A three-dimensional structured/unstructured hybrid Navier-Stokes method for turbine blade rows
NASA Technical Reports Server (NTRS)
Tsung, F.-L.; Loellbach, J.; Kwon, O.; Hah, C.
1994-01-01
A three-dimensional viscous structured/unstructured hybrid scheme has been developed for numerical computation of high Reynolds number turbomachinery flows. The procedure allows an efficient structured solver to be employed in the densely clustered, high aspect-ratio grid around the viscous regions near solid surfaces, while employing an unstructured solver elsewhere in the flow domain to add flexibility in mesh generation. Test results for an inviscid flow over an external transonic wing and a Navier-Stokes flow for an internal annular cascade are presented.
NASA Technical Reports Server (NTRS)
Bernhard, R. J.; Bolton, J. S.; Gardner, B.; Mickol, J.; Mollo, C.; Bruer, C.
1986-01-01
Progress was made in the following areas: development of a numerical/empirical noise source identification procedure using bondary element techniques; identification of structure-borne noise paths using structural intensity and finite element methods; development of a design optimization numerical procedure to be used to study active noise control in three-dimensional geometries; measurement of dynamic properties of acoustical foams and incorporation of these properties in models governing three-dimensional wave propagation in foams; and structure-borne sound path identification by use of the Wigner distribution.
Fast computational methods for predicting protein structure from primary amino acid sequence
Agarwal, Pratul Kumar [Knoxville, TN
2011-07-19
The present invention provides a method utilizing primary amino acid sequence of a protein, energy minimization, molecular dynamics and protein vibrational modes to predict three-dimensional structure of a protein. The present invention also determines possible intermediates in the protein folding pathway. The present invention has important applications to the design of novel drugs as well as protein engineering. The present invention predicts the three-dimensional structure of a protein independent of size of the protein, overcoming a significant limitation in the prior art.
Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II.
Cao, Wenyi; Muñoz, Antonio; Palffy-Muhoray, Peter; Taheri, Bahman
2002-10-01
Photonic-bandgap materials, with periodicity in one, two or three dimensions, offer control of spontaneous emission and photon localization. Low-threshold lasing has been demonstrated in two-dimensional photonic-bandgap materials, both with distributed feedback and defect modes. Liquid crystals with chiral constituents exhibit mesophases with modulated ground states. Helical cholesterics are one-dimensional, whereas blue phases are three-dimensional self-assembled photonic-bandgap structures. Although mirrorless lasing was predicted and observed in one-dimensional helical cholesteric materials and chiral ferroelectric smectic materials, it is of great interest to probe light confinement in three dimensions. Here, we report the first observations of lasing in three-dimensional photonic crystals, in the cholesteric blue phase II. Our results show that distributed feedback is realized in three dimensions, resulting in almost diffraction-limited lasing with significantly lower thresholds than in one dimension. In addition to mirrorless lasing, these self-assembled soft photonic-bandgap materials may also be useful for waveguiding, switching and sensing applications.
Structures of undecagold clusters: Ligand effect
NASA Astrophysics Data System (ADS)
Spivey, Kasi; Williams, Joseph I.; Wang, Lichang
2006-12-01
The most stable structure of undecagold, or Au 11, clusters was predicted from our DFT calculations to be planar [L. Xiao, L. Wang, Chem. Phys. Lett. 392 (2004) 452; L. Xiao, B. Tollberg, X. Hu, L. Wang, J. Chem. Phys. 124 (2005) 114309.]. The structures of ligand protected undecagold clusters were shown to be three-dimensional experimentally. In this work, we used DFT calculations to study the ligand effect on the structures of Au 11 clusters. Our results show that the most stable structure of Au 11 is in fact three-dimensional when SCH 3 ligands are attached. This indicates that the structures of small gold clusters are altered substantially in the presence of ligands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richards, H.L.; Sides, S.W.; Novotny, M.A.
1996-12-31
Recently experimental techniques, such as magnetic force microscopy (MFM), have enabled the magnetic state of individual sub-micron particles to be resolved. Motivated by these experimental developments, the authors use Monte Carlo simulations of two-dimensional kinetic Ising ferromagnets to study the magnetic relaxation in a negative applied field of a grain with an initial magnetization m{sub 0} = + 1. They use classical droplet theory to predict the functional forms for some quantities which can be observed by MFM. An example is the probability that the magnetization is positive, which is a function of time, field, grain size, and grain dimensionality.more » The qualitative agreement between experiments and their simulations of switching in individual single-domain ferromagnets indicates that the switching mechanism in such particles may involve local nucleation and subsequent growth of droplets of the stable phase.« less
Casting inorganic structures with DNA molds
Sun, Wei; Boulais, Etienne; Hakobyan, Yera; Wang, Wei Li; Guan, Amy; Bathe, Mark; Yin, Peng
2014-01-01
We report a general strategy for designing and synthesizing inorganic nanostructures with arbitrarily prescribed three-dimensional shapes. Computationally designed DNA strands self-assemble into a stiff “nano-mold” that contains a user-specified three-dimensional cavity and encloses a nucleating gold “seed”. Under mild conditions, this seed grows into a larger cast structure that fills and thus replicates the cavity. We synthesized a variety of nanoparticles with three nanometer resolution: three distinct silver cuboids with three independently tunable dimensions, silver and gold nanoparticles with diverse cross sections, and composite structures with homo-/heterogeneous components. The designer equilateral silver triangular and spherical nanoparticles exhibited plasmonic properties consistent with electromagnetism-based simulations. Our framework is generalizable to more complex geometries and diverse inorganic materials, offering a range of applications in biosensing, photonics, and nanoelectronics. PMID:25301973
Gas-sensing enhancement methods for hydrothermal synthesized SnO2-based sensors
NASA Astrophysics Data System (ADS)
Zhao, Yalei; Zhang, Wenlong; Yang, Bin; Liu, Jingquan; Chen, Xiang; Wang, Xiaolin; Yang, Chunsheng
2017-11-01
Gas sensing for hydrothermal synthesized SnO2-based gas sensors can be enhanced in three ways: structural improvement, composition optimization, and processing improvement. There have been zero-dimensional, one-dimensional, and three-dimensional structures reported in the literature. Controllable synthesis of different structures has been deployed to increase specific surface area. Change of composition would intensively tailor the SnO2 structure, which affected the gas-sensing performance. Furthermore, doping and compounding methods have been adopted to promote gas-sensing performance by adjusting surface conditions of SnO2 crystals and constructing heterojunctions. As for processing area, it is very important to find the optimal reaction time and temperature. In this paper, a gas-solid reaction rate constant was proposed to evaluate gas-sensing properties and find an excellent hydrothermal synthesized SnO2-based gas sensor.
On the use of video projectors for three-dimensional scanning
NASA Astrophysics Data System (ADS)
Juarez-Salazar, Rigoberto; Diaz-Ramirez, Victor H.; Robledo-Sanchez, Carlos; Diaz-Gonzalez, Gerardo
2017-08-01
Structured light projection is one of the most useful methods for accurate three-dimensional scanning. Video projectors are typically used as the illumination source. However, because video projectors are not designed for structured light systems, some considerations such as gamma calibration must be taken into account. In this work, we present a simple method for gamma calibration of video projectors. First, the experimental fringe patterns are normalized. Then, the samples of the fringe patterns are sorted in ascending order. The sample sorting leads to a simple three-parameter sine curve that is fitted using the Gauss-Newton algorithm. The novelty of this method is that the sorting process removes the effect of the unknown phase. Thus, the resulting gamma calibration algorithm is significantly simplified. The feasibility of the proposed method is illustrated in a three-dimensional scanning experiment.
THE INFLUENCE OF CARBON BURNOUT ON SUBMICRON PARTICLE FORMATION FROM EMULSIFIED FUEL OIL COMBUSTION
The paper gives results of an examination of particle behavior and particle size distributions from the combustion of different fuel oils and emulsified fuels in three experimental combusators. Results indicate that improved carbon (C) burnout from fule oil combustion, either by...
NASA Technical Reports Server (NTRS)
Schlesinger, Robert E.
1988-01-01
The effects of stratospheric temperature lapse rate on cloud top height/temperature structure for strongly sheared, mature, isolated midlatitude thunderstorms are investigated by performing three different experiments with an anelastic, three-dimensional model: (1) with an assumed stratospheric lapse rate of 0 K/km (i.e., the isothermal case), (2) with 3 K/km, and (3) with -3 K/km (i.e., the case of inversion). Kinematic storm structure is very similar in all three cases, especially in the troposphere; a strong quasi-steady updraft evolves and splits into a dominant cyclonic overshooting right-mover and a weaker, anticyclonic left-mover that does not reach the tropopause.
Vision in our three-dimensional world
2016-01-01
Many aspects of our perceptual experience are dominated by the fact that our two eyes point forward. Whilst the location of our eyes leaves the environment behind our head inaccessible to vision, co-ordinated use of our two eyes gives us direct access to the three-dimensional structure of the scene in front of us, through the mechanism of stereoscopic vision. Scientific understanding of the different brain regions involved in stereoscopic vision and three-dimensional spatial cognition is changing rapidly, with consequent influences on fields as diverse as clinical practice in ophthalmology and the technology of virtual reality devices. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269595
NASA Astrophysics Data System (ADS)
Willey, T. M.; Bagge-Hansen, M.; Lauderbach, L.; Hodgin, R.; Hansen, D.; May, C.; van Buuren, T.; Dattelbaum, D. M.; Gustavsen, R. L.; Watkins, E. B.; Firestone, M. A.; Jensen, B. J.; Graber, T.; Bastea, S.; Fried, L.
