Science.gov

Sample records for submitting hiv resistance

  1. HIV resistance to raltegravir.

    PubMed

    Clavel, Francois

    2009-11-24

    Similar to all antiretroviral drugs, failure of raltegravir-based treatment regimens to fully supress HIV replication almost invariably results in emergence of HIV resistance to this new drug. HIV resistance to raltegravir is the consequence of mutations located close to the integrase active site, which can be divided into three main evolutionary pathways: the N155H, the Q148R/H/K and the Y143R/C pathways. Each of these primary mutations can be accompanied by a variety of secondary mutations that both increase resistance and compensate for the variable loss of viral replicative capacity that is often associated with primary resistance mutations. One unique property of HIV resistance to raltegravir is that each of these different resistance pathways are mutually exclusive and appear to evolve separately on distinct viral genomes. Resistance is frequently initiated by viruses carrying mutations of the N155H pathway, followed by emergence and further dominance of viral genomes carrying mutations of the Q148R/H/K or of the Y143R/C pathways, which express higher levels of resistance. Even if some natural integrase polymorphisms can be part of this evolution process, these polymorphisms do not affect HIV susceptibility in the absence of primary mutations. Therefore, all HIV-1 subtypes and groups, together with HIV-2, are naturally susceptible to raltegravir. Finally, because interaction of integrase strand transfer inhibitors with the HIV integrase active site is comparable from one compound to another, raltegravir-resistant viruses express significant cross resistance to most other compounds of this new class of antiretroviral drugs.

  2. The HIVdb system for HIV-1 genotypic resistance interpretation.

    PubMed

    Tang, Michele W; Liu, Tommy F; Shafer, Robert W

    2012-01-01

    The Stanford HIV Drug Resistance Database hosts a freely available online genotypic resistance interpretation system called HIVdb to help clinicians and laboratories interpret HIV-1 genotypic resistance tests. These tests are designed to assess susceptibility to nucleoside and nonnucleoside reverse transcriptase inhibitors (NRTI and NNRTI), protease inhibitors and integrase inhibitors. The HIVdb genotypic resistance interpretation system output consists of (1) a list of penalty scores for each antiretroviral (ARV) resistance mutation in a submitted sequence, (2) estimates of decreased NRTI, NNRTI, protease and integrase inhibitor susceptibility, and (3) comments about each ARV resistance mutation in the submitted sequence. The application's strengths are its convenience for submitting sequences, its quality control analysis, its transparency and its extensive comments. The Sierra Web service is an extension that enables laboratories analyzing many sequences to individualize the format of their results. The algorithm specification interface compiler makes it possible for HIVdb to provide results using a variety of different HIV-1 genotypic resistance interpretation algorithms.

  3. Creating genetic resistance to HIV.

    PubMed

    Burnett, John C; Zaia, John A; Rossi, John J

    2012-10-01

    HIV/AIDS remains a chronic and incurable disease, in spite of the notable successes of combination antiretroviral therapy. Gene therapy offers the prospect of creating genetic resistance to HIV that supplants the need for antiviral drugs. In sight of this goal, a variety of anti-HIV genes have reached clinical testing, including gene-editing enzymes, protein-based inhibitors, and RNA-based therapeutics. Combinations of therapeutic genes against viral and host targets are designed to improve the overall antiviral potency and reduce the likelihood of viral resistance. In cell-based therapies, therapeutic genes are expressed in gene modified T lymphocytes or in hematopoietic stem cells that generate an HIV-resistant immune system. Such strategies must promote the selective proliferation of the transplanted cells and the prolonged expression of therapeutic genes. This review focuses on the current advances and limitations in genetic therapies against HIV, including the status of several recent and ongoing clinical studies.

  4. Using HIV resistance tests in clinical practice.

    PubMed

    Taylor, Stephen; Jayasuriya, Ashini; Smit, Erasmus

    2009-08-01

    Genotypic resistance testing is now a standard of care in HIV management. Although there are clear, published guidelines to recommend the appropriate use of these tests, clinicians and scientists still struggle to determine the optimal use of resistance tests given the finite budgets and time constraints under which they work. In this article we discuss some 'real-life' clinical situations and aim to provide a useful insight into when and where genotypic resistance testing can be optimally applied in the management of HIV-positive adults.

  5. Innate immunity in resistance to HIV infection.

    PubMed

    Biasin, Mara; Clerici, Mario; Piacentini, Luca

    2010-11-01

    Resistance to human immunodeficiency virus (HIV) infection in subjects who do not seroconvert despite multiple exposures to the virus and to the progression to AIDS in HIV‐infected individuals depends on multiple factors involving both the innate and the adaptive immune system. The contribution of natural immunity in preventing HIV infection has so far received little attention, but many recently published articles suggest a key role for Toll‐like receptors, natural killer cells, interleukin‐22, acute‐phase amyloid A protein, and APOBEC3G in conferring resistance to HIV infection. The study of these factors will shed light on HIV pathogenesis and contribute to the development of new therapeutic approaches to this elusive disease.

  6. Identifying representative drug resistant mutants of HIV

    PubMed Central

    2015-01-01

    Background Drug resistance is one of the most important causes for failure of anti-AIDS treatment. During therapy, multiple mutations accumulate in the HIV genome, eventually rendering the drugs ineffective in blocking replication of the mutant virus. The huge number of possible mutants precludes experimental analysis to explore the molecular mechanisms of resistance and develop improved antiviral drugs. Results In order to solve this problem, we have developed a new algorithm to reveal the most representative mutants from the whole drug resistant mutant database based on our newly proposed unified protein sequence and 3D structure encoding method. Mean shift clustering and multiple regression analysis were applied on genotype-resistance data for mutants of HIV protease and reverse transcriptase. This approach successfully chooses less than 100 mutants with the highest resistance to each drug out of about 10K in the whole database. When considering high level resistance to multiple drugs, the numbers reduce to one or two representative mutants. Conclusion This approach for predicting the most representative mutants for each drug has major importance for experimental verification since the results provide a small number of representative sequences, which will be amenable for in vitro testing and characterization of the expressed mutant proteins. PMID:26678327

  7. HIV-1 drug resistance in HIV-1-infected children in the United Kingdom from 1998 to 2004.

    PubMed

    Chakraborty, Rana; Smith, Colette J; Dunn, David; Green, Hannah; Duong, Trinh; Doerholt, Katja; Riordon, Andrew; Lyall, Hermione; Tookey, Pat; Butler, Karina; Sabin, Caroline A; Gibb, Di; Pillay, Deenan

    2008-05-01

    We reviewed HIV-1 genotypes from 200 of 979 (20%) HIV-infected children in the U.K. Collaborative HIV in Pediatric Study (CHIPS) cohort (343 resistance tests). Three of 44 samples had major primary resistance mutations before antiretroviral therapy. Three-class resistance was noted in 42 samples (14.1%). Our study also highlighted underutilization of testing and the need for prompt genotyping after drug discontinuation which may have lead to an underestimation of HIV-1 resistance.

  8. A multifaceted analysis of HIV-1 protease multidrug resistance phenotypes

    PubMed Central

    2011-01-01

    Background Great strides have been made in the effective treatment of HIV-1 with the development of second-generation protease inhibitors (PIs) that are effective against historically multi-PI-resistant HIV-1 variants. Nevertheless, mutation patterns that confer decreasing susceptibility to available PIs continue to arise within the population. Understanding the phenotypic and genotypic patterns responsible for multi-PI resistance is necessary for developing PIs that are active against clinically-relevant PI-resistant HIV-1 variants. Results In this work, we use globally optimal integer programming-based clustering techniques to elucidate multi-PI phenotypic resistance patterns using a data set of 398 HIV-1 protease sequences that have each been phenotyped for susceptibility toward the nine clinically-approved HIV-1 PIs. We validate the information content of the clusters by evaluating their ability to predict the level of decreased susceptibility to each of the available PIs using a cross validation procedure. We demonstrate the finding that as a result of phenotypic cross resistance, the considered clinical HIV-1 protease isolates are confined to ~6% or less of the clinically-relevant phenotypic space. Clustering and feature selection methods are used to find representative sequences and mutations for major resistance phenotypes to elucidate their genotypic signatures. We show that phenotypic similarity does not imply genotypic similarity, that different PI-resistance mutation patterns can give rise to HIV-1 isolates with similar phenotypic profiles. Conclusion Rather than characterizing HIV-1 susceptibility toward each PI individually, our study offers a unique perspective on the phenomenon of PI class resistance by uncovering major multidrug-resistant phenotypic patterns and their often diverse genotypic determinants, providing a methodology that can be applied to understand clinically-relevant phenotypic patterns to aid in the design of novel inhibitors that

  9. Human APOBEC3 proteins, retrovirus restriction, and HIV drug resistance.

    PubMed

    Haché, Guylaine; Mansky, Louis M; Harris, Reuben S

    2006-01-01

    Over 40 million people worldwide currently have HIV/AIDS. Many antiretroviral drugs have proven effective, but drug-resistant HIV variants frequently emerge to thwart treatment efforts. Reverse transcription errors undoubtedly contribute to drug resistance, but additional significant sources of viral genetic variation are debatable. The human APOBEC3F and APOBEC3G proteins can potently inhibit retrovirus infection by a mechanism that involves retroviral cDNA cytosine deamination. Here we review the current knowledge on the mechanism of APOBEC3-dependent retrovirus restriction and discuss whether this innate host-defense system actively contributes to HIV genetic variation.

  10. Optimal Antiviral Switching to Minimize Resistance Risk in HIV Therapy

    PubMed Central

    Luo, Rutao; Piovoso, Michael J.; Martinez-Picado, Javier; Zurakowski, Ryan

    2011-01-01

    The development of resistant strains of HIV is the most significant barrier to effective long-term treatment of HIV infection. The most common causes of resistance development are patient noncompliance and pre-existence of resistant strains. In this paper, methods of antiviral regimen switching are developed that minimize the risk of pre-existing resistant virus emerging during therapy switches necessitated by virological failure. Two distinct cases are considered; a single previous virological failure and multiple virological failures. These methods use optimal control approaches on experimentally verified mathematical models of HIV strain competition and statistical models of resistance risk. It is shown that, theoretically, order-of-magnitude reduction in risk can be achieved, and multiple previous virological failures enable greater success of these methods in reducing the risk of subsequent treatment failures. PMID:22073250

  11. Cytotoxic T cell responses to multiple conserved HIV epitopes in HIV-resistant prostitutes in Nairobi.

    PubMed Central

    Rowland-Jones, S L; Dong, T; Fowke, K R; Kimani, J; Krausa, P; Newell, H; Blanchard, T; Ariyoshi, K; Oyugi, J; Ngugi, E; Bwayo, J; MacDonald, K S; McMichael, A J; Plummer, F A

    1998-01-01

    Many people who remain persistently seronegative despite frequent HIV exposure have HIV-specific immune responses. The study of these may provide information about mechanisms of natural protective immunity to HIV-1. We describe the specificity of cytotoxic T lymphocyte responses to HIV in seronegative prostitutes in Nairobi who are apparently resistant to HIV infection. These women have had frequent exposure to a range of African HIV-1 variants, primarily clades A, C, and D, for up to 12 yr without becoming infected. Nearly half of them have CTL directed towards epitopes previously defined for B clade virus, which are largely conserved in the A and D clade sequences. Stronger responses are frequently elicited using the A or D clade version of an epitope to stimulate CTL, suggesting that they were originally primed by exposure to these virus strains. CTL responses have been defined to novel epitopes presented by HLA class I molecules associated with resistance to infection in the cohort, HLA-A*6802 and HLA-B18. Estimates using a modified interferon-gamma Elispot assay indicate a circulating frequency of CTL to individual epitopes of between 1:3,200 and 1:50,000. Thus, HIV-specific immune responses-particularly cross-clade CTL activity- may be responsible for protection against persistent HIV infection in these African women. PMID:9802890

  12. Persistence of HIV-1 transmitted drug resistance mutations.

    PubMed

    Castro, Hannah; Pillay, Deenan; Cane, Patricia; Asboe, David; Cambiano, Valentina; Phillips, Andrew; Dunn, David T

    2013-11-01

    There are few data on the persistence of individual human immunodeficiency virus type 1 (HIV-1) transmitted drug resistance (TDR) mutations in the absence of selective drug pressure. We studied 313 patients in whom TDR mutations were detected at their first resistance test and who had a subsequent test performed while ART-naive. The rate at which mutations became undetectable was estimated using exponential regression accounting for interval censoring. Most thymidine analogue mutations (TAMs) and T215 revertants (but not T215F/Y) were found to be highly stable, with NNRTI and PI mutations being relatively less persistent. Our estimates are important for informing HIV transmission models.

  13. Sparse Representation for Prediction of HIV-1 Protease Drug Resistance.

    PubMed

    Yu, Xiaxia; Weber, Irene T; Harrison, Robert W

    2013-01-01

    HIV rapidly evolves drug resistance in response to antiviral drugs used in AIDS therapy. Estimating the specific resistance of a given strain of HIV to individual drugs from sequence data has important benefits for both the therapy of individual patients and the development of novel drugs. We have developed an accurate classification method based on the sparse representation theory, and demonstrate that this method is highly effective with HIV-1 protease. The protease structure is represented using our newly proposed encoding method based on Delaunay triangulation, and combined with the mutated amino acid sequences of known drug-resistant strains to train a machine-learning algorithm both for classification and regression of drug-resistant mutations. An overall cross-validated classification accuracy of 97% is obtained when trained on a publically available data base of approximately 1.5×10(4) known sequences (Stanford HIV database http://hivdb.stanford.edu/cgi-bin/GenoPhenoDS.cgi). Resistance to four FDA approved drugs is computed and comparisons with other algorithms demonstrate that our method shows significant improvements in classification accuracy.

  14. Genotypic resistance testing in HIV by arrayed primer extension

    PubMed Central

    Bodem, Jochen; Gerhold-Ay, Aslihan; Jacob, Anette; Fellenberg, Kurt; Kräusslich, Hans-Georg; Hoheisel, Jörg D.

    2008-01-01

    The analysis of mutations that are associated with the occurrence of drug resistance is important for monitoring the antiretroviral therapy of patients infected with human immunodeficiency virus (HIV). Here, we describe the establishment and successful application of Arrayed Primer Extension (APEX) for genotypic resistance testing in HIV as a rapid and economical alternative to standard sequencing. The assay is based on an array of oligonucleotide primers that are immobilised via their 5′-ends. Upon hybridisation of template DNA, a primer extension reaction is performed in the presence of the four dideoxynucleotides, each labelled with a distinct fluorophore. The inserted label immediately indicates the sequence at the respective position. Any mutation changes the colour pattern. We designed a microarray for the analysis of 26 and 33 codons in the HIV protease and reverse transcriptase, respectively, which are of special interest with respect to drug resistance. The enormous genome variability of HIV represents a big challenge for genotypic resistance tests, which include a hybridisation step, both in terms of specificity and probe numbers. The use of degenerated oligonucleotides resulted in a significant reduction in the number of primers needed. For validation, DNA of 94 and 48 patients that exhibited resistance to inhibitors of HIV protease and reverse transcriptase, respectively, were analysed. The validation included HIV subtype B, prevalent in industrialised countries, as well as non-subtype B samples that are more common elsewhere. Electronic supplementary material The online version of this article (doi:10.1007/s00216-007-1775-0) contains supplementary material, which is available to authorized users. PMID:18202840

  15. HIV Drug Resistance Surveillance Among Jamaican Men Who Have Sex with Men Should Be Prioritized for Reducing HIV Transmission

    PubMed Central

    Dennis, Ann M.; Nelson, Julie A.E.; Weir, Sharon S.; Figueroa, J. Peter

    2015-01-01

    Abstract The prevalence of human immunodeficiency virus type 1 (HIV-1) is highest among men who have sex with men (MSM) in Jamaica but no genotypic data are available on the virus strains that are responsible for the epidemic among this key population. HIV-1 polymerase (pol) genes from 65 MSM were sequenced and used to predict drug resistance mutations. An HIV drug resistance prevalence of 28% (minimum 13%) was observed among this cohort, with the most frequent mutations conferring resistance to efavirenz, nevirapine, and lamivudine. Phylogenetic analysis of the sequences revealed 10 times the number of linked HIV infections among this cohort than respondent reporting. HIV treatment and prevention efforts in Jamaica could benefit significantly from Pol genotyping of the HIV strains infecting socially vulnerable MSM prior to initiating antiretroviral therapy (ART), as this would guide suppressive ART and unearth HIV transmission clusters to enable more effective delivery of treatment and prevention programs. PMID:26133540

  16. 21 CFR 866.3950 - In vitro human immunodeficiency virus (HIV) drug resistance genotype assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false In vitro human immunodeficiency virus (HIV) drug... Serological Reagents § 866.3950 In vitro human immunodeficiency virus (HIV) drug resistance genotype assay. (a) Identification. The in vitro HIV drug resistance genotype assay is a device that consists of nucleic acid...

  17. 21 CFR 866.3950 - In vitro human immunodeficiency virus (HIV) drug resistance genotype assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false In vitro human immunodeficiency virus (HIV) drug... Serological Reagents § 866.3950 In vitro human immunodeficiency virus (HIV) drug resistance genotype assay. (a) Identification. The in vitro HIV drug resistance genotype assay is a device that consists of nucleic acid...

  18. 21 CFR 866.3950 - In vitro human immunodeficiency virus (HIV) drug resistance genotype assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false In vitro human immunodeficiency virus (HIV) drug... Serological Reagents § 866.3950 In vitro human immunodeficiency virus (HIV) drug resistance genotype assay. (a) Identification. The in vitro HIV drug resistance genotype assay is a device that consists of nucleic acid...

  19. Molecular mechanisms for insulin resistance in treated HIV-infection

    PubMed Central

    Hruz, Paul W.

    2010-01-01

    Identification and characterization of the molecular mechanisms contributing to the high incidence of insulin resistance in HIV infected patients treated with combined antiretroviral therapy remains a critically important goal in the quest to improve the safety of antiretroviral treatment regimens. The use of in vitro model systems together with the investigation of drug-mediated effects on glucose homeostasis in animals and healthy human volunteers has provided important insight into the contribution of individual drugs to insulin resistance and affected cellular pathways. HIV protease inhibitor mediated blockade of glucose transport and nucleoside reverse transcriptase inhibitor mediated mitochondrial toxicity have been well characterized. Together with growing understanding of mediators of insulin resistance in non-HIV metabolic syndrome, additional cellular effects including the induction of endoplasmic reticulum and oxidative stress, altered adipocytokine secretion, and lipotoxicity have been integrated into this developing picture. Further elucidation of these mechanisms provides potential for the continued development of safer antiviral drugs and targeted treatment of insulin resistance in affected patients. PMID:21663839

  20. Identification of differentially expressed proteins in the cervical mucosa of HIV-1-resistant sex workers.

    PubMed

    Burgener, Adam; Boutilier, Julie; Wachihi, Charles; Kimani, Joshua; Carpenter, Michael; Westmacott, Garrett; Cheng, Keding; Ball, Terry B; Plummer, Francis

    2008-10-01

    Novel tools are necessary to understand mechanisms of altered susceptibility to HIV-1 infection in women of the Pumwani Sex Worker cohort, Kenya. In this cohort, more than 140 of the 2000 participants have been characterized to be relatively resistant to HIV-1 infection. Given that sexual transmission of HIV-1 occurs through mucosal surfaces such as that in the cervicovaginal environment, our hypothesis is that innate immune factors in the genital tract may play a role in HIV-1 infection resistance. Understanding this mechanism may help develop microbicides and/or vaccines against HIV-1. A quantitative proteomics technique (2D-DIGE: two-dimensional difference in-gel electrophoresis) was used to examine cervical mucosa of HIV-1 resistant women ( n = 10) for biomarkers of HIV-1 resistance. Over 15 proteins were found to be differentially expressed between HIV-1-resistant women and control groups ( n = 29), some which show a greater than 8-fold change. HIV-1-resistant women overexpressed several antiproteases, including those from the serpin B family, and also cystatin A, a known anti-HIV-1 factor. Immunoblotting for a selection of the identified proteins confirmed the DIGE volume differences. Validation of these results on a larger sample of individuals will provide further evidence these biomarkers are associated with HIV-1 resistance and could help aid in the development of effective microbicides against HIV-1.

  1. IFN-λ Inhibits Drug-Resistant HIV Infection of Macrophages

    PubMed Central

    Wang, Xu; Wang, He; Liu, Man-Qing; Li, Jie-Liang; Zhou, Run-Hong; Zhou, Yu; Wang, Yi-Zhong; Zhou, Wang; Ho, Wen-Zhe

    2017-01-01

    Type III interferons (IFN-λs) have been demonstrated to inhibit a number of viruses, including HIV. Here, we further examined the anti-HIV effect of IFN-λs in macrophages. We found that IFN-λs synergistically enhanced anti-HIV activity of antiretrovirals [azidothymidine (AZT), efavirenz, indinavir, and enfuvirtide] in infected macrophages. Importantly, IFN-λs could suppress HIV infection of macrophages with the drug-resistant strains, including AZT-resistant virus (A012) and reverse transcriptase inhibitor-resistant virus (TC49). Mechanistically, IFN-λs were able to induce the expression of several important anti-HIV cellular factors, including myxovirus resistance 2 (Mx2), a newly identified HIV post-entry inhibitor and tetherin, a restriction factor that blocks HIV release from infected cells. These observations provide additional evidence to support the potential use of IFN-λs as therapeutics agents for the treatment of HIV infection. PMID:28321215

  2. Fidelity of classwide-resistant HIV-2 reverse transcriptase and differential contribution of K65R to the accuracy of HIV-1 and HIV-2 reverse transcriptases.

    PubMed

    Álvarez, Mar; Sebastián-Martín, Alba; García-Marquina, Guillermo; Menéndez-Arias, Luis

    2017-03-23

    Nucleoside reverse transcriptase (RT) inhibitors constitute the backbone of current therapies against human immunodeficiency virus type 1 and type 2 (HIV-1 and HIV-2, respectively). However, mutational pathways leading to the development of nucleoside analogue resistance are different in both types of HIV. In HIV-2, resistance to all approved nucleoside analogues is conferred by the combination of RT substitutions K65R, Q151M and M184V. Nucleotide incorporation kinetic analyses of mutant and wild-type (WT) HIV-2 RTs show that the triple-mutant has decreased catalytic efficiency due to the presence of M184V. Although similar effects were previously reported for equivalent mutations in HIV-1 RT, the HIV-2 enzymes were catalytically less efficient. Interestingly, in highly divergent HIV-1 RTs, K65R confers several-fold increased accuracy of DNA synthesis. We have determined the intrinsic fidelity of DNA synthesis of WT HIV-2 RT and mutants K65R and K65R/Q151M/M184V. Our results show that those changes in HIV-2 RT have a relatively small impact on nucleotide selectivity. Furthermore, we found that there were less than two-fold differences in error rates obtained with forward mutation assays using mutant and WT HIV-2 RTs. A different conformation of the β3-β4 hairpin loop in HIV-1 and HIV-2 RTs could probably explain the differential effects of K65R.

  3. Fidelity of classwide-resistant HIV-2 reverse transcriptase and differential contribution of K65R to the accuracy of HIV-1 and HIV-2 reverse transcriptases

    PubMed Central

    Álvarez, Mar; Sebastián-Martín, Alba; García-Marquina, Guillermo; Menéndez-Arias, Luis

    2017-01-01

    Nucleoside reverse transcriptase (RT) inhibitors constitute the backbone of current therapies against human immunodeficiency virus type 1 and type 2 (HIV-1 and HIV-2, respectively). However, mutational pathways leading to the development of nucleoside analogue resistance are different in both types of HIV. In HIV-2, resistance to all approved nucleoside analogues is conferred by the combination of RT substitutions K65R, Q151M and M184V. Nucleotide incorporation kinetic analyses of mutant and wild-type (WT) HIV-2 RTs show that the triple-mutant has decreased catalytic efficiency due to the presence of M184V. Although similar effects were previously reported for equivalent mutations in HIV-1 RT, the HIV-2 enzymes were catalytically less efficient. Interestingly, in highly divergent HIV-1 RTs, K65R confers several-fold increased accuracy of DNA synthesis. We have determined the intrinsic fidelity of DNA synthesis of WT HIV-2 RT and mutants K65R and K65R/Q151M/M184V. Our results show that those changes in HIV-2 RT have a relatively small impact on nucleotide selectivity. Furthermore, we found that there were less than two-fold differences in error rates obtained with forward mutation assays using mutant and WT HIV-2 RTs. A different conformation of the β3-β4 hairpin loop in HIV-1 and HIV-2 RTs could probably explain the differential effects of K65R. PMID:28333133

  4. Drug resistant HIV: Behaviors and characteristics among Los Angeles men who have sex with men with new HIV diagnosis

    PubMed Central

    Gorbach, Pamina M.; Javanbakht, Marjan; Bornfleth, Lorelei; Bolan, Robert K.; Lewis Blum, Martha

    2017-01-01

    Epidemiology of drug resistant HIV has focused on trends and less attention has been given to identification of factors, especially behaviors including substance use, in acquisition of drug-resistant HIV. From 2009 to 2012 The Metromates Study enrolled and followed for one year men who have sex with men (MSM) seeking testing for HIV in a community clinic in Los Angeles assessing those testing positive for acute and recent HIV infection. Behavioral data were collected via Computer-Assisted Self-Interview from 125 classified as newly HIV infected and 91 as chronically infected (newly HIV-diagnosed); specimens were available and viable for resistance testing for 154 of the 216 HIV positives with new diagnoses. In this community clinic we found prevalence of resistance among MSM with new HIV-diagnosis was 19.5% (n = 30/154) with no difference by recency of HIV infection. Sexual partnership characteristics were associated with resistance; those who reported transgendered sex partners had a higher prevalence of resistance as compared to those who did not report transgendered sex partners (40% vs. 17%; p value = 0.04), while those who reported having a main partner had a lower prevalence of drug resistance (12% vs. 24%; p value = 0.07). In multivariable analyses adjusting for HIV recency and antiviral use, reporting a main partner decreased odds [adjusted odds ratio (AOR) 0.34; 95% confidence interval (CI) 0.13–0.87], reporting a transgendered partnered increased odds (AOR = 3.37; 95% CI 0.95–12.43); and being African American increased odds of drug resistance (AOR = 5.63, 95%CI 1.41–22.38). This suggests African American MSM and TG individuals in Los Angeles represent pockets of exceptional risk that will require special approaches to prevention and care to enhance their own health and reduce their likelihood to support transmission of drug resistance in the US. PMID:28333950

  5. Predominance of CRF06_cpx and Transmitted HIV Resistance in Algeria: Update 2013-2014.

    PubMed

    Abdellaziz, Akila; Papuchon, Jennifer; Khaled, Safia; Ouerdane, Dalila; Fleury, Hervé; Recordon-Pinson, Patricia

    2016-04-01

    Since 2008, no data on HIV diversity or the transmission rate of HIV resistance mutations in naive patients have been presented for Algeria, a country of MENA region. Between 2013 and 2014, we studied 152 samples including 89 naive patients. The current study describes the change in HIV diversity in Algeria with the predominance of CRF06_cpx and the huge increase of transmitted HIV resistance, which now reaches 15%.

  6. 21 CFR 866.3950 - In vitro human immunodeficiency virus (HIV) drug resistance genotype assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... resistance genotype assay. 866.3950 Section 866.3950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Serological Reagents § 866.3950 In vitro human immunodeficiency virus (HIV) drug resistance genotype assay. (a) Identification. The in vitro HIV drug resistance genotype assay is a device that consists of nucleic acid...

  7. 21 CFR 866.3950 - In vitro human immunodeficiency virus (HIV) drug resistance genotype assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... resistance genotype assay. 866.3950 Section 866.3950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Serological Reagents § 866.3950 In vitro human immunodeficiency virus (HIV) drug resistance genotype assay. (a) Identification. The in vitro HIV drug resistance genotype assay is a device that consists of nucleic acid...

  8. High Levels of Transmitted HIV Drug Resistance in a Study in Papua New Guinea

    PubMed Central

    Lavu, Evelyn; Kave, Ellan; Mosoro, Euodia; Markby, Jessica; Aleksic, Eman; Gare, Janet; Elsum, Imogen A.; Nano, Gideon; Kaima, Petronia; Dala, Nick; Gurung, Anup; Bertagnolio, Silvia; Crowe, Suzanne M.; Myatt, Mark

    2017-01-01

    Introduction Papua New Guinea is a Pacific Island nation of 7.3 million people with an estimated HIV prevalence of 0.8%. ART initiation and monitoring are guided by clinical staging and CD4 cell counts, when available. Little is known about levels of transmitted HIV drug resistance in recently infected individuals in Papua New Guinea. Methods Surveillance of transmitted HIV drug resistance in a total of 123 individuals recently infected with HIV and aged less than 30 years was implemented in Port Moresby (n = 62) and Mount Hagen (n = 61) during the period May 2013-April 2014. HIV drug resistance testing was performed using dried blood spots. Transmitted HIV drug resistance was defined by the presence of one or more drug resistance mutations as defined by the World Health Organization surveillance drug resistance mutations list. Results The prevalence of non-nucleoside reverse transcriptase inhibitor transmitted HIV drug resistance was 16.1% (95% CI 8.8%-27.4%) and 8.2% (95% CI 3.2%-18.2%) in Port Moresby and Mount Hagen, respectively. The prevalence of nucleoside reverse transcriptase inhibitor transmitted HIV drug resistance was 3.2% (95% CI 0.2%-11.7%) and 3.3% (95% CI 0.2%-11.8%) in Port Moresby and Mount Hagen, respectively. No protease inhibitor transmitted HIV drug resistance was observed. Conclusions The level of non-nucleoside reverse transcriptase inhibitor drug resistance in antiretroviral drug naïve individuals recently infected with HIV in Port Moresby is amongst the highest reported globally. This alarming level of transmitted HIV drug resistance in a young sexually active population threatens to limit the on-going effective use of NNRTIs as a component of first-line ART in Papua New Guinea. To support the choice of nationally recommended first-line antiretroviral therapy, representative surveillance of HIV drug resistance among antiretroviral therapy initiators in Papua New Guinea should be urgently implemented. PMID:28146591

  9. Antiretroviral prophylaxis of perinatal HIV-1 transmission and the potential impact of antiretroviral resistance.

    PubMed

    Nolan, Monica; Fowler, Mary Glenn; Mofenson, Lynne M

    2002-06-01

    Since 1994, trials of zidovudine, zidovudine and lamivudine, and nevirapine have demonstrated that these antiretroviral drugs can substantially reduce the risk of perinatal HIV-1 transmission. With reductions in drug price, identification of simple, effective antiretroviral regimens to prevent perinatal HIV-1 transmission, and an increasing international commitment to support health care infrastructure, antiretrovirals for both perinatal HIV-1 prevention and HIV-1 treatment will likely become more widely available to HIV-1-infected persons in resource-limited countries. In the United States, widespread antiretroviral usage has been associated with increased antiretroviral drug resistance. This raises concern that drug resistance may reduce the effectiveness of perinatal antiretroviral prophylaxis as well as therapeutic intervention strategies. The purpose of this article is to review what is known about resistance and risk of perinatal HIV transmission, assess the interaction between antiretroviral resistance and the prevention of perinatal HIV-1 transmission, and discuss implications for current global prevention and treatment strategies.

  10. Profile of the HIV Epidemic in Cape Verde: Molecular Epidemiology and Drug Resistance Mutations among HIV-1 and HIV-2 Infected Patients from Distinct Islands of the Archipelago

    PubMed Central

    de Pina-Araujo, Isabel Inês M.; Guimarães, Monick L.; Bello, Gonzalo; Vicente, Ana Carolina P.; Morgado, Mariza G.

    2014-01-01

    HIV-1 and HIV-2 have been detected in Cape Verde since 1987, but little is known regarding the genetic diversity of these viruses in this archipelago, located near the West African coast. In this study, we characterized the molecular epidemiology of HIV-1 and HIV-2 and described the occurrence of drug resistance mutations (DRM) among antiretroviral therapy naïve (ARTn) patients and patients under treatment (ARTexp) from different Cape Verde islands. Blood samples, socio-demographic and clinical-laboratory data were obtained from 221 HIV-positive individuals during 2010–2011. Phylogenetic and bootscan analyses of the pol region (1300 bp) were performed for viral subtyping. HIV-1 and HIV-2 DRM were evaluated for ARTn and ARTexp patients using the Stanford HIV Database and HIV-GRADE e.V. Algorithm Homepage, respectively. Among the 221 patients (169 [76.5%] HIV-1, 43 [19.5%] HIV-2 and 9 [4.1%] HIV-1/HIV-2 co-infections), 67% were female. The median ages were 34 (IQR = 1–75) and 47 (IQR = 12–84) for HIV-1 and HIV-2, respectively. HIV-1 infections were due to subtypes G (36.6%), CRF02_AG (30.6%), F1 (9.7%), URFs (10.4%), B (5.2%), CRF05_DF (3.0%), C (2.2%), CRF06_cpx (0.7%), CRF25_cpx (0.7%) and CRF49_cpx (0.7%), whereas all HIV-2 infections belonged to group A. Transmitted DRM (TDRM) was observed in 3.4% (2/58) of ARTn HIV-1-infected patients (1.7% NRTI, 1.7% NNRTI), but not among those with HIV-2. Among ARTexp patients, DRM was observed in 47.8% (33/69) of HIV-1 (37.7% NRTI, 37.7% NNRTI, 7.4% PI, 33.3% for two classes) and 17.6% (3/17) of HIV-2-infections (17.6% NRTI, 11.8% PI, 11.8% both). This study indicates that Cape Verde has a complex and unique HIV-1 molecular epidemiological scenario dominated by HIV-1 subtypes G, CRF02_AG and F1 and HIV-2 subtype A. The occurrence of TDRM and the relatively high level of DRM among treated patients are of concern. Continuous monitoring of patients on ART, including genotyping, are public policies to be

  11. Profile of the HIV epidemic in Cape Verde: molecular epidemiology and drug resistance mutations among HIV-1 and HIV-2 infected patients from distinct islands of the archipelago.

    PubMed

    de Pina-Araujo, Isabel Inês M; Guimarães, Monick L; Bello, Gonzalo; Vicente, Ana Carolina P; Morgado, Mariza G

    2014-01-01

    HIV-1 and HIV-2 have been detected in Cape Verde since 1987, but little is known regarding the genetic diversity of these viruses in this archipelago, located near the West African coast. In this study, we characterized the molecular epidemiology of HIV-1 and HIV-2 and described the occurrence of drug resistance mutations (DRM) among antiretroviral therapy naïve (ARTn) patients and patients under treatment (ARTexp) from different Cape Verde islands. Blood samples, socio-demographic and clinical-laboratory data were obtained from 221 HIV-positive individuals during 2010-2011. Phylogenetic and bootscan analyses of the pol region (1300 bp) were performed for viral subtyping. HIV-1 and HIV-2 DRM were evaluated for ARTn and ARTexp patients using the Stanford HIV Database and HIV-GRADE e.V. Algorithm Homepage, respectively. Among the 221 patients (169 [76.5%] HIV-1, 43 [19.5%] HIV-2 and 9 [4.1%] HIV-1/HIV-2 co-infections), 67% were female. The median ages were 34 (IQR = 1-75) and 47 (IQR = 12-84) for HIV-1 and HIV-2, respectively. HIV-1 infections were due to subtypes G (36.6%), CRF02_AG (30.6%), F1 (9.7%), URFs (10.4%), B (5.2%), CRF05_DF (3.0%), C (2.2%), CRF06_cpx (0.7%), CRF25_cpx (0.7%) and CRF49_cpx (0.7%), whereas all HIV-2 infections belonged to group A. Transmitted DRM (TDRM) was observed in 3.4% (2/58) of ARTn HIV-1-infected patients (1.7% NRTI, 1.7% NNRTI), but not among those with HIV-2. Among ARTexp patients, DRM was observed in 47.8% (33/69) of HIV-1 (37.7% NRTI, 37.7% NNRTI, 7.4% PI, 33.3% for two classes) and 17.6% (3/17) of HIV-2-infections (17.6% NRTI, 11.8% PI, 11.8% both). This study indicates that Cape Verde has a complex and unique HIV-1 molecular epidemiological scenario dominated by HIV-1 subtypes G, CRF02_AG and F1 and HIV-2 subtype A. The occurrence of TDRM and the relatively high level of DRM among treated patients are of concern. Continuous monitoring of patients on ART, including genotyping, are public policies to be implemented.

  12. Insights into the mechanism of drug resistance. X-ray structure analysis of multi-drug resistant HIV-1 protease ritonavir complex

    SciTech Connect

    Liu, Zhigang; Yedidi, Ravikiran S.; Wang, Yong; Dewdney, Tamaria G.; Reiter, Samuel J.; Brunzelle, Joseph S.; Kovari, Iulia A.; Kovari, Ladislau C.

    2013-01-08

    Ritonavir (RTV) is a first generation HIV-1 protease inhibitor with rapidly emerging drug resistance. Mutations at residues 46, 54, 82 and 84 render the HIV-1 protease drug resistant against RTV. We report the crystal structure of multi-drug resistant (MDR) 769 HIV-1 protease (carrying resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84 and 90) complexed with RTV and the in vitro enzymatic IC50 of RTV against MDR HIV-1 protease. The structural and functional studies demonstrate significant drug resistance of MDR HIV-1 protease against RTV, arising from reduced hydrogen bonds and Van der Waals interactions between RTV and MDR HIV-1 protease.

  13. Genetic diversity and drug resistance profiles in HIV type 1- and HIV type 2-infected patients from Cape Verde Islands.

    PubMed

    Oliveira, Vânia; Bártolo, Inês; Borrego, Pedro; Rocha, Cheila; Valadas, Emília; Barreto, Jorge; Almeida, Elsa; Antunes, Francisco; Taveira, Nuno

    2012-05-01

    Our aim was to characterize for the first time the genetic diversity of HIV in Cape Verde Islands as well as the drug resistance profiles in treated and untreated patients. Blood specimens were collected from 41 HIV-1 and 14 HIV-2 patients living in Santiago Island. Half of the patients were on antiretroviral treatment (ART). Pol and env gene sequences were obtained using in-house methods. Phylogenetic analysis was used for viral subtyping and the Stanford Algorithm was used for resistance genotyping. For HIV-1, the amplification of pol and env was possible in 27 patients (66%). HIV-1 patients were infected with subtypes G (13, 48%), B (2, 7%), F1 (2, 7%), and CRF02_AG (2, 7%), and complex recombinant forms including a new C/G variant (n=8, 30%). Drug resistance mutations were detected in the PR and RT of three (10%) treated patients. M41L and K103N transmitted drug resistance mutations were found in 2 of 17 (12%) untreated patients. All 14 HIV-2 isolates belonged to group A. The origin of 12 strains was impossible to determine whereas two strains were closely related to the historic ROD strain. In conclusion, in Cape Verde there is a long-standing HIV-2 epidemic rooted in ROD-like strains and a more recent epidemic of unknown origin. The HIV-1 epidemic is caused by multiple subtypes and complex recombinant forms. Drug resistance HIV-1 strains are present at moderate levels in both treated and untreated patients. Close surveillance in these two populations is crucial to prevent further transmission of drug-resistant strains.

  14. Recovery of airflow resistivity of poroelastic beams submitted to transient mechanical stress

    NASA Astrophysics Data System (ADS)

    Ogam, Erick

    2013-01-01

    The airflow resistivities of air-saturated poroelastic slender beams submitted to transient mechanical stress are recovered using fluid and solid borne compressional mode phase velocity expressions drawn from a modified Biot theory. A point where the two dilatational modes intersect and their phase velocities equal is first sought. This point also corresponds to the Biot transitional frequency indicating the frequency at which the solid and the pore fluid start disassociating due to the weakening of the viscous forces by the thinning of the viscous boundary layer in the pores. A bilinear time-frequency (TF) distribution is used to represent on the time-frequency plane, the captured transient mechanical stress waves from which the point of intersection/separation of the two modes is located. The projection of the Eigenfrequencies obtained from a simple 3D finite element modeling of the thin poroelastic beam, on a (TF) diagram, facilitates the identification of the modes. The transition frequencies for the poroelastic beams thus retrieved are verified through the use of variable frequency, single cycle sine wave bursts. The anisotropy of the foams are also revealed by analyzing the transient responses of the poroelastic beam specimens cut from the same panel but in two perpendicular directions in orientation to each other.

  15. Prevalence of HIV-1 resistant strains in recent seroconverters.

    PubMed

    Balotta, C; Berlusconi, A; Pan, A; Violin, M; Riva, C; Gori, A; Corvasce, S; Mazzucchelli, R; Facchi, G; Velleca, R; Senese, D; Dehò, L; Galli, M; Rusconi, S; Moroni, M

    2000-01-01

    Twenty-nine HIV-1 recently infected subjects were retrospectively studied to investigate both the prevalence of nucleoside reverse transcriptase inhibitors (NRTI)-related mutations at primary infection and the proportion of naturally occurring mutations in protease inhibitor (PI)-naive patients. Neither HIV-1 plasma viremia nor CD4 absolute count at baseline could distinguish patients with NRTI pre-existing mutations from those with wild-type virus. An increasing proportion of ZDV-related mutations was observed over time with an overall frequency of 20.7% in the study period. Only 1 out of 6 patients (16.7%) with ZDV-related mutations showed a phenotypically ZDV resistant isolate. A striking proportion of polymorphic changes was present in the protease region of pol gene in newly infected individuals. As many as 80% of seroconverters presented at least one naturally occurring substitution. Some PI-associated substitutions, thought to be compensatory in protease enzymatic function, could confer intermediate to high PI-resistance. Their role following PI administration remains to be elucidated. Our data suggest that the choice of drugs should be oriented by both genotypic and phenotypic evaluations to tailor individual regimens in seroconverters.

  16. Generation of Rhesus Macaque-Tropic HIV-1 Clones That Are Resistant to Major Anti-HIV-1 Restriction Factors

    PubMed Central

    Nomaguchi, Masako; Yokoyama, Masaru; Kono, Ken; Nakayama, Emi E.; Shioda, Tatsuo; Doi, Naoya; Fujiwara, Sachi; Saito, Akatsuki; Akari, Hirofumi; Miyakawa, Kei; Ryo, Akihide; Ode, Hirotaka; Iwatani, Yasumasa; Miura, Tomoyuki; Igarashi, Tatsuhiko

    2013-01-01

    Human immunodeficiency virus type 1 (HIV-1) replication in macaque cells is restricted mainly by antiviral cellular APOBEC3, TRIM5α/TRIM5CypA, and tetherin proteins. For basic and clinical HIV-1/AIDS studies, efforts to construct macaque-tropic HIV-1 (HIV-1mt) have been made by us and others. Although rhesus macaques are commonly and successfully used as infection models, no HIV-1 derivatives suitable for in vivo rhesus research are available to date. In this study, to obtain novel HIV-1mt clones that are resistant to major restriction factors, we altered Gag and Vpu of our best HIV-1mt clone described previously. First, by sequence- and structure-guided mutagenesis, three amino acid residues in Gag-capsid (CA) (M94L/R98S/G114Q) were found to be responsible for viral growth enhancement in a macaque cell line. Results of in vitro TRIM5α susceptibility testing of HIV-1mt carrying these substitutions correlated well with the increased viral replication potential in macaque peripheral blood mononuclear cells (PBMCs) with different TRIM5 alleles, suggesting that the three amino acids in HIV-1mt CA are involved in the interaction with TRIM5α. Second, we replaced the transmembrane domain of Vpu of this clone with the corresponding region of simian immunodeficiency virus SIVgsn166 Vpu. The resultant clone, MN4/LSDQgtu, was able to antagonize macaque but not human tetherin, and its Vpu effectively functioned during viral replication in a macaque cell line. Notably, MN4/LSDQgtu grew comparably to SIVmac239 and much better than any of our other HIV-1mt clones in rhesus macaque PBMCs. In sum, MN4/LSDQgtu is the first HIV-1 derivative that exhibits resistance to the major restriction factors in rhesus macaque cells. PMID:23966385

  17. Modeling HIV-1 Drug Resistance as Episodic Directional Selection

    PubMed Central

    Murrell, Ben; de Oliveira, Tulio; Seebregts, Chris; Kosakovsky Pond, Sergei L.; Scheffler, Konrad

    2012-01-01

    The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS) which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance. PMID:22589711

  18. Clinical and resistance consequences of misquantification of plasma and cerebrospinal fluid human immunodeficiency virus type 1 (HIV-1) RNA in samples from an HIV-1 subtype G-infected patient.

    PubMed

    Delaugerre, Constance; Denis, Blandine; Peytavin, Gilles; Palmer, Pierre; Mourez, Thomas; Le Goff, Jerôme; Molina, Jean-Michel; Simon, François

    2009-11-01

    Human immunodeficiency virus (HIV) load is the main marker used to monitor antiviral treatment efficacy and resistance. We report a case of underquantification of HIV type 1 (HIV-1) RNA in plasma and cerebrospinal fluid from an HIV-1 subtype G-infected woman, leading to delayed diagnosis of HIV encephalitis and to the emergence of drug resistance.

  19. Moderate Levels of Pre-Treatment HIV-1 Antiretroviral Drug Resistance Detected in the First South African National Survey

    PubMed Central

    Steegen, Kim; Carmona, Sergio; Bronze, Michelle; Papathanasopoulos, Maria A.; van Zyl, Gert; Goedhals, Dominique; MacLeod, William; Sanne, Ian; Stevens, Wendy S.

    2016-01-01

    Background In order to assess the level of transmitted and/or pre-treatment antiretroviral drug resistance to HIV-1, the World Health Organization (WHO) recommends that regular surveys are conducted. This study’s objective was to assess the frequency of HIV-1 antiretroviral drug resistance in patients initiating antiretroviral treatment (ART) in the public sector throughout South Africa. Methods A prospective cross-sectional survey was conducted using probability proportional to size sampling. This method ensured that samples from each province were proportionally collected, based on the number of patients receiving ART in each region. Samples were collected between March 2013 and October 2014. Pol sequences were obtained using RT-PCR and Sanger sequencing and submitted to the Stanford Calibrated Population Resistance tool v6.0. Results A total of 277 sequences were available for analysis. Most participants were female (58.8%) and the median age was 34 years (IQR: 29–42). The median baseline CD4-count was 149 cells/mm3 (IQR: 62–249) and, based on self-reporting, participants had been diagnosed as HIV-positive approximately 44 days prior to sample collection (IQR: 23–179). Subtyping revealed that 98.2% were infected with HIV-1 subtype C. Overall, 25 out of 277 patients presented with ≥1 surveillance drug resistance mutation (SDRM, 9.0%, 95% CI: 6.1–13.0%). Non-nucleoside reverse transcriptase inhibitor (NNRTI) mutations were the most numerous mutations detected (n = 23). Only two patients presented with a protease inhibitor (PI) mutation. In four patients ≥4 SDRMs were detected, which might indicate that these patients were not truly ART-naïve or were infected with a multi-resistant virus. Conclusions These results show that the level of antiretroviral drug resistance in ART-naïve South Africans has reached moderate levels, as per the WHO classification. Therefore, regular surveys of pre-treatment drug resistance levels in all regions of South Africa

  20. Structural basis of HIV-1 resistance to AZT by excision

    SciTech Connect

    Tu, Xiongying; Das, Kalyan; Han, Qianwei; Bauman, Joseph D.; Clark, Jr., Arthur D.; Hou, Xiaorong; Frenkel, Yulia V.; Gaffney, Barbara L.; Jones, Roger A.; Boyer, Paul L.; Hughes, Stephen H.; Sarafianos, Stefan G.; Arnold, Eddy

    2011-11-23

    Human immunodeficiency virus (HIV-1) develops resistance to 3'-azido-2',3'-deoxythymidine (AZT, zidovudine) by acquiring mutations in reverse transcriptase that enhance the ATP-mediated excision of AZT monophosphate from the 3' end of the primer. The excision reaction occurs at the dNTP-binding site, uses ATP as a pyrophosphate donor, unblocks the primer terminus and allows reverse transcriptase to continue viral DNA synthesis. The excision product is AZT adenosine dinucleoside tetraphosphate (AZTppppA). We determined five crystal structures: wild-type reverse transcriptase-double-stranded DNA (RT-dsDNA)-AZTppppA; AZT-resistant (AZTr; M41L D67N K70R T215Y K219Q) RT-dsDNA-AZTppppA; AZTr RT-dsDNA terminated with AZT at dNTP- and primer-binding sites; and AZTr apo reverse transcriptase. The AMP part of AZTppppA bound differently to wild-type and AZTr reverse transcriptases, whereas the AZT triphosphate part bound the two enzymes similarly. Thus, the resistance mutations create a high-affinity ATP-binding site. The structure of the site provides an opportunity to design inhibitors of AZT-monophosphate excision.

  1. HIV-1 Drug Resistance Mutations: Potential Applications for Point-of-Care Genotypic Resistance Testing

    PubMed Central

    Rhee, Soo-Yon; Jordan, Michael R.; Raizes, Elliot; Chua, Arlene; Parkin, Neil; Kantor, Rami; Van Zyl, Gert U.; Mukui, Irene; Hosseinipour, Mina C.; Frenkel, Lisa M.; Ndembi, Nicaise; Hamers, Raph L.; Rinke de Wit, Tobias F.; Wallis, Carole L.; Gupta, Ravindra K.; Fokam, Joseph; Zeh, Clement; Schapiro, Jonathan M.; Carmona, Sergio; Katzenstein, David; Tang, Michele; Aghokeng, Avelin F.; De Oliveira, Tulio; Wensing, Annemarie M. J.; Gallant, Joel E.; Wainberg, Mark A.; Richman, Douglas D.; Fitzgibbon, Joseph E.; Schito, Marco; Bertagnolio, Silvia; Yang, Chunfu; Shafer, Robert W.

    2015-01-01

    The increasing prevalence of acquired and transmitted HIV-1 drug resistance is an obstacle to successful antiretroviral therapy (ART) in the low- and middle-income countries (LMICs) hardest hit by the HIV-1 pandemic. Genotypic drug resistance testing could facilitate the choice of initial ART in areas with rising transmitted drug resistance (TDR) and enable care-providers to determine which individuals with virological failure (VF) on a first- or second-line ART regimen require a change in treatment. An inexpensive near point-of-care (POC) genotypic resistance test would be useful in settings where the resources, capacity, and infrastructure to perform standard genotypic drug resistance testing are limited. Such a test would be particularly useful in conjunction with the POC HIV-1 viral load tests that are currently being introduced in LMICs. A POC genotypic resistance test is likely to involve the use of allele-specific point mutation assays for detecting drug-resistance mutations (DRMs). This study proposes that two major nucleoside reverse transcriptase inhibitor (NRTI)-associated DRMs (M184V and K65R) and four major NNRTI-associated DRMs (K103N, Y181C, G190A, and V106M) would be the most useful for POC genotypic resistance testing in LMIC settings. One or more of these six DRMs was present in 61.2% of analyzed virus sequences from ART-naïve individuals with intermediate or high-level TDR and 98.8% of analyzed virus sequences from individuals on a first-line NRTI/NNRTI-containing regimen with intermediate or high-level acquired drug resistance. The detection of one or more of these DRMs in an ART-naïve individual or in a individual with VF on a first-line NRTI/NNRTI-containing regimen may be considered an indication for a protease inhibitor (PI)-containing regimen or closer virological monitoring based on cost-effectiveness or country policy. PMID:26717411

  2. Combining classifiers for HIV-1 drug resistance prediction.

    PubMed

    Srisawat, Anantaporn; Kijsirikul, Boonserm

    2008-01-01

    This paper applies and studies the behavior of three learning algorithms, i.e. the Support Vector machine (SVM), the Radial Basis Function Network (the RBF network), and k-Nearest Neighbor (k-NN) for predicting HIV-1 drug resistance from genotype data. In addition, a new algorithm for classifier combination is proposed. The results of comparing the predictive performance of three learning algorithms show that, SVM yields the highest average accuracy, the RBF network gives the highest sensitivity, and k-NN yields the best in specificity. Finally, the comparison of the predictive performance of the composite classifier with three learning algorithms demonstrates that the proposed composite classifier provides the highest average accuracy.

  3. HIV-1 subtypes and drug resistance profiles in a cohort of heterosexual patients in Istanbul, Turkey.

    PubMed

    Köksal, Muammer Osman; Beka, Hayati; Lübke, Nadine; Verheyen, Jens; Eraksoy, Haluk; Cagatay, Atahan; Kaiser, Rolf; Akgül, Baki; Agacfidan, Ali

    2015-08-01

    Turkey is seeing a steady rise in rates of HIV infection in the country. The number of individuals with HIV/AIDS was greater than 7000 in 2014 according to data released by the Ministry of Health, and heterosexual contacts were reported to be the main transmission routes. Istanbul has the highest number of reported cases of HIV infection. The aim of the study was to determine the prevalence of HIV-1 drug resistance in 50 heterosexual patients from Istanbul. The most prevalent subtype was found to be subtype B (56.2 %). Resistance-associated mutations were found in 14 patients with 6/14 patients being therapy-experienced and 8/14 therapy naive at the time point of analysis. With increasing number of patients who require treatment and the rapid up-scaling of the antiretroviral therapy in Turkey, HIV-1 drug resistance testing is recommended before starting treatment in order to achieve better clinical outcomes.

  4. Antimicrobial resistance patterns of bovine Salmonella enterica isolates submitted to the Wisconsin Veterinary Diagnostic Laboratory: 2006-2015.

    PubMed

    Valenzuela, J R; Sethi, A K; Aulik, N A; Poulsen, K P

    2017-02-01

    Salmonellosis on the dairy continues to have a significant effect on animal health and productivity and in the United States. Additionally, Salmonella enterica ssp. enterica causes an estimated 1.2 million cases of human illness annually. Contributing to the morbidity and mortality in both human and domestic animal species is emergence of antimicrobial resistance by Salmonella species and increased incidence of multidrug-resistant isolates. This study describes serotype distribution and the antimicrobial resistance patterns for various Salmonella serotypes isolated from bovine samples submitted to the Wisconsin Veterinary Diagnostic Laboratory (WVDL) over the past 10 yr. Salmonella serotyping and antimicrobial susceptibility testing data were obtained from the laboratory information management system at WVDL. Data from accessions were limited to bovine samples submitted to the WVDL between January 2006 and June 2015 and those that had both a definitive serotype and complete results for antimicrobial susceptibility testing. A total of 4,976 isolates were identified. Salmonella enterica ser. Dublin was the most prevalent serotype identified among bovine samples submitted to the WVDL, accounting for a total of 1,153 isolates (23% of total isolates) over the study period. Along with Dublin, Salmonella enterica ser. Cerro (795, 16%), Newport (720, 14%), Montevideo (421, 8%), Kentucky (419, 8%), and Typhimurium (202, 4%) comprised the top 6 most commonly isolated serotypes during that time. Overall, resistance of bovine Salmonella isolates in the study population remained stable, although decreases in resistance were noted for gentamicin, neomycin, and trimethoprim sulfamethoxazole during the study period. All isolates remained susceptible to enrofloxacin. These data show that antimicrobial susceptibility for bovine Salmonella has changed in the population served by WVDL in the past 10 yr. This information is important for understanding Salmonella disease ecology in

  5. An analysis of drug resistance among people living with HIV/AIDS in Shanghai, China

    PubMed Central

    Sun, Meiyan; Sun, Jianjun; Lu, Hongzhou

    2017-01-01

    Background Understanding the mechanisms of drug resistance can facilitate better management of antiretroviral therapy, helping to prevent transmission and decrease the morbidity and mortality of people living with HIV/AIDS. However, there is little data about transmitted drug resistance and acquired drug resistance for HIV/AIDS patients in Shanghai. Methods A retrospective cohort study of HIV-infected patients who visited the Department of Infectious Disease from June 2008 to June 2015 was conducted in Shanghai, China. Logistic regression analysis was performed to analyze risk factors for drug resistance among HIV-infected people with virological failure. The related collected factors included patient age, gender, marital status, infection route, baseline CD4 count, antiretroviral therapy regimens, time between HIV diagnosis and initiating antiretroviral therapy. Factors with p<0.1 in the univariate logistic regression test were analyzed by multivariate logistic regression test. Results There were 575 subjects selected for this study and 369 participated in this research. For the antiretroviral therapy drugs, the rates of transmitted drug resistance and acquired drug resistance were significantly different. The non-nucleoside reverse transcriptase inhibitor (NNRTI) had the highest drug resistance rate (transmitted drug resistance, 10.9%; acquired drug resistance, 53.3%) and protease inhibitors (PIs) had the lowest drug resistance rate (transmitted drug resistance, 1.7%; acquired drug resistance, 2.7%). Logistic regression analysis found no factors that were related to drug resistance except marital status (married status for tenofovir: odds ratio = 6.345, 95% confidence interval = 1.553–25.921, P = 0.010) and the time span between HIV diagnosis and initiating antiretroviral therapy (≤6M for stavudine: odds ratio = 0.271, 95% confidence interval = 0.086–0.850, P = 0.025; ≤6M for didanosine: odds ratio = 0.284, 95% confidence interval = 0.096–0.842, P = 0

  6. Host Double Strand Break Repair Generates HIV-1 Strains Resistant to CRISPR/Cas9.

    PubMed

    Yoder, Kristine E; Bundschuh, Ralf

    2016-07-12

    CRISPR/Cas9 genome editing has been proposed as a therapeutic treatment for HIV-1 infection. CRISPR/Cas9 induced double strand breaks (DSBs) targeted to the integrated viral genome have been shown to decrease production of progeny virus. Unfortunately HIV-1 evolves rapidly and may readily produce CRISPR/Cas9 resistant strains. Here we used next-generation sequencing to characterize HIV-1 strains that developed resistance to six different CRISPR/Cas9 guide RNAs (gRNAs). Reverse transcriptase (RT) derived base substitution mutations were commonly found at sites encoding unpaired bases of RNA stem-loop structures. In addition to RT mutations, insertion and/or deletion (indel) mutations were common. Indels localized to the CRISPR/Cas9 cleavage site were major contributors to CRISPR gRNA resistance. While most indels at non-coding regions were a single base pair, 3 base pair indels were observed when a coding region of HIV-1 was targeted. The DSB repair event may preserve the HIV-1 reading frame, while destroying CRISPR gRNA homology. HIV-1 may be successfully edited by CRISPR/Cas9, but the virus remains competent for replication and resistant to further CRISPR/Cas9 targeting at that site. These observations strongly suggest that host DSB repair at CRISPR/Cas9 cleavage sites is a novel and important pathway that may contribute to HIV-1 therapeutic resistance.

  7. Host Double Strand Break Repair Generates HIV-1 Strains Resistant to CRISPR/Cas9

    PubMed Central

    Yoder, Kristine E.; Bundschuh, Ralf

    2016-01-01

    CRISPR/Cas9 genome editing has been proposed as a therapeutic treatment for HIV-1 infection. CRISPR/Cas9 induced double strand breaks (DSBs) targeted to the integrated viral genome have been shown to decrease production of progeny virus. Unfortunately HIV-1 evolves rapidly and may readily produce CRISPR/Cas9 resistant strains. Here we used next-generation sequencing to characterize HIV-1 strains that developed resistance to six different CRISPR/Cas9 guide RNAs (gRNAs). Reverse transcriptase (RT) derived base substitution mutations were commonly found at sites encoding unpaired bases of RNA stem-loop structures. In addition to RT mutations, insertion and/or deletion (indel) mutations were common. Indels localized to the CRISPR/Cas9 cleavage site were major contributors to CRISPR gRNA resistance. While most indels at non-coding regions were a single base pair, 3 base pair indels were observed when a coding region of HIV-1 was targeted. The DSB repair event may preserve the HIV-1 reading frame, while destroying CRISPR gRNA homology. HIV-1 may be successfully edited by CRISPR/Cas9, but the virus remains competent for replication and resistant to further CRISPR/Cas9 targeting at that site. These observations strongly suggest that host DSB repair at CRISPR/Cas9 cleavage sites is a novel and important pathway that may contribute to HIV-1 therapeutic resistance. PMID:27404981

  8. Are countries using global fund support to implement HIV drug resistance surveillance? A review of funded HIV grants.

    PubMed

    Kelley, Karen F; Caudwell, Emily; Xueref, Serge; Ha, Thuy Huong; Bertagnolio, Silvia

    2012-05-01

    The Global Fund to Fight AIDS, Tuberculosis and Malaria (Global Fund) is the largest funder of human immunodeficiency virus (HIV) prevention and treatment programs worldwide. Since 2002, the Global Fund has encouraged grant recipients to implement drug resistance surveillance (DRS) as part of treatment programs. We reviewed documentation of 147 grants funded in 2004-2008 (funding rounds 4-8) to assess grantees' use of funds to support HIV DRS. Overall, 94 grants (64%) described HIV DRS as part of the national treatment program. However, only 32 grants (22%) specifically documented DRS as a grant-funded activity. This review provides baseline information suggesting limited use by countries of Global Fund financing to support HIV DRS. Additional assessment is required to evaluate barriers to using Global Fund grants to support DRS.

  9. Eric Freed Named Deputy Director of HIV Drug Resistance Program | Poster

    Cancer.gov

    Editor’s note: The text for this article was adapted from an e-mail announcement to the Center for Cancer Research community from Robert Wiltrout, Ph.D., on September 8, 2014. Robert Wiltrout, Ph.D., director, NCI Center for Cancer Research (CCR), recently announced the appointment of Eric Freed, Ph.D., as deputy director of the HIV Drug Resistance Program (HIV DRP). Freed will join Stephen Hughes, Ph.D., director of HIV DRP, in leading this CCR program that focuses on understanding HIV replication and pathogenesis, with the goal of developing more effective strategies for treating HIV infections, and also builds on the existing strength of HIV and retrovirus research within NCI.

  10. Design of HIV Protease Inhibitors Targeting Protein Backbone: An Effective Strategy for Combating Drug Resistance

    SciTech Connect

    Ghosh, Arun K.; Chapsal, Bruno D.; Weber, Irene T.; Mitsuya, Hiroaki

    2008-06-03

    The discovery of human immunodeficiency virus (HIV) protease inhibitors (PIs) and their utilization in highly active antiretroviral therapy (HAART) have been a major turning point in the management of HIV/acquired immune-deficiency syndrome (AIDS). However, despite the successes in disease management and the decrease of HIV/AIDS-related mortality, several drawbacks continue to hamper first-generation protease inhibitor therapies. The rapid emergence of drug resistance has become the most urgent concern because it renders current treatments ineffective and therefore compels the scientific community to continue efforts in the design of inhibitors that can efficiently combat drug resistance.

  11. HIV/AIDS and the Flu

    MedlinePlus

    ... Submit What's this? Submit Button Past Newsletters HIV/AIDS and the Flu Questions & Answers Language: English Españ ... with HIV and AIDS. Should people with HIV/AIDS receive the inactivated influenza vaccine? People with HIV ...

  12. Outwitting Evolution: Fighting Drug Resistance in the Treatment of TB, Malaria and HIV

    PubMed Central

    Goldberg, Daniel E.; Siliciano, Robert F.; Jacobs, William R.

    2012-01-01

    Although caused by vastly different pathogens, the world’s three most serious infectious diseases, tuberculosis, malaria and HIV-1 infection, share the common problem of drug resistance. The pace of drug development has been very slow for tuberculosis and malaria and rapid for HIV-1. But for each disease, resistance to most drugs has appeared quickly after the introduction of the drug. Learning how to manage and prevent resistance is a major medical challenge that requires an understanding of the evolutionary dynamics of each pathogen. This review summarized the similarities and differences in the evolution of drug resistance for these three pathogens. PMID:22424234

  13. Correlation of Naturally Occurring HIV-1 Resistance to DEB025 with Capsid Amino Acid Polymorphisms

    PubMed Central

    Gallay, Philippe A.; Ptak, Roger G.; Bobardt, Michael D.; Dumont, Jean-Maurice; Vuagniaux, Grégoire; Rosenwirth, Brigitte

    2013-01-01

    DEB025 (alisporivir) is a synthetic cyclosporine with inhibitory activity against human immunodeficiency virus type-1 (HIV-1) and hepatitis C virus (HCV). It binds to cyclophilin A (CypA) and blocks essential functions of CypA in the viral replication cycles of both viruses. DEB025 inhibits clinical HIV-1 isolates in vitro and decreases HIV-1 virus load in the majority of patients. HIV-1 isolates being naturally resistant to DEB025 have been detected in vitro and in nonresponder patients. By sequence analysis of their capsid protein (CA) region, two amino acid polymorphisms that correlated with DEB025 resistance were identified: H87Q and I91N, both located in the CypA-binding loop of the CA protein of HIV-1. The H87Q change was by far more abundant than I91N. Additional polymorphisms in the CypA-binding loop (positions 86, 91 and 96), as well as in the N-terminal loop of CA were detected in resistant isolates and are assumed to contribute to the degree of resistance. These amino acid changes may modulate the conformation of the CypA-binding loop of CA in such a way that binding and/or isomerase function of CypA are no longer necessary for virus replication. The resistant HIV-1 isolates thus are CypA-independent. PMID:23524389

  14. Impact of HIV co-infection on the evolution and transmission of multidrug-resistant tuberculosis

    PubMed Central

    Eldholm, Vegard; Rieux, Adrien; Monteserin, Johana; Lopez, Julia Montana; Palmero, Domingo; Lopez, Beatriz; Ritacco, Viviana; Didelot, Xavier; Balloux, Francois

    2016-01-01

    The tuberculosis (TB) epidemic is fueled by a parallel Human Immunodeficiency Virus (HIV) epidemic, but it remains unclear to what extent the HIV epidemic has been a driver for drug resistance in Mycobacterium tuberculosis (Mtb). Here we assess the impact of HIV co-infection on the emergence of resistance and transmission of Mtb in the largest outbreak of multidrug-resistant TB in South America to date. By combining Bayesian evolutionary analyses and the reconstruction of transmission networks utilizing a new model optimized for TB, we find that HIV co-infection does not significantly affect the transmissibility or the mutation rate of Mtb within patients and was not associated with increased emergence of resistance within patients. Our results indicate that the HIV epidemic serves as an amplifier of TB outbreaks by providing a reservoir of susceptible hosts, but that HIV co-infection is not a direct driver for the emergence and transmission of resistant strains. DOI: http://dx.doi.org/10.7554/eLife.16644.001 PMID:27502557

  15. Molecular Gymnastics: Mechanisms of HIV-1 Resistance to CCR5 Antagonists and Impact on Virus Phenotypes.

    PubMed

    Roche, Michael; Borm, Katharina; Flynn, Jacqueline K; Lewin, Sharon R; Churchill, Melissa J; Gorry, Paul R

    2016-01-01

    Human immunodeficiency virus type 1 (HIV-1) enters host cells through the binding of its envelope glycoproteins (Env) to the host cell receptor CD4 and then subsequent binding to a chemokine coreceptor, either CCR5 or CXCR4. CCR5 antagonists are a relatively recent class addition to the armamentarium of anti-HIV-1 drugs. These compounds act by binding to a hydrophobic pocket formed by the transmembrane helices of CCR5 and altering the conformation of the extracellular domains, such that they are no longer recognized by Env. Maraviroc is the first drug within this class to be licenced for use in HIV-1 therapy regimens. HIV resistance to CCR5 antagonists occurs either through outgrowth of pre-existing CXCR4-using viruses, or through acquisition of the ability of CCR5-using HIV-1 to use the antagonist bound form of CCR5. In the latter scenario, the mechanism underlying resistance is through complex alterations in the way that resistant Envs engage CCR5. These significant changes are unlikely to occur without consequence to the viral entry phenotype and may also open up new avenues to target CCR5 antagonist resistant viruses. This review discusses the mechanism of action of CCR5 antagonists, how HIV resistance to CCR5 antagonists occurs, and the subsequent effects on Env function.

  16. In Vitro Selection and Characterization of HIV-1 Variants with Increased Resistance to Sifuvirtide, a Novel HIV-1 Fusion Inhibitor*

    PubMed Central

    Liu, Zhonghua; Shan, Mei; Li, Li; Lu, Lu; Meng, Shu; Chen, Cheng; He, Yuxian; Jiang, Shibo; Zhang, Linqi

    2011-01-01

    Sifuvirtide, a novel fusion inhibitor against human immunodeficiency virus type I (HIV-1), which is more potent than enfuvirtide (T20) in cell culture, is currently under clinical investigation for the treatment of HIV-1 infection. We now report that in vitro selection of HIV-1 variants resistant to sifuvirtide in the presence of increasing concentrations of sifuvirtide has led to several specific mutations in the gp41 region that had not been previously reported. Many of these substitutions were confined to the N-terminal heptad repeat region at positions 37, 38, 41, and 43, either singly or in combination. A downstream substitution at position 126 (N126K) in the C-terminal heptad repeat region was also found. Site-directed mutagenesis studies have further identified the critical amino acid substitutions and combinations thereof in conferring the resistant genotypes. Furthermore, the mutant viruses demonstrated variable degrees of cross-resistance to enfuvirtide, some of which are preferentially more resistant to sifuvirtide. Impaired infectivity was also found for many of the mutant viruses. Biophysical and structural analyses of the key substitutions have revealed several potential novel mechanisms against sifuvirtide. Our results may help to predict potential resistant patterns in vivo and facilitate the further clinical development and therapeutic utility of sifuvirtide. PMID:21098485

  17. HIV-1 genetic diversity and antiretroviral drug resistance among individuals from Roraima state, northern Brazil

    PubMed Central

    Leão, Renato Augusto Carvalho; Granja, Fabiana; Naveca, Felipe Gomes

    2017-01-01

    The HIV-1 epidemic in Brazil has spread towards the Northern country region, but little is known about HIV-1 subtypes and prevalence of HIV strains with resistance mutations to antiretrovirals in some of the Northern states. HIV-1 protease (PR) and reverse transcriptase (RT) sequences were obtained from 73 treatment-naive and -experienced subjects followed between 2013 and 2014 at a public health reference unit from Roraima, the northernmost Brazilian state. The most prevalent HIV-1 clade observed in the study population was the subtype B (91%), followed by subtype C (9%). Among 12 HIV-1 strains from treatment-naïve patients, only one had a transmitted drug resistance mutation for NNRTI. Among 59 treatment-experienced patients, 12 (20%) harbored HIV-1 strains with acquired drug resistance mutations (ADRM) that reduce the susceptibility to two classes of antiretroviral drugs (NRTI and NNRTI or NRTI and PI), and five (8%) harbored HIV-1 strains with ADRM that reduced susceptibility to only one class of antiretroviral drugs (NNRTI or PI). No patients harboring HIV strains with reduced susceptibility to all three classes of antiretroviral drugs were detected. A substantial fraction of treatment-experienced patients with (63%) and without (70%) ADRM had undetectable plasma viral loads (<40 copies/ml) at the time of sampling. Among treatment-experienced with plasma viral loads above 2,000 copies/ml, 44% displayed no ADRM. This data showed that the HIV-1 epidemic in Roraima displayed a much lower level of genetic diversity and a lower prevalence of ADRM than that described in other Brazilian states. PMID:28301548

  18. The Envelope Gene of Transmitted HIV-1 Resists a Late Interferon Gamma-Induced Block

    PubMed Central

    Rihn, Suzannah J.; Foster, Toshana L.; Busnadiego, Idoia; Aziz, Muhamad Afiq; Hughes, Joseph; Neil, Stuart J. D.

    2017-01-01

    ABSTRACT Type I interferon (IFN) signaling engenders an antiviral state that likely plays an important role in constraining HIV-1 transmission and contributes to defining subsequent AIDS pathogenesis. Type II IFN (IFN-γ) also induces an antiviral state but is often primarily considered to be an immunomodulatory cytokine. We report that IFN-γ stimulation can induce an antiviral state that can be both distinct from that of type I interferon and can potently inhibit HIV-1 in primary CD4+ T cells and a number of human cell lines. Strikingly, we find that transmitted/founder (TF) HIV-1 viruses can resist a late block that is induced by type II IFN, and the use of chimeric IFN-γ-sensitive/resistant viruses indicates that interferon resistance maps to the env gene. Simultaneously, in vitro evolution also revealed that just a single amino acid substitution in the envelope can confer substantial resistance to IFN-mediated inhibition. Thus, the env gene of transmitted HIV-1 confers resistance to a late block that is phenotypically distinct from blocks previously described to be resisted by env and is therefore mediated by unknown IFN-γ-stimulated factor(s) in human CD4+ T cells and cell lines. This important unidentified block could play a key role in constraining HIV-1 transmission. IMPORTANCE The human immune system can hinder invading pathogens through interferon (IFN) signaling. One consequence of this signaling is that cells enter an antiviral state, increasing the levels of hundreds of defenses that can inhibit the replication and spread of viruses. The majority of HIV-1 infections result from a single virus particle (the transmitted/founder) that makes it past these defenses and colonizes the host. Thus, the founder virus is hypothesized to be a relatively interferon-resistant entity. Here, we show that certain HIV-1 envelope genes have the unanticipated ability to resist specific human defenses mediated by different types of interferons. Strikingly, the envelope

  19. Estimation of the HIV-1 backward mutation rate from transmitted drug-resistant strains.

    PubMed

    Kitayimbwa, J M; Mugisha, J Y T; Saenz, R A

    2016-12-01

    One of the serious threats facing the administration of antiretroviral therapy to human immunodeficiency virus (HIV-1) infected patients is the reported increasing prevalence of transmitted drug resistance. However, given that HIV-1 drug-resistant strains are often less fit than the wild-type strains, it is expected that drug-resistant strains that are present during the primary phase of the HIV-1 infection are replaced by the fitter wild-type strains. This replacement of HIV-1 resistant mutations involves the emergence of wild-type strains by a process of backward mutation. How quickly the replacement happens is dependent on the class of HIV-1 mutation group. We estimate the backward mutation rates and relative fitness of various mutational groups known to confer HIV-1 drug resistance. We do this by fitting a stochastic model to data for individuals who were originally infected by an HIV-1 strain carrying any one of the known drug resistance-conferring mutations and observed over a period of time to see whether the resistant strain is replaced. To do this, we seek a distribution, generated from simulations of the stochastic model, that best describes the observed (clinical data) replacement times of a given mutation. We found that Lamivudine/Emtricitabine-associated mutations have a distinctly higher, backward mutation rate and low relative fitness compared to the other classes (as has been reported before) while protease inhibitors-associated mutations have a slower backward mutation rate and high relative fitness. For the other mutation classes, we found more uncertainty in their estimates.

  20. Antiretroviral Resistance and Pregnancy Characteristics of Women with Perinatal and Nonperinatal HIV Infection

    PubMed Central

    Mmeje, Okeoma; Fisher, Barbra M.; Weinberg, Adriana; Aaron, Erika K.; Keating, Maria; Luque, Amneris E.; Willers, Denise; Cohan, Deborah; Money, Deborah

    2016-01-01

    Objective. To compare HIV drug resistance in pregnant women with perinatal HIV (PHIV) and those with nonperinatal HIV (NPHIV) infection. Methods. We conducted a multisite cohort study of PHIV and NPHIV women from 2000 to 2014. Sample size was calculated to identify a fourfold increase in antiretroviral (ARV) drug resistance in PHIV women. Continuous variables were compared using Student's t-test and Wilcoxon rank-sum tests. Categorical variables were compared using χ2 and Fisher's exact tests. Univariate analysis was used to determine factors associated with antiretroviral drug resistance. Results. Forty-one PHIV and 41 NPHIV participants were included. Women with PHIV were more likely to have drug resistance than those with NPHIV ((55% versus 17%, p = 0.03), OR 6.0 (95% CI 1.0–34.8), p = 0.05), including multiclass resistance (15% versus 0, p = 0.03), and they were more likely to receive nonstandard ARVs during pregnancy (27% versus 5%, p = 0.01). PHIV and NPHIV women had similar rates of preterm birth (11% versus 28%, p = 0.08) and cesarean delivery (47% versus 46%, p = 0.9). Two infants born to a single NPHIV woman acquired HIV infection. Conclusions. PHIV women have a high frequency of HIV drug resistance mutations, leading to nonstandard ARVs use during pregnancy. Despite nonstandard ARV use during pregnancy, PHIV women did not experience increased rates of adverse pregnancy outcomes. PMID:27413359

  1. Computational mutation scanning and drug resistance mechanisms of HIV-1 protease inhibitors.

    PubMed

    Hao, Ge-Fei; Yang, Guang-Fu; Zhan, Chang-Guo

    2010-07-29

    The drug resistance of various clinically available HIV-1 protease inhibitors has been studied using a new computational protocol, that is, computational mutation scanning (CMS), leading to valuable insights into the resistance mechanisms and structure-resistance correction of the HIV-1 protease inhibitors associated with a variety of active site and nonactive site mutations. By using the CMS method, the calculated mutation-caused shifts of the binding free energies linearly correlate very well with those derived from the corresponding experimental data, suggesting that the CMS protocol may be used as a generalized approach to predict drug resistance associated with amino acid mutations. Because it is essentially important for understanding the structure-resistance correlation and for structure-based drug design to develop an effective computational protocol for drug resistance prediction, the reasonable and computationally efficient CMS protocol for drug resistance prediction should be valuable for future structure-based design and discovery of antiresistance drugs in various therapeutic areas.

  2. Drug Resistance

    MedlinePlus

    HIV Treatment Drug Resistance (Last updated 3/2/2017; last reviewed 3/2/2017) Key Points As HIV multiplies in the ... the risk of drug resistance. What is HIV drug resistance? Once a person becomes infected with HIV, ...

  3. Drug induced superinfection in HIV and the evolution of drug resistance.

    PubMed

    Leontiev, Vladimir V; Maury, Wendy J; Hadany, Lilach

    2008-01-01

    The rapid evolution of HIV drug resistance is a major cause of AIDS treatment failure. Superinfection, the infection of an already infected cell by additional virions, can be a major factor contributing to the evolution of drug resistance. However, the pattern and consequences of superinfection in HIV populations are far from fully understood. In this paper we study the implications of the fact that superinfection is regulated by HIV. We propose that superinfection is negatively associated with the success of the virus, so that more successful viruses are less likely to allow superinfection. We use computational models to investigate the effect that regulated superinfection would have on the evolution of drug resistance in HIV population. We find that regulated, fitness-associated superinfection can provide a distinct advantage to the virus in adapting to anti-HIV drugs in comparison with unregulated superinfection. Based on the results of the computational models and on current biological evidence, we suggest that the mechanism of fitness-associated regulation of coinfection in HIV is plausible, and that its investigation can lead to new ways to fight viral drug resistance.

  4. Low-Frequency Drug Resistance in HIV-Infected Ugandans on Antiretroviral Treatment Is Associated with Regimen Failure

    PubMed Central

    Kyeyune, Fred; Gibson, Richard M.; Nankya, Immaculate; Venner, Colin; Metha, Samar; Akao, Juliet; Ndashimye, Emmanuel; Kityo, Cissy M.; Salata, Robert A.; Mugyenyi, Peter

    2016-01-01

    Most patients failing antiretroviral treatment in Uganda continue to fail their treatment regimen even if a dominant drug-resistant HIV-1 genotype is not detected. In a recent retrospective study, we observed that approximately 30% of HIV-infected individuals in the Joint Clinical Research Centre (Kampala, Uganda) experienced virologic failure with a susceptible HIV-1 genotype based on standard Sanger sequencing. Selection of minority drug-resistant HIV-1 variants (not detectable by Sanger sequencing) under antiretroviral therapy pressure can lead to a shift in the viral quasispecies distribution, becoming dominant members of the virus population and eventually causing treatment failure. Here, we used a novel HIV-1 genotyping assay based on deep sequencing (DeepGen) to quantify low-level drug-resistant HIV-1 variants in 33 patients failing a first-line antiretroviral treatment regimen in the absence of drug-resistant mutations, as screened by standard population-based Sanger sequencing. Using this sensitive assay, we observed that 64% (21/33) of these individuals had low-frequency (or minority) drug-resistant variants in the intrapatient HIV-1 population, which correlated with treatment failure. Moreover, the presence of these minority HIV-1 variants was associated with higher intrapatient HIV-1 diversity, suggesting a dynamic selection or fading of drug-resistant HIV-1 variants from the viral quasispecies in the presence or absence of drug pressure, respectively. This study identified low-frequency HIV drug resistance mutations by deep sequencing in Ugandan patients failing antiretroviral treatment but lacking dominant drug resistance mutations as determined by Sanger sequencing methods. We showed that these low-abundance drug-resistant viruses could have significant consequences for clinical outcomes, especially if treatment is not modified based on a susceptible HIV-1 genotype by Sanger sequencing. Therefore, we propose to make clinical decisions using more

  5. Simple PCR Assays Improve the Sensitivity of HIV-1 Subtype B Drug Resistance Testing and Allow Linking of Resistance Mutations

    PubMed Central

    Johnson, Jeffrey A.; Li, Jin-Fen; Wei, Xierong; Lipscomb, Jonathan; Bennett, Diane; Brant, Ashley; Cong, Mian-er; Spira, Thomas; Shafer, Robert W.; Heneine, Walid

    2007-01-01

    Background The success of antiretroviral therapy is known to be compromised by drug-resistant HIV-1 at frequencies detectable by conventional bulk sequencing. Currently, there is a need to assess the clinical consequences of low-frequency drug resistant variants occurring below the detection limit of conventional genotyping. Sensitive detection of drug-resistant subpopulations, however, requires simple and practical methods for routine testing. Methodology We developed highly-sensitive and simple real-time PCR assays for nine key drug resistance mutations and show that these tests overcome substantial sequence heterogeneity in HIV-1 clinical specimens. We specifically used early wildtype virus samples from the pre-antiretroviral drug era to measure background reactivity and were able to define highly-specific screening cut-offs that are up to 67-fold more sensitive than conventional genotyping. We also demonstrate that sequencing the mutation-specific PCR products provided a direct and novel strategy to further detect and link associated resistance mutations, allowing easy identification of multi-drug-resistant variants. Resistance mutation associations revealed in mutation-specific amplicon sequences were verified by clonal sequencing. Significance Combined, sensitive real-time PCR testing and mutation-specific amplicon sequencing provides a powerful and simple approach that allows for improved detection and evaluation of HIV-1 drug resistance mutations. PMID:17653265

  6. HemaSpot, a Novel Blood Storage Device for HIV-1 Drug Resistance Testing.

    PubMed

    Brooks, K; DeLong, A; Balamane, M; Schreier, L; Orido, M; Chepkenja, M; Kemboi, E; D'Antuono, M; Chan, P A; Emonyi, W; Diero, L; Coetzer, M; Kantor, R

    2016-01-01

    HemaSpot, a novel dried-blood storage filter device, was used for HIV-1 pol resistance testing in 30 fresh United States blood samples and 54 previously frozen Kenyan blood samples. Genotyping succeeded in 79% and 58% of samples, respectively, improved with shorter storage and higher viral load, and had good (86%) resistance mutation concordance to plasma.

  7. Community-Associated Methicillin-Resistant Staphylococcus aureus Colonization Burden in HIV-Infected Patients

    PubMed Central

    Popovich, Kyle J.; Hota, Bala; Aroutcheva, Alla; Kurien, Lisa; Patel, Janki; Lyles-Banks, Rosie; Grasso, Amanda E.; Spec, Andrej; Beavis, Kathleen G.; Hayden, Mary K.; Weinstein, Robert A.

