40 CFR 141.23 - Inorganic chemical sampling and analytical requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... highest analytical result. (e) All public water systems (community; non-transient, non-community; and... each subsequent sample during the quarter(s) which previously resulted in the highest analytical result...). For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www...
Burtis, Carl A.; Johnson, Wayne F.; Walker, William A.
1988-01-01
A rotor and disc assembly for use in a centrifugal fast analyzer. The assembly is designed to process multiple samples of whole blood followed by aliquoting of the resultant serum into precisely measured samples for subsequent chemical analysis. The assembly requires minimal operator involvement with no mechanical pipetting. The system comprises (1) a whole blood sample disc, (2) a serum sample disc, (3) a sample preparation rotor, and (4) an analytical rotor. The blood sample disc and serum sample disc are designed with a plurality of precision bore capillary tubes arranged in a spoked array. Samples of blood are loaded into the blood sample disc in capillary tubes filled by capillary action and centrifugally discharged into cavities of the sample preparation rotor where separation of serum and solids is accomplished. The serum is loaded into the capillaries of the serum sample disc by capillary action and subsequently centrifugally expelled into cuvettes of the analytical rotor for analysis by conventional methods.
High throughput liquid absorption preconcentrator sampling instrument
Zaromb, Solomon; Bozen, Ralph M.
1992-01-01
A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis.
High-throughput liquid-absorption preconcentrator sampling methods
Zaromb, Solomon
1994-01-01
A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis.
High throughput liquid absorption preconcentrator sampling instrument
Zaromb, S.; Bozen, R.M.
1992-12-22
A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis. 12 figs.
High-throughput liquid-absorption preconcentrator sampling methods
Zaromb, S.
1994-07-12
A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis. 12 figs.
Wilson, Walter B; Costa, Andréia A; Wang, Huiyong; Dias, José A; Dias, Sílvia C L; Campiglia, Andres D
2012-07-06
The analytical performance of BEA - a commercial zeolite - is evaluated for the pre-concentration of fifteen Environmental Protection Agency - polycyclic aromatic hydrocarbons and their subsequent HPLC analysis in tap and lake water samples. The pre-concentration factors obtained with BEA have led to a method with excellent analytical figures of merit. One milliliter aliquots were sufficient to obtain excellent precision of measurements at the parts-per-trillion concentration level with relative standard deviations varying from 4.1% (dibenzo[a,h]anthracene) to 13.4% (pyrene). The limits of detection were excellent as well and varied between 1.1 (anthracene) and 49.9 ng L(-1) (indeno[1,2,3-cd]pyrene). The recovery values of all the studied compounds meet the criterion for regulated polycyclic aromatic hydrocarbons, which mandates relative standard deviations equal or lower than 25%. The small volume of organic solvents (100 μL per sample) and amount of BEA (2 mg per sample) makes sample pre-concentration environmentally friendly and cost effective. The extraction procedure is well suited for numerous samples as the small working volume (1 mL) facilitates the implementation of simultaneous sample extraction. These are attractive features when routine monitoring of numerous samples is contemplated. Copyright © 2012 Elsevier B.V. All rights reserved.
MASS SPECTROMETRY-BASED METABOLOMICS
Dettmer, Katja; Aronov, Pavel A.; Hammock, Bruce D.
2007-01-01
This review presents an overview of the dynamically developing field of mass spectrometry-based metabolomics. Metabolomics aims at the comprehensive and quantitative analysis of wide arrays of metabolites in biological samples. These numerous analytes have very diverse physico-chemical properties and occur at different abundance levels. Consequently, comprehensive metabolomics investigations are primarily a challenge for analytical chemistry and specifically mass spectrometry has vast potential as a tool for this type of investigation. Metabolomics require special approaches for sample preparation, separation, and mass spectrometric analysis. Current examples of those approaches are described in this review. It primarily focuses on metabolic fingerprinting, a technique that analyzes all detectable analytes in a given sample with subsequent classification of samples and identification of differentially expressed metabolites, which define the sample classes. To perform this complex task, data analysis tools, metabolite libraries, and databases are required. Therefore, recent advances in metabolomics bioinformatics are also discussed. PMID:16921475
Seabird tissue archival and monitoring project: Protocol for collecting and banking seabird eggs
Weston-York, Geoff; Porter, Barbara J.; Pugh, Rebecca S.; Roseneau, David G.; Simac, Kristin S.; Becker, Paul R.; Thorsteinson, Lyman K.; Wise, Stephen A.
2001-01-01
Archiving biological and environmental samples for retrospective analysis is a major component of systematic environmental monitoring. The long-term storage of carefully selected, representative samples in an environmental specimen bank is an important complement to the real-time monitoring of the environment. These archived samples permit:The use of subsequently developed innovative analytical technology that was not available at the time the samples were archived, for clear state-of-art identification an~ quantification of analytes of interest,The identification and quantification of analytes that are of subsequent interest but that were not of interest at the time the samples were archived, andThe comparison of present and past analytical techniques and values, providing continued credibility of past analytical values, and allowing flexibility in environmental monitoring programs.Seabirds, including albatrosses, pelicans, cormorants, terns, kittiwakes, murres, guillemots, and puffins spend most of their lives at sea and have special adaptations for feeding in the marine environment, including the ability to excrete the excess salt obtained from ingesting seawater. Many species nest in dense groups (colonies) on steep, precipitous sea-cliffs and headlands.Seabirds are long-lived and slow to mature. They occupy high positions in the marine food web and are considered sensitive indicators for the marine environment (prey includes krill, small fish, and squid). Breeding success, timing of nesting, diets, and survival rates may provide early indications of changing environmental conditions (e.g., see Hatch et aI., 1993). Chemical analysis of seabird tissues, including egg contents, can be particularly useful in determining whether contaminants (and potential biological effects) associated with human industrial activities, such as offshore petroleum and mineral exploration and development, are accumulating in marine environments. The collection and archival of seabird tissues over a period of several years will be a resource for future analyses, providing samples that can be used to determine historical baseline contaminant levels.
Kristensen, Anne F; Kristensen, Søren R; Falkmer, Ursula; Münster, Anna-Marie B; Pedersen, Shona
2018-05-01
The Calibrated Automated Thrombography (CAT) is an in vitro thrombin generation (TG) assay that holds promise as a valuable tool within clinical diagnostics. However, the technique has a considerable analytical variation, and we therefore, investigated the analytical and between-subject variation of CAT systematically. Moreover, we assess the application of an internal standard for normalization to diminish variation. 20 healthy volunteers donated one blood sample which was subsequently centrifuged, aliquoted and stored at -80 °C prior to analysis. The analytical variation was determined on eight runs, where plasma from the same seven volunteers was processed in triplicates, and for the between-subject variation, TG analysis was performed on plasma from all 20 volunteers. The trigger reagents used for the TG assays included both PPP reagent containing 5 pM tissue factor (TF) and PPPlow with 1 pM TF. Plasma, drawn from a single donor, was applied to all plates as an internal standard for each TG analysis, which subsequently was used for normalization. The total analytical variation for TG analysis performed with PPPlow reagent is 3-14% and 9-13% for PPP reagent. This variation can be minimally reduced by using an internal standard but mainly for ETP (endogenous thrombin potential). The between-subject variation is higher when using PPPlow than PPP and this variation is considerable higher than the analytical variation. TG has a rather high inherent analytical variation but considerable lower than the between-subject variation when using PPPlow as reagent.
Malys, Brian J; Owens, Kevin G
2017-05-15
Matrix-assisted laser desorption/ionization (MALDI) is widely used as the ionization method in high-resolution chemical imaging studies that seek to visualize the distribution of analytes within sectioned biological tissues. This work extends the use of electrospray deposition (ESD) to apply matrix with an additional solvent spray to incorporate and homogenize analyte within the matrix overlayer. Analytes and matrix are sequentially and independently applied by ESD to create a sample from which spectra are collected, mimicking a MALDI imaging mass spectrometry (IMS) experiment. Subsequently, an incorporation spray consisting of methanol is applied by ESD to the sample and another set of spectra are collected. The spectra prior to and after the incorporation spray are compared to evaluate the improvement in the analyte signal. Prior to the incorporation spray, samples prepared using α-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB) as the matrix showed low signal while the sample using sinapinic acid (SA) initially exhibited good signal. Following the incorporation spray, the sample using SA did not show an increase in signal; the sample using DHB showed moderate gain factors of 2-5 (full ablation spectra) and 12-336 (raster spectra), while CHCA samples saw large increases in signal, with gain factors of 14-172 (full ablation spectra) and 148-1139 (raster spectra). The use of an incorporation spray to apply solvent by ESD to a matrix layer already deposited by ESD provides an increase in signal by both promoting incorporation of the analyte within and homogenizing the distribution of the incorporated analyte throughout the matrix layer. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Mercury Vacuum Cleaner, Operational Test and Evaluation
1981-03-01
Indirect readings were obtained by air sampling with hopcalite tubes and subsequent analysis by the USAF OEHL Analytical Services Division. - r...during the operational and storage modes of the MRS-3 vacuum. During the operational mode, indirect ( hopcalite ) air sampling was periodically taken at...from the top and bottom sides of the HEPA and charcoal filter. During the storage mode, indirect ( hopcalite and dosimeter coil) air sampling was
Sacher, Frank; Raue, Brigitte; Brauch, Heinz-Jürgen
2005-08-26
In this paper, an analytical method for the determination of six iodinated X-ray contrast agents (amidotrizoic acid, iohexol, iomeprol, iopamidol, iopromide, and ioxitalamic acid), iodide, and iodate in water samples is presented. The method is based on a separation of the analytes by ion chromatography (IC) and a subsequent detection by inductively-coupled plasma mass spectrometry (ICP-MS). The method was optimised with respect to separation conditions (column type and eluent composition) and extensively validated. Without pre-concentration of the samples, limits of detection below 0.2 microg/l could be achieved whereby reproducibility was below 6% for all compounds under investigation.
Paper Capillary Enables Effective Sampling for Microfluidic Paper Analytical Devices.
Shangguan, Jin-Wen; Liu, Yu; Wang, Sha; Hou, Yun-Xuan; Xu, Bi-Yi; Xu, Jing-Juan; Chen, Hong-Yuan
2018-06-06
Paper capillary is introduced to enable effective sampling on microfluidic paper analytical devices. By coupling mac-roscale capillary force of paper capillary and microscale capillary forces of native paper, fluid transport can be flexibly tailored with proper design. Subsequently, a hybrid-fluid-mode paper capillary device was proposed, which enables fast and reliable sampling in an arrayed form, with less surface adsorption and bias for different components. The resulting device thus well supports high throughput, quantitative, and repeatable assays all by hands operation. With all these merits, multiplex analysis of ions, proteins, and microbe have all been realized on this platform, which has paved the way to level-up analysis on μPADs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ElNaggar, Mariam S; Barbier, Charlotte N; Van Berkel, Gary J
A coaxial geometry liquid microjunction surface sampling probe (LMJ-SSP) enables direct extraction of analytes from surfaces for subsequent analysis by techniques like mass spectrometry. Solution dynamics at the probe-to-sample surface interface in the LMJ-SSP has been suspected to influence sampling efficiency and dispersion but has not been rigorously investigated. The effect on flow dynamics and analyte transport to the mass spectrometer caused by coaxial retraction of the inner and outer capillaries from each other and the surface during sampling with a LMJ-SSP was investigated using computational fluid dynamics and experimentation. A transparent LMJ-SSP was constructed to provide the means formore » visual observation of the dynamics of the surface sampling process. Visual observation, computational fluid dynamics (CFD) analysis, and experimental results revealed that inner capillary axial retraction from the flush position relative to the outer capillary transitioned the probe from a continuous sampling and injection mode through an intermediate regime to sample plug formationmode caused by eddy currents at the sampling end of the probe. The potential for analytical implementation of these newly discovered probe operational modes is discussed.« less
Role of microextraction sampling procedures in forensic toxicology.
Barroso, Mário; Moreno, Ivo; da Fonseca, Beatriz; Queiroz, João António; Gallardo, Eugenia
2012-07-01
The last two decades have provided analysts with more sensitive technology, enabling scientists from all analytical fields to see what they were not able to see just a few years ago. This increased sensitivity has allowed drug detection at very low concentrations and testing in unconventional samples (e.g., hair, oral fluid and sweat), where despite having low analyte concentrations has also led to a reduction in sample size. Along with this reduction, and as a result of the use of excessive amounts of potentially toxic organic solvents (with the subsequent environmental pollution and costs associated with their proper disposal), there has been a growing tendency to use miniaturized sampling techniques. Those sampling procedures allow reducing organic solvent consumption to a minimum and at the same time provide a rapid, simple and cost-effective approach. In addition, it is possible to get at least some degree of automation when using these techniques, which will enhance sample throughput. Those miniaturized sample preparation techniques may be roughly categorized in solid-phase and liquid-phase microextraction, depending on the nature of the analyte. This paper reviews recently published literature on the use of microextraction sampling procedures, with a special focus on the field of forensic toxicology.
Evaluation of analytical performance based on partial order methodology.
Carlsen, Lars; Bruggemann, Rainer; Kenessova, Olga; Erzhigitov, Erkin
2015-01-01
Classical measurements of performances are typically based on linear scales. However, in analytical chemistry a simple scale may be not sufficient to analyze the analytical performance appropriately. Here partial order methodology can be helpful. Within the context described here, partial order analysis can be seen as an ordinal analysis of data matrices, especially to simplify the relative comparisons of objects due to their data profile (the ordered set of values an object have). Hence, partial order methodology offers a unique possibility to evaluate analytical performance. In the present data as, e.g., provided by the laboratories through interlaboratory comparisons or proficiency testings is used as an illustrative example. However, the presented scheme is likewise applicable for comparison of analytical methods or simply as a tool for optimization of an analytical method. The methodology can be applied without presumptions or pretreatment of the analytical data provided in order to evaluate the analytical performance taking into account all indicators simultaneously and thus elucidating a "distance" from the true value. In the present illustrative example it is assumed that the laboratories analyze a given sample several times and subsequently report the mean value, the standard deviation and the skewness, which simultaneously are used for the evaluation of the analytical performance. The analyses lead to information concerning (1) a partial ordering of the laboratories, subsequently, (2) a "distance" to the Reference laboratory and (3) a classification due to the concept of "peculiar points". Copyright © 2014 Elsevier B.V. All rights reserved.
Burtis, C.A.; Johnson, W.F.; Walker, W.A.
1985-08-05
A rotor and disc assembly for use in a centrifugal fast analyzer. The assembly is designed to process multiple samples of whole blood followed by aliquoting of the resultant serum into precisely measured samples for subsequent chemical analysis. The assembly requires minimal operator involvement with no mechanical pipetting. The system comprises: (1) a whole blood sample disc; (2) a serum sample disc; (3) a sample preparation rotor; and (4) an analytical rotor. The blood sample disc and serum sample disc are designed with a plurality of precision bore capillary tubes arranged in a spoked array. Samples of blood are loaded into the blood sample disc by capillary action and centrifugally discharged into cavities of the sample preparation rotor where separation of serum and solids is accomplished. The serum is loaded into the capillaries of the serum sample disc by capillary action and subsequently centrifugally expelled into cuvettes of the analyticaly rotor for conventional methods. 5 figs.
Turbidimetric Estimation of Alcohol Concentration in Aqueous-Alcohol Mixtures
ERIC Educational Resources Information Center
Swinehart, William E.; Zimmerman, Bonnie L.; Powell, Kinsey; Moore, Stephen D.; Iordanov, Tzvetelin D.
2014-01-01
A concept of the turbidimetric method for determining the concentration of ethanol in water-ethanol mixtures is described. A closed sample cell containing the analyte was heated to achieve vapor saturation and subsequent condensation. As the condensation occurred, the decrease in percentage transmittance with time due to light scattering was…
NASA Astrophysics Data System (ADS)
Ghorbani, A.; Farahani, M. Mahmoodi; Rabbani, M.; Aflaki, F.; Waqifhosain, Syed
2008-01-01
In this paper we propose uncertainty estimation for the analytical results we obtained from determination of Ni, Pb and Al by solidphase extraction and inductively coupled plasma optical emission spectrometry (SPE-ICP-OES). The procedure is based on the retention of analytes in the form of 8-hydroxyquinoline (8-HQ) complexes on a mini column of XAD-4 resin and subsequent elution with nitric acid. The influence of various analytical parameters including the amount of solid phase, pH, elution factors (concentration and volume of eluting solution), volume of sample solution, and amount of ligand on the extraction efficiency of analytes was investigated. To estimate the uncertainty of analytical result obtained, we propose assessing trueness by employing spiked sample. Two types of bias are calculated in the assessment of trueness: a proportional bias and a constant bias. We applied Nested design for calculating proportional bias and Youden method to calculate the constant bias. The results we obtained for proportional bias are calculated from spiked samples. In this case, the concentration found is plotted against the concentration added and the slop of standard addition curve is an estimate of the method recovery. Estimated method of average recovery in Karaj river water is: (1.004±0.0085) for Ni, (0.999±0.010) for Pb and (0.987±0.008) for Al.
Williamson, K.S.; Petty, J.D.; Huckins, J.N.; Lebo, J.A.; Kaiser, E.M.
2002-01-01
High performance liquid chromatography coupled with programmable fluorescence detection was employed for the determination of 15 priority pollutant polycyclic aromatic hydrocarbons (PPPAHs) in water, sediment, and semipermeable membrane devices (SPMDs). Chromatographic separation using this analytical method facilitates selectivity, sensitivity (ppt levels), and can serve as a non-destructive technique for subsequent analysis by other chromatographic and spectroscopic techniques. Extraction and sample cleanup procedures were also developed for water, sediment, and SPMDs using various chromatographic and wet chemical methods. The focus of this publication is to examine the enrichment techniques and the analytical methodologies used in the isolation, characterization, and quantitation of 15 PPPAHs in different sample matrices.
Lindley, C.E.; Burkhardt, M.R.; DeRusseau, S.N.
1994-01-01
Organic explosives are determined in samples of ground water and surface water with emphasis on identifying and quantifying trinitrotoluene (TNT) metabolites. Water samples are filtered to remove suspended particulate material and passed through a polystyrene divinylbenzene-packed cartridge by a vacuum-extraction system. The target analytes subsequently are eluted with acetonitrile. A high-performance liquid chromatograph (HPLC) equipped with a photodiode-array detector is used for sample analysis. Analytes are separated on an octadecylsilane column using a methanol, water, and acetonitrile gradient elution. The compounds 2,4- and 2,6-dinitrotoluene are separated through an independent, isocratic elution. Method detection limits, on the basis of a 1-liter sample size, range from 0.11 to 0.32 microgram per liter. Recoveries averaged from 71 to 101 percent for 13 analytes in one set of HPLC-grade water fortified at about 1 microgram per liter. The method is limited to use by analysts experienced in handling explosive materials. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gałuszka, Agnieszka, E-mail: Agnieszka.Galuszka@ujk.edu.pl; Migaszewski, Zdzisław M.; Namieśnik, Jacek
The recent rapid progress in technology of field portable instruments has increased their applications in environmental sample analysis. These instruments offer a possibility of cost-effective, non-destructive, real-time, direct, on-site measurements of a wide range of both inorganic and organic analytes in gaseous, liquid and solid samples. Some of them do not require the use of reagents and do not produce any analytical waste. All these features contribute to the greenness of field portable techniques. Several stationary analytical instruments have their portable versions. The most popular ones include: gas chromatographs with different detectors (mass spectrometer (MS), flame ionization detector, photoionization detector),more » ultraviolet–visible and near-infrared spectrophotometers, X-ray fluorescence spectrometers, ion mobility spectrometers, electronic noses and electronic tongues. The use of portable instruments in environmental sample analysis gives a possibility of on-site screening and a subsequent selection of samples for routine laboratory analyses. They are also very useful in situations that require an emergency response and for process monitoring applications. However, quantification of results is still problematic in many cases. The other disadvantages include: higher detection limits and lower sensitivity than these obtained in laboratory conditions, a strong influence of environmental factors on the instrument performance and a high possibility of sample contamination in the field. This paper reviews recent applications of field portable instruments in environmental sample analysis and discusses their analytical capabilities. - Highlights: • Field portable instruments are widely used in environmental sample analysis. • Field portable instruments are indispensable for analysis in emergency response. • Miniaturization of field portable instruments reduces resource consumption. • In situ analysis is in agreement with green analytical chemistry principles. • Performance requirements in field analysis stimulate technological progress.« less
Liu, Xiaofang; Zhou, Shu; Zhu, Quanfei; Ye, Yong; Chen, Huaixia
2014-09-01
A sample pretreatment method, solid-phase extraction combined with dispersive liquid-liquid microextraction (SPE-DLLME), was established for the sensitive determination of polycyclic aromatic hydrocarbons (PAHs) in smoked bacon samples. In the SPE-DLLME process, three PAHs including naphthalene (Naph), phenanthrene (Phen) and pyrene (Pyr) were extracted from samples and transferred into C18 SPE cartridge. The target analytes were subsequently eluted with 1.2 ml of acetonitrile-dichloromethane (5:1, v/v) mixture solution. The eluent was injected directly into the 5.0 ml ultrapure water in the subsequent DLLME procedure. The sedimented phase was concentrated under a gentle nitrogen flow to 120.0 µl. Finally, the analytes in the extraction solvent were determined by high-performance liquid chromatography with a ultra-violet detector. Some important extraction parameters affecting the performance, such as the sample solution flow rate, breakthrough volume, salt addition as well as the type and volume of the elution solvent were optimized. The developed method provided an ultra enrichment factors for PAHs ranged from 3478 to 3824. The method was applied for the selective extraction and sensitive determination of PAHs in smoked bacon samples. The limits of detection (S/N = 3) were 0.05, 0.01, 0.02 μg kg(-1) for Naph, Phen, Pyr, respectively. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gałuszka, Agnieszka; Migaszewski, Zdzisław M; Namieśnik, Jacek
2015-07-01
The recent rapid progress in technology of field portable instruments has increased their applications in environmental sample analysis. These instruments offer a possibility of cost-effective, non-destructive, real-time, direct, on-site measurements of a wide range of both inorganic and organic analytes in gaseous, liquid and solid samples. Some of them do not require the use of reagents and do not produce any analytical waste. All these features contribute to the greenness of field portable techniques. Several stationary analytical instruments have their portable versions. The most popular ones include: gas chromatographs with different detectors (mass spectrometer (MS), flame ionization detector, photoionization detector), ultraviolet-visible and near-infrared spectrophotometers, X-ray fluorescence spectrometers, ion mobility spectrometers, electronic noses and electronic tongues. The use of portable instruments in environmental sample analysis gives a possibility of on-site screening and a subsequent selection of samples for routine laboratory analyses. They are also very useful in situations that require an emergency response and for process monitoring applications. However, quantification of results is still problematic in many cases. The other disadvantages include: higher detection limits and lower sensitivity than these obtained in laboratory conditions, a strong influence of environmental factors on the instrument performance and a high possibility of sample contamination in the field. This paper reviews recent applications of field portable instruments in environmental sample analysis and discusses their analytical capabilities. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tyburska, Anna; Jankowski, Krzysztof; Rodzik, Agnieszka
2011-07-01
A hydride generation headspace solid phase microextraction technique has been developed in combination with optical emission spectrometry for determination of total arsenic and selenium. Hydrides were generated in a 10 mL volume septum-sealed vial and subsequently collected onto a polydimethylsiloxane/Carboxen solid phase microextraction fiber from the headspace of sample solution. After completion of the sorption, the fiber was transferred into a thermal desorption unit and the analytes were vaporized and directly introduced into argon inductively coupled plasma or helium microwave induced plasma radiation source. Experimental conditions of hydride formation reaction as well as sorption and desorption of analytes have been optimized showing the significant effect of the type of the solid phase microextraction fiber coating, the sorption time and hydrochloric acid concentration of the sample solution on analytical characteristics of the method developed. The limits of detection of arsenic and selenium were 0.1 and 0.8 ng mL - 1 , respectively. The limit of detection of selenium could be improved further using biosorption with baker's yeast Saccharomyces cerevisiae for analyte preconcentration. The technique was applied for the determination of total As and Se in real samples.
Ma, Jian; Yang, Bo; Byrne, Robert H
2012-06-15
Determination of chromate at low concentration levels in drinking water is an important analytical objective for both human health and environmental science. Here we report the use of solid phase extraction (SPE) in combination with a custom-made portable light-emitting diode (LED) spectrophotometer to achieve detection of chromate in the field at nanomolar levels. The measurement chemistry is based on a highly selective reaction between 1,5-diphenylcarbazide (DPC) and chromate under acidic conditions. The Cr-DPC complex formed in the reaction can be extracted on a commercial C18 SPE cartridge. Concentrated Cr-DPC is subsequently eluted with methanol and detected by spectrophotometry. Optimization of analytical conditions involved investigation of reagent compositions and concentrations, eluent type, flow rate (sample loading), sample volume, and stability of the SPE cartridge. Under optimized conditions, detection limits are on the order of 3 nM. Only 50 mL of sample is required for an analysis, and total analysis time is around 10 min. The targeted analytical range of 0-500 nM can be easily extended by changing the sample volume. Compared to previous SPE-based spectrophotometric methods, this analytical procedure offers the benefits of improved sensitivity, reduced sample consumption, shorter analysis time, greater operational convenience, and lower cost. Copyright © 2012 Elsevier B.V. All rights reserved.
Metabolic profiling of body fluids and multivariate data analysis.
Trezzi, Jean-Pierre; Jäger, Christian; Galozzi, Sara; Barkovits, Katalin; Marcus, Katrin; Mollenhauer, Brit; Hiller, Karsten
2017-01-01
Metabolome analyses of body fluids are challenging due pre-analytical variations, such as pre-processing delay and temperature, and constant dynamical changes of biochemical processes within the samples. Therefore, proper sample handling starting from the time of collection up to the analysis is crucial to obtain high quality samples and reproducible results. A metabolomics analysis is divided into 4 main steps: 1) Sample collection, 2) Metabolite extraction, 3) Data acquisition and 4) Data analysis. Here, we describe a protocol for gas chromatography coupled to mass spectrometry (GC-MS) based metabolic analysis for biological matrices, especially body fluids. This protocol can be applied on blood serum/plasma, saliva and cerebrospinal fluid (CSF) samples of humans and other vertebrates. It covers sample collection, sample pre-processing, metabolite extraction, GC-MS measurement and guidelines for the subsequent data analysis. Advantages of this protocol include: •Robust and reproducible metabolomics results, taking into account pre-analytical variations that may occur during the sampling process•Small sample volume required•Rapid and cost-effective processing of biological samples•Logistic regression based determination of biomarker signatures for in-depth data analysis.
Salmonella testing of pooled pre-enrichment broth cultures for screening multiple food samples.
Price, W R; Olsen, R A; Hunter, J E
1972-04-01
A method has been described for testing multiple food samples for Salmonella without loss in sensitivity. The method pools multiple pre-enrichment broth cultures into single enrichment broths. The subsequent stages of the Salmonella analysis are not altered. The method was found applicable to several dry food materials including nonfat dry milk, dried egg albumin, cocoa, cottonseed flour, wheat flour, and shredded coconut. As many as 25 pre-enrichment broth cultures were pooled without apparent loss in the sensitivity of Salmonella detection as compared to individual sample analysis. The procedure offers a simple, yet effective, way to increase sample capacity in the Salmonella testing of foods, particularly where a large proportion of samples ordinarily is negative. It also permits small portions of pre-enrichment broth cultures to be retained for subsequent individual analysis if positive tests are found. Salmonella testing of pooled pre-enrichment broths provides increased consumer protection for a given amount of analytical effort as compared to individual sample analysis.
Aguas, Patricia C; Fitzhenry, Matthew J; Giannikopoulos, Georgina; Varelis, Peter
2006-08-01
An accurate and precise method for the quantification of acrylamide using stable isotope dilution liquid chromatography-tandem mass spectrometry was developed and used to measure acrylamide in coffee and cocoa samples. The sample preparation involved extraction of the analyte and its internal standard, 13C3-acrylamide, into water and subsequent defatting of the aqueous extract with dichloromethane. An aliquot of the resulting aqueous extract was then azeotropically dried under reduced pressure and subsequently purified using an aminopropyl-bonded silica cartridge. The purified extracts were then chromatographed on a 5-microm 2.1 x 150 mm Hypercarb column, the effluent of which was monitored for the analyte and its internal standard using positive-ion APCI-selected reaction monitoring. The intra-laboratory reproducibility of the method, expressed as a relative coefficient of variation (%, n=5), was determined at four levels of concentration (12.3, 42.3, 139.3 and 464.8 microg kg(-1)) and was found to vary between 0.6-2.5%. The accuracy of the method was assessed using a reference sample of coffee. The average result obtained using our method differed from the assigned value of the reference material by less than 1%. An analysis of a cocoa sample revealed that the method is capable of precisely estimating acrylamide in challenging matrices down to a level of at least 12.3 microg kg(-1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skrodzki, P. J.; Becker, J. R.; Diwakar, P. K.
Laser-induced breakdown spectroscopy (LIBS) holds potential advantages in special nuclear material (SNM) sensing and nuclear forensics which require rapid analysis, minimal sample preparation and stand-off distance capability. SNM, such as U, however, result in crowded emission spectra with LIBS, and characteristic emission lines are challenging to discern. It is well-known that double-pulse LIBS (DPLIBS) improves the signal intensity for analytes over conventional single-pulse LIBS (SPLIBS). This study investigates U signal in a glass matrix using DPLIBS and compares to signal features obtained using SPLIBS. DPLIBS involves sequential firing of 1.06 µm Nd:YAG pre-pulse and 10.6 µm TEA CO2 heating pulsemore » in near collinear geometry. Optimization of experimental parameters including inter-pulse delay and energy follows identification of characteristic lines and signals for bulk analyte Ca and minor constituent analyte U for both DPLIBS and SPLIBS. Spatial and temporal coupling of the two pulses in the proposed DPLIBS technique yields improvements in analytical merits with negligible further damage to the sample compared to SPLIBS. Subsequently, the study discusses optimum plasma emission conditions of U lines and relative figures of merit in both SPLIBS and DPLIBS. Investigation into plasma characteristics also addresses plausible mechanisms related to observed U analyte signal variation between SPLIBS and DPLIBS.« less
Ghambarian, Mahnaz; Behbahani, Mohammad; Esrafili, Ali; Sobhi, Hamid Reza
2017-09-01
Herein, an amino-based silica-coated nanomagnetic sorbent was applied for the effective extraction of two chlorophenoxyacetic acids (2-methyl-4-chlorophenoxyacetic acid and 2,4-dichlorophenoxyacetic acid) from various water samples. The sorbent was successfully synthesized and subsequently characterized by scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. The analytes were extracted by the sorbent mainly through ionic interactions. Once the extraction of analytes was completed, they were desorbed from the sorbent and detected by high-performance liquid chromatography with ultraviolet detection. A number of factors affecting the extraction and desorption of the analytes were investigated in detail and the optimum conditions were established. Under the optimum conditions, the calibration curves were linear over the concentration range of 1-250, and based on a signal-to-noise ratio of 3, the method detection limits were determined to be 0.5 μg/L for both analytes. Additionally, a preconcentration factor of 314 was achieved for the analytes. The average relative recoveries obtained from the fortified water samples varied in the range of 91-108% with relative standard deviations of 2.9-8.3%. Finally, the method was determined to be robust and effective for environmental water analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Friedman, L.C.; Schroder, L.J.; Brooks, M.G.
1986-01-01
Solutions containing volatile organic compounds were prepared in organic-free water and 2% methanol and submitted to two U.S. Geological Survey laboratories. Data from the determination of volatile compounds in these samples were compared to analytical data for the same volatile compounds that had been kept in solutions 100 times more concentrated until immediately before analysis; there was no statistically significant difference in the analytical recoveries. Addition of 2% methanol to the storage containers hindered the recovery of bromomethane and vinyl chloride. Methanol addition did not enhance sample stability. Further, there was no statistically significant difference in results from the two laboratories, and the recovery efficiency was more than 80% in more than half of the determinations made. In a subsequent study, six of eight volatile compounds showed no significant loss of recovery after 34 days.
Márta, Zoltán; Bobály, Balázs; Fekete, Jenő; Magda, Balázs; Imre, Tímea; Mészáros, Katalin Viola; Bálint, Mária; Szabó, Pál Tamás
2018-02-20
Ultratrace analysis of sample components requires excellent analytical performance in terms of limits of quantitation (LOQ). Micro UHPLC coupled to sensitive tandem mass spectrometry provides state of the art solution for such analytical problems. Using on-line SPE with column switching on a micro UHPLC-MS/MS system allowed to decrease LOQ without any complex sample preparation protocol. The presented method is capable of reaching satisfactory low LOQ values for analysis of thirteen different steroid molecules from human plasma without the most commonly used off-line SPE or compound derivatization. Steroids were determined by using two simple sample preparation methods, based on lower and higher plasma steroid concentrations. In the first method, higher analyte concentrations were directly determined after protein precipitation with methanol. The organic phase obtained from the precipitation was diluted with water and directly injected into the LC-MS system. In the second method, low steroid levels were determined by concentrating the organic phase after steroid extraction. In this case, analytes were extracted with ethyl acetate and reconstituted in 90/10 water/acetonitrile following evaporation to dryness. This step provided much lower LOQs, outperforming previously published values. The method has been validated and subsequently applied to clinical laboratory measurement. Copyright © 2017 Elsevier B.V. All rights reserved.
Jessen, Torben E; Höskuldsson, Agnar T; Bjerrum, Poul J; Verder, Henrik; Sørensen, Lars; Bratholm, Palle S; Christensen, Bo; Jensen, Lene S; Jensen, Maria A B
2014-09-01
Direct measurement of chemical constituents in complex biologic matrices without the use of analyte specific reagents could be a step forward toward the simplification of clinical biochemistry. Problems related to reagents such as production errors, improper handling, and lot-to-lot variations would be eliminated as well as errors occurring during assay execution. We describe and validate a reagent free method for direct measurement of six analytes in human plasma based on Fourier-transform infrared spectroscopy (FTIR). Blood plasma is analyzed without any sample preparation. FTIR spectrum of the raw plasma is recorded in a sampling cuvette specially designed for measurement of aqueous solutions. For each analyte, a mathematical calibration process is performed by a stepwise selection of wavelengths giving the optimal least-squares correlation between the measured FTIR signal and the analyte concentration measured by conventional clinical reference methods. The developed calibration algorithms are subsequently evaluated for their capability to predict the concentration of the six analytes in blinded patient samples. The correlation between the six FTIR methods and corresponding reference methods were 0.87
Liu, Yue; Hu, Jia; Li, Yan; Li, Xiao-Shuang; Wang, Zhong-Liang
2016-10-01
A novel method with high sensitivity for the rapid determination of chrysin, apigenin and luteolin in environment water samples was developed by double-pumps controlled on-line solid-phase extraction (SPE) coupled with high-performance liquid chromatography (HPLC). In the developed technique, metal organic framework MIL-101 was synthesized and applied as a sorbent for SPE. The as-synthesized MIL-101 was characterized by scanning electron microscope, X-ray diffraction spectrometry, thermal gravimetric analysis and micropore physisorption analysis. The MIL-101 behaved as a fast kinetics in the adsorption of chrysin, apigenin and luteolin. On-line SPE of chrysin, apigenin and luteolin was processed by loading a sample solution at a flow rate of 1.0 mL/min for 10 min. The extracted analytes were subsequently eluted into a ZORBAX Bonus-RP analytical column (25 cm long × 4.6 mm i.d.) for HPLC separation under isocratic condition with a mobile phase (MeOH: ACN: 0.02 M H 3 PO 4 = 35:35:30) at a flow rate of 1.0 mL/min. Experimental conditions, including ionic strength, sample pH, sample loading rates, sample loading time and desorption analytes time, were further optimized to obtain efficient preconcentration and high-precision determination of the analytes mentioned above. The method achieved the merits of simplicity, rapidity, sensitivity, wide linear range and high sample throughput. The possible mechanism for the adsorption of flavonoids on MIL-101 was proposed. The developed method has been applied to determine trace chrysin, apigenin and luteolin in a variety of environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reverse phase protein microarrays: fluorometric and colorimetric detection.
Gallagher, Rosa I; Silvestri, Alessandra; Petricoin, Emanuel F; Liotta, Lance A; Espina, Virginia
2011-01-01
The Reverse Phase Protein Microarray (RPMA) is an array platform used to quantitate proteins and their posttranslationally modified forms. RPMAs are applicable for profiling key cellular signaling pathways and protein networks, allowing direct comparison of the activation state of proteins from multiple samples within the same array. The RPMA format consists of proteins immobilized directly on a nitrocellulose substratum. The analyte is subsequently probed with a primary antibody and a series of reagents for signal amplification and detection. Due to the diversity, low concentration, and large dynamic range of protein analytes, RPMAs require stringent signal amplification methods, high quality image acquisition, and software capable of precisely analyzing spot intensities on an array. Microarray detection strategies can be either fluorescent or colorimetric. The choice of a detection system depends on (a) the expected analyte concentration, (b) type of microarray imaging system, and (c) type of sample. The focus of this chapter is to describe RPMA detection and imaging using fluorescent and colorimetric (diaminobenzidine (DAB)) methods.
D'Amato, Marilena; Turrini, Aida; Aureli, Federica; Moracci, Gabriele; Raggi, Andrea; Chiaravalle, Eugenio; Mangiacotti, Michele; Cenci, Telemaco; Orletti, Roberta; Candela, Loredana; di Sandro, Alessandra; Cubadda, Francesco
2013-01-01
This article presents the methodology of the Italian Total Diet Study 2012-2014 aimed at assessing the dietary exposure of the general Italian population to selected nonessential trace elements (Al, inorganic As, Cd, Pb, methyl-Hg, inorganic Hg, U) and radionuclides (40K, 134Cs, 137Cs, 90Sr). The establishment of the TDS food list, the design of the sampling plan, and details about the collection of food samples, their standardized culinary treatment, pooling into analytical samples and subsequent sample treatment are described. Analytical techniques and quality assurance are discussed, with emphasis on the need for speciation data and for minimizing the percentage of left-censored data so as to reduce uncertainties in exposure assessment. Finally the methodology for estimating the exposure of the general population and of population subgroups according to age (children, teenagers, adults, and the elderly) and gender, both at the national level and for each of the four main geographical areas of Italy, is presented.
A review of blood sample handling and pre-processing for metabolomics studies.
Hernandes, Vinicius Veri; Barbas, Coral; Dudzik, Danuta
2017-09-01
Metabolomics has been found to be applicable to a wide range of clinical studies, bringing a new era for improving clinical diagnostics, early disease detection, therapy prediction and treatment efficiency monitoring. A major challenge in metabolomics, particularly untargeted studies, is the extremely diverse and complex nature of biological specimens. Despite great advances in the field there still exist fundamental needs for considering pre-analytical variability that can introduce bias to the subsequent analytical process and decrease the reliability of the results and moreover confound final research outcomes. Many researchers are mainly focused on the instrumental aspects of the biomarker discovery process, and sample related variables sometimes seem to be overlooked. To bridge the gap, critical information and standardized protocols regarding experimental design and sample handling and pre-processing are highly desired. Characterization of a range variation among sample collection methods is necessary to prevent results misinterpretation and to ensure that observed differences are not due to an experimental bias caused by inconsistencies in sample processing. Herein, a systematic discussion of pre-analytical variables affecting metabolomics studies based on blood derived samples is performed. Furthermore, we provide a set of recommendations concerning experimental design, collection, pre-processing procedures and storage conditions as a practical review that can guide and serve for the standardization of protocols and reduction of undesirable variation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Offline solid phase microextraction sampling system
Harvey, Chris A.
2008-12-16
An offline solid phase microextraction (SPME) sampling apparatus for enabling SPME samples to be taken a number of times from a previously collected fluid sample (e.g. sample atmosphere) stored in a fused silica lined bottle which keeps volatile organics in the fluid sample stable for weeks at a time. The offline SPME sampling apparatus has a hollow body surrounding a sampling chamber, with multiple ports through which a portion of a previously collected fluid sample may be (a) released into the sampling chamber, (b) SPME sampled to collect analytes for subsequent GC analysis, and (c) flushed/purged using a fluidically connected vacuum source and purging fluid source to prepare the sampling chamber for additional SPME samplings of the same original fluid sample, such as may have been collected in situ from a headspace.
A measurement system for the atmospheric trace gases CH4 and CO
NASA Technical Reports Server (NTRS)
Condon, E. P.
1977-01-01
A system for measuring ambient clean air levels of the atmospheric trace gases methane and carbon monoxide is described. The analytical method consists of a gas chromatographic technique that incorporates sample preconcentration with catalytic conversion of CO to CH4 and subsequent flame ionization detection of these gases. The system has sufficient sensitivity and repeatability to make the precise measurements required to establish concentration profiles for CO and CH4 in the planetary boundary layer. A discussion of the bottle sampling program being conducted to obtain the samples for the concentration profiles is also presented.
Analytical procedure for the determination of very volatile organic compounds (C3-C6) in indoor air.
Schieweck, Alexandra; Gunschera, Jan; Varol, Deniz; Salthammer, Tunga
2018-05-01
The substance group of very volatile organic compounds (VVOCs) is moving into the focus of indoor air analysis, facing ongoing regulations at international and European levels targeting on indoor air quality and human health. However, there exists at present no validated analysis for the identification and quantification of VVOCs in indoor air. Therefore, the present study targeted on the development of an analytical method in order to sample the maximum possible quantity of VVOCs in indoor air on solid sorbents with subsequent analysis by thermal desorption and coupled gas chromatography/mass spectrometry (TDS-GC/MS). For this purpose, it was necessary to investigate the performance of available sorbents and to optimize the parameters of GC/MS analysis. Stainless steel tubes filled with Carbograph 5TD were applied successfully for low-volume sampling (2-4 l) with minimal breakthrough (< 1%). With the developed method, VVOCs between C 3 and C 6 of different volatility and polarity can be detected even in trace quantities with low limits of quantitation (LOQ; 1-3 μg m -3 ). Limitations occur for low molecular weight compounds ≤C 3 , especially for polar substances, such as carboxylic acids and for some aldehydes and alcohols. Consequently, established methods for the quantification of these compounds in indoor air cannot be fully substituted yet. At least three different analytical techniques are needed to cover the large spectrum of relevant VVOCs in indoor air. In addition, unexpected reaction products might occur and need to be taken into account to avoid misinterpretation of chromatographic signals. Graphical abstract Solid sorbent sampling of VVOCs (C 3 -C 6 ) in indoor air with subsequent TDS-GC/MS analysis.
Horowltz, A.J.
1986-01-01
Centrifugation, settling/centrifugation, and backflush-filtration procedures have been tested for the concentration of suspended sediment from water for subsequent trace-metal analysis. Either of the first two procedures is comparable with in-line filtration and can be carried out precisely, accurately, and with a facility that makes the procedures amenable to large-scale sampling and analysis programs. There is less potential for post-sampling alteration of suspended sediment-associated metal concentrations with the centrifugation procedure because sample stabilization is accomplished more rapidly than with settling/centrifugation. Sample preservation can be achieved by chilling. Suspended sediment associated metal levels can best be determined by direct analysis but can also be estimated from the difference between a set of unfiltered-digested and filtered subsamples. However, when suspended sediment concentrations (<150 mg/L) or trace-metal levels are low, the direct analysis approach makes quantitation more accurate and precise and can be accomplished with simpler analytical procedures.
Carbon based sample supports and matrices for laser desorption/ ionization mass spectrometry.
Rainer, Matthias; Najam-ul-Haq, Muhammad; Huck, Christian W; Vallant, Rainer M; Heigl, Nico; Hahn, Hans; Bakry, Rania; Bonn, Günther K
2007-01-01
Laser desorption/ionization mass spectrometry (LDI-MS) is a widespread and powerful technique for mass analysis allowing the soft ionization of molecules such as peptides, proteins and carbohydrates. In many applications, an energy absorbing matrix has to be added to the analytes in order to protect them from being fragmented by direct laser beam. LDI-MS in conjunction with matrix is commonly referred as matrix-assisted LDI (MALDI). One of the striking disadvantages of this method is the desorption of matrix molecules, which causes interferences originating from matrix background ions in lower mass range (< 1000 Da). This has been led to the development of a variety of different carbon based LDI sample supports, which are capable of absorbing laser light and simultaneously transfering energy to the analytes for desorption. Furthermore carbon containing sample supports are used as carrier materials for the specific binding and preconcentration of molecules out of complex samples. Their subsequent analysis with MALDI mass spectrometry allows performing studies in metabolomics and proteomics. Finally a thin layer of carbon significantly improves sensitivity concerning detection limit. Analytes in low femtomole and attomole range can be detected in this regard. In the present article, these aspects are reviewed from patents where nano-based carbon materials are comprehensively utilized.
Fan, Sufang; Li, Qiang; Zhang, Xiaoguang; Cui, Xiaobin; Zhang, Dongsheng; Zhang, Yan
2015-05-01
A novel fully automated method based on dual column switching using turbulent flow chromatography followed by liquid chromatography with tandem mass spectrometry was developed for the determination of aflatoxin B1 , B2 , G1 , and G2 in corn powder, edible oil, peanut butter, and soy sauce samples. After ultrasound-assisted extraction, samples were directly injected to the chromatographic system and the analytes were concentrated into the clean-up loading column. Through purge switching, the analytes were transferred to the analytical column for subsequent detection by mass spectrometry. Different types of TurboFlow(TM) columns, transfer flow rate, transfer time were optimized. The limits of detection and quantification of this method ranged between 0.2-2.0 and 0.5-4.0 μg/kg for aflatoxins in different matrixes, respectively. Recoveries of aflatoxins were in range of 83-108.1% for all samples, matrix effects were in range of 34.1-104.7%. The developed method has been successfully applied in the analysis of aflatoxin B1 , B2 , G1 , and G2 in real samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jenk, Theo Manuel; Rubino, Mauro; Etheridge, David; Ciobanu, Viorela Gabriela; Blunier, Thomas
2016-08-01
Palaeoatmospheric records of carbon dioxide and its stable carbon isotope composition (δ13C) obtained from polar ice cores provide important constraints on the natural variability of the carbon cycle. However, the measurements are both analytically challenging and time-consuming; thus only data exist from a limited number of sampling sites and time periods. Additional analytical resources with high analytical precision and throughput are thus desirable to extend the existing datasets. Moreover, consistent measurements derived by independent laboratories and a variety of analytical systems help to further increase confidence in the global CO2 palaeo-reconstructions. Here, we describe our new set-up for simultaneous measurements of atmospheric CO2 mixing ratios and atmospheric δ13C and δ18O-CO2 in air extracted from ice core samples. The centrepiece of the system is a newly designed needle cracker for the mechanical release of air entrapped in ice core samples of 8-13 g operated at -45 °C. The small sample size allows for high resolution and replicate sampling schemes. In our method, CO2 is cryogenically and chromatographically separated from the bulk air and its isotopic composition subsequently determined by continuous flow isotope ratio mass spectrometry (IRMS). In combination with thermal conductivity measurement of the bulk air, the CO2 mixing ratio is calculated. The analytical precision determined from standard air sample measurements over ice is ±1.9 ppm for CO2 and ±0.09 ‰ for δ13C. In a laboratory intercomparison study with CSIRO (Aspendale, Australia), good agreement between CO2 and δ13C results is found for Law Dome ice core samples. Replicate analysis of these samples resulted in a pooled standard deviation of 2.0 ppm for CO2 and 0.11 ‰ for δ13C. These numbers are good, though they are rather conservative estimates of the overall analytical precision achieved for single ice sample measurements. Facilitated by the small sample requirement, replicate measurements are feasible, allowing the method precision to be improved potentially. Further, new analytical approaches are introduced for the accurate correction of the procedural blank and for a consistent detection of measurement outliers, which is based on δ18O-CO2 and the exchange of oxygen between CO2 and the surrounding ice (H2O).
Hetrick, Evan M; Kramer, Timothy T; Risley, Donald S
2017-03-17
Based on a column-screening exercise, a column ranking system was developed for sample mixtures containing any combination of 26 sugar and sugar alcohol analytes using 16 polar stationary phases in the HILIC mode with acetonitrile/water or acetone/water mobile phases. Each analyte was evaluated on the HILIC columns with gradient elution and the subsequent chromatography data was compiled into a statistical software package where any subset of the analytes can be selected and the columns are then ranked by the greatest separation. Since these analytes lack chromophores, aerosol-based detectors, including an evaporative light scattering detector (ELSD) and a charged aerosol detector (CAD) were employed for qualitative and quantitative detection. Example qualitative applications are provided to illustrate the practicality and efficiency of this HILIC column ranking. Furthermore, the design-space approach was used as a starting point for a quantitative method for the trace analysis of glucose in trehalose samples in a complex matrix. Knowledge gained from evaluating the design-space led to rapid development of a capable method as demonstrated through validation of the following parameters: specificity, accuracy, precision, linearity, limit of quantitation, limit of detection, and range. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Yubo; Zhang, Zhenzhu; Liu, Xinyu; Li, Aizhu; Hou, Zhiguo; Wang, Yuming; Zhang, Yanjun
2015-08-28
This study combines solid phase extraction (SPE) using 96-well plates with column-switching technology to construct a rapid and high-throughput method for the simultaneous extraction and non-targeted analysis of small molecules metabolome and lipidome based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. This study first investigated the columns and analytical conditions for small molecules metabolome and lipidome, separated by an HSS T3 and BEH C18 columns, respectively. Next, the loading capacity and actuation duration of SPE were further optimized. Subsequently, SPE and column switching were used together to rapidly and comprehensively analyze the biological samples. The experimental results showed that the new analytical procedure had good precision and maintained sample stability (RSD<15%). The method was then satisfactorily applied to more widely analyze the small molecules metabolome and lipidome to test the throughput. The resulting method represents a new analytical approach for biological samples, and a highly useful tool for researches in metabolomics and lipidomics. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J
This paper describes the coupling of ambient pressure transmission geometry laser ablation with a liquid phase sample collection method for surface sampling and ionization with subsequent mass spectral analysis. A commercially available autosampler was adapted to produce a liquid droplet at the end of the syringe injection needle while in close proximity to the surface to collect the sample plume produced by laser ablation. The sample collection was followed by either flow injection or a high performance liquid chromatography (HPLC) separation of the extracted components and detection with electrospray ionization mass spectrometry (ESI-MS). To illustrate the analytical utility of thismore » coupling, thin films of a commercial ink sample containing rhodamine 6G and of mixed isobaric rhodamine B and 6G dyes on glass microscope slides were analyzed. The flow injection and HPLC/ESI-MS analysis revealed successful laser ablation, capture and, with HPLC, the separation of the two compounds. The ablated circular area was about 70 m in diameter for these experiments. The spatial sampling resolution afforded by the laser ablation, as well as the ability to use sample processing methods like HPLC between the sample collection and ionization steps, makes this combined surface sampling/ionization technique a highly versatile analytical tool.« less
NASA Astrophysics Data System (ADS)
Phelps, Mandy S.; Sturtevant, Drew; Chapman, Kent D.; Verbeck, Guido F.
2016-02-01
We describe a novel technique combining precise organelle microextraction with deposition and matrix-assisted laser desorption/ionization (MALDI) for a rapid, minimally invasive mass spectrometry (MS) analysis of single organelles from living cells. A dual-positioner nanomanipulator workstation was utilized for both extraction of organelle content and precise co-deposition of analyte and matrix solution for MALDI-direct organelle mass spectrometry (DOMS) analysis. Here, the triacylglycerol (TAG) profiles of single lipid droplets from 3T3-L1 adipocytes were acquired and results validated with nanoelectrospray ionization (NSI) MS. The results demonstrate the utility of the MALDI-DOMS technique as it enabled longer mass analysis time, higher ionization efficiency, MS imaging of the co-deposited spot, and subsequent MS/MS capabilities of localized lipid content in comparison to NSI-DOMS. This method provides selective organellar resolution, which complements current biochemical analyses and prompts for subsequent subcellular studies to be performed where limited samples and analyte volume are of concern.
Mess, Aylin; Enthaler, Bernd; Fischer, Markus; Rapp, Claudius; Pruns, Julia K; Vietzke, Jens-Peter
2013-01-15
Identification of endogenous skin surface compounds is an intriguing challenge in comparative skin investigations. Notably, this short communication is focused on the analysis of small molecules, e.g. natural moisturizing factor (NMF) components and lipids, using a novel sampling method with DIP-it samplers for non-invasive examination of the human skin surface. As a result, extraction of analytes directly from the skin surface by use of various solvents can be replaced with the mentioned procedure. Screening of measureable compounds is achieved by direct analysis in real time mass spectrometry (DART-MS) without further sample preparation. Results are supplemented by dissolving analytes from the DIP-it samplers by use of different solvents, and subsequent matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) measurements. An interesting comparison of the mentioned MS techniques for determination of skin surface compounds in the mass range of 50-1000 Da is presented. Copyright © 2012 Elsevier B.V. All rights reserved.
Franesqui, Miguel A; Yepes, Jorge; García-González, Cándida
2017-08-01
This article outlines the ultrasound data employed to calibrate in the laboratory an analytical model that permits the calculation of the depth of partial-depth surface-initiated cracks on bituminous pavements using this non-destructive technique. This initial calibration is required so that the model provides sufficient precision during practical application. The ultrasonic pulse transit times were measured on beam samples of different asphalt mixtures (semi-dense asphalt concrete AC-S; asphalt concrete for very thin layers BBTM; and porous asphalt PA). The cracks on the laboratory samples were simulated by means of notches of variable depths. With the data of ultrasound transmission time ratios, curve-fittings were carried out on the analytical model, thus determining the regression parameters and their statistical dispersion. The calibrated models obtained from laboratory datasets were subsequently applied to auscultate the evolution of the crack depth after microwaves exposure in the research article entitled "Top-down cracking self-healing of asphalt pavements with steel filler from industrial waste applying microwaves" (Franesqui et al., 2017) [1].
Modified electrokinetic sample injection method in chromatography and electrophoresis analysis
Davidson, J. Courtney; Balch, Joseph W.
2001-01-01
A sample injection method for horizontal configured multiple chromatography or electrophoresis units, each containing a number of separation/analysis channels, that enables efficient introduction of analyte samples. This method for loading when taken in conjunction with horizontal microchannels allows much reduced sample volumes and a means of sample stacking to greatly reduce the concentration of the sample. This reduction in the amount of sample can lead to great cost savings in sample preparation, particularly in massively parallel applications such as DNA sequencing. The essence of this method is in preparation of the input of the separation channel, the physical sample introduction, and subsequent removal of excess material. By this method, sample volumes of 100 nanoliter to 2 microliters have been used successfully, compared to the typical 5 microliters of sample required by the prior separation/analysis method.
A biosensor based on graphite epoxy composite electrode for aspartame and ethanol detection.
Kirgöz, Ulkü Anik; Odaci, Dilek; Timur, Suna; Merkoçi, Arben; Alegret, Salvador; Beşün, Nurgün; Telefoncu, Azmi
2006-06-16
A gelatin membrane with carboxyl esterase and alcohol oxidase was subsequently integrated onto the surface of a graphite epoxy composite electrode (GECE). The developed biosensors showed linearity in the range of 2.5-400 microM for aspartame and 2.5-25 microM for ethanol with response times of 170 and 70s for each analyte, respectively. The resulting bienzyme biosensor was used for aspartame detection in diet coke samples and ethanol detection in beer and wine samples. From the obtained results, it can be concluded that the developed biosensor is a selective, practical and economic tool for aspartame and ethanol detection in real samples.
From local to global measurements of nonclassical nonlinear elastic effects in geomaterials
Lott, Martin; Remillieux, Marcel C.; Le Bas, Pierre-Yves; ...
2016-09-07
Here, the equivalence between local and global measures of nonclassical nonlinear elasticity is established in a slender resonant bar. Nonlinear effects are first measured globally using nonlinear resonance ultrasound spectroscopy (NRUS), which monitors the relative shift of the resonance frequency as a function of the maximum dynamic strain in the sample. Subsequently, nonlinear effects are measured locally at various positions along the sample using dynamic acousto elasticity testing (DAET). Finally, after correcting analytically the DAET data for three-dimensional strain effects and integrating numerically these corrected data along the length of the sample, the NRUS global measures are retrieved almost exactly.
Preijers, Frank W M B; van der Velden, Vincent H J; Preijers, Tim; Brooimans, Rik A; Marijt, Erik; Homburg, Christa; van Montfort, Kees; Gratama, Jan W
2016-05-01
In 1985, external quality assurance was initiated in the Netherlands to reduce the between-laboratory variability of leukemia/lymphoma immunophenotyping and to improve diagnostic conclusions. This program consisted of regular distributions of test samples followed by biannual plenary participant meetings in which results were presented and discussed. A scoring system was developed in which the quality of results was rated by systematically reviewing the pre-analytical, analytical, and post-analytical assay stages using three scores, i.e., correct (A), minor fault (B), and major fault (C). Here, we report on 90 consecutive samples distributed to 40-61 participating laboratories between 1998 and 2012. Most samples contained >20% aberrant cells, mainly selected from mature lymphoid malignancies (B or T cell) and acute leukemias (myeloid or lymphoblastic). In 2002, minimally required monoclonal antibody (mAb) panels were introduced, whilst methodological guidelines for all three assay stages were implemented. Retrospectively, we divided the study into subsequent periods of 4 ("initial"), 4 ("learning"), and 7 years ("consolidation") to detect "learning effects." Uni- and multivariate models showed that analytical performance declined since 2002, but that post-analytical performance improved during the entire period. These results emphasized the need to improve technical aspects of the assay, and reflected improved interpretational skills of the participants. A strong effect of participant affiliation in all three assay stages was observed: laboratories in academic and large peripheral hospitals performed significantly better than those in small hospitals. © 2015 International Clinical Cytometry Society. © 2015 International Clinical Cytometry Society.
Kuhlenbeck, Debbie L; Eichold, Thomas H; Hoke, Steven H; Baker, Timothy R; Mensen, Robert; Wehmeyer, Kenneth R
2005-01-01
An on-line liquid chromatography/tandem mass spectrometry (LC-MS/MS) procedure, using the Prospekt- 2 system, was developed and used for the determination of the levels of the active ingredients of cough/cold medications in human plasma matrix. The experimental configuration allows direct plasma injection by performing on- line solid phase extraction (SPE) on small cartridge columns prior to elution of the analyte(s) onto the analytical column and subsequent MS/MS detection. The quantitative analysis of three analytes with differing polarities, dextromethorphan (DEX), dextrorphan (DET) and guaifenesin (GG) in human plasma presented a significant challenge. Using stable-isotope-labeled internal standards for each analyte, the Prospekt-2 on-line methodology was evaluated for sensitivity, suppression, accuracy, precision, linearity, analyst time, analysis time, cost, carryover and ease of use. The lower limit of quantitation for the on-line SPE procedure for DEX, DET and GG was 0.05, 0.05 and 5.0 ng mL(-1), respectively, using a 0.1 mL sample volume. The linear range for DEX and DET was 0.05-50 ng mL(-1) and was 5-5,000 ng mL(-1) for GG. Accuracy and precision data for five different levels of QC samples were collected over three separate days. Accuracy ranged from 90% to 112% for all three analytes, while the precision, as measured by the %RSD, ranged from 1.5% to 16.0%
Device and method for automated separation of a sample of whole blood into aliquots
Burtis, Carl A.; Johnson, Wayne F.
1989-01-01
A device and a method for automated processing and separation of an unmeasured sample of whole blood into multiple aliquots of plasma. Capillaries are radially oriented on a rotor, with the rotor defining a sample chamber, transfer channels, overflow chamber, overflow channel, vent channel, cell chambers, and processing chambers. A sample of whole blood is placed in the sample chamber, and when the rotor is rotated, the blood moves outward through the transfer channels to the processing chambers where the blood is centrifugally separated into a solid cellular component and a liquid plasma component. When the rotor speed is decreased, the plasma component backfills the capillaries resulting in uniform aliquots of plasma which may be used for subsequent analytical procedures.
Miller, Eleanor I; Murray, Gordon J; Rollins, Douglas E; Tiffany, Stephen T; Wilkins, Diana G
2011-07-01
The aim of this exploratory study was to develop and validate a liquid chromatography-tandem mass spectrometry (LC-MS-MS) method for the quantification of nicotine, eight nicotine metabolites, and two minor tobacco alkaloids in fortified analyte-free hair and subsequently apply this method to hair samples collected from active smokers. An additional aim of the study was to include an evaluation of different wash procedures for the effective removal of environmentally deposited nicotine from tobacco smoke. An apparatus was designed for the purpose of exposing analyte-free hair to environmental tobacco smoke in order to deposit nicotine onto the hair surface. A shampoo/water wash procedure was identified as the most effective means of removing nicotine. This wash procedure was utilized for a comparison of washed and unwashed heavy smoker hair samples. Analytes and corresponding deuterated internal standards were extracted using a cation-exchange solid-phase cartridge. LC-MS-MS was carried out using an Acquity™ UPLC(®) system (Waters) and a Quattro Premier XE™ triple quadrupole MS (Waters) operated in electrospray positive ionization mode, with multiple reaction monitoring data acquisition. The developed method was applied to hair samples collected from heavy smokers (n = 3) and low-level smokers (n = 3) collected through IRB-approved protocols. Nicotine, cotinine, and nornicotine were quantified in both the washed and unwashed hair samples collected from three heavy smokers, whereas 3-hydroxycotinine was quantified in only one unwashed sample and nicotine-1'-oxide in the washed and unwashed hair samples from two heavy smokers. In contrast, nicotine-1'-oxide was quantified in one of the three low-level smoker samples; nicotine was quantified in the other two low-level smoker samples. No other analytes were detected in the hair of the three low-level smokers.
Gerace, E; Salomone, A; Abbadessa, G; Racca, S; Vincenti, M
2012-02-01
A fast screening protocol was developed for the simultaneous determination of nine anti-estrogenic agents (aminoglutethimide, anastrozole, clomiphene, drostanolone, formestane, letrozole, mesterolone, tamoxifen, testolactone) plus five of their metabolites in human urine. After an enzymatic hydrolysis, these compounds can be extracted simultaneously from urine with a simple liquid-liquid extraction at alkaline conditions. The analytes were subsequently analyzed by fast-gas chromatography/mass spectrometry (fast-GC/MS) after derivatization. The use of a short column, high-flow carrier gas velocity and fast temperature ramping produced an efficient separation of all analytes in about 4 min, allowing a processing rate of 10 samples/h. The present analytical method was validated according to UNI EN ISO/IEC 17025 guidelines for qualitative methods. The range of investigated parameters included the limit of detection, selectivity, linearity, repeatability, robustness and extraction efficiency. High MS-sampling rate, using a benchtop quadrupole mass analyzer, resulted in accurate peak shape definition under both scan and selected ion monitoring modes, and high sensitivity in the latter mode. Therefore, the performances of the method are comparable to the ones obtainable from traditional GC/MS analysis. The method was successfully tested on real samples arising from clinical treatments of hospitalized patients and could profitably be used for clinical studies on anti-estrogenic drug administration.
Gerace, E.; Salomone, A.; Abbadessa, G.; Racca, S.; Vincenti, M.
2011-01-01
A fast screening protocol was developed for the simultaneous determination of nine anti-estrogenic agents (aminoglutethimide, anastrozole, clomiphene, drostanolone, formestane, letrozole, mesterolone, tamoxifen, testolactone) plus five of their metabolites in human urine. After an enzymatic hydrolysis, these compounds can be extracted simultaneously from urine with a simple liquid–liquid extraction at alkaline conditions. The analytes were subsequently analyzed by fast-gas chromatography/mass spectrometry (fast-GC/MS) after derivatization. The use of a short column, high-flow carrier gas velocity and fast temperature ramping produced an efficient separation of all analytes in about 4 min, allowing a processing rate of 10 samples/h. The present analytical method was validated according to UNI EN ISO/IEC 17025 guidelines for qualitative methods. The range of investigated parameters included the limit of detection, selectivity, linearity, repeatability, robustness and extraction efficiency. High MS-sampling rate, using a benchtop quadrupole mass analyzer, resulted in accurate peak shape definition under both scan and selected ion monitoring modes, and high sensitivity in the latter mode. Therefore, the performances of the method are comparable to the ones obtainable from traditional GC/MS analysis. The method was successfully tested on real samples arising from clinical treatments of hospitalized patients and could profitably be used for clinical studies on anti-estrogenic drug administration. PMID:29403714
Delgado, Alejandra; Posada-Ureta, Oscar; Olivares, Maitane; Vallejo, Asier; Etxebarria, Nestor
2013-12-15
In this study a priority organic pollutants usually found in environmental water samples were considered to accomplish two extraction and analysis approaches. Among those compounds organochlorine compounds, pesticides, phthalates, phenols and residues of pharmaceutical and personal care products were included. The extraction and analysis steps were based on silicone rod extraction (SR) followed by liquid desorption in combination with large volume injection-programmable temperature vaporiser (LVI-PTV) and gas chromatography-mass spectrometry (GC-MS). Variables affecting the analytical response as a function of the programmable temperature vaporiser (PTV) parameters were firstly optimised following an experimental design approach. The SR extraction and desorption conditions were assessed afterwards, including matrix modification, time extraction, and stripping solvent composition. Subsequently, the possibility of performing membrane enclosed sorptive coating extraction (MESCO) as a modified extraction approach was also evaluated. The optimised method showed low method detection limits (3-35 ng L(-1)), acceptable accuracy (78-114%) and precision values (<13%) for most of the studied analytes regardless of the aqueous matrix. Finally, the developed approach was successfully applied to the determination of target analytes in aqueous environmental matrices including estuarine and wastewater samples. © 2013 Elsevier B.V. All rights reserved.
Martínez-Tomé, M J; Esquembre, R; Mallavia, R; Mateo, C R
2010-01-20
Nitrite and selenium are two bioactive compounds found in the environment which show beneficial effects for health at low levels but have toxic effects at higher doses. Consequently, quantification of both analytes in water samples results of great interest in areas such as biomedicine, food technology and environmental analysis. In a recent paper, we immobilized the inclusion complex formed between 2,3-diaminonaphthalene (DAN) and 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CD) in a sol-gel matrix, in order to prepare a highly sensitive reagentless fluorescence-based sensor for the specific measurement of nitrite. Here we have explored the possibility of using the sol-gel immobilized complex to quantify selenite (Se (IV)), the more toxic form of selenium, as well as to act as a dual-analyte chemical sensor for simultaneous quantification of both nitrite and selenite in aqueous samples. Results show that (a) inclusion of DAN in HP-beta-CD and its subsequent immobilization in a sol-gel matrix do not modify the reactivity of DAN against selenite, (b) the reaction product formed (4,5-benzopiazselenol) remains into the cyclodextrin increasing considerably its fluorescence quantum yield and avoiding, therefore, its extraction into organic solvents, (c) the developed sensor can detect selenite concentrations at submicromolar level with a minimum detection limit of 13 nM, (d) the immobilized system is able to simultaneously quantify nitrite and selenite at submicromolar concentrations in natural water samples with no further sample pre-treatment.
Liu, Liwei; Zheng, Huaili; Xu, Bincheng; Xiao, Lang; Chigan, Yong; Zhangluo, Yilan
2018-03-01
In this paper, a procedure for in-situ pre-concentration in graphite furnace by repeated sampling and pyrolysis is proposed for the determination of ultra-trace thallium in drinking water by graphite furnace atomic absorption spectrometry (GF-AAS). Without any other laborious enrichment processes that routinely result in analyte loss and contamination, thallium was directly concentrated in the graphite furnace automatically and subsequently subject to analysis. The effects of several key factors, such as the temperature for pyrolysis and atomization, the chemical modifier, and the repeated sampling times were investigated. Under the optimized conditions, a limit of detection of 0.01µgL -1 was obtained, which fulfilled thallium determination in drinking water by GB 5749-2006 regulated by China. Successful analysis of thallium in certified water samples and drinking water samples was demonstrated, with analytical results in good agreement with the certified values and those by inductively coupled plasma mass spectrometry (ICP-MS), respectively. Routine spike-recovery tests with randomly selected drinking water samples showed satisfactory results of 80-96%. The proposed method is simple and sensitive for screening of ultra-trace thallium in drinking water samples. Copyright © 2017. Published by Elsevier B.V.
An interlaboratory transfer of a multi-analyte assay between continents.
Georgiou, Alexandra; Dong, Kelly; Hughes, Stephen; Barfield, Matthew
2015-01-01
Alex has worked at GlaxoSmithKline for the past 15 years and currently works within the bioanalytical and toxicokinetic group in the United Kingdom. Alex's role in previous years has been the in-house support of preclinical and clinical bioanalysis, from method development through to sample analysis activities as well as acting as PI for GLP bioanalysis and toxicokinetics. For the past two years, Alex has applied this analytical and regulatory experience to focus on the outsourcing of preclinical bioanalysis, toxicokinetics and clinical bioanalysis, working closely with multiple bioanalytical and in-life CRO partners worldwide. Alex works to support DMPK and Safety Assessment outsourcing activities for GSK across multiple therapeutic areas, from the first GLP study through to late stage clinical PK studies. Transfer and cross-validation of an existing analytical assay between a laboratory providing current analytical support, and a laboratory needed for new or additional support, can present the bioanalyst with numerous challenges. These challenges can be technical or logistical in nature and may prove to be significant when transferring an assay between laboratories in different continents. Part of GlaxoSmithKline's strategy to improve confidence in providing quality data, is to cross-validate between laboratories. If the cross-validation fails predefined acceptance criteria, then a subsequent investigation would follow. This may also prove to be challenging. The importance of thorough planning and good communication throughout assay transfer, cross-validation and any subsequent investigations is illustrated in this case study.
Novel strategies for sample preparation in forensic toxicology.
