Probing sub-alveolar length scales with hyperpolarized-gas diffusion NMR
NASA Astrophysics Data System (ADS)
Miller, Wilson; Carl, Michael; Mooney, Karen; Mugler, John; Cates, Gordon
2009-05-01
Diffusion MRI of the lung is a promising technique for detecting alterations of normal lung microstructure in diseases such as emphysema. The length scale being probed using this technique is related to the time scale over which the helium-3 or xenon-129 diffusion is observed. We have developed new MR pulse sequence methods for making diffusivity measurements at sub-millisecond diffusion times, allowing one to probe smaller length scales than previously possible in-vivo, and opening the possibility of making quantitative measurements of the ratio of surface area to volume (S/V) in the lung airspaces. The quantitative accuracy of simulated and experimental measurements in microstructure phantoms will be discussed, and preliminary in-vivo results will be presented.
Peng, Sijia; Wang, Wenjuan; Chen, Chunlai
2018-05-10
Fluorescence correlation spectroscopy is a powerful single-molecule tool that is able to capture kinetic processes occurring at the nanosecond time scale. However, the upper limit of its time window is restricted by the dwell time of the molecule of interest in the confocal detection volume, which is usually around submilliseconds for a freely diffusing biomolecule. Here, we present a simple and easy-to-implement method, named surface transient binding-based fluorescence correlation spectroscopy (STB-FCS), which extends the upper limit of the time window to seconds. We further demonstrated that STB-FCS enables capture of both intramolecular and intermolecular kinetic processes whose time scales cross several orders of magnitude.
Hysteresis-free and submillisecond-response polymer network liquid crystal.
Lee, Yun-Han; Gou, Fangwang; Peng, Fenglin; Wu, Shin-Tson
2016-06-27
We demonstrate a polymer network liquid crystal (PNLC) with negligible hysteresis while keeping submillisecond response time. By doping about 1% dodecyl acrylate (C12A) into the liquid crystal/monomer precursor, both hysteresis and residual birefringence are almost completely eliminated. The operating voltage and scattering properties remain nearly intact, but the tradeoff is enhanced double relaxation. This hysteresis-free PNLC should find applications in spatial light modulators, laser beam control, and optical communications in infrared region.
Kimura, Utako; Takeuchi, Kaori; Kinoshita, Ayako; Takamori, Kenji; Hiruma, Masataro; Suga, Yasushi
2012-04-01
Onychomycosis is a relatively common fungal infection. Current treatments have limited applicability and low cure rates. Recently introduced laser therapy has shown to be a safe and effective treatment for onychomycosis. In this study, we evaluate a submillisecond Nd:YAG 1,064 nm laser for treating onychomycoses of the tonail. Thirteen subjects (9 female, 4 male) with 37 affected toenails received 1 to 3 treatments 4 and/or 8 weeks apart with a sub-millisecond 1,064 nm Nd:YAG laser. Diagnosis of onychomycosis was confirmed with microscopy. Average follow-up time was 16 weeks post-final treatment. Photos were taken and degree of turbidity was determined using a turbidity scale (ranging from "0 = clear nail" to "10 = completely turbid nail") at each visit. Improvement in turbidity was determined by comparison of turbidity scores at baseline and 16-week follow-up on average. Efficacy was assessed by an overall improvement scale (0 to 4), which combined improvement in turbidity scores and microscopic examination. Overall improvement was classified as "4 = complete clearance" if the turbidity score indicated "0 = clear nail" accompanied by a negative microscopic result. No microscopic examination was performed unless the turbidity score showed "0 = clear nail." Treatments were well tolerated by all subjects and there were no adverse events. Of the 37 toenails treated, 30 (81%) had "moderate" to "complete" clearance average of 16 weeks post-final treatment. Nineteen toenails (51%) were completely clear and all tested negative for fungal infection on direct microscopic analysis. Seven (19%) toenails had significant clearance and four (11%) had moderate clearance. The preliminary results of this study show this treatment modality is safe and effective for the treatment of onychomycosis in the short term. Additional studies are needed to more fully assess the clinical and mycological benefits as well as optimize the treatment protocol and parameters.
Submillisecond fireball timing using de Bruijn timecodes
NASA Astrophysics Data System (ADS)
Howie, Robert M.; Paxman, Jonathan; Bland, Philip A.; Towner, Martin C.; Sansom, Eleanor K.; Devillepoix, Hadrien A. R.
2017-08-01
Long-exposure fireball photographs have been used to systematically record meteoroid trajectories, calculate heliocentric orbits, and determine meteorite fall positions since the mid-20th century. Periodic shuttering is used to determine meteoroid velocity, but up until this point, a separate method of precisely determining the arrival time of a meteoroid was required. We show it is possible to encode precise arrival times directly into the meteor image by driving the periodic shutter according to a particular pattern—a de Bruijn sequence—and eliminate the need for a separate subsystem to record absolute fireball timing. The Desert Fireball Network has implemented this approach using a microcontroller driven electro-optic shutter synchronized with GNSS UTC time to create small, simple, and cost-effective high-precision fireball observatories with submillisecond timing accuracy.
A low voltage submillisecond-response polymer network liquid crystal spatial light modulator
NASA Astrophysics Data System (ADS)
Sun, Jie; Wu, Shin-Tson; Haseba, Yasuhiro
2014-01-01
We report a low voltage and highly transparent polymer network liquid crystal (PNLC) with submillisecond response time. By employing a large dielectric anisotropy LC host JC-BP07N, we have lowered the V2π voltage to 23 V at λ = 514 nm. This will enable PNLC to be integrated with a high resolution liquid-crystal-on-silicon spatial light modulator, in which the maximum voltage is 24 V. A simple model correlating PNLC performance with its host LC is proposed and validated experimentally. By optimizing the domain size, we can achieve V2π < 15 V with some compromises in scattering and response time.
Sub-millisecond closed-loop feedback stimulation between arbitrary sets of individual neurons
Müller, Jan; Bakkum, Douglas J.; Hierlemann, Andreas
2012-01-01
We present a system to artificially correlate the spike timing between sets of arbitrary neurons that were interfaced to a complementary metal–oxide–semiconductor (CMOS) high-density microelectrode array (MEA). The system features a novel reprogrammable and flexible event engine unit to detect arbitrary spatio-temporal patterns of recorded action potentials and is capable of delivering sub-millisecond closed-loop feedback of electrical stimulation upon trigger events in real-time. The relative timing between action potentials of individual neurons as well as the temporal pattern among multiple neurons, or neuronal assemblies, is considered an important factor governing memory and learning in the brain. Artificially changing timings between arbitrary sets of spiking neurons with our system could provide a “knob” to tune information processing in the network. PMID:23335887
Sub-Millisecond Time Resolved X-ray Surface Diffraction During Pulsed Laser Deposition
NASA Astrophysics Data System (ADS)
Tischler, J. Z.; Larson, B. C.; Eres, Gyula; Rouleau, C. M.; Lowndes, D. H.; Yoon, M.; Zschack, P.
2001-03-01
The initial crystallization and evolution of the SrTiO3 (001) surface during homoeptaxial pulsed laser deposition growth of SrTiO3 was studied using time resolved surface x-ray diffraction with a time resolution down to 200 μ s. Measurements performed at the UNICAT undulator line at the Advanced Photon Source indicated prompt formation of epitaxial SrTiO3 bi-layers down to our limiting time resolution. The subsequent evolution of the surface occurred on a much greater time scale, and was studied both by measurements of surface truncation rod intensities and by measurements of diffuse scattering near the rod. The effect of temperature and correlation with in-plane order will also be discussed.
Towards neutron scattering experiments with sub-millisecond time resolution
Adlmann, F. A.; Gutfreund, Phillip; Ankner, John Francis; ...
2015-02-01
Neutron scattering techniques offer several unique opportunities in materials research. However, most neutron scattering experiments suffer from the limited flux available at current facilities. This limitation becomes even more severe if time-resolved or kinetic experiments are performed. A new method has been developed which overcomes these limitations when a reversible process is studied, without any compromise on resolution or beam intensity. We demonstrate that, by recording in absolute time the neutron detector events linked to an excitation, information can be resolved on sub-millisecond timescales. Specifically, the concept of the method is demonstrated by neutron reflectivity measurements in time-of-flight mode atmore » the Liquids Reflectometer located at the Spallation Neutron Source, Oak Ridge National Laboratory, Tennessee, USA, combined with in situ rheometry. Finally, the opportunities and limitations of this new technique are evaluated by investigations of a micellar polymer solution offering excellent scattering contrast combined with high sensitivity to shear.« less
Submillisecond-response and scattering-free infrared liquid crystal phase modulators.
Sun, Jie; Chen, Yuan; Wu, Shin-Tson
2012-08-27
We demonstrate a submillisecond-response and scattering-free infrared phase modulator using a polymer network liquid crystal (PNLC). The required voltage for achieving 2π phase change at λ = 1.06 µm is 70V (or 5.8 V/μm) and the measured response time is ~200 µs at 25°C and 30 µs at 70°C. Opposite to our conventional understanding, a high viscosity LC helps to achieve small domain size during polymerization process, which in turn reduces the response time and light scattering. We use Rayleigh-Gans-Debye scattering model to analyze the voltage-on state transmission spectra. When the domain size is comparable to the wavelength, the model fits with experimental results well. But when the domain size is smaller than the wavelength, the simple Rayleigh model works well.
Variations in the rotation of the earth
NASA Astrophysics Data System (ADS)
Carter, W. E.; Robertson, D. S.; Pettey, J. E.; Tapley, B. D.; Schutz, B. E.; Eanes, R. J.; Miao, L.
Variations in the earth's rotation (UTI) and length of day have been tracked at the submillisecond level by astronomical radio interferometry and laser ranging to the LAGEOS satellite. Three years of regular measurements reveal complex patterns of variations including UTI fluctuations as large as 5 milliseconds in a few weeks. Comparison of the observed changes in length of day with variations in the global atmospheric angular momentum indicates that the dominant cause of changes in the earth's spin rate, on time scales from a week to several years, is the exchange of angular momentum between the atmosphere and the mantle. The unusually intense El Nino of 1982-1983 was marked by a strong peak in the length of day.
Zrenner, Christoph; Eytan, Danny; Wallach, Avner; Thier, Peter; Marom, Shimon
2010-01-01
Distinct modules of the neural circuitry interact with each other and (through the motor-sensory loop) with the environment, forming a complex dynamic system. Neuro-prosthetic devices seeking to modulate or restore CNS function need to interact with the information flow at the level of neural modules electrically, bi-directionally and in real-time. A set of freely available generic tools is presented that allow computationally demanding multi-channel short-latency bi-directional interactions to be realized in in vivo and in vitro preparations using standard PC data acquisition and processing hardware and software (Mathworks Matlab and Simulink). A commercially available 60-channel extracellular multi-electrode recording and stimulation set-up connected to an ex vivo developing cortical neuronal culture is used as a model system to validate the method. We demonstrate how complex high-bandwidth (>10 MBit/s) neural recording data can be analyzed in real-time while simultaneously generating specific complex electrical stimulation feedback with deterministically timed responses at sub-millisecond resolution. PMID:21060803
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Deborah; Crawford, Fronefield; Gilpin, Claire
2013-04-15
We have searched 75 unidentified radio sources selected from the NRAO VLA Sky Survey catalog for the presence of rapidly spinning pulsars and short, dispersed radio bursts. The sources are radio bright, have no identifications or optical source coincidences, are more than 5% linearly polarized, and are spatially unresolved in the catalog. If these sources are fast-spinning pulsars (e.g., sub-millisecond pulsars), previous large-scale pulsar surveys may have missed detection due to instrumental and computational limitations, eclipsing effects, or diffractive scintillation. The discovery of a sub-millisecond pulsar would significantly constrain the neutron star equation of state and would have implications formore » models predicting a rapid slowdown of highly recycled X-ray pulsars to millisecond periods from, e.g., accretion disk decoupling. These same sources were previously searched unsuccessfully for pulsations at 610 MHz with the Lovell Telescope at Jodrell Bank. This new search was conducted at a different epoch with a new 800 MHz backend on the NRAO 43 m Telescope at a center frequency of 1200 MHz. Our search was sensitive to sub-millisecond pulsars in highly accelerated binary systems and to short transient pulses. No periodic or transient signals were detected from any of the target sources. We conclude that diffractive scintillation, dispersive smearing, and binary acceleration are unlikely to have prevented detection of the large majority of the sources if they are pulsars, though we cannot rule out eclipsing, nulling or intermittent emission, or radio interference as possible factors for some non-detections. Other (speculative) possibilities for what these sources might include radio-emitting magnetic cataclysmic variables or older pulsars with aligned magnetic and spin axes.« less
Single-image diffusion coefficient measurements of proteins in free solution.
Zareh, Shannon Kian; DeSantis, Michael C; Kessler, Jonathan M; Li, Je-Luen; Wang, Y M
2012-04-04
Diffusion coefficient measurements are important for many biological and material investigations, such as studies of particle dynamics and kinetics, and size determinations. Among current measurement methods, single particle tracking (SPT) offers the unique ability to simultaneously obtain location and diffusion information about a molecule while using only femtomoles of sample. However, the temporal resolution of SPT is limited to seconds for single-color-labeled samples. By directly imaging three-dimensional diffusing fluorescent proteins and studying the widths of their intensity profiles, we were able to determine the proteins' diffusion coefficients using single protein images of submillisecond exposure times. This simple method improves the temporal resolution of diffusion coefficient measurements to submilliseconds, and can be readily applied to a range of particle sizes in SPT investigations and applications in which diffusion coefficient measurements are needed, such as reaction kinetics and particle size determinations. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Song, Helen; Bringer, Michelle R.; Tice, Joshua D.; Gerdts, Cory J.; Ismagilov, Rustem F.
2006-01-01
This letter describes an experimental test of a simple argument that predicts the scaling of chaotic mixing in a droplet moving through a winding microfluidic channel. Previously, scaling arguments for chaotic mixing have been described for a flow that reduces striation length by stretching, folding, and reorienting the fluid in a manner similar to that of the baker’s transformation. The experimentally observed flow patterns within droplets (or plugs) resembled the baker’s transformation. Therefore, the ideas described in the literature could be applied to mixing in droplets to obtain the scaling argument for the dependence of the mixing time, t~(aw/U)log(Pe), where w [m] is the cross-sectional dimension of the microchannel, a is the dimensionless length of the plug measured relative to w, U [m s−1] is the flow velocity, Pe is the Péclet number (Pe=wU/D), and D [m2s−1] is the diffusion coefficient of the reagent being mixed. Experiments were performed to confirm the scaling argument by varying the parameters w, U, and D. Under favorable conditions, submillisecond mixing has been demonstrated in this system. PMID:17940580
ERIC Educational Resources Information Center
Brock, Jon; Bzishvili, Samantha; Reid, Melanie; Hautus, Michael; Johnson, Blake W.
2013-01-01
Atypical auditory perception is a widely recognised but poorly understood feature of autism. In the current study, we used magnetoencephalography to measure the brain responses of 10 autistic children as they listened passively to dichotic pitch stimuli, in which an illusory tone is generated by sub-millisecond inter-aural timing differences in…
Extending the Applicability of Exact Nuclear Overhauser Enhancements to Large Proteins and RNA.
Nichols, Parker; Born, Alexandra; Henen, Morkos; Strotz, Dean; Chi, Celestine N; Güntert, Peter; Vögeli, Beat Rolf
2018-06-08
Distance-dependent NOEs are one of the most popular and important experimental restraints for calculating NMR structures. Despite this, they are mostly employed as semi-quantitative upper distance bounds, which discards a wealth of information that is encoded in the cross-relaxation rate constant. Information that is lost includes exact distances between protons and dynamics that occur on the sub-millisecond time-scale. Our recently introduced exact measurement of the NOE (eNOE) requires little additional experimental effort relative to other NMR observables. So far, we have used eNOEs to calculate multi-state ensembles of proteins up to ~150 residues. Here, we briefly revisit the eNOE methodology and present two new directions for the use of eNOEs: Applications to large proteins and RNA. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multifocal Fluorescence Microscope for Fast Optical Recordings of Neuronal Action Potentials
Shtrahman, Matthew; Aharoni, Daniel B.; Hardy, Nicholas F.; Buonomano, Dean V.; Arisaka, Katsushi; Otis, Thomas S.
2015-01-01
In recent years, optical sensors for tracking neural activity have been developed and offer great utility. However, developing microscopy techniques that have several kHz bandwidth necessary to reliably capture optically reported action potentials (APs) at multiple locations in parallel remains a significant challenge. To our knowledge, we describe a novel microscope optimized to measure spatially distributed optical signals with submillisecond and near diffraction-limit resolution. Our design uses a spatial light modulator to generate patterned illumination to simultaneously excite multiple user-defined targets. A galvanometer driven mirror in the emission path streaks the fluorescence emanating from each excitation point during the camera exposure, using unused camera pixels to capture time varying fluorescence at rates that are ∼1000 times faster than the camera’s native frame rate. We demonstrate that this approach is capable of recording Ca2+ transients resulting from APs in neurons labeled with the Ca2+ sensor Oregon Green Bapta-1 (OGB-1), and can localize the timing of these events with millisecond resolution. Furthermore, optically reported APs can be detected with the voltage sensitive dye DiO-DPA in multiple locations within a neuron with a signal/noise ratio up to ∼40, resolving delays in arrival time along dendrites. Thus, the microscope provides a powerful tool for photometric measurements of dynamics requiring submillisecond sampling at multiple locations. PMID:25650920
Submillisecond Dynamics of Mastoparan X Insertion into Lipid Membranes.
Schuler, Erin E; Nagarajan, Sureshbabu; Dyer, R Brian
2016-09-01
The mechanism of protein insertion into a lipid bilayer is poorly understood because the kinetics of this process is difficult to measure. We developed a new approach to study insertion of the antimicrobial peptide Mastoparan X into zwitterionic lipid vesicles, using a laser-induced temperature-jump to initiate insertion on the microsecond time scale and infrared and fluorescence spectroscopies to follow the kinetics. Infrared probes the desolvation of the peptide backbone and yields biphasic kinetics with relaxation lifetimes of 12 and 117 μs, whereas fluorescence probes the intrinsic tryptophan residue located near the N-terminus and yields a single exponential phase with a lifetime of 440 μs. Arrhenius analysis of the temperature-dependent rates yields an activation energy for insertion of 96 kJ/mol. These results demonstrate the complexity of the insertion process and provide mechanistic insight into the interplay between peptides and the lipid bilayer required for peptide transport across cellular membranes.
Ronzitti, Emiliano; Conti, Rossella; Zampini, Valeria; Tanese, Dimitrii; Klapoetke, Nathan; Boyden, Edward S.; Papagiakoumou, Eirini
2017-01-01
Optogenetic neuronal network manipulation promises to unravel a long-standing mystery in neuroscience: how does microcircuit activity relate causally to behavioral and pathological states? The challenge to evoke spikes with high spatial and temporal complexity necessitates further joint development of light-delivery approaches and custom opsins. Two-photon (2P) light-targeting strategies demonstrated in-depth generation of action potentials in photosensitive neurons both in vitro and in vivo, but thus far lack the temporal precision necessary to induce precisely timed spiking events. Here, we show that efficient current integration enabled by 2P holographic amplified laser illumination of Chronos, a highly light-sensitive and fast opsin, can evoke spikes with submillisecond precision and repeated firing up to 100 Hz in brain slices from Swiss male mice. These results pave the way for optogenetic manipulation with the spatial and temporal sophistication necessary to mimic natural microcircuit activity. SIGNIFICANCE STATEMENT To reveal causal links between neuronal activity and behavior, it is necessary to develop experimental strategies to induce spatially and temporally sophisticated perturbation of network microcircuits. Two-photon computer generated holography (2P-CGH) recently demonstrated 3D optogenetic control of selected pools of neurons with single-cell accuracy in depth in the brain. Here, we show that exciting the fast opsin Chronos with amplified laser 2P-CGH enables cellular-resolution targeting with unprecedented temporal control, driving spiking up to 100 Hz with submillisecond onset precision using low laser power densities. This system achieves a unique combination of spatial flexibility and temporal precision needed to pattern optogenetically inputs that mimic natural neuronal network activity patterns. PMID:28972125
Kantor, Innokenty; Labiche, Jean-Claude; Collet, Emmanuel; Siron, Laurent; Thevenin, Jean-Jacques; Ponchut, Cyril; Borrel, Jacques; Mairs, Trevor; Marini, Carlo; Strohm, Cornelius; Mathon, Olivier; Pascarelli, Sakura
2014-11-01
A new FReLoN (Fast-Readout Low-Noise) high-frame-rate detector adopted for the fast continuous collection of X-ray absorption spectra is presented. The detector is installed on the energy-dispersive X-ray absorption beamline ID24 at the ESRF and is capable of full time-resolved EXAFS spectra collection with over 4 kHz repetition rate and 0.2 ms exposure time. An example of the in situ kinetic study of the high-temperature oxidation of metallic iron is presented.
NASA Astrophysics Data System (ADS)
Gandhi, Sahil Sandesh; Kim, Min Su; Hwang, Jeoung-Yeon; Chien, Liang-Chy
2017-02-01
We demonstrate the application of the nanostructured scaffold of BPIII as a resuable EO device that retains the BPIII ordering and sub-millisecond EO switching characteristics, that is, "EO-memory" of the original BPIII even after removal of the cholesteric blue phase liquid crystal (LC) and subsequent refilling with different nematic LCs. We also fabricate scaffolds mimicking the isotropic phase and cubic blue phase I (BPI) to demonstrate the versatility of our material system to nano-engineer EO-memory scaffolds of various structures. We envisage that this work will promote new experimental investigations of the mysterious BPIII and the development of novel device architectures and optically functional nanomaterials.
NASA Technical Reports Server (NTRS)
Ray, Paul S.; Chakrabarty, Deepto; Wilson-Hodge, Colleen A.; Philips, Bernard F.; Remillard, Ronald A.; Levine, Alan M.; Wood, Kent S.; Wolff, Michael T.; Gwon, Chul S.; Strohmayer, Tod E.;
2010-01-01
The Advanced X-ray Timing Array (AXTAR) is a mission concept for X-ray timing of compact objects that combines very large collecting area, broadband spectral coverage, high time resolution, highly flexible scheduling, and an ability to respond promptly to time-critical targets of opportunity. It is optimized for sub-millisecond timing of bright Galactic X-ray sources in order to study phenomena at the natural time scales of neutron star surfaces and black hole event horizons, thus probing the physics of ultra-dense matter, strongly curved spacetimes, and intense magnetic fields. AXTAR s main instrument, the Large Area Timing Array (LATA) is a collimated instrument with 2 50 keV coverage and over 3 square meters effective area. The LATA is made up of an array of super-modules that house 2-mm thick silicon pixel detectors. AXTAR will provide a significant improvement in effective area (a factor of 7 at 4 keV and a factor of 36 at 30 keV) over the RXTE PCA. AXTAR will also carry a sensitive Sky Monitor (SM) that acts as a trigger for pointed observations of X-ray transients in addition to providing high duty cycle monitoring of the X-ray sky. We review the science goals and technical concept for AXTAR and present results from a preliminary mission design study
Submillisecond-response polymer network liquid crystal phase modulators at 1.06-μm wavelength
NASA Astrophysics Data System (ADS)
Sun, Jie; Xianyu, Haiqing; Chen, Yuan; Wu, Shin-Tson
2011-07-01
A fast-response and scattering-free polymer network liquid crystal (PNLC) light modulator is demonstrated at λ = 1.06 μm wavelength. A decay time of 117 μs for 2π phase modulation is obtained at 70 °C, which is ˜ 650 × faster than that of the host nematic LCs. The major tradeoff is the increased operating voltage. Potential applications include spatial light modulators and adaptive optics.
An affordable and accurate conductivity probe for density measurements in stratified flows
NASA Astrophysics Data System (ADS)
Carminati, Marco; Luzzatto-Fegiz, Paolo
2015-11-01
In stratified flow experiments, conductivity (combined with temperature) is often used to measure density. The probes typically used can provide very fine spatial scales, but can be fragile, expensive to replace, and sensitive to environmental noise. A complementary instrument, comprising a low-cost conductivity probe, would prove valuable in a wide range of applications where resolving extremely small spatial scales is not needed. We propose using micro-USB cables as the actual conductivity sensors. By removing the metallic shield from a micro-B connector, 5 gold-plated microelectrodes are exposed and available for 4-wire measurements. These have a cell constant ~550m-1, an intrinsic thermal noise of at most 30pA/Hz1/2, as well as sub-millisecond time response, making them highly suitable for many stratified flow measurements. In addition, we present the design of a custom electronic board (Arduino-based and Matlab-controlled) for simultaneous acquisition from 4 sensors, with resolution (in conductivity, and resulting density) exceeding the performance of typical existing probes. We illustrate the use of our conductivity-measuring system through stratified flow experiments, and describe plans to release simple instructions to construct our complete system for around 200.
Advanced X-Ray Timing Array Mission: Conceptual Spacecraft Design Study
NASA Technical Reports Server (NTRS)
Hopkins, R. C.; Johnson, L.; Thomas, H. D.; Wilson-Hodge, C. A.; Baysinger, M.; Maples, C. D.; Fabisinski, L.L.; Hornsby, L.; Thompson, K. S.; Miernik, J. H.
2011-01-01
The Advanced X-Ray Timing Array (AXTAR) is a mission concept for submillisecond timing of bright galactic x-ray sources. The two science instruments are the Large Area Timing Array (LATA) (a collimated instrument with 2-50-keV coverage and over 3 square meters of effective area) and a Sky Monitor (SM), which acts as a trigger for pointed observations of x-ray transients. The spacecraft conceptual design team developed two spacecraft concepts that will enable the AXTAR mission: A minimal configuration to be launched on a Taurus II and a larger configuration to be launched on a Falcon 9 or similar vehicle.
Real-time plasma control based on the ISTTOK tomography diagnostica)
NASA Astrophysics Data System (ADS)
Carvalho, P. J.; Carvalho, B. B.; Neto, A.; Coelho, R.; Fernandes, H.; Sousa, J.; Varandas, C.; Chávez-Alarcón, E.; Herrera-Velázquez, J. J. E.
2008-10-01
The presently available processing power in generic processing units (GPUs) combined with state-of-the-art programmable logic devices benefits the implementation of complex, real-time driven, data processing algorithms for plasma diagnostics. A tomographic reconstruction diagnostic has been developed for the ISTTOK tokamak, based on three linear pinhole cameras each with ten lines of sight. The plasma emissivity in a poloidal cross section is computed locally on a submillisecond time scale, using a Fourier-Bessel algorithm, allowing the use of the output signals for active plasma position control. The data acquisition and reconstruction (DAR) system is based on ATCA technology and consists of one acquisition board with integrated field programmable gate array (FPGA) capabilities and a dual-core Pentium module running real-time application interface (RTAI) Linux. In this paper, the DAR real-time firmware/software implementation is presented, based on (i) front-end digital processing in the FPGA; (ii) a device driver specially developed for the board which enables streaming data acquisition to the host GPU; and (iii) a fast reconstruction algorithm running in Linux RTAI. This system behaves as a module of the central ISTTOK control and data acquisition system (FIRESIGNAL). Preliminary results of the above experimental setup are presented and a performance benchmarking against the magnetic coil diagnostic is shown.
Zhang, Qingteng; Dufresne, Eric M.; Grybos, Pawel; ...
2016-04-19
Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. Lastly, the potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qingteng; Dufresne, Eric M.; Grybos, Pawel
Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. Lastly, the potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.
Zhang, Qingteng; Dufresne, Eric M; Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Narayanan, Suresh; Deptuch, Grzegorz W; Szczygiel, Robert; Sandy, Alec
2016-05-01
Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. The potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.
NASA Astrophysics Data System (ADS)
Xiangjie, Zhao; Cangli, Liu; Jiazhu, Duan; Dayong, Zhang; Yongquan, Luo
2015-01-01
Optically addressed conventional nematic liquid crystal spatial light modulator has attracted wide research interests. But the slow response speed limited its further application. In this paper, polymer network liquid crystal (PNLC) was proposed to replace the conventional nematic liquid crystal to enhance the response time to the order of submillisecond. The maximum light scattering of the employed PNLC was suppressed to be less than 2% at 1.064 μm by optimizing polymerization conditions and selecting large viscosity liquid crystal as solvent. The occurrence of phase ripple phenomenon due to electron diffusion and drift in photoconductor was found to deteriorate the phase modulation effect of the optical addressed PNLC phase modulator. The wavelength effect and AC voltage frequency effect on the on state dynamic response of phase change was investigated by experimental methods. These effects were interpreted by electron diffusion and drift theory based on the assumption that free electron was inhomogeneously distributed in accordance with the writing beam intensity distribution along the incident direction. The experimental results indicated that the phase ripple could be suppressed by optimizing the wavelength of the writing beam and the driving AC voltage frequency when varying the writing beam intensity to generate phase change in 2π range. The modulation transfer function was also measured.
Xiangjie, Zhao; Cangli, Liu; Jiazhu, Duan; Jiancheng, Zeng; Dayong, Zhang; Yongquan, Luo
2014-06-16
Polymer network liquid crystal (PNLC) was one of the most potential liquid crystal for submillisecond response phase modulation, which was possible to be applied in submillisecond response phase only spatial light modulator. But until now the light scattering when liquid crystal director was reoriented by external electric field limited its phase modulation application. Dynamic response of phase change when high voltage was applied was also not elucidated. The mechanism that determines the light scattering was studied by analyzing the polymer network morphology by SEM method. Samples were prepared by varying the polymerization temperature, UV curing intensity and polymerization time. The morphology effect on the dynamic response of phase change was studied, in which high voltage was usually applied and electro-striction effect was often induced. The experimental results indicate that the polymer network morphology was mainly characterized by cross linked single fibrils, cross linked fibril bundles or even both. Although the formation of fibril bundle usually induced large light scattering, such a polymer network could endure higher voltage. In contrast, although the formation of cross linked single fibrils induced small light scattering, such a polymer network cannot endure higher voltage. There is a tradeoff between the light scattering and high voltage endurance. The electro-optical properties such as threshold voltage and response time were taken to verify our conclusion. For future application, the monomer molecular structure, the liquid crystal solvent and the polymerization conditions should be optimized to generate optimal polymer network morphology.
Vierheller, Janine; Neubert, Wilhelm; Falcke, Martin; Gilbert, Stephen H.; Chamakuri, Nagaiah
2015-01-01
Mathematical modeling of excitation-contraction coupling (ECC) in ventricular cardiac myocytes is a multiscale problem, and it is therefore difficult to develop spatially detailed simulation tools. ECC involves gradients on the length scale of 100 nm in dyadic spaces and concentration profiles along the 100 μm of the whole cell, as well as the sub-millisecond time scale of local concentration changes and the change of lumenal Ca2+ content within tens of seconds. Our concept for a multiscale mathematical model of Ca2+ -induced Ca2+ release (CICR) and whole cardiomyocyte electrophysiology incorporates stochastic simulation of individual LC- and RyR-channels, spatially detailed concentration dynamics in dyadic clefts, rabbit membrane potential dynamics, and a system of partial differential equations for myoplasmic and lumenal free Ca2+ and Ca2+-binding molecules in the bulk of the cell. We developed a novel computational approach to resolve the concentration gradients from dyadic space to cell level by using a quasistatic approximation within the dyad and finite element methods for integrating the partial differential equations. We show whole cell Ca2+-concentration profiles using three previously published RyR-channel Markov schemes. PMID:26441674
Gotti, Riccardo; Gatti, Davide; Masłowski, Piotr; Lamperti, Marco; Belmonte, Michele; Laporta, Paolo; Marangoni, Marco
2017-10-07
We propose a novel approach to cavity-ring-down-spectroscopy (CRDS) in which spectra acquired with a frequency-agile rapid-scanning (FARS) scheme, i.e., with a laser sideband stepped across the modes of a high-finesse cavity, are interleaved with one another by a sub-millisecond readjustment of the cavity length. This brings to time acquisitions below 20 s for few-GHz-wide spectra composed of a very high number of spectral points, typically 3200. Thanks to the signal-to-noise ratio easily in excess of 10 000, each FARS-CRDS spectrum is shown to be sufficient to determine the line-centre frequency of a Doppler broadened line with a precision of 2 parts over 10 11 , thus very close to that of sub-Doppler regimes and in a few-seconds time scale. The referencing of the probe laser to a frequency comb provides absolute accuracy and long-term reproducibility to the spectrometer and makes it a powerful tool for precision spectroscopy and line-shape analysis. The experimental approach is discussed in detail together with experimental precision and accuracy tests on the (30 012) ← (00 001) P12e line of CO 2 at ∼1.57 μm.
Seismo-Electromagnetic Emissions Related to Seismic Waves can Trigger TLEs
NASA Astrophysics Data System (ADS)
Sorokin, Leonid V.
2009-04-01
This paper deals with the rare high intensity electromagnetic pulses associated with earthquakes, whose spectrum signature differs from that of atmospherics produced by lightning discharges. On the basis of actual data records, cases of the generation of anomalous seismo-electromagnetic emissions are described. These natural sub-millisecond electromagnetic pulses were associated with the passage of seismic waves from earthquakes to Moscow, the place where the electromagnetic field observations were made. Space-time coupling has been revealed between exact seismic waves from the earthquakes, lightning triggering and Transient Luminous Events triggering.
Andresen, Cecilia; Niklasson, Markus; Cassman Eklöf, Sofie; Wallner, Björn
2017-01-01
Calcium dependent protein kinases are unique to plants and certain parasites and comprise an N-terminal segment and a kinase domain that is regulated by a C-terminal calcium binding domain. Since the proteins are not found in man they are potential drug targets. We have characterized the calcium binding lobes of the regulatory domain of calcium dependent protein kinase 3 from the malaria parasite Plasmodium falciparum. Despite being structurally similar, the two lobes differ in several other regards. While the monomeric N-terminal lobe changes its structure in response to calcium binding and shows global dynamics on the sub-millisecond time-scale both in its apo and calcium bound states, the C-terminal lobe could not be prepared calcium-free and forms dimers in solution. If our results can be generalized to the full-length protein, they suggest that the C-terminal lobe is calcium bound even at basal levels and that activation is caused by the structural reorganization associated with binding of a single calcium ion to the N-terminal lobe. PMID:28746405
Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs.
Durán, Vicente; Schnébelin, Cȏme; Guillet de Chatellus, Hugues
2018-05-28
We propose and characterize experimentally a new source of optical frequency combs for performing multi-heterodyne spectrometry. This comb modality is based on a frequency-shifting loop seeded with a continuous-wave (CW) monochromatic laser. The comb lines are generated by successive passes of the CW laser through an acousto-optic frequency shifter. We report the generation of frequency combs with more than 1500 mutually coherent lines, without resorting to non-linear broadening phenomena or external electronic modulation. The comb line spacing is easily reconfigurable from tens of MHz down to the kHz region. We first use a single acousto-optic frequency comb to conduct self-heterodyne interferometry with a high frequency resolution (500 kHz). By increasing the line spacing to 80 MHz, we demonstrate molecular spectroscopy on the sub-millisecond time scale. In order to reduce the detection bandwidth, we subsequently implement an acousto-optic dual-comb spectrometer with the aid of two mutually coherent frequency shifting loops. In each architecture, the potentiality of acousto-optic frequency combs for spectroscopy is validated by spectral measurements of hydrogen cyanide in the near-infrared region.
Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs
NASA Astrophysics Data System (ADS)
Durán, Vicente; Schnébelin, Cȏme; Guillet de Chatellus, Hugues
2018-05-01
We propose and characterize experimentally a new source of optical frequency combs for performing multi-heterodyne spectrometry. This comb modality is based on a frequency shifting loop seeded with a CW monochromatic laser. The comb lines are generated by successive passes of the CW laser through an acousto-optic frequency shifter. We report the generation of frequency combs with more than 1500 mutually coherent lines, without resorting to non-linear broadening phenomena or external electronic modulation. The comb line spacing is easily reconfigurable from tens of MHz down to the kHz region. We first use a single acousto-optic frequency comb to conduct self-heterodyne interferometry with a high frequency resolution (500 kHz). By increasing the line spacing to 80 MHz, we demonstrate molecular spectroscopy on the sub-millisecond time scale. In order to reduce the detection bandwidth, we subsequently implement an acousto-optic dual-comb spectrometer with the aid of two mutually coherent frequency shifting loops. In each architecture, the potentiality of acousto-optic frequency combs for spectroscopy is validated by spectral measurements of hydrogen cyanide in the near-infrared region.
NASA Astrophysics Data System (ADS)
Réfy, D. I.; Brix, M.; Gomes, R.; Tál, B.; Zoletnik, S.; Dunai, D.; Kocsis, G.; Kálvin, S.; Szabolics, T.; JET Contributors
2018-04-01
Diagnostic alkali atom (e.g., lithium) beams are routinely used to diagnose magnetically confined plasmas, namely, to measure the plasma electron density profile in the edge and the scrape off layer region. A light splitting optics system was installed into the observation system of the lithium beam emission spectroscopy diagnostic at the Joint European Torus (JET) tokamak, which allows simultaneous measurement of the beam light emission with a spectrometer and a fast avalanche photodiode (APD) camera. The spectrometer measurement allows density profile reconstruction with ˜10 ms time resolution, absolute position calculation from the Doppler shift, spectral background subtraction as well as relative intensity calibration of the channels for each discharge. The APD system is capable of measuring light intensities on the microsecond time scale. However ˜100 μs integration is needed to have an acceptable signal to noise ratio due to moderate light levels. Fast modulation of the beam up to 30 kHz is implemented which allows background subtraction on the 100 μs time scale. The measurement covers the 0.9 < ρpol < 1.1 range with 6-10 mm optical resolution at the measurement location which translates to 3-5 mm radial resolution at the midplane due to flux expansion. An automated routine has been developed which performs the background subtraction, the relative calibration, and the comprehensive error calculation, runs a Bayesian density reconstruction code, and loads results to the JET database. The paper demonstrates the capability of the APD system by analyzing fast phenomena like pellet injection and edge localized modes.
Submillisecond unmasked subliminal visual stimuli evoke electrical brain responses.
Sperdin, Holger F; Spierer, Lucas; Becker, Robert; Michel, Christoph M; Landis, Theodor
2015-04-01
Subliminal perception is strongly associated to the processing of meaningful or emotional information and has mostly been studied using visual masking. In this study, we used high density 256-channel EEG coupled with an liquid crystal display (LCD) tachistoscope to characterize the spatio-temporal dynamics of the brain response to visual checkerboard stimuli (Experiment 1) or blank stimuli (Experiment 2) presented without a mask for 1 ms (visible), 500 µs (partially visible), and 250 µs (subliminal) by applying time-wise, assumption-free nonparametric randomization statistics on the strength and on the topography of high-density scalp-recorded electric field. Stimulus visibility was assessed in a third separate behavioral experiment. Results revealed that unmasked checkerboards presented subliminally for 250 µs evoked weak but detectable visual evoked potential (VEP) responses. When the checkerboards were replaced by blank stimuli, there was no evidence for the presence of an evoked response anymore. Furthermore, the checkerboard VEPs were modulated topographically between 243 and 296 ms post-stimulus onset as a function of stimulus duration, indicative of the engagement of distinct configuration of active brain networks. A distributed electrical source analysis localized this modulation within the right superior parietal lobule near the precuneus. These results show the presence of a brain response to submillisecond unmasked subliminal visual stimuli independently of their emotional saliency or meaningfulness and opens an avenue for new investigations of subliminal stimulation without using visual masking. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiangjie, Zhao, E-mail: zxjdouble@163.com, E-mail: zxjdouble@gmail.com; Cangli, Liu; Jiazhu, Duan
Optically addressed conventional nematic liquid crystal spatial light modulator has attracted wide research interests. But the slow response speed limited its further application. In this paper, polymer network liquid crystal (PNLC) was proposed to replace the conventional nematic liquid crystal to enhance the response time to the order of submillisecond. The maximum light scattering of the employed PNLC was suppressed to be less than 2% at 1.064 μm by optimizing polymerization conditions and selecting large viscosity liquid crystal as solvent. The occurrence of phase ripple phenomenon due to electron diffusion and drift in photoconductor was found to deteriorate the phase modulationmore » effect of the optical addressed PNLC phase modulator. The wavelength effect and AC voltage frequency effect on the on state dynamic response of phase change was investigated by experimental methods. These effects were interpreted by electron diffusion and drift theory based on the assumption that free electron was inhomogeneously distributed in accordance with the writing beam intensity distribution along the incident direction. The experimental results indicated that the phase ripple could be suppressed by optimizing the wavelength of the writing beam and the driving AC voltage frequency when varying the writing beam intensity to generate phase change in 2π range. The modulation transfer function was also measured.« less
SiFAP: a Simple Sub-Millisecond Astronomical Photometer
NASA Astrophysics Data System (ADS)
Ambrosino, F.; Meddi, F.; Nesci, R.; Rossi, C.; Sclavi, S.; Bruni, I.
2013-09-01
A new fast photometer based on SiPM technology was developed at the University of Rome "La Sapienza" starting from 2009. A first prototype was successfully tested observing the Crab pulsar at the Loiano telescope of the Bologna Observatory. In this paper we illustrate the improvements we applied to our instrument, concerning new cooled commercial sensors, a new version of our custom dedicated electronics and an upgraded control timing software. Finally we report the results obtained with this instrument on December 2012 on the Crab pulsar at the Loiano telescope to show its goodness and capabilities.
Reaction Dynamics of Proton-Coupled Electron Transfer from Reduced ZnO Nanocrystals.
Braten, Miles N; Gamelin, Daniel R; Mayer, James M
2015-10-27
The creation of systems that efficiently interconvert chemical and electrical energies will be aided by understanding proton-coupled electron transfers at solution-semiconductor interfaces. Steps in developing that understanding are described here through kinetic studies of reactions of photoreduced colloidal zinc oxide (ZnO) nanocrystals (NCs) with the nitroxyl radical TEMPO. These reactions proceed by proton-coupled electron transfer (PCET) to give the hydroxylamine TEMPOH. They occur on the submillisecond to seconds time scale, as monitored by stopped-flow optical spectroscopy. Under conditions of excess TEMPO, the reactions are multiexponential in character. One of the contributors to this multiexponential kinetics may be a distribution of reactive proton sites. A graphical overlay method shows the reaction to be first order in [TEMPO]. Different electron concentrations in otherwise identical NC samples were achieved by three different methods: differing photolysis times, premixing with an unphotolyzed sample, or prereaction with TEMPO. The reaction velocities were consistently higher for NCs with higher numbers of electrons. For instance, NCs with an average of 2.6 e(-)/NC reacted faster than otherwise identical samples containing ≤1 e(-)/NC. Surprisingly, NC samples with the same average number of electrons but prepared in different ways often had different reaction profiles. These results show that properties beyond electron content determine PCET reactivity of the particles.
Multiplexed, High Density Electrophysiology with Nanofabricated Neural Probes
Du, Jiangang; Blanche, Timothy J.; Harrison, Reid R.; Lester, Henry A.; Masmanidis, Sotiris C.
2011-01-01
Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC) performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable. PMID:22022568
Diallo, A.; Groebner, R. J.; Rhodes, T. L.; ...
2015-05-15
Direct measurements of the pedestal recovery during an edge-localized mode cycle provide evidence that quasi-coherent fluctuations (QCFs) play a role in the inter-ELM pedestal dynamics. When using fast Thomson scattering measurements, we found that the pedestal density and temperature evolutions are probed on sub-millisecond time scales to show a fast recovery of the density gradient compared to the temperature gradient. The temperature gradient appears to provide a drive for the onset of quasi-coherent fluctuations (as measured with the magnetic probe and the density diagnostics) localized in the pedestal. The amplitude evolution of these QCFs tracks the temperature gradient evolution includingmore » its saturation. Such correlation suggests that these QCFs play a key role in limiting the pedestal temperature gradient. Moreover, the saturation of the QCFs coincides with the pressure gradient reaching the kinetic-ballooning mode (KBM) critical gradient as predicted by EPED1. Furthermore, linear microinstability analysis using GS2 indicates that the steep gradient is near the KBM threshold. Finally, the modeling and the observations together suggest that QCFs are consistent with dominant KBMs, although microtearing cannot be excluded as subdominant.« less
Rate limit of protein elastic response is tether dependent.
Berkovich, Ronen; Hermans, Rodolfo I; Popa, Ionel; Stirnemann, Guillaume; Garcia-Manyes, Sergi; Berne, Bruce J; Fernandez, Julio M
2012-09-04
The elastic restoring force of tissues must be able to operate over the very wide range of loading rates experienced by living organisms. It is surprising that even the fastest events involving animal muscle tissues do not surpass a few hundred hertz. We propose that this limit is set in part by the elastic dynamics of tethered proteins extending and relaxing under a changing load. Here we study the elastic dynamics of tethered proteins using a fast force spectrometer with sub-millisecond time resolution, combined with Brownian and Molecular Dynamics simulations. We show that the act of tethering a polypeptide to an object, an inseparable part of protein elasticity in vivo and in experimental setups, greatly reduces the attempt frequency with which the protein samples its free energy. Indeed, our data shows that a tethered polypeptide can traverse its free-energy landscape with a surprisingly low effective diffusion coefficient D(eff) ~ 1,200 nm(2)/s. By contrast, our Molecular Dynamics simulations show that diffusion of an isolated protein under force occurs at D(eff) ~ 10(8) nm(2)/s. This discrepancy is attributed to the drag force caused by the tethering object. From the physiological time scales of tissue elasticity, we calculate that tethered elastic proteins equilibrate in vivo with D(eff) ~ 10(4)-10(6) nm(2)/s which is two to four orders magnitude smaller than the values measured for untethered proteins in bulk.
Casadei, Cecilia M.; Tsai, Ching-Ju; Barty, Anton; ...
2018-01-01
Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography atmore » X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casadei, Cecilia M.; Tsai, Ching-Ju; Barty, Anton
Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography atmore » X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals.« less
2015-01-01
Single molecule fluorescence spectroscopy holds the promise of providing direct measurements of protein folding free energy landscapes and conformational motions. However, fulfilling this promise has been prevented by technical limitations, most notably, the difficulty in analyzing the small packets of photons per millisecond that are typically recorded from individual biomolecules. Such limitation impairs the ability to accurately determine conformational distributions and resolve sub-millisecond processes. Here we develop an analytical procedure for extracting the conformational distribution and dynamics of fast-folding proteins directly from time-stamped photon arrival trajectories produced by single molecule FRET experiments. Our procedure combines the maximum likelihood analysis originally developed by Gopich and Szabo with a statistical mechanical model that describes protein folding as diffusion on a one-dimensional free energy surface. Using stochastic kinetic simulations, we thoroughly tested the performance of the method in identifying diverse fast-folding scenarios, ranging from two-state to one-state downhill folding, as a function of relevant experimental variables such as photon count rate, amount of input data, and background noise. The tests demonstrate that the analysis can accurately retrieve the original one-dimensional free energy surface and microsecond folding dynamics in spite of the sub-megahertz photon count rates and significant background noise levels of current single molecule fluorescence experiments. Therefore, our approach provides a powerful tool for the quantitative analysis of single molecule FRET experiments of fast protein folding that is also potentially extensible to the analysis of any other biomolecular process governed by sub-millisecond conformational dynamics. PMID:25988351
Ramanathan, Ravishankar; Muñoz, Victor
2015-06-25
Single molecule fluorescence spectroscopy holds the promise of providing direct measurements of protein folding free energy landscapes and conformational motions. However, fulfilling this promise has been prevented by technical limitations, most notably, the difficulty in analyzing the small packets of photons per millisecond that are typically recorded from individual biomolecules. Such limitation impairs the ability to accurately determine conformational distributions and resolve sub-millisecond processes. Here we develop an analytical procedure for extracting the conformational distribution and dynamics of fast-folding proteins directly from time-stamped photon arrival trajectories produced by single molecule FRET experiments. Our procedure combines the maximum likelihood analysis originally developed by Gopich and Szabo with a statistical mechanical model that describes protein folding as diffusion on a one-dimensional free energy surface. Using stochastic kinetic simulations, we thoroughly tested the performance of the method in identifying diverse fast-folding scenarios, ranging from two-state to one-state downhill folding, as a function of relevant experimental variables such as photon count rate, amount of input data, and background noise. The tests demonstrate that the analysis can accurately retrieve the original one-dimensional free energy surface and microsecond folding dynamics in spite of the sub-megahertz photon count rates and significant background noise levels of current single molecule fluorescence experiments. Therefore, our approach provides a powerful tool for the quantitative analysis of single molecule FRET experiments of fast protein folding that is also potentially extensible to the analysis of any other biomolecular process governed by sub-millisecond conformational dynamics.
Submillisecond Optical Knife-Edge Testing
NASA Technical Reports Server (NTRS)
Thurlow, P.
1983-01-01
Fast computer-controlled sampling of optical knife-edge response (KER) signal increases accuracy of optical system aberration measurement. Submicrosecond-response detectors in optical focal plane convert optical signals to electrical signals converted to digital data, sampled and feed into computer for storage and subsequent analysis. Optical data are virtually free of effects of index-of-refraction gradients.
Novel Organic Synthesis through Ultrafast Chemistry.
Wirth, Thomas
2017-01-16
How fast are flashes? The field of flow chemistry has recently received increasing attention owing to the availability of commercial flow equipment. New syntheses with very short-lived intermediates have been enabled by sub-millisecond mixing and reaction regimes in tailor-made flow devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrophysiological models of neural processing.
Nelson, Mark E
2011-01-01
The brain is an amazing information processing system that allows organisms to adaptively monitor and control complex dynamic interactions with their environment across multiple spatial and temporal scales. Mathematical modeling and computer simulation techniques have become essential tools in understanding diverse aspects of neural processing ranging from sub-millisecond temporal coding in the sound localization circuity of barn owls to long-term memory storage and retrieval in humans that can span decades. The processing capabilities of individual neurons lie at the core of these models, with the emphasis shifting upward and downward across different levels of biological organization depending on the nature of the questions being addressed. This review provides an introduction to the techniques for constructing biophysically based models of individual neurons and local networks. Topics include Hodgkin-Huxley-type models of macroscopic membrane currents, Markov models of individual ion-channel currents, compartmental models of neuronal morphology, and network models involving synaptic interactions among multiple neurons.
Plasma irregularities in the D-region ionosphere in association with sprite streamer initiation.
Qin, Jianqi; Pasko, Victor P; McHarg, Matthew G; Stenbaek-Nielsen, Hans C
2014-05-07
Sprites are spectacular optical emissions in the mesosphere induced by transient lightning electric fields above thunderstorms. Although the streamer nature of sprites has been generally accepted, how these filamentary plasmas are initiated remains a subject of active research. Here we present observational and modelling results showing solid evidence of pre-existing plasma irregularities in association with streamer initiation in the D-region ionosphere. The video observations show that before streamer initiation, kilometre-scale spatial structures descend rapidly with the overall diffuse emissions of the sprite halo, but slow down and stop to form the stationary glow in the vicinity of the streamer onset, from where streamers suddenly emerge. The modelling results reproduce the sub-millisecond halo dynamics and demonstrate that the descending halo structures are optical manifestations of the pre-existing plasma irregularities, which might have been produced by thunderstorm or meteor effects on the D-region ionosphere.
Directional hearing by linear summation of binaural inputs at the medial superior olive
van der Heijden, Marcel; Lorteije, Jeannette A. M.; Plauška, Andrius; Roberts, Michael T.; Golding, Nace L.; Borst, J. Gerard G.
2013-01-01
SUMMARY Neurons in the medial superior olive (MSO) enable sound localization by their remarkable sensitivity to submillisecond interaural time differences (ITDs). Each MSO neuron has its own “best ITD” to which it responds optimally. A difference in physical path length of the excitatory inputs from both ears cannot fully account for the ITD tuning of MSO neurons. As a result, it is still debated how these inputs interact and whether the segregation of inputs to opposite dendrites, well-timed synaptic inhibition, or asymmetries in synaptic potentials or cellular morphology further optimize coincidence detection or ITD tuning. Using in vivo whole-cell and juxtacellular recordings, we show here that ITD tuning of MSO neurons is determined by the timing of their excitatory inputs. The inputs from both ears sum linearly, whereas spike probability depends nonlinearly on the size of synaptic inputs. This simple coincidence detection scheme thus makes accurate sound localization possible. PMID:23764292
Dai, Xiaochuan; Zhou, Wei; Gao, Teng; Liu, Jia; Lieber, Charles M.
2016-01-01
Real-time mapping and manipulation of electrophysiology in three-dimensional (3D) tissues could impact broadly fundamental scientific and clinical studies, yet realization lacks effective methods. Here we introduce tissue-scaffold-mimicking 3D nanoelectronic arrays consisting of 64 addressable devices with subcellular dimensions and sub-millisecond time-resolution. Real-time extracellular action potential (AP) recordings reveal quantitative maps of AP propagation in 3D cardiac tissues, enable in situ tracing of the evolving topology of 3D conducting pathways in developing cardiac tissues, and probe the dynamics of AP conduction characteristics in a transient arrhythmia disease model and subsequent tissue self-adaptation. We further demonstrate simultaneous multi-site stimulation and mapping to manipulate actively the frequency and direction of AP propagation. These results establish new methodologies for 3D spatiotemporal tissue recording and control, and demonstrate the potential to impact regenerative medicine, pharmacology and electronic therapeutics. PMID:27347837
NASA Astrophysics Data System (ADS)
Andrade, Débora M.; Clausen, Mathias P.; Keller, Jan; Mueller, Veronika; Wu, Congying; Bear, James E.; Hell, Stefan W.; Lagerholm, B. Christoffer; Eggeling, Christian
2015-06-01
Important discoveries in the last decades have changed our view of the plasma membrane organisation. Specifically, the cortical cytoskeleton has emerged as a key modulator of the lateral diffusion of membrane proteins. Cytoskeleton-dependent compartmentalised lipid diffusion has been proposed, but this concept remains controversial because this phenomenon has thus far only been observed with artefact-prone probes in combination with a single technique: single particle tracking. In this paper, we report the first direct observation of compartmentalised phospholipid diffusion in the plasma membrane of living cells using a minimally invasive, fluorescent dye labelled lipid analogue. These observations were made using optical STED nanoscopy in combination with fluorescence correlation spectroscopy (STED-FCS), a technique which allows the study of membrane dynamics on a sub-millisecond time-scale and with a spatial resolution of down to 40 nm. Specifically, we find that compartmentalised phospholipid diffusion depends on the cortical actin cytoskeleton, and that this constrained diffusion is directly dependent on the F-actin branching nucleator Arp2/3. These findings provide solid evidence that the Arp2/3-dependent cortical actin cytoskeleton plays a pivotal role in the dynamic organisation of the plasma membrane, potentially regulating fundamental cellular processes.
A Conformal, Bio-interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology
Viventi, Jonathan; Kim, Dae-Hyeong; Moss, Joshua D.; Kim, Yun-Soung; Blanco, Justin A.; Annetta, Nicholas; Hicks, Andrew; Xiao, Jianliang; Huang, Younggang; Callans, David J.; Rogers, John A.; Litt, Brian
2011-01-01
The sophistication and resolution of current implantable medical devices are limited by the need connect each sensor separately to data acquisition systems. The ability of these devices to sample and modulate tissues is further limited by the rigid, planar nature of the electronics and the electrode-tissue interface. Here, we report the development of a class of mechanically flexible silicon electronics for measuring signals in an intimate, conformal integrated mode on the dynamic, three dimensional surfaces of soft tissues in the human body. We illustrate this technology in sensor systems composed of 2016 silicon nanomembrane transistors configured to record electrical activity directly from the curved, wet surface of a beating heart in vivo. The devices sample with simultaneous sub-millimeter and sub-millisecond resolution through 288 amplified and multiplexed channels. We use these systems to map the spread of spontaneous and paced ventricular depolarization in real time, at high resolution, on the epicardial surface in a porcine animal model. This clinical-scale demonstration represents one example of many possible uses of this technology in minimally invasive medical devices. [Conformal electronics and sensors intimately integrated with living tissues enable a new generation of implantable devices capable of addressing important problems in human health.] PMID:20375008
Andrade, Débora M; Clausen, Mathias P; Keller, Jan; Mueller, Veronika; Wu, Congying; Bear, James E; Hell, Stefan W; Lagerholm, B Christoffer; Eggeling, Christian
2015-06-29
Important discoveries in the last decades have changed our view of the plasma membrane organisation. Specifically, the cortical cytoskeleton has emerged as a key modulator of the lateral diffusion of membrane proteins. Cytoskeleton-dependent compartmentalised lipid diffusion has been proposed, but this concept remains controversial because this phenomenon has thus far only been observed with artefact-prone probes in combination with a single technique: single particle tracking. In this paper, we report the first direct observation of compartmentalised phospholipid diffusion in the plasma membrane of living cells using a minimally invasive, fluorescent dye labelled lipid analogue. These observations were made using optical STED nanoscopy in combination with fluorescence correlation spectroscopy (STED-FCS), a technique which allows the study of membrane dynamics on a sub-millisecond time-scale and with a spatial resolution of down to 40 nm. Specifically, we find that compartmentalised phospholipid diffusion depends on the cortical actin cytoskeleton, and that this constrained diffusion is directly dependent on the F-actin branching nucleator Arp2/3. These findings provide solid evidence that the Arp2/3-dependent cortical actin cytoskeleton plays a pivotal role in the dynamic organisation of the plasma membrane, potentially regulating fundamental cellular processes.
Andrade, Débora M.; Clausen, Mathias P.; Keller, Jan; Mueller, Veronika; Wu, Congying; Bear, James E.; Hell, Stefan W.; Lagerholm, B. Christoffer; Eggeling, Christian
2015-01-01
Important discoveries in the last decades have changed our view of the plasma membrane organisation. Specifically, the cortical cytoskeleton has emerged as a key modulator of the lateral diffusion of membrane proteins. Cytoskeleton-dependent compartmentalised lipid diffusion has been proposed, but this concept remains controversial because this phenomenon has thus far only been observed with artefact-prone probes in combination with a single technique: single particle tracking. In this paper, we report the first direct observation of compartmentalised phospholipid diffusion in the plasma membrane of living cells using a minimally invasive, fluorescent dye labelled lipid analogue. These observations were made using optical STED nanoscopy in combination with fluorescence correlation spectroscopy (STED-FCS), a technique which allows the study of membrane dynamics on a sub-millisecond time-scale and with a spatial resolution of down to 40 nm. Specifically, we find that compartmentalised phospholipid diffusion depends on the cortical actin cytoskeleton, and that this constrained diffusion is directly dependent on the F-actin branching nucleator Arp2/3. These findings provide solid evidence that the Arp2/3-dependent cortical actin cytoskeleton plays a pivotal role in the dynamic organisation of the plasma membrane, potentially regulating fundamental cellular processes. PMID:26118385
Computation of interaural time difference in the owl's coincidence detector neurons.
Funabiki, Kazuo; Ashida, Go; Konishi, Masakazu
2011-10-26
Both the mammalian and avian auditory systems localize sound sources by computing the interaural time difference (ITD) with submillisecond accuracy. The neural circuits for this computation in birds consist of axonal delay lines and coincidence detector neurons. Here, we report the first in vivo intracellular recordings from coincidence detectors in the nucleus laminaris of barn owls. Binaural tonal stimuli induced sustained depolarizations (DC) and oscillating potentials whose waveforms reflected the stimulus. The amplitude of this sound analog potential (SAP) varied with ITD, whereas DC potentials did not. The amplitude of the SAP was correlated with firing rate in a linear fashion. Spike shape, synaptic noise, the amplitude of SAP, and responsiveness to current pulses differed between cells at different frequencies, suggesting an optimization strategy for sensing sound signals in neurons tuned to different frequencies.
Rate limit of protein elastic response is tether dependent
Berkovich, Ronen; Hermans, Rodolfo I.; Popa, Ionel; Stirnemann, Guillaume; Garcia-Manyes, Sergi; Berne, Bruce J.; Fernandez, Julio M.
2012-01-01
The elastic restoring force of tissues must be able to operate over the very wide range of loading rates experienced by living organisms. It is surprising that even the fastest events involving animal muscle tissues do not surpass a few hundred hertz. We propose that this limit is set in part by the elastic dynamics of tethered proteins extending and relaxing under a changing load. Here we study the elastic dynamics of tethered proteins using a fast force spectrometer with sub-millisecond time resolution, combined with Brownian and Molecular Dynamics simulations. We show that the act of tethering a polypeptide to an object, an inseparable part of protein elasticity in vivo and in experimental setups, greatly reduces the attempt frequency with which the protein samples its free energy. Indeed, our data shows that a tethered polypeptide can traverse its free-energy landscape with a surprisingly low effective diffusion coefficient Deff ∼ 1,200 nm2/s. By contrast, our Molecular Dynamics simulations show that diffusion of an isolated protein under force occurs at Deff ∼ 108 nm2/s. This discrepancy is attributed to the drag force caused by the tethering object. From the physiological time scales of tissue elasticity, we calculate that tethered elastic proteins equilibrate in vivo with Deff ∼ 104–106 nm2/s which is two to four orders magnitude smaller than the values measured for untethered proteins in bulk. PMID:22895787
Short-pulse excitation of microwave plasma for efficient diamond growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Hideaki, E-mail: yamada-diamond@aist.go.jp; Chayahara, Akiyoshi; Mokuno, Yoshiaki
To realize a variety of potential applications of diamonds, particularly in the area of power electronics, it is indispensable to improve their growth efficiency. Most conventional approaches have tried to achieve this simply by increasing the gas temperature; however, this makes it difficult to grow large diamond crystals. To improve the growth efficiency while lowering the gas temperature, we propose that using a pulse-modulated microwave plasma with a sub-millisecond pulse width can enhance the power efficiency of the growth rate of single-crystal diamonds. We found that using a sub-millisecond pulse-mode discharge could almost double the growth rate obtained using continuousmore » mode discharge for a fixed average microwave power and gas pressure. A comparison between experimental observations of the optical emission spectra of the discharge and a numerical simulation of the gas temperature suggests that a decrease in the gas temperature was achieved, and highlights the importance of electron-dominated reactions for obtaining the enhancement of the growth rate. This result will have a large impact in the area of diamond growth because it enables diamond growth to be more power efficient at reduced temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, David R.; Wagstaff, Kiri L.; Majid, Walid A.
2011-07-10
Recent investigations reveal an important new class of transient radio phenomena that occur on submillisecond timescales. Often, transient surveys' data volumes are too large to archive exhaustively. Instead, an online automatic system must excise impulsive interference and detect candidate events in real time. This work presents a case study using data from multiple geographically distributed stations to perform simultaneous interference excision and transient detection. We present several algorithms that incorporate dedispersed data from multiple sites, and report experiments with a commensal real-time transient detection system on the Very Long Baseline Array. We test the system using observations of pulsar B0329+54.more » The multiple-station algorithms enhanced sensitivity for detection of individual pulses. These strategies could improve detection performance for a future generation of geographically distributed arrays such as the Australian Square Kilometre Array Pathfinder and the Square Kilometre Array.« less
Fast Switching Magnet for Heavy Ion Beam Separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartzell, Josiah
2017-10-03
Fast magnets for multiplexing ion beams between different beamlines are technologically challenging and expensive, but there is an ever-growing need to develop such systems for beam separation at research and industrial facilities. For example, The Argonne Tandem Linac Accelerator System (ATLAS) is planning to expand its operations as a multi-user facility and there is a clear need, presently unmet by the industry, for a switching magnet system with the sub-millisecond transient times.In response to this problem, RadiaBeam Technologies is developing a novel pulsed switching magnet system capable of producing a 1.1T peak field over 45 cm length with a shortmore » (<1 ms) rise and fall time. The key enabling innovation in this project is an introduction of a solid-state interposed modulator architecture, which enables to improve magnet performance and reliability and reduce the cost to a practical level.« less
Dai, Xiaochuan; Zhou, Wei; Gao, Teng; Liu, Jia; Lieber, Charles M
2016-09-01
Real-time mapping and manipulation of electrophysiology in three-dimensional (3D) tissues could have important impacts on fundamental scientific and clinical studies, yet realization is hampered by a lack of effective methods. Here we introduce tissue-scaffold-mimicking 3D nanoelectronic arrays consisting of 64 addressable devices with subcellular dimensions and a submillisecond temporal resolution. Real-time extracellular action potential (AP) recordings reveal quantitative maps of AP propagation in 3D cardiac tissues, enable in situ tracing of the evolving topology of 3D conducting pathways in developing cardiac tissues and probe the dynamics of AP conduction characteristics in a transient arrhythmia disease model and subsequent tissue self-adaptation. We further demonstrate simultaneous multisite stimulation and mapping to actively manipulate the frequency and direction of AP propagation. These results establish new methodologies for 3D spatiotemporal tissue recording and control, and demonstrate the potential to impact regenerative medicine, pharmacology and electronic therapeutics.
Sub-millisecond ligand probing of cell receptors with multiple solution exchange
Sylantyev, Sergiy; Rusakov, Dmitri A
2013-01-01
The accurate knowledge of receptor kinetics is crucial to our understanding of cell signal transduction in general and neural function in particular. The classical technique of probing membrane receptors on a millisecond scale involves placing a recording micropipette with a membrane patch in front of a double-barrel (θ-glass) application pipette mounted on a piezo actuator. Driven by electric pulses, the actuator can rapidly shift the θ-glass pipette tip, thus exposing the target receptors to alternating ligand solutions. However, membrane patches survive for only a few minutes, thus normally restricting such experiments to a single-application protocol. In order to overcome this deficiency, we have introduced pressurized supply microcircuits in the θ-glass channels, thus enabling repeated replacement of application solutions within 10–15 s. this protocol, which has been validated in our recent studies and takes 20–60 min to implement, allows the characterization of ligand-receptor interactions with high sensitivity, thereby also enabling a powerful paired-sample statistical design. PMID:23744290
Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy.
Huang, Xiaoshuai; Fan, Junchao; Li, Liuju; Liu, Haosen; Wu, Runlong; Wu, Yi; Wei, Lisi; Mao, Heng; Lal, Amit; Xi, Peng; Tang, Liqiang; Zhang, Yunfeng; Liu, Yanmei; Tan, Shan; Chen, Liangyi
2018-06-01
To increase the temporal resolution and maximal imaging time of super-resolution (SR) microscopy, we have developed a deconvolution algorithm for structured illumination microscopy based on Hessian matrixes (Hessian-SIM). It uses the continuity of biological structures in multiple dimensions as a priori knowledge to guide image reconstruction and attains artifact-minimized SR images with less than 10% of the photon dose used by conventional SIM while substantially outperforming current algorithms at low signal intensities. Hessian-SIM enables rapid imaging of moving vesicles or loops in the endoplasmic reticulum without motion artifacts and with a spatiotemporal resolution of 88 nm and 188 Hz. Its high sensitivity allows the use of sub-millisecond excitation pulses followed by dark recovery times to reduce photobleaching of fluorescent proteins, enabling hour-long time-lapse SR imaging of actin filaments in live cells. Finally, we observed the structural dynamics of mitochondrial cristae and structures that, to our knowledge, have not been observed previously, such as enlarged fusion pores during vesicle exocytosis.
Structure and dynamics of proflavine association around DNA.
Sasikala, Wilbee D; Mukherjee, Arnab
2016-04-21
Proflavine is a small molecule that intercalates into DNA and, thereby, acts as an anticancer agent. Intercalation of proflavine is shown to be a two-step process in which the first step is believed to be the formation of a pre-intercalative outside bound state. Experimental studies so far have been unable to capture the nature of the outside bound state. However, the sub-millisecond timescale observed in fluorescence kinetic experiments is often attributed to the binding of proflavine outside of DNA. Here, we have performed molecular dynamics simulations with multiple proflavine molecules to study the structure and dynamics of the formation of the outside bound state of DNA at different ion concentrations. We observed that the timescale of the outside bound state formation is, at least, five orders of magnitude faster (in nanoseconds) than the experimentally reported timescale (sub-milliseconds) attributed to binding outside DNA. Moreover, we also observed the stacked arrangement of proflavine all around DNA, which is different from the experimentally predicted stacking arrangement perpendicular to the helical axis of DNA in the close vicinity of the phosphate groups. This study, therefore, provides insight into the molecular structure and dynamics of the pre-intercalative outside bound state and will help in understanding the overall intercalation mechanism.
Three-dimensional arbitrary voxel shapes in spectroscopy with submillisecond TEs.
Snyder, Jeff; Haas, Martin; Dragonu, Iulius; Hennig, Jürgen; Zaitsev, Maxim
2012-08-01
A novel spectroscopic method for submillisecond TEs and three-dimensional arbitrarily shaped voxels was developed and applied to phantom and in vivo measurements, with additional parallel excitation (PEX) implementation. A segmented spherical shell excitation trajectory was used in combination with appropriate radiofrequency weights for target selection in three dimensions. Measurements in a two-compartment phantom realized a TE of 955 µs, excellent spectral quality and comparable signal-to-noise ratios between accelerated (R = 2) and nonaccelerated modes. The two-compartment model allowed a comparison of the spectral suppression qualities of the method and, although outer volume signals were suppressed by factors of 1434 and 2246 compared with the theoretical unsuppressed case for the clinical and PEX modes, respectively, incomplete suppression of the outer volume (935 cm(3) compared with a target volume of 5.86 cm(3) ) resulted in a spectral contamination of 10.2% and 6.5% compared with the total signal. The method was also demonstrated in vivo in human brain on a clinical system at TE = 935 µs with good signal-to-noise ratio and spatial and spectral selection, and included LCModel relative quantification analysis. Eight metabolites showed significant fitting accuracy, including aspartate, N-acetylaspartylglutamate, glutathione and glutamate. Copyright © 2012 John Wiley & Sons, Ltd.