2017-01-01
The lack of experimental validation for processes occurring at sub-micron length scales on time scales ranging from nanoseconds to microseconds hinders detonation model development. Particularly, quantification of late-time energy release requires measurement of carbon condensation kinetics behind detonation fronts. A new small-angle x-ray scattering (SAXS) endstation has been developed for use at The Dynamic Compression Sector to observe carbon condensation during detonation. The endstation and beamline demonstrate unprecedented fidelity; SAXS profiles can be acquired from single x-ray pulses, which in 24-bunch mode are about 80 ps in duration and arrive every 153.4 ns. This paper presents both the current temporal capabilities of this beamline, and the ability to distinguish different carbon condensate morphologies as they form behind detonation fronts. To demonstrate temporal capabilities, three shots acquired during detonation of hexanitrostilbene (HNS) are interleaved to show the evolution of the SAXS in about 50 ns steps. To show fidelity of the SAXS, the scattering from carbon condensates at several hundred nanoseconds varies with explosive: scattering from HNS is consistent with a complex morphology that we assert is associated with sp2 carbon., while Comp B scattering is consistent with soots containing three-dimensional diamond nanoparticles.
Nguyen, Huu-Dat; Ródenas, Airán; Vázquez de Aldana, Javier R; Martín, Guillermo; Martínez, Javier; Aguiló, Magdalena; Pujol, Maria Cinta; Díaz, Francesc
2017-02-20
We report mid-infrared LiNbO3 depressed-index microstructured cladding waveguides fabricated by three-dimensional laser writing showing low propagation losses (~1.5 dB/cm) at 3.68 µm wavelength for both the transverse electric and magnetic polarized modes, a feature previously unachieved due to the strong anisotropic properties of this type of laser microstructured waveguides and which is of fundamental importance for many photonic applications. Using a heuristic modeling-testing iteration design approach which takes into account cladding induced stress-optic index changes, the fabricated cladding microstructure provides low-loss single mode operation for the mid-IR for both orthogonal polarizations. The dependence of the localized refractive index changes within the cladding microstructure with post-fabrication thermal annealing processes was also investigated, revealing its complex dependence of the laser induced refractive index changes on laser fabrication conditions and thermal post-processing steps. The waveguide modes properties and their dependence on thermal post-processing were numerically modeled and fitted to the experimental values by systematically varying three fundamental parameters of this type of waveguides: depressed refractive index values at sub-micron laser-written tracks, track size changes, and piezo-optic induced refractive index changes.
NASA Astrophysics Data System (ADS)
Saritha, A.; Raju, B.; Ramachary, M.; Raghavaiah, P.; Hussain, K. A.
2012-11-01
The synthesis, crystal structure and physical properties of chiral, three-dimensional anhydrous potassium tris(oxalato)ferrate(III) [K3Fe(C2O4)3] are described. X-ray analysis reveals that the compound crystallized in the chiral space group P4132 of cubic system with a=b=c=13.5970(2), Z=4. The structure of the complex consists of infinite anionic [Fe(C2O4)3]3- units with distorted octahedral environment of iron surrounded by six oxygen atoms of three oxalato groups. The anionic units are interlinked through K+ ions of three different coordination environments of distorted octahedral, bicapped trigonal prismatic and trigonal prismatic yielding a three-dimensional motif. The two broad absorption bands at 644 and 924 nm from UV-vis-NIR transmittance spectra were ascribed to a ligand-to-metal charge transfer. The room temperature crystalline EPR spectra indicate the high-spin (S=5/2) of Fe(III) ion. The vibrating sample magnetometer measurement shows the paramagnetic nature at room temperature. Thermal studies of the compound confirm the absence of water molecule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lashkov, A. A., E-mail: alashkov83@gmail.com; Sotnichenko, S. E.; Mikhailov, A. M.
2013-03-15
Pseudotuberculosis is an acute infectious disease characterized by a lesion of the gastrointestinal tract. A positive therapeutic effect can be achieved by selectively suppressing the activity of uridine phosphorylase from the causative agent of the disease Yersinia pseudotuberculosis. The synergistic effect of a combination of the chemotherapeutic agent 5-fluorouracil and antimicrobial drugs, which block the synthesis of pyrimidine bases, on the cells of pathogenic protozoa and bacteria is described in the literature. The three-dimensional structures of uridine phosphorylase from Yersinia pseudotuberculosis (YptUPh) both in the ligand-free state and in complexes with pharmacological agents are unknown, which hinders the search formore » and design of selective inhibitors of YptUPh. The three-dimensional structure of the ligand-free homodimer of YptUPh was determined by homology-based molecular modeling. The three-dimensional structure of the subunit of the YptUPh molecule belongs to {alpha}/{beta} proteins, and its topology is a three-layer {alpha}/{beta}/{alpha} sandwich. The subunit monomer of the YptUPh molecule consists of 38% helices and 24% {beta} strands. A model of the homodimer structure of YptUPh in a complex with 5-FU was obtained by the molecular docking. The position of 5-FU in the active site of the molecule is very consistent with the known data on the X-ray diffraction structures of other bacterial uridine phosphorylases (the complex of uridine phosphorylase from Salmonella typhimurium (StUPh) with 5-FU, ID PDB: 4E1V and the complex of uridine phosphorylase from Escherichia coli (EcUPh) with 5-FU and ribose 1-phosphate, ID PDB: 1RXC).« less
NASA Astrophysics Data System (ADS)
Lashkov, A. A.; Sotnichenko, S. E.; Mikhailov, A. M.
2013-03-01
Pseudotuberculosis is an acute infectious disease characterized by a lesion of the gastrointestinal tract. A positive therapeutic effect can be achieved by selectively suppressing the activity of uridine phosphorylase from the causative agent of the disease Yersinia pseudotuberculosis. The synergistic effect of a combination of the chemotherapeutic agent 5-fluorouracil and antimicrobial drugs, which block the synthesis of pyrimidine bases, on the cells of pathogenic protozoa and bacteria is described in the literature. The three-dimensional structures of uridine phosphorylase from Yersinia pseudotuberculosis ( YptUPh) both in the ligand-free state and in complexes with pharmacological agents are unknown, which hinders the search for and design of selective inhibitors of YptUPh. The three-dimensional structure of the ligand-free homodimer of YptUPh was determined by homology-based molecular modeling. The three-dimensional structure of the subunit of the YptUPh molecule belongs to α/β proteins, and its topology is a three-layer α/β/α sandwich. The subunit monomer of the YptUPh molecule consists of 38% helices and 24% β strands. A model of the homodimer structure of YptUPh in a complex with 5-FU was obtained by the molecular docking. The position of 5-FU in the active site of the molecule is very consistent with the known data on the X-ray diffraction structures of other bacterial uridine phosphorylases (the complex of uridine phosphorylase from Salmonella typhimurium ( StUPh) with 5-FU, ID PDB: 4E1V and the complex of uridine phosphorylase from Escherichia coli ( EcUPh) with 5-FU and ribose 1-phosphate, ID PDB: 1RXC).
NASA Astrophysics Data System (ADS)
Shimizu, Takashi; Kuwahara, Masashi
2014-05-01
We studied the optical properties of In-Ga-Zn-O (IGZO) films and found a very low extinction coefficient of the films. For the potential application of the films, we propose an optical waveguide device made of IGZO. We have succeeded in producing a submicron-scale rectangular-bar structure of IGZO using our newly developed dry etching process. Simulation results showed an ˜5 dB/cm propagation loss of a 400 × 400 nm2 square optical waveguide device of amorphous IGZO at a wavelength of 1.55 µm, when a standard deviation of ˜4 nm and a correlation length of ˜100 nm of sidewall roughness were achieved.
NASA Astrophysics Data System (ADS)
Lee, Ching-Ting; Wang, Chun-Chi
2018-04-01
To study the function of channel width in multiple-submicron channel array, we fabricated the enhancement mode GaN-based gate-recessed fin metal-oxide-semiconductor high-electron mobility transistors (MOS-HEMTs) with a channel width of 450 nm and 195 nm, respectively. In view of the enhanced gate controllability in a narrower fin-channel structure, the transconductance was improved from 115 mS/mm to 151 mS/mm, the unit gain cutoff frequency was improved from 6.2 GHz to 6.8 GHz, and the maximum oscillation frequency was improved from 12.1 GHz to 13.1 GHz of the devices with a channel width of 195 nm, compared with the devices with a channel width of 450 nm.
NASA Astrophysics Data System (ADS)
Lee, Young-Woong; Reddy, M. Siva Pratap; Kim, Bo-Myung; Park, Chinho
2018-07-01
An ITO-Ag islands complex as a new transparent conducting electrode (TCE) structure (on the 5 nm-thick p-InGaN/90 nm-thick p-GaN) for achieving high-performance and more reliable GaN-based LEDs were fabricated. A normal LED with a conventional ITO TCE was also compared. The surface morphological, structural, electrical and optical properties of fabricated GaN-based light-emitting diodes using a complex electrode of submicron-scaled Ag islands and ITO thin films are explored by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), current-voltage (I-V) and output power-current (L-I) techniques. Surface morphology investigations revealed Ag islands formed uniformly on the p-InGaN/p-GaN surface during rapid thermal annealing at 400 °C for 1 min in N2 ambient. The ohmic properties and overall device-performance of the suggested contact and device structures were superior to those in the conventional ITO contact and normal ITO LED structures. Based on the results of XRD and XPS measurements, the formation of the intermetallic gallide phases (AgGa) is responsible for better performance characteristics of the ITO-Ag islands device. The significant improvements are described in terms of the conducting bridge influence, highly effective micro-mirror effect, and wider photon window via the roughened structure.