Samanidou, Victoria; Kovatsi, Leda; Fragou, Domniki; Rentifis, Konstantinos
2011-09-01
This paper provides a review of novel strategies for sample preparation in forensic toxicology. The review initially outlines the principle of each technique, followed by sections addressing each class of abused drugs separately. The novel strategies currently reviewed focus on the preparation of various biological samples for the subsequent determination of opiates, benzodiazepines, amphetamines, cocaine, hallucinogens, tricyclic antidepressants, antipsychotics and cannabinoids. According to our experience, these analytes are the most frequently responsible for intoxications in Greece. The applications of techniques such as disposable pipette extraction, microextraction by packed sorbent, matrix solid-phase dispersion, solid-phase microextraction, polymer monolith microextraction, stir bar sorptive extraction and others, which are rapidly gaining acceptance in the field of toxicology, are currently reviewed.
Micro injector sample delivery system for charged molecules
Davidson, James C.; Balch, Joseph W.
1999-11-09
A micro injector sample delivery system for charged molecules. The injector is used for collecting and delivering controlled amounts of charged molecule samples for subsequent analysis. The injector delivery system can be scaled to large numbers (>96) for sample delivery to massively parallel high throughput analysis systems. The essence of the injector system is an electric field controllable loading tip including a section of porous material. By applying the appropriate polarity bias potential to the injector tip, charged molecules will migrate into porous material, and by reversing the polarity bias potential the molecules are ejected or forced away from the tip. The invention has application for uptake of charged biological molecules (e.g. proteins, nucleic acids, polymers, etc.) for delivery to analytical systems, and can be used in automated sample delivery systems.
Cadamuro, Janne; Mrazek, Cornelia; Leichtle, Alexander B.; Kipman, Ulrike; Felder, Thomas K.; Wiedemann, Helmut; Oberkofler, Hannes; Fiedler, Georg M.; Haschke-Becher, Elisabeth
2017-01-01
Introduction Although centrifugation is performed in almost every blood sample, recommendations on duration and g-force are heterogeneous and mostly based on expert opinions. In order to unify this step in a fully automated laboratory, we aimed to evaluate different centrifugation settings and their influence on the results of routine clinical chemistry analytes. Materials and methods We collected blood from 41 healthy volunteers into BD Vacutainer PST II-heparin-gel- (LiHepGel), BD Vacutainer SST II-serum-, and BD Vacutainer Barricor heparin-tubes with a mechanical separator (LiHepBar). Tubes were centrifuged at 2000xg for 10 minutes and 3000xg for 7 and 5 minutes, respectively. Subsequently 60 and 21 clinical chemistry analytes were measured in plasma and serum samples, respectively, using a Roche COBAS instrument. Results High sensitive Troponin T, pregnancy-associated plasma protein A, ß human chorionic gonadotropin and rheumatoid factor had to be excluded from statistical evaluation as many of the respective results were below the measuring range. Except of free haemoglobin (fHb) measurements, no analyte result was altered by the use of shorter centrifugation times at higher g-forces. Comparing LiHepBar to LiHepGel tubes at different centrifugation setting, we found higher lactate-dehydrogenase (LD) (P = 0.003 to < 0.001) and lower bicarbonate values (P = 0.049 to 0.008) in the latter. Conclusions Serum and heparin samples may be centrifuged at higher speed (3000xg) for a shorter amount of time (5 minutes) without alteration of the analytes tested in this study. When using LiHepBar tubes for blood collection, a separate LD reference value might be needed. PMID:29187797
Cadamuro, Janne; Mrazek, Cornelia; Leichtle, Alexander B; Kipman, Ulrike; Felder, Thomas K; Wiedemann, Helmut; Oberkofler, Hannes; Fiedler, Georg M; Haschke-Becher, Elisabeth
2018-02-15
Although centrifugation is performed in almost every blood sample, recommendations on duration and g-force are heterogeneous and mostly based on expert opinions. In order to unify this step in a fully automated laboratory, we aimed to evaluate different centrifugation settings and their influence on the results of routine clinical chemistry analytes. We collected blood from 41 healthy volunteers into BD Vacutainer PST II-heparin-gel- (LiHepGel), BD Vacutainer SST II-serum-, and BD Vacutainer Barricor heparin-tubes with a mechanical separator (LiHepBar). Tubes were centrifuged at 2000xg for 10 minutes and 3000xg for 7 and 5 minutes, respectively. Subsequently 60 and 21 clinical chemistry analytes were measured in plasma and serum samples, respectively, using a Roche COBAS instrument. High sensitive Troponin T, pregnancy-associated plasma protein A, ß human chorionic gonadotropin and rheumatoid factor had to be excluded from statistical evaluation as many of the respective results were below the measuring range. Except of free haemoglobin (fHb) measurements, no analyte result was altered by the use of shorter centrifugation times at higher g-forces. Comparing LiHepBar to LiHepGel tubes at different centrifugation setting, we found higher lactate-dehydrogenase (LD) (P = 0.003 to < 0.001) and lower bicarbonate values (P = 0.049 to 0.008) in the latter. Serum and heparin samples may be centrifuged at higher speed (3000xg) for a shorter amount of time (5 minutes) without alteration of the analytes tested in this study. When using LiHepBar tubes for blood collection, a separate LD reference value might be needed.
Willison, Stuart A
2015-01-20
The persistence of chemical warfare nerve agent degradation analytes on surfaces is important, from indicating the presence of nerve agent on a surface to guiding environmental restoration of a site after a release. Persistence was investigated for several chemical warfare nerve agent degradation analytes on indoor surfaces and presents an approach for wipe sampling of surfaces, followed by wipe extraction and liquid chromatography-tandem mass spectrometry detection. Commercially available wipe materials were investigated to determine optimal wipe recoveries. Tested surfaces included porous/permeable (vinyl tile, painted drywall, and wood) and largely nonporous/impermeable (laminate, galvanized steel, and glass) surfaces. Wipe extracts were analyzed by ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). UPLC provides a separation of targeted degradation analytes in addition to being nearly four times faster than high-performance liquid chromatography, allowing for greater throughput after a large-scale contamination incident and subsequent remediation events. Percent recoveries from nonporous/impermeable surfaces were 60-103% for isopropyl methylphosphonate (IMPA), GB degradate; 61-91% for ethyl methylphosphonate (EMPA), VX degradate; and 60-98% for pinacolyl methylphosphonate (PMPA), GD degradate. Recovery efficiencies for methyl phosphonate (MPA), nerve agent degradate, and ethylhydrogen dimethylphosphonate (EHDMAP), GA degradate, were lower, perhaps due to matrix effects. Diisopropyl methylphosphonate, GB impurity, was not recovered from surfaces. The resulting detection limits for wipe extracts were 0.065 ng/cm(2) for IMPA, 0.079 ng/cm(2) for MPA, 0.040 ng/cm(2) for EMPA, 0.078 ng/cm(2) for EHDMAP, and 0.013 ng/cm(2) for PMPA. The data indicate that laboratories may hold wipe samples for up to 30 days prior to analysis. Target analytes were observed to persist on surfaces for at least 6 weeks.
NASA Astrophysics Data System (ADS)
Jaeschke, W.; Beltz, N.; Haunold, W.; Krischke, U.
1997-07-01
During the Gas-Phase Sulfur Intercomparison Experiment (GASIE) in 1994 an analytical system for measuring sulfur dioxide mixing ratios at low parts per trillion (pptv) levels was employed. It is based on the absorption of SO2 on a tetrachloromercurate(II)-impregnated filter. The subsequent analysis uses a chemiluminescence reaction by treating the resulting disulfitomercurate(II) complex with an acidic cerium sulfate solution. An improved sampling device has been introduced that increases the maximum sampling volume from 200 L to 500 L. It is also possible to determine the blank value accurately for each sample. The absorption efficiency of the sampling system is 98.7±6.4% at a nominal flow rate of 10 L/min. The calculated (3σ) detection limit is 3±1 pptv SO2. The sample solution is stable for up to 30 days, which allows the samples to be safely stored or shipped before analysis. This permits the use of a sensitive, compact, and reliable sampling system in the field with subsequent analysis under optimal conditions in the laboratory. A continuous flow chemiluminescence (CFCL) analyzer for on-line measurements is also presented. The system is based on the same chemical principles as the described filter technique.
Ambient Mass Spectrometry Imaging Using Direct Liquid Extraction Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laskin, Julia; Lanekoff, Ingela
2015-11-13
Mass spectrometry imaging (MSI) is a powerful analytical technique that enables label-free spatial localization and identification of molecules in complex samples.1-4 MSI applications range from forensics5 to clinical research6 and from understanding microbial communication7-8 to imaging biomolecules in tissues.1, 9-10 Recently, MSI protocols have been reviewed.11 Ambient ionization techniques enable direct analysis of complex samples under atmospheric pressure without special sample pretreatment.3, 12-16 In fact, in ambient ionization mass spectrometry, sample processing (e.g., extraction, dilution, preconcentration, or desorption) occurs during the analysis.17 This substantially speeds up analysis and eliminates any possible effects of sample preparation on the localization of moleculesmore » in the sample.3, 8, 12-14, 18-20 Venter and co-workers have classified ambient ionization techniques into three major categories based on the sample processing steps involved: 1) liquid extraction techniques, in which analyte molecules are removed from the sample and extracted into a solvent prior to ionization; 2) desorption techniques capable of generating free ions directly from substrates; and 3) desorption techniques that produce larger particles subsequently captured by an electrospray plume and ionized.17 This review focuses on localized analysis and ambient imaging of complex samples using a subset of ambient ionization methods broadly defined as “liquid extraction techniques” based on the classification introduced by Venter and co-workers.17 Specifically, we include techniques where analyte molecules are desorbed from solid or liquid samples using charged droplet bombardment, liquid extraction, physisorption, chemisorption, mechanical force, laser ablation, or laser capture microdissection. Analyte extraction is followed by soft ionization that generates ions corresponding to intact species. Some of the key advantages of liquid extraction techniques include the ease of operation, ability to analyze samples in their native environments, speed of analysis, and ability to tune the extraction solvent composition to a problem at hand. For example, solvent composition may be optimized for efficient extraction of different classes of analytes from the sample or for quantification or online derivatization through reactive analysis. In this review, we will: 1) introduce individual liquid extraction techniques capable of localized analysis and imaging, 2) describe approaches for quantitative MSI experiments free of matrix effects, 3) discuss advantages of reactive analysis for MSI experiments, and 4) highlight selected applications (published between 2012 and 2015) that focus on imaging and spatial profiling of molecules in complex biological and environmental samples.« less
Rapid and sensitive analytical method for monitoring of 12 organotin compounds in natural waters.
Vahčič, Mitja; Milačič, Radmila; Sčančar, Janez
2011-03-01
A rapid analytical method for the simultaneous determination of 12 different organotin compounds (OTC): methyl-, butyl-, phenyl- and octyl-tins in natural water samples was developed. It comprises of in situ derivatisation (by using NaBEt4) of OTC in salty or fresh water sample matrix adjusted to pH 6 with Tris-citrate buffer, extraction of ethylated OTC into hexane, separation of OTC in organic phase on 15 m GC column and subsequent quantitative determination of separated OTC by ICP-MS. To optimise the pH of ethylation, phosphate, carbonate and Tris-citrate buffer were investigated alternatively to commonly applied sodium acetate - acetic acid buffer. The ethylation yields in Tris-citrate buffer were found to be better for TBT, MOcT and DOcT in comparison to commonly used acetate buffer. Iso-octane and hexane were examined as organic phase for extraction of ethylated OTC. The advantage of hexane was in its ability for quantitative determination of TMeT. GC column of 15 m in length was used for separation of studied OTC under the optimised separation conditions and its performances compared to 30 m column. The analytical method developed enables sensitive simultaneous determination of 12 different OTC and appreciably shortened analysis time in larger series of water samples. LOD's obtained for the newly developed method ranged from 0.05-0.06 ng Sn L-1 for methyl-, 0.11-0.45 ng Sn L-1 for butyl-, 0.11-0.16 ng Sn L-1 for phenyl-, and 0.07-0.10 ng Sn L-1 for octyl-tins. By applying the developed analytical method, marine water samples from the Northern Adriatic Sea containing mainly butyl- and methyl-tin species were analysed to confirm the proposed method's applicability.
How to conduct External Quality Assessment Schemes for the pre-analytical phase?
Kristensen, Gunn B B; Aakre, Kristin Moberg; Kristoffersen, Ann Helen; Sandberg, Sverre
2014-01-01
In laboratory medicine, several studies have described the most frequent errors in the different phases of the total testing process, and a large proportion of these errors occur in the pre-analytical phase. Schemes for registration of errors and subsequent feedback to the participants have been conducted for decades concerning the analytical phase by External Quality Assessment (EQA) organizations operating in most countries. The aim of the paper is to present an overview of different types of EQA schemes for the pre-analytical phase, and give examples of some existing schemes. So far, very few EQA organizations have focused on the pre-analytical phase, and most EQA organizations do not offer pre-analytical EQA schemes (EQAS). It is more difficult to perform and standardize pre-analytical EQAS and also, accreditation bodies do not ask the laboratories for results from such schemes. However, some ongoing EQA programs for the pre-analytical phase do exist, and some examples are given in this paper. The methods used can be divided into three different types; collecting information about pre-analytical laboratory procedures, circulating real samples to collect information about interferences that might affect the measurement procedure, or register actual laboratory errors and relate these to quality indicators. These three types have different focus and different challenges regarding implementation, and a combination of the three is probably necessary to be able to detect and monitor the wide range of errors occurring in the pre-analytical phase.
Malone, E; Elliott, C; Kennedy, G; Savage, D; Regan, L
2011-05-01
A simple, new method permitting the simultaneous determination and confirmation of trace residues of 24 different growth promoters and metabolites using liquid chromatography-mass spectrometry was developed and validated. The compounds were extracted from bovine tissue using acetonitrile; sodium sulphate was also added at this stage to aid with purification. The resulting mixture was then evaporated to approximately 1 ml and subsequently centrifuged at high speed and an aliquot injected onto the LC-MS/MS system. The calculated CCα values ranged between 0.11 and 0.46 µg kg(-1); calculated CCβ were in the range 0.19-0.79 µg kg(-1). Accuracy, measurement of uncertainty, repeatability and linearity were also determined for each analyte. The analytical method was applied to a number of bovine tissue samples imported into Ireland from third countries. Levels of progesterone were found in a number of samples at concentrations ranging between 0.28 and 30.30 µg kg(-1). Levels of alpha- and beta-testosterone were also found in a number of samples at concentrations ranging between 0.22 and 8.63 µg kg(-1) and between 0.16 and 2.08 µg kg(-1) respectively.
Plassmann, Merle M; Schmidt, Magdalena; Brack, Werner; Krauss, Martin
2015-09-01
Exposure to environmental pollution and consumer products may result in an uptake of chemicals into human tissues. Several studies have reported the presence of diverse environmental contaminants in human blood samples. However, previously developed multi-target methods for the analysis of human blood include a fairly limited amount of compounds stemming from one or two related compound groups. Thus, the sample preparation method QuEChERS (quick easy cheap effective rugged and safe) was tested for the extraction of 64 analytes covering a broad compound domain followed by detection using liquid and gas chromatography coupled to mass spectrometry (LC- and GC-MS). Forty-seven analytes showed absolute recoveries above 70% in the first QuEChERS step, being a simple liquid-liquid extraction (LLE) using acetonitrile and salt. The second QuEChERS step, being a dispersive solid phase extraction, did not result in an overall improvement of recoveries or removal of background signals. Using solely the LLE step, eight analytes could subsequently be detected in human blood samples from the German Environmental Specimen Bank. Using a LC-multiple reaction monitoring (MRM) method with a triple quadrupole instrument, better recoveries were achieved than with an older LC-high-resolution (HR) MS full scan orbitrap instrument, which required a higher concentration factor of the extracts. However, the application of HRMS full scan methods could be used for the detection of additional compounds retrospectively.
Zhao, Xiaoyan; Qureshi, Ferhan; Eastman, P Scott; Manning, William C; Alexander, Claire; Robinson, William H; Hesterberg, Lyndal K
2012-04-30
Variability in pre-analytical blood sampling and handling can significantly impact results obtained in quantitative immunoassays. Understanding the impact of these variables is critical for accurate quantification and validation of biomarker measurements. Particularly, in the design and execution of large clinical trials, even small differences in sample processing and handling can have dramatic effects in analytical reliability, results interpretation, trial management and outcome. The effects of two common blood sampling methods (serum vs. plasma) and two widely-used serum handling methods (on the clot with ambient temperature shipping, "traditional", vs. centrifuged with cold chain shipping, "protocol") on protein and autoantibody concentrations were examined. Matched serum and plasma samples were collected from 32 rheumatoid arthritis (RA) patients representing a wide range of disease activity status. Additionally, a set of matched serum samples with two sample handling methods was collected. One tube was processed per manufacturer's instructions and shipped overnight on cold packs (protocol). The matched tube, without prior centrifugation, was simultaneously shipped overnight at ambient temperatures (traditional). Upon delivery, the traditional tube was centrifuged. All samples were subsequently aliquoted and frozen prior to analysis of protein and autoantibody biomarkers. Median correlation between paired serum and plasma across all autoantibody assays was 0.99 (0.98-1.00) with a median % difference of -3.3 (-7.5 to 6.0). In contrast, observed protein biomarker concentrations were significantly affected by sample types, with median correlation of 0.99 (0.33-1.00) and a median % difference of -10 (-55 to 23). When the two serum collection/handling methods were compared, the median correlation between paired samples for autoantibodies was 0.99 (0.91-1.00) with a median difference of 4%. In contrast, significant increases were observed in protein biomarker concentrations among certain biomarkers in samples processed with the 'traditional' method. Autoantibody quantification appears robust to both sample type (plasma vs. serum) and pre-analytical sample collection/handling methods (protocol vs. traditional). In contrast, for non-antibody protein biomarker concentrations, sample type had a significant impact; plasma samples generally exhibit decreased protein biomarker concentrations relative to serum. Similarly, sample handling significantly impacted the variability of protein biomarker concentrations. When biomarker concentrations are combined algorithmically into a single test score such as a multi-biomarker disease activity test for rheumatoid arthritis (MBDA), changes in protein biomarker concentrations may result in a bias of the score. These results illustrate the importance of characterizing pre-analytical methodology, sample type, sample processing and handling procedures for clinical testing in order to ensure test accuracy. Copyright © 2012 Elsevier B.V. All rights reserved.
Hanrieder, Jörg; Zuberovic, Aida; Bergquist, Jonas
2009-04-24
Development of miniaturized analytical tools continues to be of great interest to face the challenges in proteomic analysis of complex biological samples such as human body fluids. In the light of these challenges, special emphasis is put on the speed and simplicity of newly designed technological approaches as well as the need for cost efficiency and low sample consumption. In this study, we present an alternative multidimensional bottom-up approach for proteomic profiling for fast, efficient and sensitive protein analysis in complex biological matrices. The presented setup was based on sample pre-fractionation using microscale in solution isoelectric focusing (IEF) followed by tryptic digestion and subsequent capillary electrophoresis (CE) coupled off-line to matrix assisted laser desorption/ionization time of flight tandem mass spectrometry (MALDI TOF MS/MS). For high performance CE-separation, PolyE-323 modified capillaries were applied to minimize analyte-wall interactions. The potential of the analytical setup was demonstrated on human follicular fluid (hFF) representing a typical complex human body fluid with clinical implication. The obtained results show significant identification of 73 unique proteins (identified at 95% significance level), including mostly acute phase proteins but also protein identities that are well known to be extensively involved in follicular development.
Bahmanabadi, L; Akhgari, M; Jokar, F; Sadeghi, H B
2017-02-01
Methamphetamine abuse is one of the most medical and social problems many countries face. In spite of the ban on the use of methamphetamine, it is widely available in Iran's drug black market. There are many analytical methods for the detection of methamphetamine in biological specimen. Oral fluid has become a popular specimen to test for the presence of methamphetamine. The purpose of the present study was to develop a method for the extraction and detection of methamphetamine in oral fluid samples using liquid-liquid extraction (LLE) and gas chromatography/mass spectrometry (GC/MS) methods. An analytical study was designed in that blank and 50 authentic oral fluid samples were collected to be first extracted by LLE and subsequently analysed by GC/MS. The method was fully validated and showed an excellent intra- and inter-assay precision (reflex sympathetic dystrophy ˂ 10%) for external quality control samples. Recovery with LLE methods was 96%. Limit of detection and limit of quantitation were 5 and 15 ng/mL, respectively. The method showed high selectivity, no additional peak due to interfering substances in samples was observed. The introduced method was sensitive, accurate and precise enough for the extraction of methamphetamine from oral fluid samples in forensic toxicology laboratories.
Woolfenden, Elizabeth
2010-04-16
Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Applications range from atmospheric research and ambient air monitoring (indoor and outdoor) to occupational hygiene (personal exposure assessment) and measuring chemical emission levels. Part 1 of this paper reviewed the main sorbent-based air sampling strategies including active (pumped) tube monitoring, diffusive (passive) sampling onto sorbent tubes/cartridges plus sorbent trapping/focusing of whole air samples that are either collected in containers (such as canisters or bags) or monitored online. Options for subsequent extraction and transfer to GC(MS) analysis were also summarised and the trend to thermal desorption (TD)-based methods and away from solvent extraction was explained. As a result of this trend, demand for TD-compatible sorbents (alternatives to traditional charcoal) is growing. Part 2 of this paper therefore continues with a summary of TD-compatible sorbents, their respective advantages and limitations and considerations for sorbent selection. Other analytical considerations for optimizing sorbent-based air monitoring methods are also discussed together with recent technical developments and sampling accessories which have extended the application range of sorbent trapping technology generally. Copyright 2010 Elsevier B.V. All rights reserved.
Rapid determination of tartaric acid in wines.
Bastos, Sandra S T; Tafulo, Paula A R; Queirós, Raquel B; Matos, Cristina D; Sales, M Goreti F
2009-08-01
A flow-spectrophotometric method is proposed for the routine determination of tartaric acid in wines. The reaction between tartaric acid and vanadate in acetic media is carried out in flowing conditions and the subsequent colored complex is monitored at 475 nm. The stability of the complex and the corresponding formation constant are presented. The effect of wavelength and pH was evaluated by batch experiments. The selected conditions were transposed to a flow-injection analytical system. Optimization of several flow parameters such as reactor lengths, flow-rate and injection volume was carried out. Using optimized conditions, a linear behavior was observed up to 1000 microg mL(-1) tartaric acid, with a molar extinction coefficient of 450 L mg(-1) cm(-1) and +/- 1 % repeatability. Sample throughput was 25 samples per hour. The flow-spectrophotometric method was satisfactorily applied to the quantification of TA in wines from different sources. Its accuracy was confirmed by statistical comparison to the conventional Rebelein procedure and to a certified analytical method carried out in a routine laboratory.
Dettmer, K; Hanna, D; Whetstone, P; Hansen, R; Hammock, B D
2007-08-01
Autism is a complex neurodevelopmental disorder with unknown etiology. One hypothesis regarding etiology in autism is the "opioid peptide excess" theory that postulates that excessive amounts of exogenous opioid-like peptides derived from dietary proteins are detectable in urine and that these compounds may be pathophysiologically important in autism. A selective LC-MS/MS method was developed to analyze gliadinomorphin, beta-casomorphin, deltorphin 1, and deltorphin 2 in urine. The method is based on on-line SPE extraction of the neuropeptides from urine, column switching, and subsequent HPLC analysis. A limit of detection of 0.25 ng/mL was achieved for all analytes. Analyte recovery rates from urine ranged between 78% and 94%, with relative standard deviations of 0.2-6.8%. The method was used to screen 69 urine samples from children with and without autism spectrum disorders for the occurrence of neuropeptides. The target neuropeptides were not detected above the detection limit in either sample set.
Li, Michelle W; Huynh, Bryan H; Hulvey, Matthew K; Lunte, Susan M; Martin, R Scott
2006-02-15
This work describes the fabrication and evaluation of a poly(dimethyl)siloxane (PDMS)-based device that enables the discrete injection of a sample plug from a continuous-flow stream into a microchannel for subsequent analysis by electrophoresis. Devices were fabricated by aligning valving and flow channel layers followed by plasma sealing the combined layers onto a glass plate that contained fittings for the introduction of liquid sample and nitrogen gas. The design incorporates a reduced-volume pneumatic valve that actuates (on the order of hundreds of milliseconds) to allow analyte from a continuously flowing sampling channel to be injected into a separation channel for electrophoresis. The injector design was optimized to include a pushback channel to flush away stagnant sample associated with the injector dead volume. The effect of the valve actuation time, the pushback voltage, and the sampling stream flow rate on the performance of the device was characterized. Using the optimized design and an injection frequency of 0.64 Hz showed that the injection process is reproducible (RSD of 1.77%, n = 15). Concentration change experiments using fluorescein as the analyte showed that the device could achieve a lag time as small as 14 s. Finally, to demonstrate the potential uses of this device, the microchip was coupled to a microdialysis probe to monitor a concentration change and sample a fluorescein dye mixture.
Evaporative concentration on a paper-based device to concentrate analytes in a biological fluid.
Wong, Sharon Y; Cabodi, Mario; Rolland, Jason; Klapperich, Catherine M
2014-12-16
We report the first demonstration of using heat on a paper device to rapidly concentrate a clinically relevant analyte of interest from a biological fluid. Our technology relies on the application of localized heat to a paper strip to evaporate off hundreds of microliters of liquid to concentrate the target analyte. This method can be used to enrich for a target analyte that is present at low concentrations within a biological fluid to enhance the sensitivity of downstream detection methods. We demonstrate our method by concentrating the tuberculosis-specific glycolipid, lipoarabinomannan (LAM), a promising urinary biomarker for the detection and diagnosis of tuberculosis. We show that the heat does not compromise the subsequent immunodetectability of LAM, and in 20 min, the tuberculosis biomarker was concentrated by nearly 20-fold in simulated urine. Our method requires only 500 mW of power, and sample flow is self-driven via capillary action. As such, our technology can be readily integrated into portable, battery-powered, instrument-free diagnostic devices intended for use in low-resource settings.
Woolfenden, Elizabeth
2010-04-16
Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Target compounds range in volatility from acetylene and freons to phthalates and PCBs and include apolar, polar and reactive species. Airborne vapour concentrations will vary depending on the nature of the location, nearby pollution sources, weather conditions, etc. Levels can range from low percent concentrations in stack and vent emissions to low part per trillion (ppt) levels in ultra-clean outdoor locations. Hundreds, even thousands of different compounds may be present in any given atmosphere. GC is commonly used in combination with mass spectrometry (MS) detection especially for environmental monitoring or for screening uncharacterised workplace atmospheres. Given the complexity and variability of organic vapours in air, no one sampling approach suits every monitoring scenario. A variety of different sampling strategies and sorbent media have been developed to address specific applications. Key sorbent-based examples include: active (pumped) sampling onto tubes packed with one or more sorbents held at ambient temperature; diffusive (passive) sampling onto sorbent tubes/cartridges; on-line sampling of air/gas streams into cooled sorbent traps; and transfer of air samples from containers (canisters, Tedlar) bags, etc.) into cooled sorbent focusing traps. Whichever sampling approach is selected, subsequent analysis almost always involves either solvent extraction or thermal desorption (TD) prior to GC(/MS) analysis. The overall performance of the air monitoring method will depend heavily on appropriate selection of key sampling and analytical parameters. This comprehensive review of air monitoring using sorbent tubes/traps is divided into 2 parts. (1) Sorbent-based air sampling option. (2) Sorbent selection and other aspects of optimizing sorbent-based air monitoring methods. The paper presents current state-of-the-art and recent developments in relevant areas such as sorbent research, sampler design, enhanced approaches to analytical quality assurance and on-tube derivatisation. Copyright 2009 Elsevier B.V. All rights reserved.
Liquid Chromatography-Mass Spectrometry Interface for Detection of Extraterrestrial Organics
NASA Technical Reports Server (NTRS)
Southard, Adrian E.; Getty, Stephanie A.; Balvin, Manuel; Cook, Jamie E.; Espiritu, Ana Mellina; Kotecki, Carl; Towner, Deborah W.; Dworkin, J. P.; Glavin, Daniel P.; Mahaffy, Paul R.;
2014-01-01
The OASIS (Organics Analyzer for Sampling Icy surfaces) microchip enables electrospray or thermospray of analyte for subsequent analysis by the OASIS time-of-flight mass spectrometer. Electrospray of buffer solution containing the nucleobase adenine was performed using the microchip and detected by a commercial time-of-flight mass spectrometer. Future testing of thermospray and electrospray capability will be performed using a test fixture and vacuum chamber developed especially for optimization of ion spray at atmosphere and in low pressure environments.
Metabolomic analysis-Addressing NMR and LC-MS related problems in human feces sample preparation.
Moosmang, Simon; Pitscheider, Maria; Sturm, Sonja; Seger, Christoph; Tilg, Herbert; Halabalaki, Maria; Stuppner, Hermann
2017-10-31
Metabolomics is a well-established field in fundamental clinical research with applications in different human body fluids. However, metabolomic investigations in feces are currently an emerging field. Fecal sample preparation is a demanding task due to high complexity and heterogeneity of the matrix. To gain access to the information enclosed in human feces it is necessary to extract the metabolites and make them accessible to analytical platforms like NMR or LC-MS. In this study different pre-analytical parameters and factors were investigated i.e. water content, different extraction solvents, influence of freeze-drying and homogenization, ratios of sample weight to extraction solvent, and their respective impact on metabolite profiles acquired by NMR and LC-MS. The results indicate that profiles are strongly biased by selection of extraction solvent or drying of samples, which causes different metabolites to be lost, under- or overstated. Additionally signal intensity and reproducibility of the measurement were found to be strongly dependent on sample pre-treatment steps: freeze-drying and homogenization lead to improved release of metabolites and thus increased signals, but at the same time induced variations and thus deteriorated reproducibility. We established the first protocol for extraction of human fecal samples and subsequent measurement with both complementary techniques NMR and LC-MS. Copyright © 2017 Elsevier B.V. All rights reserved.
Trace analysis of surfactants in Corexit oil dispersant formulations and seawater
NASA Astrophysics Data System (ADS)
Place, Benjamin J.; Perkins, Matt J.; Sinclair, Ewan; Barsamian, Adam L.; Blakemore, Paul R.; Field, Jennifer A.
2016-07-01
After the April 2010 explosion on the Deepwater Horizon oil rig, and subsequent release of millions of barrels of oil, two Corexit oil dispersant formulations were used in unprecedented quantities both on the surface and sub-surface of the Gulf of Mexico. Although the dispersant formulations contain four classes of surfactants, current studies to date focus on the anionic surfactant, bis-(2-ethylhexyl) sulfosuccinate (DOSS). Factors affecting the integrity of environmental and laboratory samples for Corexit analysis have not been systematically investigated. For this reason, a quantitative analytical method was developed for the detection of all four classes of surfactants, as well as the hydrolysis products of DOSS, the enantiomeric mixture of α- and β-ethylhexyl sulfosuccinate (α-/β-EHSS). The analytical method was then used to evaluate which practices for sample collection, storage, and analysis resulted in high quality data. Large volume, direct injection of seawater followed by liquid chromatography tandem mass spectrometry (LC-MS/MS) minimized analytical artifacts, analysis time, and both chemical and solid waste. Concentrations of DOSS in the seawater samples ranged from 71 to 13,000 ng/L, while the nonionic surfactants including Span 80, Tween 80, Tween 85 were detected infrequently (26% of samples) at concentrations from 840 to 9100 ng/L. The enantiomers α-/β-EHSS were detected in seawater, at concentrations from 200 to 1900 ng/L, and in both Corexit dispersant formulations, indicating α-/β-EHSS were applied to the oil spill and may be not unambiguous indicator of DOSS degradation. Best practices are provided to ensure sample integrity and data quality for environmental monitoring studies and laboratory that require the detection and quantification of Corexit-based surfactants in seawater.
Tarigh, Ghazale Daneshvar; Shemirani, Farzaneh
2014-06-01
A simple and rapid method for the simultaneous in situ derivatizaion, preconcentration and extraction of thiamine (vitamin B1) as a model analyte was developed by a novel quantitative method, namely ultrasound-assisted dispersive magnetic solid phase extraction spectrofluorimetry (USA-DMSPE-FL) from different real samples. This method consists of sample preparation, in situ derivatization, exhaustive extraction and clean up by a single process. High extraction efficiency and in situ derivatization in a short period of time is the main advantages of this procedure. For this purpose, the reusable magnetic multi-wall carbon nanotube (MMWCNT) nanocomposite was used as an adsorbent for preconcentration and determination of thiamine. Thiamine was, simultaneously, in situ derivatized as thiochrome by potassium hexacyanoferrate (III) and adsorbed on MMWCNT in an ultrasonic water bath. The MMWCNTs were then collected using an external magnetic field. Subsequently, the extracted thiochrome was washed from the surface of the adsorbent and determined by spectrofluorimetry. The developed method, which has been analytically characterized under its optimal operating conditions, allows the detection of the analyte in the samples with method detection limits of 0.37 µg L(-1). The repeatability of the method, expressed as the relative standard deviation (RSD, n=6), varies between 2.0% and 4.8% in different real samples, while the enhancement factor is 197. The proposed procedure has been applied for the determination of thiamine in biological (serum and urine), pharmaceutical (multivitamin tablet and B complex syrup) and foodstuff samples (cereal, wheat flour, banana and honey) with the good recoveries in the range from 90% to 105%. Copyright © 2014 Elsevier B.V. All rights reserved.
Surface analytical study of CuInSe[sub 2] treated in Cd-containing partial electrolyte solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asher, S.E.; Ramanathan, K.; Wiesner, H.
1999-03-01
Junction formation in CuInSe[sub 2] (CIS) has been studied by exposing thin films and single-crystal samples to solutions containing NH[sub 4]OH and CdSO[sub 4]. The treated samples were analyzed by secondary ion mass spectrometry to determine the amount and distribution of Cd deposited on the surface of the films. Cadmium is found to react with the surface for all the solution exposure times and temperatures studied. The reaction rapidly approaches the endpoint and remains relatively unchanged for subsequent solution exposure. Cadmium in-diffusion, as measured by secondary ion mass spectrometry, is obscured by topography effects in the thin-film samples and bymore » ion-beam mixing and topography in the single-crystal sample. [copyright] [ital 1999 American Institute of Physics.]« less
Surface analytical study of CuInSe{sub 2} treated in Cd-containing partial electrolyte solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asher, S.E.; Ramanathan, K.; Wiesner, H.
1999-03-01
Junction formation in CuInSe{sub 2} (CIS) has been studied by exposing thin films and single-crystal samples to solutions containing NH{sub 4}OH and CdSO{sub 4}. The treated samples were analyzed by secondary ion mass spectrometry to determine the amount and distribution of Cd deposited on the surface of the films. Cadmium is found to react with the surface for all the solution exposure times and temperatures studied. The reaction rapidly approaches the endpoint and remains relatively unchanged for subsequent solution exposure. Cadmium in-diffusion, as measured by secondary ion mass spectrometry, is obscured by topography effects in the thin-film samples and bymore » ion-beam mixing and topography in the single-crystal sample. {copyright} {ital 1999 American Institute of Physics.}« less
NASA Astrophysics Data System (ADS)
Khan, M. F.; Miriyala, N.; Lee, J.; Hassanpourfard, M.; Kumar, A.; Thundat, T.
2016-05-01
Lab-on-a-Chip compatible techniques for thermal characterization of miniaturized volumes of liquid analytes are necessary in applications such as protein blotting, DNA melting, and drug development, where samples are either rare or volume-limited. We developed a closed-chamber calorimeter based on a bimaterial microchannel cantilever (BMC) for sub-nanoliter level thermal analysis. When the liquid-filled BMC is irradiated with infrared (IR) light at a specific wavelength, the IR absorption by the liquid analyte results in localized heat generation and the subsequent deflection of the BMC, due to a thermal expansion mismatch between the constituent materials. The time constant of the deflection, which is dependent upon the heat capacity of the liquid analyte, can be directly measured by recording the time-dependent bending of the BMC. We have used the BMC to quantitatively measure the heat capacity of five volatile organic compounds. With a deflection noise level of ˜10 nm and a signal-to-noise ratio of 68:1, the BMC offers a sensitivity of 30.5 ms/(J g-1 K-1) and a resolution of 23 mJ/(g K) for ˜150 pl liquid for heat capacity measurements. This technique can be used for small-scale thermal characterization of different chemical and biological samples.
Long-Term Ecological Monitoring Field Sampling Plan for 2007
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. Haney
2007-07-31
This field sampling plan describes the field investigations planned for the Long-Term Ecological Monitoring Project at the Idaho National Laboratory Site in 2007. This plan and the Quality Assurance Project Plan for Waste Area Groups 1, 2, 3, 4, 5, 6, 7, 10, and Removal Actions constitute the sampling and analysis plan supporting long-term ecological monitoring sampling in 2007. The data collected under this plan will become part of the long-term ecological monitoring data set that is being collected annually. The data will be used t determine the requirements for the subsequent long-term ecological monitoring. This plan guides the 2007more » investigations, including sampling, quality assurance, quality control, analytical procedures, and data management. As such, this plan will help to ensure that the resulting monitoring data will be scientifically valid, defensible, and of known and acceptable quality.« less
NASA Astrophysics Data System (ADS)
Ofner, Johannes; Eitenberger, Elisabeth; Friedbacher, Gernot; Brenner, Florian; Hutter, Herbert; Schauer, Gerhard; Kistler, Magdalena; Greilinger, Marion; Lohninger, Hans; Lendl, Bernhard; Kasper-Giebl, Anne
2017-04-01
The aerosol composition of a city like Vienna is characterized by a complex interaction of local emissions and atmospheric input on a regional and continental scale. The identification of major aerosol constituents for basic source appointment and air quality issues needs a high analytical effort. Exceptional episodic air pollution events strongly change the typical aerosol composition of a city like Vienna on a time-scale of few hours to several days. Analyzing the chemistry of particulate matter from these events is often hampered by the sampling time and related sample amount necessary to apply the full range of bulk analytical methods needed for chemical characterization. Additionally, morphological and single particle features are hardly accessible. Chemical Imaging evolved to a powerful tool for image-based chemical analysis of complex samples. As a complementary technique to bulk analytical methods, chemical imaging can address a new access to study air pollution events by obtaining major aerosol constituents with single particle features at high temporal resolutions and small sample volumes. The analysis of the chemical imaging datasets is assisted by multivariate statistics with the benefit of image-based chemical structure determination for direct aerosol source appointment. A novel approach in chemical imaging is combined chemical imaging or so-called multisensor hyperspectral imaging, involving elemental imaging (electron microscopy-based energy dispersive X-ray imaging), vibrational imaging (Raman micro-spectroscopy) and mass spectrometric imaging (Time-of-Flight Secondary Ion Mass Spectrometry) with subsequent combined multivariate analytics. Combined chemical imaging of precipitated aerosol particles will be demonstrated by the following examples of air pollution events in Vienna: Exceptional episodic events like the transformation of Saharan dust by the impact of the city of Vienna will be discussed and compared to samples obtained at a high alpine background site (Sonnblick Observatory, Saharan Dust Event from April 2016). Further, chemical imaging of biological aerosol constituents of an autumnal pollen breakout in Vienna, with background samples from nearby locations from November 2016 will demonstrate the advantages of the chemical imaging approach. Additionally, the chemical fingerprint of an exceptional air pollution event from a local emission source, caused by the pull down process of a building in Vienna will unravel the needs for multisensor imaging, especially the combinational access. Obtained chemical images will be correlated to bulk analytical results. Benefits of the overall methodical access by combining bulk analytics and combined chemical imaging of exceptional episodic air pollution events will be discussed.
Malik, Ashok Kumar; Rai, Parmod Kumar
2008-07-01
A simple and sensitive method has been developed using preconcentration technique solid phase microextraction (SPME) and analytical technique HPLC-UV for the determination of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) from the environmental samples. Aqueous solution of anionic surfactant SDS was used for the extraction of both nitramine high explosives, viz., HMX and RDX from soil samples which were subsequently sorbed on SPME fiber. The static desorption was carried out in the desorption chamber of the SPME-HPLC interface in the presence of mobile phase ACN/methanol/water (30:35:35) and the subsequent chromatographic analysis at a flow rate of 0.5 mL/min and detection at 230 nm. For this purpose, a C(18), 5 microm RP analytical column was used as a separation medium in this method. Several parameters relating to SPME, e.g., adsorption/desorption time, concentration of salt, stirring rate, etc., were optimized. The method was linear over the range of 20-400 ng/mL for HMX and RDX standards in the presence of surfactant in aqueous phase, respectively. The correlation coefficient (R(2)) for HMX and RDX are 0.9998 and 0.9982, respectively. With SPME, the detection limits (S/N = 3) in ng/mL are 0.05 and 0.1 for HMX and RDX, respectively in the presence of the SDS surfactant. The developed method has been applied successfully to the analysis of real environmental samples like bore well water, river water, and ground alluvial soil.
Substrate-Mediated Laser Ablation under Ambient Conditions for Spatially-Resolved Tissue Proteomics
Fatou, Benoit; Wisztorski, Maxence; Focsa, Cristian; Salzet, Michel; Ziskind, Michael; Fournier, Isabelle
2015-01-01
Numerous applications of ambient Mass Spectrometry (MS) have been demonstrated over the past decade. They promoted the emergence of various micro-sampling techniques such as Laser Ablation/Droplet Capture (LADC). LADC consists in the ablation of analytes from a surface and their subsequent capture in a solvent droplet which can then be analyzed by MS. LADC is thus generally performed in the UV or IR range, using a wavelength at which analytes or the matrix absorb. In this work, we explore the potential of visible range LADC (532 nm) as a micro-sampling technology for large-scale proteomics analyses. We demonstrate that biomolecule analyses using 532 nm LADC are possible, despite the low absorbance of biomolecules at this wavelength. This is due to the preponderance of an indirect substrate-mediated ablation mechanism at low laser energy which contrasts with the conventional direct ablation driven by sample absorption. Using our custom LADC system and taking advantage of this substrate-mediated ablation mechanism, we were able to perform large-scale proteomic analyses of micro-sampled tissue sections and demonstrated the possible identification of proteins with relevant biological functions. Consequently, the 532 nm LADC technique offers a new tool for biological and clinical applications. PMID:26674367
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, Benjamin S.; Zalavadia, Mital A.; Miller, Brian W.
Environmental sampling and sample analyses by the International Atomic Energy Agency’s (IAEA) Network of Analytical Laboratories (NWAL) is a critical technical tool used to detect facility misuse under a Comprehensive Safeguards Agreement and to verify the absence of undeclared nuclear material activities under an Additional Protocol. Currently all environmental swipe samples (ESS) are screened using gamma spectrometry and x-ray fluorescence to estimate the amount of U and/or Pu in the ESS, to guide further analysis, and to assist in the shipment of ESS to the NWAL. Quantitative Digital Autoradiography for Environmental Samples (QDARES) is being developed to complement existing techniquesmore » through the use of a portable, real-time, high-spatial-resolution camera called the Ionizing-radiation Quantum Imaging Detector (iQID). The iQID constructs a spatial map of radionuclides within a sample or surface in real-time as charged particles (betas) and photons (gamma/x-rays) are detected and localized on an event-by-event basis. Knowledge of the location and nature of radioactive hot spots on the ESS could provide information for subsequent laboratory analysis. As a nondestructive technique, QDARES does not compromise the ESS chain of custody or subsequent laboratory analysis. In this paper we will present the system design and construction, characterization measurements with calibration sources, and initial measurements of ESS.« less
On Statistical Approaches for Demonstrating Analytical Similarity in the Presence of Correlation.
Yang, Harry; Novick, Steven; Burdick, Richard K
Analytical similarity is the foundation for demonstration of biosimilarity between a proposed product and a reference product. For this assessment, currently the U.S. Food and Drug Administration (FDA) recommends a tiered system in which quality attributes are categorized into three tiers commensurate with their risk and approaches of varying statistical rigor are subsequently used for the three-tier quality attributes. Key to the analyses of Tiers 1 and 2 quality attributes is the establishment of equivalence acceptance criterion and quality range. For particular licensure applications, the FDA has provided advice on statistical methods for demonstration of analytical similarity. For example, for Tier 1 assessment, an equivalence test can be used based on an equivalence margin of 1.5 σ R , where σ R is the reference product variability estimated by the sample standard deviation S R from a sample of reference lots. The quality range for demonstrating Tier 2 analytical similarity is of the form X̄ R ± K × σ R where the constant K is appropriately justified. To demonstrate Tier 2 analytical similarity, a large percentage (e.g., 90%) of test product must fall in the quality range. In this paper, through both theoretical derivations and simulations, we show that when the reference drug product lots are correlated, the sample standard deviation S R underestimates the true reference product variability σ R As a result, substituting S R for σ R in the Tier 1 equivalence acceptance criterion and the Tier 2 quality range inappropriately reduces the statistical power and the ability to declare analytical similarity. Also explored is the impact of correlation among drug product lots on Type I error rate and power. Three methods based on generalized pivotal quantities are introduced, and their performance is compared against a two-one-sided tests (TOST) approach. Finally, strategies to mitigate risk of correlation among the reference products lots are discussed. A biosimilar is a generic version of the original biological drug product. A key component of a biosimilar development is the demonstration of analytical similarity between the biosimilar and the reference product. Such demonstration relies on application of statistical methods to establish a similarity margin and appropriate test for equivalence between the two products. This paper discusses statistical issues with demonstration of analytical similarity and provides alternate approaches to potentially mitigate these problems. © PDA, Inc. 2016.
Porous protective solid phase micro-extractor sheath
Andresen, Brian D.; Randich, Erik
2005-03-29
A porous protective sheath for active extraction media used in solid phase microextraction (SPME). The sheath permits exposure of the media to the environment without the necessity of extending a fragile coated fiber from a protective tube or needle. Subsequently, the sheath can pierce and seal with GC-MS septums, allowing direct injection of samples into inlet ports of analytical equipment. Use of the porous protective sheath, within which the active extraction media is contained, mitigates the problems of: 1) fiber breakage while the fiber is extended during sampling, 2) active media coating loss caused by physical contact of the bare fiber with the sampling environment; and 3) coating slough-off during fiber extension and retraction operations caused by rubbing action between the fiber and protective needle or tube.
Rutty, Guy N; Barber, Jade; Amoroso, Jasmin; Morgan, Bruno; Graham, Eleanor A M
2013-12-01
Post-mortem computed tomography angiography (PMCTA) involves the injection of contrast agents. This could have both a dilution effect on biological fluid samples and could affect subsequent post-contrast analytical laboratory processes. We undertook a small sample study of 10 targeted and 10 whole body PMCTA cases to consider whether or not these two methods of PMCTA could affect post-PMCTA cadaver blood based DNA identification. We used standard methodology to examine DNA from blood samples obtained before and after the PMCTA procedure. We illustrate that neither of these PMCTA methods had an effect on the alleles called following short tandem repeat based DNA profiling, and therefore the ability to undertake post-PMCTA blood based DNA identification.
NASA Astrophysics Data System (ADS)
Obersteiner, Florian; Bönisch, Harald; Keber, Timo; O'Doherty, Simon; Engel, Andreas
2016-10-01
We present a compact and versatile cryofocusing-thermodesorption unit, which we developed for quantitative analysis of halogenated trace gases in ambient air. Possible applications include aircraft-based in situ measurements, in situ monitoring and laboratory operation for the analysis of flask samples. Analytes are trapped on adsorptive material cooled by a Stirling cooler to low temperatures (e.g. -80 °C) and subsequently desorbed by rapid heating of the adsorptive material (e.g. +200 °C). The set-up involves neither the exchange of adsorption tubes nor any further condensation or refocusing steps. No moving parts are used that would require vacuum insulation. This allows for a simple and robust design. Reliable operation is ensured by the Stirling cooler, which neither contains a liquid refrigerant nor requires refilling a cryogen. At the same time, it allows for significantly lower adsorption temperatures compared to commonly used Peltier elements. We use gas chromatography - mass spectrometry (GC-MS) for separation and detection of the preconcentrated analytes after splitless injection. A substance boiling point range of approximately -80 to +150 °C and a substance mixing ratio range of less than 1 ppt (pmol mol-1) to more than 500 ppt in preconcentrated sample volumes of 0.1 to 10 L of ambient air is covered, depending on the application and its analytical demands. We present the instrumental design of the preconcentration unit and demonstrate capabilities and performance through the examination of analyte breakthrough during adsorption, repeatability of desorption and analyte residues in blank tests. Examples of application are taken from the analysis of flask samples collected at Mace Head Atmospheric Research Station in Ireland using our laboratory GC-MS instruments and by data obtained during a research flight with our in situ aircraft instrument GhOST-MS (Gas chromatograph for the Observation of Tracers - coupled with a Mass Spectrometer).
Gao, Li; Wei, Yinmao
2016-06-01
Various cotton fiber based boronate-affinity adsorbents are recently developed for the sample pretreatment of cis-diol-containing biomolecules, but most do not have efficient capacity due to limited binding sites on the surface of cotton fibers. To increase the density of boronate groups on the surface of cotton fiber, polyhedral oligomeric silsesquioxanes were used to modify cotton fiber to provide plentiful reactive sites for subsequent functionalization with 4-formylphenylboronic acid. The new adsorbent showed special recognition ability towards cis-diols and high adsorption capacity (175 μg/g for catechol, 250 μg/g for dopamine, 400 μg/g for adenosine). The in-pipette-tip solid-phase extraction was investigated under different conditions, including pH and ionic strength of solution, adsorbent amount, pipette times, washing solvent, and elution solvent. The in-pipette-tip solid-phase extraction coupled with high-performance liquid chromatography was used to analyze four nucleosides in urine samples. Under the optimal extraction conditions, the detection limits were determined to be between 5.1 and 6.1 ng/mL (S/N = 3), and the linearity ranged from 20 to 500 ng/mL for these analytes. The accuracy of the analytical method was examined by studying the relative recoveries of analytes in real urine samples with recoveries varying from 83 to 104% (RSD = 3.9-10.2%, n = 3). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gómez Rioja, Rubén; Martínez Espartosa, Débora; Segovia, Marta; Ibarz, Mercedes; Llopis, María Antonia; Bauça, Josep Miquel; Marzana, Itziar; Barba, Nuria; Ventura, Monserrat; García Del Pino, Isabel; Puente, Juan José; Caballero, Andrea; Gómez, Carolina; García Álvarez, Ana; Alsina, María Jesús; Álvarez, Virtudes
2018-05-05
The stability limit of an analyte in a biological sample can be defined as the time required until a measured property acquires a bias higher than a defined specification. Many studies assessing stability and presenting recommendations of stability limits are available, but differences among them are frequent. The aim of this study was to classify and to grade a set of bibliographic studies on the stability of five common blood measurands and subsequently generate a consensus stability function. First, a bibliographic search was made for stability studies for five analytes in blood: alanine aminotransferase (ALT), glucose, phosphorus, potassium and prostate specific antigen (PSA). The quality of every study was evaluated using an in-house grading tool. Second, the different conditions of stability were uniformly defined and the percent deviation (PD%) over time for each analyte and condition were scattered while unifying studies with similar conditions. From the 37 articles considered as valid, up to 130 experiments were evaluated and 629 PD% data were included (106 for ALT, 180 for glucose, 113 for phosphorus, 145 for potassium and 85 for PSA). Consensus stability equations were established for glucose, potassium, phosphorus and PSA, but not for ALT. Time is the main variable affecting stability in medical laboratory samples. Bibliographic studies differ in recommedations of stability limits mainly because of different specifications for maximum allowable error. Definition of a consensus stability function in specific conditions can help laboratories define stability limits using their own quality specifications.
A microarray immunoassay for simultaneous detection of proteins and bacteria
NASA Technical Reports Server (NTRS)
Delehanty, James B.; Ligler, Frances S.
2002-01-01
We report the development and characterization of an antibody microarray biosensor for the rapid detection of both protein and bacterial analytes under flow conditions. Using a noncontact microarray printer, biotinylated capture antibodies were immobilized at discrete locations on the surface of an avidin-coated glass microscope slide. Preservation of capture antibody function during the deposition process was accomplished with the use of a low-salt buffer containing sucrose and bovine serum albumin. The slide was fitted with a six-channel flow module that conducted analyte-containing solutions over the array of capture antibody microspots. Detection of bound analyte was subsequently achieved using fluorescent tracer antibodies. The pattern of fluorescent complexes was interrogated using a scanning confocal microscope equipped with a 635-nm laser. This microarray system was employed to detect protein and bacterial analytes both individually and in samples containing mixtures of analytes. Assays were completed in 15 min, and detection of cholera toxin, staphylococcal enterotoxin B, ricin, and Bacillus globigii was demonstrated at levels as low as 8 ng/mL, 4 ng/mL, 10 ng/mL, and 6.2 x 10(4) cfu/mL, respectively. The assays presented here are very fast, as compared to previously published methods for measuring antibody-antigen interactions using microarrays (minutes versus hours).
ERIC Educational Resources Information Center
Lawson, Celeste; Beer, Colin; Rossi, Dolene; Moore, Teresa; Fleming, Julie
2016-01-01
Learning analytics is an emerging field in which sophisticated analytic tools are used to inform and improve learning and teaching. Researchers within a regional university in Australia identified an association between interaction and student success in online courses and subsequently developed a learning analytics system aimed at informing…
Gode, David; Volmer, Dietrich A
2013-05-15
Magnetic beads are often used for serum profiling of peptide and protein biomarkers. In these assays, the bead-bound analytes are eluted from the beads prior to mass spectrometric analysis. This study describes a novel matrix-assisted laser desorption/ionization (MALDI) technique for direct application and focusing of magnetic beads to MALDI plates by means of dedicated micro-magnets as sample spots. Custom-made MALDI plates with magnetic focusing spots were made using small nickel-coated neodymium micro-magnets integrated into a stainless steel plate in a 16 × 24 (384) pattern. For demonstrating the proof-of-concept, commercial C-18 magnetic beads were used for the extraction of a test compound (reserpine) from aqueous solution. Experiments were conducted to study focusing abilities, the required laser energies, the influence of a matrix compound, dispensing techniques, solvent choice and the amount of magnetic beads. Dispensing the magnetic beads onto the micro-magnet sample spots resulted in immediate and strong binding to the magnetic surface. Light microscope images illustrated the homogeneous distribution of beads across the surfaces of the magnets, when the entire sample volume containing the beads was pipetted onto the surface. Subsequent MALDI analysis of the bead-bound analyte demonstrated excellent and reproducible ionization yields. The surface-assisted laser desorption/ionization (SALDI) properties of the strongly light-absorbing γ-Fe2O3-based beads resulted in similar ionization efficiencies to those obtained from experiments with an additional MALDI matrix compound. This feasibility study successfully demonstrated the magnetic focusing abilities for magnetic bead-bound analytes on a novel MALDI plate containing small micro-magnets as sample spots. One of the key advantages of this integrated approach is that no elution steps from magnetic beads were required during analyses compared with conventional bead experiments. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Dinç, Erdal; Kanbur, Murat; Baleanu, Dumitru
2007-10-01
Comparative simultaneous determination of chlortetracycline and benzocaine in the commercial veterinary powder product was carried out by continuous wavelet transform (CWT) and classical derivative transform (or classical derivative spectrophotometry). In this quantitative spectral analysis, two proposed analytical methods do not require any chemical separation process. In the first step, several wavelet families were tested to find an optimal CWT for the overlapping signal processing of the analyzed compounds. Subsequently, we observed that the coiflets (COIF-CWT) method with dilation parameter, a = 400, gives suitable results for this analytical application. For a comparison, the classical derivative spectrophotometry (CDS) approach was also applied to the simultaneous quantitative resolution of the same analytical problem. Calibration functions were obtained by measuring the transform amplitudes corresponding to zero-crossing points for both CWT and CDS methods. The utility of these two analytical approaches were verified by analyzing various synthetic mixtures consisting of chlortetracycline and benzocaine and they were applied to the real samples consisting of veterinary powder formulation. The experimental results obtained from the COIF-CWT approach were statistically compared with those obtained by classical derivative spectrophotometry and successful results were reported.
Dargan, Paul I; Davies, Susannah; Puchnarewicz, Malgorzata; Johnston, Atholl; Wood, David M
2013-03-01
There is increasing evidence from around Europe of the availability and misuse of long-acting benzodiazepines such as phenazepam. There is little information on the acute toxicity of these compounds; we describe here a case of analytically confirmed phenazepam-related acute toxicity. A 42-year-old man with no previous medical or psychiatric history was brought to the Emergency Department by his friends because he had developed prolonged ongoing confusion and disorientation following use of up to three different "legal high" powders. There was no obvious medical cause for this acute confusion and disorientation. His symptoms continued for approximately 60 h after suspected use. Subsequent toxicological analysis of a serum sample confirmed use of phenazepam (concentration 0.49 mg/L); no other drugs were detected during an extensive analytical screening. This is the second case of analytically confirmed acute toxicity related to phenazepam in Europe. This adds to the scant published information on the acute toxicity of this drug, and will provide healthcare and legislative authorities with further information on which to base advice and consideration of the need for its control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozanich, Rich M.; Antolick, Kathryn C.; Bruckner-Lea, Cindy J.
2007-09-15
Automated devices and methods for biological sample preparation often utilize surface functionalized microbeads (superparamagnetic or non-magnetic) to allow capture, purification and pre-concentration of trace amounts of proteins, cells, or nucleic acids (DNA/RNA) from complex samples. We have developed unique methods and hardware for trapping either magnetic or non-magnetic functionalized beads that allow samples and reagents to be efficiently perfused over a micro-column of beads. This approach yields enhanced mass transport and up to 5-fold improvements in assay sensitivity or speed, dramatically improving assay capability relative to assays conducted in more traditional “batch modes” (i.e., in tubes or microplate wells). Summarymore » results are given that highlight the analytical performance improvements obtained for automated microbead processing systems utilizing novel microbead trap/flow-cells for various applications, including: 1) simultaneous capture of multiple cytokines using an antibody-coupled polystyrene bead assay with subsequent flow cytometry detection; 2) capture of nucleic acids using oligonucleotide coupled polystyrene beads with flow cytometry detection; and 3) capture of Escherichia coli 0157:H7 (E. coli) from 50 mL sample volumes using antibody-coupled superparamagnetic microbeads with subsequent culturing to assess capture efficiency.« less
NASA Technical Reports Server (NTRS)
Mackie, Jason; Dyar, M. Darby; Ytsma, Caroline; Lepore, Kate; Fassett, Caleb I.; Hanlon, Avery; Wagoner, Carlie; Treiman, Allan
2017-01-01
Analytical geochemistry has long depended on the availability of robust suites of rock standards with well-characterized compositions. Standard rock powders for wet chemistry and x-ray fluorescence were initially characterized and supplied to the community by the U.S. Geological Survey, which continues to distribute a few dozen standards. Many other rock standards have subsequently been developed by organizations such as the Centre de Recherches Pétrographiques et Géochimiques (CRPG) and Brammer Standard Company, Inc.
Method for Hot Real-Time Analysis of Pyrolysis Vapors at Pilot Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomeroy, Marc D
Pyrolysis oils contain more than 400 compounds, up to 60% of which do not re-volatilize for subsequent chemical analysis. Vapor chemical composition is also complicated as additional condensation reactions occur during quenching and collection of the product. Due to the complexity of the pyrolysis oil, and a desire to catalytically upgrade the vapor composition before condensation, online real-time analytical techniques such as Molecular Beam Mass Spectrometry (MBMS) are of great use. However, in order to properly sample hot pyrolysis vapors at the pilot scale, many challenges must be overcome.
Connor, Thomas H; Smith, Jerome P
2016-09-01
At the present time, the method of choice to determine surface contamination of the workplace with antineoplastic and other hazardous drugs is surface wipe sampling and subsequent sample analysis with a variety of analytical techniques. The purpose of this article is to review current methodology for determining the level of surface contamination with hazardous drugs in healthcare settings and to discuss recent advances in this area. In addition it will provide some guidance for conducting surface wipe sampling and sample analysis for these drugs in healthcare settings. Published studies on the use of wipe sampling to measure hazardous drugs on surfaces in healthcare settings drugs were reviewed. These studies include the use of well-documented chromatographic techniques for sample analysis in addition to newly evolving technology that provides rapid analysis of specific antineoplastic. Methodology for the analysis of surface wipe samples for hazardous drugs are reviewed, including the purposes, technical factors, sampling strategy, materials required, and limitations. The use of lateral flow immunoassay (LFIA) and fluorescence covalent microbead immunosorbent assay (FCMIA) for surface wipe sample evaluation is also discussed. Current recommendations are that all healthc a re settings where antineoplastic and other hazardous drugs are handled include surface wipe sampling as part of a comprehensive hazardous drug-safe handling program. Surface wipe sampling may be used as a method to characterize potential occupational dermal exposure risk and to evaluate the effectiveness of implemented controls and the overall safety program. New technology, although currently limited in scope, may make wipe sampling for hazardous drugs more routine, less costly, and provide a shorter response time than classical analytical techniques now in use.
Multiplex Quantitative Histologic Analysis of Human Breast Cancer Cell Signaling and Cell Fate
2008-05-01
stains. 15. SUBJECT TERMS Breast cancer, cell signaling, cell proliferation, histology, image analysis 16. SECURITY CLASSIFICATION OF: 17...fluorescence, and these DAPI-stained nuclei are often not counted during subsequent image analysis ). To study two analytes in the same tumor section or...analytes (p-ERK, p-AKT, Ki67) and for epithelial cytokeratin (CK), so that tumor cells may be identified during subsequent automated image analysis (as
Patton, Charles J.; Gilroy, Edward J.
1999-01-01
Data on which this report is based, including nutrient concentrations in synthetic reference samples determined concurrently with those in real samples, are extensive (greater than 20,000 determinations) and have been published separately. In addition to confirming the well-documented instability of nitrite in acidified samples, this study also demonstrates that when biota are removed from samples at collection sites by 0.45-micrometer membrane filtration, subsequent preservation with sulfuric acid or mercury (II) provides no statistically significant improvement in nutrient concentration stability during storage at 4 degrees Celsius for 30 days. Biocide preservation had no statistically significant effect on the 30-day stability of phosphorus concentrations in whole-water splits from any of the 15 stations, but did stabilize Kjeldahl nitrogen concentrations in whole-water splits from three data-collection stations where ammonium accounted for at least half of the measured Kjeldahl nitrogen.
2017-01-01
Background Laboratory testing is roughly divided into three phases: a pre-analytical phase, an analytical phase and a post-analytical phase. Most analytical errors have been attributed to the analytical phase. However, recent studies have shown that up to 70% of analytical errors reflect the pre-analytical phase. The pre-analytical phase comprises all processes from the time a laboratory request is made by a physician until the specimen is analyzed at the lab. Generally, the pre-analytical phase includes patient preparation, specimen transportation, specimen collection and storage. In the present study, we report the first comprehensive assessment of the frequency and types of pre-analytical errors at the Sulaimani diagnostic labs in Iraqi Kurdistan. Materials and Methods Over 2 months, 5500 venous blood samples were observed in 10 public diagnostic labs of Sulaimani City. The percentages of rejected samples and types of sample inappropriateness were evaluated. The percentage of each of the following pre-analytical errors were recorded: delay in sample transportation, clotted samples, expired reagents, hemolyzed samples, samples not on ice, incorrect sample identification, insufficient sample, tube broken in centrifuge, request procedure errors, sample mix-ups, communication conflicts, misinterpreted orders, lipemic samples, contaminated samples and missed physician’s request orders. The difference between the relative frequencies of errors observed in the hospitals considered was tested using a proportional Z test. In particular, the survey aimed to discover whether analytical errors were recorded and examine the types of platforms used in the selected diagnostic labs. Results The analysis showed a high prevalence of improper sample handling during the pre-analytical phase. In appropriate samples, the percentage error was as high as 39%. The major reasons for rejection were hemolyzed samples (9%), incorrect sample identification (8%) and clotted samples (6%). Most quality control schemes at Sulaimani hospitals focus only on the analytical phase, and none of the pre-analytical errors were recorded. Interestingly, none of the labs were internationally accredited; therefore, corrective actions are needed at these hospitals to ensure better health outcomes. Internal and External Quality Assessment Schemes (EQAS) for the pre-analytical phase at Sulaimani clinical laboratories should be implemented at public hospitals. Furthermore, lab personnel, particularly phlebotomists, need continuous training on the importance of sample quality to obtain accurate test results. PMID:28107395
Najat, Dereen
2017-01-01
Laboratory testing is roughly divided into three phases: a pre-analytical phase, an analytical phase and a post-analytical phase. Most analytical errors have been attributed to the analytical phase. However, recent studies have shown that up to 70% of analytical errors reflect the pre-analytical phase. The pre-analytical phase comprises all processes from the time a laboratory request is made by a physician until the specimen is analyzed at the lab. Generally, the pre-analytical phase includes patient preparation, specimen transportation, specimen collection and storage. In the present study, we report the first comprehensive assessment of the frequency and types of pre-analytical errors at the Sulaimani diagnostic labs in Iraqi Kurdistan. Over 2 months, 5500 venous blood samples were observed in 10 public diagnostic labs of Sulaimani City. The percentages of rejected samples and types of sample inappropriateness were evaluated. The percentage of each of the following pre-analytical errors were recorded: delay in sample transportation, clotted samples, expired reagents, hemolyzed samples, samples not on ice, incorrect sample identification, insufficient sample, tube broken in centrifuge, request procedure errors, sample mix-ups, communication conflicts, misinterpreted orders, lipemic samples, contaminated samples and missed physician's request orders. The difference between the relative frequencies of errors observed in the hospitals considered was tested using a proportional Z test. In particular, the survey aimed to discover whether analytical errors were recorded and examine the types of platforms used in the selected diagnostic labs. The analysis showed a high prevalence of improper sample handling during the pre-analytical phase. In appropriate samples, the percentage error was as high as 39%. The major reasons for rejection were hemolyzed samples (9%), incorrect sample identification (8%) and clotted samples (6%). Most quality control schemes at Sulaimani hospitals focus only on the analytical phase, and none of the pre-analytical errors were recorded. Interestingly, none of the labs were internationally accredited; therefore, corrective actions are needed at these hospitals to ensure better health outcomes. Internal and External Quality Assessment Schemes (EQAS) for the pre-analytical phase at Sulaimani clinical laboratories should be implemented at public hospitals. Furthermore, lab personnel, particularly phlebotomists, need continuous training on the importance of sample quality to obtain accurate test results.
Identification of natural indigo in historical textiles by GC-MS.
Degani, Laura; Riedo, Chiara; Chiantore, Oscar
2015-02-01
The possibility of successfully applying a common GC-MS procedure for identification in one step of all types of dyes from plants of unknown origin and from historical objects is particularly attractive due to the high separation efficiency of the capillary columns, the MS detection sensitivity and the reproducibility of results. In this work, GC-MS analysis, previously and successfully used for the characterization of anthraquinones, flavonoids and tannins from plant extracts and historical samples, has been tested on indigoid dyestuffs. An analytical procedure based on the silylating agent N,O-bis-(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane (TMCS) was applied to pure molecules of indigotin and indirubin and to plant extracts of Indigofera tinctoria L. and Isatis tinctoria L. Preliminary tests have been done to establish the chromatographic conditions and the derivatization amounts most suitable for the simultaneous detection of indigoid molecules and of the other natural compounds, such as fatty acids, carboxylic acids and sugars, contained within the plant extracts. In order to assess the capacity and the sensitivity of the analytical procedure in typical archaeometric applications, wool samples dyed in the laboratory with indigo were analysed by mimicking the sample amounts typically available with historical objects. The electron ionization (EI) spectra of the main silylated derivatives of indigoid molecules obtained in this way constitute the necessary data set for the characterization of natural extracts and historical works of art. Subsequently, the procedure has been applied to historical samples for the detection of indigo and of other dyestuffs eventually contained in samples. Additional information, useful for restoration and preservation of works of art, could be also obtained on the nature of stains and smudges present on the sampled textile material. The GC-MS method turns out to be an efficient and fast analytical tool also for the identification of natural indigo in plants and textile artefacts, providing results complementary to those from high-performance liquid chromatography (HPLC).
Horstkotte, Burkhard; Chocholouš, Petr; Solich, Petr
2016-04-01
We report on a Lab-On-Valve (LOV) configuration for analyte preconcentration from milliliter sample volumes using confluent mixing in the holding coil for in-line addition of loading buffer. The system was applied to the spectrophotometric determination of iron(II) in acidified seawater using 1,10-phenanthroline as color reagent. A cellulose-based chelating sorbent containing 8-hydroxyquinoline was used for the first time in LOV and excellent retention behavior and loading capacity were found. The flow system employs a syringe pump for handling all solutions (sorbent suspension, loading buffer, water, eluent, and color reagent) and a peristaltic pump for sample propulsion and includes a fit-for-purpose 14 cm long detection glass flow cell and a bubble trap for in-line carrier degasification. Advantage was taken of the LOV flow-through port to keep the eluted analytes for re-aspiration for subsequent chromogenic reaction. In effect, a universal analyzer configuration and preconcentration procedure was developed, which is combinable with other analytes, sorbents, and reagents. Among the studied parameters were the compositions, pH, volumes, and flow rates of loading buffer, eluent, and color reagent, as well as the microcolumn size, repeatability, and system stability. Reproducibility of 4.1% RSD over the entire working range, a LOD of down to 5 nmol L(-1), sampling frequency of 12h(-1), and linearity up to 1 µmol L(-1) for 3.3 mL of sample were obtained and applicability to real samples was demonstrated. It was proven that both Fe(III) and Fe(II) were retained and yielded similar recovery and sensitivity values. The method was applied to coastal seawater samples and spiking experiments yielded recovery values close to 100%. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odedra, R.; Smith, L.M.; Rushworth, S.A.