The energy landscape of glassy dynamics on the amorphous hafnium diboride surface
NASA Astrophysics Data System (ADS)
Nguyen, Duc; Mallek, Justin; Cloud, Andrew N.; Abelson, John R.; Girolami, Gregory S.; Lyding, Joseph; Gruebele, Martin
2014-11-01
Direct visualization of the dynamics of structural glasses and amorphous solids on the sub-nanometer scale provides rich information unavailable from bulk or conventional single molecule techniques. We study the surface of hafnium diboride, a conductive ultrahigh temperature ceramic material that can be grown in amorphous films. Our scanning tunneling movies have a second-to-hour dynamic range and single-point current measurements extend that to the millisecond-to-minute time scale. On the a-HfB2 glass surface, two-state hopping of 1-2 nm diameter cooperatively rearranging regions or "clusters" occurs from sub-milliseconds to hours. We characterize individual clusters in detail through high-resolution (<0.5 nm) imaging, scanning tunneling spectroscopy and voltage modulation, ruling out individual atoms, diffusing adsorbates, or pinned charges as the origin of the observed two-state hopping. Smaller clusters are more likely to hop, larger ones are more likely to be immobile. HfB2 has a very high bulk glass transition temperature Tg, and we observe no three-state hopping or sequential two-state hopping previously seen on lower Tg glass surfaces. The electronic density of states of clusters does not change when they hop up or down, allowing us to calibrate an accurate relative z-axis scale. By directly measuring and histogramming single cluster vertical displacements, we can reconstruct the local free energy landscape of individual clusters, complete with activation barrier height, a reaction coordinate in nanometers, and the shape of the free energy landscape basins between which hopping occurs. The experimental images are consistent with the compact shape of α-relaxors predicted by random first order transition theory, whereas the rapid hopping rate, even taking less confined motion at the surface into account, is consistent with β-relaxations. We make a proposal of how "mixed" features can show up in surface dynamics of glasses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Duc; Girolami, Gregory S.; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Direct visualization of the dynamics of structural glasses and amorphous solids on the sub-nanometer scale provides rich information unavailable from bulk or conventional single molecule techniques. We study the surface of hafnium diboride, a conductive ultrahigh temperature ceramic material that can be grown in amorphous films. Our scanning tunneling movies have a second-to-hour dynamic range and single-point current measurements extend that to the millisecond-to-minute time scale. On the a-HfB{sub 2} glass surface, two-state hopping of 1–2 nm diameter cooperatively rearranging regions or “clusters” occurs from sub-milliseconds to hours. We characterize individual clusters in detail through high-resolution (<0.5 nm) imaging, scanning tunnelingmore » spectroscopy and voltage modulation, ruling out individual atoms, diffusing adsorbates, or pinned charges as the origin of the observed two-state hopping. Smaller clusters are more likely to hop, larger ones are more likely to be immobile. HfB{sub 2} has a very high bulk glass transition temperature T{sub g}, and we observe no three-state hopping or sequential two-state hopping previously seen on lower T{sub g} glass surfaces. The electronic density of states of clusters does not change when they hop up or down, allowing us to calibrate an accurate relative z-axis scale. By directly measuring and histogramming single cluster vertical displacements, we can reconstruct the local free energy landscape of individual clusters, complete with activation barrier height, a reaction coordinate in nanometers, and the shape of the free energy landscape basins between which hopping occurs. The experimental images are consistent with the compact shape of α-relaxors predicted by random first order transition theory, whereas the rapid hopping rate, even taking less confined motion at the surface into account, is consistent with β-relaxations. We make a proposal of how “mixed” features can show up in surface dynamics of glasses.« less
Integrated Vertical Bloch Line (VBL) memory
NASA Technical Reports Server (NTRS)
Katti, R. R.; Wu, J. C.; Stadler, H. L.
1991-01-01
Vertical Bloch Line (VBL) Memory is a recently conceived, integrated, solid state, block access, VLSI memory which offers the potential of 1 Gbit/sq cm areal storage density, data rates of hundreds of megabits/sec, and submillisecond average access time simultaneously at relatively low mass, volume, and power values when compared to alternative technologies. VBLs are micromagnetic structures within magnetic domain walls which can be manipulated using magnetic fields from integrated conductors. The presence or absence of BVL pairs are used to store binary information. At present, efforts are being directed at developing a single chip memory using 25 Mbit/sq cm technology in magnetic garnet material which integrates, at a single operating point, the writing, storage, reading, and amplification functions needed in a memory. The current design architecture, functional elements, and supercomputer simulation results are described which are used to assist the design process.
Investigating fast enzyme-DNA kinetics using multidimensional fluorescence imaging and microfluidics
NASA Astrophysics Data System (ADS)
Robinson, Tom; Manning, Hugh B.; Dunsby, Christopher; Neil, Mark A. A.; Baldwin, Geoff S.; de Mello, Andrew J.; French, Paul M. W.
2010-02-01
We have developed a rapid microfluidic mixing device to image fast kinetics. To verify the performance of the device it was simulated using computational fluid dynamics (CFD) and the results were directly compared to experimental fluorescence lifetime imaging (FLIM) measurements. The theoretical and measured mixing times of the device were found to be in agreement over a range of flow rates. This mixing device is being developed with the aim of analysing fast enzyme kinetics in the sub-millisecond time domain, which cannot be achieved with conventional macro-stopped flow devices. Here we have studied the binding of a DNA repair enzyme, uracil DNA glycosylase (UDG), to a fluorescently labelled DNA substrate. Bulk phase fluorescence measurements have been used to measure changes on binding: it was found that the fluorescence lifetime increased along with an increase in the polarisation anisotropy and rotational correlation time. Analysis of the same reaction in the microfluidic mixer by CFD enabled us to predict the mixing time of the device to be 46 μs, more than 20 times faster than current stopped-flow techniques. We also demonstrate that it is possible to image UDG-DNA interactions within the micromixer using the signal changes observed from the multidimensional spectrofluorometer.
Gentet, Luc J; Clements, John D
2002-01-01
The kinetic properties of the human α1 homomeric glycine receptor were investigated. Receptors were expressed in HEK 293 cells, and glycine was applied to outside-out membrane patches with sub-millisecond solution exchange. The activation time course of the glycine response was used to investigate receptor stoichiometry. The unbinding of three strychnine molecules and the cooperative binding of two glycine molecules were required to activate the channel. The effects of phosphorylation on glycine receptor kinetics were investigated by pretreating cells with phosphorylators or with phosphatases. Phosphorylation accelerated desensitisation, but slowed deactivation and recovery from desensitisation. A chemical-kinetic model was developed that reproduced the experimental observations. The model suggests that only three binding sites on the glycine channel are functional, while the remaining two binding sites are ‘silent’, possibly due to strong negative cooperativity. PMID:12356883
NASA Astrophysics Data System (ADS)
Chang, Chia-Ming; Wang, Yu-Jen; Chen, Hung-Shan; Lin, Yi-Hsin; Srivastava, Abhishek K.; Chigrinov, Vladimir G.
2015-09-01
We have developed a bistable negative lens by integrating a polarization switch of ferroelectric liquid crystals (FLCs) with a passively anisotropic focusing element. The proposed lens not only exhibits electrically tunable bistability but also fast response time of sub-milliseconds, which leads to good candidate of optical component in optical system for medical applications. In this paper, we demonstrate an optical system consisting of two FLC phase retarders and one LC lenses that exhibits both of electrically tunable wavelength and size of exposure area. The operating principles and the experimental results are discussed. The tunable spectrum, exposure area size and tunable irradiance are illustrated. Compared to conventional lenses with mechanical movements in the medical light therapy system, our electrically switchable optical system is more practical in the portable applications of light therapy (LLLT).
NASA Astrophysics Data System (ADS)
Romanov, D. A.; Goncharova, E. N.; Gromov, V. E.; Ivanov, Yu F.
2016-09-01
Multi-layered coating from immiscible components based on the system Mo-Ni-Cu was formed by the combined method of electro-explosive sputtering and subsequent irradiation by high-intensity pulse electron beam of submillisecond duration of influence on the surface of electrical copper contact (M00 grade of copper). The structure and phase composition studies of the applied coating as well as its mechanical and tribological properties are carried out.
Fast response liquid crystal devices
NASA Astrophysics Data System (ADS)
Wu, Yung-Hsun
Liquid crystal (LC) has been widely used for displays, spatial light modulators, variable optical attenuators (VOAs) and other tunable photonic devices. The response time of these devices is mainly determined by the employed liquid crystal material. The response time of a LC device depends on the visco-elastic coefficient (gamma1/K11), LC cell gap (d), and applied voltage. Hence, low visco-elastic coefficient LC materials and thinner cell gap are favorable for reducing the response time. However, low visco-elastic coefficient LCs are usually associated with a low birefringence because of shorter molecular conjugation. For display applications, such as LCD TVs, low birefringence (Deltan<0.1) LCs are commonly used. However, for optical communications at 1550 nm, low birefringence requires to a thick cell gap which, in turn, increases the response time. How to obtain fast response for the LC devices is a fundamentally important and technically challenging task. In this dissertation, we investigate several methods to improve liquid crystal response time, for examples, using dual-frequency liquid crystals, polymer stabilized liquid crystals, and sheared polymer network liquid crystals. We discover a new class of material, denoted as sheared polymer network liquid crystal (SPNLC) which exhibits a submillisecond response time. Moreover, this response time is insensitive to the LC cell gap. This is the first LC device exhibiting such an interesting property. Chapters 1 and 2 describe the motivation and background of this dissertation. From chapter 3 to chapter 6, dual-frequency liquid crystals and polymer network methods are demonstrated as examples for the variable optical attenuators. Variable optical attenuator (VOA) is a key component in optical communications. Especially, the sheared PNLC VOA shows the best result; its dynamic range reaches 43 dB while the response time is in the submillisecond range at 1550 nm wavelength, which is 50 times faster than the commercial LC-based VOA. In Chapter 7, we report a new device called axially-symmetric sheared polymer network liquid crystals (AS-SPNLC) and use it as LC devices. Through analyzing the structure of this axially-symmetric SPNLC, we construct a 3-D model to explain the observed phenomena. An axially-symmetric sheared polymer network liquid crystal has several attractive features: (1) it is polarization independent, (2) it has gradient phase change, and (3) its response time is fast. It can be used for polarization converter and divergent LC lens. In addition, a new method for simultaneously measuring the phase retardation and optic axis of a compensation film is demonstrated using an axially-symmetric sheared polymer network liquid crystal. By overlaying a tested compensation film with a calibrated SPNLC cell between crossed polarizers, the optic axis and phase retardation value of the compensation film can be determined. This simple technique can be used for simultaneously measuring the optic axis and phase retardations of both A- and C-plates. These compensation films have been used extensively in wide-view LCD industry. Therefore, this method will make an important impact to the LCD industry.
Large Observatory for x-ray Timing (LOFT-P): a Probe-class mission concept study
NASA Astrophysics Data System (ADS)
Wilson-Hodge, Colleen A.; Ray, Paul S.; Chakrabarty, Deepto; Feroci, Marco; Alvarez, Laura; Baysinger, Michael; Becker, Chris; Bozzo, Enrico; Brandt, Soren; Carson, Billy; Chapman, Jack; Dominguez, Alexandra; Fabisinski, Leo; Gangl, Bert; Garcia, Jay; Griffith, Christopher; Hernanz, Margarita; Hickman, Robert; Hopkins, Randall; Hui, Michelle; Ingram, Luster; Jenke, Peter; Korpela, Seppo; Maccarone, Tom; Michalska, Malgorzata; Pohl, Martin; Santangelo, Andrea; Schanne, Stephane; Schnell, Andrew; Stella, Luigi; van der Klis, Michiel; Watts, Anna; Winter, Berend; Zane, Silvia
2016-07-01
LOFT-P is a mission concept for a NASA Astrophysics Probe-Class (<$1B) X-ray timing mission, based on the LOFT M-class concept originally proposed to ESAs M3 and M4 calls. LOFT-P requires very large collecting area, high time resolution, good spectral resolution, broad-band spectral coverage (2-30 keV), highly flexible scheduling, and an ability to detect and respond promptly to time-critical targets of opportunity. It addresses science questions such as: What is the equation of state of ultra dense matter? What are the effects of strong gravity on matter spiraling into black holes? It would be optimized for sub-millisecond timing of bright Galactic X-ray sources including X-ray bursters, black hole binaries, and magnetars to study phenomena at the natural timescales of neutron star surfaces and black hole event horizons and to measure mass and spin of black holes. These measurements are synergistic to imaging and high-resolution spectroscopy instruments, addressing much smaller distance scales than are possible without very long baseline X-ray interferometry, and using complementary techniques to address the geometry and dynamics of emission regions. LOFT-P would have an effective area of >6 m2, > 10x that of the highly successful Rossi X-ray Timing Explorer (RXTE). A sky monitor (2-50 keV) acts as a trigger for pointed observations, providing high duty cycle, high time resolution monitoring of the X-ray sky with 20 times the sensitivity of the RXTE All-Sky Monitor, enabling multi-wavelength and multimessenger studies. A probe-class mission concept would employ lightweight collimator technology and large-area solid-state detectors, segmented into pixels or strips, technologies which have been recently greatly advanced during the ESA M3 Phase A study of LOFT. Given the large community interested in LOFT (>800 supporters*, the scientific productivity of this mission is expected to be very high, similar to or greater than RXTE ( 2000 refereed publications). We describe the results of a study, recently completed by the MSFC Advanced Concepts Office, that demonstrates that such a mission is feasible within a NASA probe-class mission budget.
4D electron microscopy: principles and applications.
Flannigan, David J; Zewail, Ahmed H
2012-10-16
The transmission electron microscope (TEM) is a powerful tool enabling the visualization of atoms with length scales smaller than the Bohr radius at a factor of only 20 larger than the relativistic electron wavelength of 2.5 pm at 200 keV. The ability to visualize matter at these scales in a TEM is largely due to the efforts made in correcting for the imperfections in the lens systems which introduce aberrations and ultimately limit the achievable spatial resolution. In addition to the progress made in increasing the spatial resolution, the TEM has become an all-in-one characterization tool. Indeed, most of the properties of a material can be directly mapped in the TEM, including the composition, structure, bonding, morphology, and defects. The scope of applications spans essentially all of the physical sciences and includes biology. Until recently, however, high resolution visualization of structural changes occurring on sub-millisecond time scales was not possible. In order to reach the ultrashort temporal domain within which fundamental atomic motions take place, while simultaneously retaining high spatial resolution, an entirely new approach from that of millisecond-limited TEM cameras had to be conceived. As shown below, the approach is also different from that of nanosecond-limited TEM, whose resolution cannot offer the ultrafast regimes of dynamics. For this reason "ultrafast electron microscopy" is reserved for the field which is concerned with femtosecond to picosecond resolution capability of structural dynamics. In conventional TEMs, electrons are produced by heating a source or by applying a strong extraction field. Both methods result in the stochastic emission of electrons, with no control over temporal spacing or relative arrival time at the specimen. The timing issue can be overcome by exploiting the photoelectric effect and using pulsed lasers to generate precisely timed electron packets of ultrashort duration. The spatial and temporal resolutions achievable with short intense pulses containing a large number of electrons, however, are limited to tens of nanometers and nanoseconds, respectively. This is because Coulomb repulsion is significant in such a pulse, and the electrons spread in space and time, thus limiting the beam coherence. It is therefore not possible to image the ultrafast elementary dynamics of complex transformations. The challenge was to retain the high spatial resolution of a conventional TEM while simultaneously enabling the temporal resolution required to visualize atomic-scale motions. In this Account, we discuss the development of four-dimensional ultrafast electron microscopy (4D UEM) and summarize techniques and applications that illustrate the power of the approach. In UEM, images are obtained either stroboscopically with coherent single-electron packets or with a single electron bunch. Coulomb repulsion is absent under the single-electron condition, thus permitting imaging, diffraction, and spectroscopy, all with high spatiotemporal resolution, the atomic scale (sub-nanometer and femtosecond). The time resolution is limited only by the laser pulse duration and energy carried by the electron packets; the CCD camera has no bearing on the temporal resolution. In the regime of single pulses of electrons, the temporal resolution of picoseconds can be attained when hundreds of electrons are in the bunch. The applications given here are selected to highlight phenomena of different length and time scales, from atomic motions during structural dynamics to phase transitions and nanomechanical oscillations. We conclude with a brief discussion of emerging methods, which include scanning ultrafast electron microscopy (S-UEM), scanning transmission ultrafast electron microscopy (ST-UEM) with convergent beams, and time-resolved imaging of biological structures at ambient conditions with environmental cells.
Passive Microfluidic device for Sub Millisecond Mixing
McMahon, Jay; Mohamed, Hisham; Barnard, David; Shaikh, Tanvir R.; Mannella, Carmen A.; Wagenknecht, Terence; Lu, Toh-Ming
2009-01-01
We report the investigation of a novel microfluidic mixing device to achieve submillisecond mixing. The micromixer combines two fluid streams of several microliters per second into a mixing compartment integrated with two T- type premixers and 4 butterfly-shaped in-channel mixing elements. We have employed three dimensional fluidic simulations to evaluate the mixing efficiency, and have constructed physical devices utilizing conventional microfabrication techniques. The simulation indicated thorough mixing at flow rate as low as 6 µL/s. The corresponding mean residence time is 0.44 ms for 90% of the particles simulated, or 0.49 ms for 95% of the particles simulated, respectively. The mixing efficiency of the physical device was also evaluated using fluorescein dye solutions and FluoSphere-red nanoparticles suspensions. The constructed micromixers achieved thorough mixing at the same flow rate of 6 µL/s, with the mixing indices of 96% ± 1%, and 98% ± 1% for the dye and the nanoparticle, respectively. The experimental results are consistent with the simulation data. The device demonstrated promising capabilities for time resolved studies for macromolecular dynamics of biological macromolecules. PMID:20161619
Brock, Jon; Bzishvili, Samantha; Reid, Melanie; Hautus, Michael; Johnson, Blake W
2013-11-01
Atypical auditory perception is a widely recognised but poorly understood feature of autism. In the current study, we used magnetoencephalography to measure the brain responses of 10 autistic children as they listened passively to dichotic pitch stimuli, in which an illusory tone is generated by sub-millisecond inter-aural timing differences in white noise. Relative to control stimuli that contain no inter-aural timing differences, dichotic pitch stimuli typically elicit an object related negativity (ORN) response, associated with the perceptual segregation of the tone and the carrier noise into distinct auditory objects. Autistic children failed to demonstrate an ORN, suggesting a failure of segregation; however, comparison with the ORNs of age-matched typically developing controls narrowly failed to attain significance. More striking, the autistic children demonstrated a significant differential response to the pitch stimulus, peaking at around 50 ms. This was not present in the control group, nor has it been found in other groups tested using similar stimuli. This response may be a neural signature of atypical processing of pitch in at least some autistic individuals.
Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding
Gardner, Brian; Grüning, André
2016-01-01
Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one relying on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of the FILT rule in most cases, underpinned by the rule’s error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find the FILT rule to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of the FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also implementable as an online method for increased biological realism. PMID:27532262
Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.
Gardner, Brian; Grüning, André
2016-01-01
Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one relying on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of the FILT rule in most cases, underpinned by the rule's error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find the FILT rule to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of the FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also implementable as an online method for increased biological realism.
Pinning and gas oversaturation imply stable single surface nanobubbles.
Lohse, Detlef; Zhang, Xuehua
2015-03-01
Surface nanobubbles are experimentally known to survive for days at hydrophobic surfaces immersed in gas-oversaturated water. This is different from bulk nanobubbles, which are pressed out by the Laplace pressure against any gas oversaturation and dissolve in submilliseconds, as derived by Epstein and Plesset [J. Chem. Phys. 18, 1505 (1950)]. Pinning of the contact line has been speculated to be the reason for the stability of the surface nanobubbles. Building on an exact result by Popov [Phys. Rev. E 71, 036313 (2005)] on coffee stain evaporation, here we confirm this speculation by an exact calculation for single surface nanobubbles. It is based only on (i) the diffusion equation, (ii) Laplace pressure, and (iii) Henry's equation, i.e., fluid dynamical equations which are all known to be valid down to the nanometer scale. The crucial parameter is the gas oversaturation ζ of the liquid. At the stable equilibrium, the gas overpressures due to this oversaturation and the Laplace pressure balance. The theory predicts how the contact angle of the pinned bubble depends on ζ and the surface nanobubble's footprint lateral extension L. It also predicts an upper lateral extension threshold for stable surface nanobubbles to exist.
Muneyuki, Eiro; Shibazaki, Chie; Wada, Yoichiro; Yakushizin, Manabu; Ohtani, Hiroyuki
2002-01-01
The photovoltage generation by halorhodopsin from Halobacterium salinarum (shR) was examined by adsorbing shR-containing membranes onto a thin polymer film. The photovoltage consisted of two major components: one with a sub-millisecond range time constant and the other with a millisecond range time constant with different amplitudes, as previously reported. These components exhibited different Cl(-) concentration dependencies (0.1-9 M). We found that the time constant for the fast component was relatively independent of the Cl(-) concentration, whereas the time constant for the slow component increased sigmoidally at higher Cl(-) concentrations. The fast and the slow processes were attributed to charge (Cl(-)) movements within the protein and related to Cl(-) ejection, respectively. The laser photolysis studies of shR-membrane suspensions revealed that they corresponded to the formation and the decay of the N intermediate. The photovoltage amplitude of the slow component exhibited a distorted bell-shaped Cl(-) concentration dependence, and the Cl(-) concentration dependence of its time constant suggested a weak and highly cooperative Cl(-)-binding site(s) on the cytoplasmic side (apparent K(D) of approximately 5 M and Hill coefficient > or =5). The Cl(-) concentration dependence of the photovoltage amplitude and the time constant for the slow process suggested a competition between spontaneous relaxation and ion translocation. The time constant for the relaxation was estimated to be >100 ms. PMID:12324398
NASA Astrophysics Data System (ADS)
Lerner, Eitan; Ingargiola, Antonino; Weiss, Shimon
2018-03-01
Bio-macromolecules carry out complicated functions through structural changes. To understand their mechanism of action, the structure of each step has to be characterized. While classical structural biology techniques allow the characterization of a few "structural snapshots" along the enzymatic cycle (usually of stable conformations), they do not cover all (and often fast interconverting) structures in the ensemble, where each may play an important functional role. Recently, several groups have demonstrated that structures of different conformations in solution could be solved by measuring multiple distances between different pairs of residues using single-molecule Förster resonance energy transfer (smFRET) and using them as constrains for hybrid/integrative structural modeling. However, this approach is limited in cases where the conformational dynamics is faster than the technique's temporal resolution. In this study, we combine existing tools that elucidate sub-millisecond conformational dynamics together with hybrid/integrative structural modeling to study the conformational states of the transcription bubble in the bacterial RNA polymerase-promoter open complex (RPo). We measured microsecond alternating laser excitation-smFRET of differently labeled lacCONS promoter dsDNA constructs. We used a combination of burst variance analysis, photon-by-photon hidden Markov modeling, and the FRET-restrained positioning and screening approach to identify two conformational states for RPo. The experimentally derived distances of one conformational state match the known crystal structure of bacterial RPo. The experimentally derived distances of the other conformational state have characteristics of a scrunched RPo. These findings support the hypothesis that sub-millisecond dynamics in the transcription bubble are responsible for transcription start site selection.
Sub-millisecond response time in a photorefractive composite operating under CW conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Jong -Sik; Stevens, Tyler E.; Monson, Todd C.
Extensive study of photorefractive polymeric composites photosensitized with semiconductor nanocrystals has yielded data indicating that the inclusion of such nanocrystals enhances the charge-carrier mobility, and subsequently leads to a reduction in the photorefractive response time. Unfortunately, the included nanocrystals may also act as a source of deep traps, resulting in diminished diffraction efficiencies as well as reduced two beam coupling gain coefficients. Nonetheless, previous studies indicate that this problem is mitigated through the inclusion of semiconductor nanocrystals possessing a relatively narrow band-gap. Here, we fully exploit this property by doping PbS nanocrystals into a newly formulated photorefractive composite based onmore » molecular triphenyldiamine photosensitized with C 60. Through this approach, response times of 399 μs are observed, opening the door for video and other high-speed applications. It is further demonstrated that this improvement in response time occurs with little sacrifice in photorefractive efficiency, with internal diffraction efficiencies of 72% and two-beam-coupling gain coefficients of 500 cm –1 being measured. A thorough analysis of the experimental data is presented, supporting the hypothesized mechanism of enhanced charge mobility without the accompaniment of superfluous traps. As a result, it is anticipated that this approach can play a significant role in the eventual commercialization of this class of materials.« less
Sub-millisecond response time in a photorefractive composite operating under CW conditions
Moon, Jong -Sik; Stevens, Tyler E.; Monson, Todd C.; ...
2016-09-01
Extensive study of photorefractive polymeric composites photosensitized with semiconductor nanocrystals has yielded data indicating that the inclusion of such nanocrystals enhances the charge-carrier mobility, and subsequently leads to a reduction in the photorefractive response time. Unfortunately, the included nanocrystals may also act as a source of deep traps, resulting in diminished diffraction efficiencies as well as reduced two beam coupling gain coefficients. Nonetheless, previous studies indicate that this problem is mitigated through the inclusion of semiconductor nanocrystals possessing a relatively narrow band-gap. Here, we fully exploit this property by doping PbS nanocrystals into a newly formulated photorefractive composite based onmore » molecular triphenyldiamine photosensitized with C 60. Through this approach, response times of 399 μs are observed, opening the door for video and other high-speed applications. It is further demonstrated that this improvement in response time occurs with little sacrifice in photorefractive efficiency, with internal diffraction efficiencies of 72% and two-beam-coupling gain coefficients of 500 cm –1 being measured. A thorough analysis of the experimental data is presented, supporting the hypothesized mechanism of enhanced charge mobility without the accompaniment of superfluous traps. As a result, it is anticipated that this approach can play a significant role in the eventual commercialization of this class of materials.« less
Li, Ying; Xu, Fei; Liu, Chao; Xu, Youzhi; Feng, Xiaojun; Liu, Bi-Feng
2013-08-21
Kinetic measurement of biomacromolecular interaction plays a significant role in revealing the underlying mechanisms of cellular activities. Due to the small diffusion coefficient of biomacromolecules, it is difficult to resolve the rapid kinetic process with traditional analytical methods such as stopped-flow or laminar mixers. Here, we demonstrated a unique continuous-flow laminar mixer based on microfluidic dual-hydrodynamic focusing to characterize the kinetics of DNA-protein interactions. The time window of this mixer for kinetics observation could cover from sub-milliseconds to seconds, which made it possible to capture the folding process with a wide dynamic range. Moreover, the sample consumption was remarkably reduced to <0.55 μL min⁻¹, over 1000-fold saving in comparison to those reported previously. We further interrogated the interaction kinetics of G-quadruplex and the single-stranded DNA binding protein, indicating that this novel micromixer would be a useful approach for analyzing the interaction kinetics of biomacromolecules.
Zhu, Peixin; Fajardo, Otto; Shum, Jennifer; Zhang Schärer, Yan-Ping; Friedrich, Rainer W
2012-06-28
Optogenetic approaches allow the manipulation of neuronal activity patterns in space and time by light, particularly in small animals such as zebrafish. However, most techniques cannot control neuronal activity independently at different locations. Here we describe equipment and provide a protocol for single-photon patterned optical stimulation of neurons using a digital micromirror device (DMD). This method can create arbitrary spatiotemporal light patterns with spatial and temporal resolutions in the micrometer and submillisecond range, respectively. Different options to integrate a DMD into a multiphoton microscope are presented and compared. We also describe an ex vivo preparation of the adult zebrafish head that greatly facilitates optogenetic and other experiments. After assembly, the initial alignment takes about one day and the zebrafish preparation takes <30 min. The method has previously been used to activate channelrhodopsin-2 and manipulate oscillatory synchrony among spatially distributed neurons in the zebrafish olfactory bulb. It can be adapted easily to a wide range of other species, optogenetic probes and scientific applications.
Blue phase liquid crystal: strategies for phase stabilization and device development
Rahman, M D Asiqur; Mohd Said, Suhana; Balamurugan, S
2015-01-01
The blue phase liquid crystal (BPLC) is a highly ordered liquid crystal (LC) phase found very close to the LC–isotropic transition. The BPLC has demonstrated potential in next-generation display and photonic technology due to its exceptional properties such as sub-millisecond response time and wide viewing angle. However, BPLC is stable in a very small temperature range (0.5–1 °C) and its driving voltage is very high (∼100 V). To overcome these challenges recent research has focused on solutions which incorporate polymers or nanoparticles into the blue phase to widen the temperature range from around few °C to potentially more than 60 °C. In order to reduce the driving voltage, strategies have been attempted by modifying the device structure by introducing protrusion or corrugated electrodes and vertical field switching mechanism has been proposed. In this paper the effectiveness of the proposed solution will be discussed, in order to assess the potential of BPLC in display technology and beyond. PMID:27877782
Rapid temperature jump by infrared diode laser irradiation for patch-clamp studies.
Yao, Jing; Liu, Beiying; Qin, Feng
2009-05-06
Several thermal TRP ion channels have recently been identified. These channels are directly gated by temperature, but the mechanisms have remained elusive. Studies of their temperature gating have been impeded by lack of methods for rapid alteration of temperature in live cells. As a result, only measurements of steady-state properties have been possible. To solve the problem, we have developed an optical approach that uses recently available infrared diode lasers as heat sources. By restricting laser irradiation around a single cell, our approach can produce constant temperature jumps over 50 degrees C in submilliseconds. Experiments with several heat-gated ion channels (TRPV1-3) show its applicability for rapid temperature perturbation in both single cells and membrane patches. Compared with other laser heating approaches such as those by Raman-shifting of the Nd:YAG fundamentals, our approach has the advantage of being cost effective and applicable to live cells while providing an adequate resolution for time-resolved detection of channel activation.
Single-Nanoparticle Photoelectrochemistry at a Nanoparticulate TiO2 -Filmed Ultramicroelectrode.
Peng, Yue-Yi; Ma, Hui; Ma, Wei; Long, Yi-Tao; Tian, He
2018-03-26
An ultrasensitive photoelectrochemical method for achieving real-time detection of single nanoparticle collision events is presented. Using a micrometer-thick nanoparticulate TiO 2 -filmed Au ultra-microelectrode (TiO 2 @Au UME), a sub-millisecond photocurrent transient was observed for an individual N719-tagged TiO 2 (N719@TiO 2 ) nanoparticle and is due to the instantaneous collision process. Owing to a trap-limited electron diffusion process as the rate-limiting step, a random three-dimensional diffusion model was developed to simulate electron transport dynamics in TiO 2 film. The combination of theoretical simulation and high-resolution photocurrent measurement allow electron-transfer information of a single N719@TiO 2 nanoparticle to be quantified at single-molecule accuracy and the electron diffusivity and the electron-collection efficiency of TiO 2 @Au UME to be estimated. This method provides a test for studies of photoinduced electron transfer at the single-nanoparticle level. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Observations of Spin-Powered Pulsars with the AGILE Gamma-Ray Telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pellizzoni, A.; Pilia, M.; Possenti, M.
2008-12-24
AGILE is a small gamma-ray astronomy satellite mission of the Italian Space Agency dedicated to high-energy astrophysics launched in 2007 April. It provides large sky exposure levels (> or approx. 10{sup 9} cm{sup 2} s per year on the Galactic Plane) with sensitivity peaking at E{approx}400 MeV(and simultaneous X-ray monitoring in the 18-60 keV band) where the bulk of pulsar energy output is typically released. Its {approx}1 {mu}s is absolute time tagging capability makes it perfectly suited for the study of gamma-ray pulsars following up on the CGRO/EGRET heritage. In this paper we summarize the timing results obtained during themore » first year of AGILE observations of the known gamma-ray pulsars Vela, Crab, Geminga and B 1706-4. AGILE collected a large number of gamma-ray photons from EGRET pulsars ({approx}10,000 pulsed counts for Vela) in only few months of observations unveiling new interesting features at sub-millisecond level in the pulsars' high-energy light-curves and paving the way to the discovery of new gamma-ray pulsars.« less
Transient Heat Conduction Simulation around Microprocessor Die
NASA Astrophysics Data System (ADS)
Nishi, Koji
This paper explains about fundamental formula of calculating power consumption of CMOS (Complementary Metal-Oxide-Semiconductor) devices and its voltage and temperature dependency, then introduces equation for estimating power consumption of the microprocessor for notebook PC (Personal Computer). The equation is applied to heat conduction simulation with simplified thermal model and evaluates in sub-millisecond time step calculation. In addition, the microprocessor has two major heat conduction paths; one is from the top of the silicon die via thermal solution and the other is from package substrate and pins via PGA (Pin Grid Array) socket. Even though the dominant factor of heat conduction is the former path, the latter path - from package substrate and pins - plays an important role in transient heat conduction behavior. Therefore, this paper tries to focus the path from package substrate and pins, and to investigate more accurate method of estimating heat conduction paths of the microprocessor. Also, cooling performance expression of heatsink fan is one of key points to assure result with practical accuracy, while finer expression requires more computation resources which results in longer computation time. Then, this paper discusses the expression to minimize computation workload with a practical accuracy of the result.
Zheng, Y.
2013-01-01
Temporal sound cues are essential for sound recognition, pitch, rhythm, and timbre perception, yet how auditory neurons encode such cues is subject of ongoing debate. Rate coding theories propose that temporal sound features are represented by rate tuned modulation filters. However, overwhelming evidence also suggests that precise spike timing is an essential attribute of the neural code. Here we demonstrate that single neurons in the auditory midbrain employ a proportional code in which spike-timing precision and firing reliability covary with the sound envelope cues to provide an efficient representation of the stimulus. Spike-timing precision varied systematically with the timescale and shape of the sound envelope and yet was largely independent of the sound modulation frequency, a prominent cue for pitch. In contrast, spike-count reliability was strongly affected by the modulation frequency. Spike-timing precision extends from sub-millisecond for brief transient sounds up to tens of milliseconds for sounds with slow-varying envelope. Information theoretic analysis further confirms that spike-timing precision depends strongly on the sound envelope shape, while firing reliability was strongly affected by the sound modulation frequency. Both the information efficiency and total information were limited by the firing reliability and spike-timing precision in a manner that reflected the sound structure. This result supports a temporal coding strategy in the auditory midbrain where proportional changes in spike-timing precision and firing reliability can efficiently signal shape and periodicity temporal cues. PMID:23636724
Kaji, Takahiro; Ito, Syoji; Iwai, Shigenori; Miyasaka, Hiroshi
2009-10-22
Single-molecule and ensemble time-resolved fluorescence measurements were applied for the investigation of the conformational dynamics of single-stranded DNA, ssDNA, connected with a fluorescein dye by a C6 linker, where the motions both of DNA and the C6 linker affect the geometry of the system. From the ensemble measurement of the fluorescence quenching via photoinduced electron transfer with a guanine base in the DNA sequence, three main conformations were found in aqueous solution: a conformation unaffected by the guanine base in the excited state lifetime of fluorescein, a conformation in which the fluorescence is dynamically quenched in the excited-state lifetime, and a conformation leading to rapid quenching via nonfluorescent complex. The analysis by using the parameters acquired from the ensemble measurements for interphoton time distribution histograms and FCS autocorrelations by the single-molecule measurement revealed that interconversion in these three conformations took place with two characteristic time constants of several hundreds of nanoseconds and tens of microseconds. The advantage of the combination use of the ensemble measurements with the single-molecule detections for rather complex dynamic motions is discussed by integrating the experimental results with those obtained by molecular dynamics simulation.
Levin, E. M.; Iowa State Univ., Ames, IA; Cui, J. -F.; ...
2016-07-16
125Te NMR spectra and spin-lattice relaxation times, T 1, have been measured for several GeTe-based materials with Te excess. In this paper, the spectra show inhomogeneous broadening by several thousand ppm and a systematic variation in T 1 relaxation time with resonance frequency. The quadratic dependence of the spin-lattice relaxation rate, 1/T 1, on the Knight shift in the Korringa relation is found to be valid over a wide range of Knight shifts. This result confirms that T 1 relaxation in GeTe-based materials is mostly dominated by hyperfine interaction between nuclei and free charge carriers. In GeTe with 2.5% excessmore » of Te, about 15% of the material exhibits a Knight shift of ≥4500 ppm and a T 1 of only 0.3 ms, indicating a high hole concentration that could correspond to close to 50% vacancies on the Ge sublattice in this component. Lastly, our findings provide a basis for determining the charge carrier concentration and its distribution in complex thermoelectric and phase-change tellurides, which should lead to a better understanding of electronic and thermal transport properties as well as chemical bonding in these materials.« less
2018-01-01
Abstract It is widely assumed that distributed neuronal networks are fundamental to the functioning of the brain. Consistent spike timing between neurons is thought to be one of the key principles for the formation of these networks. This can involve synchronous spiking or spiking with time delays, forming spike sequences when the order of spiking is consistent. Finding networks defined by their sequence of time-shifted spikes, denoted here as spike timing networks, is a tremendous challenge. As neurons can participate in multiple spike sequences at multiple between-spike time delays, the possible complexity of networks is prohibitively large. We present a novel approach that is capable of (1) extracting spike timing networks regardless of their sequence complexity, and (2) that describes their spiking sequences with high temporal precision. We achieve this by decomposing frequency-transformed neuronal spiking into separate networks, characterizing each network’s spike sequence by a time delay per neuron, forming a spike sequence timeline. These networks provide a detailed template for an investigation of the experimental relevance of their spike sequences. Using simulated spike timing networks, we show network extraction is robust to spiking noise, spike timing jitter, and partial occurrences of the involved spike sequences. Using rat multineuron recordings, we demonstrate the approach is capable of revealing real spike timing networks with sub-millisecond temporal precision. By uncovering spike timing networks, the prevalence, structure, and function of complex spike sequences can be investigated in greater detail, allowing us to gain a better understanding of their role in neuronal functioning. PMID:29789811
Two-Dimensional Optoelectronic Graphene Nanoprobes for Neural Nerwork
NASA Astrophysics Data System (ADS)
Hong, Tu; Kitko, Kristina; Wang, Rui; Zhang, Qi; Xu, Yaqiong
2014-03-01
Brain is the most complex network created by nature, with billions of neurons connected by trillions of synapses through sophisticated wiring patterns and countless modulatory mechanisms. Current methods to study the neuronal process, either by electrophysiology or optical imaging, have significant limitations on throughput and sensitivity. Here, we use graphene, a monolayer of carbon atoms, as a two-dimensional nanoprobe for neural network. Scanning photocurrent measurement is applied to detect the local integration of electrical and chemical signals in mammalian neurons. Such interface between nanoscale electronic device and biological system provides not only ultra-high sensitivity, but also sub-millisecond temporal resolution, owing to the high carrier mobility of graphene.
High-speed bioimaging with frequency-division-multiplexed fluorescence confocal microscopy
NASA Astrophysics Data System (ADS)
Mikami, Hideharu; Harmon, Jeffrey; Ozeki, Yasuyuki; Goda, Keisuke
2017-04-01
We present methods of fluorescence confocal microscopy that enable unprecedentedly high frame rate of > 10,000 fps. The methods are based on a frequency-division multiplexing technique, which was originally developed in the field of communication engineering. Specifically, we achieved a broad bandwidth ( 400 MHz) of detection signals using a dual- AOD method and overcame limitations in frame rate, due to a scanning device, by using a multi-line focusing method, resulting in a significant increase in frame rate. The methods have potential biomedical applications such as observation of sub-millisecond dynamics in biological tissues, in-vivo three-dimensional imaging, and fluorescence imaging flow cytometry.
Structure of electroexplosive TiC-Ni composite coatings on steel after electron-beam treatment
NASA Astrophysics Data System (ADS)
Romanov, D. A.; Goncharova, E. N.; Budovskikh, E. A.; Gromov, V. E.; Ivanov, Yu. F.; Teresov, A. D.; Kazimirov, S. A.
2016-11-01
The phase and elemental compositions of the surface layer in Hardox 450 steel after electroexplosive spraying of a TiC-Ni composite coating and subsequent irradiation by a submillisecond high-energy electron beam are studied by the methods of modern physical metallurgy. The electron-beam treatment conditions that result in the formation of dense surface layers having high luster and a submicrocrystalline structure based on titanium carbide and nickel are found. It is shown that electron-beam treatment of an electroexplosive coating performed under melting conditions leads to the formation of a homogeneous (in structure and concentration) surface layer.
NASA Astrophysics Data System (ADS)
Klochkov, D.; Pühlhofer, G.; Suleimanov, V.; Simon, S.; Werner, K.; Santangelo, A.
2013-08-01
Context. The central compact object (CCO) candidate in the center of the supernova remnant shell HESS J1731-347/G353.6-0.7 shows no pulsations and exhibits a blackbody-like X-ray spectrum. If the absence of pulsations is interpreted as evidence for the emitting surface area being the entire neutron star surface, the assumption of the measured flux being due to a blackbody emission translates into a source distance that is inconsistent with current estimates of the remnant's distance. Aims: With the best available observational data, we extended the pulse period search down to a sub-millisecond time scale and used a carbon atmosphere model to describe the X-ray spectrum of the CCO and to estimate geometrical parameters of the neutron star. Methods: To search for pulsations we used data of an observation of the source with XMM-Newton performed in timing mode. For the spectral analysis, we used earlier XMM-Newton observations performed in imaging mode, which permits a more accurate treatment of the background. The carbon atmosphere models used to fit the CCO spectrum are computed assuming hydrostatic and radiative equilibria and take into account pressure ionization and the presence of spectral lines. Results: Our timing analysis did not reveal any pulsations with a pulsed fraction above ~8% down to 0.2 ms. This finding further supports the hypothesis that the emitting surface area is the entire neutron star surface. The carbon atmosphere model provides a good fit to the CCO spectrum and leads to a normalization consistent with the available distance estimates of the remnant. The derived constraints on the mass and radius of the source are consistent with reasonable values of the neutron star mass and radius. After the CCO in Cas A, the CCO in HESS J1731-347/G353.6-0.7 is the second object of this class for which a carbon atmosphere model provides a consistent description of X-ray emission.
A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology.
Viventi, Jonathan; Kim, Dae-Hyeong; Moss, Joshua D; Kim, Yun-Soung; Blanco, Justin A; Annetta, Nicholas; Hicks, Andrew; Xiao, Jianliang; Huang, Younggang; Callans, David J; Rogers, John A; Litt, Brian
2010-03-24
In all current implantable medical devices such as pacemakers, deep brain stimulators, and epilepsy treatment devices, each electrode is independently connected to separate control systems. The ability of these devices to sample and stimulate tissues is hindered by this configuration and by the rigid, planar nature of the electronics and the electrode-tissue interfaces. Here, we report the development of a class of mechanically flexible silicon electronics for multiplexed measurement of signals in an intimate, conformal integrated mode on the dynamic, three-dimensional surfaces of soft tissues in the human body. We demonstrate this technology in sensor systems composed of 2016 silicon nanomembrane transistors configured to record electrical activity directly from the curved, wet surface of a beating porcine heart in vivo. The devices sample with simultaneous submillimeter and submillisecond resolution through 288 amplified and multiplexed channels. We use this system to map the spread of spontaneous and paced ventricular depolarization in real time, at high resolution, on the epicardial surface in a porcine animal model. This demonstration is one example of many possible uses of this technology in minimally invasive medical devices.
Miniaturized neural sensing and optogenetic stimulation system for behavioral studies in the rat
NASA Astrophysics Data System (ADS)
Kim, Min Hyuck; Nam, Ilho; Ryu, Youngki; Wellman, Laurie W.; Sanford, Larry D.; Yoon, Hargsoon
2015-04-01
Real time sensing of localized electrophysiological and neurochemical signals associated with spontaneous and evoked neural activity is critically important for understanding neural networks in the brain. Our goal is to enhance the functionality and flexibility of a neural sensing and stimulation system for the observation of brain activity that will enable better understanding from the level of individual cells to that of global structures. We have thus developed a miniaturized electronic system for in-vivo neurotransmitter sensing and optogenetic stimulation amenable to behavioral studies in the rat. The system contains a potentiostat, a data acquisition unit, a control unit, and a wireless data transfer unit. For the potentiostat, we applied embedded op-amps to build single potential amperometry for electrochemical sensing of dopamine. A light emitting diode is controlled by a microcontroller and pulse width modulation utilized to control optogenetic stimulation within a sub-millisecond level. In addition, this proto-typed electronic system contains a Bluetooth module for wireless data communication. In the future, an application-specific integrated circuit (ASIC) will be designed for further miniaturization of the system.
A programmable light engine for quantitative single molecule TIRF and HILO imaging.
van 't Hoff, Marcel; de Sars, Vincent; Oheim, Martin
2008-10-27
We report on a simple yet powerful implementation of objective-type total internal reflection fluorescence (TIRF) and highly inclined and laminated optical sheet (HILO, a type of dark-field) illumination. Instead of focusing the illuminating laser beam to a single spot close to the edge of the microscope objective, we are scanning during the acquisition of a fluorescence image the focused spot in a circular orbit, thereby illuminating the sample from various directions. We measure parameters relevant for quantitative image analysis during fluorescence image acquisition by capturing an image of the excitation light distribution in an equivalent objective backfocal plane (BFP). Operating at scan rates above 1 MHz, our programmable light engine allows directional averaging by circular spinning the spot even for sub-millisecond exposure times. We show that restoring the symmetry of TIRF/HILO illumination reduces scattering and produces an evenly lit field-of-view that affords on-line analysis of evanescnt-field excited fluorescence without pre-processing. Utilizing crossed acousto-optical deflectors, our device generates arbitrary intensity profiles in BFP, permitting variable-angle, multi-color illumination, or objective lenses to be rapidly exchanged.
Quantifying the Precision of Single-Molecule Torque and Twist Measurements Using Allan Variance.
van Oene, Maarten M; Ha, Seungkyu; Jager, Tessa; Lee, Mina; Pedaci, Francesco; Lipfert, Jan; Dekker, Nynke H
2018-04-24
Single-molecule manipulation techniques have provided unprecedented insights into the structure, function, interactions, and mechanical properties of biological macromolecules. Recently, the single-molecule toolbox has been expanded by techniques that enable measurements of rotation and torque, such as the optical torque wrench (OTW) and several different implementations of magnetic (torque) tweezers. Although systematic analyses of the position and force precision of single-molecule techniques have attracted considerable attention, their angle and torque precision have been treated in much less detail. Here, we propose Allan deviation as a tool to systematically quantitate angle and torque precision in single-molecule measurements. We apply the Allan variance method to experimental data from our implementations of (electro)magnetic torque tweezers and an OTW and find that both approaches can achieve a torque precision better than 1 pN · nm. The OTW, capable of measuring torque on (sub)millisecond timescales, provides the best torque precision for measurement times ≲10 s, after which drift becomes a limiting factor. For longer measurement times, magnetic torque tweezers with their superior stability provide the best torque precision. Use of the Allan deviation enables critical assessments of the torque precision as a function of measurement time across different measurement modalities and provides a tool to optimize measurement protocols for a given instrument and application. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
SETI at X-energies - parasitic searches from astrophysical observations.
NASA Astrophysics Data System (ADS)
Corbet, R. H. D.
1997-01-01
If a sufficiently advanced civilization can either modulate the emission from an X-ray binary, or make use of the natural high luminosity to power an artificial transmitter, these can serve as good beacons for interstellar communication without involving excessive energy costs to the broadcasting civilization. In addition, the small number of X-ray binaries in the Galaxy considerably reduces the number of targets that must be investigated compared to searches in other energy bands. Low mass X-ray binaries containing neutron stars in particular are considered as prime potential natural and artificial beacons and high time resolution (better than 1ms) observations are encouraged. All sky monitors provide the capability of detecting brief powerful artificial signals from isolated neutron stars. New capabilities of X-ray astronomy satellites developed for astrophysical purposes are enabling SETI in new parameter regimes. For example, the X-ray Timing Explorer satellite provides the capability of exploring the sub-millisecond region. Other planned X-ray astronomy satellites should provide significantly improved spectral resolution. While SETI at X-ray energies is highly speculative (and rather unfashionable) by using a parasitic approach little additional cost is involved. The inclusion of X-ray binaries in target lists for SETI at radio and other wavebands is also advocated.
NASA Astrophysics Data System (ADS)
Giancardo, L.; Sánchez-Ferro, A.; Butterworth, I.; Mendoza, C. S.; Hooker, J. M.
2015-04-01
Modern digital devices and appliances are capable of monitoring the timing of button presses, or finger interactions in general, with a sub-millisecond accuracy. However, the massive amount of high resolution temporal information that these devices could collect is currently being discarded. Multiple studies have shown that the act of pressing a button triggers well defined brain areas which are known to be affected by motor-compromised conditions. In this study, we demonstrate that the daily interaction with a computer keyboard can be employed as means to observe and potentially quantify psychomotor impairment. We induced a psychomotor impairment via a sleep inertia paradigm in 14 healthy subjects, which is detected by our classifier with an Area Under the ROC Curve (AUC) of 0.93/0.91. The detection relies on novel features derived from key-hold times acquired on standard computer keyboards during an uncontrolled typing task. These features correlate with the progression to psychomotor impairment (p < 0.001) regardless of the content and language of the text typed, and perform consistently with different keyboards. The ability to acquire longitudinal measurements of subtle motor changes from a digital device without altering its functionality may allow for early screening and follow-up of motor-compromised neurodegenerative conditions, psychological disorders or intoxication at a negligible cost in the general population.
Pulsar Observations with Radio Telescope FAST
NASA Astrophysics Data System (ADS)
Nan, Ren-Dong; Wang, Qi-Ming; Zhu, Li-Chun; Zhu, Wen-Bai; Jin, Cheng-Jin; Gan, Heng-Qian
2006-12-01
FAST, Five hundred meter Aperture Spherical Telescope, is the Chinese effort for the international project SKA, Square Kilometer Array. An innovative engineering concept and design pave a new road to realizing huge single dish in the most effective way. Three outstanding features of the telescope are the unique karst depressions as the sites, the active main reflector which corrects spherical aberration on the ground to achieve full polarization and wide band without involving complex feed system, and the light focus cabin driven by cables and servomechanism plus a parallel robot as secondary adjustable system to carry the most precise parts of the receivers. Besides a general coverage of those critical technologies involved in FAST concept, the progresses in demonstrating model being constructed at the Miyun Radio Observatory of the NAOC is introduced. Being the most sensitive radio telescope, FAST will enable astronomers to jumpstart many of science goals, for example, the natural hydrogen line surveying in distant galaxies, looking for the first generation of shining objects, hearing the possible signal from other civilizations, etc. Among these subjects, the most striking one could be pulsar study. Large scale survey by FAST will not only improve the statistics of the pulsar population, but also may offer us a good fortune to pick up more of the most exotic, even unknown types like a sub-millisecond pulsar or a neutron star -- black hole binary as the telescope is put into operation.
Voyvodic, James T.; Glover, Gary H.; Greve, Douglas; Gadde, Syam
2011-01-01
Functional magnetic resonance imaging (fMRI) is based on correlating blood oxygen-level dependent (BOLD) signal fluctuations in the brain with other time-varying signals. Although the most common reference for correlation is the timing of a behavioral task performed during the scan, many other behavioral and physiological variables can also influence fMRI signals. Variations in cardiac and respiratory functions in particular are known to contribute significant BOLD signal fluctuations. Variables such as skin conduction, eye movements, and other measures that may be relevant to task performance can also be correlated with BOLD signals and can therefore be used in image analysis to differentiate multiple components in complex brain activity signals. Combining real-time recording and data management of multiple behavioral and physiological signals in a way that can be routinely used with any task stimulus paradigm is a non-trivial software design problem. Here we discuss software methods that allow users control of paradigm-specific audio–visual or other task stimuli combined with automated simultaneous recording of multi-channel behavioral and physiological response variables, all synchronized with sub-millisecond temporal accuracy. We also discuss the implementation and importance of real-time display feedback to ensure data quality of all recorded variables. Finally, we discuss standards and formats for storage of temporal covariate data and its integration into fMRI image analysis. These neuroinformatics methods have been adopted for behavioral task control at all sites in the Functional Biomedical Informatics Research Network (FBIRN) multi-center fMRI study. PMID:22232596
Development of a Transient Thrust Stand with Sub-Millisecond Resolution
NASA Astrophysics Data System (ADS)
Spells, Corbin Fraser
The transient thrust stand has been developed to offer 0.1 ms time resolved thrust measurements for the characterization of mono-propellant thrusters for spacecraft applications. Results demonstrated that the system was capable of obtaining dynamic thrust profiles within 5 % and 0.1 ms. Measuring and improving the thrust performance of mono-propellant thrusters will require 1 ms time resolved forces to observe shot-to-shot variations, oscillations, and minimum impulse bits. To date, no thrust stand is capable of measuring up to 22 N forces with a time response of up to 10 kHz. Calibration forces up to 22 N with a frequency response greater than 0.1 ms were obtained using voice coil actuators. Steady state and low frequency measurements were obtained using displacement and velocity sensors and were combined with high frequency vibration modes measured using several accelerometers along the thrust stand arm. The system uses a predictor-based subspace algorithm to obtain a high order state space model of the thrust stand capable of defining the high frequency vibration modes. The high frequency vibration modes are necessary to provide the time response of 0.1 ms. Thruster forces are estimated using an augmented Kalman filter to combine sensor traces from four accelerometers, a velocity sensor, and displacement transducer. Combining low frequency displacement data with high frequency acceleration measurements provides accurate force data across a broad time domain. The transient thrust stand uses a torsional pendulum configuration to minimize influence from external vibration and achieve high force resolution independent of thruster weight.
High speed line-scan confocal imaging of stimulus-evoked intrinsic optical signals in the retina
Li, Yang-Guo; Liu, Lei; Amthor, Franklin; Yao, Xin-Cheng
2010-01-01
A rapid line-scan confocal imager was developed for functional imaging of the retina. In this imager, an acousto-optic deflector (AOD) was employed to produce mechanical vibration- and inertia-free light scanning, and a high-speed (68,000 Hz) linear CCD camera was used to achieve sub-cellular and sub-millisecond spatiotemporal resolution imaging. Two imaging modalities, i.e., frame-by-frame and line-by-line recording, were validated for reflected light detection of intrinsic optical signals (IOSs) in visible light stimulus activated frog retinas. Experimental results indicated that fast IOSs were tightly correlated with retinal stimuli, and could track visible light flicker stimulus frequency up to at least 2 Hz. PMID:20125743
Recognition of the 3′ splice site RNA by the U2AF heterodimer involves a dynamic population shift
Voith von Voithenberg, Lena; Sánchez-Rico, Carolina; Kang, Hyun-Seo; Madl, Tobias; Zanier, Katia; Barth, Anders; Warner, Lisa R.; Sattler, Michael; Lamb, Don C.
2016-01-01
An essential early step in the assembly of human spliceosomes onto pre-mRNA involves the recognition of regulatory RNA cis elements in the 3′ splice site by the U2 auxiliary factor (U2AF). The large (U2AF65) and small (U2AF35) subunits of the U2AF heterodimer contact the polypyrimidine tract (Py-tract) and the AG-dinucleotide, respectively. The tandem RNA recognition motif domains (RRM1,2) of U2AF65 adopt closed/inactive and open/active conformations in the free form and when bound to bona fide Py-tract RNA ligands. To investigate the molecular mechanism and dynamics of 3′ splice site recognition by U2AF65 and the role of U2AF35 in the U2AF heterodimer, we have combined single-pair FRET and NMR experiments. In the absence of RNA, the RRM1,2 domain arrangement is highly dynamic on a submillisecond time scale, switching between closed and open conformations. The addition of Py-tract RNA ligands with increasing binding affinity (strength) gradually shifts the equilibrium toward an open conformation. Notably, the protein–RNA complex is rigid in the presence of a strong Py-tract but exhibits internal motion with weak Py-tracts. Surprisingly, the presence of U2AF35, whose UHM domain interacts with U2AF65 RRM1, increases the population of the open arrangement of U2AF65 RRM1,2 in the absence and presence of a weak Py-tract. These data indicate that the U2AF heterodimer promotes spliceosome assembly by a dynamic population shift toward the open conformation of U2AF65 to facilitate the recognition of weak Py-tracts at the 3′ splice site. The structure and RNA binding of the heterodimer was unaffected by cancer-linked myelodysplastic syndrome mutants. PMID:27799531
X ray timing observations and gravitational physics
NASA Technical Reports Server (NTRS)
Michelson, Peter F.; Wood, Kent S.
1989-01-01
Photon-rich x ray observations on bright compact galactic sources will make it possible to detect many fast processes that may occur in these systems on millisecond and submillisecond timescales. Many of these processes are of direct relevance to gravitational physics because they arise in regions of strong gravity near neutron stars and black holes where the dynamical timescales for compact objects of stellar mass are milliseconds. To date, such observations have been limited by the detector area and telemetry rates available. However, instruments such as the proposed X ray Large Array (XLA) would achieve collecting areas of about 100 sq m. This instrument has been described elsewhere (Wood and Michelson 1988) and was the subject of a recent prephase A feasibility study at Marshall Space Flight Center. Observations with an XLA class instrument will directly impact five primary areas of astrophysics research: the attempt to detect gravitational radiation, the study of black holes, the physics of mass accretion onto compact objects, the structure of neutron stars and nuclear matter, and the characterization of dark matter in the universe. Those observations are discussed that are most directly relevant to gravitational physics: the search for millisecond x ray pulsars that are potential sources of continuous gravitational radiation; and the use of x ray timing observations to probe the physical conditions in extreme relativistic regions of space near black holes, both stellar-sized and supermassive.
Timing and efficacy of Ca2+ channel activation in hippocampal mossy fiber boutons.
Bischofberger, Josef; Geiger, Jörg R P; Jonas, Peter
2002-12-15
The presynaptic Ca2+ signal is a key determinant of transmitter release at chemical synapses. In cortical synaptic terminals, however, little is known about the kinetic properties of the presynaptic Ca2+ channels. To investigate the timing and magnitude of the presynaptic Ca2+ inflow, we performed whole-cell patch-clamp recordings from mossy fiber boutons (MFBs) in rat hippocampus. MFBs showed large high-voltage-activated Ca(2+) currents, with a maximal amplitude of approximately 100 pA at a membrane potential of 0 mV. Both activation and deactivation were fast, with time constants in the submillisecond range at a temperature of approximately 23 degrees C. An MFB action potential (AP) applied as a voltage-clamp command evoked a transient Ca2+ current with an average amplitude of approximately 170 pA and a half-duration of 580 microsec. A prepulse to +40 mV had only minimal effects on the AP-evoked Ca2+ current, indicating that presynaptic APs open the voltage-gated Ca2+ channels very effectively. On the basis of the experimental data, we developed a kinetic model with four closed states and one open state, linked by voltage-dependent rate constants. Simulations of the Ca2+ current could reproduce the experimental data, including the large amplitude and rapid time course of the current evoked by MFB APs. Furthermore, the simulations indicate that the shape of the presynaptic AP and the gating kinetics of the Ca2+ channels are tuned to produce a maximal Ca2+ influx during a minimal period of time. The precise timing and high efficacy of Ca2+ channel activation at this cortical glutamatergic synapse may be important for synchronous transmitter release and temporal information processing.
Dynamics of near-surface electric discharges and mechanisms of their interaction with the airflow
NASA Astrophysics Data System (ADS)
Leonov, Sergey B.; Adamovich, Igor V.; Soloviev, Victor R.
2016-12-01
The main focus of the review is on dynamics and kinetics of near-surface discharge plasmas, such as surface dielectric barrier discharges sustained by AC and repetitively pulsed waveforms, pulsed DC discharges, and quasi-DC discharges, generated in quiescent air and in the airflow. A number of technical issues related to plasma flow control applications are discussed in detail, including discharge development via surface ionization waves, charge transport and accumulation on dielectric surface, discharge contraction, different types of flow perturbations generated by surface discharges, and effect of high-speed flow on discharge dynamics. In the first part of the manuscript, plasma morphology and results of electrical and optical emission spectroscopy measurements are discussed. Particular attention is paid to dynamics of surface charge accumulation and dissipation, both in diffuse discharges and during development of ionization instabilities resulting in discharge contraction. Contraction leads to significant increase of both the surface area of charge accumulation and the energy coupled to the plasma. The use of alternating polarity pulse waveforms accelerates contraction of surface dielectric barrier discharges and formation of filamentary plasmas. The second part discusses the interaction of discharge plasmas with quiescent air and the external airflow. Four major types of flow perturbations have been identified: (1) low-speed near-surface jets generated by electrohydrodynamic interaction (ion wind); (2) spanwise and streamwise vortices formed by both electrohydrodynamic and thermal effects; (3) weak shock waves produced by rapid heating in pulsed discharges on sub-microsecond time scale; and (4) near-surface localized stochastic perturbations, on sub-millisecond time, detected only recently. The mechanism of plasma-flow interaction remains not fully understood, especially in filamentary surface dielectric barrier discharges. Localized quasi-DC surface discharges sustained in a high-speed flow are discussed in the third part of the review. Although dynamics of this type of the discharge is highly transient, due to its strong interaction with the flow, the resultant flow structure is stationary, including the oblique shock and the flow separation region downstream of the discharge. The oblique shock is attached to a time-averaged, wedge-shaped, near-wall plasma layer, with the shock angle controlled by the discharge power, which makes possible changing the flow structure and parameters in a controlled way. Finally, unresolved and open-ended issues are discussed in the summary.
Single particle tracking through highly scattering media with multiplexed two-photon excitation
NASA Astrophysics Data System (ADS)
Perillo, Evan; Liu, Yen-Liang; Liu, Cong; Yeh, Hsin-Chih; Dunn, Andrew K.
2015-03-01
3D single-particle tracking (SPT) has been a pivotal tool to furthering our understanding of dynamic cellular processes in complex biological systems, with a molecular localization accuracy (10-100 nm) often better than the diffraction limit of light. However, current SPT techniques utilize either CCDs or a confocal detection scheme which not only suffer from poor temporal resolution but also limit tracking to a depth less than one scattering mean free path in the sample (typically <15μm). In this report we highlight our novel design for a spatiotemporally multiplexed two-photon microscope which is able to reach sub-diffraction-limit tracking accuracy and sub-millisecond temporal resolution, but with a dramatically extended SPT range of up to 200 μm through dense cell samples. We have validated our microscope by tracking (1) fluorescent nanoparticles in a prescribed motion inside gelatin gel (with 1% intralipid) and (2) labeled single EGFR complexes inside skin cancer spheroids (at least 8 layers of cells thick) for ~10 minutes. Furthermore we discuss future capabilities of our multiplexed two-photon microscope design, specifically to the extension of (1) simultaneous multicolor tracking (i.e. spatiotemporal co-localization analysis) and (2) FRET studies (i.e. lifetime analysis). The high resolution, high depth penetration, and multicolor features of this microscope make it well poised to study a variety of molecular scale dynamics in the cell, especially related to cellular trafficking studies with in vitro tumor models and in vivo.
In situ x-ray surface diffraction chamber for pulsed laser ablation film growth studies
NASA Astrophysics Data System (ADS)
Tischler, J. Z.; Eres, G.; Lowndes, D. H.; Larson, B. C.; Yoon, M.; Chiang, T.-C.; Zschack, Paul
2000-06-01
Pulsed laser deposition is highly successful for growing complex films such as oxides for substrate buffer layers and HiTc oxide superconductors. A surface diffraction chamber has been constructed to study fundamental aspects of non-equilibrium film growth using pulsed laser deposition. Due to the pulsed nature of the ablating laser, the deposited atoms arrive on the substrate in short sub-millisecond pulses. Thus monitoring the surface x-ray diffraction following individual laser pulses (with resolution down to ˜1 ms) provides direct information on surface kinetics and the aggregation process during film growth. The chamber design, based upon a 2+2 surface diffraction geometry with the modifications necessary for laser ablation, is discussed, and initial measurements on homo-epitaxial growth of SrTiO3 are presented.
Liquid crystalline cellulose-based nematogels
Liu, Qingkun; Smalyukh, Ivan I.
2017-08-18
Physical properties of composite materials can be pre-engineered by controlling their structure and composition at the mesoscale. However, approaches to achieving this are limited and rarely scalable. We introduce a new breed of self-assembled nematogels formed by an orientationally ordered network of thin cellulose nanofibers infiltrated with a thermotropic nematic fluid. The interplay between orientational ordering within the nematic network and that of the small-molecule liquid crystal around it yields a composite with highly tunable optical properties. By means of combining experimental characterization and modeling, we demonstrate submillisecond electric switching of transparency and facile responses of the composite to temperaturemore » changes. Finally, we discuss a host of potential technological uses of these self-assembled nematogel composites, ranging from smart and privacy windows to novel flexible displays.« less
The Chronotron: A Neuron That Learns to Fire Temporally Precise Spike Patterns
Florian, Răzvan V.
2012-01-01
In many cases, neurons process information carried by the precise timings of spikes. Here we show how neurons can learn to generate specific temporally precise output spikes in response to input patterns of spikes having precise timings, thus processing and memorizing information that is entirely temporally coded, both as input and as output. We introduce two new supervised learning rules for spiking neurons with temporal coding of information (chronotrons), one that provides high memory capacity (E-learning), and one that has a higher biological plausibility (I-learning). With I-learning, the neuron learns to fire the target spike trains through synaptic changes that are proportional to the synaptic currents at the timings of real and target output spikes. We study these learning rules in computer simulations where we train integrate-and-fire neurons. Both learning rules allow neurons to fire at the desired timings, with sub-millisecond precision. We show how chronotrons can learn to classify their inputs, by firing identical, temporally precise spike trains for different inputs belonging to the same class. When the input is noisy, the classification also leads to noise reduction. We compute lower bounds for the memory capacity of chronotrons and explore the influence of various parameters on chronotrons' performance. The chronotrons can model neurons that encode information in the time of the first spike relative to the onset of salient stimuli or neurons in oscillatory networks that encode information in the phases of spikes relative to the background oscillation. Our results show that firing one spike per cycle optimizes memory capacity in neurons encoding information in the phase of firing relative to a background rhythm. PMID:22879876
ALMA Correlator Real-Time Data Processor
NASA Astrophysics Data System (ADS)
Pisano, J.; Amestica, R.; Perez, J.
2005-10-01
The design of a real-time Linux application utilizing Real-Time Application Interface (RTAI) to process real-time data from the radio astronomy correlator for the Atacama Large Millimeter Array (ALMA) is described. The correlator is a custom-built digital signal processor which computes the cross-correlation function of two digitized signal streams. ALMA will have 64 antennas with 2080 signal streams each with a sample rate of 4 giga-samples per second. The correlator's aggregate data output will be 1 gigabyte per second. The software is defined by hard deadlines with high input and processing data rates, while requiring interfaces to non real-time external computers. The designed computer system - the Correlator Data Processor or CDP, consists of a cluster of 17 SMP computers, 16 of which are compute nodes plus a master controller node all running real-time Linux kernels. Each compute node uses an RTAI kernel module to interface to a 32-bit parallel interface which accepts raw data at 64 megabytes per second in 1 megabyte chunks every 16 milliseconds. These data are transferred to tasks running on multiple CPUs in hard real-time using RTAI's LXRT facility to perform quantization corrections, data windowing, FFTs, and phase corrections for a processing rate of approximately 1 GFLOPS. Highly accurate timing signals are distributed to all seventeen computer nodes in order to synchronize them to other time-dependent devices in the observatory array. RTAI kernel tasks interface to the timing signals providing sub-millisecond timing resolution. The CDP interfaces, via the master node, to other computer systems on an external intra-net for command and control, data storage, and further data (image) processing. The master node accesses these external systems utilizing ALMA Common Software (ACS), a CORBA-based client-server software infrastructure providing logging, monitoring, data delivery, and intra-computer function invocation. The software is being developed in tandem with the correlator hardware which presents software engineering challenges as the hardware evolves. The current status of this project and future goals are also presented.
MagPy: A Python toolbox for controlling Magstim transcranial magnetic stimulators.