NASA Astrophysics Data System (ADS)
Li, Peng; Zong, Yichen; Zhang, Yingying; Yang, Mengmeng; Zhang, Rufan; Li, Shuiqing; Wei, Fei
2013-03-01
We fabricated depth-type hierarchical CNT/quartz fiber (QF) filters through in situ growth of CNTs upon quartz fiber (QF) filters using a floating catalyst chemical vapor deposition (CVD) method. The filter specific area of the CNT/QF filters is more than 12 times higher than that of the pristine QF filters. As a result, the penetration of sub-micron aerosols for CNT/QF filters is reduced by two orders of magnitude, which reaches the standard of high-efficiency particulate air (HEPA) filters. Simultaneously, due to the fluffy brush-like hierarchical structure of CNTs on QFs, the pore size of the hybrid filters only has a small increment. The pressure drop across the CNT/QF filters only increases about 50% with respect to that of the pristine QF filters, leading to an obvious increased quality factor of the CNT/QF filters. Scanning electron microscope images reveal that CNTs are very efficient in capturing sub-micron aerosols. Moreover, the CNT/QF filters show high water repellency, implying their superiority for applications in humid conditions.We fabricated depth-type hierarchical CNT/quartz fiber (QF) filters through in situ growth of CNTs upon quartz fiber (QF) filters using a floating catalyst chemical vapor deposition (CVD) method. The filter specific area of the CNT/QF filters is more than 12 times higher than that of the pristine QF filters. As a result, the penetration of sub-micron aerosols for CNT/QF filters is reduced by two orders of magnitude, which reaches the standard of high-efficiency particulate air (HEPA) filters. Simultaneously, due to the fluffy brush-like hierarchical structure of CNTs on QFs, the pore size of the hybrid filters only has a small increment. The pressure drop across the CNT/QF filters only increases about 50% with respect to that of the pristine QF filters, leading to an obvious increased quality factor of the CNT/QF filters. Scanning electron microscope images reveal that CNTs are very efficient in capturing sub-micron aerosols. Moreover, the CNT/QF filters show high water repellency, implying their superiority for applications in humid conditions. Electronic supplementary information (ESI) available: Schematic of the synthesis process of the CNT/QF filter; typical size distribution of atomized polydisperse NaCl aerosols used for air filtration testing; images of a QF filter and a CNT/QF filter; SEM image of a CNT/QF filter after 5 minutes of sonication in ethanol; calculation of porosity and filter specific area. See DOI: 10.1039/c3nr34325a
Electromagnetic density of modes for a finite-size three-dimensional structure.
D'Aguanno, Giuseppe; Mattiucci, Nadia; Centini, Marco; Scalora, Michael; Bloemer, Mark J
2004-05-01
The concept of the density of modes has been lacking a precise mathematical definition for a finite-size structure. With the explosive growth in the fabrication of photonic crystals and nanostructures, which are inherently finite in size, a workable definition is imperative. We give a simple and physically intuitive definition of the electromagnetic density of modes based on the Green's function for a generic three-dimensional open cavity filled with a linear, isotropic, dielectric material.
CELFE/NASTRAN Code for the Analysis of Structures Subjected to High Velocity Impact
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1978-01-01
CELFE (Coupled Eulerian Lagrangian Finite Element)/NASTRAN Code three-dimensional finite element code has the capability for analyzing of structures subjected to high velocity impact. The local response is predicted by CELFE and, for large problems, the far-field impact response is predicted by NASTRAN. The coupling of the CELFE code with NASTRAN (CELFE/NASTRAN code) and the application of the code to selected three-dimensional high velocity impact problems are described.
Three-Dimensional Mapping of Hippocampal Anatomy in Adolescents with Bipolar Disorder
ERIC Educational Resources Information Center
Bearden, Carrie E.; Soares, Jair C.; Klunder, Andrea D.; Nicoletti, Mark; Dierschki, Nicole; Hayashi, Kiralee M.; Narr, Katherine L.; Bhrambilla, Paolo; Sassi, Roberto B.; Axelson, David; Ryan, Neal; Birmaher, Boris; Thompson, Paul M.
2008-01-01
The article discusses the use of three-dimensional mapping methods in children and adolescents with bipolar disorder to find out if localized alterations in hippocampal structure are exhibited. It also explores the developmental differences where the patient with bipolar disorder showed increasing hippocampal size with increasing age.
Sectioning Clay Models Makes Anatomy & Development Tangible
ERIC Educational Resources Information Center
Howell, Carina Endres; Howell, James Endres
2010-01-01
Clay models have proved to be useful teaching aids for many topics in biology that depend on three-dimensional reasoning. Students studying embryonic development struggle to mentally reconstruct the three-dimensional structure of embryos and larvae by observing prepared slides of cross-sectional slices. Students who build clay models of embryos…
Three-Dimensional Extension of a Digital Library Service System
ERIC Educational Resources Information Center
Xiao, Long
2010-01-01
Purpose: The paper aims to provide an overall methodology and case study for the innovation and extension of a digital library, especially the service system. Design/methodology/approach: Based on the three-dimensional structure theory of the information service industry, this paper combines a comprehensive analysis with the practical experiences…
Zhou, Li-Juan; Han, Chang-Bao; Wang, Yu-Ling
2016-02-01
Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene-1,4-dicarboxylic acid (H2BDC) and pyridine (py) with Zn(II) or Co(II) yielded two new coordination polymers, namely, poly[(μ4-benzene-1,4-dicarboxylato-κ(4)O:O':O'':O''')(pyridine-κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena-poly[aqua(μ3-benzene-1,4-dicarboxylato-κ(3)O:O':O'')bis(pyridine-κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the Zn(II) cation is five-coordinated by four carboxylate O atoms from four BDC(2-) ligands and one pyridine N atom in a distorted square-pyramidal coordination geometry. Four carboxylate groups bridge two Zn(II) ions to form centrosymmetric paddle-wheel-like Zn2(μ2-COO)4 units, which are linked by the benzene rings of the BDC(2-) ligands to generate a two-dimensional layered structure. The two-dimensional layer is extended into a three-dimensional supramolecular structure with the help of π-π stacking interactions between the aromatic rings. Compound (II) has a one-dimensional double-chain structure based on Co2(μ2-COO)2 units. The Co(II) cations are bridged by BDC(2-) ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC(2-) ligands, one water O atom and two pyridine N atoms. Interchain O-H...O hydrogen-bonding interactions link these chains to form a three-dimensional supramolecular architecture.
ERIC Educational Resources Information Center
Garrett, Teresa A.; Rose, Rebecca L.; Bell, Sidney M.
2013-01-01
In this laboratory module, introductory biochemistry students are exposed to two-dimensional [superscript 1]H-nuclear magnetic resonance of glycerophospholipids (GPLs). Working in groups of three, students enzymatically synthesized and purified a variety of 2-acyl lyso GPLs. The structure of the 2-acyl lyso GPL was verified using [superscript…
Electron-phonon interaction, transport and ultrafast processes in semiconductor microstructures
NASA Astrophysics Data System (ADS)
Sarma, Sankar D.
1992-08-01
We have fulfilled our contract obligations completely by doing theoretical research on electron-phonon interaction and transport properties in submicron semiconductor structures with the emphasis on ultrafast processes and many-body effects. Fifty-five papers have been published based on our research during the contract period.
The role of organic polymers in the structure of cometary dust
NASA Technical Reports Server (NTRS)
Vanysek, Vladimir; Boehnhardt, Hermann; Fechtig, H.
1992-01-01
Several phenomena observed in P/Halley and other comets indicate additional fragmentation of dust particles or dust aggregates in cometary atmospheres. The disintegration of dust aggregates may be explained by sublimation of polymerized formaldehyde - POM - which play a role as binding material between submicron individual particles.
Davarcı, Derya; Gür, Rüştü; Beşli, Serap; Şenkuytu, Elif; Zorlu, Yunus
2016-06-01
The reactions of a flexible ligand hexakis(3-pyridyloxy)cyclotriphosphazene (HPCP) with a variety of silver(I) salts (AgX; X = NO3(-), PF6(-), ClO4(-), CH3PhSO3(-), BF4(-) and CF3SO3(-)) afforded six silver(I) coordination polymers, namely {[Ag2(HPCP)]·(NO3)2·H2O}n (1), {[Ag2(HPCP)(CH3CN)]·(PF6)2}n (2), {[Ag2(HPCP)(CH3CN)]·(ClO4)2}n (3), [Ag3(HPCP)(CH3PhSO3)3]n (4), [Ag2(HPCP)(CH3CN)(BF4)2]n (5) and {[Ag(HPCP)]·(CF3SO3)}n (6). All of the isolated crystalline compounds were structurally determined by X-ray crystallography. Changing the counteranions in the reactions, which were conducted under similar conditions of M/L ratio (1:1), temperature and solvent, resulted in structures with different types of topologies. In complexes (1)-(6), the ligand HPCP shows different coordination modes with Ag(I) ions giving two-dimensional layered structures and three-dimensional frameworks with different topologies. Complex (1) displays a new three-dimensional framework adopting a (3,3,6)-connected 3-nodal net with point symbol {4.6(2)}2{4(2).6(10).8(3)}. Complexes (2) and (3) are isomorphous and have a two-dimensional layered structure showing the same 3,6L60 topology with point symbol {4.2(6)}2{4(8).6(6).8}. Complex (4) is a two-dimensional structure incorporating short Ag...Ag argentophilic interactions and has a uninodal 4-connected sql/Shubnikov tetragonal plane net with {4(4).6(2)} topology. Complex (5) exhibits a novel three-dimensional framework and more suprisingly contains twofold interpenetrated honeycomb-like networks, in which the single net has a trinodal (2,3,5)-connected 3-nodal net with point symbol {6(3).8(6).12}{6(3)}{8}. Complex (6) crystallizes in a trigonal crystal system with the space group R\\bar 3 and possesses a three-dimensional polymeric structure showing a binodal (4,6)-connected fsh net with the point symbol (4(3).6(3))2.(4(6).6(6).8(3)). The effect of the counteranions on the formation of coordination polymers is discussed in this study.