2000-01-01
Hydrazine derivatives are attractive low temperature nitrogen sources for use in MOVPE due to their low thermal stability. However their purification and subsequent analysis has not previously been investigated in depth for this application. A detailed study on 1,1-dimethylhydrazine {l{underscore}brace}(CH{sub 3}){sub 2}N-NH{sub 2}{r{underscore}brace} purified by eight different methods and the subsequent quantitative measurements of water present in the samples obtained is reported here. A correlation between {sup 1}H nuclear magnetic resonance spectroscopy (NMR), gas chromatography-atomic emission detection (GC-AED) and cryogenic mass spectroscopy (Cryogenic-MS) has been performed. All three analysis techniques can be used to measure water in the samples andmore » with the best purification the water content can be lowered well below 100 ppm. The high purity of this material has been demonstrated by growth results and the state-of-the-art performance of laser diodes.« less
Clinically relevant advances in on-chip affinity-based electrophoresis and electrochromatography.
Hou, Chenlu; Herr, Amy E
2008-08-01
Clinical and point-of-care disease diagnostics promise to play an important role in personalized medicine, new approaches to global health, and health monitoring. Emerging instrument platforms based on lab-on-a-chip technology can confer performance advantages successfully exploited in electrophoresis and electrochromatography to affinity-based electrokinetic separations. This review surveys lab-on-a-chip diagnostic developments in affinity-based electrokinetic separations for quantitation of proteins, integration of preparatory functions needed for subsequent analysis of diverse biological samples, and initial forays into multiplexed analyses. The technologies detailed here underpin new clinical and point-of-care diagnostic strategies. The techniques and devices promise to advance translation of until now laboratory-based sample preparation and analytical assays to near-patient settings.
NASA Astrophysics Data System (ADS)
Stosnach, Hagen; Mages, Margarete
2009-04-01
In clinical service laboratories, one of the most common analytical tasks with regard to inorganic traces is the determination of the nutrition-relevant elements Fe, Cu, Zn, and Se. Because of the high numbers of samples and the commercial character of these analyses, a time-consuming sample preparation must be avoided. In this presentation, the results of total reflection X-ray fluorescence measurements with a low-power system and different sample preparation procedures are compared with those derived from analysis with common methods like Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The results of these investigations indicate that the optimal total reflection X-ray fluorescence analysis of the nutrition-relevant elements Fe, Cu, Zn, and Se can be performed by preparing whole blood and serum samples after dilution with ultrapure water and transferring 10 μl of internally standardized sample to an unsiliconized quartz glass sample carrier with subsequent drying in a laboratory oven. Suitable measurement time was found to be 600 s. The enhanced sample preparation by means of microwave or open digestion, in parts combined with cold plasma ashing, led to an improvement of detection limits by a factor of 2 for serum samples while for whole blood samples an improvement was only observed for samples prepared by means of microwave digestion. As the matrix elements P, S, Cl, and for whole blood Fe have a major influence on the detection limits, most probably a further enhancement of analytical quality requires the removal of the organic matrix. However, for the routine analysis of the nutrition-relevant elements, the dilution preparation was found to be sufficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, M. F.; Miriyala, N.; Hassanpourfard, M.
Lab-on-a-Chip compatible techniques for thermal characterization of miniaturized volumes of liquid analytes are necessary in applications such as protein blotting, DNA melting, and drug development, where samples are either rare or volume-limited. We developed a closed-chamber calorimeter based on a bimaterial microchannel cantilever (BMC) for sub-nanoliter level thermal analysis. When the liquid-filled BMC is irradiated with infrared (IR) light at a specific wavelength, the IR absorption by the liquid analyte results in localized heat generation and the subsequent deflection of the BMC, due to a thermal expansion mismatch between the constituent materials. The time constant of the deflection, which ismore » dependent upon the heat capacity of the liquid analyte, can be directly measured by recording the time-dependent bending of the BMC. We have used the BMC to quantitatively measure the heat capacity of five volatile organic compounds. With a deflection noise level of ∼10 nm and a signal-to-noise ratio of 68:1, the BMC offers a sensitivity of 30.5 ms/(J g{sup −1 }K{sup −1}) and a resolution of 23 mJ/(g K) for ∼150 pl liquid for heat capacity measurements. This technique can be used for small-scale thermal characterization of different chemical and biological samples.« less
Inspection method for the identification of TBT-containing antifouling paints.
Senda, Tetsuya; Miyata, Osamu; Kihara, Takeshi; Yamada, Yasujiro
2003-04-01
In order to ensure the effectiveness of the international convention which will prohibit the use of organotin compounds in antifouling paints applied to ships, it is essential to establish an inspection system to determine the presence of the prohibited compounds in the paint. In the present study, a method for the identification of organotin containing antifouling paints using a two-stage analysis process is investigated. Firstly, X-ray fluorescence analysis (XRF) is utilized, which could be used at the place of ship surveys or port state control. Using a portable XRF instrument customized for ship inspection, analysis is automatically executed and determines whether tin is present or not. If the presence of tin is confirmed by XRF, the sample is subsequently examined at an analytical laboratory using more rigorous analytical techniques, such as gas chromatograph mass spectrometry (GC-MS). A sampling device has been designed. It is a disc of approximately 10 mm diameter and has abrasive paper pasted to one of its flat surfaces. The device is pressed onto and then slid along a ship hull to lightly scrape off fragments of paint onto the abrasive paper. Preliminary field tests have revealed that sampling from a ship in dock yields successful collection of the paint for XRD analysis and that the resultant damage caused to the antifouling paint surface by the sampling technique was found to be negligible.
Ambient aerodynamic ionization source for remote analyte sampling and mass spectrometric analysis.
Dixon, R Brent; Sampson, Jason S; Hawkridge, Adam M; Muddiman, David C
2008-07-01
The use of aerodynamic devices in ambient ionization source development has become increasingly prevalent in the field of mass spectrometry. In this study, an air ejector has been constructed from inexpensive, commercially available components to incorporate an electrospray ionization emitter within the exhaust jet of the device. This novel aerodynamic device, herein termed remote analyte sampling, transport, and ionization relay (RASTIR) was used to remotely sample neutral species in the ambient and entrain them into an electrospray plume where they were subsequently ionized and detected using a linear ion trap Fourier transform mass spectrometer. Two sets of experiments were performed in the ambient environment to demonstrate the device's utility. The first involved the remote (approximately 1 ft) vacuum collection of pure sample particulates (i.e., dry powder) from a glass slide, entrainment and ionization at the ESI emitter, and mass spectrometric detection. The second experiment involved the capture (vacuum collection) of matrix-assisted laser desorbed proteins followed by entrainment in the ESI emitter plume, multiple charging, and mass spectrometric detection. This approach is in principle a RASTIR-assisted matrix-assisted laser desorption electrospray ionization source (Sampson, J. S.; Hawkridge, A. M.; Muddiman, D. C. J. Am. Soc. Mass Spectrom. 2006, 17, 1712-1716; Rapid Commun. Mass Spectrom. 2007, 21, 1150-1154.). A detailed description of the device construction, operational parameters, and preliminary small molecule and protein data are presented.
Comparison of analytical methods for profiling N- and O-linked glycans from cultured cell lines
Togayachi, Akira; Azadi, Parastoo; Ishihara, Mayumi; Geyer, Rudolf; Galuska, Christina; Geyer, Hildegard; Kakehi, Kazuaki; Kinoshita, Mitsuhiro; Karlsson, Niclas G.; Jin, Chunsheng; Kato, Koichi; Yagi, Hirokazu; Kondo, Sachiko; Kawasaki, Nana; Hashii, Noritaka; Kolarich, Daniel; Stavenhagen, Kathrin; Packer, Nicolle H.; Thaysen-Andersen, Morten; Nakano, Miyako; Taniguchi, Naoyuki; Kurimoto, Ayako; Wada, Yoshinao; Tajiri, Michiko; Yang, Pengyuan; Cao, Weiqian; Li, Hong; Rudd, Pauline M.; Narimatsu, Hisashi
2016-01-01
The Human Disease Glycomics/Proteome Initiative (HGPI) is an activity in the Human Proteome Organization (HUPO) supported by leading researchers from international institutes and aims at development of disease-related glycomics/glycoproteomics analysis techniques. Since 2004, the initiative has conducted three pilot studies. The first two were N- and O-glycan analyses of purified transferrin and immunoglobulin-G and assessed the most appropriate analytical approach employed at the time. This paper describes the third study, which was conducted to compare different approaches for quantitation of N- and O-linked glycans attached to proteins in crude biological samples. The preliminary analysis on cell pellets resulted in wildly varied glycan profiles, which was probably the consequence of variations in the pre-processing sample preparation methodologies. However, the reproducibility of the data was not improved dramatically in the subsequent analysis on cell lysate fractions prepared in a specified method by one lab. The study demonstrated the difficulty of carrying out a complete analysis of the glycome in crude samples by any single technology and the importance of rigorous optimization of the course of analysis from preprocessing to data interpretation. It suggests that another collaborative study employing the latest technologies in this rapidly evolving field will help to realize the requirements of carrying out the large-scale analysis of glycoproteins in complex cell samples. PMID:26511985
Differences in metabolite profiles caused by pre-analytical blood processing procedures.
Nishiumi, Shin; Suzuki, Makoto; Kobayashi, Takashi; Yoshida, Masaru
2018-05-01
Recently, the use of metabolomic analysis of human serum and plasma for biomarker discovery and disease diagnosis in clinical studies has been increasing. The feasibility of using a metabolite biomarker for disease diagnosis is strongly dependent on the metabolite's stability during pre-analytical blood processing procedures, such as serum or plasma sampling and sample storage prior to centrifugation. However, the influence of blood processing procedures on the stability of metabolites has not been fully characterized. In the present study, we compared the levels of metabolites in matched human serum and plasma samples using gas chromatography coupled with mass spectrometry and liquid chromatography coupled with mass spectrometry. In addition, we evaluated the changes in plasma metabolite levels induced by storage at room temperature or at a cold temperature prior to centrifugation. As a result, it was found that 76 metabolites exhibited significant differences between their serum and plasma levels. Furthermore, the pre-centrifugation storage conditions significantly affected the plasma levels of 45 metabolites. These results highlight the importance of blood processing procedures during metabolome analysis, which should be considered during biomarker discovery and the subsequent use of biomarkers for disease diagnosis. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Pizarro, Consuelo; Arenzana-Rámila, Irene; Pérez-del-Notario, Nuria; Pérez-Matute, Patricia; González-Sáiz, José María
2016-03-17
Lipid profiling is a promising tool for the discovery and subsequent identification of biomarkers associated with various diseases. However, data quality is quite dependent on the pre-analytical methods employed. To date, potential confounding factors that may affect lipid metabolite levels after the thawing of plasma for biomarker exploration studies have not been thoroughly evaluated. In this study, by means of experimental design methodology, we performed the first in-depth examination of the ways in which thawing conditions affect lipid metabolite levels. After the optimization stage, we concluded that temperature, sample volume and the thawing method were the determining factors that had to be exhaustively controlled in the thawing process to ensure the quality of biomarker discovery. Best thawing conditions were found to be: 4 °C, with 0.25 mL of human plasma and ultrasound (US) thawing. The new US proposed thawing method was quicker than the other methods we studied, allowed more features to be identified and increased the signal of the lipids. In view of its speed, efficiency and detectability, the US thawing method appears to be a simple, economical method for the thawing of plasma samples, which could easily be applied in clinical laboratories before lipid profiling studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Automated two-dimensional interface for capillary gas chromatography
Strunk, M.R.; Bechtold, W.E.
1996-02-20
A multidimensional gas chromatograph (GC) system is disclosed which has wide bore capillary and narrow bore capillary GC columns in series and has a novel system interface. Heart cuts from a high flow rate sample, separated by a wide bore GC column, are collected and directed to a narrow bore GC column with carrier gas injected at a lower flow compatible with a mass spectrometer. A bimodal six-way valve is connected with the wide bore GC column outlet and a bimodal four-way valve is connected with the narrow bore GC column inlet. A trapping and retaining circuit with a cold trap is connected with the six-way valve and a transfer circuit interconnects the two valves. The six-way valve is manipulated between first and second mode positions to collect analyte, and the four-way valve is manipulated between third and fourth mode positions to allow carrier gas to sweep analyte from a deactivated cold trap, through the transfer circuit, and then to the narrow bore GC capillary column for separation and subsequent analysis by a mass spectrometer. Rotary valves have substantially the same bore width as their associated columns to minimize flow irregularities and resulting sample peak deterioration. The rotary valves are heated separately from the GC columns to avoid temperature lag and resulting sample deterioration. 3 figs.
Automated two-dimensional interface for capillary gas chromatography
Strunk, Michael R.; Bechtold, William E.
1996-02-20
A multidimensional gas chromatograph (GC) system having wide bore capillary and narrow bore capillary GC columns in series and having a novel system interface. Heart cuts from a high flow rate sample, separated by a wide bore GC column, are collected and directed to a narrow bore GC column with carrier gas injected at a lower flow compatible with a mass spectrometer. A bimodal six-way valve is connected with the wide bore GC column outlet and a bimodal four-way valve is connected with the narrow bore GC column inlet. A trapping and retaining circuit with a cold trap is connected with the six-way valve and a transfer circuit interconnects the two valves. The six-way valve is manipulated between first and second mode positions to collect analyte, and the four-way valve is manipulated between third and fourth mode positions to allow carrier gas to sweep analyte from a deactivated cold trap, through the transfer circuit, and then to the narrow bore GC capillary column for separation and subsequent analysis by a mass spectrometer. Rotary valves have substantially the same bore width as their associated columns to minimize flow irregularities and resulting sample peak deterioration. The rotary valves are heated separately from the GC columns to avoid temperature lag and resulting sample deterioration.
Euler, Sebastian; Schimpf, Heinrich; Hennig, Jürgen; Brosig, Burkhard
2005-01-01
This study investigates the psychobiological impact of psychoanalysis in its four-hour setting. During a period of five weeks, 20 subsequent hours of psychoanalysis were evaluated, involving two patients and their analysts. Before and after each session, saliva samples were taken and analysed for cortisol (sCortisol) and secretory immunoglobuline A (sIgA). Four time-series (n=80 observations) resulted and were evaluated by "Pooled Time Series Analysis" (PTSA) for significant level changes and setting-mediated rhythms. Over all sessions, sCortisol levels were reduced and sIgA secretion augmented parallel to the analytic work. In one analytic dyad a significant rhythm within the four-hour setting was observed with an increase of sCortisol in sessions 2 and 3 of the week. Psychoanalysis may, therefore, have some psychobiological impact on patients and analysts alike and may modulate immunological and endocrinological processes. PMID:19742067
NASA Astrophysics Data System (ADS)
Lovrić, Milivoj
Electrochemical stripping means the oxidative or reductive removal of atoms, ions, or compounds from an electrode surface (or from the electrode body, as in the case of liquid mercury electrodes with dissolved metals) [1-5]. In general, these atoms, ions, or compounds have been preliminarily immobilized on the surface of an inert electrode (or within it) as the result of a preconcentration step, while the products of the electrochemical stripping will dissolve in the electrolytic solution. Often the product of the electrochemical stripping is identical to the analyte before the preconcentration. However, there are exemptions to these rules. Electroanalytical stripping methods comprise two steps: first, the accumulation of a dissolved analyte onto, or in, the working electrode, and, second, the subsequent stripping of the accumulated substance by a voltammetric [3, 5], potentiometric [6, 7], or coulometric [8] technique. In stripping voltammetry, the condition is that there are two independent linear relationships: the first one between the activity of accumulated substance and the concentration of analyte in the sample, and the second between the maximum stripping current and the accumulated substance activity. Hence, a cumulative linear relationship between the maximum response and the analyte concentration exists. However, the electrode capacity for the analyte accumulation is limited and the condition of linearity is satisfied only well below the electrode saturation. For this reason, stripping voltammetry is used mainly in trace analysis. The limit of detection depends on the factor of proportionality between the activity of the accumulated substance and the bulk concentration of the analyte. This factor is a constant in the case of a chemical accumulation, but for electrochemical accumulation it depends on the electrode potential. The factor of proportionality between the maximum stripping current and the analyte concentration is rarely known exactly. In fact, it is frequently ignored. For the analysis it suffices to establish the linear relationship empirically. The slope of this relationship may vary from one sample to another because of different influences of the matrix. In this case the concentration of the analyte is determined by the method of standard additions [1]. After measuring the response of the sample, the concentration of the analyte is deliberately increased by adding a certain volume of its standard solution. The response is measured again, and this procedure is repeated three or four times. The unknown concentration is determined by extrapolation of the regression line to the concentration axis [9]. However, in many analytical methods, the final measurement is performed in a standard matrix that allows the construction of a calibration plot. Still, the slope of this plot depends on the active area of the working electrode surface. Each solid electrode needs a separate calibration plot, and that plot must be checked from time to time because of possible deterioration of the electrode surface [2].
NASA Astrophysics Data System (ADS)
Randle, K.; Al-Jundi, J.; Mamas, C. J. V.; Sokhi, R. S.; Earwaker, L. G.
1993-06-01
Our work on heavy metals in the estuarine environment has involved the use of two multielement techniques: neutron activation analysis (NAA) and proton-induced X-ray emission (PIXE) analysis. As PIXE is essentially a surface analytical technique problems may arise due to sample inhomogeneity and surface roughness. In order to assess the contribution of these effects we have compared the results from PIXE analysis with those from a technique which analyzes a larger bulk sample rather than just the surface. An obvious method was NAA. A series of sediment samples containing particles of variable diameter were compared. Pellets containing a few mg of sediment were prepared from each sample and analyzed by the PIXE technique using both an absolute and a comparitive method. For INAA the rest of the sample was then irradiated with thermal neutrons and element concentrations determined from analyses of the subsequent gamma-ray spectrum. Results from the two methods are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tejada, S.B.
1986-01-01
A procedure for coating in-situ silica in commercially available prepacked cartridges with 2,4-dinitrophenylhydrazine (DNPH) acidified with hydrochloric acid is described. The coated cartridge was compared with a validated DNPH impinger method for sampling organic carbonyl compounds (aldehydes and ketones) in diluted automotive exhaust emissions and in ambient air for subsequent analysis of the DNPH derivatives by high performance liquid chromatography. Qualitative and quantitative results show that the two sampling devices are equivalent. An unknown degradation product of acrolein has been tentatively identified as x-acrolein. The disappearance of acrolein in the analytical sample matrix correlated quantitatively almost on a mole-for-mole basismore » with the growth of x-acrolein. The sum of the concentration of acrolein and x-acrolein appears to be invariant with time. This sum could possibly be used as a more-accurate value of the concentration of acrolein in the integratated sample.« less
NASA Technical Reports Server (NTRS)
Allen, Carlton C.; Beaty, David W.
2010-01-01
Sample return from Mars has been advocated by numerous scientific advisory panels for over 30 years, most prominently beginning with the National Research Council s [1] strategy for the exploration of the inner solar system, and most recently by the Mars Exploration Program Analysis Group (MEPAG s) Next Decade Science Analysis Group [2]. Analysis of samples here on Earth would have enormous advantages over in situ analyses in producing the data quality needed to address many of the complex scientific questions the community has posed about Mars. Instead of a small, predetermined set of analytical techniques, state of the art preparative and instrumental resources of the entire scientific community could be applied to the samples. The analytical emphasis could shift as the meaning of each result becomes better appreciated. These arguments apply both to igneous rocks and to layered sedimentary materials, either of which could contain water and other volatile constituents. In 2009 MEPAG formed the Mid-Range Rover Science Analysis Group (MRR-SAG) to formulate a mission concept that would address two general objectives: (1) conduct high-priority in situ science and (2) make concrete steps towards the potential return of samples to Earth. This analysis resulted in a mission concept named the Mars Astrobiology Explorer-Cacher (MAX-C), which was envisioned for launch in the 2018 opportunity. After extensive discussion, this group concluded that by far the most definitive contribution to sample return by this mission would be to collect and cache, in an accessible location, a suite of compelling samples that could potentially be recovered and returned by a subsequent mission. This would have the effect of separating two of the essential functions of MSR, the acquisition of the sample collection and its delivery to martian orbit, into two missions.
Method for Operating a Sensor to Differentiate Between Analytes in a Sample
Kunt, Tekin; Cavicchi, Richard E; Semancik, Stephen; McAvoy, Thomas J
1998-07-28
Disclosed is a method for operating a sensor to differentiate between first and second analytes in a sample. The method comprises the steps of determining a input profile for the sensor which will enhance the difference in the output profiles of the sensor as between the first analyte and the second analyte; determining a first analyte output profile as observed when the input profile is applied to the sensor; determining a second analyte output profile as observed when the temperature profile is applied to the sensor; introducing the sensor to the sample while applying the temperature profile to the sensor, thereby obtaining a sample output profile; and evaluating the sample output profile as against the first and second analyte output profiles to thereby determine which of the analytes is present in the sample.
Analytical probabilistic modeling of RBE-weighted dose for ion therapy.
Wieser, H P; Hennig, P; Wahl, N; Bangert, M
2017-11-10
Particle therapy is especially prone to uncertainties. This issue is usually addressed with uncertainty quantification and minimization techniques based on scenario sampling. For proton therapy, however, it was recently shown that it is also possible to use closed-form computations based on analytical probabilistic modeling (APM) for this purpose. APM yields unique features compared to sampling-based approaches, motivating further research in this context. This paper demonstrates the application of APM for intensity-modulated carbon ion therapy to quantify the influence of setup and range uncertainties on the RBE-weighted dose. In particular, we derive analytical forms for the nonlinear computations of the expectation value and variance of the RBE-weighted dose by propagating linearly correlated Gaussian input uncertainties through a pencil beam dose calculation algorithm. Both exact and approximation formulas are presented for the expectation value and variance of the RBE-weighted dose and are subsequently studied in-depth for a one-dimensional carbon ion spread-out Bragg peak. With V and B being the number of voxels and pencil beams, respectively, the proposed approximations induce only a marginal loss of accuracy while lowering the computational complexity from order [Formula: see text] to [Formula: see text] for the expectation value and from [Formula: see text] to [Formula: see text] for the variance of the RBE-weighted dose. Moreover, we evaluated the approximated calculation of the expectation value and standard deviation of the RBE-weighted dose in combination with a probabilistic effect-based optimization on three patient cases considering carbon ions as radiation modality against sampled references. The resulting global γ-pass rates (2 mm,2%) are [Formula: see text]99.15% for the expectation value and [Formula: see text]94.95% for the standard deviation of the RBE-weighted dose, respectively. We applied the derived analytical model to carbon ion treatment planning, although the concept is in general applicable to other ion species considering a variable RBE.
Analytical probabilistic modeling of RBE-weighted dose for ion therapy
NASA Astrophysics Data System (ADS)
Wieser, H. P.; Hennig, P.; Wahl, N.; Bangert, M.
2017-12-01
Particle therapy is especially prone to uncertainties. This issue is usually addressed with uncertainty quantification and minimization techniques based on scenario sampling. For proton therapy, however, it was recently shown that it is also possible to use closed-form computations based on analytical probabilistic modeling (APM) for this purpose. APM yields unique features compared to sampling-based approaches, motivating further research in this context. This paper demonstrates the application of APM for intensity-modulated carbon ion therapy to quantify the influence of setup and range uncertainties on the RBE-weighted dose. In particular, we derive analytical forms for the nonlinear computations of the expectation value and variance of the RBE-weighted dose by propagating linearly correlated Gaussian input uncertainties through a pencil beam dose calculation algorithm. Both exact and approximation formulas are presented for the expectation value and variance of the RBE-weighted dose and are subsequently studied in-depth for a one-dimensional carbon ion spread-out Bragg peak. With V and B being the number of voxels and pencil beams, respectively, the proposed approximations induce only a marginal loss of accuracy while lowering the computational complexity from order O(V × B^2) to O(V × B) for the expectation value and from O(V × B^4) to O(V × B^2) for the variance of the RBE-weighted dose. Moreover, we evaluated the approximated calculation of the expectation value and standard deviation of the RBE-weighted dose in combination with a probabilistic effect-based optimization on three patient cases considering carbon ions as radiation modality against sampled references. The resulting global γ-pass rates (2 mm,2%) are > 99.15% for the expectation value and > 94.95% for the standard deviation of the RBE-weighted dose, respectively. We applied the derived analytical model to carbon ion treatment planning, although the concept is in general applicable to other ion species considering a variable RBE.
Herrera, Michael; Ding, Haiqing; McClanahan, Robert; Owens, Jane G; Hunter, Robert P
2007-09-15
A highly sensitive and quantitative LC/MS/MS assay for the determination of tilmicosin in serum has been developed and validated. For sample preparation, 0.2 mL of canine serum was extracted with 3 mL of methyl tert-butyl ether. The organic layer was transferred to a new vessel and dried under nitrogen. The sample was then reconstituted for analysis by high performance liquid chromatography-tandem mass spectrometry. A Phenomenex Luna C8(2) analytical column was used for the chromatographic separation. The eluent was subsequently introduced to the mass spectrometer by electrospray ionization. A single range was validated for 50-5000 ng/mL for support of toxicokinetic studies. The inter-day relative error (inaccuracy) for the LLOQ samples ranged from -5.5% to 0.3%. The inter-day relative standard deviations (imprecision) at the respective LLOQ levels were < or =10.1%.
High heating rate thermal desorption for molecular surface sampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikova, Olga S.; Van Berkel, Gary J.
2016-03-29
A method for analyzing a sample having at least one analyte includes the step of heating the sample at a rate of at least 10.sup.6 K/s to thermally desorb at least one analyte from the sample. The desorbed analyte is collected. The analyte can then be analyzed.
Enhanced spot preparation for liquid extractive sampling and analysis
Van Berkel, Gary J.; King, Richard C.
2015-09-22
A method for performing surface sampling of an analyte, includes the step of placing the analyte on a stage with a material in molar excess to the analyte, such that analyte-analyte interactions are prevented and the analyte can be solubilized for further analysis. The material can be a matrix material that is mixed with the analyte. The material can be provided on a sample support. The analyte can then be contacted with a solvent to extract the analyte for further processing, such as by electrospray mass spectrometry.
Tissue-aware RNA-Seq processing and normalization for heterogeneous and sparse data.
Paulson, Joseph N; Chen, Cho-Yi; Lopes-Ramos, Camila M; Kuijjer, Marieke L; Platig, John; Sonawane, Abhijeet R; Fagny, Maud; Glass, Kimberly; Quackenbush, John
2017-10-03
Although ultrahigh-throughput RNA-Sequencing has become the dominant technology for genome-wide transcriptional profiling, the vast majority of RNA-Seq studies typically profile only tens of samples, and most analytical pipelines are optimized for these smaller studies. However, projects are generating ever-larger data sets comprising RNA-Seq data from hundreds or thousands of samples, often collected at multiple centers and from diverse tissues. These complex data sets present significant analytical challenges due to batch and tissue effects, but provide the opportunity to revisit the assumptions and methods that we use to preprocess, normalize, and filter RNA-Seq data - critical first steps for any subsequent analysis. We find that analysis of large RNA-Seq data sets requires both careful quality control and the need to account for sparsity due to the heterogeneity intrinsic in multi-group studies. We developed Yet Another RNA Normalization software pipeline (YARN), that includes quality control and preprocessing, gene filtering, and normalization steps designed to facilitate downstream analysis of large, heterogeneous RNA-Seq data sets and we demonstrate its use with data from the Genotype-Tissue Expression (GTEx) project. An R package instantiating YARN is available at http://bioconductor.org/packages/yarn .
Wang, Haijing; Geppert, Helmut; Fischer, Thomas; Wieprecht, Wolfgang; Möller, Detlev
2015-10-01
A new method for the determination of sucrose in honey with derivatization solid-phase microextraction and gas chromatography/mass spectrometry (D-SPME-GC/MS) was developed. The method incorporates a sample derivatization with acetic anhydride using N-methylimidazole as the catalyst and the subsequent enrichment of the analyte in a Polyacrylate-SPME fiber. Results show that 100 µL N-methylimidazole and 800 µL acetic anhydride were sufficient to complete the acetylation for sucrose in 100 µL aqueous sample at room temperature. For SPME, an enrichment time of 30 min was sufficient. SPME was performed by immersing the fiber into the solution with additional vibration. Then, the analyte was desorbed for 5 min at 280°C in the GC/MS injection port with splitless mode. The present method exhibits good linearity at a concentration range of 0.3-8% of sucrose in honey with excellent regression (R = 0.9993). The method has been successfully applied to the control of sucrose adulteration in honey. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Quintana, José Benito; Rodil, Rosario; Muniategui-Lorenzo, Soledad; López-Mahía, Purificación; Prada-Rodríguez, Darío
2007-12-07
The feasibility of stir-bar sorptive extraction (SBSE) followed by liquid desorption in combination with large volume injection (LVI)-in port silylation and gas chromatography-mass spectrometry (GC-MS) for the simultaneous determination of a broad range of 46 acidic and polar organic pollutants in water samples has been evaluated. The target analytes included phenols (nitrophenols, chlorophenols, bromophenols and alkylphenols), acidic herbicides (phenoxy acids and dicamba) and several pharmaceuticals. Experimental variables affecting derivatisation yield and peak shape as a function of different experimental PTV parameters [initial injection time, pressure and temperature and the ratio solvent volume/N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA) volume] were first optimised by an experimental design approach. Subsequently, SBSE conditions, such as pH, ionic strength, agitation speed and extraction time were investigated. After optimisation, the method failed only for the extraction of most polar phenols and some pharmaceuticals, being suitable for the determination of 37 (out of 46) pollutants, with detection limits for these analytes ranging between 1 and 800 ng/L and being lower than 25 ng/L in most cases. Finally, the developed method was validated and applied to the determination of target analytes in various aqueous environmental matrices, including ground, river and wastewater. Acceptable accuracy (70-130%) and precision values (<20%) were obtained for most analytes independently of the matrix, with the exception of some alkylphenols, where an isotopically labelled internal standard would be required in order to correct for matrix effects. Among the drawbacks of the method, carryover was identified as the main problem even though the Twisters were cleaned repeatedly.
Kirwan, J A; Broadhurst, D I; Davidson, R L; Viant, M R
2013-06-01
Direct infusion mass spectrometry (DIMS)-based untargeted metabolomics measures many hundreds of metabolites in a single experiment. While every effort is made to reduce within-experiment analytical variation in untargeted metabolomics, unavoidable sources of measurement error are introduced. This is particularly true for large-scale multi-batch experiments, necessitating the development of robust workflows that minimise batch-to-batch variation. Here, we conducted a purpose-designed, eight-batch DIMS metabolomics study using nanoelectrospray (nESI) Fourier transform ion cyclotron resonance mass spectrometric analyses of mammalian heart extracts. First, we characterised the intrinsic analytical variation of this approach to determine whether our existing workflows are fit for purpose when applied to a multi-batch investigation. Batch-to-batch variation was readily observed across the 7-day experiment, both in terms of its absolute measurement using quality control (QC) and biological replicate samples, as well as its adverse impact on our ability to discover significant metabolic information within the data. Subsequently, we developed and implemented a computational workflow that includes total-ion-current filtering, QC-robust spline batch correction and spectral cleaning, and provide conclusive evidence that this workflow reduces analytical variation and increases the proportion of significant peaks. We report an overall analytical precision of 15.9%, measured as the median relative standard deviation (RSD) for the technical replicates of the biological samples, across eight batches and 7 days of measurements. When compared against the FDA guidelines for biomarker studies, which specify an RSD of <20% as an acceptable level of precision, we conclude that our new workflows are fit for purpose for large-scale, high-throughput nESI DIMS metabolomics studies.
Kounaves, Samuel P; Lukow, Stefan R; Comeau, Brian P; Hecht, Michael H; Grannan-Feldman, Sabrina M; Manatt, Ken; West, Steven J; Wen, Xiaowen; Frant, Martin; Gillette, Tim
2003-07-25
The Mars Environmental Compatibility Assessment (MECA) instrument was designed, built, and flight qualified for the now canceled MSP (Mars Surveyor Program) '01 Lander. The MECA package consisted of a microscope, electrometer, material patch plates, and a wet chemistry laboratory (WCL). The primary goal of MECA was to analyze the Martian soil (regolith) for possible hazards to future astronauts and to provide a better understanding of Martian regolith geochemistry. The purpose of the WCL was to analyze for a range of soluble ionic chemical species and electrochemical parameters. The heart of the WCL was a sensor array of electrochemically based ion-selective electrodes (ISE). After 20 months storage at -23 degrees C and subsequent extended freeze/thawing cycles, WCL sensors were evaluated to determine both their physical durability and analytical responses. A fractional factorial calibration of the sensors was used to obtain slope, intercept, and all necessary selectivity coefficients simultaneously for selected ISEs. This calibration was used to model five cation and three anion sensors. These data were subsequently used to determine concentrations of several ions in two soil leachate simulants (based on terrestrial seawater and hypothesized Mars brine) and four actual soil samples. The WCL results were compared to simulant and soil samples using ion chromatography and inductively coupled plasma optical emission spectroscopy. The results showed that flight qualification and prolonged low-temperature storage conditions had minimal effects on the sensors. In addition, the analytical optimization method provided quantitative and qualitative data that could be used to accurately identify the chemical composition of the simulants and soils. The WCL has the ability to provide data that can be used to "read" the chemical, geological, and climatic history of Mars, as well as the potential habitability of its regolith.
NASA Technical Reports Server (NTRS)
Kounaves, Samuel P.; Lukow, Stefan R.; Comeau, Brian P.; Hecht, Michael H.; Grannan-Feldman, Sabrina M.; Manatt, Ken; West, Steven J.; Wen, Xiaowen; Frant, Martin; Gillette, Tim
2003-01-01
The Mars Environmental Compatibility Assessment (MECA) instrument was designed, built, and flight qualified for the now canceled MSP (Mars Surveyor Program) '01 Lander. The MECA package consisted of a microscope, electrometer, material patch plates, and a wet chemistry laboratory (WCL). The primary goal of MECA was to analyze the Martian soil (regolith) for possible hazards to future astronauts and to provide a better understanding of Martian regolith geochemistry. The purpose of the WCL was to analyze for a range of soluble ionic chemical species and electrochemical parameters. The heart of the WCL was a sensor array of electrochemically based ion-selective electrodes (ISE). After 20 months storage at -23 degrees C and subsequent extended freeze/thawing cycles, WCL sensors were evaluated to determine both their physical durability and analytical responses. A fractional factorial calibration of the sensors was used to obtain slope, intercept, and all necessary selectivity coefficients simultaneously for selected ISEs. This calibration was used to model five cation and three anion sensors. These data were subsequently used to determine concentrations of several ions in two soil leachate simulants (based on terrestrial seawater and hypothesized Mars brine) and four actual soil samples. The WCL results were compared to simulant and soil samples using ion chromatography and inductively coupled plasma optical emission spectroscopy. The results showed that flight qualification and prolonged low-temperature storage conditions had minimal effects on the sensors. In addition, the analytical optimization method provided quantitative and qualitative data that could be used to accurately identify the chemical composition of the simulants and soils. The WCL has the ability to provide data that can be used to "read" the chemical, geological, and climatic history of Mars, as well as the potential habitability of its regolith.
Bias Assessment of General Chemistry Analytes using Commutable Samples.
Koerbin, Gus; Tate, Jillian R; Ryan, Julie; Jones, Graham Rd; Sikaris, Ken A; Kanowski, David; Reed, Maxine; Gill, Janice; Koumantakis, George; Yen, Tina; St John, Andrew; Hickman, Peter E; Simpson, Aaron; Graham, Peter
2014-11-01
Harmonisation of reference intervals for routine general chemistry analytes has been a goal for many years. Analytical bias may prevent this harmonisation. To determine if analytical bias is present when comparing methods, the use of commutable samples, or samples that have the same properties as the clinical samples routinely analysed, should be used as reference samples to eliminate the possibility of matrix effect. The use of commutable samples has improved the identification of unacceptable analytical performance in the Netherlands and Spain. The International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) has undertaken a pilot study using commutable samples in an attempt to determine not only country specific reference intervals but to make them comparable between countries. Australia and New Zealand, through the Australasian Association of Clinical Biochemists (AACB), have also undertaken an assessment of analytical bias using commutable samples and determined that of the 27 general chemistry analytes studied, 19 showed sufficiently small between method biases as to not prevent harmonisation of reference intervals. Application of evidence based approaches including the determination of analytical bias using commutable material is necessary when seeking to harmonise reference intervals.
Microfluidic-Based sample chips for radioactive solutions
Tripp, J. L.; Law, J. D.; Smith, T. E.; ...
2015-01-01
Historical nuclear fuel cycle process sampling techniques required sample volumes ranging in the tens of milliliters. The radiation levels experienced by analytical personnel and equipment, in addition to the waste volumes generated from analysis of these samples, have been significant. These sample volumes also impacted accountability inventories of required analytes during process operations. To mitigate radiation dose and other issues associated with the historically larger sample volumes, a microcapillary sample chip was chosen for further investigation. The ability to obtain microliter volume samples coupled with a remote automated means of sample loading, tracking, and transporting to the analytical instrument wouldmore » greatly improve analytical efficiency while reducing both personnel exposure and radioactive waste volumes. Sample chip testing was completed to determine the accuracy, repeatability, and issues associated with the use of microfluidic sample chips used to supply µL sample volumes of lanthanide analytes dissolved in nitric acid for introduction to an analytical instrument for elemental analysis.« less
Unceta, Nora; Gómez-Caballero, Alberto; García, Deiene; Díaz, Goretti; Guerreiro, Antonio; Piletsky, Sergey; Goicolea, M Aránzazu; Barrio, Ramón J
2013-11-15
This paper reports the application of a chiral imprinted polymer (CIP)-coated stir bar for the selective extraction of (+)-(S)-citalopram (SCIT) and its main metabolites, (+)-(S)-desmethylcitalopram (SDCIT) and (+)-(S)-didesmethylcitalopram (SDDCIT), from urine samples. The developed device has been demonstrated to be capable of selectively extracting the three target analytes from urine samples without saturating the imprinted sites. A CIP-coated stir bar sorptive extraction procedure (CIP-SBSE) is proposed for the isolation of SCIT, SDCIT and SDDCIT followed by their subsequent analysis using liquid chromatography ion trap mass spectrometry (LC-ITMS). Deuterated SCIT-d6 was used as an internal standard. The method was validated using a standard procedure, which revealed that a quantification of 5 ng mL(-1) was obtained in urine samples and that the accuracy and precision were within the established values while no matrix effect was observed. Copyright © 2013 Elsevier B.V. All rights reserved.
Novel approaches to analysis by flow injection gradient titration.
Wójtowicz, Marzena; Kozak, Joanna; Kościelniak, Paweł
2007-09-26
Two novel procedures for flow injection gradient titration with the use of a single stock standard solution are proposed. In the multi-point single-line (MP-SL) method the calibration graph is constructed on the basis of a set of standard solutions, which are generated in a standard reservoir and subsequently injected into the titrant. According to the single-point multi-line (SP-ML) procedure the standard solution and a sample are injected into the titrant stream from four loops of different capacities, hence four calibration graphs are able to be constructed and the analytical result is calculated on the basis of a generalized slope of these graphs. Both approaches have been tested on the example of spectrophotometric acid-base titration of hydrochloric and acetic acids with using bromothymol blue and phenolphthalein as indicators, respectively, and sodium hydroxide as a titrant. Under optimized experimental conditions the analytical results of precision less than 1.8 and 2.5% (RSD) and of accuracy less than 3.0 and 5.4% (relative error (RE)) were obtained for MP-SL and SP-ML procedures, respectively, in ranges of 0.0031-0.0631 mol L(-1) for samples of hydrochloric acid and of 0.1680-1.7600 mol L(-1) for samples of acetic acid. The feasibility of both methods was illustrated by applying them to the total acidity determination in vinegar samples with precision lower than 0.5 and 2.9% (RSD) for MP-SL and SP-ML procedures, respectively.
A novel strategy for isolation and determination of sugars and sugar alcohols from conifers.
Sarvin, B A; Seregin, A P; Shpigun, O A; Rodin, I A; Stavrianidi, A N
2018-06-02
The ultrasound-assisted extraction method for isolation of 17 sugars and sugar alcohols from conifers with a subsequent hydrophilic interaction liquid chromatography-tandem mass spectrometry method for their determination is proposed. The optimization of extraction parameters was carried out using Taguchi - L 9 (3 4 ) orthogonal array experimental design for the following parameters-a methanol concentration in the extraction solution, an extraction time, a type of plant sample and an extraction temperature. The optimal ultrasound-assisted extraction conditions were-MeOH concentration - 30% (water - 70%), extraction time - 30 min, type of plant sample - II (grinded leaves 2-4 mm long), extraction temperature - 60 °C. Pure water and acetonitrile were used as eluents in gradient elution mode to separate the analytes. Direct determination of multiple sugars and sugar alcohols was carried out using a mass spectrometric detector operated in a multiple reaction monitoring mode, providing detection limits in the range between 0.1 and 20 ng/mL and good analytical characteristics of the method without derivatization. The developed approach was validated by multiple successive extraction method applied to test its performance on a series of 10 samples, i.e. 2 samples per each of 5 genera: Abies, Larix, Picea, Pinus (Pinaceae) and Juniperus (Cupressaceae), widely distributed in the boreal conifer forests of Eurasia. The novel strategy can be used for profiling of sugars and sugar alcohols in a wide range of plant species. Copyright © 2018. Published by Elsevier B.V.
Kavvalakis, Matthaios P; Tzatzarakis, Manolis N; Theodoropoulou, Eleftheria P; Barbounis, Emmanouil G; Tsakalof, Andreas K; Tsatsakis, Aristidis M
2013-11-01
Imidacloprid (IMI) is a relatively new neuro-active neonicotinoid insecticide and nowadays one of the largest selling insecticides worldwide. In the present study a LC–APCI–MS based method was developed and validated for the quantification of imidacloprid and its main metabolite 6-chloronicotinic acid (6- CINA) in urine and hair specimens. The method was tested in biomonitoring of intentionally exposed animals and subsequently applied for biomonitoring of Cretan urban and rural population. The developed analytical method comprises two main steps of analytes isolation from specimen (solid– liquid extraction with methanol for hair, liquid–liquid extraction with methanol for urine) and subsequent instrumental analysis by LC–APCI–MS. The developed method was applied for the monitoring of IMI and 6-ClNA in hair and urine of laboratory animals (rabbits) intentionally fed with insecticide at low or high doses (40 and 80 mg kg(-1) weight d(-1) respectively) for 24 weeks. The analytes were detected in the regularly acquired hair and urine specimens and their found levels were proportional to the feeding dose and time of exposure with the exception of slight decline of IMI levels in high dose fed rabbits after 24 weeks of feeding. This decline can be explained by the induction of IMI metabolizing enzymes by the substrate. After testing on animal models the method was applied for pilot biomonitoring of Crete urban (n = 26) and rural (n = 32) population. Rural but not urban population is exposed to IMI with 21 positive samples (65.6%) and found median concentration 0.03 ng mg(-1). Maximum concentration detected was 27 ng mg(-1)
RE-EVALUATION OF APPLICABILITY OF AGENCY SAMPLE HOLDING TIMES
Holding times are the length of time a sample can be stored after collection and prior to analysis without significantly affecting the analytical results. Holding times vary with the analyte, sample matrix, and analytical methodology used to quantify the analytes concentration. ...
Mayhew, Emily; Schmidt, Shelly; Lee, Soo-Yeun
2016-07-01
In a novel approach to formulation, the flash descriptive profiling technique Napping-Ultra Flash Profile (Napping-UFP) was used to characterize a wide range of commercial caramel corn products. The objectives were to identify product categories, develop model systems based on product categories, and correlate analytical parameters with sensory terms generated through the Napping-UFP exercise. In one 2 h session, 12 panelists participated in 4 Napping-UFP exercises, describing and grouping, on a 43×56 cm paper sheet, 12 commercial caramel corn samples by degree of similarity, globally and in terms of aroma-by-mouth, texture, and taste. The coordinates of each sample's placement on the paper sheet and descriptive terms generated by the panelists were used to conduct Multiple Factor Analysis (MFA) and hierarchical clustering of the samples. Strong trends in the clustering of samples across the 4 Napping-UFP exercises resulted in the determination of 3 overarching types of commercial caramel corn: "small-scale dark" (typified by burnt, rich caramel corn), "large-scale light" (typified by light and buttery caramel corn), and "large-scale dark" (typified by sweet and molasses-like caramel corn). Representative samples that best exemplified the properties of each category were used as guides in the formulation of 3 model systems that represent the spread of commercial caramel corn products. Analytical testing of the commercial products, including aw measurement, moisture content determination, and thermal characterization via differential scanning calorimetry, were conducted and results related to sensory descriptors using Spearman's correlation. © 2016 Institute of Food Technologists®
Hegde, Satisha; Hegde, Harsha Vasudev; Jalalpure, Sunil Satyappa; Peram, Malleswara Rao; Pai, Sandeep Ramachandra; Roy, Subarna
2017-01-01
Saraca asoca (Roxb.) De Wilde (Ashoka) is a highly valued endangered medicinal tree species from Western Ghats of India. Besides treating cardiac and circulatory problems, S. asoca provides immense relief in gynecological disorders. Higher price and demand, in contrast to the smaller population size of the plant, have motivated adulteration with other plants such as Polyalthia longifolia (Sonnerat) Thwaites. The fundamental concerns in quality control of S. asoca arise due to its part of medicinal value (Bark) and the chemical composition. Phytochemical fingerprinting with proper selection of analytical markers is a promising method in addressing quality control issues. In the present study, high-performance liquid chromatography of phenolic compounds (gallic acid, catechin, and epicatechin) coupled to multivariate analysis was used. Five samples each of S. asoca, P. longifolia from two localities alongside five commercial market samples showed evidence of adulteration. Subsequently, multivariate hierarchical cluster analysis and principal component analysis was established to discriminate the adulterants of S. asoca. The proposed method ascertains identification of S. asoca from its putative adulterant P. longifolia and commercial market samples. The data generated may also serve as baseline data to form a quality standard for pharmacopoeias. SUMMARY Simultaneous quantification of gallic acid, catechin, epicatechin from Saraca asoca by high-performance liquid chromatographyDetection of S. asoca from adulterant and commercial samplesUse of analytical method along with a statistical tool for addressing quality issues. Abbreviations used: HPLC: High Performance Liquid Chromatography; RP-HPLC: Reverse Phase High Performance Liquid Chromatography; CAT: Catechin; EPI: Epicatechin; GA: Gallic acid; PCA: Principal Component Analysis. PMID:28808391
Yen, Hsiu-Chuan; Wei, Hsing-Ju; Chen, Ting-Wei
2013-01-01
F2-isoprostanes (F2-IsoPs) are a gold marker of lipid peroxidation in vivo, whereas F4-neuroprostanes (F4-NPs) measured in cerebrospinal fluid (CSF) or brain tissue selectively indicate neuronal oxidative damage. Gas chromatography/negative-ion chemical-ionization mass spectrometry (GC/NICI-MS) is the most sensitive and robust method for quantifying these compounds, which is essential for CSF samples because abundance of these compounds in CSF is very low. The present study revealed potential interferences on the analysis of F2-IsoPs and F4-NPs in CSF by GC/NICI-MS due to the use of improper analytical methods that have been employed in the literature. First, simultaneous quantification of F2-IsoPs and F4-NPs in CSF samples processed for F4-NPs analysis could cause poor chromatographic separation and falsely higher F2-IsoPs values for CSF samples with high levels of F2-IsoPs and F4-NPs. Second, retention of unknown substances in GC columns from CSF samples during F4-NPs analysis and from plasma samples during F2-IsoPs analysis might interfere with F4-NPs analysis of subsequent runs, which could be solved by holding columns at a high temperature for a period of time after data acquisition. Therefore, these special issues should be taken into consideration when performing analysis of F2-IsoPs and F4-NPs in CSF to avoid misleading results.
Yen, Hsiu-Chuan; Wei, Hsing-Ju; Chen, Ting-Wei
2013-01-01
F2-isoprostanes (F2-IsoPs) are a gold marker of lipid peroxidation in vivo, whereas F4-neuroprostanes (F4-NPs) measured in cerebrospinal fluid (CSF) or brain tissue selectively indicate neuronal oxidative damage. Gas chromatography/negative-ion chemical-ionization mass spectrometry (GC/NICI-MS) is the most sensitive and robust method for quantifying these compounds, which is essential for CSF samples because abundance of these compounds in CSF is very low. The present study revealed potential interferences on the analysis of F2-IsoPs and F4-NPs in CSF by GC/NICI-MS due to the use of improper analytical methods that have been employed in the literature. First, simultaneous quantification of F2-IsoPs and F4-NPs in CSF samples processed for F4-NPs analysis could cause poor chromatographic separation and falsely higher F2-IsoPs values for CSF samples with high levels of F2-IsoPs and F4-NPs. Second, retention of unknown substances in GC columns from CSF samples during F4-NPs analysis and from plasma samples during F2-IsoPs analysis might interfere with F4-NPs analysis of subsequent runs, which could be solved by holding columns at a high temperature for a period of time after data acquisition. Therefore, these special issues should be taken into consideration when performing analysis of F2-IsoPs and F4-NPs in CSF to avoid misleading results. PMID:23957004
Determination of residual cell culture media components by MEKC.
Zhang, Junge; Chakraborty, Utpal; Foley, Joe P
2009-11-01
Folic acid, hypoxanthine, mycophenolic acid, nicotinic acid, riboflavin, and xanthine are widely used as cell culture media components in monoclonal antibody manufacturing. These components are subsequently removed during the downstream purification processes. This article describes a single MEKC method that can simultaneously determine all the listed compounds with acceptable LOD and LOQ. All the analytes were successfully separated by MEKC using running buffer containing 40 mM SDS, 20 mM sodium phosphate, and 20 mM sodium borate at pH 9.0. The MEKC method was compared to the corresponding CZE method using the same running buffer containing no SDS. The effect of SDS concentration on separation, the pH of the running buffer, and the detection wavelength were studied and optimal MEKC conditions were established. Good linearity was obtained with correlation coefficients of more than 0.99 for all analytes. Specificity, accuracy, and precision were also evaluated. The recovery was in the range of 89-112%. The precision results were in the range of 1.7-4.8%. The experimentally determined data demonstrated that the MEKC method is applicable to the determination of the six analytes in in-process samples from monoclonal antibody manufacturing processes.
Investigation of the Persistence of Nerve Agent Degradation ...
Journal Article The persistence of chemical warfare nerve agent degradation analytes on surfaces is important for reasons ranging from indicating the presence of nerve agent on that surface to environmental restoration of a site after nerve agent release. This study investigates the persistence of several chemical warfare nerve agent degradation analytes on a number of indoor surfaces and presents an approach for wipe sampling of surfaces, followed by wipe extraction and liquid chromatography-tandem mass spectrometry detection. Multiple commercially available wipe materials were investigated to determine optimal wipe recoveries. Tested surfaces, including several porous/permeable and largely nonporous/impermeable surfaces, were investigated to determine recoveries from these indoor surface materials. Wipe extracts were analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and compared with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) results. UPLC provides a sensitive separation of targeted degradation analytes in addition to being nearly four times faster than HPLC, allowing for greater throughput during a widespread release concerning large-scale contamination and subsequent remediation events. Percent recoveries from nonporous/impermeable surfaces were 60-103% for isopropyl methylphosphonate (IMPA), 61-91 % for ethyl methylphosphonate (EMPA), and 60-98% for pinacolyl methylphosphona
Gaussianization for fast and accurate inference from cosmological data
NASA Astrophysics Data System (ADS)
Schuhmann, Robert L.; Joachimi, Benjamin; Peiris, Hiranya V.
2016-06-01
We present a method to transform multivariate unimodal non-Gaussian posterior probability densities into approximately Gaussian ones via non-linear mappings, such as Box-Cox transformations and generalizations thereof. This permits an analytical reconstruction of the posterior from a point sample, like a Markov chain, and simplifies the subsequent joint analysis with other experiments. This way, a multivariate posterior density can be reported efficiently, by compressing the information contained in Markov Chain Monte Carlo samples. Further, the model evidence integral (I.e. the marginal likelihood) can be computed analytically. This method is analogous to the search for normal parameters in the cosmic microwave background, but is more general. The search for the optimally Gaussianizing transformation is performed computationally through a maximum-likelihood formalism; its quality can be judged by how well the credible regions of the posterior are reproduced. We demonstrate that our method outperforms kernel density estimates in this objective. Further, we select marginal posterior samples from Planck data with several distinct strongly non-Gaussian features, and verify the reproduction of the marginal contours. To demonstrate evidence computation, we Gaussianize the joint distribution of data from weak lensing and baryon acoustic oscillations, for different cosmological models, and find a preference for flat Λcold dark matter. Comparing to values computed with the Savage-Dickey density ratio, and Population Monte Carlo, we find good agreement of our method within the spread of the other two.
Wang, Zhe; Wu, Caisheng; Wang, Gangli; Zhang, Qingsheng; Zhang, Jinlan
2015-03-01
The detection, confirmation, and quantification of multiple illegal adulterants in health foods and herbal medicines by using a single analytical method are a challenge. This paper reports on a new strategy to meet this challenge by employing high-performance liquid chromatography coupled with high-resolution mass spectrometry and a mass spectral tree similarity filter technique. This analytical method can rapidly collect high-resolution, high-accuracy, optionally multistage mass data for compounds in samples. After a preliminary screening by retention time and high-resolution mass spectral data, known illegal adulterants can be detected. The mass spectral tree similarity filter technique has been applied to rapidly confirm these adulterants and simultaneously discover unknown ones. By using full-scan mass spectra as stem and data-dependent subsequent stage mass spectra to form branches, mass spectrometry data from detected compounds are converted into mass spectral trees. The known or unknown illegal adulterants in the samples are confirmed or discovered based on the similarity between their mass spectral trees and those of the references in a library, and they are finally quantified against standard curves. This new strategy has been tested by using 50 samples, and the illegal adulterants were rapidly and effectively detected, confirmed and quantified. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantitative evaluation of analyte transport on microfluidic paper-based analytical devices (μPADs).
Ota, Riki; Yamada, Kentaro; Suzuki, Koji; Citterio, Daniel
2018-02-07
The transport efficiency during capillary flow-driven sample transport on microfluidic paper-based analytical devices (μPADs) made from filter paper has been investigated for a selection of model analytes (Ni 2+ , Zn 2+ , Cu 2+ , PO 4 3- , bovine serum albumin, sulforhodamine B, amaranth) representing metal cations, complex anions, proteins and anionic molecules. For the first time, the transport of the analytical target compounds rather than the sample liquid, has been quantitatively evaluated by means of colorimetry and absorption spectrometry-based methods. The experiments have revealed that small paperfluidic channel dimensions, additional user operation steps (e.g. control of sample volume, sample dilution, washing step) as well as the introduction of sample liquid wicking areas allow to increase analyte transport efficiency. It is also shown that the interaction of analytes with the negatively charged cellulosic paper substrate surface is strongly influenced by the physico-chemical properties of the model analyte and can in some cases (Cu 2+ ) result in nearly complete analyte depletion during sample transport. The quantitative information gained through these experiments is expected to contribute to the development of more sensitive μPADs.
Helmlin, Hans-Jörg; Mürner, André; Steiner, Samuel; Kamber, Matthias; Weber, Christina; Geyer, Hans; Guddat, Sven; Schänzer, Wilhelm; Thevis, Mario
2016-10-01
Hydrochlorothiazide (HCTZ, 6-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide-1,1-dioxide) belongs to the class of diuretic agents that represent one of today's cornerstones of the treatment of hypertensive patients. In addition to its clinical relevance, HCTZ is prohibited in sports according to the regulations of the World Anti-Doping Agency (WADA) at all times and has frequently been detected in sports drug testing urine samples worldwide since its ban was introduced in 1988. Despite these facts, the adverse analytical finding concerning HCTZ in an in-competition routine doping control sample collected in December 2014 was further investigated, particularly motivated by the comparably low urinary concentration of the drug accounting for approximately 5ng/mL. The athlete in question did not declare the use of any nutritional supplement or medication other than the ingestion of a non-steroidal anti-inflammatory drug (NSAID) prior to competition. Hence, the drug (formulated as coated tablet) provided by the athlete as well as the corresponding retention sample of the manufacturer were analyzed. Noteworthy, both samples confirmed the presence of about 2μg of HCTZ per tablet. In order to further probe for the plausibility of the observed urinary HCTZ concentrations with the scenario of drug ingestion and subsequent doping control sample collection, administration studies with produced HCTZ-spiked placebo-tablets (2.5μg of HCTZ/tablet) were conducted. Urine specimens were collected prior to and after ingestion of the drug and subjected to routine doping control analytical procedures employing liquid chromatography/tandem mass spectrometry. While blank urine samples returned negative test results, post-administration specimens were found to contain HCTZ at concentrations of approximately 1-16ng/mL, which supported the athlete's inadvertent intake of HCTZ via contaminated NSAID tablets. Due to the substantial sensitivity of test methods employed today by doping control laboratories, even drug contaminations ranging within the good manufacturing practice (GMP) limit of 10ppm overall carry-over can evidently lead to adverse analytical findings. This calls into question whether selected (classes of) substances such as diuretics should be reported only when exceeding a defined reporting level and/or whether adverse analytical findings of non-threshold substances should be reported with an estimated semi-quantitative concentration of the identified substance to facilitate the result management by anti-doping organizations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Post-analytical stability of 23 common chemistry and immunochemistry analytes in incurred samples.
Nielsen, Betina Klint; Frederiksen, Tina; Friis-Hansen, Lennart; Larsen, Pia Bükmann
2017-12-01
Storage of blood samples after centrifugation, decapping and initial sampling allows ordering of additional blood tests. The pre-analytic stability of biochemistry and immunochemistry analytes has been studied in detail, but little is known about the post-analytical stability in incurred samples. We examined the stability of 23 routine analytes on the Dimension Vista® (Siemens Healthineers, Denmark): 42-60 routine samples in lithium-heparin gel tubes (Vacutainer, BD, USA) were centrifuged at 3000×g for 10min. Immediately after centrifugation, initial concentration of analytes were measured in duplicate (t=0). The tubes were stored decapped at room temperature and re-analyzed after 2, 4, 6, 8 and 10h in singletons. The concentration from reanalysis were normalized to initial concentration (t=0). Internal acceptance criteria for bias and total error were used to determine stability of each analyte. Additionally, evaporation from the decapped blood collection tubes and the residual platelet count in the plasma after centrifugation were quantified. We report a post-analytical stability of most routine analytes of ≥8h and do therefore - with few exceptions - suggest a standard 8hour-time limit for reordering and reanalysis of analytes in incurred samples. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Some thoughts on problems associated with various sampling media used for environmental monitoring
Horowitz, A.J.
1997-01-01
Modern analytical instrumentation is capable of measuring a variety of trace elements at concentrations down into the single or double digit parts-per-trillion (ng l-1) range. This holds for the three most common sample media currently used in environmental monitoring programs: filtered water, whole-water and separated suspended sediment. Unfortunately, current analytical capabilities have exceeded the current capacity to collect both uncontaminated and representative environmental samples. The success of any trace element monitoring program requires that this issue be both understood and addressed. The environmental monitoring of trace elements requires the collection of calendar- and event-based dissolved and suspended sediment samples. There are unique problems associated with the collection and chemical analyses of both types of sample media. Over the past 10 years, reported ambient dissolved trace element concentrations have declined. Generally, these decreases do not reflect better water quality, but rather improvements in the procedures used to collect, process, preserve and analyze these samples without contaminating them during these steps. Further, recent studies have shown that the currently accepted operational definition of dissolved constituents (material passing a 0.45 ??m membrane filter) is inadequat owing to sampling and processing artifacts. The existence of these artifacts raises questions about the generation of accurate, precise and comparable 'dissolved' trace element data. Suspended sediment and associated trace elements can display marked short- and long-term spatial and temporal variability. This implies that spatially representative samples only can be obtained by generating composites using depth- and width-integrated sampling techniques. Additionally, temporal variations have led to the view that the determination of annual trace element fluxes may require nearly constant (e.g., high-frequency) sampling and subsequent chemical analyses. Ultimately, sampling frequency for flux estimates becomes dependent on the time period of concern (daily, weekly, monthly, yearly) and the amount of acceptable error associated with these estimates.
Mather, Ian; Rolfe, James; Evans, Nicholas P.; Herwartz, Daniel; Staubwasser, Michael; Hodell, David A.
2015-01-01
Rationale The recent development of cavity ring‐down laser spectroscopy (CRDS) instruments capable of measuring 17O‐excess in water has created new opportunities for studying the hydrologic cycle. Here we apply this new method to studying the triple oxygen (17O/16O, 18O/16O) and hydrogen (2H/1H) isotope ratios of gypsum hydration water (GHW), which can provide information about the conditions under which the mineral formed and subsequent post‐depositional interaction with other fluids. Methods We developed a semi‐automated procedure for extracting GHW by slowly heating the sample to 400°C in vacuo and cryogenically trapping the evolved water. The isotopic composition (δ17O, δ18O and δ2H values) of the GHW is subsequently measured by CRDS. The extraction apparatus allows the dehydration of five samples and one standard simultaneously, thereby increasing the long‐term precision and sample throughput compared with previous methods. The apparatus is also useful for distilling brines prior to isotopic analysis. A direct comparison is made between results of 17O‐excess in GHW obtained by CRDS and fluorination followed by isotope ratio mass spectrometry (IRMS) of O2. Results The long‐term analytical precision of our method of extraction and isotopic analysis of GHW by CRDS is ±0.07‰ for δ17O values, ±0.13‰ for δ18O values and ±0.49‰ for δ2H values (all ±1SD), and ±1.1‰ and ±8 per meg for the deuterium‐excess and 17O‐excess, respectively. Accurate measurement of the 17O‐excess values of GHW, of both synthetic and natural samples, requires the use of a micro‐combustion module (MCM). This accessory removes contaminants (VOCs, H2S, etc.) from the water vapour stream that interfere with the wavelengths used for spectroscopic measurement of water isotopologues. CRDS/MCM and IRMS methods yield similar isotopic results for the analysis of both synthetic and natural gypsum samples within analytical error of the two methods. Conclusions We demonstrate that precise and simultaneous isotopic measurements of δ17O, δ18O and δ2H values, and the derived deuterium‐excess and 17O‐excess, can be obtained from GHW and brines using a new extraction apparatus and subsequent measurement by CRDS. This method provides new opportunities for the application of water isotope tracers in hydrologic and paleoclimatologic research. © 2015 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. PMID:26443399
Tank 40 Final SB7b Chemical Characterization Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bannochie, C. J.
2012-11-06
A sample of Sludge Batch 7b (SB7b) was taken from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB7b WAPS sample was also analyzed for chemical composition including noble metals and fissile constituents. At the Savannah River National Laboratory (SRNL) the 3-L Tank 40 SB7b sample was transferred from the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle over the weekend. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thoroughmore » mixing of the 3-L sample, a 558 g sub-sample was removed. This sub-sample was then utilized for all subsequent analytical samples. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass ? 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma ? atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma ? mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB7b supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH{sup -}/other base, total inorganic carbon/total organic carbon (TIC/TOC) analyses, and Cs-137 gamma scan. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH-/other base analyses. Activities for U-233, U-235, and Pu-239 were determined from the ICP-MS data for the aqua regia digestions of the Tank 40 WAPS slurry using the specific activity of each isotope. The Pu-241 value was determined from a Pu-238/-241 method.« less
Perspectives on making big data analytics work for oncology.
El Naqa, Issam
2016-12-01
Oncology, with its unique combination of clinical, physical, technological, and biological data provides an ideal case study for applying big data analytics to improve cancer treatment safety and outcomes. An oncology treatment course such as chemoradiotherapy can generate a large pool of information carrying the 5Vs hallmarks of big data. This data is comprised of a heterogeneous mixture of patient demographics, radiation/chemo dosimetry, multimodality imaging features, and biological markers generated over a treatment period that can span few days to several weeks. Efforts using commercial and in-house tools are underway to facilitate data aggregation, ontology creation, sharing, visualization and varying analytics in a secure environment. However, open questions related to proper data structure representation and effective analytics tools to support oncology decision-making need to be addressed. It is recognized that oncology data constitutes a mix of structured (tabulated) and unstructured (electronic documents) that need to be processed to facilitate searching and subsequent knowledge discovery from relational or NoSQL databases. In this context, methods based on advanced analytics and image feature extraction for oncology applications will be discussed. On the other hand, the classical p (variables)≫n (samples) inference problem of statistical learning is challenged in the Big data realm and this is particularly true for oncology applications where p-omics is witnessing exponential growth while the number of cancer incidences has generally plateaued over the past 5-years leading to a quasi-linear growth in samples per patient. Within the Big data paradigm, this kind of phenomenon may yield undesirable effects such as echo chamber anomalies, Yule-Simpson reversal paradox, or misleading ghost analytics. In this work, we will present these effects as they pertain to oncology and engage small thinking methodologies to counter these effects ranging from incorporating prior knowledge, using information-theoretic techniques to modern ensemble machine learning approaches or combination of these. We will particularly discuss the pros and cons of different approaches to improve mining of big data in oncology. Copyright © 2016 Elsevier Inc. All rights reserved.
Method for Hot Real-Time Sampling of Pyrolysis Vapors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomeroy, Marc D
Biomass Pyrolysis has been an increasing topic of research, in particular as a replacement for crude oil. This process utilizes moderate temperatures to thermally deconstruct the biomass which is then condensed into a mixture of liquid oxygenates to be used as fuel precursors. Pyrolysis oils contain more than 400 compounds, up to 60 percent of which do not re-volatilize for subsequent chemical analysis. Vapor chemical composition is also complicated as additional condensation reactions occur during the condensation and collection of the product. Due to the complexity of the pyrolysis oil, and a desire to catalytically upgrade the vapor composition beforemore » condensation, online real-time analytical techniques such as Molecular Beam Mass Spectrometry (MBMS) are of great use. However, in order to properly sample hot pyrolysis vapors, many challenges must be overcome. Sampling must occur within a narrow range of temperatures to reduce product composition changes from overheating or partial condensation or plugging of lines from condensed products. Residence times must be kept at a minimum to reduce further reaction chemistries. Pyrolysis vapors also form aerosols that are carried far downstream and can pass through filters resulting in build-up in downstream locations. The co-produced bio-char and ash from the pyrolysis process can lead to plugging of the sample lines, and must be filtered out at temperature, even with the use of cyclonic separators. A practical approach for considerations and sampling system design, as well as lessons learned are integrated into the hot analytical sampling system of the National Renewable Energy Laboratory's (NREL) Thermochemical Process Development Unit (TCPDU) to provide industrially relevant demonstrations of thermochemical transformations of biomass feedstocks at the pilot scale.« less
Characterization and validation of sampling and analytical methods for mycotoxins in workplace air.
Jargot, Danièle; Melin, Sandrine
2013-03-01
Mycotoxins are produced by certain plant or foodstuff moulds under growing, transport or storage conditions. They are toxic for humans and animals, some are carcinogenic. Methods to monitor occupational exposure to seven of the most frequently occurring airborne mycotoxins have been characterized and validated. Experimental aerosols have been generated from naturally contaminated particles for sampler evaluation. Air samples were collected on foam pads, using the CIP 10 personal aerosol sampler with its inhalable health-related aerosol fraction selector. The samples were subsequently solvent extracted from the sampling media, cleaned using immunoaffinity (IA) columns and analyzed by liquid chromatography with fluorescence detection. Ochratoxin A (OTA) or fumonisin and aflatoxin derivatives were detected and quantified. The quantification limits were 0.015 ng m(-3) OTA, 1 ng m(-3) fumonisins or 0.5 pg m(-3) aflatoxins, with a minimum dust concentration level of 1 mg m(-3) and a 4800 L air volume sampling. The methods were successfully applied to field measurements, which confirmed that workers could be exposed when handling contaminated materials. It was observed that airborne particles may be more contaminated than the bulk material itself. The validated methods have measuring ranges fully adapted to the concentrations found in the workplace. Their performance meets the general requirements laid down for chemical agent measurement procedures, with an expanded uncertainty less than 50% for most mycotoxins. The analytical uncertainty, comprised between 14 and 24%, was quite satisfactory given the low mycotoxin amounts, when compared to the food benchmarks. The methods are now user-friendly enough to be adopted for personal workplace sampling. They will later allow for mycotoxin occupational risk assessment, as only very few quantitative data have been available till now.
Darwish, Ibrahim A; Al-Obaid, Abdul-Rahman M; Al-Malaq, Hamoud A
2009-11-15
For the first time, an enzyme-linked immunosorbent assay (ELISA) has been developed and validated for the determination of fluvastatin (FLV) in plasma samples at picogram level. The assay employed a polyclonal antibody that specifically recognizes FLV with high affinity, and FLV conjugate of bovine serum albumin (FLV-BSA) immobilized onto microplate wells as a solid-phase. The assay involved a competitive binding reaction between FLV, in plasma sample, and the immobilized FLV-BSA for the binding sites on a limited amount of the anti-FLV antibody. The bound anti-FLV antibody was quantified with horseradish peroxidase-labeled second anti-rabbit IgG antibody (HRP-IgG) and 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate for the peroxidase enzyme. The concentration of FLV in the sample was quantified by its ability to inhibit the binding of the anti-FLV antibody to the immobilized FLV-BSA and subsequently the color intensity in the assay wells. The conditions for the proposed ELISA were investigated and the optimum conditions were employed in the determination of FLV in plasma samples. The assay limit of detection was 10 pg mL(-1) and the effective working range at relative standard deviations (RSD) of
Sobhi, Hamid Reza; Ghambarian, Mahnaz; Behbahani, Mohammad; Esrafili, Ali
2017-03-03
Herein, a simple and sensitive method was successfully developed for the extraction and quantification of acrylamide in water samples. Initially, acrylamide was derivatized through a bromination process. Subsequently, a modified hollow-fiber liquid-phase microextraction was applied for the extraction of the brominated acrylamide from a 10-ml portion of an aqueous sample. Briefly, in this method, the derivatized acrylamide (2,3-dibromopropionamide) was extracted from the aqueous sample into a thin layer of an organic solvent sustained in pores of a porous hollow fiber. Then, it was back-extracted using a small volume of organic acceptor solution (acetonitril, 25μl) located inside the lumen of the hollow fiber followed by gas chromatography-electron capture detection (GC-ECD). The optimal conditions were examined for the extraction of the analyte such as: the organic solvent: dihexyl ether+10% tri-n-octyl phosphine oxide; stirring rate: 750rpm; no salt addition and 30min extraction time. These optimal extraction conditions allowed excellent enrichment factor values for the method. Enrichment factor, detection limit (S/N=3) and dynamic linear range of 60, 2ngL -1 and 50-1000ngL -1 to be determined for the analyte. The relative standard deviations (RSD%) representing precision of the method were in the range of 2.2-5.8 based on the average of three measurements. Accuracy of the method was tested by the relative recovery experiments on spiked samples, with results ranging from 93 to 108%. Finally, the method proved to be simple, rapid, and cost-effective for routine screen of acrylamide-contaminated highly-complicated untreated waste water samples. Copyright © 2017 Elsevier B.V. All rights reserved.