    2013-01-01

    Background. The epidemic of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has had a disproportionate impact on patients with human immunodeficiency virus (HIV). Methods. We evaluated CA-MRSA colonization burden (number of colonized sites per total number sampled) among HIV-infected and HIV-negative inpatients within 72 hours of hospitalization. From March 2011 through April 2012, we obtained cultures from nasal and extranasal sites (throat, axilla, inguinal, perirectal, and chronic wound if present) and collected risk factor data. Results. Of 745 patients (374 HIV-infected, 371 HIV-negative), 15.7% were colonized with CA-MRSA at any site: 20% of HIV and 11% of HIV-negative patients (relative prevalence = 1.8, P = .002). HIV-infected patients had a higher prevalence of nasal, extranasal, and exclusive extranasal colonization as well as higher colonization burden. Perirectal and inguinal areas were the extranasal sites most frequently colonized, and 38.5% of colonized patients had exclusive extranasal colonization. Seventy-three percent of isolates were identified as USA300. Among HIV-infected patients, male sex, younger age, and recent incarceration were positively associated whereas Hispanic ethnicity was negatively associated with higher colonization burden. Among HIV-negative patients, temporary housing (homeless, shelter, or substance abuse center) was the only factor associated with higher colonization burden. Predictors of USA300 included HIV, younger age, illicit drug use, and male sex; all but 1 colonized individual with current or recent incarceration carried USA300. Conclusions. HIV-infected patients were more likely to have a higher CA-MRSA colonization burden and carry USA300. In certain populations, enhanced community and outpatient-based infection control strategies may be needed to prevent CA-MRSA cross-transmission and infection. PMID:23325428

  8. HIV Infection and Geographically Bound Transmission of Drug-Resistant Tuberculosis, Argentina

    PubMed Central

    López, Beatriz; Ambroggi, Marta; Palmero, Domingo; Salvadores, Bernardo; Gravina, Elida; Mazzeo, Eduardo; Imaz, Susana; Barrera, Lucía

    2012-01-01

    During 2003–2009, the National Tuberculosis (TB) Laboratory Network in Argentina gave 830 patients a new diagnosis of multidrug-resistant (MDR) TB and 53 a diagnosis of extensively drug- resistant (XDR) TB. HIV co-infection was involved in nearly one third of these cases. Strain genotyping showed that 7 major clusters gathered 56% of patients within restricted geographic areas. The 3 largest clusters corresponded to epidemic MDR TB strains that have been undergoing transmission for >10 years. The indigenous M strain accounted for 29% and 40% of MDR and XDR TB cases, respectively. Drug-resistant TB trends in Argentina are driven by spread of a few strains in hotspots where the rate of HIV infection is high. To curb transmission, the national TB program is focusing stringent interventions in these areas by strengthening infection control in large hospitals and prisons, expediting drug resistance detection, and streamlining information-sharing systems between HIV and TB programs. PMID:23092584

  9. Natural polymorphisms and unusual mutations in HIV-1 protease with potential antiretroviral resistance: a bioinformatic analysis

    PubMed Central

    2014-01-01

    Background The correlations of genotypic and phenotypic tests with treatment, clinical history and the significance of mutations in viruses of HIV-infected patients are used to establish resistance mutations to protease inhibitors (PIs). Emerging mutations in human immunodeficiency virus type 1 (HIV-1) protease confer resistance to PIs by inducing structural changes at the ligand interaction site. The aim of this study was to establish an in silico structural relationship between natural HIV-1 polymorphisms and unusual HIV-1 mutations that confer resistance to PIs. Results Protease sequences isolated from 151 Mexican HIV-1 patients that were naïve to, or subjected to antiretroviral therapy, were examined. We identified 41 unrelated resistance mutations with a prevalence greater than 1%. Among these mutations, nine exhibited positive selection, three were natural polymorphisms (L63S/V/H) in a codon associated with drug resistance, and six were unusual mutations (L5F, D29V, L63R/G, P79L and T91V). The D29V mutation, with a prevalence of 1.32% in the studied population, was only found in patients treated with antiretroviral drugs. Using in silico modelling, we observed that D29V formed unstable protease complexes when were docked with lopinavir, saquinavir, darunavir, tipranavir, indinavir and atazanavir. Conclusions The structural correlation of natural polymorphisms and unusual mutations with drug resistance is useful for the identification of HIV-1 variants with potential resistance to PIs. The D29V mutation likely confers a selection advantage in viruses; however, in silico, presence of this mutation results in unstable enzyme/PI complexes, that possibly induce resistance to PIs. PMID:24629078

  10. The analysis of HIV/AIDS drug-resistant on networks

    NASA Astrophysics Data System (ADS)

    Liu, Maoxing

    2014-01-01

    In this paper, we present an Human Immunodeficiency Virus (HIV)/Acquired Immune Deficiency Syndrome (AIDS) drug-resistant model using an ordinary differential equation (ODE) model on scale-free networks. We derive the threshold for the epidemic to be zero in infinite scale-free network. We also prove the stability of disease-free equilibrium (DFE) and persistence of HIV/AIDS infection. The effects of two immunization schemes, including proportional scheme and targeted vaccination, are studied and compared. We find that targeted strategy compare favorably to a proportional condom using has prominent effect to control HIV/AIDS spread on scale-free networks.

  11. Biochemical Mechanism of HIV-1 Resistance to Rilpivirine*

    PubMed Central

    Singh, Kamalendra; Marchand, Bruno; Rai, Devendra K.; Sharma, Bechan; Michailidis, Eleftherios; Ryan, Emily M.; Matzek, Kayla B.; Leslie, Maxwell D.; Hagedorn, Ariel N.; Li, Zhe; Norden, Pieter R.; Hachiya, Atsuko; Parniak, Michael A.; Xu, Hong-Tao; Wainberg, Mark A.; Sarafianos, Stefan G.

    2012-01-01

    Rilpivirine (RPV) is a second generation nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI) that efficiently inhibits HIV-1 resistant to first generation NNRTIs. Virological failure during therapy with RPV and emtricitabine is associated with the appearance of E138K and M184I mutations in RT. Here we investigate the biochemical mechanism of RT inhibition and resistance to RPV. We used two transient kinetics approaches (quench-flow and stopped-flow) to determine how subunit-specific mutations in RT p66 or p51 affect association and dissociation of RPV to RT as well as their impact on binding of dNTP and DNA and the catalytic incorporation of nucleotide. We compared WT with four subunit-specific RT mutants, p66M184I/p51WT, p66E138K/p51E138K, p66E138K/M184I/p51E138K, and p66M184I/p51E138K. Ile-184 in p66 (p66184I) decreased the catalytic efficiency of RT (kpol/Kd.dNTP), primarily through a decrease in dNTP binding (Kd.dNTP). Lys-138 either in both subunits or in p51 alone abrogated the negative effect of p66184I by restoring dNTP binding. Furthermore, p51138K reduced RPV susceptibility by altering the ratio of RPV dissociation to RPV association, resulting in a net reduction in RPV equilibrium binding affinity (Kd.RPV = koff.RPV/kon.RPV). Quantum mechanics/molecular mechanics hybrid molecular modeling revealed that p51E138K affects access to the RPV binding site by disrupting the salt bridge between p51E138 and p66K101. p66184I caused repositioning of the Tyr-183 active site residue and decreased the efficiency of RT, whereas the addition of p51138K restored Tyr-183 to a WT-like conformation, thus abrogating the Ile-184-induced functional defects. PMID:22955279

  12. Perinatal acquisition of drug-resistant HIV-1 infection: mechanisms and long-term outcome

    PubMed Central

    Delaugerre, Constance; Chaix, Marie-Laure; Blanche, Stephane; Warszawski, Josiane; Cornet, Dorine; Dollfus, Catherine; Schneider, Veronique; Burgard, Marianne; Faye, Albert; Mandelbrot, Laurent; Tubiana, Roland; Rouzioux, Christine

    2009-01-01

    Background Primary-HIV-1-infection in newborns that occurs under antiretroviral prophylaxis that is a high risk of drug-resistance acquisition. We examine the frequency and the mechanisms of resistance acquisition at the time of infection in newborns. Patients and Methods We studied HIV-1-infected infants born between 01 January 1997 and 31 December 2004 and enrolled in the ANRS-EPF cohort. HIV-1-RNA and HIV-1-DNA samples obtained perinatally from the newborn and mother were subjected to population-based and clonal analyses of drug resistance. If positive, serial samples were obtained from the child for resistance testing. Results Ninety-two HIV-1-infected infants were born during the study period. Samples were obtained from 32 mother-child pairs and from another 28 newborns. Drug resistance was detected in 12 newborns (20%): drug resistance to nucleoside reverse transcriptase inhibitors was seen in 10 cases, non-nucleoside reverse transcriptase inhibitors in two cases, and protease inhibitors in one case. For 9 children, the detection of the same resistance mutations in mothers' samples (6 among 10 available) and in newborn lymphocytes (6/8) suggests that the newborn was initially infected by a drug-resistant strain. Resistance variants were either transmitted from mother-to-child or selected during subsequent temporal exposure under suboptimal perinatal prophylaxis. Follow-up studies of the infants showed that the resistance pattern remained stable over time, regardless of antiretroviral therapy, suggesting the early cellular archiving of resistant viruses. The absence of resistance in the mother of the other three children (3/10) and neonatal lymphocytes (2/8) suggests that the newborns were infected by a wild-type strain without long-term persistence of resistance when suboptimal prophylaxis was stopped. Conclusion This study confirms the importance of early resistance genotyping of HIV-1-infected newborns. In most cases (75%), drug resistance was archived in

  13. [Comparison of three genotyping methods for the detection of HIV-1 resistance to antiretroviral drugs].

    PubMed

    Suárez, A; Picazo, J; Alonso, R; Bouza, E; Delgado, R; Rodríguez-Noriega, A; Bernal, A; García, A

    2002-03-01

    Highly active antiretroviral therapy has dramatically improved the life expectancy of human immunodeficiency virus (HIV)-infected patients, but mutations in the HIV-1 reverse transcriptase (RT) and protease (P) genes confer drug failure. Evaluation of drug resistance genotyping in HIV-1 has proven to be useful for the selection of drug combinations with maximum antiretroviral activity. The aim of this study was to evaluate the optimal procedure to determine the resistance profile in the laboratory. Plasma from 90 antiretroviral-treated patients was analyzed by reverse hybridization, which identifies the presence of wild-types or mutations at the 19 key codons for protease and RT regions, and was compared with two other methods of direct cDNA sequencing. A total of 408 mutations were detected by InnoLiPA HIV-1, (Line Probe Assay, Innogenetics, Belgium), 572 by TrueGene HIV-1 Genotyping System (Visible Genetics, Canada), and 721 by ViroSeq HIV-1 Genotyping System (Perkin Elmer/Applied Biosystems, California). Hybridization detected a significantly higher number of primary mutations which are associated with a high level of drug resistance (p <0.001). Hybridization also detected a higher number of mixtures of wild-type and mutant viruses. There was a good concordance among the three methods, although it was higher between the two sequencing methods. Sequencing determines a higher number of mutations, but hybridization better identifies primary mutations correlated with a high level of drug resistance. Hybridization is more suitable for detecting mixed populations and is easier to implement in clinical laboratories but does not eliminate the need for sequence analysis for detection of drug-resistant HIV.

  14. Relative resistance of HIV-1 founder viruses to control by interferon-alpha

    PubMed Central

    2013-01-01

    Background Following mucosal human immunodeficiency virus type 1 (HIV-1) transmission, type 1 interferons (IFNs) are rapidly induced at sites of initial virus replication in the mucosa and draining lymph nodes. However, the role played by IFN-stimulated antiviral activity in restricting HIV-1 replication during the initial stages of infection is not clear. We hypothesized that if type 1 IFNs exert selective pressure on HIV-1 replication in the earliest stages of infection, the founder viruses that succeed in establishing systemic infection would be more IFN-resistant than viruses replicating during chronic infection, when type 1 IFNs are produced at much lower levels. To address this hypothesis, the relative resistance of virus isolates derived from HIV-1-infected individuals during acute and chronic infection to control by type 1 IFNs was analysed. Results The replication of plasma virus isolates generated from subjects acutely infected with HIV-1 and molecularly cloned founder HIV-1 strains could be reduced but not fully suppressed by type 1 IFNs in vitro. The mean IC50 value for IFNα2 (22 U/ml) was lower than that for IFNβ (346 U/ml), although at maximally-inhibitory concentrations both IFN subtypes inhibited virus replication to similar extents. Individual virus isolates exhibited differential susceptibility to inhibition by IFNα2 and IFNβ, likely reflecting variation in resistance to differentially up-regulated IFN-stimulated genes. Virus isolates from subjects acutely infected with HIV-1 were significantly more resistant to in vitro control by IFNα than virus isolates generated from the same individuals during chronic, asymptomatic infection. Viral IFN resistance declined rapidly after the acute phase of infection: in five subjects, viruses derived from six-month consensus molecular clones were significantly more sensitive to the antiviral effects of IFNs than the corresponding founder viruses. Conclusions The establishment of systemic HIV-1 infection by

  15. Nevirapine Resistance by Timing of HIV Type 1 Infection in Infants Treated with Single-Dose Nevirapine

    PubMed Central

    Micek, Mark A.; Blanco, Ana Judith; Beck, Ingrid A.; Dross, Sandra; Matunha, Laurinda; Montoya, Pablo; Seidel, Kristy; Gantt, Soren; Matediane, Eduardo; Jamisse, Lilia; Gloyd, Stephen; Frenkel, Lisa M.

    2011-01-01

    Background In women, single-dose nevirapine for prophylaxis against mother-to-child transmission of human immunodeficiency virus type 1 (HIV-1) selects for nevirapine-resistant HIV-1, which subsequently decays rapidly. We hypothesized that the selection, acquisition, and decay of nevirapine-resistant HIV-1 differs in infants, varying by the timing of HIV-1 infection. Methods We conducted a prospective, observational study of 740 Mozambican infants receiving single-dose nevirapine prophylaxis and determined the timing of infection and concentrations of nevirapine-resistant HIV-1 over time. Results Infants with established in utero infection had a high rate (87.0%) of selection of nevirapine-resistant HIV-1 mutants, which rapidly decayed to undetectable levels. The few without nevirapine resistance received zidovudine with single-dose nevirapine and/or their mothers took alternative antiretroviral drugs. Infants with acute in utero infection had a lower rate of nevirapine-resistant HIV-1 (33.3%; P =.006, compared with established in utero infection), but mutants persisted over time. Infants with peripartum infection also had a lower rate of nevirapine-resistant HIV-1 (38.1%; P =.001, compared with established in utero infection) but often acquired 100% mutant virus that persisted over time (P =.017, compared with established in utero infection). Conclusions The detection and persistence of nevirapine-resistant HIV-1 in infants after single-dose nevirapine therapy vary by the timing of infection and the antiretroviral regimen. In infants with persistent high-level nevirapine-resistant HIV-1, nevirapine-based antiretroviral therapy is unlikely to ever be efficacious because of concentrations in long-lived viral reservoirs. However, the absence or decay of nevirapine-resistant HIV-1 in many infants suggests that nevirapine antiretroviral therapy may be effective if testing can identify these individuals. PMID:20384494

  16. Prediction of HIV drug resistance from genotype with encoded three-dimensional protein structure

    PubMed Central

    2014-01-01

    Background Drug resistance has become a severe challenge for treatment of HIV infections. Mutations accumulate in the HIV genome and make certain drugs ineffective. Prediction of resistance from genotype data is a valuable guide in choice of drugs for effective therapy. Results In order to improve the computational prediction of resistance from genotype data we have developed a unified encoding of the protein sequence and three-dimensional protein structure of the drug target for classification and regression analysis. The method was tested on genotype-resistance data for mutants of HIV protease and reverse transcriptase. Our graph based sequence-structure approach gives high accuracy with a new sparse dictionary classification method, as well as support vector machine and artificial neural networks classifiers. Cross-validated regression analysis with the sparse dictionary gave excellent correlation between predicted and observed resistance. Conclusion The approach of encoding the protein structure and sequence as a 210-dimensional vector, based on Delaunay triangulation, has promise as an accurate method for predicting resistance from sequence for drugs inhibiting HIV protease and reverse transcriptase. PMID:25081370

  17. Development of antiretroviral resistance in children with HIV in low- and middle-income countries.

    PubMed

    Fitzgerald, Felicity; Penazzato, Martina; Gibb, Diana

    2013-06-15

    With antiretroviral therapy (ART) recommended by the World Health Organization (WHO) for children aged <2 years with human immunodeficiency virus (HIV) and continuing global ART roll-out, ART coverage in children is rising. However ART coverage in children lags considerably behind that in adults (28% vs 58%). Long duration of therapy needed for HIV-infected children requires maximal efficacy, minimal toxicity, and prevention of development of drug resistance. This requires consideration of ways to improve sequencing of regimens during childhood to minimize development of resistance and treatment failure. We consider aspects of virological failure and development of resistance in vertically HIV-infected children in resource-limited settings. We review evidence guiding choices of first- and second-line ART, the impact of drugs given to prevent mother-to-child transmission, adherence issues and, availability of appropriate drug formulations. Recommendations made during the Collaborative HIV and Anti-HIV Drug Resistance Network (CHAIN)/WHO meeting (October 2012) are summarized.

  18. HIV-1 Genetic Diversity and Drug Resistance Mutations Among Treatment-Naive Adult Patients in Suriname.

    PubMed

    Abdoel Wahid, Firoz; Sno, Rachel; Darcissac, Edith; Lavergne, Anne; Adhin, Malti R; Lacoste, Vincent

    2016-12-01

    The molecular epidemiologic profile of HIV-1 in Suriname was determined through protease (PR) and reverse transcriptase (RT) sequences obtained from HIV-1 strains collected from 100 drug-naive HIV-1-infected persons. Subtype determination revealed that most viruses were of subtype B (94.9%) in both PR and RT genomic regions, followed by B/D recombinants (5.1%). Analysis of drug resistance mutations showed only one transmitted dug resistance mutation (TDRM) (V75M) in a single strain. The genetic data obtained can serve as a baseline for Suriname to monitor emerging mutations. This study reveals that the HIV-1 epidemic in Suriname is still characterized by a low TDRM rate (1%) and a low level of subtype diversity. However, both genes display a high genetic polymorphism. This high polymorphism may ultimately lead to drug resistance. Continuous monitoring of the baseline resistance is therefore a prerequisite to safeguard effective long-term treatment for people living with HIV-1 in Suriname.

  19. Antiretroviral drug use and HIV drug resistance among HIV-infected Black men who have sex with men: HIV Prevention Trials Network 061

    PubMed Central

    Chen, Iris; Connor, Matthew B.; Clarke, William; Marzinke, Mark A.; Cummings, Vanessa; Breaud, Autumn; Fogel, Jessica M.; Laeyendecker, Oliver; Fields, Sheldon D.; Donnell, Deborah; Griffith, Sam; Scott, Hyman M.; Shoptaw, Steven; del Rio, Carlos; Magnus, Manya; Mannheimer, Sharon; Wheeler, Darrell P.; Mayer, Kenneth H.; Koblin, Beryl A.; Eshleman, Susan H.

    2015-01-01

    BACKGROUND HPTN 061 enrolled Black men who have sex with men in the United States. Some men with low/undetectable HIV RNA had unusual patterns of antiretroviral (ARV) drug use or had drugs detected in the absence of viral suppression. This report includes a comprehensive analysis of ARV drug use and drug resistance among men in HPTN 061 who were not virally suppressed. METHODS The analysis included 169 men who had viral loads >400 copies/mL at enrollment, including three with acute infection and 13 with recent infection. By self-report, 88 were previously diagnosed, including 31 in care; 137 men reported no ARV drug use. Samples from these 169 men and 23 seroconverters were analyzed with HIV genotyping and ARV drug assays. RESULTS Forty-eight (28%) of the 169 men had ≥1 drug resistance mutation (DRM); 19 (11%) had multi-class resistance. Sixty men (36%) had ≥1 ARV drug detected, 42 (70%) of whom reported no ARV drug use. Nine (23%) of 39 newly-infected men had ≥1 DRM; 10 had ≥1 ARV drug detected. Unusual patterns of ARV drugs were detected more frequently in newly-diagnosed men than previously-diagnosed men. The rate of transmitted drug resistance (TDR) was 23% based on HIV genotyping and self-reported ARV drug use, but was 12% after adjusting for ARV drug detection. CONCLUSIONS Many men in HPTN 061 had drug-resistant HIV and many were at risk of acquiring additional DRMs. ARV drug testing revealed unusual patterns of ARV drug use and provided a more accurate estimate of TDR. PMID:25861015

  20. HIV behind bars: human immunodeficiency virus cluster analysis and drug resistance in a reference correctional unit from southern Brazil.

    PubMed

    Prellwitz, Isabel M; Alves, Brunna M; Ikeda, Maria Letícia R; Kuhleis, Daniele; Picon, Pedro D; Jarczewski, Carla A; Osório, Marta R; Sánchez, Alexandra; Seuánez, Héctor N; Larouzé, Bernard; Soares, Marcelo A; Soares, Esmeralda A

    2013-01-01

    People deprived of liberty in prisons are at higher risk of infection by the human immunodeficiency virus (HIV) due to their increased exposure through intravenous drug use, unprotected sexual activity, tattooing in prison and blood exposure in fights and rebellions. Yet, the contribution of intramural HIV transmission to the epidemic is scarcely known, especially in low- and middle-income settings. In this study, we surveyed 1,667 inmates incarcerated at Presídio Central de Porto Alegre, located in southern Brazil, for HIV infection and molecular characterization. The HIV seroprevalence was 6.6% (110/1,667). Further analyses were carried out on 40 HIV-seropositive inmates to assess HIV transmission clusters and drug resistance within the facility with the use of molecular and phylogenetic techniques. The molecular epidemiology of HIV-1 subtypes observed was similar to the one reported for the general population in southern Brazil, with the predominance of HIV-1 subtypes C, B, CRF31_BC and unique BC recombinants. In particular, the high rate (24%) of URF_BC found here may reflect multiple exposures of the population investigated to HIV infection. We failed to find HIV-infected inmates sharing transmission clusters with each other. Importantly, the analysis of HIV-1 pol genomic fragments evidenced high rates of HIV primary and secondary (acquired) drug resistance and an alarming proportion of virologic failure among patients under treatment, unveiling suboptimal access to antiretroviral therapy (ARV), low ARV adherence and dissemination of drug resistant HIV strains in primary infections. Our results call for immediate actions of public authority to implement preventive measures, serological screening and, for HIV-seropositive subjects, clinical and treatment follow-up in order to control HIV infection and limit the spread of drug resistance strains in Brazilian prisons.

  1. Declining prevalence of HIV-1 drug resistance in antiretroviral treatment-exposed individuals in Western Europe.

    PubMed

    De Luca, Andrea; Dunn, David; Zazzi, Maurizio; Camacho, Ricardo; Torti, Carlo; Fanti, Iuri; Kaiser, Rolf; Sönnerborg, Anders; Codoñer, Francisco M; Van Laethem, Kristel; Vandamme, Anne-Mieke; Bansi, Loveleen; Ghisetti, Valeria; van de Vijver, David A M C; Asboe, David; Prosperi, Mattia C F; Di Giambenedetto, Simona

    2013-04-15

    HIV-1 drug resistance represents a major obstacle to infection and disease control. This retrospective study analyzes trends and determinants of resistance in antiretroviral treatment (ART)-exposed individuals across 7 countries in Europe. Of 20 323 cases, 80% carried at least one resistance mutation: these declined from 81% in 1997 to 71% in 2008. Predicted extensive 3-class resistance was rare (3.2% considering the cumulative genotype) and peaked at 4.5% in 2005, decreasing thereafter. The proportion of cases exhausting available drug options dropped from 32% in 2000 to 1% in 2008. Reduced risk of resistance over calendar years was confirmed by multivariable analysis.

  2. Prediction of HIV-1 protease inhibitor resistance using a protein-inhibitor flexible docking approach.

    PubMed

    Jenwitheesuk, Ekachai; Samudrala, Ram

    2005-01-01

    Emergence of drug resistance remains one of the most challenging issues in the treatment of HIV-1 infection. Here we focus on resistance to HIV-1 protease inhibitors (PIs) at a molecular level, which can be analysed genotypically or phenotypically. Genotypic assays are based on the analysis of mutations associated with reduced drug susceptibility, but are problematic because of the numerous mutations and mutational patterns that confer drug resistance. Phenotypic resistance or susceptibility can be experimentally evaluated by measuring the amount of free drug bound to HIV-1 protease molecules, but this procedure is expensive and time-consuming. To overcome these problems, we have developed a docking protocol that takes protein-inhibitor flexibility into account to predict phenotypic drug resistance. For six FDA-approved Pls and a total of 1792 HIV-1 protease sequence mutants, we used a combination of inhibitor flexible docking and molecular dynamics (MD) simulations to calculate protein-inhibitor binding energies. Prediction results were expressed as fold changes of the calculated inhibitory constant (Ki), and the samples predicted to have fold-increase in calculated Ki above the fixed cut-off were defined as drug resistant. Our combined docking and MD protocol achieved accuracies ranging from 72-83% in predicting resistance/susceptibility for five of the six drugs evaluated. Evaluating the method only on samples where our predictions concurred with established knowledge-based methods resulted in increased accuracies of 83-94% for the six drugs. The results suggest that a physics-based approach, which is readily applicable to any novel PI and/or mutant, can be used judiciously with knowledge-based approaches that require experimental training data to devise accurate models of HIV-1 Pl resistance prediction.

  3. Active surveillance for carbapenem-resistant Enterobacteriaceae using stool specimens submitted for testing for Clostridium difficile.

    PubMed

    Banach, David B; Francois, Jeannette; Blash, Stephanie; Patel, Gopi; Jenkins, Stephen G; LaBombardi, Vincent; Kreiswirth, Barry N; Srinivasan, Arjun; Calfee, David P

    2014-01-01

    Active surveillance to identify asymptomatic carriers of carbapenem-resistant Enterobacteriaceae (CRE) is a recommended strategy for CRE control in healthcare facilities. Active surveillance using stool specimens tested for Clostridium difficile is a relatively low-cost strategy to detect CRE carriers. Further evaluation of this and other risk factor-based active surveillance strategies is warranted.

  4. An international multicenter study on HIV-1 drug resistance testing by 454 ultra-deep pyrosequencing.

    PubMed

    Simen, Birgitte B; Braverman, Michael S; Abbate, Isabella; Aerssens, Jeroen; Bidet, Yannick; Bouchez, Olivier; Gabriel, Christian; Izopet, Jacques; Kessler, Harald H; Stelzl, Evelyn; Di Giallonardo, Francesca; Schlapbach, Ralph; Radonic, Aleksander; Paredes, Roger; Recordon-Pinson, Patricia; Sakwa, James; St John, Elizabeth P; Schmitz-Agheguian, Gudrun G; Metzner, Karin J; Däumer, Martin P

    2014-08-01

    The detection of mutant spectra within the viral quasispecies is critical for therapeutic management of HIV-1 infections. Routine clinical application of ultrasensitive genotyping requires reproducibility and concordance within and between laboratories. The goal of the study was to evaluate a new protocol on HIV-1 drug resistance testing by 454 ultra-deep pyrosequencing (454-UDS) in an international multicenter study. Sixteen blinded HIV-1 subtype B samples were provided for 454-UDS as both RNA and cDNA with viral titers of 88,600-573,000 HIV-1 RNA copies/ml. Eight overlapping amplicons spanning protease (PR) codons 10-99 and reverse transcriptase (RT) codons 1-251 were generated using molecular barcoded primers. 454-UDS was performed using the 454 Life Sciences/Roche GS FLX platform. PR and RT sequences were analyzed using 454 Life Sciences Amplicon Variant Analyzer (AVA) software. Quantified variation data were analyzed for intra-laboratory reproducibility and inter-laboratory concordance. Routine population sequencing was performed using the ViroSeq HIV-1 genotyping system. Eleven laboratories and the reference laboratory 454 Life Sciences sequenced the HIV-1 sample set. Data presented are derived from seven laboratories and the reference laboratory since severe study protocol execution errors occurred in four laboratories leading to exclusion. The median sequencing depth across all sites was 1364 reads per position (IQR=809-2065). 100% of the ViroSeq-reported mutations were also detected by 454-UDS. Minority HIV-1 drug resistance mutations, defined as HIV-1 drug resistance mutations identified at frequencies of 1-25%, were only detected by 454-UDS. Analysis of 10 preselected majority and minority mutations were consistently found across sites. The analysis of drug-resistance mutations detected between 1 and 10% demonstrated high intra- and inter-laboratory consistency in frequency estimates for both RNA and prepared cDNA samples, indicating robustness of the

  5. Vpu-Mediated Counteraction of Tetherin Is a Major Determinant of HIV-1 Interferon Resistance

    PubMed Central

    Kmiec, Dorota; Iyer, Shilpa S.; Stürzel, Christina M.; Sauter, Daniel; Hahn, Beatrice H.

    2016-01-01

    ABSTRACT Human immunodeficiency virus type 1 (HIV-1) groups M, N, O, and P are the result of independent zoonotic transmissions of simian immunodeficiency viruses (SIVs) infecting great apes in Africa. Among these, only Vpu proteins of pandemic HIV-1 group M strains evolved potent activity against the restriction factor tetherin, which inhibits virus release from infected cells. Thus, effective Vpu-mediated tetherin antagonism may have been a prerequisite for the global spread of HIV-1. To determine whether this particular function enhances primary HIV-1 replication and interferon resistance, we introduced mutations into the vpu genes of HIV-1 group M and N strains to specifically disrupt their ability to antagonize tetherin, but not other Vpu functions, such as degradation of CD4, down-modulation of CD1d and NTB-A, and suppression of NF-κB activity. Lack of particular human-specific adaptations reduced the ability of HIV-1 group M Vpu proteins to enhance virus production and release from primary CD4+ T cells at high levels of type I interferon (IFN) from about 5-fold to 2-fold. Interestingly, transmitted founder HIV-1 strains exhibited higher virion release capacity than chronic control HIV-1 strains irrespective of Vpu function, and group M viruses produced higher levels of cell-free virions than an N group HIV-1 strain. Thus, efficient virus release from infected cells seems to play an important role in the spread of HIV-1 in the human population and requires a fully functional Vpu protein that counteracts human tetherin. PMID:27531907

  6. HIV gp120 H375 is unique to HIV-1 subtype CRF01_AE and confers strong resistance to the entry inhibitor BMS-599793, a candidate microbicide drug.

    PubMed

    Schader, Susan M; Colby-Germinario, Susan P; Quashie, Peter K; Oliveira, Maureen; Ibanescu, Ruxandra-Ilinca; Moisi, Daniela; Mespléde, Thibault; Wainberg, Mark A

    2012-08-01

    BMS-599793 is a small molecule entry inhibitor that binds to human immunodeficiency virus type 1 (HIV-1) gp120, resulting in the inhibition of CD4-dependent entry into cells. Since BMS-599793 is currently considered a candidate microbicide drug, we evaluated its efficacy against a number of primary patient HIV isolates from different subtypes and circulating recombinant forms (CRFs) and showed that activity varied between ∼3 ρM and 7 μM at 50% effective concentrations (EC(50)s). Interestingly, CRF01_AE HIV-1 isolates consistently demonstrated natural resistance against this compound. Genotypic analysis of >1,600 sequences (Los Alamos HIV sequence database) indicated that a single amino acid polymorphism in Env, H375, may account for the observed BMS-599793 resistance in CRF01_AE HIV-1. Results of site-directed mutagenesis experiments confirmed this hypothesis, and in silico drug docking simulations identified a drug resistance mechanism at the molecular level. In addition, CRF01_AE viruses were shown to be resistant to multiple broadly neutralizing monoclonal antibodies. Thus, our results not only provide insight into how Env polymorphisms may contribute to entry inhibitor resistance but also may help to elucidate how HIV can evade some broadly neutralizing antibodies. Furthermore, the high frequency of H375 in CRF01_AE HIV-1, and its apparent nonoccurrence in other subtypes, could serve as a means for rapid identification of CRF01_AE infections.

  7. The higher barrier of darunavir and tipranavir resistance for HIV-1 protease

    SciTech Connect

    Wang, Yong; Liu, Zhigang; Brunzelle, Joseph S.; Kovari, Iulia A.; Dewdney, Tamaria G.; Reiter, Samuel J.; Kovari, Ladislau C.

    2011-11-17

    Darunavir and tipranavir are two inhibitors that are active against multi-drug resistant (MDR) HIV-1 protease variants. In this study, the invitro inhibitory efficacy was tested against a MDR HIV-1 protease variant, MDR 769 82T, containing the drug resistance mutations of 46L/54V/82T/84V/90M. Crystallographic and enzymatic studies were performed to examine the mechanism of resistance and the relative maintenance of potency. The key findings are as follows: (i) The MDR protease exhibits decreased susceptibility to all nine HIV-1 protease inhibitors approved by the US Food and Drug Administration (FDA), among which darunavir and tipranavir are the most potent; (ii) the threonine 82 mutation on the protease greatly enhances drug resistance by altering the hydrophobicity of the binding pocket; (iii) darunavir or tipranavir binding facilitates closure of the wide-open flaps of the MDR protease; and (iv) the remaining potency of tipranavir may be preserved by stabilizing the flaps in the inhibitor-protease complex while darunavir maintains its potency by preserving protein main chain hydrogen bonds with the flexible P2 group. These results could provide new insights into drug design strategies to overcome multi-drug resistance of HIV-1 protease variants.

  8. IL-27 Found to Play Significant Role in Conferring HIV Resistance | Poster

    Cancer.gov

    By Nancy Parrish, Staff Writer The human immunodeficiency virus (HIV) targets specific immune cells in the body known as macrophages because these are the cells that eliminate foreign material such as bacteria or viruses. HIV is able to reproduce and spread throughout the body if it can avoid destruction by macrophages. A recent study by Lue Dai, Ph.D., and colleagues revealed that the human cytokine IL-27 helps promote the body’s production of macrophages that are resistant to HIV. The study further found that IL-27 suppresses a gene known as SPTBN1, which facilitates the survival of HIV cells. This breakthrough research was recently published in the Journal of Experimental Medicine.

  9. Different Frequencies of Drug Resistance Mutations among HIV-1 Subtypes Circulating in China: A Comprehensive Study

    PubMed Central

    Sui, Hongshuai; Gui, Tao; Jia, Lei; Guo, Wei; Han, Jingwan; Liu, Yongjian; Bao, Zuoyi; Li, Hanping; Li, Jingyun; Li, Lin

    2014-01-01

    The rapid spreading of HIV drug resistance is threatening the overall success of free HAART in China. Much work has been done on drug-resistant mutations, however, most of which were based on subtype B. Due to different genetic background, subtypes difference would have an effect on the development of drug-resistant mutations, which has already been proved by more and more studies. In China, the main epidemic subtypes are CRF07_BC, CRF08_BC, Thai B and CRF01_AE. The depiction of drug resistance mutations in those subtypes will be helpful for the selection of regimens for Chinese. In this study, the distributions difference of amino acids at sites related to HIV drug resistance were compared among subtype B, CRF01_AE, CRF07_BC and CRF08_BC strains prevalent in China. The amino acid composition of sequences belonging to different subtypes, which were obtained from untreated and treated individuals separately, were also compared. The amino acids proportions of 19 sites in RT among subtype B, CRF01_AE and CRF08_BC have significant difference in drug resistance groups (chi-square test, p<0.05). Genetic barriers analysis revealed that sites 69, 138, 181, 215 and 238 were significantly different among subtypes (Kruskal Wallis test, p<0.05). All subtypes shared three highest prevalent drug resistance sites 103, 181 and 184 in common. Many drug resistant sites in protease show surprising high proportions in almost all subtypes in drug-naïve patients. This is the first comprehensive study in China on different development of drug resistance among different subtypes. The detailed data will lay a foundation for HIV treatment regimens design and improve HIV therapy in China. PMID:24663120

  10. HIV-1 Variants and Drug Resistance in Pregnant Women from Bata (Equatorial Guinea): 2012-2013

    PubMed Central

    Alvarez, Patricia; Fernández McPhee, Carolina; Prieto, Luis; Martín, Leticia; Obiang, Jacinta; Avedillo, Pedro; Vargas, Antonio; Rojo, Pablo; Benito, Agustín; Ramos, José Tomás; Holguín, África

    2016-01-01

    Objectives This is the first study describing drug resistance mutations (DRM) and HIV-1 variants among infected pregnant women in Equatorial Guinea (GQ), a country with high (6.2%) and increasing HIV prevalence. Methods Dried blood spots (DBS) were collected from November 2012 to December 2013 from 69 HIV-1 infected women participating in a prevention of mother-to-child transmission program in the Hospital Regional of Bata and Primary Health Care Centre María Rafols, Bata, GQ. The transmitted (TDR) or acquired (ADR) antiretroviral drug resistance mutations at partial pol sequence among naive or antiretroviral therapy (ART)-exposed women were defined following WHO or IAS USA 2015 lists, respectively. HIV-1 variants were identified by phylogenetic analyses. Results A total of 38 of 69 HIV-1 specimens were successfully amplified and sequenced. Thirty (79%) belonged to ART-experienced women: 15 exposed to nucleoside reverse transcriptase inhibitors (NRTI) monotherapy, and 15 to combined ART (cART) as first regimen including two NRTI and one non-NRTI (NNRTI) or one protease inhibitor (PI). The TDR rate was only found for PI (3.4%). The ADR rate was 37.5% for NNRTI, 8.7% for NRTI and absent for PI or NRTI+NNRTI. HIV-1 group M non-B variants caused most (97.4%) infections, mainly (78.9%) recombinants: CRF02_AG (55.2%), CRF22_A101 (10.5%), subtype C (10.5%), unique recombinants (5.3%), and A3, D, F2, G, CRF06_cpx and CRF11_cpx (2.6% each). Conclusions The high rate of ADR to retrotranscriptase inhibitors (mainly to NNRTIs) observed among pretreated pregnant women reinforces the importance of systematic DRM monitoring in GQ to reduce HIV-1 resistance transmission and to optimize first and second-line ART regimens when DRM are present. PMID:27798676

  11. Characteristics Associated with HIV Drug Resistance Among Women Screening for an HIV Prevention Trial in KwaZulu-Natal, South Africa.

    PubMed

    Mensch, Barbara S; Gorbach, Pamina M; Kelly, Cliff; Kiepiela, Photini; Gomez, Kailazarid; Ramjee, Gita; Ganesh, Shayhana; Morar, Neetha; Soto-Torres, Lydia; Parikh, Urvi M

    2015-11-01

    While the expansion of antiretroviral therapy (ART) in sub-Saharan Africa has reduced morbidity and mortality from HIV/AIDS, it has increased concern about drug resistance. The Microbicide Trials Network 009 study assessed the prevalence of drug-resistance mutations among women at clinical sites in Durban, South Africa who tested seropositive for HIV-1 at screening for the VOICE trial. The objective of this paper was to identify characteristics and behaviors associated with drug resistance. Factors found to be significantly associated with increased resistance were high perceived risk of getting HIV and prior participation in a microbicide trial, a likely proxy for familiarity with the health care system. Two factors were found to be significantly associated with reduced resistance: having a primary sex partner and testing negative for HIV in the past year. Other variables hypothesized to be important in identifying women with resistant virus, including partner or friend on ART who shared with the participant and being given antiretrovirals during pregnancy or labor, or the proxy variable-number of times given birth in a health facility-were not significantly associated. The small number of participants with resistant virus and the probable underreporting of sensitive behaviors likely affected our ability to construct a comprehensive profile of the type of HIV-positive women at greatest risk of developing resistance mutations.

  12. A Mathematical Model for HIV Drug-Resistance

    NASA Astrophysics Data System (ADS)

    Faedo, Ivan; Raimundo, Silvia Martorano; Venturino, Ezio

    2010-09-01

    In this paper we present a mathematical model of the transmission of HIV infection here the individuals receive antiretroviral drugs but may not respond to treatment. In such case the latter can be changed to a different therapy, and individuals may or may not respond also to this second set of drugs.

  13. "Second generation" of TSAO compounds directed against HIV-1 TSAO-resistant strains.

    PubMed

    Lobatón, E; Velázquez, S; Pérez-Pérez, M J; Jimeno, M L; San-Félix, A; De Clercq, E; Balzarini, J; Camarasa, M J

    2001-01-01

    A "second generation" of TSAO molecules directed against TSAO-resistant strains have been prepared. The presence of two neighboring carbonyl groups at the 4" position of the 3'-spiro moiety seems to be important for the anti-HIV-1 activity against both wild type and TSAO-resistant strains. NMR conformational studies in solution and theoretical calculations of the novel compounds have also been carried out.

  14. Emergence of HIV Drug Resistance During First- and Second-Line Antiretroviral Therapy in Resource-Limited Settings

    PubMed Central

    Hosseinipour, Mina C.; Gupta, Ravindra K; Van Zyl, Gert; Eron, Joseph J.; Nachega, Jean B.

    2013-01-01

    Introduction Antiretroviral therapy (ART) in resource-limited settings has expanded in the last decade, reaching >8 million individuals and reducing AIDS mortality and morbidity. Continued success of ART programs will require understanding the emergence of HIV drug resistance patterns among individuals in whom treatment has failed and managing ART from both an individual and public health perspective. We review data on the emergence of HIV drug resistance among individuals in whom first-line therapy has failed and clinical and resistance outcomes of those receiving second-line therapy in resource-limited settings. Results Resistance surveys among patients initiating first-line nonnucleoside reverse-transcriptase inhibitor (NNRTI)–based therapy suggest that 76%–90% of living patients achieve HIV RNA suppression by 12 months after ART initiation. Among patients with detectable HIV RNA at 12 months, HIV drug resistance, primarily due to M184V and NNRTI mutations, has been identified in 60%–72%, although the antiretroviral activity of proposed second-line regimens has been preserved. Complex mutation patterns, including thymidine-analog mutations, K65R, and multinucleoside mutations, are prevalent among cases of treatment failure identified by clinical or immunologic methods. Approximately 22% of patients receiving second-line therapy do not achieve HIV RNA suppression by 6 months, with poor adherence, rather than HIV drug resistance, driving most failures. Major protease inhibitor resistance at the time of second-line failure ranges from 0% to 50%, but studies are limited. Conclusions Resistance of HIV to first-line therapy is predictable at 12 months when evaluated by means of HIV RNA monitoring and, when detected, largely preserves second-line therapy options. Optimizing adherence, performing resistance surveillance, and improving treatment monitoring are critical for long-term prevention of drug resistance. PMID:23687289

  15. Genotypic resistance profiles of HIV-2-treated patients in West Africa

    PubMed Central

    Charpentier, Charlotte; Eholié, Serge; Anglaret, Xavier; Bertine, Mélanie; Rouzioux, Christine; Avettand-Fenoël, Véronique; Messou, Eugène; Minga, Albert; Damond, Florence; Plantier, Jean-Christophe; Dabis, François; Peytavin, Gilles; Brun-Vézinet, Françoise; Ekouevi, Didier K.

    2014-01-01

    Objective To assess the virological response, genotypic resistance profiles, and antiretroviral plasma concentrations in HIV-2 antiretroviral-treated (antiretroviral therapy, ART) patients in Côte d‘Ivoire. Methods A cross-sectional survey was conducted among HIV-2 patients receiving ART. Plasma HIV-2 viral load was performed using the Agence Nationale de Recherche sur le SIDA et les hépatites virales (ANRS) assay. Protease and reverse transcriptase sequencing was performed using in-house methods and antiretroviral plasma concentrations were assessed using ultra performance liquid chromatography combined with tandem mass spectrometry. Results One hundred and forty-five HIV-2-treated patients were enrolled with a median CD4+ cell count of 360 cells/µl (interquartile range, IQR = 215–528). Median duration of ART was 4 years (IQR = 2–7) and 74% of patients displayed viral load less than 50 copies/ml. Median plasma HIV-2 RNA among patients with viral load more than 50 copies/ml was 3016 copies/ml (IQR = 436–5156). Most patients (84%) received a lopinavir/ritonavir-based regimen. HIV-2 resistance mutations to nucleoside reverse transcriptase inhibitors and protease inhibitors were detected in 21 of 25 (84%) and 20 of 29 (69%) samples, respectively. The most prevalent nucleoside reverse transcriptase inhibitor resistance mutations were M184I/V (90%), Q151M (24%), and S215F/Y (24%). The most prevalent protease inhibitor resistance mutations were V47A (60%) and I54M (30%). Median CD4+ cell counts were 434 cells/µl (292–573) and 204 cells/µl (122–281) in patients with viral load less than 50 copies/ml and those exhibiting virological failure (P < 0.0001), respectively. The proportions of patients with adequate antiretroviral plasma concentrations were 81 and 93% in patients displaying virological failure and in those with viral load less than 50 copies/ml, respectively (P = 0.046), suggesting good treatment adherence. Conclusion We observed adequate drug

  16. High incidence of antimicrobial resistant organisms including extended spectrum beta-lactamase producing Enterobacteriaceae and methicillin-resistant Staphylococcus aureus in nasopharyngeal and blood isolates of HIV-infected children from Cape Town, South Africa

    PubMed Central

    Cotton, Mark F; Wasserman, Elizabeth; Smit, Juanita; Whitelaw, Andrew; Zar, Heather J

    2008-01-01

    Background There is little information on nasopharyngeal (NP) flora or bacteremia in HIV-infected children. Our aim was to describe the organisms and antimicrobial resistance patterns in children enrolled in a prospective study comparing daily and three times weekly trimethoprim-sulfamethoxazole (TMP-SMX) and isoniazid (INH) or placebo prophylaxis. Methods NP swabs were taken at baseline from HIV-infected children enrolled in the study. Standard microbiological techniques were used. Children were grouped according to previous or current exposure to TMP-SMX and whether enrolled to the study during a period of hospitalization. Blood culture results were also recorded within 12 months of baseline. Results Two hundred and three children, median age 1.8 (Interquartile [IQ]: 0.7–4) years had NP swabs submitted for culture. One hundred and eighty-four (90.7%) had either stage B or C HIV disease. One hundred and forty-one (69.8%) were receiving TMP-SMX and 19 (9.4%) were on antiretroviral therapy. The majority, 168 (82%) had a history of hospitalization and 91 (44.8%) were enrolled during a period of hospitalization. Thirty-two subjects (16.2%) died within 12 months of study entry. One hundred and eighty-one potential pathogens were found in 167 children. The most commonly isolated organisms were Streptococcus pneumoniae (48: 22.2%), Gram-negative respiratory organisms (Haemophilus influenzae and Moraxella catarrhalis) (47: 21.8%), Staphylococcus aureus (44: 20.4%), Enterobacteriaceae 32 (14.8%) and Pseudomonas 5 (2.3%). Resistance to TMP-SMX occurred in > 80% of pathogens except for M. catarrhalis (2: 18.2% of tested organisms). TMP-SMX resistance tended to be higher in those receiving it at baseline (p = 0.065). Carriage of Methicillin resistant S. aureus (MRSA) was significantly associated with being on TMP-SMX at baseline (p = 0.002). Minimal inhibitory concentrations (MIC) to penicillin were determined for 18 S. pneumoniae isolates: 7 (38.9%) were fully sensitive

  17. Clonal Plasticity of Aquatic Plant Species Submitted to Mechanical Stress: Escape versus Resistance Strategy

    PubMed Central

    Puijalon, Sara; Bouma, Tjeerd J.; Van Groenendael, Jan; Bornette, Gudrun

    2008-01-01

    Background and Aims The plastic alterations of clonal architecture are likely to have functional consequences, as they affect the spatial distribution of ramets over patchy environments. However, little is known about the effect of mechanical stresses on the clonal growth. The aim of the present study was to investigate the clonal plasticity induced by mechanical stress consisting of continuous water current encountered by aquatic plants. More particularly, the aim was to test the capacity of the plants to escape this stress through clonal plastic responses. Methods The transplantation of ramets of the same clone in two contrasting flow velocity conditions was carried out for two species (Potamogeton coloratus and Mentha aquatica) which have contrasting clonal growth forms. Relative allocation to clonal growth, to creeping stems in the clonal biomass, number and total length of creeping stems, spacer length and main creeping stem direction were measured. Key Results For P. coloratus, plants exposed to water current displayed increased total length of creeping stems, increased relative allocation to creeping stems within the clonal dry mass and increased spacer length. For M. aquatica, plants exposed to current displayed increased number and total length of creeping stems. Exposure to current induced for both species a significant increase of the proportion of creeping stems in the downstream direction to the detriment of creeping stems perpendicular to flow. Conclusions This study demonstrates that mechanical stress from current flow induced plastic variation in clonal traits for both species. The responses of P. coloratus could lead to an escape strategy, with low benefits with respect to sheltering and anchorage. The responses of M. aquatica that may result in a denser canopy and enhancement of anchorage efficiency could lead to a resistance strategy. PMID:18854376

  18. The evolving landscape of HIV drug resistance diagnostics for expanding testing in resource-limited settings.

    PubMed

    Inzaule, Seth C; Hamers, Raph L; Paredes, Roger; Yang, Chunfu; Schuurman, Rob; Rinke de Wit, Tobias F

    2017-02-09

    Global scale-up of antiretroviral treatment (ART) has dramatically changed the prospects of HIV/AIDS disease rendering life-long chronic care and treatment a reality for millions of HIV-infected patients. Affordable technologies to monitor ART are needed to ensure long-term durability of limited available drug regimens. HIV drug resistance tests can complement existing strategies in optimizing clinical decision-making for patients with treatment failure, in addition to facilitating population-based surveillance of HIV drug resistance. This review assesses the current landscape of HIV drug resistance technologies and discuss the strengths and limitations of existing assays available for expanding testing in resource limited settings (RLS). These include sequencing-based assays (Sanger sequencing assays and next-generation sequencing), point mutation assays and genotype-free data-based prediction systems. The Sanger assays are currently considered gold standard genotyping technology, though available at a limited number of RLS reference and regional laboratories, but high capital and test cost have limited their wide expansion. The point mutation assays present opportunities for simplified laboratory assays, but HIV genetic variability, extensive codon redundancy at or near the mutation target sites with limited multiplexing capability have restricted their utility. Next-generation sequencing (despite high cost) may have potential to reduce the testing cost significantly through multiplexing in high-throughput facilities, although the level of bioinformatics expertise required for data analysis is currently still complex and expensive and lacks standardization. Web-based genotype-free prediction systems may provide enhanced ART decision-making without the need for laboratory testing, but require further clinical field evaluation and implementation science research in resource-limited settings.

  19. Alarming Levels of Drug-Resistant Tuberculosis in HIV-Infected Patients in Metropolitan Mumbai, India

    PubMed Central

    Isaakidis, Petros; Das, Mrinalini; Kumar, Ajay M V; Peskett, Christopher; Khetarpal, Minni; Bamne, Arun; Adsul, Balkrishna; Manglani, Mamta; Sachdeva, Kuldeep Singh; Parmar, Malik; Kanchar, Avinash; Rewari, B.B.; Deshpande, Alaka; Rodrigues, Camilla; Shetty, Anjali; Rebello, Lorraine; Saranchuk, Peter

    2014-01-01

    Background Drug-resistant tuberculosis (DR-TB) is a looming threat to tuberculosis control in India. However, no countrywide prevalence data are available. The burden of DR-TB in HIV-co-infected patients is likewise unknown. Undiagnosed and untreated DR-TB among HIV-infected patients is a major cause of mortality and morbidity. We aimed to assess the prevalence of DR-TB (defined as resistance to any anti-TB drug) in patients attending public antiretroviral treatment (ART) centers in greater metropolitan Mumbai, India. Methods A cross-sectional survey was conducted among adults and children ART-center attendees. Smear microscopy, culture and drug-susceptibility-testing (DST) against all first and second-line TB-drugs using phenotypic liquid culture (MGIT) were conducted on all presumptive tuberculosis patients. Analyses were performed to determine DR-TB prevalence and resistance patterns separately for new and previously treated, culture-positive TB-cases. Results Between March 2013 and January 2014, ART-center attendees were screened during 14135 visits, of whom 1724 had presumptive TB. Of 1724 attendees, 72 (4%) were smear-positive and 202 (12%) had a positive culture for Mycobacterium tuberculosis. Overall DR-TB was diagnosed in 68 (34%, 95% CI: 27%–40%) TB-patients. The proportions of DR-TB were 25% (29/114) and 44% (39/88) among new and previously treated cases respectively. The patterns of DR-TB were: 21% mono-resistant, 12% poly-resistant, 38% multidrug-resistant (MDR-TB), 21% pre-extensively-drug-resistant (MDR-TB plus resistance to either a fluoroquinolone or second-line injectable), 6% extensively drug-resistant (XDR-TB) and 2% extremely drug-resistant TB (XDR-TB plus resistance to any group-IV/V drug). Only previous history of TB was significantly associated with the diagnosis of DR-TB in multivariate models. Conclusion The burden of DR-TB among HIV-infected patients attending public ART-centers in Mumbai was alarmingly high, likely representing ongoing

  20. [Laboratory diagnosis of HIV infection, viral tropism and resistance to antiretrovirals].

    PubMed

    García, Federico; Álvarez, Marta; Bernal, Carmen; Chueca, Natalia; Guillot, Vicente

    2011-04-01

    The accurate diagnosis of HIV infection demands that to consider a positive result, at least three assays with different antigenic base should be used, one of them, Western-Blot being mandatory for confirmation. Fourth generation ELISAs shorten the window phase to 13-15 days, as they now include p24 antigen detection. Proviral DNA or Viral RNA detection by molecular methods have proved useful for addressing complex situations in which serology was inconclusive. Viral load (HIV-RNA) is routinely used to follow-up HIV infected patients and is used for treatment initiation decisions. It is also used to monitor viral failure. When this happens, resistance tests are needed to guide treatment changes. Resistance is also used to assess the transmission of drug resistance to newly diagnosed patients. Finally, before using an anti-CCR5 drug, viral tropism needs to be determined. This can be done using genotypic tests, widely available in many HIV labs, or phenotypic tests, only available at certain sites.

  1. Evolution of CCR5 Antagonist Resistance in an HIV-1 Subtype C Clinical Isolate

    PubMed Central

    Henrich, Timothy J.; Tsibris, Athe M.N.; Lewine, Nicolas R.P.; Konstantinidis, Ioannis; Leopold, Kay E.; Sagar, Manish; Kuritzkes, Daniel R.

    2011-01-01

    Objectives We previously reported vicriviroc (VCV) resistance in an HIV-infected subject and used deep sequencing and clonal analyses to track the evolution of V3 sequence forms over 28 weeks of therapy. Here, we test the contribution of gp120 mutations to CCR5 antagonist resistance and investigate why certain minority V3 variants emerged as the dominant species under drug pressure. Methods 19 site-directed HIV-1 mutants were generated that contained gp120 VCV-resistance mutations. Viral sensitivities to VCV, maraviroc, TAK-779 and HGS004 were determined. Results Three patterns of susceptibilities were observed: sigmoid inhibition curves with IC50s similar to pre-treatment virus (07J-week 0 [W0]), single mutants with decreased IC50s compared to 07J-W0, and mutants that contained ≥5 of 7 VCV-resistance mutations with flattened inhibition curves and decreased or negative percent maximal inhibition. Substitutions such as S306P, which sensitized virus to CCR5 antagonists when present as single mutations, were not detected in the baseline virus population but were necessary for maximal resistance when incorporated into V3 backbones that included pre-existing VCV resistance mutations. Conclusion CCR5 antagonist resistance was reproduced only when a majority of V3 mutations were present. Minority V3 loop variants may serve as a scaffold upon which additional mutations lead to complete VCV resistance. PMID:20856130

  2. Nevirapine Resistance in Previously Nevirapine-Unexposed HIV-1-Infected Kenyan Infants Initiating Early Antiretroviral Therapy.

    PubMed

    Chohan, Bhavna H; Tapia, Kenneth; Benki-Nugent, Sarah; Khasimwa, Brian; Ngayo, Musa; Maleche-Obimbo, Elizabeth; Wamalwa, Dalton; Overbaugh, Julie; John-Stewart, Grace

    2015-08-01

    Nevirapine (NVP) resistance occurs frequently in infants following NVP use in prevention of mother-to-child transmission (PMTCT) regimens. However, among previously NVP-unexposed infants treated with NVP-antiretroviral therapy (ART), the development and impact of NVP resistance have not been well characterized. In a prospective clinical trial providing early ART to HIV-infected infants <5 months of age in Kenya (OPH03 study), we followed NVP-unexposed infants who initiated NVP-ART for 12 months. Viral loads were assessed and resistance determined using a population-based genotypic resistance assay. Of 99 infants screened, 33 had no prior NVP exposure, 22 of whom were initiated on NVP-ART. Among 19 infants with follow-up, seven (37%) infants developed resistance: one at 3 months and six at 6 months after ART initiation. The cumulative probability of NVP resistance was 5.9% at 3 months and 43.5% at 6 months. Baseline HIV RNA levels (p=0.7) and other characteristics were not associated with developing resistance. Post-ART, higher virus levels at visits preceding the detection of resistance were significantly associated with increased detection of resistance (p=0.004). Virus levels after 6 and 12 months of ART were significantly higher in infants with resistance than those without (p=0.007, p=0.030, respectively). Among infants without previous NVP exposure, development of NVP resistance was frequent and was associated with virologic failure during the first year of ART. Earlier development of NVP resistance in infants than in adults initiating NVP-ART may be due to longer viremia following ART or inadequate NVP levels resulting from NVP lead-in dosing. The development of NVP resistance may, in part, explain the superiority of protease inhibitor-based ART in infants.

  3. Nevirapine Resistance in Previously Nevirapine-Unexposed HIV-1-Infected Kenyan Infants Initiating Early Antiretroviral Therapy

    PubMed Central

    Chohan, Bhavna H.; Tapia, Kenneth; Benki-Nugent, Sarah; Khasimwa, Brian; Ngayo, Musa; Maleche-Obimbo, Elizabeth; Wamalwa, Dalton; Overbaugh, Julie

    2015-01-01

    Abstract Nevirapine (NVP) resistance occurs frequently in infants following NVP use in prevention of mother-to-child transmission (PMTCT) regimens. However, among previously NVP-unexposed infants treated with NVP-antiretroviral therapy (ART), the development and impact of NVP resistance have not been well characterized. In a prospective clinical trial providing early ART to HIV-infected infants<5 months of age in Kenya (OPH03 study), we followed NVP-unexposed infants who initiated NVP-ART for 12 months. Viral loads were assessed and resistance determined using a population-based genotypic resistance assay. Of 99 infants screened, 33 had no prior NVP exposure, 22 of whom were initiated on NVP-ART. Among 19 infants with follow-up, seven (37%) infants developed resistance: one at 3 months and six at 6 months after ART initiation. The cumulative probability of NVP resistance was 5.9% at 3 months and 43.5% at 6 months. Baseline HIV RNA levels (p=0.7) and other characteristics were not associated with developing resistance. Post-ART, higher virus levels at visits preceding the detection of resistance were significantly associated with increased detection of resistance (p=0.004). Virus levels after 6 and 12 months of ART were significantly higher in infants with resistance than those without (p=0.007, p=0.030, respectively). Among infants without previous NVP exposure, development of NVP resistance was frequent and was associated with virologic failure during the first year of ART. Earlier development of NVP resistance in infants than in adults initiating NVP-ART may be due to longer viremia following ART or inadequate NVP levels resulting from NVP lead-in dosing. The development of NVP resistance may, in part, explain the superiority of protease inhibitor-based ART in infants. PMID:25819584

  4. Change in the Prevalence of HIV-1 and the Rate of Transmitted Drug-Resistant HIV-1 in Haiphong, Northern Vietnam.

    PubMed

    Pham, Hung Viet; Ishizaki, Azumi; Nguyen, Cuong Hung; Saina, Matilda Chelimo; Hoang, Huyen Thi Thanh; Tran, Vuong Thi; Bi, Xiuqiong; Pham, Thuc Van; Ichimura, Hiroshi

    2015-07-01

    We previously reported a significant decrease in HIV-1 prevalence, with no increase in drug-resistant HIV-1 among injecting drug users (IDU), female sex workers (FSW), and blood donors (BD), in Haiphong, Vietnam, from 2007 to 2009. In 2012, 388 IDU, 51 FSW, and 200 BD were recruited for further analysis. None had a history of antiretroviral treatment. From 2007 to 2012, HIV-1 prevalence was reduced from 35.9% to 18.6% (p<0.001), 23.1% to 9.8% (p<0.05), and 2.9% to 1% (p=0.29) in IDU, FSW, and BD, respectively. Of 79 anti-HIV-1 antibody-positive samples, 61 were successfully analyzed for the pol-reverse transcriptase (RT) region. All HIV-1 strains were CRF01_AE. Nonnucleoside RT inhibitor-resistant mutations, Y181C/I, were detected in three subjects; one had the nucleoside RT inhibitor-resistant mutations L74V and M184V and one had E138K. The prevalence of transmitted drug-resistant HIV-1 in Haiphong increased slightly from 1.8% in 2007 to 6.6% in 2012 (p=0.06).

  5. Dolutegravir Interactions with HIV-1 Integrase-DNA: Structural Rationale for Drug Resistance and Dissociation Kinetics

    PubMed Central

    DeAnda, Felix; Hightower, Kendra E.; Nolte, Robert T.; Hattori, Kazunari; Yoshinaga, Tomokazu; Kawasuji, Takashi; Underwood, Mark R.

    2013-01-01

    Signature HIV-1 integrase mutations associated with clinical raltegravir resistance involve 1 of 3 primary genetic pathways, Y143C/R, Q148H/K/R and N155H, the latter 2 of which confer cross-resistance to elvitegravir. In accord with clinical findings, in vitro drug resistance profiling studies with wild-type and site-directed integrase mutant viruses have shown significant fold increases in raltegravir and elvitegravir resistance for the specified viral mutants relative to wild-type HIV-1. Dolutegravir, in contrast, has demonstrated clinical efficacy in subjects failing raltegravir therapy due to integrase mutations at Y143, Q148 or N155, which is consistent with its distinct in vitro resistance profile as dolutegravir’s antiviral activity against these viral mutants is equivalent to its activity against wild-type HIV-1. Kinetic studies of inhibitor dissociation from wild-type and mutant integrase-viral DNA complexes have shown that dolutegravir also has a distinct off-rate profile with dissociative half-lives substantially longer than those of raltegravir and elvitegravir, suggesting that dolutegravir’s prolonged binding may be an important contributing factor to its distinct resistance profile. To provide a structural rationale for these observations, we constructed several molecular models of wild-type and clinically relevant mutant HIV-1 integrase enzymes in complex with viral DNA and dolutegravir, raltegravir or elvitegravir. Here, we discuss our structural models and the posited effects that the integrase mutations and the structural and electronic properties of the integrase inhibitors may have on the catalytic pocket and inhibitor binding and, consequently, on antiviral potency in vitro and in the clinic. PMID:24146996

  6. Identification of drug resistance mutations in HIV from constraints on natural evolution

    NASA Astrophysics Data System (ADS)

    Butler, Thomas C.; Barton, John P.; Kardar, Mehran; Chakraborty, Arup K.

    2016-02-01

    Human immunodeficiency virus (HIV) evolves with extraordinary rapidity. However, its evolution is constrained by interactions between mutations in its fitness landscape. Here we show that an Ising model describing these interactions, inferred from sequence data obtained prior to the use of antiretroviral drugs, can be used to identify clinically significant sites of resistance mutations. Successful predictions of the resistance sites indicate progress in the development of successful models of real viral evolution at the single residue level and suggest that our approach may be applied to help design new therapies that are less prone to failure even where resistance data are not yet available.

  7. Identification of drug resistance mutations in HIV from constraints on natural evolution.

    PubMed

    Butler, Thomas C; Barton, John P; Kardar, Mehran; Chakraborty, Arup K

    2016-02-01

    Human immunodeficiency virus (HIV) evolves with extraordinary rapidity. However, its evolution is constrained by interactions between mutations in its fitness landscape. Here we show that an Ising model describing these interactions, inferred from sequence data obtained prior to the use of antiretroviral drugs, can be used to identify clinically significant sites of resistance mutations. Successful predictions of the resistance sites indicate progress in the development of successful models of real viral evolution at the single residue level and suggest that our approach may be applied to help design new therapies that are less prone to failure even where resistance data are not yet available.

  8. Bacterial resistance and immunological profiles in HIV-infected and non-infected patients at Mbouda AD LUCEM Hospital in Cameroon.

    PubMed

    Marbou, Wiliane J T; Kuete, Victor

    2016-04-28

    This study investigated the variations in some cells of the immune system, as well as the antibiotic resistance of the bacteria responsible for enteric infections among HIV+ patients compared to HIV- patients in Mbouda AD LUCEM Hospital, Cameroon. A cross-sectional study was performed from September 2014 to February 2015 in 67 human immunodeficiency virus (HIV)-seropositive (HIV+) and 37 HIV-seronegative (HIV-) patients. Blood collected from these patients was used to perform cluster of differentiation 4 (CD4) and cluster of differentiation 8 (CD8) lymphocyte blood counts and a white blood cell count, as well as to measure C-reactive protein (CRP) blood by flow cytometry and perform optical and immuno-turbidimetric detection. Enteric bacteria were isolated from the stool of patients, and their antibiotic susceptibility profiles were determined using agar diffusion methods. The results showed that Escherichia coli was the main pathogenic bacteria in the digestive tracts of HIV+ (85.3%) and HIV- (81.1%) patients, and infections with Klebsiella sp. were also predominant among HIV- patients (29.4%). Resistance of Klebsiella sp. to ceftriaxone (CRO; P=0.001), gentamicin (GEN; P=0.005), chloramphenicol (CHL; P=0.0004), ciprofloxacin (CIP; P=0.005) and doxycycline (DOX; P<0.0001) was significantly higher in HIV+ patients than in HIV- patients. Enterobacter sp. showed high resistance to GEN (P=0.009) and CIP (P=0.001) in HIV+ patients compared to HIV- patients. Citrobacter sp. was resistant to GEN (P=0.009) in HIV+ patients compared to HIV- patients. Salmonella sp. showed high resistance to CHL (P<0.0001) and DOX (P<0.0001) in HIV+ patients compared to HIV- patients. Resistance of Serratia sp. to AMO (P=0.005), AMC (P=0.005) and CHL (P=0.005) was significantly higher in HIV+ patients than in HIV- patients. Lymphopenia was higher in HIV+ patients (36.8%) than in HIV- patients (2.7%). In 45.9% of the HIV- patients, the CRP rate was higher than 6mg/L compared to 16.2% in HIV

  9. 2015 Update of the Drug Resistance Mutations in HIV-1.

    PubMed

    Wensing, Annemarie M; Calvez, Vincent; Günthard, Huldrych F; Johnson, Victoria A; Paredes, Roger; Pillay, Deenan; Shafer, Robert W; Richman, Douglas D

    2015-01-01

    The 2015 edition of the IAS-USA drug resistance mutations list updates the figures last published in July 2014. The mutations listed are those that have been identified by specific criteria for evidence and drugs described. The figures are designed to assist practitioners in identifying key mutations associated with resistance to antiretroviral drugs and, therefore, in making clinical decisions regarding antiretroviral therapy.

  10. 2017 Update of the Drug Resistance Mutations in HIV-1.

    PubMed

    Wensing, Annemarie M; Calvez, Vincent; Günthard, Huldrych F; Johnson, Victoria A; Paredes, Roger; Pillay, Deenan; Shafer, Robert W; Richman, Douglas D

    The 2017 edition of the IAS-USA drug resistance mutations list updates the figures last published in November 2015. The mutations listed are those that have been identified by specific criteria for evidence and drugs described. The figures are designed to assist practitioners in identifying key mutations associated with resistance to antiretroviral drugs and, therefore, in making clinical decisions regarding antiretroviral therapy.

  11. Coevolutionary analysis of resistance-evading peptidomimetic inhibitors of HIV-1 protease.

    PubMed

    Rosin, C D; Belew, R K; Morris, G M; Olson, A J; Goodsell, D S

    1999-02-16

    We have developed a coevolutionary method for the computational design of HIV-1 protease inhibitors selected for their ability to retain efficacy in the face of protease mutation. For HIV-1 protease, typical drug design techniques are shown to be ineffective for the design of resistance-evading inhibitors: An inhibitor that is a direct analogue of one of the natural substrates will be susceptible to resistance mutation, as will inhibitors designed to fill the active site of the wild-type or a mutant enzyme. Two design principles are demonstrated: (i) For enzymes with broad substrate specificity, such as HIV-1 protease, resistance-evading inhibitors are best designed against the immutable properties of the active site-the properties that must be conserved in any mutant protease to retain the ability to bind and cleave all of the native substrates. (ii) Robust resistance-evading inhibitors can be designed by optimizing activity simultaneously against a large set of mutant enzymes, incorporating as much of the mutational space as possible.

  12. Coevolutionary analysis of resistance-evading peptidomimetic inhibitors of HIV-1 protease

    PubMed Central

    Rosin, Christopher D.; Belew, Richard K.; Morris, Garrett M.; Olson, Arthur J.; Goodsell, David S.

    1999-01-01

    We have developed a coevolutionary method for the computational design of HIV-1 protease inhibitors selected for their ability to retain efficacy in the face of protease mutation. For HIV-1 protease, typical drug design techniques are shown to be ineffective for the design of resistance-evading inhibitors: An inhibitor that is a direct analogue of one of the natural substrates will be susceptible to resistance mutation, as will inhibitors designed to fill the active site of the wild-type or a mutant enzyme. Two design principles are demonstrated: (i) For enzymes with broad substrate specificity, such as HIV-1 protease, resistance-evading inhibitors are best designed against the immutable properties of the active site—the properties that must be conserved in any mutant protease to retain the ability to bind and cleave all of the native substrates. (ii) Robust resistance-evading inhibitors can be designed by optimizing activity simultaneously against a large set of mutant enzymes, incorporating as much of the mutational space as possible. PMID:9990030

  13. HIV-1 Diversity and Drug Resistance Mutations among People Seeking HIV Diagnosis in Voluntary Counseling and Testing Sites in Rio de Janeiro, Brazil

    PubMed Central

    Velasco-de-Castro, Carlos A.; Grinsztejn, Beatriz; Veloso, Valdiléa G.; Bastos, Francisco I.; Pilotto, José H.; Fernandes, Nilo; Morgado, Mariza G.

    2014-01-01

    The remarkable viral diversity remains a big challenge to the development of HIV vaccines and optimal therapy worldwide. In the latest years, as a consequence of the large expansion of highly active antiretroviral therapy (HAART) availability worldwide, an increase in transmitted drug resistance mutations (TDRM) has been observed, varying according the region. This study assessed HIV-1 diversity and TDRM profile over time among newly HIV-1 diagnosed individuals from Rio de Janeiro, Brazil. Blood samples were collected from individuals seeking HIV diagnosis in four voluntary counseling and testing (VCTs) sites located in the Rio de Janeiro Metropolitan Area, in 2005–2007. Recent (RS) and long-term (LTS) HIV-1 seroconverters were distinguished using BED-CEIA. Pol viral sequences were obtained for 102 LTS identified in 2005 and 144 RS from 2005–2007. HIV-1 subtype and pol recombinant genomes were determined using Rega HIV-1 Subtyping Tool and by phylogenetic inferences and bootscanning analyses. Surveillance of HIV-1 TDRM to protease and reverse transcriptase inhibitors were performed according to the Calibrated Population Resistance (CPR) Tool 6.0. Overall, subtype B remains the most prevalent in Rio de Janeiro in both LTS and RS HIV-1 infected individuals. An increased proportion of recombinant samples was detected over time, especially in RS heterosexual men, due to the emergence of CRF02_AG and URF samples bearing a subtype K fragment. The prevalence of HIV-1 samples carrying TDRM was high and similar between LTS and RS (15.7% vs 14.6%) or age (<25yo 17.9% vs >25yo 16.6%) along the study period. The high resistance levels detected in both populations are of concern, especially considering the dynamics of HIV-1 diversity over time. Our results suggest that the incorporation of resistance testing prior to HAART initiation should be highly considered, as well as permanent surveillance, aiming to carefully monitoring HIV-1 diversity, with focus on CRF

  14. Evolutionary analysis identifies an MX2 haplotype associated with natural resistance to HIV-1 infection.

    PubMed

    Sironi, Manuela; Biasin, Mara; Cagliani, Rachele; Gnudi, Federica; Saulle, Irma; Ibba, Salomè; Filippi, Giulia; Yahyaei, Sarah; Tresoldi, Claudia; Riva, Stefania; Trabattoni, Daria; De Gioia, Luca; Lo Caputo, Sergio; Mazzotta, Francesco; Forni, Diego; Pontremoli, Chiara; Pineda, Juan Antonio; Pozzoli, Uberto; Rivero-Juarez, Antonio; Caruz, Antonio; Clerici, Mario

    2014-09-01

    The protein product of the myxovirus resistance 2 (MX2) gene restricts HIV-1 and simian retroviruses. We demonstrate that MX2 evolved adaptively in mammals with distinct sites representing selection targets in distinct branches; selection mainly involved residues in loop 4, previously shown to carry antiviral determinants. Modeling data indicated that positively selected sites form a continuous surface on loop 4, which folds into two antiparallel α-helices protruding from the stalk domain. A population genetics-phylogenetics approach indicated that the coding region of MX2 mainly evolved under negative selection in the human lineage. Nonetheless, population genetic analyses demonstrated that natural selection operated on MX2 during the recent history of human populations: distinct selective events drove the frequency increase of two haplotypes in the populations of Asian and European ancestry. The Asian haplotype carries a susceptibility allele for melanoma; the European haplotype is tagged by rs2074560, an intronic variant. Analyses performed on three independent European cohorts of HIV-1-exposed seronegative individuals with different geographic origin and distinct exposure route showed that the ancestral (G) allele of rs2074560 protects from HIV-1 infection with a recessive effect (combined P = 1.55 × 10(-4)). The same allele is associated with lower in vitro HIV-1 replication and increases MX2 expression levels in response to IFN-α. Data herein exploit evolutionary information to identify a novel host determinant of HIV-1 infection susceptibility.

  15. Multiple drug resistant mechanisms against darunavir, amprenavir, and nelfinavir of HIV-1 PR

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqing; Dai, Qi; Xiu, Zhilong

    2013-02-01

    Acquired immune deficiency syndrome (AIDS) is a disease of the human immune system caused by the human immunodeficiency virus (HIV), which is infecting more humans and is expanding faster in the world. The illness interferes with the immune system, making people with AIDS much more likely to get infections, including opportunistic infections and tumors that do not affect people with working immune systems. HIV-1 PR is one of the major targets of anti-AIDS drug discovery. It is, therefore, necessary to develop some inhibitors against HIV-1 PR. In this work, we executed molecular dynamics (MDs) simulation of HIV-1 PR with drugs darunavir (DRV), amprenavir (APV), nelfinavir (NFV), and examined the resistant mechanism of L10I, G48V, I54V, and L90M mutations of this PR, aiming at designing promising drugs. The comparative analysis suggests that the existences of dodecahydroisoquinoline ring at P1' subsite, 4-aminophenylsulfonamide at P2' subsite, and bis-tetrahydrofuranylurethane at P2 subsite are helpful for maintaining the high affinity of the inhibitor for the protease and exhibiting high potency against multiple drug resistance (MDR) mutant protease.

  16. Structures of HIV Protease Guide Inhibitor Design to Overcome Drug Resistance

    SciTech Connect

    Weber, Irene T.; Kovalevsky, Andrey Y.; Harrison, Robert W.

    2008-06-03

    The HIV/AIDS infection continues to be a major epidemic worldwide despite the initial promise of antiviral drugs. Current therapy includes a combination of drugs that inhibit two of the virally-encoded enzymes, the reverse transcriptase and the protease. The first generation of HIV protease inhibitors that have been in clinical use for treatment of AIDS since 1995 was developed with the aid of structural analysis of protease-inhibitor complexes. These drugs were successful in improving the life span of HIV-infected people. Subsequently, the rapid emergence of drug resistance has necessitated the design of new inhibitors that target mutant proteases. This second generation of antiviral protease inhibitors has been developed with the aid of data from medicinal chemistry, kinetics, and X-ray crystallographic analysis. Traditional computational methods such as molecular mechanics and dynamics can be supplemented with intelligent data mining approaches. One approach, based on similarities to the protease interactions with substrates, is to incorporate additional interactions with main chain atoms that cannot easily be eliminated by mutations. Our structural and inhibition data for darunavir have helped to understand its antiviral activity and effectiveness on drug resistant HIV and demonstrate the success of this approach.

  17. Increasing HIV-1 Drug Resistance Between 2010 and 2012 in Adults Participating in Population-Based HIV Surveillance in Rural KwaZulu-Natal, South Africa

    PubMed Central

    Danaviah, Siva; Lessells, Richard; Elshareef, Muna; Tanser, Frank; Wilkinson, Eduan; Pillay, Sureshnee; Mthiyane, Hloniphile; Mwambi, Henry; Pillay, Deenan; de Oliveira, Tulio

    2016-01-01

    Abstract As more human immunodeficiency virus (HIV)–infected patients access combination antiretroviral therapy (cART), higher proportions of newly infected patients may be infected with drug-resistant viruses. Regular surveillance of transmitted drug resistance (TDR) is required in southern Africa where high rates of transmission persist despite rapid expansion of ART. Dried blood spot samples from cART-naive participants from two rounds of an annual population-based HIV surveillance program in rural KwaZulu-Natal were tested for HIV RNA, and samples with HIV RNA >10,000 copies/ml were genotyped for drug resistance. The 2009 surveillance of drug resistance mutation (SDRM) list was used for drug resistance interpretation. The data were added to previously published data from the same program, and the χ2 test for trend was used to test for trend in estimated prevalence of any TDR. Seven hundred and one participants' data were analyzed: 67 (2010), 381 (2011), and 253 (2012). No TDR was detected in 2010. Years 2011 and 2012 had 18 participants with SDRMs 4.7% and 7.1%, respectively (p = .02, χ2 test for trend). The nonnucleoside reverse transcriptase inhibitor mutation, K103N, was the most common mutation, occurring in 27 (3.8%) of the participants, while nucleoside reverse transcriptase inhibitor (NRTI) SDRMs were detected in 10 (1.4%) of the participants, of whom eight had only a single NRTI SDRM. The increase in levels of drug resistance observed in this population could be a signal of increasing transmission of drug-resistant HIV. Thus, continued surveillance is critical to inform public health policies around HIV treatment and prevention. PMID:27002368

  18. The effect of intrinsic stochasticity on transmitted HIV drug resistance patterns.

    PubMed

    Marks, Alison J; Pillay, Deenan; McLean, Angela R

    2010-01-07

    Estimates of transmitted HIV drug-resistance prevalence vary widely among and within epidemiological surveys. Interpretation of trends from available survey data is therefore difficult. Because the emergence of drug-resistance involves small populations of infected drug-resistant individuals, the role of stochasticity (chance events) is likely to be important. The question addressed here is: how much variability in transmitted HIV drug-resistance prevalence patterns arises due to intrinsic stochasticity alone, i.e., if all starting conditions in the different epidemics surveyed were identical? This 'thought experiment' gives insight into the minimum expected variabilities within and among epidemics. A simple stochastic mathematical model was implemented. Our results show that stochasticity alone can generate a significant degree of variability and that this depends on the size and variation of the pool of new infections when drug treatment is first introduced. The variability in transmitted drug-resistance prevalence within an epidemic (i.e., the temporal variability) is large when the annual pool of all new infections is small (fewer than 200, typical of the HIV epidemics in Central European and Scandinavian countries) but diminishes rapidly as that pool grows. Epidemiological surveys involving hundreds of new infections annually are therefore needed to allow meaningful interpretation of temporal trends in transmitted drug-resistance prevalence within individual epidemics. The stochastic variability among epidemics shows a similar dependence on the pool of new infections if treatment is introduced after endemic equilibrium is established, but can persist even when there are more than 10,000 new infections annually if drug therapy is introduced earlier. Stochastic models may therefore have an important role to play in interpreting differences in transmitted drug-resistance prevalence trends among epidemiological surveys.

  19. Correlation of HIV protease structure with Indinavir resistance: a data mining and neural networks approach

    NASA Astrophysics Data System (ADS)

    Draghici, Sorin; Cumberland, Lonnie T., Jr.; Kovari, Ladislau C.

    2000-04-01

    This paper presents some results of data mining HIV genotypic and structural data. Our aim is to try to relate structural features of HIV enzymes essential to its reproductive abilities to the drug resistance phenomenon. This paper concentrates on the HIV protease enzyme and Indinavir which is one of the FDA approved protease inhibitors. Our starting point was the current list of HIV mutations related to drug resistance. We used the fact that some molecular structures determined through high resolution X-ray crystallography were available for the protease-Indinavir complex. Starting with these structures and the known mutations, we modelled the mutant proteases and studied the pattern of atomic contacts between the protease and the drug. After suitable pre- processing, these patterns have been used as the input of our data mining process. We have used both supervised and unsupervised learning techniques with the aim of understanding the relationship between structural features at a molecular level and resistance to Indinavir. The supervised learning was aimed at predicting IC90 values for arbitrary mutants. The SOFM was aimed at identifying those structural features that are important for drug resistance and discovering a classifier based on such features. We have used validation and cross validation to test the generalization abilities of the learning paradigm we have designed. The straightforward supervised learning was able to learn very successfully but validation results are less than satisfactory. This is due to the insufficient number of patterns in the training set which in turn is due to the scarcity of the available data. The data mining using SOFM was very successful. We have managed to distinguish between resistant and non-resistant mutants using structural features. We have been able to divide all reported HIV mutants into several categories based on their 3- dimensional molecular structures and the pattern of contacts between the mutant protease and

  20. Clinical Correlates and Drug Resistance in HIV-Infected and -Uninfected Pulmonary Tuberculosis Patients in South India

    PubMed Central

    Sara, Chandy; Elsa, Heylen; Baijayanti, Mishra; Lennartsdotter, Ekstrand Maria

    2016-01-01

    Objectives To examine demographics, clinical correlates, sputum AFB (acid fast bacilli) smear grading DOTS (Directly Observed Therapy Short Course) uptake, and drug resistance in a cohort of newly-diagnosed, smear positive pulmonary tuberculosis (TB) patients with respect to HIV status at baseline, and compare smear conversion rates, side effects and mortality after two months. Design A prospective study among 54 HIV positive and 41 HIV negative pulmonary TB patients. Data were collected via face-to-face interviews, review of medical records, and lab tests. Results HIVTB co-infected patients, though more symptomatic at baseline, showed more improvement in their symptoms compared to HIV-uninfected TB patients at follow-up. The HIV co-infected group had more prevalent perceived side effects, and sputum smear positivity was marginally higher compared to the HIV negative group at follow-up. Mortality was higher among the HIV-infected group. Both groups had high rates of resistance to first-line anti-tubercular drugs, particularly isoniazid. There was no significant difference in the drug resistance patterns between the groups. Conclusions Prompt initiation and provision of daily regimens of ATT (Anti-Tubercular treatment) along with ART (Anti-Retroviral treatment) via ART centers is urgently needed in India. As resistance to ART and/or ATT is directly linked to medication non-adherence, the use of counseling, regular reinforcement, early detection and appropriate intervention strategies to tackle this complex issue could help prevent premature mortality and development of resistance in HIV-TB co-infected patients. The high rate of isoniazid resistance might preclude its use in India as prophylaxis for latent TB in HIV infected persons as per the World Health Organization (WHO) guideline. PMID:27708985

  1. A cell-free enzymatic activity assay for the evaluation of HIV-1 drug resistance to protease inhibitors

    PubMed Central

    Matsunaga, Satoko; Masaoka, Takashi; Sawasaki, Tatsuya; Morishita, Ryo; Iwatani, Yasumasa; Tatsumi, Masashi; Endo, Yaeta; Yamamoto, Naoki; Sugiura, Wataru; Ryo, Akihide

    2015-01-01

    Due to their high frequency of genomic mutations, human retroviruses often develop resistance to antiretroviral drugs. The emergence of drug-resistant human immunodeficiency virus type 1 (HIV-1) is a significant obstacle to the effective long-term treatment of HIV infection. The development of a rapid and versatile drug-susceptibility assay would enable acquisition of phenotypic information and facilitate determination of the appropriate choice of antiretroviral agents. In this study, we developed a novel in vitro method, termed the Cell-free drug susceptibility assay (CFDSA), for monitoring phenotypic information regarding the drug resistance of HIV-1 protease (PR). The CFDSA utilizes a wheat germ cell-free protein production system to synthesize enzymatically active HIV-1 PRs directly from PCR products amplified from HIV-1 molecular clones or clinical isolates in a rapid one-step procedure. Enzymatic activity of PRs can be readily measured by AlphaScreen (Amplified Luminescent Proximity Homogeneous Assay Screen) in the presence or absence of clinically used protease inhibitors (PIs). CFDSA measurement of drug resistance was based on the fold resistance to the half-maximal inhibitory concentration (IC50) of various PIs. The CFDSA could serve as a non-infectious, rapid, accessible, and reliable alternative to infectious cell-based phenotypic assays for evaluation of PI-resistant HIV-1. PMID:26583013

  2. Discovery of TSAO derivatives with an unusual HIV-1 activity/resistance profile.

    PubMed

    de Castro, Sonia; García-Aparicio, Carlos; Van Laethem, Kristel; Gago, Federico; Lobatón, Esther; De Clercq, Erik; Balzarini, Jan; Camarasa, María-José; Velázquez, Sonsoles

    2006-08-01

    The very first TSAO derivative that lacks the 4''-amino group at the 3'-spiro moiety (compound 3) has been prepared and the effect of this modification on the activity/resistance profile has been evaluated. This molecule proved HIV-1 specific (NNRTI-characteristic). A mixture of wild-type and V106V/A or L234L/I mutations were found in the RT of some, but not all compound 3-resistant virus strains. Compound 3 does not select for the TSAO-specific E138K mutation in the RT. However, the compound markedly lost its antiviral potential against a variety of virus strains that contain NNRTI-characteristic mutations in RT including E138K. The deaminated TSAO compound must fit differently in the HIV-1 RT enzyme than its prototype TSAO-m(3)T.