Newton, Peter O; Hahn, Gregory W; Fricka, Kevin B; Wenger, Dennis R
2002-04-15
A retrospective radiographic review of 31 patients with congenital spine abnormalities who underwent conventional radiography and advanced imaging studies was conducted. To analyze the utility of three-dimensional computed tomography with multiplanar reformatted images for congenital spine anomalies, as compared with plain radiographs and axial two-dimensional computed tomography imaging. Conventional radiographic imaging for congenital spine disorders often are difficult to interpret because of the patient's small size, the complexity of the disorder, a deformity not in the plane of the radiographs, superimposed structures, and difficulty in forming a mental three-dimensional image. Multiplanar reformatted and three-dimensional computed tomographic imaging offers many potential advantages for defining congenital spine anomalies including visualization of the deformity in any plane, from any angle, with the overlying structures subtracted. The imaging studies of patients who had undergone a three-dimensional computed tomography for congenital deformities of the spine between 1992 and 1998 were reviewed (31 cases). All plain radiographs and axial two-dimensional computed tomography images performed before the three-dimensional computed tomography were reviewed and the findings documented. This was repeated for the three-dimensional reconstructions and, when available, the multiplanar reformatted images (15 cases). In each case, the utility of the advanced imaging was graded as one of the following: Grade A (substantial new information obtained), Grade B (confirmatory with improved visualization and understanding of the deformity), and Grade C (no added useful information obtained). In 17 of 31 cases, the multiplanar reformatted and three-dimensional images allowed identification of unrecognized malformations. In nine additional cases, the advanced imaging was helpful in better visualizing and understanding previously identified deformities. In five cases, no new information was gained. The standard and curved multiplanar reformatted images were best for defining the occiput-C1-C2 anatomy and the extent of segmentation defects. The curved multiplanar reformatted images were especially helpful in keeping the spine from "coming in" and "going out" of the plane of the image when there was significant spine deformity in the sagittal or coronal plane. The three-dimensional reconstructions proved valuable in defining failures of formation. Advanced computed tomography imaging (three-dimensional computed tomography and curved/standard multiplanar reformatted images) allows better definition of congenital spine anomalies. More than 50% of the cases showed additional abnormalities not appreciated on plain radiographs or axial two-dimensional computed tomography images. Curved multiplanar reformatted images allowed imaging in the coronal and sagittal planes of the entire deformity.
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor)
1998-01-01
Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor)
1998-01-01
Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue.The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.
Three-Dimensional, Fibrous Lithium Iron Phosphate Structures Deposited by Magnetron Sputtering.
Bünting, Aiko; Uhlenbruck, Sven; Sebold, Doris; Buchkremer, H P; Vaßen, R
2015-10-14
Crystalline, three-dimensional (3D) structured lithium iron phosphate (LiFePO4) thin films with additional carbon are fabricated by a radio frequency (RF) magnetron-sputtering process in a single step. The 3D structured thin films are obtained at deposition temperatures of 600 °C and deposition times longer than 60 min by using a conventional sputtering setup. In contrast to glancing angle deposition (GLAD) techniques, no tilting of the substrate is required. Thin films are characterized by X-ray diffraction (XRD), Raman spectrospcopy, scanning electron microscopy (SEM), cyclic voltammetry (CV), and galvanostatic charging and discharging. The structured LiFePO4+C thin films consist of fibers that grow perpendicular to the substrate surface. The fibers have diameters up to 500 nm and crystallize in the desired olivine structure. The 3D structured thin films have superior electrochemical properties compared with dense two-dimensional (2D) LiFePO4 thin films and are, hence, very promising for application in 3D microbatteries.
Detailed electromagnetic simulation for the structural color of butterfly wings.
Lee, R Todd; Smith, Glenn S
2009-07-20
Many species of butterflies exhibit interesting optical phenomena due to structural color. The physical reason for this color is subwavelength features on the surface of a single scale. The exposed surface of a scale is covered with a ridge structure. The fully three-dimensional, periodic, finite-difference time-domain method is used to create a detailed electromagnetic model of a generic ridge. A novel method for presenting the three-dimensional observed color pattern is developed. Using these tools, the change in color that is a result of varying individual features of the scale is explored. Computational models are developed that are similar to three butterflies: Morpho rhetenor, Troides magellanus, and Ancyluris meliboeus.
A discrete search algorithm for finding the structure of protein backbones and side chains.
Sallaume, Silas; Martins, Simone de Lima; Ochi, Luiz Satoru; Da Silva, Warley Gramacho; Lavor, Carlile; Liberti, Leo
2013-01-01
Some information about protein structure can be obtained by using Nuclear Magnetic Resonance (NMR) techniques, but they provide only a sparse set of distances between atoms in a protein. The Molecular Distance Geometry Problem (MDGP) consists in determining the three-dimensional structure of a molecule using a set of known distances between some atoms. Recently, a Branch and Prune (BP) algorithm was proposed to calculate the backbone of a protein, based on a discrete formulation for the MDGP. We present an extension of the BP algorithm that can calculate not only the protein backbone, but the whole three-dimensional structure of proteins.
Nune, K C; Kumar, A; Murr, L E; Misra, R D K
2016-02-01
Three-dimensional cellular scaffolds are receiving significant attention in bone tissue engineering to treat segmental bone defects. However, there are indications of lack of significant osteoinductive ability of three-dimensional cellular scaffolds. In this regard, the objective of the study is to elucidate the interplay between bone morphogenetic protein (BMP-2) and osteoblast functions on 3D mesh structures with different porosities and pore size that were fabricated by electron beam melting. Self-assembled dendritic microstructure with interconnected cellular-type morphology of BMP-2 on 3D scaffolds stimulated osteoblast functions including adhesion, proliferation, and mineralization, with prominent effect on 2-mm mesh. Furthermore, immunofluorescence studies demonstrated higher density and viability of osteoblasts on lower porosity mesh structure (2 mm) as compared to 3- and 4-mm mesh structures. Enhanced filopodia cellular extensions with extensive cell spreading was observed on BMP-2 treated mesh structures, a behavior that is attributed to the unique self-assembled structure of BMP-2 that effectively communicates with the cells. The study underscores the potential of BMP-2 in imparting osteoinductive capability to the 3D printed scaffolds. © 2015 Wiley Periodicals, Inc.
Wang, Yun; Lin, Fu-xing; Zhao, Yu; Wang, Mo-zhen; Ge, Xue-wu; Gong, Zheng-xing; Bao, Dan-dan; Gu, Yu-fang
2014-01-01
Novel submicron core-shell-structured chitosan-based composite particles encapsulated with enhanced green fluorescent protein plasmids (pEGFP) were prepared by complex coacervation method. The core was pEGFP-loaded thiolated N-alkylated chitosan (TACS) and the shell was pH- and temperature-responsive hydroxybutyl chitosan (HBC). pEGFP-loaded TACS-HBC composite particles were spherical, and had a mean diameter of approximately 120 nm, as measured by transmission electron microscopy and particle size analyzer. pEGFP showed sustained release in vitro for >15 days. Furthermore, in vitro transfection in human embryonic kidney 293T and human cervix epithelial cells, and in vivo transfection in mice skeletal muscle of loaded pEGFP, were investigated. Results showed that the expression of loaded pEGFP, both in vitro and in vivo, was slow but could be sustained over a long period. pEGFP expression in mice skeletal muscle was sustained for >60 days. This work indicates that these submicron core-shell-structured chitosan-based composite particles could potentially be used as a gene vector for in vivo controlled gene transfection. PMID:25364253
Wang, Yun; Lin, Fu-xing; Zhao, Yu; Wang, Mo-zhen; Ge, Xue-wu; Gong, Zheng-xing; Bao, Dan-dan; Gu, Yu-fang
2014-01-01
Novel submicron core-shell-structured chitosan-based composite particles encapsulated with enhanced green fluorescent protein plasmids (pEGFP) were prepared by complex coacervation method. The core was pEGFP-loaded thiolated N-alkylated chitosan (TACS) and the shell was pH- and temperature-responsive hydroxybutyl chitosan (HBC). pEGFP-loaded TACS-HBC composite particles were spherical, and had a mean diameter of approximately 120 nm, as measured by transmission electron microscopy and particle size analyzer. pEGFP showed sustained release in vitro for >15 days. Furthermore, in vitro transfection in human embryonic kidney 293T and human cervix epithelial cells, and in vivo transfection in mice skeletal muscle of loaded pEGFP, were investigated. Results showed that the expression of loaded pEGFP, both in vitro and in vivo, was slow but could be sustained over a long period. pEGFP expression in mice skeletal muscle was sustained for >60 days. This work indicates that these submicron core-shell-structured chitosan-based composite particles could potentially be used as a gene vector for in vivo controlled gene transfection.