An experiment to assess the effects of diatom dissolution on oxygen isotope ratios.
Smith, Andrew C; Leng, Melanie J; Swann, George E A; Barker, Philip A; Mackay, Anson W; Ryves, David B; Sloane, Hilary J; Chenery, Simon R N; Hems, Mike
2016-01-30
Current studies which use the oxygen isotope composition from diatom silica (δ(18) Odiatom ) as a palaeoclimate proxy assume that the δ(18) Odiatom value reflects the isotopic composition of the water in which the diatom formed. However, diatoms dissolve post mortem, preferentially losing less silicified structures in the water column and during/after burial into sediments. The impact of dissolution on δ(18) Odiatom values and potential misinterpretation of the palaeoclimate record are evaluated. Diatom frustules covering a range of ages (6 samples from the Miocene to the Holocene), environments and species were exposed to a weak alkaline solution for 48 days at two temperatures (20 °C and 4 °C), mimicking natural dissolution post mucilage removal. Following treatment, dissolution was assessed using scanning electron microscope images and a qualitative diatom dissolution index. The diatoms were subsequently analysed for their δ(18) O values using step-wise fluorination and isotope ratio mass spectrometry. Variable levels of diatom dissolution were observed between the six samples; in all cases higher temperatures resulted in more frustule degradation. Dissolution was most evident in younger samples, probably as a result of the more porous nature of the silica. The degree of diatom dissolution does not directly equate to changes in the isotope ratios; the δ(18) Odiatom value was, however, lower after dissolution, but in only half the samples was this reduction outside the analytical error (2σ analytical error = 0.46‰). We have shown that dissolution can have a small negative impact on δ(18) Odiatom values, causing reductions of up to 0.59‰ beyond analytical error (0.46‰) at natural environmental temperatures. These findings need to be considered in palaeoenvironmental reconstructions using δ(18) Odiatom values, especially when interpreting variations in these values of <1‰. Copyright © 2015 John Wiley & Sons, Ltd.
Gao, Guihua; Li, Sijia; Li, Shuo; Wang, Yudan; Zhao, Pan; Zhang, Xiangyu; Hou, Xiaohong
2018-04-01
In this work, computational and experimental methods were used to study the adsorption of estrogens and glucocorticoids on metal-organic frameworks (MOFs). Computer-aided molecular simulation was applied to predict the adsorption of eight analytes on four MOFs (MIL-101(Cr), MIL-100(Fe), MIL-53(Al), and UiO-66(Zr)) by examining molecular interactions and calculating free binding energies. Subsequently, the four water-stable MOFs were synthesized and evaluated as adsorbents for the target hormones in aqueous solution. As the MOF exhibiting the highest adsorption capacity in both computations and experiments, MIL-53(Al) was chosen as a sorbent to develop a dispersive micro-solid-phase extraction procedure coupled to ultra-performance liquid chromatography tandem mass spectrometry for simultaneous determination of the target analytes in water and human urine samples. Experimental parameters affecting the extraction recoveries, including pH, ionic strength, MIL-53(Al) amount, extraction time, desorption time, and desorption solvent, were optimized. The optimized method provided a linear range of 0.005025-368.6μg/L with good correlation coefficients (0.9982 ≤ r 2 ≤ 0.9992), and limits of detection (S/N = 3) and quantification (S/N = 10) of 0.0015-1.0μg/L and 0.005-1.8μg/L, respectively. The analyte recoveries were in the range of 80.6-98.4% in water samples and 88.4-93.2% in urine samples. Furthermore, MIL-53(Al) showed good stability over 10 extraction cycles (RSD < 10.0%). Good agreement between experimental measurements and computational results showed the potential of this approach for elucidating adsorption mechanisms and predicating extraction efficiencies for MOFs and targets, providing new directions for the development and utilization of MOFs. Copyright © 2017 Elsevier B.V. All rights reserved.
Pichini, Simona; Cortes, Laura; Marchei, Emilia; Solimini, Renata; Pacifici, Roberta; Gomez-Roig, Mª Dolores; García-Algar, Oscar
2016-01-25
A procedure based on ultra-high-pressure liquid chromatography tandem mass spectrometry has been developed for the determination of 22 antidepressant and anxiolytic drugs ad metabolites in the three consecutive maternal hair segments representing the pregnancy trimesters and paired neonatal meconium samples. After hair washing with methyl alcohol and diethyl ether and subsequent addition of internal standards, hair samples were treated with 500 μl VMA-T M3 reagent for 1h at 100 °C. After cooling, 100 μl M3 extract were diluted with 400 μl water and a volume of 10 μl was injected into chromatographic system. Meconium samples were firstly treated with 1 ml methyl alcohol and the organic layer back-extracted twice with 1.5 ml of a mixture of ethylacetate:hexane (80:20, v/v). Chromatographic separation was achieved at ambient temperature using a reverse-phase column and a linear gradient elution with two solvents: 0.3% formic acid in acetonitrile and 5mM ammonium formate pH 3. The mass spectrometer was operated in positive ion mode, using multiple reaction monitoring via positive electrospray ionization. The method was linear from the limit of quantification (0.05-1 ng/mg hair and 5-25 ng/g meconium depending on analyte under investigation;) to 10 ng/mg hair and 1000 ng/g meconium, with an intra- and inter-assay imprecision and inaccuracy always less than 20% and an analytical recovery between 66.6% and 95.3%, depending on the considered analyte and biological matrix. Using the validated method, 7 mothers were found positive to one or more hair segments and 5 meconium samples were found positive to one or more antidepressant and anxiolytic drugs, assessing prenatal exposure to these drugs following maternal consumption in one or more pregnancy trimesters. Copyright © 2015 Elsevier B.V. All rights reserved.
Robinson, Mark R.; Ward, Kenneth J.; Eaton, Robert P.; Haaland, David M.
1990-01-01
The characteristics of a biological fluid sample having an analyte are determined from a model constructed from plural known biological fluid samples. The model is a function of the concentration of materials in the known fluid samples as a function of absorption of wideband infrared energy. The wideband infrared energy is coupled to the analyte containing sample so there is differential absorption of the infrared energy as a function of the wavelength of the wideband infrared energy incident on the analyte containing sample. The differential absorption causes intensity variations of the infrared energy incident on the analyte containing sample as a function of sample wavelength of the energy, and concentration of the unknown analyte is determined from the thus-derived intensity variations of the infrared energy as a function of wavelength from the model absorption versus wavelength function.
Chen, Weiqi; Wang, Lifei; Van Berkel, Gary J; Kertesz, Vilmos; Gan, Jinping
2016-03-25
Herein, quantitation aspects of a fully automated autosampler/HPLC-MS/MS system applied for unattended droplet-based surface sampling of repaglinide dosed thin tissue sections with subsequent HPLC separation and mass spectrometric analysis of parent drug and various drug metabolites were studied. Major organs (brain, lung, liver, kidney and muscle) from whole-body thin tissue sections and corresponding organ homogenates prepared from repaglinide dosed mice were sampled by surface sampling and by bulk extraction, respectively, and analyzed by HPLC-MS/MS. A semi-quantitative agreement between data obtained by surface sampling and that by employing organ homogenate extraction was observed. Drug concentrations obtained by the two methods followed the same patterns for post-dose time points (0.25, 0.5, 1 and 2 h). Drug amounts determined in the specific tissues was typically higher when analyzing extracts from the organ homogenates. In addition, relative comparison of the levels of individual metabolites between the two analytical methods also revealed good semi-quantitative agreement. Copyright © 2015 Elsevier B.V. All rights reserved.
On-line DNA analysis system with rapid thermal cycling
Swerdlow, Harold P.; Wittwer, Carl T.
1999-01-01
An apparatus particularly suited for subjecting biological samples to any necessary sample preparation tasks, subjecting the sample to rapid thermal cycling, and then subjecting the sample to subsequent on-line analysis using one or more of a number of analytical techniques. The apparatus includes a chromatography device including an injection means, a chromatography pump, and a chromatography column. In addition, the apparatus also contains a capillary electrophoresis device consisting of a capillary electrophoresis column with an inlet and outlet end, a means of injection, and means of applying a high voltage to cause the differential migration of species of interest through the capillary column. Effluent from the liquid chromatography column passes over the inlet end of the capillary electrophoresis column through a tee structure and when the loading of the capillary electrophoresis column is desired, a voltage supply is activated at a precise voltage and polarity over a specific duration to cause sample species to be diverted from the flowing stream to the capillary electrophoresis column. A laser induced fluorescence detector preferably is used to analyze the products separated while in the electrophoresis column.
On-line DNA analysis system with rapid thermal cycling
Swerdlow, H.P.; Wittwer, C.T.
1999-08-10
This application describes an apparatus particularly suited for subjecting biological samples to any necessary sample preparation tasks, subjecting the sample to rapid thermal cycling, and then subjecting the sample to subsequent on-line analysis using one or more of a number of analytical techniques. The apparatus includes a chromatography device including an injection means, a chromatography pump, and a chromatography column. In addition, the apparatus also contains a capillary electrophoresis device consisting of a capillary electrophoresis column with an inlet and outlet end, a means of injection, and means of applying a high voltage to cause the differential migration of species of interest through the capillary column. Effluent from the liquid chromatography column passes over the inlet end of the capillary electrophoresis column through a tee structure and when the loading of the capillary electrophoresis column is desired, a voltage supply is activated at a precise voltage and polarity over a specific duration to cause sample species to be diverted from the flowing stream to the capillary electrophoresis column. A laser induced fluorescence detector preferably is used to analyze the products separated while in the electrophoresis column. 6 figs.
Chen, Weiqi; Wang, Lifei; Van Berkel, Gary J.; ...
2015-11-03
Herein, quantitation aspects of a fully automated autosampler/HPLC-MS/MS system applied for unattended droplet-based surface sampling of repaglinide dosed thin tissue sections with subsequent HPLC separation and mass spectrometric analysis of parent drug and various drug metabolites was studied. Major organs (brain, lung, liver, kidney, muscle) from whole-body thin tissue sections and corresponding organ homogenates prepared from repaglinide dosed mice were sampled by surface sampling and by bulk extraction, respectively, and analyzed by HPLC-MS/MS. A semi-quantitative agreement between data obtained by surface sampling and that by employing organ homogenate extraction was observed. Drug concentrations obtained by the two methods followed themore » same patterns for post-dose time points (0.25, 0.5, 1 and 2 h). Drug amounts determined in the specific tissues was typically higher when analyzing extracts from the organ homogenates. Furthermore, relative comparison of the levels of individual metabolites between the two analytical methods also revealed good semi-quantitative agreement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Weiqi; Wang, Lifei; Van Berkel, Gary J.
Herein, quantitation aspects of a fully automated autosampler/HPLC-MS/MS system applied for unattended droplet-based surface sampling of repaglinide dosed thin tissue sections with subsequent HPLC separation and mass spectrometric analysis of parent drug and various drug metabolites was studied. Major organs (brain, lung, liver, kidney, muscle) from whole-body thin tissue sections and corresponding organ homogenates prepared from repaglinide dosed mice were sampled by surface sampling and by bulk extraction, respectively, and analyzed by HPLC-MS/MS. A semi-quantitative agreement between data obtained by surface sampling and that by employing organ homogenate extraction was observed. Drug concentrations obtained by the two methods followed themore » same patterns for post-dose time points (0.25, 0.5, 1 and 2 h). Drug amounts determined in the specific tissues was typically higher when analyzing extracts from the organ homogenates. Furthermore, relative comparison of the levels of individual metabolites between the two analytical methods also revealed good semi-quantitative agreement.« less
Wang, Jian-Hua; Guo, Cui
2010-07-09
An analytical method for the determination of US EPA priority pollutant 16 polycyclic aromatic hydrocarbons (PAHs) in edible oil was developed by an isotope dilution gas chromatography-mass spectrometry (GC-MS). Extraction was performed with ultrasonication mode using acetonitrile as solvent, and subsequent clean-up was applied using narrow gel permeation chromatographic column. Three deuterated PAHs surrogate standards were used as internal standards for quantification and analytical quality control. The limits of quantification (LOQs) were globally below 0.5 ng/g, the recoveries were in the range of 81-96%, and the relative standard deviations (RSDs) were lower than 20%. Further trueness assessment of the method was also verified through participation in international cocoa butter proficiency test (T0638) organised by the FAPAS with excellent results in 2008. The results obtained with the described method were satisfying (z ≤ 2). The method has been applied to determine PAH in real edible oil samples.
Back to Normal! Gaussianizing posterior distributions for cosmological probes
NASA Astrophysics Data System (ADS)
Schuhmann, Robert L.; Joachimi, Benjamin; Peiris, Hiranya V.
2014-05-01
We present a method to map multivariate non-Gaussian posterior probability densities into Gaussian ones via nonlinear Box-Cox transformations, and generalizations thereof. This is analogous to the search for normal parameters in the CMB, but can in principle be applied to any probability density that is continuous and unimodal. The search for the optimally Gaussianizing transformation amongst the Box-Cox family is performed via a maximum likelihood formalism. We can judge the quality of the found transformation a posteriori: qualitatively via statistical tests of Gaussianity, and more illustratively by how well it reproduces the credible regions. The method permits an analytical reconstruction of the posterior from a sample, e.g. a Markov chain, and simplifies the subsequent joint analysis with other experiments. Furthermore, it permits the characterization of a non-Gaussian posterior in a compact and efficient way. The expression for the non-Gaussian posterior can be employed to find analytic formulae for the Bayesian evidence, and consequently be used for model comparison.
Small Gas Turbine Combustor Primary Zone Study
NASA Technical Reports Server (NTRS)
Sullivan, R. E.; Young, E. R.; Miles, G. A.; Williams, J. R.
1983-01-01
A development process is described which consists of design, fabrication, and preliminary test evaluations of three approaches to internal aerodynamic primary zone flow patterns: (1) conventional double vortex swirl stabilization; (2) reverse flow swirl stabilization; and (3) large single vortex flow system. Each concept incorporates special design features aimed at extending the performance capability of the small engine combustor. Since inherent geometry of these combustors result in small combustion zone height and high surface area to volume ratio, design features focus on internal aerodynamics, fuel placement, and advanced cooling. The combustors are evaluated on a full scale annular combustor rig. A correlation of the primary zone performance with the overall performance is accomplished using three intrusion type gas sampling probes located at the exit of the primary zone section. Empirical and numerical methods are used for designing and predicting the performance of the three combustor concepts and their subsequent modifications. The calibration of analytical procedures with actual test results permits an updating of the analytical design techniques applicable to small reverse flow annular combustors.
Han, Ling; Pisani, M A; Araujo, K L B; Allore, Heather G
Exposure-crossover design offers a non-experimental option to control for stable baseline confounding through self-matching while examining causal effect of an exposure on an acute outcome. This study extends this approach to longitudinal data with repeated measures of exposure and outcome using data from a cohort of 340 older medical patients in an intensive care unit (ICU). The analytic sample included 92 patients who received ≥1 dose of haloperidol, an antipsychotic medication often used for patients with delirium. Exposure-crossover design was implemented by sampling the 3-day time segments prior ( Induction) and posterior ( Subsequent) to each treatment episode of receiving haloperidol. In the full cohort, there was a trend of increasing delirium severity scores (Mean±SD: 4.4±1.7) over the course of the ICU stay. After exposure-crossover sampling, the delirium severity score decreased from the Induction (4.9) to the Subsequent (4.1) intervals, with the treatment episode falling in-between (4.5). Based on a GEE Poisson model accounting for self-matching and within-subject correlation, the unadjusted mean delirium severity scores was -0.55 (95% CI: -1.10, -0.01) points lower for the Subsequent than the Induction intervals. The association diminished by 32% (-0.38, 95%CI: -0.99, 0.24) after adjusting only for ICU confounding, while being slightly increased by 7% (-0.60, 95%CI: -1.15, -0.04) when adjusting only for baseline characteristics. These results suggest that longitudinal exposure-crossover design is feasible and capable of partially removing stable baseline confounding through self-matching. Loss of power due to eliminating treatment-irrelevant person-time and uncertainty around allocating person-time to comparison intervals remain methodological challenges.
Brooks, M.H.; Schroder, L.J.; Willoughby, T.C.
1987-01-01
The U.S. Geological Survey operated a blind audit sample program during 1974 to test the effects of the sample handling and shipping procedures used by the National Atmospheric Deposition Program and National Trends Network on the quality of wet deposition data produced by the combined networks. Blind audit samples, which were dilutions of standard reference water samples, were submitted by network site operators to the central analytical laboratory disguised as actual wet deposition samples. Results from the analyses of blind audit samples were used to calculate estimates of analyte bias associated with all network wet deposition samples analyzed in 1984 and to estimate analyte precision. Concentration differences between double blind samples that were submitted to the central analytical laboratory and separate analyses of aliquots of those blind audit samples that had not undergone network sample handling and shipping were used to calculate analyte masses that apparently were added to each blind audit sample by routine network handling and shipping procedures. These calculated masses indicated statistically significant biases for magnesium, sodium , potassium, chloride, and sulfate. Median calculated masses were 41.4 micrograms (ug) for calcium, 14.9 ug for magnesium, 23.3 ug for sodium, 0.7 ug for potassium, 16.5 ug for chloride and 55.3 ug for sulfate. Analyte precision was estimated using two different sets of replicate measures performed by the central analytical laboratory. Estimated standard deviations were similar to those previously reported. (Author 's abstract)
O'Neal, Wanda K; Anderson, Wayne; Basta, Patricia V; Carretta, Elizabeth E; Doerschuk, Claire M; Barr, R Graham; Bleecker, Eugene R; Christenson, Stephanie A; Curtis, Jeffrey L; Han, Meilan K; Hansel, Nadia N; Kanner, Richard E; Kleerup, Eric C; Martinez, Fernando J; Miller, Bruce E; Peters, Stephen P; Rennard, Stephen I; Scholand, Mary Beth; Tal-Singer, Ruth; Woodruff, Prescott G; Couper, David J; Davis, Sonia M
2014-01-08
As a part of the longitudinal Chronic Obstructive Pulmonary Disease (COPD) study, Subpopulations and Intermediate Outcome Measures in COPD study (SPIROMICS), blood samples are being collected from 3200 subjects with the goal of identifying blood biomarkers for sub-phenotyping patients and predicting disease progression. To determine the most reliable sample type for measuring specific blood analytes in the cohort, a pilot study was performed from a subset of 24 subjects comparing serum, Ethylenediaminetetraacetic acid (EDTA) plasma, and EDTA plasma with proteinase inhibitors (P100). 105 analytes, chosen for potential relevance to COPD, arranged in 12 multiplex and one simplex platform (Myriad-RBM) were evaluated in duplicate from the three sample types from 24 subjects. The reliability coefficient and the coefficient of variation (CV) were calculated. The performance of each analyte and mean analyte levels were evaluated across sample types. 20% of analytes were not consistently detectable in any sample type. Higher reliability and/or smaller CV were determined for 12 analytes in EDTA plasma compared to serum, and for 11 analytes in serum compared to EDTA plasma. While reliability measures were similar for EDTA plasma and P100 plasma for a majority of analytes, CV was modestly increased in P100 plasma for eight analytes. Each analyte within a multiplex produced independent measurement characteristics, complicating selection of sample type for individual multiplexes. There were notable detectability and measurability differences between serum and plasma. Multiplexing may not be ideal if large reliability differences exist across analytes measured within the multiplex, especially if values differ based on sample type. For some analytes, the large CV should be considered during experimental design, and the use of duplicate and/or triplicate samples may be necessary. These results should prove useful for studies evaluating selection of samples for evaluation of potential blood biomarkers.
2014-01-01
Background As a part of the longitudinal Chronic Obstructive Pulmonary Disease (COPD) study, Subpopulations and Intermediate Outcome Measures in COPD study (SPIROMICS), blood samples are being collected from 3200 subjects with the goal of identifying blood biomarkers for sub-phenotyping patients and predicting disease progression. To determine the most reliable sample type for measuring specific blood analytes in the cohort, a pilot study was performed from a subset of 24 subjects comparing serum, Ethylenediaminetetraacetic acid (EDTA) plasma, and EDTA plasma with proteinase inhibitors (P100™). Methods 105 analytes, chosen for potential relevance to COPD, arranged in 12 multiplex and one simplex platform (Myriad-RBM) were evaluated in duplicate from the three sample types from 24 subjects. The reliability coefficient and the coefficient of variation (CV) were calculated. The performance of each analyte and mean analyte levels were evaluated across sample types. Results 20% of analytes were not consistently detectable in any sample type. Higher reliability and/or smaller CV were determined for 12 analytes in EDTA plasma compared to serum, and for 11 analytes in serum compared to EDTA plasma. While reliability measures were similar for EDTA plasma and P100 plasma for a majority of analytes, CV was modestly increased in P100 plasma for eight analytes. Each analyte within a multiplex produced independent measurement characteristics, complicating selection of sample type for individual multiplexes. Conclusions There were notable detectability and measurability differences between serum and plasma. Multiplexing may not be ideal if large reliability differences exist across analytes measured within the multiplex, especially if values differ based on sample type. For some analytes, the large CV should be considered during experimental design, and the use of duplicate and/or triplicate samples may be necessary. These results should prove useful for studies evaluating selection of samples for evaluation of potential blood biomarkers. PMID:24397870
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This report provides a detailed summary of the activities carried out to sample groundwater at Waste Area Grouping (WAG) 6. The analytical results for samples collected during Phase 1, Activity 2 of the WAG 6 Resource Conservation and Recovery Act Facility Investigation (RFI) are also presented. In addition, analytical results for Phase 1, activity sampling events for which data were not previously reported are included in this TM. A summary of the groundwater sampling activities of WAG 6, to date, are given in the Introduction. The Methodology section describes the sampling procedures and analytical parameters. Six attachments are included. Attachmentsmore » 1 and 2 provide analytical results for selected RFI groundwater samples and ORNL sampling event. Attachment 3 provides a summary of the contaminants detected in each well sampled for all sampling events conducted at WAG 6. Bechtel National Inc. (BNI)/IT Corporation Contract Laboratory (IT) RFI analytical methods and detection limits are given in Attachment 4. Attachment 5 provides the Oak Ridge National Laboratory (ORNL)/Analytical Chemistry Division (ACD) analytical methods and detection limits and Resource Conservation and Recovery Act (RCRA) quarterly compliance monitoring (1988--1989). Attachment 6 provides ORNL/ACD groundwater analytical methods and detection limits (for the 1990 RCRA semi-annual compliance monitoring).« less
Frazey, P A; Barkley, R M; Sievers, R E
1998-02-01
An analytical approach for the determination of chlorination and iodination disinfection byproducts based on solid-phase microextraction (SPME) was developed. Solid-phase microextraction presents a simple, rapid, sensitive, and solvent-free approach to sample preparation in which analytes in either air or water matrixes are extracted into the polymeric coating of an optical fiber. Analytes are subsequently thermally desorbed in the injection port of a gas chromatograph for separation, detection, and quantitation. Thermal degradation of iodoform was observed during desorption from a polyacrylate fiber in initial GC/MS and GC/ECD experiments. Experiments were designed to determine SPME conditions that would allow quantification without significant degradation of analytes. Isothermal and temperature-programmed thermal desorptions were evaluated for efficacy in transferring analytes with wide-ranging volatilities and thermal stabilities into chromatographic analysis columns. A temperature-programmed desorption (TPD) (120-200 degrees C at 5 degrees C/min with an on-column injection port or 150-200 degrees C at 25 degrees C/min with a split/splitless injection port) was able to efficiently remove analytes with wide-ranging volatilities without causing thermal degradation. The SPME-TPD method was linear over 2-3 orders of magnitude with an electron capture detector and detection limits were in the submicrogram per liter range. Precision and detection limits for selected trihalomethanes were comparable to those of EPA method 551. Extraction efficiencies were not affected by the presence of 10 mg/L soap, 15 mg/L sodium iodide, and 6000 mg/L sodium thiosulfate. The SPME-TPD technique was applied to the determination of iodination disinfection byproducts from individual precursor compounds using GC/MS and to the quantitation of iodoform at trace levels in a water recycle system using GC/ECD.
van den Ham, Henk-Jan; Cooper, Jason D; Tomasik, Jakub; Bahn, Sabine; Aerts, Joeri L; Osterhaus, Albert D M E; Gruters, Rob A; Andeweg, Arno C
2018-01-01
To characterize the host response to dendritic cell-based immunotherapy and subsequent combined antiretroviral therapy (cART) interruption in HIV-1-infected individuals at the plasma protein level. An autologous dendritic cell (DC) therapeutic vaccine was administered to HIV-infected individuals, stable on cART. The effect of vaccination was evaluated at the plasma protein level during the period preceding cART interruption, during analytical therapy interruption and at viral reactivation. Healthy controls and post-exposure prophylactically treated healthy individuals were included as controls. Plasma marker ('analyte') levels including cytokines, chemokines, growth factors, and hormones were measured in trial participants and control plasma samples using a multiplex immunoassay. Analyte levels were analysed using principle component analysis, cluster analysis and limma. Blood neutrophil counts were analysed using linear regression. Plasma analyte levels of HIV-infected individuals are markedly different from those of healthy controls and HIV-negative individuals receiving post-exposure prophylaxis. Viral reactivation following cART interruption also affects multiple analytes, but cART interruption itself only has only a minor effect. We find that Thyroxine-Binding Globulin (TBG) levels and late-stage neutrophil numbers correlate with the time off cART after DC vaccination. Furthermore, analysis shows that cART alters several regulators of blood glucose levels, including C-peptide, chromogranin-A and leptin. HIV reactivation is associated with the upregulation of CXCR3 ligands. Chronic HIV infection leads to a change in multiple plasma analyte levels, as does virus reactivation after cART interruption. Furthermore, we find evidence for the involvement of TBG and neutrophils in the response to DC-vaccination in the setting of HIV-infection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eibling, R.
Savannah River National Laboratory (SRNL) was asked to prepare saltstone from samples of Tank 50H obtained by SRNL on April 5, 2011 (Tank 50H sampling occurred on April 4, 2011) during 2QCY11 to determine the non-hazardous nature of the grout and for additional vault classification analyses. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&W TSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals - arsenic, barium,more » cadmium, chromium, mercury, lead, selenium and silver - analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. Additional inorganic species determined by B&W TSG-RACL include aluminum, boron, chloride, cobalt, copper, fluoride, iron, lithium, manganese, molybdenum, nitrate/nitrite as Nitrogen, strontium, sulfate, uranium, and zinc and the following radionuclides: gross alpha, gross beta/gamma, 3H, 60Co, 90Sr, 99Tc, 106Ru, 106Rh, 125Sb, 137Cs, 137mBa, 154Eu, 238Pu, 239/240Pu, 241Pu, 241Am, 242Cm, and 243/244Cm. B&W TSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the VOCs benzene, toluene, and 1-butanol. GEL also determines phenol (total) and the following radionuclides: 147Pm, 226Ra and 228Ra. Preparation of the 2QCY11 saltstone samples for the quarterly analysis and for vault classification purposes and the subsequent TCLP analyses of these samples showed that: (1) The saltstone waste form disposed of in the Saltstone Disposal Facility in 2QCY11 was not characteristically hazardous for toxicity. (2) The concentrations of the eight RCRA metals and UHCs identified as possible in the saltstone waste form were present at levels below the UTS. (3) Most of the inorganic species measured in the leachate do not exceed the MCL, SMCL or TW limits. (4) The inorganic waste species that exceeded the MCL by more than a factor of 10 were nitrate, nitrite and the sum of nitrate and nitrite. (5) Analyses met all quality assurance specifications of US EPA SW-846. (6) The organic species (benzene, toluene, 1-butanol, phenol) were either not detected or were less than reportable for the vault classification samples. (7) The gross alpha and radium isotopes could not be determined to the MCL because of the elevated background which raised the detection limits. (8) Most of the beta/gamma activity was from 137Cs and its daughter 137mBa. (9) The concentration of 137Cs and 90Sr were present in the leachate at concentrations 1/40th and 1/8th respectively than in the 2003 vault classification samples. The saltstone waste form placed in the Saltstone Disposal Facility in 2QCY11 met the SCHWMR R.61-79.261.24(b) RCRA metals requirements for a nonhazardous waste form. The TCLP leachate concentrations for nitrate, nitrite and the sum of nitrate and nitrite were greater than 10x the MCLs in SCDHEC Regulations R.61-107.19, Part I A, which confirms the Saltstone Disposal Facility classification as a Class 3 Landfill. The saltstone waste form placed in the Saltstone Disposal Facility in 2QCY11 met the R.61-79.268.48(a) non wastewater treatment standards.« less
NHEXAS PHASE I MARYLAND STUDY--QA ANALYTICAL RESULTS FOR PESTICIDES IN SPIKE SAMPLES
The Pesticides in Spikes data set contains the analytical results of measurements of up to 17 pesticides in 12 control samples (spikes) from 11 households. Measurements were made in samples of blood serum. Controls were used to assess recovery of target analytes from a sample m...
Parents' concerns about future pregnancy after stillbirth: a qualitative study.
Meaney, Sarah; Everard, Claire M; Gallagher, Stephen; O'Donoghue, Keelin
2017-08-01
As stillbirth has a devastating impact, it is imperative to understand the importance of clinical and emotional care after stillbirth and how it influences subsequent pregnancies. The aim of the study was to gain insight into the consideration and planning of a subsequent pregnancy by parents in the weeks following stillbirth. A qualitative semi-structured interview format was utilized. Interpretative phenomenological analysis was employed as the analytic strategy. The recruitment strategy focused on couples whereby the parents of ten stillborn babies were contacted; however, five men declined to participate in the study. The final sample of 15 parents were all Irish: ten of whom were female and five of whom were male. Findings revealed two superordinate themes relating to a subsequent pregnancy after stillbirth: aspirations for future pregnancy and expectations of future care. Parents disclosed how the prospect of a subsequent pregnancy was daunting with fears about the potential loss of another child. Despite these fears, parents' aspirations differed in the days following stillbirth; mothers wished to plan a future pregnancy while fathers were reluctant to consider any pregnancies. Parents were unsure of what to expect in terms of the level of care that would be provided to them in a subsequent pregnancy. Additional appointments at the maternity hospital were considered crucial to provide reassurance during a subsequent pregnancy. These findings underscore the far-reaching and contrasting effects of stillbirth on parents. These complex needs highlight the importance of the multidisciplinary team approach. © 2016 The Authors Health Expectations Published by John Wiley & Sons Ltd.
Mize, Todd H; Simonsick, William J; Amster, I Jonathan
2003-01-01
Two homopolyesters, poly(neopentyl glycol-alt-isophthalic acid) and poly(hexanediol-alt-azelaic acid), and two copolyesters, poly(dipropoxylated bisphenol-A-alt-(isophthalic acid-co-adipic acid)) and poly(neopentyl glycol-alt-(adipic acid-co-isophthalic acid)) were analyzed by internal source matrix assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS). The high resolution and high mass accuracy provided by FTMS greatly facilitate the characterization of the polyester and copolyester samples. Isobaric resolution allows the ion abundances of overlapping isotopic envelopes to be assessed. Repeat units were confirmed and end functionality assigned. Single shot mass spectra of the entire polymeric distribution demonstrate that the dynamic range of this internal MALDI source instrument and the analyzer cell exceeds performance of those previously reported for higher field instruments. Corrections of space charge mass shift effects are demonstrated for the analytes using an external calibrant and (subsequent to confirmation of structure) via internal calibration which removes ambiguity due to space charge differences in calibrant and analyte spectra. Capillary gel permeation chromatography was used to prepare low polydispersity samples from a high polydispersity polyester, improving the measurement of molecular weight distribution two-fold while retaining the benefits of high resolution mass spectrometry for elucidation of oligomer identity.
Analysis of N-Nitrosodimethylamine and N-Nitrodimethylamine in Groundwater
NASA Technical Reports Server (NTRS)
Greene, Ben; Mast, Dion; Baker, David L.
2006-01-01
A method for the analytical determination of N-nitrosodimethylamine (NDMA) and N-nitrodimethylamine (DMN) at parts-per-trillion (ppt) concentrations in groundwater is reported. The method uses a solid phase extraction (SPE) cartridge containing 2 g of activated coconut charcoal to extract a 500-mL water sample. NDMA and DMN are eluted from the SPE cartridge using acetone. The acetone is concentrated and brought to a final volume of 1.0 mL, which results in a theoretical 500-fold concentration of the analytes. The extracts are analyzed by gas chromatography (GC) with a nitrogenphosphorous detector (NPD), which is a highly sensitive and relatively inexpensive technique. The measured extraction efficiencies averaged 61 percent for NDMA and 74 percent for DMN. Extraction efficiencies were independent of NDMA and DMN concentrations from 40 to 2000 ppt. Several samples could be extracted then analyzed in a single day with the use of an extraction manifold and GC autosampler. A reporting limit of 10 ppt for NDMA and DMN was achieved. The MDLs for NDMA and DMN were 6.4 and 5.8 ppt, respectively. A typical turn-around time from beginning of extraction to reporting was 4 h. The method avoids the use of halogenated solvents, such as dichloromethane, and subsequent solvent exchange procedures necessary for use of the NPD detector.
Turner, Terry D.; Beller, Laurence S.; Clark, Michael L.; Klingler, Kerry M.
1997-01-01
A method of processing a test sample to concentrate an analyte in the sample from a solvent in the sample includes: a) boiling the test sample containing the analyte and solvent in a boiling chamber to a temperature greater than or equal to the solvent boiling temperature and less than the analyte boiling temperature to form a rising sample vapor mixture; b) passing the sample vapor mixture from the boiling chamber to an elongated primary separation tube, the separation tube having internal sidewalls and a longitudinal axis, the longitudinal axis being angled between vertical and horizontal and thus having an upper region and a lower region; c) collecting the physically transported liquid analyte on the internal sidewalls of the separation tube; and d) flowing the collected analyte along the angled internal sidewalls of the separation tube to and pass the separation tube lower region. The invention also includes passing a turbulence inducing wave through a vapor mixture to separate physically transported liquid second material from vaporized first material. Apparatus are also disclosed for effecting separations. Further disclosed is a fluidically powered liquid test sample withdrawal apparatus for withdrawing a liquid test sample from a test sample container and for cleaning the test sample container.
Turner, T.D.; Beller, L.S.; Clark, M.L.; Klingler, K.M.
1997-10-14
A method of processing a test sample to concentrate an analyte in the sample from a solvent in the sample includes: (a) boiling the test sample containing the analyte and solvent in a boiling chamber to a temperature greater than or equal to the solvent boiling temperature and less than the analyte boiling temperature to form a rising sample vapor mixture; (b) passing the sample vapor mixture from the boiling chamber to an elongated primary separation tube, the separation tube having internal sidewalls and a longitudinal axis, the longitudinal axis being angled between vertical and horizontal and thus having an upper region and a lower region; (c) collecting the physically transported liquid analyte on the internal sidewalls of the separation tube; and (d) flowing the collected analyte along the angled internal sidewalls of the separation tube to and pass the separation tube lower region. The invention also includes passing a turbulence inducing wave through a vapor mixture to separate physically transported liquid second material from vaporized first material. Apparatus is also disclosed for effecting separations. Further disclosed is a fluidically powered liquid test sample withdrawal apparatus for withdrawing a liquid test sample from a test sample container and for cleaning the test sample container. 8 figs.
Sun, Yuhan; Qi, Peipei; Cang, Tao; Wang, Zhiwei; Wang, Xiangyun; Yang, Xuewei; Wang, Lidong; Xu, Xiahong; Wang, Qiang; Wang, Xinquan; Zhao, Changshan
2018-06-01
As a key representative organism, earthworms can directly illustrate the influence of pesticides on environmental organisms in soil ecosystems. The present work aimed to develop a high-throughput multipesticides residue analytical method for earthworms using solid-liquid extraction with acetonitrile as the solvent and magnetic material-based dispersive solid-phase extraction for purification. Magnetic Fe 3 O 4 nanoparticles were modified with a thin silica layer to form Fe 3 O 4 -SiO 2 nanoparticles, which were fully characterized by field-emission scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffractometry, and vibrating sample magnetometry. The Fe 3 O 4 -SiO 2 nanoparticles were used as the separation media in dispersive solid-phase extraction with primary secondary amine and ZrO 2 as the cleanup adsorbents to eliminate matrix interferences. The amounts of nanoparticles and adsorbents were optimized for the simultaneous determination of 44 pesticides and six metabolites in earthworms by liquid chromatography with tandem mass spectrometry. The method performance was systematically validated with satisfactory results. The limits of quantification were 20 μg/kg for all analytes studied, while the recoveries of the target analytes ranged from 65.1 to 127% with relative standard deviation values lower than 15.0%. The developed method was subsequently utilized to explore the bioaccumulation of bitertanol in earthworms exposed to contaminated soil, verifying its feasibility for real sample analysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bukve, Tone; Røraas, Thomas; Riksheim, Berit Oddny; Christensen, Nina Gade; Sandberg, Sverre
2015-01-01
The Norwegian Quality Improvement of Primary Care Laboratories (Noklus) offers external quality assurance (EQA) schemes (EQASs) for urine albumin (UA) annually. This study analyzed the EQA results to determine how the analytical quality of UA analysis in general practice (GP) offices developed between 1998 (n=473) and 2012 (n=1160). Two EQA urine samples were distributed yearly to the participants by mail. The participants measured the UA of each sample and returned the results together with information about their instrument, the profession and number of employees at the office, frequency of internal quality control (IQC), and number of analyses per month. In the feedback report, they received an assessment of their analytical performance. The number of years that the GP office had participated in Noklus was inversely related to the percentage of "poor" results for quantitative but not semiquantitative instruments. The analytical quality improved for participants using quantitative instruments who received an initial assessment of "poor" and who subsequently changed their instrument. Participants using reagents that had expired or were within 3 months of the expiration date performed worse than those using reagents that were expiring in more than 3 months. Continuous participation in the Noklus program improved the performance of quantitative UA analyses at GP offices. This is probably in part attributable to the complete Noklus quality system, whereby in addition to participating in EQAS, participants are visited by laboratory consultants who examine their procedures and provide practical advice and education regarding the use of different instruments.
NASA Technical Reports Server (NTRS)
Gilmour, Iain; Pillinger, Colin
1993-01-01
The large variety of organic compounds present in carbonaceous chondrites poses particular problems in their analysis not the least of which is terrestrial contamination. Conventional analytical approaches employ simple chromatographic techniques to fractionate the extractable compounds into broad classes of similar chemical structure. However, the use of organic solvents and their subsequent removal by evaporation results in the depletion or loss of semi-volatile compounds as well as requiring considerable preparative work to assure solvent purity. Supercritical fluids have been shown to provide a powerful alternative to conventional liquid organic solvents used for analytical extractions. A sample of Murchison from the Field Museum was analyzed. Two interior fragments were used; the first (2.85 g) was crushed in an agate pestel and mortar to a grain size of ca. 50-100 micron, the second (1.80 g) was broken into chips 3-8 mm in size. Each sample was loaded into a stainless steel bomb and placed in the extraction chamber of an Isco supercritical fluid extractor maintained at 35 C. High purity (99.9995 percent) carbon dioxide was used and was pressurized using an Isco syringe pump. The samples were extracted dynamically by flowing CO2 under pressure through the bomb and venting via a 50 micron fused filica capillary into 5 mls of hexane used as a collection solvent. The hexane was maintained at a temperature of 0.5 C. A series of extractions were done on each sample using CO2 of increasing density. The principal components extracted in each fraction are summarized.
NASA Astrophysics Data System (ADS)
Gilmour, Iain; Pillinger, Colin
1993-03-01
The large variety of organic compounds present in carbonaceous chondrites poses particular problems in their analysis not the least of which is terrestrial contamination. Conventional analytical approaches employ simple chromatographic techniques to fractionate the extractable compounds into broad classes of similar chemical structure. However, the use of organic solvents and their subsequent removal by evaporation results in the depletion or loss of semi-volatile compounds as well as requiring considerable preparative work to assure solvent purity. Supercritical fluids have been shown to provide a powerful alternative to conventional liquid organic solvents used for analytical extractions. A sample of Murchison from the Field Museum was analyzed. Two interior fragments were used; the first (2.85 g) was crushed in an agate pestel and mortar to a grain size of ca. 50-100 micron, the second (1.80 g) was broken into chips 3-8 mm in size. Each sample was loaded into a stainless steel bomb and placed in the extraction chamber of an Isco supercritical fluid extractor maintained at 35 C. High purity (99.9995 percent) carbon dioxide was used and was pressurized using an Isco syringe pump. The samples were extracted dynamically by flowing CO2 under pressure through the bomb and venting via a 50 micron fused filica capillary into 5 mls of hexane used as a collection solvent. The hexane was maintained at a temperature of 0.5 C. A series of extractions were done on each sample using CO2 of increasing density. The principal components extracted in each fraction are summarized.
Interstitial water studies on small core samples, Deep Sea Drilling Project, Leg 5
Manheim, F. T.; Chan, K.M.; Sayles, F.L.
1970-01-01
Leg 5 samples fall into two categories with respect to interstitial water composition: 1) rapidly deposited terrigenous or appreciably terrigenous deposits, such as in Hole 35 (western Escanaba trough, off Cape Mendocino, California); and, 2) slowly deposited pelagic clays and biogenic muds and oozes. Interstitial waters in the former show modest to slight variations in chloride and sodium, but drastic changes in non-conservative ions such as magnesium and sulfate. The pelagic deposits show only relatively minor changes in both conservative and non-conservative pore fluid constituents. As was pointed out in earlier Leg Reports, it is believed that much of the variation in chloride in pore fluids within individual holes is attributable to the manipulation of samples on board ship and in the laboratory. On the other hand, the scatter in sodium is due in part to analytical error (on the order of 2 to 3 per cent, in terms of a standard deviation), and it probably accounts for most of the discrepancies in total anion and cation balance. All constituents reported here, with the exception of bulk water content, were analyzed on water samples which were sealed in plastic tubes aboard ship and were subsequently opened and divided into weighed aliquots in the laboratory. Analytical methods follow the atomic absorption, wet chemical and emission spectrochemical techniques briefly summarized in previous reports, e.g. Manheim et al., 1969, and Chan and Manheim, 1970. The authors acknowledge assistance from W. Sunda, D. Kerr, C. Lawson and H. Richards, and thank D. Spencer, P. Brewer and E. Degens for allowing the use of equipment and laboratory facilities.
The distribution and redistribution of fentanyl & norfentanyl in post mortem samples.
Chatterton, C N; Scott-Ham, M
2018-03-01
This article compares 249 post mortem case reports that were positive for fentanyl/norfentanyl. All the cases were submitted to, and analyzed by, the toxicology department of the Office of the Chief Medical Examiner, Edmonton, Alberta, Canada. This study highlights the varied distribution of fentanyl in the body after death as a result of misadventure, i.e., these are accidental drug overdose cases as opposed to a study of analytical data resulting from fentanyl use/administration in a clinical environment and/or death as a result of suicide. Post mortem samples were collected from more than one anatomical site and analyzed for fentanyl and norfentanyl using liquid chromatography-tandem mass spectrometry. Ante-mortem samples were available in 4 of these cases and were also analyzed. Post mortem mean blood fentanyl concentrations were found to be 13.2ng/mL (femoral), 19.1ng/mL (iliac) and 42.0ng/mL (subclavian). For norfentanyl the mean concentrations were 4.6ng/mL (femoral), 4.6ng/mL (iliac) and 7.4ng/mL (subclavian). Mean vitreous fentanyl and norfentanyl concentrations were 10.8ng/mL and 3.5ng/mL respectively. Mean liver fentanyl and norfentanyl concentrations were found to be 185.5ng/g and 18.8ng/g respectively. This study demonstrates the importance of multi-site sample collection and subsequent analysis for a thorough post mortem toxicological investigation. The study also highlights the risks and limitations associated with the interpretation of post mortem analytical results concerning fentanyl. Copyright © 2018 Elsevier B.V. All rights reserved.
Mapping hard magnetic recording disks by TOF-SIMS
NASA Astrophysics Data System (ADS)
Spool, A.; Forrest, J.
2008-12-01
Mapping of hard magnetic recording disks by TOF-SIMS was performed both to produce significant analytical results for the understanding of the disk surface and the head disk interface in hard disk drives, and as an example of a macroscopic non-rectangular mapping problem for the technique. In this study, maps were obtained by taking discrete samples of the disk surface at set intervals in R and Θ. Because both in manufacturing, and in the disk drive, processes that may affect the disk surface are typically circumferential in nature, changes in the surface are likely to be blurred in the Θ direction. An algorithm was developed to determine the optimum relative sampling ratio in R and Θ. The results confirm what the experience of the analysts suggested, that changes occur more rapidly on disks in the radial direction, and that more sampling in the radial direction is desired. The subsequent use of statistical methods principle component analysis (PCA), maximum auto-correlation factors (MAF), and the algorithm inverse distance weighting (IDW) are explored.
Practicable group testing method to evaluate weight/weight GMO content in maize grains.
Mano, Junichi; Yanaka, Yuka; Ikezu, Yoko; Onishi, Mari; Futo, Satoshi; Minegishi, Yasutaka; Ninomiya, Kenji; Yotsuyanagi, Yuichi; Spiegelhalter, Frank; Akiyama, Hiroshi; Teshima, Reiko; Hino, Akihiro; Naito, Shigehiro; Koiwa, Tomohiro; Takabatake, Reona; Furui, Satoshi; Kitta, Kazumi
2011-07-13
Because of the increasing use of maize hybrids with genetically modified (GM) stacked events, the established and commonly used bulk sample methods for PCR quantification of GM maize in non-GM maize are prone to overestimate the GM organism (GMO) content, compared to the actual weight/weight percentage of GM maize in the grain sample. As an alternative method, we designed and assessed a group testing strategy in which the GMO content is statistically evaluated based on qualitative analyses of multiple small pools, consisting of 20 maize kernels each. This approach enables the GMO content evaluation on a weight/weight basis, irrespective of the presence of stacked-event kernels. To enhance the method's user-friendliness in routine application, we devised an easy-to-use PCR-based qualitative analytical method comprising a sample preparation step in which 20 maize kernels are ground in a lysis buffer and a subsequent PCR assay in which the lysate is directly used as a DNA template. This method was validated in a multilaboratory collaborative trial.
Stark, Peter C [Los Alamos, NM; Zurek, Eduardo [Barranquilla, CO; Wheat, Jeffrey V [Fort Walton Beach, FL; Dunbar, John M [Santa Fe, NM; Olivares, Jose A [Los Alamos, NM; Garcia-Rubio, Luis H [Temple Terrace, FL; Ward, Michael D [Los Alamos, NM
2011-07-26
There is provided a method and device for remote sampling, preparation and optical interrogation of a sample using light scattering and light absorption methods. The portable device is a filtration-based device that removes interfering background particle material from the sample matrix by segregating or filtering the chosen analyte from the sample solution or matrix while allowing the interfering background particles to be pumped out of the device. The segregated analyte is then suspended in a diluent for analysis. The device is capable of calculating an initial concentration of the analyte, as well as diluting the analyte such that reliable optical measurements can be made. Suitable analytes include cells, microorganisms, bioparticles, pathogens and diseases. Sample matrixes include biological fluids such as blood and urine, as well as environmental samples including waste water.
Werner, S.L.; Johnson, S.M.
1994-01-01
As part of its primary responsibility concerning water as a national resource, the U.S. Geological Survey collects and analyzes samples of ground water and surface water to determine water quality. This report describes the method used since June 1987 to determine selected total-recoverable carbamate pesticides present in water samples. High- performance liquid chromatography is used to separate N-methyl carbamates, N-methyl carbamoyloximes, and an N-phenyl carbamate which have been extracted from water and concentrated in dichloromethane. Analytes, surrogate compounds, and reference compounds are eluted from the analytical column within 25 minutes. Two modes of analyte detection are used: (1) a photodiode-array detector measures and records ultraviolet-absorbance profiles, and (2) a fluorescence detector measures and records fluorescence from an analyte derivative produced when analyte hydrolysis is combined with chemical derivatization. Analytes are identified and confirmed in a three-stage process by use of chromatographic retention time, ultraviolet (UV) spectral comparison, and derivatization/fluorescence detection. Quantitative results are based on the integration of single-wavelength UV-absorbance chromatograms and on comparison with calibration curves derived from external analyte standards that are run with samples as part of an instrumental analytical sequence. Estimated method detection limits vary for each analyte, depending on the sample matrix conditions, and range from 0.5 microgram per liter to as low as 0.01 microgram per liter. Reporting levels for all analytes have been set at 0.5 microgram per liter for this method. Corrections on the basis of percentage recoveries of analytes spiked into distilled water are not applied to values calculated for analyte concentration in samples. These values for analyte concentrations instead indicate the quantities recovered by the method from a particular sample matrix.
Smirnoff, Anna; Savard, Martine M; Vet, Robert; Simard, Marie-Christine
2012-12-15
The determination of triple oxygen (δ(18)O and δ(17)O) and nitrogen isotopes (δ(15)N) is important when investigating the sources and atmospheric paths of nitrate and nitrite. To fully understand the atmospheric contribution into the terrestrial nitrogen cycle, it is crucial to determine the δ(15)N values of oxidised and reduced nitrogen species in precipitation and dry deposition. In an attempt to further develop non-biotic methods and avoid expensive modifications of the gas-equilibration system, we have combined and modified sample preparation procedures and analytical setups used by other researchers. We first chemically converted NO(3)(-) and NH(4)(+) into NO(2)(-) and then into N(2)O. Subsequently, the resulting gas was decomposed into N(2) and O(2) and analyzed by isotope ratio mass spectrometry (IRMS) using a pre-concentration system equipped with a gold reduction furnace. The δ(17)O, δ(18)O and δ(15)N values of nitrate and nitrite samples were acquired simultaneously in one run using a single analytical system. Most importantly, the entire spectrum of δ(17)O, δ(18)O and/or δ(15)N values was determined from atmospheric nitrate, nitric oxide, ammonia and ammonium. The obtained isotopic values for air and precipitation samples were in good agreement with those from previous studies. We have further advanced chemical approaches to sample preparation and isotope analyses of nitrogen-bearing compounds. The proposed methods are inexpensive and easily adaptable to a wide range of laboratory conditions. This will substantially contribute to further studies on sources and pathways of nitrate, nitrite and ammonium in terrestrial nitrogen cycling. Copyright © 2012 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.
NHEXAS PHASE I MARYLAND STUDY--QA ANALYTICAL RESULTS FOR PESTICIDE METABOLITES IN SPIKE SAMPLES
The Pesticides in Spikes data set contains the analytical results of measurements of up to 17 pesticides in 12 control samples (spikes) from 11 households. Measurements were made in samples of blood serum. Controls were used to assess recovery of target analytes from a sample m...
Drabova, Lucie; Pulkrabova, Jana; Kalachova, Kamila; Tomaniova, Monika; Kocourek, Vladimir; Hajslova, Jana
2012-10-15
A simple, fast, and cost effective sample preparation procedure has been developed and validated for the determination of 15+1 European Union Polycyclic Aromatic Hydrocarbons (15+1 EU PAHs) in dried tea leave samples. Based on a critical assessment of several sample extraction/clean-up approaches, the method based on the ethyl acetate extraction followed by the use of PAHs dedicated cartridges with molecularly imprinted polymers (MIPs) has been found as an optimal alternative in terms of time demands and obtained good extract purity. For the final identification/quantification of target PAHs, two dimensional gas chromatography coupled to a time-of-flight mass spectrometry (GC×GC-TOFMS) was used. The performance characteristics of the overall analytical method for individual PAHs determined at three spiking levels (0.5, 2.5 and 5 μg kg(-1)) were in following ranges: limits of quantitation (LOQs) 0.05-0.2 μg kg(-1), repeatabilities 2-9%, and recoveries 73-103%. The recoveries achieved by the newly developed sample preparation procedure when employed for naturally contaminated sample ("incurred" PAHs) were comparable to those obtained by other routinely used approaches employing sonication and/or pressurised liquid extraction for sample analytes isolation. The validated method was subsequently used for the determination of selected genotoxic PAHs in 36 samples of black and green tea obtained from the Czech retail market. The levels of ΣPAH4 (sum of benzo[a]anthracene (BaA), chrysene (CHR), benzo[b]fluoranthene (BbFA) and benzo[a]pyrene (BaP)) in black and green tea leaves ranged from 7.4 to 700 μg kg(-1) and from 4.5 to 102 μg kg(-1), respectively. Contamination of tested tea samples by BaP was in the range of 0.2-152 μg kg(-1). Copyright © 2012 Elsevier B.V. All rights reserved.
The National Food and Nutrient Analysis Program: A decade of progress
Haytowitz, David B.; Pehrsson, Pamela R.; Holden, Joanne M.
2009-01-01
The National Food and Nutrient Analysis Program (NFNAP) was designed to expand the quantity and improve the quality of data in the United States Department of Agriculture (USDA) food composition databases through the collection and analysis of nationally representative samples of foods and beverages. This paper describes some of the findings from the NFNAP and its impact on the food composition databases produced by USDA. The NFNAP employs statistically valid sampling plans, comprehensive quality control, and USDA analytical oversight as part of the program to generate new and updated analytical data for food components. USDA food consumption and composition data were used to target those foods that are major contributors of nutrients of public health significance to the U.S. diet (454 Key Foods). Foods were ranked using a scoring system, divided into quartiles, and reviewed to determine the impact of changes in their composition compared to historical values. Foods were purchased from several types of locations, such as retail outlets and fast food restaurants in different geographic areas as determined by the sampling plan, then composited and sent for analysis to commercial laboratories and cooperators, along with quality control materials. Comparisons were made to assess differences between new NFNAP means generated from original analytical data and historical means. Recently generated results for nationally representative food samples show marked changes compared to database values for selected nutrients from unknown or non-representative sampling. A number of changes were observed in many high consumption foods, e.g. the vitamin A value for cooked carrots decreased from 1,225 to 860 RAE/100g; the fat value for fast food French fried potatoes increased by 13% (14.08 to 17.06 g/100g). Trans fatty acids in margarine have decreased as companies reformulate their products in response to the required addition of trans fatty acids content on the nutrition label. Values decreased from 19.7 g/100 in 2002 to 14.8 g/100 in 2006 for 80%-fat stick margarines and to 4.52 g/100 g for 80%-fat tub margarines. These changes reflect improved strategies for sampling and analysis of representative food samples, which enhance the reliability of nutrient estimates for Key Foods and subsequent assessments of nutrient intake. PMID:19578546
Sun, Feng-Hua; Li, Chunxiao; Zhang, Yan-Jie; Wong, Stephen Heung-Sang; Wang, Lin
2016-01-01
Meals with low glycemic index (GI) may suppress short-term appetite and reduce subsequent food intake compared with high-GI meals. However, no meta-analysis has been conducted to synthesize the evidence. This meta-analytic study was conducted to assess the effect of high- and low-GI breakfast on subsequent short-term food intake. Trials were identified through MEDLINE, EMBASE, Web of Science, and Cochrane Central Register of Controlled trials, and manual searches of bibliographies until May 2015. Randomized controlled and cross-over trials comparing the effect of low- with high-GI breakfast on subsequent energy intake among healthy people were included. Nine studies consisting of 11 trials met the inclusion criteria. Only one trial was classified with high methodological quality. A total of 183 participants were involved in the trials. The meta-analytic results revealed no difference in breakfast GI (high-GI vs. low-GI) on subsequent short-term energy intake. In conclusion, it seems that breakfast GI has no effect on short-term energy intake among healthy people. However, high quality studies are still warranted to provide more concrete evidence. PMID:26742058
IMPROVED METHOD FOR THE STORAGE OF GROUND WATER SAMPLES CONTAINING VOLATILE ORGANIC ANALYTES
The sorption of volatile organic analytes from water samples by the Teflon septum surface used with standard glass 40-ml sample collection vials was investigated. Analytes tested included alkanes, isoalkanes, olefins, cycloalkanes, a cycloalkene, monoaromatics, a polynuclear arom...
Code of Federal Regulations, 2013 CFR
2013-01-01
... robust analytical methods. The Department seeks to use qualitative and quantitative analytical methods... uncertainties will be carried forward in subsequent analyses. The use of quantitative models will be... manufacturers and other interested parties. The use of quantitative models will be supplemented by qualitative...
Code of Federal Regulations, 2012 CFR
2012-01-01
... robust analytical methods. The Department seeks to use qualitative and quantitative analytical methods... uncertainties will be carried forward in subsequent analyses. The use of quantitative models will be... manufacturers and other interested parties. The use of quantitative models will be supplemented by qualitative...
Code of Federal Regulations, 2014 CFR
2014-01-01
... robust analytical methods. The Department seeks to use qualitative and quantitative analytical methods... uncertainties will be carried forward in subsequent analyses. The use of quantitative models will be... manufacturers and other interested parties. The use of quantitative models will be supplemented by qualitative...
2014-01-01
Background The possibility of applying a novel chemometric approach which could allow the differentiation of marble samples, all from different quarries located in the Mediterranean basin and frequently used in ancient times for artistic purposes, was investigated. By suggesting tentative or allowing to rule out unlikely attributions, this kind of differentiation could, indeed, be of valuable support to restorers and other professionals in the field of cultural heritage. Experimental data were obtained only using thermal analytical techniques: Thermogravimetry (TG), Derivative Thermogravimetry (DTG) and Differential Thermal Analysis (DTA). Results The extraction of kinetic parameters from the curves obtained using these thermal analytical techniques allowed Activation Energy values to be evaluated together with the logarithm of the Arrhenius pre-exponential factor of the main TG-DTG process. The main data thus obtained after subsequent chemometric evaluation (using Principal Components Analysis) have already proved useful in the identification the original quarry of a small number of archaeological marble finds. Conclusion One of the most evident advantages of the thermoanalytical – chemometric approach adopted seems to be that it allows the certain identification of an unknown find composed of a marble known to be present among the reference samples considered, that is, contained in the reference file. On the other hand with equal certainty it prevents the occurrence of erroneous or highly uncertain identification if the find being tested does not belong to the reference file considered. PMID:24982691
Geochronology and geochemistry of lavas from the 1996 North Gorda Ridge eruption
NASA Astrophysics Data System (ADS)
Rubin, K. H.; Smith, M. C.; Perfit, M. R.; Christie, D. M.; Sacks, L. F.
1998-12-01
Radiometric dating of three North Gorda Ridge lavas by the 210Po- 210Pb method confirms that an eruption occurred during a period of increased seismic activity along the ridge during late February/early March 1996. These lavas were collected following detection of enhanced T-phase seismicity and subsequent ocean bottom photographs documented the existence of a large pillow mound of fresh-appearing lavas. 210Po- 210Pb dating of these lavas indicates that an eruption coinciding with this seismicity did occur (within analytical error) and that followup efforts to sample the recent lava flows were successful. Compositions of the three confirmed young lavas and eleven other samples of this contiguous "new flow" sequence are distinct from older lavas from this area but are variable at a level outside analytical uncertainty. These intraflow variations can not easily be related to a single, common parent magma. Compositional variability within the new flow is compared to that of other recently documented individual flow sequences, and this comparison reveals a strong positive correlation of compositional variance with flow volumes spanning a range of >2 orders of magnitude. The geochemical heterogeneity in the North Gorda new flow probably reflects incomplete mixing of magmas generated from a heterogeneous mantle source or from slightly different melting conditions of a single source. The compositional variability, range in sample ages (up to 6 weeks) and range in active seismicity (4 weeks) imply that this relatively large flow was erupted over an interval of several weeks.
Bukhari, Mahwish; Awan, M. Ali; Qazi, Ishtiaq A.; Baig, M. Anwar
2012-01-01
This paper illustrates systematic development of a convenient analytical method for the determination of chromium and cadmium in tannery wastewater using laser-induced breakdown spectroscopy (LIBS). A new approach was developed by which liquid was converted into solid phase sample surface using absorption paper for subsequent LIBS analysis. The optimized values of LIBS parameters were 146.7 mJ for chromium and 89.5 mJ for cadmium (laser pulse energy), 4.5 μs (delay time), 70 mm (lens to sample surface distance), and 7 mm (light collection system to sample surface distance). Optimized values of LIBS parameters demonstrated strong spectrum lines for each metal keeping the background noise at minimum level. The new method of preparing metal standards on absorption papers exhibited calibration curves with good linearity with correlation coefficients, R2 in the range of 0.992 to 0.998. The developed method was tested on real tannery wastewater samples for determination of chromium and cadmium. PMID:22567570
Paper microfluidic-based enzyme catalyzed double microreactor.
Ferrer, Ivonne M; Valadez, Hector; Estala, Lissette; Gomez, Frank A
2014-08-01
We describe a paper microfluidic-based enzyme catalyzed double microreactor assay using fluorescent detection. Here, solutions of lactate dehydrogenase (LDH) and diaphorase (DI) were directly spotted onto the microfluidic paper-based analytical device (μPAD). Samples containing lactic acid, resazurin, and nicotinamide adenine dinucleotide oxidized form (NAD(+) ), potassium chloride (KCl), and BSA, in MES buffer were separately spotted onto the μPAD and MES buffer flowed through the device. A cascade reaction occurs upon the sample spot overlapping with LDH to form pyruvate and nicotinamide adenine dinucleotide reduced form (NADH). Subsequently, NADH is used in the conversion of resazurin to fluorescent resorufin by DI. The μPAD avoids the need of surface functionalization or enzyme immobilization steps. These microreactor devices are low cost and easy to fabricate and effect reaction based solely on buffer capillary action. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swarin, S.J.; Loo, J.F.; Chladek, E.
1992-01-01
Analytical methods for determining individual aldehyde, ketone, and alcohol emissions from gasoline-, methanol-, and variable-fueled vehicles are described. These methods were used in the Auto/Oil Air Quality Improvement Research Program to provide emission data for comparison of individual reformulated fuels, individual vehicles, and for air modeling studies. The emission samples are collected in impingers which contain either 2,4-dinitrophenylhydrazine solution for the aldehydes and ketones or deionized water for the alcohols. Subsequent analyses by liquid chromatography for the aldehydes and ketones and gas chromatography for the alcohols utilized auto injectors and computerized data systems which permit high sample throughput with minimalmore » operator intervention. The quality control procedures developed and interlaboratory comparisons conducted as part of the program are also described. (Copyright (c) 1992 Society of Automotive Engineers, Inc.)« less
Martín-Alonso, Manuel; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos
2018-03-13
This work reports on the implementation of gold nanorods (AuNRs) in headspace solvent microextraction for colorimetric determination of volatile analyte derivatives in a single drop. The exposure of AuNRs to both H 2 Se and elemental mercury (Hg 0 ) results in a shift of the longitudinal plasmonic band, unlike a number of volatiles. Accordingly, a method is reported for the determination of Hg 0 with potential applicability to the determination of thiomersal (sodium ethylmercurithiosalicylate). It is based on the photochemical decomposition of thiomersal into Hg(II) and subsequent exposure of AuNRs-containing microdrop to in situ generated Hg 0 . Colorimetric analysis of the enriched drop was carried out without dilution by means of a cuvetteless microvolume UV-vis spectrometer. Under optimal conditions, the limit of detection was 0.5 ng mL -1 (as Hg). The repeatability, expressed as relative standard deviation, was 8.4% (for n = 10). AuNRs exposed to increasing concentrations of the analyte were characterized by means of transmission electron microscopy and UV-vis spectrophotometry to ascertain the mechanism of detection. The method was finally applied to the determination of thiomersal in various pharmaceutical samples and showed quantitative recoveries. Graphical abstract Schematic illustration of a miniaturized colorimetric method based on the use of a microdrop of gold nanorods (AuNRs) for thiomersal determination in pharmaceuticals. It is based on the photochemical decomposition of thiomersal and subsequent Hg 0 generation with in-drop amalgamation.
Jurowski, Kamil; Buszewski, Bogusław; Piekoszewski, Wojciech
2015-01-01
Nowadays, studies related to the distribution of metallic elements in biological samples are one of the most important issues. There are many articles dedicated to specific analytical atomic spectrometry techniques used for mapping/(bio)imaging the metallic elements in various kinds of biological samples. However, in such literature, there is a lack of articles dedicated to reviewing calibration strategies, and their problems, nomenclature, definitions, ways and methods used to obtain quantitative distribution maps. The aim of this article was to characterize the analytical calibration in the (bio)imaging/mapping of the metallic elements in biological samples including (1) nomenclature; (2) definitions, and (3) selected and sophisticated, examples of calibration strategies with analytical calibration procedures applied in the different analytical methods currently used to study an element's distribution in biological samples/materials such as LA ICP-MS, SIMS, EDS, XRF and others. The main emphasis was placed on the procedures and methodology of the analytical calibration strategy. Additionally, the aim of this work is to systematize the nomenclature for the calibration terms: analytical calibration, analytical calibration method, analytical calibration procedure and analytical calibration strategy. The authors also want to popularize the division of calibration methods that are different than those hitherto used. This article is the first work in literature that refers to and emphasizes many different and complex aspects of analytical calibration problems in studies related to (bio)imaging/mapping metallic elements in different kinds of biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Long, H. Keith; Daddow, Richard L.; Farrar, Jerry W.
1998-01-01
Since 1962, the U.S. Geological Survey (USGS) has operated the Standard Reference Sample Project to evaluate the performance of USGS, cooperator, and contractor analytical laboratories that analyze chemical constituents of environmental samples. The laboratories are evaluated by using performance evaluation samples, called Standard Reference Samples (SRSs). SRSs are submitted to laboratories semi-annually for round-robin laboratory performance comparison purposes. Currently, approximately 100 laboratories are evaluated for their analytical performance on six SRSs for inorganic and nutrient constituents. As part of the SRS Project, a surplus of homogeneous, stable SRSs is maintained for purchase by USGS offices and participating laboratories for use in continuing quality-assurance and quality-control activities. Statistical evaluation of the laboratories results provides information to compare the analytical performance of the laboratories and to determine possible analytical deficiences and problems. SRS results also provide information on the bias and variability of different analytical methods used in the SRS analyses.
NASA Astrophysics Data System (ADS)
Lee, H. A.; Lee, J.; Kwon, E.; Kim, D.; Yoon, H. O.
2015-12-01
In recent times, fluorine has been receiving increasing attention due to the possibility for chemical (HF) leakage accidents and its high toxicity to human and environment. In this respect, a novel approach for the determination of fluorine concentrations in water samples using wavelength dispersive X-ray fluorescence (WDXRF) spectrometry was investigated in this study. The main disadvantage of WDXRF technique for fluorine analysis is low analytical sensitivity for light elements with atomic number (Z) less than 15. To overcome this problem, we employed the precipitation reaction which fluoride is reacted with cation such as Al3+ and/or Ca2+ prior to WDXRF analysis because of their high analytical sensitivity. The cation was added in fluoride solutions to form precipitate (AlF3 and/or CaF2) and then the solution was filtered through Whatman filter. After drying at 60 °C for 5 min, the filter was coated with X-ray film and directly analyzed using WDXRF spectrometry. Consequently, we analyzed the cation on filter and subsequently fluorine concentration was calculated inversely based on chemical form of precipitate. This method can improve the analytical sensitivity of WDXRF technique for fluorine analysis and be applicable to various elements that can make precipitate.
Zeng, Dongping; Shen, Xiangguang; He, Limin; Ding, Huanzhong; Tang, Youzhi; Sun, Yongxue; Fang, Binghu; Zeng, Zhenling
2012-06-01
A rapid liquid chromatography tandem mass spectrometric method was developed for the simultaneous determination of mequindox and its five metabolites (2-isoethanol mequindox, 2-isoethanol 1-desoxymequindox, 1-desoxymequindox, 1,4-bisdesoxymequindox, and 2-isoethanol bisdesoxymequindox) in porcine muscle, liver, and kidney, fulfilling confirmation criteria with two transitions for each compound with acceptable relative ion intensities. The method involved acid hydrolysis, purification by solid-phase extraction, and subsequent analysis with liquid chromatography tandem mass spectrometry using electrospray ionization operated in positive polarity with a total run time of 15 min. The decision limit values of five analytes in porcine tissues ranged from 0.6 to 2.9 μg/kg, and the detection capability values ranged from 1.2 to 5.7 μg/kg. The results of the inter-day study, which was performed by fortifying porcine muscle (2, 4, and 8 μg/kg), liver, and kidney (10, 20, and 40 μg/kg) samples on three separate days, showed that the accuracy of the method for the various analytes ranged between 75.3 and 107.2% with relative standard deviation less than 12% for each analyte. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ordoñez, Edgar Y; Quintana, José Benito; Rodil, Rosario; Cela, Rafael
2013-12-13
An analytical method for the determination of six artificial sweeteners in sewage sludge has been developed. The procedure is based on pressurised liquid extraction (PLE) with water followed by solid-phase extraction (SPE) and subsequent liquid chromatography-tandem mass spectrometry analysis. After optimisation of the different PLE parameters, extraction with aqueous 500mM formate buffer (pH 3.5) at 80°C during a single static cycle of 21min proved to be best conditions. After a subsequent SPE, quantification limits, referred to dry weight (dw) of sewage sludge, ranged from 0.3ng/g for acesulfame (ACE) to 16ng/g for saccharin (SAC) and neohespiridine dihydrochalcone. The trueness, expressed as recovery, ranged between 72% and 105% and the precision, expressed as relative standard deviation, was lower than 16%. Moreover, the method proved its linearity up to the 2μg/g range. Finally, the described method was applied to the determination of the artificial sweeteners in primary and secondary sewage sludge from urban wastewater treatment plants. Four of the six studied artificial sweeteners (ACE, cyclamate, SAC and sucralose) were found in the samples at concentrations ranging from 17 to 628ng/g dw. Copyright © 2013 Elsevier B.V. All rights reserved.