McNair, Nicolas A
2017-01-30
To date, transcranial magnetic stimulation (TMS) studies manipulating stimulation parameters have largely used blocked paradigms. However, altering these parameters on a trial-by-trial basis in Magstim stimulators is complicated by the need to send regular (1Hz) commands to the stimulator. Additionally, effecting such control interferes with the ability to send TMS pulses or simultaneously present stimuli with high-temporal precision. This manuscript presents the MagPy toolbox, a Python software package that provides full control over Magstim stimulators via the serial port. It is able to maintain this control with no impact on concurrent processing, such as stimulus delivery. In addition, a specially-designed "QuickFire" serial cable is specified that allows MagPy to trigger TMS pulses with very low-latency. In a series of experimental simulations, MagPy was able to maintain uninterrupted remote control over the connected Magstim stimulator across all testing sessions. In addition, having MagPy enabled had no effect on stimulus timing - all stimuli were presented for precisely the duration specified. Finally, using the QuickFire cable, MagPy was able to elicit TMS pulses with sub-millisecond latencies. The MagPy toolbox allows for experiments that require manipulating stimulation parameters from trial to trial. Furthermore, it can achieve this in contexts that require tight control over timing, such as those seeking to combine TMS with fMRI or EEG. Together, the MagPy toolbox and QuickFire serial cable provide an effective means for controlling Magstim stimulators during experiments while ensuring high-precision timing. Copyright © 2016 Elsevier B.V. All rights reserved.
Lee, Wang Wei; Kukreja, Sunil L.; Thakor, Nitish V.
2017-01-01
This paper presents a neuromorphic tactile encoding methodology that utilizes a temporally precise event-based representation of sensory signals. We introduce a novel concept where touch signals are characterized as patterns of millisecond precise binary events to denote pressure changes. This approach is amenable to a sparse signal representation and enables the extraction of relevant features from thousands of sensing elements with sub-millisecond temporal precision. We also proposed measures adopted from computational neuroscience to study the information content within the spiking representations of artificial tactile signals. Implemented on a state-of-the-art 4096 element tactile sensor array with 5.2 kHz sampling frequency, we demonstrate the classification of transient impact events while utilizing 20 times less communication bandwidth compared to frame based representations. Spiking sensor responses to a large library of contact conditions were also synthesized using finite element simulations, illustrating an 8-fold improvement in information content and a 4-fold reduction in classification latency when millisecond-precise temporal structures are available. Our research represents a significant advance, demonstrating that a neuromorphic spatiotemporal representation of touch is well suited to rapid identification of critical contact events, making it suitable for dynamic tactile sensing in robotic and prosthetic applications. PMID:28197065
Lightning leader models of terrestrial gamma-ray flashes
NASA Astrophysics Data System (ADS)
Dwyer, J. R.; Liu, N.; Ihaddadene, K. M. A.
2017-12-01
Terrestrial gamma-ray flashes (TGFs) are bright sub-millisecond bursts of gamma rays that originate from thunderstorms. Because lightning leaders near the ground have been observed to emit x-rays, presumably due to runaway electron production in the high-field regions near the leader tips, models of TGFs have been developed by several groups that assume a similar production mechanism of runaway electrons from lightning leaders propagating through thunderclouds. However, it remains unclear exactly how and where these runaway electrons are produced, since lightning propagation at thunderstorm altitudes remains poorly understood. In addition, it is not obvious how to connect the observed behavior of the x-ray production from lightning near the ground with the properties of TGFs. For example, it is not clear how to relate the time structure of the x-ray emission near the ground to that of TGFs, since x-rays from stepped leaders near the ground are usually produced in a series of sub-microsecond bursts, but TGFs are usually observed as much longer pulses without clear substructures, at sub-microsecond timescales or otherwise. In this presentation, spacecraft observations of TGFs, ground-based observations of x-rays from lightning and laboratory sparks, and Monte Carlo and PIC simulations of runaway electron and gamma ray production and propagation will be used to constrain the lightning leader models of TGFs.
Modification of the sample's surface of hypereutectic silumin by pulsed electron beam
NASA Astrophysics Data System (ADS)
Rygina, M. E.; Ivanov, Yu F.; Lasconev, A. P.; Teresov, A. D.; Cherenda, N. N.; Uglov, V. V.; Petricova, E. A.; Astashinskay, M. V.
2016-04-01
The article presents the results of the analysis of the elemental and phase composition, defect substructures. It demonstrates strength and tribological characteristics of the aluminium-silicon alloy of the hypereutectic composition in the cast state and after irradiation with a high-intensity pulsed electron beam of a submillisecond exposure duration (a Solo installation, Institute of High Current Electrons of the Siberian Branch of the Russian Academy of Sciences). The research has been conducted using optical and scanning electron microscopy, and the X-ray phase analysis. Mechanical properties have been characterized by microhardness, tribological properties - by wear resistance and the friction coefficient value. Irradiation of silumin with the high-intensity pulsed electron beam has led to the modification of the surface layer up to 1000 microns thick. The surface layer with the thickness of up to 100 microns is characterized by melting of all phases present in the alloy; subsequent highspeed crystallization leads to the formation of a submicro- and nanocrystalline structure in this layer. The hardness of the modified layer decreases with the increasing distance from the surface exposure. The hardness of the surface layer is more than twice the hardness of cast silumin. Durability of silumin treated with a high intensity electron beam is ≈ 1, 2 times as much as the wear resistance of the cast material.
Elucidating Neuronal Mechanisms Using Intracellular Recordings during Behavior.
Lee, Albert K; Brecht, Michael
2018-06-01
Intracellular recording allows measurement and perturbation of the membrane potential of identified neurons with sub-millisecond and sub-millivolt precision. This gives intracellular recordings a unique capacity to provide rich information about individual cells (e.g., high-resolution characterization of inputs, outputs, excitability, and structure). Hence, such recordings can elucidate the mechanisms that underlie fundamental phenomena, such as brain state, sparse coding, gating, gain modulation, and learning. Technical developments have increased the range of behaviors during which intracellular recording methods can be employed, such as in freely moving animals and head-fixed animals actively performing tasks, including in virtual environments. Such advances, and the combination of intracellular recordings with genetic and imaging techniques, have enabled investigation of the mechanisms that underlie neural computations during natural and trained behaviors. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Parfrey, Kyle; Spitkovsky, Anatoly; Beloborodov, Andrei M.
2016-05-01
The interaction of a rotating star’s magnetic field with a surrounding plasma disk lies at the heart of many questions posed by neutron stars in X-ray binaries. We consider the opening of stellar magnetic flux due to differential rotation along field lines coupling the star and disk, using a simple model for the disk-opened flux, the torques exerted on the star by the magnetosphere, and the power extracted by the electromagnetic wind. We examine the conditions under which the system enters an equilibrium spin state, in which the accretion torque is instantaneously balanced by the pulsar wind torque alone. For magnetic moments, spin frequencies, and accretion rates relevant to accreting millisecond pulsars, the spin-down torque from this enhanced pulsar wind can be substantially larger than that predicted by existing models of the disk-magnetosphere interaction, and is in principle capable of maintaining spin equilibrium at frequencies less than 1 kHz. We speculate that this mechanism may account for the non-detection of frequency increases during outbursts of SAX J1808.4-3658 and XTE J1814-338, and may be generally responsible for preventing spin-up to sub-millisecond periods. If the pulsar wind is collimated by the surrounding environment, the resulting jet can satisfy the power requirements of the highly relativistic outflows from Cir X-1 and Sco X-1. In this framework, the jet power scales relatively weakly with accretion rate, {L}{{j}}\\propto {\\dot{M}}4/7, and would be suppressed at high accretion rates only if the stellar magnetic moment is sufficiently low.
Dynamics of cortical dendritic membrane potential and spikes in freely behaving rats.
Moore, Jason J; Ravassard, Pascal M; Ho, David; Acharya, Lavanya; Kees, Ashley L; Vuong, Cliff; Mehta, Mayank R
2017-03-24
Neural activity in vivo is primarily measured using extracellular somatic spikes, which provide limited information about neural computation. Hence, it is necessary to record from neuronal dendrites, which can generate dendritic action potentials (DAPs) in vitro, which can profoundly influence neural computation and plasticity. We measured neocortical sub- and suprathreshold dendritic membrane potential (DMP) from putative distal-most dendrites using tetrodes in freely behaving rats over multiple days with a high degree of stability and submillisecond temporal resolution. DAP firing rates were several-fold larger than somatic rates. DAP rates were also modulated by subthreshold DMP fluctuations, which were far larger than DAP amplitude, indicating hybrid, analog-digital coding in the dendrites. Parietal DAP and DMP exhibited egocentric spatial maps comparable to pyramidal neurons. These results have important implications for neural coding and plasticity. Copyright © 2017, American Association for the Advancement of Science.
Microsecond protein dynamics observed at the single-molecule level
NASA Astrophysics Data System (ADS)
Otosu, Takuhiro; Ishii, Kunihiko; Tahara, Tahei
2015-07-01
How polypeptide chains acquire specific conformations to realize unique biological functions is a central problem of protein science. Single-molecule spectroscopy, combined with fluorescence resonance energy transfer, is utilized to study the conformational heterogeneity and the state-to-state transition dynamics of proteins on the submillisecond to second timescales. However, observation of the dynamics on the microsecond timescale is still very challenging. This timescale is important because the elementary processes of protein dynamics take place and direct comparison between experiment and simulation is possible. Here we report a new single-molecule technique to reveal the microsecond structural dynamics of proteins through correlation of the fluorescence lifetime. This method, two-dimensional fluorescence lifetime correlation spectroscopy, is applied to clarify the conformational dynamics of cytochrome c. Three conformational ensembles and the microsecond transitions in each ensemble are indicated from the correlation signal, demonstrating the importance of quantifying microsecond dynamics of proteins on the folding free energy landscape.
Microsecond protein dynamics observed at the single-molecule level
Otosu, Takuhiro; Ishii, Kunihiko; Tahara, Tahei
2015-01-01
How polypeptide chains acquire specific conformations to realize unique biological functions is a central problem of protein science. Single-molecule spectroscopy, combined with fluorescence resonance energy transfer, is utilized to study the conformational heterogeneity and the state-to-state transition dynamics of proteins on the submillisecond to second timescales. However, observation of the dynamics on the microsecond timescale is still very challenging. This timescale is important because the elementary processes of protein dynamics take place and direct comparison between experiment and simulation is possible. Here we report a new single-molecule technique to reveal the microsecond structural dynamics of proteins through correlation of the fluorescence lifetime. This method, two-dimensional fluorescence lifetime correlation spectroscopy, is applied to clarify the conformational dynamics of cytochrome c. Three conformational ensembles and the microsecond transitions in each ensemble are indicated from the correlation signal, demonstrating the importance of quantifying microsecond dynamics of proteins on the folding free energy landscape. PMID:26151767
Subliminal speech perception and auditory streaming.
Dupoux, Emmanuel; de Gardelle, Vincent; Kouider, Sid
2008-11-01
Current theories of consciousness assume a qualitative dissociation between conscious and unconscious processing: while subliminal stimuli only elicit a transient activity, supraliminal stimuli have long-lasting influences. Nevertheless, the existence of this qualitative distinction remains controversial, as past studies confounded awareness and stimulus strength (energy, duration). Here, we used a masked speech priming method in conjunction with a submillisecond interaural delay manipulation to contrast subliminal and supraliminal processing at constant prime, mask and target strength. This delay induced a perceptual streaming effect, with the prime popping out in the supraliminal condition. By manipulating the prime-target interval (ISI), we show a qualitatively distinct profile of priming longevity as a function of prime awareness. While subliminal priming disappeared after half a second, supraliminal priming was independent of ISI. This shows that the distinction between conscious and unconscious processing depends on high-level perceptual streaming factors rather than low-level features (energy, duration).
Zhang, Zhou; Tao, Zhen; Gameiro, Armanda; Barcelona, Stephanie; Braams, Simona; Rauen, Thomas; Grewer, Christof
2007-01-01
Glutamate transport by the excitatory amino acid carrier EAAC1 is known to be reversible. Thus, glutamate can either be taken up into cells, or it can be released from cells through reverse transport, depending on the electrochemical gradient of the co- and countertransported ions. However, it is unknown how fast and by which reverse transport mechanism glutamate can be released from cells. Here, we determined the steady- and pre-steady-state kinetics of reverse glutamate transport with submillisecond time resolution. First, our results suggest that glutamate and Na+ dissociate from their cytoplasmic binding sites sequentially, with glutamate dissociating first, followed by the three cotransported Na+ ions. Second, the kinetics of glutamate transport depend strongly on transport direction, with reverse transport being faster but less voltage-dependent than forward transport. Third, electrogenicity is distributed over several reverse transport steps, including intracellular Na+ binding, reverse translocation, and reverse relocation of the K+-bound EAAC1. We propose a kinetic model, which is based on a “first-in-first-out” mechanism, suggesting that glutamate association, with its extracellular binding site as well as dissociation from its intracellular binding site, precedes association and dissociation of at least one Na+ ion. Our model can be used to predict rates of glutamate release from neurons under physiological and pathophysiological conditions. PMID:17991780
Tanaka, Motomasa; Matsuura, Koji; Yoshioka, Shiro; Takahashi, Satoshi; Ishimori, Koichiro; Hori, Hiroshi; Morishima, Isao
2003-01-01
To observe the formation process of compound I in horseradish peroxidase (HRP), we developed a new freeze-quench device with ∼200 μs of the mixing-to-freezing time interval and observed the reaction between HRP and hydrogen peroxide (H2O2). The developed device consists of a submillisecond solution mixer and rotating copper or silver plates cooled at 77 K; it freezes the small droplets of mixed solution on the surface of the rotating plates. The ultraviolet-visible spectra of the sample quenched at ∼1 ms after the mixing of HRP and H2O2 suggest the formation of compound I. The electron paramagnetic resonance spectra of the same reaction quenched at ∼200 μs show a convex peak at g = 2.00, which is identified as compound I due to its microwave power and temperature dependencies. The absence of ferric signals in the electron paramagnetic resonance spectra of the quenched sample indicates that compound I is formed within ∼200 μs after mixing HRP and H2O2. We conclude that the activation of H2O2 in HRP at ambient temperature completes within ∼200 μs. The developed device can be generally applied to investigate the electronic structures of short-lived intermediates of metalloenzymes. PMID:12609902
Kinetics of phloretin binding to phosphatidylcholine vesicle membranes
1980-01-01
The submillisecond kinetics for phloretin binding to unilamellar phosphatidylcholine (PC) vesicles was investigated using the temperature-jump technique. Spectrophotometric studies of the equilibrium binding performed at 328 nm demonstrated that phloretin binds to a single set of independent, equivalent sites on the vesicle with a dissociation constant of 8.0 microM and a lipid/site ratio of 4.0. The temperature of the phloretin-vesicle solution was jumped by 4 degrees C within 4 microseconds producing a monoexponential, concentration-dependent relaxation process with time constants in the 30--200-microseconds time range. An analysis of the concentration dependence of relaxation time constants at pH 7.30 and 24 degrees C yielded a binding rate constant of 2.7 X 10(8) M-1 s-1 and an unbinding constant of 2,900 s-1; approximately 66 percent of total binding sites are exposed at the outer vesicle surface. The value of the binding rate constant and three additional observations suggest that the binding kinetics are diffusion limited. The phloretin analogue, naringenin, which has a diffusion coefficient similar to phloretin yet a dissociation constant equal to 24 microM, bound to PC vesicle with the same rate constant as phloretin did. In addition, the phloretin-PC system was studied in buffers made one to six times more viscous than water by addition of sucrose or glycerol to the differ. The equilibrium affinity for phloretin binding to PC vesicles is independent of viscosity, yet the binding rate constant decreases with the expected dependence (kappa binding alpha 1/viscosity) for diffusion-limited processes. Thus, the binding rate constant is not altered by differences in binding affinity, yet depends upon the diffusion coefficient in buffer. Finally, studies of the pH dependence of the binding rate constant showed a dependence (kappa binding alpha [1 + 10pH-pK]) consistent with the diffusion-limited binding of a weak acid. PMID:7391812
Tunable liquid crystal photonic devices
NASA Astrophysics Data System (ADS)
Fan, Yun-Hsing
2005-07-01
Liquid crystal (LC)-based adaptive optics are important for information processing, optical interconnections, photonics, integrated optics, and optical communications due to their tunable optical properties. In this dissertation, we describe novel liquid crystal photonic devices. In Chap. 3, we demonstrate a novel electrically tunable-efficiency Fresnel lens which is devised for the first time using nanoscale PDLC. The tunable Fresnel lens is very desirable to eliminate the need of external spatial light modulator. The nanoscale LC devices are polarization independent and exhibit a fast response time. Because of the small droplet sizes, the operating voltage is higher than 100 Vrms. To lower the driving voltage, in Chap. 2 and Chap. 3, we have investigated tunable Fresnel lens using polymer-network liquid crystal (PNLC) and phase-separated composite film (PSCOF). The operating voltage is below 12 Vrms. The PNLC and PSCOF devices are polarization dependent. To overcome this shortcoming, stacking two cells with orthogonal alignment directions is a possibility. Using PNLC, we also demonstrated LC blazed grating. The diffraction efficiency of these devices is continuously controlled by the electric field. We also develop a system with continuously tunable focal length. A conventional mechanical zooming system is bulky and power hungry. In Chap. 4, we developed an electrically tunable-focus flat LC spherical lens and microlens array. A huge tunable range from 0.6 m to infinity is achieved by the applied voltage. In Chap. 5, we describe a LC microlens array whose focal length can be switched from positive to negative by the applied voltage. The fast response time feature of our LC microlens array will be very helpful in developing 3-D animated images. In Chap. 6, we demonstrate polymer network liquid crystals for switchable polarizers and optical shutters. The use of dual-frequency liquid crystal and special driving scheme leads to a sub-millisecond response time. In Chap. 7, for the first time, we demonstrate a fast-response and scattering-free homogeneously-aligned PNLC light modulator. The PNLC response time is ˜300x faster than that of a pure LC mixture. The PNLC cell also holds promise for mid and long infrared applications where response time is a critical issue.
Synaptic integration in dendrites: exceptional need for speed
Golding, Nace L; Oertel, Donata
2012-01-01
Some neurons in the mammalian auditory system are able to detect and report the coincident firing of inputs with remarkable temporal precision. A strong, low-voltage-activated potassium conductance (gKL) at the cell body and dendrites gives these neurons sensitivity to the rate of depolarization by EPSPs, allowing neurons to assess the coincidence of the rising slopes of unitary EPSPs. Two groups of neurons in the brain stem, octopus cells in the posteroventral cochlear nucleus and principal cells of the medial superior olive (MSO), extract acoustic information by assessing coincident firing of their inputs over a submillisecond timescale and convey that information at rates of up to 1000 spikes s−1. Octopus cells detect the coincident activation of groups of auditory nerve fibres by broadband transient sounds, compensating for the travelling wave delay by dendritic filtering, while MSO neurons detect coincident activation of similarly tuned neurons from each of the two ears through separate dendritic tufts. Each makes use of filtering that is introduced by the spatial distribution of inputs on dendrites. PMID:22930273
Liu, Junku; Guo, Nan; Xiao, Xiaoyang; Zhang, Kenan; Jia, Yi; Zhou, Shuyun; Wu, Yang; Li, Qunqing; Xiao, Lin
2017-11-22
In this study, we fabricate air-stable p-type multi-layered MoTe 2 phototransistor using Au as electrodes, which shows pronounced photovoltaic response in off-state with asymmetric contact form. By analyzing the spatially resolved photoresponse using scanning photocurrent microscopy, we found that the potential steps are formed in the vicinity of the electrodes/MoTe 2 interface due to the doping of the MoTe 2 by the metal contacts. The potential step dominates the separation of photoexcited electron-hole pairs in short-circuit condition or with small V sd biased. Based on these findings, we infer that the asymmetric contact cross-section between MoTe 2 -source and MoTe 2 -drain electrodes is the reason to form non-zero net current and photovoltaic response. Furthermore, MoTe 2 phototransistor shows a faster response in short-circuit condition than that with higher biased V sd within sub-millisecond, and its spectral range can be extended to the infrared end of 1550 nm.
Using Solid State Drives as a Mid-Tier Cache in Enterprise Database OLTP Applications
NASA Astrophysics Data System (ADS)
Khessib, Badriddine M.; Vaid, Kushagra; Sankar, Sriram; Zhang, Chengliang
When originally introduced, flash based solid state drives (SSD) exhibited a very high random read throughput with low sub-millisecond latencies. However, in addition to their steep prices, SSDs suffered from slow write rates and reliability concerns related to cell wear. For these reasons, they were relegated to a niche status in the consumer and personal computer market. Since then, several architectural enhancements have been introduced that led to a substantial increase in random write operations as well as a reasonable improvement in reliability. From a purely performance point of view, these high I/O rates and improved reliability make the SSDs an ideal choice for enterprise On-Line Transaction Processing (OLTP) applications. However, from a price/performance point of view, the case for SSDs may not be clear. Enterprise class SSD Price/GB, continues to be at least 10x higher than conventional magnetic hard disk drives (HDD) despite considerable drop in Flash chip prices.
2017-07-27
The Fly’s Eye GLM Simulator (FEGS) is an airborne array of multi-spectral radiometers optimized to measure the optical emission from lightning. The instrument was designed by the Lightning Group in the Earth Science Office at the Marshall Space Flight Center as part of the validation effort for the first Geostationary Lightning Mapper (GLM) onboard GOES-16. From March to May of 2017, FEGS was flown on the NASA Armstrong Flight Research Center ER-2 along with a payload of other instruments during the GOES-16 Validation Flight Campaign. Data collected during the campaign are being analyzed by scientists at NASA and collaborating institutions to test the accuracy of GLM and other GOES-16 instruments. FEGS adds the capability to investigate sub-millisecond lightning energetics to the NASA Airborne Earth Science program. When flown with its complimentary suite of instruments, the FEGS package observes lightning radiation signatures that span from radio frequencies to gamma-ray emission. Learn more about the GOES-16 Validation Flight Campaign here: https://www.youtube.com/watch?v=rCTIk...
Enzyme kinetics above denaturation temperature: a temperature-jump/stopped-flow apparatus.
Kintses, Bálint; Simon, Zoltán; Gyimesi, Máté; Tóth, Júlia; Jelinek, Balázs; Niedetzky, Csaba; Kovács, Mihály; Málnási-Csizmadia, András
2006-12-15
We constructed a "temperature-jump/stopped-flow" apparatus that allows us to study fast enzyme reactions at extremely high temperatures. This apparatus is a redesigned stopped-flow which is capable of mixing the reactants on a submillisecond timescale concomitant with a temperature-jump even as large as 60 degrees C. We show that enzyme reactions that are faster than the denaturation process can be investigated above denaturation temperatures. In addition, the temperature-jump/stopped-flow enables us to investigate at physiological temperature the mechanisms of many human enzymes, which was impossible until now because of their heat instability. Furthermore, this technique is extremely useful in studying the progress of heat-induced protein unfolding. The temperature-jump/stopped-flow method combined with the application of structure-specific fluorescence signals provides novel opportunities to study the stability of certain regions of enzymes and identify the unfolding-initiating regions of proteins. The temperature-jump/stopped-flow technique may become a breakthrough in exploring new features of enzymes and the mechanism of unfolding processes.
NASA Astrophysics Data System (ADS)
Liu, Junku; Guo, Nan; Xiao, Xiaoyang; Zhang, Kenan; Jia, Yi; Zhou, Shuyun; Wu, Yang; Li, Qunqing; Xiao, Lin
2017-11-01
In this study, we fabricate air-stable p-type multi-layered MoTe2 phototransistor using Au as electrodes, which shows pronounced photovoltaic response in off-state with asymmetric contact form. By analyzing the spatially resolved photoresponse using scanning photocurrent microscopy, we found that the potential steps are formed in the vicinity of the electrodes/MoTe2 interface due to the doping of the MoTe2 by the metal contacts. The potential step dominates the separation of photoexcited electron-hole pairs in short-circuit condition or with small V sd biased. Based on these findings, we infer that the asymmetric contact cross-section between MoTe2-source and MoTe2-drain electrodes is the reason to form non-zero net current and photovoltaic response. Furthermore, MoTe2 phototransistor shows a faster response in short-circuit condition than that with higher biased V sd within sub-millisecond, and its spectral range can be extended to the infrared end of 1550 nm.
NASA Astrophysics Data System (ADS)
Barghi, M. R., Sr.; Sample, J.; Forouzani, A.; Delaney, N.; Wells, E.; Parab, A.; Bowers, G. S.; Smith, D.; Martinez-McKinney, F.
2017-12-01
The Light and Fast TGF Recorder (LAFTR), is a joint institutional NASA balloon borne gamma-ray detector between undergraduates at Montana State University(MSU) and University of California Santa Cruz (UCSC) designed to record an extremely bright sub-millisecond burst of gamma-rays observed to originate inside thunderstorms called Terrestrial Gamma-ray Flashes (TGFs). The detector employs a fast small plastic scintillator(BC-408) to avoid oversaturation. The Scintillator output is read out by the SensL Silicon Photomultiplier (SiPm) complemented by a custom shaping circuit to narrow long exponential pulses outputted from the SiPm into a semi-gaussian pulse with a 40 ns FWHM to be read into a 6 channel discriminator board for coarse spectroscopy and output a Low Voltage Differential Signal(LVDS). The presentation will primarily focus on the significant experiences and skills acquired from the project by several team members such as the importance of team coordination in joint institutional projects,clear documentation, communication, and planning such detector systems under the NASA Guidelines.
NASA Astrophysics Data System (ADS)
Uebelhoer, Nathan
2017-02-01
Many laser wavelengths with various power and pulse characteristics have been used in an attempt to improve cutaneous scars. No single configuration has produced such dramatic changes in quality of life as the high energy, low density, sub-millisecond pulsed ablative infrared laser. Hundreds of wounded military service members with burn and traumatic scars that resulted in disabling restriction in range of motion have been treated since 2008. By fractionating the pulse to produce a uniform thermal injury less than 400um wide and to a depth of 3mm into the scar, we have observed dramatic reductions in scar-induced pain, pruritus, and most significantly, improvements in range of motion. The clinical and histologic changes seen in restrictive scars following treatment correlates with a regeneration of tissue that appears and functions more like normal tissue rather than scar. This lecture will describe our experience in the military and the latest research to support our observations.
THE EFFECT OF TRANSIENT ACCRETION ON THE SPIN-UP OF MILLISECOND PULSARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, Sudip; Chakrabarty, Deepto, E-mail: sudip@tifr.res.in
A millisecond pulsar is a neutron star that has been substantially spun up by accretion from a binary companion. A previously unrecognized factor governing the spin evolution of such pulsars is the crucial effect of nonsteady or transient accretion. We numerically compute the evolution of accreting neutron stars through a series of outburst and quiescent phases, considering the drastic variation of the accretion rate and the standard disk–magnetosphere interaction. We find that, for the same long-term average accretion rate, X-ray transients can spin up pulsars to rates several times higher than can persistent accretors, even when the spin-down due tomore » electromagnetic radiation during quiescence is included. We also compute an analytical expression for the equilibrium spin frequency in transients, by taking spin equilibrium to mean that no net angular momentum is transferred to the neutron star in each outburst cycle. We find that the equilibrium spin rate for transients, which depends on the peak accretion rate during outbursts, can be much higher than that for persistent sources. This explains our numerical finding. This finding implies that any meaningful study of neutron star spin and magnetic field distributions requires the inclusion of the transient accretion effect, since most accreting neutron star sources are transients. Our finding also implies the existence of a submillisecond pulsar population, which is not observed. This may point to the need for a competing spin-down mechanism for the fastest-rotating accreting pulsars, such as gravitational radiation.« less
NASA Astrophysics Data System (ADS)
Choubey, Amit
Biological cell membranes provide mechanical stability to cells and understanding their structure, dynamics and mechanics are important biophysics problems. Experiments coupled with computational methods such as molecular dynamics (MD) have provided insight into the physics of membranes. We use long-time and large-scale MD simulations to study the structure, dynamics and mechanical behavior of membranes. We investigate shock-induced collapse of nanobubbles in water using MD simulations based on a reactive force field. We observe a focused jet at the onset of bubble shrinkage and a secondary shock wave upon bubble collapse. The jet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. Shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. We also investigate molecular mechanisms of poration in lipid bilayers due to shock-induced collapse of nanobubbles. Our multimillion-atom MD simulations reveal that the jet impact generates shear flow of water on bilayer leaflets and pressure gradients across them. This transiently enhances the bilayer permeability by creating nanopores through which water molecules translocate rapidly across the bilayer. Effects of nanobubble size and temperature on the porosity of lipid bilayers are examined. The second research project focuses on cholesterol (CHOL) dynamics in phospholipid bilayers. Several experimental and computational studies have been performed on lipid bilayers consisting of dipalmitoylphosphatidylcholine (DPPC) and CHOL molecules. CHOL interleaflet transport (flip-flop) plays an important role in interleaflet coupling and determining CHOL flip-flop rate has been elusive. Various studies report that the rate ranges between milliseconds to seconds. We calculate CHOL flip-flop rates by performing a 15 mus all-atom MD simulation of a DPPC-CHOL bilayer. We find that the CHOL flip-flop rates are on the sub microsecond timescale. These results are verified by performing various independent parallel replica (PR) simulations. Our PR simulations provide significant boost in sampling of the flip-flop events. We observe that the CHOL flip-flop can induce membrane order, regulate membrane-bending energy, and facilitate membrane relaxation. The rapid flip-flop rates reported here have important implications for the role of CHOL in mechanical properties of cell membranes, formation of domains, and maintaining CHOL concentration asymmetry in plasma membrane. Our PR approach can reach submillisecond time scales and bridge the gap between MD simulations and Nuclear Magnetic Resonance (NMR) experiments on CHOL flip-flop dynamics in membranes. The last project deals with transfection barriers encountered by a bare small interfering RNA (siRNA) in a phospholipid bilayer. SiRNA molecules play a pivotal role in therapeutic applications. A key limitation to the widespread implementation of siRNA-based therapeutics is the difficulty of delivering siRNA-based drugs to cells. We have examined structural and mechanical barriers to siRNA passage across a phospholipid bilayer using all-atom MD simulations. We find that the electrostatic interaction between the anionic siRNA and head groups of phospholipid molecules induces a phase transformation from the liquid crystalline to ripple phase. Steered MD simulations reveal that the siRNA transfection through the ripple phase requires a force of ˜ 1.5 nN.
NISHIMURA, Chiaki
2017-01-01
The structures of apomyoglobin folding intermediates have been widely analyzed using physical chemistry methods including fluorescence, circular dichroism, small angle X-ray scattering, NMR, mass spectrometry, and rapid mixing. So far, at least two intermediates (on sub-millisecond- and millisecond-scales) have been demonstrated for apomyoglobin folding. The combination of pH-pulse labeling and NMR is a useful tool for analyzing the kinetic intermediates at the atomic level. Its use has revealed that the latter-phase kinetic intermediate of apomyoglobin (6 ms) was composed of helices A, B, G and H, whereas the equilibrium intermediate, called the pH 4 molten-globule intermediate, was composed mainly of helices A, G and H. The improved strategy for the analysis of the kinetic intermediate was developed to include (1) the dimethyl sulfoxide method, (2) data processing with the various labeling times, and (3) a new in-house mixer. Particularly, the rapid mixing revealed that helices A and G were significantly more protected at the earlier stage (400 µs) of the intermediate (former-phase intermediate) than the other helices. Mutation studies, where each hydrophobic residue was replaced with an alanine in helices A, B, E, F, G and H, indicated that both non-native and native-like structures exist in the latter-phase folding intermediate. The N-terminal part of helix B is a weak point in the intermediate, and the docking of helix E residues to the core of the A, B, G and H helices was interrupted by a premature helix B, resulting in the accumulation of the intermediate composed of helices A, B, G and H. The prediction-based protein engineering produced important mutants: Helix F in a P88K/A90L/S92K/A94L mutant folded in the latter-phase intermediate, although helix F in the wild type does not fold even at the native state. Furthermore, in the L11G/W14G/A70L/G73W mutant, helix A did not fold but helix E did, which is similar to what was observed in the kinetic intermediate of apoleghemoglobin. Thus, this protein engineering resulted in a changed structure for the apomyoglobin folding intermediate. PMID:28077807
Nishimura, Chiaki
2017-01-01
The structures of apomyoglobin folding intermediates have been widely analyzed using physical chemistry methods including fluorescence, circular dichroism, small angle X-ray scattering, NMR, mass spectrometry, and rapid mixing. So far, at least two intermediates (on sub-millisecond- and millisecond-scales) have been demonstrated for apomyoglobin folding. The combination of pH-pulse labeling and NMR is a useful tool for analyzing the kinetic intermediates at the atomic level. Its use has revealed that the latter-phase kinetic intermediate of apomyoglobin (6 ms) was composed of helices A, B, G and H, whereas the equilibrium intermediate, called the pH 4 molten-globule intermediate, was composed mainly of helices A, G and H. The improved strategy for the analysis of the kinetic intermediate was developed to include (1) the dimethyl sulfoxide method, (2) data processing with the various labeling times, and (3) a new in-house mixer. Particularly, the rapid mixing revealed that helices A and G were significantly more protected at the earlier stage (400 µs) of the intermediate (former-phase intermediate) than the other helices. Mutation studies, where each hydrophobic residue was replaced with an alanine in helices A, B, E, F, G and H, indicated that both non-native and native-like structures exist in the latter-phase folding intermediate. The N-terminal part of helix B is a weak point in the intermediate, and the docking of helix E residues to the core of the A, B, G and H helices was interrupted by a premature helix B, resulting in the accumulation of the intermediate composed of helices A, B, G and H. The prediction-based protein engineering produced important mutants: Helix F in a P88K/A90L/S92K/A94L mutant folded in the latter-phase intermediate, although helix F in the wild type does not fold even at the native state. Furthermore, in the L11G/W14G/A70L/G73W mutant, helix A did not fold but helix E did, which is similar to what was observed in the kinetic intermediate of apoleghemoglobin. Thus, this protein engineering resulted in a changed structure for the apomyoglobin folding intermediate.
Submillisecond-response IR spatial light modulators with polymer network liquid crystal
NASA Astrophysics Data System (ADS)
Sun, Jie; Chen, Yuan; Wu, Shin-Tson
2013-03-01
Polymer network liquid crystal (PNLC) is attractive for many photonic applications because of its fast response time and large phase modulation. However, the voltage-on state light scattering caused by multi-domains of LC molecules hinders its applications in the visible and near infrared regions. To reduce domain sizes and eliminate scattering for λ=1.06 μm and 1.55 μm, we studied the effect of LC viscosity on domain sizes. PNLCs based on five different LC hosts were prepared. The LC host was first mixed with 6% reactive mesogen and then filled into a 12-μm cell with homogeneous alignment. After UV curing, we measured the on-state transmission spectra of these five PNLCs. By fitting the transmission spectra with Rayleigh-Gans-Debye model, we can estimate the average domain sizes. We found that the domain sizes of PNLC are inversely proportional to the rotational viscosity of the LC host. This finding can be explained by the Stokes-Einstein equation. As a result, PNLC with a slower diffusion rate would cause smaller domain sizes, which in turn lead to faster response time. To achieve a slower diffusion rate, we cured the PNLC samples at a lower temperature. By selecting a high viscosity and high Δɛ LC host, we demonstrate a scattering-free (<3%) 2π phase modulator at λ=1.06 μm and λ=1.55 μm. Temperature affects the PNLC performance significantly. As the operation temperature increases from 25oC to 70oC, the response time drops from 220 μs to 30 μs. 2π operating voltage for λ=1.06 μm slightly increases from 65V to 85V. Meanwhile, hysteresis decreases from 7.7% to 2%. For λ=1.55μm, operating voltage is 100V. If reflective mode is employed, operating voltage can be reduced to 55V.
Davis, Ryan D; Jacobs, Michael I; Houle, Frances A; Wilson, Kevin R
2017-11-21
In-depth investigations of the kinetics of aqueous chemistry occurring in microdroplet environments require experimental techniques that allow a reaction to be initiated at a well-defined point in time and space. Merging microdroplets of different reactants is one such approach. The mixing dynamics of unconfined (airborne) microdroplets have yet to be studied in detail, which is an essential step toward widespread use and application of merged droplet microreactors for monitoring chemical reactions. Here, we present an on-demand experimental approach for initiating chemical reactions in and characterizing the mixing dynamics of colliding airborne microdroplets (40 ± 5 μm diameter) using a streak-based fluorescence microscopy technique. The advantages of this approach include the ability to generate two well-controlled monodisperse microdroplet streams and collide (and thus mix) the microdroplets with high spatial and temporal control while consuming small amounts of sample (<0.1 μL/s). Mixing times are influenced not only by the velocity at which microdroplets collide but also the geometry of the collision (i.e., head-on vs off-center collision). For head-on collisions, we achieve submillisecond mixing times ranging from ∼900 μs at a collision velocity of 0.1 m/s to <200 μs at ∼6 m/s. For low-velocity (<1 m/s) off-center collisions, mixing times were consistent with the head-on cases. For high-velocity (i.e., > 1 m/s) off-center collisions, mixing times increased by as much as a factor of 6 (e.g., at ∼6 m/s, mixing times increased from <200 μs for head-on collisions to ∼1200 μs for highly off-center collisions). At collision velocities >7 m/s, droplet separation and fragmentation occurred, resulting in incomplete mixing. These results suggest a limited range of collision velocities over which complete and rapid mixing can be achieved when using airborne merged microdroplets to, e.g., study reaction kinetics when reaction times are short relative to typical bulk reactor mixing times. We benchmark our reactor using an aqueous-phase oxidation reaction: iron-catalyzed hydroxyl radical production from hydrogen peroxide (Fenton's reaction) and subsequent aqueous-phase oxidation of organic species in solution. Kinetic simulations of our measurements show that quantitative agreement can be obtained using known bulk-phase kinetics for bimolecular reactions in our colliding-droplet microreactor.
Davis, Ryan D.; Jacobs, Michael I.; Houle, Frances A.; ...
2017-10-30
In-depth investigations of the kinetics of aqueous chemistry occurring in microdroplet environments require experimental techniques that allow a reaction to be initiated at a well-defined point in time and space. Merging microdroplets of different reactants is one such approach. The mixing dynamics of unconfined (airborne) microdroplets have yet to be studied in detail, which is an essential step toward widespread use and application of merged droplet microreactors for monitoring chemical reactions. Here, we present an on-demand experimental approach for initiating chemical reactions in and characterizing the mixing dynamics of colliding airborne microdroplets (40 ± 5 μm diameter) using a streak-basedmore » fluorescence microscopy technique. The advantages of this approach include the ability to generate two well-controlled monodisperse microdroplet streams and collide (and thus mix) the microdroplets with high spatial and temporal control while consuming small amounts of sample (<0.1 μL/s). Mixing times are influenced not only by the velocity at which microdroplets collide but also the geometry of the collision (i.e., head-on vs off-center collision). For head-on collisions, we achieve submillisecond mixing times ranging from ~900 μs at a collision velocity of 0.1 m/s to <200 μs at ~6 m/s. For low-velocity (<1 m/s) off-center collisions, mixing times were consistent with the head-on cases. For high-velocity (i.e., > 1 m/s) off-center collisions, mixing times increased by as much as a factor of 6 (e.g., at ~6 m/s, mixing times increased from <200 μs for head-on collisions to ~1200 μs for highly off-center collisions). At collision velocities >7 m/s, droplet separation and fragmentation occurred, resulting in incomplete mixing. These results suggest a limited range of collision velocities over which complete and rapid mixing can be achieved when using airborne merged microdroplets to, e.g., study reaction kinetics when reaction times are short relative to typical bulk reactor mixing times. We benchmark our reactor using an aqueous-phase oxidation reaction: iron-catalyzed hydroxyl radical production from hydrogen peroxide (Fenton's reaction) and subsequent aqueous-phase oxidation of organic species in solution. In conclusion, kinetic simulations of our measurements show that quantitative agreement can be obtained using known bulk-phase kinetics for bimolecular reactions in our colliding-droplet microreactor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Ryan D.; Jacobs, Michael I.; Houle, Frances A.
In-depth investigations of the kinetics of aqueous chemistry occurring in microdroplet environments require experimental techniques that allow a reaction to be initiated at a well-defined point in time and space. Merging microdroplets of different reactants is one such approach. The mixing dynamics of unconfined (airborne) microdroplets have yet to be studied in detail, which is an essential step toward widespread use and application of merged droplet microreactors for monitoring chemical reactions. Here, we present an on-demand experimental approach for initiating chemical reactions in and characterizing the mixing dynamics of colliding airborne microdroplets (40 ± 5 μm diameter) using a streak-basedmore » fluorescence microscopy technique. The advantages of this approach include the ability to generate two well-controlled monodisperse microdroplet streams and collide (and thus mix) the microdroplets with high spatial and temporal control while consuming small amounts of sample (<0.1 μL/s). Mixing times are influenced not only by the velocity at which microdroplets collide but also the geometry of the collision (i.e., head-on vs off-center collision). For head-on collisions, we achieve submillisecond mixing times ranging from ~900 μs at a collision velocity of 0.1 m/s to <200 μs at ~6 m/s. For low-velocity (<1 m/s) off-center collisions, mixing times were consistent with the head-on cases. For high-velocity (i.e., > 1 m/s) off-center collisions, mixing times increased by as much as a factor of 6 (e.g., at ~6 m/s, mixing times increased from <200 μs for head-on collisions to ~1200 μs for highly off-center collisions). At collision velocities >7 m/s, droplet separation and fragmentation occurred, resulting in incomplete mixing. These results suggest a limited range of collision velocities over which complete and rapid mixing can be achieved when using airborne merged microdroplets to, e.g., study reaction kinetics when reaction times are short relative to typical bulk reactor mixing times. We benchmark our reactor using an aqueous-phase oxidation reaction: iron-catalyzed hydroxyl radical production from hydrogen peroxide (Fenton's reaction) and subsequent aqueous-phase oxidation of organic species in solution. In conclusion, kinetic simulations of our measurements show that quantitative agreement can be obtained using known bulk-phase kinetics for bimolecular reactions in our colliding-droplet microreactor.« less
Terrestrial Gamma Ray Flashes due to Particle Acceleration in Tropical Storm Systems
NASA Technical Reports Server (NTRS)
Roberts, O. S.; Fitzpatrick, G.; Priftis, G.; Bedka, K.; Chronis, T.; Mcbreen, S.; Briggs, M.; Cramer, E.; Mailyan, B.; Stanbro, M.
2017-01-01
Terrestrial gamma ray flashes (TGFs) are submillisecond flashes of energetic radiation that are believed to emanate from intracloud lightning inside thunderstorms. This emission can be detected hundreds of kilometers from the source by space-based observatories such as the Fermi Gamma-ray Space Telescope (Fermi). The location of the TGF-producing storms can be determined using very low frequency (VLF) radio measurements made simultaneously with the Fermi detection, allowing additional insight into the mechanisms which produce these phenomena. In this paper, we report 37 TGFs originating from tropical storm systems for the first time. Previous studies to gain insight into how tropical cyclones formed and how destructive they can be include the investigation of lightning flash rates and their dependence on storm evolution. We find TGFs to emanate from a broad range of distances from the storm centers. In hurricanes and severe tropical cyclones, the TGFs are observed to occur predominately from the outer rainbands. A majority of our sample also show TGFs occurring during the strengthening phase of the encompassing storm system. These results verify that TGF production closely follows when and where lightning predominately occurs in cyclones. The intrinsic characteristics of these TGFs were not found to differ from other TGFs reported in larger samples. We also find that some TGF-producing storm cells in tropical storm systems far removed from land have a low number of WWLLN sferics. Although not unique to tropical cyclones, this TGF/sferic ratio may imply a high efficiency for the lightning in these storms to generate TGFs.
Planar MEMS bio-chip for recording ion-channel currents in biological cells
NASA Astrophysics Data System (ADS)
Pandey, Santosh; Ferdous, Zannatul; White, Marvin H.
2003-10-01
We describe a planar MEMS silicon structure to record ion-channel currents in biological cells. The conventional method of performing an electrophysiological experiment, 'patch-clamping,' employs a glass micropipette. Despite careful treatments of the micropipette tip, such as fire polishing and surface coating, the latter is a source of thermal noise because of its inherent, tapered, conical structure, which gives rise to a large pipette resistance. This pipette resistance, when coupled with the self-capacitance of the biological cell, limits the available bandwidth and processing of fast transient, ion channel current pulses. In this work, we reduce considerably the pipette resistance with a planar micropipette on a silicon chip to permit the resolution of sub-millisecond, ion-channel pulses. We discuss the design topology of the device, describe the fabrication sequence, and highlight important critical issues. The design of an integrated on-chip CMOS instrumentation amplifier is described, which has a low-noise front-end, input-offset cancellation, correlated double sampling (CDS), and an ultra-high gain in the order of 1012V/A.
Single-molecule FRET unveils induced-fit mechanism for substrate selectivity in flap endonuclease 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashid, Fahad; Harris, Paul D.; Zaher, Manal S.
Human flap endonuclease 1 (FEN1) and related structure-specific 5’nucleases precisely identify and incise aberrant DNA structures during replication, repair and recombination to avoid genomic instability. Yet, it is unclear how the 5’nuclease mechanisms of DNA distortion and protein ordering robustly mediate efficient and accurate substrate recognition and catalytic selectivity. Here, single-molecule sub-millisecond and millisecond analyses of FEN1 reveal a protein-DNA induced-fit mechanism that efficiently verifies substrate and suppresses off-target cleavage. FEN1 sculpts DNA with diffusion-limited kinetics to test DNA substrate. This DNA distortion mutually ‘locks’ protein and DNA conformation and enables substrate verification with extreme precision. Strikingly, FEN1 never missesmore » cleavage of its cognate substrate while blocking probable formation of catalytically competent interactions with noncognate substrates and fostering their pre-incision dissociation. These findings establish FEN1 has practically perfect precision and that separate control of induced-fit substrate recognition sets up the catalytic selectivity of the nuclease active site for genome stability.« less
Single-molecule FRET unveils induced-fit mechanism for substrate selectivity in flap endonuclease 1
Rashid, Fahad; Harris, Paul D.; Zaher, Manal S.; ...
2017-02-23
Human flap endonuclease 1 (FEN1) and related structure-specific 5’nucleases precisely identify and incise aberrant DNA structures during replication, repair and recombination to avoid genomic instability. Yet, it is unclear how the 5’nuclease mechanisms of DNA distortion and protein ordering robustly mediate efficient and accurate substrate recognition and catalytic selectivity. Here, single-molecule sub-millisecond and millisecond analyses of FEN1 reveal a protein-DNA induced-fit mechanism that efficiently verifies substrate and suppresses off-target cleavage. FEN1 sculpts DNA with diffusion-limited kinetics to test DNA substrate. This DNA distortion mutually ‘locks’ protein and DNA conformation and enables substrate verification with extreme precision. Strikingly, FEN1 never missesmore » cleavage of its cognate substrate while blocking probable formation of catalytically competent interactions with noncognate substrates and fostering their pre-incision dissociation. These findings establish FEN1 has practically perfect precision and that separate control of induced-fit substrate recognition sets up the catalytic selectivity of the nuclease active site for genome stability.« less
Preparation, applications, and digital simulation of carbon interdigitated array electrodes.
Liu, Fei; Kolesov, Grigory; Parkinson, B A
2014-08-05
Carbon interdigitated array (IDA) electrodes with features sizes down to 1.2 μm were fabricated by controlled pyrolysis of patterned photoresist. Cyclic voltammetry of reversible redox species produced the expected steady-state currents. The collection efficiency depends on the IDA electrode spacing, which ranged from around 2.7 to 16.5 μm, with the smaller dimensions achieving higher collection efficiencies of up to 98%. The signal amplification because of redox cycling makes it possible to detect species at relatively low concentrations (10(-5) molar) and the small spacing allows detection of transient electrogenerated species with much shorter lifetimes (submillisecond). Digital simulation software that accounts for both the width and height of electrode elements as well as the electrode spacing was developed to model the IDA electrode response. The simulations are in quantitative agreement with experimental data for both a simple fast one electron redox reaction and an electron transfer with a following chemical reaction at the IDAs with larger gaps whereas currents measured for the smallest IDA electrodes, that were larger than the simulated currents, are attributed to convection from induced charge electrokinetic flow.
A laser-abrasive method for the cutting of enamel and dentin.
Altshuler, G B; Belikov, A V; Sinelnik, Y A
2001-01-01
This paper introduced a new method for the removal of hard dental tissue based upon the use of particles accelerated by laser irradiation, which the authors have called the laser-abrasive method. The particles used were sapphire as powder or an aqueous suspension. The effect of the products of enamel ablation was also investigated. The particles were accelerated using submillisecond pulses of Er:YAG and Nd:YAG lasers. A strobing CCD camera was used to measure the speed of the ejected particles. The additional contribution of these particles to the efficiency of laser ablation of enamel and dentin was also investigated. The results showed that the enamel particles produced by the beam-tissue interaction were also accelerated by this process of ablation and were effective in the removal of enamel and dentin. The use of an aqueous suspension of sapphire particles increased the efficiency of enamel removal threefold when compared with the use of an Er:YAG laser with water spray. The laser-abrasive method allowed for the removal of enamel and dentin at speeds approaching those of the high-speed turbine. Copyright 2001 Wiley-Liss, Inc.
Świetlik, D; Białowąs, J; Kusiak, A; Cichońska, D
2018-01-01
An experimental study of computational model of the CA3 region presents cog-nitive and behavioural functions the hippocampus. The main property of the CA3 region is plastic recurrent connectivity, where the connections allow it to behave as an auto-associative memory. The computer simulations showed that CA3 model performs efficient long-term synaptic potentiation (LTP) induction and high rate of sub-millisecond coincidence detection. Average frequency of the CA3 pyramidal cells model was substantially higher in simulations with LTP induction protocol than without the LTP. The entropy of pyramidal cells with LTP seemed to be significantly higher than without LTP induction protocol (p = 0.0001). There was depression of entropy, which was caused by an increase of forgetting coefficient in pyramidal cells simulations without LTP (R = -0.88, p = 0.0008), whereas such correlation did not appear in LTP simulation (p = 0.4458). Our model of CA3 hippocampal formation microcircuit biologically inspired lets you understand neurophysiologic data. (Folia Morphol 2018; 77, 2: 210-220).
Furuike, Shou; Nakano, Masahiro; Adachi, Kengo; Noji, Hiroyuki; Kinosita, Kazuhiko; Yokoyama, Ken
2011-01-01
Vacuole-type ATPases (VoV1) and FoF1 ATP synthases couple ATP hydrolysis/synthesis in the soluble V1 or F1 portion with proton (or Na+) flow in the membrane-embedded Vo or Fo portion through rotation of one common shaft. Here we show at submillisecond resolutions the ATP-driven rotation of isolated V1 and the whole VoV1 from Thermus thermophilus, by attaching a 40-nm gold bead for which viscous drag is almost negligible. V1 made 120° steps, commensurate with the presence of three catalytic sites. Dwells between the steps involved at least two events other than ATP binding, one likely to be ATP hydrolysis. VoV1 exhibited 12 dwell positions per revolution, consistent with the 12-fold symmetry of the Vo rotor in T. thermophilus. Unlike F1 that undergoes 80°–40° substepping, chemo-mechanical checkpoints in isolated V1 are all at the ATP-waiting position, and Vo adds further bumps through stator–rotor interactions outside and remote from V1. PMID:21407199
The primed SNARE–complexin–synaptotagmin complex for neuronal exocytosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qiangjun; Zhou, Peng; Wang, Austin L.
Synaptotagmin, complexin, and neuronal SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins mediate evoked synchronous neurotransmitter release, but the molecular mechanisms mediating the cooperation between these molecules remain unclear. Here we determine crystal structures of the primed pre-fusion SNARE–complexin–synaptotagmin-1 complex. These structures reveal an unexpected tripartite interface between synaptotagmin-1 and both the SNARE complex and complexin. Simultaneously, a second synaptotagmin-1 molecule interacts with the other side of the SNARE complex via the previously identified primary interface. Mutations that disrupt either interface in solution also severely impair evoked synchronous release in neurons, suggesting that both interfaces are essential for themore » primed pre-fusion state. Ca 2+ binding to the synaptotagmin-1 molecules unlocks the complex, allows full zippering of the SNARE complex, and triggers membrane fusion. In conclusion, the tripartite SNARE–complexin–synaptotagmin-1 complex at a synaptic vesicle docking site has to be unlocked for triggered fusion to start, explaining the cooperation between complexin and synaptotagmin-1 in synchronizing evoked release on the sub-millisecond timescale.« less
The primed SNARE–complexin–synaptotagmin complex for neuronal exocytosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qiangjun; Zhou, Peng; Wang, Austin L.
Synaptotagmin, complexin, and neuronal SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins mediate evoked synchronous neurotransmitter release, but the molecular mechanisms mediating the cooperation between these molecules remain unclear. Here we determine crystal structures of the primed pre-fusion SNARE–complexin–synaptotagmin-1 complex. These structures reveal an unexpected tripartite interface between synaptotagmin-1 and both the SNARE complex and complexin. Simultaneously, a second synaptotagmin-1 molecule interacts with the other side of the SNARE complex via the previously identified primary interface. Mutations that disrupt either interface in solution also severely impair evoked synchronous release in neurons, suggesting that both interfaces are essential for themore » primed pre-fusion state. Ca2+ binding to the synaptotagmin-1 molecules unlocks the complex, allows full zippering of the SNARE complex, and triggers membrane fusion. The tripartite SNARE–complexin–synaptotagmin-1 complex at a synaptic vesicle docking site has to be unlocked for triggered fusion to start, explaining the cooperation between complexin and synaptotagmin-1 in synchronizing evoked release on the sub-millisecond timescale.« less
The primed SNARE–complexin–synaptotagmin complex for neuronal exocytosis
Zhou, Qiangjun; Zhou, Peng; Wang, Austin L.; ...
2017-08-16
Synaptotagmin, complexin, and neuronal SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins mediate evoked synchronous neurotransmitter release, but the molecular mechanisms mediating the cooperation between these molecules remain unclear. Here we determine crystal structures of the primed pre-fusion SNARE–complexin–synaptotagmin-1 complex. These structures reveal an unexpected tripartite interface between synaptotagmin-1 and both the SNARE complex and complexin. Simultaneously, a second synaptotagmin-1 molecule interacts with the other side of the SNARE complex via the previously identified primary interface. Mutations that disrupt either interface in solution also severely impair evoked synchronous release in neurons, suggesting that both interfaces are essential for themore » primed pre-fusion state. Ca 2+ binding to the synaptotagmin-1 molecules unlocks the complex, allows full zippering of the SNARE complex, and triggers membrane fusion. In conclusion, the tripartite SNARE–complexin–synaptotagmin-1 complex at a synaptic vesicle docking site has to be unlocked for triggered fusion to start, explaining the cooperation between complexin and synaptotagmin-1 in synchronizing evoked release on the sub-millisecond timescale.« less
Single-molecule FRET unveils induced-fit mechanism for substrate selectivity in flap endonuclease 1
Rashid, Fahad; Harris, Paul D; Zaher, Manal S; Sobhy, Mohamed A; Joudeh, Luay I; Yan, Chunli; Piwonski, Hubert; Tsutakawa, Susan E; Ivanov, Ivaylo; Tainer, John A; Habuchi, Satoshi; Hamdan, Samir M
2017-01-01
Human flap endonuclease 1 (FEN1) and related structure-specific 5’nucleases precisely identify and incise aberrant DNA structures during replication, repair and recombination to avoid genomic instability. Yet, it is unclear how the 5’nuclease mechanisms of DNA distortion and protein ordering robustly mediate efficient and accurate substrate recognition and catalytic selectivity. Here, single-molecule sub-millisecond and millisecond analyses of FEN1 reveal a protein-DNA induced-fit mechanism that efficiently verifies substrate and suppresses off-target cleavage. FEN1 sculpts DNA with diffusion-limited kinetics to test DNA substrate. This DNA distortion mutually ‘locks’ protein and DNA conformation and enables substrate verification with extreme precision. Strikingly, FEN1 never misses cleavage of its cognate substrate while blocking probable formation of catalytically competent interactions with noncognate substrates and fostering their pre-incision dissociation. These findings establish FEN1 has practically perfect precision and that separate control of induced-fit substrate recognition sets up the catalytic selectivity of the nuclease active site for genome stability. DOI: http://dx.doi.org/10.7554/eLife.21884.001 PMID:28230529
Submillisecond elastic recoil reveals molecular origins of fibrin fiber mechanics.
Hudson, Nathan E; Ding, Feng; Bucay, Igal; O'Brien, E Timothy; Gorkun, Oleg V; Superfine, Richard; Lord, Susan T; Dokholyan, Nikolay V; Falvo, Michael R
2013-06-18
Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin's elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin's mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Submillisecond Elastic Recoil Reveals Molecular Origins of Fibrin Fiber Mechanics
Hudson, Nathan E.; Ding, Feng; Bucay, Igal; O’Brien, E. Timothy; Gorkun, Oleg V.; Superfine, Richard; Lord, Susan T.; Dokholyan, Nikolay V.; Falvo, Michael R.
2013-01-01
Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin’s elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin’s mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. PMID:23790375
NASA Astrophysics Data System (ADS)
Stevons, C. E.; Jenke, P.; Briggs, M. S.
2016-12-01
Terrestrial Gamma-ray Flashes (TGFs) are sub-millisecond gamma-ray flashes that are correlated with lightning have been observed with numerous satellites since their discovery in the early 1990s. Although substantial research has been conducted on TGFs, puzzling questions regarding their origin are still left unanswered. Consequently, the Terrestrial RaYs Analysis and Detection (TRYAD) mission is designed to solve many issues about TGFs by measuring the beam profile and orientation of TGFs in low Earth orbit. This project consists of sending two CubeSats into low-Earth orbit where they will independently sample TGF beams. Both of the TRYAD CubeSats will contain a gamma-ray detector composed of lead doped plastic scintillator coupled to silicon photomultiplier (SiPM) arrays. The gain readings of the SiPMs vary with temperature and the bias voltage must be corrected to compensate. Using an Arduino micro-controller, circuitry and software was developed to control the gain in response to the resistance of a thermistor. I will present the difficulties involved with this project along with our solutions.
Poznanski, Roman R
2010-02-01
An assumption commonly used in cable theory is revised by taking into account electrical amplification due to intracellular capacitive effects in passive dendritic cables. A generalized cable equation for a cylindrical volume representation of a dendritic segment is derived from Maxwell's equations under assumptions: (i) the electric-field polarization is restricted longitudinally along the cable length; (ii) extracellular isopotentiality; (iii) quasielectrostatic conditions; and (iv) homogeneous medium with constant conductivity and permittivity. The generalized cable equation is identical to Barenblatt's equation arising in the theory of infiltration in fissured strata with a known analytical solution expressed in terms of a definite integral involving a modified Bessel function and the solution to a linear one-dimensional classical cable equation. Its solution is used to determine the impact of thermal noise on voltage attenuation with distance at any particular time. A regular perturbation expansion for the membrane potential about the linear one-dimensional classical cable equation solution is derived in terms of a Green's function in order to describe the dynamics of free charge within the Debye layer of endogenous structures in passive dendritic cables. The asymptotic value of the first perturbative term is explicitly evaluated for small values of time to predict how the slowly fluctuating (in submillisecond range) electric field attributed to intracellular capacitive effects alters the amplitude of the membrane potential. It was found that capacitive effects are almost negligible for cables with electrotonic lengths L>0.5 , contributes up to 10% of the signal for cables with electrotonic lengths in the range between 0.25
X-ray polarization capabilities of a small explorer mission
NASA Astrophysics Data System (ADS)
Jahoda, Keith M.; Black, J. Kevin; Hill, Joanne E.; Kallman, Timothy R.; Kaaret, Philip E.; Markwardt, Craig B.; Okajima, Takashi; Petre, Robert; Soong, Yang; Strohmayer, Tod E.; Tamagawa, Toru; Tawara, Yuzuru
2014-07-01
X-ray polarization measurements hold great promise for studying the geometry and emission mechanisms in the strong gravitational and magnetic fields that surround black holes and neutron stars. In spite of this, the observational situation remains very limited; the last instrument dedicated to X-ray polarimetry flew decades ago on OSO-8, and the few recent measurements have been made by instruments optimized for other purposes. However, the technical capabilities to greatly advance the observational situation are in hand. Recent developments in micro-pattern gas detectors allow use of the polarization sensitivity of the photo-electric effect, which is the dominant interaction in the band above 2 keV. We present the scientific and technical requirements for an X-ray polarization observatory consistent with the scope of a NASA Small Explorer (SMEX) mission, along with a representative catalog of what the observational capabilities and expected sensitivities for the first year of operation could be. The mission is based on the technically robust design of the Gravity and Extreme Magnetism SMEX (GEMS) which completed a Phase B study and Preliminary Design Review in 2012. The GEMS mission is enabled by time projection detectors sensitive to the photo-electric effect. Prototype detectors have been designed, and provide engineering and performance data which support the mission design. The detectors are further characterized by low background, modest spectral resolution, and sub-millisecond timing resolution. The mission also incorporates high efficiency grazing incidence X-ray mirrors, design features that reduce systematic errors (identical telescopes at different azimuthal angles with respect to the look axis, and mounted on a rotating spacecraft platform), and a moderate capability to perform Target of Opportunity observations. The mission operates autonomously in a low earth, low inclination orbit with one to ten downlinks per day and one or more uplinks per week. Data and calibration products will be made available through the High Energy Astrophysics Science and Archival Research Center (HEASARC).
A Markov model for the temporal dynamics of balanced random networks of finite size
Lagzi, Fereshteh; Rotter, Stefan
2014-01-01
The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between neuronal populations also opens new doors to analyze the joint dynamics of multiple interacting networks. PMID:25520644
Oja, Vello; Eichelmann, Hillar; Laisk, Agu
2011-12-01
Oxygen evolution per single-turnover flash (STF) or multiple-turnover pulse (MTP) was measured with a zirconium O(2) analyzer from sunflower leaves at 22 °C. STF were generated by Xe arc lamp, MTP by red LED light of up to 18000 μmol quanta m(-2) s(-1). Ambient O(2) concentration was 10-30 ppm, STF and MTP were superimposed on far-red background light in order to oxidize plastoquinone (PQ) and randomize S-states. Electron (e(-)) flow was calculated as 4 times O(2) evolution. Q (A) → Q (B) electron transport was investigated firing double STF with a delay of 0 to 2 ms between the two. Total O(2) evolution per two flashes equaled to that from a single flash when the delay was zero and doubled when the delay exceeded 2 ms. This trend was fitted with two exponentials with time constants of 0.25 and 0.95 ms, equal amplitudes. Illumination with MTP of increasing length resulted in increasing O(2) evolution per pulse, which was differentiated with an aim to find the time course of O(2) evolution with sub-millisecond resolution. At the highest pulse intensity of 2.9 photons ms(-1) per PSII, 3 e(-) initially accumulated inside PSII and the catalytic rate of PQ reduction was determined from the throughput rate of the fourth and fifth e(-). A light response curve for the reduction of completely oxidized PQ was a rectangular hyperbola with the initial slope of 1.2 PSII quanta per e(-) and V (m) of 0.6 e(-) ms(-1) per PSII. When PQ was gradually reduced during longer MTP, V (m) decreased proportionally with the fraction of oxidized PQ. It is suggested that the linear kinetics with respect to PQ are apparent, caused by strong product inhibition due to about equal binding constants of PQ and PQH(2) to the Q (B) site. The strong product inhibition is an appropriate mechanism for down-regulation of PSII electron transport in accordance with rate of PQH(2) oxidation by cytochrome b(6)f. © Springer Science+Business Media B.V. 2011
Falcon: a highly flexible open-source software for closed-loop neuroscience.
Ciliberti, Davide; Kloosterman, Fabian
2017-08-01
Closed-loop experiments provide unique insights into brain dynamics and function. To facilitate a wide range of closed-loop experiments, we created an open-source software platform that enables high-performance real-time processing of streaming experimental data. We wrote Falcon, a C++ multi-threaded software in which the user can load and execute an arbitrary processing graph. Each node of a Falcon graph is mapped to a single thread and nodes communicate with each other through thread-safe buffers. The framework allows for easy implementation of new processing nodes and data types. Falcon was tested both on a 32-core and a 4-core workstation. Streaming data was read from either a commercial acquisition system (Neuralynx) or the open-source Open Ephys hardware, while closed-loop TTL pulses were generated with a USB module for digital output. We characterized the round-trip latency of our Falcon-based closed-loop system, as well as the specific latency contribution of the software architecture, by testing processing graphs with up to 32 parallel pipelines and eight serial stages. We finally deployed Falcon in a task of real-time detection of population bursts recorded live from the hippocampus of a freely moving rat. On Neuralynx hardware, round-trip latency was well below 1 ms and stable for at least 1 h, while on Open Ephys hardware latencies were below 15 ms. The latency contribution of the software was below 0.5 ms. Round-trip and software latencies were similar on both 32- and 4-core workstations. Falcon was used successfully to detect population bursts online with ~40 ms average latency. Falcon is a novel open-source software for closed-loop neuroscience. It has sub-millisecond intrinsic latency and gives the experimenter direct control of CPU resources. We envisage Falcon to be a useful tool to the neuroscientific community for implementing a wide variety of closed-loop experiments, including those requiring use of complex data structures and real-time execution of computationally intensive algorithms, such as population neural decoding/encoding from large cell assemblies.
Falcon: a highly flexible open-source software for closed-loop neuroscience
NASA Astrophysics Data System (ADS)
Ciliberti, Davide; Kloosterman, Fabian
2017-08-01
Objective. Closed-loop experiments provide unique insights into brain dynamics and function. To facilitate a wide range of closed-loop experiments, we created an open-source software platform that enables high-performance real-time processing of streaming experimental data. Approach. We wrote Falcon, a C++ multi-threaded software in which the user can load and execute an arbitrary processing graph. Each node of a Falcon graph is mapped to a single thread and nodes communicate with each other through thread-safe buffers. The framework allows for easy implementation of new processing nodes and data types. Falcon was tested both on a 32-core and a 4-core workstation. Streaming data was read from either a commercial acquisition system (Neuralynx) or the open-source Open Ephys hardware, while closed-loop TTL pulses were generated with a USB module for digital output. We characterized the round-trip latency of our Falcon-based closed-loop system, as well as the specific latency contribution of the software architecture, by testing processing graphs with up to 32 parallel pipelines and eight serial stages. We finally deployed Falcon in a task of real-time detection of population bursts recorded live from the hippocampus of a freely moving rat. Main results. On Neuralynx hardware, round-trip latency was well below 1 ms and stable for at least 1 h, while on Open Ephys hardware latencies were below 15 ms. The latency contribution of the software was below 0.5 ms. Round-trip and software latencies were similar on both 32- and 4-core workstations. Falcon was used successfully to detect population bursts online with ~40 ms average latency. Significance. Falcon is a novel open-source software for closed-loop neuroscience. It has sub-millisecond intrinsic latency and gives the experimenter direct control of CPU resources. We envisage Falcon to be a useful tool to the neuroscientific community for implementing a wide variety of closed-loop experiments, including those requiring use of complex data structures and real-time execution of computationally intensive algorithms, such as population neural decoding/encoding from large cell assemblies.
Plastic Scintillator Based Detector for Observations of Terrestrial Gamma-ray Flashes.
NASA Astrophysics Data System (ADS)
Barghi, M. R., Sr.; Delaney, N.; Forouzani, A.; Wells, E.; Parab, A.; Smith, D.; Martinez, F.; Bowers, G. S.; Sample, J.
2017-12-01
We present an overview of the concept and design of the Light and Fast TGF Recorder (LAFTR), a balloon borne gamma-ray detector designed to observe Terrestrial Gamma-Ray Flashes (TGFs). Terrestrial Gamma-Ray Flashes (TGFs) are extremely bright, sub-millisecond bursts of gamma-rays observed to originate inside thunderclouds coincident with lightning. LAFTR is joint institutional project built by undergraduates at the University of California Santa Cruz and Montana State University. It consists of a detector system fed into analog front-end electronics and digital processing. The presentation focuses specifically on the UCSC components, which consists of the detector system and analog front-end electronics. Because of the extremely high count rates observed during TGFs, speed is essential for both the detector and electronics of the instrument. The detector employs a fast plastic scintillator (BC-408) read out by a SensL Silicon Photomultiplier (SiPM). BC-408 is chosen for its speed ( 4 ns decay time) and low cost and availability. Furthermore, GEANT3 simulations confirm the scintillator is sensitive to 500 counts at 7 km horizontal distance from the TGF source (for a 13 km source altitude and 26 km balloon altitude) and to 5 counts out to 20 km. The signal from the SiPM has a long exponential decay tail and is sent to a custom shaping circuit board that amplifies and shapes the signal into a semi-Gaussian pulse with a 40 ns FWHM. The signal is then input to a 6-channel discriminator board that clamps the signal and outputs a Low Voltage Differential Signal (LVDS) for processing by the digital electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Michael I.; Davies, James F.; Lee, Lance
Recent studies suggest that reactions in aqueous microcompartments can occur at significantly different rates than those in the bulk. Most studies have used electrospray to generate a polydisperse source of highly charged microdroplets, leading to multiple confounding factors potentially influencing reaction rates (e.g., evaporation, charge, and size). Thus, the underlying mechanism for the observed enhancement remains unclear. We present a new type of electrodynamic balance - the branched quadrupole trap (BQT) - which can be used to study reactions in microdroplets in a controlled environment. The BQT allows for condensed phase chemical reactions to be initiated by colliding droplets withmore » different reactants and levitating the merged droplet indefinitely. The performance of the BQT is characterized in several ways. Sub-millisecond mixing times as fast as ~400 μs are measured for low velocity (~0.1 m/s) collisions of droplets with <40 μm diameters. The reaction of o-phthalaldehyde (OPA) with alanine in the presence of dithiolthreitol is measured using both fluorescence spectroscopy and single droplet paper spray mass spectrometry. The bimolecular rate constant for reaction of alanine with OPA is found to be 84 ± 10 and 67 ± 6 M -1s -1 in a 30 μm radius droplet and bulk solution, respectively, which demonstrates that bimolecular reaction rate coefficients can be quantified using merged microdroplets and that merged droplets can be used to study rate enhancements due to compartmentalization. Products of the reaction of OPA with alanine are detected in single droplets using paper spray mass spectrometry. Finally, we demonstrate that single droplets with <100 pg of analyte can easily be studied using single droplet mass spectrometry.« less
Jacobs, Michael I.; Davies, James F.; Lee, Lance; ...