NASA Astrophysics Data System (ADS)
Posnansky, Oleg P.
2018-05-01
The measuring of dynamic magnetic susceptibility by nuclear magnetic resonance is used for revealing information about the internal structure of various magnetoactive composites. The response of such material on the applied external static and time-varying magnetic fields encodes intrinsic dynamic correlations and depends on links between macroscopic effective susceptibility and structure on the microscopic scale. In the current work we carried out computational analysis of the frequency dependent dynamic magnetic susceptibility and demonstrated its dependence on the microscopic architectural elements while also considering Euclidean dimensionality. The proposed numerical method is efficient in the simulation of nuclear magnetic resonance experiments in two- and three-dimensional random magnetic media by choosing and modeling the influence of the concentration of components and internal hierarchical characteristics of physical parameters.
The factorial validity of the Maslach Burnout Inventory-Student Survey in China.
Hu, Qiao; Schaufeli, Wilmar B
2009-10-01
The dimensional structure of the Maslach Burnout Inventory-Student Survey (MBI-SS) was investigated using data collected from three samples of Chinese students in two high schools, a university, and a nursing school, respectively (total N = 1,499; 36% males, 64% females; M age 19.0 yr., SD = 1.3). Single group Confirmatory Factor Analyses corroborated the hypothesized three-factor model for the composite sample as well as for the three independent samples. Subsequent multigroup analyses revealed that the three-dimensional structure of the MBI-SS is partially invariant across three samples. It is concluded that the MBI-SS can be used to assess burnout in Chinese students.
NASA Astrophysics Data System (ADS)
Hoffmann, A.; Zimmermann, F.; Scharr, H.; Krömker, S.; Schulz, C.
2005-01-01
A laser-based technique for measuring instantaneous three-dimensional species concentration distributions in turbulent flows is presented. The laser beam from a single laser is formed into two crossed light sheets that illuminate the area of interest. The laser-induced fluorescence (LIF) signal emitted from excited species within both planes is detected with a single camera via a mirror arrangement. Image processing enables the reconstruction of the three-dimensional data set in close proximity to the cutting line of the two light sheets. Three-dimensional intensity gradients are computed and compared to the two-dimensional projections obtained from the two directly observed planes. Volume visualization by digital image processing gives unique insight into the three-dimensional structures within the turbulent processes. We apply this technique to measurements of toluene-LIF in a turbulent, non-reactive mixing process of toluene and air and to hydroxyl (OH) LIF in a turbulent methane-air flame upon excitation at 248 nm with a tunable KrF excimer laser.
Complex structures from patterned cell sheets
Misra, M.; Audoly, B.; Shvartsman, S. Y.
2017-01-01
The formation of three-dimensional structures from patterned epithelial sheets plays a key role in tissue morphogenesis. An important class of morphogenetic mechanisms relies on the spatio-temporal control of apical cell contractility, which can result in the localized bending of cell sheets and in-plane cell rearrangements. We have recently proposed a modified vertex model that can be used to systematically explore the connection between the two-dimensional patterns of cell properties and the emerging three-dimensional structures. Here we review the proposed modelling framework and illustrate it through the computational analysis of the vertex model that captures the salient features of the formation of the dorsal appendages during Drosophila oogenesis. This article is part of the themed issue ‘Systems morphodynamics: understanding the development of tissue hardware’. PMID:28348251
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stamate, Eugen, E-mail: eust@dtu.dk; Venture Business Laboratory, Nagoya University, C3-1, Chikusa-ku, Nagoya 464-8603; Yamaguchi, Masahito
2015-08-31
Modal and discrete focusing effects associated with three-dimensional plasma-sheath-lenses show promising potential for applications in ion beam extraction, mass spectrometry, plasma diagnostics and for basic studies of plasma sheath. The ion focusing properties can be adjusted by controlling the geometrical structure of the plasma-sheath-lens and plasma parameters. The positive and negative ion kinetics within the plasma-sheath-lens are investigated both experimentally and theoretically and a modal focusing ring is identified on the surface of disk electrodes. The focusing ring is very sensitive to the sheath thickness and can be used to monitor very small changes in plasma parameters. Three dimensional simulationsmore » are found to be in very good agreement with experiments.« less
Generation of three-dimensional delaunay meshes from weakly structured and inconsistent data
NASA Astrophysics Data System (ADS)
Garanzha, V. A.; Kudryavtseva, L. N.
2012-03-01
A method is proposed for the generation of three-dimensional tetrahedral meshes from incomplete, weakly structured, and inconsistent data describing a geometric model. The method is based on the construction of a piecewise smooth scalar function defining the body so that its boundary is the zero isosurface of the function. Such implicit description of three-dimensional domains can be defined analytically or can be constructed from a cloud of points, a set of cross sections, or a "soup" of individual vertices, edges, and faces. By applying Boolean operations over domains, simple primitives can be combined with reconstruction results to produce complex geometric models without resorting to specialized software. Sharp edges and conical vertices on the domain boundary are reproduced automatically without using special algorithms. Refs. 42. Figs. 25.
Faust, James J; Doudrick, Kyle; Yang, Yu; Capco, David G; Westerhoff, Paul
2016-01-01
Recent studies indicate the presence of nano-scale titanium dioxide (TiO2) as an additive in human foodstuffs, but a practical protocol to isolate and separate nano-fractions from soluble foodstuffs as a source of material remains elusive. As such, we developed a method for separating the nano and submicron fractions found in commercial-grade TiO2 (E171) and E171 extracted from soluble foodstuffs and pharmaceutical products (e.g., chewing gum, pain reliever, and allergy medicine). Primary particle analysis of commercial-grade E171 indicated that 54% of particles were nano-sized (i.e., < 100 nm). Isolation and primary particle analysis of five consumer goods intended to be ingested revealed differences in the percent of nano-sized particles from 32%‒58%. Separation and enrichment of nano- and submicron-sized particles from commercial-grade E171 and E171 isolated from foodstuffs and pharmaceuticals was accomplished using rate-zonal centrifugation. Commercial-grade E171 was separated into nano- and submicron-enriched fractions consisting of a nano:submicron fraction of approximately 0.45:1 and 3.2:1, respectively. E171 extracted from gum had nano:submicron fractions of 1.4:1 and 0.19:1 for nano- and submicron-enriched, respectively. We show a difference in particle adhesion to the cell surface, which was found to be dependent on particle size and epithelial orientation. Finally, we provide evidence that E171 particles are not immediately cytotoxic to the Caco-2 human intestinal epithelium model. These data suggest that this separation method is appropriate for studies interested in isolating the nano-sized particle fraction taken directly from consumer products, in order to study separately the effects of nano and submicron particles.
Yang, Yu; Capco, David G.; Westerhoff, Paul
2016-01-01
Recent studies indicate the presence of nano-scale titanium dioxide (TiO2) as an additive in human foodstuffs, but a practical protocol to isolate and separate nano-fractions from soluble foodstuffs as a source of material remains elusive. As such, we developed a method for separating the nano and submicron fractions found in commercial-grade TiO2 (E171) and E171 extracted from soluble foodstuffs and pharmaceutical products (e.g., chewing gum, pain reliever, and allergy medicine). Primary particle analysis of commercial-grade E171 indicated that 54% of particles were nano-sized (i.e., < 100 nm). Isolation and primary particle analysis of five consumer goods intended to be ingested revealed differences in the percent of nano-sized particles from 32%‒58%. Separation and enrichment of nano- and submicron-sized particles from commercial-grade E171 and E171 isolated from foodstuffs and pharmaceuticals was accomplished using rate-zonal centrifugation. Commercial-grade E171 was separated into nano- and submicron-enriched fractions consisting of a nano:submicron fraction of approximately 0.45:1 and 3.2:1, respectively. E171 extracted from gum had nano:submicron fractions of 1.4:1 and 0.19:1 for nano- and submicron-enriched, respectively. We show a difference in particle adhesion to the cell surface, which was found to be dependent on particle size and epithelial orientation. Finally, we provide evidence that E171 particles are not immediately cytotoxic to the Caco-2 human intestinal epithelium model. These data suggest that this separation method is appropriate for studies interested in isolating the nano-sized particle fraction taken directly from consumer products, in order to study separately the effects of nano and submicron particles. PMID:27798677
Feng, Yingang
2017-01-01
The use of NMR methods to determine the three-dimensional structures of carbohydrates and glycoproteins is still challenging, in part because of the lack of standard protocols. In order to increase the convenience of structure determination, the topology and parameter files for carbohydrates in the program Crystallography & NMR System (CNS) were investigated and new files were developed to be compatible with the standard simulated annealing protocols for proteins and nucleic acids. Recalculating the published structures of protein-carbohydrate complexes and glycosylated proteins demonstrates that the results are comparable to the published structures which employed more complex procedures for structure calculation. Integrating the new carbohydrate parameters into the standard structure calculation protocol will facilitate three-dimensional structural study of carbohydrates and glycosylated proteins by NMR spectroscopy.