Woodworth, M.T.; Connor, B.F.
2001-01-01
This report presents the results of the U.S. Geological Survey's analytical evaluation program for six standard reference samples -- T-165 (trace constituents), M-158 (major constituents), N-69 (nutrient constituents), N-70 (nutrient constituents), P-36 (low ionic-strength constituents), and Hg-32 (mercury) -- that were distributed in April 2001 to laboratories enrolled in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data received from 73 laboratories were evaluated with respect to overall laboratory performance and relative laboratory performance for each analyte in the six reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the six standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.
Woodworth, M.T.; Conner, B.F.
2002-01-01
This report presents the results of the U.S. Geological Survey's analytical evaluation program for six standard reference samples -- T- 169 (trace constituents), M- 162 (major constituents), N-73 (nutrient constituents), N-74 (nutrient constituents), P-38 (low ionic-strength constituents), and Hg-34 (mercury) -- that were distributed in March 2002 to laboratories enrolled in the U.S. Geological Survey sponsored intedaboratory testing program. Analytical data received from 93 laboratories were evaluated with respect to overall laboratory performance and relative laboratory performance for each analyte in the six reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the six standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.
Woodworth, Mark T.; Connor, Brooke F.
2003-01-01
This report presents the results of the U.S. Geological Survey's analytical evaluation program for six standard reference samples -- T-171 (trace constituents), M-164 (major constituents), N-75 (nutrient constituents), N-76 (nutrient constituents), P-39 (low ionic-strength constituents), and Hg-35 (mercury) -- that were distributed in September 2002 to laboratories enrolled in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data received from 102 laboratories were evaluated with respect to overall laboratory performance and relative laboratory performance for each analyte in the six reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the six standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.
Woodworth, Mark T.; Connor, Brooke F.
2002-01-01
This report presents the results of the U.S. Geological Survey's analytical evaluation program for six standard reference samples -- T-167 (trace constituents), M-160 (major constituents), N-71 (nutrient constituents), N-72 (nutrient constituents), P-37 (low ionic-strength constituents), and Hg-33 (mercury) -- that were distributed in September 2001 to laboratories enrolled in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data received from 98 laboratories were evaluated with respect to overall laboratory performance and relative laboratory performance for each analyte in the six reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the six standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.
Farrar, Jerry W.; Copen, Ashley M.
2000-01-01
This report presents the results of the U.S. Geological Survey's analytical evaluation program for six standard reference samples -- T-161 (trace constituents), M-154 (major constituents), N-65 (nutrient constituents), N-66 nutrient constituents), P-34 (low ionic strength constituents), and Hg-30 (mercury) -- that were distributed in March 2000 to 144 laboratories enrolled in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 132 of the laboratories were evaluated with respect to overall laboratory performance and relative laboratory performance for each analyte in the six reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the six standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.
Farrar, T.W.
2000-01-01
This report presents the results of the U.S. Geological Survey's analytical evaluation program for six standard reference samples -- T-159 (trace constituents), M-152 (major constituents), N-63 (nutrient constituents), N-64 (nutrient constituents), P-33 (low ionic strength constituents), and Hg-29 (mercury) -- that were distributed in October 1999 to 149 laboratories enrolled in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 131 of the laboratories were evaluated with respect to overall laboratory performance and relative laboratory performance for each analyte in the six reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the six standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.
Woodworth, Mark T.; Connor, Brooke F.
2003-01-01
This report presents the results of the U.S. Geological Survey's analytical evaluation program for six standard reference samples -- T-173 (trace constituents), M-166 (major constituents), N-77 (nutrient constituents), N-78 (nutrient constituents), P-40 (low ionic-strength constituents), and Hg-36 (mercury) -- that were distributed in March 2003 to laboratories enrolled in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data received from 110 laboratories were evaluated with respect to overall laboratory performance and relative laboratory performance for each analyte in the six reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the six standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.
Connor, B.F.; Currier, J.P.; Woodworth, M.T.
2001-01-01
This report presents the results of the U.S. Geological Survey's analytical evaluation program for six standard reference samples -- T-163 (trace constituents), M-156 (major constituents), N-67 (nutrient constituents), N-68 (nutrient constituents), P-35 (low ionic strength constituents), and Hg-31 (mercury) -- that were distributed in October 2000 to 126 laboratories enrolled in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 122 of the laboratories were evaluated with respect to overall laboratory performance and relative laboratory performance for each analyte in the six reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the six standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.
Discreet passive explosive detection through 2-sided waveguided fluorescence
Harper, Ross James [Stillwater, OK; la Grone, Marcus [Cushing, OK; Fisher, Mark [Stillwater, OK
2011-10-18
The current invention provides a passive sampling device suitable for collecting and detecting the presence of target analytes. In particular, the passive sampling device is suitable for detecting nitro-aromatic compounds. The current invention further provides a passive sampling device reader suitable for determining the collection of target analytes. Additionally, the current invention provides methods for detecting target analytes using the passive sampling device and the passive sampling device reader.
Burger, Jessica L; Lovestead, Tara M; Bruno, Thomas J
2016-03-17
As the sources of natural gas become more diverse, the trace constituents of the C 6 + fraction are of increasing interest. Analysis of fuel gas (including natural gas) for compounds with more than 6 carbon atoms (the C 6 + fraction) has historically been complex and expensive. Hence, this is a procedure that is used most often in troubleshooting rather than for day-to-day operations. The C 6 + fraction affects gas quality issues and safety considerations such as anomalies associated with odorization. Recent advances in dynamic headspace vapor collection can be applied to this analysis and provide a faster, less complex alternative for compositional determination of the C 6 + fraction of natural gas. Porous layer open tubular capillaries maintained at low temperatures (PLOT-cryo) form the basis of a dynamic headspace sampling method that was developed at NIST initially for explosives in 2009. This method has been recently advanced by the combining of multiple PLOT capillary traps into one "bundle," or wafer, resulting in a device that allows the rapid trapping of relatively large amounts of analyte. In this study, natural gas analytes were collected by flowing natural gas from the laboratory (gas out of the wall) or a prepared surrogate gas flowing through a chilled wafer. The analytes were then removed from the PLOT-cryo wafer by thermal desorption and subsequent flushing of the wafer with helium. Gas chromatography (GC) with mass spectrometry (MS) was then used to identify the analytes.
Investigating Compaction by Intergranular Pressure Solution Using the Discrete Element Method
NASA Astrophysics Data System (ADS)
van den Ende, M. P. A.; Marketos, G.; Niemeijer, A. R.; Spiers, C. J.
2018-01-01
Intergranular pressure solution creep is an important deformation mechanism in the Earth's crust. The phenomenon has been frequently studied and several analytical models have been proposed that describe its constitutive behavior. These models require assumptions regarding the geometry of the aggregate and the grain size distribution in order to solve for the contact stresses and often neglect shear tractions. Furthermore, analytical models tend to overestimate experimental compaction rates at low porosities, an observation for which the underlying mechanisms remain to be elucidated. Here we present a conceptually simple, 3-D discrete element method (DEM) approach for simulating intergranular pressure solution creep that explicitly models individual grains, relaxing many of the assumptions that are required by analytical models. The DEM model is validated against experiments by direct comparison of macroscopic sample compaction rates. Furthermore, the sensitivity of the overall DEM compaction rate to the grain size and applied stress is tested. The effects of the interparticle friction and of a distributed grain size on macroscopic strain rates are subsequently investigated. Overall, we find that the DEM model is capable of reproducing realistic compaction behavior, and that the strain rates produced by the model are in good agreement with uniaxial compaction experiments. Characteristic features, such as the dependence of the strain rate on grain size and applied stress, as predicted by analytical models, are also observed in the simulations. DEM results show that interparticle friction and a distributed grain size affect the compaction rates by less than half an order of magnitude.
A Delayed Neutron Counting System for the Analysis of Special Nuclear Materials
NASA Astrophysics Data System (ADS)
Sellers, Madison Theresa
Nuclear forensic analysis is a modem science that uses numerous analytical techniques to identify and attribute nuclear materials in the event of a nuclear explosion, radiological terrorist attack or the interception of illicit nuclear material smuggling. The Canadian Department of National Defence has participated in recent international exercises that have highlighted the Nation's requirement to develop nuclear forensics expertise, protocol and capabilities, specifically pertaining to the analysis of special nuclear materials (SNM). A delayed neutron counting (DNC) system has been designed and established at the Royal Military College of Canada (RMC) to enhance the Government's SNM analysis capabilities. This analytical technique complements those already at RMC by providing a rapid and non-destructive method for the analysis of the fissile isotopes of both uranium (U) and plutonium (Pu). The SLOWPOKE-2 reactor at RMC produces a predominately thermal neutron flux. These neutrons induce fission in the SNM isotopes 233U, 235U and 239Pu releasing prompt fast neutrons, energy and radioactive fission fragments. Some of these fission fragments undergo beta - decay and subsequently emit neutrons, which can be recorded by an array of sensitive 3He detectors. The significant time period between the fission process and the release of these neutrons results in their identification as 'delayed neutrons'. The recorded neutron spectrum varies with time and the count rate curve is unique to each fissile isotope. In-house software, developed by this project, can analyze this delayed neutron curve and provides the fissile mass in the sample. Extensive characterization of the DNC system has been performed with natural U samples with 235 U content ranging from 2--7 microg. The system efficiency and dead time behaviour determined by the natural uranium sample analyses were validated by depleted uranium samples with similar quantities of 235 U resulting in a typical relative error of 3.6%. The system has accurately determined 235U content over three orders of magnitude with 235U amounts as low as 10 ng. The results have also been proven to be independent of small variations in total analyte volume and geometry, indicating that it is an ideal technique for the analysis of samples containing SNM in a variety of different matrices. The Analytical Sciences Group at RMC plans to continue DNC system development to include 233U and 239pu analysis and mixtures of SNM isotopes. Keywords: delayed neutron counting, special nuclear materials, nuclear forensics.
Mardal, Marie; Dalsgaard, Petur Weihe; Qi, Bing; Mollerup, Christian Brinch; Annaert, Pieter; Linnet, Kristian
2018-04-15
The main analytical targets of synthetic cannabinoids are often metabolites. With the high number of new psychoactive substances entering the market, suitable workflows are needed for analytical target identification in biological samples. The aims of this study were to identify the main metabolites of the synthetic cannabinoids, AMB-CHMICA and 5C-AKB48, using an in silico-assisted workflow with analytical data acquired using ultra-high-performance liquid chromatography-(ion mobility spectroscopy)-high resolution-mass spectrometry in data-independent acquisition mode (UHPLC-(IMS)-HR-MS E ). The metabolites were identified after incubation with rat and pooled human hepatocytes using UHPLC-HR-MS E , followed by UHPLC-IMS-HR-MS E . Metabolites of AMB-CHMICA and 5C-AKB48 were predicted with Meteor (Lhasa Ltd) and imported to the UNIFI software (Waters). The predicted metabolites were assigned to analytical components supported by the UNIFI in silico fragmentation tool. The main metabolic pathway of AMB-CHMICA was O-demethylation and hydroxylation of the methylhexyl moiety. For 5C-AKB48, the main metabolic pathways were hydroxylation(s) of the adamantyl moiety and oxidative dechlorination with subsequent oxidation to the ω-COOH. The matrix components in the metabolite spectra were reduced with IMS, which improved the accuracy of the spectral interpretation; however, this left fewer fragment ions for assigning sites of metabolism. Meteor was able to predict the majority of the metabolites, with the most notable exception being the oxidative dechlorination and, consequently, all metabolites that underwent that transformation pathway. Oxidative dechlorination of ω-chloroalkanes in humans has not been previously reported in the literature. The postulated metabolites can be used for screening of biological samples, with four-dimensional identification based on retention time, collision cross section, precursor ion, and fragment ions. Copyright © 2018 Elsevier B.V. All rights reserved.
Validating Analytical Protocols to Determine Selected Pesticides and PCBs Using Routine Samples.
Pindado Jiménez, Oscar; García Alonso, Susana; Pérez Pastor, Rosa María
2017-01-01
This study aims at providing recommendations concerning the validation of analytical protocols by using routine samples. It is intended to provide a case-study on how to validate the analytical methods in different environmental matrices. In order to analyze the selected compounds (pesticides and polychlorinated biphenyls) in two different environmental matrices, the current work has performed and validated two analytical procedures by GC-MS. A description is given of the validation of the two protocols by the analysis of more than 30 samples of water and sediments collected along nine months. The present work also scopes the uncertainty associated with both analytical protocols. In detail, uncertainty of water sample was performed through a conventional approach. However, for the sediments matrices, the estimation of proportional/constant bias is also included due to its inhomogeneity. Results for the sediment matrix are reliable, showing a range 25-35% of analytical variability associated with intermediate conditions. The analytical methodology for the water matrix determines the selected compounds with acceptable recoveries and the combined uncertainty ranges between 20 and 30%. Analyzing routine samples is rarely applied to assess trueness of novel analytical methods and up to now this methodology was not focused on organochlorine compounds in environmental matrices.
Testing alternative factor models of PTSD and the robustness of the dysphoria factor.
Elklit, Ask; Armour, Cherie; Shevlin, Mark
2010-01-01
This study first aimed to examine the structure of self-reported posttraumatic stress disorder (PTSD) symptoms using three different samples. The second aim of the paper was to test the robustness of the factor analytic model when depression scores were controlled for. Based on previous factor analytic findings and the DSM-IV formulation, six confirmatory factor models were specified and estimated that reflected different symptom clusters. The best fitting model was subsequently re-fitted to the data after including a depression variable. The analyses were based on responses from 973 participants across three samples. Sample 1 consisted of 633 parents who were members of 'The National Association of Infant Death' and who had lost a child. Sample 2 consisted of 227 victims of rape, who completed a questionnaire within 4 weeks of the rape. Each respondent had been in contact with the Centre for Rape Victims (CRV) at the Aarhus University Hospital, Denmark. Sample 3 consisted of 113 refugees resident in Denmark. All participants had been referred to a treatment centre which focused on rehabilitating refugees through treatment for psychosocial integration problems (RRCF: Rehabliterings og Revliderings Centre for Flygtninge). In total 500 participants received a diagnosis of PTSD/sub-clinical PTSD (Sample 1, N=214; 2, N=176; 3, N=110). A correlated four-factor model with re-experiencing, avoidance, dysphoria, and arousal factors provided the best fit to the sample data. The average attenuation in the factor loadings was highest for the dysphoria factor (M=-.26, SD=.11) compared to the re-experiencing (M=-.14, SD=.18), avoidance (M=-.10, SD=.21), and arousal (M=-.09, SD=.13) factors. With regards to the best fitting factor model these results concur with previous research findings using different trauma populations but do not reflect the current DSM-IV symptom groupings. The attenuation of dysphoria factor loadings suggests that dysphoria is a non-specific component of PTSD.
NASA Astrophysics Data System (ADS)
Bereiter, Bernhard; Maechler, Lars; Schmitt, Jochen; Walther, Remo; Tuzson, Béla; Scheidegger, Philipp; Emmenegger, Lukas; Fischer, Hubertus
2017-04-01
Ice cores are unique archives of ancient air providing the only direct record of past greenhouse gases - key in reconstructing the roles of greenhouse gases in past climate changes. The European Partnership in Ice Core Sciences (EuroPICS) plans to drill an ice core extending over 1.5 Ma, nearly doubling the time span of the existing greenhouse record and covering the time period of the Mid Pleistocene Transition. The ice covering the time interval from 1-1.5 Ma is expected to be close to the bedrock and, due to glacial flow, extremely thinned. A 10,000 yr glacial/interglacial transition can be compressed in 1 m of ice. The targeted 100 yr resolution therefore constrains the sample size to 15-30 g containing only 1-2ml STP air. Within the deepSlice project we aim to unlock such atmospheric archives in extremely thinned ice by developing a novel coupled semi-continuous sublimation extraction/laser spectroscopy system. Vacuum sublimation, with an infrared source, has been chosen as extraction method as it allows 100% gas extraction of all gas species from ice without changing the isotopic composition of CO2. In order to reduce ice waste and accelerate sample throughput, we are building a sublimation extraction system that is able to continuously sublimate an ice-core section and subsequently collect discrete full air samples. For the gas analytics, we develop a custom-made mid-infrared laser spectrometer allowing simultaneous measurement of the CO2, CH4 and N2O concentrations as well as the isotopic composition of CO2 on air samples of only 1-2 ml STP. The two systems will be coupled via cryo-trapping of the sample air in dip tubes, followed by expansion of the sample air into the laser spectrometer. Due to the nondestructive laser technique, the air sample can be recollected and reused for further analytics.
Is a pre-analytical process for urinalysis required?
Petit, Morgane; Beaudeux, Jean-Louis; Majoux, Sandrine; Hennequin, Carole
2017-10-01
For the reliable urinary measurement of calcium, phosphate and uric acid, a pre-analytical process by adding acid or base to urine samples at laboratory is recommended in order to dissolve precipitated solutes. Several studies on different kind of samples and analysers have previously shown that a such pre-analytical treatment is useless. The objective was to study the necessity of pre-analytical treatment of urine on samples collected using the V-Monovette ® (Sarstedt) system and measured on the analyser Architect C16000 (Abbott Diagnostics). Sixty urinary samples of hospitalized patients were selected (n=30 for calcium and phosphate, and n=30 for uric acid). After acidification of urine samples for measurement of calcium and phosphate, and alkalinisation for measurement of uric acid respectively, differences between results before and after the pre-analytical treatment were compared to acceptable limits recommended by the French society of clinical biology (SFBC). No difference in concentration between before and after pre-analytical treatment of urine samples exceeded acceptable limits from SFBC for measurement of calcium and uric acid. For phosphate, only one sample exceeded these acceptable limits, showing a result paradoxically lower after acidification. In conclusion, in agreement with previous study, our results show that acidification or alkalinisation of urine samples from 24 h urines or from urination is not a pre-analytical necessity for measurement of calcium, phosphate and uric acid.
A New Method of Obtaining High-Resolution Paleoclimate Records from Speleothem Fluid Inclusions
NASA Astrophysics Data System (ADS)
Logan, A. J.; Horton, T. W.
2010-12-01
We present a new method for stable hydrogen and oxygen isotope analysis of ancient drip water trapped within cave speleothems. Our method improves on existing fluid inclusion isotopic analytical techniques in that it decreases the sample size by a factor of ten or more, dramatically improving the spatial and temporal precision of fluid inclusion-based paleoclimatology. Published thermal extraction methods require large samples (c. 150 mg) and temperatures high enough (c. 500-900°C) to cause calcite decomposition, which is also associated with isotopic fractionation of the trapped fluids. Extraction by crushing faces similar challenges, where the failure to extract all the trapped fluid can result in isotopic fractionation, and samples in excess of 500 mg are required. Our new method combines the strengths of these published thermal and crushing methods using continuous-flow isotope ratio analytical techniques. Our method combines relatively low-temperature (~250°C) thermal decrepitation with cryogenic trapping across a switching valve sample loop. In brief, ~20 mg carbonate samples are dried (75°C for >1 hour) and heated (250°C for >1 hour) in a quartz sample chamber under a continuously flowing stream of ultra-high purity helium. Heating of the sample chamber is achieved by use of a tube furnace. Fluids released during the heating step are trapped in a coiled stainless steel cold trap (~ -98°C) serving as the sample loop in a 6-way switching valve. Trapped fluids are subsequently injected into a high-temperature conversion elemental analyzer by switching the valve and rapidly thawing the trap. This approach yielded accurate and precise measurements of injected liquid water IAEA reference materials (GISP; SMOW2; SLAP2) for both hydrogen and oxygen isotopic compositions. Blanking tests performed on the extraction line demonstrate extremely low line-blank peak heights (<50mv). Our tests also demonstrate that complete recovery of liquid water is possible and that a minimum quantity of ~100nL water was required. In contrast to liquid water analyses, carbonate inclusion waters gave highly variable results. As plenty of signal was produced from relatively small sample sizes (~20 mg), the observed isotopic variation most likely reflects fractionation during fluid extraction, or natural isotopic variability. Additional tests and modifications to the extraction procedure are in progress, using a recently collected New Zealand stalagmite from a West Coast cave (DOC collection permit WC-27462-GEO). U-Th age data will accompany a paleoclimate record from this stalagmite obtained using standard carbonate analytical techniques, and compared to the results from our new fluid inclusion analyses.
ERIC Educational Resources Information Center
Chase, D. L.; And Others
Total mercury in ambient air can be collected in iodine monochloride, but the subsequent analysis is relatively complex and tedious, and contamination from reagents and containers is a problem. A sliver wool collector, preceded by a catalytic pyrolysis furnace, gives good recovery of mercury and simplifies the analytical step. An instrumental…
ERIC Educational Resources Information Center
Rouchouse, Marine; Faysse, Nicolas; De Romemont, Aurelle; Moumouni, Ismail; Faure, Guy
2015-01-01
Purpose: Approaches to build farmers' analytical capacities are said to trigger wide-ranging changes. This article reports on the communication process between participants and non-participants in one such approach, related to the technical and management skills learned by participants and the changes these participants subsequently made, and the…
Discreet passive explosive detection through 2-sided wave guided fluorescence
Harper, Ross James; la Grone, Marcus; Fisher, Mark
2012-10-16
The current invention provides a passive sampling device suitable for collecting and detecting the presence of target analytes. In particular, the passive sampling device is suitable for detecting nitro-aromatic compounds. The current invention further provides a passive sampling device reader suitable for determining the collection of target analytes. Additionally, the current invention provides methods for detecting target analytes using the passive sampling device and the passive sampling device reader.
Hanford analytical sample projections FY 1998--FY 2002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joyce, S.M.
1998-02-12
Analytical Services projections are compiled for the Hanford site based on inputs from the major programs for the years 1998 through 2002. Projections are categorized by radiation level, protocol, sample matrix and program. Analyses requirements are also presented. This document summarizes the Hanford sample projections for fiscal years 1998 to 2002. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Waste Remediation Systems (TWRS), Solid Waste, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Site Monitoring, Industrial Hygiene, Analytical Services and miscellaneous Hanford support activities. In addition, details on laboratory scale technology (development) work, Sample Management,more » and Data Management activities are included. This information will be used by Hanford Analytical Services (HAS) and the Sample Management Working Group (SMWG) to assure that laboratories and resources are available and effectively utilized to meet these documented needs.« less
Dynamic response of gold nanoparticle chemiresistors to organic analytes in aqueous solution.
Müller, Karl-Heinz; Chow, Edith; Wieczorek, Lech; Raguse, Burkhard; Cooper, James S; Hubble, Lee J
2011-10-28
We investigate the response dynamics of 1-hexanethiol-functionalized gold nanoparticle chemiresistors exposed to the analyte octane in aqueous solution. The dynamic response is studied as a function of the analyte-water flow velocity, the thickness of the gold nanoparticle film and the analyte concentration. A theoretical model for analyte limited mass-transport is used to model the analyte diffusion into the film, the partitioning of the analyte into the 1-hexanethiol capping layers and the subsequent swelling of the film. The degree of swelling is then used to calculate the increase of the electron tunnel resistance between adjacent nanoparticles which determines the resistance change of the film. In particular, the effect of the nonlinear relationship between resistance and swelling on the dynamic response is investigated at high analyte concentration. Good agreement between experiment and the theoretical model is achieved. This journal is © the Owner Societies 2011
Ottaway, Josh; Farrell, Jeremy A; Kalivas, John H
2013-02-05
An essential part to calibration is establishing the analyte calibration reference samples. These samples must characterize the sample matrix and measurement conditions (chemical, physical, instrumental, and environmental) of any sample to be predicted. Calibration usually requires measuring spectra for numerous reference samples in addition to determining the corresponding analyte reference values. Both tasks are typically time-consuming and costly. This paper reports on a method named pure component Tikhonov regularization (PCTR) that does not require laboratory prepared or determined reference values. Instead, an analyte pure component spectrum is used in conjunction with nonanalyte spectra for calibration. Nonanalyte spectra can be from different sources including pure component interference samples, blanks, and constant analyte samples. The approach is also applicable to calibration maintenance when the analyte pure component spectrum is measured in one set of conditions and nonanalyte spectra are measured in new conditions. The PCTR method balances the trade-offs between calibration model shrinkage and the degree of orthogonality to the nonanalyte content (model direction) in order to obtain accurate predictions. Using visible and near-infrared (NIR) spectral data sets, the PCTR results are comparable to those obtained using ridge regression (RR) with reference calibration sets. The flexibility of PCTR also allows including reference samples if such samples are available.
Lombardi, Giovanni; Sansoni, Veronica; Banfi, Giuseppe
2017-08-01
In the last few years, a growing number of molecules have been associated to an endocrine function of the skeletal muscle. Circulating myokine levels, in turn, have been associated with several pathophysiological conditions including the cardiovascular ones. However, data from different studies are often not completely comparable or even discordant. This would be due, at least in part, to the whole set of situations related to the preparation of the patient prior to blood sampling, blood sampling procedure, processing and/or store. This entire process constitutes the pre-analytical phase. The importance of the pre-analytical phase is often not considered. However, in routine diagnostics, the 70% of the errors are in this phase. Moreover, errors during the pre-analytical phase are carried over in the analytical phase and affects the final output. In research, for example, when samples are collected over a long time and by different laboratories, a standardized procedure for sample collecting and the correct procedure for sample storage are acknowledged. In this review, we discuss the pre-analytical variables potentially affecting the measurement of myokines with cardiovascular functions.
Stability of Drugs of Abuse in Urine Samples at Room Temperature by Use of a Salts Mixture.
Pellegrini, Manuela; Graziano, Silvia; Mastrobattista, Luisa; Minutillo, Adele; Busardo, Francesco Paolo; Scarsella, Gianfranco
2017-01-01
It has long been recognized that ensuring analyte stability is of crucial importance in the use of any quantitative bioanalytical method. As analyses are usually not performed directly after collection of the biological samples, but after these have been processed and stored, it is essential that analyte stability can be maintained at storage conditions to ensure that the obtained concentration results adequately reflect those directly after sampling. The conservation of urine samples in refrigerated/ frozen conditions is strongly recommended; but not always feasible. The aim of this study was to assess the stability of some well-known drugs of abuse methamphetamine (MA), 11-nor-9-carboxy-Δ9- tetrahydrocannabinol (THC-COOH), benzoylecgonine (BE), and morphine (MOR) in urine samples kept at room temperature by adding a salt mixture (sodium citrate, sodium ascorbate, borax). Two different urine samples were prepared with and without salt mixture, stored at room temperature and then analyzed by gas chromatography-mass spectrometry at 0, 1, 7, 15, and 30 days after collection/preparation to look for eventual analyte degradation. Methamphetamine showed no significant changes with respect to the time of collection/ preparation (T0) up to 7 days later (T7), with or without salt mixture addiction. Then a significant degradation occurred in both salted and non salted urine. BE decrease was observed starting from day 1 after sample collection in salted and not salted samples, respectively. Salt addition seemed to reduce at least the initial BE degradation, with a significant difference (p<0.001) at 7 and 15 days of storage. However, the degradation was not more prevented in salted samples at 30 days of storage. A 20% decrease of MOR concentration was observed starting from day 1 after collection/preparation, both in salted and not salted samples with no subsequent decrease. With regard to THCCOOH, a significant decrease was observed starting from 7 days after collection/preparation, with of without adding the salt mixture. However, when comparing salted versus non salted samples at each time point, a statistically significant difference was observed at 7 and 30 days of storage. The results obtained indicate that the degradation of MA, THC-COOH and BE in urine samples kept at room temperature can be slowed by the addition of the salt mixture, whereas it seems to be ineffective in samples containing MOR. This evidence has to be taken into account, in the eventuality of using salted urine to prevent in a certain extent abuse of above-reported drugs of abuse. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Maloney, T.J.; Ludtke, A.S.; Krizman, T.L.
1994-01-01
The US. Geological Survey operates a quality- assurance program based on the analyses of reference samples for the National Water Quality Laboratory in Arvada, Colorado, and the Quality of Water Service Unit in Ocala, Florida. Reference samples containing selected inorganic, nutrient, and low ionic-strength constituents are prepared and disguised as routine samples. The program goal is to determine precision and bias for as many analytical methods offered by the participating laboratories as possible. The samples typically are submitted at a rate of approximately 5 percent of the annual environmental sample load for each constituent. The samples are distributed to the laboratories throughout the year. Analytical data for these reference samples reflect the quality of environmental sample data produced by the laboratories because the samples are processed in the same manner for all steps from sample login through data release. The results are stored permanently in the National Water Data Storage and Retrieval System. During water year 1991, 86 analytical procedures were evaluated at the National Water Quality Laboratory and 37 analytical procedures were evaluated at the Quality of Water Service Unit. An overall evaluation of the inorganic (major ion and trace metal) constituent data for water year 1991 indicated analytical imprecision in the National Water Quality Laboratory for 5 of 67 analytical procedures: aluminum (whole-water recoverable, atomic emission spectrometric, direct-current plasma); calcium (atomic emission spectrometric, direct); fluoride (ion-exchange chromatographic); iron (whole-water recoverable, atomic absorption spectrometric, direct); and sulfate (ion-exchange chromatographic). The results for 11 of 67 analytical procedures had positive or negative bias during water year 1991. Analytical imprecision was indicated in the determination of two of the five National Water Quality Laboratory nutrient constituents: orthophosphate as phosphorus and phosphorus. A negative or positive bias condition was indicated in three of five nutrient constituents. There was acceptable precision and no indication of bias for the 14 low ionic-strength analytical procedures tested in the National Water Quality Laboratory program and for the 32 inorganic and 5 nutrient analytical procedures tested in the Quality of Water Service Unit during water year 1991.
Breit, George N.; Tuttle, Michele L.W.; Cozzarelli, Isabelle M.; Berry, Cyrus J.; Christenson, Scott C.; Jaeschke, Jeanne B.
2008-01-01
Analytical results on sediment and associated ground water from the Canadian River alluvium collected subsequent to those described in Breit and others (2005) are presented in this report. The data presented herein were collected primarily to evaluate the iron and sulfur species within the sediment at well sites IC 36, IC 54, and IC South located at the USGS Norman Landfill study site. Cored sediment and water samples were collected during October 2004 and April 2005. The 52 sediment samples collected by coring were analyzed to determine grain size, the abundance of extractable iron species, and the abundance of sulfur forms and their isotopic compositions. Ground water was collected from cluster wells that sampled ground water from 11 to 15 screened intervals at each of the three sites. The depth range of the wells overlapped the interval of cored sediment. Concentrations of major ions, dissolved organic carbon (DOC), ammonium, and iron are reported with pH, specific conductance, and the isotopic composition of the water for the 75 water samples analyzed. Dissolved sulfate in selected water samples was analyzed to determine its sulfur and oxygen isotope composition.
Deng, Fenfang; Yu, Hong; Pan, Xinhong; Hu, Guoyuan; Wang, Qiqin; Peng, Rongfei; Tan, Lei; Yang, Zhicong
2018-02-23
This paper demonstrated the development and validation of an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous determination of five glycopeptide antibiotics in food and biological samples. The target glycopeptide antibiotics were isolated from the samples by solvent extraction, and the extracts were cleaned with a tandem solid-phase extraction step using mixed strong cation exchange and hydrophilic/lipophilic balance cartridges. Subsequently, the analytes were eluted with different solvents, and then quantified by UHPLC-MS/MS in the positive ionization mode with multiple reaction monitoring. Under optimal conditions, good linear correlations were obtained for the five glycopeptide antibiotics in the concentration range of 1.0 μg/L to 20.0 μg/L, and with linear correlation coefficients >0.998. Employing this method, the target glycopeptide antibiotics in food and biological samples were identified with a recovery of 83.0-102%, and a low quantitation limit of 1.0 μg/kg in food and 2.0 μg/L in biological samples with low matrix effects. Copyright © 2018 Elsevier B.V. All rights reserved.
Dib, Josef; Mongongu, Cynthia; Buisson, Corinne; Molina, Adeline; Schänzer, Wilhelm; Thuss, Uwe; Thevis, Mario
2017-01-01
The development of new therapeutics potentially exhibiting performance-enhancing properties implicates the risk of their misuse by athletes in amateur and elite sports. Such drugs necessitate preventive anti-doping research for consideration in sports drug testing programmes. Hypoxia-inducible factor (HIF) stabilizers represent an emerging class of therapeutics that allows for increasing erythropoiesis in patients. BAY 85-3934 is a novel HIF stabilizer, which is currently undergoing phase-2 clinical trials. Consequently, the comprehensive characterization of BAY 85-3934 and human urinary metabolites as well as the implementation of these analytes into routine doping controls is of great importance. The mass spectrometric behaviour of the HIF stabilizer drug candidate BAY 85-3934 and a glucuronidated metabolite (BAY-348) were characterized by electrospray ionization-(tandem) mass spectrometry (ESI-MS(/MS)) and multiple-stage mass spectrometry (MS n ). Subsequently, two different laboratories established different analytical approaches (one each) enabling urine sample analyses by employing either direct urine injection or solid-phase extraction. The methods were cross-validated for the metabolite BAY-348 that is expected to represent an appropriate target analyte for human urine analysis. Two test methods allowing for the detection of BAY-348 in human urine were applied and cross-validated concerning the validation parameters specificity, linearity, lower limit of detection (LLOD; 1-5 ng/mL), ion suppression/enhancement (up to 78%), intra- and inter-day precision (3-21%), recovery (29-48%), and carryover. By means of ten spiked test urine samples sent blinded to one of the participating laboratories, the fitness-for-purpose of both assays was provided as all specimens were correctly identified applying both testing methods. As no post-administration study samples were available, analyses of authentic urine specimens remain desirable. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Analytical techniques for steroid estrogens in water samples - A review.
Fang, Ting Yien; Praveena, Sarva Mangala; deBurbure, Claire; Aris, Ahmad Zaharin; Ismail, Sharifah Norkhadijah Syed; Rasdi, Irniza
2016-12-01
In recent years, environmental concerns over ultra-trace levels of steroid estrogens concentrations in water samples have increased because of their adverse effects on human and animal life. Special attention to the analytical techniques used to quantify steroid estrogens in water samples is therefore increasingly important. The objective of this review was to present an overview of both instrumental and non-instrumental analytical techniques available for the determination of steroid estrogens in water samples, evidencing their respective potential advantages and limitations using the Need, Approach, Benefit, and Competition (NABC) approach. The analytical techniques highlighted in this review were instrumental and non-instrumental analytical techniques namely gas chromatography mass spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS), enzyme-linked immuno sorbent assay (ELISA), radio immuno assay (RIA), yeast estrogen screen (YES) assay, and human breast cancer cell line proliferation (E-screen) assay. The complexity of water samples and their low estrogenic concentrations necessitates the use of highly sensitive instrumental analytical techniques (GC-MS and LC-MS) and non-instrumental analytical techniques (ELISA, RIA, YES assay and E-screen assay) to quantify steroid estrogens. Both instrumental and non-instrumental analytical techniques have their own advantages and limitations. However, the non-instrumental ELISA analytical techniques, thanks to its lower detection limit and simplicity, its rapidity and cost-effectiveness, currently appears to be the most reliable for determining steroid estrogens in water samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ozay, Guner; Seyhan, Ferda; Yilmaz, Aysun; Whitaker, Thomas B; Slate, Andrew B; Giesbrecht, Francis
2006-01-01
The variability associated with the aflatoxin test procedure used to estimate aflatoxin levels in bulk shipments of hazelnuts was investigated. Sixteen 10 kg samples of shelled hazelnuts were taken from each of 20 lots that were suspected of aflatoxin contamination. The total variance associated with testing shelled hazelnuts was estimated and partitioned into sampling, sample preparation, and analytical variance components. Each variance component increased as aflatoxin concentration (either B1 or total) increased. With the use of regression analysis, mathematical expressions were developed to model the relationship between aflatoxin concentration and the total, sampling, sample preparation, and analytical variances. The expressions for these relationships were used to estimate the variance for any sample size, subsample size, and number of analyses for a specific aflatoxin concentration. The sampling, sample preparation, and analytical variances associated with estimating aflatoxin in a hazelnut lot at a total aflatoxin level of 10 ng/g and using a 10 kg sample, a 50 g subsample, dry comminution with a Robot Coupe mill, and a high-performance liquid chromatographic analytical method are 174.40, 0.74, and 0.27, respectively. The sampling, sample preparation, and analytical steps of the aflatoxin test procedure accounted for 99.4, 0.4, and 0.2% of the total variability, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, B.L.; Pool, K.H.; Evans, J.C.
1997-01-01
This report describes the analytical results of vapor samples taken from the headspace of waste storage tank 241-BY-108 (Tank BY-108) at the Hanford Site in Washington State. The results described in this report is the second in a series comparing vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling (ISVS) system without high efficiency particulate air (HEPA) prefiltration. The results include air concentrations of water (H{sub 2}O) and ammonia (NH{sub 3}), permanent gases, total non-methane organic compounds (TO-12), and individual organic analytes collected in SUMMA{trademark} canisters and on triple sorbent traps (TSTs).more » Samples were collected by Westinghouse Hanford Company (WHC) and analyzed by Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volume measurements provided by WHC.« less
NHEXAS PHASE I REGION 5 STUDY--QA ANALYTICAL RESULTS FOR METALS IN SPIKES
This data set includes analytical results for measurements of metals in 49 field control samples (spikes). Measurements were made for up to 11 metals in samples of water, blood, and urine. Field controls were used to assess recovery of target analytes from a sample media during s...
Irregular analytical errors in diagnostic testing - a novel concept.
Vogeser, Michael; Seger, Christoph
2018-02-23
In laboratory medicine, routine periodic analyses for internal and external quality control measurements interpreted by statistical methods are mandatory for batch clearance. Data analysis of these process-oriented measurements allows for insight into random analytical variation and systematic calibration bias over time. However, in such a setting, any individual sample is not under individual quality control. The quality control measurements act only at the batch level. Quantitative or qualitative data derived for many effects and interferences associated with an individual diagnostic sample can compromise any analyte. It is obvious that a process for a quality-control-sample-based approach of quality assurance is not sensitive to such errors. To address the potential causes and nature of such analytical interference in individual samples more systematically, we suggest the introduction of a new term called the irregular (individual) analytical error. Practically, this term can be applied in any analytical assay that is traceable to a reference measurement system. For an individual sample an irregular analytical error is defined as an inaccuracy (which is the deviation from a reference measurement procedure result) of a test result that is so high it cannot be explained by measurement uncertainty of the utilized routine assay operating within the accepted limitations of the associated process quality control measurements. The deviation can be defined as the linear combination of the process measurement uncertainty and the method bias for the reference measurement system. Such errors should be coined irregular analytical errors of the individual sample. The measurement result is compromised either by an irregular effect associated with the individual composition (matrix) of the sample or an individual single sample associated processing error in the analytical process. Currently, the availability of reference measurement procedures is still highly limited, but LC-isotope-dilution mass spectrometry methods are increasingly used for pre-market validation of routine diagnostic assays (these tests also involve substantial sets of clinical validation samples). Based on this definition/terminology, we list recognized causes of irregular analytical error as a risk catalog for clinical chemistry in this article. These issues include reproducible individual analytical errors (e.g. caused by anti-reagent antibodies) and non-reproducible, sporadic errors (e.g. errors due to incorrect pipetting volume due to air bubbles in a sample), which can both lead to inaccurate results and risks for patients.
Tan, Joel Ming Rui; Ruan, Justina Jiexin; Lee, Hiang Kwee; Phang, In Yee; Ling, Xing Yi
2014-12-28
An analytical platform with an ultratrace detection limit in the atto-molar (aM) concentration range is vital for forensic, industrial and environmental sectors that handle scarce/highly toxic samples. Superhydrophobic surface-enhanced Raman scattering (SERS) platforms serve as ideal platforms to enhance detection sensitivity by reducing the random spreading of aqueous solution. However, the fabrication of superhydrophobic SERS platforms is generally limited due to the use of sophisticated and expensive protocols and/or suffers structural and signal inconsistency. Herein, we demonstrate a high-throughput fabrication of a stable and uniform superhydrophobic SERS platform for ultratrace molecular sensing. Large-area box-like micropatterns of the polymeric surface are first fabricated using capillary force lithography (CFL). Subsequently, plasmonic properties are incorporated into the patterned surfaces by decorating with Ag nanocubes using the Langmuir-Schaefer technique. To create a stable superhydrophobic SERS platform, an additional 25 nm Ag film is coated over the Ag nanocube-decorated patterned template followed by chemical functionalization with perfluorodecanethiol. Our resulting superhydrophobic SERS platform demonstrates excellent water-repellency with a static contact angle of 165° ± 9° and a consequent analyte concentration factor of 59-fold, as compared to its hydrophilic counterpart. By combining the analyte concentration effect of superhydrophobic surfaces with the intense electromagnetic "hot spots" of Ag nanocubes, our superhydrophobic SERS platform achieves an ultra-low detection limit of 10(-17) M (10 aM) for rhodamine 6G using just 4 μL of analyte solutions, corresponding to an analytical SERS enhancement factor of 10(13). Our fabrication protocol demonstrates a simple, cost- and time-effective approach for the large-scale fabrication of a superhydrophobic SERS platform for ultratrace molecular detection.
Considerations in detecting CDC select agents under field conditions
NASA Astrophysics Data System (ADS)
Spinelli, Charles; Soelberg, Scott; Swanson, Nathaneal; Furlong, Clement; Baker, Paul
2008-04-01
Surface Plasmon Resonance (SPR) has become a widely accepted technique for real-time detection of interactions between receptor molecules and ligands. Antibody may serve as receptor and can be attached to the gold surface of the SPR device, while candidate analyte fluids contact the detecting antibody. Minute, but detectable, changes in refractive indices (RI) indicate that analyte has bound to the antibody. A decade ago, an inexpensive, robust, miniature and fully integrated SPR chip, called SPREETA, was developed. University of Washington (UW) researchers subsequently developed a portable, temperature-regulated instrument, called SPIRIT, to simultaneously use eight of these three-channel SPREETA chips. A SPIRIT prototype instrument was tested in the field, coupled to a remote reporting system on a surrogate unmanned aerial vehicle (UAV). Two target protein analytes were released sequentially as aerosols with low analyte concentration during each of three flights and were successfully detected and verified. Laboratory experimentation with a more advanced SPIRIT instrument demonstrated detection of very low levels of several select biological agents that might be employed by bioterrorists. Agent detection under field-like conditions is more challenging, especially as analyte concentrations are reduced and complex matricies are introduced. Two different sample preconditioning protocols have been developed for select agents in complex matrices. Use of these preconditioning techniques has allowed laboratory detection in spiked heavy mud of Francisella tularensis at 10 3 CFU/ml, Bacillus anthracis spores at 10 3 CFU/ml, Staphylococcal enterotoxin B (SEB) at 1 ng/ml, and Vaccinia virus (a smallpox simulant) at 10 5 PFU/ml. Ongoing experiments are aimed at simultaneous detection of multiple agents in spiked heavy mud, using a multiplex preconditioning protocol.
Cooper, Jason D.; Tomasik, Jakub; Bahn, Sabine; Aerts, Joeri L.; Osterhaus, Albert D. M. E.; Gruters, Rob A.; Andeweg, Arno C.
2018-01-01
Objectives To characterize the host response to dendritic cell-based immunotherapy and subsequent combined antiretroviral therapy (cART) interruption in HIV-1-infected individuals at the plasma protein level. Design An autologous dendritic cell (DC) therapeutic vaccine was administered to HIV-infected individuals, stable on cART. The effect of vaccination was evaluated at the plasma protein level during the period preceding cART interruption, during analytical therapy interruption and at viral reactivation. Healthy controls and post-exposure prophylactically treated healthy individuals were included as controls. Methods Plasma marker (‘analyte’) levels including cytokines, chemokines, growth factors, and hormones were measured in trial participants and control plasma samples using a multiplex immunoassay. Analyte levels were analysed using principle component analysis, cluster analysis and limma. Blood neutrophil counts were analysed using linear regression. Results Plasma analyte levels of HIV-infected individuals are markedly different from those of healthy controls and HIV-negative individuals receiving post-exposure prophylaxis. Viral reactivation following cART interruption also affects multiple analytes, but cART interruption itself only has only a minor effect. We find that Thyroxine-Binding Globulin (TBG) levels and late-stage neutrophil numbers correlate with the time off cART after DC vaccination. Furthermore, analysis shows that cART alters several regulators of blood glucose levels, including C-peptide, chromogranin-A and leptin. HIV reactivation is associated with the upregulation of CXCR3 ligands. Conclusions Chronic HIV infection leads to a change in multiple plasma analyte levels, as does virus reactivation after cART interruption. Furthermore, we find evidence for the involvement of TBG and neutrophils in the response to DC-vaccination in the setting of HIV-infection. PMID:29389978
Effects of freezer storage time on levels of complement biomarkers.
Morgan, Angharad R; O'Hagan, Caroline; Touchard, Samuel; Lovestone, Simon; Morgan, B Paul
2017-11-06
There is uncertainty regarding how stable complement analytes are during long-term storage at - 80 °C. As part of our work program we have measured 17 complement biomarkers (C1q, C1 inhibitor, C3, C3a, iC3b, C4, C5, C9, FB, FD, FH, FI, TCC, Bb, sCR1, sCR2, Clusterin) and the benchmark inflammatory marker C-reactive protein (CRP) in a large set of plasma samples (n = 720) that had been collected, processed and subsequently stored at - 80 °C over a period of 6.6-10.6 years, prior to laboratory analysis. The biomarkers were measured using solid-phase enzyme immunoassays with a combination of multiplex assays using the MesoScale Discovery Platform and single-plex enzyme-linked immunosorbent assays (ELISAs). As part of a post hoc analysis of extrinsic factors (co-variables) affecting the analyses we investigated the impact of freezer storage time on the values obtained for each complement analyte. With the exception of five analytes (C4, C9, sCR2, clusterin and CRP), storage time was significantly correlated with measured plasma concentrations. For ten analytes: C3, FI, FB, FD, C5, sCR1, C3a, iC3b, Bb and TCC, storage time was positively correlated with concentration and for three analytes: FH, C1q, and C1 inhibitor, storage time was negatively correlated with concentration. The results suggest that information on storage time should be regarded as an important co-variable and taken into consideration when analysing data to look for associations of complement biomarker levels and disease or other outcomes.
Butts, Marcus M; Casper, Wendy J; Yang, Tae Seok
2013-01-01
This meta-analysis examines relationships between work-family support policies, which are policies that provide support for dependent care responsibilities, and employee outcomes by developing a conceptual model detailing the psychological mechanisms through which policy availability and use relate to work attitudes. Bivariate results indicated that availability and use of work-family support policies had modest positive relationships with job satisfaction, affective commitment, and intentions to stay. Further, tests of differences in effect sizes showed that policy availability was more strongly related to job satisfaction, affective commitment, and intentions to stay than was policy use. Subsequent meta-analytic structural equation modeling results indicated that policy availability and use had modest effects on work attitudes, which were partially mediated by family-supportive organization perceptions and work-to-family conflict, respectively. Additionally, number of policies and sample characteristics (percent women, percent married-cohabiting, percent with dependents) moderated the effects of policy availability and use on outcomes. Implications of these findings and directions for future research on work-family support policies are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lattin, F.G.; Paul, D.G.; Jakubowski, E.M.
1994-12-31
The Real Time Analytical Platform (RTAP) is designed to provide mobile, real-time monitoring support to ensure protection of worker safety in areas where military unique compounds are used and stored, and at disposal sites. Quantitative analysis of low-level vapor concentrations in air is accomplished through sorbent-based collection with subsequent thermal desorption into a gas chromatograph (GC) equipped with a variety of detectors. The monitoring system is characterized by its sensitivity (ability to measure at low concentrations), selectivity (ability to filter out interferences), dynamic range and linearity, real time mode (versus methods requiring extensive sample preparation procedures), and ability to interfacemore » with complimentary GC detectors. This presentation describes an RTAP analytical method for analyzing lewisite, an arsenical compound, that consists of a GC screening technique with an Electron Capture Detector (ECD), and a confirmation technique using an Atomic Emission Detector (AED). Included in the presentation is a description of quality assurance objectives in the monitoring system, and an assessment of method accuracy, precision and detection levels.« less
Takegawa, Yasuhiro; Araki, Kayo; Fujitani, Naoki; Furukawa, Jun-ichi; Sugiyama, Hiroaki; Sakai, Hideaki; Shinohara, Yasuro
2011-12-15
Glycosaminoglycans (GAGs) play important roles in cell adhesion and growth, maintenance of extracellular matrix (ECM) integrity, and signal transduction. To fully understand the biological functions of GAGs, there is a growing need for sensitive, rapid, and quantitative analysis of GAGs. The present work describes a novel analytical technique that enables high throughput cellular/tissue glycosaminoglycomics for all three families of uronic acid-containing GAGs, hyaluronan (HA), chondroitin sulfate (CS)/dermatan sulfate (DS), and heparan sulfate (HS). A one-pot purification and labeling procedure for GAG Δ-disaccharides was established by chemo-selective ligation of disaccharides onto high density hydrazide beads (glycoblotting) and subsequent labeling by fluorescence. The 17 most common disaccharides (eight comprising HS, eight CS/DS, and one comprising HA) could be separated with a single chromatography for the first time by employing a zwitter-ionic type of hydrophilic-interaction chromatography column. These novel analytical techniques were able to precisely characterize the glycosaminoglycome in various cell types including embryonal carcinoma cells and ocular epithelial tissues (cornea, conjunctiva, and limbus).
Naing, Nyi Nyi; Li, Sam Fong Yau; Lee, Hian Kee
2015-12-24
A fast and low-cost sample preparation method of graphene based dispersive solid-phase extraction combined with gas chromatography-mass spectrometric (GC-MS) analysis, was developed. The procedure involves an initial extraction with water-immiscible organic solvent, followed by a rapid clean-up using amine functionalized reduced graphene oxide as sorbent. Simple and fast one-step in situ derivatization using trimethylphenylammonium hydroxide was subsequently applied on acidic pharmaceuticals serving as model analytes, ibuprofen, gemfibrozil, naproxen, ketoprofen and diclofenac, before GC-MS analysis. Extraction parameters affecting the derivatization and extraction efficiency such as volume of derivatization agent, effect of desorption solvent, effect of pH and effect of ionic strength were investigated. Under the optimum conditions, the method demonstrated good limits of detection ranging from 1 to 16ngL(-1), linearity (from 0.01 to 50 and 0.05 to 50μgL(-1), depending on the analytes) and satisfactory repeatability of extractions (relative standard deviations, below 13%, n=3). Copyright © 2015 Elsevier B.V. All rights reserved.
Chylewska, Agnieszka; Ogryzek, M; Makowski, Mariusz
2017-10-23
New analytical and molecular methods for microorganisms are being developed on various features of identification i.e. selectivity, specificity, sensitivity, rapidity and discrimination of the viable cell. The presented review was established following the current trends in improved pathogens separation and detection methods and their subsequent use in medical diagnosis. This contribution also focuses on the development of analytical and biological methods in the analysis of microorganisms, with special attention paid to bio-samples containing microbes (blood, urine, lymph, wastewater). First, the paper discusses microbes characterization, their structure, surface, properties, size and then it describes pivotal points in the bacteria, viruses and fungi separation procedure obtained by researchers in the last 30 years. According to the above, detection techniques can be classified into three categories, which were, in our opinion, examined and modified most intensively during this period: electrophoretic, nucleic-acid-based, and immunological methods. The review covers also the progress, limitations and challenges of these approaches and emphasizes the advantages of new separative techniques in selective fractionating of microorganisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Assessing Suicide Risk Among Callers to Crisis Hotlines: A Confirmatory Factor Analysis
Witte, Tracy K.; Gould, Madelyn S.; Munfakh, Jimmie Lou Harris; Kleinman, Marjorie; Joiner, Thomas E.; Kalafat, John
2012-01-01
Our goal was to investigate the factor structure of a risk assessment tool utilized by suicide hotlines and to determine the predictive validity of the obtained factors in predicting subsequent suicidal behavior. 1,085 suicidal callers to crisis hotlines were divided into three sub-samples, which allowed us to conduct an independent Exploratory Factor Analysis (EFA), EFA in a Confirmatory Factor Analysis (EFA/CFA) framework, and CFA. Similar to previous factor analytic studies (Beck et al., 1997; Holden & DeLisle, 2005; Joiner, Rudd, & Rajab, 1997; Witte et al., 2006), we found consistent evidence for a two-factor solution, with one factor representing a more pernicious form of suicide risk (i.e., Resolved Plans and Preparations) and one factor representing more mild suicidal ideation (i.e., Suicidal Desire and Ideation). Using structural equation modeling techniques, we found preliminary evidence that the Resolved Plans and Preparations factor trended toward being more predictive of suicidal ideation than the Suicidal Desire and Ideation factor. This factor analytic study is the first longitudinal study of the obtained factors. PMID:20578186
A sample preparation method for recovering suppressed analyte ions in MALDI TOF MS.
Lou, Xianwen; de Waal, Bas F M; Milroy, Lech-Gustav; van Dongen, Joost L J
2015-05-01
In matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS), analyte signals can be substantially suppressed by other compounds in the sample. In this technical note, we describe a modified thin-layer sample preparation method that significantly reduces the analyte suppression effect (ASE). In our method, analytes are deposited on top of the surface of matrix preloaded on the MALDI plate. To prevent embedding of analyte into the matrix crystals, the sample solution were prepared without matrix and efforts were taken not to re-dissolve the preloaded matrix. The results with model mixtures of peptides, synthetic polymers and lipids show that detection of analyte ions, which were completely suppressed using the conventional dried-droplet method, could be effectively recovered by using our method. Our findings suggest that the incorporation of analytes in the matrix crystals has an important contributory effect on ASE. By reducing ASE, our method should be useful for the direct MALDI MS analysis of multicomponent mixtures. Copyright © 2015 John Wiley & Sons, Ltd.
Farrar, Jerry W.; Chleboun, Kimberly M.
1999-01-01
This report presents the results of the U.S. Geological Survey's analytical evaluation program for 8 standard reference samples -- T-157 (trace constituents), M-150 (major constituents), N-61 (nutrient constituents), N-62 (nutrient constituents), P-32 (low ionic strength constituents), GWT-5 (ground-water trace constituents), GWM- 4 (ground-water major constituents),and Hg-28 (mercury) -- that were distributed in March 1999 to 120 laboratories enrolled in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 111 of the laboratories were evaluated with respect to overall laboratory performance and relative laboratory performance for each analyte in the seven reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the 8 standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.
Xu, Fei; Liu, Feng; Wang, Chaozhan; Wei, Yinmao
2018-02-01
In this study, the strategy of unique adsorbent combined with isotope labeled internal standards was used to significantly reduce the matrix effect for the enrichment and analysis of nine fluoroquinolones in a complex sample by liquid chromatography coupled to quadrupole linear ion trap mass spectrometry (LC-QqQ LIT -MS/MS). The adsorbent was prepared conveniently by functionalizing Fe 3 O 4 @SiO 2 microspheres with phenyl and tetrazolyl groups, which could adsorb fluoroquinolones selectively via hydrophobic, electrostatic, and π-π interactions. The established magnetic solid-phase extraction (MSPE) method as well as using stable isotope labeled internal standards in the next MS/MS detection was able to reduce the matrix effect significantly. In the process of LC-QqQ LIT -MS/MS analysis, the precursor and product ions of the analytes were monitored quantitatively and qualitatively on a QTrap system equipped simultaneously with the multiple reaction monitoring (MRM) and enhanced product ion (EPI) scan. Subsequently, the enrichment method combined with LC-QqQ LIT -MS/MS demonstrated good analytical features in terms of linearity (7.5-100.0 ng mL -1 , r > 0.9960), satisfactory recoveries (88.6%-118.3%) with RSDs < 12.0%, LODs = 0.5 μg kg -1 and LOQs = 1.5 μg kg -1 for all tested analytes. Finally, the developed MSPE-LC-QqQ LIT -MS/MS method had been successfully applied to real pork samples for food-safety risk monitoring in Ningxia Province, China. Graphical abstract Mechanism of reducing matrix effect through the as-prepared adsorbent.
Wei, Binnian; McGuffey, James E; Blount, Benjamin C; Wang, Lanqing
2016-01-01
Maternal exposure to marijuana during the lactation period-either active or passive-has prompted concerns about transmission of cannabinoids to breastfed infants and possible subsequent adverse health consequences. Assessing these health risks requires a sensitive analytical approach that is able to quantitatively measure trace-level cannabinoids in breast milk. Here, we describe a saponification-solid phase extraction approach combined with ultra-high-pressure liquid chromatography-tandem mass spectrometry for simultaneously quantifying Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol (CBN) in breast milk. We demonstrate for the first time that constraints on sensitivity can be overcome by utilizing alkaline saponification of the milk samples. After extensively optimizing the saponification procedure, the validated method exhibited limits of detections of 13, 4, and 66 pg/mL for THC, CBN, and CBD, respectively. Notably, the sensitivity achieved was significantly improved, for instance, the limits of detection for THC is at least 100-fold more sensitive compared to that previously reported in the literature. This is essential for monitoring cannabinoids in breast milk resulting from passive or nonrecent active maternal exposure. Furthermore, we simultaneously acquired multiple reaction monitoring transitions for 12 C- and 13 C-analyte isotopes. This combined analysis largely facilitated data acquisition by reducing the repetitive analysis rate for samples exceeding the linear limits of 12 C-analytes. In addition to high sensitivity and broad quantitation range, this method delivers excellent accuracy (relative error within ±10%), precision (relative standard deviation <10%), and efficient analysis. In future studies, we expect this method to play a critical role in assessing infant exposure to cannabinoids through breastfeeding.
Detection of small interfering RNA (siRNA) by mass spectrometry procedures in doping controls.
Thomas, Andreas; Walpurgis, Katja; Delahaut, Philippe; Kohler, Maxie; Schänzer, Wilhelm; Thevis, Mario
2013-01-01
Uncovering manipulation of athletic performance via small interfering (si)RNA is an emerging field in sports drug testing. Due to the potential to principally knock down every target gene in the organism by means of the RNA interference pathway, this facet of gene doping has become a realistic scenario. In the present study, two distinct model siRNAs comprising 21 nucleotides were designed as double strands which were perfect counterparts to a sequence of the respective messenger RNA coding the muscle regulator myostatin of Rattus norvegicus. Several modified nucleotides were introduced in both the sense and the antisense strand comprising phosphothioates, 2'-O-methylation, 2'-fluoro-nucleotides, locked nucleic acids and a cholesterol tag at the 3'-end. The model siRNAs were applied to rats at 1 mg/kg (i.v.) and blood as well as urine samples were collected. After isolation of the RNA by means of a RNA purification kit, the target analytes were detected by liquid chromatography - high resolution/high accuracy mass spectrometry (LC-HRMS). Analytes were detected as modified nucleotides after alkaline hydrolysis, as intact oligonucleotide strands (top-down) and by means of denaturing SDS-PAGE analysis. The gel-separated siRNA was further subjected to in-gel hydrolysis with different RNases and subsequent identification of the fragments by untargeted LC-HRMS analysis (bottom-up, 'experimental RNomics'). Combining the results of all approaches, the identification of several 3'-truncated urinary metabolites was accomplished and target analytes were detected up to 24 h after a single administration. Simultaneously collected blood samples yielded no promising results. The methods were validated and found fit-for-purpose for doping controls. Copyright © 2013 John Wiley & Sons, Ltd.
Amato, Ernesto; Campennì, Alfredo; Leotta, Salvatore; Ruggeri, Rosaria M; Baldari, Sergio
2016-06-01
Radioiodine therapy is an effective and safe treatment of hyperthyroidism due to Graves' disease, toxic adenoma, toxic multinodular goiter. We compared the outcomes of a traditional calculation method based on an analytical fit of the uptake curve and subsequent dose calculation with the MIRD approach, and an alternative computation approach based on a formulation implemented in a public-access website, searching for the best timing of radioiodine uptake measurements in pre-therapeutic dosimetry. We report about sixty-nine hyperthyroid patients that were treated after performing a pre-therapeutic dosimetry calculated by fitting a six-point uptake curve (3-168h). In order to evaluate the results of the radioiodine treatment, patients were followed up to sixty-four months after treatment (mean 47.4±16.9). Patient dosimetry was then retrospectively recalculated with the two above-mentioned methods. Several time schedules for uptake measurements were considered, with different timings and total number of points. Early time schedules, sampling uptake up to 48h, do not allow to set-up an accurate treatment plan, while schedules including the measurement at one week give significantly better results. The analytical fit procedure applied to the three-point time schedule 3(6)-24-168h gave results significantly more accurate than the website approach exploiting either the same schedule, or the single measurement at 168h. Consequently, the best strategy among the ones considered is to sample the uptake at 3(6)-24-168h, and carry out an analytical fit of the curve, while extra measurements at 48 and 72h lead only marginal improvements in the accuracy of therapeutic activity determination. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Graf, John
2015-01-01
NASA has been developing and testing two different types of oxygen separation systems. One type of oxygen separation system uses pressure swing technology, the other type uses a solid electrolyte electrochemical oxygen separation cell. Both development systems have been subjected to long term testing, and performance testing under a variety of environmental and operational conditions. Testing these two systems revealed that measuring the product purity of oxygen, and determining if an oxygen separation device meets Aviator's Breathing Oxygen (ABO) specifications is a subtle and sometimes difficult analytical chemistry job. Verifying product purity of cryogenically produced oxygen presents a different set of analytical chemistry challenges. This presentation will describe some of the sample acquisition and analytical chemistry challenges presented by verifying oxygen produced by an oxygen separator - and verifying oxygen produced by cryogenic separation processes. The primary contaminant that causes gas samples to fail to meet ABO requirements is water. The maximum amount of water vapor allowed is 7 ppmv. The principal challenge of verifying oxygen produced by an oxygen separator is that it is produced relatively slowly, and at comparatively low temperatures. A short term failure that occurs for just a few minutes in the course of a 1 week run could cause an entire tank to be rejected. Continuous monitoring of oxygen purity and water vapor could identify problems as soon as they occur. Long term oxygen separator tests were instrumented with an oxygen analyzer and with an hygrometer: a GE Moisture Monitor Series 35. This hygrometer uses an aluminum oxide sensor. The user's manual does not report this, but long term exposure to pure oxygen causes the aluminum oxide sensor head to bias dry. Oxygen product that exceeded the 7 ppm specification was improperly accepted, because the sensor had biased. The bias is permanent - exposure to air does not cause the sensor to return to its original response - but the bias can be accounted for by recalibrating the sensor. After this issue was found, continuous measurements of water vapor in the oxygen product were made using an FTIR. The FTIR cell is relatively large, so response time is slow - but moisture measurements were repeatable and accurate. Verifying ABO compliance for oxygen produced by commercial cryogenic processes has a different set of sample acquisition and analytical chemistry challenges. Customers want analytical chemists to conserve as much as possible. Hygrometers are not exposed to hours of continuous flow of oxygen, so they don't bias, but small amounts of contamination in valves can cause a "fail". K bottles are periodically cleaned and recertified - after cleaning residual moisture can cause a "fail". Operators let bottle pressure drop to room pressure, introduce outside air into the bottle, and the subsequent fill will "fail". Outside storage of K-bottles has allowed enough in-leakage, so contents will "fail".
Martínez, Noelia A; Pereira, Sirley V; Bertolino, Franco A; Schneider, Rudolf J; Messina, Germán A; Raba, Julio
2012-04-20
The synthetic estrogen ethinylestradiol (EE2) is an active component of oral contraceptives (OCs), considered as an endocrine disrupting compound (EDC). It is excreted from humans and released via sewage treatment plant effluents into aquatic environments. EDCs are any environmental pollutant chemical that, once incorporated into an organism, affects the hormonal balance of various species including humans. Its presence in the environment is becoming of great importance in water quality. This paper describes the development of an accurate, sensitive and selective method for capture, preconcentration and determination of EE2 present in water samples using: magnetic particles (MPs) as bioaffinity support for the capture and preconcentration of EE2 and a glassy carbon electrode modified with multi-walled carbon nanotubes (MWCNTs/GCE) as detection system. The capture procedure was based on the principle of immunoaffinity, the EE2 being extracted from the sample using the anti-EE2 antibodies (anti-EE2 Ab) which were previously immobilized on MPs. Subsequently the analyte desorption was done employing a sulfuric acid solution and the determination of the EE2 in the pre-concentrated solution was carried out by square wave voltammetry (SWV). This method can be used to determine EE2 in the range of 0.035-70 ng L(-1) with a detection limit (LOD) of 0.01 ng L(-1) and R.S.D.<4.20%. The proposed method has been successfully applied to the determination of EE2 in water samples and it has promising analytical applications for the direct determination of EE2 at trace levels. Copyright © 2012 Elsevier B.V. All rights reserved.
Variability of measurements of sweat sodium using the regional absorbent-patch method.
Dziedzic, Christine E; Ross, Megan L; Slater, Gary J; Burke, Louise M
2014-09-01
There is interest in including recommendations for the replacement of the sodium lost in sweat in individualized hydration plans for athletes. Although the regional absorbent-patch method provides a practical approach to measuring sweat sodium losses in field conditions, there is a need to understand the variability of estimates associated with this technique. Sweat samples were collected from the forearms, chest, scapula, and thigh of 12 cyclists during 2 standardized cycling time trials in the heat and 2 in temperate conditions. Single measure analysis of sodium concentration was conducted immediately by ion-selective electrodes (ISE). A subset of 30 samples was frozen for reanalysis of sodium concentration using ISE, flame photometry (FP), and conductivity (SC). Sweat samples collected in hot conditions produced higher sweat sodium concentrations than those from the temperate environment (P = .0032). A significant difference (P = .0048) in estimates of sweat sodium concentration was evident when calculated from the forearm average (mean ± 95% CL; 64 ± 12 mmol/L) compared with using a 4-site equation (70 ± 12 mmol/L). There was a high correlation between the values produced using different analytical techniques (r2 = .95), but mean values were different between treatments (frozen FP, frozen SC > immediate ISE > frozen ISE; P < .0001). Whole-body sweat sodium concentration estimates differed depending on the number of sites included in the calculation. Environmental testing conditions should be considered in the interpretation of results. The impact of sample freezing and subsequent analytical technique was small but statistically significant. Nevertheless, when undertaken using a standardized protocol, the regional absorbent-patch method appears to be a relatively robust field test.
Brooks, M.H.; Schroder, L.J.; Malo, B.A.
1985-01-01
Four laboratories were evaluated in their analysis of identical natural and simulated precipitation water samples. Interlaboratory comparability was evaluated using analysis of variance coupled with Duncan 's multiple range test, and linear-regression models describing the relations between individual laboratory analytical results for natural precipitation samples. Results of the statistical analyses indicate that certain pairs of laboratories produce different results when analyzing identical samples. Analyte bias for each laboratory was examined using analysis of variance coupled with Duncan 's multiple range test on data produced by the laboratories from the analysis of identical simulated precipitation samples. Bias for a given analyte produced by a single laboratory has been indicated when the laboratory mean for that analyte is shown to be significantly different from the mean for the most-probable analyte concentrations in the simulated precipitation samples. Ion-chromatographic methods for the determination of chloride, nitrate, and sulfate have been compared with the colorimetric methods that were also in use during the study period. Comparisons were made using analysis of variance coupled with Duncan 's multiple range test for means produced by the two methods. Analyte precision for each laboratory has been estimated by calculating a pooled variance for each analyte. Analyte estimated precisions have been compared using F-tests and differences in analyte precisions for laboratory pairs have been reported. (USGS)
Trace level detection of analytes using artificial olfactometry
NASA Technical Reports Server (NTRS)
Lewis, Nathan S. (Inventor); Severin, Erik J. (Inventor); Wong, Bernard (Inventor)
2002-01-01
The present invention provides a device for detecting the presence of an analyte, such as for example, a lightweight device, including: a sample chamber having a fluid inlet port for the influx of the analyte; a fluid concentrator in flow communication with the sample chamber wherein the fluid concentrator has an absorbent material capable of absorbing the analyte and capable of desorbing a concentrated analyte; and an array of sensors in fluid communication with the concentrated analyte to be released from the fluid concentrator.
Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek
2013-12-20
Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees. Copyright © 2013 Elsevier B.V. All rights reserved.
Systems and methods for laser assisted sample transfer to solution for chemical analysis
Van Berkel, Gary J.; Kertesz, Vilmos; Ovchinnikova, Olga S.
2014-06-03
Systems and methods are described for laser ablation of an analyte from a specimen and capturing of the analyte in a dispensed solvent to form a testing solution. A solvent dispensing and extraction system can form a liquid microjunction with the specimen. The solvent dispensing and extraction system can include a surface sampling probe. The laser beam can be directed through the surface sampling probe. The surface sampling probe can also serve as an atomic force microscopy probe. The surface sampling probe can form a seal with the specimen. The testing solution including the analyte can then be analyzed using an analytical instrument or undergo further processing.
Systems and methods for laser assisted sample transfer to solution for chemical analysis
Van Berkel, Gary J.; Kertesz, Vilmos; Ovchinnikova, Olga S.