  3. HIV drug resistance in mothers and infants following use of antiretrovirals to prevent mother-to-child transmission.

    PubMed

    Ton, Quy; Frenkel, Lisa

    2013-03-01

    The purpose of this article is to review prominent studies on HIV drug-resistance in mothers and their infants after the use of antiretroviral drugs to prevent mother-to-child-transmission in resource-limited communities. The effects of drug-resistance on subsequent combination antiretroviral therapy are discussed, as are the probable mechanisms of acquisition and decay or persistence of drug-resistant mutants. Differences in the rates of HIV drug-resistance from interventions used to prevent mother-to-child-transmission in North America and Europe are contrasted to the simplified regimens used in resource-limited settings. Unresolved issues related to HIV drug-resistance are reviewed, including: whether maternal zidovudine monotherapy selects significant resistance; the clinical relevance of HIV drug-resistant variants selected by single-dose nevirapine that persist as minority viral variants and can affect the outcome of non-nucleoside reverse transcriptase inhibitor-based therapy; and the use of maternal combination antiretroviral therapy during breastfeeding. Finally, the current and upcoming strategies to reduce HIV drug-resistance related to use of antiretrovirals to prevent mother-to-child-transmission are discussed and contrasted with the challenges of financing and administering antiretrovirals to prevent mother-to-child-transmission in resource-limited communities.

  4. Antiviral molecules correlate with vitamin D pathway genes and are associated with natural resistance to HIV-1 infection.

    PubMed

    Aguilar-Jimenez, Wbeimar; Zapata, Wildeman; Rugeles, María T

    2016-01-01

    The relationship between the immunomodulatory effects of Vitamin D (VitD) and the expression of anti-HIV-1 molecules has not been explored in HIV-1-exposed seronegative individuals (HESNs). Higher mRNA levels of cathelicidin and HAD-4 in oral-mucosa and peripheral-blood, along with higher CYP24A1 mRNA in vaginal-mucosa and lower TLR2 mRNA in endocervical-mucosa were found in HESNs compared to non-exposed controls. Furthermore, the mRNA of anti-HIV molecules Elafin, TRIM5, Cathelicidin, HAD-4 and RNase7, previously associated with natural resistance to HIV-1 infection, positively correlated with the mRNA expression of VDR in HESNs, suggesting the potential participation of VitD in natural resistance to HIV-1.

  5. Multidrug Resistant CTX-M-Producing Escherichia coli: A Growing Threat among HIV Patients in India

    PubMed Central

    Padmavathy, Kesavaram; Padma, Krishnan; Rajasekaran, Sikhamani

    2016-01-01

    Extended Spectrum β-Lactamases (ESBLs) confer resistance to third-generation cephalosporins and CTX-M types have emerged as the most prominent ESBLs worldwide. This study was designed to determine the prevalence of CTX-M positive ESBL-producing urinary E. coli isolates from HIV patients and to establish the association of multidrug resistance, phylogeny, and virulence profile with CTX-M production. A total of 57 ESBL producers identified among 76 E. coli strains isolated from HIV patients from South India were screened for blaCTX-M, AmpC production, multidrug resistance, and nine virulence associated genes (VAGs), fimH, pap, afa/dra, sfa/foc, iutA, fyuA, iroN, usp, and kpsMII. The majority (70.2%) of the ESBL producers harbored blaCTX-M and were AmpC coproducers. Among the CTX-M producers, 47.5% were found to be UPEC, 10% harbored as many as 7 VAGs, and 45% possessed kpsMII. Multidrug resistance (CIPRSXTRGENR) was significantly more common among the CTX-M producers compared to the nonproducers (70% versus 41.2%). However, 71.4% of the multidrug resistant CTX-M producers exhibited susceptibility to nitrofurantoin thereby making it an effective alternative to cephalosporins/fluoroquinolones. The emergence of CTX-M-producing highly virulent, multidrug resistant uropathogenic E. coli is of significant public health concern in countries like India with a high burden of HIV/AIDS. PMID:27123344

  6. Affordable HIV drug-resistance testing for monitoring of antiretroviral therapy in sub-Saharan Africa.

    PubMed

    Inzaule, Seth C; Ondoa, Pascale; Peter, Trevor; Mugyenyi, Peter N; Stevens, Wendy S; de Wit, Tobias F Rinke; Hamers, Raph L

    2016-11-01

    Increased provision of antiretroviral therapy in sub-Saharan Africa has led to a growing number of patients with therapy failure and acquired drug-resistant HIV, driving the demand for more costly further lines of antiretroviral therapy. In conjunction with accelerated access to viral load monitoring, feasible and affordable technologies to detect drug-resistant HIV could help maximise the durability and rational use of available drug regimens. Potential low-cost technologies include in-house Sanger and next-generation sequencing in centralised laboratories, and point mutation assays and genotype-free systems that predict response to antiretroviral therapy at point-of-care. Strengthening of centralised high-throughput laboratories, including efficient systems for sample referral and results delivery, will increase economies-of-scale while reducing costs. Access barriers can be mitigated by standardisation of in-house assays into commercial kits, use of polyvalent instruments, and adopting price-reducing strategies. A stepwise rollout approach should improve feasibility, prioritising WHO-recommended population-based surveillance and management of complex patient categories, such as patients failing protease inhibitor-based antiretroviral therapy. Implementation research, adaptations of existing WHO guidance, and political commitment, will be key to support the appropriate investments and policy changes. In this Personal View, we discuss the potential role of HIV drug resistance testing for population-based surveillance and individual patient management in sub-Saharan Africa. We review the strengths and challenges of promising low-cost technologies and how they can be implemented.

  7. Clinical Determinants of HIV-1B Between-Host Evolution and their Association with Drug Resistance in Pediatric Patients

    PubMed Central

    Rojas, Patricia; Ramos, José Tomás; Holguín, África

    2016-01-01

    Understanding the factors that modulate the evolution of virus populations is essential to design efficient control strategies. Mathematical models predict that factors affecting viral within-host evolution may also determine that at the between-host level. Although HIV-1 within-host evolution has been associated with clinical factors used to monitor AIDS progression, such as patient age, CD4 cells count, viral load, and antiretroviral experience, little is known about the role of these clinical factors in determining between-host HIV-1 evolution. Moreover, whether the relative importance of such factors in HIV-1 evolution vary in adult and children patients, in which the course of infection is different, has seldom been analysed. To address these questions, HIV-1 subtype B (HIV-1B) pol sequences of 163 infected children and 450 adults of Madrid, Spain, were used to estimate genetic diversity, rates of synonymous and non-synonymous mutations, selection pressures and frequency of drug-resistance mutations (DRMs). The role and relative importance of patient age, %CD4, CD4/mm3, viral load, and antiretroviral experience in HIV-1B evolution was analysed. In the pediatric HIV-1B population, three clinical factors were primary predictors of virus evolution: Higher HIV-1B genetic diversity was observed with increasing children age, decreasing CD4/mm3 and upon antiretroviral experience. This was mostly due to higher rates of non-synonymous mutations, which were associated with higher frequency of DRMs. Using this data, we have also constructed a simple multivariate model explaining between 55% and 66% of the variance in HIV-1B evolutionary parameters in pediatric populations. On the other hand, the analysed clinical factors had little effect in adult-infecting HIV-1B evolution. These findings highlight the different evolutionary dynamics of HIV-1B in children and adults, and contribute to understand the factors shaping HIV-1B evolution and the appearance of drug-resistance

  8. The molecular mechanism of human resistance to HIV-1 infection in persistently infected individuals--a review, hypothesis and implications.

    PubMed

    Becker, Yechiel

    2005-08-01

    Resistance to HIV-1 infection in Europeans is associated with a mutation in the gene that codes for the CCR5 protein that is present in Th2 cells and serves as a coreceptor for HIV-1 R5 strain. A deletion of 32 amino acids from the cytokine receptor prevents infection. This mutation prevails in Europeans and is absent in Africans. However, duplication of a gene that codes for a chemokine that binds to the CCR5 was discovered in Africans (mean gene copy 6 while in non-Africans the mean gene copy is 3). Higher expression of these genes protects T cells against HIV-1 infection in vitro. It should be noted that resistance to HIV-1 R5 variant does not protect against HIV-1 R4 variant. It was reported that a minority of highly HIV-1 exposed African professional sex workers (APSW) were resistant to the virus infection during a 10 years period. Recently, the analysis of the cytokines in the serum of the persistently infected seronegative women revealed that the latter hypo-expresses the cytokine IL-4. Since the molecular events during HIV-1 infection are associated with a marked increase in the levels of IL-4 and IgE in the sera of the infected individuals, it suggests that AIDS is an allergy. Thus, a very low level of IL-4 production may abrogate the virus infection. Studies on the human IL-4 gene revealed that together with the IL-4 mRNA a spliced variant with a deletion of exon 2 is synthesized. The latter is a natural antagonist of IL-4 and when expressed in an individual at a level higher than IL-4, the person will resist a microbial infection (e.g. Mycobacterium tuberculosis) or asthma. The present hypothesis suggests that the HIV-1 resistant APSWs produce more IL-4 delta 2 molecules than IL-4 molecules. The binding of IL-4 delta 2 to IL-4 receptors on T and B cells prevents their functions and the infection by HIV-1. The implications of these studies are that treatment of HIV-1 infected people with drugs that will block the IL-4 receptors will stop HIV-1 infections

  9. High levels of pre-treatment HIV drug resistance and treatment failure in Nigerian children

    PubMed Central

    Boerma, Ragna S; Boender, T Sonia; Sigaloff, Kim C.E.; Rinke de Wit, Tobias F; van Hensbroek, Michael Boele; Ndembi, Nicaise; Adeyemo, Titilope; Temiye, Edamisan O; Osibogun, Akin; Ondoa, Pascale; Calis, Job C; Akanmu, Alani Sulaimon

    2016-01-01

    Introduction Pre-treatment HIV drug resistance (PDR) is an increasing problem in sub-Saharan Africa. Children are an especially vulnerable population to develop PDR given that paediatric second-line treatment options are limited. Although monitoring of PDR is important, data on the paediatric prevalence in sub-Saharan Africa and its consequences for treatment outcomes are scarce. We designed a prospective paediatric cohort study to document the prevalence of PDR and its effect on subsequent treatment failure in Nigeria, the country with the second highest number of HIV-infected children in the world. Methods HIV-1-infected children ≤12 years, who had not been exposed to drugs for the prevention of mother-to-child transmission (PMTCT), were enrolled between 2012 and 2013, and followed up for 24 months in Lagos, Nigeria. Pre-antiretroviral treatment (ART) population-based pol genotypic testing and six-monthly viral load (VL) testing were performed. Logistic regression analysis was used to assess the effect of PDR (World Health Organization (WHO) list for transmitted drug resistance) on subsequent treatment failure (two consecutive VL measurements >1000 cps/ml or death). Results Of the total 82 PMTCT-naïve children, 13 (15.9%) had PDR. All 13 children harboured non-nucleoside reverse transcriptase inhibitor (NNRTI) mutations, of whom seven also had nucleoside reverse transcriptase inhibitor resistance. After 24 months, 33% had experienced treatment failure. Treatment failure was associated with PDR and a higher log VL before treatment initiation (adjusted odds ratio (aOR) 7.53 (95%CI 1.61–35.15) and 2.85 (95%CI 1.04–7.78), respectively). Discussion PDR was present in one out of six Nigerian children. These high numbers corroborate with recent findings in other African countries. The presence of PDR was relevant as it was the strongest predictor of first-line treatment failure. Conclusions Our findings stress the importance of implementing fully active regimens

  10. Trends and predictors of HIV-1 acquired drug resistance in Minas Gerais, Brazil: 2002-2012.

    PubMed

    Duani, Helena; Aleixo, Agdemir Waleria; Tupinambás, Unaí

    Several studies show that the prevalence of multidrug-resistant HIV-1 virus is declining over time. A retrospective cohort study was carried out to evaluate the trends of drug resistance in antiretroviral treatment-exposed individuals in a state of a middle-income country, Minas Gerais, southeast region of Brazil. We analyzed 2115 HIV-1 sequences from 2002 up to 2012, from 52 cities of Minas Gerais. The groups were analyzed according to the definitions: "IAS - 3 class mutations", if ≥1 drug resistance mutation from IAS 2015 list (DRM) was present in each class; "No fully susceptible drugs" as the absence of any fully susceptible drug in Stanford algorithm; and "GSS≥2″, when a maximum calculated GSS (genotypic susceptibility score) was ≥2 or ≥3, counting only drugs available in Brazil and USA at given calendar years. Time trends of resistance were analyzed by Cochran-Armitage test. We observed a decrease in the rate resistance mutations for PI, NRTI, "IAS - 3 class mutations", and "No fully susceptible drugs" over these 11 years, from 69.2% to 20.7%, 92.3% to 90.2%, 46.2% to 22.5%, and 12.8% to 5.7%, respectively (p<0.05). Resistance to NNRTI increased from 74.4% to 81.6%, mainly because of K103N mutation. The GSS score ≥2 increased during the years from 35.9% to 87.3% (p<0.001). We demonstrate that resistance to PI and to the three main classes simultaneously are declining, although the number of patients on of antiretroviral therapy has doubled in the last ten years in Brazil (125,000 in 2002 to 400,000 in 2014). Broader resistance testing and the availability of more therapeutic options might have influenced this decline. The increase in NNRTI resistance can limit this class as first line treatment in Brazil in the future.

  11. Analysis of HIV Integrase Resistance in Black Men Who Have Sex with Men in the United States.

    PubMed

    Chen, Iris; Zhang, Yinfeng; Cummings, Vanessa; Cloherty, Gavin A; Connor, Matthew; Beauchamp, Geetha; Griffith, Sam; Rose, Scott; Gallant, Joel; Scott, Hyman M; Shoptaw, Steven; Del Rio, Carlos; Kuo, Irene; Mannheimer, Sharon; Tieu, Hong-Van; Hurt, Christopher B; Fields, Sheldon D; Wheeler, Darrell P; Mayer, Kenneth H; Koblin, Beryl A; Eshleman, Susan H

    2017-04-06

    Resistance to reverse transcriptase and protease inhibitors was frequently detected in HIV from black men who have sex with men (MSM) enrolled in the HIV prevention trials network (HPTN) 061 study. In this study, integrase strand transfer inhibitor (INSTI) resistance was analyzed in black MSM enrolled in HPTN 061 (134 infected at enrollment and 23 seroconverters) and a follow-up study, HPTN 073 (eight seroconverters). The ViroSeq HIV-1 Integrase Genotyping Kit (Abbott Molecular) was used for analysis. Major INSTI resistance mutations were not detected in any of the samples. HIV from 14 (8.4%) of the 165 men, including 4 (12.9%) of 31 seroconverters, had accessory or polymorphic INSTI-associated mutations. The most frequently detected mutation was E157Q. These findings are promising because INSTI-based regimens are now recommended for first-line antiretroviral treatment and because long-acting cabotegravir is being evaluated for pre-exposure prophylaxis.

  12. Universal access to HIV treatment versus universal 'test and treat': transmission, drug resistance & treatment costs.

    PubMed

    Wagner, Bradley G; Blower, Sally

    2012-01-01

    In South Africa (SA) universal access to treatment for HIV-infected individuals in need has yet to be achieved. Currently ~1 million receive treatment, but an additional 1.6 million are in need. It is being debated whether to use a universal 'test and treat' (T&T) strategy to try to eliminate HIV in SA; treatment reduces infectivity and hence transmission. Under a T&T strategy all HIV-infected individuals would receive treatment whether in need or not. This would require treating 5 million individuals almost immediately and providing treatment for several decades. We use a validated mathematical model to predict impact and costs of: (i) a universal T&T strategy and (ii) achieving universal access to treatment. Using modeling the WHO has predicted a universal T&T strategy in SA would eliminate HIV within a decade, and (after 40 years) cost ~$10 billion less than achieving universal access. In contrast, we predict a universal T&T strategy in SA could eliminate HIV, but take 40 years and cost ~$12 billion more than achieving universal access. We determine the difference in predictions is because the WHO has under-estimated survival time on treatment and ignored the risk of resistance. We predict, after 20 years, ~2 million individuals would need second-line regimens if a universal T&T strategy is implemented versus ~1.5 million if universal access is achieved. Costs need to be realistically estimated and multiple evaluation criteria used to compare 'treatment as prevention' with other prevention strategies. Before implementing a universal T&T strategy, which may not be sustainable, we recommend striving to achieve universal access to treatment as quickly as possible. We predict achieving universal access to treatment would be a very effective 'treatment as prevention' approach and bring the HIV epidemic in SA close to elimination, preventing ~4 million infections after 20 years and ~11 million after 40 years.

  13. Women and HIV/AIDS

    MedlinePlus

    ... AIDS email updates Enter email Submit HIV and AIDS The human immunodeficiency (IH-myoo-noh-di-FISH- ... health Pregnancy and HIV View more HIV and AIDS resources Related information Birth control methods Sexually transmitted ...

  14. Detection of treatment-resistant infectious HIV after genome-directed antiviral endonuclease therapy.

    PubMed

    De Silva Feelixge, Harshana S; Stone, Daniel; Pietz, Harlan L; Roychoudhury, Pavitra; Greninger, Alex L; Schiffer, Joshua T; Aubert, Martine; Jerome, Keith R

    2016-02-01

    Incurable chronic viral infections are a major cause of morbidity and mortality worldwide. One potential approach to cure persistent viral infections is via the use of targeted endonucleases. Nevertheless, a potential concern for endonuclease-based antiviral therapies is the emergence of treatment resistance. Here we detect for the first time an endonuclease-resistant infectious virus that is found with high frequency after antiviral endonuclease therapy. While testing the activity of HIV pol-specific zinc finger nucleases (ZFNs) alone or in combination with three prime repair exonuclease 2 (Trex2), we identified a treatment-resistant and infectious mutant virus that was derived from a ZFN-mediated disruption of reverse transcriptase (RT). Although gene disruption of HIV protease, RT and integrase could inhibit viral replication, a chance single amino acid insertion within the thumb domain of RT produced a virus that could actively replicate. The endonuclease-resistant virus could replicate in primary CD4(+) T cells, but remained susceptible to treatment with antiretroviral RT inhibitors. When secondary ZFN-derived mutations were introduced into the mutant virus's RT or integrase domains, replication could be abolished. Our observations suggest that caution should be exercised during endonuclease-based antiviral therapies; however, combination endonuclease therapies may prevent the emergence of resistance.

  15. Evaluations of an in-house drug resistance method for HIV-1 drug resistance using ViroSeq™ 2.0 genotyping system as a gold standard.

    PubMed

    Chaturbhuj, Devidas N; Deshmukh, Pravin S; Hingankar, Nitin K; Siddhaarth, K; Deshpande, Sohan N; Sen, Sourav; Kabra, Sandhya; Paranjape, Ramesh S; Tripathy, Srikanth P

    2013-04-01

    An in-house method was evaluated for its efficiency to detect the HIV-1 drug resistance mutations. This method was compared with the ViroSeq™ Genotyping System 2.0 (Celera Diagnostics, US) a gold standard. Sixty-five stored plasma samples, previously tested for HIV-1 drug resistance using the ViroSeq™ method were used to evaluate the in-house method. Out of the sixty five plasma samples, sixty were HIV-1 positive clinical samples; four samples from the Virology Quality Assessment (VQA) program and one positive control from the ViroSeq™ kit were used in this study. The sequences generated by the ViroSeq™ and an in-house method showed 99.5±0.5% and 99.7±0.4% (mean±SD) nucleotide and amino acid identity, respectively. Out of 214 Stanford HIVdb listed HIV-1 drug resistance mutations in the protease and reverse transcriptase regions, concordance was observed in 203 (94.9%), partial discordance in 11 (5.1%) and complete discordance was absent. The in-house primers are broadly sensitive in genotyping multiple HIV-1 group M subtypes. The amplification sensitivity of the in-house method was 1000 copies/ml. The evaluation of the in-house method provides results comparable with that of ViroSeq™ method thus, making the in-house method suitable for HIV-1 drug resistance testing in the developing countries.

  16. Epidemiological networks and drug resistance of HIV type 1 in Krasnoyarsk region, Russia.

    PubMed

    Rumyantseva, Olga A; Olkhovskiy, Igor A; Malysheva, Marina A; Ruzaeva, Ludmila A; Vasiliev, Alexander V; Kazennova, Elena V; Bobkova, Marina R; Lukashov, Vladimir V

    2009-09-01

    To study the molecular epidemiology of HIV-1 in Krasnoyarsk region, Russia, where HIV-1 has spread rapidly since 2000, we obtained pol sequences from individuals living in this region (n = 67) as well as in the geographically closely related Altay region (n = 13). In both regions, subtype A viruses specific for the former Soviet Union (IDU-A strains) were dominant (92.5%). Virus sequences clustered according to the geographic origin of the infected individuals rather than to their risk group, demonstrating the role of geographically defined epidemiological networks in the propagation of the HIV-1 epidemic in the region. Six viruses belonged to subtype B. Three of them were phylogenetically (and therefore epidemiologically) closely related to each other, demonstrating that even though IDU-A viruses dominate the epidemic, the spread of other virus strains does occur. Most viruses (75%) had an A62V mutation in reverse transcriptase, specific for HIV-1 strains in Russia. Remarkably, 26 of 47 (55%) patients under HAART with detectable virus loads did not have any known drug-resistant mutation, indicating the need to increase compliance to therapy.

  17. Human APOBEC3G drives HIV-1 evolution and the development of drug resistance

    SciTech Connect

    Bhattacharya, Tamoy; Kim, Eun - Young; Koning, Fransje; Malim, Michael; Wolinsky, Steven M

    2008-01-01

    Human APOBEC3G (hA3G) is an innate virus restriction factor that induces deamination of specific cytidine residues in single-stranded human immunodeficiency virus type 1 (HIV-1) DNA. Whereas destructive hA3G editing leads to a profound loss of HIV-1 infectivity, more limited editing could be a source of adaptation and diversification. Here we show that the presence of hA3G in T-cells can drive the development of diversity in HIV-1 populations and that under selection pressure imposed by the nucleotide analog reverse transcriptase inhibitor 3TC ((-)2',3'-dideoxy-3'-thiacytidine), a single point mutation that confers 3TC resistance, methionine 184 to isoleucine (M1841), emerges rapidly and reaches fixation. These results provide strong evidence that mutation by hA3G is an important source of genetic variation on which natural selection acts to shape the structure of the viral population and drive the tempo of HIV-1 evolution.

  18. Phylogenetic analysis of HIV-1 subtypes and drug resistance profile among treatment-naïve people in Kuwait.

    PubMed

    Chehadeh, Wassim; Albaksami, Osama; Altawalah, Haya; Ahmad, Suhail; Madi, Nada; John, Sonia E; Abraham, Priya S; Al-Nakib, Widad

    2015-09-01

    Mutations associated with resistance to antiretroviral therapy are a major cause of failure to treatment, and surveillance for the emergence of HIV resistance became a component of all antiretroviral treatment programs. As transmission of resistant viruses to newly infected persons is possible, we aimed to determine the prevalence of primary mutations associated with antiretroviral resistance among treatment-naïve patients, with respect to HIV subtype. Viral RNA was extracted from plasma samples of 43 treatment-naïve patients. Protease (PR) and reverse transcriptase (RT) regions were amplified and sequenced using the TRUGENE HIV-1 Genotyping Assay. A phylogenetic analysis was performed for HIV subtype assignment. Complete sequence information could be obtained for 35 patients. A total of ten different HIV-1 subtypes and recombinant forms were found in Kuwait with predominance of subtypes B, C, and CRF01_AE. A62V and A98G were non-polymorphic resistance-associated mutations (RAMs) detected in the RT region of two and three patients, respectively. Non-polymorphic mutations associated with resistance to protease inhibitors were not detected. Our results support continuous surveillance of RAMs in newly infected individuals to assess the effectiveness of first-line antiretroviral regimen available in Kuwait.

  19. Mechanisms of HIV-1 subtype C resistance to GRFT, CV-N and SVN

    PubMed Central

    Alexandre, Kabamba B.; Moore, Penny L.; Nonyane, Molati; Gray, Elin S.; Ranchobe, Nthabeleng; Chakauya, Ereck; McMahon, James B.; O’Keefe, Barry R.; Chikwamba, Rachel; Morris, Lynn

    2013-01-01

    We examined the ability of HIV-1 subtype C to develop resistance to the inhibitory lectins, griffithsin (GRFT), cyanovirin-N (CV-N) and scytovirin (SVN), which bind multiple mannose-rich glycans on gp120. Four primary HIV-1 strains cultured under escalating concentrations of these lectins became increasingly resistant tolerating 2 to 12 times their 50% inhibitory concentrations. Sequence analysis of gp120 showed that most had deletions of 1 to 5 mannose-rich glycans. Glycosylation sites at positions 230, 234, 241, 289 located in the C2 region and 339, 392 and 448 in the C3-C4 region were affected. Furthermore, deletions and insertions of up to 5 amino acids in the V4 region were observed in 3 of the 4 isolates. These data suggest that loss of glycosylation sites on gp120 as well as rearrangement of glycans in V4 are mechanisms involved in HIV-1 subtype C escape from GRFT, CV-N and SVN. PMID:24074568

  20. Minority HIV-1 resistant variants in recent infection and in patients who failed first-line antiretroviral therapy with no detectable resistance-associated mutations in Thailand.

    PubMed

    Le Nguyen, Hai; Pitakpolrat, Patrawadee; Sirivichayakul, Sunee; Delaugerre, Constance; Ruxrungtham, Kiat

    2012-05-01

    Through the Thai National AIDS Program, approximately 200,000 patients infected with HIV are on antiretroviral (ARV) therapy. Although studies have shown low prevalence of primary HIV-1 resistance transmission in Thailand and in Southeast Asia where subtype CRF01_AE is predominant, minority HIV-1 drug resistance has not been studied. Two groups of patients, whose conventional genotyping results showed no drug resistance-associated mutations, were investigated: 104 homosexual men recently infected with HIV-1, naïve to ARV treatment and 22 first-line non-nucleoside reverse transcriptase inhibitor (NNRTI)-based failure patients. Pyrosequencing (PSQ) assay was developed to detect and quantify minority Y181C and M184V variants from the patients' plasma samples. The sensitivity of PSQ to detect minority Y181C and M184V variants was approximately 1%. 1/104 (0.5%) and 3/101 (3%) samples were found harboring Y181C and M184V in the group of homosexual men recently infected with HIV-1. In patients with first-line treatment failure, one had a minority M184V mutation (4.5%). The prevalence of Y181C and M184V minority variants in homosexual men recently infected and naïve to treatment was low in Thailand. Systematic monitoring of primary resistance transmission in Thailand and this region is essential to guide whether genotypic resistance test is required prior to commencing the first-line highly active antiretroviral therapy (HAART).

  1. Field Study of Dried Blood Spot Specimens for HIV-1 Drug Resistance Genotyping

    PubMed Central

    Parry, C. M.; Diallo, K.; Mwebaza, S.; Batamwita, R.; DeVos, J.; Bbosa, N.; Lyagoba, F.; Magambo, B.; Jordan, M. R.; Downing, R.; Zhang, G.; Kaleebu, P.; Bertagnolio, S.

    2014-01-01

    Dried blood spots (DBS) are an alternative specimen type for HIV drug resistance genotyping in resource-limited settings. Data relating to the impact of DBS storage and shipment conditions on genotyping efficiency under field conditions are limited. We compared the genotyping efficiencies and resistance profiles of DBS stored and shipped at different temperatures to those of plasma specimens collected in parallel from patients receiving antiretroviral therapy in Uganda. Plasma and four DBS cards from anti-coagulated venous blood and a fifth card from finger-prick blood were prepared from 103 HIV patients with a median viral load (VL) of 57,062 copies/ml (range, 1,081 to 2,964,191). DBS were stored at ambient temperature for 2 or 4 weeks or frozen at −80°C and shipped from Uganda to the United States at ambient temperature or frozen on dry ice for genotyping using a broadly sensitive in-house method. Plasma (97.1%) and DBS (98.1%) stored and shipped frozen had similar genotyping efficiencies. DBS stored frozen (97.1%) or at ambient temperature for 2 weeks (93.2%) and shipped at ambient temperature also had similar genotyping efficiencies. Genotyping efficiency was reduced for DBS stored at ambient temperature for 4 weeks (89.3%, P = 0.03) or prepared from finger-prick blood and stored at ambient temperature for 2 weeks (77.7%, P < 0.001) compared to DBS prepared from venous blood and handled similarly. Resistance profiles were similar between plasma and DBS specimens. This report delineates the optimal DBS collection, storage, and shipping conditions and opens a new avenue for cost-saving ambient-temperature DBS specimen shipments for HIV drug resistance (HIVDR) surveillances in resource-limited settings. PMID:24871219

  2. Estimating the dynamics and dependencies of accumulating mutations with applications to HIV drug resistance.

    PubMed

    Montazeri, Hesam; Günthard, Huldrych F; Yang, Wan-Lin; Kouyos, Roger; Beerenwinkel, Niko

    2015-10-01

    We introduce a new model called the observed time conjunctive Bayesian network (OT-CBN) that describes the accumulation of genetic events (mutations) under partial temporal ordering constraints. Unlike other CBN models, the OT-CBN model uses sampling time points of genotypes in addition to genotypes themselves to estimate model parameters. We developed an expectation-maximization algorithm to obtain approximate maximum likelihood estimates by accounting for this additional information. In a simulation study, we show that the OT-CBN model outperforms the continuous time CBN (CT-CBN) (Beerenwinkel and Sullivant, 2009. Markov models for accumulating mutations. Biometrika 96: (3), 645-661), which does not take into account individual sampling times for parameter estimation. We also show superiority of the OT-CBN model on several datasets of HIV drug resistance mutations extracted from the Swiss HIV Cohort Study database.

  3. Genome-Wide Association Study of HIV Whole Genome Sequences Validated using Drug Resistance

    PubMed Central

    Power, Robert A.; Davaniah, Siva; Derache, Anne; Wilkinson, Eduan; Tanser, Frank; Pillay, Deenan; de Oliveira, Tulio

    2016-01-01

    Background Genome-wide association studies (GWAS) have considerably advanced our understanding of human traits and diseases. With the increasing availability of whole genome sequences (WGS) for pathogens, it is important to establish whether GWAS of viral genomes could reveal important biological insights. Here we perform the first proof of concept viral GWAS examining drug resistance (DR), a phenotype with well understood genetics. Method We performed a GWAS of DR in a sample of 343 HIV subtype C patients failing 1st line antiretroviral treatment in rural KwaZulu-Natal, South Africa. The majority and minority variants within each sequence were called using PILON, and GWAS was performed within PLINK. HIV WGS from patients failing on different antiretroviral treatments were compared to sequences derived from individuals naïve to the respective treatment. Results GWAS methodology was validated by identifying five associations on a genetic level that led to amino acid changes known to cause DR. Further, we highlighted the ability of GWAS to identify epistatic effects, identifying two replicable variants within amino acid 68 of the reverse transcriptase protein previously described as potential fitness compensatory mutations. A possible additional DR variant within amino acid 91 of the matrix region of the Gag protein was associated with tenofovir failure, highlighting GWAS’s ability to identify variants outside classical candidate genes. Our results also suggest a polygenic component to DR. Conclusions These results validate the applicability of GWAS to HIV WGS data even in relative small samples, and emphasise how high throughput sequencing can provide novel and clinically relevant insights. Further they suggested that for viruses like HIV, population structure was only minor concern compared to that seen in bacteria or parasite GWAS. Given the small genome length and reduced burden for multiple testing, this makes HIV an ideal candidate for GWAS. PMID:27677172

  4. Short communication: prevalence of HIV type 1 transmitted drug resistance in Slovenia: 2005-2010.

    PubMed

    Lunar, Maja M; Židovec Lepej, Snježana; Abecasis, Ana B; Tomažič, Janez; Vidmar, Ludvik; Karner, Primož; Vovko, Tomaž D; Pečavar, Blaž; Maver, Polona J; Seme, Katja; Poljak, Mario

    2013-02-01

    Slovenia is a small European country with a total of 547 HIV-infected individuals cumulatively reported by the end of 2011. However, the estimated incidence rate of HIV infections increased from 7.0 per million in 2003 to 26.8 per million in 2011. In this study, we assessed the prevalence of transmitted drug resistance (TDR) in the past 6 years (2005-2010) and analyzed the time trend of the proportion of men having sex with men (MSM) and HIV-1 subtype B among newly diagnosed individuals in a 15-year period (1996-2010) in Slovenia. Among 150 patients included in the study, representing 63% of HIV-1 newly diagnosed patients in 2005-2010, TDR was found in seven patients (4.7%). The prevalence of TDR to nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors was 2% (3/150), 2% (3/150), and 0.7% (1/150), respectively. The majority of patients were infected with subtype B (134/150, 89%), while subtype A was detected in 6.0% (9/150), subtype D in 1.3% (2/150), and subtype G and CRF02_AG in 0.7% (one patient each). Three of 150 sequences could not be typed. Infection with subtype B was found to be significantly associated with male gender, Slovenia being reported as the country of the patient's nationality and origin of the virus, CDC class A, mode of transmission with homosexual/bisexual contact, sex with an anonymous person, and a higher CD4(+) count. Among patients carrying the subtype B virus, an MSM transmission route was reported in 87% of patients. Although the prevalence of TDR in Slovenia is still below the European average, active surveillance should be continued, especially among MSM, the most vulnerable population for HIV-1 infection in this part of Europe.

  5. The dual role of pharmacogenetics in HIV treatment: mutations and polymorphisms regulating antiretroviral drug resistance and disposition.

    PubMed

    Michaud, Veronique; Bar-Magen, Tamara; Turgeon, Jacques; Flockhart, David; Desta, Zeruesenay; Wainberg, Mark A

    2012-07-01

    Significant intra- and interindividual variability has been observed in response to use of pharmacological agents in treatment of HIV infection. Treatment of HIV infection is limited by high rates of adverse drug reactions and development of resistance in a significant proportion of patients as a result of suboptimal drug concentrations. The efficacy of antiretroviral therapy is challenged by the emergence of resistant HIV-1 mutants with reduced susceptibility to antiretroviral drugs. Moreover, pharmacotherapy of patients infected with HIV is challenging because a great number of comorbidities increase polypharmacy and the risk for drug-drug interactions. Drug-metabolizing enzymes and drug transporters regulate drug access to the systemic circulation, target cells, and sanctuary sites. These factors, which determine drug exposure, along with the emergence of mutations conferring resistance to HIV medications, could explain variability in efficacy and adverse drug reactions associated with antiretroviral drugs. In this review, the major factors affecting the disposition of antiretroviral drugs, including key drug-metabolizing enzymes and membrane drug transporters, are outlined. Genetic polymorphisms affecting the activity and/or the expression of cytochromes P450 or UGT isozymes and membrane drug transport proteins are highlighted and include such examples as the association of neurotoxicity with efavirenz, nephrotoxicity with tenofovir, hepatotoxicity with nevirapine, and hyperbilirubinemia with indinavir and atazanavir. Mechanisms of drug resistance conferred by specific viral mutations are also reviewed, with particular attention to replicative viral fitness and transmitted HIV drug resistance with the objectives of providing a better understanding of mechanisms involved in HIV drug resistance and helping health care providers to better manage interpatient variability in drug efficacy and toxicity.

  6. National Prevalence and Trends of HIV Transmitted Drug Resistance in Mexico

    PubMed Central

    Avila-Ríos, Santiago; García-Morales, Claudia; Garrido-Rodríguez, Daniela; Ormsby, Christopher E.; Hernández-Juan, Ramón; Andrade-Villanueva, Jaime; González-Hernández, Luz A.; Torres-Escobar, Indiana; Navarro-Álvarez, Samuel; Reyes-Terán, Gustavo

    2011-01-01

    Background Transmitted drug resistance (TDR) remains an important concern for the management of HIV infection, especially in countries that have recently scaled-up antiretroviral treatment (ART) access. Methodology/Principal Findings We designed a study to assess HIV diversity and transmitted drug resistance (TDR) prevalence and trends in Mexico. 1655 ART-naïve patients from 12 Mexican states were enrolled from 2005 to 2010. TDR was assessed from plasma HIV pol sequences using Stanford scores and the WHO TDR surveillance mutation list. TDR prevalence fluctuations over back-projected dates of infection were tested. HIV subtype B was highly prevalent in Mexico (99.9%). TDR prevalence (Stanford score>15) in the country for the study period was 7.4% (95% CI, 6.2∶8.8) and 6.8% (95% CI, 5.7∶8.2) based on the WHO TDR surveillance mutation list. NRTI TDR was the highest (4.2%), followed by NNRTI (2.5%) and PI (1.7%) TDR. Increasing trends for NNRTI (p = 0.0456) and PI (p = 0.0061) major TDR mutations were observed at the national level. Clustering of viruses containing minor TDR mutations was observed with some apparent transmission pairs and geographical effects. Conclusions TDR prevalence in Mexico remains at the intermediate level and is slightly lower than that observed in industrialized countries. Whether regional variations in TDR trends are associated with differences in antiretroviral drug usage/ART efficacy or with local features of viral evolution remains to be further addressed. PMID:22110765

  7. The prevalence of transmitted HIV drug resistance among MSM in Anhui province, China

    PubMed Central

    2014-01-01

    Background To optimize treatment regimens, we assessed human immunodeficiency virus (HIV) diversity and the prevalence of transmitted drug resistance (TDR) among men who have sex with men (MSM) in Anhui province, China. Methods A total of 139 MSM who were newly diagnosed and antiretroviral treatment-naive were enrolled in Anhui in 2011. A partial pol fragment was amplified and sequenced, and HIV subtypes were determined by phylogenetic analyses. Surveillance/transmitted drug resistance mutations (SDRMs) were identified according to the 2009 World Health Organization (WHO) list. Results A total of 133 (95.7%) samples were successfully amplified and sequenced. Based on phylogenetic analyses of the pol fragment, CRF01_AE accounted for 55.6% (74/133) of the infections, followed by CRF07_BC with 32.3% (43/133), B with 5.3% (7/133), and unique recombinant forms with 6.8% (9/133). A total of 3.0% (4/133) of the subjects were found to harbor HIV variants with SDRMs, including 1.5% with NRTI-related mutations and 1.5% with NNRTI-related mutations. PI-related mutations were absent. The SDRMs included L210W (1.5%), Y181C (0.8%), and G190A (0.8%). Conclusions In Anhui, CRF01_AE strains contributed to most of the HIV infections among MSM, and the prevalence of TDR was relatively low in this population. Further studies should be performed to evaluate the trend of TDR among MSM in Anhui and to inform first-line antiretroviral treatment. PMID:25035709

  8. Systematic Review of HIV Drug Resistance in the World Health Organization Southeast Asia Region

    PubMed Central

    Trotter, Andrew B.; Hong, Steven Y.; Srikantiah, Padmini; Abeyewickreme, Iyanthi; Bertagnolio, Silvia; Jordan, Michael R.

    2014-01-01

    In 2010, 3.5 million people were living with HIV in the World Health Organization (WHO) Southeast Asia Region (SEAR), giving this region the greatest burden of HIV after Africa. Scale-up of antiretroviral therapy (ART) has resulted in over 717,000 benefitting from it at the end of 2010. A systematic review of studies of HIV drug resistance (HIVDR) in SEAR published between 2000 and 2011 was performed. Of 10 studies of transmitted HIVDR in recently infected patients, all but two reported low levels (<5%) of transmitted HIVDR. Of 23 studies of HIVDR in pre-treatment populations initiating ART, three reported moderate levels (5–15%) of HIVDR and 20 reported low levels. Amongst 17 studies of acquired HIVDR, levels of nucleoside reverse transcriptase inhibitor (NRTI) and non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance ranged from 52%–92% and 43%–100%, respectively amongst those with virological failure. Overall, data included in this review suggest that currently recommended first- and second-line regimens are appropriate for the cohorts studied. However, data were only available from two of 11 SEAR countries and studies largely examined urban populations. Results are unlikely to be representative of the region. Studies lacked standardized methods which greatly limit comparability of data and their use for public health and ART program planning. Routine, standardized and nationally representative HIVDR surveillance should be strongly encouraged in SEAR to best characterize population-level HIVDR. National-level HIVDR surveillance data may be used to optimize delivery of HIV care and treatment and minimize emergence of population-level HIVDR, thus promoting the long-term efficacy and durability of available first- and second-line ART regimens. PMID:24002200

  9. HIV-1 Antiretroviral Drug Resistance in Pregnant Women in Jamaica A Preliminary Report

    PubMed Central

    Amarakoon, II; Ramkissoon, A; Pierre, R; Eyzaguirre, LM; Carr, JK; Blattner, WA; Roye, ME

    2014-01-01

    ABSTRACT This preliminary report sought to provide insight into the genetic diversity of human immunodeficiency virus drug resistance (HIVDR) in Jamaica. This was done by investigating the genetic diversity associated with drug resistance in pregnant women living with HIV attending antenatal clinics in Kingston, Jamaica. Blood samples were collected and viral RNA were extracted and analysed. The protease and reverse transcriptase (Pro-RT) genes were amplified using the nested polymerase chain reaction (PCR) method. Polymerase chain reaction amplicons were obtained for nine (56%) of 16 patients, of which five (55%) were antiretroviral (ARV) drug naïve and four (45%) were treatment experienced. Three minor protease inhibitor resistant-conferring mutations (A71AT, A71V, A71T) and five mutations conferring high to low-level resistance (K219EK, T69S, K103S, G190A and K103N) were detected in the RT region. More than 50% of the resistance mutations found were detected in ARV drug naïve individuals, implying that viruses are being transmitted with the ARV resistance. These preliminary results will inform the health practitioners of the level of drug resistance that is being transmitted as well as strengthen the need to initiate a national baseline survey on HIVDR in Jamaica. PMID:25803373

  10. The demise of multidrug-resistant HIV-1: the national time trend in Portugal

    PubMed Central

    Vercauteren, Jurgen; Theys, Kristof; Carvalho, Ana Patricia; Valadas, Emília; Duque, Luis Miguel; Teófilo, Eugénio; Faria, Telo; Faria, Domitília; Vera, José; Águas, Maria João; Peres, Susana; Mansinho, Kamal; Vandamme, Anne-Mieke; Camacho, Ricardo Jorge; Mansinho, Kamal; Cláudia Miranda, Ana; Aldir, Isabel; Ventura, Fernando; Nina, Jaime; Borges, Fernando; Valadas, Emília; Doroana, Manuela; Antunes, Francisco; João Aleixo, Maria; João Águas, Maria; Botas, Júlio; Branco, Teresa; Vera, José; Vaz Pinto, Inês; Poças, José; Sá, Joana; Duque, Luis; Diniz, António; Mineiro, Ana; Gomes, Flora; Santos, Carlos; Faria, Domitília; Fonseca, Paula; Proença, Paula; Tavares, Luís; Guerreiro, Cristina; Narciso, Jorge; Faria, Telo; Teófilo, Eugénio; Pinheiro, Sofia; Germano, Isabel; Caixas, Umbelina; Faria, Nancy; Paula Reis, Ana; Bentes Jesus, Margarida; Amaro, Graça; Roxo, Fausto; Abreu, Ricardo; Neves, Isabel

    2013-01-01

    Objectives Despite a decreasing mortality and morbidity in treated HIV-1 patients, highly active antiretroviral treatment (HAART) can still fail due to the development of drug resistance. Especially, multidrug-resistant viruses pose a threat to efficient therapy. We studied the changing prevalence of multidrug resistance (MDR) over time in a cohort of HIV-1-infected patients in Portugal. Patients and methods We used data of 8065 HIV-1-infected patients followed from July 2001 up to April 2012 in 22 hospitals located in Portugal. MDR at a specific date of sampling was defined as no more than one fully active drug (excluding integrase and entry inhibitors) at that time authorized by the Portuguese National Authority of Medicines and Health Products (INFARMED), as interpreted with the Rega algorithm version 8.0.2. A generalized linear mixed model was used to study the time trend of the prevalence of MDR. Results We observed a statistically significant decrease in the prevalence of MDR over the last decade, from 6.9% (95% CI: 5.7–8.4) in 2001–03, 6.0% (95% CI: 4.9–7.2) in 2003–05, 3.7% (95% CI: 2.8–4.8) in 2005–07 and 1.6% (95% CI: 1.1–2.2) in 2007–09 down to 0.6% (95% CI: 0.3–0.9) in 2009–12 [OR = 0.80 (95% CI: 0.75–0.86); P < 0.001]. In July 2011 the last new case of MDR was seen. Conclusions The prevalence of multidrug-resistant HIV-1 is decreasing over time in Portugal, reflecting the increasing efficiency of HAART and the availability of new drugs. Therefore, in designing a new drug, safety and practical aspects, e.g. less toxicity and ease of use, may need more attention than focusing mainly on efficacy against resistant strains. PMID:23228933

  11. A uniquely prevalent nonnucleoside reverse transcriptase inhibitor resistance mutation in Russian subtype A HIV-1 viruses

    PubMed Central

    Kolomeets, Anna N.; Varghese, Vici; Lemey, Philippe; Bobkova, Marina R.; Shafer, Robert W.

    2015-01-01

    Background The subtype A variant in the Former Soviet Union (AFSU) causes most of Russia’s HIV-1 infections. However, the spectrum of drug-resistance mutations (DRMs) in antiretroviral experienced patients with this variant has not been studied. Methods Between 2010 and 2013, genotypic resistance testing was performed on plasma samples from 366 antiretroviral-experienced patients in Siberia. Results Three-hundred patients (82%) had subtype AFSU and 55 (15%) had CRF02_AG viruses. The pattern of DRMs was consistent with patient antiretroviral history with one exception. G190S was the most common nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance mutation, occurring in 55 (33%) subtype AFSU viruses from 167 NNRTI-experienced patients compared with none of 37 CRF02_AG viruses from NNRTI-experienced patients (P < 0.001). The next most common subtype AFSU NNRTI-resistance mutation, K103N, occurred in 25 (15%) viruses. Wild-type glycine (G) at position 190 is encoded by GGC in more than 99% of published AFSU strains. By contrast, G190 is encoded by GGA or GGG in 97% of other subtypes and in subtype A strains outside of the FSU. Therefore, G190S results from a single G→A transition: G (GGC) → S (AGC) almost exclusively in subtype AFSU viruses. Conclusion The predisposition of subtype AFSU to G190S is concerning because G→A is the most common HIV-1 mutation and because G190S causes higher levels of nevirapine and efavirenz resistance than K103N. This study exemplifies the need for characterizing the genetic mechanisms of resistance in diverse populations and warrants studies to verify that NRTI/NNRTI regimens are as efficacious in treating subtype AFSU as viruses belonging to other subtypes. PMID:25259833

  12. Antiretroviral drug resistance and phylogenetic diversity of HIV-1 in Chile.

    PubMed

    Ríos, Maritza; Delgado, Elena; Pérez-Alvarez, Lucía; Fernández, Jorge; Gálvez, Paula; de Parga, Elena Vázquez; Yung, Verónica; Thomson, Michael M; Nájera, Rafael

    2007-06-01

    This study reports the analysis of human immunodeficiency virus type 1 (HIV-1) protease (PR) and reverse transcriptase (RT) coding sequences from 136 HIV-1-infected subjects from Chile, 66 (49%) of them under antiretroviral (ARV) treatment. The prevalence of mutations conferring high or intermediate resistance levels to ARVs was 77% among treated patients and 2.5% among drug-naïve subjects. The distribution of resistance prevalence in treated patients by drug class was 61% to nucleoside RT inhibitors, 84% to nonnucleoside RT inhibitors, and 46% to PR inhibitors. Phylogenetic analysis revealed that 115 (85%) subjects were infected with subtype B viruses, 1 with a subtype F1 virus, and 20 (15%) carried BF intersubtype recombinants. Most BF recombinants grouped into two clusters, one related to CRF12_BF, while the other could represent a new circulating recombinant form (CRF). In conclusion, this is the first report analysing the prevalence of ARV resistance which includes patients under HAART from Chile. Additionally, phylogenetic analysis of the PR-RT coding sequences reveals the presence of BF intersubtype recombinants.

  13. Extreme entropy-enthalpy compensation in a drug-resistant variant of HIV-1 protease.

    PubMed

    King, Nancy M; Prabu-Jeyabalan, Moses; Bandaranayake, Rajintha M; Nalam, Madhavi N L; Nalivaika, Ellen A; Özen, Ayşegül; Haliloğlu, Türkan; Yilmaz, Neşe Kurt; Schiffer, Celia A

    2012-09-21

    The development of HIV-1 protease inhibitors has been the historic paradigm of rational structure-based drug design, where structural and thermodynamic analyses have assisted in the discovery of novel inhibitors. While the total enthalpy and entropy change upon binding determine the affinity, often the thermodynamics are considered in terms of inhibitor properties only. In the current study, profound changes are observed in the binding thermodynamics of a drug-resistant variant compared to wild-type HIV-1 protease, irrespective of the inhibitor bound. This variant (Flap+) has a combination of flap and active site mutations and exhibits extremely large entropy-enthalpy compensation compared to wild-type protease, 5-15 kcal/mol, while losing only 1-3 kcal/mol in total binding free energy for any of six FDA-approved inhibitors. Although entropy-enthalpy compensation has been previously observed for a variety of systems, never have changes of this magnitude been reported. The co-crystal structures of Flap+ protease with four of the inhibitors were determined and compared with complexes of both the wild-type protease and another drug-resistant variant that does not exhibit this energetic compensation. Structural changes conserved across the Flap+ complexes, which are more pronounced for the flaps covering the active site, likely contribute to the thermodynamic compensation. The finding that drug-resistant mutations can profoundly modulate the relative thermodynamic properties of a therapeutic target independent of the inhibitor presents a new challenge for rational drug design.

  14. Doubt, defiance, and identity: Understanding resistance to male circumcision for HIV prevention in Malawi.

    PubMed

    Parkhurst, Justin O; Chilongozi, David; Hutchinson, Eleanor

    2015-06-01

    Global policy recommendations to scale up of male circumcision (MC) for HIV prevention tend to frame the procedure as a simple and efficacious public health intervention. However, there has been variable uptake of MC in countries with significant HIV epidemics. Kenya, for example, has embraced MC and has been dubbed a 'leader' by the global health community, while Malawi has been branded a 'laggard' in its slow adoption of a national programme, with a strong political discourse of resistance forming around MC. Regardless of any epidemiological or technical evidence, the uptake of international recommendations will be shaped by how a policy, and the specific artefacts that constitute that policy, intersect with local concerns. MC holds particular significance within many ethnic and religious groups, serving as an important rite of passage, but also designating otherness or enabling the identification of the social and political self. Understanding how the artefact of MC intersects with local social, economic, and political contexts, is therefore essential to understand the acceptance or resistance of global policy recommendations. In this paper we present an in-depth analysis of Malawi's political resistance to MC, finding that ethnic and religious divisions dominating recent political movements aligned well with differing circumcision practices. Political resistance was further found to manifest through two key narratives: a 'narrative of defiance' around the need to resist donor manipulation, and a 'narrative of doubt' which seized on a piece of epidemiological evidence to refute global claims of efficacy. Further, we found that discussions over MC served as an additional arena through which ethnic identities and claims to power could themselves be negotiated, and therefore used to support claims of political legitimacy.

  15. Maraviroc (Celsentri) for multidrug-resistant human immunodeficiency virus (HIV)-1.

    PubMed

    Ndegwa, S

    2007-12-01

    (1) Maraviroc belongs to a new class of antiretroviral drugs designed to block entry of HIV-1 into CD4+ T-cells via the CCR5 coreceptor. It is indicated for combination therapy in treatment-experienced adults infected with CCR5-tropic HIV-1 that is resistant to multiple antiretroviral agents. (2) Results from two randomized controlled trials (RCTs) indicate that in treatment experienced patients, maraviroc, combined with optimized background therapy (OBT), significantly decreases the level of HIV-1 RNA in the blood (viral load) when compared with OBT alone. The number of patients achieving undetectable viral loads and CD4+ cell count increases were also significantly higher in those receiving maraviroc. (3) Most patients experiencing treatment failure with maraviroc exhibit tropism changes from CCR5-tropic to CXCR4-using virus, but there is no evidence of disease progression. (4) Adverse effects reported with maraviroc include cough, fever, upper respiratory tract infections, rash, muscle and joint pain, abdominal pain, and postural hypotension (dizziness). No significant increases in cardiovascular events, hepatotoxicity, infections or malignancies have been reported with short-term maraviroc therapy. Several post-marketing studies will assess maraviroc's long-term safety for immune function, liver function, malignancy, cardiac events, and risks associated with changes in tropism. (5) Results from an ongoing trial in treatment naive patients suggest that maraviroc may not be superior in terms of viral suppression to standard therapy, but may significantly increase the number of CD4+ T-cells.

  16. Design, Synthesis, Biological and Structural Evaluations of Novel HIV-1 Protease Inhibitors to Combat Drug Resistance

    PubMed Central

    Parai, Maloy Kumar; Huggins, David J.; Cao, Hong; Nalam, Madhavi N. L.; Ali, Akbar; Schiffer, Celia A.; Tidor, Bruce; Rana, Tariq M.

    2012-01-01

    A series of new HIV-1 protease inhibitors (PIs) were designed using a general strategy that combines computational structure-based design with substrate-envelope constraints. The PIs incorporate various alcohol-derived P2 carbamates with acyclic and cyclic heteroatomic functionalities into the (R)-hydroxyethylamine isostere. Most of the new PIs show potent binding affinities against wild-type HIV-1 protease and three multidrug resistant (MDR) variants, in particular inhibitors containing 2,2-dichloroacetamide, pyrrolidinone, imidazolidinone, and oxazolidinone moieties at P2 are the most potent with Ki values in the picomolar range. Several new PIs exhibit nanomolar antiviral potencies against patient-derived wild-type viruses from HIV-1 clades A, B, and C and two MDR variants. Crystal structure analyses of four potent inhibitors revealed that carbonyl groups of the new P2 moieties promote extensive hydrogen bond interactions with the invariant Asp-29 residue of the protease. These structure-activity relationship findings can be utilized to design new PIs with enhanced enzyme inhibitory and antiviral potencies. PMID:22708897

  17. Affordable in-house antiretroviral drug resistance assay with good performance in non-subtype B HIV-1

    PubMed Central

    Wallis, Carole L.; Papathanasopoulos, Maria A.; Lakhi, Shabir; Karita, Etienne; Kamali, Anatoli; Kaleebu, Pontiano; Sanders, Eduard; Anzala, Omu; Bekker, Linda-Gail; Stevens, Gwynn; Rinke de Wit, Tobias F.; Stevens, Wendy

    2010-01-01

    The introduction of antiretroviral therapy in resource-poor settings is effective in suppressing HIV-1 replication and prolonging life of infected individuals. This has led to a demand for affordable HIV-1 drug resistance assays, since treatment failure due to development of drug resistance is common. This study developed and evaluated an affordable “in–house” genotyping assay to monitor HIV-1 drug resistance in Africa, particularly South Africa. An “in-house” assay using automated RNA extraction, and subtype C specific PCR and sequencing primers was developed and successfully evaluated 396 patient samples (viral load ranges 1,000->1.6million RNA copies/ml). The “in-house” assay was validated by comparing sequence data and drug resistance profiles from 90 patient and 10 external quality control samples to data from the ViroSeqTM HIV-1 Genotyping kit. The “in-house” assay was more efficient, amplifying all 100 samples, compared to 91 samples using Viroseq. The “in house” sequences were 99.2%) homologous to the ViroSeq sequences, and identical drug resistance mutation profiles were observed in 96 samples. Furthermore, the “in-house” assay genotyped 260 of 295 samples from seven African sites, where 47% were non-subtype C. Overall, the newly validated “in-house” drug resistance assay is suited for use in Africa as it overcomes the obstacle of subtype diversity. PMID:19917318

  18. Mechanisms of human natural resistance to HIV: a summary of ten years of research in the Colombian population.

    PubMed

    Rugeles, María T; Velilla, Paula A; Montoya, Carlos J

    2011-06-01

    The natural history of human immunodeficiency virus type-1 (HIV-1) infection is a complex and variable process that, similarly to other infections, has clearly demonstrated the existence of mechanisms of human natural resistance. The resistance either inhibits the establishment of infection or delays disease progression. When there is continuous exposure to infectious viral particles, several genetic and immunological mechanisms are essential to lead to resistance to HIV-1 infection/progression. The objective of this manuscript was to review the different mechanisms so far proposed to be responsible for HIV-1 resistance and to present the main results derived from 10 years of research in this area among Colombian subjects. In particular, this review focuses on determining the mechanisms involved in the protection of a group of individuals repeatedly exposed to the virus but who remained exempt of serological and clinical evidence of HIV-1 infection. Although the studies carried out in our research group corroborated the protective role of some of the previously proposed mechanisms of protection, ongoing research worldwide has made it clear that the phenomenon of human natural resistance depends on multiple factors with an important genetic influence, and only multicenter studies involving individuals with different genetic backgrounds may determine more universal mechanisms of resistance. Increasing our knowledge in this field will contribute to the development of novel preventive and therapeutic measures.

  19. Insulin Resistance Change and Antiretroviral Therapy Exposure in HIV-Infected and Uninfected Rwandan Women: A Longitudinal Analysis

    PubMed Central

    Dusingize, Jean Claude; Sinayobye, Jean D’Amour; Cohen, Mardge

    2015-01-01

    Background We longitudinally assessed predictors of insulin resistance (IR) change among HIV-uninfected and HIV-infected (ART-initiators and ART-non-initiators) Rwandan women. Methodology HIV-infected (HIV+) and uninfected (HIV-) women provided demographic and clinical measures: age, body mass index (BMI) in Kg/(height in meters)2, Fat-Mass (FMI) and Fat-Free-Mass (FFMI) index, fasting serum glucose and insulin. Homeostasis Model Assessment (HOMA) was calculated to estimate IR change over time in log10 transformed HOMA measured at study enrollment or prior to ART initiation in 3 groups: HIV- (n = 194), HIV+ ART-non-initiators (n=95) and HIV+ ART-initiators (n=371). ANCOVA linear regression models of change in log10-HOMA were fit with all models included the first log10 HOMA as a predictor. Results Mean±SD log10-HOMA was -0.18±0.39 at the 1st and -0.21±0.41 at the 2nd measure, with mean change of 0.03±0.44. In the final model (all women) BMI at 1st HOMA measure (0.014; 95% CI=0.006-0.021 per kg/m2; p<0.001) and change in BMI from 1st to 2nd measure (0.024; 95% CI=0.013-0.035 per kg/m2; p<0.001) predicted HOMA change. When restricted to subjects with FMI measures, FMI at 1st HOMA measure (0.020; 95% CI=0.010-0.030 per kg/m2; p<0.001) and change in FMI from 1st to 2nd measure (0.032; 95% CI=0.020-0.043 per kg/m2; p<0.0001) predicted change in HOMA. While ART use did not predict change in log10-HOMA, untreated HIV+ women had a significant decline in IR over time. Use or duration of AZT, d4T and EFV was not associated with HOMA change in HIV+ women. Conclusions Baseline BMI and change in BMI, and in particular fat mass and change in fat mass predicted insulin resistance change over ~3 years in HIV-infected and uninfected Rwandan women. Exposure to specific ART (d4T, AZT, EFV) did not predict insulin resistance change in ART-treated HIV-infected Rwandan women. PMID:25880634

  20. HIV-1 genetic diversity and transmitted drug resistance frequency among Iranian treatment-naive, sexually infected individuals.

    PubMed

    Vahabpour, Rouhollah; Bokharaei-Salim, Farah; Kalantari, Saeed; Garshasbi, Saba; Monavari, Seyed Hamidreza; Esghaei, Maryam; Memarnejadian, Arash; Fakhim, Atousa; Keyvani, Hossein

    2017-02-08

    In recent years, the patterns of human immunodeficiency virus 1 (HIV-1) transmission in Iran have been changing gradually from drug injection to unprotected sexual contact. This study sought to investigate the phylogenetic trends and characteristics of transmitted drug resistance (TDR) mutations of HIV-1 in a population that is mainly infected through homo/heterosexual contacts. Sixty newly diagnosed antiretroviral-naive individuals with HIV infection living in Tehran were recruited to this survey, and among them, 42 subjects were established to be infected through sexual intercourse. Following amplification and sequencing of the main part of the HIV-1 pol region, phylogenetic and drug-resistance mutation (DRM) analysis was successfully performed on these 42 patients. Phylogenetic analysis showed that the majority of the subjects were infected with subtype CRF35_AD (88%), followed by subtype B, with 7.1%, and subtype CRF01_AE, with 4.7%. A total of 7.1% of the subjects were found to be infected with HIV-1 variants with surveillance drug-resistant mutations (SDRMs) according to the last world health organisation (WHO) algorithm. All of the identified SDRMs belonged to the non-nucleoside reverse transcriptase inhibitors (NNRTIs) class, including K103 N and V106A, which were found in three patients. Two minor HIV protease-inhibitor-related mutations (L10I and G73S) were detected in two patients, but these mutations are not included in the WHO SDRMs list. The dominance of HIV-1 subtype CRF35_AD was observed among subjects of this study who were infected through sexual contact. The moderate prevalence of SDRMs (7.1%) in this population emphasises the fact that the risk of treatment failure in HIV-infected individuals might increase in the future, and preventive measures should be considered by health authorities.

  1. Insulin resistance in HIV-infected youth is associated with decreased mitochondrial respiration

    PubMed Central

    Takemoto, Jody K.; Miller, Tracie L.; Wang, Jiajia; Jacobson, Denise L.; Geffner, Mitchell E.; Van Dyke, Russell B.; Gerschenson, Mariana

    2017-01-01

    Objective: To identify relationships between insulin resistance (IR) and mitochondrial respiration in perinatally HIV-infected youth. Design: Case–control study. Methods: Mitochondrial respiration was assessed in perinatally HIV-infected youth in Tanner stages 2–5, 25 youth with IR (IR+) and 50 without IR (IR−) who were enrolled in the Pediatric HIV/AIDS Cohort Study. IR was defined as a homeostatic model of assessment for IR value at least 4.0. A novel, high-throughput oximetry method was used to evaluate cellular respiration in peripheral blood mononuclear cells. Unadjusted and adjusted differences in mitochondrial respiration markers between IR+ and IR− were evaluated, as were correlations between mitochondrial respiration markers and biochemical measurements. Results: IR+ and IR− youth were similar on age, sex, and race/ethnicity. Mean age was 16.5 and 15.6 years in IR+ and IR−, respectively. The IR+ group had significantly higher mean BMI and metabolic analytes (fasting glucose, insulin, cholesterol, triglycerides, and venous lactate and pyruvate) compared with the IR−. Mitochondrial respiration markers were, on average, lower in the IR+ compared with IR−, including basal respiration (417.5 vs. 597.5 pmol, P = 0.074), ATP production (11 513 vs. 15 202 pmol, P = 0.078), proton leak (584.6 vs. 790.0 pmol, P = 0.033), maximal respiration (1815 vs. 2399 pmol, P = 0.025), and spare respiration capacity (1162 vs. 2017 pmol, P = 0.032). Nonmitochondrial respiration did not differ by IR status. The results did not change when adjusted for age. Conclusion: HIV-infected youth with IR have lower mitochondrial respiration markers when compared to youth without IR. Disordered mitochondrial respiration may be a potential mechanism for IR in this population. PMID:27755108

  2. High prevalence of transmitted drug resistance in acute HIV-infected Thai men who have sex with men.

    PubMed

    Ananworanich, Jintanat; Sirivichayakul, Sunee; Pinyakorn, Suteeraporn; Crowell, Trevor A; Trichavaroj, Rapee; Weerayingyong, Jessica; Chomchey, Nitiya; Fletcher, James L K; van Griensven, Frits; Phanuphak, Praphan; Robb, Merlin L; Michael, Nelson L; Kim, Jerome H; Phanuphak, Nittaya

    2015-04-01

    : As use of antiretroviral therapy in Thailand increases, so does the potential for transmission of drug-resistant HIV. We describe the prevalence of WHO surveillance drug resistance mutations among 120 subjects who underwent genotypic testing during acute HIV infection in Bangkok, Thailand. In this cohort of predominantly men who have sex with men, we observed an overall transmitted drug resistance prevalence of 9.2%, including nucleoside/nucleotide analog reverse transcriptase inhibitor 5.0%, nonnucleoside analog reverse transcriptase inhibitor 3.4%, and protease inhibitor 3.4%. These prevalence estimates are higher than previous reports of transmitted drug resistance in Thailand. Baseline drug resistance testing may be warranted, particularly among men who have sex with men.

  3. Resistance detected by pyrosequencing following zidovudine monotherapy for prevention of HIV-1 mother-to-child-transmission.

    PubMed

    Olson, Scott C; Ngo-Giang-Huong, Nicole; Beck, Ingrid; Deng, Wenjie; Britto, Paula; Shapiro, David E; Bumgarner, Roger E; Mullins, James I; Van Dyke, Russell B; Jourdain, Gonzague; Frenkel, Lisa M

    2015-07-31

    To prevent mother-to-child-transmission of HIV-1, the 2010 WHO guidelines recommended prenatal zidovudine (ZDV) monotherapy (option A). To determine if ZDV monotherapy selects for HIV resistance in antiretroviral-naive women during pregnancy, specimens from 50 individuals were examined using pyrosequencing. ZDV-resistance mutations were detected at delivery in seven women (14%, 95% confidence interval 6.6-26.5%). These data raise the question whether women administered ZDV monotherapy for prevention of mother-to-child-transmission could have higher risk of virologic failure when later started on combination antiretroviral therapy, as has been demonstrated following single-dose nevirapine prophylaxis.

  4. Transition states of native and drug-resistant HIV-1 protease are the same

    PubMed Central

    Kipp, D. Randal; Hirschi, Jennifer S.; Wakata, Aya; Goldstein, Harris; Schramm, Vern L.

    2012-01-01

    HIV-1 protease is an important target for the treatment of HIV/AIDS. However, drug resistance is a persistent problem and new inhibitors are needed. An approach toward understanding enzyme chemistry, the basis of drug resistance, and the design of powerful inhibitors is to establish the structure of enzymatic transition states. Enzymatic transition structures can be established by matching experimental kinetic isotope effects (KIEs) with theoretical predictions. However, the HIV-1 protease transition state has not been previously resolved using these methods. We have measured primary 14C and 15N KIEs and secondary 3H and 18O KIEs for native and multidrug-resistant HIV-1 protease (I84V). We observed 14C KIEs (14V/K) of 1.029 ± 0.003 and 1.025 ± 0.005, 15N KIEs (15V/K) of 0.987 ± 0.004 and 0.989 ± 0.003, 18O KIEs (18V/K) of 0.999 ± 0.003 and 0.993 ± 0.003, and 3H KIEs (3V/K) KIEs of 0.968 ± 0.001 and 0.976 ± 0.001 for the native and I84V enzyme, respectively. The chemical reaction involves nucleophilic water attack at the carbonyl carbon, proton transfer to the amide nitrogen leaving group, and C-N bond cleavage. A transition structure consistent with the KIE values involves proton transfer from the active site Asp-125 (1.32 Å) with partial hydrogen bond formation to the accepting nitrogen (1.20 Å) and partial bond loss from the carbonyl carbon to the amide leaving group (1.52 Å). The KIEs measured for the native and I84V enzyme indicate nearly identical transition states, implying that a true transition-state analogue should be effective against both enzymes. PMID:22493227

  5. Sequence and structure based models of HIV-1 protease and reverse transcriptase drug resistance

    PubMed Central

    2013-01-01

    Background Successful management of chronic human immunodeficiency virus type 1 (HIV-1) infection with a cocktail of antiretroviral medications can be negatively affected by the presence of drug resistant mutations in the viral targets. These targets include the HIV-1 protease (PR) and reverse transcriptase (RT) proteins, for which a number of inhibitors are available on the market and routinely prescribed. Protein mutational patterns are associated with varying degrees of resistance to their respective inhibitors, with extremes that can range from continued susceptibility to cross-resistance across all drugs. Results Here we implement statistical learning algorithms to develop structure- and sequence-based models for systematically predicting the effects of mutations in the PR and RT proteins on resistance to each of eight and eleven inhibitors, respectively. Employing a four-body statistical potential, mutant proteins are represented as feature vectors whose components quantify relative environmental perturbations at amino acid residue positions in the respective target structures upon mutation. Two approaches are implemented in developing sequence-based models, based on use of either relative frequencies or counts of n-grams, to generate vectors for representing mutant proteins. To the best of our knowledge, this is the first reported study on structure- and sequence-based predictive models of HIV-1 PR and RT drug resistance developed by implementing a four-body statistical potential and n-grams, respectively, to generate mutant attribute vectors. Performance of the learning methods is evaluated on the basis of tenfold cross-validation, using previously assayed and publicly available in vitro data relating mutational patterns in the targets to quantified inhibitor susceptibility changes. Conclusion Overall performance results are competitive with those of a previously published study utilizing a sequence-based strategy, while our structure- and sequence

  6. Influence of antituberculosis drug resistance and Mycobacterium tuberculosis lineage on outcome in HIV-associated tuberculous meningitis.

    PubMed

    Tho, Dau Quang; Török, M Estée; Yen, Nguyen Thi Bich; Bang, Nguyen Duc; Lan, Nguyen Thi Ngoc; Kiet, Vo Sy; van Vinh Chau, Nguyen; Dung, Nguyen Huy; Day, Jeremy; Farrar, Jeremy; Wolbers, Marcel; Caws, Maxine

    2012-06-01

    HIV-associated tuberculous meningitis (TBM) has high mortality. Aside from the devastating impact of multidrug resistance (MDR) on survival, little is understood about the influence of other bacterial factors on outcome. This study examined the influence of Mycobacterium tuberculosis drug resistance, bacterial lineage, and host vaccination status on outcome in patients with HIV-associated TBM. Mycobacterium tuberculosis isolates from the cerebrospinal fluid of 186 patients enrolled in two studies of HIV-associated TBM in Ho Chi Minh City, Vietnam, were tested for resistance to first-line antituberculosis drugs. Lineage genotyping was available for 122 patients. The influence of antituberculosis drug resistance and M. tuberculosis lineage on 9-month mortality was analyzed using Kaplan-Meier survival analysis and Cox multiple regression models. Isoniazid (INH) resistance without rifampin resistance was associated with increased mortality (adjusted hazard ratio [HR], 1.78, 95% confidence interval [CI], 1.18 to 2.66; P = 0.005), and multidrug resistance was uniformly fatal (n = 8/8; adjusted HR, 5.21, 95% CI, 2.38 to 11.42; P < 0.0001). The hazard ratio for INH-resistant cases was greatest during the continuation phase of treatment (after 3 months; HR, 5.05 [95% CI, 2.23 to 11.44]; P = 0.0001). Among drug-susceptible cases, patients infected with the "modern" Beijing lineage strains had lower mortality than patients infected with the "ancient" Indo-Oceanic lineage (HR, 0.29 [95% CI, 0.14 to 0.61]; P = 0.001). Isoniazid resistance, multidrug resistance, and M. tuberculosis lineage are important determinants of mortality in patients with HIV-associated TBM. Interventions which target these factors may help reduce the unacceptably high mortality in patients with TBM.

  7. Stability of dried blood spots for HIV-1 drug resistance analysis.

    PubMed

    Hearps, Anna C; Ryan, Claire E; Morris, Lisa M; Plate, Megan M; Greengrass, Vicki; Crowe, Suzanne M

    2010-03-01

    The wide scale application of dried blood spots (DBS) as a collection tool for low-cost HIV drug resistance testing requires a greater understanding of the accuracy of DBS for genotype analysis and the stability of DBS under various environmental conditions. Analysis of a 50microl DBS via a single amplicon, nested PCR-based in-house assay (the Burnet genotyping assay) showed an average nucleotide concordance of 98.9% with plasma samples, although only 65% of nucleotide mixtures detected in plasma were also detected within DBS. The analysis of three DBS resulted in the detection of a greater number of nucleotide mixtures (72 and 109 mixtures detected within one and three DBS, respectively, n=10). Two DBS extraction protocols (silica particle; NucliSENS, bioMerieux and spin column extraction; High Pure, Roche) were assessed and found to be equivalent (79% and 84% recovery success respectively, n=19). FTA Elute paper (Whatman) was an inferior DBS collection medium compared to Whatman 903 paper. DBS appeared relatively tolerant to multiple freeze/thaw cycles, with 79% of DBS subjected to ten freeze/thaw cycles successfully amplified compared to 93% of DBS defrosted once (n=14). High temperature (37 degrees C) and high humidity (>90%) substantially impaired DBS recovery within two weeks of storage (38%, n=8), whilst storage at -20 degrees C or 4 degrees C adequately preserved DBS for this period (100% recovery, n=8). Therefore, whilst DBS are suitable for HIV drug resistance surveillance, the use of multiple DBS may be required to ensure accurate detection of minor HIV quasispecies and short-term storage of samples at either 4 degrees C or -20 degrees C is recommended.

  8. Assessing transmissibility of HIV-1 drug resistance mutations from treated and from drug-naive individuals

    PubMed Central

    Winand, Raf; Theys, Kristof; Eusébio, Mónica; Aerts, Jan; Camacho, Ricardo J.; Gomes, Perpetua; Suchard, Marc A.; Vandamme, Anne-Mieke; Abecasis, Ana B.

    2015-01-01

    Objectives: Surveillance drug resistance mutations (SDRMs) in drug-naive patients are typically used to survey HIV-1-transmitted drug resistance (TDR). We test here how SDRMs in patients failing treatment, the original source of TDR, contribute to assessing TDR, transmissibility and transmission source of SDRMs. Design: This is a retrospective observational study analyzing a Portuguese cohort of HIV-1-infected patients. Methods: The prevalence of SDRMs to protease inhibitors, nucleoside reverse transcriptase inhibitors (NRTIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs) in drug-naive and treatment-failing patients was measured for 3554 HIV-1 subtype B patients. Transmission ratio (prevalence in drug-naive/prevalence in treatment-failing patients), average viral load and robust linear regression with outlier detection (prevalence in drug-naive versus in treatment-failing patients) were analyzed and used to interpret transmissibility. Results: Prevalence of SDRMs in drug-naive and treatment-failing patients were linearly correlated, but some SDRMs were classified as outliers – above (PRO: D30N, N88D/S, L90 M, RT: G190A/S/E) or below (RT: M184I/V) expectations. The normalized regression slope was 0.073 for protease inhibitors, 0.084 for NRTIs and 0.116 for NNRTIs. Differences between SDRMs transmission ratios were not associated with differences in viral loads. Conclusion: The significant linear correlation between prevalence of SDRMs in drug-naive and in treatment-failing patients indicates that the prevalence in treatment-failing patients can be useful to predict levels of TDR. The slope is a cohort-dependent estimate of rate of TDR per drug class and outlier detection reveals comparative persistence of SDRMs. Outlier SDRMs with higher transmissibility are more persistent and more likely to have been acquired from drug-naive patients. Those with lower transmissibility have faster reversion dynamics after transmission and are associated with

  9. Antigenicity-defined conformations of an extremely neutralization-resistant HIV-1 envelope spike.

    PubMed

    Cai, Yongfei; Karaca-Griffin, Selen; Chen, Jia; Tian, Sai; Fredette, Nicholas; Linton, Christine E; Rits-Volloch, Sophia; Lu, Jianming; Wagh, Kshitij; Theiler, James; Korber, Bette; Seaman, Michael S; Harrison, Stephen C; Carfi, Andrea; Chen, Bing

    2017-04-10

    The extraordinary genetic diversity of the HIV-1 envelope spike [Env; trimeric (gp160)3, cleaved to (gp120/gp41)3] poses challenges for vaccine development. Envs of different clinical isolates exhibit different sensitivities to antibody-mediated neutralization. Envs of difficult-to-neutralize viruses are thought to be more stable and conformationally homogeneous trimers than those of easy-to-neutralize viruses, thereby providing more effective concealment of conserved, functionally critical sites. In this study we have characterized the antigenic properties of an Env derived from one of the most neutralization-resistant HIV-1 isolates, CH120.6. Sequence variation at neutralizing epitopes does not fully account for its exceptional resistance to antibodies. The full-length, membrane-bound CH120.6 Env is indeed stable and conformationally homogeneous. Its antigenicity correlates closely with its neutralization sensitivity, and major changes in antigenicity upon CD4 engagement appear to be restricted to the coreceptor site. The CH120.6 gp140 trimer, the soluble and uncleaved ectodomain of (gp160)3, retains many antigenic properties of the intact Env, consistent with a conformation close to that of Env spikes on a virion, whereas its monomeric gp120 exposes many nonneutralizing or strain-specific epitopes. Thus, trimer organization and stability are important determinants not only for occluding many epitopes but also for conferring resistance to neutralization by all but a small set of antibodies. Env preparations derived from neutralization-resistant viruses may induce irrelevant antibody responses less frequently than do other Envs and may be excellent templates for developing soluble immunogens.

  10. Distribution of the HIV resistance CCR5-Delta32 allele among Egyptians and Syrians.

    PubMed

    Salem, Abdel-Halim; Batzer, Mark A

    2007-03-01

    A mutant allele of the beta-chemokine receptor gene CCR5 bearing a 32-basepair (bp) deletion that prevents cell invasion by the primary transmitting strain of HIV-1 has recently been characterized. Individuals homozygous for the mutation are resistant to infection, even after repeated high-risk exposure, but this resistance appears not absolute, as isolated cases of HIV-positive deletion homozygotes are emerging. The consequence of the heterozygous state is not clear, but it may delay the progression to AIDS in infected individuals. In order to evaluate the frequency distribution of CCR5-Delta32 polymorphism among Egyptians, a total of 200 individuals (154 from Ismailia and 46 from Sinai) were tested. Only two heterozygous individuals from Ismailia carried the CCR5-Delta32 allele (0.6%), and no homozygous (Delta32/Delta32) individuals were detected among the tested samples. The presence of the CCR5-Delta32 allele among Egyptians may be attributed to the admixture with people of European descent. Thus we conclude that the protective deletion CCR5-Delta32 is largely absent in the Egyptian population.

  11. Resistance-associated epitopes of HIV-1C-highly probable candidates for a multi-epitope vaccine.

    PubMed

    Sundaramurthi, Jagadish Chandrabose; Swaminathan, Soumya; Hanna, Luke Elizabeth

    2012-10-01

    Earlier studies have identified a large number of immunogenic epitopes in HIV-1. Efforts are required to prioritize these epitopes in order to identify the best candidates for formulating an effective multi-epitope vaccine for HIV. We modeled 155 known cytotoxic T lymphocyte epitopes of HIV-1 subtype C on the 3D structure of HLA-A*0201, HLA-B*2705, and HLA-B*5101 using MODPROPEP, as these alleles are known to be associated with resistance to HIV/slow progression to AIDS. Thirty-six epitopes were identified to bind to all the three HLA alleles with better binding affinity than the control peptides complexed with each HLA allele but not to any of the HLA alleles reported to be associated with susceptibility to HIV infection/rapid progression to disease. As increase in stability of the epitope-HLA complex results in increased immunogenicity, the short-listed epitopes could be suitable candidates for vaccine development. Twenty of the 36 epitopes were polyfunctional in nature adding to their immunological relevance for vaccine design. Further, 9 of the 20 polyfunctional epitopes were found to bind to all three resistance-associated HLA alleles using an additional method, adding worth to their potential as candidates for a vaccine formulation for HIV-1C.

  12. Neutralizing antibody and anti-retroviral drug sensitivities of HIV-1 isolates resistant to small molecule CCR5 inhibitors

    SciTech Connect

    Pugach, Pavel; Ketas, Thomas J.; Michael, Elizabeth; Moore, John P.

    2008-08-01

    The small molecule CCR5 inhibitors are a new class of drugs for treating infection by human immunodeficiency virus type 1 (HIV-1). They act by binding to the CCR5 co-receptor and preventing its use during HIV-1-cell fusion. Escape mutants can be raised against CCR5 inhibitors in vitro and will arise when these drugs are used clinically. Here, we have assessed the responses of CCR5 inhibitor-resistant viruses to other anti-retroviral drugs that act by different mechanisms, and their sensitivities to neutralizing antibodies (NAbs). The rationale for the latter study is that the resistance pathway for CCR5 inhibitors involves changes in the HIV-1 envelope glycoproteins (Env), which are also targets for NAbs. The escape mutants CC101.19 and D1/85.16 were selected for resistance to AD101 and vicriviroc (VVC), respectively, from the primary R5 HIV-1 isolate CC1/85. Each escape mutant was cross-resistant to other small molecule CCR5 inhibitors (aplaviroc, maraviroc, VVC, AD101 and CMPD 167), but sensitive to protein ligands of CCR5: the modified chemokine PSC-RANTES and the humanized MAb PRO-140. The resistant viruses also retained wild-type sensitivity to the nucleoside reverse transcriptase inhibitor (RTI) zidovudine, the non-nucleoside RTI nevirapine, the protease inhibitor atazanavir and other attachment and fusion inhibitors that act independently of CCR5 (BMS-806, PRO-542 and enfuvirtide). Of note is that the escape mutants were more sensitive than the parental CC1/85 isolate to a subset of neutralizing monoclonal antibodies and to some sera from HIV-1-infected people, implying that sequence changes in Env that confer resistance to CCR5 inhibitors can increase the accessibility of some NAb epitopes. The need to preserve NAb resistance may therefore be a constraint upon how escape from CCR5 inhibitors occurs in vivo.

  13. Neutralizing antibody and anti-retroviral drug sensitivities of HIV-1 isolates resistant to small molecule CCR5 inhibitors

    PubMed Central

    Pugach, Pavel; Ketas, Thomas J.; Michael, Elizabeth; Moore, John P.

    2008-01-01

    The small molecule CCR5 inhibitors are a new class of drugs for treating infection by human immunodeficiency virus type 1 (HIV-1). They act by binding to the CCR5 co-receptor and preventing its use during HIV-1-cell fusion. Escape mutants can be raised against CCR5 inhibitors in vitro and will arise when these drugs are used clinically. Here, we have assessed the responses of CCR5 inhibitor-resistant viruses to other anti-retroviral drugs that act by different mechanisms, and their sensitivities to neutralizing antibodies (NAbs). The rationale for the latter study is that the resistance pathway for CCR5 inhibitors involves changes in the HIV-1 envelope glycoproteins (Env), which are also targets for NAbs. The escape mutants CC101.19 and D1/85.16 were selected for resistance to AD101 and vicriviroc (VVC), respectively, from the primary R5 HIV-1 isolate CC1/85. Each escape mutant was cross resistant to other small molecule CCR5 inhibitors (aplaviroc, maraviroc, VVC, AD101 and CMPD 167), but sensitive to protein ligands of CCR5: the modified chemokine PSC-RANTES and the humanized MAb PRO 140. The resistant viruses also retained wild-type sensitivity to the nucleoside reverse transcriptase inhibitor (RTI) zidovudine, the non-nucleoside RTI nevirapine, the protease inhibitor atazanavir and other attachment and fusion inhibitors that act independently of CCR5 (BMS-806, PRO-542 and enfuvirtide). Of note is that the escape mutants were more sensitive than the parental CC1/85 isolate to a subset of neutralizing monoclonal antibodies and to some sera from HIV-1-infected people, implying that sequence changes in Env that confer resistance to CCR5 inhibitors can increase the accessibility of some NAb epitopes. The need to preserve NAb resistance may therefore be a constraint upon how escape from CCR5 inhibitors occurs in vivo. PMID:18519143

  14. Improved Virological Outcomes in British Columbia Concomitant with Decreasing Incidence of HIV Type 1 Drug Resistance Detection

    PubMed Central

    Gill, Vikram S.; Lima, Viviane D.; Zhang, Wen; Wynhoven, Brian; Yip, Benita; Hogg, Robert S.; Montaner, Julio S. G.; Harrigan, P. Richard

    2010-01-01

    Background There have been limited studies evaluating temporal changes in the incidence of detection of drug resistance among human immunodeficiency virus type 1 (HIV-1) isolates and concomitant changes in plasma HIV load for treated individuals in a population-wide setting. Methods Longitudinal plasma viral load and genotypic resistance data were obtained from patients receiving antiretroviral therapy from the British Columbia Drug Treatment Program from July 1996 through December 2008. A total of 24,652 resistance tests were available from 5422 individuals. The incidence of successful plasma viral load suppression and of resistance to each of 3 antiretroviral categories (nucleoside/nucleotide reverse-transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors) was calculated for the population receiving therapy. Results There has been a drastic decrease in the incidence of new cases of HIV-1 drug resistance in individuals followed during 1996–2008. In 1997, the incidence rate of any newly detected resistance was 1.73 cases per 100 person-months of therapy, and by 2008, the incidence rate had decreased >12-fold, to 0.13 cases per 100 person-months of therapy. This decrease in the incidence of resistance has occurred at an exponential rate, with half-times on the order of 2–3 years. Concomitantly, the proportion of individuals with plasma viral load suppression has increased linearly over time (from 64.7% with HIV RNA levels <50 copies/mL in 2000 to 87.0% in 2008; R2 = 0.97; P <.001). Conclusions Our results suggest an increasing effectiveness of highly active antiretroviral therapy at the populational level. The vast majority of treated patients in British Columbia now have either suppressed plasma viral load or drug-susceptible HIV-1, according to their most recent test results. PMID:19951169

  15. Contribution of the 80s loop of HIV-1 protease to the multidrug-resistance mechanism: crystallographic study of MDR769 HIV-1 protease variants

    PubMed Central

    Yedidi, Ravikiran S.; Proteasa, Georghe; Martinez, Jorge L.; Vickrey, John F.; Martin, Philip D.; Wawrzak, Zdzislaw; Liu, Zhigang; Kovari, Iulia A.; Kovari, Ladislau C.