2017-01-01
The use of NMR methods to determine the three-dimensional structures of carbohydrates and glycoproteins is still challenging, in part because of the lack of standard protocols. In order to increase the convenience of structure determination, the topology and parameter files for carbohydrates in the program Crystallography & NMR System (CNS) were investigated and new files were developed to be compatible with the standard simulated annealing protocols for proteins and nucleic acids. Recalculating the published structures of protein-carbohydrate complexes and glycosylated proteins demonstrates that the results are comparable to the published structures which employed more complex procedures for structure calculation. Integrating the new carbohydrate parameters into the standard structure calculation protocol will facilitate three-dimensional structural study of carbohydrates and glycosylated proteins by NMR spectroscopy. PMID:29232406
Casting inorganic structures with DNA molds
Sun, Wei; Boulais, Etienne; Hakobyan, Yera; ...
2014-10-09
Here we report a general strategy for designing and synthesizing inorganic nanostructures with arbitrarily prescribed three-dimensional shapes. Computationally designed DNA strands self-assemble into a stiff “nano-mold” that contains a user-specified three-dimensional cavity and encloses a nucleating gold “seed”. Under mild conditions, this seed grows into a larger cast structure that fills and thus replicates the cavity. We synthesized a variety of nanoparticles with three nanometer resolution: three distinct silver cuboids with three independently tunable dimensions, silver and gold nanoparticles with diverse cross sections, and composite structures with homo-/heterogeneous components. The designer equilateral silver triangular and spherical nanoparticles exhibited plasmonic propertiesmore » consistent with electromagnetism-based simulations. Our framework is generalizable to more complex geometries and diverse inorganic materials, offering a range of applications in biosensing, photonics, and nanoelectronics.« less
Thermoelectric microdevice fabricated by a MEMS-like electrochemical process
NASA Technical Reports Server (NTRS)
Snyder, G. Jeffrey; Lim, James R.; Huang, Chen-Kuo; Fleurial, Jean-Pierre
2003-01-01
Microelectromechanical systems (MEMS) are the basis of many rapidly growing technologies, because they combine miniature sensors and actuators with communications and electronics at low cost. Commercial MEMS fabrication processes are limited to silicon-based materials or two-dimensional structures. Here we show an inexpensive, electrochemical technique to build MEMS-like structures that contain several different metals and semiconductors with three-dimensional bridging structures. We demonstrate this technique by building a working microthermoelectric device. Using repeated exposure and development of multiple photoresist layers, several different metals and thermoelectric materials are fabricated in a three-dimensional structure. A device containing 126 n-type and p-type (Bi, Sb)2Te3 thermoelectric elements, 20 microm tall and 60 microm in diameter with bridging metal interconnects, was fabricated and cooling demonstrated. Such a device should be of technological importance for precise thermal control when operating as a cooler, and for portable power when operating as a micro power generator.
McElrone, Andrew J; Choat, Brendan; Parkinson, Dilworth Y; MacDowell, Alastair A; Brodersen, Craig R
2013-04-05
High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D) (e.g. Brodersen et al. 2010; 2011; 2012a,b). HRCT imaging is based on the same principles as medical CT systems, but a high intensity synchrotron x-ray source results in higher spatial resolution and decreased image acquisition time. Here, we demonstrate in detail how synchrotron-based HRCT (performed at the Advanced Light Source-LBNL Berkeley, CA, USA) in combination with Avizo software (VSG Inc., Burlington, MA, USA) is being used to explore plant xylem in excised tissue and living plants. This new imaging tool allows users to move beyond traditional static, 2D light or electron micrographs and study samples using virtual serial sections in any plane. An infinite number of slices in any orientation can be made on the same sample, a feature that is physically impossible using traditional microscopy methods. Results demonstrate that HRCT can be applied to both herbaceous and woody plant species, and a range of plant organs (i.e. leaves, petioles, stems, trunks, roots). Figures presented here help demonstrate both a range of representative plant vascular anatomy and the type of detail extracted from HRCT datasets, including scans for coast redwood (Sequoia sempervirens), walnut (Juglans spp.), oak (Quercus spp.), and maple (Acer spp.) tree saplings to sunflowers (Helianthus annuus), grapevines (Vitis spp.), and ferns (Pteridium aquilinum and Woodwardia fimbriata). Excised and dried samples from woody species are easiest to scan and typically yield the best images. However, recent improvements (i.e. more rapid scans and sample stabilization) have made it possible to use this visualization technique on green tissues (e.g. petioles) and in living plants. On occasion some shrinkage of hydrated green plant tissues will cause images to blur and methods to avoid these issues are described. These recent advances with HRCT provide promising new insights into plant vascular function.
McElrone, Andrew J.; Choat, Brendan; Parkinson, Dilworth Y.; MacDowell, Alastair A.; Brodersen, Craig R.
2013-01-01
High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D) (e.g. Brodersen et al. 2010; 2011; 2012a,b). HRCT imaging is based on the same principles as medical CT systems, but a high intensity synchrotron x-ray source results in higher spatial resolution and decreased image acquisition time. Here, we demonstrate in detail how synchrotron-based HRCT (performed at the Advanced Light Source-LBNL Berkeley, CA, USA) in combination with Avizo software (VSG Inc., Burlington, MA, USA) is being used to explore plant xylem in excised tissue and living plants. This new imaging tool allows users to move beyond traditional static, 2D light or electron micrographs and study samples using virtual serial sections in any plane. An infinite number of slices in any orientation can be made on the same sample, a feature that is physically impossible using traditional microscopy methods. Results demonstrate that HRCT can be applied to both herbaceous and woody plant species, and a range of plant organs (i.e. leaves, petioles, stems, trunks, roots). Figures presented here help demonstrate both a range of representative plant vascular anatomy and the type of detail extracted from HRCT datasets, including scans for coast redwood (Sequoia sempervirens), walnut (Juglans spp.), oak (Quercus spp.), and maple (Acer spp.) tree saplings to sunflowers (Helianthus annuus), grapevines (Vitis spp.), and ferns (Pteridium aquilinum and Woodwardia fimbriata). Excised and dried samples from woody species are easiest to scan and typically yield the best images. However, recent improvements (i.e. more rapid scans and sample stabilization) have made it possible to use this visualization technique on green tissues (e.g. petioles) and in living plants. On occasion some shrinkage of hydrated green plant tissues will cause images to blur and methods to avoid these issues are described. These recent advances with HRCT provide promising new insights into plant vascular function. PMID:23609036
Coulomb double helical structure
NASA Astrophysics Data System (ADS)
Kamimura, Tetsuo; Ishihara, Osamu
2012-01-01
Structures of Coulomb clusters formed by dust particles in a plasma are studied by numerical simulation. Our study reveals the presence of various types of self-organized structures of a cluster confined in a prolate spheroidal electrostatic potential. The stable configurations depend on a prolateness parameter for the confining potential as well as on the number of dust particles in a cluster. One-dimensional string, two-dimensional zigzag structure and three-dimensional double helical structure are found as a result of the transition controlled by the prolateness parameter. The formation of stable double helical structures resulted from the transition associated with the instability of angular perturbations on double strings. Analytical perturbation study supports the findings of numerical simulations.
Analytical Methodology for Predicting the Onset of Widespread Fatigue Damage in Fuselage Structure
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Newman, James C., Jr.; Piascik, Robert S.; Starnes, James H., Jr.
1996-01-01
NASA has developed a comprehensive analytical methodology for predicting the onset of widespread fatigue damage in fuselage structure. The determination of the number of flights and operational hours of aircraft service life that are related to the onset of widespread fatigue damage includes analyses for crack initiation, fatigue crack growth, and residual strength. Therefore, the computational capability required to predict analytically the onset of widespread fatigue damage must be able to represent a wide range of crack sizes from the material (microscale) level to the global structural-scale level. NASA studies indicate that the fatigue crack behavior in aircraft structure can be represented conveniently by the following three analysis scales: small three-dimensional cracks at the microscale level, through-the-thickness two-dimensional cracks at the local structural level, and long cracks at the global structural level. The computational requirements for each of these three analysis scales are described in this paper.
NASA Technical Reports Server (NTRS)
Mayo, W. T., Jr.; Smart, A. E.
1979-01-01
A laser transit anemometer measured a two-dimensional vector velocity, using the transit time of scattering particles between two focused and parallel laser beams. The objectives were: (1) the determination of the concentration levels and light scattering efficiencies of naturally occurring, submicron particles in the NASA/Ames unitary wind tunnel and (2) the evaluation based on these measured data of a laser transit anemometer with digital correlation processing for nonintrusive velocity measurement in this facility. The evaluation criteria were the speeds at which point velocity measurements could be realized with this technique (as determined from computer simulations) for given accuracy requirements.
Towards three-dimensional optical metamaterials
NASA Astrophysics Data System (ADS)
Tanaka, Takuo; Ishikawa, Atsushi
2017-12-01
Metamaterials have opened up the possibility of unprecedented and fascinating concepts and applications in optics and photonics. Examples include negative refraction, perfect lenses, cloaking, perfect absorbers, and so on. Since these metamaterials are man-made materials composed of sub-wavelength structures, their development strongly depends on the advancement of micro- and nano-fabrication technologies. In particular, the realization of three-dimensional metamaterials is one of the big challenges in this research field. In this review, we describe recent progress in the fabrication technologies for three-dimensional metamaterials, as well as proposed applications.
Three-dimensional fabric reinforced plastics for cryogenic use
NASA Astrophysics Data System (ADS)
Iwasaki, Y.; Yasuda, J.; Hirokawa, T.; Noma, K.; Nishijima, S.; Okada, T.