2017-10-19
Recent studies suggest that reactions in aqueous microcompartments can occur at significantly different rates than those in the bulk. Most studies have used electrospray to generate a polydisperse source of highly charged microdroplets, leading to multiple confounding factors potentially influencing reaction rates (e.g., evaporation, charge, and size). Thus, the underlying mechanism for the observed enhancement remains unclear. We present a new type of electrodynamic balance - the branched quadrupole trap (BQT) - which can be used to study reactions in microdroplets in a controlled environment. The BQT allows for condensed phase chemical reactions to be initiated by colliding droplets withmore » different reactants and levitating the merged droplet indefinitely. The performance of the BQT is characterized in several ways. Sub-millisecond mixing times as fast as ~400 μs are measured for low velocity (~0.1 m/s) collisions of droplets with <40 μm diameters. The reaction of o-phthalaldehyde (OPA) with alanine in the presence of dithiolthreitol is measured using both fluorescence spectroscopy and single droplet paper spray mass spectrometry. The bimolecular rate constant for reaction of alanine with OPA is found to be 84 ± 10 and 67 ± 6 M -1s -1 in a 30 μm radius droplet and bulk solution, respectively, which demonstrates that bimolecular reaction rate coefficients can be quantified using merged microdroplets and that merged droplets can be used to study rate enhancements due to compartmentalization. Products of the reaction of OPA with alanine are detected in single droplets using paper spray mass spectrometry. Finally, we demonstrate that single droplets with <100 pg of analyte can easily be studied using single droplet mass spectrometry.« less
NASA Astrophysics Data System (ADS)
Song, Shaozhen; Le, Nhan Minh; Wang, Ruikang K.; Huang, Zhihong
2015-03-01
Shear Wave Optical Coherence Elastography (SW-OCE) uses the speed of propagating shear waves to provide a quantitative measurement of localized shear modulus, making it a valuable technique for the elasticity characterization of tissues such as skin and ocular tissue. One of the main challenges in shear wave elastography is to induce a reliable source of shear wave; most of nowadays techniques use external vibrators which have several drawbacks such as limited wave propagation range and/or difficulties in non-invasive scans requiring precisions, accuracy. Thus, we propose linear phase array ultrasound transducer as a remote wave source, combined with the high-speed, 47,000-frame-per-second Shear-wave visualization provided by phase-sensitive OCT. In this study, we observed for the first time shear waves induced by a 128 element linear array ultrasound imaging transducer, while the ultrasound and OCT images (within the OCE detection range) were triggered simultaneously. Acoustic radiation force impulses are induced by emitting 10 MHz tone-bursts of sub-millisecond durations (between 50 μm - 100 μm). Ultrasound beam steering is achieved by programming appropriate phase delay, covering a lateral range of 10 mm and full OCT axial (depth) range in the imaging sample. Tissue-mimicking phantoms with agarose concentration of 0.5% and 1% was used in the SW-OCE measurements as the only imaging samples. The results show extensive improvements over the range of SW-OCE elasticity map; such improvements can also be seen over shear wave velocities in softer and stiffer phantoms, as well as determining the boundary of multiple inclusions with different stiffness. This approach opens up the feasibility to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative measurement of tissue biomechanical property.
Diffusion within the cytoplasm: a mesoscale model of interacting macromolecules.
Trovato, Fabio; Tozzini, Valentina
2014-12-02
Recent experiments carried out in the dense cytoplasm of living cells have highlighted the importance of proteome composition and nonspecific intermolecular interactions in regulating macromolecule diffusion and organization. Despite this, the dependence of diffusion-interaction on physicochemical properties such as the degree of poly-dispersity and the balance between steric repulsion and nonspecific attraction among macromolecules was not systematically addressed. In this work, we study the problem of diffusion-interaction in the bacterial cytoplasm, combining theory and experimental data to build a minimal coarse-grained representation of the cytoplasm, which also includes, for the first time to our knowledge, the nucleoid. With stochastic molecular-dynamics simulations of a virtual cytoplasm we are able to track the single biomolecule motion, sizing from 3 to 80 nm, on submillisecond-long trajectories. We demonstrate that the size dependence of diffusion coefficients, anomalous exponents, and the effective viscosity experienced by biomolecules in the cytoplasm is fine-tuned by the intermolecular interactions. Accounting only for excluded volume in these potentials gives a weaker size-dependence than that expected from experimental data. On the contrary, adding nonspecific attraction in the range of 1-10 thermal energy units produces a stronger variation of the transport properties at growing biopolymer sizes. Normal and anomalous diffusive regimes emerge straightforwardly from the combination of high macromolecular concentration, poly-dispersity, stochasticity, and weak nonspecific interactions. As a result, small biopolymers experience a viscous cytoplasm, while the motion of big ones is jammed because the entanglements produced by the network of interactions and the entropic effects caused by poly-dispersity are stronger. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Meng, Fanjie; Kim, Jae-Yeol; McHale, Kevin; Gopich, Irina V.; Louis, John M.
2017-01-01
We describe a method that combines two- and three-color single-molecule FRET spectroscopy with 2D FRET efficiency–lifetime analysis to probe the oligomerization process of intrinsically disordered proteins. This method is applied to the oligomerization of the tetramerization domain (TD) of the tumor suppressor protein p53. TD exists as a monomer at subnanomolar concentrations and forms a dimer and a tetramer at higher concentrations. Because the dissociation constants of the dimer and tetramer are very close, as we determine in this paper, it is not possible to characterize different oligomeric species by ensemble methods, especially the dimer that cannot be readily separated. However, by using single-molecule FRET spectroscopy that includes measurements of fluorescence lifetime and two- and three-color FRET efficiencies with corrections for submillisecond acceptor blinking, we show that it is possible to obtain structural information for individual oligomers at equilibrium and to determine the dimerization kinetics. From these analyses, we show that the monomer is intrinsically disordered and that the dimer conformation is very similar to that of the tetramer but the C terminus of the dimer is more flexible. PMID:28760960
Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study
NASA Astrophysics Data System (ADS)
Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan
2016-09-01
Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2-3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100-250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation.
Shi, Jade; Nobrega, R. Paul; Schwantes, Christian; ...
2017-03-08
The dynamics of globular proteins can be described in terms of transitions between a folded native state and less-populated intermediates, or excited states, which can play critical roles in both protein folding and function. Excited states are by definition transient species, and therefore are difficult to characterize using current experimental techniques. We report an atomistic model of the excited state ensemble of a stabilized mutant of an extensively studied flavodoxin fold protein CheY. We employed a hybrid simulation and experimental approach in which an aggregate 42 milliseconds of all-atom molecular dynamics were used as an informative prior for the structuremore » of the excited state ensemble. The resulting prior was then refined against small-angle X-ray scattering (SAXS) data employing an established method (EROS). The most striking feature of the resulting excited state ensemble was an unstructured N-terminus stabilized by non-native contacts in a conformation that is topologically simpler than the native state. We then predict incisive single molecule FRET experiments, using these results, as a means of model validation. Our study demonstrates the paradigm of uniting simulation and experiment in a statistical model to study the structure of protein excited states and rationally design validating experiments.« less
Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study
Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan
2016-01-01
Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2–3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100–250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation. PMID:27634482
NASA Astrophysics Data System (ADS)
Shi, Jade; Nobrega, R. Paul; Schwantes, Christian; Kathuria, Sagar V.; Bilsel, Osman; Matthews, C. Robert; Lane, T. J.; Pande, Vijay S.
2017-03-01
The dynamics of globular proteins can be described in terms of transitions between a folded native state and less-populated intermediates, or excited states, which can play critical roles in both protein folding and function. Excited states are by definition transient species, and therefore are difficult to characterize using current experimental techniques. Here, we report an atomistic model of the excited state ensemble of a stabilized mutant of an extensively studied flavodoxin fold protein CheY. We employed a hybrid simulation and experimental approach in which an aggregate 42 milliseconds of all-atom molecular dynamics were used as an informative prior for the structure of the excited state ensemble. This prior was then refined against small-angle X-ray scattering (SAXS) data employing an established method (EROS). The most striking feature of the resulting excited state ensemble was an unstructured N-terminus stabilized by non-native contacts in a conformation that is topologically simpler than the native state. Using these results, we then predict incisive single molecule FRET experiments as a means of model validation. This study demonstrates the paradigm of uniting simulation and experiment in a statistical model to study the structure of protein excited states and rationally design validating experiments.
Optically addressed and submillisecond response phase only liquid crystal spatial light modulator
NASA Astrophysics Data System (ADS)
Zhao, Xiangjie; Duan, Jiazhu; Zhang, Dayong; Luo, Yongquan
2014-10-01
Liquid crystal based phase only spatial light modulator has attracted many research interests since last decades because of its superior advantage. Until now the liquid crystal spatial light modulator has been applied in many fields, but the response speed of nematic LC limited its further application. In this paper, an optically addressed phase only LC spatial light modulator was proposed based on polymer network liquid crystal. Morphology effect on the light scattering of PNLC was studied, which was mainly consisted of fiber and fiber bundles. The morphology nearly determined the light scattering and electro-optical property. Due to the high threshold voltage, to address the PNLC phase modulator was also concerned. Optical addressing method was proposed, in which BSO crystal was selected to replace one of the glass substrate. The response speed of PNLC was so fast that the reorientation of liquid crystal director will follow the change of effective voltage applied on LC layer, which was related with the voltage signal and especially with electron transport of photo-induced carriers due to diffusion and drift. The on state dynamic response of phase change was investigated. Based on this device, beam steering was also achieved by loading 488nm laser strip on the optical addressed phase only spatial light modulator.
Randomized Subspace Learning for Proline Cis-Trans Isomerization Prediction.
Al-Jarrah, Omar Y; Yoo, Paul D; Taha, Kamal; Muhaidat, Sami; Shami, Abdallah; Zaki, Nazar
2015-01-01
Proline residues are common source of kinetic complications during folding. The X-Pro peptide bond is the only peptide bond for which the stability of the cis and trans conformations is comparable. The cis-trans isomerization (CTI) of X-Pro peptide bonds is a widely recognized rate-limiting factor, which can not only induces additional slow phases in protein folding but also modifies the millisecond and sub-millisecond dynamics of the protein. An accurate computational prediction of proline CTI is of great importance for the understanding of protein folding, splicing, cell signaling, and transmembrane active transport in both the human body and animals. In our earlier work, we successfully developed a biophysically motivated proline CTI predictor utilizing a novel tree-based consensus model with a powerful metalearning technique and achieved 86.58 percent Q2 accuracy and 0.74 Mcc, which is a better result than the results (70-73 percent Q2 accuracies) reported in the literature on the well-referenced benchmark dataset. In this paper, we describe experiments with novel randomized subspace learning and bootstrap seeding techniques as an extension to our earlier work, the consensus models as well as entropy-based learning methods, to obtain better accuracy through a precise and robust learning scheme for proline CTI prediction.
NASA Astrophysics Data System (ADS)
Ambrosino, Filippo; Meddi, Franco; Rossi, Corinne; Sclavi, Silvia; Nesci, Roberto; Bruni, Ivan; Ghedina, Adriano; Riverol, Luis; Di Fabrizio, Luca
2014-07-01
The realization of low-cost instruments with high technical performance is a goal that deserves efforts in an epoch of fast technological developments. Such instruments can be easily reproduced and therefore allow new research programs to be opened in several observatories. We realized a fast optical photometer based on the SiPM (Silicon Photo Multiplier) technology, using commercially available modules. Using low-cost components, we developed a custom electronic chain to extract the signal produced by a commercial MPPC (Multi Pixel Photon Counter) module produced by Hamamatsu Photonics to obtain sub-millisecond sampling of the light curve of astronomical sources (typically pulsars). We built a compact mechanical interface to mount the MPPC at the focal plane of the TNG (Telescopio Nazionale Galileo), using the space available for the slits of the LRS (Low Resolution Spectrograph). On February 2014 we observed the Crab pulsar with the TNG with our prototype photometer, deriving its period and the shape of its light curve, in very good agreement with the results obtained in the past with other much more expensive instruments. After the successful run at the telescope we describe here the lessons learned and the ideas that burst to optimize this instrument and make it more versatile.
The first full-resolution measurements of Auroral Medium Frequency Burst Emissions
NASA Astrophysics Data System (ADS)
Bunch, N. L.; Labelle, J.; Weatherwax, A.; Hughes, J.
2008-12-01
Auroral MF burst is a naturally occurring auroral radio emission which appears unstructured on resolution of previous measurements, is observed in the frequency range of 0.8-4.5 MHz, and has typical amplitudes of around 10-14 V2/m2Hz, and durations of a few minutes. The emission occurs at substorm onset. Since Sept 2006, Dartmouth has operated a broadband (0-5 MHz) interferometer at Toolik Lake, Alaska (68° 38' N, 149° 36' W, 68.51 deg. magnetic latitude), designed for the study of auroral MF burst emissions. Normal operation involves taking snapshots of waveforms from four spaced antennas from which wave spectral and directional information is obtained. However, the experiment can also be run in "continuous mode" whereby the signal from a selected antenna is sampled continuously at 10 M samples/second. A "continuous mode" campaign was run 0800-1200 UT (~2200-0200 MLT) daily from March 21 to April 19, 2008. During this campaign more than twenty auroral MF burst emissions were observed, including three extraordinarily intense examples lasting approximately two minutes each. These observations represent the highest time and frequency resolution data ever collected of MF burst emissions. These data allow us to better characterize the null near twice the electron gyrofrequency identified in previous experiments, since examples of this feature observed during this campaign display a strong null ~50 kHz in bandwidth, with sharp boundaries and occasionally coincident with 2 fce auroral roar. These data also allow us to search for frequency-time structures embedded in MF-burst. One prominent feature appears to be a strong single frequency emission which broadens down to lower frequencies over time, spreading to approximately 500 kHz in bandwidth over ~10 ms. Among other features observed are a diffuse and unstructured emission, as well as what could potentially be several separate emission sources, with multiple emissions occurring simultaneously, appearing as weaker "ghosts" behind the main MF burst emission. These data in will additionally allow us to search for the presence of sub-millisecond wave packets, sometimes quasi-periodic, reported by LaBelle et al. [1997, J. Geophys. Res. 102, 22221]. Finally, a search for frequency dispersion or absence thereof will provide a test of theories which speculate that different frequencies originate at different altitudes in the ionosphere.
Head-mounted LED for optogenetic experiments of freely-behaving animal
NASA Astrophysics Data System (ADS)
Kwon, Ki Yong; Gnade, Andrew G.; Rush, Alexander D.; Patten, Craig D.
2016-03-01
Recent developments in optogenetics have demonstrated the ability to target specific types of neurons with sub-millisecond temporal precision via direct optical stimulation of genetically modified neurons in the brain. In most applications, the beam of a laser is coupled to an optical fiber, which guides and delivers the optical power to the region of interest. Light emitting diodes (LEDs) are an alternative light source for optogenetics and they provide many advantages over a laser based system including cost, size, illumination stability, and fast modulation. Their compact size and low power consumption make LEDs suitable light sources for a wireless optogenetic stimulation system. However, the coupling efficiency of an LED's output light into an optical fiber is lower than a laser due to its noncollimated output light. In typical chronic optogenetic experiment, the output of the light source is transmitted to the brain through a patch cable and a fiber stub implant, and this configuration requires two fiber-to-fiber couplings. Attenuation within the patch cable is potential source of optical power loss. In this study, we report and characterize a recently developed light delivery method for freely-behaving animal experiments. We have developed a head-mounted light source that maximizes the coupling efficiency of an LED light source by eliminating the need for a fiber optic cable. This miniaturized LED is designed to couple directly to the fiber stub implant. Depending on the desired optical power output, the head-mounted LED can be controlled by either a tethered (high power) or battery-powered wireless (moderate power) controller. In the tethered system, the LED is controlled through 40 gauge micro coaxial cable which is thinner, more flexible, and more durable than a fiber optic cable. The battery-powered wireless system uses either infrared or radio frequency transmission to achieve real-time control. Optical, electrical, mechanical, and thermal characteristics of the head-mounted LED were evaluated.
NASA Astrophysics Data System (ADS)
Krmpot, Aleksandar J.; Nikolić, Stanko N.; Vitali, Marco; Papadopoulos, Dimitrios K.; Oasa, Sho; Thyberg, Per; Tisa, Simone; Kinjo, Masataka; Nilsson, Lennart; Gehring, Walter J.; Terenius, Lars; Rigler, Rudolf; Vukojevic, Vladana
2015-07-01
Quantitative confocal fluorescence microscopy imaging without scanning is developed for the study of fast dynamical processes. The method relies on the use of massively parallel Fluorescence Correlation Spectroscopy (mpFCS). Simultaneous excitation of fluorescent molecules across the specimen is achieved by passing a single laser beam through a Diffractive Optical Element (DOE) to generate a quadratic illumination matrix of 32×32 light sources. Fluorescence from 1024 illuminated spots is detected in a confocal arrangement by a matching matrix detector consisting of the same number of single-photon avalanche photodiodes (SPADs). Software was developed for data acquisition and fast autoand cross-correlation analysis by parallel signal processing using a Graphic Processing Unit (GPU). Instrumental performance was assessed using a conventional single-beam FCS instrument as a reference. Versatility of the approach for application in biomedical research was evaluated using ex vivo salivary glands from Drosophila third instar larvae expressing a fluorescently-tagged transcription factor Sex Combs Reduced (Scr) and live PC12 cells stably expressing the fluorescently tagged mu-opioid receptor (MOPeGFP). We show that quantitative mapping of local concentration and mobility of transcription factor molecules across the specimen can be achieved using this approach, which paves the way for future quantitative characterization of dynamical reaction-diffusion landscapes across live cells/tissue with a submillisecond temporal resolution (presently 21 μs/frame) and single-molecule sensitivity.
Wilhelm, Philipp; Schedlbauer, Jakob; Hinderer, Florian; Hennen, Daniel; Höger, Sigurd; Vogelsang, Jan; Lupton, John M
2018-04-17
The breaking of molecular symmetry through photoexcitation is a ubiquitous but rather elusive process, which, for example, controls the microscopic efficiency of light harvesting in molecular aggregates. A molecular excitation within a π-conjugated segment will self-localize due to strong coupling to molecular vibrations, locally changing bond alternation in a process which is fundamentally nondeterministic. Probing such symmetry breaking usually relies on polarization-resolved fluorescence, which is most powerful on the level of single molecules. Here, we explore symmetry breaking by designing a large, asymmetric acceptor-donor-acceptor (A 1 -D-A 2 ) complex 10 nm in length, where excitation energy can flow from the donor, a π-conjugated oligomer, to either one of the two boron-dipyrromethene (bodipy) dye acceptors of different color. Fluorescence correlation spectroscopy (FCS) reveals a nondeterministic switching between the energy-transfer pathways from the oligomer to the two acceptor groups on the submillisecond timescale. We conclude that excitation energy transfer, and light harvesting in general, are fundamentally nondeterministic processes, which can be strongly perturbed by external stimuli. A simple demonstration of the relation between exciton localization within the extended π-system and energy transfer to the endcap is given by considering the selectivity of endcap emission through the polarization of the excitation light in triads with bent oligomer backbones. Bending leads to increased localization so that the molecule acquires bichromophoric characteristics in terms of its fluorescence photon statistics.
Yan, Zonghe; Kong, Wenjuan; Liu, Beiying; Li, Xia; Yao, Jing; Zhang, Yuexuan; Qin, Feng; Ding, Jiuping
2013-01-01
The transient receptor potential vanilloid receptor 1 (TRPV1) channel is a nonselective cation channel activated by a variety of exogenous and endogenous physical and chemical stimuli, such as temperature (≥42 °C), capsaicin, a pungent compound in hot chili peppers, and allyl isothiocyanate. Large-conductance calcium- and voltage-activated potassium (BK) channels regulate the electric activities and neurotransmitter releases in excitable cells, responding to changes in membrane potentials and elevation of cytosolic calcium ions (Ca2+). However, it is unknown whether the TRPV1 channels are coupled with the BK channels. Using patch-clamp recording combined with an infrared laser device, we found that BK channels could be activated at 0 mV by a Ca2+ influx through TRPV1 channels not the intracellular calcium stores in submilliseconds. The local calcium concentration around BK is estimated over 10 μM. The crosstalk could be affected by 10 mM BAPTA, whereas 5 mM EGTA was ineffectual. Fluorescence and co-immunoprecipitation experiments also showed that BK and TRPV1 were able to form a TRPV1-BK complex. Furthermore, we demonstrated that the TRPV1-BK coupling also occurs in dosal root ganglion (DRG) cells, which plays a critical physiological role in regulating the “pain” signal transduction pathway in the peripheral nervous system. PMID:24147119
Preparation, Applications, and Digital Simulation of Carbon Interdigitated Array Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fei; Kolesov, Grigory; Parkinson, Bruce A.
2014-12-16
Carbon interdigitated array (IDA) electrodes with features sizes down to 1.2 μm were fabricated by controlled pyrolysis of patterned photoresist. Cyclic voltam-metry of reversible redox species produced the expected steady-state currents. The collection efficiency depends on the IDA electrode spacing, which ranged from around 2.7 to 16.5 μm, with the smaller dimensions achieving higher collection efficiencies of up to 98%. The signal amplification because of redox cycling makes it possible to detect species at relatively low concentrations (10–5 molar) and the small spacing allows detection of transient electrogenerated species with much shorter lifetimes (submillisecond). Digital simulation software that accounts formore » both the width and height of electrode elements as well as the electrode spacing was developed to model the IDA electrode response. The simulations are in quantitative agreement with experimental data for both a simple fast one electron redox reaction and an electron transfer with a following chemical reaction at the IDAs with larger gaps whereas currents measured for the smallest IDA electrodes, that were larger than the simulated currents, are attributed to convection from induced charge electrokinetic flow. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the Department of Energy, Office of Science Office of Basic Energy Sciences.« less
Design and engineering of a man-made diffusive electron-transport protein
Fry, Bryan A.; Solomon, Lee A.; Dutton, P. Leslie
2016-01-01
Maquettes are man-made cofactor-binding oxidoreductases designed from first principles with minimal reference to natural protein sequences. Here we focus on water-soluble maquettes designed and engineered to perform diffusive electron transport of the kind typically carried out by cytochromes, ferredoxins and flavodoxins and other small proteins in photosynthetic and respiratory energy conversion and oxido-reductive metabolism. Our designs were tested by analysis of electron transfer between heme maquettes and the well-known natural electron transporter, cytochrome c. Electron-transfer kinetics were measured from seconds to milliseconds by stopped-flow, while sub-millisecond resolution was achieved through laser photolysis of the carbon monoxide maquette heme complex. These measurements demonstrate electron transfer from the maquette to cytochrome c, reproducing the timescales and charge complementarity modulation observed in natural systems. The ionic strength dependence of inter-protein electron transfer from 9.7 × 106 M−1s−1 to 1.2 × 109 M−1s−1 follows a simple Debye-Hückel model for attraction between +8 net charged oxidized cytochrome c and −19 net charged heme maquette, with no indication of significant protein dipole moment steering. Successfully recreating essential components of energy conversion and downstream metabolism in man-made proteins holds promise for in vivo clinical intervention and for the production of fuel or other industrial products. PMID:26423266
Cheng, Jiyi; Gu, Chenglin; Zhang, Dapeng; Wang, Dien; Chen, Shih-Chi
2016-04-01
In this Letter, we present an ultrafast nonmechanical axial scanning method for two-photon excitation (TPE) microscopy based on binary holography using a digital micromirror device (DMD), achieving a scanning rate of 4.2 kHz, scanning range of ∼180 μm, and scanning resolution (minimum step size) of ∼270 nm. Axial scanning is achieved by projecting the femtosecond laser to a DMD programmed with binary holograms of spherical wavefronts of increasing/decreasing radii. To guide the scanner design, we have derived the parametric relationships between the DMD parameters (i.e., aperture and pixel size), and the axial scanning characteristics, including (1) maximum optical power, (2) minimum step size, and (3) scan range. To verify the results, the DMD scanner is integrated with a custom-built TPE microscope that operates at 60 frames per second. In the experiment, we scanned a pollen sample via both the DMD scanner and a precision z-stage. The results show the DMD scanner generates images of equal quality throughout the scanning range. The overall efficiency of the TPE system was measured to be ∼3%. With the high scanning rate, the DMD scanner may find important applications in random-access imaging or high-speed volumetric imaging that enables visualization of highly dynamic biological processes in 3D with submillisecond temporal resolution.
Advances in time-scale algorithms
NASA Technical Reports Server (NTRS)
Stein, S. R.
1993-01-01
The term clock is usually used to refer to a device that counts a nearly periodic signal. A group of clocks, called an ensemble, is often used for time keeping in mission critical applications that cannot tolerate loss of time due to the failure of a single clock. The time generated by the ensemble of clocks is called a time scale. The question arises how to combine the times of the individual clocks to form the time scale. One might naively be tempted to suggest the expedient of averaging the times of the individual clocks, but a simple thought experiment demonstrates the inadequacy of this approach. Suppose a time scale is composed of two noiseless clocks having equal and opposite frequencies. The mean time scale has zero frequency. However if either clock fails, the time-scale frequency immediately changes to the frequency of the remaining clock. This performance is generally unacceptable and simple mean time scales are not used. First, previous time-scale developments are reviewed and then some new methods that result in enhanced performance are presented. The historical perspective is based upon several time scales: the AT1 and TA time scales of the National Institute of Standards and Technology (NIST), the A.1(MEAN) time scale of the US Naval observatory (USNO), the TAI time scale of the Bureau International des Poids et Measures (BIPM), and the KAS-1 time scale of the Naval Research laboratory (NRL). The new method was incorporated in the KAS-2 time scale recently developed by Timing Solutions Corporation. The goal is to present time-scale concepts in a nonmathematical form with as few equations as possible. Many other papers and texts discuss the details of the optimal estimation techniques that may be used to implement these concepts.
JY1 time scale: a new Kalman-filter time scale designed at NIST
NASA Astrophysics Data System (ADS)
Yao, Jian; Parker, Thomas E.; Levine, Judah
2017-11-01
We report on a new Kalman-filter hydrogen-maser time scale (i.e. JY1 time scale) designed at the National Institute of Standards and Technology (NIST). The JY1 time scale is composed of a few hydrogen masers and a commercial Cs clock. The Cs clock is used as a reference clock to ease operations with existing data. Unlike other time scales, the JY1 time scale uses three basic time-scale equations, instead of only one equation. Also, this time scale can detect a clock error (i.e. time error, frequency error, or frequency drift error) automatically. These features make the JY1 time scale stiff and less likely to be affected by an abnormal clock. Tests show that the JY1 time scale deviates from the UTC by less than ±5 ns for ~100 d, when the time scale is initially aligned to the UTC and then is completely free running. Once the time scale is steered to a Cs fountain, it can maintain the time with little error even if the Cs fountain stops working for tens of days. This can be helpful when we do not have a continuously operated fountain or when the continuously operated fountain accidentally stops, or when optical clocks run occasionally.
A comment on the use of flushing time, residence time, and age as transport time scales
Monsen, N.E.; Cloern, J.E.; Lucas, L.V.; Monismith, Stephen G.
2002-01-01
Applications of transport time scales are pervasive in biological, hydrologic, and geochemical studies yet these times scales are not consistently defined and applied with rigor in the literature. We compare three transport time scales (flushing time, age, and residence time) commonly used to measure the retention of water or scalar quantities transported with water. We identify the underlying assumptions associated with each time scale, describe procedures for computing these time scales in idealized cases, and identify pitfalls when real-world systems deviate from these idealizations. We then apply the time scale definitions to a shallow 378 ha tidal lake to illustrate how deviations between real water bodies and the idealized examples can result from: (1) non-steady flow; (2) spatial variability in bathymetry, circulation, and transport time scales; and (3) tides that introduce complexities not accounted for in the idealized cases. These examples illustrate that no single transport time scale is valid for all time periods, locations, and constituents, and no one time scale describes all transport processes. We encourage aquatic scientists to rigorously define the transport time scale when it is applied, identify the underlying assumptions in the application of that concept, and ask if those assumptions are valid in the application of that approach for computing transport time scales in real systems.
Detection of crossover time scales in multifractal detrended fluctuation analysis
NASA Astrophysics Data System (ADS)
Ge, Erjia; Leung, Yee
2013-04-01
Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.
McGinley, Matthew J.; Liberman, M. Charles; Bal, Ramazan; Oertel, Donata
2012-01-01
Broadband transient sounds, such as clicks and consonants, activate a traveling wave in the cochlea. This wave evokes firing in auditory nerve fibers that are tuned to high frequencies several milliseconds earlier than in fibers tuned to low frequencies. Despite this substantial traveling wave delay, octopus cells in the brainstem receive broadband input and respond to clicks with submillisecond temporal precision. The dendrites of octopus cells lie perpendicular to the tonotopically organized array of auditory nerve fibers, placing the earliest arriving inputs most distally and the latest arriving closest to the soma. Here, we test the hypothesis that the topographic arrangement of synaptic inputs on dendrites of octopus cells allows octopus cells to compensate the traveling wave delay. We show that in mice the full cochlear traveling wave delay is 1.6 ms. Because the dendrites of each octopus cell spread across about one third of the tonotopic axis, a click evokes a soma directed sweep of synaptic input lasting 0.5 ms in individual octopus cells. Morphologically and biophysically realistic, computational models of octopus cells show that soma-directed sweeps with durations matching in vivo measurements result in the largest and sharpest somatic excitatory postsynaptic potentials (EPSPs). A low input resistance and activation of a low-voltage-activated potassium conductance that are characteristic of octopus cells are important determinants of sweep sensitivity. We conclude that octopus cells have dendritic morphologies and biophysics tailored to accomplish the precise encoding of broadband transient sounds. PMID:22764237
Eickenscheidt, Max; Zeck, Günther
2014-06-01
The initiation of an action potential by extracellular stimulation occurs after local depolarization of the neuronal membrane above threshold. Although the technique shows remarkable clinical success, the site of action and the relevant stimulation parameters are not completely understood. Here we identify the site of action potential initiation in rabbit retinal ganglion cells (RGCs) interfaced to an array of extracellular capacitive stimulation electrodes. We determine which feature of the extracellular potential governs action potential initiation by simultaneous stimulation and recording RGCs interfaced in epiretinal configuration. Stimulation electrodes were combined to areas of different size and were presented at different positions with respect to the RGC. Based on stimulation by electrodes beneath the RGC soma and simultaneous sub-millisecond latency measurement we infer axonal initiation at the site of maximal curvature of the extracellular potential. Stimulation by electrodes at different positions along the axon reveals a nearly constant threshold current density except for a narrow region close to the cell soma. These findings are explained by the concept of the activating function modified to consider a region of lower excitability close to the cell soma. We present a framework how to estimate the site of action potential initiation and the stimulus required to cross threshold in neurons tightly interfaced to capacitive stimulation electrodes. Our results underscore the necessity of rigorous electrical characterization of the stimulation electrodes and of the interfaced neural tissue.
Bayguinov, Peter O; Ma, Yihe; Gao, Yu; Zhao, Xinyu; Jackson, Meyer B
2017-09-20
Genetically encoded voltage indicators create an opportunity to monitor electrical activity in defined sets of neurons as they participate in the complex patterns of coordinated electrical activity that underlie nervous system function. Taking full advantage of genetically encoded voltage indicators requires a generalized strategy for targeting the probe to genetically defined populations of cells. To this end, we have generated a mouse line with an optimized hybrid voltage sensor (hVOS) probe within a locus designed for efficient Cre recombinase-dependent expression. Crossing this mouse with Cre drivers generated double transgenics expressing hVOS probe in GABAergic, parvalbumin, and calretinin interneurons, as well as hilar mossy cells, new adult-born neurons, and recently active neurons. In each case, imaging in brain slices from male or female animals revealed electrically evoked optical signals from multiple individual neurons in single trials. These imaging experiments revealed action potentials, dynamic aspects of dendritic integration, and trial-to-trial fluctuations in response latency. The rapid time response of hVOS imaging revealed action potentials with high temporal fidelity, and enabled accurate measurements of spike half-widths characteristic of each cell type. Simultaneous recording of rapid voltage changes in multiple neurons with a common genetic signature offers a powerful approach to the study of neural circuit function and the investigation of how neural networks encode, process, and store information. SIGNIFICANCE STATEMENT Genetically encoded voltage indicators hold great promise in the study of neural circuitry, but realizing their full potential depends on targeting the sensor to distinct cell types. Here we present a new mouse line that expresses a hybrid optical voltage sensor under the control of Cre recombinase. Crossing this line with Cre drivers generated double-transgenic mice, which express this sensor in targeted cell types. In brain slices from these animals, single-trial hybrid optical voltage sensor recordings revealed voltage changes with submillisecond resolution in multiple neurons simultaneously. This imaging tool will allow for the study of the emergent properties of neural circuits and permit experimental tests of the roles of specific types of neurons in complex circuit activity. Copyright © 2017 the authors 0270-6474/17/379305-15$15.00/0.
Intense electromagnetic outbursts from collapsing hypermassive neutron stars
NASA Astrophysics Data System (ADS)
Lehner, Luis; Palenzuela, Carlos; Liebling, Steven L.; Thompson, Christopher; Hanna, Chad
2012-11-01
We study the gravitational collapse of a magnetized neutron star using a novel numerical approach able to capture both the dynamics of the star and the behavior of the surrounding plasma. In this approach, a fully general relativistic magnetohydrodynamics implementation models the collapse of the star and provides appropriate boundary conditions to a force-free model which describes the stellar exterior. We validate this strategy by comparing with known results for the rotating monopole and aligned rotator solutions and then apply it to study both rotating and nonrotating stellar collapse scenarios and contrast the behavior with what is obtained when employing the electrovacuum approximation outside the star. The nonrotating electrovacuum collapse is shown to agree qualitatively with a Newtonian model of the electromagnetic field outside a collapsing star. We illustrate and discuss a fundamental difference between the force-free and electrovacuum solutions, involving the appearance of large zones of electric-dominated field in the vacuum case. This provides a clear demonstration of how dissipative singularities appear generically in the nonlinear time evolution of force-free fluids. In both the rotating and nonrotating cases, our simulations indicate that the collapse induces a strong electromagnetic transient, which leaves behind an uncharged, unmagnetized Kerr black hole. In the case of submillisecond rotation, the magnetic field experiences strong winding, and the transient carries much more energy. This result has important implications for models of gamma-ray bursts. Even when the neutron star is surrounded by an accretion torus (as in binary merger and collapsar scenarios), a magnetosphere may emerge through a dynamo process operating in a surface shear layer. When this rapidly rotating magnetar collapses to a black hole, the electromagnetic energy released can compete with the later output in a Blandford-Znajek jet. Much less electromagnetic energy is released by a massive magnetar that is (initially) gravitationally stable: its rotational energy is dissipated mainly by internal torques. A distinct plasmoid structure is seen in our nonrotating simulations, which will generate a radio transient with subluminal expansion and greater synchrotron efficiency than is expected in shock models. Closely related phenomena appear to be at work in the giant flares of Galactic magnetars.
Xiao, Qiang; Zeng, Zhigang
2017-10-01
The existed results of Lagrange stability and finite-time synchronization for memristive recurrent neural networks (MRNNs) are scale-free on time evolvement, and some restrictions appear naturally. In this paper, two novel scale-limited comparison principles are established by means of inequality techniques and induction principle on time scales. Then the results concerning Lagrange stability and global finite-time synchronization of MRNNs on time scales are obtained. Scaled-limited Lagrange stability criteria are derived, in detail, via nonsmooth analysis and theory of time scales. Moreover, novel criteria for achieving the global finite-time synchronization are acquired. In addition, the derived method can also be used to study global finite-time stabilization. The proposed results extend or improve the existed ones in the literatures. Two numerical examples are chosen to show the effectiveness of the obtained results.
Identification of varying time scales in sediment transport using the Hilbert-Huang Transform method
NASA Astrophysics Data System (ADS)
Kuai, Ken Z.; Tsai, Christina W.
2012-02-01
SummarySediment transport processes vary at a variety of time scales - from seconds, hours, days to months and years. Multiple time scales exist in the system of flow, sediment transport and bed elevation change processes. As such, identification and selection of appropriate time scales for flow and sediment processes can assist in formulating a system of flow and sediment governing equations representative of the dynamic interaction of flow and particles at the desired details. Recognizing the importance of different varying time scales in the fluvial processes of sediment transport, we introduce the Hilbert-Huang Transform method (HHT) to the field of sediment transport for the time scale analysis. The HHT uses the Empirical Mode Decomposition (EMD) method to decompose a time series into a collection of the Intrinsic Mode Functions (IMFs), and uses the Hilbert Spectral Analysis (HSA) to obtain instantaneous frequency data. The EMD extracts the variability of data with different time scales, and improves the analysis of data series. The HSA can display the succession of time varying time scales, which cannot be captured by the often-used Fast Fourier Transform (FFT) method. This study is one of the earlier attempts to introduce the state-of-the-art technique for the multiple time sales analysis of sediment transport processes. Three practical applications of the HHT method for data analysis of both suspended sediment and bedload transport time series are presented. The analysis results show the strong impact of flood waves on the variations of flow and sediment time scales at a large sampling time scale, as well as the impact of flow turbulence on those time scales at a smaller sampling time scale. Our analysis reveals that the existence of multiple time scales in sediment transport processes may be attributed to the fractal nature in sediment transport. It can be demonstrated by the HHT analysis that the bedload motion time scale is better represented by the ratio of the water depth to the settling velocity, h/ w. In the final part, HHT results are compared with an available time scale formula in literature.
NASA Astrophysics Data System (ADS)
Yin, Dong-shan; Gao, Yu-ping; Zhao, Shu-hong
2017-07-01
Millisecond pulsars can generate another type of time scale that is totally independent of the atomic time scale, because the physical mechanisms of the pulsar time scale and the atomic time scale are quite different from each other. Usually the pulsar timing observations are not evenly sampled, and the internals between two data points range from several hours to more than half a month. Further more, these data sets are sparse. All this makes it difficult to generate an ensemble pulsar time scale. Hence, a new algorithm to calculate the ensemble pulsar time scale is proposed. Firstly, a cubic spline interpolation is used to densify the data set, and make the intervals between data points uniform. Then, the Vondrak filter is employed to smooth the data set, and get rid of the high-frequency noises, and finally the weighted average method is adopted to generate the ensemble pulsar time scale. The newly released NANOGRAV (North American Nanohertz Observatory for Gravitational Waves) 9-year data set is used to generate the ensemble pulsar time scale. This data set includes the 9-year observational data of 37 millisecond pulsars observed by the 100-meter Green Bank telescope and the 305-meter Arecibo telescope. It is found that the algorithm used in this paper can reduce effectively the influence caused by the noises in pulsar timing residuals, and improve the long-term stability of the ensemble pulsar time scale. Results indicate that the long-term (> 1 yr) stability of the ensemble pulsar time scale is better than 3.4 × 10-15.
Considering Time-Scale Requirements for the Future
2013-05-01
geocentric reference frame with the SI second realized on the rotating geoid as the scale unit. It is a continuous atomic time scale that was...the B8lycentric and Geocentric Celestial Reference Systems, two time scales, Barycentric Coor- dinate Time (TCB) and Geocentric Coordinate Time (TCG...defined in 2006 as a linear scaling of TCB having the approximate rate of TT. TCG is the time coordinate for the four dimensional geocentric coordinate
Time-scale invariance as an emergent property in a perceptron with realistic, noisy neurons
Buhusi, Catalin V.; Oprisan, Sorinel A.
2013-01-01
In most species, interval timing is time-scale invariant: errors in time estimation scale up linearly with the estimated duration. In mammals, time-scale invariance is ubiquitous over behavioral, lesion, and pharmacological manipulations. For example, dopaminergic drugs induce an immediate, whereas cholinergic drugs induce a gradual, scalar change in timing. Behavioral theories posit that time-scale invariance derives from particular computations, rules, or coding schemes. In contrast, we discuss a simple neural circuit, the perceptron, whose output neurons fire in a clockwise fashion (interval timing) based on the pattern of coincidental activation of its input neurons. We show numerically that time-scale invariance emerges spontaneously in a perceptron with realistic neurons, in the presence of noise. Under the assumption that dopaminergic drugs modulate the firing of input neurons, and that cholinergic drugs modulate the memory representation of the criterion time, we show that a perceptron with realistic neurons reproduces the pharmacological clock and memory patterns, and their time-scale invariance, in the presence of noise. These results suggest that rather than being a signature of higher-order cognitive processes or specific computations related to timing, time-scale invariance may spontaneously emerge in a massively-connected brain from the intrinsic noise of neurons and circuits, thus providing the simplest explanation for the ubiquity of scale invariance of interval timing. PMID:23518297
Liu, Huiyu; Zhang, Mingyang; Lin, Zhenshan
2017-10-05
Climate changes are considered to significantly impact net primary productivity (NPP). However, there are few studies on how climate changes at multiple time scales impact NPP. With MODIS NPP product and station-based observations of sunshine duration, annual average temperature and annual precipitation, impacts of climate changes at different time scales on annual NPP, have been studied with EEMD (ensemble empirical mode decomposition) method in the Karst area of northwest Guangxi, China, during 2000-2013. Moreover, with partial least squares regression (PLSR) model, the relative importance of climatic variables for annual NPP has been explored. The results show that (1) only at quasi 3-year time scale do sunshine duration and temperature have significantly positive relations with NPP. (2) Annual precipitation has no significant relation to NPP by direct comparison, but significantly positive relation at 5-year time scale, which is because 5-year time scale is not the dominant scale of precipitation; (3) the changes of NPP may be dominated by inter-annual variabilities. (4) Multiple time scales analysis will greatly improve the performance of PLSR model for estimating NPP. The variable importance in projection (VIP) scores of sunshine duration and temperature at quasi 3-year time scale, and precipitation at quasi 5-year time scale are greater than 0.8, indicating important for NPP during 2000-2013. However, sunshine duration and temperature at quasi 3-year time scale are much more important. Our results underscore the importance of multiple time scales analysis for revealing the relations of NPP to changing climate.
An optimal modification of a Kalman filter for time scales
NASA Technical Reports Server (NTRS)
Greenhall, C. A.
2003-01-01
The Kalman filter in question, which was implemented in the time scale algorithm TA(NIST), produces time scales with poor short-term stability. A simple modification of the error covariance matrix allows the filter to produce time scales with good stability at all averaging times, as verified by simulations of clock ensembles.
Impact of aggregation on scaling behavior of Internet backbone traffic
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Li; Ribeiro, Vinay J.; Moon, Sue B.; Diot, Christophe
2002-07-01
We study the impact of aggregation on the scaling behavior of Internet backbone tra ffic, based on traces collected from OC3 and OC12 links in a tier-1 ISP. We make two striking observations regarding the sub-second small time scaling behaviors of Internet backbone traffic: 1) for a majority of these traces, the Hurst parameters at small time scales (1ms - 100ms) are fairly close to 0.5. Hence the traffic at these time scales are nearly uncorrelated; 2) the scaling behaviors at small time scales are link-dependent, and stay fairly invariant over changing utilization and time. To understand the scaling behavior of network traffic, we develop analytical models and employ them to demonstrate how traffic composition -- aggregation of traffic with different characteristics -- affects the small-time scalings of network traffic. The degree of aggregation and burst correlation structure are two major factors in traffic composition. Our trace-based data analysis confirms this. Furthermore, we discover that traffic composition on a backbone link stays fairly consistent over time and changing utilization, which we believe is the cause for the invariant small-time scalings we observe in the traces.
Dynamic correlations at different time-scales with empirical mode decomposition
NASA Astrophysics Data System (ADS)
Nava, Noemi; Di Matteo, T.; Aste, Tomaso
2018-07-01
We introduce a simple approach which combines Empirical Mode Decomposition (EMD) and Pearson's cross-correlations over rolling windows to quantify dynamic dependency at different time scales. The EMD is a tool to separate time series into implicit components which oscillate at different time-scales. We apply this decomposition to intraday time series of the following three financial indices: the S&P 500 (USA), the IPC (Mexico) and the VIX (volatility index USA), obtaining time-varying multidimensional cross-correlations at different time-scales. The correlations computed over a rolling window are compared across the three indices, across the components at different time-scales and across different time lags. We uncover a rich heterogeneity of interactions, which depends on the time-scale and has important lead-lag relations that could have practical use for portfolio management, risk estimation and investment decisions.
NASA Astrophysics Data System (ADS)
Dündar, Furkan Semih
2018-01-01
We provide a theory of n-scales previously called as n dimensional time scales. In previous approaches to the theory of time scales, multi-dimensional scales were taken as product space of two time scales [1, 2]. n-scales make the mathematical structure more flexible and appropriate to real world applications in physics and related fields. Here we define an n-scale as an arbitrary closed subset of ℝn. Modified forward and backward jump operators, Δ-derivatives and Δ-integrals on n-scales are defined.
Transition from lognormal to χ2-superstatistics for financial time series
NASA Astrophysics Data System (ADS)
Xu, Dan; Beck, Christian
2016-07-01
Share price returns on different time scales can be well modelled by a superstatistical dynamics. Here we provide an investigation which type of superstatistics is most suitable to properly describe share price dynamics on various time scales. It is shown that while χ2-superstatistics works well on a time scale of days, on a much smaller time scale of minutes the price changes are better described by lognormal superstatistics. The system dynamics thus exhibits a transition from lognormal to χ2 superstatistics as a function of time scale. We discuss a more general model interpolating between both statistics which fits the observed data very well. We also present results on correlation functions of the extracted superstatistical volatility parameter, which exhibits exponential decay for returns on large time scales, whereas for returns on small time scales there are long-range correlations and power-law decay.
NASA Astrophysics Data System (ADS)
Cho, Yong Ku; Zheng, Guoan; Augustine, George J.; Hochbaum, Daniel; Cohen, Adam; Knöpfel, Thomas; Pisanello, Ferruccio; Pavone, Francesco S.; Vellekoop, Ivo M.; Booth, Martin J.; Hu, Song; Zhu, Jiang; Chen, Zhongping; Hoshi, Yoko
2016-09-01
Mechanistic understanding of how the brain gives rise to complex behavioral and cognitive functions is one of science’s grand challenges. The technical challenges that we face as we attempt to gain a systems-level understanding of the brain are manifold. The brain’s structural complexity requires us to push the limit of imaging resolution and depth, while being able to cover large areas, resulting in enormous data acquisition and processing needs. Furthermore, it is necessary to detect functional activities and ‘map’ them onto the structural features. The functional activity occurs at multiple levels, using electrical and chemical signals. Certain electrical signals are only decipherable with sub-millisecond timescale resolution, while other modes of signals occur in minutes to hours. For these reasons, there is a wide consensus that new tools are necessary to undertake this daunting task. Optical techniques, due to their versatile and scalable nature, have great potentials to answer these challenges. Optical microscopy can now image beyond the diffraction limit, record multiple types of brain activity, and trace structural features across large areas of tissue. Genetically encoded molecular tools opened doors to controlling and detecting neural activity using light in specific cell types within the intact brain. Novel sample preparation methods that reduce light scattering have been developed, allowing whole brain imaging in rodent models. Adaptive optical methods have the potential to resolve images from deep brain regions. In this roadmap article, we showcase a few major advances in this area, survey the current challenges, and identify potential future needs that may be used as a guideline for the next steps to be taken.
Design and engineering of a man-made diffusive electron-transport protein.
Fry, Bryan A; Solomon, Lee A; Leslie Dutton, P; Moser, Christopher C
2016-05-01
Maquettes are man-made cofactor-binding oxidoreductases designed from first principles with minimal reference to natural protein sequences. Here we focus on water-soluble maquettes designed and engineered to perform diffusive electron transport of the kind typically carried out by cytochromes, ferredoxins and flavodoxins and other small proteins in photosynthetic and respiratory energy conversion and oxido-reductive metabolism. Our designs were tested by analysis of electron transfer between heme maquettes and the well-known natural electron transporter, cytochrome c. Electron-transfer kinetics were measured from seconds to milliseconds by stopped-flow, while sub-millisecond resolution was achieved through laser photolysis of the carbon monoxide maquette heme complex. These measurements demonstrate electron transfer from the maquette to cytochrome c, reproducing the timescales and charge complementarity modulation observed in natural systems. The ionic strength dependence of inter-protein electron transfer from 9.7×10(6) M(-1) s(-1) to 1.2×10(9) M(-1) s(-1) follows a simple Debye-Hückel model for attraction between +8 net charged oxidized cytochrome c and -19 net charged heme maquette, with no indication of significant protein dipole moment steering. Successfully recreating essential components of energy conversion and downstream metabolism in man-made proteins holds promise for in vivo clinical intervention and for the production of fuel or other industrial products. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2015 Elsevier B.V. All rights reserved.
Cho, Yong Ku; Zheng, Guoan; Augustine, George J; Hochbaum, Daniel; Cohen, Adam; Knöpfel, Thomas; Pisanello, Ferruccio; Pavone, Francesco S; Vellekoop, Ivo M; Booth, Martin J; Hu, Song; Zhu, Jiang; Chen, Zhongping; Hoshi, Yoko
2017-01-01
Mechanistic understanding of how the brain gives rise to complex behavioral and cognitive functions is one of science’s grand challenges. The technical challenges that we face as we attempt to gain a systems-level understanding of the brain are manifold. The brain’s structural complexity requires us to push the limit of imaging resolution and depth, while being able to cover large areas, resulting in enormous data acquisition and processing needs. Furthermore, it is necessary to detect functional activities and ‘map’ them onto the structural features. The functional activity occurs at multiple levels, using electrical and chemical signals. Certain electrical signals are only decipherable with sub-millisecond timescale resolution, while other modes of signals occur in minutes to hours. For these reasons, there is a wide consensus that new tools are necessary to undertake this daunting task. Optical techniques, due to their versatile and scalable nature, have great potentials to answer these challenges. Optical microscopy can now image beyond the diffraction limit, record multiple types of brain activity, and trace structural features across large areas of tissue. Genetically encoded molecular tools opened doors to controlling and detecting neural activity using light in specific cell types within the intact brain. Novel sample preparation methods that reduce light scattering have been developed, allowing whole brain imaging in rodent models. Adaptive optical methods have the potential to resolve images from deep brain regions. In this roadmap article, we showcase a few major advances in this area, survey the current challenges, and identify potential future needs that may be used as a guideline for the next steps to be taken. PMID:28386392
Structure and dating errors in the geologic time scale and periodicity in mass extinctions
NASA Technical Reports Server (NTRS)
Stothers, Richard B.
1989-01-01
Structure in the geologic time scale reflects a partly paleontological origin. As a result, ages of Cenozoic and Mesozoic stage boundaries exhibit a weak 28-Myr periodicity that is similar to the strong 26-Myr periodicity detected in mass extinctions of marine life by Raup and Sepkoski. Radiometric dating errors in the geologic time scale, to which the mass extinctions are stratigraphically tied, do not necessarily lessen the likelihood of a significant periodicity in mass extinctions, but do spread the acceptable values of the period over the range 25-27 Myr for the Harland et al. time scale or 25-30 Myr for the DNAG time scale. If the Odin time scale is adopted, acceptable periods fall between 24 and 33 Myr, but are not robust against dating errors. Some indirect evidence from independently-dated flood-basalt volcanic horizons tends to favor the Odin time scale.
A Census of Atmospheric Variability From Seconds to Decades
NASA Astrophysics Data System (ADS)
Williams, Paul D.; Alexander, M. Joan; Barnes, Elizabeth A.; Butler, Amy H.; Davies, Huw C.; Garfinkel, Chaim I.; Kushnir, Yochanan; Lane, Todd P.; Lundquist, Julie K.; Martius, Olivia; Maue, Ryan N.; Peltier, W. Richard; Sato, Kaoru; Scaife, Adam A.; Zhang, Chidong
2017-11-01
This paper synthesizes and summarizes atmospheric variability on time scales from seconds to decades through a phenomenological census. We focus mainly on unforced variability in the troposphere, stratosphere, and mesosphere. In addition to atmosphere-only modes, our scope also includes coupled modes, in which the atmosphere interacts with the other components of the Earth system, such as the ocean, hydrosphere, and cryosphere. The topics covered include turbulence on time scales of seconds and minutes, gravity waves on time scales of hours, weather systems on time scales of days, atmospheric blocking on time scales of weeks, the Madden-Julian Oscillation on time scales of months, the Quasi-Biennial Oscillation and El Niño-Southern Oscillation on time scales of years, and the North Atlantic, Arctic, Antarctic, Pacific Decadal, and Atlantic Multidecadal Oscillations on time scales of decades. The paper serves as an introduction to a special collection of Geophysical Research Letters on atmospheric variability. We hope that both this paper and the collection will serve as a useful resource for the atmospheric science community and will act as inspiration for setting future research directions.
Network features of sector indexes spillover effects in China: A multi-scale view
NASA Astrophysics Data System (ADS)
Feng, Sida; Huang, Shupei; Qi, Yabin; Liu, Xueyong; Sun, Qingru; Wen, Shaobo
2018-04-01
The spillover effects among sectors are of concern for distinct market participants, who are in distinct investment horizons and concerned with the information in different time scales. In order to uncover the hidden spillover information in multi-time scales in the rapidly changing stock market and thereby offer guidance to different investors concerning distinct time scales from a system perspective, this paper constructed directional spillover effect networks for the economic sectors in distinct time scales. The results are as follows: (1) The "2-4 days" scale is the most risky scale, and the "8-16 days" scale is the least risky one. (2) The most influential and sensitive sectors are distinct in different time scales. (3) Although two sectors in the same community may not have direct spillover relations, the volatility of one sector will have a relatively strong influence on the other through indirect relations.
Scaling properties of the Arctic sea ice Deformation from Buoy Dispersion Analysis
NASA Astrophysics Data System (ADS)
Weiss, J.; Rampal, P.; Marsan, D.; Lindsay, R.; Stern, H.
2007-12-01
A temporal and spatial scaling analysis of Arctic sea ice deformation is performed over time scales from 3 hours to 3 months and over spatial scales from 300 m to 300 km. The deformation is derived from the dispersion of pairs of drifting buoys, using the IABP (International Arctic Buoy Program) buoy data sets. This study characterizes the deformation of a very large solid plate -the Arctic sea ice cover- stressed by heterogeneous forcing terms like winds and ocean currents. It shows that the sea ice deformation rate depends on the scales of observation following specific space and time scaling laws. These scaling properties share similarities with those observed for turbulent fluids, especially for the ocean and the atmosphere. However, in our case, the time scaling exponent depends on the spatial scale, and the spatial exponent on the temporal scale, which implies a time/space coupling. An analysis of the exponent values shows that Arctic sea ice deformation is very heterogeneous and intermittent whatever the scales, i.e. it cannot be considered as viscous-like, even at very large time and/or spatial scales. Instead, it suggests a deformation accommodated by a multi-scale fracturing/faulting processes.
Λ(t)CDM model as a unified origin of holographic and agegraphic dark energy models
NASA Astrophysics Data System (ADS)
Chen, Yun; Zhu, Zong-Hong; Xu, Lixin; Alcaniz, J. S.
2011-04-01
Motivated by the fact that any nonzero Λ can introduce a length scale or a time scale into Einstein's theory, r=ct=3/|Λ|. Conversely, any cosmological length scale or time scale can introduce a Λ(t), Λ(t)=3/rΛ2(t)=3/(c2tΛ2(t)). In this Letter, we investigate the time varying Λ(t) corresponding to the length scales, including the Hubble horizon, the particle horizon and the future event horizon, and the time scales, including the age of the universe and the conformal time. It is found out that, in this scenario, the Λ(t)CDM model can be taken as the unified origin of the holographic and agegraphic dark energy models with interaction between the matter and the dark energy, where the interacting term is determined by Q=-ρ. We place observational constraints on the Λ(t)CDM models originating from different cosmological length scales and time scales with the recently compiled “Union2 compilation” which consists of 557 Type Ia supernovae (SNIa) covering a redshift range 0.015⩽z⩽1.4. In conclusion, an accelerating expansion universe can be derived in the cases taking the Hubble horizon, the future event horizon, the age of the universe and the conformal time as the length scale or the time scale.
Escape and finite-size scaling in diffusion-controlled annihilation
Ben-Naim, Eli; Krapivsky, Paul L.
2016-12-16
In this paper, we study diffusion-controlled single-species annihilation with a finite number of particles. In this reaction-diffusion process, each particle undergoes ordinary diffusion, and when two particles meet, they annihilate. We focus on spatial dimensions d>2 where a finite number of particles typically survive the annihilation process. Using scaling techniques we investigate the average number of surviving particles, M, as a function of the initial number of particles, N. In three dimensions, for instance, we find the scaling law M ~ N 1/3 in the asymptotic regime N»1. We show that two time scales govern the reaction kinetics: the diffusionmore » time scale, T ~ N 2/3, and the escape time scale, τ ~ N 4/3. The vast majority of annihilation events occur on the diffusion time scale, while no annihilation events occur beyond the escape time scale.« less
NASA Astrophysics Data System (ADS)
Wohlmuth, Johannes; Andersen, Jørgen Vitting
2006-05-01
We use agent-based models to study the competition among investors who use trading strategies with different amount of information and with different time scales. We find that mixing agents that trade on the same time scale but with different amount of information has a stabilizing impact on the large and extreme fluctuations of the market. Traders with the most information are found to be more likely to arbitrage traders who use less information in the decision making. On the other hand, introducing investors who act on two different time scales has a destabilizing effect on the large and extreme price movements, increasing the volatility of the market. Closeness in time scale used in the decision making is found to facilitate the creation of local trends. The larger the overlap in commonly shared information the more the traders in a mixed system with different time scales are found to profit from the presence of traders acting at another time scale than themselves.
Time scales of supercooled water and implications for reversible polyamorphism
NASA Astrophysics Data System (ADS)
Limmer, David T.; Chandler, David
2015-09-01
Deeply supercooled water exhibits complex dynamics with large density fluctuations, ice coarsening and characteristic time scales extending from picoseconds to milliseconds. Here, we discuss implications of these time scales as they pertain to two-phase coexistence and to molecular simulations of supercooled water. Specifically, we argue that it is possible to discount liquid-liquid criticality because the time scales imply that correlation lengths for such behaviour would be bounded by no more than a few nanometres. Similarly, it is possible to discount two-liquid coexistence because the time scales imply a bounded interfacial free energy that cannot grow in proportion to a macroscopic surface area. From time scales alone, therefore, we see that coexisting domains of differing density in supercooled water can be no more than nanoscale transient fluctuations.
Scale-dependent intrinsic entropies of complex time series.
Yeh, Jia-Rong; Peng, Chung-Kang; Huang, Norden E
2016-04-13
Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal's complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease. © 2016 The Author(s).
Imura, Tomoya; Takamura, Masahiro; Okazaki, Yoshihiro; Tokunaga, Satoko
2016-10-01
We developed a scale to measure time management and assessed its reliability and validity. We then used this scale to examine the impact of time management on psychological stress response. In Study 1-1, we developed the scale and assessed its internal consistency and criterion-related validity. Findings from a factor analysis revealed three elements of time management, “time estimation,” “time utilization,” and “taking each moment as it comes.” In Study 1-2, we assessed the scale’s test-retest reliability. In Study 1-3, we assessed the validity of the constructed scale. The results indicate that the time management scale has good reliability and validity. In Study 2, we performed a covariance structural analysis to verify our model that hypothesized that time management influences perceived control of time and psychological stress response, and perceived control of time influences psychological stress response. The results showed that time estimation increases the perceived control of time, which in turn decreases stress response. However, we also found that taking each moment as it comes reduces perceived control of time, which in turn increases stress response.
Dynamics analysis of the fast-slow hydro-turbine governing system with different time-scale coupling
NASA Astrophysics Data System (ADS)
Zhang, Hao; Chen, Diyi; Wu, Changzhi; Wang, Xiangyu
2018-01-01
Multi-time scales modeling of hydro-turbine governing system is crucial in precise modeling of hydropower plant and provides support for the stability analysis of the system. Considering the inertia and response time of the hydraulic servo system, the hydro-turbine governing system is transformed into the fast-slow hydro-turbine governing system. The effects of the time-scale on the dynamical behavior of the system are analyzed and the fast-slow dynamical behaviors of the system are investigated with different time-scale. Furthermore, the theoretical analysis of the stable regions is presented. The influences of the time-scale on the stable region are analyzed by simulation. The simulation results prove the correctness of the theoretical analysis. More importantly, the methods and results of this paper provide a perspective to multi-time scales modeling of hydro-turbine governing system and contribute to the optimization analysis and control of the system.
Lee, Yi-Hsuan; von Davier, Alina A
2013-07-01
Maintaining a stable score scale over time is critical for all standardized educational assessments. Traditional quality control tools and approaches for assessing scale drift either require special equating designs, or may be too time-consuming to be considered on a regular basis with an operational test that has a short time window between an administration and its score reporting. Thus, the traditional methods are not sufficient to catch unusual testing outcomes in a timely manner. This paper presents a new approach for score monitoring and assessment of scale drift. It involves quality control charts, model-based approaches, and time series techniques to accommodate the following needs of monitoring scale scores: continuous monitoring, adjustment of customary variations, identification of abrupt shifts, and assessment of autocorrelation. Performance of the methodologies is evaluated using manipulated data based on real responses from 71 administrations of a large-scale high-stakes language assessment.
Once upon a (slow) time in the land of recurrent neuronal networks….
Huang, Chengcheng; Doiron, Brent
2017-10-01
The brain must both react quickly to new inputs as well as store a memory of past activity. This requires biology that operates over a vast range of time scales. Fast time scales are determined by the kinetics of synaptic conductances and ionic channels; however, the mechanics of slow time scales are more complicated. In this opinion article we review two distinct network-based mechanisms that impart slow time scales in recurrently coupled neuronal networks. The first is in strongly coupled networks where the time scale of the internally generated fluctuations diverges at the transition between stable and chaotic firing rate activity. The second is in networks with finitely many members where noise-induced transitions between metastable states appear as a slow time scale in the ongoing network firing activity. We discuss these mechanisms with an emphasis on their similarities and differences. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multiscale structure of time series revealed by the monotony spectrum.
Vamoş, Călin
2017-03-01
Observation of complex systems produces time series with specific dynamics at different time scales. The majority of the existing numerical methods for multiscale analysis first decompose the time series into several simpler components and the multiscale structure is given by the properties of their components. We present a numerical method which describes the multiscale structure of arbitrary time series without decomposing them. It is based on the monotony spectrum defined as the variation of the mean amplitude of the monotonic segments with respect to the mean local time scale during successive averagings of the time series, the local time scales being the durations of the monotonic segments. The maxima of the monotony spectrum indicate the time scales which dominate the variations of the time series. We show that the monotony spectrum can correctly analyze a diversity of artificial time series and can discriminate the existence of deterministic variations at large time scales from the random fluctuations. As an application we analyze the multifractal structure of some hydrological time series.
Time-Scale Modification of Complex Acoustic Signals in Noise
1994-02-04
of a response from a closing stapler . 15 6 Short-time processing of long waveforms. 16 7 Time-scale expansion (x 2) of sequence of transients using...filter bank/overlap- add. 17 8 Time-scale expansion (x2) of a closing stapler using filter bank/overlap-add. 18 9 Composite subband time-scale...INTRODUCTION Short-duration complex sounds, as from the closing of a stapler or the tapping of a drum stick, often consist of a series of brief
Time scales of porphyry Cu deposit formation: insights from titanium diffusion in quartz
Mercer, Celestine N.; Reed, Mark H.; Mercer, Cameron M.
2015-01-01
Porphyry dikes and hydrothermal veins from the porphyry Cu-Mo deposit at Butte, Montana, contain multiple generations of quartz that are distinct in scanning electron microscope-cathodoluminescence (SEM-CL) images and in Ti concentrations. A comparison of microprobe trace element profiles and maps to SEM-CL images shows that the concentration of Ti in quartz correlates positively with CL brightness but Al, K, and Fe do not. After calibrating CL brightness in relation to Ti concentration, we use the brightness gradient between different quartz generations as a proxy for Ti gradients that we model to determine time scales of quartz formation and cooling. Model results indicate that time scales of porphyry magma residence are ~1,000s of years and time scales from porphyry quartz phenocryst rim formation to porphyry dike injection and cooling are ~10s of years. Time scales for the formation and cooling of various generations of hydrothermal vein quartz range from 10s to 10,000s of years. These time scales are considerably shorter than the ~0.6 m.y. overall time frame for each porphyry-style mineralization pulse determined from isotopic studies at Butte, Montana. Simple heat conduction models provide a temporal reference point to compare chemical diffusion time scales, and we find that they support short dike and vein formation time scales. We interpret these relatively short time scales to indicate that the Butte porphyry deposit formed by short-lived episodes of hydrofracturing, dike injection, and vein formation, each with discrete thermal pulses, which repeated over the ~3 m.y. generation of the deposit.
Determination of the Time-Space Magnetic Correlation Functions in the Solar Wind
NASA Astrophysics Data System (ADS)
Weygand, J. M.; Matthaeus, W. H.; Kivelson, M.; Dasso, S.
2013-12-01
Magnetic field data from many different intervals and 7 different solar wind spacecraft are employed to estimate the scale-dependent time decorrelation function in the interplanetary magnetic field in both the slow and fast solar wind. This estimation requires correlations varying with both space and time lags. The two point correlation function with no time lag is determined by correlating time series data from multiple spacecraft separated in space and for complete coverage of length scales relies on many intervals with different spacecraft spatial separations. In addition we employ single spacecraft time-lagged correlations, and two spacecraft time lagged correlations to access different spatial and temporal correlation data. Combining these data sets gives estimates of the scale-dependent time decorrelation function, which in principle tells us how rapidly time decorrelation occurs at a given wavelength. For static fields the scale-dependent time decorrelation function is trivially unity, but in turbulence the nonlinear cascade process induces time-decorrelation at a given length scale that occurs more rapidly with decreasing scale. The scale-dependent time decorrelation function is valuable input to theories as well as various applications such as scattering, transport, and study of predictability. It is also a fundamental element of formal turbulence theory. Our results are extension of the Eulerian correlation functions estimated in Matthaeus et al. [2010], Weygand et al [2012; 2013].
Hamilton-Jacobi-Bellman equations and approximate dynamic programming on time scales.
Seiffertt, John; Sanyal, Suman; Wunsch, Donald C
2008-08-01
The time scales calculus is a key emerging area of mathematics due to its potential use in a wide variety of multidisciplinary applications. We extend this calculus to approximate dynamic programming (ADP). The core backward induction algorithm of dynamic programming is extended from its traditional discrete case to all isolated time scales. Hamilton-Jacobi-Bellman equations, the solution of which is the fundamental problem in the field of dynamic programming, are motivated and proven on time scales. By drawing together the calculus of time scales and the applied area of stochastic control via ADP, we have connected two major fields of research.