    2011-01-01

    The flexible flaps and the 80s loops (Pro79–Ile84) of HIV-1 protease are crucial in inhibitor binding. Previously, it was reported that the crystal structure of multidrug-resistant 769 (MDR769) HIV-1 protease shows a wide-open conformation of the flaps owing to conformational rigidity acquired by the accumulation of mutations. In the current study, the effect of mutations on the conformation of the 80s loop of MDR769 HIV-1 protease variants is reported. Alternate conformations of Pro81 (proline switch) with a root-mean-square deviation of 3–4.8 Å in the Cα atoms of the I10V mutant and a side chain with a ‘flipped-out’ conformation in the A82F mutant cause distortion in the S1/S1′ binding pockets that affects inhibitor binding. The A82S and A82T mutants show local changes in the electrostatics of inhibitor binding owing to the mutation from nonpolar to polar residues. In summary, the crystallo­graphic studies of four variants of MDR769 HIV-1 protease presented in this article provide new insights towards understanding the drug-resistance mechanism as well as a basis for design of future protease inhibitors with enhanced potency. PMID:21636892

  16. Contribution of the 80s loop of HIV-1 protease to the multidrug-resistance mechanism: crystallographic study of MDR769 HIV-1 protease variants

    SciTech Connect

    Yedidi, Ravikiran S.; Proteasa, Georghe; Martinez, Jorge L.; Vickrey, John F.; Martin, Philip D.; Wawrzak, Zdzislaw; Liu, Zhigang; Kovari, Iulia A.; Kovari, Ladislau C.

    2011-09-06

    The flexible flaps and the 80s loops (Pro79-Ile84) of HIV-1 protease are crucial in inhibitor binding. Previously, it was reported that the crystal structure of multidrug-resistant 769 (MDR769) HIV-1 protease shows a wide-open conformation of the flaps owing to conformational rigidity acquired by the accumulation of mutations. In the current study, the effect of mutations on the conformation of the 80s loop of MDR769 HIV-1 protease variants is reported. Alternate conformations of Pro81 (proline switch) with a root-mean-square deviation of 3-4.8 {angstrom} in the C{alpha} atoms of the I10V mutant and a side chain with a 'flipped-out' conformation in the A82F mutant cause distortion in the S1/S1' binding pockets that affects inhibitor binding. The A82S and A82T mutants show local changes in the electrostatics of inhibitor binding owing to the mutation from nonpolar to polar residues. In summary, the crystallographic studies of four variants of MDR769 HIV-1 protease presented in this article provide new insights towards understanding the drug-resistance mechanism as well as a basis for design of future protease inhibitors with enhanced potency.

  17. Computational study of the resistance shown by the Subtype B / HIV-1 Protease to currently known inhibitors †

    PubMed Central

    Genoni, Alessandro; Morra, Giulia; Merz, Kenneth M.; Colombo, Giorgio

    2010-01-01

    Human Immunodeficiency Virus type 1 Protease (HIV-1 PR) is an essential enzyme in the HIV-1 life cycle. As such, this protein represents a major drug target in AIDS therapy, but emerging resistance to anti-retroviral inhibitor cocktails, due to high viral mutation rates, represents a significant challenge in AIDS treatment. Many mutations are not located within the active site or binding pocket, nor they do significantly modify the 3D structural organization of the enzyme; hence, the mechanism(s) by which they alter inhibitor affinity for the Protease remains uncertain. In this article, we present an all-atom computational analysis of the dynamic residue-residue coordination between the active site residues and the rest of the protein and of the energetic properties of different HIV-1 PR complexes. We analyze both the wild type form and mutated forms that induce drug resistance. In particular, the results show differences between the wild type and the mutants in their mechanism of dynamic coordination, in the signal propagation between the active site residues and the rest of the protein and in the energy-networks responsible for the stabilization of the bound inhibitor conformation. Finally, we propose a dynamic and energetic explanation for HIV-1 Protease drug resistance and, through this model, we identify a possible new site that could be helpful in the design of a new family of HIV-1 PR allosteric inhibitors. PMID:20415450

  18. Human immunodeficiency virus type 1 (HIV-1) integrase: resistance to diketo acid integrase inhibitors impairs HIV-1 replication and integration and confers cross-resistance to L-chicoric acid.

    PubMed

    Lee, Deborah J; Robinson, W E

    2004-06-01

    The diketo acids are potent inhibitors of human immunodeficiency virus (HIV) integrase (IN). Mutations in IN, T66I, S153Y, and M154I, as well as T66I-S153Y and T66I-M154I double mutations, confer resistance to diketo acids (D. J. Hazuda et al., Science 287:646-650, 2000). The effects of these IN mutations on viral replication, enzymatic activity, and susceptibility to other HIV inhibitors are reported herein. By immunofluorescence assay and real-time PCR, all mutant viruses demonstrated a modest delay in viral spread compared to that of reference HIV. These viruses also showed a statistically significant defect in integration without defects in reverse transcription. Recombinant IN containing S153Y, T66I, and M154I-T66I mutations had an approximately twofold decrease in both disintegration and 3'-end-processing-strand transfer activities in vitro. In contrast, IN containing M154I demonstrated a greater than twofold increase in specific activity in both reactions. All mutant HIVs were resistant to l-chicoric acid, a dicaffeoyltartaric acid IN inhibitor, both in tissue culture and in biochemical assays, yet remained susceptible to the reverse transcriptase inhibitors zidovudine and nevirapine. Thus, IN mutations conferring resistance to the diketo acids can yield integration defects, attenuated catalysis in vitro, and cross-resistance to l-chicoric acid.

  19. Antiviral Activity of Bictegravir (GS-9883), a Novel Potent HIV-1 Integrase Strand Transfer Inhibitor with an Improved Resistance Profile

    PubMed Central

    Tsiang, Manuel; Jones, Gregg S.; Goldsmith, Joshua; Mulato, Andrew; Hansen, Derek; Kan, Elaine; Tsai, Luong; Bam, Rujuta A.; Stepan, George; Stray, Kirsten M.; Niedziela-Majka, Anita; Yant, Stephen R.; Yu, Helen; Kukolj, George; Cihlar, Tomas; Lazerwith, Scott E.; Jin, Haolun

    2016-01-01

    Bictegravir (BIC; GS-9883), a novel, potent, once-daily, unboosted inhibitor of HIV-1 integrase (IN), specifically targets IN strand transfer activity (50% inhibitory concentration [IC50] of 7.5 ± 0.3 nM) and HIV-1 integration in cells. BIC exhibits potent and selective in vitro antiretroviral activity in both T-cell lines and primary human T lymphocytes, with 50% effective concentrations ranging from 1.5 to 2.4 nM and selectivity indices up to 8,700 relative to cytotoxicity. BIC exhibits synergistic in vitro antiviral effects in pairwise combinations with tenofovir alafenamide, emtricitabine, or darunavir and maintains potent antiviral activity against HIV-1 variants resistant to other classes of antiretrovirals. BIC displayed an in vitro resistance profile that was markedly improved compared to the integrase strand transfer inhibitors (INSTIs) raltegravir (RAL) and elvitegravir (EVG), and comparable to that of dolutegravir (DTG), against nine INSTI-resistant site-directed HIV-1 mutants. BIC displayed statistically improved antiviral activity relative to EVG, RAL, and DTG against a panel of 47 patient-derived HIV-1 isolates with high-level INSTI resistance; 13 of 47 tested isolates exhibited >2-fold lower resistance to BIC than DTG. In dose-escalation experiments conducted in vitro, BIC and DTG exhibited higher barriers to resistance than EVG, selecting for HIV-1 variants with reduced phenotypic susceptibility at days 71, 87, and 20, respectively. A recombinant virus with the BIC-selected M50I/R263K dual mutations in IN exhibited only 2.8-fold reduced susceptibility to BIC compared to wild-type virus. All BIC-selected variants exhibited low to intermediate levels of cross-resistance to RAL, DTG, and EVG (<8-fold) but remained susceptible to other classes of antiretrovirals. A high barrier to in vitro resistance emergence for both BIC and DTG was also observed in viral breakthrough studies in the presence of constant clinically relevant drug concentrations. The

  20. Insulin resistance and diabetes mellitus associated with antiretroviral use in HIV-infected patients: pathogenesis, prevention, and treatment options.

    PubMed

    Tebas, Pablo

    2008-09-01

    The contribution of current antiretroviral treatment regimens to the long-term survival of HIV-infected individuals is accompanied by increased risk of glucose metabolism abnormalities in this patient population. The risk of insulin resistance and diabetes in HIV-infected patients receiving antiretroviral treatment stems from 2 sources: exposure to the same environmental factors that have led to an increased incidence of these conditions in the general population and the negative effects on glucose metabolism inherent to components of antiretroviral treatment regimens. This article reviews the pathogenesis and diagnosis of insulin resistance and diabetes and the contribution of components of antiretroviral therapy regimens to increased risk for these conditions. Optimization of antiretroviral treatment regimens for HIV-infected patients with or at increased risk for development of abnormalities in glucose metabolism is discussed.

  1. Taking a break from chemotherapy to fight drug-resistance: The cases of cancer and HIV/AIDS.

    PubMed

    Hadjiandreou, Marios M; Mitsis, Georgios D

    2013-01-01

    In this work, we present how optimized treatment interruptions during chemotherapy may be used to control drug-resistance, a major challenge for clinicians worldwide. Specifically, we examine resistance in cancer and HIV/AIDS. For each disease, we use mathematical models alongside real data to represent the respective complex biological phenomena and optimal control algorithms to design optimized treatment schedules aiming at controlling disease progression and patient death. In both diseases, it is shown that the key to controlling resistance is the optimal management of the frequency and magnitude of treatment interruptions as a way to facilitate the interplay between the competitive resistant/sensitive strains.

  2. Energetic basis for drug resistance of HIV-1 protease mutants against amprenavir

    NASA Astrophysics Data System (ADS)

    Kar, Parimal; Knecht, Volker

    2012-02-01

    Amprenavir (APV) is a high affinity (0.15 nM) HIV-1 protease (PR) inhibitor. However, the affinities of the drug resistant protease variants V32I, I50V, I54V, I54M, I84V and L90M to amprenavir are decreased 3 to 30-fold compared to the wild-type. In this work, the popular molecular mechanics Poisson-Boltzmann surface area method has been used to investigate the effectiveness of amprenavir against the wild-type and these mutated protease variants. Our results reveal that the protonation state of Asp25/Asp25' strongly affects the dynamics, the overall affinity and the interactions of the inhibitor with individual residues. We emphasize that, in contrast to what is often assumed, the protonation state may not be inferred from the affinities but requires pKa calculations. At neutral pH, Asp25 and Asp25' are ionized or protonated, respectively, as suggested from pKa calculations. This protonation state was thus mainly considered in our study. Mutation induced changes in binding affinities are in agreement with the experimental findings. The decomposition of the binding free energy reveals the mechanisms underlying binding and drug resistance. Drug resistance arises from an increase in the energetic contribution from the van der Waals interactions between APV and PR (V32I, I50V, and I84V mutant) or a rise in the energetic contribution from the electrostatic interactions between the inhibitor and its target (I54M and I54V mutant). For the V32I mutant, also an increased free energy for the polar solvation contributes to the drug resistance. For the L90M mutant, a rise in the van der Waals energy for APV-PR interactions is compensated by a decrease in the polar solvation free energy such that the net binding affinity remains unchanged. Detailed understanding of the molecular forces governing binding and drug resistance might assist in the design of new inhibitors against HIV-1 PR variants that are resistant against current drugs.

  3. Novel HIV-1 Protease Inhibitors (PIs) Containing a Bicyclic P2 Functional Moiety, Tetrahydropyrano-Tetrahydrofuran, That Are Potent against Multi-PI-Resistant HIV-1 Variants▿ †

    PubMed Central

    Ide, Kazuhiko; Aoki, Manabu; Amano, Masayuki; Koh, Yasuhiro; Yedidi, Ravikiran S.; Das, Debananda; Leschenko, Sofiya; Chapsal, Bruno; Ghosh, Arun K.; Mitsuya, Hiroaki

    2011-01-01

    We identified GRL-1388 and -1398, potent nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing a bicyclic P2 functional moiety, tetrahydropyrano-tetrahydrofuran (Tp-THF). GRL-1388 was as potent as darunavir (DRV) against various drug-resistant HIV-1 laboratory strains with 50% effective concentration (EC50s) of 2.6 to 32.6 nM. GRL-1398 was significantly more potent against such variants than DRV with EC50s of 0.1 to 5.7 nM. GRL-1388 and -1398 were also potent against multiple-PI-resistant clinical HIV-1 variants (CLHIV-1MDR) with EC50s ranging from 2.7 to 21.3 nM and from 0.3 to 4.8 nM, respectively. A highly DRV-resistant HIV-1 variant selected in vitro remained susceptible to GRL-1398 with the EC50 of 21.9 nM, while the EC50 of DRV was 214.1 nM. When HIV-1NL4-3 was selected with GRL-1398, four amino acid substitutions—leucine to phenylalanine at a position 10 (L10F), A28S, L33F, and M46I—emerged, ultimately enabling the virus to replicate in the presence of >1.0 μM the compound beyond 57 weeks of selection. When a mixture of 10 different CLHIV-1MDR strains was selected, the emergence of resistant variants was more substantially delayed with GRL-1398 than with GRL-1388 and DRV. Modeling analyses revealed that GRL-1398 had greater overall hydrogen bonding and hydrophobic interactions than GRL-1388 and DRV and that GRL-1388 and -1398 had hydrogen bonding interactions with the main chain of the active-site amino acids (Asp29 and Asp30) of protease. The present findings warrant that GRL-1398 be further developed as a potential drug for treating individuals with HIV-1 infection. PMID:21282450

  4. Nevirapine-Resistant HIV-1 DNA in Breast Milk After Single-Dose Nevirapine With or Without Zidovudine for Prevention of Mother-to-Child Transmission

    PubMed Central

    Gantt, Soren; Payant, Rachel; Carlsson, Jacquelyn; Micek, Mark A.; Blanco, Ana Judith; Beck, Ingrid A.; Matunha, Laurinda; Montoya, Pablo; Matediana, Eduardo; Gloyd, Stephen; Frenkel, Lisa M.

    2012-01-01

    Among 30 human immunodeficiency virus type 1 (HIV-1)–infected women who received single-dose nevirapine (NVP), 17 (57%) had NVP-resistant HIV-1 detected in breast milk. NVP resistance in breast milk persisted for at least 8 months postpartum and was apparently transmitted to at least 1 infant. NVP resistance was detected less often in women who also received zidovudine. PMID:23687579

  5. Combinations of reverse transcriptase, protease, and integrase inhibitors can be synergistic in vitro against drug-sensitive and RT inhibitor-resistant molecular clones of HIV-1.

    PubMed

    Beale, K K; Robinson, W E

    2000-06-01

    Combinations of anti-HIV agents including one or two reverse transcriptase inhibitors with a protease inhibitor are potent and effective. However, toxicities, costs and the emergence of drug-resistant organisms have compromised their long-term efficacy in people. A next, likely, target for anti-HIV therapy is HIV-1 integrase. Viral integration, catalyzed by integrase, is absolutely required for HIV replication. L-chicoric acid is a potent and selective inhibitor of HIV-1 integrase that also inhibits HIV-1 replication in cell culture. As a first step in understanding the potential role for integrase inhibitors in clinical medicine, the activities of L-chicoric acid alone and in combination with 2', 3'-dideoxycytidine, zidovudine, and a protease inhibitor, nelfinavir, were tested in vitro against molecular clones of HIV-1 resistant to reverse transcriptase inhibitors. L-chicoric acid was equally effective against a wild-type clone of HIV-1, HIV(NL4-3), or against HIV-1 resistant to either zidovudine or dideoxycytidine. L-chicoric acid was largely synergistic with zidovudine and synergistic with both dideoxycytidine and nelfinavir.

  6. Incompatible Natures of the HIV-1 Envelope in Resistance to the CCR5 Antagonist Cenicriviroc and to Neutralizing Antibodies

    PubMed Central

    Enomoto, Ikumi; Baba, Masanori

    2015-01-01

    Cenicriviroc is a CCR5 antagonist which prevents human immunodeficiency virus type 1 (HIV-1) from cellular entry. The CCR5-binding regions of the HIV-1 envelope glycoprotein are important targets for neutralizing antibodies (NAbs), and mutations conferring cenicriviroc resistance may therefore affect sensitivity to NAbs. Here, we used the in vitro induction of HIV-1 variants resistant to cenicriviroc or NAbs to examine the relationship between resistance to cenicriviroc and resistance to NAbs. The cenicriviroc-resistant variant KK652-67 (strain KK passaged 67 times in the presence of increasing concentrations of cenicriviroc) was sensitive to neutralization by NAbs against the V3 loop, the CD4-induced (CD4i) region, and the CD4-binding site (CD4bs), whereas the wild-type (WT) parental HIV-1 strain KKWT from which cenicriviroc-resistant strain KK652-67 was obtained was resistant to these NAbs. The V3 region of KK652-67 was important for cenicriviroc resistance and critical to the high sensitivity of the V3, CD4i, and CD4bs epitopes to NAbs. Moreover, induction of variants resistant to anti-V3 NAb 0.5γ and anti-CD4i NAb 4E9C from cenicriviroc-resistant strain KK652-67 resulted in reversion to the cenicriviroc-sensitive phenotype comparable to that of the parental strain, KKWT. Resistance to 0.5γ and 4E9C was caused by the novel substitutions R315K, G324R, and E381K in the V3 and C3 regions near the substitutions conferring cenicriviroc resistance. Importantly, these amino acid changes in the CCR5-binding region were also responsible for reversion to the cenicriviroc-sensitive phenotype. These results suggest the presence of key amino acid residues where resistance to cenicriviroc is incompatible with resistance to NAbs. This implies that cenicriviroc and neutralizing antibodies may restrict the emergence of variants resistant to each other. PMID:26525792

  7. Incompatible Natures of the HIV-1 Envelope in Resistance to the CCR5 Antagonist Cenicriviroc and to Neutralizing Antibodies.

    PubMed

    Kuwata, Takeo; Enomoto, Ikumi; Baba, Masanori; Matsushita, Shuzo

    2015-11-02

    Cenicriviroc is a CCR5 antagonist which prevents human immunodeficiency virus type 1 (HIV-1) from cellular entry. The CCR5-binding regions of the HIV-1 envelope glycoprotein are important targets for neutralizing antibodies (NAbs), and mutations conferring cenicriviroc resistance may therefore affect sensitivity to NAbs. Here, we used the in vitro induction of HIV-1 variants resistant to cenicriviroc or NAbs to examine the relationship between resistance to cenicriviroc and resistance to NAbs. The cenicriviroc-resistant variant KK652-67 (strain KK passaged 67 times in the presence of increasing concentrations of cenicriviroc) was sensitive to neutralization by NAbs against the V3 loop, the CD4-induced (CD4i) region, and the CD4-binding site (CD4bs), whereas the wild-type (WT) parental HIV-1 strain KKWT from which cenicriviroc-resistant strain KK652-67 was obtained was resistant to these NAbs. The V3 region of KK652-67 was important for cenicriviroc resistance and critical to the high sensitivity of the V3, CD4i, and CD4bs epitopes to NAbs. Moreover, induction of variants resistant to anti-V3 NAb 0.5γ and anti-CD4i NAb 4E9C from cenicriviroc-resistant strain KK652-67 resulted in reversion to the cenicriviroc-sensitive phenotype comparable to that of the parental strain, KKWT. Resistance to 0.5γ and 4E9C was caused by the novel substitutions R315K, G324R, and E381K in the V3 and C3 regions near the substitutions conferring cenicriviroc resistance. Importantly, these amino acid changes in the CCR5-binding region were also responsible for reversion to the cenicriviroc-sensitive phenotype. These results suggest the presence of key amino acid residues where resistance to cenicriviroc is incompatible with resistance to NAbs. This implies that cenicriviroc and neutralizing antibodies may restrict the emergence of variants resistant to each other.

  8. Intrapartum tenofovir and emtricitabine reduces low-concentration drug resistance selected by single-dose nevirapine for perinatal HIV prevention.

    PubMed

    Chi, Benjamin H; Ellis, Giovanina M; Chintu, Namwinga; Cantrell, Ronald A; Sinkala, Moses; Aldrovandi, Grace M; Warrier, Ranjit; Mbewe, Felistas; Nakamura, Kyle; Stringer, Elizabeth M; Frenkel, Lisa M; Stringer, Jeffrey S A

    2009-11-01

    A single dose of tenofovir/emtricitabine (TDF/FTC) during labor significantly reduces peripartum nevirapine-associated viral drug resistance when measured by consensus HIV sequencing. It is unknown whether this effect extends to HIV subpopulations of <25-50%. We conducted a randomized trial of single-dose TDF/FTC added to peripartum nevirapine to reduce drug resistance associated with nonnucleoside reverse transcriptase inhibitors (NNRTIs). To detect mutations for NNRTIs comprising > or = 2% of the viral population, we used an oligonucleotide ligation assay (OLA) at codons 103, 106, 181, and 190 of HIV reverse transcriptase. To assess development of drug resistance mutations to our study intervention, OLA was also performed at codons 65 and 184. Among the 328 women included in the 2-week analysis, those receiving TDF/FTC were less likely to have NNRTI resistance by OLA (RR = 0.40, 95% CI = 0.21-0.77). A similar trend was observed among the 315 women included in the 6-week analysis (RR = 0.45, 95% CI = 0.31-0.66). Only two (1%) specimens had detectable K65R by OLA. Both were at 6 weeks postpartum; one was detected in the intervention arm and one in the control arm (p = 0.96). M184V was not detected. The ability of single-dose TDF/FTC to protect against peripartum NVP-induced NNRTI resistance extends to minority populations. This efficacy is achieved without significant selection of TDF- or FTC-resistant viruses.

  9. HIV-1 virologic failure and acquired drug resistance among first-line antiretroviral experienced adults at a rural HIV clinic in coastal Kenya: a cross-sectional study

    PubMed Central

    2014-01-01

    Background An increasing number of people on antiretroviral therapy (ART) in sub-Saharan Africa has led to declines in HIV related morbidity and mortality. However, virologic failure (VF) and acquired drug resistance (ADR) may negatively affect these gains. This study describes the prevalence and correlates of HIV-1 VF and ADR among first-line ART experienced adults at a rural HIV clinic in Coastal Kenya. Methods HIV-infected adults on first-line ART for ≥6 months were cross-sectionally recruited between November 2008 and March 2011. The primary outcome was VF, defined as a one-off plasma viral load of ≥400 copies/ml. The secondary outcome was ADR, defined as the presence of resistance associated mutations. Logistic regression and Fishers exact test were used to describe correlates of VF and ADR respectively. Results Of the 232 eligible participants on ART over a median duration of 13.9 months, 57 (24.6% [95% CI: 19.2 – 30.6]) had VF. Fifty-five viraemic samples were successfully amplified and sequenced. Of these, 29 (52.7% [95% CI: 38.8 – 66.3]) had at least one ADR, with 25 samples having dual-class resistance mutations. The most prevalent ADR mutations were the M184V (n = 24), K103N/S (n = 14) and Y181C/Y/I/V (n = 8). Twenty-six of the 55 successfully amplified viraemic samples (47.3%) did not have any detectable resistance mutation. Younger age (15–34 vs. ≥35 years: adjusted odd ratios [95% CI], p-value: 0.3 [0.1–0.6], p = 0.002) and unsatisfactory adherence (<95% vs. ≥95%: 3.0 [1.5–6.5], p = 0.003) were strong correlates of VF. Younger age, unsatisfactory adherence and high viral load were also strong correlates of ADR. Conclusions High levels of VF and ADR were observed in younger patients and those with unsatisfactory adherence. Youth-friendly ART initiatives and strengthened adherence support should be prioritized in this Coastal Kenyan setting. To prevent unnecessary/premature switches, targeted HIV drug resistance

  10. Modeling dynamic interactions between pre-exposure prophylaxis interventions & treatment programs: predicting HIV transmission & resistance.

    PubMed

    Supervie, Virginie; Barrett, Meagan; Kahn, James S; Musuka, Godfrey; Moeti, Themba Lebogang; Busang, Lesego; Busang, Lesogo; Blower, Sally

    2011-01-01

    Clinical trials have recently demonstrated the effectiveness of Pre-Exposure Prophylaxis (PrEP) in preventing HIV infection. Consequently, PrEP may soon be used for epidemic control. We model the dynamic interactions that will occur between treatment programs and potential PrEP interventions in resource-constrained countries. We determine the consequences for HIV transmission and drug resistance. We use response hypersurface modeling to predict the effect of PrEP on decreasing transmission as a function of effectiveness, adherence and coverage. We predict PrEP will increase need for second-line therapies (SLT) for treatment-naïve individuals, but could significantly decrease need for SLT for treatment-experienced individuals. If the rollout of PrEP is carefully planned it could increase the sustainability of treatment programs. If not, need for SLT could increase and the sustainability of treatment programs could be compromised. Our results show the optimal strategy for rolling out PrEP in resource-constrained countries is to begin around the "worst" treatment programs.

  11. Drug-resistant molecular mechanism of CRF01_AE HIV-1 protease due to V82F mutation

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqing; Xiu, Zhilong; Hao, Ce

    2009-05-01

    Human immunodeficiency virus type 1 protease (HIV-1 PR) is one of the major targets of anti-AIDS drug discovery. The circulating recombinant form 01 A/E (CRF01_AE, abbreviated AE) subtype is one of the most common HIV-1 subtypes, which is infecting more humans and is expanding rapidly throughout the world. It is, therefore, necessary to develop inhibitors against subtype AE HIV-1 PR. In this work, we have performed computer simulation of subtype AE HIV-1 PR with the drugs lopinavir (LPV) and nelfinavir (NFV), and examined the mechanism of resistance of the V82F mutation of this protease against LPV both structurally and energetically. The V82F mutation at the active site results in a conformational change of 79's loop region and displacement of LPV from its proper binding site, and these changes lead to rotation of the side-chains of residues D25 and I50'. Consequently, the conformation of the binding cavity is deformed asymmetrically and some interactions between PR and LPV are destroyed. Additionally, by comparing the interactive mechanisms of LPV and NFV with HIV-1 PR we discovered that the presence of a dodecahydroisoquinoline ring at the P1' subsite, a [2-(2,6-dimethylphenoxy)acetyl]amino group at the P2' subsite, and an N2 atom at the P2 subsite could improve the binding affinity of the drug with AE HIV-1 PR. These findings are helpful for promising drug design.

  12. Transmitted antiretroviral drug resistance in newly HIV-infected and untreated patients in Ségou and Bamako, Mali.

    PubMed

    Maiga, Almoustapha Issiaka; Fofana, Djeneba Bocar; Maiga, Aichatou Chehy; Diallo, Fodie; Ait-Arkoub, Zaina; Daou, Fatoumata; Cisse, Mamadou; Sarro, Yaya Dit Sadio; Oumar, Aboubacar Alassane; Sylla, Aliou; Katlama, Christine; Taiwo, Babafemi; Murphy, Robert; Tounkara, Anatole; Marcelin, Anne-Genevieve; Calvez, Vincent

    2013-01-01

    The WHO recommends regular surveillance for transmitted antiretroviral drug-resistant viruses in HIV antiretroviral treatment (ART)-naive patients in resource-limited settings. This study aimed to assess the prevalence of mutations associated with resistance in ART-naive patients newly diagnosed with HIV in Bamako and Ségou in Mali. HIV-positive patients who never received ART were recruited in Bamako and Ségou, Mali. The reverse transcriptase (RT) and protease (PR) genes of these patients were sequenced by the "ViroSeq" method. Analysis and interpretation of the resistance were made according to the WHO 2009 list of drug resistance mutations. In all, 51/54 (94.4%) sample patients were sequenced. The median age (IQR) of our patients was 24 (22-27) years and the median CD4 count was 380 (340-456) cells/mm(3). The predominant subtype was recombinant HIV-1 CRF02_AG (66.7%) followed by CRF06_cpx (12%) and CRF09_cpx (4%). Four patients had mutations associated with resistance, giving an overall prevalence of resistance estimated at 7.9%. There were two (4%) patients with nucleoside reverse transcriptase inhibitor (NRTI) mutations (one M184V and one T215Y), two (4%) with non-NRTI mutations (two K103N), and one (2%) with a protease inhibitor mutation (one I54V). The prevalence of primary resistance in newly infected patients in Mali is moderate (7.9%). This indicates that the standard NNRTI-based first-line regimen used in Mali is suboptimal for some patients. This study should be done regularly to inform clinical practice.

  13. Increased Prevalence of Controlled Viremia and Decreased Rates of HIV Drug Resistance Among HIV-Positive People Who Use Illicit Drugs During a Community-wide Treatment-as-Prevention Initiative

    PubMed Central

    Milloy, M.-J.; Wood, Evan; Kerr, Thomas; Hogg, Bob; Guillemi, Silvia; Harrigan, P. Richard; Montaner, Julio

    2016-01-01

    Background. Although treatment-as prevention (TasP) is a new cornerstone of global human immunodeficiency virus (HIV)–AIDS strategies, its effect among HIV-positive people who use illicit drugs (PWUD) has yet to be evaluated. We sought to describe longitudinal trends in exposure to antiretroviral therapy (ART), plasma HIV-1 RNA viral load (VL) and HIV drug resistance during a community-wide TasP intervention. Methods. We used data from the AIDS Care Cohort to Evaluate Exposure to Survival Services study, a prospective cohort of HIV-positive PWUD linked to HIV clinical monitoring records. We estimated longitudinal changes in the proportion of individuals with VL <50 copies/mL and rates of HIV drug resistance using generalized estimating equations (GEE) and extended Cox models. Results. Between 1 January 2006 and 30 June 2014, 819 individuals were recruited and contributed 1 or more VL observation. During that time, the proportion of individuals with nondetectable VL increased from 28% to 63% (P < .001). In a multivariable GEE model, later year of observation was independently and positively associated with greater likelihood of nondetectable VL (adjusted odds ratio = 1.20 per year; P < .001). Although the proportion of individuals on ART increased, the incidence of HIV drug resistance declined (adjusted hazard ratio = 0.78 per year; P = .011). Conclusions. We observed significant improvements in several measures of exposure to ART and virologic status, including declines in HIV drug resistance, in this large long-running community-recruited cohort of HIV-seropositive illicit drug users during a community-wide ART expansion intervention. Our findings support continued efforts to scale up ART coverage among HIV-positive PWUD. PMID:26553011

  14. Identification of Drug Resistant Mutations in HIV-1 CRF07_BC Variants Selected by Nevirapine In Vitro

    PubMed Central

    Wu, Hao; Zhang, Hao-Jie; Zhang, Xiao-min; Xu, Hui-fang; Wang, Ming; Huang, Jian-dong; Zheng, Bo-Jian

    2012-01-01

    Since the antiretroviral therapy (ART) was introduced to patients infected by human immunodeficiency virus (HIV), the HIV related mortality and morbidity have been significantly reduced. The major obstacle for long-term successful anti-HIV treatment is the emergence of drug resistant mutants. Current data of drug resistance was mainly obtained on HIV-1 subtype B but rarely on non-B virus, even more rare with newly emerged circulating recombinant forms (CRFs). The lack of such data limits the rational management of ART for the increasing number of patients infected by non-subtype B virus. In this study, a HIV-1 CRF07_BC strain CNGZD was isolated from a HIV patient and its genome was sequenced and deposited in GenBank (JQ423923). Potential drug resistant mutants of this CRF07_BC virus strain were selected in PBMCs cultures in the presence of Nevirapine (NVP), which is the most frequently used antiretroviral drug in China. Four combination profiles of mutations were identified in the NVP-selected mutants, which were initiated with A98G, V108I, Y181C and I135T/I382L and followed by more than two other mutations at the end of the selections, respectively. A total of seven previously reported mutations (A98G, V106M, V108I, I135T, Y181C, V189I, K238N) and seven novel mutations (P4H, T48I, I178M, V314A, I382L/V, T386A) in the reverse transcriptase gene were found in these NVP-selected mutants. Phenotypic analysis in the NVP-selected mutants showed that all the mutations, except P4H, contribute to NVP resistance. Among them, V106M and Y181C reduce NVP susceptibility for more than 20-fold, while the other mutations cause less than 20 folds drug resistance. Although the information obtained in this in vitro selection study may not fully cover resistant mutations which will actually occur in patients, it has still provided useful information for rational management of ART in patients infected with HIV CRF_BC subtype. PMID:22984494

  15. HIV-1 Drug Resistance in the iPrEx Preexposure Prophylaxis Trial

    PubMed Central

    Liegler, Teri; Abdel-Mohsen, Mohamed; Bentley, L. Gordon; Atchison, Robert; Schmidt, Timothy; Javier, Jacqueline; Mehrotra, Megha; Eden, Christopher; Glidden, David V.; McMahan, Vanessa; Anderson, Peter L.; Li, Peilin; Wong, Joseph K.; Buchbinder, Susan; Guanira, Juan V.; Grant, Robert M.

    2014-01-01

    Background. The iPrEx study demonstrated that combination oral emtricitabine and tenofovir disoproxil fumarate (FTC/TDF) as preexposure prophylaxis (PrEP) protects against HIV acquisition in men who have sex with men and transgender women. Selection for drug resistance could offset PrEP benefits. Methods. Phenotypic and genotypic clinical resistance assays characterized major drug resistant mutations. Minor variants with FTC/TDF mutations K65R, K70E, M184V/I were measured using 454 deep sequencing and a novel allele-specific polymerase chain reaction (AS-PCR) diagnostic tolerant to sequence heterogeneity. Results. Control of primer-binding site heterogeneity resulted in improved accuracy of minor variant measurements by AS-PCR. Of the 48 on-study infections randomized to FTC/TDF, none showed FTC/TDF mutations by clinical assays despite detectable drug levels in 8 participants. Two randomized to FTC/TDF had minor variant M184I detected at 0.53% by AS-PCR or 0.75% by deep sequencing, only 1 of which had low but detectable drug levels. Among those with acute infection at randomization to FTC/TDF, M184V or I mutations that were predominant at seroconversion waned to background levels within 24 weeks after discontinuing drug. Conclusions. Drug resistance was rare in iPrEx on-study FTC/TDF-randomized seroconverters, and only as low-frequency minor variants. FTC resistance among those initiating PrEP with acute infection waned rapidly after drug discontinuation. Clinical Trials Registration. NCT00458393. PMID:24740633

  16. On cell resistance and immune response time lag in a model for the HIV infection

    NASA Astrophysics Data System (ADS)

    Solovey, Guillermo; Peruani, Fernando; Ponce Dawson, Silvina; Maria Zorzenon dos Santos, Rita

    2004-11-01

    Recently, a cellular automata model has been introduced (Phys. Rev. Lett. 87 (2001) 168102) to describe the spread of the HIV infection among target cells in lymphoid tissues. The model reproduces qualitatively the entire course of the infection displaying, in particular, the two time scales that characterize its dynamics. In this work, we investigate the robustness of the model against changes in three of its parameters. Two of them are related to the resistance of the cells to get infected. The other one describes the time interval necessary to mount specific immune responses. We have observed that an increase of the cell resistance, at any stage of the infection, leads to a reduction of the latency period, i.e., of the time interval between the primary infection and the onset of AIDS. However, during the early stages of the infection, when the cell resistance increase is combined with an increase in the initial concentration of infected cells, the original behavior is recovered. Therefore we find a long and a short latency regime (eight and one year long, respectively) depending on the value of the cell resistance. We have obtained, on the other hand, that changes on the parameter that describes the immune system time lag affects the time interval during which the primary infection occurs. Using different extended versions of the model, we also discuss how the two-time scale dynamics is affected when we include inhomogeneities on the cells properties, as for instance, on the cell resistance or on the time interval to mount specific immune responses.

  17. HIV-1 resistance to neutralizing antibodies: Determination of antibody concentrations leading to escape mutant evolution.

    PubMed

    Magnus, Carsten; Reh, Lucia; Trkola, Alexandra

    2016-06-15

    Broadly neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) are considered vital components of novel therapeutics and blueprints for vaccine research. Yet escape to even the most potent of these antibodies is imminent in natural infection. Measures to define antibody efficacy and prevent mutant selection are thus urgently needed. Here, we derive a mathematical framework to predict the concentration ranges for which antibody escape variants can outcompete their viral ancestors, referred to as mutant selection window (MSW). When determining the MSW, we focus on the differential efficacy of neutralizing antibodies against HIV-1 in two canonical infection routes, free-virus infection and cell-cell transmission. The latter has proven highly effective in vitro suggesting its importance for both in vivo spread as well as for escaping targeted intervention strategies. We observed a range of MSW patterns that highlight the potential of mutants to arise in both transmission pathways and over wide concentration ranges. Most importantly, we found that only when the arising mutant has both, residual sensitivity to the neutralizing antibody and reduced infectivity compared to the parental virus, antibody dosing outside of the MSW to restrict mutant selection is possible. Emergence of mutants that provide complete escape and have no considerable fitness loss cannot be prevented by adjusting antibody doses. The latter may in part explain the ubiquitous resistance to neutralizing antibodies observed in natural infection and antibody treatment. Based on our findings, combinations of antibodies targeting different epitopes should be favored for antibody-based interventions as this may render complete resistance less likely to occur and also increase chances that multiple escapes result in severe fitness loss of the virus making longer-term antibody treatment more feasible.

  18. Resistance to type 1 interferons is a major determinant of HIV-1 transmission fitness

    PubMed Central

    Iyer, Shilpa S.; Bibollet-Ruche, Frederic; Sherrill-Mix, Scott; Learn, Gerald H.; Plenderleith, Lindsey; Smith, Andrew G.; Barbian, Hannah J.; Russell, Ronnie M.; Gondim, Marcos V. P.; Bahari, Catherine Y.; Shaw, Christiana M.; Li, Yingying; Decker, Timothy; Haynes, Barton F.; Shaw, George M.; Sharp, Paul M.; Borrow, Persephone; Hahn, Beatrice H.

    2017-01-01

    Sexual transmission of HIV-1 is an inefficient process, with only one or few variants of the donor quasispecies establishing the new infection. A critical, and as yet unresolved, question is whether the mucosal bottleneck selects for viruses with increased transmission fitness. Here, we characterized 300 limiting dilution-derived virus isolates from the plasma, and in some instances genital secretions, of eight HIV-1 donor and recipient pairs. Although there were no differences in the amount of virion-associated envelope glycoprotein, recipient isolates were on average threefold more infectious (P = 0.0001), replicated to 1.4-fold higher titers (P = 0.004), were released from infected cells 4.2-fold more efficiently (P < 0.00001), and were significantly more resistant to type I IFNs than the corresponding donor isolates. Remarkably, transmitted viruses exhibited 7.8-fold higher IFNα2 (P < 0.00001) and 39-fold higher IFNβ (P < 0.00001) half-maximal inhibitory concentrations (IC50) than did donor isolates, and their odds of replicating in CD4+ T cells at the highest IFNα2 and IFNβ doses were 35-fold (P < 0.00001) and 250-fold (P < 0.00001) greater, respectively. Interestingly, pretreatment of CD4+ T cells with IFNβ, but not IFNα2, selected donor plasma isolates that exhibited a transmitted virus-like phenotype, and such viruses were also detected in the donor genital tract. These data indicate that transmitted viruses are phenotypically distinct, and that increased IFN resistance represents their most distinguishing property. Thus, the mucosal bottleneck selects for viruses that are able to replicate and spread efficiently in the face of a potent innate immune response. PMID:28069935

  19. Evaluating plague and smallpox as historical selective pressures for the CCR5-Delta 32 HIV-resistance allele.

    PubMed

    Galvani, Alison P; Slatkin, Montgomery

    2003-12-09

    The high frequency, recent origin, and geographic distribution of the CCR5-Delta 32 deletion allele together indicate that it has been intensely selected in Europe. Although the allele confers resistance against HIV-1, HIV has not existed in the human population long enough to account for this selective pressure. The prevailing hypothesis is that the selective rise of CCR5-Delta 32 to its current frequency can be attributed to bubonic plague. By using a population genetic framework that takes into account the temporal pattern and age-dependent nature of specific diseases, we find that smallpox is more consistent with this historical role.

  20. Protein promiscuity: drug resistance and native functions--HIV-1 case.

    PubMed

    Fernández, Ariel; Tawfik, Dan S; Berkhout, Ben; Sanders, Rogier; Kloczkowski, Andrzej; Sen, Taner; Jernigan, Bob

    2005-06-01

    The association of a drug with its target protein has the effect of blocking the protein activity and is termed a promiscuous function to distinguish from the protein's native function (Tawfik and associates, Nat. Genet. 37, 73-6, 2005). Obviously, a protein has not evolved naturally for drug association or drug resistance. Promiscuous protein functions exhibit unique traits of evolutionary adaptability, or evolvability, which is dependent on the induction of novel phenotypic traits by a small number of mutations. These mutations might have small effects on native functions, but large effects on promiscuous function; for example, an evolving protein could become increasingly drug resistant while maintaining its original function. Ariel Fernandez, in his opinion piece, notes that drug-binding "promiscuity" can hardly be dissociated from native functions; a dominant approach to drug discovery is the protein-native-substrate transition-state mimetic strategy. Thus, man-made ligands (e.g. drugs) have been successfully crafted to restrain enzymatic activity by focusing on the very same structural features that determine the native function. Using the successful inhibition of HIV-1 protease as an example, Fernandez illustrates how drug designers have employed naturally evolved features of the protein to suppress its activity. Based on these arguments, he dismisses the notion that drug binding is quintessentially promiscuous, even though in principle, proteins did not evolve to associate with man made ligands. In short, Fernandez argues that there may not be separate protein domains that one could term promiscuous domains. While acknowledging that drugs may bind promiscuously or in a native-like manner a la Fernandez, Tawfik maintains the role of evolutionary adaptation, even when a drug binds native-like. In the case of HIV-1 protease, drugs bind natively, and the initial onset of mutations results in drug resistance in addition to a dramatic decline in enzymatic

  1. Polymorphisms in the HIV-1 gp41 env gene, natural resistance to enfuvirtide (T-20) and pol resistance among pregnant Brazilian women.

    PubMed

    Reis, Mônica Nogueira da Guarda; de Alcântara, Keila Correa; Cardoso, Ludimila Paula Vaz; Stefani, Mariane Martins Araújo

    2014-01-01

    The selective pressure of antiretroviral drugs (ARVs) targeting HIV-1 pol can promote drug resistance mutations in other genomic regions, such as env. Drug resistance among women should be monitored to avoid horizontal and mother-to-child transmission. To describe natural resistance to T-20 (enfuvirtide), gp41 env polymorphisms, mutations in pol and HIV-1 subtypes, 124 pregnant women were recruited. For 98 patients, the gp41 env, protease (PR) and reverse transcriptase (RT) fragments were sequenced. The patients were ARV naïve (n = 30), taking mother-to-child transmission prophylaxis (n = 50), or being treated with highly active ARV therapy/HAART (n = 18). The Stanford and IAS/USA databases and other sources were used to analyze PR/RT, gp41 env resistance mutations. The HIV-1 genetic diversity was analyzed by REGA/phylogenetic analyses. The patients' median age was 25 years (range, 16-42), 18.4% had AIDS. The frequency of natural resistance to T-20 (N42D, L44M, and R46M-low-impact mutations) was 6.1% (6/98); 20.4% (20/98) had compensatory mutations in HR2. The prevalence of transmitted drug resistance in the pol was 13.3% (4/30), and the prevalence of secondary drug resistance was 33.3% (6/18). Two patients were infected with multidrug resistant/MDR viruses. The analysis of HIV-1 subtypes (PR/RT/gp41) revealed that 61.2% (60/98) were subtype B, 12.2% (12/98) were subtype C, 4.1% (4/98) were subtype F1, and 22.4% (22/98) were possible recombinants (BF1 = 20.4%; BC = 2%). Natural resistance to T-20 was not associated with pol resistance or previous ARV use. The high rate of secondary resistance, including MDR, indicates that the number of women that may need T-20 salvage therapy may be higher than anticipated.

  2. Development, Validation and Clinical Evaluation of a Low Cost In-House HIV-1 Drug Resistance Genotyping Assay for Indian Patients

    PubMed Central

    Acharya, Arpan; Vaniawala, Salil; Shah, Parth; Misra, Rabindra Nath; Wani, Minal; Mukhopadhyaya, Pratap N.

    2014-01-01

    Human Immunodeficiency Virus-1 (HIV-1) drug resistance genotyping assay is a part of clinical management of HIV-1 positive individuals under treatment with highly active antiretroviral therapy (HAART). Routine monitoring of drug resistance mutations in resource limited settings like India is not possible due to high cost of commercial drug resistance assays. In this study we developed an in-house, cost effective HIV-1 drug resistance genotyping assay for Indian patients and validated it against the US-FDA-approved ViroSeq HIV-1 drug resistance testing system. A reference panel of 20 clinical samples was used to develop and validate the assay against ViroSeq HIV-1 drug resistance testing system which was subsequently used to genotype a clinical panel of 225 samples. The Stanford HIV database was used to identify drug resistant mutations. The analytical sensitivity of the assay was 1000 HIV-1 RNA copies/ml of plasma sample while precision and reproducibility was 99.68±0.16% and 99.76±0.18% respectively. One hundred and one drug resistant mutations were detected by the in-house assay compared to 104 by ViroSeq system in the reference panel. The assay had 91.55% success rate in genotyping the clinical panel samples and was able to detect drug resistant mutations related to nucleoside reverse transcriptase inhibitor (NRTI), non-nucleoside reverse-transcriptase inhibitor (NNRTI) as well as protease inhibitor (PI) classes of antiretroviral drugs. It was found to be around 71.9% more cost effective compared to ViroSeq genotyping system. This evaluation of the assay on the clinical panel demonstrates its potential for monitoring clinical HIV-1 drug resistance mutations and population-based surveillance in resource limited settings like India. PMID:25157501

  3. Use of dried-blood-spot samples and in-house assays to identify antiretroviral drug resistance in HIV-infected children in resource-constrained settings.

    PubMed

    Ziemniak, Carrie; Mengistu, Yohannes; Ruff, Andrea; Chen, Ya-Hui; Khaki, Leila; Bedri, Abubaker; Simen, Birgitte B; Palumbo, Paul; Eshleman, Susan H; Persaud, Deborah

    2011-12-01

    Monitoring HIV drug resistance is an important component of the World Health Organization's global HIV program. HIV drug resistance testing is optimal with commercially available clinically validated test kits using plasma; however, that type of testing may not be feasible or affordable in resource-constrained settings. HIV genotyping from dried blood spots (DBS) with noncommercial (in-house) assays may facilitate the capture of HIV drug resistance outcomes in resource-constrained settings but has had varying rates of success. With in-house assays for HIV reverse transcriptase, we evaluated the yield of genotyping DBS samples collected from HIV-infected children who were enrolled in two clinical trials conducted in sub-Saharan Africa (median HIV viral load, 5.88 log(10) HIV RNA copies/ml; range, 4.04 to 6.99). Overall, HIV genotypes were obtained for 94 (89.5%) of 105 samples tested (95% and 84% from clinical trials #1 and #2, respectively); however, successful analysis of 15 (16.1%) of the 94 samples required repeat testing using a different set of primers on previously synthesized cDNA. The yield of genotyping was lower on the DBS that were stored suboptimally from clinical trial #2 (56% versus 88% for optimally stored). Concordance with plasma genotypes derived using a clinically validated, commercial kit-based assay (ViroSeq HIV-1 genotyping system) was also assessed in a subset of children with paired testing. For 34 samples with paired DBS and plasma genotypes, there was 100% concordance for major drug resistance mutations. DBS genotyping using in-house assays provides an alternative for antiretroviral drug resistance testing in children in resource-constrained regions but may require region-specific optimization before widespread use.

  4. Multiple Introduction and Naturally Occuring Drug Resistance of HCV among HIV-Infected Intravenous Drug Users in Yunnan: An Origin of China’s HIV/HCV Epidemics

    PubMed Central

    Chen, Min; Ma, Yanling; Chen, Huichao; Luo, Hongbing; Dai, Jie; Song, Lijun; Yang, Chaojun; Mei, Jingyuan; Yang, Li; Dong, Lijuan; Jia, Manhong; Lu, Lin

    2015-01-01

    Background The human immunodeficiency virus 1 (HIV-1) epidemic in China historically stemmed from intravenous drug users (IDUs) in Yunnan. Due to a shared transmission route, hepatitis C virus (HCV)/HIV-1 co-infection is common. Here, we investigated HCV genetic characteristics and baseline drug resistance among HIV-infected IDUs in Yunnan. Methods Blood samples of 432 HIV-1/HCV co-infected IDUs were collected from January to June 2014 in six prefectures of Yunnan Province. Partial E1E2 and NS5B genes were sequenced. Phylogenetic, evolutionary and genotypic drug resistance analyses were performed. Results Among the 293 specimens successfully genotyped, seven subtypes were identified, including subtypes 3b (37.9%, 111/293), 3a (21.8%, 64/293), 6n (14.0%, 41/293), 1b (10.6%, 31/293), 1a (8.2%, 24/293), 6a (5.1%, 15/293) and 6u (2.4%, 7/293). The distribution of HCV subtypes was mostly related to geographic location. Subtypes 3b, 3a, and 6n were detected in all six prefectures, however, the other four subtypes were detected only in parts of the six prefectures. Phylogeographic analyses indicated that 6n, 1a and 6u originated in the western prefecture (Dehong) and spread eastward and showed genetic relatedness with those detected in Burmese. However, 6a originated in the southeast prefectures (Honghe and Wenshan) bordering Vietnam and was transmitted westward. These subtypes exhibited different evolutionary rates (between 4.35×10−4 and 2.38×10−3 substitutions site-1 year-1) and times of most recent common ancestor (tMRCA, between 1790.3 and 1994.6), suggesting that HCV was multiply introduced into Yunnan. Naturally occurring resistance-associated mutations (C316N, A421V, C445F, I482L, V494A, and V499A) to NS5B polymerase inhibitors were detected in direct-acting antivirals (DAAs)-naïve IDUs. Conclusion This work reveals the temporal-spatial distribution of HCV subtypes and baseline HCV drug resistance among HIV-infected IDUs in Yunnan. The findings enhance our

  5. HIV-1 Epidemiology, Genetic Diversity, and Primary Drug Resistance in the Tyumen Oblast, Russia

    PubMed Central

    Astakhova, Ekaterina M.; Gashnikova, Mariya P.; Bocharov, Evgeniy F.; Petrova, Svetlana V.; Pun'ko, Olga A.; Popkov, Alexander V.; Totmenin, Aleksey V.

    2016-01-01

    Introduction. Specific molecular epidemic features of HIV infection in Tyumen Oblast (TO), Russia, were studied. Methods. The genome sequences encoding HIV-1 protease-reverse transcriptase, integrase, and major envelope protein were examined for 72 HIV-1 specimens isolated from the TO resident infected in 2000–2015. Results. The recorded prevalence of HIV-1 subtype A (A1) is 93.1%; HIV-1 subtype B continues to circulate in MSM risk group (1.4%). Solitary instances of HIV-1 recombinant forms, CRF63_02A1 (1.4%) and CRF03_AB (1.4%), were detected as well as two cases of HIV-1 URF63_A1 (2.8%). Phylogenetic analysis showed no HIV-1 clustering according to the duration of infection and risk groups but revealed different epidemic networks confirming that HIV infection spread within local epidemic foci. A high incidence of CXCR4-tropic HIV-1 variants and a higher rate of secondary mutations influencing the virus fitness (K20R, L10V, and I) are observed among the virus specimens isolated from newly infected individuals. Conclusions. The current HIV-1 epidemic in TO develops within the local epidemic networks. Similar to the previous period, HIV-1 subtype A is predominant in TO with sporadic cases of importation of HIV-1 recombinant forms circulating in adjacent areas. PMID:27957489

  6. HIV-1 Epidemiology, Genetic Diversity, and Primary Drug Resistance in the Tyumen Oblast, Russia.

    PubMed

    Gashnikova, Natalya M; Astakhova, Ekaterina M; Gashnikova, Mariya P; Bocharov, Evgeniy F; Petrova, Svetlana V; Pun'ko, Olga A; Popkov, Alexander V; Totmenin, Aleksey V

    2016-01-01

    Introduction. Specific molecular epidemic features of HIV infection in Tyumen Oblast (TO), Russia, were studied. Methods. The genome sequences encoding HIV-1 protease-reverse transcriptase, integrase, and major envelope protein were examined for 72 HIV-1 specimens isolated from the TO resident infected in 2000-2015. Results. The recorded prevalence of HIV-1 subtype A (A1) is 93.1%; HIV-1 subtype B continues to circulate in MSM risk group (1.4%). Solitary instances of HIV-1 recombinant forms, CRF63_02A1 (1.4%) and CRF03_AB (1.4%), were detected as well as two cases of HIV-1 URF63_A1 (2.8%). Phylogenetic analysis showed no HIV-1 clustering according to the duration of infection and risk groups but revealed different epidemic networks confirming that HIV infection spread within local epidemic foci. A high incidence of CXCR4-tropic HIV-1 variants and a higher rate of secondary mutations influencing the virus fitness (K20R, L10V, and I) are observed among the virus specimens isolated from newly infected individuals. Conclusions. The current HIV-1 epidemic in TO develops within the local epidemic networks. Similar to the previous period, HIV-1 subtype A is predominant in TO with sporadic cases of importation of HIV-1 recombinant forms circulating in adjacent areas.

  7. Management of chronic hepatitis B in an HIV-positive patient with 3TC-resistant hepatitis B virus.

    PubMed

    Ristig, Maria; Drechsler, Henning; Crippin, Jeffrey; Lisker-Melman, Mauricio; Tebas, Pablo

    2003-09-01

    Chronic viral hepatitis has emerged as one of the leading causes of morbidity and mortality among HIV-positive patients. These individuals are at risk for aggressive chronic active hepatitis, cirrhosis, and hepatocellular carcinoma, and eventually, death. Currently available therapies for hepatitis B are limited and include interferon-alpha, lamivudine (3TC), and adefovir. Tenofovir (TDF), a recently approved drug for the treatment of HIV, is also active against hepatitis B. We report the case of a HIV-positive patient with liver cirrhosis secondary to chronic hepatitis B virus (HBV) with evidence of resistance to 3TC. The patient was initially accepted as a liver transplant candidate. However, when TDF was added to his treatment, a remarkable virologic and histopathologic improvement was achieved. The patient was subsequently removed from the liver transplant program and has not suffered from any further hepatic complications.

  8. Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection.

    PubMed

    Hou, Panpan; Chen, Shuliang; Wang, Shilei; Yu, Xiao; Chen, Yu; Jiang, Meng; Zhuang, Ke; Ho, Wenzhe; Hou, Wei; Huang, Jian; Guo, Deyin

    2015-10-20

    Genome editing via CRISPR/Cas9 has become an efficient and reliable way to make precise, targeted changes to the genome of living cells. CXCR4 is a co-receptor for the human immunodeficiency virus type 1 (HIV-1) infection and has been considered as an important therapeutic target for AIDS. CXCR4 mediates viral entry into human CD4(+) cells by binding to envelope protein, gp120. Here, we show that human CXCR4 gene is efficiently disrupted by CRISPR/Cas9-mediated genome editing, leading to HIV-1 resistance of human primary CD4(+) T cells. We also show that the Cas9-mediated ablation of CXCR4 demonstrated high specificity and negligible off-target effects without affecting cell division and propagation. The precise and efficient genome editing of CXCR4 will provide a new strategy for therapeutic application against HIV-1 infection.

  9. Antiretroviral drug resistance among antiretroviral-naïve and treatment experienced patients infected with HIV in Iran.

    PubMed

    Baesi, Kazem; Ravanshad, Mehrdad; Ghanbarisafari, Maryam; Saberfar, Esmaeil; Seyedalinaghi, Seyedahmad; Volk, Jonathan E

    2014-07-01

    Resistance to antiretroviral therapy (ART) threatens the success of programs to reduce HIV morbidity and mortality, particularly in countries with few treatment options. In the present study, genotype and phenotype data from ART-naïve and experienced hospitalized patients infected with HIV in Tehran, Iran were used to assess the prevalence and types of transmitted (TDR) and acquired drug resistance (ADR) mutations. All 30 participants naïve to ART and 62 of 70 (88.6%) participants receiving ART had detectable viral loads. Among participants receiving ART with sequencing data available (n = 62), 36 (58.1%) had at least one drug resistance mutation; the most common mutations were K103N (21.0%), M184V (19.4%), and the thymidine analogue mutations. Seven (11.3%), 27 (43.5%), and two (3.2%) of these participants had resistance to one, two, and three drug classes, respectively. High-level resistance to efavirenz (EFV) was more common among participants on EFV-based regimens than high-level lopinavir/ritonivar (LPV/r) resistance among those on LPV/r-based regimens (55.3% vs. 6.7%, P < 0.0001). Two (6.7%) antiretroviral-naïve participants had K103N mutations. These findings document an alarmingly high frequency of multiple HIV drug class resistance in Iran, confirm the presence of TDR, and highlight the need for systematic viral load monitoring and drug resistance testing, including at diagnosis. Expanded access to new antiretroviral medications from additional drug classes is needed.

  10. Mechanisms associated with HIV-1 resistance to acyclovir by the V75I mutation in reverse transcriptase.

    PubMed

    Tchesnokov, Egor P; Obikhod, Aleksandr; Massud, Ivana; Lisco, Andrea; Vanpouille, Christophe; Brichacek, Beda; Balzarini, Jan; McGuigan, Christopher; Derudas, Marco; Margolis, Leonid; Schinazi, Raymond F; Götte, Matthias

    2009-08-07

    It has recently been demonstrated that the anti-herpetic drug acyclovir (ACV) also displays antiviral activity against the human immunodeficiency virus type 1 (HIV-1). The triphosphate form of ACV is accepted by HIV-1 reverse transcriptase (RT), and subsequent incorporation leads to classical chain termination. Like all approved nucleoside analogue RT inhibitors (NRTIs), the selective pressure of ACV is associated with the emergence of resistance. The V75I mutation in HIV-1 RT appears to be dominant in this regard. By itself, this mutation is usually not associated with resistance to currently approved NRTIs. Here we studied the underlying biochemical mechanism. We demonstrate that V75I is also selected under the selective pressure of a monophosphorylated prodrug that was designed to bypass the bottleneck in drug activation to the triphosphate form (ACV-TP). Pre-steady-state kinetics reveal that V75I discriminates against the inhibitor at the level of catalysis, whereas binding of the inhibitor remains largely unaffected. The incorporated ACV-monophosphate (ACV-MP) is vulnerable to excision in the presence of the pyrophosphate donor ATP. V75I compromises binding of the next nucleotide that can otherwise provide a certain degree of protection from excision. Collectively, the results of this study suggest that ACV is sensitive to two different resistance pathways, which warrants further investigation regarding the detailed resistance profile of ACV. Such studies will be crucial in assessing the potential clinical utility of ACV and its derivatives in combination with established NRTIs.

  11. Pretreatment HIV Drug Resistance and HIV-1 Subtype C Are Independently Associated With Virologic Failure: Results From the Multinational PEARLS (ACTG A5175) Clinical Trial

    PubMed Central

    Kantor, Rami; Smeaton, Laura; Vardhanabhuti, Saran; Hudelson, Sarah E.; Wallis, Carol L.; Tripathy, Srikanth; Morgado, Mariza G.; Saravanan, Shanmugham; Balakrishnan, Pachamuthu; Reitsma, Marissa; Hart, Stephen; Mellors, John W.; Halvas, Elias; Grinsztejn, Beatriz; Hosseinipour, Mina C.; Kumwenda, Johnstone; La Rosa, Alberto; Lalloo, Umesh G.; Lama, Javier R.; Rassool, Mohammed; Santos, Breno R.; Supparatpinyo, Khuanchai; Hakim, James; Flanigan, Timothy; Kumarasamy, Nagalingeswaran; Campbell, Thomas B.; Eshleman, Susan H.

    2015-01-01

    Background. Evaluation of pretreatment HIV genotyping is needed globally to guide treatment programs. We examined the association of pretreatment (baseline) drug resistance and subtype with virologic failure in a multinational, randomized clinical trial that evaluated 3 antiretroviral treatment (ART) regimens and included resource-limited setting sites. Methods. Pol genotyping was performed in a nested case-cohort study including 270 randomly sampled participants (subcohort), and 218 additional participants failing ART (case group). Failure was defined as confirmed viral load (VL) >1000 copies/mL. Cox proportional hazards models estimated resistance–failure association. Results. In the representative subcohort (261/270 participants with genotypes; 44% women; median age, 35 years; median CD4 cell count, 151 cells/µL; median VL, 5.0 log10 copies/mL; 58% non-B subtypes), baseline resistance occurred in 4.2%, evenly distributed among treatment arms and subtypes. In the subcohort and case groups combined (466/488 participants with genotypes), used to examine the association between resistance and treatment failure, baseline resistance occurred in 7.1% (9.4% with failure, 4.3% without). Baseline resistance was significantly associated with shorter time to virologic failure (hazard ratio [HR], 2.03; P = .035), and after adjusting for sex, treatment arm, sex–treatment arm interaction, pretreatment CD4 cell count, baseline VL, and subtype, was still independently associated (HR, 2.1; P = .05). Compared with subtype B, subtype C infection was associated with higher failure risk (HR, 1.57; 95% confidence interval [CI], 1.04–2.35), whereas non-B/C subtype infection was associated with longer time to failure (HR, 0.47; 95% CI, .22–.98). Conclusions. In this global clinical trial, pretreatment resistance and HIV-1 subtype were independently associated with virologic failure. Pretreatment genotyping should be considered whenever feasible. Clinical Trials

  12. Transmission of nevirapine-resistant HIV type 1 via breast milk to infants after single-dose nevirapine in Beira, Mozambique.

    PubMed

    Micek, Mark A; Dross, Sandra; Blanco, Ana Judith; Beck, Ingrid A; Matunha, Laurinda; Seidel, Kristy; Montoya, Pablo; Matediana, Eduardo; Gantt, Soren; Gloyd, Stephen; Frenkel, Lisa

    2014-08-15

    Acquisition of nevirapine (NVP)-resistant human immunodeficiency virus type 1 (HIV-1) by breast-feeding infants after receipt of single-dose NVP to prevent mother-to-child transmission is not well defined. A prospective observational study of 307 infants evaluated the rate of breast milk transmission of NVP-resistant HIV and the concentrations of mutants over time. NVP resistance was detected in 9 of 24 infants (37.5%; 95% confidence interval, 18.8%-59.4%) infected via breast milk. Eight had a pure mutant HIV population at the time infection was first detected, and majority mutant populations persisted in all 6 infants with follow-up specimens. Infection of breast-feeding infants with NVP-resistant HIV resulted in mutants persisting as the dominant virus, which may indefinitely compromise treatment with NVP-based antiretroviral regimens.

  13. Transmission of Nevirapine-Resistant HIV Type 1 via Breast Milk to Infants After Single-Dose Nevirapine in Beira, Mozambique

    PubMed Central

    Micek, Mark A.; Dross, Sandra; Blanco, Ana Judith; Beck, Ingrid A.; Matunha, Laurinda; Seidel, Kristy; Montoya, Pablo; Matediana, Eduardo; Gantt, Soren; Gloyd, Stephen; Frenkel, Lisa

    2014-01-01

    Acquisition of nevirapine (NVP)–resistant human immunodeficiency virus type 1 (HIV-1) by breast-feeding infants after receipt of single-dose NVP to prevent mother-to-child transmission is not well defined. A prospective observational study of 307 infants evaluated the rate of breast milk transmission of NVP-resistant HIV and the concentrations of mutants over time. NVP resistance was detected in 9 of 24 infants (37.5%; 95% confidence interval, 18.8%–59.4%) infected via breast milk. Eight had a pure mutant HIV population at the time infection was first detected, and majority mutant populations persisted in all 6 infants with follow-up specimens. Infection of breast-feeding infants with NVP-resistant HIV resulted in mutants persisting as the dominant virus, which may indefinitely compromise treatment with NVP-based antiretroviral regimens. PMID:24596282

  14. Influence of Drug Resistance Mutations on the Activity of HIV-1 Subtypes A and B Integrases: a Comparative Study

    PubMed Central

    Shadrina, O. A.; Zatsepin, T. S.; Agapkina, Yu. Yu.; Isaguliants, M. G.; Gottikh, M. B.

    2015-01-01

    Integration of human immunodeficiency virus (HIV-1) DNA into the genome of an infected cell is one of the key steps in the viral replication cycle. The viral enzyme integrase (IN), which catalyzes the integration, is an attractive target for the development of new antiviral drugs. However, the HIV-1 therapy often results in the IN gene mutations inducing viral resistance to integration inhibitors. To assess the impact of drug resistance mutations on the activity of IN of HIV-1 subtype A strain FSU-A, which is dominant in Russia, variants of the consensus IN of this subtype containing the primary resistance mutations G118R and Q148K and secondary compensatory substitutions E138K and G140S were prepared and characterized. Comparative study of these enzymes with the corresponding mutants of IN of HIV-1 subtype B strains HXB-2 was performed. The mutation Q148K almost equally reduced the activity of integrases of both subtypes. Its negative effect was partially compensated by the secondary mutations E138K and G140S. Primary substitution G118R had different influence on the activity of proteins of the subtypes A and B, and the compensatory effect of the secondary substitution E138K also depended on the viral subtype. Comparison of the mutants resistance to the known strand transfer inhibitors raltegravir and elvitegravir, and a new inhibitor XZ-259 (a dihydro-1H-isoindol derivative), showed that integrases of both subtypes with the Q148K mutation were insensitive to raltegravir and elvitegravir but were effectively inhibited by XZ-259. The substitution G118R slightly reduced the efficiency of IN inhibition by raltegravir and elvitegravir and caused no resistance to XZ_259. PMID:25927004

  15. Antiretroviral resistance among HIV type 1-infected women first exposed to antiretrovirals during pregnancy: plasma versus PBMCs.

    PubMed

    Soto-Ramirez, Luis E; Rodriguez-Diaz, Roberto; Durán, Adriana S; Losso, Marcelo H; Salomón, Horacio; Gómez-Carrillo, Manuel; Pampuro, Sandra; Harris, D Robert; Duarte, Geraldo; De Souza, Ricardo S; Read, Jennifer S

    2008-06-01

    Resistance-associated mutations (RAMs) in plasma samples from HIV-1-infected women who received antiretroviral (ARV) prophylaxis during pregnancy was assessed and correlated with the detection of RAMs in peripheral blood mononuclear cells (PMBCs). The study population was composed of HIV-1-infected women enrolled in a prospective cohort study in Latin America and the Caribbean (NISDI Perinatal Study) as of March 1, 2005, who were diagnosed with HIV-1 infection during the current pregnancy, who received ARVs during pregnancy for prevention of mother-to-child transmission of HIV-1, and who were followed through at least the 6-12 week postpartum visit. Plasma samples collected at enrollment during pregnancy and at 6-12 weeks postpartum were assayed for RAMs. Plasma results were compared to previously described PBMC results from the same study population. Of 819 enrolled subjects, 197 met the eligibility criteria. Nucleic acid amplification was accomplished in 123 plasma samples at enrollment or 6-12 weeks postpartum, and RAMs were detected in 22 (17.9%; 95%CI: 11.7-25.9%). Previous analyses had demonstrated detection of RAMs in PBMCs in 19 (16.1%). There was high concordance between RAMs detected in plasma and PBMC samples, with only eight discordant pairs. The prevalence of RAMs among these pregnant, HIV-1-infected women is high (15%). Rates of detection of RAMs in plasma and PBMC samples were similar.

  16. Antiretroviral Resistance among HIV Type 1-Infected Women First Exposed to Antiretrovirals during Pregnancy: Plasma versus PBMCs

    PubMed Central

    Soto-Ramirez, Luis E.; Rodriguez-Diaz, Roberto; Durán, Adriana S.; Losso, Marcelo H.; Salomón, Horacio; Gómez-Carrillo, Manuel; Pampuro, Sandra; Harris, D. Robert; Duarte, Geraldo; De Souza, Ricardo S.

    2008-01-01

    Abstract Resistance-associated mutations (RAMs) in plasma samples from HIV-1-infected women who received antiretroviral (ARV) prophylaxis during pregnancy was assessed and correlated with the detection of RAMs in peripheral blood mononuclear cells (PMBCs). The study population was composed of HIV-1-infected women enrolled in a prospective cohort study in Latin America and the Caribbean (NISDI Perinatal Study) as of March 1, 2005, who were diagnosed with HIV-1 infection during the current pregnancy, who received ARVs during pregnancy for prevention of mother-to-child transmission of HIV-1, and who were followed through at least the 6–12 week postpartum visit. Plasma samples collected at enrollment during pregnancy and at 6–12 weeks postpartum were assayed for RAMs. Plasma results were compared to previously described PBMC results from the same study population. Of 819 enrolled subjects, 197 met the eligibility criteria. Nucleic acid amplification was accomplished in 123 plasma samples at enrollment or 6–12 weeks postpartum, and RAMs were detected in 22 (17.9%; 95%CI: 11.7–25.9%). Previous analyses had demonstrated detection of RAMs in PBMCs in 19 (16.1%). There was high concordance between RAMs detected in plasma and PBMC samples, with only eight discordant pairs. The prevalence of RAMs among these pregnant, HIV-1-infected women is high (>15%). Rates of detection of RAMs in plasma and PBMC samples were similar. PMID:18507526

  17. Use of Dried Plasma Spots for HIV-1 Viral Load Determination and Drug Resistance Genotyping in Mexican Patients.

    PubMed

    Rodriguez-Auad, Juan Pablo; Rojas-Montes, Othon; Maldonado-Rodriguez, Angelica; Alvarez-Muñoz, Ma Teresa; Muñoz, Onofre; Torres-Ibarra, Rocio; Vazquez-Rosales, Guillermo; Lira, Rosalia

    2015-01-01

    Monitoring antiretroviral therapy using measurements of viral load (VL) and the genotyping of resistance mutations is not routinely performed in low- to middle-income countries because of the high costs of the commercial assays that are used. The analysis of dried plasma spot (DPS) samples on filter paper may represent an alternative for resource-limited settings. Therefore, we evaluated the usefulness of analyzing DPS samples to determine VL and identify drug resistance mutations (DRM) in a group of HIV-1 patients. The VL was measured from 22 paired plasma and DPS samples. In these samples, the average VL was 4.7 log10 copies/mL in liquid plasma and 4.1 log10 copies/mL in DPS, with a correlation coefficient of R = 0.83. A 1.1 kb fragment of HIV pol could be amplified in 14/22 (63.6%) of the DPS samples and the same value was amplified in plasma samples. A collection of ten paired DPS and liquid plasma samples was evaluated for the presence of DRM; an excellent correlation was found in the identification of DRM between the paired samples. All HIV-1 pol sequences that were obtained corresponded to HIV subtype B. The analysis of DPS samples offers an attractive alternative for monitoring ARV therapy in resource-limited settings.

  18. MinVar: A rapid and versatile tool for HIV-1 drug resistance genotyping by deep sequencing.

    PubMed

    Huber, Michael; Metzner, Karin J; Geissberger, Fabienne D; Shah, Cyril; Leemann, Christine; Klimkait, Thomas; Böni, Jürg; Trkola, Alexandra; Zagordi, Osvaldo

    2017-02-01

    Genotypic monitoring of drug-resistance mutations (DRMs) in HIV-1 infected individuals is strongly recommended to guide selection of the initial antiretroviral therapy (ART) and changes of drug regimens. Traditionally, mutations conferring drug resistance are detected by population sequencing of the reverse transcribed viral RNA encoding the HIV-1 enzymes target by ART, followed by manual analysis and interpretation of Sanger sequencing traces. This process is labor intensive, relies on subjective interpretation from the operator, and offers limited sensitivity as only mutations above 20% frequency can be reliably detected. Here we present MinVar, a pipeline for the analysis of deep sequencing data, which allows reliable and automated detection of DRMs down to 5%. We evaluated MinVar with data from amplicon sequencing of defined mixtures of molecular virus clones with known DRM and plasma samples of viremic HIV-1 infected individuals and we compared it to VirVarSeq, another virus variant detection tool exclusively working on Illumina deep sequencing data. MinVar was designed to be compatible with a diverse range of sequencing platforms and allows the detection of DRMs and insertions/deletions from deep sequencing data without the need to perform additional bioinformatics analysis, a prerequisite to a widespread implementation of HIV-1 genotyping using deep sequencing in routine diagnostic settings.

  19. Use of Dried Plasma Spots for HIV-1 Viral Load Determination and Drug Resistance Genotyping in Mexican Patients

    PubMed Central

    Rodriguez-Auad, Juan Pablo; Rojas-Montes, Othon; Maldonado-Rodriguez, Angelica; Alvarez-Muñoz, Ma. Teresa; Muñoz, Onofre; Torres-Ibarra, Rocio; Vazquez-Rosales, Guillermo

    2015-01-01

    Monitoring antiretroviral therapy using measurements of viral load (VL) and the genotyping of resistance mutations is not routinely performed in low- to middle-income countries because of the high costs of the commercial assays that are used. The analysis of dried plasma spot (DPS) samples on filter paper may represent an alternative for resource-limited settings. Therefore, we evaluated the usefulness of analyzing DPS samples to determine VL and identify drug resistance mutations (DRM) in a group of HIV-1 patients. The VL was measured from 22 paired plasma and DPS samples. In these samples, the average VL was 4.7 log10 copies/mL in liquid plasma and 4.1 log10 copies/mL in DPS, with a correlation coefficient of R = 0.83. A 1.1 kb fragment of HIV pol could be amplified in 14/22 (63.6%) of the DPS samples and the same value was amplified in plasma samples. A collection of ten paired DPS and liquid plasma samples was evaluated for the presence of DRM; an excellent correlation was found in the identification of DRM between the paired samples. All HIV-1 pol sequences that were obtained corresponded to HIV subtype B. The analysis of DPS samples offers an attractive alternative for monitoring ARV therapy in resource-limited settings. PMID:26779533

  20. Development of Tetravalent, Bispecific CCR5 Antibodies with Antiviral Activity against CCR5 Monoclonal Antibody-Resistant HIV-1 Strains▿

    PubMed Central

    Schanzer, Jürgen; Jekle, Andreas; Nezu, Junichi; Lochner, Adriane; Croasdale, Rebecca; Dioszegi, Marianna; Zhang, Jun; Hoffmann, Eike; Dormeyer, Wilma; Stracke, Jan; Schäfer, Wolfgang; Ji, Changhua; Heilek, Gabrielle; Cammack, Nick; Brandt, Michael; Umana, Pablo; Brinkmann, Ulrich

    2011-01-01

    In this study, we describe novel tetravalent, bispecific antibody derivatives that bind two different epitopes on the HIV coreceptor CCR5. The basic protein formats that we applied were derived from Morrison-type bispecific antibodies: whole IgGs to which we connected single-chain antibodies (scFvs) via (Gly4Ser)n sequences at either the C or N terminus of the light chain or heavy chain. By design optimization, including disulfide stabilization of scFvs or introduction of 30-amino-acid linkers, stable molecules could be obtained in amounts that were within the same range as or no less than 4-fold lower than those observed with monoclonal antibodies in transient expression assays. In contrast to monospecific CCR5 antibodies, bispecific antibody derivatives block two alternative docking sites of CCR5-tropic HIV strains on the CCR5 coreceptor. Consequently, these molecules showed 18- to 57-fold increased antiviral activities compared to the parent antibodies. Most importantly, one prototypic tetravalent CCR5 antibody had antiviral activity against virus strains resistant to the single parental antibodies. In summary, physical linkage of two CCR5 antibodies targeting different epitopes on the HIV coreceptor CCR5 resulted in tetravalent, bispecific antibodies with enhanced antiviral potency against wild-type and CCR5 antibody-resistant HIV-1 strains. PMID:21300827

  1. Strain-Specific V3 and CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select Neutralization-Resistant Viruses.

    PubMed

    Moody, M Anthony; Gao, Feng; Gurley, Thaddeus C; Amos, Joshua D; Kumar, Amit; Hora, Bhavna; Marshall, Dawn J; Whitesides, John F; Xia, Shi-Mao; Parks, Robert; Lloyd, Krissey E; Hwang, Kwan-Ki; Lu, Xiaozhi; Bonsignori, Mattia; Finzi, Andrés; Vandergrift, Nathan A; Alam, S Munir; Ferrari, Guido; Shen, Xiaoying; Tomaras, Georgia D; Kamanga, Gift; Cohen, Myron S; Sam, Noel E; Kapiga, Saidi; Gray, Elin S; Tumba, Nancy L; Morris, Lynn; Zolla-Pazner, Susan; Gorny, Miroslaw K; Mascola, John R; Hahn, Beatrice H; Shaw, George M; Sodroski, Joseph G; Liao, Hua-Xin; Montefiori, David C; Hraber, Peter T; Korber, Bette T; Haynes, Barton F

    2015-09-09

    The third variable (V3) loop and the CD4 binding site (CD4bs) of the HIV-1 envelope are frequently targeted by neutralizing antibodies (nAbs) in infected individuals. In chronic infection, HIV-1 escape mutants repopulate the plasma, and V3 and CD4bs nAbs emerge that can neutralize heterologous tier 1 easy-to-neutralize but not tier 2 difficult-to-neutralize HIV-1 isolates. However, neutralization sensitivity of autologous plasma viruses to this type of nAb response has not been studied. We describe the development and evolution in vivo of antibodies distinguished by their target specificity for V3 and CD4bs epitopes on autologous tier 2 viruses but not on heterologous tier 2 viruses. A surprisingly high fraction of autologous circulating viruses was sensitive to these antibodies. These findings demonstrate a role for V3 and CD4bs antibodies in constraining the native envelope trimer in vivo to a neutralization-resistant phenotype, explaining why HIV-1 transmission generally occurs by tier 2 neutralization-resistant viruses.

  2. Resistance to human immunodeficiency virus type 1 (HIV-1) generated by lentivirus vector-mediated delivery of the CCR5{Delta}32 gene despite detectable expression of the HIV-1 co-receptors.

    PubMed

    Jin, Qingwen; Marsh, Jon; Cornetta, Kenneth; Alkhatib, Ghalib

    2008-10-01

    It has previously been demonstrated that there are two distinct mechanisms for genetic resistance to human immunodeficiency virus type 1 (HIV-1) conferred by the CCR5Delta32 gene: the loss of wild-type CCR5 surface expression and the generation of CCR5Delta32 protein, which interacts with CXCR4. To analyse the protective effects of long-term expression of the CCR5Delta32 protein, recombinant lentiviral vectors were used to deliver the CCR5Delta32 gene into human cell lines and primary peripheral blood mononuclear cells that had been immortalized by human T-cell leukemia virus type 1. Blasticidin S-resistant cell lines expressing the lentivirus-encoded CCR5Delta32 showed a significant reduction in HIV-1 Env-mediated fusion assays. It was shown that CD4(+) T lymphocytes expressing the lentivirus-encoded CCR5Delta32 gene were highly resistant to infection by a primary but not by a laboratory-adapted X4 strain, suggesting different infectivity requirements. In contrast to previous studies that analysed the CCR5Delta32 protective effects in a transient expression system, this study showed that long-term expression of CCR5Delta32 conferred resistance to HIV-1 despite cell-surface expression of the HIV co-receptors. The results suggest an additional unknown mechanism for generating the CCR5Delta32 resistance phenotype and support the hypothesis that the CCR5Delta32 protein acts as an HIV-suppressive factor by altering the stoichiometry of the molecules involved in HIV-1 entry. The lentiviral-CCR5Delta32 vectors offer a method of generating HIV-resistant cells by delivery of the CCR5Delta32 gene that may be useful for stem cell- or T-cell-based gene therapy for HIV-1 infection.

  3. Pharmacokinetics of para-Aminosalicylic Acid in HIV-Uninfected and HIV-Coinfected Tuberculosis Patients Receiving Antiretroviral Therapy, Managed for Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis

    PubMed Central

    de Kock, Lizanne; Sy, Sherwin K. B.; Diacon, Andreas H.; Prescott, Kim; Hernandez, Kenneth R.; Yu, Mingming; Derendorf, Hartmut; Donald, Peter R.

    2014-01-01

    The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis prompted the reintroduction of para-aminosalicylic acid (PAS) to protect companion anti-tuberculosis drugs from additional acquired resistance. In sub-Saharan Africa, MDR/XDR tuberculosis with HIV coinfection is common, and concurrent treatment of HIV infection and MDR/XDR tuberculosis is required. Out of necessity, patients receive multiple drugs, and PAS therapy is frequent; however, neither potential drug interactions nor the effects of HIV infection are known. Potential drug-drug interaction with PAS and the effect of HIV infection was examined in 73 pulmonary tuberculosis patients; 22 (30.1%) were HIV coinfected. Forty-one pulmonary MDR or XDR tuberculosis patients received 4 g PAS twice daily, and in a second crossover study, another 32 patients were randomized, receiving 4 g PAS twice daily or 8 g PAS once daily. A PAS population pharmacokinetic model in two dosing regimens was developed; potential covariates affecting its pharmacokinetics were examined, and Monte Carlo simulations were conducted evaluating the pharmacokinetic-pharmacodynamic index. The probability of target attainment (PTA) to maintain PAS levels above MIC during the dosing interval was estimated by simulation of once-, twice-, and thrice-daily dosing regimens not exceeding 12 g daily. Concurrent efavirenz (EFV) medication resulted in a 52% increase in PAS clearance and a corresponding >30% reduction in mean PAS area under the concentration curve in 19 of 22 HIV-M. tuberculosis-coinfected patients. Current practice recommends maintenance of PAS concentrations at ≥1 μg/ml (the MIC of M. tuberculosis), but the model predicts that at only a minimum dose of 4 g twice daily can this PTA be achieved in at least 90% of the population, whether or not EFV is concomitantly administered. Once-daily dosing of 12 g PAS will not provide PAS concentrations exceeding the MIC over the entire dosing

  4. HIV Drug Resistance Surveillance in Honduras after a Decade of Widespread Antiretroviral Therapy

    PubMed Central

    Tapia-Trejo, Daniela; Meza, Rita I.; Nuñez, Sandra M.; Parham, Leda; Flores, Norma A.; Valladares, Diana; Pineda, Luisa M.; Flores, Dixiana; Motiño, Roxana; Umanzor, Víctor; Carbajal, Candy; Murillo, Wendy; Lorenzana, Ivette; Palou, Elsa Y.; Reyes-Terán, Gustavo

    2015-01-01

    Introduction We assessed HIV drug resistance (DR) in individuals failing ART (acquired DR, ADR) and in ART-naïve individuals (pre-ART DR, PDR) in Honduras, after 10 years of widespread availability of ART. Methods 365 HIV-infected, ART-naïve, and 381 ART-experienced Honduran individuals were enrolled in 5 reference centres in Tegucigalpa, San Pedro Sula, La Ceiba, and Choluteca between April 2013 and April 2015. Plasma HIV protease-RT sequences were obtained. HIVDR was assessed using the WHO HIVDR mutation list and the Stanford algorithm. Recently infected (RI) individuals were identified using a multi-assay algorithm. Results PDR to any ARV drug was 11.5% (95% CI 8.4–15.2%). NNRTI PDR prevalence (8.2%) was higher than NRTI (2.2%) and PI (1.9%, p<0.0001). No significant trends in time were observed when comparing 2013 and 2014, when using a moving average approach along the study period or when comparing individuals with >500 vs. <350 CD4+ T cells/μL. PDR in recently infected individuals was 13.6%, showing no significant difference with PDR in individuals with longstanding infection (10.7%). The most prevalent PDR mutations were M46IL (1.4%), T215 revertants (0.5%), and K103NS (5.5%). The overall ADR prevalence in individuals with <48 months on ART was 87.8% and for the ≥48 months on ART group 81.3%. ADR to three drug families increased in individuals with longer time on ART (p = 0.0343). M184V and K103N were the most frequent ADR mutations. PDR mutation frequency correlated with ADR mutation frequency for PI and NNRTI (p<0.01), but not for NRTI. Clusters of viruses were observed suggesting transmission of HIVDR both from ART-experienced to ART-naïve individuals and between ART-naïve individuals. Conclusions The global PDR prevalence in Honduras remains at the intermediate level, after 10 years of widespread availability of ART. Evidence of ADR influencing the presence of PDR was observed by phylogenetic analyses and ADR/PDR mutation frequency correlations

  5. C-5-Modified Tetrahydropyrano-Tetrahydofuran-Derived Protease Inhibitors (PIs) Exert Potent Inhibition of the Replication of HIV-1 Variants Highly Resistant to Various PIs, including Darunavir

    PubMed Central

    Aoki, Manabu; Hayashi, Hironori; Yedidi, Ravikiran S.; Martyr, Cuthbert D.; Takamatsu, Yuki; Aoki-Ogata, Hiromi; Nakamura, Teruya; Nakata, Hirotomo; Das, Debananda; Yamagata, Yuriko; Ghosh, Arun K.