Three-dimensional fabric reinforced plastics (3DFRPs) have been developed as insulating and/or structural materials in superconducting magnets. Three-dimensional fabrics were designed with practical applications in fibre composites of 3DFRP. The mechanical properties such as Young's modulus, Poisson's ratio, tensile strength and the compressive strength down to liquid helium temperature were measured. Thermal contraction was also measured. The cryogenic characteristics of 3DFRPs were compared with those of conventional laminates. The newly developed 3DFRPs were found to show satisfactory characteristics not only at room temperature but also at low temperatures.
A Three-Dimensional Atlas of the Honeybee Neck
Berry, Richard P.; Ibbotson, Michael R.
2010-01-01
Three-dimensional digital atlases are rapidly becoming indispensible in modern biology. We used serial sectioning combined with manual registration and segmentation of images to develop a comprehensive and detailed three-dimensional atlas of the honeybee head-neck system. This interactive atlas includes skeletal structures of the head and prothorax, the neck musculature, and the nervous system. The scope and resolution of the model exceeds atlases previously developed on similar sized animals, and the interactive nature of the model provides a far more accessible means of interpreting and comprehending insect anatomy and neuroanatomy. PMID:20520729
NASA Astrophysics Data System (ADS)
Liang, Liying; Xu, Yimeng; Lei, Yong; Liu, Haimei
2014-03-01
Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability.Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability. Electronic supplementary information (ESI) available: Preparation, characterization, SEM images, XRD patterns, and XPS of AgVO3/GAs. See DOI: 10.1039/c3nr06899d
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Zhang
GIXSGUIis a MATLAB toolbox that offers both a graphical user interface and script-based access to visualize and process grazing-incidence X-ray scattering data from nanostructures on surfaces and in thin films. It provides routine surface scattering data reduction methods such as geometric correction, one-dimensional intensity linecut, two-dimensional intensity reshapingetc. Three-dimensional indexing is also implemented to determine the space group and lattice parameters of buried organized nanoscopic structures in supported thin films.
NASA Astrophysics Data System (ADS)
Eliseev, A. A.; Gorozhankin, D. F.; Napolskii, K. S.; Petukhov, A. V.; Sapoletova, N. A.; Vasilieva, A. V.; Grigoryeva, N. A.; Mistonov, A. A.; Byelov, D. V.; Bouwman, W. G.; Kvashnina, K. O.; Chernyshov, D. Yu.; Bosak, A. A.; Grigoriev, S. V.
2009-10-01
The distribution of the scattering intensity in the reciprocal space for natural and artificial opals has been reconstructed from a set of small-angle X-ray diffraction patterns. The resulting three-dimensional intensity maps are used to analyze the defect structure of opals. The structure of artificial opals can be satisfactorily described in the Wilson probability model with the prevalence of layers in the fcc environment. The diffraction patterns observed for a natural opal confirm the presence of sufficiently long unequally occupied fcc domains.
Creating "hotels" for cells by electrospinning honeycomb-like polymeric structures.
Liang, T; Mahalingam, S; Edirisinghe, M
2013-10-01
It is well established that three-dimensional honeycomb-like nanofibrous structures enhance cell activity. In this work, we report that electrospun polymer nanofibres self-assemble into three-dimensional honeycomb-like structures. The underlying mechanism is studied by varying the polymer solution concentration, collecting substrates and working distance. The polymer solution concentration has a significant effect on the size of the electrospun nanofibres. The collection substrate and working distance affect the electric field strength, the evaporation of solvent and the discharging of nanofibres and consequently these two had a significant influence on the self-assembly of nanofibres. © 2013.
Lanzavecchia, S; Bellon, P L; Tosoni, L
1993-12-01
FT3D is a self-contained package of tools for three-dimensional Fourier analysis, written in the C language for Unix workstations. It can evaluate direct transforms of three-dimensional real functions, inverse transforms, auto- and cross-correlations and spectra. The library has been developed to support three-dimensional reconstructions of biological structures from projections obtained in the electron microscope. This paper discusses some features of the library, which has been implemented in such a way as to profit from the resources of modern workstations. A table of elapsed times for jobs of different dimensions with different RAM buffers is reported for the particular hardware used in the authors' laboratory.
Three-dimensional interactions and vortical flows with emphasis on high speeds
NASA Technical Reports Server (NTRS)
Peake, D. J.; Tobak, M.
1980-01-01
Diverse kinds of three-dimensional regions of separation in laminar and turbulent boundary layers are discussed that exist on lifting aerodynamic configurations immersed in flows from subsonic to hypersonic speeds. In all cases of three dimensional flow separation, the assumption of continuous vector fields of skin-friction lines and external-flow streamlines, coupled with simple topology laws, provides a flow grammar whose elemental constituents are the singular points: nodes, foci, and saddles. Adopting these notions enables one to create sequences of plausible flow structures, to deduce mean flow characteristics, expose flow mechanisms, and to aid theory and experiment where lack of resolution in numerical calculations or wind tunnel observation causes imprecision in diagnosing the three dimensional flow features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tagliabue, Giulia; Thomas J. Watson, Sr. Laboratories of Applied Physics, California Institute of Technology, Pasadena, California 91125; Poulikakos, Dimos
2016-05-30
Gap-plasmons (GP) in metal-insulator-metal (MIM) structures have shown exceptional performance in guiding and concentrating light within deep subwavelength layers. Reported designs to date exploit tapered thicknesses of the insulating layer in order to confine and focus the GP mode. Here, we propose a mechanism for the three dimensional concentration of light in planar MIM structures which exploits exclusively the lateral tapering of the front metallic layer while keeping a constant thickness of the insulating layer. We demonstrate that an array of tapered planar GP nanocavities can efficiently concentrate light in all three dimensions. A semi-analytical, one-dimensional model provides understanding ofmore » the underlying physics and approximately predicts the behavior of the structure. Three-dimensional simulations are then used to precisely calculate the optical behavior. Cavities with effective volumes as small as 10{sup −5} λ{sup 3} are achieved in an ultrathin MIM configuration. Our design is inherently capable of efficiently coupling with free-space radiation. In addition, being composed of two electrically continuous layers separated by an ultrathin dielectric spacer, it could find interesting applications in the area of active metamaterials or plasmonic photocatalysis where both electrical access and light concentration are required.« less
1976-06-01
and End-Cuts Program ( PLEC ). A special program to aid in fabrication of complex three-dimensional pipe structures, which is of special interest to...LENGTH AND END-CUTS PROGRAM ( PL E C) PROGRAM DESCRIPTION 1. PROGRAM CAPABILITIES The Pipe Length and End- Cuts ( PLEC ) Development Program allows the...required categories: a. Definition Input This type of input by the ’ PLEC ’ Program can be divided in two is used to define a three-dimensional structure
Polymers functionalized with bronsted acid groups
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Humbeck, Jeffrey; Long, Jeffrey R.; McDonald, Thomas M.
Porous aromatic framework polymers functionalized with Bronsted acid moieties are prepared by polymerization of a three-dimensional organic aryl or heteroaryl monomer and its copolymerization with a second aryl or heteroaryl monomer functionalized with one or more Bronsted acid moiety. The polymers are characterized by a stable three-dimensional structure, which, in exemplary embodiments, includes interpenetrating subunits within one or more domain of the bulk polymer structure. The polymers are of use in methods of adsorbing ammonia and amines and in devices and systems configured for this purpose.
Vasilić, Branimir; Rajapakse, Chamith S; Wehrli, Felix W
2009-07-01
Trabecular bone microarchitecture is a significant determinant of the bone's mechanical properties and is thus of major clinical relevance in predicting fracture risk. The three-dimensional nature of trabecular bone is characterized by parameters describing scale, topology, and orientation of structural elements. However, none of the current methods calculates all three types of parameters simultaneously and in three dimensions. Here the authors present a method that produces a continuous classification of voxels as belonging to platelike or rodlike structures that determines their orientation and estimates their thickness. The method, dubbed local inertial anisotropy (LIA), treats the image as a distribution of mass density and the orientation of trabeculae is determined from a locally calculated tensor of inertia at each voxel. The orientation entropies of rods and plates are introduced, which can provide new information about microarchitecture not captured by existing parameters. The robustness of the method to noise corruption, resolution reduction, and image rotation is demonstrated. Further, the method is compared with established three-dimensional parameters including the structure-model index and topological surface-to-curve ratio. Finally, the method is applied to data acquired in a previous translational pilot study showing that the trabecular bone of untreated hypogonadal men is less platelike than that of their eugonadal peers.
Franz, Delbert D.; Melching, Charles S.