Micro-Macro Coupling in Plasma Self-Organization Processes during Island Coalescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan Weigang; Lapenta, Giovanni; Centrum voor Plasma-Astrofysica, Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven
The collisionless island coalescence process is studied with particle-in-cell simulations, as an internal-driven magnetic self-organization scenario. The macroscopic relaxation time, corresponding to the total time required for the coalescence to complete, is found to depend crucially on the scale of the system. For small-scale systems, where the macroscopic scales and the dissipation scales are more tightly coupled, the relaxation time is independent of the strength of the internal driving force: the small-scale processes of magnetic reconnection adjust to the amount of the initial magnetic flux to be reconnected, indicating that at the microscopic scales reconnection is enslaved by the macroscopicmore » drive. However, for large-scale systems, where the micro-macro scale separation is larger, the relaxation time becomes dependent on the driving force.« less
Metabolic Imaging in Multiple Time Scales
Ramanujan, V Krishnan
2013-01-01
We report here a novel combination of time-resolved imaging methods for probing mitochondrial metabolism multiple time scales at the level of single cells. By exploiting a mitochondrial membrane potential reporter fluorescence we demonstrate the single cell metabolic dynamics in time scales ranging from milliseconds to seconds to minutes in response to glucose metabolism and mitochondrial perturbations in real time. Our results show that in comparison with normal human mammary epithelial cells, the breast cancer cells display significant alterations in metabolic responses at all measured time scales by single cell kinetics, fluorescence recovery after photobleaching and by scaling analysis of time-series data obtained from mitochondrial fluorescence fluctuations. Furthermore scaling analysis of time-series data in living cells with distinct mitochondrial dysfunction also revealed significant metabolic differences thereby suggesting the broader applicability (e.g. in mitochondrial myopathies and other metabolic disorders) of the proposed strategies beyond the scope of cancer metabolism. We discuss the scope of these findings in the context of developing portable, real-time metabolic measurement systems that can find applications in preclinical and clinical diagnostics. PMID:24013043
Aymone, A C B; Valente, V L S; de Araújo, A M
2013-09-01
Usually the literature on Heliconius show three types of scales, classified based on the correlation between color and ultrastructure: type I - white and yellow, type II - black, and type III - orange and red. The ultrastructure of the scales located at the silvery/brownish surfaces of males/females is for the first time described in this paper. Besides, we describe the ontogeny of pigmentation, the scale morphogenesis and the maturation timing of scales fated to different colors in Heliconius erato phyllis. The silvery/brownish surfaces showed ultrastructurally similar scales to the type I, II and III. The ontogeny of pigmentation follows the sequence red, black, silvery/brownish and yellow. The maturation of yellow-fated scales, however, occurred simultaneously with the red-fated scales, before the pigmentation becomes visible. In spite of the scales at the silvery/brownish surfaces being ultrastructurally similar to the yellow, red and black scales, they mature after them; this suggests that the maturation timing does not show a relationship with the scale ultrastructure, with the deposition timing of the yellow pigment. The analysis of H. erato phyllis scale morphogenesis, as well as the scales ultrastructure and maturation timing, provided new findings into the developmental architecture of color pattern in Heliconius. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Katti, R.; Wu, J.; Stadler, H.
1990-01-01
Vertical Bloch Line (VBL) memory is a recently conceived, integrated, solid-state, block-access, VLSI memory which offers the potential of 1Gbit/sq cm real storage density, gigabit per second data rates, and sub-millisecond average access times simultaneously at relatively low mass, volume, and power values when compared to alternative technologies. VBL's are micromagnetic structures within magnetic domain walls which can be manipulated using magnetic fields from integrated conductors. The presence or absence of VBL pairs are used to store binary information. At present, efforts are being directed at developing a single-chip memory using 25Mbit/sq cm technology in magnetic garnet material which integrates, at a single operating point, the writing, storage, reading, and amplification functions needed in a memory. This paper describes the current design architecture, functional elements, and supercomputer simulation results which are used to assist the design process. The current design architecture uses three metal layers, two ion implantation steps for modulating the thickness of the magnetic layer, one ion implantation step for assisting propagation in the major line track, one NiFe soft magnetic layer, one CoPt hard magnetic layer, and one reflective Cr layer for facilitating magneto-optic observation of magnetic structure. Data are stored in a series of elongated magnetic domains, called stripes, which serve as storage sites for arrays of VBL pairs. The ends of these stripes are placed near conductors which serve as VBL read/write gates. A major line track is present to provide a source and propagation path for magnetic bubbles. Writing and reading, respectively, are achieved by converting magnetic bubbles to VBL's and vice versa. The output function is effected by stretching a magnetic bubble and detecting it magnetoresistively. Experimental results from the past design cycle created four design goals for the current design cycle. First, the bias field ranges for the stripes and the major line needed to be matched. Second, the magnetic field barrier between the stripe and the read/write gates needed to be reduced. Third, current conductor routing needed to be improved to reduce occurrences of open-circuiting, short-circuiting, and eddy-current shielding. Fourth, a modified Co-alloy was needed with an increased coercivity and controlled magnetization to allow VBL stabilization to occur without affecting stripe stability.
Cho, Soyoun
2017-01-01
The cochlea processes auditory signals over a wide range of frequencies and intensities. However, the transfer characteristics at hair cell ribbon synapses are still poorly understood at different frequency locations along the cochlea. Using recordings from mature gerbils, we report here a surprisingly strong block of exocytosis by the slow Ca2+ buffer EGTA (10 mM) in basal hair cells tuned to high frequencies (∼30 kHz). In addition, using recordings from gerbil, mouse, and bullfrog auditory organs, we find that the spatial coupling between Ca2+ influx and exocytosis changes from nanodomain in low-frequency tuned hair cells (∼<2 kHz) to progressively more microdomain in high-frequency cells (∼>2 kHz). Hair cell synapses have thus developed remarkable frequency-dependent tuning of exocytosis: accurate low-latency encoding of onset and offset of sound intensity in the cochlea's base and submillisecond encoding of membrane receptor potential fluctuations in the apex for precise phase-locking to sound signals. We also found that synaptic vesicle pool recovery from depletion was sensitive to high concentrations of EGTA, suggesting that intracellular Ca2+ buffers play an important role in vesicle recruitment in both low- and high-frequency hair cells. In conclusion, our results indicate that microdomain coupling is important for exocytosis in high-frequency hair cells, suggesting a novel hypothesis for why these cells are more susceptible to sound-induced damage than low-frequency cells; high-frequency inner hair cells must have a low Ca2+ buffer capacity to sustain exocytosis, thus making them more prone to Ca2+-induced cytotoxicity. SIGNIFICANCE STATEMENT In the inner ear, sensory hair cells signal reception of sound. They do this by converting the sound-induced movement of their hair bundles present at the top of these cells, into an electrical current. This current depolarizes the hair cell and triggers the calcium-induced release of the neurotransmitter glutamate that activates the postsynaptic auditory fibers. The speed and precision of this process enables the brain to perceive the vital components of sound, such as frequency and intensity. We show that the coupling strength between calcium channels and the exocytosis calcium sensor at inner hair cell synapses changes along the mammalian cochlea such that the timing and/or intensity of sound is encoded with high precision. PMID:28154149
Runoff Response at Three Spatial Scale from a Burned Watershed
NASA Astrophysics Data System (ADS)
Moody, J. A.; Kinner, D. A.
2007-12-01
The hypothesis that the magnitude and timing of runoff from burned watersheds are functions of the properties of flow paths at multiple scales was investigated at three nested spatial scales within an area burned by the 2005 Harvard Fire near Burbank, California. Water depths were measured using pressure sensors: at the outlet of a subwatershed (10000 m2); in 3-inch Parshall flumes near the outlets of three mini-watersheds (820-1780 m2) within the subwatershed; and by 12 overland-flow detectors in 6 micro-watersheds (~11-15 m2) within one of the mini-watersheds. Rainfall intensities were measured using recording raingages deployed around the perimeter of the mini-watersheds and at the subwatershed outlet. Time-to-concentration, TC, and lag time, TL, were computed for the 15 largest of 30 rainstorms (maximum 30- minute intensities were 3.3-13.0 mm/h) between December 2005 and April 2006. TC , elapsed time from the beginning of the rain until the first increase in water depth, averaged 1.0 hours at the micro-scale, 1.7 hours at the mini-scale, and 1.5 hours at the subwatershed scale. TL is the lag time that produced the maximum cross- correlation coefficient between the time series of rainfall intensities and the series of water depths. TL averaged 0.15 hours at the micro-scale, 0.35 hours at the mini-scale, and 0.39 hours at the subwatershed scale. The coefficient was >0.50 for 43% (N=168) of the measurements at the micro-scale, for 61% (N=54) at the mini- scale, and for 67% (N=6) at the subwatershed scale indicating the runoff response lagged but was often well correlated with the time-varying rainfall intensity.
Time and length scales within a fire and implications for numerical simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
TIESZEN,SHELDON R.
2000-02-02
A partial non-dimensionalization of the Navier-Stokes equations is used to obtain order of magnitude estimates of the rate-controlling transport processes in the reacting portion of a fire plume as a function of length scale. Over continuum length scales, buoyant times scales vary as the square root of the length scale; advection time scales vary as the length scale, and diffusion time scales vary as the square of the length scale. Due to the variation with length scale, each process is dominant over a given range. The relationship of buoyancy and baroclinc vorticity generation is highlighted. For numerical simulation, first principlesmore » solution for fire problems is not possible with foreseeable computational hardware in the near future. Filtered transport equations with subgrid modeling will be required as two to three decades of length scale are captured by solution of discretized conservation equations. By whatever filtering process one employs, one must have humble expectations for the accuracy obtainable by numerical simulation for practical fire problems that contain important multi-physics/multi-length-scale coupling with up to 10 orders of magnitude in length scale.« less
NASA Technical Reports Server (NTRS)
Le, Guan; Wang, Yongli; Slavin, James A.; Strangeway, Robert J.
2007-01-01
Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of - 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approx. 1 min for meso-scale currents and approx. 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.
A Pulsar Time Scale Based on Parkes Observations in 1995-2010
NASA Astrophysics Data System (ADS)
Rodin, A. E.; Fedorova, V. A.
2018-06-01
Timing of highly stable millisecond pulsars provides the possibility of independently verifying terrestrial time scales on intervals longer than a year. An ensemble pulsar time scale is constructed based on pulsar timing data obtained on the 64-m Parkes telescope (Australia) in 1995-2010. Optimal Wiener filters were applied to enhance the accuracy of the ensemble time scale. The run of the time-scale difference PTens-TT(BIPM2011) does not exceed 0.8 ± 0.4 μs over the entire studied time interval. The fractional instability of the difference PTens-TT(BIPM2011) over 15 years is σ z = (0.6 ± 1.6) × 10-15, which corresponds to an upper limit for the energy density of the gravitational-wave background Ω g h 2 10-10 and variations in the gravitational potential 10-15 Hz at the frequency 2 × 10-9 Hz.
Characteristic Time Scales of Characteristic Magmatic Processes and Systems
NASA Astrophysics Data System (ADS)
Marsh, B. D.
2004-05-01
Every specific magmatic process, regardless of spatial scale, has an associated characteristic time scale. Time scales associated with crystals alone are rates of growth, dissolution, settling, aggregation, annealing, and nucleation, among others. At the other extreme are the time scales associated with the dynamics of the entire magmatic system. These can be separated into two groups: those associated with system genetics (e.g., the production and transport of magma, establishment of the magmatic system) and those due to physical characteristics of the established system (e.g., wall rock failure, solidification front propagation and instability, porous flow). The detailed geometry of a specific magmatic system is particularly important to appreciate; although generic systems are useful, care must be taken to make model systems as absolutely realistic as possible. Fuzzy models produce fuzzy science. Knowledge of specific time scales is not necessarily useful or meaningful unless the hierarchical context of the time scales for a realistic magmatic system is appreciated. The age of a specific phenocryst or ensemble of phenocrysts, as determined from isotopic or CSD studies, is not meaningful unless something can be ascertained of the provenance of the crystals. For example, crystal size multiplied by growth rate gives a meaningful crystal age only if it is from a part of the system that has experienced semi-monotonic cooling prior to chilling; crystals entrained from a long-standing cumulate bed that were mechanically sorted in ascending magma may not reveal this history. Ragged old crystals rolling about in the system for untold numbers of flushing times record specious process times, telling more about the noise in the system than the life of typical, first generation crystallization processes. The most helpful process-related time scales are those that are known well and that bound or define the temporal style of the system. Perhaps the most valuable of these times comes from the observed durations and rates of volcanism. There can be little doubt that the temporal styles of volcanism are the same as those of magmatism in general. Volcano repose times, periodicity, eruptive fluxes, acoustic emission structures, lava volumes, longevity, etc. must also be characteristic of pluton-dominated systems. We must therefore give up some classical concepts (e.g., instantaneous injection of crystal-free magma as an initial condition) for any plutonic/chambered system and move towards an integrated concept of magmatism. Among the host of process-related time scales, probably the three most fundamental of any magmatic system are (1) the time scale associated with crystal nucleation (J) and growth (G) (tx}=C{1(G3 J)-{1}/4; Zieg & Marsh, J. Pet. 02') along with the associated scales for mean crystal size (L) and population (N), (2) the time scale associated with conductive cooling controlled by a local length scale (d) (tc}=C{2 d2/K; K is thermal diffusivity), and (3) the time scale associated with intra-crystal diffusion (td}=C{3 L2/D; D is chemical diffusivity). It is the subtle, clever, and insightful application of time scales, dovetailed with realistic system geometry and attention paid to the analogous time scales of volcanism, that promises to reveal the true dynamic integration of magmatic systems.
Characteristic variations of sea surface temperature with multiple time scales in the North Pacific
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanimoto, Youichi; Hanawa, Kimio; Toba, Yoshiaki
1993-06-01
It is unclear whether the recent increases in global temperatures are really due to the increase of greenhouse gases or are a manifestation of natural variability. Temporal evolution and spectral structure of sea surface temperature (SST) anomalies in the North Pacific over the last 37 years are investigated on the three characteristic time scales: shorter than 24 months (HF), 24-60 months (ES), and longer than 60 months (DC). The leading empirical-orthogonal function (EOF) for the DC time scale is characterized by a zonally elongated monopole centered at around 40[degrees]N, 180[degrees]. The leading EOF for the HF time scale is somewhatmore » similar to that for the DC time scale, although there are two centers of action with the same polarity at the mid and western Pacific. The leading EOF for the ES time scale, however, exhibits a different pattern whose center of action at the mid Pacific is located farther southeastward. In the time evolution of the SST anomalies associated with the leading EOF of the DC time scale, several anomaly periods can be identified that last five years or longer. The transition from a persistent period to another with the opposite polarity is generally very brief, except for the one that lasts throughout the late 1960s. The EOF analysis was repeated separately on these persistent anomaly periods and the long transition period. The spatial structure of the leading EOF of the SST variability with the ES time scale is found to be sensitive to the polarity of the decadal anomaly. These results are suggestive of the possible influence of the decadal SST variability upon the spatial structure of the variability with shorter time scales. 31 refs., 8 figs.« less
The evolving block universe and the meshing together of times.
Ellis, George F R
2014-10-01
It has been proposed that spacetime should be regarded as an evolving block universe, bounded to the future by the present time, which continually extends to the future. This future boundary is defined at each time by measuring proper time along Ricci eigenlines from the start of the universe. A key point, then, is that physical reality can be represented at many different scales: hence, the passage of time may be seen as different at different scales, with quantum gravity determining the evolution of spacetime itself at the Planck scale, but quantum field theory and classical physics determining the evolution of events within spacetime at larger scales. The fundamental issue then arises as to how the effective times at different scales mesh together, leading to the concepts of global and local times. © 2014 New York Academy of Sciences.
Hashemi Kamangar, Somayeh Sadat; Moradimanesh, Zahra; Mokhtari, Setareh; Bakouie, Fatemeh
2018-06-11
A developmental process can be described as changes through time within a complex dynamic system. The self-organized changes and emergent behaviour during development can be described and modeled as a dynamical system. We propose a dynamical system approach to answer the main question in human cognitive development i.e. the changes during development happens continuously or in discontinuous stages. Within this approach there is a concept; the size of time scales, which can be used to address the aforementioned question. We introduce a framework, by considering the concept of time-scale, in which "fast" and "slow" is defined by the size of time-scales. According to our suggested model, the overall pattern of development can be seen as one continuous function, with different time-scales in different time intervals.
Exploring the History of Time in an Integrated System: the Ramifications for Water
NASA Astrophysics Data System (ADS)
Green, M. B.; Adams, L. E.; Allen, T. L.; Arrigo, J. S.; Bain, D. J.; Bray, E. N.; Duncan, J. M.; Hermans, C. M.; Pastore, C.; Schlosser, C. A.; Vorosmarty, C. J.; Witherell, B. B.; Wollheim, W. M.; Wreschnig, A. J.
2009-12-01
Characteristic time scales are useful and simple descriptors of geophysical and socio-economic system dynamics. Focusing on the integrative nature of the hydrologic cycle, new insights into system couplings can be gained by compiling characteristic time scales of important processes driving these systems. There are many examples of changing characteristic time scales. Human life expectancy has increased over the recent history of medical advancement. The transport time of goods has decreased with the progression from horse to rail to car to plane. The transport time of information changed with the progression from letter to telegraph to telephone to networked computing. Soil residence time (pedogenesis to estuary deposition) has been influenced by changing agricultural technology, urbanization, and forest practices. Surface water residence times have varied as beaver dams have disappeared and been replaced with modern reservoirs, flood control works, and channelization. These dynamics raise the question of how these types of time scales interact with each other to form integrated Earth system dynamics? Here we explore the coupling of geophysical and socio-economic systems in the northeast United States over the 1600 to 2010 period by examining characteristic time scales. This visualization of many time scales serves as an exploratory analysis, producing new hypotheses about how the integrated system dynamics have evolved over the last 400 years. Specifically, exponential population growth and the evolving strategies to maintain that population appears as fundamental to many of the time scales.
Fully integrated silicon probes for high-density recording of neural activity.
Jun, James J; Steinmetz, Nicholas A; Siegle, Joshua H; Denman, Daniel J; Bauza, Marius; Barbarits, Brian; Lee, Albert K; Anastassiou, Costas A; Andrei, Alexandru; Aydın, Çağatay; Barbic, Mladen; Blanche, Timothy J; Bonin, Vincent; Couto, João; Dutta, Barundeb; Gratiy, Sergey L; Gutnisky, Diego A; Häusser, Michael; Karsh, Bill; Ledochowitsch, Peter; Lopez, Carolina Mora; Mitelut, Catalin; Musa, Silke; Okun, Michael; Pachitariu, Marius; Putzeys, Jan; Rich, P Dylan; Rossant, Cyrille; Sun, Wei-Lung; Svoboda, Karel; Carandini, Matteo; Harris, Kenneth D; Koch, Christof; O'Keefe, John; Harris, Timothy D
2017-11-08
Sensory, motor and cognitive operations involve the coordinated action of large neuronal populations across multiple brain regions in both superficial and deep structures. Existing extracellular probes record neural activity with excellent spatial and temporal (sub-millisecond) resolution, but from only a few dozen neurons per shank. Optical Ca 2+ imaging offers more coverage but lacks the temporal resolution needed to distinguish individual spikes reliably and does not measure local field potentials. Until now, no technology compatible with use in unrestrained animals has combined high spatiotemporal resolution with large volume coverage. Here we design, fabricate and test a new silicon probe known as Neuropixels to meet this need. Each probe has 384 recording channels that can programmably address 960 complementary metal-oxide-semiconductor (CMOS) processing-compatible low-impedance TiN sites that tile a single 10-mm long, 70 × 20-μm cross-section shank. The 6 × 9-mm probe base is fabricated with the shank on a single chip. Voltage signals are filtered, amplified, multiplexed and digitized on the base, allowing the direct transmission of noise-free digital data from the probe. The combination of dense recording sites and high channel count yielded well-isolated spiking activity from hundreds of neurons per probe implanted in mice and rats. Using two probes, more than 700 well-isolated single neurons were recorded simultaneously from five brain structures in an awake mouse. The fully integrated functionality and small size of Neuropixels probes allowed large populations of neurons from several brain structures to be recorded in freely moving animals. This combination of high-performance electrode technology and scalable chip fabrication methods opens a path towards recording of brain-wide neural activity during behaviour.
Fully Integrated Silicon Probes for High-Density Recording of Neural Activity
Jun, James J.; Steinmetz, Nicholas A.; Siegle, Joshua H.; Denman, Daniel J.; Bauza, Marius; Barbarits, Brian; Lee, Albert K.; Anastassiou, Costas A.; Andrei, Alexandru; Aydın, Çağatay; Barbic, Mladen; Blanche, Timothy J.; Bonin, Vincent; Couto, João; Dutta, Barundeb; Gratiy, Sergey L.; Gutnisky, Diego A.; Häusser, Michael; Karsh, Bill; Ledochowitsch, Peter; Lopez, Carolina Mora; Mitelut, Catalin; Musa, Silke; Okun, Michael; Pachitariu, Marius; Putzeys, Jan; Rich, P. Dylan; Rossant, Cyrille; Sun, Wei-lung; Svoboda, Karel; Carandini, Matteo; Harris, Kenneth D.; Koch, Christof; O'Keefe, John; Harris, Timothy D.
2018-01-01
Summary Paragraph Sensory, motor, and cognitive operations involve the coordinated action of large neuronal populations across multiple brain regions in both superficial and deep structures1,2. Existing extracellular probes record neural activity with excellent spatial and temporal (sub-millisecond) resolution but from only a few dozen neurons per shank. Optical Ca2+ imaging3–5 offers more coverage but lacks the temporal resolution to reliably distinguish individual spikes and does not measure local field potentials. To date, no technology compatible with unrestrained animals has combined high spatiotemporal resolution with large volume coverage. To satisfy this need, we designed, fabricated, and tested a new silicon probe called Neuropixels. Each probe has 384 recording channels that can programmably address 960 CMOS processing-compatible low-impedance TiN6 sites that tile a single 10 mm long, 70x20 µm cross section shank. The 6x9 mm probe base is fabricated with the shank on a single chip. Voltage signals are filtered, amplified, multiplexed, and digitized on the base, allowing noise-free digital data transmission directly from the probe. The combination of dense recording sites and high channel count yielded well-isolated spiking activity from hundreds of neurons per probe implanted in mice and rats. Using two probes, more than 700 well-isolated single neurons were simultaneously recorded from five brain structures in an awake mouse. The fully integrated functionality and small size of Neuropixels probes allowed recording large populations of neurons from multiple brain structures in freely moving animals. This combination of high-performance electrode technology and scalable chip fabrication methods opens the path to record brain-wide neural activity during behavior. PMID:29120427
Li, Qin; Cui, Chenchen; Higgins, Daniel A; Li, Jun
2012-09-05
The potential-dependent reorientation dynamics of double-stranded DNA (ds-DNA) attached to planar glassy carbon electrode (GCE) surfaces were investigated. The orientation state of surface-bound ds-DNA was followed by monitoring the fluorescence from a 6-carboxyfluorescein (FAM6) fluorophore covalently linked to the distal end of the DNA. Positive potentials (i.e., +0.2 V vs open circuit potential, OCP) caused the ds-DNA to align parallel to the electrode surface, resulting in strong dipole-electrode quenching of FAM6 fluorescence. Switching of the GCE potential to negative values (i.e., -0.2 V vs OCP) caused the ds-DNA to reorient perpendicular to the electrode surface, with a concomitant increase in FAM6 fluorescence. In addition to the very fast (submilliseconds) dynamics of the initial reorientation process, slow (0.1-0.9 s) relaxation of FAM6 fluorescence to intermediate levels was also observed after potential switching. These dynamics have not been previously described in the literature. They are too slow to be explained by double layer charging, and chronoamperometry data showed no evidence of such effects. Both the amplitude and rate of the dynamics were found to depend upon buffer concentration, and ds-DNA length, demonstrating a dependence on the double layer field. The dynamics are concluded to arise from previously undetected complexities in the mechanism of potential-dependent ds-DNA reorientation. The possible origins of these dynamics are discussed. A better understanding of these dynamics will lead to improved models for potential-dependent ds-DNA reorientation at electrode surfaces and will facilitate the development of advanced electrochemical devices for detection of target DNAs.
Lactate Dehydrogenase Undergoes a Substantial Structural Change to Bind its Substrate
Qiu, Linlin; Gulotta, Miriam; Callender, Robert
2007-01-01
Employing temperature-jump relaxation spectroscopy, we investigate the kinetics and thermodynamics of the formation of a very early ternary binding intermediate formed when lactate dehydrogenase (LDH) binds a substrate mimic on its way to forming the productive LDH/NADH·substrate Michaelis complex. Temperature-jump scans show two distinct submillisecond processes are involved in the formation of this ternary binding intermediate, called the encounter complex here. The on-rate of the formation of the encounter complex from LDH/NADH with oxamate (a substrate mimic) is determined as a function of temperature and in the presence of small concentrations of a protein destabilizer (urea) and protein stabilizer (TMAO). It shows a strong temperature dependence with inverse Arrhenius behavior and a temperature-dependent enthalpy (heat capacity of 610 ± 84 cal/Mol K), is slowed in the presence of TMAO and speeded up in the presence of urea. These results suggest that LDH/NADH occupies a range of conformations, some competent to bind substrate (open structure; a minority population) and others noncompetent (closed), in fast equilibrium with each other in accord with a select fit model of binding. From the thermodynamic results, the two species differ in the rearrangement of low energy hydrogen bonds as would arise from changes in internal hydrogen bonding and/or increases in the solvation of the protein structure. The binding-competent species can bind ligand at or very near diffusion-limited speeds, suggesting that the binding pocket is substantially exposed to solvent in these species. This would be in contrast to the putative closed structure where the binding pocket resides deep within the protein interior. PMID:17483169
Metal-Catalyzed Aqueous Oxidation Processes in Merged Microdroplets
NASA Astrophysics Data System (ADS)
Davis, R. D.; Wilson, K. R.
2017-12-01
Iron-catalyzed production of reactive oxygen species (ROS) from hydrogen peroxide (Fenton's reaction) is a fundamental process throughout nature, from groundwater to cloud droplets. In recent years, Fenton's chemistry has gained further interest in atmospheric science as a potentially important process in the oxidation of aqueous secondary organic aerosol (e.g., Chu et al., Sci. Rep., 2017), with some observations indicating that Fenton's reaction proceeds at a higher rate at aerosol interfaces compared to in the bulk (Enami et al., PNAS, 2014). However, a fundamental-level mechanistic understanding of this process remains elusive and the relative importance of interfacial versus bulk chemistry for aqueous organic processing via Fenton's has yet to be fully established. Here, we present a microreactor experimental approach to studying aqueous-phase Fenton's chemistry in microdroplets by rapidly mixing droplets of different composition. Utilizing two on-demand droplet generators, a stream of microdroplets containing aqueous iron chloride were merged with a separate stream of microdroplets containing aqueous hydrogen peroxide and a range of aromatic organic compounds, initiating ROS production and subsequent aqueous-phase oxidation reactions. Upon merging, mixing of the microdroplets occurred in submillisecond timescales, thus allowing the reaction progress to be monitored with high spatial and temporal resolution. For relatively large microreactor (droplet) sizes (50 µm diameter post-merging), the Fenton-initiated aqueous oxidation of aromatic organic compounds in merged microdroplets was consistent with bulk predictions with hydroxyl radicals as the ROS. The microdroplet-size dependence of this observation, along with the role of other ROS species produced from Fenton and Fenton-like processes, will be discussed in the context of relative importance to aqueous organic processing of atmospheric particles.
Integration of cortical and pallidal inputs in the basal ganglia-recipient thalamus of singing birds
Goldberg, Jesse H.; Farries, Michael A.
2012-01-01
The basal ganglia-recipient thalamus receives inhibitory inputs from the pallidum and excitatory inputs from cortex, but it is unclear how these inputs interact during behavior. We recorded simultaneously from thalamic neurons and their putative synaptically connected pallidal inputs in singing zebra finches. We find, first, that each pallidal spike produces an extremely brief (∼5 ms) pulse of inhibition that completely suppresses thalamic spiking. As a result, thalamic spikes are entrained to pallidal spikes with submillisecond precision. Second, we find that the number of thalamic spikes that discharge within a single pallidal interspike interval (ISI) depends linearly on the duration of that interval but does not depend on pallidal activity prior to the interval. In a detailed biophysical model, our results were not easily explained by the postinhibitory “rebound” mechanism previously observed in anesthetized birds and in brain slices, nor could most of our data be characterized as “gating” of excitatory transmission by inhibitory pallidal input. Instead, we propose a novel “entrainment” mechanism of pallidothalamic transmission that highlights the importance of an excitatory conductance that drives spiking, interacting with brief pulses of pallidal inhibition. Building on our recent finding that cortical inputs can drive syllable-locked rate modulations in thalamic neurons during singing, we report here that excitatory inputs affect thalamic spiking in two ways: by shortening the latency of a thalamic spike after a pallidal spike and by increasing thalamic firing rates within individual pallidal ISIs. We present a unifying biophysical model that can reproduce all known modes of pallidothalamic transmission—rebound, gating, and entrainment—depending on the amount of excitation the thalamic neuron receives. PMID:22673333
Meneses, Erick; Mittermaier, Anthony
2014-01-01
Much of our knowledge of protein binding pathways is derived from extremely stable complexes that interact very tightly, with lifetimes of hours to days. Much less is known about weaker interactions and transient complexes because these are challenging to characterize experimentally. Nevertheless, these types of interactions are ubiquitous in living systems. The combination of NMR relaxation dispersion Carr–Purcell–Meiboom–Gill (CPMG) experiments and isothermal titration calorimetry allows the quantification of rapid binding kinetics for complexes with submillisecond lifetimes that are difficult to study using conventional techniques. We have used this approach to investigate the binding pathway of the Src homology 3 (SH3) domain from the Fyn tyrosine kinase, which forms complexes with peptide targets whose lifetimes are on the order of about a millisecond. Long range electrostatic interactions have been shown to play a critical role in the binding pathways of tightly binding complexes. The role of electrostatics in the binding pathways of transient complexes is less well understood. Similarly to previously studied tight complexes, we find that SH3 domain association rates are enhanced by long range electrostatics, whereas short range interactions are formed late in the docking process. However, the extent of electrostatic association rate enhancement is several orders of magnitudes less, whereas the electrostatic-free basal association rate is significantly greater. Thus, the SH3 domain is far less reliant on electrostatic enhancement to achieve rapid association kinetics than are previously studied systems. This suggests that there may be overall differences in the role played by electrostatics in the binding pathways of extremely stable versus transient complexes. PMID:25122758
NASA Astrophysics Data System (ADS)
Cho, Il-Joo; Yoon, Euisik
2009-08-01
In this paper, a new three-axis electromagnetically actuated micromirror structure has been proposed and fabricated. It is electromagnetically actuated at low voltage using an external magnetic field. The main purpose of this work was to obtain a three-axis actuated micromirror in a mechanically robust structure with large static angular and vertical displacement at low actuation voltage for fine alignment among optical components in an active alignment module as well as conventional optical systems. The mirror plate and torsion bars are made of bulk silicon using a SOI wafer, and the actuation coils are made of electroplated Au. The maximum static deflection angles were measured as ±4.2° for x-axis actuation and ±9.2° for y-axis actuation, respectively. The maximum static vertical displacement was measured as ±42 µm for z-axis actuation. The actuation voltages were below 3 V for all actuation. The simulated resonant frequencies are several kHz, and these imply that the fabricated micromirror can be operated in sub-millisecond order. The measured radius of curvature (ROC) of the fabricated micromirror is 7.72 cm, and the surface roughness of the reflector is below 1.29 nm which ensure high optical performance such as high directionality and reflectivity. The fabricated micromirror has demonstrated large actuated displacement at low actuation voltage, and it enables us to compensate a larger misalignment value when it is used in an active alignment module. The robust torsion bar and lifting bar structure formed by bulk silicon allowed the proposed micromirror to have greater operating stability. The additional degree of freedom with z-axis actuation can decrease the difficulty in the assembly of optical components and increase the coupling efficiency between optical components.
Development of optics with micro-LED arrays for improved opto-electronic neural stimulation
NASA Astrophysics Data System (ADS)
Chaudet, Lionel; Neil, Mark; Degenaar, Patrick; Mehran, Kamyar; Berlinguer-Palmini, Rolando; Corbet, Brian; Maaskant, Pleun; Rogerson, David; Lanigan, Peter; Bamberg, Ernst; Roska, Botond
2013-03-01
The breakthrough discovery of a nanoscale optically gated ion channel protein, Channelrhodopsin 2 (ChR2), and its combination with a genetically expressed ion pump, Halorhodopsin, allowed the direct stimulation and inhibition of individual action potentials with light alone. This work reports developments of ultra-bright elec tronically controlled optical array sources with enhanced light gated ion channels and pumps for use in systems to further our understanding of both brain and visual function. This work is undertaken as part of the European project, OptoNeuro. Micro-LED arrays permit spatio-temporal control of neuron stimulation on sub-millisecond timescales. However they are disadvantaged by their broad spatial light emission distribution and low fill factor. We present the design and implementation of a projection and micro-optics system for use with a micro-LED array consisting of a 16x16 matrix of 25 μm diameter micro-LEDs with 150 μm centre-to-centre spacing and an emission spectrum centred at 470 nm overlapping the peak sensitivity of ChR2 and its testing on biological samples. The projection system images the micro-LED array onto micro-optics to improve the fill-factor from ~2% to more than 78% by capturing a larger fraction of the LED emission and directing it correctly to the sample plane. This approach allows low fill factor arrays to be used effectively, which in turn has benefits in terms of thermal management and electrical drive from CMOS backplane electronics. The entire projection system is integrated into a microscope prototype to provide stimulation spots at the same size as the neuron cell body (μ10 pm).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, Yuri, E-mail: yufi55@mail.ru; National Research Tomsk State University, 36 Lenina Str., Tomsk, 634050; National Research Tomsk Polytechnic University, 30 Lenina Str., Tomsk, 634050
The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm{sup 2}, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electronmore » beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance.« less
The structure and properties of boron carbide ceramics modified by high-current pulsed electron-beam
NASA Astrophysics Data System (ADS)
Ivanov, Yuri; Tolkachev, Oleg; Petyukevich, Maria; Teresov, Anton; Ivanova, Olga; Ikonnikova, Irina; Polisadova, Valentina
2016-01-01
The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm2, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electron beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance.
Controllability of multiplex, multi-time-scale networks
NASA Astrophysics Data System (ADS)
Pósfai, Márton; Gao, Jianxi; Cornelius, Sean P.; Barabási, Albert-László; D'Souza, Raissa M.
2016-09-01
The paradigm of layered networks is used to describe many real-world systems, from biological networks to social organizations and transportation systems. While recently there has been much progress in understanding the general properties of multilayer networks, our understanding of how to control such systems remains limited. One fundamental aspect that makes this endeavor challenging is that each layer can operate at a different time scale; thus, we cannot directly apply standard ideas from structural control theory of individual networks. Here we address the problem of controlling multilayer and multi-time-scale networks focusing on two-layer multiplex networks with one-to-one interlayer coupling. We investigate the practically relevant case when the control signal is applied to the nodes of one layer. We develop a theory based on disjoint path covers to determine the minimum number of inputs (Ni) necessary for full control. We show that if both layers operate on the same time scale, then the network structure of both layers equally affect controllability. In the presence of time-scale separation, controllability is enhanced if the controller interacts with the faster layer: Ni decreases as the time-scale difference increases up to a critical time-scale difference, above which Ni remains constant and is completely determined by the faster layer. We show that the critical time-scale difference is large if layer I is easy and layer II is hard to control in isolation. In contrast, control becomes increasingly difficult if the controller interacts with the layer operating on the slower time scale and increasing time-scale separation leads to increased Ni, again up to a critical value, above which Ni still depends on the structure of both layers. This critical value is largely determined by the longest path in the faster layer that does not involve cycles. By identifying the underlying mechanisms that connect time-scale difference and controllability for a simplified model, we provide crucial insight into disentangling how our ability to control real interacting complex systems is affected by a variety of sources of complexity.
Yasuhara, Moriaki; Doi, Hideyuki; Wei, Chih-Lin; Danovaro, Roberto; Myhre, Sarah E
2016-05-19
The link between biodiversity and ecosystem functioning (BEF) over long temporal scales is poorly understood. Here, we investigate biological monitoring and palaeoecological records on decadal, centennial and millennial time scales from a BEF framework by using deep sea, soft-sediment environments as a test bed. Results generally show positive BEF relationships, in agreement with BEF studies based on present-day spatial analyses and short-term manipulative experiments. However, the deep-sea BEF relationship is much noisier across longer time scales compared with modern observational studies. We also demonstrate with palaeoecological time-series data that a larger species pool does not enhance ecosystem stability through time, whereas higher abundance as an indicator of higher ecosystem functioning may enhance ecosystem stability. These results suggest that BEF relationships are potentially time scale-dependent. Environmental impacts on biodiversity and ecosystem functioning may be much stronger than biodiversity impacts on ecosystem functioning at long, decadal-millennial, time scales. Longer time scale perspectives, including palaeoecological and ecosystem monitoring data, are critical for predicting future BEF relationships on a rapidly changing planet. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Starr, Francis; Douglas, Jack; Sastry, Srikanth
2013-03-01
We examine measures of dynamical heterogeneity for a bead-spring polymer melt and test how these scales compare with the scales hypothesized by the Adam and Gibbs (AG) and random first-order transition (RFOT) theories. We show that the time scale of the high-mobility clusters and strings is associated with a diffusive time scale, while the low-mobility particles' time scale relates to a structural relaxation time. The difference of the characteristic times naturally explains the decoupling of diffusion and structural relaxation time scales. We examine the appropriateness of identifying the size scales of mobile particle clusters or strings with the size of cooperatively rearranging regions (CRR) in the AG and RFOT theories. We find that the string size appears to be the most consistent measure of CRR for both the AG and RFOT models. Identifying strings or clusters with the``mosaic'' length of the RFOT model relaxes the conventional assumption that the``entropic droplet'' are compact. We also confirm the validity of the entropy formulation of the AG theory, constraining the exponent values of the RFOT theory. This constraint, together with the analysis of size scales, enables us to estimate the characteristic exponents of RFOT.
A Group Simulation of the Development of the Geologic Time Scale.
ERIC Educational Resources Information Center
Bennington, J. Bret
2000-01-01
Explains how to demonstrate to students that the relative dating of rock layers is redundant. Uses two column diagrams to simulate stratigraphic sequences from two different geological time scales and asks students to complete the time scale. (YDS)
A picture for the coupling of unemployment and inflation
NASA Astrophysics Data System (ADS)
Safdari, H.; Hosseiny, A.; Vasheghani Farahani, S.; Jafari, G. R.
2016-02-01
The aim of this article is to illustrate the scaling features of two well heard characters in the media; unemployment and inflation. We carry out a scaling analysis on the coupling between unemployment and inflation. This work is based on the wavelet analysis as well as the detrended fluctuation analysis (DFA). Through our analysis we state that while unemployment is time scale invariant, inflation is bi-scale. We show that inflation possess a five year time scale where it experiences different behaviours before and after this scale period. This behaviour of inflation provides basis for the coupling to inherit the stated time interval. Although inflation is bi-scale, it is unemployment that shows a strong multifractality feature. Owing to the cross wavelet analysis we provide a picture that illustrates the dynamics of coupling between unemployment and inflation regarding intensity, direction, and scale. The fact of the matter is that the coupling between inflation and unemployment is not equal in one way compared to the opposite. Regarding the scaling; coupling exhibits different features in various scales. In a sense that although in one scale its correlation behaves in a positive/negative manner, at the same time it can be negative/positive for another scale.
Drought and Heat Waves: The Role of SST and Land Surface Feedbacks
NASA Technical Reports Server (NTRS)
Schubert, Siegfried
2011-01-01
Drought occurs on a wide range of time scales, and within a variety of different types of regional climates. At the shortest time scales it is often associated with heat waves that last only several weeks to a few months but nevertheless can have profound detrimental impacts on society (e.g., heat-related impacts on human health, desiccation of croplands, increased fire hazard), while at the longest time scales it can extend over decades and can lead to long term structural changes in many aspects of society (e.g., agriculture, water resources, wetlands, tourism, population shifts). There is now considerable evidence that sea surface temperatures (SSTs) play a leading role in the development of drought world-wide, especially at seasonal and longer time scales, though land-atmosphere feedbacks can also play an important role. At shorter (subseasonal) time scales, SSTs are less important, but land feedbacks can play a critical role in maintaining and amplifying the atmospheric conditions associated with heat waves and short-term droughts. This talk reviews our current understanding of the physical mechanisms that drive precipitation and temperature variations on subseasonal to centennial time scales. This includes an assessment of predictability, prediction skill, and user needs at all time scales.
NASA Astrophysics Data System (ADS)
Steinhaus, Ben; Shen, Amy; Sureshkumar, Radhakrishna
2006-11-01
We investigate the effects of fluid elasticity and channel geometry on polymeric droplet pinch-off by performing systematic experiments using viscoelastic polymer solutions which possess practically shear rate-independent viscosity (Boger fluids). Four different geometric sizes (width and depth are scaled up proportionally at the ratio of 0.5, 1, 2, 20) are used to study the effect of the length scale, which in turn influences the ratio of elastic to viscous forces as well as the Rayleigh time scale associated with the interfacial instability of a cylindrical column of liquid. We observe a power law relationship between the dimensionless (scaled with respect to the Rayleigh time scale) capillary pinch-off time, T, and the elasticity number, E, defined as the ratio of the fluid relaxation time to the time scale of viscous diffusion. In general, T increases dramatically with increasing E. The inhibition of ``bead-on-a-string'' formation is observed for flows with effective Deborah number, De, defined as the ratio of the fluid relaxation time to the Rayleigh time scale becomes greater than 10. For sufficiently large values of De, the Rayleigh instability may be modified substantially by fluid elasticity.
Kerner, Matthew S
2005-06-01
Using the theory of planned behavior as a conceptual framework, scales assessing Attitude to Leisure-time Physical Activity, Expectations of Others, Perceived Control, and Intention to Engage in Leisure-time Physical Activity were developed for use among middle-school students. The study sample included 349 boys and 400 girls, 10 to 14 years of age (M=11.9 yr., SD=.9). Unipolar and bipolar scales with seven response choices were developed, with each scale item phrased in a Likert-type format. Following revisions, 22 items were retained in the Attitude to Leisure-time Physical Activity Scale, 10 items in the Expectations of Others Scale, 3 items in the Perceived Control Scale, and 17 items in the Intention to Engage in Leisure-time Physical Activity Scale. Adequate internal consistency was indicated by standardized coefficients alpha ranging from .75 to .89. Current results must be extended to assess discriminant and predictive validities and to check various reliabilities with new samples, then evaluation of intervention techniques for promotion of positive attitudes about leisure-time physical activity, including perception of control and intentions to engage in leisure-time physical activity.
Generalization of Turbulent Pair Dispersion to Large Initial Separations
NASA Astrophysics Data System (ADS)
Shnapp, Ron; Liberzon, Alex; International Collaboration for Turbulence Research
2018-06-01
We present a generalization of turbulent pair dispersion to large initial separations (η
Prediction of Time Response of Electrowetting
NASA Astrophysics Data System (ADS)
Lee, Seung Jun; Hong, Jiwoo; Kang, Kwan Hyoung
2009-11-01
It is very important to predict the time response of electrowetting-based devices, such as liquid lenses, reflective displays, and optical switches. We investigated the time response of electrowetting, based on an analytical and a numerical method, to find out characteristic scales and a scaling law for the switching time. For this, spreading process of a sessile droplet was analyzed based on the domain perturbation method. First, we considered the case of weakly viscous fluids. The analytical result for the spreading process was compared with experimental results, which showed very good agreement in overall time response. It was shown that the overall dynamics is governed by P2 shape mode. We derived characteristic scales combining the droplet volume, density, and surface tension. The overall dynamic process was scaled quite well by the scales. A scaling law was derived from the analytical solution and was verified experimentally. We also suggest a scaling law for highly viscous liquids, based on results of numerical analysis for the electrowetting-actuated spreading process.
Transition from large-scale to small-scale dynamo.
Ponty, Y; Plunian, F
2011-04-15
The dynamo equations are solved numerically with a helical forcing corresponding to the Roberts flow. In the fully turbulent regime the flow behaves as a Roberts flow on long time scales, plus turbulent fluctuations at short time scales. The dynamo onset is controlled by the long time scales of the flow, in agreement with the former Karlsruhe experimental results. The dynamo mechanism is governed by a generalized α effect, which includes both the usual α effect and turbulent diffusion, plus all higher order effects. Beyond the onset we find that this generalized α effect scales as O(Rm(-1)), suggesting the takeover of small-scale dynamo action. This is confirmed by simulations in which dynamo occurs even if the large-scale field is artificially suppressed.
Space Technology 5 Multi-Point Observations of Temporal Variability of Field-Aligned Currents
NASA Technical Reports Server (NTRS)
Le, Guan; Wang, Yongli; Slavin, James A.; Strangeway, Robert J.
2008-01-01
Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of approximately 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approximately 1 min for meso-scale currents and approximately 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.
Effect of helicity on the correlation time of large scales in turbulent flows
NASA Astrophysics Data System (ADS)
Cameron, Alexandre; Alexakis, Alexandros; Brachet, Marc-Étienne
2017-11-01
Solutions of the forced Navier-Stokes equation have been conjectured to thermalize at scales larger than the forcing scale, similar to an absolute equilibrium obtained for the spectrally truncated Euler equation. Using direct numeric simulations of Taylor-Green flows and general-periodic helical flows, we present results on the probability density function, energy spectrum, autocorrelation function, and correlation time that compare the two systems. In the case of highly helical flows, we derive an analytic expression describing the correlation time for the absolute equilibrium of helical flows that is different from the E-1 /2k-1 scaling law of weakly helical flows. This model predicts a new helicity-based scaling law for the correlation time as τ (k ) ˜H-1 /2k-1 /2 . This scaling law is verified in simulations of the truncated Euler equation. In simulations of the Navier-Stokes equations the large-scale modes of forced Taylor-Green symmetric flows (with zero total helicity and large separation of scales) follow the same properties as absolute equilibrium including a τ (k ) ˜E-1 /2k-1 scaling for the correlation time. General-periodic helical flows also show similarities between the two systems; however, the largest scales of the forced flows deviate from the absolute equilibrium solutions.
Domeisen, Daniela I. V.
2016-01-01
Characterizing the stratosphere as a turbulent system, temporal fluctuations often show different correlations for different time scales as well as intermittent behaviour that cannot be captured by a single scaling exponent. In this study, the different scaling laws in the long-term stratospheric variability are studied using multifractal de-trended fluctuation analysis (MF-DFA). The analysis is performed comparing four re-analysis products and different realizations of an idealized numerical model, isolating the role of topographic forcing and seasonal variability, as well as the absence of climate teleconnections and small-scale forcing. The Northern Hemisphere (NH) shows a transition of scaling exponents for time scales shorter than about 1 year, for which the variability is multifractal and scales in time with a power law corresponding to a red spectrum, to longer time scales, for which the variability is monofractal and scales in time with a power law corresponding to white noise. Southern Hemisphere (SH) variability also shows a transition at annual scales. The SH also shows a narrower dynamical range in multifractality than the NH, as seen in the generalized Hurst exponent and in the singularity spectra. The numerical integrations show that the models are able to reproduce the low-frequency variability but are not able to fully capture the shorter term variability of the stratosphere. PMID:27493560
Russian national time scale long-term stability
NASA Astrophysics Data System (ADS)
Alshina, A. P.; Gaigerov, B. A.; Koshelyaevsky, N. B.; Pushkin, S. B.
1994-05-01
The Institute of Metrology for Time and Space NPO 'VNIIFTRI' generates the National Time Scale (NTS) of Russia -- one of the most stable time scales in the world. Its striking feature is that it is based on a free ensemble of H-masers only. During last two years the estimations of NTS longterm stability based only on H-maser intercomparison data gives a flicker floor of about (2 to 3) x 10(exp -15) for averaging times from 1 day to 1 month. Perhaps the most significant feature for a time laboratory is an extremely low possible frequency drift -- it is too difficult to estimate it reliably. The other estimations, free from possible inside the ensemble correlation phenomena, are available based on the time comparison of NTS relative to the stable enough time scale of outer laboratories. The data on NTS comparison relative to the time scale of secondary time and frequency standards at Golitzino and Irkutsk in Russia and relative to NIST, PTB and USNO using GLONASS and GPS time transfer links gives stability estimations which are close to that based on H-maser intercomparisons.
Russian national time scale long-term stability
NASA Technical Reports Server (NTRS)
Alshina, A. P.; Gaigerov, B. A.; Koshelyaevsky, N. B.; Pushkin, S. B.
1994-01-01
The Institute of Metrology for Time and Space NPO 'VNIIFTRI' generates the National Time Scale (NTS) of Russia -- one of the most stable time scales in the world. Its striking feature is that it is based on a free ensemble of H-masers only. During last two years the estimations of NTS longterm stability based only on H-maser intercomparison data gives a flicker floor of about (2 to 3) x 10(exp -15) for averaging times from 1 day to 1 month. Perhaps the most significant feature for a time laboratory is an extremely low possible frequency drift -- it is too difficult to estimate it reliably. The other estimations, free from possible inside the ensemble correlation phenomena, are available based on the time comparison of NTS relative to the stable enough time scale of outer laboratories. The data on NTS comparison relative to the time scale of secondary time and frequency standards at Golitzino and Irkutsk in Russia and relative to NIST, PTB and USNO using GLONASS and GPS time transfer links gives stability estimations which are close to that based on H-maser intercomparisons.
Multiple-time scales analysis of physiological time series under neural control
NASA Technical Reports Server (NTRS)
Peng, C. K.; Hausdorff, J. M.; Havlin, S.; Mietus, J. E.; Stanley, H. E.; Goldberger, A. L.
1998-01-01
We discuss multiple-time scale properties of neurophysiological control mechanisms, using heart rate and gait regulation as model systems. We find that scaling exponents can be used as prognostic indicators. Furthermore, detection of more subtle degradation of scaling properties may provide a novel early warning system in subjects with a variety of pathologies including those at high risk of sudden death.
How High Frequency Trading Affects a Market Index
Kenett, Dror Y.; Ben-Jacob, Eshel; Stanley, H. Eugene; gur-Gershgoren, Gitit
2013-01-01
The relationship between a market index and its constituent stocks is complicated. While an index is a weighted average of its constituent stocks, when the investigated time scale is one day or longer the index has been found to have a stronger effect on the stocks than vice versa. We explore how this interaction changes in short time scales using high frequency data. Using a correlation-based analysis approach, we find that in short time scales stocks have a stronger influence on the index. These findings have implications for high frequency trading and suggest that the price of an index should be published on shorter time scales, as close as possible to those of the actual transaction time scale. PMID:23817553
NASA Astrophysics Data System (ADS)
Bon, Edi; Jovanović, Predrag; Marziani, Paola; Bon, Nataša; Otašević, Aleksandar
2018-06-01
Here we investigate the connection of broad emission line shapes and continuum light curve variability time scales of type-1 Active Galactic Nuclei (AGN). We developed a new model to describe optical broad emission lines as an accretion disk model of a line profile with additional ring emission. We connect ring radii with orbital time scales derived from optical light curves, and using Kepler's third law, we calculate mass of central supermassive black hole (SMBH). The obtained results for central black hole masses are in a good agreement with other methods. This indicates that the variability time scales of AGN may not be stochastic, but rather connected to the orbital time scales which depend on the central SMBH mass.
Kerner, Matthew S; Kalinski, Michael I
2002-08-01
Using the Theory of Planned Behavior as a framework, the Attitude to Leisure-time Physical Activity, Expectations of Others, Perceived Control, and Intention of Engage in Leisure-time Physical Activity scales were developed for use among high school students. The study population included 20 boys and 68 girls 13 to 17 years of age (for boys, M = 15.1 yr., SD = 1.0; for girls, M = 15.0 yr., SD = 1.1). Generation of items and the establishment of content validity were performed by professionals in exercise physiology, physical education, and clinical psychology. Each scale item was phrased in a Likert-type format. Both unipolar and bipolar scales with seven response choices were developed. Following the pilot testing and subsequent revisions, 32 items were retained in the Attitude to Leisure-time Physical Activity scale, 10 items were retained in the Expectations of Others scale, 3 items were retained in the Perceived Control Scale, and 24 items were retained in the Intention to Engage in Leisure-time Physical Activity scale. Coefficients indicated adequate stability and internal consistency with alpha ranging from .81 to .96. Studies of validities are underway, after which scales would be made available to those interested in intervention techniques for promoting positive attitudes toward physical fitness, perception of control over engaging in leisure-time physical activities, and good intentions to engage in leisure-time physical activities. The present results are encouraging.
Time scales involved in emergent market coherence
NASA Astrophysics Data System (ADS)
Kwapień, J.; Drożdż, S.; Speth, J.
2004-06-01
In addressing the question of the time scales characteristic for the market formation, we analyze high-frequency tick-by-tick data from the NYSE and from the German market. By using returns on various time scales ranging from seconds or minutes up to 2 days, we compare magnitude of the largest eigenvalue of the correlation matrix for the same set of securities but for different time scales. For various sets of stocks of different capitalization (and the average trading frequency), we observe a significant elevation of the largest eigenvalue with increasing time scale. Our results from the correlation matrix study can be considered as a manifestation of the so-called Epps effect. There is no unique explanation of this effect and it seems that many different factors play a role here. One of such factors is randomness in transaction moments for different stocks. Another interesting conclusion to be drawn from our results is that in the contemporary markets the emergence of significant correlations occurs on time scales much smaller than in the more distant history.
Scaling properties of sea ice deformation from buoy dispersion analysis
NASA Astrophysics Data System (ADS)
Rampal, P.; Weiss, J.; Marsan, D.; Lindsay, R.; Stern, H.
2008-03-01
A temporal and spatial scaling analysis of Arctic sea ice deformation is performed over timescales from 3 h to 3 months and over spatial scales from 300 m to 300 km. The deformation is derived from the dispersion of pairs of drifting buoys, using the IABP (International Arctic Buoy Program) buoy data sets. This study characterizes the deformation of a very large solid plate (the Arctic sea ice cover) stressed by heterogeneous forcing terms like winds and ocean currents. It shows that the sea ice deformation rate depends on the scales of observation following specific space and time scaling laws. These scaling properties share similarities with those observed for turbulent fluids, especially for the ocean and the atmosphere. However, in our case, the time scaling exponent depends on the spatial scale, and the spatial exponent on the temporal scale, which implies a time/space coupling. An analysis of the exponent values shows that Arctic sea ice deformation is very heterogeneous and intermittent whatever the scales, i.e., it cannot be considered as viscous-like, even at very large time and/or spatial scales. Instead, it suggests a deformation accommodated by a multiscale fracturing/faulting processes.
Gao, Wenpei; Hood, Zachary D; Chi, Miaofang
2017-04-18
Developing novel catalysts with high efficiency and selectivity is critical for enabling future clean energy conversion technologies. Interfaces in catalyst systems have long been considered the most critical factor in controlling catalytic reaction mechanisms. Interfaces include not only the catalyst surface but also interfaces within catalyst particles and those formed by constructing heterogeneous catalysts. The atomic and electronic structures of catalytic surfaces govern the kinetics of binding and release of reactant molecules from surface atoms. Interfaces within catalysts are introduced to enhance the intrinsic activity and stability of the catalyst by tuning the surface atomic and chemical structures. Examples include interfaces between the core and shell, twin or domain boundaries, or phase boundaries within single catalyst particles. In supported catalyst nanoparticles (NPs), the interface between the metallic NP and support serves as a critical tuning factor for enhancing catalytic activity. Surface electronic structure can be indirectly tuned and catalytically active sites can be increased through the use of supporting oxides. Tuning interfaces in catalyst systems has been identified as an important strategy in the design of novel catalysts. However, the governing principle of how interfaces contribute to catalyst behavior, especially in terms of interactions with intermediates and their stability during electrochemical operation, are largely unknown. This is mainly due to the evolving nature of such interfaces. Small changes in the structural and chemical configuration of these interfaces may result in altering the catalytic performance. These interfacial arrangements evolve continuously during synthesis, processing, use, and even static operation. A technique that can probe the local atomic and electronic interfacial structures with high precision while monitoring the dynamic interfacial behavior in situ is essential for elucidating the role of interfaces and providing deeper insight for fine-tuning and optimizing catalyst properties. Scanning transmission electron microscopy (STEM) has long been a primary characterization technique used for studying nanomaterials because of its exceptional imaging resolution and simultaneous chemical analysis. Over the past decade, advances in STEM, that is, the commercialization of both aberration correctors and monochromators, have significantly improved the spatial and energy resolution. Imaging atomic structures with subangstrom resolution and identifying chemical species with single-atom sensitivity are now routine for STEM. These advancements have greatly benefitted catalytic research. For example, the roles of lattice strain and surface elemental distribution and their effect on catalytic stability and reactivity have been well documented in bimetallic catalysts. In addition, three-dimensional atomic structures revealed by STEM tomography have been integrated in theoretical modeling for predictive catalyst NP design. Recent developments in stable electronic and mechanical devices have opened opportunities to monitor the evolution of catalysts in operando under synthesis and reaction conditions; high-speed direct electron detectors have achieved sub-millisecond time resolutions and allow for rapid structural and chemical changes to be captured. Investigations of catalysts using these latest microscopy techniques have provided new insights into atomic-level catalytic mechanisms. Further integration of new microscopy methods is expected to provide multidimensional descriptions of interfaces under relevant synthesis and reaction conditions. In this Account, we discuss recent insights on understanding catalyst activity, selectivity, and stability using advanced STEM techniques, with an emphasis on how critical interfaces dictate the performance of precious metal-based heterogeneous catalysts. The role of extended interfacial structures, including those between core and shell, between separate phases and twinned grains, between the catalyst surface and gas, and between metal and support are discussed. We also provide an outlook on how emerging electron microscopy techniques, such as vibrational spectroscopy and electron ptychography, will impact future catalysis research.
Stability of Rasch Scales over Time
ERIC Educational Resources Information Center
Taylor, Catherine S.; Lee, Yoonsun
2010-01-01
Item response theory (IRT) methods are generally used to create score scales for large-scale tests. Research has shown that IRT scales are stable across groups and over time. Most studies have focused on items that are dichotomously scored. Now Rasch and other IRT models are used to create scales for tests that include polytomously scored items.…
Method and appartus for converting static in-ground vehicle scales into weigh-in-motion systems
Muhs, Jeffrey D.; Scudiere, Matthew B.; Jordan, John K.
2002-01-01
An apparatus and method for converting in-ground static weighing scales for vehicles to weigh-in-motion systems. The apparatus upon conversion includes the existing in-ground static scale, peripheral switches and an electronic module for automatic computation of the weight. By monitoring the velocity, tire position, axle spacing, and real time output from existing static scales as a vehicle drives over the scales, the system determines when an axle of a vehicle is on the scale at a given time, monitors the combined weight output from any given axle combination on the scale(s) at any given time, and from these measurements automatically computes the weight of each individual axle and gross vehicle weight by an integration, integration approximation, and/or signal averaging technique.
Van Giang, Nguyen; Chiu, Hsiao-Yean; Thai, Duong Hong; Kuo, Shu-Yu; Tsai, Pei-Shan
2015-10-01
Pain is common in patients after orthopedic surgery. The 11-face Faces Pain Scale has not been validated for use in adult patients with postoperative pain. To assess the validity of the 11-face Faces Pain Scale and its ability to detect responses to pain medications, and to determine whether the sensitivity of the 11-face Faces Pain Scale for detecting changes in pain intensity over time is associated with gender differences in adult postorthopedic surgery patients. The 11-face Faces Pain Scale was translated into Vietnamese using forward and back translation. Postoperative pain was assessed using an 11-point numerical rating scale and the 11-face Faces Pain Scale on the day of surgery, and before (Time 1) and every 30 minutes after (Times 2-5) the patients had taken pain medications on the first postoperative day. The 11-face Faces Pain Scale highly correlated with the numerical rating scale (r = 0.78, p < .001). When the scores from each follow-up test (Times 2-5) were compared with those from the baseline test (Time 1), the effect sizes were -0.70, -1.05, -1.20, and -1.31, and the standardized response means were -1.17, -1.59, -1.66, and -1.82, respectively. The mean change in pain intensity, but not gender-time interaction effect, over the five time points was significant (F = 182.03, p < .001). Our results support that the 11-face Faces Pain Scale is appropriate for measuring acute postoperative pain in adults. Copyright © 2015 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.
Multi-Scale Scattering Transform in Music Similarity Measuring
NASA Astrophysics Data System (ADS)
Wang, Ruobai
Scattering transform is a Mel-frequency spectrum based, time-deformation stable method, which can be used in evaluating music similarity. Compared with Dynamic time warping, it has better performance in detecting similar audio signals under local time-frequency deformation. Multi-scale scattering means to combine scattering transforms of different window lengths. This paper argues that, multi-scale scattering transform is a good alternative of dynamic time warping in music similarity measuring. We tested the performance of multi-scale scattering transform against other popular methods, with data designed to represent different conditions.
Experimental quantification of nonlinear time scales in inertial wave rotating turbulence
NASA Astrophysics Data System (ADS)
Yarom, Ehud; Salhov, Alon; Sharon, Eran
2017-12-01
We study nonlinearities of inertial waves in rotating turbulence. At small Rossby numbers the kinetic energy in the system is contained in helical inertial waves with time dependence amplitudes. In this regime the amplitude variations time scales are slow compared to wave periods, and the spectrum is concentrated along the dispersion relation of the waves. A nonlinear time scale was extracted from the width of the spectrum, which reflects the intensity of nonlinear wave interactions. This nonlinear time scale is found to be proportional to (U.k ) -1, where k is the wave vector and U is the root-mean-square horizontal velocity, which is dominated by large scales. This correlation, which indicates the existence of turbulence in which inertial waves undergo weak nonlinear interactions, persists only for small Rossby numbers.
Physical time scale in kinetic Monte Carlo simulations of continuous-time Markov chains.
Serebrinsky, Santiago A
2011-03-01
We rigorously establish a physical time scale for a general class of kinetic Monte Carlo algorithms for the simulation of continuous-time Markov chains. This class of algorithms encompasses rejection-free (or BKL) and rejection (or "standard") algorithms. For rejection algorithms, it was formerly considered that the availability of a physical time scale (instead of Monte Carlo steps) was empirical, at best. Use of Monte Carlo steps as a time unit now becomes completely unnecessary.
Space Technology 5 (ST-5) Observations of Field-Aligned Currents: Temporal Variability
NASA Technical Reports Server (NTRS)
Le, Guan
2010-01-01
Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from STS. The data demonstrate that masoscale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of about 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are about I min for meso-scale currents and about 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.
NASA Technical Reports Server (NTRS)
Le, Guan
2010-01-01
Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that mesoscale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of about 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are about 1 min for meso-scale currents and about 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.
The multiple time scales of sleep dynamics as a challenge for modelling the sleeping brain.
Olbrich, Eckehard; Claussen, Jens Christian; Achermann, Peter
2011-10-13
A particular property of the sleeping brain is that it exhibits dynamics on very different time scales ranging from the typical sleep oscillations such as sleep spindles and slow waves that can be observed in electroencephalogram (EEG) segments of several seconds duration over the transitions between the different sleep stages on a time scale of minutes to the dynamical processes involved in sleep regulation with typical time constants in the range of hours. There is an increasing body of work on mathematical and computational models addressing these different dynamics, however, usually considering only processes on a single time scale. In this paper, we review and present a new analysis of the dynamics of human sleep EEG at the different time scales and relate the findings to recent modelling efforts pointing out both the achievements and remaining challenges.
Universal scaling function in discrete time asymmetric exclusion processes
NASA Astrophysics Data System (ADS)
Chia, Nicholas; Bundschuh, Ralf
2005-03-01
In the universality class of the one dimensional Kardar-Parisi-Zhang surface growth, Derrida and Lebowitz conjectured the universality of not only the scaling exponents, but of an entire scaling function. Since Derrida and Lebowitz' original publication this universality has been verified for a variety of continuous time systems in the KPZ universality class. We study the Derrida-Lebowitz scaling function for multi-particle versions of the discrete time Asymmetric Exclusion Process. We find that in this discrete time system the Derrida-Lebowitz scaling function not only properly characterizes the large system size limit, but even accurately describes surprisingly small systems. These results have immediate applications in searching biological sequence databases.
Time scale bias in erosion rates of glaciated landscapes
Ganti, Vamsi; von Hagke, Christoph; Scherler, Dirk; Lamb, Michael P.; Fischer, Woodward W.; Avouac, Jean-Philippe
2016-01-01
Deciphering erosion rates over geologic time is fundamental for understanding the interplay between climate, tectonic, and erosional processes. Existing techniques integrate erosion over different time scales, and direct comparison of such rates is routinely done in earth science. On the basis of a global compilation, we show that erosion rate estimates in glaciated landscapes may be affected by a systematic averaging bias that produces higher estimated erosion rates toward the present, which do not reflect straightforward changes in erosion rates through time. This trend can result from a heavy-tailed distribution of erosional hiatuses (that is, time periods where no or relatively slow erosion occurs). We argue that such a distribution can result from the intermittency of erosional processes in glaciated landscapes that are tightly coupled to climate variability from decadal to millennial time scales. In contrast, we find no evidence for a time scale bias in spatially averaged erosion rates of landscapes dominated by river incision. We discuss the implications of our findings in the context of the proposed coupling between climate and tectonics, and interpreting erosion rate estimates with different averaging time scales through geologic time. PMID:27713925
Time scale bias in erosion rates of glaciated landscapes.
Ganti, Vamsi; von Hagke, Christoph; Scherler, Dirk; Lamb, Michael P; Fischer, Woodward W; Avouac, Jean-Philippe
2016-10-01
Deciphering erosion rates over geologic time is fundamental for understanding the interplay between climate, tectonic, and erosional processes. Existing techniques integrate erosion over different time scales, and direct comparison of such rates is routinely done in earth science. On the basis of a global compilation, we show that erosion rate estimates in glaciated landscapes may be affected by a systematic averaging bias that produces higher estimated erosion rates toward the present, which do not reflect straightforward changes in erosion rates through time. This trend can result from a heavy-tailed distribution of erosional hiatuses (that is, time periods where no or relatively slow erosion occurs). We argue that such a distribution can result from the intermittency of erosional processes in glaciated landscapes that are tightly coupled to climate variability from decadal to millennial time scales. In contrast, we find no evidence for a time scale bias in spatially averaged erosion rates of landscapes dominated by river incision. We discuss the implications of our findings in the context of the proposed coupling between climate and tectonics, and interpreting erosion rate estimates with different averaging time scales through geologic time.
Turbulent mixing and removal of ozone within an Amazon rainforest canopy
NASA Astrophysics Data System (ADS)
Freire, L. S.; Gerken, T.; Ruiz-Plancarte, J.; Wei, D.; Fuentes, J. D.; Katul, G. G.; Dias, N. L.; Acevedo, O. C.; Chamecki, M.
2017-03-01
Simultaneous profiles of turbulence statistics and mean ozone mixing ratio are used to establish a relation between eddy diffusivity and ozone mixing within the Amazon forest. A one-dimensional diffusion model is proposed and used to infer mixing time scales from the eddy diffusivity profiles. Data and model results indicate that during daytime conditions, the upper (lower) half of the canopy is well (partially) mixed most of the time and that most of the vertical extent of the forest can be mixed in less than an hour. During nighttime, most of the canopy is predominantly poorly mixed, except for periods with bursts of intermittent turbulence. Even though turbulence is faster than chemistry during daytime, both processes have comparable time scales in the lower canopy layers during nighttime conditions. Nonchemical loss time scales (associated with stomatal uptake and dry deposition) for the entire forest are comparable to turbulent mixing time scale in the lower canopy during the day and in the entire canopy during the night, indicating a tight coupling between turbulent transport and dry deposition and stomatal uptake processes. Because of the significant time of day and height variability of the turbulent mixing time scale inside the canopy, it is important to take it into account when studying chemical and biophysical processes happening in the forest environment. The method proposed here to estimate turbulent mixing time scales is a reliable alternative to currently used models, especially for situations in which the vertical distribution of the time scale is relevant.
Michael C. Dietze; Rodrigo Vargas; Andrew D. Richardson; Paul C. Stoy; Alan G. Barr; Ryan S. Anderson; M. Altaf Arain; Ian T. Baker; T. Andrew Black; Jing M. Chen; Philippe Ciais; Lawrence B. Flanagan; Christopher M. Gough; Robert F. Grant; David Hollinger; R. Cesar Izaurralde; Christopher J. Kucharik; Peter Lafleur; Shugang Liu; Erandathie Lokupitiya; Yiqi Luo; J. William Munger; Changhui Peng; Benjamin Poulter; David T. Price; Daniel M. Ricciuto; William J. Riley; Alok Kumar Sahoo; Kevin Schaefer; Andrew E. Suyker; Hanqin Tian; Christina Tonitto; Hans Verbeeck; Shashi B. Verma; Weifeng Wang; Ensheng Weng
2011-01-01
Ecosystem models are important tools for diagnosing the carbon cycle and projecting its behavior across space and time. Despite the fact that ecosystems respond to drivers at multiple time scales, most assessments of model performance do not discriminate different time scales. Spectral methods, such as wavelet analyses, present an alternative approach that enables the...
Field-aligned currents' scale analysis performed with the Swarm constellation
NASA Astrophysics Data System (ADS)
Lühr, Hermann; Park, Jaeheung; Gjerloev, Jesper W.; Rauberg, Jan; Michaelis, Ingo; Merayo, Jose M. G.; Brauer, Peter
2015-01-01
We present a statistical study of the temporal- and spatial-scale characteristics of different field-aligned current (FAC) types derived with the Swarm satellite formation. We divide FACs into two classes: small-scale, up to some 10 km, which are carried predominantly by kinetic Alfvén waves, and large-scale FACs with sizes of more than 150 km. For determining temporal variability we consider measurements at the same point, the orbital crossovers near the poles, but at different times. From correlation analysis we obtain a persistent period of small-scale FACs of order 10 s, while large-scale FACs can be regarded stationary for more than 60 s. For the first time we investigate the longitudinal scales. Large-scale FACs are different on dayside and nightside. On the nightside the longitudinal extension is on average 4 times the latitudinal width, while on the dayside, particularly in the cusp region, latitudinal and longitudinal scales are comparable.
NASA Astrophysics Data System (ADS)
Tai, Y.; Watanabe, T.; Nagata, K.