2015-09-29
Systems and methods are described for laser ablation of an analyte from a specimen and capturing of the analyte in a dispensed solvent to form a testing solution. A solvent dispensing and extraction system can form a liquid microjunction with the specimen. The solvent dispensing and extraction system can include a surface sampling probe. The laser beam can be directed through the surface sampling probe. The surface sampling probe can also serve as an atomic force microscopy probe. The surface sampling probe can form a seal with the specimen. The testing solution including the analyte can then be analyzed using an analytical instrument or undergo further processing.
Systems and methods for laser assisted sample transfer to solution for chemical analysis
Van Berkel, Gary J; Kertesz, Vilmos; Ovchinnikova, Olga S
2013-08-27
Systems and methods are described for laser ablation of an analyte from a specimen and capturing of the analyte in a dispensed solvent to form a testing solution. A solvent dispensing and extraction system can form a liquid microjunction with the specimen. The solvent dispensing and extraction system can include a surface sampling probe. The laser beam can be directed through the surface sampling probe. The surface sampling probe can also serve as an atomic force microscopy probe. The surface sampling probe can form a seal with the specimen. The testing solution including the analyte can then be analyzed using an analytical instrument or undergo further processing.
Lehmann, Sabrina; Kieliba, Tobias; Beike, Justus; Thevis, Mario; Mercer-Chalmers-Bender, Katja
2017-10-01
A detailed description is given of the development and validation of a fully automated in-line solid-phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) method capable of detecting 90 central-stimulating new psychoactive substances (NPS) and 5 conventional amphetamine-type stimulants (amphetamine, 3,4-methylenedioxy-methamphetamine (MDMA), 3,4-methylenedioxy-amphetamine (MDA), 3,4-methylenedioxy-N-ethyl-amphetamine (MDEA), methamphetamine) in serum. The aim was to apply the validated method to forensic samples. The preparation of 150μL of serum was performed by an Instrument Top Sample Preparation (ITSP)-SPE with mixed mode cation exchanger cartridges. The extracts were directly injected into an LC-MS/MS system, using a biphenyl column and gradient elution with 2mM ammonium formate/0.1% formic acid and acetonitrile/0.1% formic acid as mobile phases. The chromatographic run time amounts to 9.3min (including re-equilibration). The total cycle time is 11min, due to the interlacing between sample preparation and analysis. The method was fully validated using 69 NPS and five conventional amphetamine-type stimulants, according to the guidelines of the Society of Toxicological and Forensic Chemistry (GTFCh). The guidelines were fully achieved for 62 analytes (with a limit of detection (LOD) between 0.2 and 4μg/L), whilst full validation was not feasible for the remaining 12 analytes. For the fully validated analytes, the method achieved linearity in the 5μg/L (lower limit of quantification, LLOQ) to 250μg/L range (coefficients of determination>0.99). Recoveries for 69 of these compounds were greater than 50%, with relative standard deviations≤15%. The validated method was then tested for its capability in detecting a further 21 NPS, thus totalling 95 tested substances. An LOD between 0.4 and 1.6μg/L was obtained for these 21 additional qualitatively-measured substances. The method was subsequently successfully applied to 28 specimens from routine forensic case work, of which 7 samples were determined to be positive for NPS consumption. Copyright © 2017 Elsevier B.V. All rights reserved.
Applications of reversible covalent chemistry in analytical sample preparation.
Siegel, David
2012-12-07
Reversible covalent chemistry (RCC) adds another dimension to commonly used sample preparation techniques like solid-phase extraction (SPE), solid-phase microextraction (SPME), molecular imprinted polymers (MIPs) or immuno-affinity cleanup (IAC): chemical selectivity. By selecting analytes according to their covalent reactivity, sample complexity can be reduced significantly, resulting in enhanced analytical performance for low-abundance target analytes. This review gives a comprehensive overview of the applications of RCC in analytical sample preparation. The major reactions covered include reversible boronic ester formation, thiol-disulfide exchange and reversible hydrazone formation, targeting analyte groups like diols (sugars, glycoproteins and glycopeptides, catechols), thiols (cysteinyl-proteins and cysteinyl-peptides) and carbonyls (carbonylated proteins, mycotoxins). Their applications range from low abundance proteomics to reversible protein/peptide labelling to antibody chromatography to quantitative and qualitative food analysis. In discussing the potential of RCC, a special focus is on the conditions and restrictions of the utilized reaction chemistry.
Targeted Analyte Detection by Standard Addition Improves Detection Limits in MALDI Mass Spectrometry
Eshghi, Shadi Toghi; Li, Xingde; Zhang, Hui
2014-01-01
Matrix-assisted laser desorption/ionization has proven an effective tool for fast and accurate determination of many molecules. However, the detector sensitivity and chemical noise compromise the detection of many invaluable low-abundance molecules from biological and clinical samples. To challenge this limitation, we developed a targeted analyte detection (TAD) technique. In TAD, the target analyte is selectively elevated by spiking a known amount of that analyte into the sample, thereby raising its concentration above the noise level, where we take advantage of the improved sensitivity to detect the presence of the endogenous analyte in the sample. We assessed TAD on three peptides in simple and complex background solutions with various exogenous analyte concentrations in two MALDI matrices. TAD successfully improved the limit of detection (LOD) of target analytes when the target peptides were added to the sample in a concentration close to optimum concentration. The optimum exogenous concentration was estimated through a quantitative method to be approximately equal to the original LOD for each target. Also, we showed that TAD could achieve LOD improvements on an average of 3-fold in a simple and 2-fold in a complex sample. TAD provides a straightforward assay to improve the LOD of generic target analytes without the need for costly hardware modifications. PMID:22877355
Toghi Eshghi, Shadi; Li, Xingde; Zhang, Hui
2012-09-18
Matrix-assisted laser desorption/ionization (MALDI) has proven an effective tool for fast and accurate determination of many molecules. However, the detector sensitivity and chemical noise compromise the detection of many invaluable low-abundance molecules from biological and clinical samples. To challenge this limitation, we developed a targeted analyte detection (TAD) technique. In TAD, the target analyte is selectively elevated by spiking a known amount of that analyte into the sample, thereby raising its concentration above the noise level, where we take advantage of the improved sensitivity to detect the presence of the endogenous analyte in the sample. We assessed TAD on three peptides in simple and complex background solutions with various exogenous analyte concentrations in two MALDI matrices. TAD successfully improved the limit of detection (LOD) of target analytes when the target peptides were added to the sample in a concentration close to optimum concentration. The optimum exogenous concentration was estimated through a quantitative method to be approximately equal to the original LOD for each target. Also, we showed that TAD could achieve LOD improvements on an average of 3-fold in a simple and 2-fold in a complex sample. TAD provides a straightforward assay to improve the LOD of generic target analytes without the need for costly hardware modifications.
Performance evaluation soil samples utilizing encapsulation technology
Dahlgran, J.R.
1999-08-17
Performance evaluation soil samples and method of their preparation uses encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration. 1 fig.
Performance evaluation soil samples utilizing encapsulation technology
Dahlgran, James R.
1999-01-01
Performance evaluation soil samples and method of their preparation using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Covered are: analytical laboratory operations (ALO) sample receipt and control, ALO data report/package preparation review and control, single shell tank (PST) project sample tracking system, sample receiving, analytical balances, duties and responsibilities of sample custodian, sample refrigerator temperature monitoring, security, assignment of staff responsibilities, sample storage, data reporting, and general requirements for glassware.
An analytical and experimental evaluation of a Fresnel lens solar concentrator
NASA Technical Reports Server (NTRS)
Hastings, L. J.; Allums, S. A.; Cosby, R. M.
1976-01-01
An analytical and experimental evaluation of line focusing Fresnel lenses with application potential in the 200 to 370 C range was studied. Analytical techniques were formulated to assess the solar transmission and imaging properties of a grooves down lens. Experimentation was based on a 56 cm wide, f/1.0 lens. A Sun tracking heliostat provided a nonmoving solar source. Measured data indicated more spreading at the profile base than analytically predicted, resulting in a peak concentration 18 percent lower than the computed peak of 57. The measured and computed transmittances were 85 and 87 percent, respectively. Preliminary testing with a subsequent lens indicated that modified manufacturing techniques corrected the profile spreading problem and should enable improved analytical experimental correlation.
Sandstrom, Mark W.; Stroppel, Max E.; Foreman, William T.; Schroeder, Michael P.
2001-01-01
A method for the isolation and analysis of 21 parent pesticides and 20 pesticide degradates in natural-water samples is described. Water samples are filtered to remove suspended particulate matter and then are pumped through disposable solid-phase-extraction columns that contain octadecyl-bonded porous silica to extract the analytes. The columns are dried by using nitrogen gas, and adsorbed analytes are eluted with ethyl acetate. Extracted analytes are determined by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring of three characteristic ions. The upper concentration limit is 2 micrograms per liter (?g/L) for most analytes. Single-operator method detection limits in reagent-water samples range from 0.00 1 to 0.057 ?g/L. Validation data also are presented for 14 parent pesticides and 20 degradates that were determined to have greater bias or variability, or shorter holding times than the other compounds. The estimated maximum holding time for analytes in pesticide-grade water before extraction was 4 days. The estimated maximum holding time for analytes after extraction on the dry solid-phase-extraction columns was 7 days. An optional on-site extraction procedure allows for samples to be collected and processed at remote sites where it is difficult to ship samples to the laboratory within the recommended pre-extraction holding time. The method complements existing U.S. Geological Survey Method O-1126-95 (NWQL Schedules 2001 and 2010) by using identical sample preparation and comparable instrument analytical conditions so that sample extracts can be analyzed by either method to expand the range of analytes determined from one water sample.
NHEXAS PHASE I ARIZONA STUDY--QA ANALYTICAL RESULTS FOR PESTICIDE METABOLITES IN BLANK SAMPLES
The Pesticide Metabolites in Blank Samples data set contains the analytical results of measurements of up to 4 pesticide metabolites in 3 blank samples from 3 households. Measurements were made in blank samples of urine. Blank samples were used to assess the potential for sampl...
Asymptotic approximations to posterior distributions via conditional moment equations
Yee, J.L.; Johnson, W.O.; Samaniego, F.J.
2002-01-01
We consider asymptotic approximations to joint posterior distributions in situations where the full conditional distributions referred to in Gibbs sampling are asymptotically normal. Our development focuses on problems where data augmentation facilitates simpler calculations, but results hold more generally. Asymptotic mean vectors are obtained as simultaneous solutions to fixed point equations that arise naturally in the development. Asymptotic covariance matrices flow naturally from the work of Arnold & Press (1989) and involve the conditional asymptotic covariance matrices and first derivative matrices for conditional mean functions. When the fixed point equations admit an analytical solution, explicit formulae are subsequently obtained for the covariance structure of the joint limiting distribution, which may shed light on the use of the given statistical model. Two illustrations are given. ?? 2002 Biometrika Trust.
A novel approach for quantitation of glucosylceramide in human dried blood spot using LC-MS/MS.
Ji, Allena Ji; Wang, Haixing; Ziso-Qejvanaj, Enida; Zheng, Kefei; Chung, Lee Lee; Foley, Timothy; Chuang, Wei-Lien; Richards, Susan; Sung, Crystal
2015-01-01
Glucosylceramide, an efficacy biomarker for Gaucher Type 1 disease, exhibits poor solubility in polar solvents and whole blood which makes it difficult to prepare a homogenous blood standard. We developed a novel method using standard addition approach by spiking a small volume of analyte solution on the surface of prespotted dried blood spot. The whole spots were punched out for subsequent extraction and LC-MS/MS analysis. The assay performance met all validation acceptance criteria. Glucosylceramide concentrations in 50 paired plasma and dry blood spot samples obtained from Gaucher Type 1 patients were tested and the results demonstrated the feasibility of using the DBS method for clinical biomarker monitoring. The new approach greatly improves assay precision and accuracy.
Applications of capillary electrophoresis in characterizing recombinant protein therapeutics.
Zhao, Shuai Sherry; Chen, David D Y
2014-01-01
The use of recombinant protein for therapeutic applications has increased significantly in the last three decades. The heterogeneity of these proteins, often caused by the complex biosynthesis pathways and the subsequent PTMs, poses a challenge for drug characterization to ensure its safety, quality, integrity, and efficacy. CE, with its simple instrumentation, superior separation efficiency, small sample consumption, and short analysis time, is a well-suited analytical tool for therapeutic protein characterization. Different separation modes, including CIEF, SDS-CGE, CZE, and CE-MS, provide complementary information of the proteins. The CE applications for recombinant therapeutic proteins from the year 2000 to June 2013 are reviewed and technical concerns are discussed in this article. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Novel predictive models for metabolic syndrome risk: a "big data" analytic approach.
Steinberg, Gregory B; Church, Bruce W; McCall, Carol J; Scott, Adam B; Kalis, Brian P
2014-06-01
We applied a proprietary "big data" analytic platform--Reverse Engineering and Forward Simulation (REFS)--to dimensions of metabolic syndrome extracted from a large data set compiled from Aetna's databases for 1 large national customer. Our goals were to accurately predict subsequent risk of metabolic syndrome and its various factors on both a population and individual level. The study data set included demographic, medical claim, pharmacy claim, laboratory test, and biometric screening results for 36,944 individuals. The platform reverse-engineered functional models of systems from diverse and large data sources and provided a simulation framework for insight generation. The platform interrogated data sets from the results of 2 Comprehensive Metabolic Syndrome Screenings (CMSSs) as well as complete coverage records; complete data from medical claims, pharmacy claims, and lab results for 2010 and 2011; and responses to health risk assessment questions. The platform predicted subsequent risk of metabolic syndrome, both overall and by risk factor, on population and individual levels, with ROC/AUC varying from 0.80 to 0.88. We demonstrated that improving waist circumference and blood glucose yielded the largest benefits on subsequent risk and medical costs. We also showed that adherence to prescribed medications and, particularly, adherence to routine scheduled outpatient doctor visits, reduced subsequent risk. The platform generated individualized insights using available heterogeneous data within 3 months. The accuracy and short speed to insight with this type of analytic platform allowed Aetna to develop targeted cost-effective care management programs for individuals with or at risk for metabolic syndrome.
Dümichen, Erik; Eisentraut, Paul; Bannick, Claus Gerhard; Barthel, Anne-Kathrin; Senz, Rainer; Braun, Ulrike
2017-05-01
In order to determine the relevance of microplastic particles in various environmental media, comprehensive investigations are needed. However, no analytical method exists for fast identification and quantification. At present, optical spectroscopy methods like IR and RAMAN imaging are used. Due to their time consuming procedures and uncertain extrapolation, reliable monitoring is difficult. For analyzing polymers Py-GC-MS is a standard method. However, due to a limited sample amount of about 0.5 mg it is not suited for analysis of complex sample mixtures like environmental samples. Therefore, we developed a new thermoanalytical method as a first step for identifying microplastics in environmental samples. A sample amount of about 20 mg, which assures the homogeneity of the sample, is subjected to complete thermal decomposition. The specific degradation products of the respective polymer are adsorbed on a solid-phase adsorber and subsequently analyzed by thermal desorption gas chromatography mass spectrometry. For certain identification, the specific degradation products for the respective polymer were selected first. Afterwards real environmental samples from the aquatic (three different rivers) and the terrestrial (bio gas plant) systems were screened for microplastics. Mainly polypropylene (PP), polyethylene (PE) and polystyrene (PS) were identified for the samples from the bio gas plant and PE and PS from the rivers. However, this was only the first step and quantification measurements will follow. Copyright © 2017 Elsevier Ltd. All rights reserved.
Expanded test method for peptides >2 kDa employing immunoaffinity purification and LC-HRMS/MS.
Thomas, Andreas; Walpurgis, Katja; Tretzel, Laura; Brinkkötter, Paul; Fichant, Eric; Delahaut, Philippe; Schänzer, Wilhelm; Thevis, Mario
2015-01-01
Bioactive peptides with an approximate molecular mass of 2-12 kDa are of considerable relevance in sports drug testing. Such peptides have been used to manipulate several potential performance-enhancing processes in the athlete's body and include for example growth hormone releasing hormones (sermorelin, CJC-1293, CJC-1295, tesamorelin), synthetic/animal insulins (lispro, aspart, glulisine, glargine, detemir, degludec, bovine and porcine insulin), synthetic ACTH (synacthen), synthetic IGF-I (longR(3) -IGF-I) and mechano growth factors (human MGF, modified human MGF, 'full-length' MGF). A combined initial test method using one analytical procedure is a desirable tool in doping controls and related disciplines as requests for higher sample throughput with utmost comprehensiveness preferably at reduced costs are constantly issued. An approach modified from an earlier assay proved fit-for-purpose employing pre-concentration of all target analytes by means of ultrafiltration, immunoaffinity purification with coated paramagnetic beads, nano-ultra high performance liquid chromatography (UHPLC) separation, and subsequent detection by means of high resolution tandem mass spectrometry. The method was shown to be applicable to blood and urine samples, which represent the most common doping control specimens. The method was validated considering the parameters specificity, recovery (11-69%), linearity, imprecision (<25%), limit of detection (5-100 pg in urine, 0.1-2 ng in plasma), and ion suppression. The analysis of administration study samples for insulin degludec, detemir, aspart, and synacthen provided the essential data for the proof-of-principle of the method. Copyright © 2015 John Wiley & Sons, Ltd.
Zhao, Xinyan; Dong, Tao
2012-10-16
This study reports a quantitative nucleic acid sequence-based amplification (Q-NASBA) microfluidic platform composed of a membrane-based sampling module, a sample preparation cassette, and a 24-channel Q-NASBA chip for environmental investigations on aquatic microorganisms. This low-cost and highly efficient sampling module, having seamless connection with the subsequent steps of sample preparation and quantitative detection, is designed for the collection of microbial communities from aquatic environments. Eight kinds of commercial membrane filters are relevantly analyzed using Saccharomyces cerevisiae, Escherichia coli, and Staphylococcus aureus as model microorganisms. After the microorganisms are concentrated on the membrane filters, the retentate can be easily conserved in a transport medium (TM) buffer and sent to a remote laboratory. A Q-NASBA-oriented sample preparation cassette is originally designed to extract DNA/RNA molecules directly from the captured cells on the membranes. Sequentially, the extract is analyzed within Q-NASBA chips that are compatible with common microplate readers in laboratories. Particularly, a novel analytical algorithmic method is developed for simple but robust on-chip Q-NASBA assays. The reported multifunctional microfluidic system could detect a few microorganisms quantitatively and simultaneously. Further research should be conducted to simplify and standardize ecological investigations on aquatic environments.
Towards a Mobile Ecogenomic sensor: the Third Generation Environmental Sample Processor (3G-ESP).
NASA Astrophysics Data System (ADS)
Birch, J. M.; Pargett, D.; Jensen, S.; Roman, B.; Preston, C. M.; Ussler, W.; Yamahara, K.; Marin, R., III; Hobson, B.; Zhang, Y.; Ryan, J. P.; Scholin, C. A.
2016-02-01
Researchers are increasingly using one or more autonomous platforms to characterize ocean processes that change in both space and time. Conceptually, studying processes that change quickly both spatially and temporally seems relatively straightforward. One needs to sample in many locations synoptically over time, or follow a coherent water mass and sample it repeatedly. However, implementing either approach presents many challenges. For example, acquiring samples over days to weeks far from shore, without human intervention, requires multiple systems to work together seamlessly, and the level of autonomy, navigation and communications needed to conduct the work exposes the complexity of these requirements. We are addressing these challenges by developing a new generation of robotic systems that are primarily aimed at studies of microbial-mediated processes. As a step towards realizing this new capability, we have taken lessons learned from our second-generation Environmental Sample Processor (2G-ESP), a robotic microbiology "lab-in-a-can" and have re-engineered the system for use on a Tethys-class Long Range AUV (LRAUV). The new instrument is called the third-generation ESP (3G-ESP), and its integration with the LRAUV provides mobility and a persistent presence not seen before in microbial oceanography. The 3G-ESP autonomously filters a water sample and then either preserves that material for eventual return to a laboratory, or processes the sample in real-time for further downstream molecular analytical analyses. The 3G ESP modularizes hardware needed for the collection and preparation of a sample from subsequent molecular analyses by the use of self-contained "cartridges". Cartridges currently come in two forms: one for the preservation of a sample, and the other for onboard homogenization and handoff for downstream processing via one or more analytical devices. The 3G-ESP is designed as a stand-alone instrument, and thus could be deployed on a variety of platforms. This presentation will focus on results from early deployments of the prototype 3G-ESP/LRAUV, the challenges encountered in cartridge design, ESP/LRAUV integration, and operational capabilities that show the potential of mobile, ecogenomic sensors in the ocean sciences.
Galatzer-Levy, I R; Ma, S; Statnikov, A; Yehuda, R; Shalev, A Y
2017-01-01
To date, studies of biological risk factors have revealed inconsistent relationships with subsequent post-traumatic stress disorder (PTSD). The inconsistent signal may reflect the use of data analytic tools that are ill equipped for modeling the complex interactions between biological and environmental factors that underlay post-traumatic psychopathology. Further, using symptom-based diagnostic status as the group outcome overlooks the inherent heterogeneity of PTSD, potentially contributing to failures to replicate. To examine the potential yield of novel analytic tools, we reanalyzed data from a large longitudinal study of individuals identified following trauma in the general emergency room (ER) that failed to find a linear association between cortisol response to traumatic events and subsequent PTSD. First, latent growth mixture modeling empirically identified trajectories of post-traumatic symptoms, which then were used as the study outcome. Next, support vector machines with feature selection identified sets of features with stable predictive accuracy and built robust classifiers of trajectory membership (area under the receiver operator characteristic curve (AUC)=0.82 (95% confidence interval (CI)=0.80–0.85)) that combined clinical, neuroendocrine, psychophysiological and demographic information. Finally, graph induction algorithms revealed a unique path from childhood trauma via lower cortisol during ER admission, to non-remitting PTSD. Traditional general linear modeling methods then confirmed the newly revealed association, thereby delineating a specific target population for early endocrine interventions. Advanced computational approaches offer innovative ways for uncovering clinically significant, non-shared biological signals in heterogeneous samples. PMID:28323285
Galatzer-Levy, I R; Ma, S; Statnikov, A; Yehuda, R; Shalev, A Y
2017-03-21
To date, studies of biological risk factors have revealed inconsistent relationships with subsequent post-traumatic stress disorder (PTSD). The inconsistent signal may reflect the use of data analytic tools that are ill equipped for modeling the complex interactions between biological and environmental factors that underlay post-traumatic psychopathology. Further, using symptom-based diagnostic status as the group outcome overlooks the inherent heterogeneity of PTSD, potentially contributing to failures to replicate. To examine the potential yield of novel analytic tools, we reanalyzed data from a large longitudinal study of individuals identified following trauma in the general emergency room (ER) that failed to find a linear association between cortisol response to traumatic events and subsequent PTSD. First, latent growth mixture modeling empirically identified trajectories of post-traumatic symptoms, which then were used as the study outcome. Next, support vector machines with feature selection identified sets of features with stable predictive accuracy and built robust classifiers of trajectory membership (area under the receiver operator characteristic curve (AUC)=0.82 (95% confidence interval (CI)=0.80-0.85)) that combined clinical, neuroendocrine, psychophysiological and demographic information. Finally, graph induction algorithms revealed a unique path from childhood trauma via lower cortisol during ER admission, to non-remitting PTSD. Traditional general linear modeling methods then confirmed the newly revealed association, thereby delineating a specific target population for early endocrine interventions. Advanced computational approaches offer innovative ways for uncovering clinically significant, non-shared biological signals in heterogeneous samples.
Long, H. Keith; Farrar, Jerry W.
1995-01-01
This report presents the results of the U.S. Geological Survey's analytical evaluation program for 7 standard reference samples--T-131 (trace constituents), T-133 (trace constituents), M-132 (major constituents), N-43 (nutrients), N-44 (nutrients), P-23 (low ionic strength), and Hg-19 (mercury). The samples were distributed in October 1994 to 131 laboratories registered in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 121 of the laboratories were evaluated with respect to: overall laboratory performance and relative laboratory performance for each analyte in the seven reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the seven standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.
Carrillo-Carrión, Carolina; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel
2007-11-09
BTEX-S compounds are widely distributed in the environment and can be present in different foodstuffs, including olive oil. Taking into account the risks of the exposure to these compounds, analytical methods for their determination in different matrices are mandatory. In this paper, the use of surfactant-coated multiwalled carbon nanotubes as additive in liquid-liquid extraction is applied for the determination of single-ring aromatic compounds in olive oil samples. After sample treatment, the aqueous extracts are subsequently analyzed by headspace/gas chromatography/mass spectrometry allowing the determination of BTEX-S within ca. 15 min. Each stage of the proposed LLE/HS/GC/MS configuration involves a selectivity enhancement avoiding the interference of other compounds of the sample matrix. Limits of detection were in the range 0.25 ng mL(-1) (obtained for ethylbenzene) and 0.43 ng mL(-1) (for benzene). The repeatability of the proposed method expressed as RSD varied between 1.9% (styrene) and 3.3% (benzene) (n=11).
Adjustment of pesticide concentrations for temporal changes in analytical recovery, 1992–2010
Martin, Jeffrey D.; Eberle, Michael
2011-01-01
Recovery is the proportion of a target analyte that is quantified by an analytical method and is a primary indicator of the analytical bias of a measurement. Recovery is measured by analysis of quality-control (QC) water samples that have known amounts of target analytes added ("spiked" QC samples). For pesticides, recovery is the measured amount of pesticide in the spiked QC sample expressed as a percentage of the amount spiked, ideally 100 percent. Temporal changes in recovery have the potential to adversely affect time-trend analysis of pesticide concentrations by introducing trends in apparent environmental concentrations that are caused by trends in performance of the analytical method rather than by trends in pesticide use or other environmental conditions. This report presents data and models related to the recovery of 44 pesticides and 8 pesticide degradates (hereafter referred to as "pesticides") that were selected for a national analysis of time trends in pesticide concentrations in streams. Water samples were analyzed for these pesticides from 1992 through 2010 by gas chromatography/mass spectrometry. Recovery was measured by analysis of pesticide-spiked QC water samples. Models of recovery, based on robust, locally weighted scatterplot smooths (lowess smooths) of matrix spikes, were developed separately for groundwater and stream-water samples. The models of recovery can be used to adjust concentrations of pesticides measured in groundwater or stream-water samples to 100 percent recovery to compensate for temporal changes in the performance (bias) of the analytical method.
Vukasović, Andreja; Ivković, Alan; Jezek, Davor; Cerovecki, Ivan; Vnuk, Drazen; Kreszinger, Mario; Hudetz, Damir; Pećina, Marko
2011-01-01
Articular cartilage is an avascular and aneural tissue lacking lymph drainage, hence its inability of spontaneous repair following injury. Thus, it offers an interesting model for scientific research. A number of methods have been suggested to enhance cartilage repair, but none has yet produced significant success. The possible application of the aforementioned methods has brought about the necessity to evaluate their results. The objective of this study was to analyze results of a study of the effects of the use of TGF-beta gene transduced bone marrow clot on articular cartilage defects using ICRS visual histological assessment scale. The research was conducted on 28 skeletally mature sheep that were randomly assigned to four groups and surgically inflicted femoral chondral defects. The articular surfaces were then treated with TGF-beta1 gene transduced bone marrow clot (TGF group), GFP transduced bone marrow clot (GFP group), untransduced bone marrow clot (BM group) or left untreated (NC group). The analysis was performed by visual examination of cartilage samples and results were obtained using ICRS visual histological assessment scale. The results were subsequently subjected to statistical assessment using Kruskal-Wallis and Mann-Whitney tests. Kruskal-Wallis test yielded statistically significant difference with respect to cell distribution. Mann-Whitney test showed statistically significant difference between TGF and NC groups (P = 0.002), as well as between BM and NC groups (P = 0.002 with Bonferroni correction). Twenty-six of the twenty-eight samples were subjected to histologic and subsequent statistical analysis; two were discarded due to faulty histology technique. Our results indicated a level of certainty as to the positive effect of TGF-beta1 gene transduced bone marrow clot in restoration of articular cartilage defects. However, additional research is necessary in the field. One of the significant drawbacks on histologic assessment of cartilage samples were the errors in histologic preparation, for which some samples had to be discarded and significantly impaired the analytical quality of the others. Defects of structures surrounding the articular cartilage, e.g., subchondral bone or connective tissue, might also impair the quality of histologic analysis. Additional analyses, i.e. polarizing microscopy should be performed to determine the degree of integration of the newly formed tissue with the surrounding cartilage. The semiquantitative ICRS scale, although of great practical value, has limitations as to the objectivity of the assessment, taking into account the analytical ability of the evaluator, as well as the accuracy of semiquantitative analysis in comparison to the methods of quantitative analysis. Overall results of histologic analysis indicated that the application of TGF-beta1 gene transduced bone marrow clot could have measurable clinical effects on articular cartilage repair. The ICRS visual histological assessment scale is a valuable analytical method for cartilage repair evaluation. In this respect, further analyses of the method value would be of great importance.
STATISTICAL ANALYSIS OF TANK 18F FLOOR SAMPLE RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, S.
2010-09-02
Representative sampling has been completed for characterization of the residual material on the floor of Tank 18F as per the statistical sampling plan developed by Shine [1]. Samples from eight locations have been obtained from the tank floor and two of the samples were archived as a contingency. Six samples, referred to in this report as the current scrape samples, have been submitted to and analyzed by SRNL [2]. This report contains the statistical analysis of the floor sample analytical results to determine if further data are needed to reduce uncertainty. Included are comparisons with the prior Mantis samples resultsmore » [3] to determine if they can be pooled with the current scrape samples to estimate the upper 95% confidence limits (UCL{sub 95%}) for concentration. Statistical analysis revealed that the Mantis and current scrape sample results are not compatible. Therefore, the Mantis sample results were not used to support the quantification of analytes in the residual material. Significant spatial variability among the current sample results was not found. Constituent concentrations were similar between the North and South hemispheres as well as between the inner and outer regions of the tank floor. The current scrape sample results from all six samples fall within their 3-sigma limits. In view of the results from numerous statistical tests, the data were pooled from all six current scrape samples. As such, an adequate sample size was provided for quantification of the residual material on the floor of Tank 18F. The uncertainty is quantified in this report by an upper 95% confidence limit (UCL{sub 95%}) on each analyte concentration. The uncertainty in analyte concentration was calculated as a function of the number of samples, the average, and the standard deviation of the analytical results. The UCL{sub 95%} was based entirely on the six current scrape sample results (each averaged across three analytical determinations).« less
STATISTICAL ANALYSIS OF TANK 19F FLOOR SAMPLE RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, S.
2010-09-02
Representative sampling has been completed for characterization of the residual material on the floor of Tank 19F as per the statistical sampling plan developed by Harris and Shine. Samples from eight locations have been obtained from the tank floor and two of the samples were archived as a contingency. Six samples, referred to in this report as the current scrape samples, have been submitted to and analyzed by SRNL. This report contains the statistical analysis of the floor sample analytical results to determine if further data are needed to reduce uncertainty. Included are comparisons with the prior Mantis samples resultsmore » to determine if they can be pooled with the current scrape samples to estimate the upper 95% confidence limits (UCL95%) for concentration. Statistical analysis revealed that the Mantis and current scrape sample results are not compatible. Therefore, the Mantis sample results were not used to support the quantification of analytes in the residual material. Significant spatial variability among the current scrape sample results was not found. Constituent concentrations were similar between the North and South hemispheres as well as between the inner and outer regions of the tank floor. The current scrape sample results from all six samples fall within their 3-sigma limits. In view of the results from numerous statistical tests, the data were pooled from all six current scrape samples. As such, an adequate sample size was provided for quantification of the residual material on the floor of Tank 19F. The uncertainty is quantified in this report by an UCL95% on each analyte concentration. The uncertainty in analyte concentration was calculated as a function of the number of samples, the average, and the standard deviation of the analytical results. The UCL95% was based entirely on the six current scrape sample results (each averaged across three analytical determinations).« less
The Metals in Replicate Samples data set contains the analytical results of measurements of up to 2 metals in 172 replicate (duplicate) samples from 86 households. Measurements were made in samples of blood. Duplicate samples for a small percentage of the total number of sample...
Burger, Jessica L.; Lovestead, Tara M.; Bruno, Thomas J.
2017-01-01
As the sources of natural gas become more diverse, the trace constituents of the C6+ fraction are of increasing interest. Analysis of fuel gas (including natural gas) for compounds with more than 6 carbon atoms (the C6+ fraction) has historically been complex and expensive. Hence, this is a procedure that is used most often in troubleshooting rather than for day-to-day operations. The C6+ fraction affects gas quality issues and safety considerations such as anomalies associated with odorization. Recent advances in dynamic headspace vapor collection can be applied to this analysis and provide a faster, less complex alternative for compositional determination of the C6+ fraction of natural gas. Porous layer open tubular capillaries maintained at low temperatures (PLOT-cryo) form the basis of a dynamic headspace sampling method that was developed at NIST initially for explosives in 2009. This method has been recently advanced by the combining of multiple PLOT capillary traps into one “bundle,” or wafer, resulting in a device that allows the rapid trapping of relatively large amounts of analyte. In this study, natural gas analytes were collected by flowing natural gas from the laboratory (gas out of the wall) or a prepared surrogate gas flowing through a chilled wafer. The analytes were then removed from the PLOT-cryo wafer by thermal desorption and subsequent flushing of the wafer with helium. Gas chromatography (GC) with mass spectrometry (MS) was then used to identify the analytes. PMID:29332993
Forbes, Thomas P; Staymates, Matthew; Sisco, Edward
2017-08-07
Wipe collected analytes were thermally desorbed using broad spectrum near infrared heating for mass spectrometric detection. Employing a twin tube filament-based infrared emitter, rapid and efficiently powered thermal desorption and detection of nanogram levels of explosives and narcotics was demonstrated. The infrared thermal desorption (IRTD) platform developed here used multi-mode heating (direct radiation and secondary conduction from substrate and subsequent convection from air) and a temperature ramp to efficiently desorb analytes with vapor pressures across eight orders of magnitude. The wipe substrate experienced heating rates up to (85 ± 2) °C s -1 with a time constant of (3.9 ± 0.2) s for 100% power emission. The detection of trace analytes was also demonstrated from complex mixtures, including plastic-bonded explosives and exogenous narcotics, explosives, and metabolites from collected artificial latent fingerprints. Manipulation of the emission power and duration directly controlled the heating rate and maximum temperature, enabling differential thermal desorption and a level of upstream separation for enhanced specificity. Transitioning from 100% power and 5 s emission duration to 25% power and 30 s emission enabled an order of magnitude increase in the temporal separation (single seconds to tens of seconds) of the desorption of volatile and semi-volatile species within a collected fingerprint. This mode of operation reduced local gas-phase concentrations, reducing matrix effects experienced with high concentration mixtures. IRTD provides a unique platform for the desorption of trace analytes from wipe collections, an area of importance to the security sector, transportation agencies, and customs and border protection.
NASA Technical Reports Server (NTRS)
Schuessler, Philipp WH
2010-01-01
In August 2008, Schuessler Consulting was contracted by NASA GSFC in support of the NASA Electronic Parts and Packaging (NEPP) program to perform two separate studies on moisture laden air in a stainless steel cylinder that had been designed to become a consensus standard for Test Method 1018. This Test Method was originally released for hybrids under Mil. Std. 883 but was quickly utilized on other microelectronic devices under the auspice of Mil. Std. 750. The cylinder had subsequently been fabricated for the 750 community. It was back-filled with moist air and subsequently analyzed over a period of time under a previous NASA contract. It had been shown that moisture in the 4000 - 5000 ppm range could be analyzed rather precisely with a mass spectrometer, commonly referred to as a Residual Gas Analyzer (RGA). The scope of this study was to ascertain if the composition and precision varied as a function of thermal shock at sub-zero temperatures and whether there was consensus when the standard was submitted to other RGA units. It was demonstrated and published that the consensus standard would yield precise RGA data for moisture within +/- 1% when optimized for a given RGA unit. It has been subsequently shown in this study at Oneida Research Services, that sub-zero storage did not affect that precision when a well-defined protocol for the analysis was followed. The consensus standard was taken to a second facility for analysis where it was found that moisture adsorption on the transfer lines caused precision to drop to +/- 12%. The Single Sample Cylinder (SSC) is a one liter stainless steel cylinder with associated sampling valves and has considerable weight and volume. But this considerable size allows for approximately 300 gas samples of the same composition to be delivered to any RGA unit. Lastly, a smaller cylinder, approximately 75 cc, of a second consensus standard was fabricated and tested with a different mix of fixed gases where moisture was kept in the 100 ppm range. This second standard has the potential of providing 30 gaseous samples and can be readily shipped to any analytical facility that desires to generate comparison RGA data. A series of comparison residual gas analyses was performed at the Honeywell Federal Manufacturing & Technologies facility in the National Nuclear Facility Administration s plant in Kansas City to complete this project. It was shown that improvements in the precision of a given RGA unit can be done by controlling the cycle time for each analysis and increasing analysis temperatures to minimize moisture adsorption. It was also found that a "one time event" in the subzero storage of the large SSC did not effect the units ability to continuously supply precise samples of the same chemistry, however the "event" caused a permanent +8% shift in the reported value of the moisture content. Lastly, a set of SSC RGA results was plotted on a common graph with DSCC "correlation study" RGA data. The result demonstrates the ability of the SSC to remove many of the individual variances that single, individual samples introduce. The consensus standards are now in storage at Oneida Research Services, one of the DSCC certified houses that does RGA to Military Standards, where they await future studies. The analytical data and the operational parameters of the instruments used are provided in the following discussion. Limitations and suggested means for improvement of both precision and accuracy are provided.
Farrar, Jerry W.
1999-01-01
This report presents the results of the U.S. Geological Survey's analytical evaluation program for seven standard reference samples -- T-155 (trace constituents), M-148 (major constituents), N-59 (nutrient constituents), N-60 (nutrient constituents), P-31 (low ionic strength constituents), GWT-4 (ground-water trace constituents), and Hg- 27 (mercury) -- which were distributed in September 1998 to 162 laboratories enrolled in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 136 of the laboratories were evaluated with respect to overall laboratory performance and relative laboratory performance for each analyte in the seven reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the seven standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.
Zhang, Hong-guang; Lu, Jian-gang
2016-02-01
Abstract To overcome the problems of significant difference among samples and nonlinearity between the property and spectra of samples in spectral quantitative analysis, a local regression algorithm is proposed in this paper. In this algorithm, net signal analysis method(NAS) was firstly used to obtain the net analyte signal of the calibration samples and unknown samples, then the Euclidean distance between net analyte signal of the sample and net analyte signal of calibration samples was calculated and utilized as similarity index. According to the defined similarity index, the local calibration sets were individually selected for each unknown sample. Finally, a local PLS regression model was built on each local calibration sets for each unknown sample. The proposed method was applied to a set of near infrared spectra of meat samples. The results demonstrate that the prediction precision and model complexity of the proposed method are superior to global PLS regression method and conventional local regression algorithm based on spectral Euclidean distance.
Effect of storage duration on cytokine stability in human serum and plasma.
Vincent, Fabien B; Nim, Hieu T; Lee, Jacinta P W; Morand, Eric F; Harris, James
2018-06-14
Quantification of analytes such as cytokines in serum samples is intrinsic to translational research in immune diseases. Optimising pre-analytical conditions is critical for ensuring study quality, including evaluation of cytokine stability. We aimed to evaluate the effect on cytokine stability of storage duration prior to freezing of serum, and compare to plasma samples obtained from patients with systemic lupus erythematosus (SLE). Protein stability was analysed by simultaneously quantifying 18 analytes using a custom multi-analyte profile in SLE patient serum and plasma samples that had been prospectively stored at 4 °C for pre-determined periods between 0 and 30 days, prior to freezing. Six analytes were excluded from analysis, because most tested samples were above or below the limit of detection. Amongst the 12 analysed proteins, 11 did not show significant signal degradation. Significant signal degradation was observed from the fourth day of storage for a single analyte, CCL19. Proteins levels were more stable in unseparated serum compared to plasma for most analytes, with the exception of IL-37 which appears slightly more stable in plasma. Based on this, a maximum 3 days of storage at 4 °C for unseparated serum samples is recommended for biobanked samples intended for cytokine analysis in studies of human immune disease. Copyright © 2018 Elsevier Ltd. All rights reserved.
Analytical chemistry in water quality monitoring during manned space missions
NASA Astrophysics Data System (ADS)
Artemyeva, Anastasia A.
2016-09-01
Water quality monitoring during human spaceflights is essential. However, most of the traditional methods require sample collection with a subsequent ground analysis because of the limitations in volume, power, safety and gravity. The space missions are becoming longer-lasting; hence methods suitable for in-flight monitoring are demanded. Since 2009, water quality has been monitored in-flight with colorimetric methods allowing for detection of iodine and ionic silver. Organic compounds in water have been monitored with a second generation total organic carbon analyzer, which provides information on the amount of carbon in water at both the U.S. and Russian segments of the International Space Station since 2008. The disadvantage of this approach is the lack of compound-specific information. The recently developed methods and tools may potentially allow one to obtain in-flight a more detailed information on water quality. Namely, the microanalyzers based on potentiometric measurements were designed for online detection of chloride, potassium, nitrate ions and ammonia. The recent application of the current highly developed air quality monitoring system for water analysis was a logical step because most of the target analytes are the same in air and water. An electro-thermal vaporizer was designed, manufactured and coupled with the air quality control system. This development allowed for liberating the analytes from the aqueous matrix and further compound-specific analysis in the gas phase.
Ding, Yue; Peng, Ming; Zhang, Tong; Tao, Jian-Sheng; Cai, Zhen-Zhen; Zhang, Yong
2013-10-01
Glucuronidation and sulfation represent two major pathways in phase II drug metabolism in humans and other mammalian species. The great majority of drugs, for example, polyphenols, flavonoids and anthraquinones, could be transformed into sulfated and glucuronidated conjugates simultaneously and extensively in vivo. The pharmacological activities of drug conjugations are normally decreased compared with those of their free forms. However, some drug conjugates may either bear biological activities themselves or serve as excellent sources of biologically active compounds. As the bioactivities of drugs are thought to be relevant to the kinetics of their conjugates, it is essential to study the pharmacokinetic behaviors of the conjugates in more detail. Unfortunately, the free forms of drugs cannot be detected directly in most cases if their glucuronides and sulfates are the predominant forms in biological samples. Nevertheless, an initial enzymatic hydrolysis step using β-glucuronidase and/or sulfatase is usually performed to convert the glucuronidated and/or sulfated conjugates to their free forms prior to the extraction, purification and other subsequent analysis steps in the literature. This review provides fundamental information on drug metabolism pathways, the bio-analytical strategies for the quantification of various drug conjugates, and the applications of the analytical methods to pharmacokinetic studies. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Gazda, Daniel B.; Schultz, John R.; Clarke, Mark S.
2007-01-01
Phase separation is one of the most significant obstacles encountered during the development of analytical methods for water quality monitoring in spacecraft environments. Removing air bubbles from water samples prior to analysis is a routine task on earth; however, in the absence of gravity, this routine task becomes extremely difficult. This paper details the development and initial ground testing of liquid metering centrifuge sticks (LMCS), devices designed to collect and meter a known volume of bubble-free water in microgravity. The LMCS uses centrifugal force to eliminate entrapped air and reproducibly meter liquid sample volumes for analysis with Colorimetric Solid Phase Extraction (C-SPE). C-SPE is a sorption-spectrophotometric platform that is being developed as a potential spacecraft water quality monitoring system. C-SPE utilizes solid phase extraction membranes impregnated with analyte-specific colorimetric reagents to concentrate and complex target analytes in spacecraft water samples. The mass of analyte extracted from the water sample is determined using diffuse reflectance (DR) data collected from the membrane surface and an analyte-specific calibration curve. The analyte concentration can then be calculated from the mass of extracted analyte and the volume of the sample analyzed. Previous flight experiments conducted in microgravity conditions aboard the NASA KC-135 aircraft demonstrated that the inability to collect and meter a known volume of water using a syringe was a limiting factor in the accuracy of C-SPE measurements. Herein, results obtained from ground based C-SPE experiments using ionic silver as a test analyte and either the LMCS or syringes for sample metering are compared to evaluate the performance of the LMCS. These results indicate very good agreement between the two sample metering methods and clearly illustrate the potential of utilizing centrifugal forces to achieve phase separation and metering of water samples in microgravity.
NHEXAS PHASE I ARIZONA STUDY--QA ANALYTICAL RESULTS FOR METALS IN SPIKE SAMPLES
The Metals in Spike Samples data set contains the analytical results of measurements of up to 11 metals in 38 control samples (spikes) from 18 households. Measurements were made in spiked samples of dust, food, beverages, blood, urine, and dermal wipe residue. Spiked samples we...
NHEXAS PHASE I ARIZONA STUDY--QA ANALYTICAL RESULTS FOR METALS IN REPLICATE SAMPLES
The Metals in Replicate Samples data set contains the analytical results of measurements of up to 27 metals in 133 replicate (duplicate) samples from 62 households. Measurements were made in samples of soil, blood, tap water, and drinking water. Duplicate samples for a small pe...
NHEXAS PHASE I REGION 5 STUDY--QA ANALYTICAL RESULTS FOR VOCS IN REPLICATES
This data set includes analytical results for measurements of VOCs in 204 duplicate (replicate) samples. Measurements were made for up to 23 VOCs in samples of air, water, and blood. Duplicate samples (samples collected along with or next to the original samples) were collected t...
NHEXAS PHASE I REGION 5 STUDY--QA ANALYTICAL RESULTS FOR METALS IN REPLICATES
This data set includes analytical results for measurements of metals in 490 duplicate (replicate) samples and for particles in 130 duplicate samples. Measurements were made for up to 11 metals in samples of air, dust, water, blood, and urine. Duplicate samples (samples collected ...
NHEXAS PHASE I ARIZONA STUDY--QA ANALYTICAL RESULTS FOR PESTICIDE METABOLITES IN SPIKE SAMPLES
The Pesticide Metabolites in Spike Samples data set contains the analytical results of measurements of up to 4 pesticide metabolites in 3 control samples (spikes) from 3 households. Measurements were made in spiked samples of urine. Spiked samples were used to assess recovery o...
Giordano, Braden C; Copper, Christine L; Collins, Greg E
2006-02-01
The ability to separate nitroaromatic and nitramine explosives in seawater sample matrices is demonstrated using both MEKC and CEC. While several capillary-based separations exist for explosives, none address direct sampling from seawater, a sample matrix of particular interest in the detection of undersea mines. Direct comparisons are made between MEKC and CEC in terms of sensitivity and separation efficiency for the analysis of 14 explosives and explosive degradation products in seawater and diluted seawater. The use of high-salt stacking with MEKC results, on average, in a three-fold increase in the number of theoretical plates, and nearly double resolution for samples prepared in 25% seawater. By taking advantage of long injection times in conjunction with stacking, detection limits down to sub mg/L levels are attainable; however, resolution is sacrificed. CEC of explosive mixtures using sol-gels prepared from methyltrimethoxysilane does not perform as well as MEKC in terms of resolving power, but does permit extended injection times for concentrating analyte onto the head of the separation column with little or no subsequent loss in resolution. Electrokinetic injections of 8 min at high voltage allow for detection limits of explosives below 100 microg/L.
Nika, Heinz; Nieves, Edward; Hawke, David H.; Angeletti, Ruth Hogue
2013-01-01
A rugged sample-preparation method for comprehensive affinity enrichment of phosphopeptides from protein digests has been developed. The method uses a series of chemical reactions to incorporate efficiently and specifically a thiol-functionalized affinity tag into the analyte by barium hydroxide catalyzed β-elimination with Michael addition using 2-aminoethanethiol as nucleophile and subsequent thiolation of the resulting amino group with sulfosuccinimidyl-2-(biotinamido) ethyl-1,3-dithiopropionate. Gentle oxidation of cysteine residues, followed by acetylation of α- and ε-amino groups before these reactions, ensured selectivity of reversible capture of the modified phosphopeptides by covalent chromatography on activated thiol sepharose. The use of C18 reversed-phase supports as a miniaturized reaction bed facilitated optimization of the individual modification steps for throughput and completeness of derivatization. Reagents were exchanged directly on the supports, eliminating sample transfer between the reaction steps and thus, allowing the immobilized analyte to be carried through the multistep reaction scheme with minimal sample loss. The use of this sample-preparation method for phosphopeptide enrichment was demonstrated with low-level amounts of in-gel-digested protein. As applied to tryptic digests of α-S1- and β-casein, the method enabled the enrichment and detection of the phosphorylated peptides contained in the mixture, including the tetraphosphorylated species of β-casein, which has escaped chemical procedures reported previously. The isolates proved highly suitable for mapping the sites of phosphorylation by collisionally induced dissociation. β-Elimination, with consecutive Michael addition, expanded the use of the solid-phase-based enrichment strategy to phosphothreonyl peptides and to phosphoseryl/phosphothreonyl peptides derived from proline-directed kinase substrates and to their O-sulfono- and O-linked β-N-acetylglucosamine (O-GlcNAc)-modified counterparts. Solid-phase enzymatic dephosphorylation proved to be a viable tool to condition O-GlcNAcylated peptide in mixtures with phosphopeptides for selective affinity purification. Acetylation, as an integral step of the sample-preparation method, precluded reduction in recovery of the thiolation substrate caused by intrapeptide lysine-dehydroalanine cross-link formation. The solid-phase analytical platform provides robustness and simplicity of operation using equipment readily available in most biological laboratories and is expected to accommodate additional chemistries to expand the scope of solid-phase serial derivatization for protein structural characterization. PMID:23997662
2009-07-01
viii Unit Conversion Factors...sampler is also an economic alternative for sampling for inorganic analytes. ERDC/CRREL TR-09-12 xii Unit Conversion Factors Multiply By To Obtain...head- space and then covered with two layers of tightly fitting aluminum foil. To dissolve the analytes, the solutions were stirred for approximately
Sampling probe for microarray read out using electrospray mass spectrometry
Van Berkel, Gary J.
2004-10-12
An automated electrospray based sampling system and method for analysis obtains samples from surface array spots having analytes. The system includes at least one probe, the probe including an inlet for flowing at least one eluting solvent to respective ones of a plurality of spots and an outlet for directing the analyte away from the spots. An automatic positioning system is provided for translating the probe relative to the spots to permit sampling of any spot. An electrospray ion source having an input fluidicly connected to the probe receives the analyte and generates ions from the analyte. The ion source provides the generated ions to a structure for analysis to identify the analyte, preferably being a mass spectrometer. The probe can be a surface contact probe, where the probe forms an enclosing seal along the periphery of the array spot surface.
Farrar, Jerry W.; Long, H. Keith
1996-01-01
This report presents the results of the U.S. Geological Survey's analytical evaluation program for 6 standard reference samples--T-137 (trace constituents), M-136 (major constituents), N-47 (nutrient constituents), N-48 (nutrient constituents), P-25 (low ionic strength constituents), and Hg-21 (mercury)--that were distributed in October 1995 to 149 laboratories registered in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 136 of the laboratories were evaluated with respect to: overall laboratory performance and relative laboratory performance for each analyte in the six reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the six standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.
Long, H. Keith; Farrar, Jerry W.
1994-01-01
This report presents the results of the U.S. Geological Survey's analytical evaluation program for five standard reference samples--T-129 (trace constituents), M-130 (major constituents), N-42 (nutrients), P-22 (low ionic strength), Hg-18(mercury),--that were distributed in April 1994 to 157 laboratories registered in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 133 of the laboratories were evaluated with respect to: overall laboratory performance and relative laboratory performance for each analyte in the five reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the five standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.
Long, H.K.; Farrar, J.W.
1993-01-01
This report presents the results of the U.S. Geological Survey's analytical evaluation program for seven standard reference samples--T-123 (trace constituents), T-125 (trace constituents), M-126 (major constituents), N-38 (nutrients), N-39 (Nutrients), P-20 (precipitation-low ionic strength), and Hg-16 (mercury)--that were distributed in April 1993 to 175 laboratories registered in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data received from 131 of the laboratories were evaluated with respect to: overall laboratory performance and relative laboratory performance for each analyte in the 7 reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the seven standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.
Fear and distress disorders as predictors of heart disease: a temporal perspective
Roest, AM; de Jonge, P; Lim, C; Stein, DJ; Al-Hamzawi, A; Alonso, J; Benjet, C; Bruffaerts, R; Bunting, B; Caldas-de-Almeida, JM; Ciutan, M; de Girolamo, G; Hu, C; Levinson, D; Nakamura, Y; Navarro-Mateu, F; Piazza, M; Posada-Villa, J; Torres, Y; Wojtyniak, B; Kessler, RC; Scott, KM
2017-01-01
Objective Few studies have been able to contrast associations of anxiety and depression with heart disease. These disorders can be grouped in fear and distress disorders. Aim of this study was to study the association between fear and distress disorders with subsequent heart disease, taking into account the temporal order of disorders. Methods Twenty household surveys were conducted in 18 countries (n=53791; person years=2,212,430). The Composite International Diagnostic Interview assessed lifetime prevalence and age at onset of disorders, and respondents were categorized into categories based on the presence and timing of fear and distress disorders. Heart disease was indicated by self-report of physician-diagnosed heart disease or self-report of heart attack, together with year of onset. Survival analyses estimated associations between disorder categories and heart disease. Results Most respondents with fear or distress disorders had either pure distress or pure fear (8.5% and 7.7% of total sample), while fear preceded distress in the large majority of respondents with comorbid fear and distress (3.8% of total sample). Compared to the “no fear or distress disorder” category, respondents with pure fear disorder had the highest odds of subsequent heart disease (OR:1.8;95%CI:1.5–2.2; p<.001) and compared to respondents with pure distress disorder, these respondents were at a significantly increased risk of heart disease (OR:1.3;95%CI:1.0–1.6; p=0.020). Conclusion This novel analytic approach indicates that the risk of subsequent self-reported heart disease associated with pure fear disorder is significantly larger than the risk associated with distress disorder. These results should be confirmed in prospective studies using objective measures of heart disease. PMID:28545795
Fear and distress disorders as predictors of heart disease: A temporal perspective.
Roest, A M; de Jonge, P; Lim, C W W; Stein, D J; Al-Hamzawi, A; Alonso, J; Benjet, C; Bruffaerts, R; Bunting, B; Caldas-de-Almeida, J M; Ciutan, M; de Girolamo, G; Hu, C; Levinson, D; Nakamura, Y; Navarro-Mateu, F; Piazza, M; Posada-Villa, J; Torres, Y; Wojtyniak, B; Kessler, R C; Scott, K M
2017-05-01
Few studies have been able to contrast associations of anxiety and depression with heart disease. These disorders can be grouped in fear and distress disorders. Aim of this study was to study the association between fear and distress disorders with subsequent heart disease, taking into account the temporal order of disorders. Twenty household surveys were conducted in 18 countries (n=53791; person years=2,212,430). The Composite International Diagnostic Interview assessed lifetime prevalence and age at onset of disorders, and respondents were categorized into categories based on the presence and timing of fear and distress disorders. Heart disease was indicated by self-report of physician-diagnosed heart disease or self-report of heart attack, together with year of onset. Survival analyses estimated associations between disorder categories and heart disease. Most respondents with fear or distress disorders had either pure distress or pure fear (8.5% and 7.7% of total sample), while fear preceded distress in the large majority of respondents with comorbid fear and distress (3.8% of total sample). Compared to the "no fear or distress disorder" category, respondents with pure fear disorder had the highest odds of subsequent heart disease (OR:1.8; 95%CI:1.5-2.2; p<0.001) and compared to respondents with pure distress disorder, these respondents were at a significantly increased risk of heart disease (OR:1.3; 95%CI:1.0-1.6; p=0.020). This novel analytic approach indicates that the risk of subsequent self-reported heart disease associated with pure fear disorder is significantly larger than the risk associated with distress disorder. These results should be confirmed in prospective studies using objective measures of heart disease. Copyright © 2017. Published by Elsevier Inc.
Nielsen, Marie Katrine Klose; Johansen, Sys Stybe; Linnet, Kristian
2014-01-01
Assessment of total uncertainty of analytical methods for the measurements of drugs in human hair has mainly been derived from the analytical variation. However, in hair analysis several other sources of uncertainty will contribute to the total uncertainty. Particularly, in segmental hair analysis pre-analytical variations associated with the sampling and segmentation may be significant factors in the assessment of the total uncertainty budget. The aim of this study was to develop and validate a method for the analysis of 31 common drugs in hair using ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) with focus on the assessment of both the analytical and pre-analytical sampling variations. The validated method was specific, accurate (80-120%), and precise (CV≤20%) across a wide linear concentration range from 0.025-25 ng/mg for most compounds. The analytical variation was estimated to be less than 15% for almost all compounds. The method was successfully applied to 25 segmented hair specimens from deceased drug addicts showing a broad pattern of poly-drug use. The pre-analytical sampling variation was estimated from the genuine duplicate measurements of two bundles of hair collected from each subject after subtraction of the analytical component. For the most frequently detected analytes, the pre-analytical variation was estimated to be 26-69%. Thus, the pre-analytical variation was 3-7 folds larger than the analytical variation (7-13%) and hence the dominant component in the total variation (29-70%). The present study demonstrated the importance of including the pre-analytical variation in the assessment of the total uncertainty budget and in the setting of the 95%-uncertainty interval (±2CVT). Excluding the pre-analytical sampling variation could significantly affect the interpretation of results from segmental hair analysis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
An overview on forensic analysis devoted to analytical chemists.
Castillo-Peinado, L S; Luque de Castro, M D
2017-05-15
The present article has as main aim to show analytical chemists interested in forensic analysis the world they will face if decision in favor of being a forensic analytical chemist is adopted. With this purpose, the most outstanding aspects of forensic analysis in dealing with sampling (involving both bodily and no bodily samples), sample preparation, and analytical equipment used in detection, identification and quantitation of key sample components are critically discussed. The role of the great omics in forensic analysis, and the growing role of the youngest of the great omics -metabolomics- are also discussed. The foreseeable role of integrative omics is also outlined. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantification of HCV RNA in Liver Tissue by bDNA Assay.
Dailey, P J; Collins, M L; Urdea, M S; Wilber, J C
1999-01-01
With this statement, Sherlock and Dooley have described two of the three major challenges involved in quantitatively measuring any analyte in tissue samples: the distribution of the analyte in the tissue; and the standard of reference, or denominator, with which to make comparisons between tissue samples. The third challenge for quantitative measurement of an analyte in tissue is to ensure reproducible and quantitative recovery of the analyte on extraction from tissue samples. This chapter describes a method that can be used to measure HCV RNA quantitatively in liver biopsy and tissue samples using the bDNA assay. All three of these challenges-distribution, denominator, and recovery-apply to the measurement of HCV RNA in liver biopsies.
Márta, Zoltán; Bobály, Balázs; Fekete, Jenő; Magda, Balázs; Imre, Tímea; Mészáros, Katalin Viola; Szabó, Pál Tamás
2016-09-10
Ultratrace analysis of sample components requires excellent analytical performance in terms of limits of quantitation (LoQ). Micro UHPLC coupling with sensitive tandem mass spectrometry provides state of the art solutions for such analytical problems. Decreased column volume in micro LC limits the injectable sample volume. However, if analyte concentration is extremely low, it might be necessary to inject high sample volumes. This is particularly critical for strong sample solvents and weakly retained analytes, which are often the case when preparing biological samples (protein precipitation, sample extraction, etc.). In that case, high injection volumes may cause band broadening, peak distortion or even elution in dead volume. In this study, we evaluated possibilities of high volume injection onto microbore RP-LC columns, when sample solvent is diluted. The presented micro RP-LC-MS/MS method was optimized for the analysis of steroid hormones from human plasma after protein precipitation with organic solvents. A proper sample dilution procedure helps to increase the injection volume without compromising peak shapes. Finally, due to increased injection volume, the limit of quantitation can be decreased by a factor of 2-5, depending on the analytes and the experimental conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Protein Chips Compatible with MALDI Mass Spectrometry Prepared by Ambient Ion Landing.
Pompach, Petr; Benada, Oldřich; Rosůlek, Michal; Darebná, Petra; Hausner, Jiří; Růžička, Viktor; Volný, Michael; Novák, Petr
2016-09-06
We present a technology that allows the preparation of matrix-assisted laser desorption/ionization (MALDI)-compatible protein chips by ambient ion landing of proteins and successive utilization of the resulting protein chips for the development of bioanalytical assays. These assays are based on the interaction between the immobilized protein and the sampled analyte directly on the protein chip and subsequent in situ analysis by MALDI mass spectrometry. The electrosprayed proteins are immobilized on dry metal and metal oxide surfaces, which are nonreactive under normal conditions. The ion landing of electrosprayed protein molecules is performed under atmospheric pressure by an automated ion landing apparatus that can manufacture protein chips with a predefined array of sample positions or any other geometry of choice. The protein chips prepared by this technique are fully compatible with MALDI ionization because the metal-based substrates are conductive and durable enough to be used directly as MALDI plates. Compared to other materials, the nonreactive surfaces show minimal nonspecific interactions with chemical species in the investigated sample and are thus an ideal substrate for selective protein chips. Three types of protein chips were used in this report to demonstrate the bioanalytical applications of ambient ion landing. The protein chips with immobilized proteolytic enzymes showed the usefulness for fast in situ peptide MALDI sequencing; the lectin-based protein chips showed the ability to enrich glycopeptides from complex mixtures with subsequent MALDI analysis, and the protein chips with immobilized antibodies were used for a novel immunoMALDI workflow that allowed the enrichment of antigens from the serum followed by highly specific MALDI detection.
Hot-Alkaline DNA Extraction Method for Deep-Subseafloor Archaeal Communities
Terada, Takeshi; Hoshino, Tatsuhiko; Inagaki, Fumio
2014-01-01
A prerequisite for DNA-based microbial community analysis is even and effective cell disruption for DNA extraction. With a commonly used DNA extraction kit, roughly two-thirds of subseafloor sediment microbial cells remain intact on average (i.e., the cells are not disrupted), indicating that microbial community analyses may be biased at the DNA extraction step, prior to subsequent molecular analyses. To address this issue, we standardized a new DNA extraction method using alkaline treatment and heating. Upon treatment with 1 M NaOH at 98°C for 20 min, over 98% of microbial cells in subseafloor sediment samples collected at different depths were disrupted. However, DNA integrity tests showed that such strong alkaline and heat treatment also cleaved DNA molecules into short fragments that could not be amplified by PCR. Subsequently, we optimized the alkaline and temperature conditions to minimize DNA fragmentation and retain high cell disruption efficiency. The best conditions produced a cell disruption rate of 50 to 80% in subseafloor sediment samples from various depths and retained sufficient DNA integrity for amplification of the complete 16S rRNA gene (i.e., ∼1,500 bp). The optimized method also yielded higher DNA concentrations in all samples tested compared with extractions using a conventional kit-based approach. Comparative molecular analysis using real-time PCR and pyrosequencing of bacterial and archaeal 16S rRNA genes showed that the new method produced an increase in archaeal DNA and its diversity, suggesting that it provides better analytical coverage of subseafloor microbial communities than conventional methods. PMID:24441163
NHEXAS PHASE I REGION 5 STUDY--METALS IN DUST ANALYTICAL RESULTS
This data set includes analytical results for measurements of metals in 1,906 dust samples. Dust samples were collected to assess potential residential sources of dermal and inhalation exposures and to examine relationships between analyte levels in dust and in personal and bioma...
10 CFR 26.168 - Blind performance testing.
Code of Federal Regulations, 2014 CFR
2014-01-01
... analyte and must be certified by immunoassay and confirmatory testing; (2) Drug positive. These samples must contain a measurable amount of the target drug or analyte in concentrations ranging between 150... performance test sample must contain a measurable amount of the target drug or analyte in concentrations...
10 CFR 26.168 - Blind performance testing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... analyte and must be certified by immunoassay and confirmatory testing; (2) Drug positive. These samples must contain a measurable amount of the target drug or analyte in concentrations ranging between 150... performance test sample must contain a measurable amount of the target drug or analyte in concentrations...
10 CFR 26.168 - Blind performance testing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... analyte and must be certified by immunoassay and confirmatory testing; (2) Drug positive. These samples must contain a measurable amount of the target drug or analyte in concentrations ranging between 150... performance test sample must contain a measurable amount of the target drug or analyte in concentrations...
10 CFR 26.168 - Blind performance testing.
Code of Federal Regulations, 2013 CFR
2013-01-01
... analyte and must be certified by immunoassay and confirmatory testing; (2) Drug positive. These samples must contain a measurable amount of the target drug or analyte in concentrations ranging between 150... performance test sample must contain a measurable amount of the target drug or analyte in concentrations...
10 CFR 26.168 - Blind performance testing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... analyte and must be certified by immunoassay and confirmatory testing; (2) Drug positive. These samples must contain a measurable amount of the target drug or analyte in concentrations ranging between 150... performance test sample must contain a measurable amount of the target drug or analyte in concentrations...
Bertolín, J R; Joy, M; Rufino-Moya, P J; Lobón, S; Blanco, M
2018-08-15
An accurate, fast, economic and simple method to determine carotenoids, tocopherols, retinol and cholesterol in lyophilised samples of ovine milk, muscle and liver and raw samples of fat, which are difficult to lyophilise, is sought. Those analytes have been studied in animal tissues to trace forage feeding and unhealthy contents. The sample treatment consisted of mild overnight saponification, liquid-liquid extraction, evaporation with vacuum evaporator and redissolution. The quantification of the different analytes was performed by the use of ultra-high performance liquid chromatography with diode-array detector for carotenoids, retinol and cholesterol and fluorescence detector for tocopherols. The retention times of the analytes were short and the resolution between analytes was very high. The limits of detection and quantification were very low. This method is suitable for all the matrices and analytes and could be adapted to other animal species with minor changes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Asadpour-Zeynali, Karim; Saeb, Elhameh
2016-01-01
Three antituberculosis medications are investigated in this work consist of rifampicin, isoniazid and pyrazinamide. The ultra violet (UV) spectra of these compounds are overlapped, thus use of suitable chemometric methods are helpful for simultaneous spectrophotometric determination of them. A generalized version of net analyte signal standard addition method (GNASSAM) was used for determination of three antituberculosis medications as a model system. In generalized net analyte signal standard addition method only one standard solution was prepared for all analytes. This standard solution contains a mixture of all analytes of interest, and the addition of such solution to sample, causes increases in net analyte signal of each analyte which are proportional to the concentrations of analytes in added standards solution. For determination of concentration of each analyte in some synthetic mixtures, the UV spectra of pure analytes and each sample were recorded in the range of 210 nm-550 nm. The standard addition procedure was performed for each sample and the UV spectrum was recorded after each addition and finally the results were analyzed by net analyte signal method. Obtained concentrations show acceptable performance of GNASSAM in these cases. PMID:28243267
Influence of a strong sample solvent on analyte dispersion in chromatographic columns.
Mishra, Manoranjan; Rana, Chinar; De Wit, A; Martin, Michel
2013-07-05
In chromatographic columns, when the eluting strength of the sample solvent is larger than that of the carrier liquid, a deformation of the analyte zone occurs because its frontal part moves at a relatively high velocity due to a low retention factor in the sample solvent while the rear part of the analyte zone is more retained in the carrier liquid and hence moves at a lower velocity. The influence of this solvent strength effect on the separation of analytes is studied here theoretically using a mass balance model describing the spatio-temporal evolution of the eluent, the sample solvent and the analyte. The viscosity of the sample solvent and carrier fluid is supposed to be the same (i.e. no viscous fingering effects are taken into account). A linear isotherm adsorption with a retention factor depending upon the local concentration of the liquid phase is considered. The governing equations are numerically solved by using a Fourier spectral method and parametric studies are performed to analyze the effect of various governing parameters on the dispersion and skewness of the analyte zone. The distortion of this zone is found to depend strongly on the difference in eluting strength between the mobile phase and the sample solvent as well as on the sample volume. Copyright © 2013 Elsevier B.V. All rights reserved.
U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--QA ANALYTICAL RESULTS FOR METALS IN SPIKE SAMPLES
The Metals in Spike Samples data set contains the analytical results of measurements of up to 11 metals in 15 control samples (spikes) from 11 households. Measurements were made in spiked samples of dust, food, and dermal wipe residue. Spiked samples were used to assess recover...
Manganese recycling in the United States in 1998
Jones, Thomas S.
2003-01-01
This report presents the results of the U.S. Geological Survey's analytical evaluation program for six standard reference samples -- T-163 (trace constituents), M-156 (major constituents), N-67 (nutrient constituents), N-68 (nutrient constituents), P-35 (low ionic strength constituents), and Hg-31 (mercury) -- that were distributed in October 2000 to 126 laboratories enrolled in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 122 of the laboratories were evaluated with respect to overall laboratory performance and relative laboratory performance for each analyte in the six reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the six standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.
Brooks, Myron H.; Schroder, LeRoy J.; Willoughby, Timothy C.
1987-01-01
Four laboratories involved in the routine analysis of wet-deposition samples participated in an interlaboratory comparison program managed by the U.S. Geological Survey. The four participants were: Illinois State Water Survey central analytical laboratory in Champaign, Illinois; U.S. Geological Survey national water-quality laboratories in Atlanta, Georgia, and Denver, Colorado; and Inland Waters Directorate national water-quality laboratory in Burlington, Ontario, Canada. Analyses of interlaboratory samples performed by the four laboratories from October 1983 through December 1984 were compared.Participating laboratories analyzed three types of interlaboratory samples--natural wet deposition, simulated wet deposition, and deionized water--for pH and specific conductance, and for dissolved calcium, magnesium, sodium, sodium, potassium, chloride, sulfate, nitrate, ammonium, and orthophosphate. Natural wet-deposition samples were aliquots of actual wet-deposition samples. Analyses of these samples by the four laboratories were compared using analysis of variance. Test results indicated that pH, calcium, nitrate, and ammonium results were not directly comparable among the four laboratories. Statistically significant differences between laboratory results probably only were meaningful for analyses of dissolved calcium. Simulated wet-deposition samples with known analyte concentrations were used to test each laboratory for analyte bias. Laboratory analyses of calcium, magnesium, sodium, potassium, chloride, sulfate, and nitrate were not significantly different from the known concentrations of these analytes when tested using analysis of variance. Deionized-water samples were used to test each laboratory for reporting of false positive values. The Illinois State Water Survey Laboratory reported the smallest percentage of false positive values for most analytes. Analyte precision was estimated for each laboratory from results of replicate measurements. In general, the Illinois State Water Survey laboratory achieved the greatest precision, whereas the U.S. Geological Survey laboratories achieved the least precision.