1997-01-01
The Full EQuations UTiLities (FEQUTL) model is a computer program for computation of tables that list the hydraulic characteristics of open channels and control structures as a function of upstream and downstream depths; these tables facilitate the simulation of unsteady flow in a stream system with the Full Equations (FEQ) model. Simulation of unsteady flow requires many iterations for each time period computed. Thus, computation of hydraulic characteristics during the simulations is impractical, and preparation of function tables and application of table look-up procedures facilitates simulation of unsteady flow. Three general types of function tables are computed: one-dimensional tables that relate hydraulic characteristics to upstream flow depth, two-dimensional tables that relate flow through control structures to upstream and downstream flow depth, and three-dimensional tables that relate flow through gated structures to upstream and downstream flow depth and gate setting. For open-channel reaches, six types of one-dimensional function tables contain different combinations of the top width of flow, area, first moment of area with respect to the water surface, conveyance, flux coefficients, and correction coefficients for channel curvilinearity. For hydraulic control structures, one type of one-dimensional function table contains relations between flow and upstream depth, and two types of two-dimensional function tables contain relations among flow and upstream and downstream flow depths. For hydraulic control structures with gates, a three-dimensional function table lists the system of two-dimensional tables that contain the relations among flow and upstream and downstream flow depths that correspond to different gate openings. Hydraulic control structures for which function tables containing flow relations are prepared in FEQUTL include expansions, contractions, bridges, culverts, embankments, weirs, closed conduits (circular, rectangular, and pipe-arch shapes), dam failures, floodways, and underflow gates (sluice and tainter gates). The theory for computation of the hydraulic characteristics is presented for open channels and for each hydraulic control structure. For the hydraulic control structures, the theory is developed from the results of experimental tests of flow through the structure for different upstream and downstream flow depths. These tests were done to describe flow hydraulics for a single, steady-flow design condition and, thus, do not provide complete information on flow transitions (for example, between free- and submerged-weir flow) that may result in simulation of unsteady flow. Therefore, new procedures are developed to approximate the hydraulics of flow transitions for culverts, embankments, weirs, and underflow gates.
ERIC Educational Resources Information Center
Olatunji, Bunmi O.; Broman-Fulks, Joshua J.
2007-01-01
Disgust sensitivity has recently been implicated as a specific vulnerability factor for several anxiety-related disorders. However, it is not clear whether disgust sensitivity is a dimensional or categorical phenomenon. The present study examined the latent structure of disgust by applying three taxometric procedures (maximum eigenvalue, mean…
Interactions of small platinum clusters with the TiC(001) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Jianjun; Li, Shasha; Chu, Xingli
2015-11-14
Density functional theory calculations are used to elucidate the interactions of small platinum clusters (Pt{sub n}, n = 1–5) with the TiC(001) surface. The results are analyzed in terms of geometric, energetic, and electronic properties. It is found that a single Pt atom prefers to be adsorbed at the C-top site, while a Pt{sub 2} cluster prefers dimerization and a Pt{sub 3} cluster forms a linear structure on the TiC(001). As for the Pt{sub 4} cluster, the three-dimensional distorted tetrahedral structure and the two-dimensional square structure almost have equal stability. In contrast with the two-dimensional isolated Pt{sub 5} cluster, the adsorbed Pt{submore » 5} cluster prefers a three-dimensional structure on TiC(001). Substantial charge transfer takes place from TiC(001) surface to the adsorbed Pt{sub n} clusters, resulting in the negatively charged Pt{sub n} clusters. At last, the d-band centers of the absorbed Pt atoms and their implications in the catalytic activity are discussed.« less
Roques, Nans; Maspoch, Daniel; Wurst, Klaus; Ruiz-Molina, Daniel; Rovira, Concepció; Veciana, Jaume
2006-12-13
The synthesis of a three-dimensional, six-connecting, organic building block based on a robust, rigid, and open-shell polychlorotriphenylmethyl (PTM) unit (radical 1) is reported, and its self-assembly properties are described in detail. The tendencies of this highly polar molecule and its hydrogenated precursor, compound 4, to form hydrogen bonds with oxygenated solvents ([1THF(6)] and [4THF(6)]) were reduced by replacing THF with diethyl ether in the crystallization process to yield two-dimensional (2D) hydrogen-bonded structures ([1(Et(2)O)(3)] and [4(Et(2)O)(3)]). The presence of direct hydrogen bonds between the radicals in the latter phase of 1 gives rise to very weak ferromagnetic intermolecular interactions at low temperatures, whereas when the radicals are isolated by THF molecules these interactions are antiferromagnetic and very weak. The role played by the carboxylic groups not only in the self-assembly properties but also in the transmission of the magnetic interactions has been illustrated by determination of the crystal structure and measurement of the magnetic properties of the corresponding hexaester radical 6, in which the close packing of molecular units gives rise to weak antiferromagnetic intermolecular interactions. Attempts to avoid solvation of the molecules in the solid state and to increase the structural and magnetic dimensionality were pursued by recrystallization of both compounds 1 and 4 from concentrated nitric acid, affording two three-dimensional (3D) robust hydrogen-bonded structures. While the structure obtained with compound 4 is characterized by the presence of polar channels and boxes containing water guest molecules along the c axis, radical 1 was oxidized to the corresponding fuchsone 10, which presented a completely different close-packed, guest-free structure.
Jonathan P. Dandois; Erle C. Ellis
2013-01-01
High spatial resolution three-dimensional (3D) measurements of vegetation by remote sensing are advancing ecological research and environmental management. However, substantial economic and logistical costs limit this application, especially for observing phenological dynamics in ecosystem structure and spectral traits. Here we demonstrate a new aerial remote sensing...
ERIC Educational Resources Information Center
Ruisoto, Pablo; Juanes, Juan Antonio; Contador, Israel; Mayoral, Paula; Prats-Galino, Alberto
2012-01-01
Three-dimensional (3D) or volumetric visualization is a useful resource for learning about the anatomy of the human brain. However, the effectiveness of 3D spatial visualization has not yet been assessed systematically. This report analyzes whether 3D volumetric visualization helps learners to identify and locate subcortical structures more…
Stereoscopic Projection in Organic Chemistry: Bridging the Gap between Two and Three Dimensions.
ERIC Educational Resources Information Center
Rozzelle, Arlene A.; Rosenfeld, Stuart M.
1985-01-01
Shows how to make stereo slides of three-dimensional molecular models. The slides have been used to teach chirality, conformational isomerism, how models and two-dimensional representations embody selected aspects of structure, and fundamentals of using the specific model set required in a particular organic chemistry course. (JN)
ERIC Educational Resources Information Center
Beltramini, Leila Maria; Araujo, Ana Paula Ulian; de Oliveira, Tales Henrique Goncalves; dos Santos Abel, Luciano Douglas; da Silva, Aparecido Rodrigues; dos Santos, Neusa Fernandes
2006-01-01
International specialized literature focused on research in biology education is sadly scarce, especially regarding biochemical and molecular aspects. In this light, researchers from this Centre for Structural Molecular Biotechnology developed and evaluated a three-dimensional educational model named "Building Life Molecules DNA and RNA." The…
Craniospinal Irradiation for Trilateral Retinoblastoma Following Ocular Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marks, Lawrence B.; Bentel, Gunilla; Sherouse, George W.
A case study is presented. Craniospinal radiotherapy and a three-field pineal boost for trilateral retinoblastoma were delivered to a patient previously irradiated for ocular retinoblastoma. The availability of CT-based three-dimensional treatment planning provided the capability of identifying the previously irradiated volume as a three-dimensional anatomic structure and of designing a highly customized set of treatment beams that minimized reirradiation of that volume.
Passive scalar entrainment and mixing in a forced, spatially-developing mixing layer
NASA Technical Reports Server (NTRS)
Lowery, P. S.; Reynolds, W. C.; Mansour, N. N.
1987-01-01
Numerical simulations are performed for the forced, spatially-developing plane mixing layer in two and three dimensions. Transport of a passive scalar field is included in the computation. This, together with the allowance for spatial development in the simulations, affords the opportunity for study of the asymmetric entrainment of irrotational fluid into the layer. The inclusion of a passive scalar field provides a means for simulating the effect of this entrainment asymmetry on the generation of 'products' from a 'fast' chemical reaction. Further, the three-dimensional simulations provide useful insight into the effect of streamwise structures on these entrainment and 'fast' reaction processes. Results from a two-dimensional simulation indicate 1.22 parts high-speed fluid are entrained for every one part low-speed fluid. Inclusion of streamwise vortices at the inlet plane of a three-dimensional simulation indicate a further increase in asymmetric entrainment - 1.44:1. Results from a final three-dimensional simulation are presented. In this case, a random velocity perturbation is imposed at the inlet plane. The results indicate the 'natural' development of the large spanwise structures characteristic of the mixing layer.
Amplitude interpretation and visualization of three-dimensional reflection data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enachescu, M.E.
1994-07-01
Digital recording and processing of modern three-dimensional surveys allow for relative good preservation and correct spatial positioning of seismic reflection amplitude. A four-dimensional seismic reflection field matrix R (x,y,t,A), which can be computer visualized (i.e., real-time interactively rendered, edited, and animated), is now available to the interpreter. The amplitude contains encoded geological information indirectly related to lithologies and reservoir properties. The magnitude of the amplitude depends not only on the acoustic impedance contrast across a boundary, but is also strongly affected by the shape of the reflective boundary. This allows the interpreter to image subtle tectonic and structural elements notmore » obvious on time-structure maps. The use of modern workstations allows for appropriate color coding of the total available amplitude range, routine on-screen time/amplitude extraction, and late display of horizon amplitude maps (horizon slices) or complex amplitude-structure spatial visualization. Stratigraphic, structural, tectonic, fluid distribution, and paleogeographic information are commonly obtained by displaying the amplitude variation A = A(x,y,t) associated with a particular reflective surface or seismic interval. As illustrated with several case histories, traditional structural and stratigraphic interpretation combined with a detailed amplitude study generally greatly enhance extraction of subsurface geological information from a reflection data volume. In the context of three-dimensional seismic surveys, the horizon amplitude map (horizon slice), amplitude attachment to structure and [open quotes]bright clouds[close quotes] displays are very powerful tools available to the interpreter.« less