2018-03-01
A mixing volume model (MVM) originally proposed for molecular diffusion in incompressible flows is extended as a model for molecular diffusion and thermal conduction in compressible turbulence. The model, established for implementation in Lagrangian simulations, is based on the interactions among spatially distributed notional particles within a finite volume. The MVM is tested with the direct numerical simulation of compressible planar jets with the jet Mach number ranging from 0.6 to 2.6. The MVM well predicts molecular diffusion and thermal conduction for a wide range of the size of mixing volume and the number of mixing particles. In the transitional region of the jet, where the scalar field exhibits a sharp jump at the edge of the shear layer, a smaller mixing volume is required for an accurate prediction of mean effects of molecular diffusion. The mixing time scale in the model is defined as the time scale of diffusive effects at a length scale of the mixing volume. The mixing time scale is well correlated for passive scalar and temperature. Probability density functions of the mixing time scale are similar for molecular diffusion and thermal conduction when the mixing volume is larger than a dissipative scale because the mixing time scale at small scales is easily affected by different distributions of intermittent small-scale structures between passive scalar and temperature. The MVM with an assumption of equal mixing time scales for molecular diffusion and thermal conduction is useful in the modeling of the thermal conduction when the modeling of the dissipation rate of temperature fluctuations is difficult.
Time-dependent scaling patterns in high frequency financial data
NASA Astrophysics Data System (ADS)
Nava, Noemi; Di Matteo, Tiziana; Aste, Tomaso
2016-10-01
We measure the influence of different time-scales on the intraday dynamics of financial markets. This is obtained by decomposing financial time series into simple oscillations associated with distinct time-scales. We propose two new time-varying measures of complexity: 1) an amplitude scaling exponent and 2) an entropy-like measure. We apply these measures to intraday, 30-second sampled prices of various stock market indices. Our results reveal intraday trends where different time-horizons contribute with variable relative amplitudes over the course of the trading day. Our findings indicate that the time series we analysed have a non-stationary multifractal nature with predominantly persistent behaviour at the middle of the trading session and anti-persistent behaviour at the opening and at the closing of the session. We demonstrate that these patterns are statistically significant, robust, reproducible and characteristic of each stock market. We argue that any modelling, analytics or trading strategy must take into account these non-stationary intraday scaling patterns.
High-resolution time-frequency representation of EEG data using multi-scale wavelets
NASA Astrophysics Data System (ADS)
Li, Yang; Cui, Wei-Gang; Luo, Mei-Lin; Li, Ke; Wang, Lina
2017-09-01
An efficient time-varying autoregressive (TVAR) modelling scheme that expands the time-varying parameters onto the multi-scale wavelet basis functions is presented for modelling nonstationary signals and with applications to time-frequency analysis (TFA) of electroencephalogram (EEG) signals. In the new parametric modelling framework, the time-dependent parameters of the TVAR model are locally represented by using a novel multi-scale wavelet decomposition scheme, which can allow the capability to capture the smooth trends as well as track the abrupt changes of time-varying parameters simultaneously. A forward orthogonal least square (FOLS) algorithm aided by mutual information criteria are then applied for sparse model term selection and parameter estimation. Two simulation examples illustrate that the performance of the proposed multi-scale wavelet basis functions outperforms the only single-scale wavelet basis functions or Kalman filter algorithm for many nonstationary processes. Furthermore, an application of the proposed method to a real EEG signal demonstrates the new approach can provide highly time-dependent spectral resolution capability.
Decoherence in quantum systems in a static gravitational field
NASA Astrophysics Data System (ADS)
Shariati, Ahmad; Khorrami, Mohammad; Loran, Farhang
2016-09-01
A small quantum system is studied which is a superposition of states localized in different positions in a static gravitational field. The time evolution of the correlation between different positions is investigated, and it is seen that there are two time scales for such an evolution (decoherence). Both time scales are inversely proportional to the red shift difference between the two points. These time scales correspond to decoherences which are linear and quadratic, respectively, in time.
Characteristic time scales for diffusion processes through layers and across interfaces
NASA Astrophysics Data System (ADS)
Carr, Elliot J.
2018-04-01
This paper presents a simple tool for characterizing the time scale for continuum diffusion processes through layered heterogeneous media. This mathematical problem is motivated by several practical applications such as heat transport in composite materials, flow in layered aquifers, and drug diffusion through the layers of the skin. In such processes, the physical properties of the medium vary across layers and internal boundary conditions apply at the interfaces between adjacent layers. To characterize the time scale, we use the concept of mean action time, which provides the mean time scale at each position in the medium by utilizing the fact that the transition of the transient solution of the underlying partial differential equation model, from initial state to steady state, can be represented as a cumulative distribution function of time. Using this concept, we define the characteristic time scale for a multilayer diffusion process as the maximum value of the mean action time across the layered medium. For given initial conditions and internal and external boundary conditions, this approach leads to simple algebraic expressions for characterizing the time scale that depend on the physical and geometrical properties of the medium, such as the diffusivities and lengths of the layers. Numerical examples demonstrate that these expressions provide useful insight into explaining how the parameters in the model affect the time it takes for a multilayer diffusion process to reach steady state.
Characteristic time scales for diffusion processes through layers and across interfaces.
Carr, Elliot J
2018-04-01
This paper presents a simple tool for characterizing the time scale for continuum diffusion processes through layered heterogeneous media. This mathematical problem is motivated by several practical applications such as heat transport in composite materials, flow in layered aquifers, and drug diffusion through the layers of the skin. In such processes, the physical properties of the medium vary across layers and internal boundary conditions apply at the interfaces between adjacent layers. To characterize the time scale, we use the concept of mean action time, which provides the mean time scale at each position in the medium by utilizing the fact that the transition of the transient solution of the underlying partial differential equation model, from initial state to steady state, can be represented as a cumulative distribution function of time. Using this concept, we define the characteristic time scale for a multilayer diffusion process as the maximum value of the mean action time across the layered medium. For given initial conditions and internal and external boundary conditions, this approach leads to simple algebraic expressions for characterizing the time scale that depend on the physical and geometrical properties of the medium, such as the diffusivities and lengths of the layers. Numerical examples demonstrate that these expressions provide useful insight into explaining how the parameters in the model affect the time it takes for a multilayer diffusion process to reach steady state.
Hieu, Nguyen Trong; Brochier, Timothée; Tri, Nguyen-Huu; Auger, Pierre; Brehmer, Patrice
2014-09-01
We consider a fishery model with two sites: (1) a marine protected area (MPA) where fishing is prohibited and (2) an area where the fish population is harvested. We assume that fish can migrate from MPA to fishing area at a very fast time scale and fish spatial organisation can change from small to large clusters of school at a fast time scale. The growth of the fish population and the catch are assumed to occur at a slow time scale. The complete model is a system of five ordinary differential equations with three time scales. We take advantage of the time scales using aggregation of variables methods to derive a reduced model governing the total fish density and fishing effort at the slow time scale. We analyze this aggregated model and show that under some conditions, there exists an equilibrium corresponding to a sustainable fishery. Our results suggest that in small pelagic fisheries the yield is maximum for a fish population distributed among both small and large clusters of school.
Compression based entropy estimation of heart rate variability on multiple time scales.
Baumert, Mathias; Voss, Andreas; Javorka, Michal
2013-01-01
Heart rate fluctuates beat by beat in a complex manner. The aim of this study was to develop a framework for entropy assessment of heart rate fluctuations on multiple time scales. We employed the Lempel-Ziv algorithm for lossless data compression to investigate the compressibility of RR interval time series on different time scales, using a coarse-graining procedure. We estimated the entropy of RR interval time series of 20 young and 20 old subjects and also investigated the compressibility of randomly shuffled surrogate RR time series. The original RR time series displayed significantly smaller compression entropy values than randomized RR interval data. The RR interval time series of older subjects showed significantly different entropy characteristics over multiple time scales than those of younger subjects. In conclusion, data compression may be useful approach for multiscale entropy assessment of heart rate variability.
Efficiency of professional tooth brushing before ultrasonic scaling.
Kim, M J; Noh, H; Oh, H Y
2015-05-01
This study aimed to examine the effect of dental plaque biofilm removal with a toothbrush, an interdental brush and dental floss by a dental hygienist prior to ultrasonic scaling on treatment times and client satisfaction. This study was conducted among adults who received scaling after agreeing to participate in this study at a dental clinic in Seoul, Korea, from July to September 2012. Thirty-seven subjects received modified scaling (M-scaling) which is ultrasonic scaling after plaque control with a toothbrush and dental floss by a dental hygienist, and 37 subjects received routine ultrasonic scaling (R-scaling). Univariate and multivariate analyses and chi-squared and t-tests were conducted using SAS. This study was approved by the Kangwon Institutional Review Board. Significant differences were found between the outcomes of M- and R-scaling for both the ultrasonic scaling time (M-scaling, 7.41 ± 6.18 min; R-scaling, 23.22 ± 6.92 min) and the total tooth cleaning time (M-scaling, 15.92 ± 7.70 min; R-scaling, 23.22 ± 6.92 min) (P < 0.001). Subject satisfaction with the scaling process was not significantly different between M-scaling (4.54 ± 0.80) and R-scaling (4.84 ± 0.44). These findings indicated that removing the dental plaque biofilm with a toothbrush and dental floss by a hygienist before scaling with an ultrasonic device was more effective in reducing the working time of the dental hygienist. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Divisions of Geologic Time - Major Chronostratigraphic and Geochronologic Units
,
2007-01-01
Introduction Effective communication in the geosciences requires consistent uses of stratigraphic nomenclature, especially divisions of geologic time. A geologic time scale is composed of standard stratigraphic divisions based on rock sequences and calibrated in years (Harland and others, 1982). Over the years, the development of new dating methods and refinement of previous ones have stimulated revisions to geologic time scales. Since the mid-1990s, geologists from the U.S. Geological Survey (USGS), State geological surveys, academia, and other organizations have sought a consistent time scale to be used in communicating ages of geologic units in the United States. Many international debates have occurred over names and boundaries of units, and various time scales have been used by the geoscience community.
Phillips, Edward Geoffrey; Shadid, John N.; Cyr, Eric C.
2018-05-01
Here, we report multiple physical time-scales can arise in electromagnetic simulations when dissipative effects are introduced through boundary conditions, when currents follow external time-scales, and when material parameters vary spatially. In such scenarios, the time-scales of interest may be much slower than the fastest time-scales supported by the Maxwell equations, therefore making implicit time integration an efficient approach. The use of implicit temporal discretizations results in linear systems in which fast time-scales, which severely constrain the stability of an explicit method, can manifest as so-called stiff modes. This study proposes a new block preconditioner for structure preserving (also termed physicsmore » compatible) discretizations of the Maxwell equations in first order form. The intent of the preconditioner is to enable the efficient solution of multiple-time-scale Maxwell type systems. An additional benefit of the developed preconditioner is that it requires only a traditional multigrid method for its subsolves and compares well against alternative approaches that rely on specialized edge-based multigrid routines that may not be readily available. Lastly, results demonstrate parallel scalability at large electromagnetic wave CFL numbers on a variety of test problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Edward Geoffrey; Shadid, John N.; Cyr, Eric C.
Here, we report multiple physical time-scales can arise in electromagnetic simulations when dissipative effects are introduced through boundary conditions, when currents follow external time-scales, and when material parameters vary spatially. In such scenarios, the time-scales of interest may be much slower than the fastest time-scales supported by the Maxwell equations, therefore making implicit time integration an efficient approach. The use of implicit temporal discretizations results in linear systems in which fast time-scales, which severely constrain the stability of an explicit method, can manifest as so-called stiff modes. This study proposes a new block preconditioner for structure preserving (also termed physicsmore » compatible) discretizations of the Maxwell equations in first order form. The intent of the preconditioner is to enable the efficient solution of multiple-time-scale Maxwell type systems. An additional benefit of the developed preconditioner is that it requires only a traditional multigrid method for its subsolves and compares well against alternative approaches that rely on specialized edge-based multigrid routines that may not be readily available. Lastly, results demonstrate parallel scalability at large electromagnetic wave CFL numbers on a variety of test problems.« less
A new time scale based k-epsilon model for near wall turbulence
NASA Technical Reports Server (NTRS)
Yang, Z.; Shih, T. H.
1992-01-01
A k-epsilon model is proposed for wall bonded turbulent flows. In this model, the eddy viscosity is characterized by a turbulent velocity scale and a turbulent time scale. The time scale is bounded from below by the Kolmogorov time scale. The dissipation equation is reformulated using this time scale and no singularity exists at the wall. The damping function used in the eddy viscosity is chosen to be a function of R(sub y) = (k(sup 1/2)y)/v instead of y(+). Hence, the model could be used for flows with separation. The model constants used are the same as in the high Reynolds number standard k-epsilon model. Thus, the proposed model will be also suitable for flows far from the wall. Turbulent channel flows at different Reynolds numbers and turbulent boundary layer flows with and without pressure gradient are calculated. Results show that the model predictions are in good agreement with direct numerical simulation and experimental data.
New time scale based k-epsilon model for near-wall turbulence
NASA Technical Reports Server (NTRS)
Yang, Z.; Shih, T. H.
1993-01-01
A k-epsilon model is proposed for wall bonded turbulent flows. In this model, the eddy viscosity is characterized by a turbulent velocity scale and a turbulent time scale. The time scale is bounded from below by the Kolmogorov time scale. The dissipation equation is reformulated using this time scale and no singularity exists at the wall. The damping function used in the eddy viscosity is chosen to be a function of R(sub y) = (k(sup 1/2)y)/v instead of y(+). Hence, the model could be used for flows with separation. The model constants used are the same as in the high Reynolds number standard k-epsilon model. Thus, the proposed model will be also suitable for flows far from the wall. Turbulent channel flows at different Reynolds numbers and turbulent boundary layer flows with and without pressure gradient are calculated. Results show that the model predictions are in good agreement with direct numerical simulation and experimental data.
Resolving Dynamic Properties of Polymers through Coarse-Grained Computational Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salerno, K. Michael; Agrawal, Anupriya; Perahia, Dvora
2016-02-05
Coupled length and time scales determine the dynamic behavior of polymers and underlie their unique viscoelastic properties. To resolve the long-time dynamics it is imperative to determine which time and length scales must be correctly modeled. In this paper, we probe the degree of coarse graining required to simultaneously retain significant atomistic details and access large length and time scales. The degree of coarse graining in turn sets the minimum length scale instrumental in defining polymer properties and dynamics. Using linear polyethylene as a model system, we probe how the coarse-graining scale affects the measured dynamics. Iterative Boltzmann inversion ismore » used to derive coarse-grained potentials with 2–6 methylene groups per coarse-grained bead from a fully atomistic melt simulation. We show that atomistic detail is critical to capturing large-scale dynamics. Finally, using these models we simulate polyethylene melts for times over 500 μs to study the viscoelastic properties of well-entangled polymer melts.« less
van Albada, Sacha J.; Rowley, Andrew G.; Senk, Johanna; Hopkins, Michael; Schmidt, Maximilian; Stokes, Alan B.; Lester, David R.; Diesmann, Markus; Furber, Steve B.
2018-01-01
The digital neuromorphic hardware SpiNNaker has been developed with the aim of enabling large-scale neural network simulations in real time and with low power consumption. Real-time performance is achieved with 1 ms integration time steps, and thus applies to neural networks for which faster time scales of the dynamics can be neglected. By slowing down the simulation, shorter integration time steps and hence faster time scales, which are often biologically relevant, can be incorporated. We here describe the first full-scale simulations of a cortical microcircuit with biological time scales on SpiNNaker. Since about half the synapses onto the neurons arise within the microcircuit, larger cortical circuits have only moderately more synapses per neuron. Therefore, the full-scale microcircuit paves the way for simulating cortical circuits of arbitrary size. With approximately 80, 000 neurons and 0.3 billion synapses, this model is the largest simulated on SpiNNaker to date. The scale-up is enabled by recent developments in the SpiNNaker software stack that allow simulations to be spread across multiple boards. Comparison with simulations using the NEST software on a high-performance cluster shows that both simulators can reach a similar accuracy, despite the fixed-point arithmetic of SpiNNaker, demonstrating the usability of SpiNNaker for computational neuroscience applications with biological time scales and large network size. The runtime and power consumption are also assessed for both simulators on the example of the cortical microcircuit model. To obtain an accuracy similar to that of NEST with 0.1 ms time steps, SpiNNaker requires a slowdown factor of around 20 compared to real time. The runtime for NEST saturates around 3 times real time using hybrid parallelization with MPI and multi-threading. However, achieving this runtime comes at the cost of increased power and energy consumption. The lowest total energy consumption for NEST is reached at around 144 parallel threads and 4.6 times slowdown. At this setting, NEST and SpiNNaker have a comparable energy consumption per synaptic event. Our results widen the application domain of SpiNNaker and help guide its development, showing that further optimizations such as synapse-centric network representation are necessary to enable real-time simulation of large biological neural networks. PMID:29875620
NASA Astrophysics Data System (ADS)
Rajabi, F.; Battiato, I.
2016-12-01
Long term predictions of the impact of anthropogenic stressors on the environment is essential to reduce the risks associated with processes such as CO2 sequestration and nuclear waste storage in the subsurface. On the other hand, transient forcing factors (e.g. time-varying injection or pumping rate) with evolving heterogeneity of time scales spanning from days to years can influence transport phenomena at the pore scale. A comprehensive spatio-temporal prediction of reactive transport in porous media under time-dependent forcing factors for thousands of years requires the formulation of continuum scale models for time-averages. Yet, as every macroscopic model, time-averaged models can loose predictivity and accuracy when certain conditions are violated. This is true whenever lack of temporal and spatial scale separation occurs and it makes the continuum scale equation a poor assumption for the processes at the pore scale. In this work, we consider mass transport of a dissolved species undergoing a heterogeneous reaction and subject to time-varying boundary conditions in a periodic porous medium. By means of homogenization method and asymptotic expansion technique, we derive a macro-time continuum-scale equation as well as expressions for its effective properties. Our analysis demonstrates that the dynamics at the macro-scale is strongly influenced by the interplay between signal frequency at the boundary and transport processes at the pore level. In addition, we provide the conditions under which the space-time averaged equations accurately describe pore-scale processes. To validate our theoretical predictions, we consider a thin fracture with reacting walls and transient boundary conditions at the inlet. Our analysis shows a good agreement between numerical simulations and theoretical predictions. Furthermore, our numerical experiments show that mixing patterns of the contaminant plumes at the pore level strongly depend on the signal frequency.
NASA Astrophysics Data System (ADS)
Nogueira, Miguel
2018-02-01
Spectral analysis of global-mean precipitation, P, evaporation, E, precipitable water, W, and surface temperature, Ts, revealed significant variability from sub-daily to multi-decadal time-scales, superposed on high-amplitude diurnal and yearly peaks. Two distinct regimes emerged from a transition in the spectral exponents, β. The weather regime covering time-scales < 10 days with β ≥ 1; and the macroweather regime extending from a few months to a few decades with 0 <β <1. Additionally, the spectra showed a generally good statistical agreement amongst several different model- and satellite-based datasets. Detrended cross-correlation analysis (DCCA) revealed three important results which are robust across all datasets: (1) Clausius-Clapeyron (C-C) relationship is the dominant mechanism of W non-periodic variability at multi-year time-scales; (2) C-C is not the dominant control of W, P or E non-periodic variability at time-scales below about 6 months, where the weather regime is approached and other mechanisms become important; (3) C-C is not a dominant control for P or E over land throughout the entire time-scale range considered. Furthermore, it is suggested that the atmosphere and oceans start to act as a single coupled system at time-scales > 1-2 years, while at time-scales < 6 months they are not the dominant drivers of each other. For global-ocean and full-globe averages, ρDCCA showed large spread of the C-C importance for P and E variability amongst different datasets at multi-year time-scales, ranging from negligible (< 0.3) to high ( 0.6-0.8) values. Hence, state-of-the-art climate datasets have significant uncertainties in the representation of macroweather precipitation and evaporation variability and its governing mechanisms.
Mouse Activity across Time Scales: Fractal Scenarios
Lima, G. Z. dos Santos; Lobão-Soares, B.; do Nascimento, G. C.; França, Arthur S. C.; Muratori, L.; Ribeiro, S.; Corso, G.
2014-01-01
In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better understanding of neuroautonomic regulation mechanisms. PMID:25275515
On Which Microphysical Time Scales to Use in Studies of Entrainment-Mixing Mechanisms in Clouds
Lu, Chunsong; Liu, Yangang; Zhu, Bin; ...
2018-03-23
The commonly used time scales in entrainment-mixing studies are examined in this paper to seek the most appropriate one, based on aircraft observations of cumulus clouds from the RACORO campaign and numerical simulations with the Explicit Mixing Parcel Model. The time scales include: τ evap, the time for droplet complete evaporation; τ phase, the time for saturation ratio deficit (S) to reach 1/e of its initial value; τ satu, the time for S to reach -0.5%; τ react, the time for complete droplet evaporation or S to reach -0.5%. It is found that the proper time scale to use dependsmore » on the specific objectives of entrainment-mixing studies. First, if the focus is on the variations of liquid water content (LWC) and S, then τ react for saturation, τ satu and τ phase are almost equivalently appropriate, because they all represent the rate of dry air reaching saturation or of LWC decrease. Second, if one focuses on the variations of droplet size and number concentration, τ react for complete evaporation and τ evap are proper because they characterize how fast droplets evaporate and whether number concentration decreases. Moreover, τ react for complete evaporation and τ evap are always positively correlated with homogeneous mixing degree (ψ), thus the two time scales, especially τ evap, are recommended for developing parameterizations. However, ψ and the other time scales can be negatively, positively, or not correlated, depending on the dominant factors of the entrained air (i.e., relative humidity or aerosols). Third and finally, all time scales are proportional to each other under certain microphysical and thermodynamic conditions.« less
On Which Microphysical Time Scales to Use in Studies of Entrainment-Mixing Mechanisms in Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Chunsong; Liu, Yangang; Zhu, Bin
The commonly used time scales in entrainment-mixing studies are examined in this paper to seek the most appropriate one, based on aircraft observations of cumulus clouds from the RACORO campaign and numerical simulations with the Explicit Mixing Parcel Model. The time scales include: τ evap, the time for droplet complete evaporation; τ phase, the time for saturation ratio deficit (S) to reach 1/e of its initial value; τ satu, the time for S to reach -0.5%; τ react, the time for complete droplet evaporation or S to reach -0.5%. It is found that the proper time scale to use dependsmore » on the specific objectives of entrainment-mixing studies. First, if the focus is on the variations of liquid water content (LWC) and S, then τ react for saturation, τ satu and τ phase are almost equivalently appropriate, because they all represent the rate of dry air reaching saturation or of LWC decrease. Second, if one focuses on the variations of droplet size and number concentration, τ react for complete evaporation and τ evap are proper because they characterize how fast droplets evaporate and whether number concentration decreases. Moreover, τ react for complete evaporation and τ evap are always positively correlated with homogeneous mixing degree (ψ), thus the two time scales, especially τ evap, are recommended for developing parameterizations. However, ψ and the other time scales can be negatively, positively, or not correlated, depending on the dominant factors of the entrained air (i.e., relative humidity or aerosols). Third and finally, all time scales are proportional to each other under certain microphysical and thermodynamic conditions.« less
Contrasting scaling properties of interglacial and glacial climates
Shao, Zhi-Gang; Ditlevsen, Peter D.
2016-01-01
Understanding natural climate variability is essential for assessments of climate change. This is reflected in the scaling properties of climate records. The scaling exponents of the interglacial and the glacial climates are fundamentally different. The Holocene record is monofractal, with a scaling exponent H∼0.7. On the contrary, the glacial record is multifractal, with a significantly higher scaling exponent H∼1.2, indicating a longer persistence time and stronger nonlinearities in the glacial climate. The glacial climate is dominated by the strong multi-millennial Dansgaard–Oeschger (DO) events influencing the long-time correlation. However, by separately analysing the last glacial maximum lacking DO events, here we find the same scaling for that period as for the full glacial period. The unbroken scaling thus indicates that the DO events are part of the natural variability and not externally triggered. At glacial time scales, there is a scale break to a trivial scaling, contrasting the DO events from the similarly saw-tooth-shaped glacial cycles. PMID:26980084
NASA Astrophysics Data System (ADS)
Kenward, D. R.; Lessard, M.; Lynch, K. A.; Hysell, D. L.; Hampton, D. L.; Michell, R.; Samara, M.; Varney, R. H.; Oksavik, K.; Clausen, L. B. N.; Hecht, J. H.; Clemmons, J. H.; Fritz, B.
2017-12-01
The RENU2 sounding rocket (launched from Andoya rocket range on December 13th, 2015) observed Poleward Moving Auroral Forms within the dayside cusp. The ISINGLASS rockets (launched from Poker Flat rocket range on February 22, 2017 and March 2, 2017) both observed aurora during a substorm event. Despite observing very different events, both campaigns witnessed a high degree of small scale structuring within the larger auroral boundary, including Alfvenic signatures. These observations suggest a method of coupling large-scale energy input to fine scale structures within aurorae. During RENU2, small (sub-km) scale drivers persist for long (10s of minutes) time scales and result in large scale ionospheric (thermal electron) and thermospheric response (neutral upwelling). ISINGLASS observations show small scale drivers, but with short (minute) time scales, with ionospheric response characterized by the flight's thermal electron instrument (ERPA). The comparison of the two flights provides an excellent opportunity to examine ionospheric and thermospheric response to small scale drivers over different integration times.
Time-dependent corona models - Scaling laws
NASA Technical Reports Server (NTRS)
Korevaar, P.; Martens, P. C. H.
1989-01-01
Scaling laws are derived for the one-dimensional time-dependent Euler equations that describe the evolution of a spherically symmetric stellar atmosphere. With these scaling laws the results of the time-dependent calculations by Korevaar (1989) obtained for one star are applicable over the whole Hertzsprung-Russell diagram and even to elliptic galaxies. The scaling is exact for stars with the same M/R-ratio and a good approximation for stars with a different M/R-ratio. The global relaxation oscillation found by Korevaar (1989) is scaled to main sequence stars, a solar coronal hole, cool giants and elliptic galaxies.
A wavelet based approach to measure and manage contagion at different time scales
NASA Astrophysics Data System (ADS)
Berger, Theo
2015-10-01
We decompose financial return series of US stocks into different time scales with respect to different market regimes. First, we examine dependence structure of decomposed financial return series and analyze the impact of the current financial crisis on contagion and changing interdependencies as well as upper and lower tail dependence for different time scales. Second, we demonstrate to which extent the information of different time scales can be used in the context of portfolio management. As a result, minimizing the variance of short-run noise outperforms a portfolio that minimizes the variance of the return series.
On time scales and time synchronization using LORAN-C as a time reference signal
NASA Technical Reports Server (NTRS)
Chi, A. R.
1974-01-01
The long term performance of the eight LORAN-C chains is presented in terms of the Coordinated Universal Time (UTC) of the U.S. Naval Observatory (USNO); and the use of the LORAN-C navigation system for maintaining the user's clock to a UTC scale is described. The atomic time scale and the UTC of several national laboratories and observatories relative to the international atomic time are reported. Typical performance of several NASA tracking station clocks, relative to the USNO master clock, is also presented.
Time scales of tunneling decay of a localized state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ban, Yue; Muga, J. G.; Sherman, E. Ya.
2010-12-15
Motivated by recent time-domain experiments on ultrafast atom ionization, we analyze the transients and time scales that characterize, aside from the relatively long lifetime, the decay of a localized state by tunneling. While the tunneling starts immediately, some time is required for the outgoing flux to develop. This short-term behavior depends strongly on the initial state. For the initial state, tightly localized so that the initial transients are dominated by over-the-barrier motion, the time scale for flux propagation through the barrier is close to the Buettiker-Landauer traversal time. Then a quasistationary, slow-decay process follows, which sets ideal conditions for observingmore » diffraction in time at longer times and distances. To define operationally a tunneling time at the barrier edge, we extrapolate backward the propagation of the wave packet that escaped from the potential. This extrapolated time is considerably longer than the time scale of the flux and density buildup at the barrier edge.« less
Measuring Scale Invariance between and within Subjects.
ERIC Educational Resources Information Center
Benson, Jeri; Hocevar, Dennis
The present paper represents a demonstration of how LISREL V can be used to investigate scale invariance (1) across time (its relationship to test-retest reliability), and (2) across groups. Five criteria were established to test scale invariance across time and four criteria were established to test scale invariance across groups. Using the…
NASA Astrophysics Data System (ADS)
Hu, Yijia; Zhong, Zhong; Zhu, Yimin; Ha, Yao
2018-04-01
In this paper, a statistical forecast model using the time-scale decomposition method is established to do the seasonal prediction of the rainfall during flood period (FPR) over the middle and lower reaches of the Yangtze River Valley (MLYRV). This method decomposites the rainfall over the MLYRV into three time-scale components, namely, the interannual component with the period less than 8 years, the interdecadal component with the period from 8 to 30 years, and the interdecadal component with the period larger than 30 years. Then, the predictors are selected for the three time-scale components of FPR through the correlation analysis. At last, a statistical forecast model is established using the multiple linear regression technique to predict the three time-scale components of the FPR, respectively. The results show that this forecast model can capture the interannual and interdecadal variation of FPR. The hindcast of FPR during 14 years from 2001 to 2014 shows that the FPR can be predicted successfully in 11 out of the 14 years. This forecast model performs better than the model using traditional scheme without time-scale decomposition. Therefore, the statistical forecast model using the time-scale decomposition technique has good skills and application value in the operational prediction of FPR over the MLYRV.
An Expanded RXTE Survey of Long-Term X-ray Variability in Seyfert 1 Galaxies
NASA Technical Reports Server (NTRS)
Markowitz, A.; Edelson, R.
2004-01-01
The first seven years of RXTE monitoring of Seyfert 1 active galactic nuclei have been systematically analyzed to yield five homogenous samples of 2-12 keV light curves, probing hard X-ray variability on successively longer durations from approx. 1 day to approx. 3.5 years. 2-10 keV variability on time scales of approx. 1 day, as probed by ASCA, are included. All sources exhibit stronger X-ray variability towards longer time scales, with variability amplitudes saturating at the longest time scales, but the increase is greater for relatively higher luminosity sources. The well-documented anticorrelation between variability amplitude and luminosity is confirmed on all time scales. However, anticorrelations between variability amplitude and black hole mass estimate are evident on only the shortest time scales probed. The data are consistent with the models of power spectral density (PSD) movement described in Markowitz et al. (2003) and McHardy et al. (2004), whereby Seyfert 1 galaxies variability can be described by a single, universal PSD shape whose cutoff frequency scales with black hole mass. The best-fitting scaling relations between variability time scale, black hole mass and X-ray luminosity support an average accretion rate of 2% of the Eddington limit for the sample. Nearly all sources exhibit stronger variability in the relatively soft 2-4 keV band compared to the 7-12 keV band on all time scales. Color-flux diagrams support also Seyfert 1s' softening as they brighten. There are indications that relatively less luminous or less massive sources exhibit a greater degree of spectral variability for a given increase in overall flux.
Decoding the spatial signatures of multi-scale climate variability - a climate network perspective
NASA Astrophysics Data System (ADS)
Donner, R. V.; Jajcay, N.; Wiedermann, M.; Ekhtiari, N.; Palus, M.
2017-12-01
During the last years, the application of complex networks as a versatile tool for analyzing complex spatio-temporal data has gained increasing interest. Establishing this approach as a new paradigm in climatology has already provided valuable insights into key spatio-temporal climate variability patterns across scales, including novel perspectives on the dynamics of the El Nino Southern Oscillation or the emergence of extreme precipitation patterns in monsoonal regions. In this work, we report first attempts to employ network analysis for disentangling multi-scale climate variability. Specifically, we introduce the concept of scale-specific climate networks, which comprises a sequence of networks representing the statistical association structure between variations at distinct time scales. For this purpose, we consider global surface air temperature reanalysis data and subject the corresponding time series at each grid point to a complex-valued continuous wavelet transform. From this time-scale decomposition, we obtain three types of signals per grid point and scale - amplitude, phase and reconstructed signal, the statistical similarity of which is then represented by three complex networks associated with each scale. We provide a detailed analysis of the resulting connectivity patterns reflecting the spatial organization of climate variability at each chosen time-scale. Global network characteristics like transitivity or network entropy are shown to provide a new view on the (global average) relevance of different time scales in climate dynamics. Beyond expected trends originating from the increasing smoothness of fluctuations at longer scales, network-based statistics reveal different degrees of fragmentation of spatial co-variability patterns at different scales and zonal shifts among the key players of climate variability from tropically to extra-tropically dominated patterns when moving from inter-annual to decadal scales and beyond. The obtained results demonstrate the potential usefulness of systematically exploiting scale-specific climate networks, whose general patterns are in line with existing climatological knowledge, but provide vast opportunities for further quantifications at local, regional and global scales that are yet to be explored.
Multiscaling properties of coastal waters particle size distribution from LISST in situ measurements
NASA Astrophysics Data System (ADS)
Pannimpullath Remanan, R.; Schmitt, F. G.; Loisel, H.; Mériaux, X.
2013-12-01
An eulerian high frequency sampling of particle size distribution (PSD) is performed during 5 tidal cycles (65 hours) in a coastal environment of the eastern English Channel at 1 Hz. The particle data are recorded using a LISST-100x type C (Laser In Situ Scattering and Transmissometry, Sequoia Scientific), recording volume concentrations of particles having diameters ranging from 2.5 to 500 mu in 32 size classes in logarithmic scale. This enables the estimation at each time step (every second) of the probability density function of particle sizes. At every time step, the pdf of PSD is hyperbolic. We can thus estimate PSD slope time series. Power spectral analysis shows that the mean diameter of the suspended particles is scaling at high frequencies (from 1s to 1000s). The scaling properties of particle sizes is studied by computing the moment function, from the pdf of the size distribution. Moment functions at many different time scales (from 1s to 1000 s) are computed and their scaling properties considered. The Shannon entropy at each time scale is also estimated and is related to other parameters. The multiscaling properties of the turbidity (coefficient cp computed from the LISST) are also consider on the same time scales, using Empirical Mode Decomposition.
Special Issue on Time Scale Algorithms
2008-01-01
are currently Two Way Satellite Time and Frequency Transfer ( TWSTFT ) and GPS carrier phase time transfer. The interest in time scale algorithms and...laboratory-specific innovations and practices, GNSS applications, UTC generation, TWSTFT applications, GPS applications, small-ensemble applications
Extreme reaction times determine fluctuation scaling in human color vision
NASA Astrophysics Data System (ADS)
Medina, José M.; Díaz, José A.
2016-11-01
In modern mental chronometry, human reaction time defines the time elapsed from stimulus presentation until a response occurs and represents a reference paradigm for investigating stochastic latency mechanisms in color vision. Here we examine the statistical properties of extreme reaction times and whether they support fluctuation scaling in the skewness-kurtosis plane. Reaction times were measured for visual stimuli across the cardinal directions of the color space. For all subjects, the results show that very large reaction times deviate from the right tail of reaction time distributions suggesting the existence of dragon-kings events. The results also indicate that extreme reaction times are correlated and shape fluctuation scaling over a wide range of stimulus conditions. The scaling exponent was higher for achromatic than isoluminant stimuli, suggesting distinct generative mechanisms. Our findings open a new perspective for studying failure modes in sensory-motor communications and in complex networks.
Correlations of stock price fluctuations under multi-scale and multi-threshold scenarios
NASA Astrophysics Data System (ADS)
Sui, Guo; Li, Huajiao; Feng, Sida; Liu, Xueyong; Jiang, Meihui
2018-01-01
The multi-scale method is widely used in analyzing time series of financial markets and it can provide market information for different economic entities who focus on different periods. Through constructing multi-scale networks of price fluctuation correlation in the stock market, we can detect the topological relationship between each time series. Previous research has not addressed the problem that the original fluctuation correlation networks are fully connected networks and more information exists within these networks that is currently being utilized. Here we use listed coal companies as a case study. First, we decompose the original stock price fluctuation series into different time scales. Second, we construct the stock price fluctuation correlation networks at different time scales. Third, we delete the edges of the network based on thresholds and analyze the network indicators. Through combining the multi-scale method with the multi-threshold method, we bring to light the implicit information of fully connected networks.
NASA Astrophysics Data System (ADS)
Palus, Milan; Jajcay, Nikola; Hlinka, Jaroslav; Kravtsov, Sergey; Tsonis, Anastasios
2016-04-01
Complexity of the climate system stems not only from the fact that it is variable over a huge range of spatial and temporal scales, but also from the nonlinear character of the climate system that leads to interactions of dynamics across scales. The dynamical processes on large time scales influence variability on shorter time scales. This nonlinear phenomenon of cross-scale causal interactions can be observed due to the recently introduced methodology [1] which starts with a wavelet decomposition of a multi-scale signal into quasi-oscillatory modes of a limited bandwidth, described using their instantaneous phases and amplitudes. Then their statistical associations are tested in order to search for interactions across time scales. An information-theoretic formulation of the generalized, nonlinear Granger causality [2] uncovers causal influence and information transfer from large-scale modes of climate variability with characteristic time scales from years to almost a decade to regional temperature variability on short time scales. In analyses of air temperature records from various European locations, a quasioscillatory phenomenon with the period around 7-8 years has been identified as the factor influencing variability of surface air temperature (SAT) on shorter time scales. Its influence on the amplitude of the SAT annual cycle was estimated in the range 0.7-1.4 °C and the effect on the overall variability of the SAT anomalies (SATA) leads to the changes 1.5-1.7 °C in the annual SATA means. The strongest effect of the 7-8 year cycle was observed in the winter SATA means where it reaches 4-5 °C in central European station and reanalysis data [3]. This study is supported by the Ministry of Education, Youth and Sports of the Czech Republic within the Program KONTAKT II, Project No. LH14001. [1] M. Palus, Phys. Rev. Lett. 112 078702 (2014) [2] M. Palus, M. Vejmelka, Phys. Rev. E 75, 056211 (2007) [3] N. Jajcay, J. Hlinka, S. Kravtsov, A. A. Tsonis, M. Palus, Time-scales of the European surface air temperature variability: The role of the 7-8 year cycle. Geophys. Res. Lett., in press, DOI: 10.1002/2015GL067325
A wavelet analysis of scaling laws and long-memory in stock market volatility
NASA Astrophysics Data System (ADS)
Vuorenmaa, Tommi A.
2005-05-01
This paper studies the time-varying behavior of scaling laws and long-memory. This is motivated by the earlier finding that in the FX markets a single scaling factor might not always be sufficient across all relevant timescales: a different region may exist for intradaily time-scales and for larger time-scales. In specific, this paper investigates (i) if different scaling regions appear in stock market as well, (ii) if the scaling factor systematically differs from the Brownian, (iii) if the scaling factor is constant in time, and (iv) if the behavior can be explained by the heterogenuity of the players in the market and/or by intraday volatility periodicity. Wavelet method is used because it delivers a multiresolution decomposition and has excellent local adaptiviness properties. As a consequence, a wavelet-based OLS method allows for consistent estimation of long-memory. Thus issues (i)-(iv) shed light on the magnitude and behavior of a long-memory parameter, as well. The data are the 5-minute volatility series of Nokia Oyj at the Helsinki Stock Exchange around the burst of the IT-bubble. Period one represents the era of "irrational exuberance" and another the time after it. The results show that different scaling regions (i.e. multiscaling) may appear in the stock markets and not only in the FX markets, the scaling factor and the long-memory parameter are systematically different from the Brownian and they do not have to be constant in time, and that the behavior can be explained for a significant part by an intraday volatility periodicity called the New York effect. This effect was magnified by the frenzy trading of short-term speculators in the bubble period. The found stronger long-memory is also attributable to irrational exuberance.
Fractionaly Integrated Flux model and Scaling Laws in Weather and Climate
NASA Astrophysics Data System (ADS)
Schertzer, Daniel; Lovejoy, Shaun
2013-04-01
The Fractionaly Integrated Flux model (FIF) has been extensively used to model intermittent observables, like the velocity field, by defining them with the help of a fractional integration of a conservative (i.e. strictly scale invariant) flux, such as the turbulent energy flux. It indeed corresponds to a well-defined modelling that yields the observed scaling laws. Generalised Scale Invariance (GSI) enables FIF to deal with anisotropic fractional integrations and has been rather successful to define and model a unique regime of scaling anisotropic turbulence up to planetary scales. This turbulence has an effective dimension of 23/9=2.55... instead of the classical hypothesised 2D and 3D turbulent regimes, respectively for large and small spatial scales. It therefore theoretically eliminates a non plausible "dimension transition" between these two regimes and the resulting requirement of a turbulent energy "mesoscale gap", whose empirical evidence has been brought more and more into question. More recently, GSI-FIF was used to analyse climate, therefore at much larger time scales. Indeed, the 23/9-dimensional regime necessarily breaks up at the outer spatial scales. The corresponding transition range, which can be called "macroweather", seems to have many interesting properties, e.g. it rather corresponds to a fractional differentiation in time with a roughly flat frequency spectrum. Furthermore, this transition yields the possibility to have at much larger time scales scaling space-time climate fluctuations with a much stronger scaling anisotropy between time and space. Lovejoy, S. and D. Schertzer (2013). The Weather and Climate: Emergent Laws and Multifractal Cascades. Cambridge Press (in press). Schertzer, D. et al. (1997). Fractals 5(3): 427-471. Schertzer, D. and S. Lovejoy (2011). International Journal of Bifurcation and Chaos 21(12): 3417-3456.
Li-Yorke Chaos in Hybrid Systems on a Time Scale
NASA Astrophysics Data System (ADS)
Akhmet, Marat; Fen, Mehmet Onur
2015-12-01
By using the reduction technique to impulsive differential equations [Akhmet & Turan, 2006], we rigorously prove the presence of chaos in dynamic equations on time scales (DETS). The results of the present study are based on the Li-Yorke definition of chaos. This is the first time in the literature that chaos is obtained for DETS. An illustrative example is presented by means of a Duffing equation on a time scale.
NASA Astrophysics Data System (ADS)
Fillingham, Sean P.; Cooper, Michael C.; Wheeler, Coral; Garrison-Kimmel, Shea; Boylan-Kolchin, Michael; Bullock, James S.
2015-12-01
The vast majority of dwarf satellites orbiting the Milky Way and M31 are quenched, while comparable galaxies in the field are gas rich and star forming. Assuming that this dichotomy is driven by environmental quenching, we use the Exploring the Local Volume in Simulations (ELVIS) suite of N-body simulations to constrain the characteristic time-scale upon which satellites must quench following infall into the virial volumes of their hosts. The high satellite quenched fraction observed in the Local Group demands an extremely short quenching time-scale (˜2 Gyr) for dwarf satellites in the mass range M⋆ ˜ 106-108 M⊙. This quenching time-scale is significantly shorter than that required to explain the quenched fraction of more massive satellites (˜8 Gyr), both in the Local Group and in more massive host haloes, suggesting a dramatic change in the dominant satellite quenching mechanism at M⋆ ≲ 108 M⊙. Combining our work with the results of complementary analyses in the literature, we conclude that the suppression of star formation in massive satellites (M⋆ ˜ 108-1011 M⊙) is broadly consistent with being driven by starvation, such that the satellite quenching time-scale corresponds to the cold gas depletion time. Below a critical stellar mass scale of ˜108 M⊙, however, the required quenching times are much shorter than the expected cold gas depletion times. Instead, quenching must act on a time-scale comparable to the dynamical time of the host halo. We posit that ram-pressure stripping can naturally explain this behaviour, with the critical mass (of M⋆ ˜ 108 M⊙) corresponding to haloes with gravitational restoring forces that are too weak to overcome the drag force encountered when moving through an extended, hot circumgalactic medium.
Quantifying Stock Return Distributions in Financial Markets
Botta, Federico; Moat, Helen Susannah; Stanley, H. Eugene; Preis, Tobias
2015-01-01
Being able to quantify the probability of large price changes in stock markets is of crucial importance in understanding financial crises that affect the lives of people worldwide. Large changes in stock market prices can arise abruptly, within a matter of minutes, or develop across much longer time scales. Here, we analyze a dataset comprising the stocks forming the Dow Jones Industrial Average at a second by second resolution in the period from January 2008 to July 2010 in order to quantify the distribution of changes in market prices at a range of time scales. We find that the tails of the distributions of logarithmic price changes, or returns, exhibit power law decays for time scales ranging from 300 seconds to 3600 seconds. For larger time scales, we find that the distributions tails exhibit exponential decay. Our findings may inform the development of models of market behavior across varying time scales. PMID:26327593
Quantifying Stock Return Distributions in Financial Markets.
Botta, Federico; Moat, Helen Susannah; Stanley, H Eugene; Preis, Tobias
2015-01-01
Being able to quantify the probability of large price changes in stock markets is of crucial importance in understanding financial crises that affect the lives of people worldwide. Large changes in stock market prices can arise abruptly, within a matter of minutes, or develop across much longer time scales. Here, we analyze a dataset comprising the stocks forming the Dow Jones Industrial Average at a second by second resolution in the period from January 2008 to July 2010 in order to quantify the distribution of changes in market prices at a range of time scales. We find that the tails of the distributions of logarithmic price changes, or returns, exhibit power law decays for time scales ranging from 300 seconds to 3600 seconds. For larger time scales, we find that the distributions tails exhibit exponential decay. Our findings may inform the development of models of market behavior across varying time scales.
Modes and emergent time scales of embayed beach dynamics
NASA Astrophysics Data System (ADS)
Ratliff, Katherine M.; Murray, A. Brad
2014-10-01
In this study, we use a simple numerical model (the Coastline Evolution Model) to explore alongshore transport-driven shoreline dynamics within generalized embayed beaches (neglecting cross-shore effects). Using principal component analysis (PCA), we identify two primary orthogonal modes of shoreline behavior that describe shoreline variation about its unchanging mean position: the rotation mode, which has been previously identified and describes changes in the mean shoreline orientation, and a newly identified breathing mode, which represents changes in shoreline curvature. Wavelet analysis of the PCA mode time series reveals characteristic time scales of these modes (typically years to decades) that emerge within even a statistically constant white-noise wave climate (without changes in external forcing), suggesting that these time scales can arise from internal system dynamics. The time scales of both modes increase linearly with shoreface depth, suggesting that the embayed beach sediment transport dynamics exhibit a diffusive scaling.
NASA Astrophysics Data System (ADS)
Holm Jacobsen, Bo
2010-05-01
The ambition is to make the citizen (i.e. pupil/student/scholar/voter/journalist/politician) comprehend better and more scientifically all time scales from the lifespan of the universe to the personal life project by a consistent geographical mapping of time at a scale of 1 mm per 100 years. The processes which change earth systems like life, climate, topography and plate tectonics operate at very different timescales. The understanding of these systems is essential not only for students and scholars of earth science but also for pupils, voters and politicians who make decisions of possibly significant consequence to climate and biodiversity not only for our generation but for thousands or even millions of years ahead. With a consistent linear mapping of time to a scale of 1 millimetre per 100 years, historical time (
Multiple time scale analysis of pressure oscillations in solid rocket motors
NASA Astrophysics Data System (ADS)
Ahmed, Waqas; Maqsood, Adnan; Riaz, Rizwan
2018-03-01
In this study, acoustic pressure oscillations for single and coupled longitudinal acoustic modes in Solid Rocket Motor (SRM) are investigated using Multiple Time Scales (MTS) method. Two independent time scales are introduced. The oscillations occur on fast time scale whereas the amplitude and phase changes on slow time scale. Hopf bifurcation is employed to investigate the properties of the solution. The supercritical bifurcation phenomenon is observed for linearly unstable system. The amplitude of the oscillations result from equal energy gain and loss rates of longitudinal acoustic modes. The effect of linear instability and frequency of longitudinal modes on amplitude and phase of oscillations are determined for both single and coupled modes. For both cases, the maximum amplitude of oscillations decreases with the frequency of acoustic mode and linear instability of SRM. The comparison of analytical MTS results and numerical simulations demonstrate an excellent agreement.
NASA Astrophysics Data System (ADS)
Danesh-Yazdi, Mohammad; Botter, Gianluca; Foufoula-Georgiou, Efi
2017-05-01
Lack of hydro-bio-chemical data at subcatchment scales necessitates adopting an aggregated system approach for estimating water and solute transport properties, such as residence and travel time distributions, at the catchment scale. In this work, we show that within-catchment spatial heterogeneity, as expressed in spatially variable discharge-storage relationships, can be appropriately encapsulated within a lumped time-varying stochastic Lagrangian formulation of transport. This time (variability) for space (heterogeneity) substitution yields mean travel times (MTTs) that are not significantly biased to the aggregation of spatial heterogeneity. Despite the significant variability of MTT at small spatial scales, there exists a characteristic scale above which the MTT is not impacted by the aggregation of spatial heterogeneity. Extensive simulations of randomly generated river networks reveal that the ratio between the characteristic scale and the mean incremental area is on average independent of river network topology and the spatial arrangement of incremental areas.
The effect of aperture averaging upon tropospheric delay fluctuations seen with a DSN antenna
NASA Technical Reports Server (NTRS)
Linfield, R.
1996-01-01
The spectrum of tropospheric delay fluctuations expected for a DSN antenna at time scales less than 100 s has been calculated. A new feature included in these calculations is the effect of aperture averaging, which causes a reduction in delay fluctuations on time scales less than the antenna wind speed crossing time, approximately equal to 5-10 s. On time scales less than a few seconds, the Allan deviation sigma(sub y)(Delta(t)) varies as (Delta(t))(sup +1), rather than sigma(sub y)(Delta(t)) varies as (Delta(t))(exp -1/6) without aperture averaging. Due to thermal radiometer noise, calibration of tropospheric delay fluctuations with water vapor radiometers will not be possible on time scales less than approximately 10 s. However, the tropospheric fluctuation level will be small enough that radio science measurements with a spacecraft on time scales less than a few seconds will be limited by the stability of frequency standards and/or other nontropospheric effects.
NASA Astrophysics Data System (ADS)
Hernández Forero, Liz Catherine; Bahamón Cortés, Nelson
2017-06-01
Around the world, there are different providers of timestamp (mobile, radio or television operators, satellites of the GPS network, astronomical measurements, etc.), however, the source of the legal time for a country is either the national metrology institute or another designated laboratory. This activity requires a time standard based on an atomic time scale. The International Bureau of Weights and Measures (BIPM) calculates a weighted average of the time kept in more than 60 nations and produces a single international time scale, called Coordinated Universal Time (UTC). This article presents the current time scale that generates Legal Time for the Republic of Colombia produced by the Instituto Nacional de Metrología (INM) using the time and frequency national standard, a cesium atomic oscillator. It also illustrates how important it is for the academic, scientific and industrial communities, as well as the general public, to be synchronized with this time scale, which is traceable to the International System (SI) of units, through international comparisons that are made in real time.
Palva, J. Matias; Zhigalov, Alexander; Hirvonen, Jonni; Korhonen, Onerva; Linkenkaer-Hansen, Klaus; Palva, Satu
2013-01-01
Scale-free fluctuations are ubiquitous in behavioral performance and neuronal activity. In time scales from seconds to hundreds of seconds, psychophysical dynamics and the amplitude fluctuations of neuronal oscillations are governed by power-law-form long-range temporal correlations (LRTCs). In millisecond time scales, neuronal activity comprises cascade-like neuronal avalanches that exhibit power-law size and lifetime distributions. However, it remains unknown whether these neuronal scaling laws are correlated with those characterizing behavioral performance or whether neuronal LRTCs and avalanches are related. Here, we show that the neuronal scaling laws are strongly correlated both with each other and with behavioral scaling laws. We used source reconstructed magneto- and electroencephalographic recordings to characterize the dynamics of ongoing cortical activity. We found robust power-law scaling in neuronal LRTCs and avalanches in resting-state data and during the performance of audiovisual threshold stimulus detection tasks. The LRTC scaling exponents of the behavioral performance fluctuations were correlated with those of concurrent neuronal avalanches and LRTCs in anatomically identified brain systems. The behavioral exponents also were correlated with neuronal scaling laws derived from a resting-state condition and with a similar anatomical topography. Finally, despite the difference in time scales, the scaling exponents of neuronal LRTCs and avalanches were strongly correlated during both rest and task performance. Thus, long and short time-scale neuronal dynamics are related and functionally significant at the behavioral level. These data suggest that the temporal structures of human cognitive fluctuations and behavioral variability stem from the scaling laws of individual and intrinsic brain dynamics. PMID:23401536
Silva, Luiz Eduardo Virgilio; Lataro, Renata Maria; Castania, Jaci Airton; Silva, Carlos Alberto Aguiar; Salgado, Helio Cesar; Fazan, Rubens; Porta, Alberto
2017-08-01
Heart rate variability (HRV) has been extensively explored by traditional linear approaches (e.g., spectral analysis); however, several studies have pointed to the presence of nonlinear features in HRV, suggesting that linear tools might fail to account for the complexity of the HRV dynamics. Even though the prevalent notion is that HRV is nonlinear, the actual presence of nonlinear features is rarely verified. In this study, the presence of nonlinear dynamics was checked as a function of time scales in three experimental models of rats with different impairment of the cardiac control: namely, rats with heart failure (HF), spontaneously hypertensive rats (SHRs), and sinoaortic denervated (SAD) rats. Multiscale entropy (MSE) and refined MSE (RMSE) were chosen as the discriminating statistic for the surrogate test utilized to detect nonlinearity. Nonlinear dynamics is less present in HF animals at both short and long time scales compared with controls. A similar finding was found in SHR only at short time scales. SAD increased the presence of nonlinear dynamics exclusively at short time scales. Those findings suggest that a working baroreflex contributes to linearize HRV and to reduce the likelihood to observe nonlinear components of the cardiac control at short time scales. In addition, an increased sympathetic modulation seems to be a source of nonlinear dynamics at long time scales. Testing nonlinear dynamics as a function of the time scales can provide a characterization of the cardiac control complementary to more traditional markers in time, frequency, and information domains. NEW & NOTEWORTHY Although heart rate variability (HRV) dynamics is widely assumed to be nonlinear, nonlinearity tests are rarely used to check this hypothesis. By adopting multiscale entropy (MSE) and refined MSE (RMSE) as the discriminating statistic for the nonlinearity test, we show that nonlinear dynamics varies with time scale and the type of cardiac dysfunction. Moreover, as complexity metrics and nonlinearities provide complementary information, we strongly recommend using the test for nonlinearity as an additional index to characterize HRV. Copyright © 2017 the American Physiological Society.
Anomalous volatility scaling in high frequency financial data
NASA Astrophysics Data System (ADS)
Nava, Noemi; Di Matteo, T.; Aste, Tomaso
2016-04-01
Volatility of intra-day stock market indices computed at various time horizons exhibits a scaling behaviour that differs from what would be expected from fractional Brownian motion (fBm). We investigate this anomalous scaling by using empirical mode decomposition (EMD), a method which separates time series into a set of cyclical components at different time-scales. By applying the EMD to fBm, we retrieve a scaling law that relates the variance of the components to a power law of the oscillating period. In contrast, when analysing 22 different stock market indices, we observe deviations from the fBm and Brownian motion scaling behaviour. We discuss and quantify these deviations, associating them to the characteristics of financial markets, with larger deviations corresponding to less developed markets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosa, B., E-mail: bogdan.rosa@imgw.pl; Parishani, H.; Department of Earth System Science, University of California, Irvine, California 92697-3100
2015-01-15
In this paper, we study systematically the effects of forcing time scale in the large-scale stochastic forcing scheme of Eswaran and Pope [“An examination of forcing in direct numerical simulations of turbulence,” Comput. Fluids 16, 257 (1988)] on the simulated flow structures and statistics of forced turbulence. Using direct numerical simulations, we find that the forcing time scale affects the flow dissipation rate and flow Reynolds number. Other flow statistics can be predicted using the altered flow dissipation rate and flow Reynolds number, except when the forcing time scale is made unrealistically large to yield a Taylor microscale flow Reynoldsmore » number of 30 and less. We then study the effects of forcing time scale on the kinematic collision statistics of inertial particles. We show that the radial distribution function and the radial relative velocity may depend on the forcing time scale when it becomes comparable to the eddy turnover time. This dependence, however, can be largely explained in terms of altered flow Reynolds number and the changing range of flow length scales present in the turbulent flow. We argue that removing this dependence is important when studying the Reynolds number dependence of the turbulent collision statistics. The results are also compared to those based on a deterministic forcing scheme to better understand the role of large-scale forcing, relative to that of the small-scale turbulence, on turbulent collision of inertial particles. To further elucidate the correlation between the altered flow structures and dynamics of inertial particles, a conditional analysis has been performed, showing that the regions of higher collision rate of inertial particles are well correlated with the regions of lower vorticity. Regions of higher concentration of pairs at contact are found to be highly correlated with the region of high energy dissipation rate.« less
Zhang, Zhenming; Zhou, Yunchao; Wang, Shijie; Huang, Xianfei
2018-04-13
Karst areas are typical ecologically fragile areas, and stony desertification has become the most serious ecological and economic problems in these areas worldwide as well as a source of disasters and poverty. A reasonable sampling scale is of great importance for research on soil science in karst areas. In this paper, the spatial distribution of stony desertification characteristics and its influencing factors in karst areas are studied at different sampling scales using a grid sampling method based on geographic information system (GIS) technology and geo-statistics. The rock exposure obtained through sampling over a 150 m × 150 m grid in the Houzhai River Basin was utilized as the original data, and five grid scales (300 m × 300 m, 450 m × 450 m, 600 m × 600 m, 750 m × 750 m, and 900 m × 900 m) were used as the subsample sets. The results show that the rock exposure does not vary substantially from one sampling scale to another, while the average values of the five subsamples all fluctuate around the average value of the entire set. As the sampling scale increases, the maximum value and the average value of the rock exposure gradually decrease, and there is a gradual increase in the coefficient of variability. At the scale of 150 m × 150 m, the areas of minor stony desertification, medium stony desertification, and major stony desertification in the Houzhai River Basin are 7.81 km², 4.50 km², and 1.87 km², respectively. The spatial variability of stony desertification at small scales is influenced by many factors, and the variability at medium scales is jointly influenced by gradient, rock content, and rock exposure. At large scales, the spatial variability of stony desertification is mainly influenced by soil thickness and rock content.
NASA Astrophysics Data System (ADS)
Kossieris, Panagiotis; Makropoulos, Christos; Onof, Christian; Koutsoyiannis, Demetris
2018-01-01
Many hydrological applications, such as flood studies, require the use of long rainfall data at fine time scales varying from daily down to 1 min time step. However, in the real world there is limited availability of data at sub-hourly scales. To cope with this issue, stochastic disaggregation techniques are typically employed to produce possible, statistically consistent, rainfall events that aggregate up to the field data collected at coarser scales. A methodology for the stochastic disaggregation of rainfall at fine time scales was recently introduced, combining the Bartlett-Lewis process to generate rainfall events along with adjusting procedures to modify the lower-level variables (i.e., hourly) so as to be consistent with the higher-level one (i.e., daily). In the present paper, we extend the aforementioned scheme, initially designed and tested for the disaggregation of daily rainfall into hourly depths, for any sub-hourly time scale. In addition, we take advantage of the recent developments in Poisson-cluster processes incorporating in the methodology a Bartlett-Lewis model variant that introduces dependence between cell intensity and duration in order to capture the variability of rainfall at sub-hourly time scales. The disaggregation scheme is implemented in an R package, named HyetosMinute, to support disaggregation from daily down to 1-min time scale. The applicability of the methodology was assessed on a 5-min rainfall records collected in Bochum, Germany, comparing the performance of the above mentioned model variant against the original Bartlett-Lewis process (non-random with 5 parameters). The analysis shows that the disaggregation process reproduces adequately the most important statistical characteristics of rainfall at wide range of time scales, while the introduction of the model with dependent intensity-duration results in a better performance in terms of skewness, rainfall extremes and dry proportions.
Double Scaling in the Relaxation Time in the β -Fermi-Pasta-Ulam-Tsingou Model
NASA Astrophysics Data System (ADS)
Lvov, Yuri V.; Onorato, Miguel
2018-04-01
We consider the original β -Fermi-Pasta-Ulam-Tsingou system; numerical simulations and theoretical arguments suggest that, for a finite number of masses, a statistical equilibrium state is reached independently of the initial energy of the system. Using ensemble averages over initial conditions characterized by different Fourier random phases, we numerically estimate the time scale of equipartition and we find that for very small nonlinearity it matches the prediction based on exact wave-wave resonant interaction theory. We derive a simple formula for the nonlinear frequency broadening and show that when the phenomenon of overlap of frequencies takes place, a different scaling for the thermalization time scale is observed. Our result supports the idea that the Chirikov overlap criterion identifies a transition region between two different relaxation time scalings.
Singular perturbation and time scale approaches in discrete control systems
NASA Technical Reports Server (NTRS)
Naidu, D. S.; Price, D. B.
1988-01-01
After considering a singularly perturbed discrete control system, a singular perturbation approach is used to obtain outer and correction subsystems. A time scale approach is then applied via block diagonalization transformations to decouple the system into slow and fast subsystems. To a zeroth-order approximation, the singular perturbation and time-scale approaches are found to yield equivalent results.
Learning Across Time Scales: Science, Policy, Management, and Communication
NASA Astrophysics Data System (ADS)
Stewart, M. M.
2002-05-01
This presentation will draw together common themes raised in the session and discuss lessons learned across time scales and their implications for managers and policy makers concerned with both climate change and variability. Session themes will be examined in the context of the upcoming World Summit on Sustainable Development (WSSD) and considered as opportunities for linking climate change policy discussions with lessons learned from the study of adaptation on seasonal to interannual time scales. The presentation will raise questions about future research directions, discuss recommendations for promoting learning across time scales, and explore options for better communicating the links between climate change and variability.
Ram, Nilam; Conroy, David E; Pincus, Aaron L; Lorek, Amy; Rebar, Amanda; Roche, Michael J; Coccia, Michael; Morack, Jennifer; Feldman, Josh; Gerstorf, Denis
Human development is characterized by the complex interplay of processes that manifest at multiple levels of analysis and time-scales. We introduce the Intraindividual Study of Affect, Health and Interpersonal Behavior (iSAHIB) as a model for how multiple time-scale study designs facilitate more precise articulation of developmental theory. Combining age heterogeneity, longitudinal panel, daily diary, and experience sampling protocols, the study made use of smartphone and web-based technologies to obtain intensive longitudinal data from 150 persons age 18-89 years as they completed three 21-day measurement bursts ( t = 426 bursts, t = 8,557 days) wherein they provided reports on their social interactions ( t = 64,112) as they went about their daily lives. We illustrate how multiple time-scales of data can be used to articulate bioecological models of development and the interplay among more 'distal' processes that manifest at 'slower' time-scales (e.g., age-related differences and burst-to-burst changes in mental health) and more 'proximal' processes that manifest at 'faster' time-scales (e.g., changes in context that progress in accordance with the weekly calendar and family influence processes).
NASA Technical Reports Server (NTRS)
Crosson, William L.; Smith, Eric A.
1992-01-01
The behavior of in situ measurements of surface fluxes obtained during FIFE 1987 is examined by using correlative and spectral techniques in order to assess the significance of fluctuations on various time scales, from subdiurnal up to synoptic, intraseasonal, and annual scales. The objectives of this analysis are: (1) to determine which temporal scales have a significant impact on areal averaged fluxes and (2) to design a procedure for filtering an extended flux time series that preserves the basic diurnal features and longer time scales while removing high frequency noise that cannot be attributed to site-induced variation. These objectives are accomplished through the use of a two-dimensional cross-time Fourier transform, which serves to separate processes inherently related to diurnal and subdiurnal variability from those which impact flux variations on the longer time scales. A filtering procedure is desirable before the measurements are utilized as input with an experimental biosphere model, to insure that model based intercomparisons at multiple sites are uncontaminated by input variance not related to true site behavior. Analysis of the spectral decomposition indicates that subdiurnal time scales having periods shorter than 6 hours have little site-to-site consistency and therefore little impact on areal integrated fluxes.
An evaluation of a pre-scaling gel (SofScale) on the ease of supragingival calculus removal.
Smith, S R; Foyle, D M; Daniels, J
1994-09-01
SofScale is a pre-scaling gel, containing disodium EDTA and sodium lauryl sulphate, which is claimed to soften calculus and therefore facilitate its removal. 31 subjects were treated in a double blind randomised placebo controlled split mouth study to evaluate this product. Test or placebo gels were applied to the lingual surfaces of the mandibular teeth for 4 min and the time taken to complete the removal of supragingival calculus recorded. The operator recorded on which side the calculus was considered easier to remove and the patient indicated how comfortable the scaling had been. The mean calculus index was 1.99 for the SofScale group and 1.97 for the placebo. The mean time taken to complete scaling was 5.31 min for both groups. Using the Student t-test, there were no statistically significant differences (p > 0.7) between either the calculus index or time taken to complete the scaling between the groups. The operator did not consider SofScale to facilitate calculus removal and patients did not find calculus removal more comfortable when SofScale had been used. There was no increased sensitivity in the SofScale group following scaling. The results of this study do not support the use of SofScale as an adjunct to scaling.
Young Children's Memory for the Times of Personal Past Events
Pathman, Thanujeni; Larkina, Marina; Burch, Melissa; Bauer, Patricia J.
2012-01-01
Remembering the temporal information associated with personal past events is critical for autobiographical memory, yet we know relatively little about the development of this capacity. In the present research, we investigated temporal memory for naturally occurring personal events in 4-, 6-, and 8-year-old children. Parents recorded unique events in which their children participated during a 4-month period. At test, children made relative recency judgments and estimated the time of each event using conventional time-scales (time of day, day of week, month of year, and season). Children also were asked to provide justifications for their time-scale judgments. Six- and 8-year-olds, but not 4-year-olds, accurately judged the order of two distinct events. There were age-related improvements in children's estimation of the time of events using conventional time-scales. Older children provided more justifications for their time-scale judgments compared to younger children. Relations between correct responding on the time-scale judgments and provision of meaningful justifications suggest that children may use that information to reconstruct the times associated with past events. The findings can be used to chart a developmental trajectory of performance in temporal memory for personal past events, and have implications for our understanding of autobiographical memory development. PMID:23687467
NASA Astrophysics Data System (ADS)
Tang, Zhanqi; Jiang, Nan
2018-05-01
This study reports the modifications of scale interaction and arrangement in a turbulent boundary layer perturbed by a wall-mounted circular cylinder. Hot-wire measurements were executed at multiple streamwise and wall-normal wise locations downstream of the cylindrical element. The streamwise fluctuating signals were decomposed into large-, small-, and dissipative-scale signatures by corresponding cutoff filters. The scale interaction under the cylindrical perturbation was elaborated by comparing the small- and dissipative-scale amplitude/frequency modulation effects downstream of the cylinder element with the results observed in the unperturbed case. It was obtained that the large-scale fluctuations perform a stronger amplitude modulation on both the small and dissipative scales in the near-wall region. At the wall-normal positions of the cylinder height, the small-scale amplitude modulation coefficients are redistributed by the cylinder wake. The similar observation was noted in small-scale frequency modulation; however, the dissipative-scale frequency modulation seems to be independent of the cylindrical perturbation. The phase-relationship observation indicated that the cylindrical perturbation shortens the time shifts between both the small- and dissipative-scale variations (amplitude and frequency) and large-scale fluctuations. Then, the integral time scale dependence of the phase-relationship between the small/dissipative scales and large scales was also discussed. Furthermore, the discrepancy of small- and dissipative-scale time shifts relative to the large-scale motions was examined, which indicates that the small-scale amplitude/frequency leads the dissipative scales.
Time-calibrated Milankovitch cycles for the late Permian.
Wu, Huaichun; Zhang, Shihong; Hinnov, Linda A; Jiang, Ganqing; Feng, Qinglai; Li, Haiyan; Yang, Tianshui
2013-01-01
An important innovation in the geosciences is the astronomical time scale. The astronomical time scale is based on the Milankovitch-forced stratigraphy that has been calibrated to astronomical models of paleoclimate forcing; it is defined for much of Cenozoic-Mesozoic. For the Palaeozoic era, however, astronomical forcing has not been widely explored because of lack of high-precision geochronology or astronomical modelling. Here we report Milankovitch cycles from late Permian (Lopingian) strata at Meishan and Shangsi, South China, time calibrated by recent high-precision U-Pb dating. The evidence extends empirical knowledge of Earth's astronomical parameters before 250 million years ago. Observed obliquity and precession terms support a 22-h length-of-day. The reconstructed astronomical time scale indicates a 7.793-million year duration for the Lopingian epoch, when strong 405-kyr cycles constrain astronomical modelling. This is the first significant advance in defining the Palaeozoic astronomical time scale, anchored to absolute time, bridging the Palaeozoic-Mesozoic transition.