    2015-01-01

    ABSTRACT We identified three nonpeptidic HIV-1 protease inhibitors (PIs), GRL-015, -085, and -097, containing tetrahydropyrano-tetrahydrofuran (Tp-THF) with a C-5 hydroxyl. The three compounds were potent against a wild-type laboratory HIV-1 strain (HIV-1WT), with 50% effective concentrations (EC50s) of 3.0 to 49 nM, and exhibited minimal cytotoxicity, with 50% cytotoxic concentrations (CC50) for GRL-015, -085, and -097 of 80, >100, and >100 μM, respectively. All the three compounds potently inhibited the replication of highly PI-resistant HIV-1 variants selected with each of the currently available PIs and recombinant clinical HIV-1 isolates obtained from patients harboring multidrug-resistant HIV-1 variants (HIVMDR). Importantly, darunavir (DRV) was >1,000 times less active against a highly DRV-resistant HIV-1 variant (HIV-1DRVRP51); the three compounds remained active against HIV-1DRVRP51 with only a 6.8- to 68-fold reduction. Moreover, the emergence of HIV-1 variants resistant to the three compounds was considerably delayed compared to the case of DRV. In particular, HIV-1 variants resistant to GRL-085 and -097 did not emerge even when two different highly DRV-resistant HIV-1 variants were used as a starting population. In the structural analyses, Tp-THF of GRL-015, -085, and -097 showed strong hydrogen bond interactions with the backbone atoms of active-site amino acid residues (Asp29 and Asp30) of HIV-1 protease. A strong hydrogen bonding formation between the hydroxyl moiety of Tp-THF and a carbonyl oxygen atom of Gly48 was newly identified. The present findings indicate that the three compounds warrant further study as possible therapeutic agents for treating individuals harboring wild-type HIV and/or HIVMDR. IMPORTANCE Darunavir (DRV) inhibits the replication of most existing multidrug-resistant HIV-1 strains and has a high genetic barrier. However, the emergence of highly DRV-resistant HIV-1 strains (HIVDRVR) has recently been observed in vivo and in

  6. Predominance of Hepatitis B Virus genotype A among treated HIV infected patients experiencing high HBV drug resistance in Nairobi, Kenya.

    PubMed

    Mabeya, Sepha Nyatichi; Ngugi, Caroline Wangari; Lihana, Raphael W; Khamadi, Samoel Ashimosi; Nyamache, Anthony Kebira

    2017-03-19

    HBV/HIV coinfections are becoming common with information on HBV genetic diversity and drug resistance still remaining elusive. To evaluate the HBV genetic diversity and drug resistance associated mutations among drug experienced HIV patients, the genetic analysis of the partial HBV-pol-reverse trancriptase gene was successfully sequenced from 13 samples. Analysis of the sequences showed that all (13) the sequences belonged to genotype A. Nucleos(t)ide drug resistance mutations were found in six (6) patients. Five subjects had rtV173L, rtL180M, rtM204V and one with rtL180M, rtM204V major mutations. HBV genotype A remains the most predominant genotype circulating in Nairobi city with detected high level of HBV drug resistance to Lamivudine telbivudine and emtricitabine. The detected circulating HBV genotype A in Nairobi reflects its possible spread in the population with its origin being within the country. We suggest that patients should not be on lamivudine monotherapy. These individuals should be managed on combination of tenofovir plus lamivudine or emtricitabine therapy in order to prevent the emergence of HBV drug resistant variants alongside a continuous surveillance monitoring of drug resistance and HBV genotypes.

  7. More effective drugs lead to harder selective sweeps in the evolution of drug resistance in HIV-1

    PubMed Central

    Feder, Alison F; Rhee, Soo-Yon; Holmes, Susan P; Shafer, Robert W; Petrov, Dmitri A; Pennings, Pleuni S

    2016-01-01

    In the early days of HIV treatment, drug resistance occurred rapidly and predictably in all patients, but under modern treatments, resistance arises slowly, if at all. The probability of resistance should be controlled by the rate of generation of resistance mutations. If many adaptive mutations arise simultaneously, then adaptation proceeds by soft selective sweeps in which multiple adaptive mutations spread concomitantly, but if adaptive mutations occur rarely in the population, then a single adaptive mutation should spread alone in a hard selective sweep. Here, we use 6717 HIV-1 consensus sequences from patients treated with first-line therapies between 1989 and 2013 to confirm that the transition from fast to slow evolution of drug resistance was indeed accompanied with the expected transition from soft to hard selective sweeps. This suggests more generally that evolution proceeds via hard sweeps if resistance is unlikely and via soft sweeps if it is likely. DOI: http://dx.doi.org/10.7554/eLife.10670.001 PMID:26882502

  8. Sexual Risk Behavior: HIV, STD, & Teen Pregnancy Prevention

    MedlinePlus

    ... What's this? Submit What's this? Submit Button Related CDC Sites Adolescents and STDs HIV/AIDS HIV Among ... least once as part of routine medical care. CDC Programs & Initiatives CDC's Division of Adolescent and School ...

  9. Dose-response curve slope is a missing dimension in the analysis of HIV-1 drug resistance.

    PubMed

    Sampah, Maame Efua S; Shen, Lin; Jilek, Benjamin L; Siliciano, Robert F

    2011-05-03

    HIV-1 drug resistance is a major clinical problem. Resistance is evaluated using in vitro assays measuring the fold change in IC(50) caused by resistance mutations. Antiretroviral drugs are used at concentrations above IC(50), however, and inhibition at clinical concentrations can only be predicted from IC(50) if the shape of the dose-response curve is also known. Curve shape is influenced by cooperative interactions and is described mathematically by the slope parameter or Hill coefficient (m). Implicit in current analysis of resistance is the assumption that mutations shift dose-response curves to the right without affecting the slope. We show here that m is altered by resistance mutations. For reverse transcriptase and fusion inhibitors, single resistance mutations affect both slope and IC(50). For protease inhibitors, single mutations primarily affect slope. For integrase inhibitors, only IC(50) is affected. Thus, there are fundamental pharmacodynamic differences in resistance to different drug classes. Instantaneous inhibitory potential (IIP), the log inhibition of single-round infectivity at clinical concentrations, takes into account both slope and IC(50), and thus provides a direct measure of the reduction in susceptibility produced by mutations and the residual activity of drugs against resistant viruses. The standard measure, fold change in IC(50), does not correlate well with changes in IIP when mutations alter slope. These results challenge a fundamental assumption underlying current analysis of HIV-1 drug resistance and suggest that a more complete understanding of how resistance mutations reduce antiviral activity requires consideration of a previously ignored parameter, the dose-response curve slope.

  10. Determination of the anti-inflammatory and cytoprotective effects of l-glutamine and l-alanine, or dipeptide, supplementation in rats submitted to resistance exercise.

    PubMed

    Raizel, Raquel; Leite, Jaqueline Santos Moreira; Hypólito, Thaís Menezes; Coqueiro, Audrey Yule; Newsholme, Philip; Cruzat, Vinicius Fernandes; Tirapegui, Julio

    2016-08-01

    We evaluated the effects of chronic oral supplementation with l-glutamine and l-alanine in their free form or as the dipeptide l-alanyl-l-glutamine (DIP) on muscle damage, inflammation and cytoprotection, in rats submitted to progressive resistance exercise (RE). Wistar rats (n 8/group) were submitted to 8-week RE, which consisted of climbing a ladder with progressive loads. In the final 21 d before euthanasia, supplements were delivered in a 4 % solution in drinking water. Glutamine, creatine kinase (CK), lactate dehydrogenase (LDH), TNF-α, specific IL (IL-1β, IL-6 and IL-10) and monocyte chemoattractant protein-1 (MCP-1) levels were evaluated in plasma. The concentrations of glutamine, TNF-α, IL-6 and IL-10, as well as NF-κB activation, were determined in extensor digitorum longus (EDL) skeletal muscle. HSP70 level was assayed in EDL and peripheral blood mononuclear cells (PBMC). RE reduced glutamine concentration in plasma and EDL (P<0·05 v. sedentary group). However, l-glutamine supplements (l-alanine plus l-glutamine (GLN+ALA) and DIP groups) restored glutamine levels in plasma (by 40 and 58 %, respectively) and muscle (by 93 and 105 %, respectively). GLN+ALA and DIP groups also exhibited increased level of HSP70 in EDL and PBMC, consistent with the reduction of NF-κB p65 activation and cytokines in EDL. Muscle protection was also indicated by attenuation in plasma levels of CK, LDH, TNF-α and IL-1β, as well as an increase in IL-6, IL-10 and MCP-1. Our study demonstrates that chronic oral l-glutamine treatment (given with l-alanine or as dipeptide) following progressive RE induces cyprotective effects mediated by HSP70-associated responses to muscle damage and inflammation.

  11. HIV-Resistant Gene Modified Stem Cells and Chemotherapy in Treating Patients With Lymphoma With HIV Infection

    ClinicalTrials.gov

    2017-01-19

    HIV Infection; Stage I Adult Hodgkin Lymphoma; Stage I Adult Non-Hodgkin Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Adult Non-Hodgkin Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Non-Hodgkin Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Non-Hodgkin Lymphoma

  12. Tenofovir Alafenamide as Part of a Salvage Regimen in A Patient with Multi-Drug Resistant HIV and Tenofovir DF-Associated Renal Tubulopathy

    PubMed Central

    Mikula, James M.; Manion, Maura M.; Maldarelli, Frank; Suarez, Lucila M.; Norman-Wheeler, Jaha F.; Ober, Alex G.; Dewar, Robin L.; Kopp, Jeffrey B.; Lane, H. Clifford; Pau, Alice K.

    2016-01-01

    Brief Summary We describe a patient with two recent episodes of tenofovir disoproxil fumarate (TDF)-associated acute kidney injury and six-class drug-resistant HIV infection who achieved and maintained viral suppression without worsening kidney function on a regimen including tenofovir alafenamide (TAF) through 48 weeks of therapy. The safety and efficacy of TAF in patients with TDF-associated renal tubulopathy and multiple drug resistance HIV has not yet been described. TAF may represent a useful option to maximally suppress HIV in patients with these complications. PMID:26954372

  13. HIV-1 Genetic Characteristics and Transmitted Drug Resistance among Men Who Have Sex with Men in Kunming, China

    PubMed Central

    Chen, Min; Ma, Yanling; Su, Yingzhen; Yang, Li; Zhang, Renzhong; Yang, Chaojun; Chen, Huichao; Yan, Wenyun; Shi, Yuhua; Dong, Lijuan; Chen, Ling; Jia, Manhong; Lu, Lin

    2014-01-01

    Background Yunnan has been severely affected by HIV/AIDS in China. Recently, the reported prevalence of HIV-1 among men who have sex with men (MSM) in Yunnan was high in China. To monitor dynamic HIV-1 epidemic among Yunnan MSM, HIV-1 genetic characteristics and transmitted drug resistance (TDR) were investigated. Methods Blood samples from 131 newly HIV-1 diagnosed MSM were continuously collected at fixed sites from January 2010 to December 2012 in Kunming City, Yunnan Province. Partial gag, pol and env genes were sequenced. Phylogenetic, evolutionary and genotypic drug resistance analyses were performed. Results Multiple genotypes were identified among MSM in Kunming, including CRF01_AE (64.9%), CRF07_BC (25.2%), unique recombinant forms (URFs, 5.3%), subtype B (3.1%) and CRF08_BC (1.5%). CRF01_AE and CRF07_BC were the predominant strains. The mean of genetic distance within CRF01_AE were larger than that within CRF07_BC. The estimated introducing time of CRF01_AE in Yunnan MSM (1996.9) is earlier than that of CRF07_BC (2002.8). In this study, subtype B was first identified in Yunnan MSM. CRF08_BC seems to be the distinctive strain in Yunnan MSM, which was seldom found among MSM outside Yunnan. The proportion of URFs increased, which further contributed to genetic diversity among MSM. Strikingly, genetic relatedness was found among these strains with MSM isolates from multiple provinces, which suggested that a nationwide transmission network may exist. TDR-associated mutations were identified in 4.6% individuals. The multivariate analysis revealed that non-native MSM and divorced/widowed MSM were independently associated with a higher TDR rate. Conclusion This work revealed diverse HIV-1 genetics, national transmission networks and a baseline level of TDR in MSM. These findings enhance our understanding of the distribution and evolution of HIV-1 in MSM, and are valuable for developing HIV prevention strategies for MSM. PMID:24489829

  14. Insulin resistance and glucose and lipid concentrations in a cohort of perinatally HIV-infected Latin American children.

    PubMed

    Hazra, Rohan; Hance, Laura Freimanis; Monteiro, Jacqueline Pontes; Ruz, Noris Pavia; Machado, Daisy Maria; Saavedra, Mariza; Motta, Fabrizio; Harris, D Robert

    2013-07-01

    We measured glucose, insulin and lipids in 249 perinatally HIV-infected Latin American children. Only 1 subject had impaired fasting glucose; 6.8% had insulin resistance. Abnormalities in total, low-density lipoprotein and high-density lipoprotein cholesterol and triglycerides were reported for 13%, 13%, 21% and 34%, respectively. Continued follow-up of this population is necessary to characterize the evolution and clinical consequences of these findings.

  15. Development of HIV drug resistance and therapeutic failure in children and adolescents in rural Tanzania: an emerging public health concern

    PubMed Central

    Muri, Lukas; Gamell, Anna; Ntamatungiro, Alex J.; Glass, Tracy R.; Luwanda, Lameck B.; Battegay, Manuel; Furrer, Hansjakob; Hatz, Christoph; Tanner, Marcel; Felger, Ingrid; Klimkait, Thomas; Letang, Emilio

    2017-01-01

    Objective: To investigate the prevalence and determinants of virologic failure and acquired drug resistance-associated mutations (DRMs) in HIV-infected children and adolescents in rural Tanzania. Design: Prospective cohort study with cross-sectional analysis. Methods: All children 18 years or less attending the paediatric HIV Clinic of Ifakara and on antiretroviral therapy (ART) for at least 12 months were enrolled. Participants with virologic failure were tested for HIV-DRM. Pre-ART samples were used to discriminate acquired and transmitted resistances. Multivariate logistic regression analysis identified factors associated with virologic failure and the acquisition of HIV-DRM. Results: Among 213 children on ART for a median of 4.3 years, 25.4% failed virologically. ART-associated DRM were identified in 90%, with multiclass resistances in 79%. Pre-ART data suggested that more than 85% had acquired key mutations during treatment. Suboptimal adherence [odds ratio (OR) = 3.90; 95% confidence interval (CI) 1.11–13.68], female sex (aOR = 2.57; 95% CI 1.03–6.45), and current nonnucleoside reverse transcriptase inhibitor-based ART (aOR = 7.32; 95% CI 1.51–35.46 compared with protease inhibitor-based) independently increased the odds of virologic failure. CD4+ T-cell percentage (aOR = 0.20; 0.10–0.40 per additional 10%) and older age at ART initiation (aOR = 0.84 per additional year of age; 95% CI 0.73–0.97) were protective (also in predicting acquired HIV-DRM). At the time of virologic failure, less than 5% of the children fulfilled the WHO criteria for immunologic failure. Conclusion: Virologic failure rates in children and adolescents were high, with the majority of ART-failing children harbouring HIV-DRM. The WHO criteria for immunologic treatment failure yielded an unacceptably low sensitivity. Viral load monitoring is urgently needed to maintain future treatment options for the millions of African children living with HIV. PMID:27677163

  16. [In vitro antifungal resistance in Candida albicans from HIV-infected patients with and without oral candidosis.].

    PubMed

    Ceballos Salobreña, A; Gaitán Cepeda, L A; Orihuela Cañada, F; Olea Barrionuevo, D; Ceballos García, L; Quindós, G

    1999-12-01

    The main purpose of this study has been to determine the in vitro antifungal susceptibility of clinical isolates from HIV-infected or AIDS patients, depending on the presence of oral candidosis. The oral cavity of 307 HIV-infected or AIDS patients was examined and an oral swab was cultured on Sabouraud glucose agar and studied by conventional mycological methods. In vitro antifungal susceptibility to amphotericin B, nystatin, fluconazole, itraconazole and ketoconazole was tested by disk diffusion with Neo-Sensitabs tablets (Rosco Diagnostica, Dinamarca). One hundred and thirty five Candida albicans isolates (91 serotype A, 38 serotype B, three C. albicans variety stellatoidea and three untyped isolates), three Candida krusei and two Candida glabrata were obtained. All the isolates were susceptible to nystatin and amphotericin B. However, 7.9% isolates were resistant to fluconazole and 2.9% isolates were resistant to ketoconazole or itraconazole. Nearly all C. krusei and C. glabrata isolates, 31% patients with candidosis and 20% Candida-colonized patients showed decreased susceptibility to azoles. This study shows that polyenes had a great in vitro efficacy against clinical isolates from HIV-infected patients and that in vitro resistance to azoles is not as high as observed in other countries.

  17. Ab initio molecular dynamics studies on HIV-1 reverse transcriptase triphosphate binding site: implications for nucleoside-analog drug resistance.

    PubMed Central

    Alber, F.; Carloni, P.

    2000-01-01

    Quantum-chemical methods are used to shed light on the functional role of residues involved in the resistance of HIV-1 reverse transcriptase against nucleoside-analog drugs. Ab initio molecular dynamics simulations are carried out for models representing the adduct between the triphosphate substrate and the nucleoside binding site. The triphosphate is considered either deprotonated or protonated at the gamma-position. Although the protonated form already experiences large rearrangements in the ps time scale, the fully deprotonated state exhibits a previously unrecognized low-barrier hydrogen bond between Lys65 and gamma-phosphate. Absence of this interaction in Lys65-->Arg HIV-1 RT might play a prominent role in the resistance of this mutant for nucleoside analogs (Gu Z et al., 1994b, Antimicrob Agents Chemother 38:275-281; Zhang D et al., 1994, Antimicrob Agents Chemother 38:282-287). Water molecules present in the active site, not detected in the X-ray structure, form a complex H-bond network. Among these waters, one may be crucial for substrate recognition as it bridges Gln151 and Arg72 with the beta-phosphate. Absence of this stabilizing interaction in Gln151-->Met HIV-1 RT mutant may be a key factor for the known drug resistance of this mutant toward dideoxy-type drugs and AZT (Shirasaka T et al., 1995, Proc Natl Acad Sci USA 92:2398-2402: Iversen AK et al., 1996, J Virol 70:1086-1090). PMID:11206075

  18. Mutation V111I in HIV-2 Reverse Transcriptase Increases the Fitness of the Nucleoside Analogue-Resistant K65R and Q151M Viruses

    PubMed Central

    Deuzing, Ilona P.; Charpentier, Charlotte; Wright, David W.; Matheron, Sophie; Paton, Jack; Frentz, Dineke; van de Vijver, David A.; Coveney, Peter V.; Descamps, Diane; Boucher, Charles A. B.

    2014-01-01

    ABSTRACT Infection with HIV-2 can ultimately lead to AIDS, although disease progression is much slower than with HIV-1. HIV-2 patients are mostly treated with a combination of nucleoside reverse transcriptase (RT) inhibitors (NRTIs) and protease inhibitors designed for HIV-1. Many studies have described the development of HIV-1 resistance to NRTIs and identified mutations in the polymerase domain of RT. Recent studies have shown that mutations in the connection and RNase H domains of HIV-1 RT may also contribute to resistance. However, only limited information exists regarding the resistance of HIV-2 to NRTIs. In this study, therefore, we analyzed the polymerase, connection, and RNase H domains of RT in HIV-2 patients failing NRTI-containing therapies. Besides the key resistance mutations K65R, Q151M, and M184V, we identified a novel mutation, V111I, in the polymerase domain. This mutation was significantly associated with mutations K65R and Q151M. Sequencing of the connection and RNase H domains of the HIV-2 patients did not reveal any of the mutations that were reported to contribute to NRTI resistance in HIV-1. We show that V111I does not strongly affect drug susceptibility but increases the replication capacity of the K65R and Q151M viruses. Biochemical assays demonstrate that V111I restores the polymerization defects of the K65R and Q151M viruses but negatively affects the fidelity of the HIV-2 RT enzyme. Molecular dynamics simulations were performed to analyze the structural changes mediated by V111I. This showed that V111I changed the flexibility of the 110-to-115 loop region, which may affect deoxynucleoside triphosphate (dNTP) binding and polymerase activity. IMPORTANCE Mutation V111I in the HIV-2 reverse transcriptase enzyme was identified in patients failing therapies containing nucleoside analogues. We show that the V111I change does not strongly affect the sensitivity of HIV-2 to nucleoside analogues but increases the fitness of viruses with drug

  19. Lentivector Knockdown of CCR5 in Hematopoietic Stem and Progenitor Cells Confers Functional and Persistent HIV-1 Resistance in Humanized Mice

    PubMed Central

    Myburgh, Renier; Ivic, Sandra; Pepper, Michael S.; Gers-Huber, Gustavo; Li, Duo; Audigé, Annette; Rochat, Mary-Aude; Jaquet, Vincent; Regenass, Stephan; Manz, Markus G.; Salmon, Patrick; Krause, Karl-Heinz

    2015-01-01

    ABSTRACT Gene-engineered CD34+ hematopoietic stem and progenitor cells (HSPCs) can be used to generate an HIV-1-resistant immune system. However, a certain threshold of transduced HSPCs might be required for transplantation into mice for creating an HIV-resistant immune system. In this study, we combined CCR5 knockdown by a highly efficient microRNA (miRNA) lentivector with pretransplantation selection of transduced HSPCs to obtain a rather pure population of gene engineered CD34+ cells. Low-level transduction of HSPCs and subsequent sorting by flow cytometry yielded >70% transduced cells. Mice transplanted with these cells showed functional and persistent resistance to a CCR5-tropic HIV strain: viral load was significantly decreased over months, and human CD4+ T cells were preserved. In one mouse, viral mutations, resulting presumably in a CXCR4-tropic strain, overcame HIV resistance. Our results suggest that HSPC-based CCR5 knockdown may lead to efficient control of HIV in vivo. We overcame a major limitation of previous HIV gene therapy in humanized mice in which only a proportion of the cells in chimeric mice in vivo are anti-HIV engineered. Our strategy underlines the promising future of gene engineering HIV-resistant CD34+ cells that produce a constant supply of HIV-resistant progeny. IMPORTANCE Major issues in experimental long-term in vivo HIV gene therapy have been (i) low efficacy of cell transduction at the time of transplantation and (ii) transduction resulting in multiple copies of heterologous DNA in target cells. In this study, we demonstrated the efficacy of a transplantation approach with a selection step for transduced cells that allows transplantation of an enriched population of HSPCs expressing a single (low) copy of a CCR5 miRNA. Efficient maintenance of CD4+ T cells and a low viral titer resulted only when at least 70% of the HIV target cells were genetically modified. These findings imply that clinical protocols of HIV gene therapy require a

  20. Protective versus pathogenic anti-CD4 immunity: insights from the study of natural resistance to HIV infection

    PubMed Central

    2009-01-01

    HIV-1 exposure causes several dramatic unbalances in the immune system homeostasis. Here, we will focus on the paradox whereby CD4 specific autoimmune responses, which are expected to contribute to the catastrophic loss of most part of the T helper lymphocyte subset in infected patients, may display the characteristics of an unconventional protective immunity in individuals naturally resistant to HIV-1 infection. Reference to differences in fine epitope mapping of these two oppositely polarized outcomes will be presented, with particular reference to partially or totally CD4-gp120 complex-specific antibodies. The fine tuning of the anti-self immune response to the HIV-1 receptor may determine whether viral exposure will result in infection or, alternatively, protective immunity. Along this line, an efficacious anti-HIV strategy can rely on the active (i.e., through immunization) or passive targeting of cryptic epitopes of the CD4-gp120 complex, including those harboured within the CD4 molecule. Such epitopes are expected to be safe from genetic drift and thus allow for broad spectrum of efficacy. Moreover, since these epitopes are not routinely exposed in uninfected individuals, they are expected to become targets of neutralizing antibodies or other specifically designed molecules only after viral exposure, with a predictable low impact in terms of potentially harmful anti-CD4 self-reactivity. The experimentum naturae of naturally resistant individuals indicates a strategy to design innovative strategies to neutralize HIV-1 by acting on the sharp edge between harmful and protective self-reactivity. PMID:19943950

  1. Short communication: high prevalence of drug resistance in HIV type 1-infected children born in Honduras and Belize 2001 to 2004.

    PubMed

    Parham, Leda; de Rivera, Ivette Lorenzana; Murillo, Wendy; Naver, Lars; Largaespada, Natalia; Albert, Jan; Karlsson, Annika C

    2011-10-01

    Antiretroviral therapy has had a great impact on the prevention of mother-to-child transmission (MTCT) of HIV-1. However, development of drug resistance, which could be subsequently transmitted to the child, is a major concern. In Honduras and Belize the prevalence of drug resistance among HIV-1-infected children remains unknown. A total of 95 dried blood spot samples was obtained from HIV-1-infected, untreated children in Honduras and Belize born during 2001 to 2004, when preventive antiretroviral therapy was often suboptimal and consisted of monotherapy with nevirapine or zidovudine. Partial HIV-1 pol gene sequences were successfully obtained from 66 children (Honduras n=55; Belize n=11). Mutations associated with drug resistance were detected in 13% of the Honduran and 27% of the Belizean children. Most of the mutations detected in Honduras (43%) and all mutations detected in Belize were associated with resistance to nonnucleoside reverse transcriptase inhibitors, which was expected from the wide use of nevirapine to prevent MTCT during the study period. In addition, although several mothers reported that they had not received antiretroviral therapy, mutations associated with resistance to nucleoside reverse transcriptase inhibitors and protease inhibitors were found in Honduras. This suggests prior and unreported use of these drugs, or that these women had been infected with resistant virus. The present study demonstrates, for the first time, the presence of drug resistance-associated mutations in HIV-1-infected Honduran and Belizean children.

  2. 4E10-Resistant HIV-1 Isolated from Four Subjects with Rare Membrane-Proximal External Region Polymorphisms

    PubMed Central

    Nakamura, Kyle J.; Gach, Johannes S.; Jones, Laura; Semrau, Katherine; Walter, Jan; Bibollet-Ruche, Frederic; Decker, Julie M.; Heath, Laura; Decker, William D.; Sinkala, Moses; Kankasa, Chipepo; Thea, Donald; Mullins, James; Kuhn, Louise; Zwick, Michael B.; Aldrovandi, Grace M.

    2010-01-01

    Human antibody 4E10 targets the highly conserved membrane-proximal external region (MPER) of the HIV-1 transmembrane glycoprotein, gp41, and has extraordinarily broad neutralizing activity. It is considered by many to be a prototype for vaccine development. In this study, we describe four subjects infected with viruses carrying rare MPER polymorphisms associated with resistance to 4E10 neutralization. In one case resistant virus carrying a W680G substitution was transmitted from mother to infant. We used site-directed mutagenesis to demonstrate that the W680G substitution is necessary for conferring the 4E10-resistant phenotype, but that it is not sufficient to transfer the phenotype to a 4E10-sensitive Env. Our third subject carried Envs with a W680R substitution causing variable resistance to 4E10, indicating that residues outside the MPER are required to confer the phenotype. A fourth subject possessed a F673L substitution previously associated with 4E10 resistance. For all three subjects with W680 polymorphisms, we observed additional residues in the MPER that co-varied with position 680 and preserved charged distributions across this region. Our data provide important caveats for vaccine development targeting the MPER. Naturally occurring Env variants described in our study also represent unique tools for probing the structure-function of HIV-1 envelope. PMID:20352106

  3. Prediction of HIV-1 protease inhibitor resistance by Molecular Modeling Protocols (MMPs) using GenMol software.

    PubMed

    Pèpe, G; Courcambeck, J; Perbost, R; Jouanna, P; Halfon, P

    2008-11-01

    This paper investigates the contribution of Molecular Modeling to (i) predict and (ii) understand more fundamentally HIV drug resistance. Based on a new automated GenMol module, these goals are approached by Molecular Modeling Protocols (MMPs), respectively, (i) the Molecular Modeling Phenotype Protocol (MMPP) and (ii) the Molecular Modeling Phenotype-Genotype Protocol (MMGPP). Section 2 recalls clinical practice with a reference case study and Section 3 presents atomistic simulation tools. Section 4 is the heart of the paper. In Section 4.1, MMPP drug resistance prediction is based on correlations between fold resistances versus binding energies on 2959 HIV-1 complexes with 6 protease inhibitors. Based on a drug sensitivity twofold criterion, modeling prediction is able to replace long and costly phenotype tests. In Section 4.2, MMGPP enlightens drug resistance by investigating steric and energetic residues/inhibitor interaction. Section 5 gives a synthesis on modeling contribution to drug resistance prediction. In conclusion, the most promising trend consists of MMP automats that are able to suggest a real time diagnosis taking into account the history of each patient, to enrich databases and to develop therapy strategy and new drugs.

  4. TREAT Asia Quality Assessment Scheme (TAQAS) to standardize the outcome of HIV genotypic resistance testing in a group of Asian laboratories.

    PubMed

    Land, Sally; Cunningham, Philip; Zhou, Jialun; Frost, Kevin; Katzenstein, David; Kantor, Rami; Chen, Yi-Ming Arthur; Oka, Shinichi; DeLong, Allison; Sayer, David; Smith, Jeffery; Dax, Elizabeth M; Law, Matthew

    2009-08-01

    The TREAT Asia (Therapeutics, Research, Education, and AIDS Training in Asia) Network is building capacity for Human Immunodeficiency Virus Type-1 (HIV-1) drug resistance testing in the region. The objective of the TREAT Asia Quality Assessment Scheme - designated TAQAS - is to standardize HIV-1 genotypic resistance testing (HIV genotyping) among laboratories to permit rigorous comparison of results from different clinics and testing centres. TAQAS has evaluated three panels of HIV-1-positive plasma from clinical material or low-passage, culture supernatant for up to 10 Asian laboratories. Laboratory participants used their standard protocols to perform HIV genotyping. Assessment was in comparison to a target genotype derived from all participants and the reference laboratory's result. Agreement between most participants at the edited nucleotide sequence level was high (>98%). Most participants performed to the reference laboratory standard in detection of drug resistance mutations (DRMs). However, there was variation in the detection of nucleotide mixtures (0-83%) and a significant correlation with the detection of DRMs (p<0.01). Interpretation of antiretroviral resistance showed approximately 70% agreement among participants when different interpretation systems were used but >90% agreement with a common interpretation system, within the Stanford University Drug Resistance Database. Using the principles of external quality assessment and a reference laboratory, TAQAS has demonstrated high quality HIV genotyping results from Asian laboratories.

  5. Serostatus Disclosure, Stigma Resistance, and Identity Management Among HIV-Positive Gay Men in Ireland.

    PubMed

    Murphy, Patrick J; Hevey, David; O'Dea, Siobhán; Ní Rathaille, Neans; Mulcahy, Fiona

    2016-09-01

    In this study, we examined how non-infectiousness due to antiretroviral therapy has affected HIV-positive gay men's experience of serostatus disclosure to casual sex partners. Interviews were conducted with 15 seropositive gay men living in Ireland. Using grounded theory, three constructions of non-disclosure were proposed-as self-protection, as a morally permissible act, and as a rejection of the HIV-positive identity. Each construction entailed an aspect related to the sexual exclusion of those living with HIV, and an aspect related to their social exclusion. The extent to which the lives of those interviewed were affected by stigma was starkly revealed, as was the extent to which they stigmatized others living with HIV and rejected the HIV-positive identity. The research highlights the failure to socially normalize HIV and that interventions are needed to reduce the distress associated with seropositivity.

  6. Repeated HIV-1 resistance genotyping external quality assessments improve virology laboratory performance.

    PubMed

    Descamps, Diane; Delaugerre, Constance; Masquelier, Bernard; Ruffault, Annick; Marcelin, Anne-Geneviève; Izopet, Jacques; Chaix, Marie-Laure; Calvez, Vincent; Brun-Vézinet, Françoise; Costagliola, Dominique

    2006-02-01

    The performance of French virology laboratories belonging to the ANRS network has been assessed annually for 3 years. The performance of these laboratories was compared between the years 2002 and 2003. Ten and 7 coded samples were sent to 38 virology laboratories in 2002 and 45 virology laboratories in 2003, respectively. Each panel of coded samples included at least one HIV-negative control, a pair of duplicate specimens, samples with a wide range of viral loads, and samples with a large number of resistance mutations. The laboratories used their standard sequencing procedures and were asked to report the amino acids at codons associated with resistance mutations, based on the IAS-USA expert panel list. The reference amino acid sequences were defined as those most frequently reported by the participants. The specificity of detection of RT mutations was significantly better in 2003 (99.9%) than in 2002 (99.7%) (P = 0.05). There was no difference between 2002 and 2003 in the specificity of detection of protease mutations (99.6% and 99.8%) or the sensitivity of detection of RT mutations (98.8% and 98.2%). The sensitivity of detection of protease mutations improved significantly between 2002 and 2003 (97.6% and 99.0%, respectively; P = 0.037). The proportion of laboratories reporting fully accurate results, in terms of amplification, specificity, sensitivity, and reproducibility, tended to increase between 2002 and 2003 (P = 0.077). No errors were made by 19% of laboratories in 2002, compared to 42% in 2003. These results show the value of repeated external quality assessments.

  7. High prevalence of HIV-1 drug resistance among patients on first-line antiretroviral treatment in Lomé, Togo

    PubMed Central

    2011-01-01

    Background With widespread use of antiretroviral (ARV) drugs in Africa, one of the major potential challenges is the risk of emergence of ARV drug-resistant HIV strains. Our objective is to evaluate the virological failure and genotypic drug-resistance mutations in patients receiving first-line highly active antiretroviral therapy (HAART) in routine clinics that use the World Health Organization public health approach to monitor antiretroviral treatment (ART) in Togo. Methods Patients on HAART for one year (10-14 months) were enrolled between April and October 2008 at three sites in Lomé, the capital city of Togo. Plasma viral load was measured with the NucliSENS EasyQ HIV-1 assay (Biomérieux, Lyon, France) and/or a Generic viral load assay (Biocentric, Bandol, France). Genotypic drug-resistance testing was performed with an inhouse assay on plasma samples from patients with viral loads of more than 1000 copies/ml. CD4 cell counts and demographic data were also obtained from medical records. Results A total of 188 patients receiving first-line antiretroviral treatment were enrolled, and 58 (30.8%) of them experienced virologic failure. Drug-resistance mutations were present in 46 patients, corresponding to 24.5% of all patients enrolled in the study. All 46 patients were resistant to non-nucleoside reverse-transcriptase inhibitors (NNRTIs): of these, 12 were resistant only to NNRTIs, 25 to NNRTIs and lamivudine/emtricitabine, and eight to all three drugs of their ARV regimes. Importantly, eight patients were already predicted to be resistant to etravirine, the new NNRTI, and three patients harboured the K65R mutation, inducing major resistance to tenofovir. Conclusions In Togo, efforts to provide access to ARV therapy for infected persons have increased since 2003, and scaling up of ART started in 2007. The high number of resistant strains observed in Togo shows clearly that the emergence of HIV drug resistance is of increasing concern in countries where ART is

  8. The Effect of Spirulina platensis versus Soybean on Insulin Resistance in HIV-Infected Patients: A Randomized Pilot Study

    PubMed Central

    Marcel, Azabji-Kenfack; Ekali, Loni G.; Eugene, Sobngwi; Arnold, Onana E.; Sandrine, Edie D.; von der Weid, Denis; Gbaguidi, Emmanuel; Ngogang, Jeanne; Mbanya, Jean C.

    2011-01-01

    HIV-infected patients develop abnormalities of glucose metabolism due to the virus and antiretroviral drugs. Spirulina and soybean are nutritional supplements that are cheap, accessible in our community and affect glucose metabolism. We carried out a randomized study to assess the effect of Spirulina platensis versus soybean as a food supplement on HIV/HAART-associated insulin resistance (IR) in 33 insulin-resistant HIV-infected patients. The study lasted for two months at the National Obesity Centre of Cameroon. Insulin resistance was measured using the short insulin tolerance test. Physical activity and diet did not change over the study duration. On-treatment analysis was used to analyze data. The Mann-Whitney U test, the Students T test and the Chi square test were used as appropriate. Curve gradients were analyzed using ANCOVA. Seventeen subjects were randomized to spirulina and 16 to soybean. Each received 19 g of supplement daily. The follow up rate was 65% vs. 100% for spirulina and soybean groups, respectively, and both groups were comparable at baseline. After eight weeks, insulin sensitivity (IS) increased by 224.7% vs. 60% in the spirulina and soybean groups respectively (p < 0.001). One hundred per cent vs. 69% of subjects on spirulina versus soybean, respectively, improved their IS (p = 0.049) with a 1.45 (1.05–2.02) chance of improving insulin sensitivity on spirulina. This pilot study suggests that insulin sensitivity in HIV patients improves more when spirulina rather than soybean is used as a nutritional supplement. Trial registration: ClinicalTrials.gov identifier NCT01141777. PMID:22254118

  9. Multi-drug resistant oral Candida species isolated from HIV-positive patients in South Africa and Cameroon.

    PubMed

    Dos Santos Abrantes, Pedro Miguel; McArthur, Carole P; Africa, Charlene Wilma Joyce

    2014-06-01

    Candida species are a common cause of infection in immune-compromised HIV-positive individuals, who are usually treated with the antifungal drug, fluconazole, in public hospitals in Africa. However, information about the prevalence of drug resistance to fluconazole and other antifungal agents on Candida species is very limited. This study examined 128 Candida isolates from South Africa and 126 Cameroonian Candida isolates for determination of species prevalence and antifungal drug susceptibility. The isolates were characterized by growth on chromogenic and selective media and by their susceptibility to 9 antifungal drugs tested using the TREK™ YeastOne9 drug panel (Thermo Scientific, USA). Eighty-three percent (82.8%) of South African isolates were Candida albicans (106 isolates), 9.4% were Candida glabrata (12 isolates), and 7.8% were Candida dubliniensis (10 isolates). Of the Cameroonian isolates, 73.02% were C. albicans (92 isolates); 19.05% C. glabrata (24 isolates); 3.2% Candida tropicalis (4 isolates); 2.4% Candida krusei (3 isolates); 1.59% either Candida kefyr, Candida parapsilopsis, or Candida lusitaneae (2 isolates); and 0.79% C. dubliniensis (1 isolate). Widespread C. albicans resistance to azoles was detected phenotypically in both populations. Differences in drug resistance were seen within C. glabrata found in both populations. Echinocandin drugs were more effective on isolates obtained from the Cameroon than in South Africa. A multiple-drug resistant C. dubliniensis strain isolated from the South African samples was inhibited only by 5-flucytosine in vitro on the YO9 panel. Drug resistance among oral Candida species is common among African HIV patients in these 2 countries. Regional surveillance of Candida species drug susceptibility should be undertaken to ensure effective treatment for HIV-positive patients.

  10. Lamivudine Concentration in Hair and Prediction of Virologic Failure and Drug Resistance among HIV Patients Receiving Free ART in China

    PubMed Central

    Wang, Zhe; Wu, Jianjun; Zhang, Jiafeng; Ruan, Yuhua; Hsi, Jenny; Liao, Lingjie; Shao, Yiming; Xing, Hui

    2016-01-01

    Background The assessment of adherence to antiretroviral therapy (ART) is important in order to predict treatment outcomes. Lamivudine (3TC) is one of the most widely used NRTIs in China, but its concentrations in hair and association with virologic failure and drug resistance have not been studied. Methods We conducted a cross-sectional survey to investigate 3TC concentrations in hair as a predictor of virologic failure and drug resistance among HIV patients receiving free ART. We also compared the capacity of hair 3TC concentrations with self-reported adherence in predicting virologic responses. Hair 3TC concentrations were detected through the LC-MS/MS system. Results In patients without HIV drug resistance (HIVDR), with a threshold hair 3TC concentration of 260 ng/g, the sensitivity and specificity in predicting virologic suppression were 76.9% and 89.9%, respectively. Some factors, including CD4+ cell counts, initial treatment regimens with 3TC, and current regimens with second-line drugs, influenced the association between hair 3TC concentrations and virologic suppression. In patients who experienced virologic failure with HIVDR, with a threshold of 180 ng/g, the sensitivity and specificity were 70.0% and 74.4%, respectively. Hair 3TC concentrations had higher sensitivity and specificity in predicting virologic failure and drug resistance than self-reported adherence. Conclusions The hair 3TC concentration was a stronger indicator than self-reported adherence in predicting virologic failure and drug resistance in HIV patients receiving free ART. PMID:27119346

  11. HIV-1 Genetic Diversity and Transmitted Drug Resistance Among Recently Infected Individuals at Men Who Have Sex with Men Sentinel Surveillance Points in Hebei Province, China.

    PubMed

    Lu, Xinli; Kang, Xianjiang; Chen, Suliang; Zhao, Hongru; Liu, Yongjian; Zhao, Cuiying; Zhang, Yuqi; Li, Jingyun; Cui, Ze; Wang, Xianfeng

    2015-10-01

    For this study, 50 HIV-1 plasma samples of recently infected men who have sex with men (MSM) were amplified and sequenced. Multiple subtypes were identified by phylogenetic analyses of HIV-1 gag, env, and pol gene regions, including CRF01_AE (56.0%), CRF07_BC (30.0%), subtype B (12.0%), and unique recombinant forms (URFs, 6.0%). CRF01_AE was the most frequent genotype in the epidemic. Three recombination patterns of URFs were identified: 01BC, 01B, and 01C. The rate of HIV-1 transmitted drug resistance (TDR) mutation (M46L) was 2.08% (1/48). URFs and TDR first identified in this study suggest that HIV-1 prevalence is more and more complicated, and HIV-1 drug-resistant strains have begun to spread among at risk populations in Hebei. Our findings can provide vital information for an efficient surveillance system and strategic HIV prevention and control measures in China by revealing the evolutionary status and HIV-1 TDR of HIV-1 strains among recently infected MSM in Hebei Province.

  12. Evolution of HIV-1 isolates that use a novel Vif-independent mechanism to resist restriction by human APOBEC3G.

    PubMed

    Haché, Guylaine; Shindo, Keisuke; Albin, John S; Harris, Reuben S

    2008-06-03

    The human APOBEC3G protein restricts the replication of Vif-deficient HIV-1 by deaminating nascent viral cDNA cytosines to uracils, leading to viral genomic strand G-to-A hypermutations. However, the HIV-1 Vif protein triggers APOBEC3G degradation, which helps to explain why this innate defense does not protect patients. The APOBEC3G-Vif interaction is a promising therapeutic target, but the benefit of the enabling of HIV-1 restriction in patients is unlikely to be known until Vif antagonists are developed. As a necessary prelude to such studies, cell-based HIV-1 evolution experiments were done to find out whether APOBEC3G can provide a long-term block to Vif-deficient virus replication and, if so, whether HIV-1 variants that resist restriction would emerge. APOBEC3G-expressing T cells were infected with Vif-deficient HIV-1. Virus infectivity was suppressed in 45/48 cultures for more than five weeks, but replication was eventually detected in three cultures. Virus-growth characteristics and sequencing demonstrated that these isolates were still Vif-deficient and that in fact, these viruses had acquired a promoter mutation and a Vpr null mutation. Resistance occurred by a novel tolerance mechanism in which the resistant viruses packaged less APOBEC3G and accumulated fewer hypermutations. These data support the development of antiretrovirals that antagonize Vif and thereby enable endogenous APOBEC3G to suppress HIV-1 replication.

  13. HIV type 1 coreceptor tropism, CCR5 genotype, and integrase inhibitor resistance profiles in Vietnam: implications for the introduction of new antiretroviral regimens.

    PubMed

    Luu, Quynh Phuong; Dean, Jonathan; Do, Trinh Thi Diem; Carr, Michael J; Dunford, Linda; Coughlan, Suzie; Connell, Jeff; Nguyen, Hien Tran; Hall, William W; Nguyen Thi, Lan Anh

    2012-10-01

    In Vietnam, where an estimated 280,000 people will be HIV-positive by 2012, recommended antiretroviral regimens do not include more recently developed therapeutics, such as Integrase inhibitors (INI) and coreceptor antagonists. This study examined HIV-1 coreceptor tropism and INI drug resistance profiles, in parallel with CCR5 genotypes, in a cohort of 60 HIV-positive individuals from different regions of Vietnam. No evidence of INI resistance was detected. Some 40% of individuals had X4-tropic HIV-1, making them unsuitable for treatment with CCR5 antagonists. We identified a novel CCR5 variant-S272P-along with other, previously reported variants: G106R, C178R, W153C, R223Q, and S336I. Interestingly, CCR5 variants known to affect HIV-1 infectivity were observed only in individuals harboring X4-tropic virus. Together, this study presents valuable baseline information on HIV-1 INI resistance, coreceptor tropism, and CCR5 variants in HIV-positive individuals in Vietnam. This should help inform policy on the future use of novel antiretrovirals in Vietnam.

  14. HIV Drug Resistance in Antiretroviral-Naive Patients in Mexico After 10 Years: Is There a Difference?

    PubMed

    Escoto-Delgadillo, Martha; Torres-Mendoza, Blanca-Miriam; Flores-Soto, Mario; Vazquez-Valls, Eduardo

    2016-12-01

    The aim of this study was to compare the extent of resistance to antiretroviral (ARV) drugs among the population in Mexico before and after 2005. The mutations and drug resistance database of Stanford University were used for analyzing drug resistance tests that had been performed on HIV treatment-naive patients. The sequences obtained were divided into group 1 (isolated in 2002-2003) and group 2 (isolated in 2010-2014). Both groups showed 14% similarity in resistance mutations. In both groups, mutations in N88D protease inhibitor were identified, D67N and T69D were found for nucleoside reverse transcriptase inhibitors (NRTIs), and K103N was found for non-nucleoside reverse transcriptase inhibitors. In both groups, the resistance to ARV drugs was 7.4%. Both groups showed resistance to nelfinavir, efavirenz, and nevirapine. The prevalence of resistance to ARV therapy remained stable from 2002 to 2014. However, a marked reduction in resistance to NRTIs was observed for the same period.

  15. Hepatitis B Infection, Viral Load and Resistance in HIV-Infected Patients in Mozambique and Zambia

    PubMed Central

    Wandeler, Gilles; Musukuma, Kalo; Zürcher, Samuel; Vinikoor, Michael J.; Llenas-García, Jara; Aly, Mussa M.; Mulenga, Lloyd; Chi, Benjamin H.; Ehmer, Jochen; Hobbins, Michael A.; Bolton-Moore, Carolyn; Hoffmann, Christopher J.; Egger, Matthias

    2016-01-01

    Background Few data on the virological determinants of hepatitis B virus (HBV) infection are available from southern Africa. Methods We enrolled consecutive HIV-infected adult patients initiating antiretroviral therapy (ART) at two urban clinics in Zambia and four rural clinics in Northern Mozambique between May 2013 and August 2014. HBsAg screening was performed using the Determine® rapid test. Quantitative real-time PCR and HBV sequencing were performed in HBsAg-positive patients. Risk factors for HBV infection were evaluated using Chi-square and Mann-Whitney tests and associations between baseline characteristics and high level HBV replication explored in multivariable logistic regression. Results Seventy-eight of 1,032 participants in Mozambique (7.6%, 95% confidence interval [CI]: 6.1–9.3) and 90 of 797 in Zambia (11.3%, 95% CI: 9.3–13.4) were HBsAg-positive. HBsAg-positive individuals were less likely to be female compared to HBsAg-negative ones (52.3% vs. 66.1%, p<0.001). Among 156 (92.9%) HBsAg-positive patients with an available measurement, median HBV viral load was 13,645 IU/mL (interquartile range: 192–8,617,488 IU/mL) and 77 (49.4%) had high values (>20,000 UI/mL). HBsAg-positive individuals had higher levels of ALT and AST compared to HBsAg-negative ones (both p<0.001). In multivariable analyses, male sex (adjusted odds ratio: 2.59, 95% CI: 1.22–5.53) and CD4 cell count below 200/μl (2.58, 1.20–5.54) were associated with high HBV DNA. HBV genotypes A1 (58.8%) and E (38.2%) were most prevalent. Four patients had probable resistance to lamivudine and/or entecavir. Conclusion One half of HBsAg-positive patients demonstrated high HBV viremia, supporting the early initiation of tenofovir-containing ART in HIV/HBV-coinfected adults. PMID:27032097

  16. THE EFFECTS OF HIV INFECTION ON THE EXPRESSION OF THE DRUG EFFLUX PROTEINS P-GLYCOPROTEIN AND BREAST CANCER RESISTANCE PROTEIN IN A HUMAN INTESTINE MODEL

    PubMed Central

    Ellis, Kelstan; Marlin, Jerry; Taylor, Tracey AH; Fitting, Sylvia; Hauser, Kurt F.; Rice, Greg

    2015-01-01

    Objectives In HIV infection, decreased penetration of antiretroviral drugs is postulated to contribute to HIV persistence within lymphoid rich regions of the gastrointestinal (GI) tract. However, mechanistic explanations for this phenomenon remain unclear. Specifically, investigations of HIV effects on drug efflux proteins within intestinal models are minimal. Methods Using an in vitro co-culture model of the GI tract, effects of HIV infection on drug efflux proteins, P-glycoprotein and Breast Cancer Resistance Protein (BCRP) were evaluated. The influence of the HIV-1 protein, Tat, and oxidative stress on P-glycoprotein and BCRP also was evaluated. Key Findings P-glycoprotein expression demonstrated an HIV-induced upregulation in Caco-2 cells over time for cells grown in co-culture with resting lymphocytes. BCRP overall expression increased with HIV exposure in activated primary human lymphocytes co-cultured with Caco-2 cells. Tat treatment resulted in no significant alterations in P-glycoprotein (43% increase), BCRP expression, or oxidative stress. Conclusions HIV exposure within an in vitro intestinal model resulted in increases in, P-glycoprotein and BCRP in a cell specific manner. Additionally, observed changes were not mediated by Tat. Collectively, these results suggest that alterations in BCRP and P-glycoprotein may contribute, in part, to decreased antiretroviral concentrations within the gastrointestinal tract in HIV infection. PMID:25557407

  17. Activity of the HIV-1 Attachment Inhibitor BMS-626529, the Active Component of the Prodrug BMS-663068, against CD4-Independent Viruses and HIV-1 Envelopes Resistant to Other Entry Inhibitors

    PubMed Central

    Li, Zhufang; Zhou, Nannan; Sun, Yongnian; Ray, Neelanjana; Lataillade, Max; Hanna, George J.

    2013-01-01

    BMS-626529 is a novel small-molecule HIV-1 attachment inhibitor active against both CCR5- and CXCR4-tropic viruses. BMS-626529 functions by preventing gp120 from binding to CD4. A prodrug of this compound, BMS-663068, is currently in clinical development. As a theoretical resistance pathway to BMS-663068 could be the development of a CD4-independent phenotype, we examined the activity of BMS-626529 against CD4-independent viruses and investigated whether resistance to BMS-626529 could be associated with a CD4-independent phenotype. Finally, we evaluated whether cross-resistance exists between BMS-626529 and other HIV-1 entry inhibitors. Two laboratory-derived envelopes with a CD4-independent phenotype (one CXCR4 tropic and one CCR5 tropic), five envelopes from clinical isolates with preexisting BMS-626529 resistance, and several site-specific mutant BMS-626529-resistant envelopes were examined for their dependence on CD4 for infectivity or susceptibility to BMS-626529. Viruses resistant to other entry inhibitors (enfuvirtide, maraviroc, and ibalizumab) were also examined for susceptibility to BMS-626529. Both CD4-independent laboratory isolates retained sensitivity to BMS-626529 in CD4− cells, while HIV-1 envelopes from viruses resistant to BMS-626529 exhibited no evidence of a CD4-independent phenotype. BMS-626529 also exhibited inhibitory activity against ibalizumab- and enfuvirtide-resistant envelopes. While there appeared to be some association between maraviroc resistance and reduced susceptibility to BMS-626529, an absolute correlation cannot be presumed, since some CCR5-tropic maraviroc-resistant envelopes remained sensitive to BMS-626529. Clinical use of the prodrug BMS-663068 is unlikely to promote resistance via generation of CD4-independent virus. No cross-resistance between BMS-626529 and other HIV entry inhibitors was observed, which could allow for sequential or concurrent use with different classes of entry inhibitors. PMID:23774428

  18. Activity of the HIV-1 attachment inhibitor BMS-626529, the active component of the prodrug BMS-663068, against CD4-independent viruses and HIV-1 envelopes resistant to other entry inhibitors.

    PubMed

    Li, Zhufang; Zhou, Nannan; Sun, Yongnian; Ray, Neelanjana; Lataillade, Max; Hanna, George J; Krystal, Mark

    2013-09-01

    BMS-626529 is a novel small-molecule HIV-1 attachment inhibitor active against both CCR5- and CXCR4-tropic viruses. BMS-626529 functions by preventing gp120 from binding to CD4. A prodrug of this compound, BMS-663068, is currently in clinical development. As a theoretical resistance pathway to BMS-663068 could be the development of a CD4-independent phenotype, we examined the activity of BMS-626529 against CD4-independent viruses and investigated whether resistance to BMS-626529 could be associated with a CD4-independent phenotype. Finally, we evaluated whether cross-resistance exists between BMS-626529 and other HIV-1 entry inhibitors. Two laboratory-derived envelopes with a CD4-independent phenotype (one CXCR4 tropic and one CCR5 tropic), five envelopes from clinical isolates with preexisting BMS-626529 resistance, and several site-specific mutant BMS-626529-resistant envelopes were examined for their dependence on CD4 for infectivity or susceptibility to BMS-626529. Viruses resistant to other entry inhibitors (enfuvirtide, maraviroc, and ibalizumab) were also examined for susceptibility to BMS-626529. Both CD4-independent laboratory isolates retained sensitivity to BMS-626529 in CD4(-) cells, while HIV-1 envelopes from viruses resistant to BMS-626529 exhibited no evidence of a CD4-independent phenotype. BMS-626529 also exhibited inhibitory activity against ibalizumab- and enfuvirtide-resistant envelopes. While there appeared to be some association between maraviroc resistance and reduced susceptibility to BMS-626529, an absolute correlation cannot be presumed, since some CCR5-tropic maraviroc-resistant envelopes remained sensitive to BMS-626529. Clinical use of the prodrug BMS-663068 is unlikely to promote resistance via generation of CD4-independent virus. No cross-resistance between BMS-626529 and other HIV entry inhibitors was observed, which could allow for sequential or concurrent use with different classes of entry inhibitors.

  19. Strain-Specific V3 and CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select Neutralization-Resistant Viruses

    SciTech Connect

    Moody, M.  Anthony; Gao, Feng; Gurley, Thaddeus  C.; Amos, Joshua  D.; Kumar, Amit; Hora, Bhavna; Marshall, Dawn  J.; Whitesides, John  F.; Xia, Shi-Mao; Parks, Robert; Lloyd, Krissey  E.; Hwang, Kwan-Ki; Lu, Xiaozhi; Bonsignori, Mattia; Finzi, Andrés; Vandergrift, Nathan  A.; Alam, S.  Munir; Ferrari, Guido; Shen, Xiaoying; Tomaras, Georgia  D.; Kamanga, Gift; Cohen, Myron  S.; Sam, Noel  E.; Kapiga, Saidi; Gray, Elin S.; Tumba, Nancy  L.; Morris, Lynn; Zolla-Pazner, Susan; Gorny, Miroslaw  K.; Mascola, John  R.; Hahn, Beatrice H.; Shaw, George  M.; Sodroski, Joseph  G.; Liao, Hua-Xin; Montefiori, David C.; Hraber, Peter T.; Korber, Bette T.; Haynes, Barton F.

    2015-09-09

    The third variable (V3) loop and the CD4 binding site (CD4bs) of the viral envelope are frequently targeted by neutralizing antibodies (nAbs) in HIV-1-infected individuals. In chronic infection, virus escape mutants repopulate the plasma and V3 and CD4bs nAbs emerge that can neutralize heterologous tier 1 easy-to-neutralize, but not tier 2 difficult-to-neutralize HIV-1 isolates. However, neutralization sensitivity of autologous plasma viruses to this type of nAb response has not been studied. We describe the development and evolution in vivo of antibodies distinguished by their target specificity for V3and CD4bs epitopes on autologous tier 2 viruses but not on heterologous tier 2 viruses. A surprisingly high fraction of autologous circulating viruses was sensitive to these antibodies. These findings demonstrate a role for V3 and CD4bs antibodies in constraining the native envelope trimer in vivo to a neutralization-resistant phenotype, explaining why HIV-1 transmission generally occurs by tier 2 neutralization-resistant viruses.

  20. Strain-Specific V3 and CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select Neutralization-Resistant Viruses

    DOE PAGES

    Moody, M.  Anthony; Gao, Feng; Gurley, Thaddeus  C.; ...

    2015-09-09

    The third variable (V3) loop and the CD4 binding site (CD4bs) of the viral envelope are frequently targeted by neutralizing antibodies (nAbs) in HIV-1-infected individuals. In chronic infection, virus escape mutants repopulate the plasma and V3 and CD4bs nAbs emerge that can neutralize heterologous tier 1 easy-to-neutralize, but not tier 2 difficult-to-neutralize HIV-1 isolates. However, neutralization sensitivity of autologous plasma viruses to this type of nAb response has not been studied. We describe the development and evolution in vivo of antibodies distinguished by their target specificity for V3and CD4bs epitopes on autologous tier 2 viruses but not on heterologous tiermore » 2 viruses. A surprisingly high fraction of autologous circulating viruses was sensitive to these antibodies. These findings demonstrate a role for V3 and CD4bs antibodies in constraining the native envelope trimer in vivo to a neutralization-resistant phenotype, explaining why HIV-1 transmission generally occurs by tier 2 neutralization-resistant viruses.« less

  1. HIV Drug Resistance Among Children Initiating First-Line Antiretroviral Treatment in Uganda

    PubMed Central

    Sigaloff, Kim Catherina Eve; Boender, Tamara Sonia; Kaudha, Elizabeth; Kayiwa, Joshua; Musiime, Victor; Mukuye, Andrew; Kiconco, Mary; Nankya, Immaculate; Nakatudde-Katumba, Llilian; Calis, Job C.J.; Rinke de Wit, Tobias F.; Mugyenyi, Peter N.

    2016-01-01

    Abstract Background: There are limited data on primary human immunodeficiency virus drug resistance (HIVDR) in pediatric populations. This study aimed to assess the prevalence of primary HIVDR and associated risk factors among children initiating first-line antiretroviral therapy (ART) in Uganda. Methods: At three Ugandan clinics, children (age <12 years) requiring ART were recruited between January 2010 and August 2011. Before starting ART, blood was collected for viral load and pol gene sequencing. Drug resistance mutations were determined using the 2010 International AIDS Society–USA mutation list. Risk factors for HIVDR were assessed with multivariate regression analysis. Results: Three hundred nineteen HIV-infected children with a median age of 4.9 years were enrolled. Sequencing was successful in 279 children (87.5%). HIVDR was present in 10% of all children and 15.2% of children <3 years. Nucleoside reverse transcriptase inhibitors (NRTIs), non-NRTI (NNRTI), and dual-class resistance was present in 5.7%, 7.5%, and 3.2%, respectively. HIVDR occurred in 35.7% of prevention of mother-to-child transmission (PMTCT)–exposed children, 15.6% in children with unknown PMTCT history, and 7.7% among antiretroviral-naive children. History of PMTCT exposure [adjusted odds ratio (AOR): 2.6, 95% CI: 1.3–5.1] or unknown PMTCT status (AOR: 3.8, 95% CI: 1.1–13.5), low CD4 (AOR: 2.2, 95% CI: 1.3–3.6), current breastfeeding (AOR: 7.4, 95% CI: 2.6–21), and current maternal ART use (AOR: 6.4, 95% CI: 3.4–11.9) emerged as risk factors for primary HIVDR in multivariate analysis. Conclusion: Pretreatment HIVDR is high, especially in children with PMTCT exposure. Protease inhibitor (PI)–based regimens are advocated by the World Health Organization, but availability in children is limited. Children with (unknown) PMTCT exposure, low CD4 count, current breastfeeding, or maternal ART need to be prioritized to receive PI-based regimens. PMID:26723018

  2. In Vitro Selection of HIV-1 CRF08_BC Variants Resistant to Reverse Transcriptase Inhibitors

    PubMed Central

    Wu, Hao; Zhang, Xiao-Min; Zhang, Hao-Jie; Zhang, Qiwei; Chen, Zhiwei; Huang, Jian-Dong

    2015-01-01

    Abstract Human immunodeficiency virus type 1 (HIV-1) circulating recombinant form 08_BC (CRF08_BC), carrying the recombinant reverse transcriptase (RT) gene from subtypes B and C, has recently become highly prevalent in Southern China. As the number of patients increases, it is important to characterize the drug resistance mutations of CRF08_BC, especially against widely used antiretrovirals. In this study, clinically isolated virus (2007CNGX-HK), confirmed to be CRF08_BC with its sequence deposited in GenBank (KF312642), was propagated in human peripheral blood mononuclear cells (PBMCs) with increasing concentrations of nevirapine (NVP), efavirenz (EFV), or lamivudine (3TC). Three different resistance patterns led by initial mutations of Y181C, E138G, and Y188C were detected after the selection with NVP. Initial mutations, in combination with other previously reported substitutions (K20R, D67N, V90I, K101R/E, V106I/A, V108I, F116L, E138R, A139V, V189I, G190A, D218E, E203K, H221Y, F227L, N348I, and T369I) or novel mutations (V8I, S134N, C162Y, L228I, Y232H, E396G, and D404N), developed during NVP selection. EFV-associated variations contained two initial mutations (L100I and Y188C) and three other mutations (V106L, F116Y, and A139V). Phenotypic analyses showed that E138R, Y181C, and G190A contributed high-level resistance to NVP, while L100I and V106L significantly reduced virus susceptibility to EFV. Y188C was 20-fold less sensitive to both NVP and EFV. As expected, M184I alone, or with V90I or D67N, decreased 3TC susceptibility by over 1,000-fold. Although the mutation profile obtained in culture may be different from the patients, these results may still provide useful information to monitor and optimize the antiretroviral regimens. PMID:25482475

  3. Trends in Prevalence of HIV-1 Drug Resistance in a Public Clinic in Maputo, Mozambique

    PubMed Central

    Bila, Dulce Celina Adolfo; Boullosa, Lídia Teodoro; Abreu, Celina Monteiro; Jani, Ilesh Vinodrai; Tanuri, Amilcar

    2015-01-01

    Background An observational study was conducted in Maputo, Mozambique, to investigate trends in prevalence of HIV drug resistance (HIVDR) in antiretroviral (ART) naïve subjects initiating highly active antiretroviral treatment (HAART). Methodology/Principal Findings To evaluate the pattern of drug resistance mutations (DRMs) found in adults on ART failing first-line HAART [patients with detectable viral load (VL)]. Untreated subjects [Group 1 (G1; n=99)] and 274 treated subjects with variable length of exposure to ARV´s [6–12 months, Group 2 (G2;n=93); 12-24 months, Group 3 (G3;n=81); >24 months (G4;n=100)] were enrolled. Virological and immunological failure (VF and IF) were measured based on viral load (VL) and T lymphocyte CD4+ cells (TCD4+) count and genotypic resistance was also performed. Major subtype found was C (untreated: n=66, 97,06%; treated: n=36, 91.7%). Maximum virological suppression was observed in G3, and significant differences intragroup were observed between VF and IF in G4 (p=0.022). Intergroup differences were observed between G3 and G4 for VF (p=0.023) and IF between G2 and G4 (p=0.0018). Viral suppression (<50 copies/ml) ranged from 84.9% to 90.1%, and concordant VL and DRM ranged from 25% to 57%. WHO cut-off for determining VF as given by 2010 guidelines (>5000 copies/ml) identified 50% of subjects carrying DRM compared to 100% when lower VL cut-off was used (<50 copies/ml). Length of exposure to ARVs was directly proportional to the complexity of DRM patterns. In Mozambique, VL suppression was achieved in 76% of individuals after 24 months on HAART. This is in agreement with WHO target for HIVDR prevention target (70%). Conclusions We demonstrated that the best way to determine therapeutic failure is VL compared to CD4 counts. The rationalized use of VL testing is needed to ensure timely detection of treatment failures preventing the occurrence of TDR and new infections. PMID:26151752

  4. Effects of sequence changes in the HIV-1 gp41 fusion peptide on CCR5 inhibitor resistance

    SciTech Connect

    Anastassopoulou, Cleo G.; Ketas, Thomas J.; Sanders, Rogier W.; Johan Klasse, Per; Moore, John P.

    2012-07-05

    A rare pathway of HIV-1 resistance to small molecule CCR5 inhibitors such as Vicriviroc (VCV) involves changes solely in the gp41 fusion peptide (FP). Here, we show that the G516V change is critical to VCV resistance in PBMC and TZM-bl cells, although it must be accompanied by either M518V or F519I to have a substantial impact. Modeling VCV inhibition data from the two cell types indicated that G516V allows both double mutants to use VCV-CCR5 complexes for entry. The model further identified F519I as an independent determinant of preference for the unoccupied, high-VCV affinity form of CCR5. From inhibitor-free reversion cultures, we also identified a substitution in the inner domain of gp120, T244A, which appears to counter the resistance phenotype created by the FP substitutions. Examining the interplay of these changes will enhance our understanding of Env complex interactions that influence both HIV-1 entry and resistance to CCR5 inhibitors.

  5. The prevalence of transmitted resistance to first-generation non-nucleoside reverse transcriptase inhibitors and its potential economic impact in HIV-infected patients.

    PubMed

    Snedecor, Sonya J; Khachatryan, Alexandra; Nedrow, Katherine; Chambers, Richard; Li, Congyu; Haider, Seema; Stephens, Jennifer

    2013-01-01

    Non-nucleoside reverse transcriptase inhibitor (NNRTI)-based highly active antiretroviral therapy (HAART) including efavirenz is recommended as a 1(st)-line treatment choice in international HIV guidelines, and it is one of the most common components of initial therapy. Resistance to 1(st)-generation NNRTIs is found among treated and untreated HIV-infected individuals creating a subpopulation of HIV-infected individuals in whom efavirenz is not fully effective. This analysis reviewed published articles and conference abstracts to examine the prevalence of 1(st)-generation NNRTI resistance in Europe, the United States (US), and Canada and to identify published evidence of the economic consequences of resistance. The reported prevalence of NNRTI resistance was generally higher in US/Canada than in Europe and increased in both regions from their introduction in the late 1990s until the early 2000s. The most recent time-based trends suggest that NNRTI-resistance prevalence may be stable or decreasing. These estimates of resistance may be understated as resistance estimates using ultra-sensitive genotypic testing methods, which identify low-frequency mutations undetected by standard testing methods, showed increased prevalence of resistance by more than two-fold. No studies were identified that explicitly investigated the costs of drug resistance. Rather, most studies reported costs of treatment change, failure, or disease progression. Among those studies, annual HIV medical costs of those infected with HIV increased 1) as CD4 cells decreased, driven in part by hospitalization at lower CD4 cell counts; 2) for treatment changes, and 3) for each virologic failure. The possible erosion of efficacy or of therapy choices through resistance transmission or selection, even when present with low frequency, may become a barrier to the use of 1(st)-generation NNRTIs and the increased costs associated with regimen failure and disease progression underlie the importance of

  6. Effects of Short-Course Zidovudine on the Selection of Nevirapine-Resistant HIV-1 in Women Taking Single-Dose Nevirapine

    PubMed Central

    Micek, Mark A.; Blanco, Ana Judith; Carlsson, Jacquelyn; Beck, Ingrid A.; Dross, Sandra; Matunha, Laurinda; Seidel, Kristy; Montoya, Pablo; Gantt, Soren; Matediana, Eduardo; Jamisse, Lilia; Gloyd, Stephen; Frenkel, Lisa M.

    2012-01-01

    Single-dose nevirapine (sdNVP) given to prevent mother-to-child-transmission of HIV-1 selects NVP-resistance. Short-course zidovudine (ZDV) was hypothesized to lower rates of NVP-resistance. HIV-1 infected pregnant women administered sdNVP with or without short-course ZDV were assessed for HIV-1 mutations (K103N, Y181C, G190A, and V106M) prior to delivery and postpartum. Postpartum NVP-resistance was lower among 31 taking ZDV+sdNVP compared to 33 taking only sdNVP (35.5% vs 72.7%; χ2 P = .003). NVP mutants decayed to <2% in 24/35 (68.6%) at a median 6 months postpartum, with no differences based on ZDV use (logrank P = .99). Short-course ZDV was associated with reduced NVP-resistance mutations among women taking sdNVP. PMID:22492850

  7. Insight into HIV of IFN-Induced Myxovirus Resistance 2 (MX2) Expressed by Traditional Chinese Medicine

    PubMed Central

    Hung, Tzu-Chieh; Lee, Wen-Yuan; Chen, Kuen-Bao; Chan, Yueh-Chiu

    2014-01-01

    Recently, an important topic of the acquired immunodeficiency syndrome (AIDS) had been published in 2013. In this report, the expression of the IFN-induced myxovirus resistance 2 (MX2) had been defined the function to kill the human immunodeficiency virus (HIV). The screening from the Traditional Chinese Medicine (TCM) database by simulating molecular docking and molecular dynamics could select candidate compounds, which may express MX2 against HIV. Saussureamine C, Crotalaburnine, and Precatorine are selected based on the highest docking score and other TCM compounds. The data from molecular dynamics are helpful in the analysis and detection of protein-ligand interactions. According to the docking poses, hydrophobic interactions, and hydrogen bond with structure variations, this research could assess the interaction between protein and ligand interaction. In addition to the detection of TCM compound efficacy, we suggest that Saussureamine C is better than the others in protein-ligand interaction and the structural variation to express MX2. PMID:25045710

  8. Insight into HIV of IFN-induced myxovirus resistance 2 (MX2) expressed by traditional Chinese medicine.

    PubMed

    Hung, Tzu-Chieh; Lee, Wen-Yuan; Chen, Kuen-Bao; Chan, Yueh-Chiu; Chen, Calvin Yu-Chian

    2014-01-01

    Recently, an important topic of the acquired immunodeficiency syndrome (AIDS) had been published in 2013. In this report, the expression of the IFN-induced myxovirus resistance 2 (MX2) had been defined the function to kill the human immunodeficiency virus (HIV). The screening from the Traditional Chinese Medicine (TCM) database by simulating molecular docking and molecular dynamics could select candidate compounds, which may express MX2 against HIV. Saussureamine C, Crotalaburnine, and Precatorine are selected based on the highest docking score and other TCM compounds. The data from molecular dynamics are helpful in the analysis and detection of protein-ligand interactions. According to the docking poses, hydrophobic interactions, and hydrogen bond with structure variations, this research could assess the interaction between protein and ligand interaction. In addition to the detection of TCM compound efficacy, we suggest that Saussureamine C is better than the others in protein-ligand interaction and the structural variation to express MX2.

  9. Incidence of HIV Type 1 Infection, Antiretroviral Drug Resistance, and Molecular Characterization in Newly Diagnosed Individuals in Argentina: A Global Fund Project

    PubMed Central

    Gómez-Carrillo, M.; Vignoles, M.; Rubio, A.E.; dos Ramos Farias, M.S.; Vila, M.; Rossi, D.; Ralón, G.; Marone, R.; Reynaga, E.; Sosa, J.; Torres, O.; Maestri, M.; Ávila, M.M.; Salomón, H.

    2011-01-01

    Abstract An HIV incidence estimation was performed among men who have sex with men (MSM), drug users (DUs), sex workers (SWs), and pregnant women (PW) from Argentina. Volunteers older than 18 years old without a previous HIV-positive diagnosis were included. HIV-positive samples were analyzed by the Serological Testing Algorithm for Recent HIV Seroconversion (STARHS) to estimate incidence. By partial RT-PCR and sequencing of the HIV pol gene, an HIV subtype and resistance profile were determined. A total of 12,192 volunteers were recruited from October 2006 to September 2008. A higher HIV prevalence was detected among trans SWs (33.9%, 38/112), male SWs (10.8%, 12/111), and MSM 10.4% (161/1549). HIV incidence estimates by STARHS was also higher on trans SWs (11.31 per 100 person-years), male SWs (6.06 per 100 person-years), and MSM (6.36 per 100 person-years). Antiretroviral primary resistant mutations were detected in 8.4% of the study group, with a higher frequency in female DUs (33.3%). Phylogenetic analysis showed that 124 (57.9%) samples were subtype B, 84 (39.3%) intersubtype BF recombinants, 5 (2.3%) subtype C, and 1 (0.5%) subtype F in the pol region. Subtype B was most commonly found in MSM and male SWs whereas the intersubtype BF recombinant was more prevalent in female DUs, female SWs, and PW. Given the high HIV prevalence and incidence found in most of these groups, monitoring the continuing spread of the HIV epidemic is essential for determining public health priorities, assessing the impact of interventions, and estimating current and future health care needs. PMID:20860532

  10. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection.

    PubMed

    Wang, Weiming; Ye, Chaobaihui; Liu, Jingjing; Zhang, Di; Kimata, Jason T; Zhou, Paul

    2014-01-01

    CCR5, a coreceptor for HIV-1 entry, is a major target for drug and genetic intervention against HIV-1. Genetic intervention strategies have knocked down CCR5 expression levels by shRNA or disrupted the CCR5 gene using zinc finger nucleases (ZFN) or Transcription activator-like effector nuclease (TALEN). In the present study, we silenced CCR5 via CRISPR associated protein 9 (Cas9) and single guided RNAs (sgRNAs). We constructed lentiviral vectors expressing Cas9 and CCR5 sgRNAs. We show that a single round transduction of lentiviral vectors expressing Cas9 and CCR5 sgRNAs into HIV-1 susceptible human CD4+ cells yields high frequencies of CCR5 gene disruption. CCR5 gene-disrupted cells are not only resistant to R5-tropic HIV-1, including transmitted/founder (T/F) HIV-1 isolates, but also have selective advantage over CCR5 gene-undisrupted cells during R5-tropic HIV-1 infection. Importantly, using T7 endonuclease I assay we did not detect genome mutations at potential off-target sites that are highly homologous to these CCR5 sgRNAs in stably transduced cells even at 84 days post transduction. Thus we conclude that silencing of CCR5 via Cas9 and CCR5-specific sgRNAs could be a viable alternative strategy for engineering resistance against HIV-1.

  11. Transmitted Drug Resistance Mutations in Antiretroviral-Naïve Injection Drug Users with Chronic HIV-1 Infection in Iran

    PubMed Central

    Memarnejadian, Arash; Menbari, Shahoo; Vahabpour, Rouhollah; Aghasadeghi, Mohammad Reza; Mostafavi, Ehsan; Abdi, Mohammad

    2015-01-01

    The growing incidence and transmission of drug resistant HIV-1 strains due to widespread use of antiretroviral therapy (ART) can jeopardize the success of first-line ART. While there is a known moderate prevalence of transmitted drug resistance (TDR) among newly infected Iranians, no data exist about the rate of these primary resistance mutations among the ART-naïve, chronically infected individuals who are, in fact, the main candidates for ART initiation. To address this issue, we collected blood samples from 40 ART-naïve injection drug-users (IDUs) with chronic HIV-1 infection (seroconversion time ranging from 2 to 9 years) living in Sanandaj, Iran, followed by sequencing of the protease and reverse-transcriptase regions from their HIV-1 genome. Phylogenetic analyses of the sequenced regions revealed that all samples were CRF35_AD. Transmitted resistance mutations were interpreted as surveillance drug-resistant mutations (SDRMs) based on the world health organization (WHO) algorithm. The frequency of SDRMs to any class of antiretroviral drugs was 15%, which included mutations to nucleoside reverse transcriptase inhibitors (NRTIs, 10%), with M41L and M184V as the most common (5%), and non-nucleoside reverse transcriptase inhibitors (NNRTIs, 5%), with K103N as the only detected mutation (5%). Although not in the WHO SDRMs list, several minor protease inhibitor resistant mutations listed in the International Antiviral Society-USA panel were identified, of which M36I, H69K, L89M/V/I (each one 100%) and K20R/T (92.5%) can be considered as polymorphic signatures for CRF35_AD.The relatively high rate of TDR mutations in our study raises concerns about the risk of treatment failure in chronically infected IDUs of Sanandaj city. These results suggest that routine resistance testing should be considered before the therapy initiation in this area. Additional surveillance studies are required to generalize this deduction to other cities of Iran. PMID:25962088

  12. Clinical and virologic follow-up in perinatally HIV-1-infected children and adolescents in Madrid with triple-class antiretroviral drug-resistant viruses.

    PubMed

    Rojas Sánchez, P; de Mulder, M; Fernandez-Cooke, E; Prieto, L; Rojo, P; Jiménez de Ory, S; José Mellado, M; Navarro, M; Tomas Ramos, J; Holguín, Á

    2015-06-01

    Drug resistance mutations compromise the success of antiretroviral treatment in human immunodeficiency virus type 1 (HIV-1)-infected children. We report the virologic and clinical follow-up of the Madrid cohort of perinatally HIV-infected children and adolescents after the selection of triple-class drug-resistant mutations (TC-DRM). We identified patients from the cohort carrying HIV-1 variants with TC-DRM to nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors and protease inhibitors according to IAS-USA-2013. We recovered pol sequences or resistance profiles from 2000 to 2011 and clinical-immunologic-virologic data from the moment of TC-DRM detection until December 2013. Viruses harbouring TC-DRM were observed in 48 (9%) of the 534 children and adolescents from 2000 to 2011, rising to 24.4% among those 197 with resistance data. Among them, 95.8% were diagnosed before 2003, 91.7% were Spaniards, 89.6% carried HIV-1-subtype B and 75% received mono/dual therapy as first regimen. The most common TC-DRM present in ≥50% of them were D67NME, T215FVY, M41L and K103N (retrotranscriptase) and L90M (protease). The susceptibility to darunavir, tipranavir, etravirine and rilpivirine was 67.7%, 43.7%, 33.3% and 33.3%, respectively, and all reported high resistance to didanosine, abacavir and nelfinavir. Despite the presence of HIV-1 resistance mutations to the three main antiretroviral families in our paediatric cohort, some drugs maintained their susceptibility, mainly the new protease inhibitors (tipranavir and darunavir) and nonnucleoside reverse transcriptase inhibitors (etravirine and rilpivirine). These data will help to improve the clinical management of HIV-infected children with triple resistance in Spain.

  13. Declining trend in transmitted drug resistance detected in a prospective cohort study of acute HIV infection in Bangkok, Thailand

    PubMed Central

    Colby, Donn J; Crowell, Trevor A; Sirivichayakul, Sunee; Pinyakorn, Suteeraporn; Kroon, Eugene; Benjapornpong, Khunthalee; Intasan, Jintana; Trichavaroj, Rapee; Tovanabutra, Sodsai; Robb, Merlin; Phanuphak, Praphan; Ananworanich, Jintanat; Phanuphak, Nittaya

    2016-01-01

    Introduction As availability of antiretroviral therapy expands in developing countries, the risk for transmission of drug-resistant HIV also increases. Patients with acute HIV infection (AHI) provide an opportunity for real-time monitoring of transmitted drug resistance (TDR). SEARCH 010/RV 254 study is a prospective, longitudinal study of AHI. This analysis was performed to characterize changes in TDR over time in persons enrolled in the AHI cohort. Methods Genotype testing for TDR mutations was performed on 229 subjects enrolled from 2009 to 2014. Results The cohort was predominantly male (95%) and men who have sex with men (92%). TDR prevalence was 7.0%, declining from 12.5% in 2009–2010 to 4.8% in 2013–2014 (p=0.08). By drug class, resistance prevalence was 3.6% for proteases inhibitors, 2.6% for nucleoside/nucleotide reverse transcriptase inhibitors and 2.2% for non-nucleoside reverse transcriptase inhibitors. The greatest decline in prevalence was seen in the non-nucleoside reverses transcriptase inhibitors, from 9.4% in 2009–2010 to 0.7% in 2013–2014 (p=0.005). Conclusions TDR appears to be declining among individuals with AHI in Bangkok and in 2013 to 2014 met the World Health Organization definition for low prevalence. Continued surveillance is necessary to determine if this trend persists. PMID:27802846

  14. Capacity building and predictors of success for HIV-1 drug resistance testing in the Asia-Pacific region and Africa

    PubMed Central

    Land, Sally; Zhou, Julian; Cunningham, Philip; Sohn, Annette H; Singtoroj, Thida; Katzenstein, David; Mann, Marita; Sayer, David; Kantor, Rami

    2013-01-01

    Background The TREAT Asia Quality Assessment Scheme (TAQAS) was developed as a quality assessment programme through expert education and training, for laboratories in the Asia-Pacific and Africa that perform HIV drug-resistance (HIVDR) genotyping. We evaluated the programme performance and factors associated with high-quality HIVDR genotyping. Methods Laboratories used their standard protocols to test panels of human immunodeficiency virus (HIV)-positive plasma samples or electropherograms. Protocols were documented and performance was evaluated according to a newly developed scoring system, agreement with panel-specific consensus sequence, and detection of drug-resistance mutations (DRMs) and mixtures of wild-type and resistant virus (mixtures). High-quality performance was defined as detection of ≥95% DRMs. Results Over 4.5 years, 23 participating laboratories in 13 countries tested 45 samples (30 HIV-1 subtype B; 15 non-B subtypes) in nine panels. Median detection of DRMs was 88–98% in plasma panels and 90–97% in electropherogram panels. Laboratories were supported to amend and improve their test outcomes as appropriate. Three laboratories that detected <80% DRMs in early panels demonstrated subsequent improvement. Sample complexity factors – number of DRMs (p<0.001) and number of DRMs as mixtures (p<0.001); and laboratory performance factors – detection of mixtures (p<0.001) and agreement with consensus sequence (p<0.001), were associated with high performance; sample format (plasma or electropherogram), subtype and genotyping protocol were not. Conclusion High-quality HIVDR genotyping was achieved in the TAQAS collaborative laboratory network. Sample complexity and detection of mixtures were associated with performance quality. Laboratories conducting HIVDR genotyping are encouraged to participate in quality assessment programmes. PMID:23845227

  15. Long-term follow-up of HIV-infected patients once diagnosed with acyclovir-resistant herpes simplex virus infection.

    PubMed

    Seang, Sophie; Boutolleau, David; Burrel, Sonia; Regnier, Stephanie; Epelboin, Loic; Voujon, Delphine; Valantin, Marc-Antoine; Katlama, Christine; Agut, Henri; Caumes, Eric

    2014-08-01

    Acyclovir-resistant herpes simplex virus (HSV) infection is common in immunocompromised patients, but the course of such infection is little known. We describe the long-term follow-up of HIV-infected patients diagnosed once with acyclovir-resistant HSV infections. We retrospectively studied all HIV-infected patients between 2000 and 2010 diagnosed with virologically confirmed acyclovir-resistant HSV infection. Patients' socio-demographic and immunovirological characteristics were described. Response to foscarnet or cidofovir and recurrences were reported. Among 5295 HIV-infected patients, 13 (0.2%) were once diagnosed with an acyclovir-resistant HSV infection. Twelve patients were men, nine patients were of African origin. All patients reported previous acyclovir exposure and median CD4 count was 183 cells/mm(3) Ten patients presented exclusively with cutaneous lesions. Initially, 11 patients were treated with foscarnet and two with cidofovir. The median follow-up was 67 months (6-145). All patients recurred, 10 presenting at least one acyclovir-resistant HSV recurrence. The median number of acyclovir-resistant HSV recurrences per patient was 2 (0 - 5). Regarding the first and second recurrences, 7/13 (54%) and 5/11 (45%) HSV clinical isolates exhibited resistance to acyclovir, respectively. Acyclovir-resistant HSV infection prevalence was low in our cohort. The rate of acyclovir-resistant HSV episodes averaged 50% during the two first recurrences.