Multi-Site N-glycan mapping study 1: Capillary electrophoresis – laser induced fluorescence
Szekrényes, Ákos; Park, SungAe Suhr; Santos, Marcia; Lew, Clarence; Jones, Aled; Haxo, Ted; Kimzey, Michael; Pourkaveh, Shiva; Szabó, Zoltán; Sosic, Zoran; Feng, Peng; Váradi, Csaba; de l'Escaille, François; Falmagne, Jean-Bernard; Sejwal, Preeti; Niedringhaus, Thomas; Michels, David; Freckleton, Gordon; Hamm, Melissa; Manuilov, Anastasiya; Schwartz, Melissa; Luo, Jiann-Kae; van Dyck, Jonathan; Leung, Pui-King; Olajos, Marcell; Gu, Yingmei; Gao, Kai; Wang, Wenbo; Wegstein, Jo; Tep, Samnang; Guttman, András
2016-01-01
An international team that included 20 independent laboratories from biopharmaceutical companies, universities, analytical contract laboratories and national authorities in the United States, Europe and Asia was formed to evaluate the reproducibility of sample preparation and analysis of N-glycans using capillary electrophoresis of 8-aminopyrene-1,3,6-trisulfonic acid (APTS)-labeled glycans with laser induced fluorescence (CE-LIF) detection (16 sites) and ultra high-performance liquid chromatography (UHPLC, 12 sites; results to be reported in a subsequent publication). All participants used the same lot of chemicals, samples, reagents, and columns/capillaries to run their assays. Migration time, peak area and peak area percent values were determined for all peaks with >0.1% peak area. Our results demonstrated low variability and high reproducibility, both, within any given site as well across all sites, which indicates that a standard N-glycan analysis platform appropriate for general use (clone selection, process development, lot release, etc.) within the industry can be established. PMID:26466659
Boehlke, Adam; Whidden, Katherine J.; Benzel, William M.
2017-01-01
Determining the chemical and mineralogical variability within fine-grained mudrocks poses analytical challenges but is potentially useful for documenting subtle stratigraphic differences in physicochemical environments that may influence petroleum reservoir properties and behavior. In this study, we investigate the utility of combining principal component analysis (PCA) of X-ray diffraction (XRD) data and portable X-ray fluorescence (pXRF) data to identify simplifying relationships within a large number of samples and subsequently evaluate a subset that encompasses the full spectrum or range of mineral and chemical variability within a vertical section. Samples were collected and analyzed from a vertical core of the Shublik Formation, a heterogeneous, phosphate-rich, calcareous mudstone-to-marl unit deposited in the Arctic Alaska Basin (AAB) during the Middle and Late Triassic. The Shublik is a major petroleum source rock in the Alaskan North Slope, and is considered a prime target for continuous self-sourced resource plays.
NHEXAS PHASE I MARYLAND STUDY--PESTICIDES IN DERMAL WIPES ANALYTICAL RESULTS
The Pesticides in Dermal Wipe Samples data set contains analytical results for measurements of up to 8 pesticides in 40 dermal wipe samples over 40 households. Each sample was collected from the primary respondent within each household. The sampling period occurred on the last ...
NHEXAS PHASE I MARYLAND STUDY--QA ANALYTICAL RESULTS FOR PESTICIDES IN REPLICATE SAMPLES
The Pesticides in Replicates data set contains the analytical results of measurements of up to 10 pesticides in 68 replicate (duplicate) samples from 41 households. Measurements were made in samples of indoor air, dust, soil, drinking water, food, and beverages. Duplicate sampl...
NHEXAS PHASE I MARYLAND STUDY--PESTICIDES IN BLOOD ANALYTICAL RESULTS
The Pesticides in Blood Serum data set contains analytical results for measurements of up to 17 pesticides in 358 blood samples over 79 households. Each sample was collected via a venous sample from the primary respondent within each household by a phlebotomist. Samples were ge...
Multiplexed Colorimetric Solid-Phase Extraction
NASA Technical Reports Server (NTRS)
Gazda, Daniel B.; Fritz, James S.; Porter, Marc D.
2009-01-01
Multiplexed colorimetric solid-phase extraction (MC-SPE) is an extension of colorimetric solid-phase extraction (C-SPE) an analytical platform that combines colorimetric reagents, solid phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water. In CSPE, analytes are extracted and complexed on the surface of an extraction membrane impregnated with a colorimetric reagent. The analytes are then quantified directly on the membrane surface using a handheld diffuse reflectance spectrophotometer. Importantly, the use of solid-phase extraction membranes as the matrix for impregnation of the colorimetric reagents creates a concentration factor that enables the detection of low concentrations of analytes in small sample volumes. In extending C-SPE to a multiplexed format, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple sample syringes have been designed, enabling the simultaneous determination of multiple analytes. Separate, single analyte membranes, placed in a readout cartridge create unique, analyte-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. In a demonstration, MC-SPE was used to measure the pH of a sample and quantitate Ag(I) and Ni(II).
Document is intended to provide general guidelines for use byEPA and EPA-contracted laboratories when disposing of samples and associated analytical waste following use of the analytical methods listed in SAM.
Analytical solutions of Landau (1+1)-dimensional hydrodynamics
Wong, Cheuk-Yin; Sen, Abhisek; Gerhard, Jochen; ...
2014-12-17
To help guide our intuition, summarize important features, and point out essential elements, we review the analytical solutions of Landau (1+1)-dimensional hydrodynamics and exhibit the full evolution of the dynamics from the very beginning to subsequent times. Special emphasis is placed on the matching and the interplay between the Khalatnikov solution and the Riemann simple wave solution at the earliest times and in the edge regions at later times.
Ludtke, Amy S.; Woodworth, Mark T.; Marsh, Philip S.
2000-01-01
The U.S. Geological Survey operates a quality-assurance program based on the analyses of reference samples for two laboratories: the National Water Quality Laboratory and the Quality of Water Service Unit. Reference samples that contain selected inorganic, nutrient, and low-level constituents are prepared and submitted to the laboratory as disguised routine samples. The program goal is to estimate precision and bias for as many analytical methods offered by the participating laboratories as possible. Blind reference samples typically are submitted at a rate of 2 to 5 percent of the annual environmental-sample load for each constituent. The samples are distributed to the laboratories throughout the year. The reference samples are subject to the identical laboratory handling, processing, and analytical procedures as those applied to environmental samples and, therefore, have been used as an independent source to verify bias and precision of laboratory analytical methods and ambient water-quality measurements. The results are stored permanently in the National Water Information System and the Blind Sample Project's data base. During water year 1998, 95 analytical procedures were evaluated at the National Water Quality Laboratory and 63 analytical procedures were evaluated at the Quality of Water Service Unit. An overall evaluation of the inorganic and low-level constituent data for water year 1998 indicated 77 of 78 analytical procedures at the National Water Quality Laboratory met the criteria for precision. Silver (dissolved, inductively coupled plasma-mass spectrometry) was determined to be imprecise. Five of 78 analytical procedures showed bias throughout the range of reference samples: chromium (dissolved, inductively coupled plasma-atomic emission spectrometry), dissolved solids (dissolved, gravimetric), lithium (dissolved, inductively coupled plasma-atomic emission spectrometry), silver (dissolved, inductively coupled plasma-mass spectrometry), and zinc (dissolved, inductively coupled plasma-mass spectrometry). At the National Water Quality Laboratory during water year 1998, lack of precision was indicated for 2 of 17 nutrient procedures: ammonia as nitrogen (dissolved, colorimetric) and orthophosphate as phosphorus (dissolved, colorimetric). Bias was indicated throughout the reference sample range for ammonia as nitrogen (dissolved, colorimetric, low level) and nitrate plus nitrite as nitrogen (dissolved, colorimetric, low level). All analytical procedures tested at the Quality of Water Service Unit during water year 1998 met the criteria for precision. One of the 63 analytical procedures indicated a bias throughout the range of reference samples: aluminum (whole-water recoverable, inductively coupled plasma-atomic emission spectrometry, trace).
Influence function based variance estimation and missing data issues in case-cohort studies.
Mark, S D; Katki, H
2001-12-01
Recognizing that the efficiency in relative risk estimation for the Cox proportional hazards model is largely constrained by the total number of cases, Prentice (1986) proposed the case-cohort design in which covariates are measured on all cases and on a random sample of the cohort. Subsequent to Prentice, other methods of estimation and sampling have been proposed for these designs. We formalize an approach to variance estimation suggested by Barlow (1994), and derive a robust variance estimator based on the influence function. We consider the applicability of the variance estimator to all the proposed case-cohort estimators, and derive the influence function when known sampling probabilities in the estimators are replaced by observed sampling fractions. We discuss the modifications required when cases are missing covariate information. The missingness may occur by chance, and be completely at random; or may occur as part of the sampling design, and depend upon other observed covariates. We provide an adaptation of S-plus code that allows estimating influence function variances in the presence of such missing covariates. Using examples from our current case-cohort studies on esophageal and gastric cancer, we illustrate how our results our useful in solving design and analytic issues that arise in practice.
NASA Astrophysics Data System (ADS)
Hadi, S.; Artanti, A. N.; Rinanto, Y.; Wahyuni, D. S. C.
2018-04-01
Curcuminoid, consisting of curcumin, demethoxycurcumin and bis demethoxycurcumin, is the major compound in Curcuma longa L. and Curcuma xanthorrhiza rhizome. It has been known to have a potent antioxidants, anticancer, antibacteria activity. Those rhizomes needs to be dried beforehand which influenced the active compounds concentration. The present work was conducted to assess the curcuminoid content of C. longa L. and C. xanthorrhiza based on drying method with Nuclear Magnetic Resonance (NMR) and High Pressure Liquid Chromatography (HPLC)-UVD. Samples were collected and dried using freeze-drying and oven method. The latter is the common method applied in most drying method at herbal medicine preparation procedure. All samples were extracted using 96% ethanol and analyzed using NMR and HPLC-UVD. Curcuminoid as a bioactive compound in the sample exhibited no significant difference and weak significant difference in C. xanthorrhiza and C. longa L., respectively. HLPC-UVD as a reliable analytical method for the quantification is subsequently used to confirm of the data obtained by NMR. It resulted that curcuminoid content showed no significant difference in both samples. This replied that curcuminoids content in both samples were stable into heating process. These results are useful information for simplicia standardization method in pharmaceutical products regarding to preparation procedure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietz, M. L.
1998-11-30
The determination of low levels of radionuclides in environmental and biological samples is often hampered by the complex and variable nature of the samples. One approach to circumventing this problem is to incorporate into the analytical scheme a separation and preconcentration step by which the species of interest can be isolated from the major constituents of the sample. Extraction chromatography (EXC), a form of liquid chromatography in which the stationary phase comprises an extractant or a solution of an extractant in an appropriate diluent coated onto an inert support, provides a simple and efficient means of performing a wide varietymore » of metal ion separations. Recent advances in extractant design, in particular the development of extractants capable of metal ion recognition or of strong complex formation even in acidic media, have substantially improved the utility of the method. For the preconcentration of actinides, for example, an EXC resin consisting of a liquid diphosphonic acid supported on a polymeric substrate has been shown to exhibit extraordinarily strong retention of these elements from acidic chloride media. This resin, together with other related materials, can provide the basis of a number of efficient and flexible schemes for the separation and preconcentration of radionuclides form a variety of samples for subsequent determination.« less
Bhushan, Ravi; Sen, Arijit
2017-04-01
Very few Indian studies exist on evaluation of pre-analytical variables affecting "Prothrombin Time" the commonest coagulation assay performed. The study was performed in an Indian tertiary care setting with an aim to assess quantitatively the prevalence of pre-analytical variables and their effects on the results (patient safety), for Prothrombin time test. The study also evaluated their effects on the result and whether intervention, did correct the results. The firstly evaluated the prevalence for various pre-analytical variables detected in samples sent for Prothrombin Time testing. These samples with the detected variables wherever possible were tested and result noted. The samples from the same patients were repeated and retested ensuring that no pre-analytical variable is present. The results were again noted to check for difference the intervention produced. The study evaluated 9989 samples received for PT/INR over a period of 18 months. The prevalence of different pre-analytical variables was found to be 862 (8.63%). The proportion of various pre-analytical variables detected were haemolysed samples 515 (5.16%), over filled vacutainers 62 (0.62%), under filled vacutainers 39 (0.39%), low values 205 (2.05%), clotted samples 11 (0.11%), wrong labeling 4 (0.04%), wrong vacutainer use 2 (0.02%), chylous samples 7 (0.07%) and samples with more than one variable 17 (0.17%). The comparison of percentage of samples showing errors were noted for the first variables since they could be tested with and without the variable in place. The reduction in error percentage was 91.5%, 69.2%, 81.5% and 95.4% post intervention for haemolysed, overfilled, under filled and samples collected with excess pressure at phlebotomy respectively. Correcting the variables did reduce the error percentage to a great extent in these four variables and hence the variables are found to affect "Prothrombin Time" testing and can hamper patient safety.
Fernández de la Ossa, Ma Ángeles; Ortega-Ojeda, Fernando; García-Ruiz, Carmen
2014-11-01
This work reports an investigation for the analysis of different paper samples using CE with laser-induced detection. Papers from four different manufactures (white-copy paper) and four different paper sources (white and recycled-copy papers, adhesive yellow paper notes and restaurant serviettes) were pulverized by scratching with a surgical scalpel prior to their derivatization with a fluorescent labeling agent, 8-aminopyrene-1,3,6-trisulfonic acid. Methodological conditions were evaluated, specifically the derivatization conditions with the aim to achieve the best S/N signals and the separation conditions in order to obtain optimum values of sensitivity and reproducibility. The best conditions, in terms of fastest, and easiest sample preparation procedure, minimal sample consumption, as well as the use of the simplest and fastest CE-procedure for obtaining the best analytical parameters, were applied to the analysis of the different paper samples. The registered electropherograms were pretreated (normalized and aligned) and subjected to multivariate analysis (principal component analysis). A successful discrimination among paper samples without entanglements was achieved. To the best of our knowledge, this work presents the first approach to achieve a successful differentiation among visually similar white-copy paper samples produced by different manufactures and paper from different paper sources through their direct analysis by CE-LIF and subsequent comparative study of the complete cellulose electropherogram by chemometric tools. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
EPA’s Environmental Sampling and Analytical Methods (ESAM) is a website tool that supports the entire environmental characterization process from collection of samples all the way to their analyses.
STATISTICAL ANALYSIS OF TANK 5 FLOOR SAMPLE RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shine, E.
2012-03-14
Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F-Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume-proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non-overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primarymore » sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, radionuclide, inorganic, and anion concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some measurements above their MDCs. The identification of distributions and the selection of UCL95 procedures generally followed the protocol in Singh, Armbya, and Singh [2010]. When all of an analyte's measurements lie below their MDCs, only a summary of the MDCs can be provided. The measurement results reported by SRNL are listed in Appendix A, and the results of this analysis are reported in Appendix B. The data were generally found to follow a normal distribution, and to be homogeneous across composite samples.« less
Statistical Analysis of Tank 5 Floor Sample Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shine, E. P.
2013-01-31
Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F-Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume-proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non-overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primarymore » sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, and the radionuclide1, elemental, and chemical concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some measurements above their MDCs. The identification of distributions and the selection of UCL95 procedures generally followed the protocol in Singh, Armbya, and Singh [2010]. When all of an analyte's measurements lie below their MDCs, only a summary of the MDCs can be provided. The measurement results reported by SRNL are listed, and the results of this analysis are reported. The data were generally found to follow a normal distribution, and to be homogenous across composite samples.« less
Statistical Analysis Of Tank 5 Floor Sample Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shine, E. P.
2012-08-01
Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F-Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume-proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non-overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primarymore » sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, and the radionuclide, elemental, and chemical concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some measurements above their MDCs. The identification of distributions and the selection of UCL95 procedures generally followed the protocol in Singh, Armbya, and Singh [2010]. When all of an analyte's measurements lie below their MDCs, only a summary of the MDCs can be provided. The measurement results reported by SRNL are listed in Appendix A, and the results of this analysis are reported in Appendix B. The data were generally found to follow a normal distribution, and to be homogenous across composite samples.« less
System automatically supplies precise analytical samples of high-pressure gases
NASA Technical Reports Server (NTRS)
Langdon, W. M.
1967-01-01
High-pressure-reducing and flow-stabilization system delivers analytical gas samples from a gas supply. The system employs parallel capillary restrictors for pressure reduction and downstream throttling valves for flow control. It is used in conjunction with a sampling valve and minimizes alterations of the sampled gas.
NHEXAS PHASE I REGION 5 STUDY--QA ANALYTICAL RESULTS FOR VOCS IN BLANKS
This data set includes analytical results for measurements of VOCs in 88 blank samples. Measurements were made for up to 23 VOCs in blank samples of air, water, and blood. Blank samples were used to assess the potential for sample contamination during collection, storage, shipmen...
NHEXAS PHASE I ARIZONA STUDY--QA ANALYTICAL RESULTS FOR PESTICIDES IN BLANK SAMPLES
The Pesticides in Blank Samples data set contains the analytical results of measurements of up to 4 pesticides in 43 blank samples from 29 households. Measurements were made in blank samples of dust, indoor and outdoor air, food and beverages, blood, urine, and dermal wipe resid...
NHEXAS PHASE I MARYLAND STUDY--METALS IN DERMAL WIPES ANALYTICAL RESULTS
The Metals in Dermal Wipe Samples data set contains analytical results for measurements of up to 4 metals in 343 dermal wipe samples over 80 households. Each sample was collected from the primary respondent within each household. The sampling period occurred on the first day of...
NHEXAS PHASE I MARYLAND STUDY--QA ANALYTICAL RESULTS FOR METALS IN REPLICATE SAMPLES
The Metals in Replicates data set contains the analytical results of measurements of up to 11 metals in 88 replicate (duplicate) samples from 52 households. Measurements were made in samples of indoor and outdoor air, drinking water, food, and beverages. Duplicate samples for a...
NHEXAS PHASE I ARIZONA STUDY--METALS IN BLOOD ANALYTICAL RESULTS
The Metals in Blood data set contains analytical results for measurements of up to 2 metals in 165 blood samples over 165 households. Each sample was collected as a venous sample from the primary respondent within each household during Stage III of the NHEXAS study. The samples...
NHEXAS PHASE I MARYLAND STUDY--METALS IN BLOOD ANALYTICAL RESULTS
The Metals in Blood data set contains analytical results for measurements of up to 2 metals in 374 blood samples over 80 households. Each sample was collected via a venous sample from the primary respondent within each household by a phlebotomist. Samples were generally drawn o...
NHEXAS PHASE I MARYLAND STUDY--QA ANALYTICAL RESULTS FOR PESTICIDE METABOLITES IN BLANKS
The Pesticide Metabolites in Blanks data set contains the analytical results of measurements of up to 4 pesticide metabolites in 14 blank samples from 13 households. Measurements were made in blank samples of urine. Blank samples were used to assess the potential for sample con...
Bigus, Paulina; Tsakovski, Stefan; Simeonov, Vasil; Namieśnik, Jacek; Tobiszewski, Marek
2016-05-01
This study presents an application of the Hasse diagram technique (HDT) as the assessment tool to select the most appropriate analytical procedures according to their greenness or the best analytical performance. The dataset consists of analytical procedures for benzo[a]pyrene determination in sediment samples, which were described by 11 variables concerning their greenness and analytical performance. Two analyses with the HDT were performed-the first one with metrological variables and the second one with "green" variables as input data. Both HDT analyses ranked different analytical procedures as the most valuable, suggesting that green analytical chemistry is not in accordance with metrology when benzo[a]pyrene in sediment samples is determined. The HDT can be used as a good decision support tool to choose the proper analytical procedure concerning green analytical chemistry principles and analytical performance merits.
U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--QA ANALYTICAL RESULTS FOR METALS IN BLANK SAMPLES
The Metals in Blank Samples data set contains the analytical results of measurements of up to 27 metals in 52 blank samples. Measurements were made in blank samples of dust, indoor air, food, water, and dermal wipe residue. Blank samples were used to assess the potential for sa...
Analytical test results for archived core composite samples from tanks 241-TY-101 and 241-TY-103
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, M.A.
1993-07-16
This report describes the analytical tests performed on archived core composite samples form a 1.085 sampling of the 241-TY-101 (101-TY) and 241-TY-103 (103-TY) single shell waste tanks. Both tanks are suspected of containing quantities of ferrocyanide compounds, as a result of process activities in the late 1950`s. Although limited quantities of the composite samples remained, attempts were made to obtain as much analytical information as possible, especially regarding the chemical and thermal properties of the material.
SAM Radiochemical Methods Query
Laboratories measuring target radiochemical analytes in environmental samples can use this online query tool to identify analytical methods in EPA's Selected Analytical Methods for Environmental Remediation and Recovery for select radiochemical analytes.
NHEXAS PHASE I REGION 5 STUDY--METALS IN BLOOD ANALYTICAL RESULTS
This data set includes analytical results for measurements of metals in 165 blood samples. These samples were collected to examine the relationships between personal exposure measurements, environmental measurements, and body burden. Venous blood samples were collected by venipun...
NHEXAS PHASE I REGION 5 STUDY--VOCS IN BLOOD ANALYTICAL RESULTS
This data set includes analytical results for measurements of VOCs (volatile organic compounds) in 145 blood samples. These samples were collected to examine the relationships between personal exposure measurements, environmental measurements, and body burden. Venous blood sample...
Sample Collection Information Document is intended to provide sampling information to be used during site assessment, remediation and clearance activities following a chemical or radiological contamination incident.
Long, H.K.; Farrar, J.W.
1994-01-01
This report presents the results of the U.S. Geological Survey's analytical evaluation program for eight standard reference samples--T-127 (trace constituents), M-128 (major constituents), N-40 (nutrients), N-41 (nutrients), P-21 (low ionic strength), Hg-17 (mercury), AMW-3 (acid mine water), and WW-1 (whole water)--that were distributed in October 1993 to 158 laboratories registered in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 145 of the laboratories were evaluated with respect to: overall laboratory performance and relative laboratory performance for each analyte in the eight reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the eight standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.
Potential sources of analytical bias and error in selected trace element data-quality analyses
Paul, Angela P.; Garbarino, John R.; Olsen, Lisa D.; Rosen, Michael R.; Mebane, Christopher A.; Struzeski, Tedmund M.
2016-09-28
Potential sources of analytical bias and error associated with laboratory analyses for selected trace elements where concentrations were greater in filtered samples than in paired unfiltered samples were evaluated by U.S. Geological Survey (USGS) Water Quality Specialists in collaboration with the USGS National Water Quality Laboratory (NWQL) and the Branch of Quality Systems (BQS).Causes for trace-element concentrations in filtered samples to exceed those in associated unfiltered samples have been attributed to variability in analytical measurements, analytical bias, sample contamination either in the field or laboratory, and (or) sample-matrix chemistry. These issues have not only been attributed to data generated by the USGS NWQL but have been observed in data generated by other laboratories. This study continues the evaluation of potential analytical bias and error resulting from matrix chemistry and instrument variability by evaluating the performance of seven selected trace elements in paired filtered and unfiltered surface-water and groundwater samples collected from 23 sampling sites of varying chemistries from six States, matrix spike recoveries, and standard reference materials.Filtered and unfiltered samples have been routinely analyzed on separate inductively coupled plasma-mass spectrometry instruments. Unfiltered samples are treated with hydrochloric acid (HCl) during an in-bottle digestion procedure; filtered samples are not routinely treated with HCl as part of the laboratory analytical procedure. To evaluate the influence of HCl on different sample matrices, an aliquot of the filtered samples was treated with HCl. The addition of HCl did little to differentiate the analytical results between filtered samples treated with HCl from those samples left untreated; however, there was a small, but noticeable, decrease in the number of instances where a particular trace-element concentration was greater in a filtered sample than in the associated unfiltered sample for all trace elements except selenium. Accounting for the small dilution effect (2 percent) from the addition of HCl, as required for the in-bottle digestion procedure for unfiltered samples, may be one step toward decreasing the number of instances where trace-element concentrations are greater in filtered samples than in paired unfiltered samples.The laboratory analyses of arsenic, cadmium, lead, and zinc did not appear to be influenced by instrument biases. These trace elements showed similar results on both instruments used to analyze filtered and unfiltered samples. The results for aluminum and molybdenum tended to be higher on the instrument designated to analyze unfiltered samples; the results for selenium tended to be lower. The matrices used to prepare calibration standards were different for the two instruments. The instrument designated for the analysis of unfiltered samples was calibrated using standards prepared in a nitric:hydrochloric acid (HNO3:HCl) matrix. The instrument designated for the analysis of filtered samples was calibrated using standards prepared in a matrix acidified only with HNO3. Matrix chemistry may have influenced the responses of aluminum, molybdenum, and selenium on the two instruments. The best analytical practice is to calibrate instruments using calibration standards prepared in matrices that reasonably match those of the samples being analyzed.Filtered and unfiltered samples were spiked over a range of trace-element concentrations from less than 1 to 58 times ambient concentrations. The greater the magnitude of the trace-element spike concentration relative to the ambient concentration, the greater the likelihood spike recoveries will be within data control guidelines (80–120 percent). Greater variability in spike recoveries occurred when trace elements were spiked at concentrations less than 10 times the ambient concentration. Spike recoveries that were considerably lower than 90 percent often were associated with spiked concentrations substantially lower than what was present in the ambient sample. Because the main purpose of spiking natural water samples with known quantities of a particular analyte is to assess possible matrix effects on analytical results, the results of this study stress the importance of spiking samples at concentrations that are reasonably close to what is expected but sufficiently high to exceed analytical variability. Generally, differences in spike recovery results between paired filtered and unfiltered samples were minimal when samples were analyzed on the same instrument.Analytical results for trace-element concentrations in ambient filtered and unfiltered samples greater than 10 and 40 μg/L, respectively, were within the data-quality objective for precision of ±25 percent. Ambient trace-element concentrations in filtered samples greater than the long-term method detection limits but less than 10 μg/L failed to meet the data-quality objective for precision for at least one trace element in about 54 percent of the samples. Similarly, trace-element concentrations in unfiltered samples greater than the long-term method detection limits but less than 40 μg/L failed to meet this data-quality objective for at least one trace-element analysis in about 58 percent of the samples. Although, aluminum and zinc were particularly problematic, limited re-analyses of filtered and unfiltered samples appeared to improve otherwise failed analytical precision.The evaluation of analytical bias using standard reference materials indicate a slight low bias for results for arsenic, cadmium, selenium, and zinc. Aluminum and molybdenum show signs of high bias. There was no observed bias, as determined using the standard reference materials, during the analysis of lead.
chemical reaction engineering and transport phenomena Analytical analysis of complex bio-derived samples and Lignin Areas of Expertise Analytical analysis of complex samples Chemical reaction engineering and
Sampling Large Graphs for Anticipatory Analytics
2015-05-15
low. C. Random Area Sampling Random area sampling [8] is a “ snowball ” sampling method in which a set of random seed vertices are selected and areas... Sampling Large Graphs for Anticipatory Analytics Lauren Edwards, Luke Johnson, Maja Milosavljevic, Vijay Gadepally, Benjamin A. Miller Lincoln...systems, greater human-in-the-loop involvement, or through complex algorithms. We are investigating the use of sampling to mitigate these challenges
Design of analytical systems based on functionality of doped ice.
Okada, Tetsuo
2014-01-01
Ice plays an important role for the circulations of some compounds in the global environment. Both the ice surface and the liquid phase developed in a frozen solution are involved in such reactions of the molecules of environmental importance. This leads to the idea that ice can be used to design novel analytical reaction systems. We devised ice chromatography, in which ice particles are used as the liquid chromatographic stationary phase, and have subsequently developed various analytical systems utilizing the functionality of ice. This review focuses our attention on the analytical facets of ice containing impurities such as salts; hereinafter, we call this "doped ice". The design of novel separation systems and use as microreactors with doped ice are mainly discussed.
Vandekerckhove, Kristof; Seidl, Andreas; Gutka, Hiten; Kumar, Manish; Gratzl, Gyöngyi; Keire, David; Coffey, Todd; Kuehne, Henriette
2018-05-10
Leading regulatory agencies recommend biosimilar assessment to proceed in a stepwise fashion, starting with a detailed analytical comparison of the structural and functional properties of the proposed biosimilar and reference product. The degree of analytical similarity determines the degree of residual uncertainty that must be addressed through downstream in vivo studies. Substantive evidence of similarity from comprehensive analytical testing may justify a targeted clinical development plan, and thus enable a shorter path to licensing. The importance of a careful design of the analytical similarity study program therefore should not be underestimated. Designing a state-of-the-art analytical similarity study meeting current regulatory requirements in regions such as the USA and EU requires a methodical approach, consisting of specific steps that far precede the work on the actual analytical study protocol. This white paper discusses scientific and methodological considerations on the process of attribute and test method selection, criticality assessment, and subsequent assignment of analytical measures to US FDA's three tiers of analytical similarity assessment. Case examples of selection of critical quality attributes and analytical methods for similarity exercises are provided to illustrate the practical implementation of the principles discussed.
Ho, Robin S T; Wu, Xinyin; Yuan, Jinqiu; Liu, Siya; Lai, Xin; Wong, Samuel Y S; Chung, Vincent C H
2015-01-08
Meta-analysis (MA) of randomised trials is considered to be one of the best approaches for summarising high-quality evidence on the efficacy and safety of treatments. However, methodological flaws in MAs can reduce the validity of conclusions, subsequently impairing the quality of decision making. To assess the methodological quality of MAs on COPD treatments. A cross-sectional study on MAs of COPD trials. MAs published during 2000-2013 were sampled from the Cochrane Database of Systematic Reviews and Database of Abstracts of Reviews of Effect. Methodological quality was assessed using the validated AMSTAR (Assessing the Methodological Quality of Systematic Reviews) tool. Seventy-nine MAs were sampled. Only 18% considered the scientific quality of primary studies when formulating conclusions and 49% used appropriate meta-analytic methods to combine findings. The problems were particularly acute among MAs on pharmacological treatments. In 48% of MAs the authors did not report conflict of interest. Fifty-eight percent reported harmful effects of treatment. Publication bias was not assessed in 65% of MAs, and only 10% had searched non-English databases. The methodological quality of the included MAs was disappointing. Consideration of scientific quality when formulating conclusions should be made explicit. Future MAs should improve on reporting conflict of interest and harm, assessment of publication bias, prevention of language bias and use of appropriate meta-analytic methods.
Ho, Robin ST; Wu, Xinyin; Yuan, Jinqiu; Liu, Siya; Lai, Xin; Wong, Samuel YS; Chung, Vincent CH
2015-01-01
Background: Meta-analysis (MA) of randomised trials is considered to be one of the best approaches for summarising high-quality evidence on the efficacy and safety of treatments. However, methodological flaws in MAs can reduce the validity of conclusions, subsequently impairing the quality of decision making. Aims: To assess the methodological quality of MAs on COPD treatments. Methods: A cross-sectional study on MAs of COPD trials. MAs published during 2000–2013 were sampled from the Cochrane Database of Systematic Reviews and Database of Abstracts of Reviews of Effect. Methodological quality was assessed using the validated AMSTAR (Assessing the Methodological Quality of Systematic Reviews) tool. Results: Seventy-nine MAs were sampled. Only 18% considered the scientific quality of primary studies when formulating conclusions and 49% used appropriate meta-analytic methods to combine findings. The problems were particularly acute among MAs on pharmacological treatments. In 48% of MAs the authors did not report conflict of interest. Fifty-eight percent reported harmful effects of treatment. Publication bias was not assessed in 65% of MAs, and only 10% had searched non-English databases. Conclusions: The methodological quality of the included MAs was disappointing. Consideration of scientific quality when formulating conclusions should be made explicit. Future MAs should improve on reporting conflict of interest and harm, assessment of publication bias, prevention of language bias and use of appropriate meta-analytic methods. PMID:25569783
Asfaram, Arash; Ghaedi, Mehrorang; Dashtian, Kheibar
2017-01-01
Ultrasound-assisted dispersive solid phase microextraction followed by UV-vis spectrophotometer (UA-DSPME-UV-vis) was designed for extraction and preconcentration of nicotinamide (vitamin B 3 ) by HKUST-1 metal organic framework (MOF) based molecularly imprinted polymer (MIP). This new material was characterized by FTIR and FE-SEM techniques. The preliminary Plackett-Burman design was used for screening and subsequently the central composite design justifies significant terms and possible construction of mathematical equation which give the individual and cooperative contribution of variables like HKUST-1-MOF-NA-MIP mass, sonication time, temperature, eluent volume, pH and vortex time. Accordingly the optimum condition was set as: 2.0mg HKUST-1-MOF-NA-MIP, 200μL eluent and 5.0min sonication time in center points other variables were determined as the best conditions to reach the maximum recovery of the analyte. The UA-DSPME-UV-vis method performances like excellent linearity (LR), limits of detection (LOD), limits of quantification of 10-5000μgL -1 with R 2 of 0.99, LOD (1.96ngmL -1 ), LOQ (6.53μgL -1 ), respectively show successful and accurate applicability of the present method for monitoring analytes with within- and between-day precision of 0.96-3.38%. The average absolute recoveries of the nicotinamide extracted from the urine, milk and water samples were 95.85-101.27%. Copyright © 2016 Elsevier B.V. All rights reserved.
Tao, Yan; Xu, Jun; Liu, Xingang; Cheng, Youpu; Liu, Na; Chen, Zenglong; Dong, Fengshou; Zheng, Yonguan
2014-09-01
This paper describes a novel, rapid, and sensitive analytical method for monitoring four triazolone herbicides in cereals (wheat, rice, corn, and soybean), using a quick, easy, cheap, effective, rugged, and safe sample extraction procedure followed by ultrahigh performance liquid chromatography coupled with tandem mass spectrometry. The four triazolone herbicides (amicarbazone, carfentrazone-ethyl, sulfentrazone, and thiencarbazone-methyl) were extracted using acidified acetonitrile (containing 1% v/v formic acid) and subsequently purified with octadecylsilane (C18 ) prior to sample analysis. Ultrahigh performance liquid chromatography coupled with tandem mass spectrometry was operated in positive and negative ionization switching mode. Amicarbazone and carfentrazone-ethyl were detected in the positive mode (ESI+), while sulfentrazone and thiencarbazone-methyl were detected in the negative mode (ESI-). All compounds were successfully separated in less than 3.0 min. Further optimization achieved desired recoveries ranging from 74.5 to 102.1% for all analytes with relative standard deviation values ≤17.2% in all tested matrices at three levels (10, 100, and 500 μg/kg). The limits of detection for all compounds were ≤2.3 μg/kg, and the limits of quantitation did not exceed 7.1 μg/kg. The developed method showed excellent linearity (R(2) ≥ 0.994) and was proven to be highly efficient and reliable for the routine monitoring of triazolone herbicides in cereals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Perera, Piyumali K.; Gasser, Robin B.; Firestone, Simon M.; Smith, Lee; Roeber, Florian
2014-01-01
Oriental theileriosis is an emerging, tick-borne disease of bovines in the Asia-Pacific region and is caused by one or more genotypes of the Theileria orientalis complex. This study aimed to establish and validate a multiplexed tandem PCR (MT-PCR) assay using three distinct markers (major piroplasm surface protein, 23-kDa piroplasm membrane protein, and the first internal transcribed spacer of nuclear DNA), for the simultaneous detection and semiquantification of four genotypes (Buffeli, Chitose, Ikeda, and type 5) of the T. orientalis complex. Analytical specificity, analytical sensitivity, and repeatability of the established MT-PCR assay were assessed in a series of experiments. Subsequently, the assay was evaluated using 200 genomic DNA samples collected from cattle from farms on which oriental theileriosis outbreaks had occurred, and 110 samples from a region where no outbreaks had been reported. The results showed the MT-PCR assay specifically and reproducibly detected the expected genotypes (i.e., genotypes Buffeli, Chitose, Ikeda, and type 5) of the T. orientalis complex, reliably differentiated them, and was able to detect as little as 1 fg of genomic DNA from each genotype. The diagnostic specificity and sensitivity of the MT-PCR were estimated at 94.0% and 98.8%, respectively. The MT-PCR assay established here is a practical and effective diagnostic tool for the four main genotypes of T. orientalis complex in Australia and should assist studies of the epidemiology and pathophysiology of oriental theileriosis in the Asia-Pacific region. PMID:25339402
Moran, Paul; Bromaghin, Jeffrey F.; Masuda, Michele
2014-01-01
Many applications in ecological genetics involve sampling individuals from a mixture of multiple biological populations and subsequently associating those individuals with the populations from which they arose. Analytical methods that assign individuals to their putative population of origin have utility in both basic and applied research, providing information about population-specific life history and habitat use, ecotoxins, pathogen and parasite loads, and many other non-genetic ecological, or phenotypic traits. Although the question is initially directed at the origin of individuals, in most cases the ultimate desire is to investigate the distribution of some trait among populations. Current practice is to assign individuals to a population of origin and study properties of the trait among individuals within population strata as if they constituted independent samples. It seemed that approach might bias population-specific trait inference. In this study we made trait inferences directly through modeling, bypassing individual assignment. We extended a Bayesian model for population mixture analysis to incorporate parameters for the phenotypic trait and compared its performance to that of individual assignment with a minimum probability threshold for assignment. The Bayesian mixture model outperformed individual assignment under some trait inference conditions. However, by discarding individuals whose origins are most uncertain, the individual assignment method provided a less complex analytical technique whose performance may be adequate for some common trait inference problems. Our results provide specific guidance for method selection under various genetic relationships among populations with different trait distributions.
Moran, Paul; Bromaghin, Jeffrey F.; Masuda, Michele
2014-01-01
Many applications in ecological genetics involve sampling individuals from a mixture of multiple biological populations and subsequently associating those individuals with the populations from which they arose. Analytical methods that assign individuals to their putative population of origin have utility in both basic and applied research, providing information about population-specific life history and habitat use, ecotoxins, pathogen and parasite loads, and many other non-genetic ecological, or phenotypic traits. Although the question is initially directed at the origin of individuals, in most cases the ultimate desire is to investigate the distribution of some trait among populations. Current practice is to assign individuals to a population of origin and study properties of the trait among individuals within population strata as if they constituted independent samples. It seemed that approach might bias population-specific trait inference. In this study we made trait inferences directly through modeling, bypassing individual assignment. We extended a Bayesian model for population mixture analysis to incorporate parameters for the phenotypic trait and compared its performance to that of individual assignment with a minimum probability threshold for assignment. The Bayesian mixture model outperformed individual assignment under some trait inference conditions. However, by discarding individuals whose origins are most uncertain, the individual assignment method provided a less complex analytical technique whose performance may be adequate for some common trait inference problems. Our results provide specific guidance for method selection under various genetic relationships among populations with different trait distributions. PMID:24905464
Bicchi, Carlo; Cordero, Chiara; Liberto, Erica; Rubiolo, Patrizia; Sgorbini, Barbara; Sandra, Pat
2005-04-15
This study evaluates concentration capability of headspace sorptive extraction (HSSE) and the influence of sampling conditions on HSSE recovery of an analyte. A standard mixture in water of six high-to-medium volatility analytes (isobutyl methyl ketone, 3-hexanol, isoamyl acetate, 1,8-cineole, linalool and carvone) was used to sample the headspace by HSSE with stir bars coated with different polydimethylsiloxane (PDMS) volumes (20, 40, 55 and 110 microL, respectively), headspace vial volumes (8, 21.2, 40, 250 and 1000 mL), sampling temperatures (25, 50 and 75 degrees C) and sampling times (30, 60 and 120 min, and 4, 8 and 16 h). The concentration factors (CFs) of HSSE versus static headspace (S-HS) were also determined. Analytes sampled by the PDMS stir bars were recovered by thermal desorption (TDS) and analysed by capillary GC-MS. This study demonstrates how analyte recovery depends on its physico-chemical characteristics and affinity for PDMS (octanol-water partition coefficients), sampling temperatures (50 degrees C) and times (60 min), the volumes of headspace (40 mL) and of PDMS (in particular, for high volatility analytes). HSSE is also shown to be very effective for trace analysis. The HSSE CFs calculated versus S-HS with a 1000 mL headspace volumes at 25 degrees C during 4 h sampling ranged between 10(3) and 10(4) times for all analytes investigated while the limits of quantitation determined under the same conditions were in the nmol/L range.
NHEXAS PHASE I ARIZONA STUDY--QA ANALYTICAL RESULTS FOR METALS IN BLANK SAMPLES
The Metals in Blank Samples data set contains the analytical results of measurements of up to 27 metals in 82 blank samples from 26 households. Measurements were made in blank samples of dust, indoor and outdoor air, personal air, food, beverages, blood, urine, and dermal wipe r...
NHEXAS PHASE I REGION 5 STUDY--QA ANALYTICAL RESULTS FOR METALS IN BLANKS
This data set includes analytical results for measurements of metals in 205 blank samples and for particles in 64 blank samples. Measurements were made for up to 12 metals in blank samples of air, dust, soil, water, food and beverages, blood, hair, and urine. Blank samples were u...
U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--METALS IN BLOOD ANALYTICAL RESULTS
The Metals in Blood data set contains analytical results for measurements of up to 2 metals in 86 blood samples over 86 households. Each sample was collected as a venous sample from the primary respondent within each household. The samples consisted of two 3-mL tubes. The prim...
Analytical methods for the determination of personal care products in human samples: an overview.
Jiménez-Díaz, I; Zafra-Gómez, A; Ballesteros, O; Navalón, A
2014-11-01
Personal care products (PCPs) are organic chemicals widely used in everyday human life. Nowadays, preservatives, UV-filters, antimicrobials and musk fragrances are widely used PCPs. Different studies have shown that some of these compounds can cause adverse health effects, such as genotoxicity, which could even lead to mutagenic or carcinogenic effects, or estrogenicity because of their endocrine disruption activity. Due to the absence of official monitoring protocols, there is an increasing demand of analytical methods that allow the determination of those compounds in human samples in order to obtain more information regarding their behavior and fate in the human body. The complexity of the biological matrices and the low concentration levels of these compounds make necessary the use of advanced sample treatment procedures that afford both, sample clean-up, to remove potentially interfering matrix components, as well as the concentration of analytes. In the present work, a review of the more recent analytical methods published in the scientific literature for the determination of PCPs in human fluids and tissue samples, is presented. The work focused on sample preparation and the analytical techniques employed. Copyright © 2014 Elsevier B.V. All rights reserved.
A Paper-Based Electrochromic Array for Visualized Electrochemical Sensing.
Zhang, Fengling; Cai, Tianyi; Ma, Liang; Zhan, Liyuan; Liu, Hong
2017-01-31
We report a battery-powered, paper-based electrochromic array for visualized electrochemical sensing. The paper-based sensing system consists of six parallel electrochemical cells, which are powered by an aluminum-air battery. Each single electrochemical cell uses a Prussian Blue spot electrodeposited on an indium-doped tin oxide thin film as the electrochromic indicator. Each electrochemical cell is preloaded with increasing amounts of analyte. The sample activates the battery for the sensing. Both the preloaded analyte and the analyte in the sample initiate the color change of Prussian Blue to Prussian White. With a reaction time of 60 s, the number of electrochemical cells with complete color changes is correlated to the concentration of analyte in the sample. As a proof-of-concept analyte, lactic acid was detected semi-quantitatively using the naked eye.
Hosseini, Samira; Aeinehvand, Mohammad M; Uddin, Shah M; Benzina, Abderazak; Rothan, Hussin A; Yusof, Rohana; Koole, Leo H; Madou, Marc J; Djordjevic, Ivan; Ibrahim, Fatimah
2015-11-09
The application of microfluidic devices in diagnostic systems is well-established in contemporary research. Large specific surface area of microspheres, on the other hand, has secured an important position for their use in bioanalytical assays. Herein, we report a combination of microspheres and microfluidic disk in a unique hybrid platform for highly sensitive and selective detection of dengue virus. Surface engineered polymethacrylate microspheres with carefully designed functional groups facilitate biorecognition in a multitude manner. In order to maximize the utility of the microspheres' specific surface area in biomolecular interaction, the microfluidic disk was equipped with a micromixing system. The mixing mechanism (microballoon mixing) enhances the number of molecular encounters between spheres and target analyte by accessing the entire sample volume more effectively, which subsequently results in signal amplification. Significant reduction of incubation time along with considerable lower detection limits were the prime motivations for the integration of microspheres inside the microfluidic disk. Lengthy incubations of routine analytical assays were reduced from 2 hours to 5 minutes while developed system successfully detected a few units of dengue virus. Obtained results make this hybrid microsphere-microfluidic approach to dengue detection a promising avenue for early detection of this fatal illness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baglan, N.; Kim, S.B.; Cossonnet, C.
Organically bound tritium (OBT) has become of increased interest within the last decade, with a focus on its behaviour and also its analysis, which are important to assess tritium distribution in the environment. In contrast, there are no certified reference materials and no standard analytical method through the international organization related to OBT. In order to resolve this issue, an OBT international working group was created in May 2012. Over 20 labs from around the world participated and submitted their results for the first intercomparison exercise results on potato (Sep 2013). The samples, specially-prepared potatoes, were provided in March 2013more » to each participant. Technical information and results from this first exercise are discussed here for all the labs which have realised the five replicates necessary to allow a reliable statistical treatment. The results are encouraging as the increased number of participating labs did not degrade the observed dispersion of the results for a similar activity level. Therefore, the results do not seem to depend on the analytical procedure used. From this work an optimised procedure can start to be developed to deal with OBT analysis and will guide subsequent planned OBT trials by the international group.« less
Bernevic, Bogdan; El-Khatib, Ahmed H; Jakubowski, Norbert; Weller, Michael G
2018-04-02
The human copper-protein ceruloplasmin (Cp) is the major copper-containing protein in the human body. The accurate determination of Cp is mandatory for the reliable diagnosis of several diseases. However, the analysis of Cp has proven to be difficult. The aim of our work was a proof of concept for the determination of a metalloprotein-based on online immunocapture ICP-MS. The immuno-affinity step is responsible for the enrichment and isolation of the analyte from serum, whereas the compound-independent quantitation with ICP-MS delivers the sensitivity, precision, and large dynamic range. Off-line ELISA (enzyme-linked immunosorbent assay) was used in parallel to confirm the elution profile of the analyte with a structure-selective method. The total protein elution was observed with the 32 S mass trace. The ICP-MS signals were normalized on a 59 Co signal. The human copper-protein Cp could be selectively determined. This was shown with pure Cp and with a sample of human serum. The good correlation with off-line ELISA shows that Cp could be captured and eluted selectively from the anti-Cp affinity column and subsequently determined by the copper signal of ICP-MS.
Deformation of products cut on AWJ x-y tables and its suppression
NASA Astrophysics Data System (ADS)
Hlaváč, L. M.; Hlaváčová, I. M.; Plančár, Š.; Krenický, T.; Geryk, V.
2018-02-01
The aim of this study is namely investigation of the abrasive water jet (AWJ) cutting of column pieces on commercial x-y cutting machines with AWJ. The shape deformation in curved and/or stepped parts of cutting trajectories caused by both the trailback (declination angle) and the taper (inclination of cut walls) can be calculated from submitted analytical model. Some of the results were compared with data measured on samples cut on two types of commercial tables. The main motivation of this investigation is determination of the percentage difference between predicted and real distortion of cutting product, i.e. accuracy of prepared analytical model. Subsequently, the possibility of reduction of the distortion can be studied through implementation of the theoretical model into the control systems of the cutting machines with the system for cutting head tilting. Despite some limitations of the used AWJ machines the comparison of calculated dimensions with the real ones shows very good correlation of model and experimental data lying within the range of measurement uncertainty. Results on special device demonstrated that the shape deformation in curved parts of the cutting trajectory can be substantially reduced through tilting of the cutting head.
Application of modern autoradiography to nuclear forensic analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons-Davis, Tashi; Knight, Kim; Fitzgerald, Marc
Modern autoradiography techniques based on phosphorimaging technology using image plates (IPs) and digital scanning can identify heterogeneities in activity distributions and reveal material properties, serving to inform subsequent analyses. Here, we have adopted these advantages for applications in nuclear forensics, the technical analysis of radioactive or nuclear materials found outside of legal control to provide data related to provenance, production history, and trafficking route for the materials. IP autoradiography is a relatively simple, non-destructive method for sample characterization that records an image reflecting the relative intensity of alpha and beta emissions from a two-dimensional surface. Such data are complementary tomore » information gathered from radiochemical characterization via bulk counting techniques, and can guide the application of other spatially resolved techniques such as scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). IP autoradiography can image large 2-dimenstional areas (up to 20 × 40 cm), with relatively low detection limits for actinides and other radioactive nuclides, and sensitivity to a wide dynamic range (10 5) of activity density in a single image. Distributions of radioactivity in nuclear materials can be generated with a spatial resolution of approximately 50 μm using IP autoradiography and digital scanning. While the finest grain silver halide films still provide the best possible resolution (down to ~10 μm), IP autoradiography has distinct practical advantages such as shorter exposure times, no chemical post-processing, reusability, rapid plate scanning, and automated image digitization. Sample preparation requirements are minimal, and the analytical method does not consume or alter the sample. These advantages make IP autoradiography ideal for routine screening of nuclear materials, and for the identification of areas of interest for subsequent micro-characterization methods. Here in this article we present a summary of our setup, as modified for nuclear forensic sample analysis and related research, and provide examples of data from select samples from the nuclear fuel cycle and historical nuclear test debris.« less
Application of modern autoradiography to nuclear forensic analysis
Parsons-Davis, Tashi; Knight, Kim; Fitzgerald, Marc; ...
2018-05-20
Modern autoradiography techniques based on phosphorimaging technology using image plates (IPs) and digital scanning can identify heterogeneities in activity distributions and reveal material properties, serving to inform subsequent analyses. Here, we have adopted these advantages for applications in nuclear forensics, the technical analysis of radioactive or nuclear materials found outside of legal control to provide data related to provenance, production history, and trafficking route for the materials. IP autoradiography is a relatively simple, non-destructive method for sample characterization that records an image reflecting the relative intensity of alpha and beta emissions from a two-dimensional surface. Such data are complementary tomore » information gathered from radiochemical characterization via bulk counting techniques, and can guide the application of other spatially resolved techniques such as scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). IP autoradiography can image large 2-dimenstional areas (up to 20 × 40 cm), with relatively low detection limits for actinides and other radioactive nuclides, and sensitivity to a wide dynamic range (10 5) of activity density in a single image. Distributions of radioactivity in nuclear materials can be generated with a spatial resolution of approximately 50 μm using IP autoradiography and digital scanning. While the finest grain silver halide films still provide the best possible resolution (down to ~10 μm), IP autoradiography has distinct practical advantages such as shorter exposure times, no chemical post-processing, reusability, rapid plate scanning, and automated image digitization. Sample preparation requirements are minimal, and the analytical method does not consume or alter the sample. These advantages make IP autoradiography ideal for routine screening of nuclear materials, and for the identification of areas of interest for subsequent micro-characterization methods. Here in this article we present a summary of our setup, as modified for nuclear forensic sample analysis and related research, and provide examples of data from select samples from the nuclear fuel cycle and historical nuclear test debris.« less
Application of modern autoradiography to nuclear forensic analysis.
Parsons-Davis, Tashi; Knight, Kim; Fitzgerald, Marc; Stone, Gary; Caldeira, Lee; Ramon, Christina; Kristo, Michael
2018-05-01
Modern autoradiography techniques based on phosphorimaging technology using image plates (IPs) and digital scanning can identify heterogeneities in activity distributions and reveal material properties, serving to inform subsequent analyses. Here, we have adopted these advantages for applications in nuclear forensics, the technical analysis of radioactive or nuclear materials found outside of legal control to provide data related to provenance, production history, and trafficking route for the materials. IP autoradiography is a relatively simple, non-destructive method for sample characterization that records an image reflecting the relative intensity of alpha and beta emissions from a two-dimensional surface. Such data are complementary to information gathered from radiochemical characterization via bulk counting techniques, and can guide the application of other spatially resolved techniques such as scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). IP autoradiography can image large 2-dimenstional areas (up to 20×40cm), with relatively low detection limits for actinides and other radioactive nuclides, and sensitivity to a wide dynamic range (10 5 ) of activity density in a single image. Distributions of radioactivity in nuclear materials can be generated with a spatial resolution of approximately 50μm using IP autoradiography and digital scanning. While the finest grain silver halide films still provide the best possible resolution (down to ∼10μm), IP autoradiography has distinct practical advantages such as shorter exposure times, no chemical post-processing, reusability, rapid plate scanning, and automated image digitization. Sample preparation requirements are minimal, and the analytical method does not consume or alter the sample. These advantages make IP autoradiography ideal for routine screening of nuclear materials, and for the identification of areas of interest for subsequent micro-characterization methods. In this paper we present a summary of our setup, as modified for nuclear forensic sample analysis and related research, and provide examples of data from select samples from the nuclear fuel cycle and historical nuclear test debris. Copyright © 2018 Elsevier B.V. All rights reserved.
Du, Bowen; Lofton, Jonathan M; Peter, Katherine T; Gipe, Alexander D; James, C Andrew; McIntyre, Jenifer K; Scholz, Nathaniel L; Baker, Joel E; Kolodziej, Edward P
2017-09-20
Untreated urban stormwater runoff contributes to poor water quality in receiving waters. The ability to identify toxicants and other bioactive molecules responsible for observed adverse effects in a complex mixture of contaminants is critical to effective protection of ecosystem and human health, yet this is a challenging analytical task. The objective of this study was to develop analytical methods using liquid chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) to detect organic contaminants in highway runoff and in runoff-exposed fish (adult coho salmon, Oncorhynchus kisutch). Processing of paired water and tissue samples facilitated contaminant prioritization and aided investigation of chemical bioavailability and uptake processes. Simple, minimal processing effort solid phase extraction (SPE) and elution procedures were optimized for water samples, and selective pressurized liquid extraction (SPLE) procedures were optimized for fish tissues. Extraction methods were compared by detection of non-target features and target compounds (e.g., quantity and peak area), while minimizing matrix interferences. Suspect screening techniques utilized in-house and commercial databases to prioritize high-risk detections for subsequent MS/MS characterization and identification efforts. Presumptive annotations were also screened with an in-house linear regression (log K ow vs. retention time) to exclude isobaric compounds. Examples of confirmed identifications (via reference standard comparison) in highway runoff include ethoprophos, prometon, DEET, caffeine, cotinine, 4(or 5)-methyl-1H-methylbenzotriazole, and acetanilide. Acetanilide was also detected in runoff-exposed fish gill and liver samples. Further characterization of highway runoff and fish tissues (14 and 19 compounds, respectively with tentative identification by MS/MS data) suggests that many novel or poorly characterized organic contaminants exist in urban stormwater runoff and exposed biota.
Bade, Richard; Bijlsma, Lubertus; Sancho, Juan V; Baz-Lomba, Jose A; Castiglioni, Sara; Castrignanò, Erika; Causanilles, Ana; Gracia-Lor, Emma; Kasprzyk-Hordern, Barbara; Kinyua, Juliet; McCall, Ann-Kathrin; van Nuijs, Alexander L N; Ort, Christoph; Plósz, Benedek G; Ramin, Pedram; Rousis, Nikolaos I; Ryu, Yeonsuk; Thomas, Kevin V; de Voogt, Pim; Zuccato, Ettore; Hernández, Félix
2017-02-01
The popularity of new psychoactive substances (NPS) has grown in recent years, with certain NPS commonly and preferentially consumed even following the introduction of preventative legislation. With the objective to improve the knowledge on the use of NPS, a rapid and very sensitive method was developed for the determination of ten priority NPS (N-ethylcathinone, methylenedioxypyrovalerone (MDPV), methylone, butylone, methedrone, mephedrone, naphyrone, 25-C-NBOMe, 25-I-NBOMe and 25-B-NBOMe) in influent wastewater. Sample clean-up and pre-concentration was made by off-line solid phase extraction (SPE) with Oasis MCX cartridges. Isotopically labelled internal standards were used to correct for matrix effects and potential SPE losses. Following chromatographic separation on a C 18 column within 6 min, the compounds were measured by tandem mass spectrometry in positive ionization mode. The method was optimised and validated for all compounds. Limits of quantification were evaluated by spiking influent wastewater samples at 1 or 5 ng/L. An investigation into the stability of these compounds in influent wastewater was also performed, showing that, following acidification at pH 2, all compounds were relatively stable for up to 7 days. The method was then applied to influent wastewater samples from eight European countries, in which mephedrone, methylone and MDPV were detected. This work reveals that although NPS use is not as extensive as for classic illicit drugs, the application of a highly sensitive analytical procedure makes their detection in wastewater possible. The developed analytical methodology forms the basis of a subsequent model-based back-calculation of abuse rate in urban areas (i.e. wastewater-based epidemiology). Copyright © 2016 Elsevier Ltd. All rights reserved.
Lakshmanan, Manu N.; Greenberg, Joel A.; Samei, Ehsan; Kapadia, Anuj J.
2017-01-01
Abstract. Although transmission-based x-ray imaging is the most commonly used imaging approach for breast cancer detection, it exhibits false negative rates higher than 15%. To improve cancer detection accuracy, x-ray coherent scatter computed tomography (CSCT) has been explored to potentially detect cancer with greater consistency. However, the 10-min scan duration of CSCT limits its possible clinical applications. The coded aperture coherent scatter spectral imaging (CACSSI) technique has been shown to reduce scan time through enabling single-angle imaging while providing high detection accuracy. Here, we use Monte Carlo simulations to test analytical optimization studies of the CACSSI technique, specifically for detecting cancer in ex vivo breast samples. An anthropomorphic breast tissue phantom was modeled, a CACSSI imaging system was virtually simulated to image the phantom, a diagnostic voxel classification algorithm was applied to all reconstructed voxels in the phantom, and receiver-operator characteristics analysis of the voxel classification was used to evaluate and characterize the imaging system for a range of parameters that have been optimized in a prior analytical study. The results indicate that CACSSI is able to identify the distribution of cancerous and healthy tissues (i.e., fibroglandular, adipose, or a mix of the two) in tissue samples with a cancerous voxel identification area-under-the-curve of 0.94 through a scan lasting less than 10 s per slice. These results show that coded aperture scatter imaging has the potential to provide scatter images that automatically differentiate cancerous and healthy tissue within ex vivo samples. Furthermore, the results indicate potential CACSSI imaging system configurations for implementation in subsequent imaging development studies. PMID:28331884
Pereira, Jorge; Câmara, José S; Colmsjö, Anders; Abdel-Rehim, Mohamed
2014-06-01
Sample preparation is an important analytical step regarding the isolation and concentration of desired components from complex matrices and greatly influences their reliable and accurate analysis and data quality. It is the most labor-intensive and error-prone process in analytical methodology and, therefore, may influence the analytical performance of the target analytes quantification. Many conventional sample preparation methods are relatively complicated, involving time-consuming procedures and requiring large volumes of organic solvents. Recent trends in sample preparation include miniaturization, automation, high-throughput performance, on-line coupling with analytical instruments and low-cost operation through extremely low volume or no solvent consumption. Micro-extraction techniques, such as micro-extraction by packed sorbent (MEPS), have these advantages over the traditional techniques. This paper gives an overview of MEPS technique, including the role of sample preparation in bioanalysis, the MEPS description namely MEPS formats (on- and off-line), sorbents, experimental and protocols, factors that affect the MEPS performance, and the major advantages and limitations of MEPS compared with other sample preparation techniques. We also summarize MEPS recent applications in bioanalysis. Copyright © 2014 John Wiley & Sons, Ltd.
Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Lindley, Chris E.; Losche, Scott A.; Barber, Larry B.
2012-01-01
A new analytical method has been developed and implemented at the U.S. Geological Survey National Water Quality Laboratory that determines a suite of 20 steroid hormones and related compounds in filtered water (using laboratory schedule 2434) and in unfiltered water (using laboratory schedule 4434). This report documents the procedures and initial performance data for the method and provides guidance on application of the method and considerations of data quality in relation to data interpretation. The analytical method determines 6 natural and 3 synthetic estrogen compounds, 6 natural androgens, 1 natural and 1 synthetic progestin compound, and 2 sterols: cholesterol and 3--coprostanol. These two sterols have limited biological activity but typically are abundant in wastewater effluents and serve as useful tracers. Bisphenol A, an industrial chemical used primarily to produce polycarbonate plastic and epoxy resins and that has been shown to have estrogenic activity, also is determined by the method. A technique referred to as isotope-dilution quantification is used to improve quantitative accuracy by accounting for sample-specific procedural losses in the determined analyte concentration. Briefly, deuterium- or carbon-13-labeled isotope-dilution standards (IDSs), all of which are direct or chemically similar isotopic analogs of the method analytes, are added to all environmental and quality-control and quality-assurance samples before extraction. Method analytes and IDS compounds are isolated from filtered or unfiltered water by solid-phase extraction onto an octadecylsilyl disk, overlain with a graded glass-fiber filter to facilitate extraction of unfiltered sample matrices. The disks are eluted with methanol, and the extract is evaporated to dryness, reconstituted in solvent, passed through a Florisil solid-phase extraction column to remove polar organic interferences, and again evaporated to dryness in a reaction vial. The method compounds are reacted with activated -methyl--trimethylsilyl trifluoroacetamide at 65 degrees Celsius for 1 hour to form trimethylsilyl or trimethylsilyl-enol ether derivatives that are more amenable to gas chromatographic separation than the underivatized compounds. Analysis is carried out by gas chromatography with tandem mass spectrometry using calibration standards that are derivatized concurrently with the sample extracts. Analyte concentrations are quantified relative to specific IDS compounds in the sample, which directly compensate for procedural losses (incomplete recovery) in the determined and reported analyte concentrations. Thus, reported analyte concentrations (or analyte recoveries for spiked samples) are corrected based on recovery of the corresponding IDS compound during the quantification process. Recovery for each IDS compound is reported for each sample and represents an absolute recovery in a manner comparable to surrogate recoveries for other organic methods used by the National Water Quality Laboratory. Thus, IDS recoveries provide a useful tool for evaluating sample-specific analytical performance from an absolute mass recovery standpoint. IDS absolute recovery will differ and typically be lower than the corresponding analyte’s method recovery in spiked samples. However, additional correction of reported analyte concentrations is unnecessary and inappropriate because the analyte concentration (or recovery) already is compensated for by the isotope-dilution quantification procedure. Method analytes were spiked at 10 and 100 nanograms per liter (ng/L) for most analytes (10 times greater spike levels were used for bisphenol A and 100 times greater spike levels were used for 3--coprostanol and cholesterol) into the following validation-sample matrices: reagent water, wastewater-affected surface water, a secondary-treated wastewater effluent, and a primary (no biological treatment) wastewater effluent. Overall method recovery for all analytes in these matrices averaged 100 percent, with overall relative standard deviation of 28 percent. Mean recoveries of the 20 individual analytes for spiked reagent-water samples prepared along with field samples and analyzed in 2009–2010 ranged from 84–104 percent, with relative standard deviations of 6–36 percent. Concentrations for two analytes, equilin and progesterone, are reported as estimated because these analytes had excessive bias or variability, or both. Additional database coding is applied to other reported analyte data as needed, based on sample-specific IDS recovery performance. Detection levels were derived statistically by fortifying reagent water at six different levels (0.1 to 4 ng/L) and range from about 0.4 to 4 ng/L for 16 analytes. Interim reporting levels applied to analytes in this report range from 0.8 to 8 ng/L. Bisphenol A and the sterols (cholesterol and 3-beta-coprostanol) were consistently detected in laboratory and field blanks. The minimum reporting levels were set at 100 ng/L for bisphenol A and at 200 ng/L for the two sterols to prevent any bias associated with the presence of these compounds in the blanks. A minimum reporting level of 2 ng/L was set for 11-ketotestosterone to minimize false positive risk from an interfering siloxane compound emanating as chromatographic-column bleed, from vial septum material, or from other sources at no more than 1 ng/L.
Development and Applications of Liquid Sample Desorption Electrospray Ionization Mass Spectrometry
NASA Astrophysics Data System (ADS)
Zheng, Qiuling; Chen, Hao
2016-06-01
Desorption electrospray ionization mass spectrometry (DESI-MS) is a recent advance in the field of analytical chemistry. This review surveys the development of liquid sample DESI-MS (LS-DESI-MS), a variant form of DESI-MS that focuses on fast analysis of liquid samples, and its novel analy-tical applications in bioanalysis, proteomics, and reaction kinetics. Due to the capability of directly ionizing liquid samples, liquid sample DESI (LS-DESI) has been successfully used to couple MS with various analytical techniques, such as microfluidics, microextraction, electrochemistry, and chromatography. This review also covers these hyphenated techniques. In addition, several closely related ionization methods, including transmission mode DESI, thermally assisted DESI, and continuous flow-extractive DESI, are briefly discussed. The capabilities of LS-DESI extend and/or complement the utilities of traditional DESI and electrospray ionization and will find extensive and valuable analytical application in the future.
Khan, Wahid; Kumar, Neeraj
2011-06-01
Paromomycin (PM) is an aminoglycoside antibiotic, first isolated in the 1950s, and approved in 2006 for treatment of visceral leishmaniasis. Although isolated six decades back, sufficient information essential for development of pharmaceutical formulation is not available for PM. The purpose of this paper was to determine thermal stability and development of new analytical method for formulation development of PM. PM was characterized by thermoanalytical (DSC, TGA, and HSM) and by spectroscopic (FTIR) techniques and these techniques were used to establish thermal stability of PM after heating PM at 100, 110, 120, and 130 °C for 24 h. Biological activity of these heated samples was also determined by microbiological assay. Subsequently, a simple, rapid and sensitive RP-HPLC method for quantitative determination of PM was developed using pre-column derivatization with 9-fluorenylmethyl chloroformate. The developed method was applied to estimate PM quantitatively in two parenteral dosage forms. PM was successfully characterized by various stated techniques. These techniques indicated stability of PM for heating up to 120 °C for 24 h, but when heated at 130 °C, PM is liable to degradation. This degradation is also observed in microbiological assay where PM lost ∼30% of its biological activity when heated at 130 °C for 24 h. New analytical method was developed for PM in the concentration range of 25-200 ng/ml with intra-day and inter-day variability of < 2%RSD. Characterization techniques were established and stability of PM was determined successfully. Developed analytical method was found sensitive, accurate, and precise for quantification of PM. Copyright © 2010 John Wiley & Sons, Ltd. Copyright © 2010 John Wiley & Sons, Ltd.
Déglon, Julien; Versace, François; Lauer, Estelle; Widmer, Christèle; Mangin, Patrice; Thomas, Aurélien; Staub, Christian
2012-06-01
Dried blood spots (DBS) sampling has gained popularity in the bioanalytical community as an alternative to conventional plasma sampling, as it provides numerous benefits in terms of sample collection and logistics. The aim of this work was to show that these advantages can be coupled with a simple and cost-effective sample pretreatment, with subsequent rapid LC-MS/MS analysis for quantitation of 15 benzodiazepines, six metabolites and three Z-drugs. For this purpose, a simplified offline procedure was developed that consisted of letting a 5-µl DBS infuse directly into 100 µl of MeOH, in a conventional LC vial. The parameters related to the DBS pretreatment, such as extraction time or internal standard addition, were investigated and optimized, demonstrating that passive infusion in a regular LC vial was sufficient to quantitatively extract the analytes of interest. The method was validated according to international criteria in the therapeutic concentration ranges of the selected compounds. The presented strategy proved to be efficient for the rapid analysis of the selected drugs. Indeed, the offline sample preparation was reduced to a minimum, using a small amount of organic solvent and consumables, without affecting the accuracy of the method. Thus, this approach enables simple and rapid DBS analysis, even when using a non-DBS-dedicated autosampler, while lowering the costs and environmental impact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streets, W.E.