Time Correlations and the Frequency Spectrum of Sound Radiated by Turbulent Flows
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Zhou, Ye
1997-01-01
Theories of turbulent time correlations are applied to compute frequency spectra of sound radiated by isotropic turbulence and by turbulent shear flows. The hypothesis that Eulerian time correlations are dominated by the sweeping action of the most energetic scales implies that the frequency spectrum of the sound radiated by isotropic turbulence scales as omega(exp 4) for low frequencies and as omega(exp -3/4) for high frequencies. The sweeping hypothesis is applied to an approximate theory of jet noise. The high frequency noise again scales as omega(exp -3/4), but the low frequency spectrum scales as omega(exp 2). In comparison, a classical theory of jet noise based on dimensional analysis gives omega(exp -2) and omega(exp 2) scaling for these frequency ranges. It is shown that the omega(exp -2) scaling is obtained by simplifying the description of turbulent time correlations. An approximate theory of the effect of shear on turbulent time correlations is developed and applied to the frequency spectrum of sound radiated by shear turbulence. The predicted steepening of the shear dominated spectrum appears to be consistent with jet noise measurements.
Atomic scale modeling of defect production and microstructure evolution in irradiated metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz de la Rubia, T.; Soneda, N.; Shimomura, Y.
1997-04-01
Irradiation effects in materials depend in a complex way on the form of the as-produced primary damage state and its spatial and temporal evolution. Thus, while collision cascades produce defects on a time scale of tens of picosecond, diffusion occurs over much longer time scales, of the order of seconds, and microstructure evolution over even longer time scales. In this report the authors present work aimed at describing damage production and evolution in metals across all the relevant time and length scales. They discuss results of molecular dynamics simulations of displacement cascades in Fe and V. They show that interstitialmore » clusters are produced in cascades above 5 keV, but not vacancy clusters. Next, they discuss the development of a kinetic Monte Carlo model that enables calculations of damage evolution over much longer time scales (1000`s of s) than the picosecond lifetime of the cascade. They demonstrate the applicability of the method by presenting predictions on the fraction of freely migrating defects in {alpha}Fe during irradiation at 600 K.« less
Heidari, Zahra; Roe, Daniel R; Galindo-Murillo, Rodrigo; Ghasemi, Jahan B; Cheatham, Thomas E
2016-07-25
Long time scale molecular dynamics (MD) simulations of biological systems are becoming increasingly commonplace due to the availability of both large-scale computational resources and significant advances in the underlying simulation methodologies. Therefore, it is useful to investigate and develop data mining and analysis techniques to quickly and efficiently extract the biologically relevant information from the incredible amount of generated data. Wavelet analysis (WA) is a technique that can quickly reveal significant motions during an MD simulation. Here, the application of WA on well-converged long time scale (tens of μs) simulations of a DNA helix is described. We show how WA combined with a simple clustering method can be used to identify both the physical and temporal locations of events with significant motion in MD trajectories. We also show that WA can not only distinguish and quantify the locations and time scales of significant motions, but by changing the maximum time scale of WA a more complete characterization of these motions can be obtained. This allows motions of different time scales to be identified or ignored as desired.
Galaxy Zoo: evidence for diverse star formation histories through the green valley
NASA Astrophysics Data System (ADS)
Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Marshall, P. J.; Bamford, S.; Fortson, L.; Kaviraj, S.; Masters, K. L.; Melvin, T.; Nichol, R. C.; Skibba, R. A.; Willett, K. W.
2015-06-01
Does galaxy evolution proceed through the green valley via multiple pathways or as a single population? Motivated by recent results highlighting radically different evolutionary pathways between early- and late-type galaxies, we present results from a simple Bayesian approach to this problem wherein we model the star formation history (SFH) of a galaxy with two parameters, [t, τ] and compare the predicted and observed optical and near-ultraviolet colours. We use a novel method to investigate the morphological differences between the most probable SFHs for both disc-like and smooth-like populations of galaxies, by using a sample of 126 316 galaxies (0.01 < z < 0.25) with probabilistic estimates of morphology from Galaxy Zoo. We find a clear difference between the quenching time-scales preferred by smooth- and disc-like galaxies, with three possible routes through the green valley dominated by smooth- (rapid time-scales, attributed to major mergers), intermediate- (intermediate time-scales, attributed to minor mergers and galaxy interactions) and disc-like (slow time-scales, attributed to secular evolution) galaxies. We hypothesize that morphological changes occur in systems which have undergone quenching with an exponential time-scale τ < 1.5 Gyr, in order for the evolution of galaxies in the green valley to match the ratio of smooth to disc galaxies observed in the red sequence. These rapid time-scales are instrumental in the formation of the red sequence at earlier times; however, we find that galaxies currently passing through the green valley typically do so at intermediate time-scales.†
A theoretically consistent stochastic cascade for temporal disaggregation of intermittent rainfall
NASA Astrophysics Data System (ADS)
Lombardo, F.; Volpi, E.; Koutsoyiannis, D.; Serinaldi, F.
2017-06-01
Generating fine-scale time series of intermittent rainfall that are fully consistent with any given coarse-scale totals is a key and open issue in many hydrological problems. We propose a stationary disaggregation method that simulates rainfall time series with given dependence structure, wet/dry probability, and marginal distribution at a target finer (lower-level) time scale, preserving full consistency with variables at a parent coarser (higher-level) time scale. We account for the intermittent character of rainfall at fine time scales by merging a discrete stochastic representation of intermittency and a continuous one of rainfall depths. This approach yields a unique and parsimonious mathematical framework providing general analytical formulations of mean, variance, and autocorrelation function (ACF) for a mixed-type stochastic process in terms of mean, variance, and ACFs of both continuous and discrete components, respectively. To achieve the full consistency between variables at finer and coarser time scales in terms of marginal distribution and coarse-scale totals, the generated lower-level series are adjusted according to a procedure that does not affect the stochastic structure implied by the original model. To assess model performance, we study rainfall process as intermittent with both independent and dependent occurrences, where dependence is quantified by the probability that two consecutive time intervals are dry. In either case, we provide analytical formulations of main statistics of our mixed-type disaggregation model and show their clear accordance with Monte Carlo simulations. An application to rainfall time series from real world is shown as a proof of concept.
NASA Astrophysics Data System (ADS)
Cao, Xi; Wu, Renguang
2018-04-01
Large intraseasonal rainfall variations are identified over the southern South China Sea (SSCS), tropical southeastern Indian Ocean (SEIO), and east coast of the Philippines (EPHI) in boreal winter. The present study contrasts origins and propagations and investigates interrelations of intraseasonal rainfall variations on the 10-20- and 30-60-day time scales in these regions. Different origins are identified for intraseasonal rainfall anomalies over the SSCS, SEIO, and EPHI on both time scales. On the 10-20-day time scale, strong northerly or northeasterly wind anomalies related to the East Asian winter monsoon (EAWM) play a major role in intraseasonal rainfall variations over the SSCS and EPHI. On the 30-60-day time scale, both the intraseasonal signal from the tropical Indian Ocean and the EAWM-related wind anomalies contribute to intraseasonal rainfall variations over the SSCS, whereas the EAWM-related wind anomalies have a major contribution to the intraseasonal rainfall variations over the EPHI. No relation is detected between the intraseasonal rainfall variations over the SEIO and the EAWM on both the 10-20-day and 30-60-day time scales. The anomalies associated with intraseasonal rainfall variations over the SSCS and EPHI propagate northwestward and northeastward, respectively, on the 10-20- and 30-60-day time scales. The intraseasonal rainfall anomalies display northwestward and northward propagation over the Bay of Bengal, respectively, on the 10-20- and 30-60-day time scales.
Chaotic phase synchronization in bursting-neuron models driven by a weak periodic force
NASA Astrophysics Data System (ADS)
Ando, Hiroyasu; Suetani, Hiromichi; Kurths, Jürgen; Aihara, Kazuyuki
2012-07-01
We investigate the entrainment of a neuron model exhibiting a chaotic spiking-bursting behavior in response to a weak periodic force. This model exhibits two types of oscillations with different characteristic time scales, namely, long and short time scales. Several types of phase synchronization are observed, such as 1:1 phase locking between a single spike and one period of the force and 1:l phase locking between the period of slow oscillation underlying bursts and l periods of the force. Moreover, spiking-bursting oscillations with chaotic firing patterns can be synchronized with the periodic force. Such a type of phase synchronization is detected from the position of a set of points on a unit circle, which is determined by the phase of the periodic force at each spiking time. We show that this detection method is effective for a system with multiple time scales. Owing to the existence of both the short and the long time scales, two characteristic phenomena are found around the transition point to chaotic phase synchronization. One phenomenon shows that the average time interval between successive phase slips exhibits a power-law scaling against the driving force strength and that the scaling exponent has an unsmooth dependence on the changes in the driving force strength. The other phenomenon shows that Kuramoto's order parameter before the transition exhibits stepwise behavior as a function of the driving force strength, contrary to the smooth transition in a model with a single time scale.
Contrasting scaling properties of interglacial and glacial climates
NASA Astrophysics Data System (ADS)
Ditlevsen, Peter; Shao, Zhi-Gang
2017-04-01
Understanding natural climate variability is essential for assessments of climate change. This is reflected in the scaling properties of climate records. The scaling exponents of the interglacial and the glacial climates are fundamentally different. The Holocene record is monofractal, with a scaling exponent H˜0.7. On the contrary, the glacial record is multifractal, with a significantly higher scaling exponent H˜1.2, indicating a longer persistence time and stronger nonlinearities in the glacial climate. The glacial climate is dominated by the strong multi-millennial Dansgaard-Oeschger (DO) events influencing the long-time correlation. However, by separately analysing the last glacial maximum lacking DO events, here we find the same scaling for that period as for the full glacial period. The unbroken scaling thus indicates that the DO events are part of the natural variability and not externally triggered. At glacial time scales, there is a scale break to a trivial scaling, contrasting the DO events from the similarly saw-tooth-shaped glacial cycles. Ref: Zhi-Gang Shao and Peter Ditlevsen, Nature Comm. 7, 10951, 2016
Scale-invariant Green-Kubo relation for time-averaged diffusivity
NASA Astrophysics Data System (ADS)
Meyer, Philipp; Barkai, Eli; Kantz, Holger
2017-12-01
In recent years it was shown both theoretically and experimentally that in certain systems exhibiting anomalous diffusion the time- and ensemble-averaged mean-squared displacement are remarkably different. The ensemble-averaged diffusivity is obtained from a scaling Green-Kubo relation, which connects the scale-invariant nonstationary velocity correlation function with the transport coefficient. Here we obtain the relation between time-averaged diffusivity, usually recorded in single-particle tracking experiments, and the underlying scale-invariant velocity correlation function. The time-averaged mean-squared displacement is given by 〈δ2¯〉 ˜2 DνtβΔν -β , where t is the total measurement time and Δ is the lag time. Here ν is the anomalous diffusion exponent obtained from ensemble-averaged measurements 〈x2〉 ˜tν , while β ≥-1 marks the growth or decline of the kinetic energy 〈v2〉 ˜tβ . Thus, we establish a connection between exponents that can be read off the asymptotic properties of the velocity correlation function and similarly for the transport constant Dν. We demonstrate our results with nonstationary scale-invariant stochastic and deterministic models, thereby highlighting that systems with equivalent behavior in the ensemble average can differ strongly in their time average. If the averaged kinetic energy is finite, β =0 , the time scaling of 〈δ2¯〉 and 〈x2〉 are identical; however, the time-averaged transport coefficient Dν is not identical to the corresponding ensemble-averaged diffusion constant.
NASA Astrophysics Data System (ADS)
Alessandri, A.; Catalano, F.; De Felice, M.; Hurk, B. V. D.; Doblas-Reyes, F. J.; Boussetta, S.; Balsamo, G.; Miller, P. A.
2017-12-01
Here we demonstrate, for the first time, that the implementation of a realistic representation of vegetation in Earth System Models (ESMs) can significantly improve climate simulation and prediction across multiple time-scales. The effective sub-grid vegetation fractional coverage vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the surface resistance to evapotranspiration, albedo, roughness lenght, and soil field capacity. To adequately represent this effect in the EC-Earth ESM, we included an exponential dependence of the vegetation cover on the Leaf Area Index.By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal (2-4 months) and weather (4 days) time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation-cover consistently correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.Above results are discussed in a peer-review paper just being accepted for publication on Climate Dynamics (Alessandri et al., 2017; doi:10.1007/s00382-017-3766-y).
NASA Astrophysics Data System (ADS)
Velten, Andreas
2017-05-01
Light scattering is a primary obstacle to optical imaging in a variety of different environments and across many size and time scales. Scattering complicates imaging on large scales when imaging through the atmosphere when imaging from airborne or space borne platforms, through marine fog, or through fog and dust in vehicle navigation, for example in self driving cars. On smaller scales, scattering is the major obstacle when imaging through human tissue in biomedical applications. Despite the large variety of participating materials and size scales, light transport in all these environments is usually described with very similar scattering models that are defined by the same small set of parameters, including scattering and absorption length and phase function. We attempt a study of scattering and methods of imaging through scattering across different scales and media, particularly with respect to the use of time of flight information. We can show that using time of flight, in addition to spatial information, provides distinct advantages in scattering environments. By performing a comparative study of scattering across scales and media, we are able to suggest scale models for scattering environments to aid lab research. We also can transfer knowledge and methodology between different fields.
Scale and time dependence of serial correlations in word-length time series of written texts
NASA Astrophysics Data System (ADS)
Rodriguez, E.; Aguilar-Cornejo, M.; Femat, R.; Alvarez-Ramirez, J.
2014-11-01
This work considered the quantitative analysis of large written texts. To this end, the text was converted into a time series by taking the sequence of word lengths. The detrended fluctuation analysis (DFA) was used for characterizing long-range serial correlations of the time series. To this end, the DFA was implemented within a rolling window framework for estimating the variations of correlations, quantified in terms of the scaling exponent, strength along the text. Also, a filtering derivative was used to compute the dependence of the scaling exponent relative to the scale. The analysis was applied to three famous English-written literary narrations; namely, Alice in Wonderland (by Lewis Carrol), Dracula (by Bram Stoker) and Sense and Sensibility (by Jane Austen). The results showed that high correlations appear for scales of about 50-200 words, suggesting that at these scales the text contains the stronger coherence. The scaling exponent was not constant along the text, showing important variations with apparent cyclical behavior. An interesting coincidence between the scaling exponent variations and changes in narrative units (e.g., chapters) was found. This suggests that the scaling exponent obtained from the DFA is able to detect changes in narration structure as expressed by the usage of words of different lengths.
The Chip-Scale Atomic Clock - Recent Development Progress
2004-09-01
35th Annual Precise Time and Time Interval (PTTI) Meeting 467 THE CHIP-SCALE ATOMIC CLOCK – RECENT DEVELOPMENT PROGRESS R. Lutwak ...1] R. Lutwak , et al., 2003, “The Chip-Scale Atomic Clock – Coherent Population Trapping vs. Conventional Interrogation,” in
NASA Astrophysics Data System (ADS)
Swaminathan, Srinivasan; Krishna, Nanda Gopala; Kim, Dong-Ik
2015-10-01
Oxide scale evolution on Cu-bearing austenitic stainless steel 304H at 650 °C, in ambient air, for exposure times 100, 300, 500 and 1000 h, has been investigated. Surface morphology and chemistry of the oxide scale grown were examined using SEM/EDX and XPS. The oxidation kinetics was determined by measuring the weight change using an electronic balance. At the initial stage, up to 500 h of exposure time, the oxidation rate was rapid due to surface reactions governed primarily by oxygen ingress, and then, dropped to a low rate after prolonged oxidation for 1000 h. The diffusion of reactants through the initially formed oxide scale limits the oxidation rate at longer times, thus, the progress of reaction followed the parabolic kinetics. The formed oxide scale was enriched significantly with segregation and subsequent oxidation of Nb, and finely dispersed metallic Cu particles. Within the time frame of oxidation, the oxide scale was mainly composed of mixed oxides such as FeCr2O4 and MnCr2O4 along with the binary oxides of Fe, Cr and Mn. Moreover, the precipitation fraction of Cu-rich particles on the oxide scale increased markedly with increase of exposure times. The chemical heterogeneity of oxide scale suggests that the oxidation occurred in a non-selective manner.
Anomalous scaling of stochastic processes and the Moses effect
NASA Astrophysics Data System (ADS)
Chen, Lijian; Bassler, Kevin E.; McCauley, Joseph L.; Gunaratne, Gemunu H.
2017-04-01
The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution whose width scales like t1/2. However, processes in which the probability distribution is not normal and the scaling exponent differs from 1/2 are known. The search for possible origins of such "anomalous" scaling and approaches to quantify them are the motivations for the work reported here. In processes with stationary increments, where the stochastic process is time-independent, autocorrelations between increments and infinite variance of increments can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect, respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis.
Anomalous scaling of stochastic processes and the Moses effect.
Chen, Lijian; Bassler, Kevin E; McCauley, Joseph L; Gunaratne, Gemunu H
2017-04-01
The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution whose width scales like t^{1/2}. However, processes in which the probability distribution is not normal and the scaling exponent differs from 1/2 are known. The search for possible origins of such "anomalous" scaling and approaches to quantify them are the motivations for the work reported here. In processes with stationary increments, where the stochastic process is time-independent, autocorrelations between increments and infinite variance of increments can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect, respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis.
A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China.
Xu, Lilai; Gao, Peiqing; Cui, Shenghui; Liu, Chun
2013-06-01
Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 - 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 - 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to develop integrated policies and measures for waste management over the long term. Copyright © 2013 Elsevier Ltd. All rights reserved.
On the Role of Multi-Scale Processes in CO2 Storage Security and Integrity
NASA Astrophysics Data System (ADS)
Pruess, K.; Kneafsey, T. J.
2008-12-01
Consideration of multiple scales in subsurface processes is usually referred to the spatial domain, where we may attempt to relate process descriptions and parameters from pore and bench (Darcy) scale to much larger field and regional scales. However, multiple scales occur also in the time domain, and processes extending over a broad range of time scales may be very relevant to CO2 storage and containment. In some cases, such as in the convective instability induced by CO2 dissolution in saline waters, space and time scales are coupled in the sense that perturbations induced by CO2 injection will grow concurrently over many orders of magnitude in both space and time. In other cases, CO2 injection may induce processes that occur on short time scales, yet may affect large regions. Possible examples include seismicity that may be triggered by CO2 injection, or hypothetical release events such as "pneumatic eruptions" that may discharge substantial amounts of CO2 over a short time period. This paper will present recent advances in our experimental and modeling studies of multi-scale processes. Specific examples that will be discussed include (1) the process of CO2 dissolution-diffusion-convection (DDC), that can greatly accelerate the rate at which free-phase CO2 is stored as aqueous solute; (2) self- enhancing and self-limiting processes during CO2 leakage through faults, fractures, or improperly abandoned wells; and (3) porosity and permeability reduction from salt precipitation near CO2 injection wells, and mitigation of corresponding injectivity loss. This work was supported by the Office of Basic Energy Sciences and by the Zero Emission Research and Technology project (ZERT) under Contract No. DE-AC02-05CH11231 with the U.S. Department of Energy.
Identifying the scale-dependent motifs in atmospheric surface layer by ordinal pattern analysis
NASA Astrophysics Data System (ADS)
Li, Qinglei; Fu, Zuntao
2018-07-01
Ramp-like structures in various atmospheric surface layer time series have been long studied, but the presence of motifs with the finer scale embedded within larger scale ramp-like structures has largely been overlooked in the reported literature. Here a novel, objective and well-adapted methodology, the ordinal pattern analysis, is adopted to study the finer-scaled motifs in atmospheric boundary-layer (ABL) time series. The studies show that the motifs represented by different ordinal patterns take clustering properties and 6 dominated motifs out of the whole 24 motifs account for about 45% of the time series under particular scales, which indicates the higher contribution of motifs with the finer scale to the series. Further studies indicate that motif statistics are similar for both stable conditions and unstable conditions at larger scales, but large discrepancies are found at smaller scales, and the frequencies of motifs "1234" and/or "4321" are a bit higher under stable conditions than unstable conditions. Under stable conditions, there are great changes for the occurrence frequencies of motifs "1234" and "4321", where the occurrence frequencies of motif "1234" decrease from nearly 24% to 4.5% with the scale factor increasing, and the occurrence frequencies of motif "4321" change nonlinearly with the scale increasing. These great differences of dominated motifs change with scale can be taken as an indicator to quantify the flow structure changes under different stability conditions, and motif entropy can be defined just by only 6 dominated motifs to quantify this time-scale independent property of the motifs. All these results suggest that the defined scale of motifs with the finer scale should be carefully taken into consideration in the interpretation of turbulence coherent structures.
A k-epsilon modeling of near wall turbulence
NASA Technical Reports Server (NTRS)
Yang, Z.; Shih, T. H.
1991-01-01
A k-epsilon model is proposed for turbulent bounded flows. In this model, the turbulent velocity scale and turbulent time scale are used to define the eddy viscosity. The time scale is shown to be bounded from below by the Kolmogorov time scale. The dissipation equation is reformulated using the time scale, removing the need to introduce the pseudo-dissipation. A damping function is chosen such that the shear stress satisfies the near wall asymptotic behavior. The model constants used are the same as the model constants in the commonly used high turbulent Reynolds number k-epsilon model. Fully developed turbulent channel flows and turbulent boundary layer flows over a flat plate at various Reynolds numbers are used to validate the model. The model predictions were found to be in good agreement with the direct numerical simulation data.
Downscaling ocean conditions: Experiments with a quasi-geostrophic model
NASA Astrophysics Data System (ADS)
Katavouta, A.; Thompson, K. R.
2013-12-01
The predictability of small-scale ocean variability, given the time history of the associated large-scales, is investigated using a quasi-geostrophic model of two wind-driven gyres separated by an unstable, mid-ocean jet. Motivated by the recent theoretical study of Henshaw et al. (2003), we propose a straightforward method for assimilating information on the large-scale in order to recover the small-scale details of the quasi-geostrophic circulation. The similarity of this method to the spectral nudging of limited area atmospheric models is discussed. Results from the spectral nudging of the quasi-geostrophic model, and an independent multivariate regression-based approach, show that important features of the ocean circulation, including the position of the meandering mid-ocean jet and the associated pinch-off eddies, can be recovered from the time history of a small number of large-scale modes. We next propose a hybrid approach for assimilating both the large-scales and additional observed time series from a limited number of locations that alone are too sparse to recover the small scales using traditional assimilation techniques. The hybrid approach improved significantly the recovery of the small-scales. The results highlight the importance of the coupling between length scales in downscaling applications, and the value of assimilating limited point observations after the large-scales have been set correctly. The application of the hybrid and spectral nudging to practical ocean forecasting, and projecting changes in ocean conditions on climate time scales, is discussed briefly.
Appropriate time scales for nonlinear analyses of deterministic jump systems
NASA Astrophysics Data System (ADS)
Suzuki, Tomoya
2011-06-01
In the real world, there are many phenomena that are derived from deterministic systems but which fluctuate with nonuniform time intervals. This paper discusses the appropriate time scales that can be applied to such systems to analyze their properties. The financial markets are an example of such systems wherein price movements fluctuate with nonuniform time intervals. However, it is common to apply uniform time scales such as 1-min data and 1-h data to study price movements. This paper examines the validity of such time scales by using surrogate data tests to ascertain whether the deterministic properties of the original system can be identified from uniform sampled data. The results show that uniform time samplings are often inappropriate for nonlinear analyses. However, for other systems such as neural spikes and Internet traffic packets, which produce similar outputs, uniform time samplings are quite effective in extracting the system properties. Nevertheless, uniform samplings often generate overlapping data, which can cause false rejections of surrogate data tests.
Image scale measurement with correlation filters in a volume holographic optical correlator
NASA Astrophysics Data System (ADS)
Zheng, Tianxiang; Cao, Liangcai; He, Qingsheng; Jin, Guofan
2013-08-01
A search engine containing various target images or different part of a large scene area is of great use for many applications, including object detection, biometric recognition, and image registration. The input image captured in realtime is compared with all the template images in the search engine. A volume holographic correlator is one type of these search engines. It performs thousands of comparisons among the images at a super high speed, with the correlation task accomplishing mainly in optics. However, the inputted target image always contains scale variation to the filtering template images. At the time, the correlation values cannot properly reflect the similarity of the images. It is essential to estimate and eliminate the scale variation of the inputted target image. There are three domains for performing the scale measurement, as spatial, spectral and time domains. Most methods dealing with the scale factor are based on the spatial or the spectral domains. In this paper, a method with the time domain is proposed to measure the scale factor of the input image. It is called a time-sequential scaled method. The method utilizes the relationship between the scale variation and the correlation value of two images. It sends a few artificially scaled input images to compare with the template images. The correlation value increases and decreases with the increasing of the scale factor at the intervals of 0.8~1 and 1~1.2, respectively. The original scale of the input image can be measured by estimating the largest correlation value through correlating the artificially scaled input image with the template images. The measurement range for the scale can be 0.8~4.8. Scale factor beyond 1.2 is measured by scaling the input image at the factor of 1/2, 1/3 and 1/4, correlating the artificially scaled input image with the template images, and estimating the new corresponding scale factor inside 0.8~1.2.
Jang, Young-Eun; Kim, Chun-Bae; Kim, Nam-Hee
2017-01-01
Health insurance reduces the economic burden of diseases and enhances access to medical services. This study compared, among social classes, the utilization of preventive dental service before and after health insurance covered dental scaling. We analyzed time-series secondary data for 3 175 584 participants from 253 survey areas nationwide in the Community Health Survey (2009-2014) in Korea. The weighted proportion of participants who underwent dental scaling was defined as the scaling rate. Data regarding demographic and socioeconomic characteristics were collected. Scaling rates continuously increased over the 6-year period, particularly in 2014. College graduates had significantly higher scaling rates. Monthly income and scaling rate were positively related. Differences by education decreased over time. Differences by income were particularly high between 2012 and 2014. For women, the temporal rate was 2 times higher for professionals than for the unemployed. Despite increased dental scaling rates since the health coverage change in 2013, socioeconomic differences persist.
King, Adam C; Newell, Karl M
2015-10-01
The experiment investigated the effect of selectively augmenting faster time scales of visual feedback information on the learning and transfer of continuous isometric force tracking tasks to test the generality of the self-organization of 1/f properties of force output. Three experimental groups tracked an irregular target pattern either under a standard fixed gain condition or with selectively enhancement in the visual feedback display of intermediate (4-8 Hz) or high (8-12 Hz) frequency components of the force output. All groups reduced tracking error over practice, with the error lowest in the intermediate scaling condition followed by the high scaling and fixed gain conditions, respectively. Selective visual scaling induced persistent changes across the frequency spectrum, with the strongest effect in the intermediate scaling condition and positive transfer to novel feedback displays. The findings reveal an interdependence of the timescales in the learning and transfer of isometric force output frequency structures consistent with 1/f process models of the time scales of motor output variability.
Physics in space-time with scale-dependent metrics
NASA Astrophysics Data System (ADS)
Balankin, Alexander S.
2013-10-01
We construct three-dimensional space Rγ3 with the scale-dependent metric and the corresponding Minkowski space-time Mγ,β4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in Rγ3 is developed. We state that Mγ,β4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ≪ℓ0 to DH=4 in the infrared limit ≫ℓ0, where ℓ0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS≡4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.
Dahlberg, Jerry; Tkacik, Peter T; Mullany, Brigid; Fleischhauer, Eric; Shahinian, Hossein; Azimi, Farzad; Navare, Jayesh; Owen, Spencer; Bisel, Tucker; Martin, Tony; Sholar, Jodie; Keanini, Russell G
2017-12-04
An analog, macroscopic method for studying molecular-scale hydrodynamic processes in dense gases and liquids is described. The technique applies a standard fluid dynamic diagnostic, particle image velocimetry (PIV), to measure: i) velocities of individual particles (grains), extant on short, grain-collision time-scales, ii) velocities of systems of particles, on both short collision-time- and long, continuum-flow-time-scales, iii) collective hydrodynamic modes known to exist in dense molecular fluids, and iv) short- and long-time-scale velocity autocorrelation functions, central to understanding particle-scale dynamics in strongly interacting, dense fluid systems. The basic system is composed of an imaging system, light source, vibrational sensors, vibrational system with a known media, and PIV and analysis software. Required experimental measurements and an outline of the theoretical tools needed when using the analog technique to study molecular-scale hydrodynamic processes are highlighted. The proposed technique provides a relatively straightforward alternative to photonic and neutron beam scattering methods traditionally used in molecular hydrodynamic studies.
Evolution of multiple quantum coherences with scaled dipolar Hamiltonian
NASA Astrophysics Data System (ADS)
Sánchez, Claudia M.; Buljubasich, Lisandro; Pastawski, Horacio M.; Chattah, Ana K.
2017-08-01
In this article, we introduce a pulse sequence which allows the monitoring of multiple quantum coherences distribution of correlated spin states developed with scaled dipolar Hamiltonian. The pulse sequence is a modification of our previous Proportionally Refocused Loschmidt echo (PRL echo) with phase increment, in order to verify the accuracy of the weighted coherent quantum dynamics. The experiments were carried out with different scaling factors to analyze the evolution of the total magnetization, the time dependence of the multiple quantum coherence orders, and the development of correlated spins clusters. In all cases, a strong dependence between the evolution rate and the weighting factor is observed. Remarkably, all the curves appeared overlapped in a single trend when plotted against the self-time, a new time scale that includes the scaling factor into the evolution time. In other words, the spin system displayed always the same quantum evolution, slowed down as the scaling factor decreases, confirming the high performance of the new pulse sequence.
Scaling properties in time-varying networks with memory
NASA Astrophysics Data System (ADS)
Kim, Hyewon; Ha, Meesoon; Jeong, Hawoong
2015-12-01
The formation of network structure is mainly influenced by an individual node's activity and its memory, where activity can usually be interpreted as the individual inherent property and memory can be represented by the interaction strength between nodes. In our study, we define the activity through the appearance pattern in the time-aggregated network representation, and quantify the memory through the contact pattern of empirical temporal networks. To address the role of activity and memory in epidemics on time-varying networks, we propose temporal-pattern coarsening of activity-driven growing networks with memory. In particular, we focus on the relation between time-scale coarsening and spreading dynamics in the context of dynamic scaling and finite-size scaling. Finally, we discuss the universality issue of spreading dynamics on time-varying networks for various memory-causality tests.
NASA Astrophysics Data System (ADS)
Lao, Jiashun; Nie, He; Jiang, Yonghong
2018-06-01
This paper employs SBW proposed by Baker and Wurgler (2006) to investigate the nonlinear asymmetric Granger causality between investor sentiment and stock returns for US economy while considering different time-scales. The wavelet method is utilized to decompose time series of investor sentiment and stock returns at different time-scales to focus on the local analysis of different time horizons of investors. The linear and nonlinear asymmetric Granger methods are employed to examine the Granger causal relationship on similar time-scales. We find evidence of strong bilateral linear and nonlinear asymmetric Granger causality between longer-term investor sentiment and stock returns. Furthermore, we observe the positive nonlinear causal relationship from stock returns to investor sentiment and the negative nonlinear causal relationship from investor sentiment to stock returns.
Liquidity spillover in international stock markets through distinct time scales.
Righi, Marcelo Brutti; Vieira, Kelmara Mendes
2014-01-01
This paper identifies liquidity spillovers through different time scales based on a wavelet multiscaling method. We decompose daily data from U.S., British, Brazilian and Hong Kong stock markets indices in order to calculate the scale correlation between their illiquidities. The sample is divided in order to consider non-crisis, sub-prime crisis and Eurozone crisis. We find that there are changes in correlations of distinct scales and different periods. Association in finest scales is smaller than in coarse scales. There is a rise on associations in periods of crisis. In frequencies, there is predominance for significant distinctions involving the coarsest scale, while for crises periods there is predominance for distinctions on the finest scale.
Liquidity Spillover in International Stock Markets through Distinct Time Scales
Righi, Marcelo Brutti; Vieira, Kelmara Mendes
2014-01-01
This paper identifies liquidity spillovers through different time scales based on a wavelet multiscaling method. We decompose daily data from U.S., British, Brazilian and Hong Kong stock markets indices in order to calculate the scale correlation between their illiquidities. The sample is divided in order to consider non-crisis, sub-prime crisis and Eurozone crisis. We find that there are changes in correlations of distinct scales and different periods. Association in finest scales is smaller than in coarse scales. There is a rise on associations in periods of crisis. In frequencies, there is predominance for significant distinctions involving the coarsest scale, while for crises periods there is predominance for distinctions on the finest scale. PMID:24465918
Synchronous dynamics of zooplankton competitors prevail in temperate lake ecosystems.
Vasseur, David A; Fox, Jeremy W; Gonzalez, Andrew; Adrian, Rita; Beisner, Beatrix E; Helmus, Matthew R; Johnson, Catherine; Kratina, Pavel; Kremer, Colin; de Mazancourt, Claire; Miller, Elizabeth; Nelson, William A; Paterson, Michael; Rusak, James A; Shurin, Jonathan B; Steiner, Christopher F
2014-08-07
Although competing species are expected to exhibit compensatory dynamics (negative temporal covariation), empirical work has demonstrated that competitive communities often exhibit synchronous dynamics (positive temporal covariation). This has led to the suggestion that environmental forcing dominates species dynamics; however, synchronous and compensatory dynamics may appear at different length scales and/or at different times, making it challenging to identify their relative importance. We compiled 58 long-term datasets of zooplankton abundance in north-temperate and sub-tropical lakes and used wavelet analysis to quantify general patterns in the times and scales at which synchronous/compensatory dynamics dominated zooplankton communities in different regions and across the entire dataset. Synchronous dynamics were far more prevalent at all scales and times and were ubiquitous at the annual scale. Although we found compensatory dynamics in approximately 14% of all combinations of time period/scale/lake, there were no consistent scales or time periods during which compensatory dynamics were apparent across different regions. Our results suggest that the processes driving compensatory dynamics may be local in their extent, while those generating synchronous dynamics operate at much larger scales. This highlights an important gap in our understanding of the interaction between environmental and biotic forces that structure communities. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Cooling of solar flares plasmas. 1: Theoretical considerations
NASA Technical Reports Server (NTRS)
Cargill, Peter J.; Mariska, John T.; Antiochos, Spiro K.
1995-01-01
Theoretical models of the cooling of flare plasma are reexamined. By assuming that the cooling occurs in two separate phase where conduction and radiation, respectively, dominate, a simple analytic formula for the cooling time of a flare plasma is derived. Unlike earlier order-of-magnitude scalings, this result accounts for the effect of the evolution of the loop plasma parameters on the cooling time. When the conductive cooling leads to an 'evaporation' of chromospheric material, the cooling time scales L(exp 5/6)/p(exp 1/6), where the coronal phase (defined as the time maximum temperature). When the conductive cooling is static, the cooling time scales as L(exp 3/4)n(exp 1/4). In deriving these results, use was made of an important scaling law (T proportional to n(exp 2)) during the radiative cooling phase that was forst noted in one-dimensional hydrodynamic numerical simulations (Serio et al. 1991; Jakimiec et al. 1992). Our own simulations show that this result is restricted to approximately the radiative loss function of Rosner, Tucker, & Vaiana (1978). for different radiative loss functions, other scaling result, with T and n scaling almost linearly when the radiative loss falls off as T(exp -2). It is shown that these scaling laws are part of a class of analytic solutions developed by Antiocos (1980).
Towards a critical transition theory under different temporal scales and noise strengths
NASA Astrophysics Data System (ADS)
Shi, Jifan; Li, Tiejun; Chen, Luonan
2016-03-01
The mechanism of critical phenomena or critical transitions has been recently studied from various aspects, in particular considering slow parameter change and small noise. In this article, we systematically classify critical transitions into three types based on temporal scales and noise strengths of dynamical systems. Specifically, the classification is made by comparing three important time scales τλ, τtran, and τergo, where τλ is the time scale of parameter change (e.g., the change of environment), τtran is the time scale when a particle or state transits from a metastable state into another, and τergo is the time scale when the system becomes ergodic. According to the time scales, we classify the critical transition behaviors as three types, i.e., state transition, basin transition, and distribution transition. Moreover, for each type of transition, there are two cases, i.e., single-trajectory transition and multitrajectory ensemble transition, which correspond to the transition of individual behavior and population behavior, respectively. We also define the critical point for each type of critical transition, derive several properties, and further propose the indicators for predicting critical transitions with numerical simulations. In addition, we show that the noise-to-signal ratio is effective to make the classification of critical transitions for real systems.
Modeling the Neurodynamics of Submarine Piloting and Navigation Teams
2014-05-07
phenomena. The Hurst exponent , H, which is commonly used in a number of scientific fields, provides an estimate of correlation overtime scales...times series for a SPAN performance and CWT representation. The CWT is superimposed by scaling exponent trend near a time of stress. Scaling... exponents at the outset correspond to corrective or anticorrelated behavior. Scaling exponents increase throughout as the team manages the incident and
Influence of the time scale on the construction of financial networks.
Emmert-Streib, Frank; Dehmer, Matthias
2010-09-30
In this paper we investigate the definition and formation of financial networks. Specifically, we study the influence of the time scale on their construction. For our analysis we use correlation-based networks obtained from the daily closing prices of stock market data. More precisely, we use the stocks that currently comprise the Dow Jones Industrial Average (DJIA) and estimate financial networks where nodes correspond to stocks and edges correspond to none vanishing correlation coefficients. That means only if a correlation coefficient is statistically significant different from zero, we include an edge in the network. This construction procedure results in unweighted, undirected networks. By separating the time series of stock prices in non-overlapping intervals, we obtain one network per interval. The length of these intervals corresponds to the time scale of the data, whose influence on the construction of the networks will be studied in this paper. Numerical analysis of four different measures in dependence on the time scale for the construction of networks allows us to gain insights about the intrinsic time scale of the stock market with respect to a meaningful graph-theoretical analysis.
Développement mathématique appliqué à une future échelle de temps.
NASA Astrophysics Data System (ADS)
Andreucci, C.
The LPTF time section is in charge of the generation and dissemination of the French time scale (TA(F)). With the use of GPS time transfer and the replacement of the old generation of commercial caesium clocks, the quality of the timing data has changed rapidly. Consequently, the current time scale algorithm is not adapted to award a weight to the new clocks in relation with there quality. So a new algorithm has been built, with a more sensitive statistics processing. Tests carried out on real clock data covering the last few years, show improvement of the stability of the time scale.
A model of return intervals between earthquake events
NASA Astrophysics Data System (ADS)
Zhou, Yu; Chechkin, Aleksei; Sokolov, Igor M.; Kantz, Holger
2016-06-01
Application of the diffusion entropy analysis and the standard deviation analysis to the time sequence of the southern California earthquake events from 1976 to 2002 uncovered scaling behavior typical for anomalous diffusion. However, the origin of such behavior is still under debate. Some studies attribute the scaling behavior to the correlations in the return intervals, or waiting times, between aftershocks or mainshocks. To elucidate a nature of the scaling, we applied specific reshulffling techniques to eliminate correlations between different types of events and then examined how it affects the scaling behavior. We demonstrate that the origin of the scaling behavior observed is the interplay between mainshock waiting time distribution and the structure of clusters of aftershocks, but not correlations in waiting times between the mainshocks and aftershocks themselves. Our findings are corroborated by numerical simulations of a simple model showing a very similar behavior. The mainshocks are modeled by a renewal process with a power-law waiting time distribution between events, and aftershocks follow a nonhomogeneous Poisson process with the rate governed by Omori's law.
Delay induced high order locking effects in semiconductor lasers
NASA Astrophysics Data System (ADS)
Kelleher, B.; Wishon, M. J.; Locquet, A.; Goulding, D.; Tykalewicz, B.; Huyet, G.; Viktorov, E. A.
2017-11-01
Multiple time scales appear in many nonlinear dynamical systems. Semiconductor lasers, in particular, provide a fertile testing ground for multiple time scale dynamics. For solitary semiconductor lasers, the two fundamental time scales are the cavity repetition rate and the relaxation oscillation frequency which is a characteristic of the field-matter interaction in the cavity. Typically, these two time scales are of very different orders, and mutual resonances do not occur. Optical feedback endows the system with a third time scale: the external cavity repetition rate. This is typically much longer than the device cavity repetition rate and suggests the possibility of resonances with the relaxation oscillations. We show that for lasers with highly damped relaxation oscillations, such resonances can be obtained and lead to spontaneous mode-locking. Two different laser types-—a quantum dot based device and a quantum well based device—are analysed experimentally yielding qualitatively identical dynamics. A rate equation model is also employed showing an excellent agreement with the experimental results.
Delay induced high order locking effects in semiconductor lasers.
Kelleher, B; Wishon, M J; Locquet, A; Goulding, D; Tykalewicz, B; Huyet, G; Viktorov, E A
2017-11-01
Multiple time scales appear in many nonlinear dynamical systems. Semiconductor lasers, in particular, provide a fertile testing ground for multiple time scale dynamics. For solitary semiconductor lasers, the two fundamental time scales are the cavity repetition rate and the relaxation oscillation frequency which is a characteristic of the field-matter interaction in the cavity. Typically, these two time scales are of very different orders, and mutual resonances do not occur. Optical feedback endows the system with a third time scale: the external cavity repetition rate. This is typically much longer than the device cavity repetition rate and suggests the possibility of resonances with the relaxation oscillations. We show that for lasers with highly damped relaxation oscillations, such resonances can be obtained and lead to spontaneous mode-locking. Two different laser types--a quantum dot based device and a quantum well based device-are analysed experimentally yielding qualitatively identical dynamics. A rate equation model is also employed showing an excellent agreement with the experimental results.
Pankavich, S; Ortoleva, P
2010-06-01
The multiscale approach to N-body systems is generalized to address the broad continuum of long time and length scales associated with collective behaviors. A technique is developed based on the concept of an uncountable set of time variables and of order parameters (OPs) specifying major features of the system. We adopt this perspective as a natural extension of the commonly used discrete set of time scales and OPs which is practical when only a few, widely separated scales exist. The existence of a gap in the spectrum of time scales for such a system (under quasiequilibrium conditions) is used to introduce a continuous scaling and perform a multiscale analysis of the Liouville equation. A functional-differential Smoluchowski equation is derived for the stochastic dynamics of the continuum of Fourier component OPs. A continuum of spatially nonlocal Langevin equations for the OPs is also derived. The theory is demonstrated via the analysis of structural transitions in a composite material, as occurs for viral capsids and molecular circuits.
Two time scale output feedback regulation for ill-conditioned systems
NASA Technical Reports Server (NTRS)
Calise, A. J.; Moerder, D. D.
1986-01-01
Issues pertaining to the well-posedness of a two time scale approach to the output feedback regulator design problem are examined. An approximate quadratic performance index which reflects a two time scale decomposition of the system dynamics is developed. It is shown that, under mild assumptions, minimization of this cost leads to feedback gains providing a second-order approximation of optimal full system performance. A simplified approach to two time scale feedback design is also developed, in which gains are separately calculated to stabilize the slow and fast subsystem models. By exploiting the notion of combined control and observation spillover suppression, conditions are derived assuring that these gains will stabilize the full-order system. A sequential numerical algorithm is described which obtains output feedback gains minimizing a broad class of performance indices, including the standard LQ case. It is shown that the algorithm converges to a local minimum under nonrestrictive assumptions. This procedure is adapted to and demonstrated for the two time scale design formulations.
Thermodynamics constrains allometric scaling of optimal development time in insects.
Dillon, Michael E; Frazier, Melanie R
2013-01-01
Development time is a critical life-history trait that has profound effects on organism fitness and on population growth rates. For ectotherms, development time is strongly influenced by temperature and is predicted to scale with body mass to the quarter power based on 1) the ontogenetic growth model of the metabolic theory of ecology which describes a bioenergetic balance between tissue maintenance and growth given the scaling relationship between metabolism and body size, and 2) numerous studies, primarily of vertebrate endotherms, that largely support this prediction. However, few studies have investigated the allometry of development time among invertebrates, including insects. Abundant data on development of diverse insects provides an ideal opportunity to better understand the scaling of development time in this ecologically and economically important group. Insects develop more quickly at warmer temperatures until reaching a minimum development time at some optimal temperature, after which development slows. We evaluated the allometry of insect development time by compiling estimates of minimum development time and optimal developmental temperature for 361 insect species from 16 orders with body mass varying over nearly 6 orders of magnitude. Allometric scaling exponents varied with the statistical approach: standardized major axis regression supported the predicted quarter-power scaling relationship, but ordinary and phylogenetic generalized least squares did not. Regardless of the statistical approach, body size alone explained less than 28% of the variation in development time. Models that also included optimal temperature explained over 50% of the variation in development time. Warm-adapted insects developed more quickly, regardless of body size, supporting the "hotter is better" hypothesis that posits that ectotherms have a limited ability to evolutionarily compensate for the depressing effects of low temperatures on rates of biological processes. The remaining unexplained variation in development time likely reflects additional ecological and evolutionary differences among insect species.
Extracting information from AGN variability
NASA Astrophysics Data System (ADS)
Kasliwal, Vishal P.; Vogeley, Michael S.; Richards, Gordon T.
2017-09-01
Active galactic nuclei (AGNs) exhibit rapid, high-amplitude stochastic flux variations across the entire electromagnetic spectrum on time-scales ranging from hours to years. The cause of this variability is poorly understood. We present a Green's function-based method for using variability to (1) measure the time-scales on which flux perturbations evolve and (2) characterize the driving flux perturbations. We model the observed light curve of an AGN as a linear differential equation driven by stochastic impulses. We analyse the light curve of the Kepler AGN Zw 229-15 and find that the observed variability behaviour can be modelled as a damped harmonic oscillator perturbed by a coloured noise process. The model power spectrum turns over on time-scale 385 d. On shorter time-scales, the log-power-spectrum slope varies between 2 and 4, explaining the behaviour noted by previous studies. We recover and identify both the 5.6 and 67 d time-scales reported by previous work using the Green's function of the Continuous-time AutoRegressive Moving Average equation rather than by directly fitting the power spectrum of the light curve. These are the time-scales on which flux perturbations grow, and on which flux perturbations decay back to the steady-state flux level, respectively. We make the software package kālī used to study light curves using our method available to the community.
A Dynamically Computed Convective Time Scale for the Kain–Fritsch Convective Parameterization Scheme
Many convective parameterization schemes define a convective adjustment time scale τ as the time allowed for dissipation of convective available potential energy (CAPE). The Kain–Fritsch scheme defines τ based on an estimate of the advective time period for deep con...
Resistivity scaling and electron relaxation times in metallic nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moors, Kristof, E-mail: kristof@itf.fys.kuleuven.be; Imec, Kapeldreef 75, B-3001 Leuven; Sorée, Bart
2014-08-14
We study the resistivity scaling in nanometer-sized metallic wires due to surface roughness and grain-boundaries, currently the main cause of electron scattering in nanoscaled interconnects. The resistivity has been obtained with the Boltzmann transport equation, adopting the relaxation time approximation of the distribution function and the effective mass approximation for the conducting electrons. The relaxation times are calculated exactly, using Fermi's golden rule, resulting in a correct relaxation time for every sub-band state contributing to the transport. In general, the relaxation time strongly depends on the sub-band state, something that remained unclear with the methods of previous work. The resistivitymore » scaling is obtained for different roughness and grain-boundary properties, showing large differences in scaling behavior and relaxation times. Our model clearly indicates that the resistivity is dominated by grain-boundary scattering, easily surpassing the surface roughness contribution by a factor of 10.« less
Black holes from large N singlet models
NASA Astrophysics Data System (ADS)
Amado, Irene; Sundborg, Bo; Thorlacius, Larus; Wintergerst, Nico
2018-03-01
The emergent nature of spacetime geometry and black holes can be directly probed in simple holographic duals of higher spin gravity and tensionless string theory. To this end, we study time dependent thermal correlation functions of gauge invariant observables in suitably chosen free large N gauge theories. At low temperature and on short time scales the correlation functions encode propagation through an approximate AdS spacetime while interesting departures emerge at high temperature and on longer time scales. This includes the existence of evanescent modes and the exponential decay of time dependent boundary correlations, both of which are well known indicators of bulk black holes in AdS/CFT. In addition, a new time scale emerges after which the correlation functions return to a bulk thermal AdS form up to an overall temperature dependent normalization. A corresponding length scale was seen in equal time correlation functions in the same models in our earlier work.
An algorithm for the Italian atomic time scale
NASA Technical Reports Server (NTRS)
Cordara, F.; Vizio, G.; Tavella, P.; Pettiti, V.
1994-01-01
During the past twenty years, the time scale at the IEN has been realized by a commercial cesium clock, selected from an ensemble of five, whose rate has been continuously steered towards UTC to maintain a long term agreement within 3 x 10(exp -13). A time scale algorithm, suitable for a small clock ensemble and capable of improving the medium and long term stability of the IEN time scale, has been recently designed taking care of reducing the effects of the seasonal variations and the sudden frequency anomalies of the single cesium clocks. The new time scale, TA(IEN), is obtained as a weighted average of the clock ensemble computed once a day from the time comparisons between the local reference UTC(IEN) and the single clocks. It is foreseen to include in the computation also ten cesium clocks maintained in other Italian laboratories to further improve its reliability and its long term stability. To implement this algorithm, a personal computer program in Quick Basic has been prepared and it has been tested at the IEN time and frequency laboratory. Results obtained using this algorithm on the real clocks data relative to a period of about two years are presented.
NASA Astrophysics Data System (ADS)
Sinitskiy, Anton V.; Pande, Vijay S.
2018-01-01
Markov state models (MSMs) have been widely used to analyze computer simulations of various biomolecular systems. They can capture conformational transitions much slower than an average or maximal length of a single molecular dynamics (MD) trajectory from the set of trajectories used to build the MSM. A rule of thumb claiming that the slowest implicit time scale captured by an MSM should be comparable by the order of magnitude to the aggregate duration of all MD trajectories used to build this MSM has been known in the field. However, this rule has never been formally proved. In this work, we present analytical results for the slowest time scale in several types of MSMs, supporting the above rule. We conclude that the slowest implicit time scale equals the product of the aggregate sampling and four factors that quantify: (1) how much statistics on the conformational transitions corresponding to the longest implicit time scale is available, (2) how good the sampling of the destination Markov state is, (3) the gain in statistics from using a sliding window for counting transitions between Markov states, and (4) a bias in the estimate of the implicit time scale arising from finite sampling of the conformational transitions. We demonstrate that in many practically important cases all these four factors are on the order of unity, and we analyze possible scenarios that could lead to their significant deviation from unity. Overall, we provide for the first time analytical results on the slowest time scales captured by MSMs. These results can guide further practical applications of MSMs to biomolecular dynamics and allow for higher computational efficiency of simulations.
Monitoring forest dynamics with multi-scale and time series imagery.
Huang, Chunbo; Zhou, Zhixiang; Wang, Di; Dian, Yuanyong
2016-05-01
To learn the forest dynamics and evaluate the ecosystem services of forest effectively, a timely acquisition of spatial and quantitative information of forestland is very necessary. Here, a new method was proposed for mapping forest cover changes by combining multi-scale satellite remote-sensing imagery with time series data. Using time series Normalized Difference Vegetation Index products derived from the Moderate Resolution Imaging Spectroradiometer images (MODIS-NDVI) and Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+) images as data source, a hierarchy stepwise analysis from coarse scale to fine scale was developed for detecting the forest change area. At the coarse scale, MODIS-NDVI data with 1-km resolution were used to detect the changes in land cover types and a land cover change map was constructed using NDVI values at vegetation growing seasons. At the fine scale, based on the results at the coarse scale, Landsat TM/ETM+ data with 30-m resolution were used to precisely detect the forest change location and forest change trend by analyzing time series forest vegetation indices (IFZ). The method was tested using the data for Hubei Province, China. The MODIS-NDVI data from 2001 to 2012 were used to detect the land cover changes, and the overall accuracy was 94.02 % at the coarse scale. At the fine scale, the available TM/ETM+ images at vegetation growing seasons between 2001 and 2012 were used to locate and verify forest changes in the Three Gorges Reservoir Area, and the overall accuracy was 94.53 %. The accuracy of the two layer hierarchical monitoring results indicated that the multi-scale monitoring method is feasible and reliable.
Using Low-Frequency Earthquake Families on the San Andreas Fault as Deep Creepmeters
NASA Astrophysics Data System (ADS)
Thomas, A. M.; Beeler, N. M.; Bletery, Q.; Burgmann, R.; Shelly, D. R.
2018-01-01
The central section of the San Andreas Fault hosts tectonic tremor and low-frequency earthquakes (LFEs) similar to subduction zone environments. LFEs are often interpreted as persistent regions that repeatedly fail during the aseismic shear of the surrounding fault allowing them to be used as creepmeters. We test this idea by using the recurrence intervals of individual LFEs within LFE families to estimate the timing, duration, recurrence interval, slip, and slip rate associated with inferred slow slip events. We formalize the definition of a creepmeter and determine whether this definition is consistent with our observations. We find that episodic families reflect surrounding creep over the interevent time, while the continuous families and the short time scale bursts that occur as part of the episodic families do not. However, when these families are evaluated on time scales longer than the interevent time these events can also be used to meter slip. A straightforward interpretation of episodic families is that they define sections of the fault where slip is distinctly episodic in well-defined slow slip events that slip 16 times the long-term rate. In contrast, the frequent short-term bursts of the continuous and short time scale episodic families likely do not represent individual creep events but rather are persistent asperities that are driven to failure by quasi-continuous creep on the surrounding fault. Finally, we find that the moment-duration scaling of our inferred creep events are inconsistent with the proposed linear moment-duration scaling. However, caution must be exercised when attempting to determine scaling with incomplete knowledge of scale.
Choice with frequently changing food rates and food ratios.
Baum, William M; Davison, Michael
2014-03-01
In studies of operant choice, when one schedule of a concurrent pair is varied while the other is held constant, the constancy of the constant schedule may exert discriminative control over performance. In our earlier experiments, schedules varied reciprocally across components within sessions, so that while food ratio varied food rate remained constant. In the present experiment, we held one variable-interval (VI) schedule constant while varying the concurrent VI schedule within sessions. We studied five conditions, each with a different constant left VI schedule. On the right key, seven different VI schedules were presented in seven different unsignaled components. We analyzed performances at several different time scales. At the longest time scale, across conditions, behavior ratios varied with food ratios as would be expected from the generalized matching law. At shorter time scales, effects due to holding the left VI constant became more and more apparent, the shorter the time scale. In choice relations across components, preference for the left key leveled off as the right key became leaner. Interfood choice approximated strict matching for the varied right key, whereas interfood choice hardly varied at all for the constant left key. At the shortest time scale, visit patterns differed for the left and right keys. Much evidence indicated the development of a fix-and-sample pattern. In sum, the procedural difference made a large difference to performance, except for choice at the longest time scale and the fix-and-sample pattern at the shortest time scale. © Society for the Experimental Analysis of Behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grest, Gary S.
2017-09-01
Coupled length and time scales determine the dynamic behavior of polymers and polymer nanocomposites and underlie their unique properties. To resolve the properties over large time and length scales it is imperative to develop coarse grained models which retain the atomistic specificity. Here we probe the degree of coarse graining required to simultaneously retain significant atomistic details a nd access large length and time scales. The degree of coarse graining in turn sets the minimum length scale instrumental in defining polymer properties and dynamics. Using polyethylene as a model system, we probe how the coarse - graining scale affects themore » measured dynamics with different number methylene group s per coarse - grained beads. Using these models we simulate polyethylene melts for times over 500 ms to study the viscoelastic properties of well - entangled polymer melts and large nanoparticle assembly as the nanoparticles are driven close enough to form nanostructures.« less
Postcoalescence evolution of growth stress in polycrystalline films.
González-González, A; Polop, C; Vasco, E
2013-02-01
The growth stress generated once grains coalesce in Volmer-Weber-type thin films is investigated by time-multiscale simulations comprising complementary modules of (i) finite-element modeling to address the interactions between grains happening at atomic vibration time scales (~0.1 ps), (ii) dynamic scaling to account for the surface stress relaxation via morphology changes at surface diffusion time scales (~μs-ms), and (iii) the mesoscopic rate equation approach to simulate the bulk stress relaxation at deposition time scales (~sec-h). On the basis of addressing the main experimental evidence reported so far on the topic dealt with, the simulation results provide key findings concerning the interplay between anisotropic grain interactions at complementary space scales, deposition conditions (such as flux and mobility), and mechanisms of stress accommodation-relaxation, which underlies the origin, nature and spatial distribution, and the flux dependence of the postcoalescence growth stress.
Schoellhamer, D.H.
2002-01-01
Singular spectrum analysis for time series with missing data (SSAM) was used to reconstruct components of a 6-yr time series of suspended-sediment concentration (SSC) from San Francisco Bay. Data were collected every 15 min and the time series contained missing values that primarily were due to sensor fouling. SSAM was applied in a sequential manner to calculate reconstructed components with time scales of variability that ranged from tidal to annual. Physical processes that controlled SSC and their contribution to the total variance of SSC were (1) diurnal, semidiurnal, and other higher frequency tidal constituents (24%), (2) semimonthly tidal cycles (21%), (3) monthly tidal cycles (19%), (4) semiannual tidal cycles (12%), and (5) annual pulses of sediment caused by freshwater inflow, deposition, and subsequent wind-wave resuspension (13%). Of the total variance 89% was explained and subtidal variability (65%) was greater than tidal variability (24%). Processes at subtidal time scales accounted for more variance of SSC than processes at tidal time scales because sediment accumulated in the water column and the supply of easily erodible bed sediment increased during periods of increased subtidal energy. This large range of time scales that each contained significant variability of SSC and associated contaminants can confound design of sampling programs and interpretation of resulting data.
2010-08-18
Spectral domain response calculated • Time domain response obtained through inverse transform Approach 4: WASABI Wavelet Analysis of Structural Anomalies...differences at unity scale! Time Function Transform Apply Spectral Domain Transfer Function Time Function Inverse Transform Transform Transform mtP
NASA Astrophysics Data System (ADS)
Gros, Claudius
2017-11-01
Modern societies face the challenge that the time scale of opinion formation is continuously accelerating in contrast to the time scale of political decision making. With the latter remaining of the order of the election cycle we examine here the case that the political state of a society is determined by the continuously evolving values of the electorate. Given this assumption we show that the time lags inherent in the election cycle will inevitable lead to political instabilities for advanced democracies characterized both by an accelerating pace of opinion dynamics and by high sensibilities (political correctness) to deviations from mainstream values. Our result is based on the observation that dynamical systems become generically unstable whenever time delays become comparable to the time it takes to adapt to the steady state. The time needed to recover from external shocks grows in addition dramatically close to the transition. Our estimates for the order of magnitude of the involved time scales indicate that socio-political instabilities may develop once the aggregate time scale for the evolution of the political values of the electorate falls below 7-15 months.
Evaluation of scaling invariance embedded in short time series.
Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping
2014-01-01
Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2). Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03) and sharp confidential interval (standard deviation ≤0.05). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.
Evaluation of Scaling Invariance Embedded in Short Time Series
Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping
2014-01-01
Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length . Calculations with specified Hurst exponent values of show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias () and sharp confidential interval (standard deviation ). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records. PMID:25549356
Kozik, Pavel; Hoppmann, Christiane A; Gerstorf, Denis
2015-01-01
Future time perspective has been associated with subjective well-being, though depending on the line of research considered either an open-ended future time perspective or a limited future time perspective has been associated with high well-being. Most of this research however has conceptualized future time perspective as a one-dimensional construct, whereas recent evidence has demonstrated that there are likely at least two different underlying dimensions, a focus on opportunities and a focus on limitations. This project first seeks to replicate the two-dimensional structure of the Future Time Perspective Scale, and then examines the associations these dimensions may have with different measures of subjective well-being and a biological index of chronic stress. To test if the two dimensions of the Future Time Perspective Scale, a focus on opportunities and a focus on limitations, differentially associate with two measures of subjective well-being and a biological indicator of chronic stress, namely hair cortisol. Sixty-six community-dwelling participants with a mean age of 72 years (SD = 5.83) completed the Future Time Perspective Scale, Center for Epidemiologic Studies Depression Scale, and Philadelphia Geriatric Center Morale Scale. Participants also provided a 3-cm-long hair strand to index cortisol accumulation over the past 3 months. Following the results of a factor analysis, a mediation model was created for each dimension of the Future Time Perspective Scale, and significance testing was done through a bootstrapping approach to harness maximal statistical power. Factor analysis results replicated the two-dimensional structure of the Future Time Perspective Scale. Both dimensions were then found to have unique associations with well-being. Specifically, a high focus on opportunities was associated with fewer depressive symptoms and higher morale, whereas a low focus on limitations was associated with reduced hair cortisol, though this association was mediated by subjective well-being. RESULTS replicate and extend previous research by pointing to the multi-dimensional nature of the Future Time Perspective Scale. While an open future time perspective was overall beneficial for well-being, the exact association each dimension had with well-being differed depending on whether subjective measures of well-being or biological indices of chronic stress were considered. © 2014 S. Karger AG, Basel.
A space-time multifractal analysis on radar rainfall sequences from central Poland
NASA Astrophysics Data System (ADS)
Licznar, Paweł; Deidda, Roberto
2014-05-01
Rainfall downscaling belongs to most important tasks of modern hydrology. Especially from the perspective of urban hydrology there is real need for development of practical tools for possible rainfall scenarios generation. Rainfall scenarios of fine temporal scale reaching single minutes are indispensable as inputs for hydrological models. Assumption of probabilistic philosophy of drainage systems design and functioning leads to widespread application of hydrodynamic models in engineering practice. However models like these covering large areas could not be supplied with only uncorrelated point-rainfall time series. They should be rather supplied with space time rainfall scenarios displaying statistical properties of local natural rainfall fields. Implementation of a Space-Time Rainfall (STRAIN) model for hydrometeorological applications in Polish conditions, such as rainfall downscaling from the large scales of meteorological models to the scale of interest for rainfall-runoff processes is the long-distance aim of our research. As an introduction part of our study we verify the veracity of the following STRAIN model assumptions: rainfall fields are isotropic and statistically homogeneous in space; self-similarity holds (so that, after having rescaled the time by the advection velocity, rainfall is a fully homogeneous and isotropic process in the space-time domain); statistical properties of rainfall are characterized by an "a priori" known multifractal behavior. We conduct a space-time multifractal analysis on radar rainfall sequences selected from the Polish national radar system POLRAD. Radar rainfall sequences covering the area of 256 km x 256 km of original 2 km x 2 km spatial resolution and 15 minutes temporal resolution are used as study material. Attention is mainly focused on most severe summer convective rainfalls. It is shown that space-time rainfall can be considered with a good approximation to be a self-similar multifractal process. Multifractal analysis is carried out assuming Taylor's hypothesis to hold and the advection velocity needed to rescale the time dimension is assumed to be equal about 16 km/h. This assumption is verified by the analysis of autocorrelation functions along the x and y directions of "rainfall cubes" and along the time axis rescaled with assumed advection velocity. In general for analyzed rainfall sequences scaling is observed for spatial scales ranging from 4 to 256 km and for timescales from 15 min to 16 hours. However in most cases scaling break is identified for spatial scales between 4 and 8, corresponding to spatial dimensions of 16 km to 32 km. It is assumed that the scaling break occurrence at these particular scales in central Poland conditions could be at least partly explained by the rainfall mesoscale gap (on the edge of meso-gamma, storm-scale and meso-beta scale).
Fine Scale Baleen Whale Behavior Observed Via Tagging Over Daily Time Scales
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Fine Scale Baleen Whale Behavior Observed Via Tagging...followed over time scales of days from an oceanographic vessel so that environmental sampling can be conducted in proximity to the tagged whale ...characterize the relationship between diel variability in the foraging behavior of baleen whales (North Atlantic right whales and sei whales ) and the
Scaling properties of Polish rain series
NASA Astrophysics Data System (ADS)
Licznar, P.
2009-04-01
Scaling properties as well as multifractal nature of precipitation time series have not been studied for local Polish conditions until recently due to lack of long series of high-resolution data. The first Polish study of precipitation time series scaling phenomena was made on the base of pluviograph data from the Wroclaw University of Environmental and Life Sciences meteorological station located at the south-western part of the country. The 38 annual rainfall records from years 1962-2004 were converted into digital format and transformed into a standard format of 5-minute time series. The scaling properties and multifractal character of this material were studied by means of several different techniques: power spectral density analysis, functional box-counting, probability distribution/multiple scaling and trace moment methods. The result proved the general scaling character of time series at the range of time scales ranging form 5 minutes up to at least 24 hours. At the same time some characteristic breaks at scaling behavior were recognized. It is believed that the breaks were artificial and arising from the pluviograph rain gauge measuring precision limitations. Especially strong limitations at the precision of low-intensity precipitations recording by pluviograph rain gauge were found to be the main reason for artificial break at energy spectra, as was reported by other authors before. The analysis of co-dimension and moments scaling functions showed the signs of the first-order multifractal phase transition. Such behavior is typical for dressed multifractal processes that are observed by spatial or temporal averaging on scales larger than the inner-scale of those processes. The fractal dimension of rainfall process support derived from codimension and moments scaling functions geometry analysis was found to be 0.45. The same fractal dimension estimated by means of the functional box-counting method was equal to 0.58. At the final part of the study implementation of double trace moment method allowed for estimation of local universal multifractal rainfall parameters (α=0.69; C1=0.34; H=-0.01). The research proved the fractal character of rainfall process support and multifractal character of the rainfall intensity values variability among analyzed time series. It is believed that scaling of local Wroclaw's rainfalls for timescales at the range from 24 hours up to 5 minutes opens the door for future research concerning for example random cascades implementation for daily precipitation totals disaggregation for smaller time intervals. The results of such a random cascades functioning in a form of 5 minute artificial rainfall scenarios could be of great practical usability for needs of urban hydrology, and design and hydrodynamic modeling of storm water and combined sewage conveyance systems.
Using analogy to learn about phenomena at scales outside human perception.
Resnick, Ilyse; Davatzes, Alexandra; Newcombe, Nora S; Shipley, Thomas F
2017-01-01
Understanding and reasoning about phenomena at scales outside human perception (for example, geologic time) is critical across science, technology, engineering, and mathematics. Thus, devising strong methods to support acquisition of reasoning at such scales is an important goal in science, technology, engineering, and mathematics education. In two experiments, we examine the use of analogical principles in learning about geologic time. Across both experiments we find that using a spatial analogy (for example, a time line) to make multiple alignments, and keeping all unrelated components of the analogy held constant (for example, keep the time line the same length), leads to better understanding of the magnitude of geologic time. Effective approaches also include hierarchically and progressively aligning scale information (Experiment 1) and active prediction in making alignments paired with immediate feedback (Experiments 1 and 2).
NASA Astrophysics Data System (ADS)
Lamb, Derek A.
2016-10-01
While sunspots follow a well-defined pattern of emergence in space and time, small-scale flux emergence is assumed to occur randomly at all times in the quiet Sun. HMI's full-disk coverage, high cadence, spatial resolution, and duty cycle allow us to probe that basic assumption. Some case studies of emergence suggest that temporal clustering on spatial scales of 50-150 Mm may occur. If clustering is present, it could serve as a diagnostic of large-scale subsurface magnetic field structures. We present the results of a manual survey of small-scale flux emergence events over a short time period, and a statistical analysis addressing the question of whether these events show spatio-temporal behavior that is anything other than random.
Time scales of the stick–slip dynamics of the peeling of an adhesive tape
Mishra, Nachiketa; Parida, Nigam Chandra; Raha, Soumyendu
2015-01-01
The stick–slip dynamics of the peeling of an adhesive tape is characterized by bifurcations that have been experimentally well studied. In this work, we investigate the time scale in which the the stick–slips happen leading to the bifurcations. This is fundamental to understanding the triboluminescence and acoustic emissions associated with the bifurcations. We establish a relationship between the time scale of the bifurcations and the inherent mathematical structure of the peeling dynamics by studying a characteristic time quantity associated with the dynamics. PMID:25663802
Ultrafast studies of shock induced chemistry-scaling down the size by turning up the heat
NASA Astrophysics Data System (ADS)
McGrane, Shawn
2015-06-01
We will discuss recent progress in measuring time dependent shock induced chemistry on picosecond time scales. Data on the shock induced chemistry of liquids observed through picosecond interferometric and spectroscopic measurements will be reconciled with shock induced chemistry observed on orders of magnitude larger time and length scales from plate impact experiments reported in the literature. While some materials exhibit chemistry consistent with simple thermal models, other materials, like nitromethane, seem to have more complex behavior. More detailed measurements of chemistry and temperature across a broad range of shock conditions, and therefore time and length scales, will be needed to achieve a real understanding of shock induced chemistry, and we will discuss efforts and opportunities in this direction.
Improvement of CFD Methods for Modeling Full Scale Circulating Fluidized Bed Combustion Systems
NASA Astrophysics Data System (ADS)
Shah, Srujal; Klajny, Marcin; Myöhänen, Kari; Hyppänen, Timo
With the currently available methods of computational fluid dynamics (CFD), the task of simulating full scale circulating fluidized bed combustors is very challenging. In order to simulate the complex fluidization process, the size of calculation cells should be small and the calculation should be transient with small time step size. For full scale systems, these requirements lead to very large meshes and very long calculation times, so that the simulation in practice is difficult. This study investigates the requirements of cell size and the time step size for accurate simulations, and the filtering effects caused by coarser mesh and longer time step. A modeling study of a full scale CFB furnace is presented and the model results are compared with experimental data.