  16. Molecular Dynamics Study of HIV-1 RT-DNA-Nevirapine Complexes Explains NNRTI Inhibition, and Resistance by Connection Mutations

    PubMed Central

    Vijayan, R.S.K.; Arnold, Eddy; Das, Kalyan

    2015-01-01

    HIV-1 reverse transcriptase (RT) is a multifunctional enzyme that is targeted by nucleoside analogs (NRTIs) and nonnucleoside inhibitors (NNRTIs). NNRTIs are allosteric inhibitors of RT, and constitute an integral part of the highly active antiretroviral therapy (HAART) regimen. Under selective pressure, HIV-1 acquires resistance against NNRTIs primarily by selecting mutations around the NNRTI pocket. Complete RT sequencing of clinical isolates revealed that spatially distal mutations arising in connection and the RNase H domain also confer NNRTI resistance and contribute to NRTI resistance. However, the precise structural mechanism by which the connection domain mutations confer NNRTI resistance is poorly understood. We performed 50-ns MD simulations, followed by essential dynamics, free-energy landscape analyses and network analyses of RT-DNA, RT-DNA-nevirapine, and N348I/T369I mutant RT-DNA-nevirapine complexes. MD simulation studies revealed altered global motions and restricted conformational landscape of RT upon nevirapine binding. Analysis of protein structure network parameters demonstrated a dissortative hub pattern in the RT-DNA complex and an assortative hub pattern in the RT-DNA-nevirapine complex suggesting enhanced rigidity of RT upon nevirapine binding. The connection subdomain mutations N348I/T369I did not induce any significant structural change; rather, these mutations modulate the conformational dynamics and alter the long-range allosteric communication network between the connection subdomain and NNRTI pocket. Insights from the present study provide a structural basis for the biochemical and clinical findings on drug resistance caused by the connection and RNase H mutations. PMID:24174331

  17. Low Prevalence of Transmitted Drug Resistance in Patients Newly Diagnosed with HIV-1 Infection in Sweden 2003–2010

    PubMed Central

    Karlsson, Annika; Björkman, Per; Bratt, Göran; Ekvall, Håkan; Gisslén, Magnus; Sönnerborg, Anders; Mild, Mattias; Albert, Jan

    2012-01-01

    Transmitted drug resistance (TDR) is a clinical and epidemiological problem because it may contribute to failure of antiretroviral treatment. The prevalence of TDR varies geographically, and its prevalence in Sweden during the last decade has not been reported. Plasma samples from 1,463 patients newly diagnosed with HIV-1 infection between 2003 and 2010, representing 44% of all patients diagnosed in Sweden during this period, were analyzed using the WHO 2009 list of mutations for surveillance of TDR. Maximum likelihood phylogenetic analyses were used to determine genetic subtype and to investigate the relatedness of the sequences. Eighty-two patients showed evidence of TDR, representing a prevalence of 5.6% (95% CI: 4.5%–6.9%) without any significant time trends or differences between patients infected in Sweden or abroad. Multivariable logistic regression showed that TDR was positively associated with men who have sex with men (MSM) and subtype B infection and negatively associated with CD4 cell counts. Among patients with TDR, 54 (68%) had single resistance mutations, whereas five patients had multi-drug resistant HIV-1. Phylogenetic analyses identified nine significantly supported clusters involving 29 of the patients with TDR, including 23 of 42 (55%) of the patients with TDR acquired in Sweden. One cluster contained 18 viruses with a M41L resistance mutation, which had spread among MSM in Stockholm over a period of at least 16 years (1994–2010). Another cluster, which contained the five multidrug resistant viruses, also involved MSM from Stockholm. The prevalence of TDR in Sweden 2003–2010 was lower than in many other European countries. TDR was concentrated among MSM, where clustering of TDR strains was observed, which highlights the need for continued and improved measures for targeted interventions. PMID:22448246

  18. Identification of a novel resistance (E40F) and compensatory (K43E) substitution in HIV-1 reverse transcriptase

    PubMed Central

    Huigen, Marleen CDG; van Ham, Petronella M; de Graaf, Loek; Kagan, Ron M; Boucher, Charles AB; Nijhuis, Monique

    2008-01-01

    Background HIV-1 nucleoside reverse transcriptase inhibitors (NRTIs) have been used in the clinic for over twenty years. Interestingly, the complete resistance pattern to this class has not been fully elucidated. Novel mutations in RT appearing during treatment failure are still being identified. To unravel the role of two of these newly identified changes, E40F and K43E, we investigated their effect on viral drug susceptibility and replicative capacity. Results A large database (Quest Diagnostics database) was analysed to determine the associations of the E40F and K43E changes with known resistance mutations. Both amino acid changes are strongly associated with the well known NRTI-resistance mutations M41L, L210W and T215Y. In addition, a strong positive association between these changes themselves was observed. A panel of recombinant viruses was generated by site-directed mutagenesis and phenotypically analysed. To determine the effect on replication capacity, competition and in vitro evolution experiments were performed. Introduction of E40F results in an increase in Zidovudine resistance ranging from nine to fourteen fold depending on the RT background and at the same time confers a decrease in viral replication capacity. The K43E change does not decrease the susceptibility to Zidovudine but increases viral replication capacity, when combined with E40F, demonstrating a compensatory role for this codon change. Conclusion In conclusion, we have identified a novel resistance (E40F) and compensatory (K43E) change in HIV-1 RT. Further research is indicated to analyse the clinical importance of these changes. PMID:18271957

  19. Design, Synthesis, and Biological and Structural Evaluations of Novel HIV-1 Protease Inhibitors To Combat Drug Resistance

    SciTech Connect

    Parai, Maloy Kumar; Huggins, David J.; Cao, Hong; Nalam, Madhavi N.L.; Ali, Akbar; Schiffer, Celia A.; Tidor, Bruce; Rana, Tariq M.

    2012-09-11

    A series of new HIV-1 protease inhibitors (PIs) were designed using a general strategy that combines computational structure-based design with substrate-envelope constraints. The PIs incorporate various alcohol-derived P2 carbamates with acyclic and cyclic heteroatomic functionalities into the (R)-hydroxyethylamine isostere. Most of the new PIs show potent binding affinities against wild-type HIV-1 protease and three multidrug resistant (MDR) variants. In particular, inhibitors containing the 2,2-dichloroacetamide, pyrrolidinone, imidazolidinone, and oxazolidinone moieties at P2 are the most potent with Ki values in the picomolar range. Several new PIs exhibit nanomolar antiviral potencies against patient-derived wild-type viruses from HIV-1 clades A, B, and C and two MDR variants. Crystal structure analyses of four potent inhibitors revealed that carbonyl groups of the new P2 moieties promote extensive hydrogen bond interactions with the invariant Asp29 residue of the protease. These structure-activity relationship findings can be utilized to design new PIs with enhanced enzyme inhibitory and antiviral potencies.

  20. Crystal structures of multidrug-resistant HIV-1 protease in complex with two potent anti-malarial compounds

    SciTech Connect

    Yedidi, Ravikiran S.; Liu, Zhigang; Wang, Yong; Brunzelle, Joseph S.; Kovari, Iulia A.; Woster, Patrick M.; Kovari, Ladislau C.; Gupta, Deepak

    2012-06-19

    Two potent inhibitors (compounds 1 and 2) of malarial aspartyl protease, plasmepsin-II, were evaluated against wild type (NL4-3) and multidrug-resistant clinical isolate 769 (MDR) variants of human immunodeficiency virus type-1 (HIV-1) aspartyl protease. Enzyme inhibition assays showed that both 1 and 2 have better potency against NL4-3 than against MDR protease. Crystal structures of MDR protease in complex with 1 and 2 were solved and analyzed. Crystallographic analysis revealed that the MDR protease exhibits a typical wide-open conformation of the flaps (Gly48 to Gly52) causing an overall expansion in the active site cavity, which, in turn caused unstable binding of the inhibitors. Due to the expansion of the active site cavity, both compounds showed loss of direct contacts with the MDR protease compared to the docking models of NL4-3. Multiple water molecules showed a rich network of hydrogen bonds contributing to the stability of the ligand binding in the distorted binding pockets of the MDR protease in both crystal structures. Docking analysis of 1 and 2 showed a decrease in the binding affinity for both compounds against MDR supporting our structure-function studies. Thus, compounds 1 and 2 show promising inhibitory activity against HIV-1 protease variants and hence are good candidates for further development to enhance their potency against NL4-3 as well as MDR HIV-1 protease variants.

  1. Risk of Drug Resistance Among Persons Acquiring HIV Within a Randomized Clinical Trial of Single- or Dual-Agent Preexposure Prophylaxis

    PubMed Central

    Lehman, Dara A.; Baeten, Jared M.; McCoy, Connor O.; Weis, Julie F.; Peterson, Dylan; Mbara, Gerald; Donnell, Deborah; Thomas, Katherine K.; Hendrix, Craig W.; Marzinke, Mark A.; Frenkel, Lisa; Ndase, Patrick; Mugo, Nelly R.; Celum, Connie; Overbaugh, Julie; Matsen, Frederick A.; Celum, Connie; Baeten, Jared M.; Donnell, Deborah; Coombs, Robert W.; Frenkel, Lisa; Hendrix, Craig W.; Marzinke, Mark A.; Lingappa, Jairam; McElrath, M. Juliana; Fife, Kenneth; Were, Edwin; Tumwesigye, Elioda; Ndase, Patrick; Katabira, Elly; Katabira, Elly; Ronald, Allan; Bukusi, Elizabeth; Cohen, Craig; Wangisi, Jonathan; Campbell, James; Tappero, Jordan; Kiarie, James; Farquhar, Carey; John-Stewart, Grace; Mugo, Nelly Rwamba; Campbell, James; Tappero, Jordan; Wangisi, Jonathan

    2015-01-01

    Background. Preexposure prophylaxis (PrEP) with emtricitabine plus tenofovir disoproxil fumarate (FTC/TDF) or TDF alone reduces the risk of human immunodeficiency virus (HIV) acquisition. Understanding the risk of antiretroviral resistance selected by PrEP during breakthrough infections is important because of the risk of treatment failure during subsequent antiretroviral use. Methods. Within the largest randomized trial of FTC/TDF versus TDF as PrEP, plasma samples were tested for HIV with resistance mutations associated with FTC (K65R and M184IV) and TDF (K65R and K70E), using 454 sequencing. Results. Of 121 HIV seroconverters, 25 received FTC/TDF, 38 received TDF, and 58 received placebo. Plasma drug levels in 26 individuals indicated PrEP use during or after HIV acquisition, of which 5 had virus with resistance mutations associated with their PrEP regimen. Among those with PrEP drug detected during infection, resistance was more frequent in the FTC/TDF arm (4 of 7 [57%]), compared with the TDF arm (1 of 19 [5.3%]; P = .01), owing to the FTC-associated mutation M184IV. Of these cases, 3 had unrecognized acute infection at PrEP randomization, and 2 were HIV negative at enrollment. Conclusions. These results suggest that resistance selected by PrEP is rare but can occur both with PrEP initiation during acute seronegative HIV infection and in PrEP breakthrough infections and that FTC is associated with a greater frequency of resistance mutations than TDF. PMID:25587020

  2. Short communication: association of HLA-A*1101 with resistance and B*4006 with susceptibility to HIV and HIV-TB: an in silico analysis of promiscuous T cell epitopes.

    PubMed

    Raghavan, S; Selvaraj, P; Swaminathan, S; Narendran, G

    2009-10-01

    We have shown the association of HLA-A*11 with resistance and HLA-B*40 and -DR2 with susceptibility to HIV and HIV-TB. In the present study, we performed high-resolution subtyping of HLA-A*11 and -B*40 to identify the subtype level association, using the polymerase chain reaction-based sequence-specific oligonucleotide probe method. Underrepresentation of HLA-A*1101 was observed in overall HIV [p(c) = 0.012, OR 0.42 (95% confidence interval (CI) 0.24-0.72)] and HIV(+)TB(+) [p(c) = 0.001, OR 0.18 (95% CI 0.06-0.46)] compared to healthy controls. Significantly higher frequencies of HLA-B*4006 were observed in overall HIV [p = 0.0001, p(c) = 0.004, OR 2.71 (95% CI 1.58-4.75)], HIV(+)TB(-) [p = 0.0003, p(c) = 0.008, OR 2.82 (95% CI 1.56-5.17)], and HIV(+)TB(+) [p = 0.003, p(c) = 0.086, OR 2.56 (95% CI 1.33-4.95)] compared to healthy controls. An in silico analysis of potential T cell epitopes of consensus Gag and Pol sequences of HIV-1 subtype C Indian strains revealed relatively higher number of promiscuous HLA-B40, HLA-DRB1*1501, and -DRB1*1502 (HLA-DR2)-restricted epitopes in contrast to limited numbers of promiscuous binders restricted by HLA-A*1101. The results suggest that HLA-A*1101 may be associated with protection against HIV and the development of TB in HIV patients while HLA-B*4006 may be associated with susceptibility to HIV and TB development in HIV patients. The present study also suggests that the extent of promiscuity of T cell epitopes of HIV-1 subtype C restricted by HLA alleles exerting opposing effects might differ.

  3. Mutation of a Single Residue Renders Human Tetherin Resistant to HIV-1 Vpu-Mediated Depletion

    PubMed Central

    Schaller, Torsten; Verschoor, Ernst; Pillay, Deenan; Towers, Greg J.

    2009-01-01

    The recently identified restriction factor tetherin/BST-2/CD317 is an interferon-inducible trans-membrane protein that restricts HIV-1 particle release in the absence of the HIV-1 countermeasure viral protein U (Vpu). It is known that Tantalus monkey CV1 cells can be rendered non-permissive to HIV-1 release upon stimulation with type 1 interferon, despite the presence of Vpu, suggesting species-specific sensitivity of tetherin proteins to viral countermeasures such as Vpu. Here we demonstrate that Tantalus monkey tetherin restricts HIV-1 by nearly two orders of magnitude, but in contrast to human tetherin the Tantalus protein is insensitive to HIV-1 Vpu. We have investigated tetherin's sensitivity to Vpu using positive selection analyses, seeking evidence for evolutionary conflict between tetherin and viral countermeasures. We provide evidence that tetherin has undergone positive selection during primate evolution. Mutation of a single amino acid (showing evidence of positive selection) in the trans-membrane cap of human tetherin to that in Tantalus monkey (T45I) substantially impacts on sensitivity to HIV-1 Vpu, but not on antiviral activity. Finally, we provide evidence that cellular steady state levels of tetherin are substantially reduced by Vpu, and that the T45I mutation abrogates this effect. This study provides evidence that tetherin is important in protecting mammals against viral infection, and that the HIV-1 Vpu–mediated countermeasure is specifically adapted to act against human tetherin. It also emphasizes the power of selection analyses to illuminate the molecular details of host–virus interactions. This work suggests that tetherin binding agents might protect it from viral encoded countermeasures and thus make powerful antivirals. PMID:19461879

  4. Homeostatically Maintained Resting Naive CD4+ T Cells Resist Latent HIV Reactivation

    PubMed Central

    Tsunetsugu-Yokota, Yasuko; Kobayahi-Ishihara, Mie; Wada, Yamato; Terahara, Kazutaka; Takeyama, Haruko; Kawana-Tachikawa, Ai; Tokunaga, Kenzo; Yamagishi, Makoto; Martinez, Javier P.; Meyerhans, Andreas

    2016-01-01

    Homeostatic proliferation (HSP) is a major mechanism by which long-lived naïve and memory CD4+ T cells are maintained in vivo and suggested to contribute to the persistence of the latent HIV-1 reservoir. However, while many in vitro latency models rely on CD4+ T cells that were initially differentiated via T-cell receptor (TCR) stimulation into memory/effector cells, latent infection of naïve resting CD4+ T cells maintained under HSP conditions has not been fully addressed. Here, we describe an in vitro HSP culture system utilizing the cytokines IL-7 and IL-15 that allows studying latency in naïve resting CD4+ T cells. CD4+ T cells isolated from several healthy donors were infected with HIV pseudotypes expressing GFP and cultured under HSP conditions or TCR conditions as control. Cell proliferation, phenotype, and GFP expression were analyzed by flow cytometry. RNA expression was quantified by qRT-PCR. Under HSP culture conditions, latently HIV-1 infected naïve cells are in part maintained in the non-dividing (= resting) state. Although a few HIV-1 provirus+ cells were present in these resting GFP negative cells, the estimated level of GFP transcripts per infected cell seems to indicate a block at the post-transcriptional level. Interestingly, neither TCR nor the prototypic HDAC inhibitor SAHA were able to reactivate HIV-1 provirus from these cells. This lack of reactivation was not due to methylation of the HIV LTR. These results point to a mechanism of HIV control in HSP-cultured resting naïve CD4+ T cells that may be distinct from that in TCR-stimulated memory/effector T cells. PMID:27990142

  5. Surveillance of HIV-1 pol transmitted drug resistance in acutely and recently infected antiretroviral drug-naïve persons in rural western Kenya

    PubMed Central

    Maman, David; Auma, Erick; Were, Kennedy; Fredrick, Harrison; Owiti, Prestone; Opollo, Valarie; Etard, Jean-François; Mukui, Irene; Kim, Andrea A.; Zeh, Clement

    2017-01-01

    HIV-1 transmitted drug resistance (TDR) is of increasing public health concern in sub-Saharan Africa with the rollout of antiretroviral (ARV) therapy. Such data are, however, limited in Kenya, where HIV-1 drug resistance testing is not routinely performed. From a population-based household survey conducted between September and November 2012 in rural western Kenya, we retrospectively assessed HIV-1 TDR baseline rates, its determinants, and genetic diversity among drug-naïve persons aged 15–59 years with acute HIV-1 infections (AHI) and recent HIV-1 infections (RHI) as determined by nucleic acid amplification test and both Limiting Antigen and BioRad avidity immunoassays, respectively. HIV-1 pol sequences were scored for drug resistance mutations using Stanford HIVdb and WHO 2009 mutation guidelines. HIV-1 subtyping was computed in MEGA6. Eighty seven (93.5%) of the eligible samples were successfully sequenced. Of these, 8 had at least one TDR mutation, resulting in a TDR prevalence of 9.2% (95% CI 4.7–17.1). No TDR was observed among persons with AHI (n = 7). TDR prevalence was 4.6% (95% CI 1.8–11.2) for nucleoside reverse transcriptase inhibitors (NRTIs), 6.9% (95% CI 3.2–14.2) for non- nucleoside reverse transcriptase inhibitors (NNRTIs), and 1.2% (95% CI 0.2–6.2) for protease inhibitors. Three (3.4% 95% CI 0.8–10.1) persons had dual-class NRTI/NNRTI resistance. Predominant TDR mutations in the reverse transcriptase included K103N/S (4.6%) and M184V (2.3%); only M46I/L (1.1%) occurred in the protease. All the eight persons were predicted to have different grades of resistance to the ARV regimens, ranging from potential low-level to high-level resistance. HIV-1 subtype distribution was heterogeneous: A (57.5%), C (6.9%), D (21.8%), G (2.3%), and circulating recombinant forms (11.5%). Only low CD4 count was associated with TDR (p = 0.0145). Our findings warrant the need for enhanced HIV-1 TDR monitoring in order to inform on population

  6. Early Warning Indicators for HIV Drug Resistance in Cameroon during the Year 2010

    PubMed Central

    Billong, Serge C.; Fokam, Joseph; Nkwescheu, Armand S.; Kembou, Etienne; Milenge, Pascal; Tsomo, Zephirin; Dion, Grace Ngute; Aghokeng, Avelin F.; Mpoudi, Eitel N.; Ndumbe, Peter M.; Colizzi, Vittorio; Elat Nfetam, Jean B.

    2012-01-01

    Background Rapid scale-up of antiretroviral therapy (ART) in resource-limited settings is accompanied with an increasing risk of HIV drug resistance (HIVDR), which in turn could compromise the performance of national ART rollout programme. In order to sustain the effectiveness of ART in a resource-limited country like Cameroon, HIVDR early warning indicators (EWI) may provide relevant corrective measures to support the control and therapeutic management of AIDS. Methods A retrospective study was conducted in 2010 among 40 ART sites (12 Approved Treatment Centers and 28 Management Units) distributed over the 10 regions of Cameroon. Five standardized EWIs were selected for the evaluation using data from January through December, among which: (1) Good ARV prescribing practices: target = 100%; (2) Patient lost to follow-up: target ≤20%; (3) Patient retention on first line ART: target ≥70%; (4) On-time drug pick-up: target ≥90%; (5) ARV drug supply continuity: target = 100%. Analysis was performed using a Data Quality Assessment tool, following WHO protocol. Results The number of sites attaining the required performance are: 90% (36/40) for EWI1, 20% (8/40) for EWI2; 20% (8/40) for EWI3; 0% (0/37) for EWI4; and 45% (17/38) for EWI 5. ARV prescribing practices were in conformity with the national guidelines in almost all the sites, whereas patient adherence to ART (EWI2, EWI3, and EWI4) was very low. A high rate of patients was lost-to-follow-up and others failing first line ART before 12 months of initiation. Discontinuity in drug supply observed in about half of the sites may negatively impact ARV prescription and patient adherence. These poor ART performances may also be due to low number of trained staff and community disengagement. Conclusions The poor performance of the national ART programme, due to patient non-adherence and drug stock outs, requires corrective measures to limit risks of HIVDR emergence in Cameroon. PMID:22615810

  7. Detection and management of drug-resistant tuberculosis in HIV-infected patients from lower income countries

    PubMed Central

    Ballif, Marie; Nhandu, Venerandah; Wood, Robin; Dusingize, Jean Claude; Carter, E. Jane; Cortes, Claudia P.; McGowan, Catherine C.; Diero, Lameck; Graber, Claire; Renner, Lorna; Hawerlander, Denise; Kiertiburanakul, Sasisopin; Du, Quy Tuan; Sterling, Timothy R.; Egger, Matthias; Fenner, Lukas

    2015-01-01

    Setting Drug resistance threatens tuberculosis (TB) control, particularly among HIV-infected persons. Objective We surveyed antiretroviral therapy (ART) programs from lower-income countries on prevention and management of drug-resistant TB. Design We used online questionnaires to collect program-level data in 47 ART programs in Southern Africa (14), East Africa (8), West Africa (7), Central Africa (5), Latin America (7) and Asia-Pacific (6 programs) in 2012. Patient-level data were collected on 1,002 adult TB patients seen at 40 of the participating ART programs. Results Phenotypic drug susceptibility testing was available at 36 (77%) ART programs, but only used for 22% of all TB patients. Molecular drug resistance testing was available at 33 (70%) programs and used for 23% of all TB patients. Twenty ART programs (43%) provided directly observed therapy (DOT) during the whole treatment, 16 (34%) during intensive phase only and 11 (23%) did not follow DOT. Fourteen (30%) ART programs reported no access to second-line TB regimens; 18 (38%) reported TB drug shortages. Conclusions Capacity to diagnose and treat drug-resistant TB was limited across ART programs in lower income countries. DOT was not always implemented and drug supply was regularly interrupted, which may contribute to the global emergence of drug resistance. PMID:25299866

  8. Global epidemiology of drug resistance after failure of WHO recommended first-line regimens for adult HIV-1 infection: a multicentre retrospective cohort study

    PubMed Central

    2016-01-01

    Summary Background Antiretroviral therapy (ART) is crucial for controlling HIV-1 infection through wide-scale treatment as prevention and pre-exposure prophylaxis (PrEP). Potent tenofovir disoproxil fumarate-containing regimens are increasingly used to treat and prevent HIV, although few data exist for frequency and risk factors of acquired drug resistance in regions hardest hit by the HIV pandemic. We aimed to do a global assessment of drug resistance after virological failure with first-line tenofovir-containing ART. Methods The TenoRes collaboration comprises adult HIV treatment cohorts and clinical trials of HIV drug resistance testing in Europe, Latin and North America, sub-Saharan Africa, and Asia. We extracted and harmonised data for patients undergoing genotypic resistance testing after virological failure with a first-line regimen containing tenofovir plus a cytosine analogue (lamivudine or emtricitabine) plus a non-nucleotide reverse-transcriptase inhibitor (NNRTI; efavirenz or nevirapine). We used an individual participant-level meta-analysis and multiple logistic regression to identify covariates associated with drug resistance. Our primary outcome was tenofovir resistance, defined as presence of K65R/N or K70E/G/Q mutations in the reverse transcriptase (RT) gene. Findings We included 1926 patients from 36 countries with treatment failure between 1998 and 2015. Prevalence of tenofovir resistance was highest in sub-Saharan Africa (370/654 [57%]). Pre-ART CD4 cell count was the covariate most strongly associated with the development of tenofovir resistance (odds ratio [OR] 1·50, 95% CI 1·27–1·77 for CD4 cell count <100 cells per μL). Use of lamivudine versus emtricitabine increased the risk of tenofovir resistance across regions (OR 1·48, 95% CI 1·20–1·82). Of 700 individuals with tenofovir resistance, 578 (83%) had cytosine analogue resistance (M184V/I mutation), 543 (78%) had major NNRTI resistance, and 457 (65%) had both. The mean plasma

  9. The Folding Free Energy Surface of HIV-1 Protease: Insights into the Thermodynamic Basis for Resistance to Inhibitors

    PubMed Central

    Noel, Amanda F.; Bilsel, Osman; Kundu, Agnita; Wu, Ying; Zitzewitz, Jill A.; Matthews, C. Robert

    2009-01-01

    Spontaneous mutations at numerous sites distant from the active site of HIV-1 protease enable resistance to inhibitors while retaining enzymatic activity. As a benchmark for probing the effects of these mutations on the conformational adaptability of this dimeric β-barrel protein, the folding free energy surface of a pseudo wild-type variant, HIV-PR*, was determined by a combination of equilibrium and kinetic experiments on the urea-induced unfolding/refolding reactions. The equilibrium unfolding reaction was well-described by a two-state model involving only the native dimeric form and the unfolded monomer. The global analysis of the kinetic folding mechanism reveals the presence of a fully-folded monomeric intermediate that associates to form the native dimeric structure. Independent analysis of a stable monomeric version of the protease demonstrated that a small amplitude fluorescence phase in refolding and unfolding, not included in the global analysis of the dimeric protein, reflects the presence of a transient intermediate in the monomer folding reaction. The partially-folded and fully-folded monomers are only marginally stable with respect to the unfolded state, and the dimerization reaction provides a modest driving force at micromolar concentrations of protein. The thermodynamic properties of this system are such that mutations can readily shift the equilibrium from the dimeric native state towards weakly-folded states that have a lower affinity for inhibitors, but that could be induced to bind to their target proteolytic sites. Presumably, subsequent secondary mutations increase the stability of the native dimeric state in these variants and, thereby, optimize the catalytic properties of the resistant HIV-1 protease. PMID:19150359

  10. Prevalence of transmitted HIV drug resistance among recently infected persons in San Diego, California 1996-2013

    PubMed Central

    Panichsillapakit, Theppharit; Smith, Davey M.; Wertheim, Joel O.; Richman, Douglas D.; Little, Susan J.; Mehta, Sanjay R.

    2015-01-01

    Background Transmitted drug resistance (TDR) remains an important concern when initiating antiretroviral therapy (ART). Here we describe the prevalence and phylogenetic relationships of TDR among ART-naïve, HIV-infected individuals in San Diego from 1996-2013. Methods Data were analyzed from 496 participants of the San Diego Primary Infection Cohort who underwent genotypic resistance testing before initiating therapy. Mutations associated with drug resistance were identified according to the WHO-2009 surveillance list. Network and phylogenetic analyses of the HIV-1 pol sequences were used to evaluate the relationships of TDR within the context of the entire cohort. Results The overall prevalence of TDR was 13.5% (67/496), with an increasing trend over the study period (p=0.005). TDR was predominantly toward non-nucleoside reverse transcriptase inhibitors (NNRTIs) [8.5% (42/496)], also increasing over the study period (p=0.005). In contrast, TDR to protease inhibitors and nucleos(t)ide reverse transcriptase inhibitors were 4.4% (22/496) and 3.8% (19/496) respectively, and did not vary with time. TDR prevalence did not differ by age, gender, race/ethnicity or risk factor. Using phylogenetic analysis, we identified 52 transmission clusters, including eight with at least two individuals sharing the same mutation, accounting for 23.8% (16/67) of the individuals with TDR. Conclusions Between 1996 and 2013, the prevalence of TDR significantly increased among recently infected ART-naïve individuals in San Diego. Around one-fourth of TDR occurred within clusters of recently infected individuals. These findings highlight the importance of baseline resistance testing to guide selection of ART and for public health monitoring. PMID:26413846

  11. Short Communication: Limited HIV Pretreatment Drug Resistance Among Adults Attending Free Antiretroviral Therapy Clinic of Pune, India.

    PubMed

    Karade, Santosh; Patil, Ajit A; Ghate, Manisha; Kulkarni, Smita S; Kurle, Swarali N; Risbud, Arun R; Rewari, Bharat B; Gangakhedkar, Raman R

    2016-04-01

    In India, the roll out of the free antiretroviral therapy (ART) program completed a decade of its initiation in 2014. The success of first-line ART is influenced by prevalence of HIV pretreatment drug resistance (PDR) in the population. In this cross-sectional study, we sought to determine the prevalence of PDR among adults attending the state-sponsored free ART clinic in Pune in western India. Fifty-two individuals eligible for ART as per national guidelines with median CD4 cell count of 253 cells/mm(3) (inter quartile range: 149-326) were recruited between January 2014 and April 2015. Population-based sequencing of partial pol gene sequences from plasma specimen revealed predominant HIV-1 subtype C infection (96.15%) and presence of single-drug resistance mutations against non-nucleoside reverse transcriptase inhibitor in two sequences. The study supports the need for periodic surveillance, when offering PDR testing at individual level is not feasible.

  12. From the traditional Chinese medicine plant Schisandra chinensis new scaffolds effective on HIV-1 reverse transcriptase resistant to non-nucleoside inhibitors.

    PubMed

    Xu, Lijia; Grandi, Nicole; Del Vecchio, Claudia; Mandas, Daniela; Corona, Angela; Piano, Dario; Esposito, Francesca; Parolin, Cristina; Tramontano, Enzo

    2015-04-01

    HIV-1 reverse transcriptase (RT) is still an extremely attractive pharmaceutical target for the identification of new inhibitors possibly active on drug resistant strains. Medicinal plants are a rich source of chemical diversity and can be used to identify novel scaffolds to be further developed by chemical modifications. We investigated the ability of the main lignans from Schisandra chinensis (Turcz.) Baill. fruits, commonly used in Traditional Chinese Medicine, to affect HIV-1 RT functions. We purified 6 lignans from Schisandra chinensis fruits and assayed their effects on HIV-1 RT and viral replication. Among the S. chinensis fruit lignans, Schisandrin B and Deoxyschizandrin selectively inhibited the HIV-1 RT-associated DNA polymerase activity. Structure activity relationship revealed the importance of cyclooctadiene ring substituents for efficacy. In addition, Schisandrin B was also able to impair HIV-1 RT drug resistant mutants and the early phases of viral replication. We identified Schisandrin B and Deoxyschizandrin as new scaffold for the further development of novel HIV-1 RT inhibitors.

  13. Genetic characterization and transmitted drug resistance of the HIV type 1 epidemic in men who have sex with men in Beijing, China.

    PubMed

    Li, Lin; Han, Na; Lu, Junfeng; Li, Tianyi; Zhong, Xiangfu; Wu, Hao; Rayner, Simon; Chen, Lili; Liu, Yongjian; Wang, Xiaolin; Li, Hanping; Li, Jingyun

    2013-03-01

    A rapid increase in the number of HIV cases in the men who have sex with men (MSM) population has been observed in China; however, little information is available on the genetic characterization of HIV prevalent in this population. In this study, 95 HIV-1-seropositive drug-naive patients from the Beijing MSM population were enrolled. The genetic characterization and transmission of drug resistance of HIV-1 were examined based on full-length gag, pol, and partial env gene sequences. Three subtypes, including CRF01_AE (56.0%), B (30.8%), and CRF07_BC (12.6%), were identified. Close phylogenetic relationships were found among these strains with isolates from other populations in Beijing and MSM isolates from Hebei province, which suggested that the Beijing MSM population might act as a bridge for HIV transmission between MSM and other high-risk populations. Drug-resistant mutations were identified in 5.3% of sampled individuals. Our results provided detailed genetic data and would be helpful for understanding the transmitting pattern of HIV strains between MSM and other populations.

  14. Towards Better Precision Medicine: PacBio Single-Molecule Long Reads Resolve the Interpretation of HIV Drug Resistant Mutation Profiles at Explicit Quasispecies (Haplotype) Level.

    PubMed

    Huang, Da Wei; Raley, Castle; Jiang, Min Kang; Zheng, Xin; Liang, Dun; Rehman, M Tauseef; Highbarger, Helene C; Jiao, Xiaoli; Sherman, Brad; Ma, Liang; Chen, Xiaofeng; Skelly, Thomas; Troyer, Jennifer; Stephens, Robert; Imamichi, Tomozumi; Pau, Alice; Lempicki, Richard A; Tran, Bao; Nissley, Dwight; Lane, H Clifford; Dewar, Robin L

    2016-01-01

    Development of HIV-1 drug resistance mutations (HDRMs) is one of the major reasons for the clinical failure of antiretroviral therapy. Treatment success rates can be improved by applying personalized anti-HIV regimens based on a patient's HDRM profile. However, the sensitivity and specificity of the HDRM profile is limited by the methods used for detection. Sanger-based sequencing technology has traditionally been used for determining HDRM profiles at the single nucleotide variant (SNV) level, but with a sensitivity of only ≥ 20% in the HIV population of a patient. Next Generation Sequencing (NGS) technologies offer greater detection sensitivity (~ 1%) and larger scope (hundreds of samples per run). However, NGS technologies produce reads that are too short to enable the detection of the physical linkages of individual SNVs across the haplotype of each HIV strain present. In this article, we demonstrate that the single-molecule long reads generated using the Third Generation Sequencer (TGS), PacBio RS II, along with the appropriate bioinformatics analysis method, can resolve the HDRM profile at a more advanced quasispecies level. The case studies on patients' HIV samples showed that the quasispecies view produced using the PacBio method offered greater detection sensitivity and was more comprehensive for understanding HDRM situations, which is complement to both Sanger and NGS technologies. In conclusion, the PacBio method, providing a promising new quasispecies level of HDRM profiling, may effect an important change in the field of HIV drug resistance research.

  15. Low-frequency NNRTI-resistant HIV-1 variants and relationship to mutational load in antiretroviral-naïve subjects.

    PubMed

    Gupta, Shaili; Lataillade, Max; Kyriakides, Tassos C; Chiarella, Jennifer; St John, Elizabeth P; Webb, Suzin; Moreno, Elizabeth A; Simen, Birgitte B; Kozal, Michael J

    2014-09-16

    Low-frequency HIV variants possessing resistance mutations against non‑nucleoside reverse transcriptase inhibitors (NNRTI), especially at HIV reverse transcriptase (RT) amino acid (aa) positions K103 and Y181, have been shown to adversely affect treatment response. Therapeutic failure correlates with both the mutant viral variant frequency and the mutational load. We determined the prevalence of NNRTI resistance mutations at several RT aa positions in viruses from 204 antiretroviral (ARV)-naïve HIV-infected individuals using deep sequencing, and examined the relationship between mutant variant frequency and mutational load for those variants. Deep sequencing to ≥0.4% levels found variants with major NNRTI-resistance mutations having a Stanford-HIVdb algorithm value ≥30 for efavirenz and/or nevirapine in 52/204 (25.5%) ARV-naïve HIV-infected persons. Eighteen different major NNRTI mutations were identified at 11 different positions, with the majority of variants being at frequency >1%. The frequency of these variants correlated strongly with the mutational load, but this correlation weakened at low frequencies. Deep sequencing detected additional major NNRTI-resistant viral variants in treatment-naïve HIV-infected individuals. Our study suggests the significance of screening for mutations at all RT aa positions (in addition to K103 and Y181) to estimate the true burden of pre-treatment NNRTI-resistance. An important finding was that variants at low frequency had a wide range of mutational loads (>100-fold) suggesting that frequency alone may underestimate the impact of specific NNRTI-resistant variants. We recommend further evaluation of all low-frequency NNRTI-drug resistant variants with special attention given to the impact of mutational loads of these variants on treatment outcomes.

  16. Outbreak of infections by hepatitis B virus genotype A and transmission of genetic drug resistance in patients coinfected with HIV-1 in Japan.

    PubMed

    Fujisaki, Seiichiro; Yokomaku, Yoshiyuki; Shiino, Teiichiro; Koibuchi, Tomohiko; Hattori, Junko; Ibe, Shiro; Iwatani, Yasumasa; Iwamoto, Aikichi; Shirasaka, Takuma; Hamaguchi, Motohiro; Sugiura, Wataru

    2011-03-01

    The major routes of hepatitis B virus (HBV) infection in Japan has been mother-to-child transmission (MTCT) and blood transfusion. However, HBV cases transmitted through sexual contact are increasing, especially among HIV-1-seropositive patients. To understand the molecular epidemiology of HBV in HBV/HIV-1 coinfection, we analyzed HBV genotypes and HIV-1 subtypes in HBV/HIV-1-coinfected patients at Nagoya Medical Center from 2003 to 2007. Among 394 HIV-1-infected Japanese men having sex with men (MSM) who were newly diagnosed during the study period, 31 (7.9%) tested positive for the hepatitis B virus surface antigen. HBV sequence analyses were successful in 26 cases, with 21 (80.7%) and 5 (19.3%) cases determined as genotypes A and C, respectively. Our finding that HBV genotype A was dominant in HIV-1-seropositive patients alerts clinicians to an alternative outbreak of HBV genotype A in the HIV-1-infected MSM population and a shift in HBV genotype from C to A in Japan. The narrow genetic diversity in genotype A cases suggests that genotype A has been recently introduced into the MSM population and that sexual contacts among MSM were more active than speculated from HIV-1 tree analyses. In addition, we found a lamivudine resistance mutation in one naïve case, suggesting a risk of drug-resistant HBV transmission. As genotype A infection has a higher risk than infection with other genotypes for individuals to become HBV carriers, prevention programs are urgently needed for the target population.

  17. Structure of the HIV-1 reverse transcriptase Q151M mutant: insights into the inhibitor resistance of HIV-1 reverse transcriptase and the structure of the nucleotide-binding pocket of Hepatitis B virus polymerase

    SciTech Connect

    Nakamura, Akiyoshi; Tamura, Noriko; Yasutake, Yoshiaki

    2015-10-23

    The structure of the HIV-1 reverse transcriptase Q151M mutant was determined at a resolution of 2.6 Å in space group P321. Hepatitis B virus polymerase (HBV Pol) is an important target for anti-HBV drug development; however, its low solubility and stability in vitro has hindered detailed structural studies. Certain nucleotide reverse transcriptase (RT) inhibitors (NRTIs) such as tenofovir and lamivudine can inhibit both HBV Pol and Human immunodeficiency virus 1 (HIV-1) RT, leading to speculation on structural and mechanistic analogies between the deoxynucleotide triphosphate (dNTP)-binding sites of these enzymes. The Q151M mutation in HIV-1 RT, located at the dNTP-binding site, confers resistance to various NRTIs, while maintaining sensitivity to tenofovir and lamivudine. The residue corresponding to Gln151 is strictly conserved as a methionine in HBV Pol. Therefore, the structure of the dNTP-binding pocket of the HIV-1 RT Q151M mutant may reflect that of HBV Pol. Here, the crystal structure of HIV-1 RT Q151M, determined at 2.6 Å resolution, in a new crystal form with space group P321 is presented. Although the structure of HIV-1 RT Q151M superimposes well onto that of HIV-1 RT in a closed conformation, a slight movement of the β-strands (β2–β3) that partially create the dNTP-binding pocket was observed. This movement might be caused by the introduction of the bulky thioether group of Met151. The structure also highlighted the possibility that the hydrogen-bonding network among amino acids and NRTIs is rearranged by the Q151M mutation, leading to a difference in the affinity of NRTIs for HIV-1 RT and HBV Pol.

  18. Mechanism of Drug Resistance Revealed by the Crystal Structure of the Unliganded HIV-1 Protease with F53L Mutation

    SciTech Connect

    Liu, Fengling; Kovalevsky, Andrey Y.; Louis, John M.; Boross, Peter I.; Wang, Yuan-Fang; Harrison, Robert W.; Weber, Irene T.

    2010-12-03

    Mutations in HIV-1 protease (PR) that produce resistance to antiviral PR inhibitors are a major problem in AIDS therapy. The mutation F53L arising from antiretroviral therapy was introduced into the flexible flap region of the wild-type PR to study its effect and potential role in developing drug resistance. Compared to wild-type PR, PR{sub F53L} showed lower (15%) catalytic efficiency, 20-fold weaker inhibition by the clinical drug indinavir, and reduced dimer stability, while the inhibition constants of two peptide analog inhibitors were slightly lower than those for PR. The crystal structure of PR{sub F53L} was determined in the unliganded form at 1.35 {angstrom} resolution in space group P4{sub 1}2{sub 1}2. The tips of the flaps in PR{sub F53L} had a wider separation than in unliganded wild-type PR, probably due to the absence of hydrophobic interactions of the side-chains of Phe53 and Ile50{prime}. The changes in interactions between the flaps agreed with the reduced stability of PR{sub F53L} relative to wild-type PR. The altered flap interactions in the unliganded form of PR{sub F53L} suggest a distinct mechanism for drug resistance, which has not been observed in other common drug-resistant mutants.

  19. Lack of associations between HLA class II alleles and resistance to HIV-1 infection among white, non-Hispanic homosexual men.

    PubMed

    Liu, Chenglong; Carrington, Mary; Kaslow, Richard A; Gao, Xiaojiang; Rinaldo, Charles R; Jacobson, Lisa P; Margolick, Joseph B; Phair, John; O'Brien, Stephen J; Detels, Roger

    2004-10-01

    HLA class II alleles were molecularly typed for 100 high-risk seronegative men and 184 low-risk seroconverters from the Multicenter AIDS Cohort Study (MACS). Seven resistant individuals homozygous for CCR5 Delta32 deletions were excluded from analysis. In the univariate analysis, no significant HLA class II associations with resistance/susceptibility to HIV type 1 infection were identified. However, the transporter associated with antigen presentation 2 (TAP2) Ala 665 variant associated with resistance in earlier analyses in the MACS was in linkage disequilibrium with some HLA class II alleles. After adjusting for the established associations with HLA-A*0205 subgroup and TAP2 Ala 665 variant, no HLA class II alleles were independently associated with resistance/susceptibility to HIV-1 infection. Other genetic factors in the HLA class II-TAP region of the major histocompatibility complex might be involved.

  20. Analysis of the Zidovudine Resistance Mutations T215Y, M41L, and L210W in HIV-1 Reverse Transcriptase.

    PubMed

    Boyer, Paul L; Das, Kalyan; Arnold, Eddy; Hughes, Stephen H

    2015-12-01

    Although anti-human immunodeficiency virus type 1 (HIV-1) therapies have become more sophisticated and more effective, drug resistance continues to be a major problem. Zidovudine (azidothymidine; AZT) was the first nucleoside reverse transcriptase (RT) inhibitor (NRTI) approved for the treatment of HIV-1 infections and is still being used, particularly in the developing world. This drug targets the conversion of single-stranded RNA to double-stranded DNA by HIV-1 RT. However, resistance to the drug quickly appeared both in viruses replicating in cells in culture and in patients undergoing AZT monotherapy. The primary resistance pathway selects for mutations of T215 that change the threonine to either a tyrosine or a phenylalanine (T215Y/F); this resistance pathway involves an ATP-dependent excision mechanism. The pseudo-sugar ring of AZT lacks a 3' OH; RT incorporates AZT monophosphate (AZTMP), which blocks the end of the viral DNA primer. AZT-resistant forms of HIV-1 RT use ATP in an excision reaction to unblock the 3' end of the primer strand, allowing its extension by RT. The T215Y AZT resistance mutation is often accompanied by two other mutations, M41L and L210W. In this study, the roles of these mutations, in combination with T215Y, were examined to determine whether they affect polymerization and excision by HIV-1 RT. The M41L mutation appears to help restore the DNA polymerization activity of RT containing the T215Y mutation and also enhances AZTMP excision. The L210W mutation plays a similar role, but it enhances excision by RTs that carry the T215Y mutation when ATP is present at a low concentration.

  1. Increasing HIV-1 pretreatment drug resistance among antiretroviral-naïve adults initiating treatment between 2006 and 2014 in Nairobi, Kenya.

    PubMed

    Chung, Michael H; Silverman, Rachel; Beck, Ingrid A; Yatich, Nelly; Dross, Sandra; McKernan-Mullin, Jennifer; Bii, Stephen; Tapia, Kenneth; Stern, Joshua; Chohan, Bhavna; Sakr, Samah R; Kiarie, James N; Frenkel, Lisa M

    2016-06-19

    Antiretroviral-naïve adults initiating antiretroviral therapy in Nairobi, Kenya were tested for HIV-1 drug resistance at codons K103N, Y181C, G190A, M184V, and K65R using an oligonucleotide ligation assay. Prevalence of pretreatment drug resistance increased from 3.89% in 2006 to 10.93% in 2014 (P < 0.001), and 95% of those with resistance had at least one nonnucleoside reverse transcriptase inhibitor mutation. Resistance to tenofovir (K65R) was found in 2014 but not in 2006.

  2. Broad Phenotypic Cross-Resistance to Elvitegravir in HIV-Infected Patients Failing on Raltegravir-Containing Regimens

    PubMed Central

    Villacian, Jorge; Zahonero, Natalia; Pattery, Theresa; Garcia, Federico; Gutierrez, Felix; Caballero, Estrella; Van Houtte, Margriet; de Mendoza, Carmen

    2012-01-01

    The failure of raltegravir (RAL) is generally associated with the selection of mutations at integrase position Y143, Q148, or N155. However, a relatively high proportion of failures occurs in the absence of these changes. Here, we report the phenotypic susceptibilities to RAL and elvitegravir (EVG) for a large group of HIV-infected patients failing on RAL-containing regimens. Plasma from HIV-infected individuals failing on RAL-containing regimens underwent genotypic and phenotypic resistance testing (Antivirogram v2.5.01; Virco). A control group of patients failing on other regimens was similarly tested. Sixty-one samples were analyzed, 40 of which belonged to patients failing on RAL-containing regimens. Full RAL susceptibility was found in 20/21 controls, while susceptibility to EVG was diminished in 8 subjects, with a median fold change (FC) of 2.5 (interquartile range [IQR], 2.1 to 3.1). Fourteen samples from patients with RAL failures showed diminished RAL susceptibility, with a median FC of 38.5 (IQR, 10.8 to 103.2). Primary integrase resistance mutations were found in 11 of these samples, displaying a median FC of 68.5 (IQR, 23.5 to 134.3). The remaining 3 samples showed a median FC of 2.5 (IQR, 2 to 2.7). EVG susceptibility was diminished in 19/40 samples from patients with RAL failures (median FC, 7.71 [IQR, 2.48 to 99.93]). Cross-resistance between RAL and EVG was high (R2 = 0.8; P < 0.001), with drug susceptibility being more frequently reduced for EVG than for RAL (44.3% versus 24.6%; P = 0.035). Susceptibility to RAL and EVG is rarely affected in the absence of primary integrase resistance mutations. There is broad cross-resistance between RAL and EVG, which should preclude their sequential use. Resistance to EVG seems to be more frequent and might be more influenced by integrase variability. PMID:22450969

  3. Broad phenotypic cross-resistance to elvitegravir in HIV-infected patients failing on raltegravir-containing regimens.

    PubMed

    Garrido, Carolina; Villacian, Jorge; Zahonero, Natalia; Pattery, Theresa; Garcia, Federico; Gutierrez, Felix; Caballero, Estrella; Van Houtte, Margriet; Soriano, Vincent; de Mendoza, Carmen

    2012-06-01

    The failure of raltegravir (RAL) is generally associated with the selection of mutations at integrase position Y143, Q148, or N155. However, a relatively high proportion of failures occurs in the absence of these changes. Here, we report the phenotypic susceptibilities to RAL and elvitegravir (EVG) for a large group of HIV-infected patients failing on RAL-containing regimens. Plasma from HIV-infected individuals failing on RAL-containing regimens underwent genotypic and phenotypic resistance testing (Antivirogram v2.5.01; Virco). A control group of patients failing on other regimens was similarly tested. Sixty-one samples were analyzed, 40 of which belonged to patients failing on RAL-containing regimens. Full RAL susceptibility was found in 20/21 controls, while susceptibility to EVG was diminished in 8 subjects, with a median fold change (FC) of 2.5 (interquartile range [IQR], 2.1 to 3.1). Fourteen samples from patients with RAL failures showed diminished RAL susceptibility, with a median FC of 38.5 (IQR, 10.8 to 103.2). Primary integrase resistance mutations were found in 11 of these samples, displaying a median FC of 68.5 (IQR, 23.5 to 134.3). The remaining 3 samples showed a median FC of 2.5 (IQR, 2 to 2.7). EVG susceptibility was diminished in 19/40 samples from patients with RAL failures (median FC, 7.71 [IQR, 2.48 to 99.93]). Cross-resistance between RAL and EVG was high (R(2) = 0.8; P < 0.001), with drug susceptibility being more frequently reduced for EVG than for RAL (44.3% versus 24.6%; P = 0.035). Susceptibility to RAL and EVG is rarely affected in the absence of primary integrase resistance mutations. There is broad cross-resistance between RAL and EVG, which should preclude their sequential use. Resistance to EVG seems to be more frequent and might be more influenced by integrase variability.

  4. HIV diversity and drug resistance from plasma and non-plasma analytes in a large treatment programme in western Kenya

    PubMed Central

    Kantor, Rami; DeLong, Allison; Balamane, Maya; Schreier, Leeann; Lloyd, Robert M; Injera, Wilfred; Kamle, Lydia; Mambo, Fidelis; Muyonga, Sarah; Katzenstein, David; Hogan, Joseph; Buziba, Nathan; Diero, Lameck

    2014-01-01

    Introduction Antiretroviral resistance leads to treatment failure and resistance transmission. Resistance data in western Kenya are limited. Collection of non-plasma analytes may provide additional resistance information. Methods We assessed HIV diversity using the REGA tool, transmitted resistance by the WHO mutation list and acquired resistance upon first-line failure by the IAS–USA mutation list, at the Academic Model Providing Access to Healthcare (AMPATH), a major treatment programme in western Kenya. Plasma and four non-plasma analytes, dried blood-spots (DBS), dried plasma-spots (DPS), ViveSTTM-plasma (STP) and ViveST-blood (STB), were compared to identify diversity and evaluate sequence concordance. Results Among 122 patients, 62 were treatment-naïve and 60 treatment-experienced; 61% were female, median age 35 years, median CD4 182 cells/µL, median viral-load 4.6 log10 copies/mL. One hundred and ninety-six sequences were available for 107/122 (88%) patients, 58/62 (94%) treatment-naïve and 49/60 (82%) treated; 100/122 (82%) plasma, 37/78 (47%) attempted DBS, 16/45 (36%) attempted DPS, 14/44 (32%) attempted STP from fresh plasma and 23/34 (68%) from frozen plasma, and 5/42 (12%) attempted STB. Plasma and DBS genotyping success increased at higher VL and shorter shipment-to-genotyping time. Main subtypes were A (62%), D (15%) and C (6%). Transmitted resistance was found in 1.8% of plasma sequences, and 7% combining analytes. Plasma resistance mutations were identified in 91% of treated patients, 76% NRTI, 91% NNRTI; 76% dual-class; 60% with intermediate-high predicted resistance to future treatment options; with novel mutation co-occurrence patterns. Nearly 88% of plasma mutations were identified in DBS, 89% in DPS and 94% in STP. Of 23 discordant mutations, 92% in plasma and 60% in non-plasma analytes were mixtures. Mean whole-sequence discordance from frozen plasma reference was 1.1% for plasma-DBS, 1.2% plasma-DPS, 2.0% plasma-STP and 2.3% plasma

  5. The R263K Dolutegravir Resistance-Associated Substitution Progressively Decreases HIV-1 Integration

    PubMed Central

    Mesplède, Thibault; Leng, Jing; Pham, Hanh Thi; Liang, Jiaming; Quan, Yudong; Han, Yingshan

    2017-01-01

    ABSTRACT Human immunodeficiency virus (HIV) infection persists despite decades of active antiretroviral therapy (ART), effectively preventing viral eradication. Treatment decreases plasma viral RNA, but viral DNA persists, mostly integrated within the genome of nucleated blood cells. Viral DNA blood levels correlate with comorbidities and the rapidity of viral rebound following treatment interruption. To date, no intervention aiming at decreasing HIV DNA levels below those attained through ART has been successful. This includes use of some integrase inhibitors either as part of ART or in treatment intensification studies. We have argued that using the integrase inhibitor dolutegravir (DTG) in similar studies may yield better results, but this remains to be studied. In treatment-experienced individuals, the most frequent substitution associated with failure with dolutegravir is R263K in integrase. R263K decreases integration both in cell-free and tissue culture assays. We investigated here how integrated DNA levels evolve over time during prolonged infections with R263K viruses. To investigate a potential defect in reverse transcription with R263K, the levels of reverse transcripts were measured by quantitative PCR. We measured HIV type 1 (HIV-1) integration in Jurkat cells over the course of 4-week infections using Alu-mediated quantitative PCR. The results show that R263K did not decrease reverse transcription. Prolonged infections with R263K mutant viruses led to less HIV-1 integrated DNA over time compared to wild-type viruses. These tissue culture results help to explain the absence of the R263K substitution in most individuals experiencing failure with DTG and support studies aiming at longitudinally measuring the levels of integrated DNA in individuals treated with this drug. PMID:28377526

  6. Epidemiological Surveillance of HIV-1 Transmitted Drug Resistance in Spain in 2004-2012: Relevance of Transmission Clusters in the Propagation of Resistance Mutations

    PubMed Central

    Vega, Yolanda; Delgado, Elena; Fernández-García, Aurora; Cuevas, Maria Teresa; Thomson, Michael M.; Montero, Vanessa; Sánchez, Monica; Sánchez, Ana Maria; Pérez-Álvarez, Lucia

    2015-01-01

    Our objectives were to carry out an epidemiological surveillance study on transmitted drug resistance (TDR) among individuals newly diagnosed of HIV-1 infection during a nine year period in Spain and to assess the role of transmission clusters (TC) in the propagation of resistant strains. An overall of 1614 newly diagnosed individuals were included in the study from January 2004 through December 2012. Individuals come from two different Spanish regions: Galicia and the Basque Country. Resistance mutations to reverse transcriptase inhibitors (RTI) and protease inhibitors (PI) were analyzed according to mutations included in the surveillance drug-resistance mutations list updated in 2009. TC were defined as those comprising viruses from five or more individuals whose sequences clustered in maximum likelihood phylogenetic trees with a bootstrap value ≥90%. The overall prevalence of TDR to any drug was 9.9%: 4.9% to nucleoside RTIs (NRTIs), 3.6% to non-nucleoside RTIs (NNRTIs), and 2.7% to PIs. A significant decrease of TDR to NRTIs over time was observed [from 10% in 2004 to 2% in 2012 (p=0.01)]. Sixty eight (42.2%) of 161 sequences with TDR were included in 25 TC composed of 5 or more individuals. Of them, 9 clusters harbored TDR associated with high level resistance to antiretroviral drugs. T215D revertant mutation was transmitted in a large cluster comprising 25 individuals. The impact of epidemiological networks on TDR frequency may explain its persistence in newly diagnosed individuals. The knowledge of the populations involved in TC would facilitate the design of prevention programs and public health interventions. PMID:26010948

  7. Epidemiological Surveillance of HIV-1 Transmitted Drug Resistance in Spain in 2004-2012: Relevance of Transmission Clusters in the Propagation of Resistance Mutations.

    PubMed

    Vega, Yolanda; Delgado, Elena; Fernández-García, Aurora; Cuevas, Maria Teresa; Thomson, Michael M; Montero, Vanessa; Sánchez, Monica; Sánchez, Ana Maria; Pérez-Álvarez, Lucia

    2015-01-01

    Our objectives were to carry out an epidemiological surveillance study on transmitted drug resistance (TDR) among individuals newly diagnosed of HIV-1 infection during a nine year period in Spain and to assess the role of transmission clusters (TC) in the propagation of resistant strains. An overall of 1614 newly diagnosed individuals were included in the study from January 2004 through December 2012. Individuals come from two different Spanish regions: Galicia and the Basque Country. Resistance mutations to reverse transcriptase inhibitors (RTI) and protease inhibitors (PI) were analyzed according to mutations included in the surveillance drug-resistance mutations list updated in 2009. TC were defined as those comprising viruses from five or more individuals whose sequences clustered in maximum likelihood phylogenetic trees with a bootstrap value ≥90%. The overall prevalence of TDR to any drug was 9.9%: 4.9% to nucleoside RTIs (NRTIs), 3.6% to non-nucleoside RTIs (NNRTIs), and 2.7% to PIs. A significant decrease of TDR to NRTIs over time was observed [from 10% in 2004 to 2% in 2012 (p=0.01)]. Sixty eight (42.2%) of 161 sequences with TDR were included in 25 TC composed of 5 or more individuals. Of them, 9 clusters harbored TDR associated with high level resistance to antiretroviral drugs. T215D revertant mutation was transmitted in a large cluster comprising 25 individuals. The impact of epidemiological networks on TDR frequency may explain its persistence in newly diagnosed individuals. The knowledge of the populations involved in TC would facilitate the design of prevention programs and public health interventions.

  8. Results of Antiretroviral Treatment Interruption and Intensification in Advanced Multi-Drug Resistant HIV Infection from the OPTIMA Trial

    PubMed Central

    Holodniy, Mark; Brown, Sheldon T.; Cameron, D. William; Kyriakides, Tassos C.; Angus, Brian; Babiker, Abdel; Singer, Joel; Owens, Douglas K.; Anis, Aslam; Goodall, Ruth; Hudson, Fleur; Piaseczny, Mirek; Russo, John; Schechter, Martin; Deyton, Lawrence; Darbyshire, Janet

    2011-01-01

    Background Guidance is needed on best medical management for advanced HIV disease with multidrug resistance (MDR) and limited retreatment options. We assessed two novel antiretroviral (ARV) treatment approaches in this setting. Methods and Findings We conducted a 2×2 factorial randomized open label controlled trial in patients with a CD4 count ≤300 cells/µl who had ARV treatment (ART) failure requiring retreatment, to two options (a) re-treatment with either standard (≤4 ARVs) or intensive (≥5 ARVs) ART and b) either treatment starting immediately or after a 12-week monitored ART interruption. Primary outcome was time to developing a first AIDS-defining event (ADE) or death from any cause. Analysis was by intention to treat. From 2001 to 2006, 368 patients were randomized. At baseline, mean age was 48 years, 2% were women, median CD4 count was 106/µl, mean viral load was 4.74 log10 copies/ml, and 59% had a prior AIDS diagnosis. Median follow-up was 4.0 years in 1249 person-years of observation. There were no statistically significant differences in the primary composite outcome of ADE or death between re-treatment options of standard versus intensive ART (hazard ratio 1.17; CI 0.86–1.59), or between immediate retreatment initiation versus interruption before re-treatment (hazard ratio 0.93; CI 0.68–1.30), or in the rate of non-HIV associated serious adverse events between re-treatment options. Conclusions We did not observe clinical benefit or harm assessed by the primary outcome in this largest and longest trial exploring both ART interruption and intensification in advanced MDR HIV infection with poor retreatment options. Trial Registration Clinicaltrials.gov NCT00050089 PMID:21483491

  9. Influence of CCR5 and CCR2 Genetic Variants in the Resistance/Susceptibility to HIV in Serodiscordant Couples from Colombia

    PubMed Central

    Zapata, Wildeman; Aguilar-Jiménez, Wbeimar; Pineda-Trujillo, Nicolás; Rojas, Winston; Estrada, Hernando

    2013-01-01

    Abstract The main genetic factor related to HIV-1 resistance is the CCR5-Δ32 mutation; however, the homozygous genotype is uncommon. The CCR5-Δ32 mutation along with single nucleotide polymorphisms (SNPs) in the CCR5 promoter and the CCR2-V64I mutation have been included in seven human haplogroups (HH) previously associated with resistance/susceptibility to HIV-1 infection and different rates of AIDS progression. Here, we determined the association of the CCR5 promoter SNPs, the CCR5-Δ32 mutation, CCR2-V64I SNP, and HH frequencies with resistance/susceptibility to HIV-1 infection in a cohort of HIV-1-serodiscordant couples from Colombia. Seventy HIV-1-exposed, but seronegative (HESN) individuals, 57 seropositives (SP), and 112 healthy controls (HC) were included. The CCR5-Δ32 mutation and CCR2-V64I SNP were identified by PCR, and the CCR5 promoter SNPs were evaluated by sequencing. None of the individuals exhibited a homozygous Δ32 genotype; the CCR2-I allele was more frequent in HESN (34%) than HC (23%) (p=0.039, OR=1.672). The frequency of the 29G allele was higher in SP than HC (p=0.003, OR=3). HHF2 showed a higher frequency in HC (19%) than SP (9%) (p=0.027), while HHG1 was more frequent in SP (11.1%) than in HC (4.2%) (p=0.019). The AGACCAC-CCR2-I-CCR5 wild-type haplotype showed a higher frequency in SP (14.2%) than in HC (3.7%) (p=0.001). In conclusion, the CCR5-Δ32 allele is not responsible for HIV-1 resistance in this HESN group; however, the CCR2-I allele could be protective, while the 29G allele might increase the likelihood of acquiring HIV-1 infection. HHG1 and the AGACCAC-CCR2-I-CCR5 wild-type haplotype might promote HIV-1 infection while HHF2 might be related to resistance. However, additional studies are required to evaluate the implications of these findings. PMID:24098976

  10. High rates of virological failure and drug resistance in perinatally HIV-1-infected children and adolescents receiving lifelong antiretroviral therapy in routine clinics in Togo

    PubMed Central

    Salou, Mounerou; Dagnra, Anoumou Y; Butel, Christelle; Vidal, Nicole; Serrano, Laetitia; Takassi, Elom; Konou, Abla A; Houndenou, Spero; Dapam, Nina; Singo-Tokofaï, Assetina; Pitche, Palokinam; Atakouma, Yao; Prince-David, Mireille; Delaporte, Eric; Peeters, Martine

    2016-01-01

    Introduction Antiretroviral treatment (ART) has been scaled up over the last decade but compared to adults, children living with HIV are less likely to receive ART. Moreover, children and adolescents are more vulnerable than adults to virological failure (VF) and emergence of drug resistance. In this study we determined virological outcome in perinatally HIV-1-infected children and adolescents receiving ART in Togo. Methods HIV viral load (VL) testing was consecutively proposed to all children and adolescents who were on ART for at least 12 months when attending HIV healthcare services for their routine follow-up visit (June to September 2014). Plasma HIV-1 VL was measured using the m2000 RealTime HIV-1 assay (Abbott Molecular, Des Plaines, IL, USA). Genotypic drug resistance was done for all samples with VL>1000 copies/ml. Results and discussion Among 283 perinatally HIV-1-infected children and adolescents included, 167 (59%) were adolescents and 116 (41%) were children. The median duration on ART was 48 months (interquartile range: 28 to 68 months). For 228 (80.6%), the current ART combination consisted of two nucleoside reverse transcriptase inhibitors (NRTIs) (zidovudine and lamivudine) and one non-nucleoside reverse transcriptase inhibitor (NNRTI) (nevirapine or efavirenz). Only 28 (9.9%) were on a protease inhibitor (PI)-based regimen. VL was below the detection limit (i.e. 40 copies/ml) for 102 (36%), between 40 and 1000 copies/ml for 35 (12.4%) and above 1000 copies/ml for 146 (51.6%). Genotypic drug-resistance testing was successful for 125/146 (85.6%); 110/125 (88.0%) were resistant to both NRTIs and NNRTIs, 1/125 (0.8%) to NRTIs only, 4/125 (3.2%) to NNRTIs only and three harboured viruses resistant to reverse transcriptase and PIs. Overall, 86% (108/125) of children and adolescents experiencing VF and successfully genotyped, corresponding thus to at least 38% of the study population, had either no effective ART or had only a single effective drug in

  11. Incident Infection and Resistance Mutation Analysis of Dried Blood Spots Collected in a Field Study of HIV Risk Groups, 2007-2010

    PubMed Central

    Wei, Xierong; Smith, Amanda J.; Forrest, David W.; Cardenas, Gabriel A.; Beck, Dano W.; LaLota, Marlene; Metsch, Lisa R.; Sionean, Catlainn; Owen, S. Michele; Johnson, Jeffrey A.

    2016-01-01

    Objective To assess the utility of cost-effective dried blood spot (DBS) field sampling for incidence and drug resistance surveillance of persons at high risk for HIV infection. Methods We evaluated DBS collected in 2007–2010 in non-clinical settings by finger-stick from HIV-positive heterosexuals at increased risk of HIV infection (n = 124), men who have sex with men (MSM, n = 110), and persons who inject drugs (PWID, n = 58). Relative proportions of recent-infection findings among risk groups were assessed at avidity index (AI) cutoffs of ≤25%, ≤30%, and ≤35%, corresponding to an infection mean duration of recency (MDR) of 220.6, 250.4, and 278.3 days, respectively. Drug resistance mutation prevalence was compared among the risk groups and avidity indices. Results HIV antibody avidity testing of all self-reported ARV-naïve persons (n = 186) resulted in 9.7%, 11.3% and 14.0% with findings within the 221, 250, and 278-day MDRs, respectively. The proportion of ARV-naïve MSM, heterosexuals, and PWID reporting only one risk category who had findings below the suggested 30% AI was 23.1%, 6.9% and 3.6% (p<0.001), respectively. MSM had the highest prevalence of drug resistance and the only cases of transmitted multi-class resistance. Among the ARV-experienced, MSM had disproportionately more recent-infection results than did heterosexuals and PWID. Conclusions The disproportionately higher recent-infection findings for MSM as compared to PWID and heterosexuals increased as the MDR window increased. Unreported ARV use might explain greater recent-infection findings and drug resistance in this MSM population. DBS demonstrated utility in expanded HIV testing; however, optimal field handling is key to accurate recent-infection estimates. PMID:27415433

  12. Mutations in variable domains of the HIV-1 envelope gene can have a significant impact on maraviroc and vicriviroc resistance

    PubMed Central

    2013-01-01

    Background Resistance to CCR5 inhibitors, such as maraviroc and vicriviroc is characterized by reduction of maximal percent inhibition which indicates the use of an inhibitor-bound conformation of CCR5 for human immunodeficiency virus-1(HIV-1) entry. It is accompanied by substitutions in gp120 and gp41. Variable domain 3 (V3) plays the most important role, but substitutions outside V3 could also be involved in phenotype resistance. In this work, we investigated how mutations in variable regions of the viral envelope protein gp120 can contribute to CCR5 inhibitor resistance. Methods Resistant isolates were selected by passaging CC1/85 and BaL viruses with sub-inhibitory MVC and VCV concentrations. Mutations in gp160 were identified and mutants containing V2 (V169M), V3 (L317W) and V4 (I408T) were constructed. Results MVC and VCV susceptibility and viral tropism were assessed by single cycle assay. Mutant I408T showed 4-fold change (FC) increase in the half maximal inhibitory concentration (IC50) to MVC, followed by L317W (1.52-FC), V169M (1.23-FC), V169M/I408T (4-FC) L317W/I408T (3-FC), V169M/L317W (1.30-FC), and V169M/L317W/I408T (3.31-FC). MPI reduction was observed for mutants I408T (85%), L317W (95%), V169M/I408T (84%), L317W/I408T (85%) and V169M/L317W/I408T (83%). For VCV, I408T increased the IC50 by 2-FC and few mutants showed MPI reduction less than 95%: I408T (94%), L317W/I408T (94%) and V169M/L317W/I408T (94%). All mutants remained R5-tropic and presented decreased infectivity. Conclusions These results suggest that mutations in the V4 loop of HIV-1 may contribute to MVC and VCV resistance alone or combined with mutations in V2 and V3 loops. PMID:23758814

  13. HIV-1 Drug Resistance and Second-line Treatment in Children Randomized to Switch at Low versus Higher RNA Thresholds

    PubMed Central

    Harrison, Linda; Melvin, Ann; Fiscus, Susan; Saidi, Yacine; Nastouli, Eleni; Harper, Lynda; Compagnucci, Alexandra; Babiker, Abdel; McKinney, Ross; Gibb, Diana; Tudor-Williams, Gareth

    2015-01-01

    Background The PENPACT-1 trial compared virologic thresholds to determine when to switch to second-line antiretroviral therapy (ART). Using PENPACT-1 data, we aimed to describe HIV-1 drug resistance accumulation on first-line ART by virologic threshold. Methods PENPACT-1 had a 2x2 factorial design, randomizing HIV-infected children to start protease inhibitor (PI) versus non-nucleoside reverse transcriptase inhibitor (NNRTI) based ART, and switch at a 1000c/ml versus 30000c/ml threshold. Switch-criteria were: not achieving the threshold by week 24, confirmed rebound above the threshold thereafter, or CDC-C event. Resistance tests were performed on samples ≥1000c/ml before switch, re-suppression and at 4-year/trial-end. Results Sixty-seven children started PI-based ART and were randomized to switch at 1000c/ml (PI-1000), 64 PIs and 30000c/ml (PI-30000), 67 NNRTIs and 1000c/ml (NNRTI-1000), and 65 NNRTI and 30000c/ml (NNRTI-30000). Ninety-four (36%) children reached the 1000c/ml switch-criteria during 5 years follow-up. In 30000c/ml threshold arms, median time from 1000c/ml to 30000c/ml switch-criteria was 58 (PI) versus 80 (NNRTI) weeks (P=0.81). In NNRTI-30000 more NRTI resistance mutations accumulated than other groups. NNRTI mutations were selected before switching at 1000c/ml (23% NNRTI-1000, 27% NNRTI-30000). Sixty-two children started abacavir+lamivudine, 166 lamivudine+zidovudine or stavudine, and 35 other NRTIs. The abacavir+lamivudine group acquired fewest NRTI mutations. Of 60 switched to second-line, 79% PI-1000, 63% PI-30000, 64% NNRTI-1000 and 100% NNRTI-30000 were <400c/ml 24 weeks later. Conclusion Children on first-line NNRTI-based ART who were randomized to switch at a higher virologic threshold developed the most resistance, yet re-suppressed on second-line. An abacavir+lamivudine NRTI combination seemed protective against development of NRTI resistance. PMID:26322666

  14. Characterization of Gp41 polymorphisms in the fusion peptide domain and T-20 (Enfuvirtide) resistance-associated regions in Korean HIV-1 isolates.

    PubMed

    Jang, Dai-Ho; Yoon, Cheol-Hee; Choi, Byeong-Sun; Chung, Yoon-Seok; Kim, Hye-Young; Chi, Sung-Gil; Kim, Sung Soon

    2014-03-01

    HIV-1 gp41 is an envelope protein that plays an essential role in virus entry. The mutation of gp41 affects HIV-1 entry and susceptibility to the fusion inhibitor T-20. Therefore, we analyzed the natural polymorphism of gp41 of 163 HIV-1 isolates from T-20-naïve Koreans infected with HIV-1. This study of gp41 polymorphisms showed that insertions in the fourth threonine (74.8%) and L7M substitutions (85.3%) were more frequent in the fusion peptide motif in Korean HIV-1 isolates compared with those from other countries. Minor T-20 resistance mutations such as L45M (1.2%), N126K (1.2%), and E137K (6.7%) were detected, but the critical T-20 resistance mutations were not detected in the gp41 HR1 and HR2 regions. In addition, the N42S mutation (12.9%) associated with T-20 hypersusceptibility was detected at a high frequency. These results may serve as useful data for studies considering T-20 for use in the development of a more effective anti-retroviral treatment in Korea.

  15. Methicillin-Resistant Staphylococcus aureus Colonization of the Groin and Risk for Clinical Infection among HIV-infected Adults

    PubMed Central

    Brooks, John T.; McAllister, Sigrid K.; Limbago, Brandi; Lowery, H. Ken; Fosheim, Gregory; Guest, Jodie L.; Gorwitz, Rachel J.; Bethea, Monique; Hageman, Jeffrey; Mindley, Rondeen; McDougal, Linda K.; Rimland, David

    2013-01-01

    Data on the interaction between methicillin-resistant Staphylococcus aureus (MRSA) colonization and clinical infection are limited. During 2007–2008, we enrolled HIV-infected adults in Atlanta, Georgia, USA, in a prospective cohort study. Nares and groin swab specimens were cultured for S. aureus at enrollment and after 6 and 12 months. MRSA colonization was detected in 13%–15% of HIV-infected participants (n = 600, 98% male) at baseline, 6 months, and 12 months. MRSA colonization was detected in the nares only (41%), groin only (21%), and at both sites (38%). Over a median of 2.1 years of follow-up, 29 MRSA clinical infections occurred in 25 participants. In multivariate analysis, MRSA clinical infection was significantly associated with MRSA colonization of the groin (adjusted risk ratio 4.8) and a history of MRSA infection (adjusted risk ratio 3.1). MRSA prevention strategies that can effectively prevent or eliminate groin colonization are likely necessary to reduce clinical infections in this population. PMID:23631854

  16. Efficient Modification of the CCR5 Locus in Primary Human T Cells With megaTAL Nuclease Establishes HIV-1 Resistance

    PubMed Central

    Romano Ibarra, Guillermo S; Paul, Biswajit; Sather, Blythe D; Younan, Patrick M; Sommer, Karen; Kowalski, John P; Hale, Malika; Stoddard, Barry; Jarjour, Jordan; Astrakhan, Alexander; Kiem, Hans-Peter; Rawlings, David J

    2016-01-01

    A naturally occurring 32-base pair deletion of the HIV-1 co-receptor CCR5 has demonstrated protection against HIV infection of human CD4+ T cells. Recent genetic engineering approaches using engineered nucleases to disrupt the gene and mimic this mutation show promise for HIV therapy. We developed a megaTAL nuclease targeting the third extracellular loop of CCR5 that we delivered to primary human T cells by mRNA transfection. The CCR5 megaTAL nuclease established resistance to HIV in cell lines and disrupted the expression of CCR5 on primary human CD4+ T cells with a high efficiency, achieving up to 80% modification of the locus in primary cells as measured by molecular analysis. Gene-modified cells engrafted at levels equivalent to unmodified cells when transplanted into immunodeficient mice. Furthermore, genetically modified CD4+ cells were preferentially expanded during HIV-1 infection in vivo in an immunodeficient mouse model. Our results demonstrate the feasibility of targeting CCR5 in primary T cells using an engineered megaTAL nuclease, and the potential to use gene-modified cells to reconstitute a patient's immune system and provide protection from HIV infection. PMID:27741222

  17. Natural Polymorphisms Conferring Resistance to HCV Protease and Polymerase Inhibitors in Treatment-Naïve HIV/HCV Co-Infected Patients in China

    PubMed Central

    Wang, Charles; Hu, Fengyu; Ning, Chuanyi; Lan, Yun; Tang, Xiaoping; Tucker, Joseph D.; Cai, Weiping

    2016-01-01

    Background The advent of direct-acting agents (DAAs) has improved treatment of HCV in HIV co-infection, but may be limited by primary drug resistance. This study reports the prevalence of natural polymorphisms conferring resistance to NS3/4A protease inhibitors and NS5B polymerase inhibitors in treatment-naïve HIV/HCV co-infected individuals in China. Methods Population based NS3/4A sequencing was completed for 778 treatment-naïve HIV/HCV co-infected patients from twelve provinces. NS3 sequences were amplified by nested PCR using in-house primers for genotypes 1–6. NS5B sequencing was completed for genotyping in 350 sequences. Resistance-associated variants (RAVs) were identified in positions associated with HCV resistance. Results Overall, 72.8% (566/778) of all HCV sequences had at least one RAV associated with HCV NS3/4A protease inhibitor resistance. Variants were found in 3.6% (7/193) of genotype 1, 100% (23/23) of genotype 2, 100% (237/237) of genotype 3 and 92% (299/325) of genotype 6 sequences. The Q80K variant was present in 98.4% of genotype 6a sequences. High-level RAVs were rare, occurring in only 0.8% of patients. 93% (64/69) patients with genotype 1b also carried the C316N variant associated with NS5B low-level resistance. Conclusions The low frequency of high-level RAVs associated with primary HCV DAA resistance among all genotypes in HIV/HCV co-infected patients is encouraging. Further phenotypic studies and clinical research are needed. PMID:27341031

  18. A novel mutation, D404N, in the connection subdomain of reverse transcriptase of HIV-1 CRF08_BC subtype confers cross-resistance to NNRTIs

    PubMed Central

    Zhang, Xiao-Min; Wu, Hao; Zhang, Qiwei; Lau, Terrence Chi-Kong; Chu, Hin; Chen, Zhi-Wei; Jin, Dong-Yan; Zheng, Bo-Jian

    2015-01-01

    Objectives Growing evidence suggests that mutations in the connection domain of the HIV-1 reverse transcriptase (RT) can contribute to viral resistance to RT inhibitors. This work was designed to determine the effects of a novel mutation, D404N, in the connection subdomain of RT of HIV-1 CRF08_BC subtype on drug resistance, viral replication capacity (RC) and RT activity. Methods Mutation D404N, alone or together with the other reported mutations, was introduced into an HIV-1 CRF08_BC subtype infectious clone by site-directed mutagenesis. Viral susceptibility to nine RT inhibitors, viral RC and the DNA polymerase activity of viral RT of the constructed virus mutants were investigated. A modelling study using the server SWISS-MODEL was conducted to explore the possible structure-related drug resistance mechanism of the mutation D404N. Results Single mutations D404N and H221Y conferred low-level resistance to nevirapine, efavirenz, rilpivirine and zidovudine. Double mutations Y181C/D404N and Y181C/H221Y significantly reduced susceptibility to NNRTIs. The most pronounced resistance to NNRTIs was observed with the triple mutation Y181C/D404N/H221Y. Virus containing D404N as the only mutation displayed ∼50% RC compared with the WT virus. The modelling study suggested that the D404N mutation might abolish the hydrogen bonds between residues 404 and K30 in p51 or K431 in p66, leading to impaired RT subunit structure and enhanced drug resistance. Conclusions These results indicate that D404N is a novel NNRTI-associated mutation in the HIV-1 subtype CRF08_BC and provides information valuable for the monitoring of clinical RTI resistance. PMID:25637519

  19. Emergence of HBV resistance to lamivudine (3TC) in HIV/HBV co-infected patients in The Gambia, West Africa

    PubMed Central

    2011-01-01

    Background Lamivudine (3TC) is a potent inhibitor of both Hepatitis B virus (HBV) and Human Immunodeficiency Virus (HIV) replication and is part of first-line highly active antiretroviral therapy (HAART) in the Gambia. Unfortunately, the effectiveness of 3TC against HBV is limited by the emergence of resistant strains. Aim The aim of this retrospective study was to characterise 3TC-resistant mutations in HBV from co-infected patients receiving HAART, by generating HBV polymerase sequence data and viral loads from HBV genotype E infected patients, both at initiation and during a course of 3TC therapy. Method Samples from 21 HBV chronic carriers co-infected with HIV-1 (n = 18), HIV-2 (n = 2) and HIV-dual (n = 1) receiving HAART for a period of 6-52 months were analysed for the emergence of 3TC-resistance mutations. Findings Sixteen out of 21 HBV/HIV co-infected patients responded well to HAART treatment maintaining suppression of HBV viraemia to low (≤ 104 copies/mL) (n = 5) or undetectable levels (< 260 copies/ml) (n = 11). Out of the 5 non-responders, 3 had developed 3TC-resistant HBV strains showing mutations in the YMDD motif at position 204 of the RT domain of the HBV polymerase. One patient showed the M204V+ L180M+ V173L+ triple mutation associated with a vaccine escape phenotype, which could be of public health concern in a country with a national HBV vaccination programme. All except one patient was infected with HBV genotype E. Conclusions Our findings confirm the risk of 3TC mutations in HAART patients following monotherapy. This is a novel study on 3TC resistance in HBV genotype E patients and encourage the use of tenofovir (in association with 3TC), which has not shown unequivocally documented HBV resistance to date, as part of first-line therapy in HIV/HBV co-infected patients in West Africa. HBV- hepatitis B infection; HIV- human immunodeficiency virus; HAART- antiretroviral therapy. PMID:22195774

  20. Single Active Site Mutation Causes Serious Resistance of HIV Reverse Transcriptase to Lamivudine: Insight from Multiple Molecular Dynamics Simulations.

    PubMed

    Moonsamy, Suri; Bhakat, Soumendranath; Walker, Ross C; Soliman, Mahmoud E S

    2016-03-01

    Molecular dynamics simulations, binding free energy calculations, principle component analysis (PCA), and residue interaction network analysis were employed in order to investigate the molecular mechanism of M184I single mutation which played pivotal role in making the HIV-1 reverse transcriptase (RT) totally resistant to lamivudine. Results showed that single mutations at residue 184 of RT caused (1) distortion of the orientation of lamivudine in the active site due to the steric conflict between the oxathiolane ring of lamivudine and the side chain of beta-branched amino acids Ile at position 184 which, in turn, perturbs inhibitor binding, (2) decrease in the binding affinity by (~8 kcal/mol) when compared to the wild-type, (3) variation in the overall enzyme motion as evident from the PCA for both systems, and (4) distortion of the hydrogen bonding network and atomic interactions with the inhibitor. The comprehensive analysis presented in this report can provide useful information for understanding the drug resistance mechanism against lamivudine. The results can also provide some potential clues for further design of novel inhibitors that are less susceptible to drug resistance.

  1. Prevalence of drug resistance mutations in HAART patients infected with HIV-1 CRF06_cpx in Estonia.

    PubMed

    Avi, Radko; Pauskar, Merit; Karki, Tõnis; Kallas, Eveli; Jõgeda, Ene-Ly; Margus, Tõnu; Huik, Kristi; Lutsar, Irja

    2016-03-01

    HIV-1 drug resistance mutations (DRMs) and substitutions were assessed after the failure of the first line non-nucleoside reverse transcriptase inhibitors (NNRTIs) + 2 nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) treatment regimens (efavirenz [EFV] + lamivudine[3TC] + zidovudine [ZDV] vs. EFV + 3TC + ddI) among the HIV-1 CRF06_cpx infected subjects in Estonia. HIV-1 genomic RNA was sequenced; DRMs and amino acid substitutions were compared in 44 treatment naïve and 45 first-line NNRTI + 2 NRTI treatment failed patients consisting of EFV + 3TC + ZDV (n = 17) and EFV + 3TC + didanosine[ddI] (n = 21) therapy failed sub-populations. At least one DRM was found in 78% of treatment experienced patients. The most common NRTI mutations were M184V (80%), L74V (31%), L74I (17%), K219E (9%), and M184I (9%), NNRTI mutations were K103N (83%), P225H (14%), L100I (11%), and Y188L (11%), reflecting generally the similar pattern of DRMs to that seen in treatment failed subtype B viruses. Sub-population analysis revealed that EFV + 3TC + ddI failed patients had more DRMs compared to EFV + 3TC + ZDV failed patients, especially the ddI DRM L74IV and several additional NNRTI DRMs. Additionally, CRF06_cpx specific mutation E179V and substitutions R32K, K122E, and V200AE were also detected in treatment experienced population. After the failure of the first-line EFV + 3TC + ddI therapy HIV-1 CRF06_cpx viruses develop additional NRTI and NNRTI mutations compared to EFV + 3TC + ZDV regimen. Therefore the usage of EFV + 3TC + ddI in this subtype decreases the options for next regimens containing abacavir, and NNRTI class agents.