Multiscale recurrence quantification analysis of order recurrence plots
NASA Astrophysics Data System (ADS)
Xu, Mengjia; Shang, Pengjian; Lin, Aijing
2017-03-01
In this paper, we propose a new method of multiscale recurrence quantification analysis (MSRQA) to analyze the structure of order recurrence plots. The MSRQA is based on order patterns over a range of time scales. Compared with conventional recurrence quantification analysis (RQA), the MSRQA can show richer and more recognizable information on the local characteristics of diverse systems which successfully describes their recurrence properties. Both synthetic series and stock market indexes exhibit their properties of recurrence at large time scales that quite differ from those at a single time scale. Some systems present more accurate recurrence patterns under large time scales. It demonstrates that the new approach is effective for distinguishing three similar stock market systems and showing some inherent differences.
A scale-invariant internal representation of time.
Shankar, Karthik H; Howard, Marc W
2012-01-01
We propose a principled way to construct an internal representation of the temporal stimulus history leading up to the present moment. A set of leaky integrators performs a Laplace transform on the stimulus function, and a linear operator approximates the inversion of the Laplace transform. The result is a representation of stimulus history that retains information about the temporal sequence of stimuli. This procedure naturally represents more recent stimuli more accurately than less recent stimuli; the decrement in accuracy is precisely scale invariant. This procedure also yields time cells that fire at specific latencies following the stimulus with a scale-invariant temporal spread. Combined with a simple associative memory, this representation gives rise to a moment-to-moment prediction that is also scale invariant in time. We propose that this scale-invariant representation of temporal stimulus history could serve as an underlying representation accessible to higher-level behavioral and cognitive mechanisms. In order to illustrate the potential utility of this scale-invariant representation in a variety of fields, we sketch applications using minimal performance functions to problems in classical conditioning, interval timing, scale-invariant learning in autoshaping, and the persistence of the recency effect in episodic memory across timescales.
Role of the BIPM in UTC Dissemination to the Real Time User
NASA Technical Reports Server (NTRS)
Quinn, T. J.; Thomas, C.
1996-01-01
The generation and dissemination of International Atomic Time (TAI), and Coordinated Universal Time (UTC) are explicitly mentioned in the list of principal tasks of the Bureau International des Poids et Mesures (BIPM), that appears in the Compes Rendus of the the 18e Conference Generales des Poids et Measures, in 1987. These time scales are used as the ultimate reference in the most demanding scientific applications and must, therefore, be of the best metrological quality in terms of reliability, long term stability, and conformity of the scale interval with the second, the unit of time of the International System of Units. To meet these requirements, it is necessary that the readings of the atomic clocks, spread all over the world, that are used as basic timing data for TAI and UTC generation, must be combined in the most efficient way possible. In particular, to take full advantage of the quality of each contributing clock calls for observation of its performance over a sufficiently long time. At present, the computation period treats data in blocks covering two months. TAI and UTC are thus deferred-time scales that cannot be immediately available to real-time users. The BIPM can, nevertheless be of help to real-time users. The predictability of UTC is a fundamental attribute of the scale for institutions responsible for the dissemination of real-time time scales. It allows them to improve their local representations of UTC and, thus, implement a more thorough steering of the time scales diffused in real-time. With a view to improving the predicatbility of UTC, the BIPM examines in detail timing techniques and basic theories in order to propose alternative solutions for timing algorithms. This, coupled with a recent improvement of timing data, makes UTC more stable and thus, more predictable. At a more practical level, effort is being devoted to putting in place automatic procedures for reducing the time needed for data collection and treatment: monthly results are already available ten days earlier than before.
Understanding relationships among ecosystem services across spatial scales and over time
NASA Astrophysics Data System (ADS)
Qiu, Jiangxiao; Carpenter, Stephen R.; Booth, Eric G.; Motew, Melissa; Zipper, Samuel C.; Kucharik, Christopher J.; Loheide, Steven P., II; Turner, Monica G.
2018-05-01
Sustaining ecosystem services (ES), mitigating their tradeoffs and avoiding unfavorable future trajectories are pressing social-environmental challenges that require enhanced understanding of their relationships across scales. Current knowledge of ES relationships is often constrained to one spatial scale or one snapshot in time. In this research, we integrated biophysical modeling with future scenarios to examine changes in relationships among eight ES indicators from 2001–2070 across three spatial scales—grid cell, subwatershed, and watershed. We focused on the Yahara Watershed (Wisconsin) in the Midwestern United States—an exemplar for many urbanizing agricultural landscapes. Relationships among ES indicators changed over time; some relationships exhibited high interannual variations (e.g. drainage vs. food production, nitrate leaching vs. net ecosystem exchange) and even reversed signs over time (e.g. perennial grass production vs. phosphorus yield). Robust patterns were detected for relationships among some regulating services (e.g. soil retention vs. water quality) across three spatial scales, but other relationships lacked simple scaling rules. This was especially true for relationships of food production vs. water quality, and drainage vs. number of days with runoff >10 mm, which differed substantially across spatial scales. Our results also showed that local tradeoffs between food production and water quality do not necessarily scale up, so reducing local tradeoffs may be insufficient to mitigate such tradeoffs at the watershed scale. We further synthesized these cross-scale patterns into a typology of factors that could drive changes in ES relationships across scales: (1) effects of biophysical connections, (2) effects of dominant drivers, (3) combined effects of biophysical linkages and dominant drivers, and (4) artificial scale effects, and concluded with management implications. Our study highlights the importance of taking a dynamic perspective and accounting for spatial scales in monitoring and management to sustain future ES.
NASA Technical Reports Server (NTRS)
Silva, P. M.; Silva, I. M.
1974-01-01
Various methods presently used for the dissemination of time at several levels of precision are described along with future projects in the field. Different aspects of time coordination are reviewed and a list of future laboratories participating in a National Time Scale will be presented. A Brazilian Atomic Time Scale will be obtained from as many of these laboratories as possible. The problem of intercomparison between the Brazilian National Time Scale and the International one will be presented and probable solutions will be discussed. Needs related to the TV Line-10 method will be explained and comments will be made on the legal aspects of time dissemination throughout the country.
Digital signal processing techniques for pitch shifting and time scaling of audio signals
NASA Astrophysics Data System (ADS)
Buś, Szymon; Jedrzejewski, Konrad
2016-09-01
In this paper, we present the techniques used for modifying the spectral content (pitch shifting) and for changing the time duration (time scaling) of an audio signal. A short introduction gives a necessary background for understanding the discussed issues and contains explanations of the terms used in the paper. In subsequent sections we present three different techniques appropriate both for pitch shifting and for time scaling. These techniques use three different time-frequency representations of a signal, namely short-time Fourier transform (STFT), continuous wavelet transform (CWT) and constant-Q transform (CQT). The results of simulation studies devoted to comparison of the properties of these methods are presented and discussed in the paper.
Long duration gamma-ray emission from thunderclouds
NASA Astrophysics Data System (ADS)
Kelley, Nicole A.
Gamma-ray glows are long duration emission coming from thunderclouds. They are one example of high-energy atmospheric physics, a relatively new field studying high-energy phenomena from thunderstorms and lightning. Glows arise from sustained relativistic runaway electron avalanches (RREA). Gamma-ray instruments on the ground, balloons and airplanes have detected glows. The Airborne Detector for Energetic Lightning Emissions (ADELE) is an array of gamma-ray detectors, built at the University of California, Santa Cruz. ADELE detected 12 gamma-ray glows during its summer 2009 campaign. ADELE was designed to study another type of high-energy atmospheric physics, terrestrial gamma-ray flashes (TGFs). TGFs are incredibly bright, sub-millisecond bursts of gamma-rays coming from thunderstorms. ADELE was installed on NCAR's Gulfstream V for the summer of 2009. While many glows were detected, only one TGF was observed. In this thesis I present a detailed explanation of the 2009 version of ADELE along with the results of the 2009 campaign. ADELE was modified to become a smaller, autonomous instrument to fly on the NASA drone, a Global Hawk. This was a piggyback to NASA's Hurricane and Severe Storm Sentinel mission. These flights took place during the summer of 2013. The following summer, ADELE flew on an Orion P3 as a piggyback of NOAA's Hurricane Hunters. This newer, modified instrument is discussed in detail in this thesis. The 12 gamma-ray glows from the 2009 campaign are presented, with information about nearby lightning activity. I show that lightning activity is suppressed after a glow. This could be from the glow causing the cloud to discharge and therefore reduce the lightning activity. It is also possible that glows can only occur once lightning activity has diminished. Lightning is also used to find a distance to the glow. Using this distance, it is found that the brightness of glow cannot be explained as a function of distance while the duration of the glow is related to the distance. The glow measured on August 21, 2009 was 20 times brighter than any other glow. This glow was modeled most extensively and it was found that ADELE was in the end of a downward facing avalanche, implying that is was lying between the upper positive and negative screening layer of the thunderstorm. The brightness of this glow also showed that the avalanche was approaching the levels necessary for relativistic feedback. I also show that this glow provides a significant discharge current and for a short while is discharging the cloud as much as nearby lightning.
Role of time in symbiotic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawala, A.K.
1996-12-31
All systems have a dynamics which reflects the changes in the system in time and, therefore, have to maintain a notion of time, either explicitly or implicitly. Traditionally, the notion of time in constructed systems has been implicitly specified at design time through rigid structures such as sampled data systems which operate with a fixed time tick, feedback systems which are designed reflecting a fixed time scale for the dynamics of the system as well as the controller responses, etc. In biological systems, the sense of time is a key element but it is not rigidly structured, even though allmore » such systems have a clear notion of time. We define the notion of time in systems in terms of temporal locality, time scale and time horizon. Temporal locality gives the notion of the accuracy with which the system knows about the current time. Time scale reflects the scale indicating the smallest and the largest granularity considered. It also reflects the reaction time. The time horizon indicates the time beyond which the system considers to be distant future and may not take it into account in its actions. Note that the temporal locality, time scale and the time horizon may be different for different types of actions of a system, thereby permitting the system to use multiple notions of time concurrently. In multi agent systems each subsystem may have its own notion of time but when intentions take place a coordination is necessary. Such coordination requires that the notions of time for different agents of the system be consistent. Clearly, the consistency requirement in this case does not mean exactly identical but implies that different agents can coordinate their actions which must take place in time. When the actions only require a determinate ordering the required coordination is much less severe than the case requiring actions to take place at the same time.« less
Division A Commission 31: Time
NASA Astrophysics Data System (ADS)
Hosokawa, Mizuhiko; Arias, Elisa Felicitas; Manchester, Richard; Tuckey, Philip; Matsakis, Demetrios; Zhang, Shougang; Zharov, Vladimir
2016-04-01
Time is an essential element of fundamental astronomy. In recent years there have been many time-related issues, in scientific and technological aspects as well as in conventions and definitions. At the Commission 31 (Time) business meeting at the XXIX General Assembly, recent progress and many topics, including Pulsar Time Scales WG and Future UTC WG activities, were reviewed and discussed. In this report, we will review the progress of these topics in the past three years. There are many remarkable topics, such as Time scales, Atomic clock development, Time transfer, Future UTC and future redefinition of the second. Among them, scientific highlights are the progress of pulsar time scales and the optical frequency standards. On the other hand, as the social convention, change in the definition of UTC and the second is important.
Time scale defined by the fractal structure of the price fluctuations in foreign exchange markets
NASA Astrophysics Data System (ADS)
Kumagai, Yoshiaki
2010-04-01
In this contribution, a new time scale named C-fluctuation time is defined by price fluctuations observed at a given resolution. The intraday fractal structures and the relations of the three time scales: real time (physical time), tick time and C-fluctuation time, in foreign exchange markets are analyzed. The data set used is trading prices of foreign exchange rates; US dollar (USD)/Japanese yen (JPY), USD/Euro (EUR), and EUR/JPY. The accuracy of the data is one minute and data within a minute are recorded in order of transaction. The series of instantaneous velocity of C-fluctuation time flowing are exponentially distributed for small C when they are measured by real time and for tiny C when they are measured by tick time. When the market is volatile, for larger C, the series of instantaneous velocity are exponentially distributed.
ERIC Educational Resources Information Center
Newman, William L.
One of a series of general interest publications on science topics, the booklet provides those interested in geologic time with an introduction to the subject. Separate sections discuss the relative time scale, major divisions in geologic time, index fossils used as guides for telling the age of rocks, the atomic scale, and the age of the earth.…
Cycles, scaling and crossover phenomenon in length of the day (LOD) time series
NASA Astrophysics Data System (ADS)
Telesca, Luciano
2007-06-01
The dynamics of the temporal fluctuations of the length of the day (LOD) time series from January 1, 1962 to November 2, 2006 were investigated. The power spectrum of the whole time series has revealed annual, semi-annual, decadal and daily oscillatory behaviors, correlated with oceanic-atmospheric processes and interactions. The scaling behavior was analyzed by using the detrended fluctuation analysis (DFA), which has revealed two different scaling regimes, separated by a crossover timescale at approximately 23 days. Flicker-noise process can describe the dynamics of the LOD time regime involving intermediate and long timescales, while Brownian dynamics characterizes the LOD time series for small timescales.
The Causal Connection Between Disc and Power-Law Variability in Hard State Black Hole X-Ray Binaries
NASA Technical Reports Server (NTRS)
Uttley, P.; Wilkinson, T.; Cassatella, P.; Wilms, J.; Pottschimdt, K.; Hanke, M.; Boeck, M.
2010-01-01
We use the XMM-Newton EPIC-pn instrument in timing mode to extend spectral time-lag studies of hard state black hole X-ray binaries into the soft X-ray band. \\Ve show that variations of the disc blackbody emission substantially lead variations in the power-law emission, by tenths of a second on variability time-scales of seconds or longer. The large lags cannot be explained by Compton scattering but are consistent with time-delays due to viscous propagation of mass accretion fluctuations in the disc. However, on time-scales less than a second the disc lags the power-law variations by a few ms, consistent with the disc variations being dominated by X-ray heating by the power-law, with the short lag corresponding to the light-travel time between the power-law emitting region and the disc. Our results indicate that instabilities in the accretion disc are responsible for continuum variability on time-scales of seconds or longer and probably also on shorter time-scales.
Perspectives on integrated modeling of transport processes in semiconductor crystal growth
NASA Technical Reports Server (NTRS)
Brown, Robert A.
1992-01-01
The wide range of length and time scales involved in industrial scale solidification processes is demonstrated here by considering the Czochralski process for the growth of large diameter silicon crystals that become the substrate material for modern microelectronic devices. The scales range in time from microseconds to thousands of seconds and in space from microns to meters. The physics and chemistry needed to model processes on these different length scales are reviewed.
The Available Time Scale: Measuring Foster Parents' Available Time to Foster
ERIC Educational Resources Information Center
Cherry, Donna J.; Orme, John G.; Rhodes, Kathryn W.
2009-01-01
This article presents a new measure of available time specific to fostering, the Available Time Scale (ATS). It was tested with a national sample of 304 foster mothers and is designed to measure the amount of time foster parents are able to devote to fostering activities. The ATS has excellent reliability, and good support exists for its validity.…
Factor Structure and Scale Reliabilities of the Adjective Check List Across Time
ERIC Educational Resources Information Center
Miller, Stephen H.; And Others
1978-01-01
Investigated factor structure and scale reliabilities of Gough's Adjective Check List (ACL) and their stability over time. Employees in a community mental health center completed the ACL twice, separated by a one-year interval. After each administration, separate factor analyses were computed. All scales had highly significant test-retest…
Adolescent Time Attitude Scale: Adaptation into Turkish
ERIC Educational Resources Information Center
Çelik, Eyüp; Sahranç, Ümit; Kaya, Mehmet; Turan, Mehmet Emin
2017-01-01
This research is aimed at examining the validity and reliability of the Turkish version of the Time Attitude Scale. Data was collected from 433 adolescents; 206 males and 227 females participated in the study. Confirmatory factor analysis performed to discover the structural validity of the scale. The internal consistency method was used for…
Asymptotic scaling properties and estimation of the generalized Hurst exponents in financial data
NASA Astrophysics Data System (ADS)
Buonocore, R. J.; Aste, T.; Di Matteo, T.
2017-04-01
We propose a method to measure the Hurst exponents of financial time series. The scaling of the absolute moments against the aggregation horizon of real financial processes and of both uniscaling and multiscaling synthetic processes converges asymptotically towards linearity in log-log scale. In light of this we found appropriate a modification of the usual scaling equation via the introduction of a filter function. We devised a measurement procedure which takes into account the presence of the filter function without the need of directly estimating it. We verified that the method is unbiased within the errors by applying it to synthetic time series with known scaling properties. Finally we show an application to empirical financial time series where we fit the measured scaling exponents via a second or a fourth degree polynomial, which, because of theoretical constraints, have respectively only one and two degrees of freedom. We found that on our data set there is not clear preference between the second or fourth degree polynomial. Moreover the study of the filter functions of each time series shows common patterns of convergence depending on the momentum degree.
EMBAYMENT CHARACTERISTIC TIME AND BIOLOGY VIA TIDAL PRISM MODEL
Transport time scales in water bodies are classically based on their physical and chemical aspects rather than on their ecological and biological character. The direct connection between a physical time scale and ecological effects has to be investigated in order to quantitativel...
Forecasting Hourly Water Demands With Seasonal Autoregressive Models for Real-Time Application
NASA Astrophysics Data System (ADS)
Chen, Jinduan; Boccelli, Dominic L.
2018-02-01
Consumer water demands are not typically measured at temporal or spatial scales adequate to support real-time decision making, and recent approaches for estimating unobserved demands using observed hydraulic measurements are generally not capable of forecasting demands and uncertainty information. While time series modeling has shown promise for representing total system demands, these models have generally not been evaluated at spatial scales appropriate for representative real-time modeling. This study investigates the use of a double-seasonal time series model to capture daily and weekly autocorrelations to both total system demands and regional aggregated demands at a scale that would capture demand variability across a distribution system. Emphasis was placed on the ability to forecast demands and quantify uncertainties with results compared to traditional time series pattern-based demand models as well as nonseasonal and single-seasonal time series models. Additional research included the implementation of an adaptive-parameter estimation scheme to update the time series model when unobserved changes occurred in the system. For two case studies, results showed that (1) for the smaller-scale aggregated water demands, the log-transformed time series model resulted in improved forecasts, (2) the double-seasonal model outperformed other models in terms of forecasting errors, and (3) the adaptive adjustment of parameters during forecasting improved the accuracy of the generated prediction intervals. These results illustrate the capabilities of time series modeling to forecast both water demands and uncertainty estimates at spatial scales commensurate for real-time modeling applications and provide a foundation for developing a real-time integrated demand-hydraulic model.
Choice of time-scale in Cox's model analysis of epidemiologic cohort data: a simulation study.
Thiébaut, Anne C M; Bénichou, Jacques
2004-12-30
Cox's regression model is widely used for assessing associations between potential risk factors and disease occurrence in epidemiologic cohort studies. Although age is often a strong determinant of disease risk, authors have frequently used time-on-study instead of age as the time-scale, as for clinical trials. Unless the baseline hazard is an exponential function of age, this approach can yield different estimates of relative hazards than using age as the time-scale, even when age is adjusted for. We performed a simulation study in order to investigate the existence and magnitude of bias for different degrees of association between age and the covariate of interest. Age to disease onset was generated from exponential, Weibull or piecewise Weibull distributions, and both fixed and time-dependent dichotomous covariates were considered. We observed no bias upon using age as the time-scale. Upon using time-on-study, we verified the absence of bias for exponentially distributed age to disease onset. For non-exponential distributions, we found that bias could occur even when the covariate of interest was independent from age. It could be severe in case of substantial association with age, especially with time-dependent covariates. These findings were illustrated on data from a cohort of 84,329 French women followed prospectively for breast cancer occurrence. In view of our results, we strongly recommend not using time-on-study as the time-scale for analysing epidemiologic cohort data. 2004 John Wiley & Sons, Ltd.
Time-sliced perturbation theory for large scale structure I: general formalism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blas, Diego; Garny, Mathias; Sibiryakov, Sergey
2016-07-01
We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein-de Sitter universe, the time evolution ofmore » the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.« less
Influence of the Time Scale on the Construction of Financial Networks
Emmert-Streib, Frank; Dehmer, Matthias
2010-01-01
Background In this paper we investigate the definition and formation of financial networks. Specifically, we study the influence of the time scale on their construction. Methodology/Principal Findings For our analysis we use correlation-based networks obtained from the daily closing prices of stock market data. More precisely, we use the stocks that currently comprise the Dow Jones Industrial Average (DJIA) and estimate financial networks where nodes correspond to stocks and edges correspond to none vanishing correlation coefficients. That means only if a correlation coefficient is statistically significant different from zero, we include an edge in the network. This construction procedure results in unweighted, undirected networks. By separating the time series of stock prices in non-overlapping intervals, we obtain one network per interval. The length of these intervals corresponds to the time scale of the data, whose influence on the construction of the networks will be studied in this paper. Conclusions/Significance Numerical analysis of four different measures in dependence on the time scale for the construction of networks allows us to gain insights about the intrinsic time scale of the stock market with respect to a meaningful graph-theoretical analysis. PMID:20949124
Code of Federal Regulations, 2014 CFR
2014-10-01
... Voltage Variation A.3.4Short Time Power Reduction A.3.5Bursts A.3.6Electrostatic Discharge A.3... time of the test. 2.2.1.2Zero Load Tests. For zero load tests conducted in a laboratory or on a scale... other material weighed on the scale; and vi. The date and time the information is printed. b. For the...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Voltage Variation A.3.4Short Time Power Reduction A.3.5Bursts A.3.6Electrostatic Discharge A.3... time of the test. 2.2.1.2Zero Load Tests. For zero load tests conducted in a laboratory or on a scale... other material weighed on the scale; and vi. The date and time the information is printed. b. For the...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Voltage Variation A.3.4Short Time Power Reduction A.3.5Bursts A.3.6Electrostatic Discharge A.3... time of the test. 2.2.1.2Zero Load Tests. For zero load tests conducted in a laboratory or on a scale... other material weighed on the scale; and vi. The date and time the information is printed. b. For the...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Voltage Variation A.3.4Short Time Power Reduction A.3.5Bursts A.3.6Electrostatic Discharge A.3... time of the test. 2.2.1.2Zero Load Tests. For zero load tests conducted in a laboratory or on a scale... other material weighed on the scale; and vi. The date and time the information is printed. b. For the...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Voltage Variation A.3.4Short Time Power Reduction A.3.5Bursts A.3.6Electrostatic Discharge A.3... time of the test. 2.2.1.2Zero Load Tests. For zero load tests conducted in a laboratory or on a scale... other material weighed on the scale; and vi. The date and time the information is printed. b. For the...
X-Ray Fluctuation Power Spectral Densities of Seyfert 1 Galaxies
NASA Technical Reports Server (NTRS)
Markowitz, A.; Edelson, R.; Vaughan, S.; Uttley, P.; George, I. M.; Griffiths, R. E.; Kaspi, S.; Lawrence, A.; McHandy, I.; Nandra, K.
2003-01-01
By combining complementary monitoring observations spanning long, medium and short time scales, we have constructed power spectral densities (PSDs) of six Seyfert 1 galaxies. These PSDs span approx. greater than 4 orders of magnitude in temporal frequency, sampling variations on time scales ranging from tens of minutes to over a year. In at least four cases, the PSD shows a "break," a significant departure from a power law, typically on time scales of order a few days. This is similar to the behavior of Galactic X-ray binaries (XRBs), lower mass compact systems with breaks on time scales of seconds. NGC 3783 shows tentative evidence for a doubly-broken power law, a feature that until now has only been seen in the (much better-defined) PSDs of low-state XRBs. It is also interesting that (when one previously-observed object is added to make a small sample of seven), an apparently significant correlation is seen between the break time scale T and the putative black hole mass M(sub BH), while none is seen between break time scale and luminosity. The data are consistent with the linear relation T = M(sub BH) /10(exp 6.5) solar mass; extrapolation over 6-7 orders of magnitude is in reasonable agreement with XRBs. All of this strengthens the case for a physical similarity between Seyfert 1s and XRBs.
Space and time scales of shoreline change at Cape Cod National Seashore, MA, USA
Allen, J.R.; LaBash, C.L.; List, J.H.; Kraus, Nicholas C.; McDougal, William G.
1999-01-01
Different processes cause patterns of shoreline change which are exhibited at different magnitudes and nested into different spatial and time scale hierarchies. The 77-km outer beach at Cape Cod National Seashore offers one of the few U.S. federally owned portions of beach to study shoreline change within the full range of sediment source and sink relationships, and barely affected by human intervention. 'Mean trends' of shoreline changes are best observed at long time scales but contain much spatial variation thus many sites are not equal in response. Long-term, earlier-noted trends are confirmed but the added quantification and resolution improves greatly the understanding of appropriate spatial and time scales of those processes driving bluff retreat and barrier island changes in both north and south depocenters. Shorter timescales allow for comparison of trends and uncertainty in shoreline change at local scales but are dependent upon some measure of storm intensity and seasonal frequency. Single-event shoreline survey results for one storm at daily intervals after the erosional phase suggest a recovery time for the system of six days, identifies three sites with abnormally large change, and that responses at these sites are spatially coherent for now unknown reasons. Areas near inlets are the most variable at all time scales. Hierarchies in both process and form are suggested.
Evaluating scale-up rules of a high-shear wet granulation process.
Tao, Jing; Pandey, Preetanshu; Bindra, Dilbir S; Gao, Julia Z; Narang, Ajit S
2015-07-01
This work aimed to evaluate the commonly used scale-up rules for high-shear wet granulation process using a microcrystalline cellulose-lactose-based low drug loading formulation. Granule properties such as particle size, porosity, flow, and tabletability, and tablet dissolution were compared across scales using scale-up rules based on different impeller speed calculations or extended wet massing time. Constant tip speed rule was observed to produce slightly less granulated material at the larger scales. Longer wet massing time can be used to compensate for the lower shear experienced by the granules at the larger scales. Constant Froude number and constant empirical stress rules yielded granules that were more comparable across different scales in terms of compaction performance and tablet dissolution. Granule porosity was shown to correlate well with blend tabletability and tablet dissolution, indicating the importance of monitoring granule densification (porosity) during scale-up. It was shown that different routes can be chosen during scale-up to achieve comparable granule growth and densification by altering one of the three parameters: water amount, impeller speed, and wet massing time. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Diffusion and scaling during early embryonic pattern formation.
Gregor, Thomas; Bialek, William; de Ruyter van Steveninck, Rob R; Tank, David W; Wieschaus, Eric F
2005-12-20
Development of spatial patterns in multicellular organisms depends on gradients in the concentration of signaling molecules that control gene expression. In the Drosophila embryo, Bicoid (Bcd) morphogen controls cell fate along 70% of the anteroposterior axis but is translated from mRNA localized at the anterior pole. Gradients of Bcd and other morphogens are thought to arise through diffusion, but this basic assumption has never been rigorously tested in living embryos. Furthermore, because diffusion sets a relationship between length and time scales, it is hard to see how patterns of gene expression established by diffusion would scale proportionately as egg size changes during evolution. Here, we show that the motion of inert molecules through the embryo is well described by the diffusion equation on the relevant length and time scales, and that effective diffusion constants are essentially the same in closely related dipteran species with embryos of very different size. Nonetheless, patterns of gene expression in these different species scale with egg length. We show that this scaling can be traced back to scaling of the Bcd gradient itself. Our results, together with constraints imposed by the time scales of development, suggest that the mechanism for scaling is a species-specific adaptation of the Bcd lifetime.
NASA Astrophysics Data System (ADS)
Yuan, Naiming; Xoplaki, Elena; Zhu, Congwen; Luterbacher, Juerg
2016-06-01
In this paper, two new methods, Temporal evolution of Detrended Cross-Correlation Analysis (TDCCA) and Temporal evolution of Detrended Partial-Cross-Correlation Analysis (TDPCCA), are proposed by generalizing DCCA and DPCCA. Applying TDCCA/TDPCCA, it is possible to study correlations on multi-time scales and over different periods. To illustrate their properties, we used two climatological examples: i) Global Sea Level (GSL) versus North Atlantic Oscillation (NAO); and ii) Summer Rainfall over Yangtze River (SRYR) versus previous winter Pacific Decadal Oscillation (PDO). We find significant correlations between GSL and NAO on time scales of 60 to 140 years, but the correlations are non-significant between 1865-1875. As for SRYR and PDO, significant correlations are found on time scales of 30 to 35 years, but the correlations are more pronounced during the recent 30 years. By combining TDCCA/TDPCCA and DCCA/DPCCA, we proposed a new correlation-detection system, which compared to traditional methods, can objectively show how two time series are related (on which time scale, during which time period). These are important not only for diagnosis of complex system, but also for better designs of prediction models. Therefore, the new methods offer new opportunities for applications in natural sciences, such as ecology, economy, sociology and other research fields.
Cosmogenic radionuclides as a synchronisation tool - present status
NASA Astrophysics Data System (ADS)
Muscheler, Raimund; Adolphi, Florian; Mekhaldi, Florian; Mellström, Anette; Svensson, Anders; Aldahan, Ala; Possnert, Göran
2014-05-01
Changes in the flux of galactic cosmic rays into Earth's atmosphere produce variations in the production rates of cosmogenic radionuclides. The resulting globally synchronous signal in cosmogenic radionuclide records can be used to compare time scales and synchronise climate records. The most prominent example is the 14C wiggle match dating approach where variations in the atmospheric 14C concentration are used to match climate records and the tree-ring based part of the 14C calibration record. This approach can be extended to other cosmogenic radionuclide records such as 10Be time series provided that the different geochemical behaviour of 10Be and 14C is taken into account. Here we will present some recent results that illustrate the potential of using cosmogenic radionuclide records for comparing and synchronising different time scales. The focus will be on the last 50000 years where we will show examples how geomagnetic field, solar activity and unusual short-term cosmic ray changes can be used for comparing ice core, tree ring and sediment time scales. We will discuss some unexpected offsets between Greenland ice core and 14C time scale and we will examine how far back in time solar induced 10Be and 14C variations presently can be used to reliably synchronise ice core and 14C time scales.
Small-time Scale Network Traffic Prediction Based on Complex-valued Neural Network
NASA Astrophysics Data System (ADS)
Yang, Bin
2017-07-01
Accurate models play an important role in capturing the significant characteristics of the network traffic, analyzing the network dynamic, and improving the forecasting accuracy for system dynamics. In this study, complex-valued neural network (CVNN) model is proposed to further improve the accuracy of small-time scale network traffic forecasting. Artificial bee colony (ABC) algorithm is proposed to optimize the complex-valued and real-valued parameters of CVNN model. Small-scale traffic measurements data namely the TCP traffic data is used to test the performance of CVNN model. Experimental results reveal that CVNN model forecasts the small-time scale network traffic measurement data very accurately
Complexity of heart rate fluctuations in near-term sheep and human fetuses during sleep.
Frank, Birgit; Frasch, Martin G; Schneider, Uwe; Roedel, Marcus; Schwab, Matthias; Hoyer, Dirk
2006-10-01
We investigated how the complexity of fetal heart rate fluctuations (fHRF) is related to the sleep states in sheep and human fetuses. The complexity as a function of time scale for fetal heart rate data for 7 sheep and 27 human fetuses was estimated in rapid eye movement (REM) and non-REM sleep by means of permutation entropy and the associated Kullback-Leibler entropy. We found that in humans, fHRF complexity is higher in non-REM than REM sleep, whereas in sheep this relationship is reversed. To show this relation, choice of the appropriate time scale is crucial. In sheep fetuses, we found differences in the complexity of fHRF between REM and non-REM sleep only for larger time scales (above 2.5 s), whereas in human fetuses the complexity was clearly different between REM and non-REM sleep over the whole range of time scales. This may be due to inherent time scales of complexity, which reflect species-specific functions of the autonomic nervous system. Such differences have to be considered when animal data are translated to the human situation.
Time scales of radiation damage decay in four optical materials
NASA Astrophysics Data System (ADS)
Grupp, Frank; Geis, Norbert; Katterloher, Reinhard; Bender, Ralf
2017-09-01
In the framework of the qualification campaigns for the near infrared spectrometer and photometer instrument (NISP) on board the ESA/EUCLID satellite six optical materials where characterized with respect to their transmission losses after a radiation dose representing the mission exposure to high energy particles in the outer Lagrange point L2. Data was taken between 500 and 2000nm on six 25mm thick coated probes. Thickness and coating being representative for the NISP flight configuration. With this paper we present results owing up the radiation damage shown in [1]. We where able to follow up the decay of the radiation damage over almost one year under ambient conditions. This allows us to distinguish between curing effects that happen on different time-scales. As for some of the materials no radiation damage and thus no curing was detected, all materials that showed significant radiation damage in the measured passband showed two clearly distinguished time scales of curing. Up to 70% of the transmission losses cured on half decay time scales of several tens of days, while the rest of the damage cures on time scales of years.
Orbital time scale and new C-isotope record for Cenomanian-Turonian boundary stratotype
NASA Astrophysics Data System (ADS)
Sageman, Bradley B.; Meyers, Stephen R.; Arthur, Michael A.
2006-02-01
Previous time scales for the Cenomanian-Turonian boundary (CTB) interval containing Oceanic Anoxic Event II (OAE II) vary by a factor of three. In this paper we present a new orbital time scale for the CTB stratotype established independently of radiometric, biostratigraphic, or geochemical data sets, update revisions of CTB biostratigraphic zonation, and provide a new detailed carbon isotopic record for the CTB study interval. The orbital time scale allows an independent assessment of basal biozone ages relative to the new CTB date of 93.55 Ma (GTS04). The δ13Corg data document the abrupt onset of OAE II, significant variability in δ13Corg values, and values enriched to almost -22‰. These new data underscore the difficulty in defining OAE II termination. Using the new isotope curve and time scale, estimates of OAE II duration can be determined and exported to other sites based on integration of well-established chemostratigraphic and biostratigraphic datums. The new data will allow more accurate calculations of biogeochemical and paleobiologic rates across the CTB.
Temporal evolution of continental lithospheric strength in actively deforming regions
Thatcher, W.; Pollitz, F.F.
2008-01-01
It has been agreed for nearly a century that a strong, load-bearing outer layer of earth is required to support mountain ranges, transmit stresses to deform active regions and store elastic strain to generate earthquakes. However the dept and extent of this strong layer remain controversial. Here we use a variety of observations to infer the distribution of lithospheric strength in the active western United States from seismic to steady-state time scales. We use evidence from post-seismic transient and earthquake cycle deformation reservoir loading glacio-isostatic adjustment, and lithosphere isostatic adjustment to large surface and subsurface loads. The nearly perfectly elastic behavior of Earth's crust and mantle at the time scale of seismic wave propagation evolves to that of a strong, elastic crust and weak, ductile upper mantle lithosphere at both earthquake cycle (EC, ???10?? to 103 yr) and glacio-isostatic adjustment (GIA, ???103 to 104 yr) time scales. Topography and gravity field correlations indicate that lithosphere isostatic adjustment (LIA) on ???106-107 yr time scales occurs with most lithospheric stress supported by an upper crust overlying a much weaker ductile subtrate. These comparisons suggest that the upper mantle lithosphere is weaker than the crust at all time scales longer than seismic. In contrast, the lower crust has a chameleon-like behavior, strong at EC and GIA time scales and weak for LIA and steady-state deformation processes. The lower crust might even take on a third identity in regions of rapid crustal extension or continental collision, where anomalously high temperatures may lead to large-scale ductile flow in a lower crustal layer that is locally weaker than the upper mantle. Modeling of lithospheric processes in active regions thus cannot use a one-size-fits-all prescription of rheological layering (relation between applied stress and deformation as a function of depth) but must be tailored to the time scale and tectonic setting of the process being investigated.
A new heterogeneous asynchronous explicit-implicit time integrator for nonsmooth dynamics
NASA Astrophysics Data System (ADS)
Fekak, Fatima-Ezzahra; Brun, Michael; Gravouil, Anthony; Depale, Bruno
2017-07-01
In computational structural dynamics, particularly in the presence of nonsmooth behavior, the choice of the time-step and the time integrator has a critical impact on the feasibility of the simulation. Furthermore, in some cases, as in the case of a bridge crane under seismic loading, multiple time-scales coexist in the same problem. In that case, the use of multi-time scale methods is suitable. Here, we propose a new explicit-implicit heterogeneous asynchronous time integrator (HATI) for nonsmooth transient dynamics with frictionless unilateral contacts and impacts. Furthermore, we present a new explicit time integrator for contact/impact problems where the contact constraints are enforced using a Lagrange multiplier method. In other words, the aim of this paper consists in using an explicit time integrator with a fine time scale in the contact area for reproducing high frequency phenomena, while an implicit time integrator is adopted in the other parts in order to reproduce much low frequency phenomena and to optimize the CPU time. In a first step, the explicit time integrator is tested on a one-dimensional example and compared to Moreau-Jean's event-capturing schemes. The explicit algorithm is found to be very accurate and the scheme has generally a higher order of convergence than Moreau-Jean's schemes and provides also an excellent energy behavior. Then, the two time scales explicit-implicit HATI is applied to the numerical example of a bridge crane under seismic loading. The results are validated in comparison to a fine scale full explicit computation. The energy dissipated in the implicit-explicit interface is well controlled and the computational time is lower than a full-explicit simulation.
Impact of new clock technologies on the stability and accuracy of the International Atomic Time TAI.
NASA Astrophysics Data System (ADS)
Thomas, C.
1997-05-01
The BIPM Time Section is in charge of the generation of the reference time scales TAI and UTC. Both time scales are obtained in deferred-time by combining the data front a number of atomic clocks spread worldwide. The accuracy of TAI is estimated by the departure between the duration of the TAI scale interval and the SI second as produced on the rotating geoid by primary frequency standards. It is now possible to estimate TAI accuracy through the combination of results obtained from six different primary standards: LPTF-FO1, PTB CS1, PTB CS2, PTB CS3, NIST-7, and SU MCsR 102, all corrected for the black-body radiation shift. This led to a mean departure of the TAI scale interval of +2.0×10-14s over 1995, known with a relative uncertainty of 0.5×10-14(1σ).
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Huys, Otti, E-mail: otti.dhuys@phy.duke.edu; Haynes, Nicholas D.; Lohmann, Johannes
Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delaysmore » between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.« less
Autocorrelation and cross-correlation in time series of homicide and attempted homicide
NASA Astrophysics Data System (ADS)
Machado Filho, A.; da Silva, M. F.; Zebende, G. F.
2014-04-01
We propose in this paper to establish the relationship between homicides and attempted homicides by a non-stationary time-series analysis. This analysis will be carried out by Detrended Fluctuation Analysis (DFA), Detrended Cross-Correlation Analysis (DCCA), and DCCA cross-correlation coefficient, ρ(n). Through this analysis we can identify a positive cross-correlation between homicides and attempted homicides. At the same time, looked at from the point of view of autocorrelation (DFA), this analysis can be more informative depending on time scale. For short scale (days), we cannot identify auto-correlations, on the scale of weeks DFA presents anti-persistent behavior, and for long time scales (n>90 days) DFA presents a persistent behavior. Finally, the application of this new type of statistical analysis proved to be efficient and, in this sense, this paper can contribute to a more accurate descriptive statistics of crime.
Allometric scaling of microbial fuel cells and stacks: The lifeform case for scale-up
NASA Astrophysics Data System (ADS)
Greenman, John; Ieropoulos, Ioannis A.
2017-07-01
This case study reports for the first time on the comparison between allometric scaling of lifeforms and scale-up of microbial fuel cell entities; enlarging individual units in volume, footprint and electrode surface area but also multiplying a static size/footprint and electrode surface area to scale-up by stacking. A study published in 2010 by DeLong et al. showed for the first time that Kleiber's law does not apply uniformly to all lifeforms, and that in fact growth rate for prokaryotes is superlinear, for protists is linear and for metazoa is sublinear. The current study, which is utilising data from previous experiments, is showing for the first time that for individual MFC units, which are enlarged, growth rate/power is sublinear, whereas for stacks this is superlinear.
Large Eddy Simulation in the Computation of Jet Noise
NASA Technical Reports Server (NTRS)
Mankbadi, R. R.; Goldstein, M. E.; Povinelli, L. A.; Hayder, M. E.; Turkel, E.
1999-01-01
Noise can be predicted by solving Full (time-dependent) Compressible Navier-Stokes Equation (FCNSE) with computational domain. The fluctuating near field of the jet produces propagating pressure waves that produce far-field sound. The fluctuating flow field as a function of time is needed in order to calculate sound from first principles. Noise can be predicted by solving the full, time-dependent, compressible Navier-Stokes equations with the computational domain extended to far field - but this is not feasible as indicated above. At high Reynolds number of technological interest turbulence has large range of scales. Direct numerical simulations (DNS) can not capture the small scales of turbulence. The large scales are more efficient than the small scales in radiating sound. The emphasize is thus on calculating sound radiated by large scales.
Biointerface dynamics--Multi scale modeling considerations.
Pajic-Lijakovic, Ivana; Levic, Steva; Nedovic, Viktor; Bugarski, Branko
2015-08-01
Irreversible nature of matrix structural changes around the immobilized cell aggregates caused by cell expansion is considered within the Ca-alginate microbeads. It is related to various effects: (1) cell-bulk surface effects (cell-polymer mechanical interactions) and cell surface-polymer surface effects (cell-polymer electrostatic interactions) at the bio-interface, (2) polymer-bulk volume effects (polymer-polymer mechanical and electrostatic interactions) within the perturbed boundary layers around the cell aggregates, (3) cumulative surface and volume effects within the parts of the microbead, and (4) macroscopic effects within the microbead as a whole based on multi scale modeling approaches. All modeling levels are discussed at two time scales i.e. long time scale (cell growth time) and short time scale (cell rearrangement time). Matrix structural changes results in the resistance stress generation which have the feedback impact on: (1) single and collective cell migrations, (2) cell deformation and orientation, (3) decrease of cell-to-cell separation distances, and (4) cell growth. Herein, an attempt is made to discuss and connect various multi scale modeling approaches on a range of time and space scales which have been proposed in the literature in order to shed further light to this complex course-consequence phenomenon which induces the anomalous nature of energy dissipation during the structural changes of cell aggregates and matrix quantified by the damping coefficients (the orders of the fractional derivatives). Deeper insight into the matrix partial disintegration within the boundary layers is useful for understanding and minimizing the polymer matrix resistance stress generation within the interface and on that base optimizing cell growth. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Verma, Aman; Mahesh, Krishnan
2012-08-01
The dynamic Lagrangian averaging approach for the dynamic Smagorinsky model for large eddy simulation is extended to an unstructured grid framework and applied to complex flows. The Lagrangian time scale is dynamically computed from the solution and does not need any adjustable parameter. The time scale used in the standard Lagrangian model contains an adjustable parameter θ. The dynamic time scale is computed based on a "surrogate-correlation" of the Germano-identity error (GIE). Also, a simple material derivative relation is used to approximate GIE at different events along a pathline instead of Lagrangian tracking or multi-linear interpolation. Previously, the time scale for homogeneous flows was computed by averaging along directions of homogeneity. The present work proposes modifications for inhomogeneous flows. This development allows the Lagrangian averaged dynamic model to be applied to inhomogeneous flows without any adjustable parameter. The proposed model is applied to LES of turbulent channel flow on unstructured zonal grids at various Reynolds numbers. Improvement is observed when compared to other averaging procedures for the dynamic Smagorinsky model, especially at coarse resolutions. The model is also applied to flow over a cylinder at two Reynolds numbers and good agreement with previous computations and experiments is obtained. Noticeable improvement is obtained using the proposed model over the standard Lagrangian model. The improvement is attributed to a physically consistent Lagrangian time scale. The model also shows good performance when applied to flow past a marine propeller in an off-design condition; it regularizes the eddy viscosity and adjusts locally to the dominant flow features.
NASA Astrophysics Data System (ADS)
Hackl, Jason F.
The relative dispersion of one uid particle with respect to another is fundamentally related to the transport and mixing of contaminant species in turbulent flows. The most basic consequence of Kolmogorov's 1941 similarity hypotheses for relative dispersion, the Richardson-Obukhov law that mean-square pair separation distance
Multi-time Scale Coordination of Distributed Energy Resources in Isolated Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayhorn, Ebony; Xie, Le; Butler-Purry, Karen
2016-03-31
In isolated power systems, including microgrids, distributed assets, such as renewable energy resources (e.g. wind, solar) and energy storage, can be actively coordinated to reduce dependency on fossil fuel generation. The key challenge of such coordination arises from significant uncertainty and variability occurring at small time scales associated with increased penetration of renewables. Specifically, the problem is with ensuring economic and efficient utilization of DERs, while also meeting operational objectives such as adequate frequency performance. One possible solution is to reduce the time step at which tertiary controls are implemented and to ensure feedback and look-ahead capability are incorporated tomore » handle variability and uncertainty. However, reducing the time step of tertiary controls necessitates investigating time-scale coupling with primary controls so as not to exacerbate system stability issues. In this paper, an optimal coordination (OC) strategy, which considers multiple time-scales, is proposed for isolated microgrid systems with a mix of DERs. This coordination strategy is based on an online moving horizon optimization approach. The effectiveness of the strategy was evaluated in terms of economics, technical performance, and computation time by varying key parameters that significantly impact performance. The illustrative example with realistic scenarios on a simulated isolated microgrid test system suggests that the proposed approach is generalizable towards designing multi-time scale optimal coordination strategies for isolated power systems.« less
Causality and correlations between BSE and NYSE indexes: A Janus faced relationship
NASA Astrophysics Data System (ADS)
Neeraj; Panigrahi, Prasanta K.
2017-09-01
We study the multi-scale temporal correlations and causality connections between the New York Stock Exchange (NYSE) and Bombay Stock Exchange (BSE) monthly average closing price indexes for a period of 300 months, encompassing the time period of the liberalisation of the Indian economy and its gradual global exposure. In multi-scale analysis; clearly identifiable 1, 2 and 3 year non-stationary periodic modulations in NYSE and BSE have been observed, with NYSE commensurating changes in BSE at 3 years scale. Interestingly, at one year time scale, the two exchanges are phase locked only during the turbulent times, while at the scale of three year, in-phase nature is observed for a much longer time frame. The two year time period, having characteristics of both one and three year variations, acts as the transition regime. The normalised NYSE's stock value is found to Granger cause those of BSE, with a time lag of 9 months. Surprisingly, observed Granger causality of high frequency variations reveals BSE behaviour getting reflected in the NYSE index fluctuations, after a smaller time lag. This Janus faced relationship, shows that smaller stock exchanges may provide a natural setting for simulating market fluctuations of much bigger exchanges. This possibly arises due to the fact that high frequency fluctuations form an universal part of the financial time series, and are expected to exhibit similar characteristics in open market economies.
Decadal-Scale Forecasting of Climate Drivers for Marine Applications.
Salinger, J; Hobday, A J; Matear, R J; O'Kane, T J; Risbey, J S; Dunstan, P; Eveson, J P; Fulton, E A; Feng, M; Plagányi, É E; Poloczanska, E S; Marshall, A G; Thompson, P A
Climate influences marine ecosystems on a range of time scales, from weather-scale (days) through to climate-scale (hundreds of years). Understanding of interannual to decadal climate variability and impacts on marine industries has received less attention. Predictability up to 10 years ahead may come from large-scale climate modes in the ocean that can persist over these time scales. In Australia the key drivers of climate variability affecting the marine environment are the Southern Annular Mode, the Indian Ocean Dipole, the El Niño/Southern Oscillation, and the Interdecadal Pacific Oscillation, each has phases that are associated with different ocean circulation patterns and regional environmental variables. The roles of these drivers are illustrated with three case studies of extreme events-a marine heatwave in Western Australia, a coral bleaching of the Great Barrier Reef, and flooding in Queensland. Statistical and dynamical approaches are described to generate forecasts of climate drivers that can subsequently be translated to useful information for marine end users making decisions at these time scales. Considerable investment is still needed to support decadal forecasting including improvement of ocean-atmosphere models, enhancement of observing systems on all scales to support initiation of forecasting models, collection of important biological data, and integration of forecasts into decision support tools. Collaboration between forecast developers and marine resource sectors-fisheries, aquaculture, tourism, biodiversity management, infrastructure-is needed to support forecast-based tactical and strategic decisions that reduce environmental risk over annual to decadal time scales. © 2016 Elsevier Ltd. All rights reserved.
Scale-down/scale-up studies leading to improved commercial beer fermentation.
Nienow, Alvin W; Nordkvist, Mikkel; Boulton, Christopher A
2011-08-01
Scale-up/scale-down techniques are vital for successful and safe commercial-scale bioprocess design and operation. An example is given in this review of recent studies related to beer production. Work at the bench scale shows that brewing yeast is not compromised by mechanical agitation up to 4.5 W/kg; and that compared with fermentations mixed by CO(2) evolution, agitation ≥ 0.04 W/kg is able to reduce fermentation time by about 20%. Work at the commercial scale in cylindroconical fermenters shows that, without mechanical agitation, most of the yeast sediments into the cone for about 50% of the fermentation time, leading to poor temperature control. Stirrer mixing overcomes these problems and leads to a similar reduction in batch time as the bench-scale tests and greatly reduces its variability, but is difficult to install in extant fermenters. The mixing characteristics of a new jet mixer, a rotary jet mixer, which overcomes these difficulties, are reported, based on pilot-scale studies. This change enables the advantages of stirring to be achieved at the commercial scale without the problems. In addition, more of the fermentable sugars are converted into ethanol. This review shows the effectiveness of scale-up/scale-down studies for improving commercial operations. Suggestions for further studies are made: one concerning the impact of homogenization on the removal of vicinal diketones and the other on the location of bubble formation at the commercial scale. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives
NASA Astrophysics Data System (ADS)
Vitello, Peter; Fried, Lawrence; Howard, Mike; Levesque, George; Souers, Clark
2011-06-01
Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to ALE hydrodynamics codes to model detonations. We term our model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculate EOS values based on the concentrations. A validation suite of model simulations compared to recent high fidelity metal push experiments at ambient and cold temperatures has been developed. We present here a study of multi-time scale kinetic rate effects for these experiments. Prepared by LLNL under Contract DE-AC52-07NA27344.
Scale dependant compensational stacking of channelized sedimentary deposits
NASA Astrophysics Data System (ADS)
Wang, Y.; Straub, K. M.; Hajek, E. A.
2010-12-01
Compensational stacking, the tendency for sediment transport system to preferentially fill topographic lows, thus smoothing out topographic relief is a concept used in the interpretation of the stratigraphic record. Recently, a metric was developed to quantify the strength of compensation in sedimentary basins by comparing observed stacking patterns to what would be expected from simple, uncorrelated stacking. This method uses the rate of decay of spatial variability in sedimentation between picked depositional horizons with increasing vertical stratigraphic averaging distance. We explore how this metric varies as a function of stratigraphic scale using data from physical experiments, stratigraphy exposed in outcrops and numerical models. In an experiment conducted at Tulane University’s Sediment Dynamics Laboratory, the topography of a channelized delta formed by weakly cohesive sediment was monitored along flow-perpendicular transects at a high temporal resolution relative to channel kinematics. Over the course of this experiment a uniform relative subsidence pattern, designed to isolate autogenic processes, resulted in the construction of a stratigraphic package that is 25 times as thick as the depth of the experimental channels. We observe a scale-dependence on the compensational stacking of deposits set by the system’s avulsion time-scale. Above the avulsion time-scale deposits stack purely compensationally, but below this time-scale deposits stack somewhere between randomly and deterministically. The well-exposed Ferris Formation (Cretaceous/Paleogene, Hanna Basin, Wyoming, USA) also shows scale-dependant stratigraphic organization which appears to be set by an avulsion time-scale. Finally, we utilize simple object-based models to illustrate how channel avulsions influence compensation in alluvial basins.
Information transfer across the scales of climate data variability
NASA Astrophysics Data System (ADS)
Palus, Milan; Jajcay, Nikola; Hartman, David; Hlinka, Jaroslav
2015-04-01
Multitude of scales characteristic of the climate system variability requires innovative approaches in analysis of instrumental time series. We present a methodology which starts with a wavelet decomposition of a multi-scale signal into quasi-oscillatory modes of a limited band-with, described using their instantaneous phases and amplitudes. Then their statistical associations are tested in order to search for interactions across time scales. In particular, an information-theoretic formulation of the generalized, nonlinear Granger causality is applied together with surrogate data testing methods [1]. The method [2] uncovers causal influence (in the Granger sense) and information transfer from large-scale modes of climate variability with characteristic time scales from years to almost a decade to regional temperature variability on short time scales. In analyses of daily mean surface air temperature from various European locations an information transfer from larger to smaller scales has been observed as the influence of the phase of slow oscillatory phenomena with periods around 7-8 years on amplitudes of the variability characterized by smaller temporal scales from a few months to annual and quasi-biennial scales [3]. In sea surface temperature data from the tropical Pacific area an influence of quasi-oscillatory phenomena with periods around 4-6 years on the variability on and near the annual scale has been observed. This study is supported by the Ministry of Education, Youth and Sports of the Czech Republic within the Program KONTAKT II, Project No. LH14001. [1] M. Palus, M. Vejmelka, Phys. Rev. E 75, 056211 (2007) [2] M. Palus, Entropy 16(10), 5263-5289 (2014) [3] M. Palus, Phys. Rev. Lett. 112, 078702 (2014)
Scaling and design of landslide and debris-flow experiments
Iverson, Richard M.
2015-01-01
Scaling plays a crucial role in designing experiments aimed at understanding the behavior of landslides, debris flows, and other geomorphic phenomena involving grain-fluid mixtures. Scaling can be addressed by using dimensional analysis or – more rigorously – by normalizing differential equations that describe the evolving dynamics of the system. Both of these approaches show that, relative to full-scale natural events, miniaturized landslides and debris flows exhibit disproportionately large effects of viscous shear resistance and cohesion as well as disproportionately small effects of excess pore-fluid pressure that is generated by debris dilation or contraction. This behavioral divergence grows in proportion to H3, where H is the thickness of a moving mass. Therefore, to maximize geomorphological relevance, experiments with wet landslides and debris flows must be conducted at the largest feasible scales. Another important consideration is that, unlike stream flows, landslides and debris flows accelerate from statically balanced initial states. Thus, no characteristic macroscopic velocity exists to guide experiment scaling and design. On the other hand, macroscopic gravity-driven motion of landslides and debris flows evolves over a characteristic time scale (L/g)1/2, where g is the magnitude of gravitational acceleration and L is the characteristic length of the moving mass. Grain-scale stress generation within the mass occurs on a shorter time scale, H/(gL)1/2, which is inversely proportional to the depth-averaged material shear rate. A separation of these two time scales exists if the criterion H/L < < 1 is satisfied, as is commonly the case. This time scale separation indicates that steady-state experiments can be used to study some details of landslide and debris-flow behavior but cannot be used to study macroscopic landslide or debris-flow dynamics.
Fast Atomic-Scale Chemical Imaging of Crystalline Materials and Dynamic Phase Transformations.
Lu, Ping; Yuan, Ren Liang; Ihlefeld, Jon F; Spoerke, Erik David; Pan, Wei; Zuo, Jian Min
2016-04-13
Atomic-scale phenomena fundamentally influence materials form and function that makes the ability to locally probe and study these processes critical to advancing our understanding and development of materials. Atomic-scale chemical imaging by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) is a powerful approach to investigate solid crystal structures. Inefficient X-ray emission and collection, however, require long acquisition times (typically hundreds of seconds), making the technique incompatible with electron-beam sensitive materials and study of dynamic material phenomena. Here we describe an atomic-scale STEM-EDS chemical imaging technique that decreases the acquisition time to as little as one second, a reduction of more than 100 times. We demonstrate this new approach using LaAlO3 single crystal and study dynamic phase transformation in beam-sensitive Li[Li0.2Ni0.2Mn0.6]O2 (LNMO) lithium ion battery cathode material. By capturing a series of time-lapsed chemical maps, we show for the first time clear atomic-scale evidence of preferred Ni-mobility in LNMO transformation, revealing new kinetic mechanisms. These examples highlight the potential of this approach toward temporal, atomic-scale mapping of crystal structure and chemistry for investigating dynamic material phenomena.
Equilibrium and out-of-equilibrium mechanics of living mammalian cytoplasm
NASA Astrophysics Data System (ADS)
Gupta, Satish Kumar; Guo, Ming
2017-10-01
Living cells are intrinsically non-equilibrium systems. They are driven out of equilibrium by the activity of the molecular motors and other enzymatic processes. This activity along with the ever present thermal agitation results in intracellular fluctuations inside the cytoplasm. In analogy to Brownian motion, the material property of the cytoplasm also influences the characteristics of these fluctuations. In this paper, through a combination of experimentation and theoretical analysis, we show that intracellular fluctuations are indeed due to non-thermal forces at relatively long time-scales, however, are dominated solely by thermal forces at relatively short time-scales. Thus, the cytoplasm of living mammalian cells behaves as an equilibrium material at short time-scales. The mean square displacement of these intracellular fluctuations scales inversely with the cytoplasmic shear modulus in this short time-scale equilibrium regime, and is inversely proportional to the square of the cytoplasmic shear modulus in the long time-scale out-of-equilibrium regime. Furthermore, we deploy passive microrheology based on these fluctuations to extract the mechanical property of the cytoplasm at the high-frequency regime. We show that the cytoplasm of living mammalian cells is a weak elastic gel in this regime; this is in an excellent agreement with an independent micromechanical measurement using optical tweezers.
Impact of the time scale of model sensitivity response on coupled model parameter estimation
NASA Astrophysics Data System (ADS)
Liu, Chang; Zhang, Shaoqing; Li, Shan; Liu, Zhengyu
2017-11-01
That a model has sensitivity responses to parameter uncertainties is a key concept in implementing model parameter estimation using filtering theory and methodology. Depending on the nature of associated physics and characteristic variability of the fluid in a coupled system, the response time scales of a model to parameters can be different, from hourly to decadal. Unlike state estimation, where the update frequency is usually linked with observational frequency, the update frequency for parameter estimation must be associated with the time scale of the model sensitivity response to the parameter being estimated. Here, with a simple coupled model, the impact of model sensitivity response time scales on coupled model parameter estimation is studied. The model includes characteristic synoptic to decadal scales by coupling a long-term varying deep ocean with a slow-varying upper ocean forced by a chaotic atmosphere. Results show that, using the update frequency determined by the model sensitivity response time scale, both the reliability and quality of parameter estimation can be improved significantly, and thus the estimated parameters make the model more consistent with the observation. These simple model results provide a guideline for when real observations are used to optimize the parameters in a coupled general circulation model for improving climate analysis and prediction initialization.
NASA Astrophysics Data System (ADS)
Nogueira, M.
2017-10-01
Monthly-to-decadal variability of the regional precipitation over Intertropical Convergence Zone and north-Atlantic and north-Pacific storm tracks was investigated using ERA-20C reanalysis. Satellite-based precipitation (
Minimum entropy density method for the time series analysis
NASA Astrophysics Data System (ADS)
Lee, Jeong Won; Park, Joongwoo Brian; Jo, Hang-Hyun; Yang, Jae-Suk; Moon, Hie-Tae
2009-01-01
The entropy density is an intuitive and powerful concept to study the complicated nonlinear processes derived from physical systems. We develop the minimum entropy density method (MEDM) to detect the structure scale of a given time series, which is defined as the scale in which the uncertainty is minimized, hence the pattern is revealed most. The MEDM is applied to the financial time series of Standard and Poor’s 500 index from February 1983 to April 2006. Then the temporal behavior of structure scale is obtained and analyzed in relation to the information delivery time and efficient market hypothesis.
Temporal scaling and spatial statistical analyses of groundwater level fluctuations
NASA Astrophysics Data System (ADS)
Sun, H.; Yuan, L., Sr.; Zhang, Y.
2017-12-01
Natural dynamics such as groundwater level fluctuations can exhibit multifractionality and/or multifractality due likely to multi-scale aquifer heterogeneity and controlling factors, whose statistics requires efficient quantification methods. This study explores multifractionality and non-Gaussian properties in groundwater dynamics expressed by time series of daily level fluctuation at three wells located in the lower Mississippi valley, after removing the seasonal cycle in the temporal scaling and spatial statistical analysis. First, using the time-scale multifractional analysis, a systematic statistical method is developed to analyze groundwater level fluctuations quantified by the time-scale local Hurst exponent (TS-LHE). Results show that the TS-LHE does not remain constant, implying the fractal-scaling behavior changing with time and location. Hence, we can distinguish the potentially location-dependent scaling feature, which may characterize the hydrology dynamic system. Second, spatial statistical analysis shows that the increment of groundwater level fluctuations exhibits a heavy tailed, non-Gaussian distribution, which can be better quantified by a Lévy stable distribution. Monte Carlo simulations of the fluctuation process also show that the linear fractional stable motion model can well depict the transient dynamics (i.e., fractal non-Gaussian property) of groundwater level, while fractional Brownian motion is inadequate to describe natural processes with anomalous dynamics. Analysis of temporal scaling and spatial statistics therefore may provide useful information and quantification to understand further the nature of complex dynamics in hydrology.
The observation of possible reconnection events in the boundary changes of solar coronal holes
NASA Technical Reports Server (NTRS)
Kahler, S. W.; Moses, J. Daniel
1989-01-01
Coronal holes are large scale regions of magnetically open fields which are easily observed in solar soft X-ray images. The boundaries of coronal holes are separatrices between large scale regions of open and closed magnetic fields where one might expect to observe evidence of solar magnetic reconnection. Previous studies by Nolte and colleagues using Skylab X-ray images established that large scale (greater than or equal to 9 x 10(4) km) changes in coronal hole boundaries were due to coronal processes, i.e., magnetic reconnection, rather than to photospheric motions. Those studies were limited to time scales of about one day, and no conclusion could be drawn about the size and time scales of the reconnection process at hole boundaries. Sequences of appropriate Skylab X-ray images were used with a time resolution of about 90 min during times of the central meridian passages of the coronal hole labelled Coronal Hole 1 to search for hole boundary changes which can yield the spatial and temporal scales of coronal magnetic reconnection. It was found that 29 of 32 observed boundary changes could be associated with bright points. The appearance of the bright point may be the signature of reconnection between small scale and large scale magnetic fields. The observed boundary changes contributed to the quasi-rigid rotation of Coronal Hole 1.
Divisions of geologic time-major chronostratigraphic and geochronologic units
,
2010-01-01
Effective communication in the geosciences requires consistent uses of stratigraphic nomenclature, especially divisions of geologic time. A geologic time scale is composed of standard stratigraphic divisions based on rock sequences and is calibrated in years. Over the years, the development of new dating methods and the refinement of previous methods have stimulated revisions to geologic time scales. Advances in stratigraphy and geochronology require that any time scale be periodically updated. Therefore, Divisions of Geologic Time, which shows the major chronostratigraphic (position) and geochronologic (time) units, is intended to be a dynamic resource that will be modified to include accepted changes of unit names and boundary age estimates. This fact sheet is a modification of USGS Fact Sheet 2007-3015 by the U.S. Geological Survey Geologic Names Committee.
Superplastic Creep of Metal Nanowires From Rate-Dependent Plasticity Transition
Tao, Weiwei; Cao, Penghui; Park, Harold S.
2018-04-30
Understanding the time-dependent mechanical behavior of nanomaterials such as nanowires is essential to predict their reliability in nanomechanical devices. This understanding is typically obtained using creep tests, which are the most fundamental loading mechanism by which the time dependent deformation of materials is characterized. However, due to existing challenges facing both experimentalists and theorists, the time dependent mechanical response of nanowires is not well-understood. Here, we use atomistic simulations that can access experimental time scales to examine the creep of single-crystal face-centered cubic metal (Cu, Ag, Pt) nanowires. Here, we report that both Cu and Ag nanowires show significantly increasedmore » ductility and superplasticity under low creep stresses, where the superplasticity is driven by a rate-dependent transition in defect nucleation from twinning to trailing partial dislocations at the micro- or millisecond time scale. The transition in the deformation mechanism also governs a corresponding transition in the stress-dependent creep time at the microsecond (Ag) and millisecond (Cu) time scales. Overall, this work demonstrates the necessity of accessing time scales that far exceed those seen in conventional atomistic modeling for accurate insights into the time-dependent mechanical behavior and properties of nanomaterials.« less
Superplastic Creep of Metal Nanowires from Rate-Dependent Plasticity Transition.
Tao, Weiwei; Cao, Penghui; Park, Harold S
2018-05-22
Understanding the time-dependent mechanical behavior of nanomaterials such as nanowires is essential to predict their reliability in nanomechanical devices. This understanding is typically obtained using creep tests, which are the most fundamental loading mechanism by which the time-dependent deformation of materials is characterized. However, due to existing challenges facing both experimentalists and theorists, the time-dependent mechanical response of nanowires is not well-understood. Here, we use atomistic simulations that can access experimental time scales to examine the creep of single-crystal face-centered cubic metal (Cu, Ag, Pt) nanowires. We report that both Cu and Ag nanowires show significantly increased ductility and superplasticity under low creep stresses, where the superplasticity is driven by a rate-dependent transition in defect nucleation from twinning to trailing partial dislocations at the micro- or millisecond time scale. The transition in the deformation mechanism also governs a corresponding transition in the stress-dependent creep time at the microsecond (Ag) and millisecond (Cu) time scales. Overall, this work demonstrates the necessity of accessing time scales that far exceed those seen in conventional atomistic modeling for accurate insights into the time-dependent mechanical behavior and properties of nanomaterials.
Superplastic Creep of Metal Nanowires From Rate-Dependent Plasticity Transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Weiwei; Cao, Penghui; Park, Harold S.
Understanding the time-dependent mechanical behavior of nanomaterials such as nanowires is essential to predict their reliability in nanomechanical devices. This understanding is typically obtained using creep tests, which are the most fundamental loading mechanism by which the time dependent deformation of materials is characterized. However, due to existing challenges facing both experimentalists and theorists, the time dependent mechanical response of nanowires is not well-understood. Here, we use atomistic simulations that can access experimental time scales to examine the creep of single-crystal face-centered cubic metal (Cu, Ag, Pt) nanowires. Here, we report that both Cu and Ag nanowires show significantly increasedmore » ductility and superplasticity under low creep stresses, where the superplasticity is driven by a rate-dependent transition in defect nucleation from twinning to trailing partial dislocations at the micro- or millisecond time scale. The transition in the deformation mechanism also governs a corresponding transition in the stress-dependent creep time at the microsecond (Ag) and millisecond (Cu) time scales. Overall, this work demonstrates the necessity of accessing time scales that far exceed those seen in conventional atomistic modeling for accurate insights into the time-dependent mechanical behavior and properties of nanomaterials.« less
The role of topography on catchment‐scale water residence time
McGuire, K.J.; McDonnell, Jeffery J.; Weiler, M.; Kendall, C.; McGlynn, B.L.; Welker, J.M.; Seibert, J.
2005-01-01
The age, or residence time, of water is a fundamental descriptor of catchment hydrology, revealing information about the storage, flow pathways, and source of water in a single integrated measure. While there has been tremendous recent interest in residence time estimation to characterize watersheds, there are relatively few studies that have quantified residence time at the watershed scale, and fewer still that have extended those results beyond single catchments to larger landscape scales. We examined topographic controls on residence time for seven catchments (0.085–62.4 km2) that represent diverse geologic and geomorphic conditions in the western Cascade Mountains of Oregon. Our primary objective was to determine the dominant physical controls on catchment‐scale water residence time and specifically test the hypothesis that residence time is related to the size of the basin. Residence times were estimated by simple convolution models that described the transfer of precipitation isotopic composition to the stream network. We found that base flow mean residence times for exponential distributions ranged from 0.8 to 3.3 years. Mean residence time showed no correlation to basin area (r2 < 0.01) but instead was correlated (r2 = 0.91) to catchment terrain indices representing the flow path distance and flow path gradient to the stream network. These results illustrate that landscape organization (i.e., topography) rather than basin area controls catchment‐scale transport. Results from this study may provide a framework for describing scale‐invariant transport across climatic and geologic conditions, whereby the internal form and structure of the basin defines the first‐order control on base flow residence time.
A Small-Scale, Feasibility Study of Academic Language Time in Primary Grade Language Arts
ERIC Educational Resources Information Center
Roskos, Kathleen A.; Zuzolo, Nicole; Primm, Ashley
2017-01-01
A small-scale feasibility study was conducted to explore the implementation of academic language time (ALT) in primary grade classrooms with and without access to digital devices. Academic language time is a structural change that dedicates a portion of language arts instructional time to direct vocabulary instruction using evidence-based…
NASA Astrophysics Data System (ADS)
Taousser, Fatima; Defoort, Michael; Djemai, Mohamed
2016-01-01
This paper investigates the consensus problem for linear multi-agent system with fixed communication topology in the presence of intermittent communication using the time-scale theory. Since each agent can only obtain relative local information intermittently, the proposed consensus algorithm is based on a discontinuous local interaction rule. The interaction among agents happens at a disjoint set of continuous-time intervals. The closed-loop multi-agent system can be represented using mixed linear continuous-time and linear discrete-time models due to intermittent information transmissions. The time-scale theory provides a powerful tool to combine continuous-time and discrete-time cases and study the consensus protocol under a unified framework. Using this theory, some conditions are derived to achieve exponential consensus under intermittent information transmissions. Simulations are performed to validate the theoretical results.