  2. Sequences in Glycoprotein gp41, the CD4 Binding Site, and the V2 Domain Regulate Sensitivity and Resistance of HIV-1 to Broadly Neutralizing Antibodies

    PubMed Central

    O'Rourke, Sara M.; Schweighardt, Becky; Phung, Pham; Mesa, Kathryn A.; Vollrath, Aaron L.; Tatsuno, Gwen P.; To, Briana; Sinangil, Faruk; Limoli, Kay; Wrin, Terri

    2012-01-01

    The swarm of quasispecies that evolves in each HIV-1-infected individual represents a source of closely related Env protein variants that can be used to explore various aspects of HIV-1 biology. In this study, we made use of these variants to identify mutations that confer sensitivity and resistance to the broadly neutralizing antibodies found in the sera of selected HIV-1-infected individuals. For these studies, libraries of Env proteins were cloned from infected subjects and screened for infectivity and neutralization sensitivity. The nucleotide sequences of the Env proteins were then compared for pairs of neutralization-sensitive and -resistant viruses. In vitro mutagenesis was used to identify the specific amino acids responsible for the neutralization phenotype. All of the mutations altering neutralization sensitivity/resistance appeared to induce conformational changes that simultaneously enhanced the exposure of two or more epitopes located in different regions of gp160. These mutations appeared to occur at unique positions required to maintain the quaternary structure of the gp160 trimer, as well as conformational masking of epitopes targeted by neutralizing antibodies. Our results show that sequences in gp41, the CD4 binding site, and the V2 domain all have the ability to act as global regulators of neutralization sensitivity. Our results also suggest that neutralization assays designed to support the development of vaccines and therapeutics targeting the HIV-1 Env protein should consider virus variation within individuals as well as virus variation between individuals. PMID:22933284

  3. Glycan Microheterogeneity at the PGT135 Antibody Recognition Site on HIV-1 gp120 Reveals a Molecular Mechanism for Neutralization Resistance

    PubMed Central

    Pritchard, Laura K.; Spencer, Daniel I. R.; Royle, Louise; Vasiljevic, Snezana; Krumm, Stefanie A.; Doores, Katie J.

    2015-01-01

    Broadly neutralizing antibodies have been isolated that bind the glycan shield of the HIV-1 envelope spike. One such antibody, PGT135, contacts the intrinsic mannose patch of gp120 at the Asn332, Asn392, and Asn386 glycosylation sites. Here, site-specific glycosylation analysis of recombinant gp120 revealed glycan microheterogeneity sufficient to explain the existence of a minor population of virions resistant to PGT135 neutralization. Target microheterogeneity and antibody glycan specificity are therefore important parameters in HIV-1 vaccine design. PMID:25878100

  4. Antiretroviral treatment sequencing strategies to overcome HIV type 1 drug resistance in adolescents and adults in low-middle-income countries.

    PubMed

    De Luca, Andrea; Hamers, Raphael L; Schapiro, Jonathan M

    2013-06-15

    Antiretroviral treatment (ART) is expanding to human immunodeficiency virus type 1 (HIV-1)-infected persons in low-middle income countries, thanks to a public health approach. With 3 available drug classes, 2 ART sequencing lines are programmatically foreseen. The emergence and transmission of viral drug resistance represents a challenge to the efficacy of ART. Knowledge of HIV-1 drug resistance selection associated with specific drugs and regimens and the consequent activity of residual drug options are essential in programming ART sequencing options aimed at preserving ART efficacy for as long as possible. This article determines optimal ART sequencing options for overcoming HIV-1 drug resistance in resource-limited settings, using currently available drugs and treatment monitoring opportunities. From the perspective of drug resistance and on the basis of limited virologic monitoring data, optimal sequencing seems to involve use of a tenofovir-containing nonnucleoside reverse-transcriptase inhibitor-based first-line regimen, followed by a zidovudine-containing, protease inhibitor (PI)-based second-line regimen. Other options and their consequences are explored by considering within-class and between-class sequencing opportunities, including boosted PI monotherapies and future options with integrase inhibitors. Nucleoside reverse-transcriptase inhibitor resistance pathways in HIV-1 subtype C suggest an additional reason for accelerating stavudine phase out. Viral load monitoring avoids the accumulation of resistance mutations that significantly reduce the activity of next-line options. Rational use of resources, including broader access to viral load monitoring, will help ensure 3 lines of fully active treatment options, thereby increasing the duration of ART success.

  5. First insights into the genetic diversity of Mycobacterium tuberculosis isolates from HIV-infected Mexican patients and mutations causing multidrug resistance

    PubMed Central

    2010-01-01

    Background The prevalence of infections with Mycobacterium tuberculosis (MTb) and nontuberculous mycobacteria (NTM) species in HIV-infected patients in Mexico is unknown. The aims of this study were to determine the frequency of MTb and NTM species in HIV-infected patients from Mexico City, to evaluate the genotypic diversity of the Mycobacterium tuberculosis complex strains, to determine their drug resistance profiles by colorimetric microplate Alamar Blue assay (MABA), and finally, to detect mutations present in katG, rpoB and inhA genes, resulting in isoniazid (INH) and rifampin (RIF) resistance. Results Of the 67 mycobacterial strains isolated, 48 were identified as MTb, 9 as M. bovis, 9 as M. avium and 1 as M. intracellulare. IS6110-RFLP of 48 MTb strains showed 27 profiles. Spoligotyping of the 48 MTb strains yielded 21 patterns, and 9 M. bovis strains produced 7 patterns. Eleven new spoligotypes patterns were found. A total of 40 patterns were produced from the 48 MTb strains when MIRU-VNTR was performed. Nineteen (39.6%) MTb strains were resistant to one or more drugs. One (2.1%) multidrug-resistant (MDR) strain was identified. A novel mutation was identified in a RIF-resistant strain, GAG → TCG (Glu → Ser) at codon 469 of rpoB gene. Conclusions This is the first molecular analysis of mycobacteria isolated from HIV-infected patients in Mexico, which describe the prevalence of different mycobacterial species in this population. A high genetic diversity of MTb strains was identified. New spoligotypes and MIRU-VNTR patterns as well as a novel mutation associated to RIF-resistance were found. This information will facilitate the tracking of different mycobacterial species in HIV-infected individuals, and monitoring the spread of these microorganisms, leading to more appropriate measures for tuberculosis control. PMID:20236539

  6. Comparison of drug resistance scores for tipranavir in protease inhibitor-naive patients infected with HIV-1 B and non-B subtypes.

    PubMed

    Stürmer, Martin; Stephan, Christoph; Gute, Peter; Knecht, Gaby; Bickel, Markus; Brodt, Hans-Reinhard; Doerr, Hans W; Gürtler, Lutz; Lecocq, Pierre; van Houtte, Margriet

    2011-11-01

    Genotypes of samples from protease inhibitor-naïve patients in Frankfurt's HIV Cohort were analyzed with five tipranavir resistance prediction algorithms. Mean scores were higher in non-B than in B subtypes. The proportion of non-B subtypes increased with increasing scores, except in weighted algorithms. Virtual and in vitro phenotype analyses of samples with increased scores showed no reduced tipranavir susceptibility. Current algorithms appear suboptimal for interpretation of resistance to tipranavir in non-B subtypes; increased scores might reflect algorithm bias rather than "natural resistance."

  7. Dissemination of Trimethoprim-Sulfamethoxazole Drug Resistance Genes Associated with Class 1 and Class 2 Integrons Among Gram-Negative Bacteria from HIV Patients in South India.

    PubMed

    Ramesh Kumar, Marimuthu Ragavan; Arunagirinathan, Narasingam; Srivani, Seetharaman; Dhanasezhian, Aridoss; Vijaykanth, Nallusamy; Manikandan, Natesan; Balakrishnan, Sethuramalingam; Vignesh, Ramachandran; Balakrishnan, Pachamuthu; Solomon, Suniti; Solomon, Sunil S

    2016-11-17

    The antibiotic, trimethoprim-sulfamethoxazole (TMP-SMX), is generally used for prophylaxis in HIV individuals to protect them from Pneumocystis jiroveci infection. Long-term use of TMP-SMX develops drug resistance among bacteria in HIV patients. The study was aimed to detect the TMP-SMX resistance genes among gram-negative bacteria from HIV patients. TMP-SMX-resistant isolates were detected by the Kirby-Bauer disc diffusion method. While TMP resistance genes such as dfrA1, dfrA5, dfrA7, and dfrA17 and SMX resistance genes such as sul1 and sul2 were detected by multiplex PCR, class 1 and class 2 integrons were detected by standard monoplex PCR. Of the 151 TMP-SMX-resistant bacterial isolates, 3 were positive for sul1 alone, 48 for sul2 alone, 11 for dfrA7 alone, 21 for sul1 and sul2, 1 for sul1 and dfrA7, 23 for sul2 and dfrA7, 2 for sul2 and dfrA5, 41 for sul1, sul2, and dfrA7, and 1 for sul2, dfrA5, and dfrA7. Of 60 TMP-SMX-resistant isolates positive for integrons, 44 had class 1 and 16 had class 2 integrons. It was found that the prevalence of sul genes (n = 202; p < 0.001) was higher compared with dfr genes (n = 80; p < 0.001), and 87.4% (n = 132; p < 0.001) of TMP-SMX-resistant isolates also were positive for β-lactamase production. This type of study is reported for the first time from HIV patients in India. Therefore, this study indicates that dissemination of TMP-SMX resistance genes and class 1 and class 2 integrons along with β-lactamase production among gram-negative bacteria in HIV patients will certainly make their treatment to bacterial infections more complicated in clinical settings.

  8. HIV-1 drug resistance mutations emerging on darunavir therapy in PI-naive and -experienced patients in the UK

    PubMed Central

    El Bouzidi, Kate; White, Ellen; Mbisa, Jean L.; Sabin, Caroline A.; Phillips, Andrew N.; Mackie, Nicola; Pozniak, Anton L.; Tostevin, Anna; Pillay, Deenan; Dunn, David T.

    2016-01-01

    Background Darunavir is considered to have a high genetic barrier to resistance. Most darunavir-associated drug resistance mutations (DRMs) have been identified through correlation of baseline genotype with virological response in clinical trials. However, there is little information on DRMs that are directly selected by darunavir in clinical settings. Objectives We examined darunavir DRMs emerging in clinical practice in the UK. Patients and methods Baseline and post-exposure protease genotypes were compared for individuals in the UK Collaborative HIV Cohort Study who had received darunavir; analyses were stratified for PI history. A selection analysis was used to compare the evolution of subtype B proteases in darunavir recipients and matched PI-naive controls. Results Of 6918 people who had received darunavir, 386 had resistance tests pre- and post-exposure. Overall, 2.8% (11/386) of these participants developed emergent darunavir DRMs. The prevalence of baseline DRMs was 1.0% (2/198) among PI-naive participants and 13.8% (26/188) among PI-experienced participants. Emergent DRMs developed in 2.0% of the PI-naive group (4 mutations) and 3.7% of the PI-experienced group (12 mutations). Codon 77 was positively selected in the PI-naive darunavir cases, but not in the control group. Conclusions Our findings suggest that although emergent darunavir resistance is rare, it may be more common among PI-experienced patients than those who are PI-naive. Further investigation is required to explore whether codon 77 is a novel site involved in darunavir susceptibility. PMID:27856703

  9. Endogenous CD317/Tetherin limits replication of HIV-1 and murine leukemia virus in rodent cells and is resistant to antagonists from primate viruses.

    PubMed

    Goffinet, Christine; Schmidt, Sarah; Kern, Christian; Oberbremer, Lena; Keppler, Oliver T

    2010-11-01

    Human CD317 (BST-2/tetherin) is an intrinsic immunity factor that blocks the release of retroviruses, filoviruses, herpesviruses, and arenaviruses. It is unclear whether CD317 expressed endogenously in rodent cells has the capacity to interfere with the replication of the retroviral rodent pathogen murine leukemia virus (MLV) or, in the context of small-animal model development, contributes to the well-established late-phase restriction of human immunodeficiency virus type 1 (HIV-1). Here, we show that small interfering RNA (siRNA)-mediated knockdown of CD317 relieved a virion release restriction and markedly enhanced the egress of HIV-1, HIV-2, and simian immunodeficiency virus (SIV) in rat cells, including primary macrophages. Moreover, rodent CD317 potently inhibited MLV release, and siRNA-mediated depletion of CD317 in a mouse T-cell line resulted in the accelerated spread of MLV. Several virus-encoded antagonists have recently been reported to overcome the restriction imposed by human or monkey CD317, including HIV-1 Vpu, envelope glycoproteins of HIV-2 and Ebola virus, Kaposi's sarcoma-associated herpesvirus K5, and SIV Nef. In contrast, both rat and mouse CD317 showed a high degree of resistance to these viral antagonists. These data suggest that CD317 is a broadly acting and conserved mediator of innate control of retroviral infection and pathogenesis that restricts the release of retroviruses and lentiviruses in rodents. The high degree of resistance of the rodent CD317 restriction factors to antagonists from primate viruses has implications for HIV-1 small-animal model development and may guide the design of novel antiviral interventions.

  10. Clinical features, Outcomes and Molecular Profiles of Drug Resistance in Tuberculous Meningitis in non-HIV Patients.

    PubMed

    Zhang, Jingya; Hu, Xuejiao; Hu, Xin; Ye, Yuanxin; Shang, Mengqiao; An, Yunfei; Gou, Haimei; Zhao, Zhenzhen; Peng, Wu; Song, Xingbo; Zhou, Yanhong; Kang, Mei; Xie, Yi; Chen, Xuerong; Lu, Xiaojun; Ying, Binwu; Wang, Lanlan

    2016-01-07

    Tuberculous meningitis continues to be a serious problem for physicians because it is difficult to make an early diagnosis and the consequences of delaying treatment are severe. The objective of this study is to provide data for the optimization of diagnostic and timely treatment of tuberculous meningitis. Of the 401 human immunodeficiency virus (HIV)-negative tuberculous meningitis patients in our study, 332 were found to have an impaired blood brain barrier (82.8%). Nearly 17.0% of patients failed to be timely diagnosed. Headache (53.6%) and fever (48.6%) were the most common features, and Computed Tomography/Magnetic Resonance Imaging (CT/MRI) detected 96 patients (23.9%) with abnormal meningeal imaging. Cerebrospinal fluid real-time polymerase chain reaction was positive in 73.8% of the tuberculous meningitis patients, whereas, smears and cultures detected only 6.7% and 5.2%, respectively. Further analysis identified striking differences between drug-resistant and drug-susceptible tuberculous meningitis. Patients with drug resistance correlated with grave prognosis. Tuberculous meningitis diagnosis should overall embody clinical symptoms, laboratory and cerebral imaging findings, and more sensitive diagnostic approaches are still warranted. Our data suggest cerebrospinal fluid polymerase chain reaction for mycobacterial DNA and molecular drug susceptibility testing as routine assays for suspected tuberculous meningitis patients, and observation of the blood brain barrier function could be performed for individual management.

  11. Use of amplification refractory mutation system PCR assay as a simple and effective tool to detect HIV-1 drug resistance mutations.

    PubMed

    Nanfack, Aubin J; Agyingi, Lucy; Noubiap, Jean Jacques N; Ngai, Johnson N; Colizzi, Vittorio; Nyambi, Phillipe N

    2015-05-01

    Access to genotyping assays to determine successful antiretroviral treatment (ART) is limited in resource-constrained settings by high cost, suggesting the need for a cost-effective and simplified method to identify HIV-1 drug resistance (HIVDR) mutations. In this study, an amplification refractory mutation system (ARMS)-PCR assay was developed and used to investigate the most frequent HIVDR mutations affecting first-line ART in settings where WHO ART guidelines are applied. Seventy-five HIV-positive (HIV(+)) samples from Cameroon were used to assess the performance of this assay. Sequencing of HIV-1 reverse transcriptase was simultaneously performed for comparison, and discordant samples were tested with a Trugene HIV-1 genotyping kit. The ARMS-PCR assay was able to detect M184V, T215Y/F, K103N, and Y181C mutations with sensitivities of 96.8%, 85.7%, 91.3%, and 70%, respectively, and specificities of 90.6%, 95%, 100%, 96.9%, respectively, compared with data on sequencing. The results indicated the highest positive predictive value for K103N (100%) and the highest negative predictive value for M184V (97.5%). ARMS-PCR's limits of detection for mutations M184V, T215Y/F, K103N, and Y181C were <75 copies/ml, 143 copies/ml, 143 copies/ml, and 836 copies/ml, respectively. ARMS-PCR efficiently identified mutations in individuals harboring different HIV-1 clades (CRF02_AG and non-CRF02_AG). In addition, this approach was more cost-effective than other genotyping assays. The high throughput, the cost-effectiveness, and the simplicity of the ARMS-PCR assay make it a suitable tool to monitor HIVDR patterns in resource-constrained settings with broad HIV-1 genetic diversity.

  12. Update on HIV-1 acquired and transmitted drug resistance in Africa.

    PubMed

    Ssemwanga, Deogratius; Lihana, Raphael W; Ugoji, Chinenye; Abimiku, Alash'le; Nkengasong, John; Dakum, Patrick; Ndembi, Nicaise

    2015-01-01

    The last ten years have witnessed a significant scale-up and access to antiretroviral therapy in Africa, which has improved patient quality of life and survival. One major challenge associated with increased access to antiretroviral therapy is the development of antiretroviral resistance due to inconsistent drug supply and/or poor patient adherence. We review the current state of both acquired and transmitted drug resistance in Africa over the past ten years (2001-2011) to identify drug resistance associated with the different drug regimens used on the continent and to help guide affordable strategies for drug resistance surveillance. A total of 161 references (153 articles, six reports and two conference abstracts) were reviewed. Antiretroviral resistance data was available for 40 of 53 African countries. A total of 5,541 adult patients from 99 studies in Africa were included in this analysis. The pooled prevalence of drug resistance mutations in Africa was 10.6%, and Central Africa had the highest prevalence of 54.9%. The highest prevalence of nucleoside reverse transcriptase inhibitor mutations was in the west (55.3%) and central (54.8%) areas; nonnucleoside reverse transcriptase inhibitor mutations were highest in East Africa (57.0%) and protease inhibitors mutations highest in Southern Africa (16.3%). The major nucleoside reverse transcriptase inhibitor mutation in all four African regions was M184V. Major nonnucleoside reverse transcriptase inhibitor as well as protease inhibitor mutations varied by region. The prevalence of drug resistance has remained low in several African countries although the emergence of drug resistance mutations varied across countries. Continued surveillance of antiretroviral therapy resistance remains crucial in gauging the effectiveness of country antiretroviral therapy programs and strategizing on effective and affordable strategies for successful treatment.

  13. Optimized Lentiviral Vectors for HIV Gene Therapy: Multiplexed Expression of Small RNAs and Inclusion of MGMTP140K Drug Resistance Gene

    PubMed Central

    Chung, Janet; Scherer, Lisa J; Gu, Angel; Gardner, Agnes M; Torres-Coronado, Monica; Epps, Elizabeth W; DiGiusto, David L; Rossi, John J

    2014-01-01

    Gene therapy with hematopoietic stem and progenitor cells is a promising approach to engineering immunity to human immunodeficiency virus (HIV) that may lead to a functional cure for acquired immunodeficiency syndrome (AIDS). In support of this approach, we created lentiviral vectors with an engineered polycistronic platform derived from the endogenous MCM7 gene to express a diverse set of small antiviral RNAs and a drug resistance MGMTP140K marker. Multiple strategies for simultaneous expression of up to five RNA transgenes were tested. The placement and orientation of each transgene and its promoter were important determinants for optimal gene expression. Antiviral RNA expression from the MCM7 platform with a U1 promoter was sufficient to provide protection from R5-tropic HIV in macrophages and resulted in reduced hematopoietic toxicity compared with constructs expressing RNA from independent RNA polymerase III promoters. The addition of an HIV entry inhibitor and nucleolar TAR RNA decoy did not enhance antiviral potency over constructs that targeted only viral RNA transcripts. We also demonstrated selective enrichment of gene-modified cells in vivo using a humanized mouse model. The use of these less toxic, potent anti-HIV vectors expressing a drug selection marker is likely to enhance the in vivo efficacy of our stem cell gene therapy approach in treating HIV/AIDS. PMID:24576853

  14. Optimized lentiviral vectors for HIV gene therapy: multiplexed expression of small RNAs and inclusion of MGMT(P140K) drug resistance gene.

    PubMed

    Chung, Janet; Scherer, Lisa J; Gu, Angel; Gardner, Agnes M; Torres-Coronado, Monica; Epps, Elizabeth W; Digiusto, David L; Rossi, John J

    2014-05-01

    Gene therapy with hematopoietic stem and progenitor cells is a promising approach to engineering immunity to human immunodeficiency virus (HIV) that may lead to a functional cure for acquired immunodeficiency syndrome (AIDS). In support of this approach, we created lentiviral vectors with an engineered polycistronic platform derived from the endogenous MCM7 gene to express a diverse set of small antiviral RNAs and a drug resistance MGMT(P140K) marker. Multiple strategies for simultaneous expression of up to five RNA transgenes were tested. The placement and orientation of each transgene and its promoter were important determinants for optimal gene expression. Antiviral RNA expression from the MCM7 platform with a U1 promoter was sufficient to provide protection from R5-tropic HIV in macrophages and resulted in reduced hematopoietic toxicity compared with constructs expressing RNA from independent RNA polymerase III promoters. The addition of an HIV entry inhibitor and nucleolar TAR RNA decoy did not enhance antiviral potency over constructs that targeted only viral RNA transcripts. We also demonstrated selective enrichment of gene-modified cells in vivo using a humanized mouse model. The use of these less toxic, potent anti-HIV vectors expressing a drug selection marker is likely to enhance the in vivo efficacy of our stem cell gene therapy approach in treating HIV/AIDS.

  15. Characterization of HIV drug resistance mutations among patients failing first-line antiretroviral therapy from a tertiary referral center in Lusaka, Zambia.

    PubMed

    Seu, Lillian; Mulenga, Lloyd B; Siwingwa, Mpanji; Sikazwe, Izukanji; Lambwe, Nason; Guffey, M Bradford; Chi, Benjamin H

    2015-07-01

    In settings of resource constraint, an understanding of HIV drug resistance can guide antiretroviral therapy (ART) at switch to second-line therapy. To determine the prevalence of such HIV drug resistance mutations (HIV DRM), we used an in-house sequencing assay in the pol gene (protease and partial reverse transcriptase) in a cohort of patients suspected of failing a first-line regimen, which in Zambia comprises two nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) and one non-nucleoside reverse transcriptase inhibitor (NNRTI). Our analysis cohort (n = 68) was referred to the University Teaching Hospital in Lusaka from November 2009 to October 2012. Median duration on first-line ART to suspected treatment failure was 3.2 years (IQR 1.7-4.7 years). The majority of patients (95%) harbored HIV-1 subtype C virus. Analysis of reverse transcriptase revealed M184V (88%), K103N/S (32%), and Y181C/I/V (41%) DRMs, with the latter conferring reduced susceptibility to the salvage therapy candidates etravirine and rilpivirine. Three patients (5%) had major protease inhibitor (PI) resistance mutations: all three had the V82A mutation, and one patient (Clade J virus) had a concurrent M46I, Q58E, and L76V DRM. HIV-1 genotyping revealed major and minor DRMs as well as high levels of polymorphisms in subtype C isolates from patients failing first-line antiretroviral therapy. Closer monitoring of DRM mutations at first-line failure can inform clinicians about future options for salvage therapy.

  16. Increase of Transmitted Drug Resistance among HIV-Infected Sub-Saharan Africans Residing in Spain in Contrast to the Native Population

    PubMed Central

    Yebra, Gonzalo; de Mulder, Miguel; Pérez-Elías, María Jesús; Pérez-Molina, José Antonio; Galán, Juan Carlos; Llenas-García, Jara; Moreno, Santiago; Holguín, África

    2011-01-01

    Background The prevalence of transmitted HIV drug resistance (TDR) is stabilizing or decreasing in developed countries. However, this trend is not specifically evaluated among immigrants from regions without well-implemented antiretroviral strategies. Methods TDR trends during 1996–2010 were analyzed among naïve HIV-infected patients in Spain, considering their origin and other factors. TDR mutations were defined according to the World Health Organization list. Results Pol sequence was available for 732 HIV-infected patients: 292 native Spanish, 226 sub-Saharan Africans (SSA), 114 Central-South Americans (CSA) and 100 from other regions. Global TDR prevalence was 9.7% (10.6% for Spanish, 8.4% for SSA and 7.9% for CSA). The highest prevalences were found for protease inhibitors (PI) in Spanish (3.1%), for non-nucleoside reverse transcriptase inhibitors (NNRTI) in SSA (6.5%) and for nucleoside reverse transcriptase inhibitors (NRTI) in both Spanish and SSA (6.5%). The global TDR rate decreased from 11.3% in 2004–2006 to 8.4% in 2007–2010. Characteristics related to a decreasing TDR trend in 2007-10 were Spanish and CSA origin, NRTI- and NNRTI-resistance, HIV-1 subtype B, male sex and infection through injection drug use. TDR remained stable for PI-resistance, in patients infected through sexual intercourse and in those carrying non-B variants. However, TDR increased among SSA and females. K103N was the predominant mutation in all groups and periods. Conclusion TDR prevalence tended to decrease among HIV-infected native Spanish and Central-South Americans, but it increased up to 13% in sub-Saharan immigrants in 2007–2010. These results highlight the importance of a specific TDR surveillance among immigrants to prevent future therapeutic failures, especially when administering NNRTIs. PMID:22046345

  17. Characterization of HIV Drug Resistance Mutations Among Patients Failing First-Line Antiretroviral Therapy From a Tertiary Referral Center in Lusaka, Zambia

    PubMed Central

    Seu, Lillian; Mulenga, Lloyd B.; Siwingwa, Mpanji; Sikazwe, Izukanji; Lambwe, Nason; Guffey, M. Bradford; Chi, Benjamin H.

    2015-01-01

    In settings of resource constraint, an understanding of HIV drug resistance can guide antiretroviral therapy (ART) at switch to second-line therapy. To determine the prevalence of such HIV drug resistance mutations (HIV DRM), we used an in-house sequencing assay in the pol gene (protease and partial reverse transcriptase) in a cohort of patients suspected of failing a first-line regimen, which in Zambia comprises two nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) and one non-nucleoside reverse transcriptase inhibitor (NNRTI). Our analysis cohort (n=68) was referred to the University Teaching Hospital in Lusaka from November 2009 to October 2012. Median duration on first-line ART to suspected treatment failure was 3.2 years (IQR 1.7–4.7 years). The majority of patients (95%) harbored HIV-1 subtype C virus. Analysis of reverse transcriptase revealed M184V (88%), K103N/S (32%), and Y181C/I/V (41%) DRMs, with the latter conferring reduced susceptibility to the salvage therapy candidates etravirine and rilpivirine. Three patients (5%) had major protease inhibitor (PI) resistance mutations: all three had the V82A mutation, and one patient (Clade J virus) had a concurrent M46I, Q58E, and L76V DRM. HIV-1 genotyping revealed major and minor DRMs as well as high levels of polymorphisms in subtype C isolates from patients failing first-line antiretroviral therapy. Closer monitoring of DRM mutations at first-line failure can inform clinicians about future options for salvage therapy. PMID:25754408

  18. Heterosexual Transmission of Subtype C HIV-1 Selects Consensus-Like Variants without Increased Replicative Capacity or Interferon-α Resistance

    PubMed Central

    Fenton-May, Angharad E.; Dilernia, Dario A.; Kilembe, William; Allen, Susan A.; Borrow, Persephone; Hunter, Eric

    2015-01-01

    Heterosexual transmission of HIV-1 is characterized by a genetic bottleneck that selects a single viral variant, the transmitted/founder (TF), during most transmission events. To assess viral characteristics influencing HIV-1 transmission, we sequenced 167 near full-length viral genomes and generated 40 infectious molecular clones (IMC) including TF variants and multiple non-transmitted (NT) HIV-1 subtype C variants from six linked heterosexual transmission pairs near the time of transmission. Consensus-like genomes sensitive to donor antibodies were selected for during transmission in these six transmission pairs. However, TF variants did not demonstrate increased viral fitness in terms of particle infectivity or viral replicative capacity in activated peripheral blood mononuclear cells (PBMC) and monocyte-derived dendritic cells (MDDC). In addition, resistance of the TF variant to the antiviral effects of interferon-α (IFN-α) was not significantly different from that of non-transmitted variants from the same transmission pair. Thus neither in vitro viral replicative capacity nor IFN-α resistance discriminated the transmission potential of viruses in the quasispecies of these chronically infected individuals. However, our findings support the hypothesis that within-host evolution of HIV-1 in response to adaptive immune responses reduces viral transmission potential. PMID:26378795

  19. Prevalence of Transmitted Drug-Resistance Mutations and Polymorphisms in HIV-1 Reverse Transcriptase, Protease, and gp41 Sequences Among Recent Seroconverters in Southern Poland

    PubMed Central

    Smoleń-Dzirba, Joanna; Rosińska, Magdalena; Kruszyński, Piotr; Bratosiewicz-Wąsik, Jolanta; Wojtyczka, Robert; Janiec, Janusz; Szetela, Bartosz; Beniowski, Marek; Bociąga-Jasik, Monika; Jabłonowska, Elżbieta; Wąsik, Tomasz J.

    2017-01-01

    Background Monitoring of drug resistance-related mutations among patients with recent HIV-1 infection offers an opportunity to describe current patterns of transmitted drug resistance (TDR) mutations. Material/Methods Of 298 individuals newly diagnosed from March 2008 to February 2014 in southern Poland, 47 were deemed to have recent HIV-1 infection by the limiting antigen avidity immunoassay. Proviral DNA was amplified and sequenced in the reverse transcriptase, protease, and gp41 coding regions. Mutations were interpreted according to the Stanford Database algorithm and/or the International Antiviral Society USA guidelines. TDR mutations were defined according to the WHO surveillance list. Results Among 47 patients with recent HIV-1 infection only 1 (2%) had evidence of TDR mutation. No major resistance mutations were found, but the frequency of strains with ≥1 accessory resistance-associated mutations was high, at 98%. Accessory mutations were present in 11% of reverse transcriptase, 96% of protease, and 27% of gp41 sequences. Mean number of accessory resistance mutations in the reverse transcriptase and protease sequences was higher in viruses with no compensatory mutations in the gp41 HR2 domain than in strains with such mutations (p=0.031). Conclusions Despite the low prevalence of strains with TDR mutations, the frequency of accessory mutations was considerable, which may reflect the history of drug pressure among transmitters or natural viral genetic diversity, and may be relevant for future clinical outcomes. The accumulation of the accessory resistance mutations within the pol gene may restrict the occurrence of compensatory mutations related to enfuvirtide resistance or vice versa. PMID:28167814

  20. Prevalence of Transmitted Drug-Resistance Mutations and Polymorphisms in HIV-1 Reverse Transcriptase, Protease, and gp41 Sequences Among Recent Seroconverters in Southern Poland.

    PubMed

    Smoleń-Dzirba, Joanna; Rosińska, Magdalena; Kruszyński, Piotr; Bratosiewicz-Wąsik, Jolanta; Wojtyczka, Robert; Janiec, Janusz; Szetela, Bartosz; Beniowski, Marek; Bociąga-Jasik, Monika; Jabłonowska, Elżbieta; Wąsik, Tomasz J; The Cascade Collaboration In EuroCoord, And

    2017-02-07

    BACKGROUND Monitoring of drug resistance-related mutations among patients with recent HIV-1 infection offers an opportunity to describe current patterns of transmitted drug resistance (TDR) mutations. MATERIAL AND METHODS Of 298 individuals newly diagnosed from March 2008 to February 2014 in southern Poland, 47 were deemed to have recent HIV-1 infection by the limiting antigen avidity immunoassay. Proviral DNA was amplified and sequenced in the reverse transcriptase, protease, and gp41 coding regions. Mutations were interpreted according to the Stanford Database algorithm and/or the International Antiviral Society USA guidelines. TDR mutations were defined according to the WHO surveillance list. RESULTS Among 47 patients with recent HIV-1 infection only 1 (2%) had evidence of TDR mutation. No major resistance mutations were found, but the frequency of strains with ≥1 accessory resistance-associated mutations was high, at 98%. Accessory mutations were present in 11% of reverse transcriptase, 96% of protease, and 27% of gp41 sequences. Mean number of accessory resistance mutations in the reverse transcriptase and protease sequences was higher in viruses with no compensatory mutations in the gp41 HR2 domain than in strains with such mutations (p=0.031). CONCLUSIONS Despite the low prevalence of strains with TDR mutations, the frequency of accessory mutations was considerable, which may reflect the history of drug pressure among transmitters or natural viral genetic diversity, and may be relevant for future clinical outcomes. The accumulation of the accessory resistance mutations within the pol gene may restrict the occurrence of compensatory mutations related to enfuvirtide resistance or vice versa.

  1. Disparities in HIV/AIDS, Viral Hepatitis, STDs, and TB

    MedlinePlus

    ... Submit Search The CDC Health Disparities in HIV/AIDS, Viral Hepatitis, STDs, and TB Note: Javascript is ... Hawaiians/Other Pacific Islanders MMWR Publications HIV and AIDS Viral Hepatitis STDs Tuberculosis Training and Networking Resources ...

  2. The role of empathy in responses to persuasive risk communication: overcoming resistance to HIV prevention messages.

    PubMed

    Campbell, Rose G; Babrow, Austin S

    2004-01-01

    This article offers a theoretical analysis of the role of empathy as a key mediator of the suasive effects of health messages, and it discusses the testing of an empirical tool for studying the state of empathy in responses to persuasive messages. It is argued that felt empathy evokes cognitive and emotional processing conducive to important health-promoting responses. This assertion was tested by operationalizing empathy as a response state via a new measure, the Empathy Response Scale (ERS). Two pilot tests and one major study, all set in the challenging area of HIV/AIDS prevention, provided preliminary data supporting the theoretical analysis and the ERS as a measure of the state of empathy. The article concludes with discussions of directions for future tests of the empathy theory and scale, as well as applications of the current framework for developing persuasive messages.

  3. HIV-1 drug resistance genotyping from antiretroviral therapy (ART) naïve and first-line treatment failures in Djiboutian patients

    PubMed Central

    2012-01-01

    Abstract In this study we report the prevalence of antiretroviral drug resistant HIV-1 genotypes of virus isolated from Djiboutian patients who failed first-line antiretroviral therapy (ART) and from ART naïve patients. Patients and methods A total of 35 blood samples from 16 patients who showed first-line ART failure (>1000 viral genome copies/ml) and 19 ART-naïve patients were collected in Djibouti from October 2009 to December 2009. Both the protease (PR) and reverse transcriptase (RT) genes were amplified and sequenced using National Agency for AIDS Research (ANRS) protocols. The Stanford HIV database algorithm was used for interpretation of resistance data and genotyping. Results Among the 16 patients with first-line ART failure, nine (56.2%) showed reverse transcriptase inhibitor-resistant HIV-1 strains: two (12.5%) were resistant to nucleoside (NRTI), one (6.25%) to non-nucleoside (NNRTI) reverse transcriptase inhibitors, and six (37.5%) to both. Analysis of the DNA sequencing data indicated that the most common mutations conferring drug resistance were M184V (38%) for NRTI and K103N (25%) for NNRTI. Only NRTI primary mutations K101Q, K103N and the PI minor mutation L10V were found in ART naïve individuals. No protease inhibitor resistant strains were detected. In our study, we found no detectable resistance in ∼ 44% of all patients who experienced therapeutic failure which was explained by low compliance, co-infection with tuberculosis and malnutrition. Genotyping revealed that 65.7% of samples were infected with subtype C, 20% with CRF02_AG, 8.5% with B, 2.9% with CRF02_AG/C and 2.9% with K/C. Conclusion The results of this first study about drug resistance mutations in first-line ART failures show the importance of performing drug resistance mutation test which guides the choice of a second-line regimen. This will improve the management of HIV-infected Djiboutian patients. Virtual slides The virtual slide(s) for this article can be found here

  4. Dolutegravir in Antiretroviral-Experienced Patients With Raltegravir- and/or Elvitegravir-Resistant HIV-1: 24-Week Results of the Phase III VIKING-3 Study

    PubMed Central

    Castagna, Antonella; Maggiolo, Franco; Penco, Giovanni; Wright, David; Mills, Anthony; Grossberg, Robert; Molina, Jean-Michel; Chas, Julie; Durant, Jacques; Moreno, Santiago; Doroana, Manuela; Ait-Khaled, Mounir; Huang, Jenny; Min, Sherene; Song, Ivy; Vavro, Cindy; Nichols, Garrett; Yeo, Jane M.; Aberg, J.; Akil, B.; Arribas, J. R.; Baril, J.-G.; Blanco Arévalo, J. L.; Blanco Quintana, F.; Blick, G.; Boix Martínez, V.; Bouchaud, O.; Branco, T.; Bredeek, U. F.; Castro Iglesias, M.; Clumeck, N.; Conway, B.; DeJesus, E.; Delassus, J.-L.; De Truchis, P.; Di Perri, G.; Di Pietro, M.; Duggan, J.; Duvivier, C.; Elion, R.; Eron, J.; Fish, D.; Gathe, J.; Haubrich, R.; Henderson, H.; Hicks, C.; Hocqueloux, L.; Hodder, S.; Hsiao, C.-B.; Katlama, C.; Kozal, M.; Kumar, P.; Lalla-Reddy, S.; Lazzarin, A.; Leoncini, F.; Llibre, J. M.; Mansinho, K.; Morlat, P.; Mounzer, K.; Murphy, M.; Newman, C.; Nguyen, T.; Nseir, B.; Philibert, P.; Pialoux, G.; Poizot-Martin, I.; Ramgopal, M.; Richmond, G.; Salmon Ceron, D.; Sax, P.; Scarsella, A.; Sension, M.; Shalit, P.; Sighinolfi, L.; Sloan, L.; Small, C.; Stein, D.; Tashima, K.; Tebas, P.; Torti, C.; Tribble, M.; Troisvallets, D.; Tsoukas, C.; Viciana Fernández, P.; Ward, D.; Wheeler, D.; Wilkin, T.; Yeni, G.-P.; Louise Martin-Carpenter, J.; Uhlenbrauck, Gina

    2014-01-01

    Background. The pilot phase IIb VIKING study suggested that dolutegravir (DTG), a human immunodeficiency virus (HIV) integrase inhibitor (INI), would be efficacious in INI-resistant patients at the 50 mg twice daily (BID) dose. Methods. VIKING-3 is a single-arm, open-label phase III study in which therapy-experienced adults with INI-resistant virus received DTG 50 mg BID while continuing their failing regimen (without raltegravir or elvitegravir) through day 7, after which the regimen was optimized with ≥1 fully active drug and DTG continued. The primary efficacy endpoints were the mean change from baseline in plasma HIV-1 RNA at day 8 and the proportion of subjects with HIV-1 RNA <50 c/mL at week 24. Results. Mean change in HIV-1 RNA at day 8 was −1.43 log10 c/mL, and 69% of subjects achieved <50 c/mL at week 24. Multivariate analyses demonstrated a strong association between baseline DTG susceptibility and response. Response was most reduced in subjects with Q148 + ≥2 resistance-associated mutations. DTG 50 mg BID had a low (3%) discontinuation rate due to adverse events, similar to INI-naive subjects receiving DTG 50 mg once daily. Conclusions. DTG 50 mg BID–based therapy was effective in this highly treatment-experienced population with INI-resistant virus. Clinical Trials Registration. www.clinicaltrials.gov (NCT01328041) and http://www.gsk-clinicalstudywww.gsk-clinicalstudyregister.com (112574). PMID:24446523

  5. Detection of HIV-1 Drug Resistance in Women Following Administration of a Single Dose of Nevirapine: Comparison of Plasma RNA to Cellular DNA by Consensus Sequencing and by Oligonucleotide Ligation Assay▿

    PubMed Central

    Wagner, Thor A.; Kress, Catherine M.; Beck, Ingrid; Techapornroong, Malee; Wittayapraparat, Pakorn; Tansuphasawasdikul, Somboon; Jourdain, Gonzague; Ngo-Giang-Huong, Nicole; Lallemant, Marc; Frenkel, Lisa M.

    2010-01-01

    A single dose of nevirapine (sdNVP) to prevent mother-to-child transmission of HIV-1 increases the risk of failure of subsequent NVP-containing antiretroviral therapy (ART), especially when initiated within 6 months of sdNVP administration, emphasizing the importance of understanding the decay of nevirapine-resistant mutants. Nevirapine-resistant HIV-1 genotypes (with the mutations K103N, Y181C, and/or G190A) from 21 women were evaluated 10 days and 6 weeks after sdNVP administration and at the initiation of ART. Resistance was assayed by consensus sequencing and by a more sensitive assay (oligonucleotide ligation assay [OLA]) using plasma-derived HIV-1 RNA and cell-associated HIV-1 DNA. OLA detected nevirapine resistance in more specimens than consensus sequencing did (63% versus 33%, P < 0.01). When resistance was detected only by OLA (n = 45), the median mutant concentration was 18%, compared to 61% when detected by both sequencing and OLA (n = 51) (P < 0.0001). The proportion of women whose nevirapine resistance was detected by OLA 10 days after sdNVP administration was higher when we tested their HIV-1 RNA (95%) than when we tested their HIV-1 DNA (88%), whereas at 6 weeks after sdNVP therapy, the proportion was greater with DNA (85%) than with RNA (67%) and remained higher with DNA (33%) than with RNA (11%) at the initiation of antiretroviral treatment (median, 45 weeks after sdNVP therapy). Fourteen women started NVP-ART more than 6 months after sdNVP therapy; resistance was detected by OLA in 14% of the women but only in their DNA. HIV-1 resistance to NVP following sdNVP therapy persists longer in cellular DNA than in plasma RNA, as determined by a sensitive assay using sufficient copies of virus, suggesting that DNA may be superior to RNA for detecting resistance at the initiation of ART. PMID:20181911

  6. Drug Resistance and Virological Failure among HIV-Infected Patients after a Decade of Antiretroviral Treatment Expansion in Eight Provinces of China

    PubMed Central

    Bussell, Scottie; Yan, Jing; Kan, Wei; Leng, Xuebing; Liao, Lingjie; Ruan, Yuhua; Shao, Yiming; Xing, Hui

    2016-01-01

    Background China’s National Free Antiretroviral Treatment Program (NFATP) has substantially increased the survival rate since 2002. However, the emergence of HIV drug resistance (HIVDR) limits the durability and effectiveness of antiretroviral treatment (ART) in at risk patients. Method A cross-sectional survey was conducted among patients having received a median of 13.9 months of ART in eight provinces in China. Demographic and clinical information was collected, and venous blood was sampled for CD4 cell counts, measurement of the HIV viral load (VL), and HIV drug resistance (HIVDR) genotyping. Possible risk factors for HIVDR were analyzed by the logistic regression model. Results The study included 765 patients. Among them, 65 patients (8.5%) had virological failure (VLF) defined as ≥1,000 copies/ml. Among the individuals with VLF, 64 were successful genotyped, and of these, 33 had one or more HIVDR mutations. The prevalence of HIVDR mutations among patients receiving first-line ART was 4.3% (33/765). All of the patients with HIVDR mutations were resistant to non-nucleoside transcriptase inhibitors, 81.8% were resistant to nucleoside reverse transcriptase inhibitors, and only 3% had mutations that caused resistance to protease inhibitors. Having lower ratios of drug intake in the past month and dwelling in two southwestern provinces were factors independently associated with the emergence of HIVDR. Conclusion Most patients receiving first-line ART treatment achieved sound virological and immunological outcomes. However, poor adherence is still a key problem, which has led to the high rate of HIVDR. It was notable that the proportion of drug resistance widely varied among the provinces. More studies are needed to focus on adherence. PMID:27997554

  7. Resistance to Simian HIV infection is associated with high plasma interleukin-8, RANTES and Eotaxin in a macaque model of repeated virus challenges.

    PubMed

    Promadej-Lanier, Nattawan; Hanson, Debra L; Srinivasan, Priya; Luo, Wei; Adams, Debra R; Guenthner, Patricia C; Butera, Sal; Otten, Ron A; Kersh, Ellen N

    2010-04-01

    Animal models for research on susceptibility to HIV are currently not available. Here we explore whether a macaque model of repeated low-dose rectal or vaginal virus challenges could be employed. We tested the hypothesis that susceptibility to Simian HIV is not merely stochastic in this model but rather is associated with identifiable host factors. Forty macaques required a median of 3.5 SHIVSF162P3 challenges for infection. We studied the association of their susceptibility with 13 predisposing plasma cytokines/chemokines (RANTES, Eotaxin, monocyte chemoattractant protein (MCP)-1, IL-7, MIP-1beta, TNF-alpha, MIP-1alpha, granulocyte colony-stimulating factor, IL-8, interferon-gamma, IL-17, IL-1beta, IL-6). Higher plasma RANTES, IL-8, and Eotaxin were associated with lower susceptibility, that is, higher resistance to infection. In a group of macaques with low IL-8 and RANTES, a median 3 exposures were required to infect; whereas, when either IL-8 or RANTES were high, a median 12 exposures were required. Thus, susceptibility was associated with identifiable discrete host factors and was not stochastic. In addition, the macaque model identified key human resistance factors (RANTES, Eotaxin), but also revealed a novel association with resistance (IL-8). Future direct evaluation of these or other factors in the animal model may be beneficial for developing new immunomodulation strategies for HIV prevention.

  8. Drug resistance-related mutations T369V/I in the connection subdomain of HIV-1 reverse transcriptase severely impair viral fitness.

    PubMed

    Wang, Zheng; Zhang, Junli; Li, Fan; Ji, Xiaolin; Liao, Lingjie; Ma, Liying; Xing, Hui; Feng, Yi; Li, Dan; Shao, Yiming

    2017-03-06

    Fitness is a key parameter in the measurement of transmission capacity of individual drug-resistant HIV. Drug-resistance related mutations (DRMs) T369V/I and A371V in the connection subdomain (CN) of reverse transcriptase (RT) occur at higher frequencies in the individuals experiencing antiretroviral therapy failure. Here, we evaluated the effects of T369V/I and A371V on viral fitness, in the presence or in the absence of thymidine analogue resistance-associated mutations (TAMs) and assessed the effect of potential RT structure-related mechanism on change in viral fitness. Mutations T369V/I, A371V, alone or in combination with TAMs were introduced into a modified HIV-1 infectious clone AT1 by site-directed mutagenesis. Then, experiments on mutant and wild-type virus AT2 were performed separately using a growth-competition assay, and then the relative fitness was calculated. Structural analysis of RT was conducted using Pymol software. Results showed that T369V/I severely impaired the relative virus fitness, and A371V compensated for the viral fitness reduction caused by TAMs. Structural modeling of RT suggests that T369V/I substitutions disrupt powerful hydrogen bonds formed by T369 and V365 in p51 and p66. This study indicates that the secondary DRMs within CN might efficiently damage viral fitness, and provides valuable information for clinical surveillance and prevention of HIV-1 strains carrying these DRMs.

  9. Single Genome Analysis for the Detection of Linked Multiclass Drug Resistance Mutations in HIV-1-Infected Children After Failure of Protease Inhibitor-Based First-Line Therapy.

    PubMed

    Lange, Camille Marie; Hué, Stéphane; Violari, Avy; Cotton, Mark; Gibb, Diana; Babiker, Abdel; Otwombe, Kennedy; Panchia, Ravindre; Dobbels, Els; Jean-Philippe, Patrick; McIntyre, James A; Pillay, Deenan; Gupta, Ravindra Kumar

    2015-06-01

    The WHO recommends protease inhibitor (PI)-based antiretroviral therapy (ART) for vertically infected children after failed nevirapine (NVP) prophylaxis. Emergence of PI resistance on the backdrop of preexisting non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance could compromise long-term treatment options in such children. We characterized multiclass drug resistance using single genome sequencing (SGS) in children with viremia while receiving PI-based ART. We applied SGS of HIV-1 protease (PR) and reverse transcriptase to longitudinal samples from a cohort of the Children with HIV Early Antiretroviral Therapy trial with viral loads >1000 copies per milliliter after 40 weeks of early ART. Bulk sequencing revealed NVP-selected resistance in 50% of these children, whereas SGS revealed NVP-selected resistance in 70%. Two children had baseline NRTI and PI mutations, suggesting previous maternal ART. Linked multiclass drug resistance after PI-based ART was detected by SGS in 2 of 10 children. In one child, the majority species contained M184V in reverse transcriptase linked to L10F, M46I/L, I54V, and V82A in PR and a triple-class drug-resistant variant with these mutations linked to the NNRTI mutation V108I. In the second child, the majority species contained M184V and V82A linked within viral genomes. We conclude that when PI-based ART is initiated soon after birth after single dose-NVP prophylaxis, PI and NRTI resistance can occur in the majority species as expected and also be selected on the same genomes as preexisting NNRTI-resistant mutations. These observations highlight a future therapeutic challenge for vertically infected children where antiretroviral drug classes are limited.

  10. Structure-based drug design of non-nucleoside inhibitors for wild-type and drug-resistant HIV reverse transcriptase.

    PubMed

    Mao, C; Sudbeck, E A; Venkatachalam, T K; Uckun, F M

    2000-11-01

    The generation of anti-HIV agents using structure-based drug design methods has yielded a number of promising non-nucleoside inhibitors (NNIs) of HIV reverse transcriptase (RT). Recent successes in identifying potent NNIs are reviewed with an emphasis on the recent trend of utilizing a computer model of HIV RT to identify space in the NNI binding pocket that can be exploited by carefully chosen functional groups predicted to interact favorably with binding pocket residues. The NNI binding pocket model was used to design potent NNIs against both wild-type RT and drug-resistant RT mutants. Molecular modeling and score functions were used to analyze how drug-resistant mutations would change the RT binding pocket shape, volume, and chemical make-up, and how these changes could affect inhibitor binding. Modeling studies revealed that for an NNI of HIV RT to be active against RT mutants such as the especially problematic Y181C RT mutant, the following features are required: (a) the inhibitor should be highly potent against wild-type RT and therefore capable of tolerating a considerable activity loss against RT mutants (i.e. a picomolar-level inhibitor against wild-type RT may still be effective against RT mutants at nanomolar concentrations), (b) the inhibitor should maximize the occupancy in the Wing 2 region of the NNI binding site of RT, and (c) the inhibitor should contain functional groups that provide favorable chemical interactions with Wing 2 residues of wild-type as well as mutant RT. Our rationally designed NNI compounds HI-236, HI-240, HI-244, HI-253, HI-443, and HI-445 combine these three features and outperform other anti-HIV agents examined.

  11. The expression patterns of bromelain and AcCYS1 correlate with blackheart resistance in pineapple fruits submitted to postharvest chilling stress.

    PubMed

    Raimbault, Astrid-Kim; Zuily-Fodil, Yasmine; Soler, Alain; Mora, Phillipe; Cruz de Carvalho, Maria H

    2013-11-01

    Blackheart is a physiological disorder induced by postharvest chilling storage during pineapple fruit export shipping. The aim of this study was to check the involvement of bromelain, the cysteine protease protein family abundantly present in pineapple fruits, and AcCYS1, an endogenous inhibitor of bromelain, in the development of blackheart. For this we checked the response to postharvest chilling treatment of two pineapple varieties (MD2 and Smooth Cayenne) differing in their resistance to blackheart. Quantitative RT-PCR analyses showed that postharvest chilling treatment induced a down-regulation of bromelain transcript accumulation in both varieties with the most dramatic drop in the resistant variety. Regarding AcCYS1 transcript accumulation, the varieties showed opposite trends with an up-regulation in the case of the resistant variety and a down-regulation in the susceptible one. Taken together our results suggest that the control of bromelain and AcCYS1 expression levels directly correlates to the resistance to blackheart development in pineapple fruits.

  12. Factors Associated with the Development of Drug Resistance Mutations in HIV-1 Infected Children Failing Protease Inhibitor-Based Antiretroviral Therapy in South Africa

    PubMed Central

    Melikian, George; van Dyk, Gisela; Thomas, Winifred; du Plessis, Nicolette M.; Avenant, Theunis

    2015-01-01

    Objective Limited data are available from the developing world on antiretroviral drug resistance in HIV-1 infected children failing protease inhibitor-based antiretroviral therapy, especially in the context of a high tuberculosis burden. We describe the proportion of children with drug resistance mutations after failed protease inhibitor-based antiretroviral therapy as well as associated factors. Methods Data from children initiated on protease inhibitor-based antiretroviral therapy with subsequent virological failure referred for genotypic drug resistance testing between 2008 and 2012 were retrospectively analysed. Frequencies of drug resistance mutations were determined and associations with these mutations identified through logistic regression analysis. Results The study included 65 young children (median age 16.8 months [IQR 7.8; 23.3]) with mostly advanced clinical disease (88.5% WHO stage 3 or 4 disease), severe malnutrition (median weight-for-age Z-score -2.4 [IQR -3.7;-1.5]; median height-for-age Z-score -3.1 [IQR -4.3;-2.4]), high baseline HIV viral load (median 6.04 log10, IQR 5.34;6.47) and frequent tuberculosis co-infection (66%) at antiretroviral therapy initiation. Major protease inhibitor mutations were found in 49% of children and associated with low weight-for-age and height-for-age (p = 0.039; p = 0.05); longer duration of protease inhibitor regimens and virological failure (p = 0.001; p = 0.005); unsuppressed HIV viral load at 12 months of antiretroviral therapy (p = 0.001); tuberculosis treatment at antiretroviral therapy initiation (p = 0.048) and use of ritonavir as single protease inhibitor (p = 0.038). On multivariate analysis, cumulative months on protease inhibitor regimens and use of ritonavir as single protease inhibitor remained significant (p = 0.008; p = 0.033). Conclusion Major protease inhibitor resistance mutations were common in this study of HIV-1-infected children, with the timing of tuberculosis treatment and subsequent

  13. Methicillin-resistant Staphylococcus aureus in HIV patients: risk factors associated with colonization and/or infection and methods for characterization of isolates - a systematic review.

    PubMed

    Ferreira, Dennis de Carvalho; Silva, Glaucilene Rodrigues da; Cavalcante, Fernanda Sampaio; Carmo, Flavia Lima do; Fernandes, Leonardo Alexandre; Moreira, Suelen; Passos, Mauro Romero Leal; Colombo, Ana Paula Vieira; Santos, Katia Regina Netto dos

    2014-11-01

    Staphylococcus aureus is an important cause of infections and HIV-infected individuals are frequently susceptible to this pathogen. The aim of this study was to perform a systematic review to identify both the risk factors associated with colonization/infection by methicillin-resistant S. aureus in HIV patients and the methods used for characterization of isolates. An electronic search of articles published between January 2001 and December 2013 was first conducted. Among 116 studies categorized as being at a quality level of A, B or C, only 9 studies were considered to have high methodological quality (level A). The majority of these studies were retrospective (4/9 studies). The risk factors associated with colonization/infection by S. aureus were use of antimicrobials (4/9 studies), previous hospitalization (4/9 studies) and low CD4+ T lymphocyte counts (<200 cells/μl) (3/9 studies). Culture in mannitol salt agar (3/9 studies) and the latex agglutination test (5/9 studies) were the main methods used for bacterial phenotypic identification. Genotypic profiles were accessed by pulsed-field gel electrophoresis (6/9 studies) and USA300 was the most prevalent lineage (5/9 studies). Most isolates were resistant to erythromycin (3/9 studies) and susceptible to vancomycin (4/9 studies). Ultimately, use of antimicrobials and previous hospitalization were the main risk factors for colonization/infection by methicillin-resistant S. aureus in HIV-infected individuals. However, the numbers of evaluated patients, the exclusion and inclusion criteria and the characterization of the S. aureus isolates were not uniform, which made it difficult to establish the characteristics associated with HIV patients who are colonized/infected by S. aureus.

  14. Methicillin-resistant Staphylococcus aureus in HIV patients: Risk factors associated with colonization and/or infection and methods for characterization of isolates – a systematic review

    PubMed Central

    Ferreira, Dennis de Carvalho; da Silva, Glaucilene Rodrigues; Cavalcante, Fernanda Sampaio; do Carmo, Flavia Lima; Fernandes, Leonardo Alexandre; Moreira, Suelen; Passos, Mauro Romero Leal; Colombo, Ana Paula Vieira; dos Santos, Katia Regina Netto

    2014-01-01

    Staphylococcus aureus is an important cause of infections and HIV-infected individuals are frequently susceptible to this pathogen. The aim of this study was to perform a systematic review to identify both the risk factors associated with colonization/infection by methicillin-resistant S. aureus in HIV patients and the methods used for characterization of isolates. An electronic search of articles published between January 2001 and December 2013 was first conducted. Among 116 studies categorized as being at a quality level of A, B or C, only 9 studies were considered to have high methodological quality (level A). The majority of these studies were retrospective (4/9 studies). The risk factors associated with colonization/infection by S. aureus were use of antimicrobials (4/9 studies), previous hospitalization (4/9 studies) and low CD4+ T lymphocyte counts (<200 cells/μl) (3/9 studies). Culture in mannitol salt agar (3/9 studies) and the latex agglutination test (5/9 studies) were the main methods used for bacterial phenotypic identification. Genotypic profiles were accessed by pulsed-field gel electrophoresis (6/9 studies) and USA300 was the most prevalent lineage (5/9 studies). Most isolates were resistant to erythromycin (3/9 studies) and susceptible to vancomycin (4/9 studies). Ultimately, use of antimicrobials and previous hospitalization were the main risk factors for colonization/infection by methicillin-resistant S. aureus in HIV-infected individuals. However, the numbers of evaluated patients, the exclusion and inclusion criteria and the characterization of the S. aureus isolates were not uniform, which made it difficult to establish the characteristics associated with HIV patients who are colonized/infected by S. aureus. PMID:25518036

  15. HIV-1 Envelope Glycoprotein Resistance to Monoclonal Antibody 2G12 Is Subject-Specific and Context-Dependent in Macaques and Humans

    PubMed Central

    Malherbe, Delphine C.; Sanders, Rogier W.; van Gils, Marit J.; Park, Byung; Gomes, Michelle M.; Schuitemaker, Hanneke; Barnett, Susan; Haigwood, Nancy L.

    2013-01-01

    HIV-1 Envelope (Env) protein is the sole target of neutralizing antibodies (NAbs) that arise during infection to neutralize autologous variants. Under this immune pressure, HIV escape variants are continuously selected and over the course of infection Env becomes more neutralization resistant. Many common alterations are known to affect sensitivity to NAbs, including residues encoding potential N-linked glycosylation sites (PNGS). Knowledge of Env motifs associated with neutralization resistance is valuable for the design of an effective Env-based vaccine so we characterized Envs isolated longitudinally from a SHIVSF162P4 infected macaque for sensitivity to neutralizing monoclonal antibodies (MAbs) B12, 2G12, 4E10 and 2F5. The early Env, isolated from plasma at day 56 after infection, was the most sensitive and the late Env, from day 670, was the most resistant to MAbs. We identified four PNGS in these Envs that accumulated over time at positions 130, 139, 160 and 397. We determined that removal of these PNGS significantly increased neutralization sensitivity to 2G12, and conversely, we identified mutations by in silico analyses that contributed resistance to 2G12 neutralization. In order to expand our understanding of these PNGS, we analyzed Envs from clade B HIV-infected human subjects and identified additional glycan and amino acid changes that could affect neutralization by 2G12 in a context-dependent manner. Taken together, these in vitro and in silico analyses of clade B Envs revealed that 2G12 resistance is achieved by previously unrecognized PNGS substitutions in a context-dependent manner and by subject-specific pathways. PMID:24040404

  16. The importance of local mucosal HIV-specific CD8(+) cytotoxic T lymphocytes for resistance to mucosal viral transmission in mice and enhancement of resistance by local administration of IL-12.

    PubMed Central

    Belyakov, I M; Ahlers, J D; Brandwein, B Y; Earl, P; Kelsall, B L; Moss, B; Strober, W; Berzofsky, J A

    1998-01-01

    Although crucial to mucosal vaccine development, the mechanisms of defense against mucosal viral infection are still poorly understood. Protection, cytotoxic T lymphocytes (CTL), and neutralizing antibodies have all been observed, but cause and effect have been difficult to determine. The ability of CTL in the mucosa to mediate protection against mucosal viral transmission has never been proven. Here, we use an HIV peptide immunogen and an HIV-1 gp160-expressing recombinant vaccinia viral intrarectal murine challenge system, in which neutralizing antibodies do not play a role, to demonstrate for the first time that long-lasting immune resistance to mucosal viral transmission can be accomplished by CD8(+) CTL that must be present in the mucosal site of exposure. The resistance is ablated by depleting CD8(+) cells in vivo and requires CTL in the mucosa, whereas systemic (splenic) CTL are shown to be unable to protect against mucosal challenge. Furthermore, the resistance as well as the CTL response can be increased by local mucosal delivery of IL-12 with the vaccine. These results imply that induction of local mucosal CTL may be critical for success of a vaccine against viruses transmitted through a mucosal route, such as HIV. PMID:9854042

  17. A Novel Drug-Resistant HIV-1 Circulating Recombinant Form CRF76_01B Identified by Near Full-Length Genome Analysis.

    PubMed

    Ogawa, Satoko; Hachiya, Atsuko; Hosaka, Masumi; Matsuda, Masakazu; Ode, Hirotaka; Shigemi, Urara; Okazaki, Reiko; Sadamasu, Kenji; Nagashima, Mami; Toyokawa, Takao; Tateyama, Masao; Tanaka, Yasuhito; Sugiura, Wataru; Yokomaku, Yoshiyuki; Iwatani, Yasumasa

    2016-03-01

    HIV-1 CRF01_AE and subtype B (B) have dominated and their different circulating recombinant forms (CRFs) have emerged in East and Southeast Asian countries. Here, we report a novel drug-resistant HIV-1 CRF. Five independent recombinant specimens exhibiting discordant subtype results for the gag, pol, and env sequences were isolated. These recombinants had the CRF01_AE (gag p17)/B (pol PR-RT and IN)/CRF01_AE (env C2-V3) pattern similar to CRF69_01B. Sequence analysis of four near full-length HIV-1 genomes revealed a unique phylogenetic cluster distinct from previously reported CRFs. Of the four recombinants, three shared an identical mosaic structure including seven breakpoints in the gag, pol, vif, and env regions, designated CRF76_01B. The one remaining recombinant had additional recombination breakpoints in the vpu region and exhibited another unique recombinant form composed of CRF76_01B and B. These findings provide important insight into the transmission dynamics of HIV-1 in Asia that may be important for its effective prevention.

  18. Targeting Multidrug-resistant Staphylococci with an anti-rpoA Peptide Nucleic Acid Conjugated to the HIV-1 TAT Cell Penetrating Peptide

    PubMed Central

    Abushahba, Mostafa FN; Mohammad, Haroon; Seleem, Mohamed N

    2016-01-01

    Staphylococcus aureus infections present a serious challenge to healthcare practitioners due to the emergence of resistance to numerous conventional antibiotics. Due to their unique mode of action, peptide nucleic acids are novel alternatives to traditional antibiotics to tackle the issue of bacterial multidrug resistance. In this study, we designed a peptide nucleic acid covalently conjugated to the HIV-TAT cell penetrating peptide (GRKKKRRQRRRYK) in order to target the RNA polymerase α subunit gene (rpoA) required for bacterial genes transcription. We explored the antimicrobial activity of the anti-rpoA construct (peptide nucleic acid-TAT) against methicillin-resistant S. aureus, vancomycin-intermediate S. aureus, vancomycin-resistant S. aureus, linezolid-resistant S. aureus, and methicillin-resistant S. epidermidis in pure culture, infected mammalian cell culture, and in an in vivo Caenorhabditis elegans infection model. The anti-rpoA construct led to a concentration-dependent inhibition of bacterial growth (at micromolar concentrations) in vitro and in both infected cell culture and in vivo in C. elegans. Moreover, rpoA gene silencing resulted in suppression of its message as well as reduced expression of two important methicillin-resistant S. aureus USA300 toxins (α-hemolysin and Panton-Valentine leukocidin). This study confirms that rpoA gene is a potential target for development of novel antisense therapeutics to treat infections caused by methicillin-resistant S. aureus. PMID:27434684

  19. Monitoring HIV Drug Resistance Early Warning Indicators in Cameroon: A Study Following the Revised World Health Organization Recommendations

    PubMed Central

    Fokam, Joseph; Elat, Jean-Bosco N.; Billong, Serge C.; Kembou, Etienne; Nkwescheu, Armand S.; Obam, Nicolas M.; Essiane, André; Torimiro, Judith N.; Ekanmian, Gatien K.; Ndjolo, Alexis; Shiro, Koulla S.; Bissek, Anne C. Z-K.

    2015-01-01

    Background The majority (>95%) of new HIV infection occurs in resource-limited settings, and Cameroon is still experiencing a generalized epidemic with ~122,638 patients receiving antiretroviral therapy (ART). A detrimental outcome in scaling-up ART is the emergence HIV drug resistance (HIVDR), suggesting the need for pragmatic approaches in sustaining a successful ART performance. Methods A survey was conducted in 15 ART sites of the Centre and Littoral regions of Cameroon in 2013 (10 urban versus 05 rural settings; 8 at tertiary/secondary versus 7 at primary healthcare levels), evaluating HIVDR-early warning indicators (EWIs) as-per the 2012 revised World Health Organization’s guidelines: EWI1 (on-time pill pick-up), EWI2 (retention in care), EWI3 (no pharmacy stock-outs), EWI4 (dispensing practices), EWI5 (virological suppression). Poor performance was interpreted as potential HIVDR. Results Only 33.3% (4/12) of sites reached the desirable performance for “on-time pill pick-up” (57.1% urban versus 0% rural; p<0.0001) besides 25% (3/12) with fair performance. 69.2% (9/13) reached the desirable performance for “retention in care” (77.8% urban versus 50% rural; p=0.01) beside 7.7% (1/13) with fair performance. Only 14.4% (2/13) reached the desirable performance of “no pharmacy stock-outs” (11.1% urban versus 25% rural; p=0.02). All 15 sites reached the desirable performance of 0% “dispensing mono- or dual-therapy”. Data were unavailable to evaluate “virological suppression” due to limited access to viral load testing (min-max: <1%-15%). Potential HIVDR was higher in rural (57.9%) compared to urban (27.8%) settings, p=0.02; and at primary (57.9%) compared to secondary/tertiary (33.3%) healthcare levels, p=0.09. Conclusions Delayed pill pick-up and pharmacy stock-outs are major factors favoring HIVDR emergence, with higher risks in rural settings and at primary healthcare. Retention in care appears acceptable in general while ART dispensing

  20. Surveillance of HIV Transmitted Drug Resistance in Latin America and the Caribbean: A Systematic Review and Meta-Analysis

    PubMed Central

    Avila-Rios, Santiago; Sued, Omar; Rhee, Soo-Yon; Shafer, Robert W.; Reyes-Teran, Gustavo; Ravasi, Giovanni

    2016-01-01

    Background HIV transmitted drug resistance (TDR) remains at moderate level in Latin America and the Caribbean (LAC). However, different epidemiologic scenarios could influence national and sub-regional TDR levels and trends. Methods and Findings We performed a systematic review of currently available publications on TDR in antiretroviral treatment-naïve adults in LAC. Ninety-eight studies published between January 2000 and June 2015 were included according to critical appraisal criteria and classified by sub-region: Brazil (50), Mesoamerica (17), Southern Cone (16), Andean (8) and Caribbean (7). From these, 81 studies encompassing 11,441 individuals with data on DR mutation frequency were included in a meta-analysis. Overall TDR prevalence in LAC was 7.7% (95% CI: 7.2%-8.2%). An increasing trend was observed for overall TDR when comparing 2000–2005 (6.0%) and 2006–2015 (8.2%) (p<0.0001), which was associated with significant NNRTI TDR increase (p<0.0001). NRTI TDR decreased (4.5% vs. 2.3%, p<0.0001). NNRTI TDR increase was associated mainly with K101E, K103N and G190A. NRTI TDR decrease was associated mainly with M184V, K70R and T215Y. All sub-regions reached moderate overall TDR levels. The rapid increase in TDR to all antiretroviral classes in the Caribbean is notable, as well as the significant increase in NNRTI TDR reaching moderate levels in the Southern Cone. NRTI TDR was dominant in 2000–2005, mainly in the Caribbean, Mesoamerica and Brazil. This dominance was lost in 2006–2015 in all sub-regions, with the Southern Cone and the Caribbean switching to NNRTI dominance. PI TDR remained mostly constant with a significant increase only observed in the Caribbean. Conclusions Given the high conceptual and methodological heterogeneity of HIV TDR studies, implementation of surveys with standardized methodology and national representativeness is warranted to generate reliable to inform public health policies. The observed increasing trend in NNRTI TDR

  1. Characterizing the Diverse Mutational Pathways Associated with R5-Tropic Maraviroc Resistance: HIV-1 That Uses the Drug-Bound CCR5 Coreceptor

    PubMed Central

    Jiang, Xiaowei; Feyertag, Felix; Meehan, Conor J.; McCormack, Grace P.; Travers, Simon A.; Craig, Charles; Westby, Mike; Lewis, Marilyn

    2015-01-01

    ABSTRACT Entry inhibitors represent a potent class of antiretroviral drugs that target a host cell protein, CCR5, an HIV-1 entry coreceptor, and not viral protein. Lack of sensitivity can occur due to preexisting virus that uses the CXCR4 coreceptor, while true resistance occurs through viral adaptation to use a drug-bound CCR5 coreceptor. To understand this R5 resistance pathway, we analyzed >500 envelope protein sequences and phenotypes from viruses of 20 patients from the clinical trials MOTIVATE 1 and 2, in which treatment-experienced patients received maraviroc plus optimized background therapy. The resistant viral population was phylogenetically distinct and associated with a genetic bottleneck in each patient, consistent with de novo emergence of resistance. Recombination analysis showed that the C2-V3-C3 region tends to genotypically correspond to the recombinant's phenotype, indicating its primary importance in conferring resistance. Between patients, there was a notable lack of commonality in the specific sites conferring resistance, confirming the unusual nature of R5-tropic resistance. We used coevolutionary and positive-selection analyses to characterize the genotypic determinants of resistance and found that (i) there are complicated covariation networks, indicating frequent coevolutionary/compensatory changes in the context of protein structure; (ii) covarying sites under positive selection are enriched in resistant viruses; (iii) CD4 binding sites form part of a unique covariation network independent of the V3 loop; and (iv) the covariation network formed between the V3 loop and other regions of gp120 and gp41 intersects sites involved in glycosylation and protein secretion. These results demonstrate that while envelope sequence mutations are the key to conferring maraviroc resistance, the specific changes involved are context dependent and thus inherently unpredictable. IMPORTANCE The entry inhibitor drug maraviroc makes the cell coreceptor CCR5

  2. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection.

    PubMed

    Ye, Lin; Wang, Jiaming; Beyer, Ashley I; Teque, Fernando; Cradick, Thomas J; Qi, Zhongxia; Chang, Judy C; Bao, Gang; Muench, Marcus O; Yu, Jingwei; Levy, Jay A; Kan, Yuet Wai

    2014-07-01

    Individuals homozygous for the C-C chemokine receptor type 5 gene with 32-bp deletions (CCR5Δ32) are resistant to HIV-1 infection. In this study, we generated induced pluripotent stem cells (iPSCs) homozygous for the naturally occurring CCR5Δ32 mutation through genome editing of wild-type iPSCs using a combination of transcription activator-like effector nucleases (TALENs) or RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 together with the piggyBac technology. Remarkably, TALENs or CRISPR-Cas9-mediated double-strand DNA breaks resulted in up to 100% targeting of the colonies on one allele of which biallelic targeting occurred at an average of 14% with TALENs and 33% with CRISPR. Excision of the piggyBac using transposase seamlessly reproduced exactly the naturally occurring CCR5Δ32 mutation without detectable exogenous sequences. We differentiated these modified iPSCs into monocytes/macrophages and demonstrated their resistance to HIV-1 challenge. We propose that this strategy may provide an approach toward a functional cure of HIV-1 infection.

  3. Low-level Viremia Early in HIV Infection

    PubMed Central

    Chen, Iris; Cummings, Vanessa; Fogel, Jessica M.; Marzinke, Mark A.; Clarke, William; Connor, Matthew B.; Griffith, Sam; Buchbinder, Susan; Shoptaw, Steven; del Rio, Carlos; Magnus, Manya; Mannheimer, Sharon; Wheeler, Darrell P.; Mayer, Kenneth H.; Koblin, Beryl A.; Eshleman, Susan H.

    2014-01-01

    HIV RNA levels are usually high early in HIV infection. In the HPTN 061 study, men were tested for HIV infection every six months; six (21.4%) of 28 men who acquired HIV infection during the study had low or undetectable HIV RNA at the time of HIV diagnosis. Antiretroviral drugs were not detected at the time of HIV diagnosis. False-negative HIV test results were obtained for two men using multiple assays. Antiretroviral drug resistance mutations were detected in HIV from one man. Additional studies are needed to identify factors associated with low HIV RNA levels during early HIV infection. PMID:25140905

  4. Biochemical characterization of a multi-drug resistant HIV-1 subtype AG reverse transcriptase: antagonism of AZT discrimination and excision pathways and sensitivity to RNase H inhibitors

    PubMed Central

    Schneider, Anna; Corona, Angela; Spöring, Imke; Jordan, Mareike; Buchholz, Bernd; Maccioni, Elias; Di Santo, Roberto; Bodem, Jochen; Tramontano, Enzo; Wöhrl, Birgitta M.

    2016-01-01

    We analyzed a multi-drug resistant (MR) HIV-1 reverse transcriptase (RT), subcloned from a patient-derived subtype CRF02_AG, harboring 45 amino acid exchanges, amongst them four thymidine analog mutations (TAMs) relevant for high-level AZT (azidothymidine) resistance by AZTMP excision (M41L, D67N, T215Y, K219E) as well as four substitutions of the AZTTP discrimination pathway (A62V, V75I, F116Y and Q151M). In addition, K65R, known to antagonize AZTMP excision in HIV-1 subtype B was present. Although MR-RT harbored the most significant amino acid exchanges T215Y and Q151M of each pathway, it exclusively used AZTTP discrimination, indicating that the two mechanisms are mutually exclusive and that the Q151M pathway is obviously preferred since it confers resistance to most nucleoside inhibitors. A derivative was created, additionally harboring the TAM K70R and the reversions M151Q as well as R65K since K65R antagonizes excision. MR-R65K-K70R-M151Q was competent of AZTMP excision, whereas other combinations thereof with only one or two exchanges still promoted discrimination. To tackle the multi-drug resistance problem, we tested if the MR-RTs could still be inhibited by RNase H inhibitors. All MR-RTs exhibited similar sensitivity toward RNase H inhibitors belonging to different inhibitor classes, indicating the importance of developing RNase H inhibitors further as anti-HIV drugs. PMID:26850643

  5. Transmitted Drug Resistance Among Antiretroviral-Naive Patients with Established HIV Type 1 Infection in Santo Domingo, Dominican Republic and Review of the Latin American and Caribbean Literature

    PubMed Central

    Taylor, Barbara S.; Rojas Fermín, Rita A.; Reyes, Emily Virginia; Vaughan, Catherine; José, Lina; Javier, Carmen; Franco Estévez, Ramona; Donastorg Cabral, Yeycy; Batista, Arelis; Lie, Yolanda; Coakley, Eoin; Hammer, Scott M.; Brudney, Karen

    2012-01-01

    Abstract Emergence of HIV resistance is a concerning consequence of global scale-up of antiretroviral therapy (ART). To date, there is no published information about HIV resistance from the Dominican Republic. The study's aim was to determine the prevalence of transmitted drug resistance (TDR) to reverse transcriptase and protease inhibitors in a sample of chronically HIV-1-infected patients in one clinic in Santo Domingo. The data are presented in the context of a review of the TDR literature from Latin America and the Caribbean. Genotype testing was successfully performed on 103 treatment-naive adults planning to initiate antiretroviral therapy; the World Health Organization (WHO) list of surveillance drug resistance mutations (SDRM) was used to determine the presence of TDR mutations. WHO SDRM were identified in eight patients (7.8%); none had received sdNVP. There were no significant differences in epidemiologic or clinical variables between those with or without WHO SDRM. The prevalence of WHO SDRM was 1.0% and 6.8% for nucleoside reverse transcriptase inhibitors and nonnucleoside reverse transcriptase inhibitors, respectively. No WHO SDRMs for protease inhibitors were identified. Among 12 studies of TDR in the region with a sample size of at least 100 subjects, the reported prevalence of SDRM ranged from 2.8% to 8.1%. The most commonly identified SDRM was K103N. This information adds to our understanding of the epidemiology of TDR in the region and the possible role such mutations could play in undermining first-line treatment. Ongoing surveillance is clearly needed to better understand the TDR phenomenon in the Caribbean. PMID:21851324

  6. Morphological and Biochemical Effects on the Skeletal Muscle of Ovariectomized Old Female Rats Submitted to the Intake of Diets with Vegetable or Animal Protein and Resistance Training

    PubMed Central

    Figueiredo Braggion, Glaucia; Ornelas, Elisabete; Carmona Sattin Cury, Jurema; Edviges Alves Lima, Natália; Aquino, Rita C.; Affonso Fonseca, Fernando Luiz; Maifrino, Laura Beatriz Mesiano

    2016-01-01

    Introduction. Sarcopenia is a process characterized by reduction in protein mass and muscle strength with increasing age, especially in the postmenopausal period, resulting in functional limitations and with great impact on the physical autonomy of the elderly. Objective. To evaluate the effects of diets with vegetable proteins (VP) or animal proteins (AP) associated with resistance training (RT) on the structural and biochemical parameters of the medial gastrocnemius muscle in Wistar rats with sarcopenia. Methods. An experimental model with ovariectomized rats was used to induce sarcopenia and resistance training. The histochemical technique was used for the typing of muscle fibers, the cross-sectional area of myocytes, and volume densities of myocytes and interstitium; the technique of Picrosirius stain was used to highlight the collagen fibers. Results. The VP diet was not able to minimize the effects of sarcopenia in the medial gastrocnemius of sedentary animals and when associated with RT, it promoted maintenance of the CSA, attenuating the atrophy of type IIB fibers in the medial gastrocnemius. The AP diet in sedentary animals protected the type I fibers. When combined with RT, the AP promoted muscle remodeling, with reduction in volume density of type I and IIA fibers, and increase of IIB fibers, together with an increase in collagen volume density. Conclusion. The data suggest a tendency to better results of hypertrophy in animal groups that consumed the AP diet, even the sedentary animals, although more evident in those trained. PMID:26885253

  7. Predictors of skin and soft tissue infections in HIV-infected outpatients in the community-associated methicillin-resistant Staphylococcus aureus era.

    PubMed

    Hemmige, V; McNulty, M; Silverman, E; David, M Z

    2015-02-01

    Skin and soft tissue infections (SSTIs) are common in the era of community-associated methicillin-resistant Staphylococcus aureus (MRSA) among human immunodeficiency virus (HIV)-infected patients, but the risk factors are not well defined. We sought to elucidate the risk factors for SSTI occurrence in an HIV cohort. This investigation was a retrospective, single-center cohort study, carried out during the period 2005-2009. In this cohort of 511 HIV-infected individuals, 133 SSTIs occurred in 87 individuals over 1,228.6 person-years of follow-up, for an incidence of 108 SSTIs/1,000 person-years [95 % confidence interval (CI) 87-135]. The incidence declined significantly over time (p < 0.01). In a multivariable Cox regression, diabetes [hazard ratio (HR) 2.01; 95 % CI 1.04-3.89], psoriasis (HR 5.77; 95 % CI 1.86-17.9), lymphedema (HR 6.84; 95 % CI 2.59-18.1), intravenous catheter presence (HR 3.38; 95 % CI 1.00-11.5), and HIV viral load greater than 1,000 copies/mL (HR 2.13; 95 % CI 1.33-3.41) were most strongly associated with development of the first SSTI. Trends toward an association between SSTI risk and Medicaid insurance (HR 1.67; 95 % CI 0.98-2.83) and sexually transmitted disease during follow-up (HR 1.66; 0.99-2.78) were present. CD4+ count and trimethoprim-sulfamethoxazole use were not associated with SSTI risk. HIV-infected individuals are at high risk for SSTIs. In a primarily urban, African-American cohort, we found that a number of immunologic and demographic factors were associated with SSTI risk.

  8. An Efficient Microarray-Based Genotyping Platform for the Identification of Drug-Resistance Mutations in Majority and Minority Subpopulations of HIV-1 Quasispecies

    PubMed Central

    Martín, Verónica; Perales, Celia; Fernández-Algar, María; Dos Santos, Helena G.; Garrido, Patricia; Pernas, María; Parro, Víctor; Moreno, Miguel; García-Pérez, Javier; Alcamí, José; Torán, José Luis; Abia, David; Domingo, Esteban

    2016-01-01

    The response of human immunodeficiency virus type 1 (HIV-1) quasispecies to antiretroviral therapy is influenced by the ensemble of mutants that composes the evolving population. Low-abundance subpopulations within HIV-1 quasispecies may determine the viral response to the administered drug combinations. However, routine sequencing assays available to clinical laboratories do not recognize HIV-1 minority variants representing less than 25% of the population. Although several alternative and more sensitive genotyping techniques have been developed, including next-generation sequencing (NGS) methods, they are usually very time consuming, expensive and require highly trained personnel, thus becoming unrealistic approaches in daily clinical practice. Here we describe the development and testing of a HIV-1 genotyping DNA microarray that detects and quantifies, in majority and minority viral subpopulations, relevant mutations and amino acid insertions in 42 codons of the pol gene associated with drug- and multidrug-resistance to protease (PR) and reverse transcriptase (RT) inhibitors. A customized bioinformatics protocol has been implemented to analyze the microarray hybridization data by including a new normalization procedure and a stepwise filtering algorithm, which resulted in the highly accurate (96.33%) detection of positive/negative signals. This microarray has been tested with 57 subtype B HIV-1 clinical samples extracted from multi-treated patients, showing an overall identification of 95.53% and 89.24% of the queried PR and RT codons, respectively, and enough sensitivity to detect minority subpopulations representing as low as 5–10% of the total quasispecies. The developed genotyping platform represents an efficient diagnostic and prognostic tool useful to personalize antiviral treatments in clinical practice. PMID:27959928

  9. An Efficient Microarray-Based Genotyping Platform for the Identification of Drug-Resistance Mutations in Majority and Minority Subpopulations of HIV-1 Quasispecies.

    PubMed

    Martín, Verónica; Perales, Celia; Fernández-Algar, María; Dos Santos, Helena G; Garrido, Patricia; Pernas, María; Parro, Víctor; Moreno, Miguel; García-Pérez, Javier; Alcamí, José; Torán, José Luis; Abia, David; Domingo, Esteban; Briones, Carlos

    2016-01-01

    The response of human immunodeficiency virus type 1 (HIV-1) quasispecies to antiretroviral therapy is influenced by the ensemble of mutants that composes the evolving population. Low-abundance subpopulations within HIV-1 quasispecies may determine the viral response to the administered drug combinations. However, routine sequencing assays available to clinical laboratories do not recognize HIV-1 minority variants representing less than 25% of the population. Although several alternative and more sensitive genotyping techniques have been developed, including next-generation sequencing (NGS) methods, they are usually very time consuming, expensive and require highly trained personnel, thus becoming unrealistic approaches in daily clinical practice. Here we describe the development and testing of a HIV-1 genotyping DNA microarray that detects and quantifies, in majority and minority viral subpopulations, relevant mutations and amino acid insertions in 42 codons of the pol gene associated with drug- and multidrug-resistance to protease (PR) and reverse transcriptase (RT) inhibitors. A customized bioinformatics protocol has been implemented to analyze the microarray hybridization data by including a new normalization procedure and a stepwise filtering algorithm, which resulted in the highly accurate (96.33%) detection of positive/negative signals. This microarray has been tested with 57 subtype B HIV-1 clinical samples extracted from multi-treated patients, showing an overall identification of 95.53% and 89.24% of the queried PR and RT codons, respectively, and enough sensitivity to detect minority subpopulations representing as low as 5-10% of the total quasispecies. The developed genotyping platform represents an efficient diagnostic and prognostic tool useful to personalize antiviral treatments in clinical practice.

  10. CCR5 Disruption in Induced Pluripotent Stem Cells Using CRISPR/Cas9 Provides Selective Resistance of Immune Cells to CCR5-tropic HIV-1 Virus.

    PubMed

    Kang, HyunJun; Minder, Petra; Park, Mi Ae; Mesquitta, Walatta-Tseyon; Torbett, Bruce E; Slukvin, Igor I

    2015-12-15

    The chemokine (C-C motif) receptor 5 (CCR5) serves as an HIV-1 co-receptor and is essential for cell infection with CCR5-tropic viruses. Loss of functional receptor protects against HIV infection. Here, we report the successful targeting of CCR5 in GFP-marked human induced pluripotent stem cells (iPSCs) using CRISPR/Cas9 with single and dual guide RNAs (gRNAs). Following CRISPER/Cas9-mediated gene editing using a single gRNA, 12.5% of cell colonies demonstrated CCR5 editing, of which 22.2% showed biallelic editing as determined by a Surveyor nuclease assay and direct sequencing. The use of dual gRNAs significantly increased the efficacy of CCR5 editing to 27% with a biallelic gene alteration frequency of 41%. To ensure the homogeneity of gene editing within cells, we used single cell sorting to establish clonal iPSC lines. Single cell-derived iPSC lines with homozygous CCR5 mutations displayed the typical characteristics of pluripotent stem cells and differentiated efficiently into hematopoietic cells, including macrophages. Although macrophages from both wild-type and CCR5-edited iPSCs supported CXCR4-tropic virus replication, macrophages from CCR5-edited iPSCs were uniquely resistant to CCR5-tropic virus challenge. This study demonstrates the feasibility of applying iPSC technology for the study of the role of CCR5 in HIV infection in vitro, and generation of HIV-resistant cells for potential therapeutic applications.

  11. HIV Drug Resistance in Antiretroviral Treatment-Naïve Individuals in the Largest Public Hospital in Nicaragua, 2011-2015

    PubMed Central

    Tapia-Trejo, Daniela; Hernández-Álvarez, Bismarck F.; Moreira-López, Sumaya E.; Quant-Durán, Carlos J.; Porras-Cortés, Guillermo; Reyes-Terán, Gustavo

    2016-01-01

    Background Increasing HIV pre-treatment drug resistance (PDR) levels have been observed in regions with increasing antiretroviral treatment (ART) coverage. However, data is lacking for several low/middle-income countries. We present the first PDR survey in Nicaragua since ART introduction in the country in 2003. Methods HIV-infected, ART-naïve Nicaraguan individuals were enrolled at Roberto Calderón Hospital, the largest national HIV referral center, from 2011 to 2015. HIV pol sequences were obtained at a WHO-accredited laboratory in Mexico by Sanger and next generation sequencing (NGS). PDR was assessed using the WHO surveillance drug resistance mutation (SDRM) list and the Stanford HIVdb tool. Results 283 individuals were enrolled in the study. The overall PDR prevalence based on the list of SDRMs was 13.4%. Using the Stanford HIVdb tool, overall PDR reached 19.4%; with both nucleoside and non-nucleoside reverse transcriptase inhibitor (NRTI and NNRTI) PDR levels independently reaching moderate levels (6.7% and 11.3% respectively). Protease inhibitor PDR was low (2.8%). Using NGS with 2% threshold to detect SDRMs, PDR increased to 25.3%. K103N and M41L were the most frequent SDRMs and were present mostly in proportions >20% in each individual. A significant temporal increase in NNRTI PDR was observed (p = 0.0422), with no apparent trends for other drug classes. Importantly, PDR to zidovudine + lamivudine + efavirenz and tenofovir + emtricitabine + efavirenz, the most widely used first-line regimens in Nicaragua, reached 14.6% and 10.4% respectively in 2015. Of note, a higher proportion of females was observed among individuals with PDR compared to individuals without PDR (OR 14.2; 95% CI: 7.1–28.4; p<0.0001). Conclusions Overall PDR in the Nicaraguan cohort was high (19.4%), with a clear increasing temporal trend in NNRTI PDR. Current HIVDR to the most frequently used first-line ART regimens in Nicaragua reached levels >10%. These observations are worrisome

  12. Late emergence of A594V and L595W mutations related to ganciclovir resistance in a patient with HCMV retinitis and long-term HIV progression

    PubMed Central

    Slavov, S.N.; Vilar, F.C.; Wagatsuma, V.M.D.; Santana, R.C.; Machado, A.A.; da Fonseca, B.A.L.; Kashima, S.; Covas, D.T.

    2015-01-01

    The emergence of ganciclovir (GCV) resistance during the treatment of human cytomegalovirus (HCMV) infection is a serious clinical challenge, and is associated with high morbidity and mortality. In this case report, we describe the emergence of two consecutive mutations (A594V and L595W) related to GCV resistance in a patient with HCMV retinitis and long-term HIV progression after approximately 240 days of GCV use. Following the diagnosis of retinitis, the introduction of GCV did not result in viral load reduction. The detected mutations appeared late in the treatment, and we propose that other factors (high initial HCMV load, previous GCV exposure, low CD4+ cell count), in addition to the presence of resistance mutations, may have contributed to the treatment failure of HCMV infection in this patient. PMID:26270327

  13. HIV-1 Antiretroviral Drug Resistance Mutations in Treatment Naïve and Experienced Panamanian Subjects: Impact on National Use of EFV-Based Schemes

    PubMed Central

    Mendoza, Yaxelis; Castillo Mewa, Juan; Martínez, Alexander A.; Zaldívar, Yamitzel; Sosa, Néstor; Arteaga, Griselda; Armién, Blas; Bautista, Christian T.; García-Morales, Claudia; Tapia-Trejo, Daniela; Ávila-Ríos, Santiago; Reyes-Terán, Gustavo; Bello, Gonzalo; Pascale, Juan M.

    2016-01-01

    The use of antiretroviral therapy in HIV infected subjects prevents AIDS-related illness and delayed occurrence of death. In Panama, rollout of ART started in 1999 and national coverage has reached 62.8% since then. The objective of this study was to determine the level and patterns of acquired drug resistance mutations of clinical relevance (ADR-CRM) and surveillance drug resistance mutations (SDRMs) from 717 HIV-1 pol gene sequences obtained from 467 ARV drug-experienced and 250 ARV drug-naïve HIV-1 subtypes B infected subjects during 2007–2013, respectively. The overall prevalence of SDRM and of ADR-CRM during the study period was 9.2% and 87.6%, respectively. The majority of subjects with ADR-CRM had a pattern of mutations that confer resistance to at least two classes of ARV inhibitors. The non-nucleoside reverse transcriptase inhibitor (NNRTI) mutations K103N and P225H were more prevalent in both ARV drug-naïve and ARV drug-experienced subjects. The nucleoside reverse transcriptase inhibitor (NRTI) mutation M184V was more frequent in ARV drug-experienced individuals, while T215YFrev and M41L were more frequent in ARV drug-naïve subjects. Prevalence of mutations associated to protease inhibitors (PI) was lower than 4.1% in both types of subjects. Therefore, there is a high level of resistance (>73%) to Efavirenz/Nevirapine, Lamivudine and Azidothymidine in ARV drug-experienced subjects, and an intermediate to high level of resistance (5–10%) to Efavirenz/Nevirapine in ARV drug-naïve subjects. During the study period, we observed an increasing trend in the prevalence of ADR-CRM in subjects under first-line schemes, but not significant changes in the prevalence of SDRM. These results reinforce the paramount importance of a national surveillance system of ADR-CRM and SDRM for national management policies of subjects living with HIV. PMID:27119150

  14. Rare emergence of drug resistance in HIV-1 treatment-naïve patients after 48 weeks of treatment with elvitegravir/cobicistat/emtricitabine/tenofovir alafenamide.

    PubMed

    Margot, Nicolas A; Kitrinos, Kathryn M; Fordyce, Marshall; McCallister, Scott; Miller, Michael D; Callebaut, Christian

    2016-03-01

    Tenofovir alafenamide (TAF), a novel prodrug of the NtRTI tenofovir (TFV), delivers TFV-diphosphate (TFV-DP) to target cells more efficiently than the current prodrug, tenofovir disoproxil fumarate (TDF), with a 90% reduction in TFV plasma exposure. TAF, within the fixed dose combination of elvitegravir /cobicistat / emtricitabine (FTC)/TAF (E/C/F/TAF), has been evaluated in one Phase 2 and two Phase 3 randomized, double-blinded studies in HIV-infected treatment-naive patients, comparing E/C/F/TAF to E/C/F/TDF. In these studies, the TAF-containing group demonstrated non-inferior efficacy to the TDF-containing comparator group with 91.9% of E/C/F/TAF patients having <50 copies/mL of HIV-1 RNA at week 48. An integrated resistance analysis across these three studies was conducted, including HIV-1 genotypic analysis at screening, and genotypic/phenotypic analysis for patients with HIV-1 RNA>400 copies/mL at virologic failure. Pre-existing primary resistance-associated mutations (RAMs) were observed at screening among the 1903 randomized and treated patients: 7.5% had NRTI-RAMs, 18.2% had NNRTI-RAMs, and 3.4% had primary PI-RAMs. Pre-treatment RAMs did not influence treatment response at Week 48. In the E/C/F/TAF group, resistance development was rare; seven patients (0.7%, 7/978) developed NRTI-RAMs, five of whom (0.5%, 5/978) also developed primary INSTI-RAMs. In the E/C/F/TDF group, resistance development was also rare; seven patients (0.8%, 7/925) developed NRTI-RAMs, four of whom (0.4%, 4/925) also developed primary INSTI-RAMs. An additional analysis by deep sequencing in virologic failures revealed minimal differences compared to population sequencing. Overall, resistance development was rare in E/C/F/TAF-treated patients, and the pattern of emergent mutations was similar to E/C/F/TDF.

  15. Short Communication: HIV Type 1 Transmitted Drug Resistance and Evidence of Transmission Clusters Among Recently Infected Antiretroviral-Naive Individuals from Ugandan Fishing Communities of Lake Victoria

    PubMed Central

    Nazziwa, Jamirah; Njai, Harr Freeya; Ndembi, Nicaise; Birungi, Josephine; Lyagoba, Fred; Gershim, Asiki; Nakiyingi-Miiro, Jessica; Nielsen, Leslie; Mpendo, Juliet; Nanvubya, Annet; Debont, Jan; Grosskurth, Heiner; Kamali, Anatoli; Seeley, Janet

    2013-01-01

    Abstract Human immunodeficiency virus type 1 (HIV-1) prevalence and incidence in the fishing communities on Lake Victoria in Uganda are high. This population may play a role in driving the HIV epidemic in Uganda including the spread of transmitted drug resistance (TDR). We report data on TDR in this population among antiretroviral (ARV)-naive, recently infected individuals about 5 years after ARV scaling-up in Uganda. We identified phylogenetic transmission clusters and combined these with volunteer life histories in order to understand the sexual networks within this population. From a prospective cohort of 1,000 HIV-negative individuals recruited from five communities, 51 seroconverters were identified over a period of 2 years. From these, whole blood was collected and population sequencing of the HIV-1 pol gene (protease/reverse transcriptase) was performed from plasma. Drug resistance mutations (DRMs) were scored using the 2009 WHO list for surveillance of TDR. TDR prevalence categories were estimated using the WHO recommended truncated sampling technique for the surveillance of TDR for use in resource-limited settings (RLS). Of the samples 92% (47/51) were successfully genotyped. HIV-1 subtype frequencies were 15/47 (32%) A1, 20/47 (43%) D, 1/47 (2%) C, 1/47 (2%) G, and 10/47 (21%) unique recombinant forms. Nonnucleoside reverse transcriptase inhibitor (NNRTI) drug resistance mutation K103N was identified in two individuals and V106A in one (6%) suggesting that the level of TDR was moderate in this population. No nucleoside/tide reverse transcriptase inhibitor (NRTI) or protease inhibitor (PI) DRMs were detected. In this study, we identified five transmission clusters supported by high bootstrap values and low genetic distances. Of these, one pair included the two individuals with K103N. Two of the genotypic clusters corresponded with reported sexual partnerships as detected through prior in-depth interviews. The level of TDR to NNRTIs in these ARV

  16. Insights into the mechanism of drug resistance: X-ray structure analysis of G48V/C95F tethered HIV-1 protease dimer/saquinavir complex

    SciTech Connect

    Prashar, Vishal; Bihani, Subhash C.; Das, Amit; Rao, D.R.; Hosur, M.V.

    2010-06-11

    The mutation G48V in HIV-1 protease is a major resistance mutation against the drug saquinavir. Recently, G48V mutation is found to co-exist with the mutation C95F in AIDS patients treated with saquinavir. We report here the three-dimensional crystal structure of G48V/C95F tethered HIV-1 protease/saquinavir complex. The structure indicates following as the possible causes of drug resistance: (1) loss of direct van der Waals interactions between saquinavir and enzyme residues PHE-53 and PRO-1081, (2) loss of water-mediated hydrogen bonds between the carbonyl oxygen atoms in saquinavir and amide nitrogen atoms of flap residues 50 and 1050, (3) changes in inter-monomer interactions, which could affect the energetics of domain movements associated with inhibitor-binding, and (4) significant reduction in the stability of the mutant dimer. The present structure also provides a rationale for the clinical observation that the resistance mutations C95F/G48V/V82A occur as a cluster in AIDS patients.

  17. Decreasing population selection rates of resistance mutation K65R over time in HIV-1 patients receiving combination therapy including tenofovir

    PubMed Central

    Theys, K.; Snoeck, J.; Vercauteren, J.; Abecasis, A. B.; Vandamme, A.-M.; Camacho, R. J.

    2013-01-01

    Objectives The use of tenofovir is highly associated with the emergence of mutation K65R, which confers broad resistance to nucleoside/nucleotide analogue reverse transcriptase inhibitors (NRTIs), especially when tenofovir is combined with other NRTIs also selecting for K65R. Although recent HIV-1 treatment guidelines discouraging these combinations resulted in reduced K65R selection with tenofovir, updated information on the impact of currently recommended regimens on the population selection rate of K65R is presently lacking. Methods In this study, we evaluated changes over time in the selection rate of resistance mutation K65R in a large population of 2736 HIV-1-infected patients failing combination antiretroviral treatment between 2002 and 2010. Results The K65R resistance mutation was detected in 144 patients, a prevalence of 5.3%. A large majority of observed K65R cases were explained by the use of tenofovir, reflecting its wide use in clinical practice. However, changing patterns over time in NRTIs accompanying tenofovir resulted in a persistent decreasing probability of K65R selection by tenofovir-based therapy. The currently recommended NRTI combination tenofovir/emtricitabine was associated with a low probability of K65R emergence. For any given dual NRTI combination including tenofovir, higher selection rates of K65R were consistently observed with a non-nucleoside reverse transcriptase inhibitor than with a protease inhibitor as the third agent. Discussion Our finding of a stable time trend of K65R despite elevated use of tenofovir illustrates increased potency of current HIV-1 therapy including tenofovir. PMID:23027713

  18. Lack of impact of pre-existing T97A HIV-1 integrase mutation on integrase strand transfer inhibitor resistance and treatment outcome

    PubMed Central

    Ram, Renee R.; Margot, Nicolas A.; Barnes, Tiffany L.; White, Kirsten L.; Callebaut, Christian; Miller, Michael D.

    2017-01-01

    T97A is an HIV-1 integrase polymorphism associated with integrase strand transfer inhibitor (INSTI) resistance. Using pooled data from 16 clinical studies, we investigated the prevalence of T97A (pre-existing and emergent) and its impact on INSTI susceptibility and treatment response in INSTI-naive patients who enrolled on elvitegravir (EVG)- or raltegravir (RAL)-based regimens. Prior to INSTI-based therapy, primary INSTI resistance-associated mutations (RAMs) were absent and T97A pre-existed infrequently (1.4%; 47 of 3367 integrase sequences); most often among non-B (5.3%) than B (0.9%) HIV-1 subtypes. During INSTI-based therapy, few patients experienced virologic failure with emergent INSTI RAMs (3%; 122 of 3881 patients), among whom T97A emerged infrequently in the presence (n = 6) or absence (n = 8) of primary INSTI RAMs. A comparison between pre-existing and emergent T97A patient populations (i.e., in the absence of primary INSTI RAMs) showed no significant differences in EVG or RAL susceptibility in vitro. Furthermore, among all T97A-containing viruses tested, only 38–44% exhibited reduced susceptibility to EVG and/or RAL (all of low magnitude; <11-fold), while all maintained susceptibility to dolutegravir. Of the patients with pre-existing T97A, 17 had available clinical follow-up: 16 achieved virologic suppression and 1 maintained T97A and INSTI sensitivity without further resistance development. Overall, T97A is an infrequent integrase polymorphism that is enriched among non-B HIV-1 subtypes and can confer low-level reduced susceptibility to EVG and/or RAL. However, detection of T97A does not affect response to INSTI-based therapy with EVG or RAL. These results suggest a very low risk of initiating INSTI-based therapy in patients with pre-existing T97A. PMID:28212411

  19. Co-detection of Panton-Valentine leukocidin encoding genes and cotrimoxazole resistance in Staphylococcus aureus in Gabon: implications for HIV-patients’ care

    PubMed Central

    Kraef, Christian; Alabi, Abraham S.; Peters, Georg; Becker, Karsten; Kremsner, Peter G.; Rossatanga, Elie G.; Mellmann, Alexander; Grobusch, Martin P.; Zanger, Philipp; Schaumburg, Frieder

    2015-01-01

    Patients infected with the human immunodeficiency virus (HIV) are frequently exposed to antimicrobial agents. This might have an impact on the resistance profile, genetic background and virulence factors of colonizing Staphylococcus aureus. Sub-Saharan Africa is considered to be endemic for Panton-Valentine leukocidin (PVL) positive S. aureus which can be associated with skin and soft tissue infections (SSTI). We compared S. aureus from nasal and pharyngeal swabs from HIV patients (n = 141) and healthy controls (n = 206) in Gabon in 2013, and analyzed determinants of colonization with PVL positive isolates in a cross-sectional study. S. aureus isolates were screened for the presence of selected virulence factors (incl. PVL) and were subjected to antimicrobial susceptibility testing and genotyping. In HIV patients, S. aureus was more frequently detected (36.9 vs. 31.6%) and the isolates were more frequently PVL positive than in healthy controls (42.1 vs. 23.2%). The presence of PVL was associated with cotrimoxazole resistance (OR = 25.1, p < 0.001) and the use of cotrimoxazole was a risk factor for colonization with PVL positive isolates (OR = 2.5, p = 0.06). PVL positive isolates were associated with the multilocus sequence types ST15 (OR = 5.6, p < 0.001) and ST152 (OR = 62.1, p < 0.001). Participants colonized with PVL positive isolates reported more frequently SSTI in the past compared to carriers of PVL negative isolates (OR = 2.7, p = 0.01). In conclusion, the novelty of our study is that cotrimoxazole might increase the risk of SSTI in regions where cotrimoxazole resistance is high and associated with PVL. This finding needs to be confirmed in prospective studies. PMID:25699036

  20. Disseminated tuberculosis in an HIV-infected child: rifampicin resistance detected by GeneXpert in a lymph node aspirate but not in cerebrospinal fluid.

    PubMed

    Gamell, Anna; Ntamatungiro, Alex John; Battegay, Manuel; Letang, Emilio

    2015-08-03

    A 9-year-old HIV-infected child previously treated with inadequate doses of antitubercular drugs based on weight was admitted 5 months after initial tuberculosis (TB) diagnosis with acute hemiplegia and inguinal lymphadenopathies in a rural hospital in Tanzania. He was diagnosed with TB meningitis and lymphadenitis using Xpert Mycobacterium tuberculosis/rifampicin (MTB/RIF) assay. Rifampicin resistance was detected in the lymph node aspirate but not in the cerebrospinal fluid. His TB therapy was optimised based on available medications and antiretroviral treatment was initiated 6 weeks later. Despite these efforts, the clinical evolution was poor and the child died 12 weeks after admission.

  1. 76 FR 38181 - Proposed Data Collections Submitted for Public Comment and Recommendations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... collection is to monitor behaviors related to Human Immunodeficiency Virus (HIV) infection among men who have... HUMAN SERVICES Centers for Disease Control and Prevention Proposed Data Collections Submitted for Public... prevalence of and trends in ] risk behaviors; (b) describe the prevalence of and trends in HIV testing;...

  2. New connections: Cell to cell HIV-1 transmission, resistance to broadly neutralizing antibodies, and an envelope sorting motif.

    PubMed

    Smith, S Abigail; Derdeyn, Cynthia A

    2017-03-01

    HIV-1 infection from cell to cell may provide an efficient mode of viral spread in vivo and could therefore present a significant challenge for preventative or therapeutic strategies based on broadly neutralizing antibodies. Indeed, Li et al show that the potency and magnitude of multiple HIV-1 broadly neutralizing antibody classes are decreased during cell to cell infection in a context dependent manner. A functional motif in gp41 appears to contribute to this differential susceptibility by modulating exposure of neutralization epitopes.

  3. HIV Transmission

    MedlinePlus

    ... Abroad Treatment Basic Statistics Get Tested Find an HIV testing site near you. Enter ZIP code or city Follow HIV/AIDS CDC HIV CDC HIV/AIDS See RSS | ... on HIV Syndicated Content Website Feedback HIV/AIDS HIV Transmission Language: English Transmisión del VIH Recommend on ...

  4. [Secreted phospholipases A2 (sPLA2): friends or foes? Are they actors in antibacterial and anti-HIV resistance?].

    PubMed

    Villarrubia, Vicente G; Costa, Luis A; Díez, Roberto A

    2004-11-27

    In this paper the authors update on the deletereous or beneficial roles of human and animal secretory phospholipases A2 (sPLA2). Although human sPLA2-IIA (inflammatory) was initially thought as a foe because its pathogenic implication in sepsis, multiorganic failure or other related syndromes, recent data indicates its role in in the antiinfectious host resistance. Thus, sPLA2-IIA exhibits potent bactericidal activities against gram-negative and gram-positive (in this case, together with other endogenous inflammatory factors) bacteria. Surprisingly, human sPLA-IIA does not show in vitro anti-human immunodeficiency virus (HIV) activity, whilst several sPLA2-IA isolated from bee and serpent venons do it: this is the case for crotoxin, a sPLA2-IA isolated from the venon of Crotalus durissus terrificus (sPLA2-Cdt). The mechanism for the in vitro anti-HIV activity of sPLA2-Cdt (inhibition of Gag p24) appears to be related to the ability of the drug to desestabilize ancorage (heparans) and fusion (cholesterol) receptors on HIV target cells.

  5. The evolution of HIV-1 group M genetic variability in Southern Cameroon is characterized by several emerging recombinant forms of CRF02_AG and viruses with drug resistance mutations.

    PubMed

    Agyingi, Lucy; Mayr, Luzia M; Kinge, Thompson; Orock, George Enow; Ngai, Johnson; Asaah, Bladine; Mpoame, Mbida; Hewlett, Indira; Nyambi, Phillipe

    2014-03-01

    The HIV epidemic in Cameroon is marked by a broad genetic diversity dominated by circulating recombinant forms (CRFs). Studies performed more than a decade ago in urban settings of Southern Cameroon revealed a dominance of the CRF02_AG and clade A variants in >90% of the infected subjects; however, little is known about the evolving viral variants circulating in this region. To document circulating HIV viral diversity, four regions of the viral genome (gag, PR, reverse transcriptase, env) in 116 HIV-1 positive individuals in Limbe, Southern Cameroon, were PCR-amplified. Sequences obtained at the RT and protease regions were analyzed for mutations that conferred drug resistance using the Stanford Drug Resistance Database. The present study reveals a broad genetic diversity characterized by several unique recombinant forms (URF) accounting for 36% of infections, 48.6% of patients infected with CRF02_AG, and the emergence of CRF22_01A1 in 7.2% of patients. Three out of 15 (20%) treated patients and 13 out of 93 (13.9%) drug naïve patients harbor drug resistance mutations to RT inhibitors, while 3.2% of drug naïve patients harbor drug resistance mutations associated with protease inhibitors. The high proportion (13.9%) of drug resistance mutations among the drug naïve patients reveals the ongoing transmission of these viruses in this region of Cameroon and highlights the need for drug resistance testing before starting treatment for patients infected with HIV-1.

  6. Confirming model-predicted pharmacokinetic interactions between bedaquiline and lopinavir/ritonavir or nevirapine in patients with HIV and drug-resistant tuberculosis.

    PubMed

    Brill, Margreke J E; Svensson, Elin M; Pandie, Mishal; Maartens, Gary; Karlsson, Mats O

    2017-02-01

    Bedaquiline and its metabolite M2 are metabolised by CYP3A4. The antiretrovirals ritonavir-boosted lopinavir (LPV/r) and nevirapine inhibit and induce CYP3A4, respectively. Here we aimed to quantify nevirapine and LPV/r drug-drug interaction effects on bedaquiline and M2 in patients co-infected with HIV and multidrug-resistant tuberculosis (MDR-TB) using population pharmacokinetic (PK) analysis and compare these with model-based predictions from single-dose studies in subjects without TB. An observational PK study was performed in three groups of MDR-TB patients during bedaquiline maintenance dosing: HIV-seronegative patients (n = 17); and HIV-infected patients using antiretroviral therapy including nevirapine (n = 17) or LPV/r (n = 14). Bedaquiline and M2 samples were collected over 48 h post-dose. A previously developed PK model of MDR-TB patients was used as prior information to inform parameter estimation using NONMEM. The model was able to describe bedaquiline and M2 concentrations well, with estimates close to their priors and earlier model-based interaction effects from single-dose studies. Nevirapine changed bedaquiline clearance to 82% (95% CI 67-99%) and M2 clearance to 119% (92-156%) of their original values, indicating no clinically significant interaction. LPV/r substantially reduced bedaquiline clearance to 25% (17-35%) and M2 clearance to 59% (44-69%) of original values. This work confirms earlier model-based predictions of nevirapine and LPV/r interaction effects on bedaquiline and M2 clearance from subjects without TB in single-dose studies, in MDR-TB/HIV co-infected patients studied here. To normalise bedaquiline exposure in patients with concomitant LPV/r therapy, an adjusted bedaquiline dosing regimen is proposed for further study.

  7. Identification of Immunogenic Cytotoxic T Lymphocyte Epitopes Containing Drug Resistance Mutations in Antiretroviral Treatment-Naïve HIV-Infected Individuals

    PubMed Central

    Blanco-Heredia, Juan; Lecanda, Aarón; Valenzuela-Ponce, Humberto; Brander, Christian; Ávila-Ríos, Santiago; Reyes-Terán, Gustavo

    2016-01-01

    Background Therapeutic HIV vaccines may prove helpful to intensify antiretroviral treatment (ART) efficacy and may be an integral part of future cure strategies. Methods We examined IFN-gamma ELISpot responses to a panel of 218 HIV clade B consensus-based HIV protease-reverse transcriptase peptides, designed to mimic previously described and predicted cytotoxic T lymphocyte epitopes overlapping drug resistance (DR) positions, that either included the consensus sequence or the DR variant sequence, in 49 ART-naïve HIV-infected individuals. Next generation sequencing was used to assess the presence of minority DR variants in circulating viral populations. Results Although a wide spectrum of differential magnitudes of response to DR vs. WT peptide pairs was observed, responses to DR peptides were frequent and strong in the study cohort. No difference between the median magnitudes of response to DR vs. WT peptides was observed. Interestingly, of the 22 peptides that were recognized by >15% of the participants, two-thirds (64%) corresponded to DR peptides. When analysing responses per peptide pair per individual, responses to only WT (median 4 pairs/individual) or DR (median 6 pairs/individual) were more common than responses to both WT and DR (median 2 pairs/individual; p<0.001). While the presence of ELISpot responses to WT peptides was frequently associated with the presence of the corresponding peptide sequence in the patient’s virus (mean 68% of cases), responses to DR peptides were generally not associated with the presence of DR mutations in the viral population, even at low frequencies (mean 1.4% of cases; p = 0.0002). Conclusions Our data suggests that DR peptides are frequently immunogenic and raises the potential benefit of broadening the antigens included in a therapeutic vaccine approach to immunogenic epitopes containing common DR sequences. Further studies are needed to assess the quality of responses elicited by DR peptides. PMID:26808823

  8. Alcohol and drug use disorders, HIV status and drug resistance in a sample of Russian TB patients

    PubMed Central

    Fleming, M. F.; Krupitsky, E.; Tsoy, M.; Zvartau, E.; Brazhenko, N.; Jakubowiak, W.; E. McCaul, M.

    2006-01-01

    SUMMARY SETTING: Alcohol use, tuberculosis (TB) drug resistance and human immunodeficiency virus (HIV) risk behavior are of increasing concern in Russian TB patients. DESIGN: A prevalence study of alcohol use and HIV risk behavior was conducted in a sample of 200 adult men and women admitted to TB hospitals in St Petersburg and Ivanovo, Russia. RESULTS: Of the subjects, 72% were men. The mean age was 41. Active TB was diagnosed using a combination of chest X-ray, sputum smears and sputum cultures. Sixty-two per cent met DSM-IV criteria for current alcohol abuse or dependence. Drug use was uncommon, with only two patients reporting recent intravenous heroin use. There was one case of HIV infection. The mean total risk assessment battery score was 3.4. Depression was present in 60% of the sample, with 17% severely depressed. Alcohol abuse/dependence was associated with an eight-fold increase in drug resistance (OR 8.58; 95% CI 2.09-35.32). Patients with relapsing or chronic TB were more likely to meet the criteria for alcohol abuse/dependence (OR 2.56; 95% CI 1.0-6.54). CONCLUSION: Alcohol use disorders are common in patients being treated for active TB, and are associated with significant morbidity. Additional surveys are needed to examine the relationship between alcohol use disorders and anti-tuberculosis drug resistance. CONTEXTE: Chezles patients tuberculeux russes, l’utilisation d’alcool, la résistance aux médicaments antituberculeux et un comportement à risque pour le virus de l’immunodéficience humaine (VIH) sont des sujets croissants d’inquiétude. SCHÉMA: Une étude: de prévalence de l’utilisation d’alcool et du comportement à risque pour le VIH a été menée sur un échantillon de 200 hommes et femmes adultes, admis dans des hôpitaux pour la tuberculose (TB) de Saint-Pétersbourg et d’Ivanovo en Russie. RÉSULTATS: Il y avait 72% d’hommes dans l’échantillon. L’âge moyen est de 41 ans. On a diagnostiqué la TB active par l

  9. Design, synthesis and evaluation of a potent substrate analog inhibitor identified by scanning Ala/Phe mutagenesis, mimicking substrate co-evolution, against multidrug-resistant HIV-1 protease

    SciTech Connect

    Yedidi, Ravikiran S.; Muhuhi, Joseck M.; Liu, Zhigang; Bencze, Krisztina Z.; Koupparis, Kyriacos; O’Connor, Carrie E.; Kovari, Iulia A.; Spaller, Mark R.; Kovari, Ladislau C.

    2013-09-06

    Highlights: •Inhibitors against MDR HIV-1 protease were designed, synthesized and evaluated. •Lead peptide (6a) showed potent inhibition (IC{sub 50}: 4.4 nM) of MDR HIV-1 protease. •(6a) Showed favorable binding isotherms against NL4-3 and MDR proteases. •(6a) Induced perturbations in the {sup 15}N-HSQC spectrum of MDR HIV-1 protease. •Molecular modeling suggested that (6a) may induce total flap closure inMDR protease. -- Abstract: Multidrug-resistant (MDR) clinical isolate-769, human immunodeficiency virus type-1 (HIV-1) protease (PDB ID: (1TW7)), was shown to exhibit wide-open flaps and an expanded active site cavity, causing loss of contacts with protease inhibitors. In the current study, the expanded active site cavity of MDR769 HIV-1 protease was screened with a series of peptide-inhibitors that were designed to mimic the natural substrate cleavage site, capsid/p2. Scanning Ala/Phe chemical mutagenesis approach was incorporated into the design of the peptide series to mimic the substrate co-evolution. Among the peptides synthesized and evaluated, a lead peptide (6a) with potent activity (IC{sub 50}: 4.4 nM) was identified against the MDR769 HIV-1 protease. Isothermal titration calorimetry data showed favorable binding profile for 6aagainst both wild type and MDR769 HIV-1 protease variants. Nuclear magnetic resonance spectrum of {sup 15}N-labeled MDR769 HIV-1 protease in complex with 6a showed some major perturbations in chemical shift, supporting the peptide induced conformational changes in protease. Modeling analysis revealed multiple contacts between 6a and MDR769 HIV-1 protease. The lead peptide-inhibitor, 6a, with high potency and good binding profile can be used as the basis for developing potent small molecule inhibitors against MDR variants of HIV.

  10. Development of Nevirapine Resistance in Children Exposed to the Prevention of Mother-to-Child HIV-1 Transmission Programme in Maputo, Mozambique

    PubMed Central

    Antunes, Francisco; Zindoga, Pereira; Gomes, Perpétua; Augusto, Orvalho; Mahumane, Isabel; Veloso, Luís; Valadas, Emília; Camacho, Ricardo

    2015-01-01

    Background Single-dose nevirapine (sd-NVP) has been the main option for prevention of mother-to-child transmission (PMTCT) of HIV-1 in low-resource settings. However, sd-NVP can induce the selection of HIV-1 resistant mutations in mothers and infants. In Mozambique, there are limited data regarding the profile of NVP resistance associated mutations (RAM) in the context of PMTCT. Objectives To assess the prevalence and the factors associated with NVP RAM among children born to HIV-1 infected mothers enrolled in the PMTCT programme adopted in Mozambique. Methods One hundred and fifty seven children aged 6 to 48 weeks were sequentially included (July 2011 to March 2012) at four centres in Maputo. Genotyping of RAM was performed in samples with HIV-1 RNA≥ 100 copies/μL (Viroseq). Sequencing was performed with ABI 3100 (Applied Biosystems). Logistic regression modelling was undertaken to identify the factors associated with NVP RAM. Results Seventy-nine children had their samples genotyped. Their median age was 7.0 (3–12) months and 92.4% received prophylaxis with sd-NVP at birth plus daily NVP. 35.4% of mothers received antiretrovirals (ARVs) for PMTCT. ARV RAM were detected in 43 (54.4%) of the children. 45.6% of these children had at least one NVP RAM. The most common mutations associated with NVP resistance were K103N (n = 16) and Y181C (n = 15). NVP RAM was significantly associated with mother exposure to PMTCT (crude odds ratio [OR] 30.3, 95% CI 4.93–186.34) and with mother’s CD4 count < 350 cells/mm3 (crude OR 3.08, 95% CI 1.02–9.32). In the multivariable analysis the mother’s exposure to PMTCT was the only variable significantly associated with NVP RAM (adjusted OR 48.65, 95% CI 9.33–253.66). Conclusions We found a high prevalence of NVP RAM among children who were exposed to the drug regimen for PMTCT in Mozambique. The mothers’ exposure to PMTCT significantly increased the risk of NVP RAM. PMID:26161559

  11. Molecular dynamics studies of the inhibitor C34 binding to the wild-type and mutant HIV-1 gp41: inhibitory and drug resistant mechanism.

    PubMed

    Ma, Xueting; Tan, Jianjun; Su, Min; Li, Chunhua; Zhang, Xiaoyi; Wang, Cunxin

    2014-01-01

    Mutations on NHR (N-terminal heptad repeat) associated with resistance to fusion inhibitor were observed. In addition, mutations on CHR (C-terminal heptad repeat) accompanied NHR mutations of gp41 are noted in many cases, like N43D/S138A double mutation. In this work, we explored the drug resistant mechanism of N43D mutation and the role of S138A second mutation in drug resistance. The binding modes of the wild type gp41 and the two mutants, N43D and N43D/S138A, with the HIV-1 fusion inhibitor C34, a 34-residue peptide mimicking CHR of gp41, were carried out by using molecular dynamics simulations. Based on the MD simulations, N43D mutation affects not only the stability of C34 binding, but also the binding energy of the inhibitor C34. Because N43D mutation may also affect the stable conformation of 6-HB, we introduced S138A second mutation into CHR of gp41 and determined the impact of this mutation. Through the comparative analysis of MD results of the N43D mutant and the N43D/S138A mutant, we found that CHR with S138A mutation shown more favorable affinity to NHR. Compelling differences in structures have been observed for these two mutants, particularly in the binding modes and in the hydrophobic interactions of the CHR (C34) located near the hydrophobic groove of the NHR. Because the conformational stability of 6-HB is important to HIV-1 infection, we suggested a hypothetical mechanism for the drug resistance: N43D single mutation not only impact the binding of inhibitor, but also affect the affinity between NHR and CHR of gp41, thus may reduce the rate of membrane fusion; compensatory mutation S138A would induce greater hydrophobic interactions between NHR and CHR, and render the CHR more compatible to NHR than inhibitors.

  12. Potent Antiviral HIV-1 Protease Inhibitor GRL-02031 Adapts to the Structures of Drug Resistant Mutants with Its P1;#8242;-Pyrrolidinone Ring

    SciTech Connect

    Chang, Yu-Chung E.; Yu, XiaXia; Zhang, Ying; Tie, Yunfeng; Wang, Yuan-Fang; Yashchuk, Sofiya; Ghosh, Arun K.; Harrison, Robert W.; Weber, Irene T.

    2012-11-14

    GRL-02031 (1) is an HIV-1 protease (PR) inhibitor containing a novel P1' (R)-aminomethyl-2-pyrrolidinone group. Crystal structures at resolutions of 1.25-1.55 {angstrom} were analyzed for complexes of 1 with the PR containing major drug resistant mutations, PR{sub I47V}, PR{sub L76V}, PR{sub V82A}, and PR{sub N88D}. Mutations of I47V and V82A alter residues in the inhibitor-binding site, while L76V and N88D are distal mutations having no direct contact with the inhibitor. Substitution of a smaller amino acid in PR{sub I47V} and PR{sub L76V} and the altered charge of PR{sub N88D} are associated with significant local structural changes compared to the wild-type PR{sub WT}, while substitution of alanine in PR{sub V82A} increases the size of the S1' subsite. The P1' pyrrolidinone group of 1 accommodates to these local changes by assuming two different conformations. Overall, the conformation and interactions of 1 with PR mutants resemble those of PR{sub WT} with similar inhibition constants in good agreement with the antiviral potency on multidrug resistant HIV-1.

  13. HIV / AIDS

    MedlinePlus

    ... facebook share with twitter share with linkedin HIV/AIDS HIV, or human immunodeficiency virus, is the virus ... HIV/AIDS. Why Is the Study of HIV/AIDS a Priority for NIAID? Nearly 37 million people ...

  14. Mutations in both env and gag genes are required for HIV-1 resistance to the polysulfonic dendrimer SPL2923, as corroborated by chimeric virus technology.

    PubMed

    Hantson, Anke; Fikkert, Valery; Van Remoortel, Barbara; Pannecouque, Chistophe; Cherepanov, Peter; Matthews, Barry; Holan, George; De Clercq, Erik; Vandamme, Anne-Mieke; Debyser, Zeger; Witvrouw, Myriam

    2005-01-01

    A drug-resistant NL4.3/SPL2923 strain has previously been generated by in vitro selection of HIV-1(NL4.3) in the presence of the polysulfonic dendrimer SPL2923 and mutations were reported in its gp120 gene (Witvrouw et al., 2000). Here, we further analysed the (cross) resistance profile of NL4.3/SPL2923. NL4.3/SPL2923 was found to contain additional mutations in gp41 and showed reduced susceptibility to SPL2923, dextran sulfate (DS) and enfuvirtide. To delineate to what extent the mutations in each env gene were accountable for the phenotypic (cross) resistance of NL4.3/SPL2923, the gp120-, gp41- and gp160-sequences derived from this strain were placed into a wild-type background using env chimeric virus technology (CVT). The cross resistance of NL4.3/SPL2923 towards DS was fully reproduced following gp160-recombination, while it was only partially reproduced following gp120- or gp41-recombination. The mutations in gp41 of NL4.3/SPL2923 were sufficient to reproduce the cross resistance to enfuvirtide. Unexpectedly, the reduced sensitivity towards SPL2923 was not fully reproduced after gp160-recombination. The search for mutations in NL4.3/SPL2923 in viral genes other than env revealed several mutations in the gene encoding the HIV p17 matrix protein (MA) and one mutation in the gene encoding the p24 capsid protein (CA). In order to analyse the impact of the gag mutations alone and in combination with the mutations in env on the phenotypic resistance towards SPL2923, we developed a novel p17- and p17/gp160-CVT. Phenotypic analysis of the NL4.3/SPL2923 p17- and p17/gp160-recombined strains indicated that the mutations in both env and gag have to be present to fully reproduce the resistance of NL4.3/SPL2923 towards SPL2923.

  15. Emergent HIV-1 Drug Resistance Mutations Were Not Present at Low-Frequency at Baseline in Non-Nucleoside Reverse Transcriptase Inhibitor-Treated Subjects in the STaR Study

    PubMed Central

    Porter, Danielle P.; Daeumer, Martin; Thielen, Alexander; Chang, Silvia; Martin, Ross; Cohen, Cal; Miller, Michael D.; White, Kirsten L.

    2015-01-01

    At Week 96 of the Single-Tablet Regimen (STaR) study, more treatment-naïve subjects that received rilpivirine/emtricitabine/tenofovir DF (RPV/FTC/TDF) developed resistance mutations compared to those treated with efavirenz (EFV)/FTC/TDF by population sequencing. Furthermore, more RPV/FTC/TDF-treated subjects with baseline HIV-1 RNA >100,000 copies/mL developed resistance compared to subjects with baseline HIV-1 RNA ≤100,000 copies/mL. Here, deep sequencing was utilized to assess the presence of pre-existing low-frequency variants in subjects with and without resistance development in the STaR study. Deep sequencing (Illumina MiSeq) was performed on baseline and virologic failure samples for all subjects analyzed for resistance by population sequencing during the clinical study (n = 33), as well as baseline samples from control subjects with virologic response (n = 118). Primary NRTI or NNRTI drug resistance mutations present at low frequency (≥2% to 20%) were detected in 6.6% of baseline samples by deep sequencing, all of which occurred in control subjects. Deep sequencing results were generally consistent with population sequencing but detected additional primary NNRTI and NRTI resistance mutations at virologic failure in seven samples. HIV-1 drug resistance mutations emerging while on RPV/FTC/TDF or EFV/FTC/TDF treatment were not present at low frequency at baseline in the STaR study. PMID:26690199

  16. Emergent HIV-1 Drug Resistance Mutations Were Not Present at Low-Frequency at Baseline in Non-Nucleoside Reverse Transcriptase Inhibitor-Treated Subjects in the STaR Study.

    PubMed

    Porter, Danielle P; Daeumer, Martin; Thielen, Alexander; Chang, Silvia; Martin, Ross; Cohen, Cal; Miller, Michael D; White, Kirsten L

    2015-12-07

    At Week 96 of the Single-Tablet Regimen (STaR) study, more treatment-naïve subjects that received rilpivirine/emtricitabine/tenofovir DF (RPV/FTC/TDF) developed resistance mutations compared to those treated with efavirenz (EFV)/FTC/TDF by population sequencing. Furthermore, more RPV/FTC/TDF-treated subjects with baseline HIV-1 RNA >100,000 copies/mL developed resistance compared to subjects with baseline HIV-1 RNA ≤100,000 copies/mL. Here, deep sequencing was utilized to assess the presence of pre-existing low-frequency variants in subjects with and without resistance development in the STaR study. Deep sequencing (Illumina MiSeq) was performed on baseline and virologic failure samples for all subjects analyzed for resistance by population sequencing during the clinical study (n = 33), as well as baseline samples from control subjects with virologic response (n = 118). Primary NRTI or NNRTI drug resistance mutations present at low frequency (≥2% to 20%) were detected in 6.6% of baseline samples by deep sequencing, all of which occurred in control subjects. Deep sequencing results were generally consistent with population sequencing but detected additional primary NNRTI and NRTI resistance mutations at virologic failure in seven samples. HIV-1 drug resistance mutations emerging while on RPV/FTC/TDF or EFV/FTC/TDF treatment were not present at low frequency at baseline in the STaR study.

  17. Virological Failure and HIV-1 Drug Resistance Mutations among Naive and Antiretroviral Pre-Treated Patients Entering the ESTHER Program of Calmette Hospital in Cambodia

    PubMed Central

    Limsreng, Setha; Him, Sovanvatey; Nouhin, Janin; Hak, Chanroeurn; Srun, Chanvatey; Viretto, Gerald; Ouk, Vara; Delfraissy, Jean Francois; Ségéral, Olivier

    2014-01-01

    Introduction In resource limited settings, patients entering an antiretroviral therapy (ART) program comprise ART naive and ART pre-treated patients who may show differential virological outcomes. Methods This retrospective study, conducted in 2010–2012 in the HIV clinic of Calmette Hospital located in Phnom Penh (Cambodia) assessed virological failure (VF) rates and patterns of drug resistance of naive and pre-treated patients. Naive and ART pre-treated patients were included when a Viral Load (VL) was performed during the first year of ART for naive subjects or at the first consultation for pre-treated individuals. Patients showing Virological failure (VF) (>1,000 copies/ml) underwent HIV DR genotyping testing. Interpretation of drug resistance mutations was done according to 2013 version 23 ANRS algorithms. Results On a total of 209 patients, 164 (78.4%) were naive and 45 (21.5%) were ART pre-treated. Their median initial CD4 counts were 74 cells/mm3 (IQR: 30–194) and 279 cells/mm3 (IQR: 103–455) (p<0.001), respectively. Twenty seven patients (12.9%) exhibited VF (95% CI: 8.6–18.2%), including 10 naive (10/164, 6.0%) and 17 pre-treated (17/45, 37.8%) patients (p<0.001). Among these viremic patients, twenty-two (81.4%) were sequenced in reverse transcriptase and protease coding regions. Overall, 19 (86.3%) harbored ≥1 drug resistance mutations (DRMs) whereas 3 (all belonging to pre-treated patients) harbored wild-types viruses. The most frequent DRMs were M184V (86.3%), K103N (45.5%) and thymidine analog mutations (TAMs) (40.9%). Two (13.3%) pre-treated patients harbored viruses that showed a multi-nucleos(t)ide resistance including Q151M, K65R, E33A/D, E44A/D mutations. Conclusion In Cambodia, VF rates were low for naive patients but the emergence of DRMs to NNRTI and 3TC occurred relatively quickly in this subgroup. In pre-treated patients, VF rates were much higher and TAMs were relatively common. HIV genotypic assays before ART initiation and for

  18. HIV Genotypic Resistance Testing

    MedlinePlus

    ... by a combination of letters and numbers (for example, K103N) where the letters refer to the amino acid associated with the gene and the number refers to the position of the mutation in the genome . The laboratory report may also ...

  19. Prevalence of Antiretroviral Drug Resistance in Patients Who Are Not Responding to Protease Inhibitor-Based Treatment: Results From the First National Survey in South Africa.

    PubMed

    Steegen, K; Bronze, M; Papathanasopoulos, M A; van Zyl, G; Goedhals, D; Van Vuuren, C; Macleod, W; Sanne, I; Stevens, W S; Carmona, S C

    2016-12-15

    Limited data exist on human immunodeficiency virus type 1 (HIV-1) resistance in patients who are not responding to protease inhibitor (PI)-based regimens in resource-limited settings. This study assessed resistance profiles in adults across South Africa who were not responding to PI-based regimens. pol sequencing was undertaken and submitted to the Stanford HIV Drug Resistance Database. At least 1 major PI mutation was detected in 16.4% of 350 participants. A total of 53.4% showed intermediate resistance to darunavir/ritonavir, whereas high-level resistance was not observed. Only 5.2% and 32.8% of participants showed high-level and intermediate resistance to etravirine, respectively. Although the prevalence of major PI mutations was within previously reported ranges, most patients will likely experience virological suppression during receipt of currently available South African third-line regimens.

  20. A Follow-Up of the Multicenter Collaborative Study on HIV-1 Drug Resistance and Tropism Testing Using 454 Ultra Deep Pyrosequencing

    PubMed Central

    St. John, Elizabeth P.; Simen, Birgitte B.; Turenchalk, Gregory S.; Braverman, Michael S.; Abbate, Isabella; Aerssens, Jeroen; Bouchez, Olivier; Gabriel, Christian; Izopet, Jacques; Meixenberger, Karolin; Di Giallonardo, Francesca; Schlapbach, Ralph; Paredes, Roger; Sakwa, James; Schmitz-Agheguian, Gudrun G.; Thielen, Alexander; Victor, Martin

    2016-01-01

    Background Ultra deep sequencing is of increasing use not only in research but also in diagnostics. For implementation of ultra deep sequencing assays in clinical laboratories for routine diagnostics, intra- and inter-laboratory testing are of the utmost importance. Methods A multicenter study was conducted to validate an updated assay design for 454 Life Sciences’ GS FLX Titanium system targeting protease/reverse transcriptase (RTP) and env (V3) regions to identify HIV-1 drug-resistance mutations and determine co-receptor use with high sensitivity. The study included 30 HIV-1 subtype B and 6 subtype non-B samples with viral titers (VT) of 3,940–447,400 copies/mL, two dilution series (52,129–1,340 and 25,130–734 copies/mL), and triplicate samples. Amplicons spanning PR codons 10–99, RT codons 1–251 and the entire V3 region were generated using barcoded primers. Analysis was performed using the GS Amplicon Variant Analyzer and geno2pheno for tropism. For comparison, population sequencing was performed using the ViroSeq HIV-1 genotyping system. Results The median sequencing depth across the 11 sites was 1,829 reads per position for RTP (IQR 592–3,488) and 2,410 for V3 (IQR 786–3,695). 10 preselected drug resistant variants were measured across sites and showed high inter-laboratory correlation across all sites with data (P<0.001). The triplicate samples of a plasmid mixture confirmed the high inter-laboratory consistency (mean% ± stdev: 4.6 ±0.5, 4.8 ±0.4, 4.9 ±0.3) and revealed good intra-laboratory consistency (mean% range ± stdev range: 4.2–5.2 ± 0.04–0.65). In the two dilutions series, no variants >20% were missed, variants 2–10% were detected at most sites (even at low VT), and variants 1–2% were detected by some sites. All mutations detected by population sequencing were also detected by UDS. Conclusions This assay design results in an accurate and reproducible approach to analyze HIV-1 mutant spectra, even at variant frequencies

  1. Criteria for submitting photos.

    PubMed

    Vallarelli, Andrelou Fralete Ayres

    2011-01-01

    Dermatological photography is used as a supplement to dermatological examination with the function of providing additional knowledge and information. Its quality depends on the expertise of the photographer-dermatologist in recording the relevant elements present. Therefore, the dermatologist should know basic principles of photography and the journal editors should ensure that the articles have high-quality images. This article suggests criteria to improve the quality of photographs submitted to journals for publication.

  2. Low risk of nevirapine resistance mutations in the prevention of mother-to-child transmission of HIV-1: Agence Nationale de Recherches sur le SIDA Ditrame Plus, Abidjan, Cote d'Ivoire.

    PubMed

    Chaix, Marie-Laure; Ekouevi, Didier Koumavi; Rouet, Francois; Tonwe-Gold, Besigin; Viho, Ida; Bequet, Laurence; Peytavin, Gilles; Toure, Hassane; Menan, Herve; Leroy, Valeriane; Dabis, Francois; Rouzioux, Christine

    2006-02-15

    The frequency of resistance mutations was estimated in the cohort of Agence Nationale de Recherches sur le SIDA Ditrame Plus, a study that evaluated the combination of short-course zidovudine (ZDV) plus lamivudine (3TC) and single-dose nevirapine (SD-NVP) followed by 3 days of postpartum ZDV plus 3TC for the prevention of mother-to-child transmission of human immunodeficiency virus type 1 (HIV-1). The frequency with which resistance mutations were detected in mothers at week 4 postpartum was 1.14% (95% confidence interval [CI], 0.03%-6.17%) for NVP and 8.33% (95% CI, 3.66%-15.76%) for 3TC. In multivariate analysis, 3TC resistance was associated with a longer duration of ZDV plus 3TC prepartum prophylaxis (P=.009). This regimen, which is feasible in resource-limited settings, prevents most peripartum HIV-1 transmission and minimizes the development of NVP resistance.

  3. Transmitted HIV Type 1 drug resistance and Non-B subtypes prevalence among seroconverters and newly diagnosed patients from 1992 to 2005 in Italy.

    PubMed

    Riva, Chiara; Lai, Alessia; Caramma, Ilaria; Corvasce, Stefano; Violin, Michela; Dehò, Lorenzo; Prati, Francesca; Rossi, Cristina; Colombo, Maria Chiara; Capetti, Amedeo; Franzetti, Marco; Rossini, Valeria; Tambussi, Giuseppe; Ciccozzi, Massimo; Suligoi, Barbara; Mussini, Cristina; Rezza, Giovanni; Balotta, Claudia

    2010-01-01

    The patterns of transmitted drug-resistant (TDR) HIV-1 variants, non-B subtype spread, and epidemiological trends were evaluated either in seroconverters or in newly diagnosed individuals in Italy over a 13-year period. We analyzed 119 seroconverters, enrolled from 1992 to 2003 for the CASCADE study, and 271 newly diagnosed individuals of the SPREAD study (2002-2005), of whom 42 had a known seroconversion date. Overall, TDR was 15.1% in the CASCADE and 12.2% in the SPREAD study. In the 1992-2003 period, men having sex with men (MSMs) and heterosexuals (HEs) were 48.7% and 36.8%, respectively; TDR was found to be higher in MSMs compared to HEs (78.9% vs. 21%, p = 0.006). The same groups were 39.1% and 53.3% in the SPREAD study; however, no association was detected between modality of infection and TDR. Overall, 9.2% and 22.1% of individuals harbored a non-B clade virus in the CASCADE and SPREAD study, respectively. As evidence of onward transmission, 40% (24/60) of non-B variants were carried by European individuals in the latter study; among these patients the F1 subtype was highly prevalent (p = 0.00001). One of every eight patients who received a diagnosis of HIV-1 in recent years harbored a resistant variant, reinforcing the arguments for baseline resistance testing to customize first-line therapy in newly infected individuals. The spread of non-B clades may act as a dilution factor of TDR concealing the proportion of TDR in seroconverters and MSMs.

  4. Encountering Gender: Resisting a Neo-Liberal Political Rationality for Sexuality Education as an HIV Prevention Strategy

    ERIC Educational Resources Information Center

    Gacoin, Andrée E.

    2017-01-01

    Globally, sexuality education is framed as a key programmatic strategy for achieving HIV prevention among youth. In particular, sexuality education is positioned as a way to address gender inequalities and promote youth empowerment in relation to gendered identities. In this paper, I argue that the focus on what content should be taught and…

  5. Design, Synthesis and Biological Evaluation of 1-[(2-benzyloxyl/alkoxyl) methyl]-5-halo-6-aryluracils as Potent HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors with Improved Drug Resistance Profile

    PubMed Central

    Wang, Xiaowei; Zhang, Jianfang; Huang, Yang; Wang, Ruiping; Zhang, Liang; Qiao, Kang; Li, Li; Liu, Chang; Ouyang, Yabo; Xu, Weisi; Zhang, Zhili; Zhang, Liangren; Shao, Yiming; Jiang, Shibo; Ma, Liying; Liu, Junyi

    2012-01-01

    Since the emergence of drug-resistant mutants has limited the efficacy of non-nucleoside reverse transcriptase inhibitors (NNRTIs), it is essential to develop new antivirals with better drug-resistance and pharmacokinetic profiles. Here we designed and synthesized a series of 1-[(2-benzyloxyl/alkoxyl)methyl]-5-halo-6-aryluracils, the HEPT analogues, and evaluated their biological activity using Nevirapine and 18 (TNK-651) as reference compounds. Most of these compounds, especially 6b, 7b, 9b, 11b and 7c, exhibited highly potent anti-HIV-1 activity against both wild-type and NNRTI-resistant HIV-1 strains. The compound 7b, that had the highest selectivity index (SI = 38,215), is more potent than Nevirapine and 18. These results suggest that introduction of halogen at the C-5 position may contribute to the effectiveness of these compounds against RTI-resistant variants. In addition, m-substituents on the C-6 aromatic moiety could significantly enhance activity against NNRTI-resistant HIV-1 strains. These compounds can be further developed as next-generation NNRTIs with improved antiviral efficacy and drug-resistance profile. PMID:22283377

  6. Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: molecular dynamics insights.

    PubMed

    Chetty, Sarentha; Bhakat, Soumendranath; Martin, Alberto J M; Soliman, Mahmoud E S

    2016-01-01

    The PR20 HIV-1 protease, a variant with 20 mutations, exhibits high levels of multi-drug resistance; however, to date, there has been no report detailing the impact of these 20 mutations on the conformational and drug binding landscape at a molecular level. In this report, we demonstrate the first account of a comprehensive study designed to elaborate on the impact of these mutations on the dynamic features as well as drug binding and resistance profile, using extensive molecular dynamics analyses. Comparative MD simulations for the wild-type and PR20 HIV proteases, starting from bound and unbound conformations in each case, were performed. Results showed that the apo conformation of the PR20 variant of the HIV protease displayed a tendency to remain in the open conformation for a longer period of time when compared to the wild type. This led to a phenomena in which the inhibitor seated at the active site of PR20 tends to diffuse away from the binding site leading to a significant change in inhibitor-protein association. Calculating the per-residue fluctuation (RMSF) and radius of gyration, further validated these findings. MM/GBSA showed that the occurrence of 20 mutations led to a drop in the calculated binding free energies (ΔGbind) by ~25.17 kcal/mol and ~5 kcal/mol for p2-NC, a natural peptide substrate, and darunavir, respectively, when compared to wild type. Furthermore, the residue interaction network showed a diminished inter-residue hydrogen bond network and changes in inter-residue connections as a result of these mutations. The increased conformational flexibility in PR20 as a result of loss of intra- and inter-molecular hydrogen bond interactions and other prominent binding forces led to a loss of protease grip on ligand. It is interesting to note that the difference in conformational flexibility between PR20 and WT conformations was much higher in the case of substrate-bound conformation as compared to DRV. Thus, developing analogues of DRV by

  7. The VACS Index Accurately Predicts Mortality and Treatment Response among Multi-Drug Resistant HIV Infected Patients Participating in the Options in Management with Antiretrovirals (OPTIMA) Study

    PubMed Central

    Brown, Sheldon T.; Tate, Janet P.; Kyriakides, Tassos C.; Kirkwood, Katherine A.; Holodniy, Mark; Goulet, Joseph L.; Angus, Brian J.; Cameron, D. William; Justice, Amy C.

    2014-01-01

    Objectives The VACS Index is highly predictive of all-cause mortality among HIV infected individuals within the first few years of combination antiretroviral therapy (cART). However, its accuracy among highly treatment experienced individuals and its responsiveness to treatment interventions have yet to be evaluated. We compared the accuracy and responsiveness of the VACS Index with a Restricted Index of age and traditional HIV biomarkers among patients enrolled in the OPTIMA study. Methods Using data from 324/339 (96%) patients in OPTIMA, we evaluated associations between indices and mortality using Kaplan-Meier estimates, proportional hazards models, Harrel’s C-statistic and net reclassification improvement (NRI). We also determined the association between study interventions and risk scores over time, and change in score and mortality. Results Both the Restricted Index (c = 0.70) and VACS Index (c = 0.74) predicted mortality from baseline, but discrimination was improved with the VACS Index (NRI = 23%). Change in score from baseline to 48 weeks was more strongly associated with survival for the VACS Index than the Restricted Index with respective hazard ratios of 0.26 (95% CI 0.14–0.49) and 0.39(95% CI 0.22–0.70) among the 25% most improved scores, and 2.08 (95% CI 1.27–3.38) and 1.51 (95%CI 0.90–2.53) for the 25% least improved scores. Conclusions The VACS Index predicts all-cause mortality more accurately among multi-drug resistant, treatment experienced individuals and is more responsive to changes in risk associated with treatment intervention than an index restricted to age and HIV biomarkers. The VACS Index holds promise as an intermediate outcome for intervention research. PMID:24667813

  8. How conformational changes can affect catalysis, inhibition and drug resistance of enzymes with induced-fit binding mechanism such as the HIV-1 protease.

    PubMed

    Weikl, Thomas R; Hemmateenejad, Bahram

    2013-05-01

    A central question is how the conformational changes of proteins affect their function and the inhibition of this function by drug molecules. Many enzymes change from an open to a closed conformation upon binding of substrate or inhibitor molecules. These conformational changes have been suggested to follow an induced-fit mechanism in which the molecules first bind in the open conformation in those cases where binding in the closed conformation appears to be sterically obstructed such as for the HIV-1 protease. In this article, we present a general model for the catalysis and inhibition of enzymes with induced-fit binding mechanism. We derive general expressions that specify how the overall catalytic rate of the enzymes depends on the rates for binding, for the conformational changes, and for the chemical reaction. Based on these expressions, we analyze the effect of mutations that mainly shift the conformational equilibrium on catalysis and inhibition. If the overall catalytic rate is limited by product unbinding, we find that mutations that destabilize the closed conformation relative to the open conformation increase the catalytic rate in the presence of inhibitors by a factor exp(ΔΔGC/RT) where ΔΔGC is the mutation-induced shift of the free-energy difference between the conformations. This increase in the catalytic rate due to changes in the conformational equilibrium is independent of the inhibitor molecule and, thus, may help to understand how non-active-site mutations can contribute to the multi-drug-resistance that has been observed for the HIV-1 protease. A comparison to experimental data for the non-active-site mutation L90M of the HIV-1 protease indicates that the mutation slightly destabilizes the closed conformation of the enzyme. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.

  9. Severe Impairment of Endothelial Function with the HIV-1 Protease Inhibitor Indinavir is not Mediated by Insulin Resistance in Healthy Subjects

    PubMed Central

    Dubé, Michael P.; Gorski, J. Christopher; Shen, Changyu

    2010-01-01

    Endothelial dysfunction may contribute to increased cardiovascular events among HIV-1 infected patients receiving antiretroviral therapy. The HIV-1 protease inhibitor indinavir causes both vascular dysfunction and insulin resistance, but the relationship between the two disturbances is not established. Endothelium-dependent vasodilation (EDV), insulin-mediated vasodilation (IMV), and whole body and leg glucose uptake during a euglycemic hyperinsulinemic clamp (40 mU/m2/min) were measured before and after four weeks of indinavir in nine healthy men. EDV fell from 270 ± 67% above basal to 124 ± 30% (p=0.04) and IMV from 56 ± 14% above basal to 8 ± 8% (p=0.001) with indinavir. During the clamp, arteriovenous glucose difference and leg glucose uptake were not significantly different after indinavir and whole-body glucose uptake was only modestly reduced (8.0 ± 0.8 vs 7.2 ± 0.8 mg/kg/min, p=0.04). The change in EDV did not correlate with the change in whole-body glucose uptake after indinavir (r=0.21, p=0.6). Despite marked impairment of endothelial function and IMV with indinavir, only modest, inconsistent reductions in measures of insulin stimulated glucose uptake occurred. This suggests that indinavir's effects on glucose metabolism are not directly related to indinavir-associated endothelial dysfunction. Studies of the vascular effects of newer protease inhibitors are needed. PMID:18172783

  10. Erotized, AIDS-HIV information on public-access television: a study of obscenity, state censorship and cultural resistance.

    PubMed

    Lukenbill, W B

    1998-06-01

    This study analyzes court records of a county-level obscenity trial in Austin, Texas, and the appeal of the guilty verdict beginning with a Texas appellate court up to the U.S. Supreme Court of two individuals who broadcast erotized AIDS and HIV safer sex information on a public-access cable television. The trial and appellate court decisions are reviewed in terms of argument themes, and the nature of sexual value controversy is outlined. Erotic materials often conflict with broad-based sexual and community values, and providing erotized HIV and AIDS information products can be a form of radical political action designed to force societal change. This study raises question as to how this trial and this type of informational product might affect the programs and activities of information resource centers, community-based organizations, libraries, and the overall mission of public health education.

  11. Inefficient entry of vicriviroc-resistant HIV-1 via the inhibitor-CCR5 complex at low cell surface CCR5 densities

    PubMed Central

    Pugach, Pavel; Ray, Neelanjana; Klasse, Per Johan; Ketas, Thomas J.; Michael, Elizabeth; Doms, Robert W.; Lee, Benhur; Moore, John P.

    2009-01-01

    HIV-1 variants resistant to small molecule CCR5 inhibitors such as vicriviroc (VVC) have modified Env complexes that can use both the inhibitor-bound and -free forms of the CCR5 co-receptor to enter target cells. However, entry via the inhibitor-CCR5 complex is inefficient in some, but not all, cell types, particularly cell lines engineered to express CCR5. We investigated the effect of increasing CCR5 expression, and hence the density of the inhibitor-CCR5 complex when a saturating inhibitor (VVC) concentration was present, by using 293-Affinofile cells, in which CCR5 expression is up-regulated by the transcriptional activator, ponasterone. When CCR5 expression was low, the resistant virus entered the target cells to a lesser extent when VVC was present than absent. However, at a higher CCR5 level, there was much less entry inhibition at a constant, saturating VVC concentration. We conclude that the relative decrease in entry of a VVC-resistant virus in some cell types results from its less efficient use of the VVC-CCR5 complex, and that increasing the CCR5 expression level can compensate for this inefficiency. PMID:19303620

  12. Our bodies are our own: resistance to ABC-based HIV-prevention programmes in northern Tanzanian conservation organisations.

    PubMed

    Reid-Hresko, John

    2014-01-01

    ABC-based HIV-prevention programmes have been widely employed in northern Tanzanian wildlife conservation settings in an attempt to (re)shape the sexual behaviours of conservation actors. Utilising findings from 66 semi-structured interviews conducted in 2009-2010, this paper examines ABC prevention as a form of Foucauldian governmentality--circulating technologies of power that mobilise disciplinary technologies and attempt to transform such efforts into technologies of the self--and explores how individuals understand and respond to attempts to govern their behaviour. ABC regimes attempt to rework subjectivity, positioning HIV-related behaviours within a risk-based neoliberal rationality. However, efforts to use ABC as a technology to govern populations and individual bodies are largely incommensurate with existing Tanzanian sociocultural formations, including economic and gendered inequalities, and local understandings of sexuality. The language research participants used to talk about ABC and the justifications they offered for non-compliance illuminate this discrepancy. Data reveal that the recipients of ABC campaigns are active producers of understandings that work for them in their lives, but may not produce the behavioural shifts envisioned by programme goals. These findings corroborate previous research, which questions the continued plausibility of ABC as a stand-alone HIV- prevention framework.

  13. Prevalence and Evolution of Low Frequency HIV Drug Resistance Mutations Detected by Ultra Deep Sequencing in Patients Experiencing First Line Antiretroviral Therapy Failure

    PubMed Central

    Recordon-Pinson, Patricia; Reigadas, Sandrine; Bidet, Yannick; Bruyand, Mathias; Bonnet, Fabrice; Lazaro, Estibaliz; Neau, Didier; Fleury, Hervé; Dabis, François; Morlat, Philippe; Masquelier, Bernard

    2014-01-01

    Objectives Clinical relevance of low-frequency HIV-1 variants carrying drug resistance associated mutations (DRMs) is still unclear. We aimed to study the prevalence of low-frequency DRMs, detected by Ultra-Deep Sequencing (UDS) before antiretroviral therapy (ART) and at virological failure (VF), in HIV-1 infected patients experiencing VF on first-line ART. Methods Twenty-nine ART-naive patients followed up in the ANRS-CO3 Aquitaine Cohort, having initiated ART between 2000 and 2009 and experiencing VF (2 plasma viral loads (VL) >500 copies/ml or one VL >1000 copies/ml) were included. Reverse transcriptase and protease DRMs were identified using Sanger sequencing (SS) and UDS at baseline (before ART initiation) and VF. Results Additional low-frequency variants with PI-, NNRTI- and NRTI-DRMs were found by UDS at baseline and VF, significantly increasing the number of detected DRMs by 1.35 fold (p<0.0001) compared to SS. These low-frequency DRMs modified ARV susceptibility predictions to the prescribed treatment for 1 patient at baseline, in whom low-frequency DRM was found at high frequency at VF, and 6 patients at VF. DRMs found at VF were rarely detected as low-frequency DRMs prior to treatment. The rare low-frequency NNRTI- and NRTI-DRMs detected at baseline that correlated with the prescribed treatment were most often found at high-frequency at VF. Conclusion Low frequency DRMs detected before ART initiation and at VF in patients experiencing VF on first-line ART can increase the overall burden of resistance to PI, NRTI and NNRTI. PMID:24475178

  14. In Vitro Characterization of GS-8374, a Novel Phosphonate-Containing Inhibitor of HIV-1 Protease with a Favorable Resistance Profile ▿ †

    PubMed Central

    Callebaut, Christian; Stray, Kirsten; Tsai, Luong; Williams, Matt; Yang, Zheng-Yu; Cannizzaro, Carina; Leavitt, Stephanie A.; Liu, Xiaohong; Wang, Kelly; Murray, Bernard P.; Mulato, Andrew; Hatada, Marcos; Priskich, Tina; Parkin, Neil; Swaminathan, Swami; Lee, William; He, Gong-Xin; Xu, Lianhong; Cihlar, Tomas

    2011-01-01

    GS-8374 is a novel bis-tetrahydrofuran HIV-1 protease (PR) inhibitor (PI) with a unique diethylphosphonate moiety. It was selected from a series of analogs containing various di(alkyl)phosphonate substitutions connected via a linker to the para position of a P-1 phenyl ring. GS-8374 inhibits HIV-1 PR with high potency (Ki = 8.1 pM) and with no known effect on host proteases. Kinetic and thermodynamic analysis of GS-8374 binding to PR demonstrated an extremely slow off rate for the inhibitor and favorable contributions of both the enthalpic and entropic components to the total free binding energy. GS-8374 showed potent antiretroviral activity in T-cell lines, primary CD4+ T cells (50% effective concentration [EC50] = 3.4 to 11.5 nM), and macrophages (EC50 = 25.5 nM) and exhibited low cytotoxicity in multiple human cell types. The antiviral potency of GS-8374 was only moderately affected by human serum protein binding, and its combination with multiple approved antiretrovirals showed synergistic effects. When it was tested in a PhenoSense assay against a panel of 24 patient-derived viruses with high-level PI resistance, GS-8374 showed lower mean EC50s and lower fold resistance than any of the clinically approved PIs. Similar to other PIs, in vitro hepatic microsomal metabolism of GS-8374 was efficiently blocked by ritonavir, suggesting a potential for effective pharmacokinetic boosting in vivo. In summary, results from this broad in vitro pharmacological profiling indicate that GS-8374 is a promising candidate to be further assessed as a new antiretroviral agent with potential for clinical efficacy in both treatment-naïve and -experienced patients. PMID:21245449

  15. CCR5 antibodies HGS004 and HGS101 preferentially inhibit drug-bound CCR5 infection and restore drug sensitivity of Maraviroc-resistant HIV-1 in primary cells

    SciTech Connect

    Latinovic, Olga; Reitz, Marvin; Le, Nhut M.; Foulke, James S.; Faetkenheuer, Gerd; Lehmann, Clara; Redfield, Robert R.; Heredia, Alonso

    2011-03-01

    R5 HIV-1 strains resistant to the CCR5 antagonist Maraviroc (MVC) can use drug-bound CCR5. We demonstrate that MVC-resistant HIV-1 exhibits delayed kinetics of coreceptor engagement and fusion during drug-bound versus free CCR5 infection of cell lines. Antibodies directed against the second extracellular loop (ECL2) of CCR5 had greater antiviral activity against MVC-bound compared to MVC-free CCR5 infection. However, in PBMCs, only ECL2 CCR5 antibodies HGS004 and HGS101, but not 2D7, inhibited infection by MVC resistant HIV-1 more potently with MVC-bound than with free CCR5. In addition, HGS004 and HGS101, but not 2D7, restored the antiviral activity of MVC against resistant virus in PBMCs. In flow cytometric studies, CCR5 binding by the HGS mAbs, but not by 2D7, was increased when PBMCs were treated with MVC, suggesting MVC increases exposure of the relevant epitope. Thus, HGS004 and HGS101 have antiviral mechanisms distinct from 2D7 and could help overcome MVC resistance.

  16. Virological Response to Tenofovir Disoproxil Fumarate in HIV-Positive Patients with Lamivudine-Resistant Hepatitis B Virus Coinfection in an Area Hyperendemic for Hepatitis B Virus Infection

    PubMed Central

    Huang, Yu-Shan; Chang, Sui-Yuan; Sheng, Wang-Huei; Sun, Hsin-Yun; Lee, Kuan-Yeh; Chuang, Yu-Chung; Su, Yi-Ching; Liu, Wen-Chun; Hung, Chien-Ching; Chang, Shan-Chwen

    2016-01-01

    Background Sequential addition of tenofovir disoproxil fumarate (TDF) is often needed for patients coinfected with HIV and hepatitis B virus (HBV) who develop HBV resistance to lamivudine after combination antiretroviral therapy (cART) containing only lamivudine for HBV. We aimed to assess the virological response of HBV to add-on TDF in patients coinfected with lamivudine-resistant HBV. Methods Between November 2010 and December 2014, 33 HIV/HBV-coinfected patients with lamivudine-resistant HBV and 56 with lamivudine-susceptible HBV were prospectively included. TDF plus lamivudine was used to substitute zidovudine or abacavir plus lamivudine contained in cART in patients with lamivudine-resistant HBV infection, while patients with lamivudine-susceptible HBV infection received TDF plus lamivudine as backbone of cART. Serial determinations of plasma HBV DNA load, HBV serologic markers, and liver and renal functions were performed after initiation of TDF-containing cART. Results Of 89 patients included, 38.6% tested positive for HBV envelope antigen (HBeAg) at baseline. The plasma HBV DNA level at enrollment of lamivudine-resistant and lamivudine-susceptible group were 6.1 ± 2.2 log10 and 6.0 ± 2.2 log10 copies/mL, respectively (p = 0.895). The cumulative percentage of HBV viral suppression in lamivudine-resistant and lamivudine-susceptible group was 81.8% and 91.1% at 48 weeks, respectively (p = 0.317), which increased to 86.7% and 96.2% at 96 weeks, respectively (p = 0.185). At 48 weeks, 11 patients testing HBeAg-positive at baseline failed to achieve viral suppression. In multivariate analysis, the only factor associated with failure to achieve viral suppression at 48 weeks was higher HBV DNA load at baseline (odds ratio, per 1-log10 copies/mL increase, 1.861; 95% CI, 1.204–2.878). At 48 weeks, HBeAg seroconversion was observed in 5 patients (1 in the lamivudine-resistant group and 4 in the lamivudine-susceptible group; p = 0.166). During the study period, HBs

  17. Short Communication: Population-Based Surveillance of HIV-1 Drug Resistance in Cameroonian Adults Initiating Antiretroviral Therapy According to the World Health Organization Guidelines.

    PubMed

    Fokam, Joseph; Takou, Désiré; Santoro, Maria Mercedes; Akonie, Haniel Ze; Kouanfack, Charles; Ceccherini-Silberstein, Francesca; Colizzi, Vittorio; Perno, Carlo-Federico; Ndjolo, Alexis

    2016-04-01

    With ongoing earlier enrollment on and rapid scale-up of antiretroviral therapy (ART) in Cameroon, there are increasing risks of transmitted HIV drug resistance (HIVDR) at population levels. We, therefore, evaluated the threshold of HIVDR in a population initiating ART, to inform on the effectiveness of first-line regimens, considering HIV-1 diversity, plasma viral load (PVL), and CD4-based disease progression. A total of 53 adults [median (interquartile range, IQR) CD4: 162 cell/mm(3) (48-284); median (IQR) PVL: 5.34 log10 RNA (4.17-6.42) copies/ml] initiating ART in 2014 at the Yaoundé Central Hospital were enrolled for HIV-1 protease-reverse transcriptase sequencing. Drug resistance mutations (DRMs) were interpreted using the 2009 World Health Organization (WHO) list versus the Stanford HIVdb algorithm version 7.0. Level of DRMs was low (3.77%) versus moderate (7.55%), respectively, following the WHO list (T69D, K103N) versus Stanford HIVdb (T69D, A98G, K103N, K238T), respectively. Prevailing clade was CRF02_AG (71.70%). Based on Stanford HIVdb, a slightly higher proportion of patients with DRMs were found among ones infected with CRF02_AG than in those non-CRF02_AG infected (7.89% vs. 6.67%, p = 1.000), with lower PVL (7.69% <5.5 vs. 0% ≥5.5 log10 RNA copies/ml, p = .488) and with higher CD4 counts (9.52% CD4 ≥200 vs. 3.33% CD4 <200 cells/mm(3), p = .749). Thresholds of DRMs suggest that standard first-line regimens currently used in Cameroon may remain effective at population levels, despite scale-up of ART in the country, pending adherence, and closed virological monitoring. With an intent-to-diagnose approach, the discrepant levels of DRMs support using Stanford HIVdb to evaluate initial ART, while revising the WHO list for surveillance.

  18. Field Evaluation of Dried Blood Spots for Routine HIV-1 Viral Load and Drug Resistance Monitoring in Patients Receiving Antiretroviral Therapy in Africa and Asia

    PubMed Central

    Monleau, Marjorie; Eymard-Duvernay, Sabrina; Dagnra, Anoumou; Kania, Dramane; Ngo-Giang-Huong, Nicole; Touré-Kane, Coumba; Truong, Lien X. T.; Chaix, Marie-Laure; Delaporte, Eric; Ayouba, Ahidjo; Peeters, Martine

    2014-01-01

    Dried blood spots (DBS) can be used in developing countries to alleviate the logistic constraints of using blood plasma specimens for viral load (VL) and HIV drug resistance (HIVDR) testing, but they should be assessed under field conditions. Between 2009 and 2011, we collected paired plasma-DBS samples from treatment-experienced HIV-1-infected adults in Burkina Faso, Cameroon, Senegal, Togo, Thailand, and Vietnam. The DBS were stored at an ambient temperature for 2 to 4 weeks and subsequently at −20°C before testing. VL testing was performed on the plasma samples and DBS using locally available methods: the Abbott m2000rt HIV-1 test, generic G2 real-time PCR, or the NucliSENS EasyQ version 1.2 test. In the case of virological failure (VF), i.e., a plasma VL of ≥1,000 copies/ml, HIVDR genotyping was performed on paired plasma-DBS samples. Overall, we compared 382 plasma-DBS sample pairs for DBS VL testing accuracy. The sensitivities of the different assays in different laboratories for detecting VF using DBS varied from 75% to 100% for the m2000rt test in labs B, C, and D, 91% to 93% for generic G2 real-time PCR in labs A and F, and 85% for the NucliSENS test in lab E. The specificities varied from 82% to 97% for the m2000rt and NucliSENS tests and reached only 60% for the generic G2 test. The NucliSENS test showed good agreement between plasma and DBS VL but underestimated the DBS VL. The lowest agreement was observed for the generic G2 test. Genotyping was successful for 96/124 (77%) DBS tested, and 75/96 (78%) plasma-DBS pairs had identical HIVDR mutations. Significant discrepancies in resistance interpretations were observed in 9 cases, 6 of which were from the same laboratory. DBS can be successfully used as an alternative to blood plasma samples for routine VL and HIVDR monitoring in African and Asian settings. However, the selection of an adequate VL measurement method and the definition of the VF threshold should be considered, and laboratory

  19. Molecular Dynamics Studies of the Inhibitor C34 Binding to the Wild-Type and Mutant HIV-1 gp41: Inhibitory and Drug Resistant Mechanism

    PubMed Central

    Ma, Xueting; Tan, Jianjun; Su, Min; Li, Chunhua; Zhang, Xiaoyi; Wang, Cunxin

    2014-01-01

    Mutations on NHR (N-terminal heptad repeat) associated with resistance to fusion inhibitor were observed. In addition, mutations on CHR (C-terminal heptad repeat) accompanied NHR mutations of gp41 are noted in many cases, like N43D/S138A double mutation. In this work, we explored the drug resistant mechanism of N43D mutation and the role of S138A second mutation in drug resistance. The binding modes of the wild type gp41 and the two mutants, N43D and N43D/S138A, with the HIV-1 fusion inhibitor C34, a 34-residue peptide mimicking CHR of gp41, were carried out by using molecular dynamics simulations. Based on the MD simulations, N43D mutation affects not only the stability of C34 binding, but also the binding energy of the inhibitor C34. Because N43D mutation may also affect the stable conformation of 6-HB, we introduced S138A second mutation into CHR of gp41 and determined the impact of this mutation. Through the comparative analysis of MD results of the N43D mutant and the N43D/S138A mutant, we found that CHR with S138A mutation shown more favorable affinity to NHR. Compelling differences in structures have been observed for these two mutants, particularly in the binding modes and in the hydrophobic interactions of the CHR (C34) located near the hydrophobic groove of the NHR. Because the conformational stability of 6-HB is important to HIV-1 infection, we suggested a hypothetical mechanism for the drug resistance: N43D single mutation not only impact the binding of inhibitor, but also affect the affinity between NHR and CHR of gp41, thus may reduce the rate of membrane fusion; compensatory mutation S138A would induce greater hydrophobic interactions between NHR and CHR, and render the CHR more compatible to NHR than inhibitors. PMID:25393106

  20. HIV/AIDS eradication.

    PubMed

    Marsden, Matthew D; Zack, Jerome A

    2013-07-15

    Antiretroviral therapy can inhibit HIV replication in patients and prevent progression to AIDS. However, it is not curative. Here we provide an overview of what antiretroviral drugs do and how the virus persists during therapy in rare reservoirs, such as latently infected CD4+ T cells. We also outline several innovative methods that are currently under development to eradicate HIV from infected individuals. These strategies include gene therapy approaches intended to create an HIV-resistant immune system, and activation/elimination approaches directed towards flushing out latent virus. This latter approach could involve the use of novel chemically synthesized analogs of natural activating agents.

  1. HIV Sequence Databases

    PubMed Central

    Kuiken, Carla; Korber, Bette; Shafer, Robert W.

    2008-01-01

    Two important databases are often used in HIV genetic research, the HIV Sequence Database in Los Alamos, which collects all sequences and focuses on annotation and data analysis, and the HIV RT/Protease Sequence Database in Stanford, which collects sequences associated with the development of viral resistance against anti-retroviral drugs and focuses on analysis of those sequences. The types of data and services these two databases offer, the tools they provide, and the way they are set up and operated are described in detail. PMID:12875108

  2. [News in HIV/AIDS therapy].

    PubMed

    Calmy, A; Cavassini, M

    2012-01-18

    Thirty years after the first described AIDS case, fifteen years after the advent of highly active antiretroviral therapy, miracles continue. 2011 has seen important developments, notably in the fields of prevention and of antiretroviral treatment. Condoms are no longer the only way of preventing sexually transmitted HIV: antiretroviral drugs used by HIV-negative individuals (to prevent HIV acquisition) or by HIV-infected individuals (to prevent transmission) are efficient new tools for such prevention. In parallel, new one pill once daily combination therapies have been submitted (or are in the process of being submitted) to regulatory authorities. Finally, the first phase I clinical trials of gene therapy are being presented later this year, allowing the hope of HIV cure.

  3. Women and HIV

    MedlinePlus

    ... How do you get HIV? How do you get tested for HIV? Is there are cure for HIV? What should pregnant women know about HIV? HIV Quick Facts What is HIV? HIV is the virus that causes AIDS. A person with HIV is called HIV positive (HIV+). HIV ...

  4. 4'-Thio-oligo-beta-D-ribonucleotides: synthesis of beta-4'-thio-oligouridylates, nuclease resistance, base pairing properties, and interaction with HIV-1 reverse transcriptase.

    PubMed Central

    Bellon, L; Barascut, J L; Maury, G; Divita, G; Goody, R; Imbach, J L

    1993-01-01

    We present the synthesis and the study of properties of a new series of modified oligonucleotides, namely 4'-thio-oligo-beta-D-ribonucleotides (4'-S-RNA). Homo-oligonucleotides of this class (4'-SU6 and 4'-SU12) were prepared from the previously known thionucleosides using the phosphoramidite methodology. The comparison of the substrate properties of 4'-SU6 and its natural analog U6 with respect to four nucleases indicates that the former is much more resistant than the latter. Such resistance to nucleases in addition to relatively high Tm values for 4'-SU12 hybridized with Poly(A) show that these new 4'-S-RNA are good candidates for potential antisense effects. The oligonucleotides 4'-SU6 and 4'-SU12 have been also evaluated as non sequence specific inhibitors of HIV-1 reverse transcriptase. All available evidences, based primarily on fluorescence measurements, are consistent with the binding of 4'-SU6 and 4'-SU12 to RT at a site which is different from the polymerase site of the enzyme. PMID:7683133

  5. Molecular mechanisms of resistance: free energy calculations of mutation effects on inhibitor binding to HIV-1 protease.

    PubMed Central

    Rick, S. W.; Topol, I. A.; Erickson, J. W.; Burt, S. K.

    1998-01-01

    The changes in the inhibitor binding constants due to the mutation of isoleucine to valine at position 84 of HIV-1 protease are calculated using molecular dynamics simulations. The calculations are done for three potent inhibitors--KNI-272, L-735,524 (indinavir or MK-639), and Ro 31-8959 (saquinavir). The calculations agree with the experimental data both in terms of an overall trend a