As the need for rapid and more accurate determinations of gamma-emitting radionuclides in environmental and mixed waste samples grows, there is continued interest in the development of theoretical tools to eliminate the need for some laboratory analyses and to enhance the quality of information from necessary analyses. In gamma spectrometry the use of theoretical self-absorption coefficients (SACs) can eliminate the need to determine the SAC empirically by counting a known source through each sample. This empirical approach requires extra counting time and introduces another source of counting error, which must be included in the calculation of results. The empirical determinationmore » of SACs is routinely used when the nuclides of interest are specified; theoretical determination of the SAC can enhance the information for the analysis of true unknowns, where there may be no prior knowledge about radionuclides present in a sample. Determination of an exact SAC does require knowledge about the total composition of a sample. In support of the Department of Energy`s (DOE) Environmental Survey Program, the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory developed theoretical self-absorption models to estimate SACs for the determination of non-specified radionuclides in samples of unknown, widely-varying, compositions. Subsequently, another SAC model, in a different counting geometry and for specified nuclides, was developed for another application. These two models are now used routinely for the determination of gamma-emitting radionuclides in a wide variety of environmental and mixed waste samples.« less
Koesukwiwat, Urairat; Vaclavik, Lukas; Mastovska, Katerina
2018-05-08
According to the European Commission directive 2006/141/EC, haloxyfop residue levels should not exceed 0.003 mg/kg in ready-to-feed infant formula, and the residue definition includes sum of haloxyfop, its esters, salts, and conjugates expressed as haloxyfop. A simple method for total haloxyfop analysis in infant formula and related ingredient matrices was developed and validated using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The sample preparation consisted of an alkaline hydrolysis with methanolic sodium hydroxide to release haloxyfop (parent acid) from its bound forms prior to the extraction with acetonitrile. A mixture of magnesium sulfate (MgSO 4 ) and sodium chloride (NaCl) (4:1, w/w) was added to the extract to induce phase separation and force the analyte into the upper acetonitrile-methanol layer and then a 1-mL aliquot was subsequently cleaned up by dispersive solid phase extraction with 150 mg of MgSO 4 and 50 mg of octadecyl (C 18 ) sorbent. The analytical procedure was developed and carefully optimized to enable low-level, total haloxyfop analysis in a variety of challenging matrices, including infant formulas and their important high-carbohydrate, high-protein, high-fat, and emulsifier ingredients. The final method was validated in two different laboratories by fortifying samples with haloxyfop and haloxyfop-methyl, which was used as a model compound simulating bound forms of the analyte. Mean recoveries of haloxyfop across all fortification levels and evaluated matrices ranged between 92.2 and 114% with repeatability, within-lab reproducibility, and reproducibility RSDs ≤ 14%. Based on the validation results, this method was capable to convert the haloxyfop ester into the parent acid in a wide range of sample types and to reliably identify and quantify total haloxyfop at the target 0.003 mg/kg level in infant formulas (both powdered and ready-to-feed liquid forms). Graphical abstract LC-MS/MS-based workflow for the determination of the total haloxyfop in infant formula and related ingredients.
Method of multiplexed analysis using ion mobility spectrometer
Belov, Mikhail E [Richland, WA; Smith, Richard D [Richland, WA
2009-06-02
A method for analyzing analytes from a sample introduced into a Spectrometer by generating a pseudo random sequence of a modulation bins, organizing each modulation bin as a series of submodulation bins, thereby forming an extended pseudo random sequence of submodulation bins, releasing the analytes in a series of analyte packets into a Spectrometer, thereby generating an unknown original ion signal vector, detecting the analytes at a detector, and characterizing the sample using the plurality of analyte signal subvectors. The method is advantageously applied to an Ion Mobility Spectrometer, and an Ion Mobility Spectrometer interfaced with a Time of Flight Mass Spectrometer.
Analytical study of comet nucleus samples
NASA Technical Reports Server (NTRS)
Albee, A. L.
1989-01-01
Analytical procedures for studying and handling frozen (130 K) core samples of comet nuclei are discussed. These methods include neutron activation analysis, x ray fluorescent analysis and high resolution mass spectroscopy.
Lubin, Arnaud; Sheng, Sheng; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip
2017-11-17
Lack of knowledge on the expected concentration range or insufficient linear dynamic range of the analytical method applied are common challenges for the analytical scientist. Samples that are above the upper limit of quantification are typically diluted and reanalyzed. The analysis of undiluted highly concentrated samples can cause contamination of the system, while the dilution step is time consuming and as the case for any sample preparation step, also potentially leads to precipitation, adsorption or degradation of the analytes. Copyright © 2017 Elsevier B.V. All rights reserved.
Paper SERS chromatography for detection of trace analytes in complex samples
NASA Astrophysics Data System (ADS)
Yu, Wei W.; White, Ian M.
2013-05-01
We report the application of paper SERS substrates for the detection of trace quantities of multiple analytes in a complex sample in the form of paper chromatography. Paper chromatography facilitates the separation of different analytes from a complex sample into distinct sections in the chromatogram, which can then be uniquely identified using SERS. As an example, the separation and quantitative detection of heroin in a highly fluorescent mixture is demonstrated. Paper SERS chromatography has obvious applications, including law enforcement, food safety, and border protection, and facilitates the rapid detection of chemical and biological threats at the point of sample.
Steuer, Andrea E; Forss, Anna-Maria; Dally, Annika M; Kraemer, Thomas
2014-11-01
In the context of driving under the influence of drugs (DUID), not only common drugs of abuse may have an influence, but also medications with similar mechanisms of action. Simultaneous quantification of a variety of drugs and medications relevant in this context allows faster and more effective analyses. Therefore, multi-analyte approaches have gained more and more popularity in recent years. Usually, calibration curves for such procedures contain a mixture of all analytes, which might lead to mutual interferences. In this study we investigated whether the use of such mixtures leads to reliable results for authentic samples containing only one or two analytes. Five hundred microliters of whole blood were extracted by routine solid-phase extraction (SPE, HCX). Analysis was performed on an ABSciex 3200 QTrap instrument with ESI+ in scheduled MRM mode. The method was fully validated according to international guidelines including selectivity, recovery, matrix effects, accuracy and precision, stabilities, and limit of quantification. The selected SPE provided recoveries >60% for all analytes except 6-monoacetylmorphine (MAM) with coefficients of variation (CV) below 15% or 20% for quality controls (QC) LOW and HIGH, respectively. Ion suppression >30% was found for benzoylecgonine, hydrocodone, hydromorphone, MDA, oxycodone, and oxymorphone at QC LOW, however CVs were always below 10% (n=6 different whole blood samples). Accuracy and precision criteria were fulfilled for all analytes except for MAM. Systematic investigation of accuracy determined for QC MED in a multi-analyte mixture compared to samples containing only single analytes revealed no relevant differences for any analyte, indicating that a multi-analyte calibration is suitable for the presented method. Comparison of approximately 60 samples to a former GC-MS method showed good correlation. The newly validated method was successfully applied to more than 1600 routine samples and 3 proficiency tests. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Appendix A : literature review.
DOT National Transportation Integrated Search
2013-03-01
This appendix contains a review of the literature and other background information : germane to the experimental and analytical research presented in subsequent appendices. Table : 1 lists the sections and topics contained in this appendix and those ...
European Multicenter Study on Analytical Performance of DxN Veris System HCV Assay.
Braun, Patrick; Delgado, Rafael; Drago, Monica; Fanti, Diana; Fleury, Hervé; Gismondo, Maria Rita; Hofmann, Jörg; Izopet, Jacques; Kühn, Sebastian; Lombardi, Alessandra; Marcos, Maria Angeles; Sauné, Karine; O'Shea, Siobhan; Pérez-Rivilla, Alfredo; Ramble, John; Trimoulet, Pascale; Vila, Jordi; Whittaker, Duncan; Artus, Alain; Rhodes, Daniel W
2017-04-01
The analytical performance of the Veris HCV Assay for use on the new and fully automated Beckman Coulter DxN Veris Molecular Diagnostics System (DxN Veris System) was evaluated at 10 European virology laboratories. Precision, analytical sensitivity, specificity, and performance with negative samples, linearity, and performance with hepatitis C virus (HCV) genotypes were evaluated. Precision for all sites showed a standard deviation (SD) of 0.22 log 10 IU/ml or lower for each level tested. Analytical sensitivity determined by probit analysis was between 6.2 and 9.0 IU/ml. Specificity on 94 unique patient samples was 100%, and performance with 1,089 negative samples demonstrated 100% not-detected results. Linearity using patient samples was shown from 1.34 to 6.94 log 10 IU/ml. The assay demonstrated linearity upon dilution with all HCV genotypes. The Veris HCV Assay demonstrated an analytical performance comparable to that of currently marketed HCV assays when tested across multiple European sites. Copyright © 2017 American Society for Microbiology.
An Overview of Conventional and Emerging Analytical Methods for the Determination of Mycotoxins
Cigić, Irena Kralj; Prosen, Helena
2009-01-01
Mycotoxins are a group of compounds produced by various fungi and excreted into the matrices on which they grow, often food intended for human consumption or animal feed. The high toxicity and carcinogenicity of these compounds and their ability to cause various pathological conditions has led to widespread screening of foods and feeds potentially polluted with them. Maximum permissible levels in different matrices have also been established for some toxins. As these are quite low, analytical methods for determination of mycotoxins have to be both sensitive and specific. In addition, an appropriate sample preparation and pre-concentration method is needed to isolate analytes from rather complicated samples. In this article, an overview of methods for analysis and sample preparation published in the last ten years is given for the most often encountered mycotoxins in different samples, mainly in food. Special emphasis is on liquid chromatography with fluorescence and mass spectrometric detection, while in the field of sample preparation various solid-phase extraction approaches are discussed. However, an overview of other analytical and sample preparation methods less often used is also given. Finally, different matrices where mycotoxins have to be determined are discussed with the emphasis on their specific characteristics important for the analysis (human food and beverages, animal feed, biological samples, environmental samples). Various issues important for accurate qualitative and quantitative analyses are critically discussed: sampling and choice of representative sample, sample preparation and possible bias associated with it, specificity of the analytical method and critical evaluation of results. PMID:19333436
Sample injection and electrophoretic separation on a simple laminated paper based analytical device.
Xu, Chunxiu; Zhong, Minghua; Cai, Longfei; Zheng, Qingyu; Zhang, Xiaojun
2016-02-01
We described a strategy to perform multistep operations on a simple laminated paper-based separation device by using electrokinetic flow to manipulate the fluids. A laminated crossed-channel paper-based separation device was fabricated by cutting a filter paper sheet followed by lamination. Multiple function units including sample loading, sample injection, and electrophoretic separation were integrated on a single paper based analytical device for the first time, by applying potential at different reservoirs for sample, sample waste, buffer, and buffer waste. As a proof-of-concept demonstration, mixed sample solution containing carmine and sunset yellow were loaded in the sampling channel, and then injected into separation channel followed by electrophoretic separation, by adjusting the potentials applied at the four terminals of sampling and separation channel. The effects of buffer pH, buffer concentration, channel width, and separation time on resolution of electrophoretic separation were studied. This strategy may be used to perform multistep operations such as reagent dilution, sample injection, mixing, reaction, and separation on a single microfluidic paper based analytical device, which is very attractive for building micro total analysis systems on microfluidic paper based analytical devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cautions Concerning Electronic Analytical Balances.
ERIC Educational Resources Information Center
Johnson, Bruce B.; Wells, John D.
1986-01-01
Cautions chemists to be wary of ferromagnetic samples (especially magnetized samples), stray electromagnetic radiation, dusty environments, and changing weather conditions. These and other conditions may alter readings obtained from electronic analytical balances. (JN)
The Pesticides and PCBs in Blood data set contains analytical results for measurements of up to 11 pesticides and up to 36 PCBs in 86 blood samples over 86 households. Each sample was collected as a venous sample from the primary respondent within each household. The samples co...
Herath, H M D R; Shaw, P N; Cabot, P; Hewavitharana, A K
2010-06-15
The high-performance liquid chromatography (HPLC) column is capable of enrichment/pre-concentration of trace impurities in the mobile phase during the column equilibration, prior to sample injection and elution. These impurities elute during gradient elution and result in significant chromatographic peaks. Three types of purified water were tested for their impurity levels, and hence their performances as mobile phase, in HPLC followed by total ion current (TIC) mode of MS. Two types of HPLC-grade water produced 3-4 significant peaks in solvent blanks while LC/MS-grade water produced no peaks (although peaks were produced by LC/MS-grade water also after a few days of standing). None of the three waters produced peaks in HPLC followed by UV-Vis detection. These peaks, if co-eluted with analyte, are capable of suppressing or enhancing the analyte signal in a MS detector. As it is not common practice to run solvent blanks in TIC mode, when quantification is commonly carried out using single ion monitoring (SIM) or single or multiple reaction monitoring (SRM or MRM), the effect of co-eluting impurities on the analyte signal and hence on the accuracy of the results is often unknown to the analyst. Running solvent blanks in TIC mode, regardless of the MS mode used for quantification, is essential in order to detect this problem and to take subsequent precautions. Copyright (c) 2010 John Wiley & Sons, Ltd.
Recent Trends in Analytical Methods to Determine New Psychoactive Substances in Hair
Kyriakou, Chrystalla; Pellegrini, Manuela; García-Algar, Oscar; Marinelli, Enrico; Zaami, Simona
2017-01-01
New Psychoactive Substances (NPS) belong to several chemical classes, including phenethylamines, piperazines, synthetic cathinones and synthetic cannabinoids. Development and validation of analytical methods for the determination of NPS both in traditional and alternative matrices is of crucial importance to study drug metabolism and to associate consumption to clinical outcomes and eventual intoxication symptoms. Among different biological matrices, hair is the one with the widest time window to investigate drug-related history and demonstrate past intake. The aim of this paper was to overview the trends of the rapidly evolving analytical methods for the determination of NPS in hair and the usefulness of these methods when applied to real cases. A number of rapid and sensitive methods for the determination of NPS in hair matrix has been recently published, most of them using liquid chromatography coupled to mass spectrometry. Hair digestion and subsequent solid phase extraction or liquid-liquid extraction were described as well as extraction in organic solvents. For most of the methods limits of quantification at picogram per milligram hair were obtained. The measured concentrations for most of the NPS in real samples were in the range of picograms of drug per milligram of hair. Interpretation of the results and lack of cut-off values for the discrimination between chronic consumption and occasional use or external contamination are still challenging. Methods for the determination of NPS in hair are continually emerging to include as many NPS as possible due to the great demand for their detection. PMID:27834146
Tsoi, Yeuk-Ki; Leung, Kelvin Sze-Yin
2011-04-22
This paper describes a novel application of tetrabutylammonium hydroxide-modified activated carbon (AC-TBAH) to the speciation of ultra-trace Se(IV) and Se(VI) using LC-ICP-DRC-MS. The anion exchange functionality was immobilized onto the AC surface enables selective preconcentration of inorganic Se anions in a wide range of working pHs. Simultaneous retention and elution of both analytes, followed by subsequent analysis with LC-ICP-DRC-MS, allows to accomplish speciation analysis in natural samples without complicated redox pre-treatment. The laboratory-made column of immobilized AC (0.4 g of sorbent packed in a 6 mL syringe barrel) has achieved analyte enrichment factors of 76 and 93, respectively, for Se(IV) and Se(VI), thus proving its superior preconcentration efficiency and selectivity over common AC. The considerable enhancement in sensitivity achieved by using the preconcentration column has improved the method's detection limits to 1.9-2.2 ng L(-1), which is a 100-fold improvement compared with direct injection. The analyte recoveries from heavily polluted river matrix were between 95.3 and 107.7% with less than 5.0% RSD. The robustness of the preconcentration and speciation method was validated by analysis of natural waters collected from rivers and reservoirs in Hong Kong. The modified AC material is hence presented as a low-cost yet robust substitute for conventional anion exchange resins for routine applications. Copyright © 2011 Elsevier B.V. All rights reserved.
NHEXAS PHASE I ARIZONA STUDY--METALS IN AIR ANALYTICAL RESULTS
The Metals in Air data set contains analytical results for measurements of up to 11 metals in 369 air samples over 175 households. Samples were taken by pumping standardized air volumes through filters at indoor and outdoor sites around each household being sampled. The primary...
Unexpected Analyte Oxidation during Desorption Electrospray Ionization - Mass Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasilis, Sofie P; Kertesz, Vilmos; Van Berkel, Gary J
2008-01-01
During the analysis of surface spotted analytes using desorption electrospray ionization mass spectrometry (DESI-MS), abundant ions are sometimes observed that appear to be the result of oxygen addition reactions. In this investigation, the effect of sample aging, the ambient lab environment, spray voltage, analyte surface concentration, and surface type on this oxidative modification of spotted analytes, exemplified by tamoxifen and reserpine, during analysis by desorption electrospray ionization mass spectrometry was studied. Simple exposure of the samples to air and to ambient lighting increased the extent of oxidation. Increased spray voltage lead also to increased analyte oxidation, possibly as a resultmore » of oxidative species formed electrochemically at the emitter electrode or in the gas - phase by discharge processes. These oxidative species are carried by the spray and impinge on and react with the sampled analyte during desorption/ionization. The relative abundance of oxidized species was more significant for analysis of deposited analyte having a relatively low surface concentration. Increasing spray solvent flow rate and addition of hydroquinone as a redox buffer to the spray solvent were found to decrease, but not entirely eliminate, analyte oxidation during analysis. The major parameters that both minimize and maximize analyte oxidation were identified and DESI-MS operational recommendations to avoid these unwanted reactions are suggested.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
VISWANATH, R.S.
This data package presents sampling data and analytical results from the September 22 and 27, 1999, headspace vapor sampling of Hanford Site Tank 241-2-361 during sludge core removal. The Lockheed Martin Hanford Corporation (LMHC) sampling team collected the samples and Waste Management Laboratory (WML) analyzed the samples in accordance with the requirements specified in the 241-2361 Sludge Characterization Sampling and Analysis Plan, (SAP), HNF-4371, Rev. 1, (Babcock and Wilcox Hanford Corporation, 1999). Six SUMMA{trademark} canister samples were collected on each day (1 ambient field blank and 5 tank vapor samples collected when each core segment was removed). The samples weremore » radiologically released on September 28 and October 4, 1999, and received at the laboratory on September 29 and October 6, 1999. Target analytes were not detected at concentrations greater than their notification limits as specified in the SAP. Analytical results for the target analytes and tentatively identified compounds (TICs) are presented in Section 2.2.2 starting on page 2B-7. Three compounds identified for analysis in the SAP were analyzed as TICs. The discussion of this modification is presented in Section 2.2.1.2.« less
Swarm intelligence metaheuristics for enhanced data analysis and optimization.
Hanrahan, Grady
2011-09-21
The swarm intelligence (SI) computing paradigm has proven itself as a comprehensive means of solving complicated analytical chemistry problems by emulating biologically-inspired processes. As global optimum search metaheuristics, associated algorithms have been widely used in training neural networks, function optimization, prediction and classification, and in a variety of process-based analytical applications. The goal of this review is to provide readers with critical insight into the utility of swarm intelligence tools as methods for solving complex chemical problems. Consideration will be given to algorithm development, ease of implementation and model performance, detailing subsequent influences on a number of application areas in the analytical, bioanalytical and detection sciences.
FDA Bacteriological Analytical Manual, Chapter 10, 2003: Listeria monocytogenes
FDA Bacteriological Analytical Manual, Chapter 10 describes procedures for analysis of food samples and may be adapted for assessment of solid, particulate, aerosol, liquid and water samples containing Listeria monocytogenes.
Thermoelectrically cooled water trap
Micheels, Ronald H [Concord, MA
2006-02-21
A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.
Verification of out-of-control situations detected by "average of normal" approach.
Liu, Jiakai; Tan, Chin Hon; Loh, Tze Ping; Badrick, Tony
2016-11-01
"Average of normal" (AoN) or "moving average" is increasingly used as an adjunct quality control tool in laboratory practice. Little guidance exists on how to verify if an out-of-control situation in the AoN chart is due to a shift in analytical performance, or underlying patient characteristics. Through simulation based on clinical data, we examined 1) the location of the last apparently stable period in the AoN control chart after an analytical shift, and 2) an approach to verify if the observed shift is related to an analytical shift by repeat testing of archived patient samples from the stable period for 21 common analytes. The number of blocks of results to look back for the stable period increased with the duration of the analytical shift, and was larger when smaller AoN block sizes were used. To verify an analytical shift, 3 archived samples from the analytically stable period should be retested. In particular, the process is deemed to have shifted if a difference of >2 analytical standard deviations (i.e. 1:2s rejection rule) between the original and retested results are observed in any of the 3 samples produced. The probability of Type-1 error (i.e., false rejection) and power (i.e., detecting true analytical shift) of this rule are <0.1 and >0.9, respectively. The use of appropriately archived patient samples to verify an apparent analytical shift is preferred to quality control materials. Nonetheless, the above findings may also apply to quality control materials, barring matrix effects. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Ameri, Mehrdad; Schnaars, Henry A; Sibley, John R; Honor, David J
2011-06-01
The time from sampling to analysis can be delayed when blood samples are shipped to distant reference laboratories or when analysis cannot be readily performed. The objective of this study was to evaluate the stability of hematologic analytes in blood samples from monkeys, rabbits, rats, and mice when samples were stored for up to 72 hours at 4°C. Blood samples from 30 monkeys, 15 rabbits, 20 rats, and 30 mice were collected into EDTA-containing tubes and were initially analyzed within 1 hour of collection using the ADVIA 120 analyzer. The samples were then stored at 4°C and reanalyzed at 24, 48, and 72 hours after collection. Significant (P<.0003) changes in hematologic analytes and calculations included increased HCT and MCV and decreased MCHC and cell hemoglobin concentration mean (CHCM) at 72 hours and increased MPV at 24 hours in monkeys; increased MCV at 72 hours and MPV at 48 hours and decreased monocyte count at 24 hours in rabbits; increased MCV and decreased MCHC, CHCM, and monocyte count at 24 hours in rats; increased MCV, red cell distribution width, and MPV and decreased MCHC, CHCM, and monocyte count at 24 hours in mice. Although most of the changes in the hematologic analytes in blood from monkeys, rabbits, rats, and mice when samples were stored at 4°C were analytically acceptable and clinically negligible, the best practice in measuring hematologic analytes in these animals is timely processing of blood samples, preferably within 1 hour after collection. ©2011 American Society for Veterinary Clinical Pathology.
Code of Federal Regulations, 2013 CFR
2013-07-01
... that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix containing the analyte. Scope and Application This procedure is designed for applicability to a wide variety of sample types ranging from reagent (blank) water containing analyte to wastewater...
Code of Federal Regulations, 2014 CFR
2014-07-01
... that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix containing the analyte. Scope and Application This procedure is designed for applicability to a wide variety of sample types ranging from reagent (blank) water containing analyte to wastewater...
Code of Federal Regulations, 2011 CFR
2011-07-01
... that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix containing the analyte. Scope and Application This procedure is designed for applicability to a wide variety of sample types ranging from reagent (blank) water containing analyte to wastewater...
Schwertfeger, D M; Velicogna, Jessica R; Jesmer, Alexander H; Scroggins, Richard P; Princz, Juliska I
2016-10-18
There is an increasing interest to use single particle-inductively coupled plasma mass spectroscopy (SP-ICPMS) to help quantify exposure to engineered nanoparticles, and their transformation products, released into the environment. Hindering the use of this analytical technique for environmental samples is the presence of high levels of dissolved analyte which impedes resolution of the particle signal from the dissolved. While sample dilution is often necessary to achieve the low analyte concentrations necessary for SP-ICPMS analysis, and to reduce the occurrence of matrix effects on the analyte signal, it is used here to also reduce the dissolved signal relative to the particulate, while maintaining a matrix chemistry that promotes particle stability. We propose a simple, systematic dilution series approach where by the first dilution is used to quantify the dissolved analyte, the second is used to optimize the particle signal, and the third is used as an analytical quality control. Using simple suspensions of well characterized Au and Ag nanoparticles spiked with the dissolved analyte form, as well as suspensions of complex environmental media (i.e., extracts from soils previously contaminated with engineered silver nanoparticles), we show how this dilution series technique improves resolution of the particle signal which in turn improves the accuracy of particle counts, quantification of particulate mass and determination of particle size. The technique proposed here is meant to offer a systematic and reproducible approach to the SP-ICPMS analysis of environmental samples and improve the quality and consistency of data generated from this relatively new analytical tool.
Shi, Linli; Lin, Qingyu; Duan, Yixiang
2015-11-01
In view of the inevitable preprocessing of powder samples for LIBS detection, epoxy resin glue was investigated for the first time as a binder of powder samples due to its superior property of improved performance in laser induced breakdown spectroscopy (LIBS) technique as a quantitative analytical tool. For comparative studies of the epoxy resin and traditional polyethylene (PE) pellets in soil, sample detection, the signal intensities of Fe (I) at 404.58 nm, Ca (I) at 443.57 nm, and Cr (I) at 453.52 nm, were studied and subsequently, the calibration curves for these elements were constructed using the standard samples with variable concentrations. The signal intensities of epoxy resin samples were, on average, about 2 times greater than those obtained with the traditional PE pellet samples. Meanwhile, the resin samples showed better R square values of 0.981, 0.985 and 0.979 for curves of Fe (I) 404.58 nm, Ca (I) 443.57 nm, and Cr (I) 453.52 nm, compared to the 0.974, 0.950 and 0.934, of the PE pellet samples. Furthermore, the former represented lower limits of detection (LOD) for Fe, Ca and Cr. These experimental results indicated that this proposed novel method based on epoxy resin can attach samples of properties of high homogeneity, cohesiveness, smoothness and hardness, which are conducive to system stability, testing accuracy and signal enhancement. This method can make LIBS more practical in powder sample analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
40 CFR 87.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) Definitions. Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 87.82 Sampling and analytical procedures for measuring smoke exhaust...
14 CFR 34.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE... Turbine Engines) § 34.64 Sampling and analytical procedures for measuring gaseous exhaust emissions. The...
Xu, Jiao-Jiao; Zhou, Jian; Huang, Bai-Fen; Cai, Zeng-Xuan; Xu, Xiao-Min; Ren, Yi-Ping
2016-06-01
A simple and reliable method of ultra high performance liquid chromatography coupled with photo-diode array detection has been proposed for the simultaneous determination of deoxynivalenol and its acetylated derivatives in wheat flour and rice, especially focusing on the optimization of sample extraction, cleanup, and chromatographic separation conditions. Sample pretreatment consisted of a first step using a quick, easy, cheap, effective, rugged, and safe based extraction procedure and a subsequent cleanup step based on solid-phase extraction. The method was extensively validated in wheat flour and rice, obtaining satisfactory analytical performance with good linearity (R(2) ≥ 0.999), acceptable recoveries (80.0-104.4%), and repeatability (RSDs 1.3-10.7%). The limits of detection (21.7-57.4 μg/kg) and quantitation (72.3-191.4 μg/kg) for deoxynivalenols were lower than those usually permitted by various countries' legislation in these food matrices. The method was applied to 34 wheat and rice samples. The results were further compared with results of ultra high performance liquid chromatography with electrospray ionization tandem mass spectrometry. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--METALS IN AIR ANALYTICAL RESULTS
The Metals in Air data set contains analytical results for measurements of up to 11 metals in 344 air samples over 86 households. Samples were taken by pumping standardized air volumes through filters at indoor and outdoor sites around each household being sampled. The primary ...
NHEXAS PHASE I ARIZONA STUDY--METALS IN DERMAL WIPES ANALYTICAL RESULTS
The Metals in Dermal Wipes data set contains analytical results for measurements of up to 11 metals in 179 dermal wipe samples over 179 households. Each sample was collected from the primary respondent within each household during Stage III of the NHEXAS study. The sampling per...
NHEXAS PHASE I ARIZONA STUDY--METALS IN DUST ANALYTICAL RESULTS
The Metals in Dust data set contains analytical results for measurements of up to 11 metals in 562 dust samples over 388 households. Samples were taken by collecting dust samples from the indoor floor areas in the main room and in the bedroom of the primary resident. In additio...
U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--PESTICIDE METABOLITES IN URINE ANALYTICAL RESULTS
The Pesticide Metabolites in Urine data set contains the analytical results for measurements of up to 8 pesticide metabolites in 86 samples over 86 households. Each sample was collected form the primary respondent within each household. The sample consists of the first morning ...
NHEXAS PHASE I ARIZONA STUDY--METALS IN URINE ANALYTICAL RESULTS
The Metals in Urine data set contains analytical results for measurements of up to 6 metals in 176 urine samples over 176 households. Each sample was collected from the primary respondent within each household during Stage III of the NHEXAS study. The sample consists of the fir...
NHEXAS PHASE I MARYLAND STUDY--METALS IN SOIL ANALYTICAL RESULTS
The Metals in Soil data set contains analytical results for measurements of up to 4 metals in 277 soil samples over 75 households. Composite samples were obtained from up to 24 locations around the outside of the specific residence and combined into a single sample. The primary...
NHEXAS PHASE I MARYLAND STUDY--METALS IN DUST ANALYTICAL RESULTS
The Metals in Dust data set contains analytical results for measurements of up to 4 metals in 282 dust samples over 80 households. Samples were obtained by collecting dust samples from the indoor floor areas in the main activity room using a modified vacuum cleaner device that c...
NHEXAS PHASE I MARYLAND STUDY--QA ANALYTICAL RESULTS FOR METALS IN BLANKS
The Metals in Blanks data set contains the analytical results of measurements of up to 11 metals in 115 blank samples from 58 households. Measurements were made in blank samples of indoor and outdoor air, drinking water, beverages, urine, and blood. Blank samples were used to a...
NHEXAS PHASE I MARYLAND STUDY--PESTICIDES IN DUST ANALYTICAL RESULTS
The Pesticides in Dust data set contains analytical results for measurements of up to 9 pesticides in 126 dust samples over 50 households. Samples were obtained by collecting dust samples from the indoor floor areas in the main activity room using a modified vacuum cleaner devic...
NHEXAS PHASE I MARYLAND STUDY--PESTICIDES IN SOIL ANALYTICAL RESULTS
The Pesticides in Soil data set contains analytical results for measurements of up to 9 pesticides in 60 soil samples over 41 households. Composite samples were obtained from up to 24 locations around the outside of the specific residence and combined into a single sample. Only...
NHEXAS PHASE I MARYLAND STUDY--QA ANALYTICAL RESULTS FOR PESTICIDES IN BLANKS
The Pesticides in Blanks data set contains the analytical results of measurements of up to 20 pesticides in 70 blank samples from 46 households. Measurements were made in blank samples of indoor air, dust, soil, drinking water, food, beverages, and blood serum. Blank samples we...
The Particulate Matter in Blank Samples data set contains the analytical results for measurements of two particle sizes in 12 samples. Filters were pre-weighed, loaded into impactors, kept unexposed in the laboratory, unloaded and post-weighed. Positive weight gains for laborat...
Inorganic chemical analysis of environmental materials—A lecture series
Crock, J.G.; Lamothe, P.J.
2011-01-01
At the request of the faculty of the Colorado School of Mines, Golden, Colorado, the authors prepared and presented a lecture series to the students of a graduate level advanced instrumental analysis class. The slides and text presented in this report are a compilation and condensation of this series of lectures. The purpose of this report is to present the slides and notes and to emphasize the thought processes that should be used by a scientist submitting samples for analyses in order to procure analytical data to answer a research question. First and foremost, the analytical data generated can be no better than the samples submitted. The questions to be answered must first be well defined and the appropriate samples collected from the population that will answer the question. The proper methods of analysis, including proper sample preparation and digestion techniques, must then be applied. Care must be taken to achieve the required limits of detection of the critical analytes to yield detectable analyte concentration (above "action" levels) for the majority of the study's samples and to address what portion of those analytes answer the research question-total or partial concentrations. To guarantee a robust analytical result that answers the research question(s), a well-defined quality assurance and quality control (QA/QC) plan must be employed. This QA/QC plan must include the collection and analysis of field and laboratory blanks, sample duplicates, and matrix-matched standard reference materials (SRMs). The proper SRMs may include in-house materials and/or a selection of widely available commercial materials. A discussion of the preparation and applicability of in-house reference materials is also presented. Only when all these analytical issues are sufficiently addressed can the research questions be answered with known certainty.
Park, Aesoon; Kim, Jueun; Zaso, Michelle J.; Glatt, Stephen J.; Sher, Kenneth J.; Scott-Sheldon, Lori A. J.; Eckert, Tanya L.; Vanable, Peter A.; Carey, Kate B.; Ewart, Craig K.; Carey, Michael P.
2015-01-01
Peer drinking norms are arguably one of the strongest correlates of adolescent drinking. Prospective studies indicate that adolescents tend to select peers based on drinking (peer-selection) and their peers’ drinking is associated with changes in adolescent drinking over time (peer socialization). The present study investigated whether the peer selection and socialization processes in adolescent drinking differed as a function of the DRD4 VNTR genotype in two independent prospective datasets. The first sample was 174 high school students drawn from a 2-wave 6-month prospective study. The second sample was 237 college students drawn from a 3-wave annual prospective study. Multigroup cross-lagged panel analyses of the high school student sample indicated stronger socialization via peer drinking norms among carriers, whereas analyses of the college student sample indicated stronger drinking-based peer selection in the junior year among carriers, compared to non-carriers. Although replication and meta-analytic synthesis are needed, these findings suggest in part genetically determined peer-selection (carriers of the DRD4 7-repeat allele tend to associate with peers who have more favorable attitudes toward drinking and greater alcohol use) and peer socialization (carriers’ subsequent drinking behaviors are more strongly associated with their peer drinking norms) may differ across adolescent developmental stages. PMID:26902782
Improvement in the stability of serum samples stored in an automated refrigerated module.
Parra-Robert, Marina; Rico-Santana, Naira; Alcaraz-Quiles, José; Sandalinas, Silvia; Fernández, Esther; Falcón, Isabel; Pérez-Riedweg, Margarita; Bedini, Josep Lluís
2016-12-01
In clinical laboratories it is necessary to know for how long the analytes are stable in the samples with specific storage conditions. Our laboratory has implemented the new Aptio Automation System (AAS) (Siemens Healthcare Diagnostics) where the analyzed samples are stored in a refrigerated storage module (RSM) after being sealed. The aim of the study was to evaluate the stability of serum samples with the AAS and comparing the results with a previous study using a conventional refrigerated system. Serum samples from a total of 50 patients were collected and for each of them 27 biochemical analytes were analyzed. The samples were divided in 5 sets of 10 samples. Each set was re-analyzed at one of the following times: 24, 48, 72, 96 and 120h. Stability was evaluated according to the Total Limit of Change (TLC) criteria, which combine both analytical and biologic variation. A total of 26 out of 27 analytes were stable at the end of the study according to TLC criteria. Lactate dehydrogenase was not stable at 48h observing a decrease in its concentration until the end of the study. In the previous study (conventional storage system) 9 biochemical analytes were not stable with an increase of their levels due to the evaporation process. The RSM connected to the AAS improves the stability of serum samples. This system avoids the evaporation process due to the sealing of samples and allows better control of the samples during their storage. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Sample normalization methods in quantitative metabolomics.
Wu, Yiman; Li, Liang
2016-01-22
To reveal metabolomic changes caused by a biological event in quantitative metabolomics, it is critical to use an analytical tool that can perform accurate and precise quantification to examine the true concentration differences of individual metabolites found in different samples. A number of steps are involved in metabolomic analysis including pre-analytical work (e.g., sample collection and storage), analytical work (e.g., sample analysis) and data analysis (e.g., feature extraction and quantification). Each one of them can influence the quantitative results significantly and thus should be performed with great care. Among them, the total sample amount or concentration of metabolites can be significantly different from one sample to another. Thus, it is critical to reduce or eliminate the effect of total sample amount variation on quantification of individual metabolites. In this review, we describe the importance of sample normalization in the analytical workflow with a focus on mass spectrometry (MS)-based platforms, discuss a number of methods recently reported in the literature and comment on their applicability in real world metabolomics applications. Sample normalization has been sometimes ignored in metabolomics, partially due to the lack of a convenient means of performing sample normalization. We show that several methods are now available and sample normalization should be performed in quantitative metabolomics where the analyzed samples have significant variations in total sample amounts. Copyright © 2015 Elsevier B.V. All rights reserved.
Muhammad, Nadeem; Subhani, Qamar; Wang, Fenglian; Guo, Dandan; Zhao, Qiming; Wu, Shuchao; Zhu, Yan
2017-09-15
This work illustrates the introduction of a simple, rugged and flexible column-switching ion chromatography (IC) technique for an automated on-line QuEChERS extracted samples extracts washing followed by sensitive fluorescence (FLD) determination of five acidic pharmaceutical drugs namely; clofibric acid (CLO), ibuprofen (IBU), aspirin (ASP), naproxen (NAP) and flurobrofen (FLU) in three complex samples (spinach, apple and hospital sewage sludge). An old anion exchange column IonPac ® AS11-HC was utilized as a pre-treatment column for on-line washing of inorganic and organic interferences followed by isocratic separation of five acidic drugs with another anion exchange IonPac ® AS12A analytical column by exploiting the column-switching technique. This novel method exhibited good linearity with correlation coefficients (r 2 ) for all drugs were in the range 0.976-0.996. The limit of detection and quantification of all five acidic drugs were in the range 0.024μg/kg to 8.70μg/kg and 0.082μg/kg to 0.029mg/kg, respectively, and better recoveries in the range 81.17-112.5% with percentage relative standard deviations (RSDs) less than 17.8% were obtained. This on-line sample pre-treatment method showed minimum matrix effect in the range of 0.87-1.25 except for aspirin. This simple rugged and flexible column-switching system required only 28min for maximum elimination of matrices and interferences in three complex samples extracts, isocratic separation of five acidic drugs and for the continuous regeneration of pre-treatment column prior to every subsequent analysis. Finally, this simple automated IC system was appeared so rugged and flexible, which can eliminate and wash out most of interference, impurities and matrices in complex samples, simply by adjusting the NaOH and acetonitrile concentration in washing mobile phase with maximum recoveries of acidic analytes of interest. Copyright © 2017. Published by Elsevier B.V.
Krachler, Michael; Alvarez-Sarandes, Rafael; Rasmussen, Gert
2016-09-06
Employing a commercial high-resolution inductively coupled plasma optical emission spectrometry (HR-ICP-OES) instrument, an innovative analytical procedure for the accurate determination of the production age of various Pu materials (Pu powder, cardiac pacemaker battery, (242)Cm heat source, etc.) was developed and validated. This undertaking was based on the fact that the α decay of (238)Pu present in the investigated samples produced (234)U and both mother and daughter could be identified unequivocally using HR-ICP-OES. Benefiting from the high spectral resolution of the instrument (<5 pm) and the isotope shift of the emission lines of both nuclides, (234)U and (238)Pu were selectively and directly determined in the dissolved samples, i.e., without a chemical separation of the two analytes from each other. Exact emission wavelengths as well as emission spectra of (234)U centered around λ = 411.590 nm and λ = 424.408 nm are reported here for the first time. Emission spectra of the isotopic standard reference material IRMM-199, comprising about one-third each of (233)U, (235)U, and (238)U, confirmed the presence of (234)U in the investigated samples. For the assessment of the (234)U/(238)Pu amount ratio, the emission signals of (234)U and (238)Pu were quantified at λ = 424.408 nm and λ = 402.148 nm, respectively. The age of the investigated samples (range: 26.7-44.4 years) was subsequently calculated using the (234)U/(238)Pu chronometer. HR-ICP-OES results were crossed-validated through sector field inductively coupled plasma mass spectrometry (SF-ICPMS) analysis of the (234)U/(238)Pu amount ratio of all samples applying isotope dilution combined with chromatographic separation of U and Pu. Available information on the assumed ages of the analyzed samples was consistent with the ages obtained via the HR-ICP-OES approach. Being based on a different physical detection principle, HR-ICP-OES provides an alternative strategy to the well-established mass spectrometric approach and thus effectively adds to the quality assurance of (234)U/(238)Pu age dates.
Horowitz, Arthur J.
2013-01-01
Successful environmental/water quality-monitoring programs usually require a balance between analytical capabilities, the collection and preservation of representative samples, and available financial/personnel resources. Due to current economic conditions, monitoring programs are under increasing pressure to do more with less. Hence, a review of current sampling and analytical methodologies, and some of the underlying assumptions that form the bases for these programs seems appropriate, to see if they are achieving their intended objectives within acceptable error limits and/or measurement uncertainty, in a cost-effective manner. That evaluation appears to indicate that several common sampling/processing/analytical procedures (e.g., dip (point) samples/measurements, nitrogen determinations, total recoverable analytical procedures) are generating biased or nonrepresentative data, and that some of the underlying assumptions relative to current programs, such as calendar-based sampling and stationarity are no longer defensible. The extensive use of statistical models as well as surrogates (e.g., turbidity) also needs to be re-examined because the hydrologic interrelationships that support their use tend to be dynamic rather than static. As a result, a number of monitoring programs may need redesigning, some sampling and analytical procedures may need to be updated, and model/surrogate interrelationships may require recalibration.
One-calibrant kinetic calibration for on-site water sampling with solid-phase microextraction.
Ouyang, Gangfeng; Cui, Shufen; Qin, Zhipei; Pawliszyn, Janusz
2009-07-15
The existing solid-phase microextraction (SPME) kinetic calibration technique, using the desorption of the preloaded standards to calibrate the extraction of the analytes, requires that the physicochemical properties of the standard should be similar to those of the analyte, which limited the application of the technique. In this study, a new method, termed the one-calibrant kinetic calibration technique, which can use the desorption of a single standard to calibrate all extracted analytes, was proposed. The theoretical considerations were validated by passive water sampling in laboratory and rapid water sampling in the field. To mimic the variety of the environment, such as temperature, turbulence, and the concentration of the analytes, the flow-through system for the generation of standard aqueous polycyclic aromatic hydrocarbons (PAHs) solution was modified. The experimental results of the passive samplings in the flow-through system illustrated that the effect of the environmental variables was successfully compensated with the kinetic calibration technique, and all extracted analytes can be calibrated through the desorption of a single calibrant. On-site water sampling with rotated SPME fibers also illustrated the feasibility of the new technique for rapid on-site sampling of hydrophobic organic pollutants in water. This technique will accelerate the application of the kinetic calibration method and also will be useful for other microextraction techniques.
Vacata, Vladimir; Jahns-Streubel, Gerlinde; Baldus, Mirjana; Wood, William Graham
2007-01-01
This report was written in response to the article by Wood published recently in this journal. It describes a practical solution to the problems of controlling the pre-analytical phase in the clinical diagnostic laboratory. As an indicator of quality in the pre-analytical phase of sample processing, a target analyte was chosen which is sensitive to delay in centrifugation and/or analysis. The results of analyses of the samples sent by satellite medical practitioners were compared with those from an on-site hospital laboratory with a controllable optimized pre-analytical phase. The aim of the comparison was: (a) to identify those medical practices whose mean/median sample values significantly deviate from those of the control situation in the hospital laboratory due to the possible problems in the pre-analytical phase; (b) to aid these laboratories in the process of rectifying these problems. A Microsoft Excel-based Pre-Analytical Survey tool (PAS tool) has been developed which addresses the above mentioned problems. It has been tested on serum potassium which is known to be sensitive to delay and/or irregularities in sample treatment. The PAS tool has been shown to be one possibility for improving the quality of the analyses by identifying the sources of problems within the pre-analytical phase, thus allowing them to be rectified. Additionally, the PAS tool has an educational value and can also be adopted for use in other decentralized laboratories.
Hartwig, Carla Andrade; Pereira, Rodrigo Mendes; Novo, Diogo La Rosa; Oliveira, Dirce Taina Teixeira; Mesko, Marcia Foster
2017-11-01
Responding to the need for green and efficient methods to determine catalyst residues with suitable precision and accuracy in samples with high fat content, the present work evaluates a microwave-assisted ultraviolet digestion (MW-UV) system for margarines and subsequent determination of Ni, Pd and Pt using inductively coupled plasma mass spectrometry (ICP-MS). It was possible to digest up to 500mg of margarine using only 10mL of 4molL -1 HNO 3 with a digestion efficiency higher than 98%. This allowed the determination of catalyst residues using the ICP-MS and free of interferences. For this purpose, the following experimental parameters were evaluated: concentration of digestion solution, sample mass and microwave irradiation program. The residual carbon content was used as a parameter to evaluate the efficiency of digestion and to select the most suitable experimental conditions. The accuracy evaluation was performed by recovery tests using a standard solution and certified reference material, and recoveries ranging from 94% to 99% were obtained for all analytes. The limits of detection for Ni, Pd and Pt using the proposed method were 35.6, 0.264 and 0.302ngg -1 , respectively. When compared to microwave-assisted digestion (MW-AD) in closed vessels using concentrated HNO 3 (used as a reference method for sample digestion), the proposed MW-UV could be considered an excellent alternative for the digestion of margarine, as this method requires only a diluted nitric acid solution for efficient digestion. In addition, MW-UV provides appropriate solutions for further ICP-MS determination with suitable precision (relative standard deviation < 7%) and accuracy for all evaluated analytes. The proposed method was applied to margarines from different brands produced in Brazil, and the concentration of catalyst residues was in agreement with the current legislation or recommendations. Copyright © 2017 Elsevier B.V. All rights reserved.
Missed diagnostic opportunities within South Africa's early infant diagnosis program, 2010-2015.
Haeri Mazanderani, Ahmad; Moyo, Faith; Sherman, Gayle G
2017-01-01
Samples submitted for HIV PCR testing that fail to yield a positive or negative result represent missed diagnostic opportunities. We describe HIV PCR test rejections and indeterminate results, and the associated delay in diagnosis, within South Africa's early infant diagnosis (EID) program from 2010 to 2015. HIV PCR test data from January 2010 to December 2015 were extracted from the National Health Laboratory Service Corporate Data Warehouse, a central data repository of all registered test-sets within the public health sector in South Africa, by laboratory number, result, date, facility, and testing laboratory. Samples that failed to yield either a positive or negative result were categorized according to the rejection code on the laboratory information system, and descriptive analysis performed using Microsoft Excel. Delay in diagnosis was calculated for patients who had a missed diagnostic opportunity registered between January 2013 and December 2015 by means of a patient linking-algorithm employing demographic details. Between 2010 and 2015, 2 178 582 samples were registered for HIV PCR testing of which 6.2% (n = 134 339) failed to yield either a positive or negative result, decreasing proportionally from 7.0% (n = 20 556) in 2010 to 4.4% (n = 21 388) in 2015 (p<0.001). Amongst 76 972 coded missed diagnostic opportunities, 49 585 (64.4%) were a result of pre-analytical error and 27 387 (35.6%) analytical error. Amongst 49 694 patients searched for follow-up results, 16 895 (34.0%) had at least one subsequent HIV PCR test registered after a median of 29 days (IQR: 13-57), of which 8.4% tested positive compared with 3.6% of all samples submitted for the same period. Routine laboratory data provides the opportunity for near real-time surveillance and quality improvement within the EID program. Delay in diagnosis and wastage of resources associated with missed diagnostic opportunities must be addressed and infants actively followed-up as South Africa works towards elimination of mother-to-child transmission.
Pastor, Victoria; Vicent, Cristian; Cerezo, Miguel; Mauch-Mani, Brigitte; Dean, John; Flors, Victor
2012-04-01
An approach for the detection and characterization of SA derivatives in plant samples is presented based on liquid chromatography coupled to electrospray ionization (ESI) tandem mass spectrometric techniques. Precursor ion scan methods using an ESI triple quadrupole spectrometer for samples from plants challenged with the virulent Pseudomonas syringae pv tomato DC3000 allowed us to detect two potential SA derivatives. The criterion used to consider a potential SA derivative is based on the detection of analytes in the precursor ion scan chromatogram upon selecting m/z 137 and m/z 93 that correspond to the salicylate and its main product ion, respectively. Product ion spectra of the newly-detected analytes as well as accurate m/z determinations using an ESI Q-time-of-flight instrument were registered as means of characterization and strongly suggest that glucosylated forms of SA at the carboxylic and at the phenol functional groups are present in plant samples. The specific synthesis and subsequent chromatography of salicylic glucosyl ester (SGE) and glucosyl salicylate (SAG) standards confirmed the chemical identity of both peaks that were obtained applying different tandem mass spectrometric techniques and accurate m/z determinations. A multiple reaction monitoring method has been developed and applied to plant samples. The advantages of this LC-ESI-MS/MS methods with respect to the traditional analysis of glucosyl conjugates are also discussed. Preliminary results revealed that SA and the glucosyl conjugates are accumulated in Arabidopsis thaliana in a time dependent manner, accordingly to the up-regulation of SA-dependent defenses following P. syringae infection. This technique applied to plant hormones or fragment ions may be useful to obtain chemical family members of plant metabolites and help identify their contribution in the signaling of plant defenses. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Selected ground-water-quality data in Pennsylvania - 1979-2006
Low, Dennis J.; Chichester, Douglas C.; Zarr, Linda F.
2009-01-01
This study, by the U.S. Geological Survey (USGS) in cooperation with the Pennsylvania Department of Environmental Protection (PADEP), provides a compilation of ground-water-quality data for a 28-year period (January 1, 1979, through December 31, 2006) based on water samples from wells and springs. The data are from 14 source agencies or programs—Borough of Carroll Valley, Chester County Health Department, Montgomery County Health Department, Pennsylvania Department of Agriculture, Pennsylvania Department of Environmental Protection 2002 Pennsylvania Water-Quality Assessment, Pennsylvania Department of Environmental Protection Agency Act 537 Sewage Facilities Program, Pennsylvania Department of Environmental Protection-Ambient and Fixed Station Network, Pennsylvania Department of Environmental Protection–North-Central Region, Pennsylvania Department of Environmental Protection–South-Central Region, Pennsylvania Drinking Water Information System, Pennsylvania Topographic and Geologic Survey, Susquehanna River Basin Commission, U.S. Environmental Protection Agency, and the U.S. Geological Survey. The ground-water-quality data from the different source agencies or programs varied in type and number of analyses; however, the analyses are represented by 11 major analyte groups: antibiotics, major ions, microorganisms (bacteria, viruses, and other microorganisms), minor ions (including trace elements), nutrients (predominantly nitrate and nitrite as nitrogen), pesticides, pharmaceuticals, radiochemicals (predominantly radon or radium), volatiles (volatile organic compounds), wastewater compounds, and water characteristics (field measurements, predominantly field pH, field specific conductance, and hardness). For the USGS and the PADEP–North-Central Region, the pesticide analyte group was broken down into fungicides, herbicides, and insecticides. Summary maps show the areal distribution of wells and springs with ground-water-quality data statewide by source agency or program. Summary data tables by source agency or program provide information on the number of wells and springs and samples collected for each of the 35 watersheds and analyte groups.The number of wells and springs sampled for ground-water-quality data varies considerably across Pennsylvania. Of the 24,772 wells and springs sampled, the greatest concentration of wells and springs is in the southeast (Berks, Bucks, Chester, Delaware, Lancaster, Montgomery, and Philadelphia Counties) and in the northwest (Erie County). The number of wells and springs sampled is relatively sparse in north-central (Cameron, Elk, Forest, McKean, Potter, and Warren Counties) Pennsylvania. Little to no data are available for approximately one-fourth of the state. Nutrients and water characteristics were the most frequently sampled major analyte groups—43,025 and 30,583 samples, respectively. Minor ions and major ions were the next most frequently sampled major analyte groups–26,972 and 13,115 samples, respectively. For the remaining 10 major analyte groups, the number of samples collected ranged from a low of 24 samples (antibiotic compounds) to a high of approximately 4,674 samples (microorganisms).The number of samples that exceeded a maximum contaminant level (MCL) or secondary maximum contaminant level (SMCL) by major analyte group also varied. Of the 4,674 samples in the microorganism analyte group, 50.2 percent had water that exceeded an MCL. Of the 4,528 samples collected and analyzed for volatile organic compounds, 23.5 percent exceeded an MCL. Other major analyte groups that frequently exceeded MCLs or SMCLs included major ions (18,343 samples and a 27.7 percent exceedence), minor ions (26,972 samples, 44.7 percent exceedence), pesticides (4,868 samples, 0.7 percent exceedence), water characteristics (30,583 samples, 19.3 percent exceedence), and radiochemicals (1,866 samples, 9.6 percent exceedence). Samples collected and analyzed for antibiotics (24 samples), fungicides (1,273 samples), herbicides (1,470 samples), insecticides (1,424 samples), nutrients (43,025 samples), pharmaceuticals (28 samples), and wastewater compounds (328 samples) had the lowest exceedences of 0.0, 2.4, 1.2, <1.0, 8.3, 0.0, and <1.0 percent, respectively.
Markert, Sven; Joeris, Klaus
2017-01-01
We developed an automated microtiter plate (MTP)-based system for suspension cell culture to meet the increased demands for miniaturized high throughput applications in biopharmaceutical process development. The generic system is based on off-the-shelf commercial laboratory automation equipment and is able to utilize MTPs of different configurations (6-24 wells per plate) in orbital shaken mode. The shaking conditions were optimized by Computational Fluid Dynamics simulations. The fully automated system handles plate transport, seeding and feeding of cells, daily sampling, and preparation of analytical assays. The integration of all required analytical instrumentation into the system enables a hands-off operation which prevents bottlenecks in sample processing. The modular set-up makes the system flexible and adaptable for a continuous extension of analytical parameters and add-on components. The system proved suitable as screening tool for process development by verifying the comparability of results for the MTP-based system and bioreactors regarding profiles of viable cell density, lactate, and product concentration of CHO cell lines. These studies confirmed that 6 well MTPs as well as 24 deepwell MTPs were predictive for a scale up to a 1000 L stirred tank reactor (scale factor 1:200,000). Applying the established cell culture system for automated media blend screening in late stage development, a 22% increase in product yield was achieved in comparison to the reference process. The predicted product increase was subsequently confirmed in 2 L bioreactors. Thus, we demonstrated the feasibility of the automated MTP-based cell culture system for enhanced screening and optimization applications in process development and identified further application areas such as process robustness. The system offers a great potential to accelerate time-to-market for new biopharmaceuticals. Biotechnol. Bioeng. 2017;114: 113-121. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Szulc, P; Naylor, K; Hoyle, N R; Eastell, R; Leary, E T
2017-09-01
The National Bone Health Alliance (NBHA) recommends standardized sample handling and patient preparation for C-terminal telopeptide of type I collagen (CTX-I) and N-terminal propeptide of type I procollagen (PINP) measurements to reduce pre-analytical variability. Controllable and uncontrollable patient-related factors are reviewed to facilitate interpretation and minimize pre-analytical variability. The IOF and the International Federation of Clinical Chemistry (IFCC) Bone Marker Standards Working Group have identified PINP and CTX-I in blood to be the reference markers of bone turnover for the fracture risk prediction and monitoring of osteoporosis treatment. Although used in clinical research for many years, bone turnover markers (BTM) have not been widely adopted in clinical practice primarily due to their poor within-subject and between-lab reproducibility. The NBHA Bone Turnover Marker Project team aim to reduce pre-analytical variability of CTX-I and PINP measurements through standardized sample handling and patient preparation. Recommendations for sample handling and patient preparations were made based on review of available publications and pragmatic considerations to reduce pre-analytical variability. Controllable and un-controllable patient-related factors were reviewed to facilitate interpretation and sample collection. Samples for CTX-I must be collected consistently in the morning hours in the fasted state. EDTA plasma is preferred for CTX-I for its greater sample stability. Sample collection conditions for PINP are less critical as PINP has minimal circadian variability and is not affected by food intake. Sample stability limits should be observed. The uncontrollable aspects (age, sex, pregnancy, immobility, recent fracture, co-morbidities, anti-osteoporotic drugs, other medications) should be considered in BTM interpretation. Adopting standardized sample handling and patient preparation procedures will significantly reduce controllable pre-analytical variability. The successful adoption of such recommendations necessitates the close collaboration of various stakeholders at the global stage, including the laboratories, the medical community, the reagent manufacturers and the regulatory agencies.
Novel immunoassay formats for integrated microfluidic circuits: diffusion immunoassays (DIA)
NASA Astrophysics Data System (ADS)
Weigl, Bernhard H.; Hatch, Anson; Kamholz, Andrew E.; Yager, Paul
2000-03-01
Novel designs of integrated fluidic microchips allow separations, chemical reactions, and calibration-free analytical measurements to be performed directly in very small quantities of complex samples such as whole blood and contaminated environmental samples. This technology lends itself to applications such as clinical diagnostics, including tumor marker screening, and environmental sensing in remote locations. Lab-on-a-Chip based systems offer many *advantages over traditional analytical devices: They consume extremely low volumes of both samples and reagents. Each chip is inexpensive and small. The sampling-to-result time is extremely short. They perform all analytical functions, including sampling, sample pretreatment, separation, dilution, and mixing steps, chemical reactions, and detection in an integrated microfluidic circuit. Lab-on-a-Chip systems enable the design of small, portable, rugged, low-cost, easy to use, yet extremely versatile and capable diagnostic instruments. In addition, fluids flowing in microchannels exhibit unique characteristics ('microfluidics'), which allow the design of analytical devices and assay formats that would not function on a macroscale. Existing Lab-on-a-chip technologies work very well for highly predictable and homogeneous samples common in genetic testing and drug discovery processes. One of the biggest challenges for current Labs-on-a-chip, however, is to perform analysis in the presence of the complexity and heterogeneity of actual samples such as whole blood or contaminated environmental samples. Micronics has developed a variety of Lab-on-a-Chip assays that can overcome those shortcomings. We will now present various types of novel Lab- on-a-Chip-based immunoassays, including the so-called Diffusion Immunoassays (DIA) that are based on the competitive laminar diffusion of analyte molecules and tracer molecules into a region of the chip containing antibodies that target the analyte molecules. Advantages of this technique are a reduction in reagents, higher sensitivity, minimal preparation of complex samples such as blood, real-time calibration, and extremely rapid analysis.
Schroder, L.J.; Brooks, M.H.; Malo, B.A.; Willoughby, T.C.
1986-01-01
Five intersite comparison studies for the field determination of pH and specific conductance, using simulated-precipitation samples, were conducted by the U.S.G.S. for the National Atmospheric Deposition Program and National Trends Network. These comparisons were performed to estimate the precision of pH and specific conductance determinations made by sampling-site operators. Simulated-precipitation samples were prepared from nitric acid and deionized water. The estimated standard deviation for site-operator determination of pH was 0.25 for pH values ranging from 3.79 to 4.64; the estimated standard deviation for specific conductance was 4.6 microsiemens/cm at 25 C for specific-conductance values ranging from 10.4 to 59.0 microsiemens/cm at 25 C. Performance-audit samples with known analyte concentrations were prepared by the U.S.G.S.and distributed to the National Atmospheric Deposition Program 's Central Analytical Laboratory. The differences between the National Atmospheric Deposition Program and national Trends Network-reported analyte concentrations and known analyte concentrations were calculated, and the bias and precision were determined. For 1983, concentrations of calcium, magnesium, sodium, and chloride were biased at the 99% confidence limit; concentrations of potassium and sulfate were unbiased at the 99% confidence limit. Four analytical laboratories routinely analyzing precipitation were evaluated in their analysis of identical natural- and simulated precipitation samples. Analyte bias for each laboratory was examined using analysis of variance coupled with Duncan 's multiple-range test on data produced by these laboratories, from the analysis of identical simulated-precipitation samples. Analyte precision for each laboratory has been estimated by calculating a pooled variance for each analyte. Interlaboratory comparability results may be used to normalize natural-precipitation chemistry data obtained from two or more of these laboratories. (Author 's abstract)
Size separation of analytes using monomeric surfactants
Yeung, Edward S.; Wei, Wei
2005-04-12
A sieving medium for use in the separation of analytes in a sample containing at least one such analyte comprises a monomeric non-ionic surfactant of the of the general formula, B-A, wherein A is a hydrophilic moiety and B is a hydrophobic moiety, present in a solvent at a concentration forming a self-assembled micelle configuration under selected conditions and having an aggregation number providing an equivalent weight capable of effecting the size separation of the sample solution so as to resolve a target analyte(s) in a solution containing the same, the size separation taking place in a chromatography or electrophoresis separation system.
Pandey, Khushaboo; Dubey, Rama Shankar; Prasad, Bhim Bali
2016-03-01
The most important objectives that are frequently found in bio-analytical chemistry involve applying tools to relevant medical/biological problems and refining these applications. Developing a reliable sample preparation step, for the medical and biological fields is another primary objective in analytical chemistry, in order to extract and isolate the analytes of interest from complex biological matrices. Since, main inborn errors of metabolism (IEM) diagnosable through uracil analysis and the therapeutic monitoring of toxic 5-fluoruracil (an important anti-cancerous drug) in dihydropyrimidine dehydrogenase deficient patients, require an ultra-sensitive, reproducible, selective, and accurate analytical techniques for their measurements. Therefore, keeping in view, the diagnostic value of uracil and 5-fluoruracil measurements, this article refines several analytical techniques involved in selective recognition and quantification of uracil and 5-fluoruracil from biological and pharmaceutical samples. The prospective study revealed that implementation of molecularly imprinted polymer as a solid-phase material for sample preparation and preconcentration of uracil and 5-fluoruracil had proven to be effective as it could obviates problems related to tedious separation techniques, owing to protein binding and drastic interferences, from the complex matrices in real samples such as blood plasma, serum samples.
Field Sampling and Selecting On-Site Analytical Methods for Explosives in Soil
The purpose of this issue paper is to provide guidance to Remedial Project Managers regarding field sampling and on-site analytical methods fordetecting and quantifying secondary explosive compounds in soils.
Tran, Ngoc Han; Chen, Hongjie; Do, Thanh Van; Reinhard, Martin; Ngo, Huu Hao; He, Yiliang; Gin, Karina Yew-Hoong
2016-10-01
A robust and sensitive analytical method was developed for the simultaneous analysis of 21 target antimicrobials in different environmental water samples. Both single SPE and tandem SPE cartridge systems were investigated to simultaneously extract multiple classes of antimicrobials. Experimental results showed that good extraction efficiencies (84.5-105.6%) were observed for the vast majority of the target analytes when extraction was performed using the tandem SPE cartridge (SB+HR-X) system under an extraction pH of 3.0. HPLC-MS/MS parameters were optimized for simultaneous analysis of all the target analytes in a single injection. Quantification of target antimicrobials in water samples was accomplished using 15 isotopically labeled internal standards (ILISs), which allowed the efficient compensation of the losses of target analytes during sample preparation and correction of matrix effects during UHPLC-MS/MS as well as instrument fluctuations in MS/MS signal intensity. Method quantification limit (MQL) for most target analytes based on SPE was below 5ng/L for surface waters, 10ng/L for treated wastewater effluents, and 15ng/L for raw wastewater. The method was successfully applied to detect and quantify the occurrence of the target analytes in raw influent, treated effluent and surface water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Beloglazova, N V; Goryacheva, I Yu; Rusanova, T Yu; Yurasov, N A; Galve, R; Marco, M-P; De Saeger, S
2010-07-05
A new rapid method which allows simultaneous one step detection of two analytes of different nature (2,4,6,-trichlorophenol (TCP) and ochratoxin A (OTA)) in red wine was developed. It was based on a column test with three separate immunolayers: two test layers and one control layer. Each layer consisted of sepharose gel with immobilized anti-OTA (OTA test layer), anti-TCP (TCP test layer) or anti-HRP (control layer) antibodies. Analytes bind to the antibodies in the corresponding test layer while sample flows through the column. Then a mixture of OTA-HRP and TCP-HRP in appropriate dilutions was used, followed by the application of chromogenic substrate. Colour development of the test layer occurred when the corresponding analyte was absent in the sample. HRP-conjugates bound to anti-HRP antibody in the control layer independently of presence or absence of analytes and a blue colour developed in the control layer. Cut-off values for both analytes were 2 microg L(-1). The described method was applied to the simultaneous detection of TCP and OTA in wine samples. To screen the analytes in red wine samples, clean-up columns were used for sample pre-treatment in combination with the test column. Results were confirmed by chromatographic methods. Copyright 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindberg, Michael J.
2012-04-25
This is a revision to a previously released report. This revision contains additional analytical results for the sample with HEIS number B2H4X7. Between November 4, 2010 and October 26, 2011 sediment samples were received from 100-HR-3 Operable Unit for geochemical studies. The analyses for this project were performed at the 331 building located in the 300 Area of the Hanford Site. The analyses were performed according to Pacific Northwest National Laboratory (PNNL) approved procedures and/or nationally recognized test procedures. The data sets include the sample identification numbers, analytical results, estimated quantification limits (EQL), and quality control data. The preparatory andmore » analytical quality control requirements, calibration requirements, acceptance criteria, and failure actions are defined in the on-line QA plan 'Conducting Analytical Work in Support of Regulatory Programs' (CAW). This QA plan implements the Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD) for PNNL. Samples were received with a chain of custody (COC) and were analyzed according to the sample identification numbers supplied by the client. All Samples were refrigerated upon receipt until prepared for analysis. All samples were received with custody seals intact unless noted in the Case Narrative. Holding time is defined as the time from sample preparation to the time of analyses. The prescribed holding times were met for all analytes unless noted in the Case Narrative. All reported analytical results meet the requirements of the CAW or client specified SOW unless noted in the case narrative. Due to the requirements of the statement of work and sampling events in the field, the 28 day and the 48 hr requirements cannot be met. The statement of work requires samples to be selected at the completion of the borehole. It is not always possible to complete a borehole and have the samples shipped to the laboratory within the hold time requirements. Duplicate RPD for Uranium 238 (38.9%) was above the acceptance limit (35) in 1E05003-DUP1 for ICPMS-Tc-U-WE The sample result is less than 10 times the detection limits. Duplicate recoveries are not applicable to this analyte. Duplicate RPD for Silver 107 (68.2%) was above the acceptance limit (35) in 2C06004-DUP1 for ICPMS-RCRA-AE The sample result is less than 10 times the detection limits. Duplicate recoveries are not applicable to this analyte. Matrix Spike Recovery for Chromium, Hexavalent (48.8%) was outside acceptance limits (75-125) in 1E23001-MS1 for Hexavalent Chromium/Soil. Potential Matrix interference. Sample results associated with this batch are below the EQL. There should be no impact to the data as reported. Matrix Spike Recovery for Chromium, Hexavalent (50.2%) was outside acceptance limits (75-125) in 2B22010-MS1 for Hexavalent Chromium/Soil. Potential Matrix interference. Sample results associated with this batch are below the EQL. There should be no impact to the data as reported.« less
Experimentally validated mathematical model of analyte uptake by permeation passive samplers.
Salim, F; Ioannidis, M; Górecki, T
2017-11-15
A mathematical model describing the sampling process in a permeation-based passive sampler was developed and evaluated numerically. The model was applied to the Waterloo Membrane Sampler (WMS), which employs a polydimethylsiloxane (PDMS) membrane as a permeation barrier, and an adsorbent as a receiving phase. Samplers of this kind are used for sampling volatile organic compounds (VOC) from air and soil gas. The model predicts the spatio-temporal variation of sorbed and free analyte concentrations within the sampler components (membrane, sorbent bed and dead volume), from which the uptake rate throughout the sampling process can be determined. A gradual decline in the uptake rate during the sampling process is predicted, which is more pronounced when sampling higher concentrations. Decline of the uptake rate can be attributed to diminishing analyte concentration gradient within the membrane, which results from resistance to mass transfer and the development of analyte concentration gradients within the sorbent bed. The effects of changing the sampler component dimensions on the rate of this decline in the uptake rate can be predicted from the model. Performance of the model was evaluated experimentally for sampling of toluene vapors under controlled conditions. The model predictions proved close to the experimental values. The model provides a valuable tool to predict changes in the uptake rate during sampling, to assign suitable exposure times at different analyte concentration levels, and to optimize the dimensions of the sampler in a manner that minimizes these changes during the sampling period.
Sampling and sample processing in pesticide residue analysis.
Lehotay, Steven J; Cook, Jo Marie
2015-05-13
Proper sampling and sample processing in pesticide residue analysis of food and soil have always been essential to obtain accurate results, but the subject is becoming a greater concern as approximately 100 mg test portions are being analyzed with automated high-throughput analytical methods by agrochemical industry and contract laboratories. As global food trade and the importance of monitoring increase, the food industry and regulatory laboratories are also considering miniaturized high-throughput methods. In conjunction with a summary of the symposium "Residues in Food and Feed - Going from Macro to Micro: The Future of Sample Processing in Residue Analytical Methods" held at the 13th IUPAC International Congress of Pesticide Chemistry, this is an opportune time to review sampling theory and sample processing for pesticide residue analysis. If collected samples and test portions do not adequately represent the actual lot from which they came and provide meaningful results, then all costs, time, and efforts involved in implementing programs using sophisticated analytical instruments and techniques are wasted and can actually yield misleading results. This paper is designed to briefly review the often-neglected but crucial topic of sample collection and processing and put the issue into perspective for the future of pesticide residue analysis. It also emphasizes that analysts should demonstrate the validity of their sample processing approaches for the analytes/matrices of interest and encourages further studies on sampling and sample mass reduction to produce a test portion.
Fan, Wen; Almirall, José
2014-03-01
A novel geometry configuration based on sorbent-coated glass microfibers packed within a glass capillary is used to sample volatile organic compounds, dynamically, in the headspace of an open system or in a partially open system to achieve quantitative extraction of the available volatiles of explosives with negligible breakthrough. Air is sampled through the newly developed sorbent-packed 2 cm long, 2 mm diameter capillary microextraction of volatiles (CMV) and subsequently introduced into a commercially available thermal desorption probe fitted directly into a GC injection port. A sorbent coating surface area of ∼5 × 10(-2) m(2) or 5,000 times greater than that of a single solid-phase microextraction (SPME) fiber allows for fast (30 s), flow-through sampling of relatively large volumes using sampling flow rates of ∼1.5 L/min. A direct comparison of the new CMV extraction to a static (equilibrium) SPME extraction of the same headspace sample yields a 30 times improvement in sensitivity for the CMV when sampling nitroglycerine (NG), 2,4-dinitrotoluene (2,4-DNT), and diphenylamine (DPA) in a mixture containing a total mass of 500 ng of each analyte, when spiked into a liter-volume container. Calibration curves were established for all compounds studied, and the recovery was determined to be ∼1 % or better after only 1 min of sampling time. Quantitative analysis is also possible using this extraction technique when the sampling temperature, flow rate, and time are kept constant between calibration curves and the sample.
A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index.
Płotka-Wasylka, J
2018-05-01
A new means for assessing analytical protocols relating to green analytical chemistry attributes has been developed. The new tool, called GAPI (Green Analytical Procedure Index), evaluates the green character of an entire analytical methodology, from sample collection to final determination, and was created using such tools as the National Environmental Methods Index (NEMI) or Analytical Eco-Scale to provide not only general but also qualitative information. In GAPI, a specific symbol with five pentagrams can be used to evaluate and quantify the environmental impact involved in each step of an analytical methodology, mainly from green through yellow to red depicting low, medium to high impact, respectively. The proposed tool was used to evaluate analytical procedures applied in the determination of biogenic amines in wine samples, and polycyclic aromatic hydrocarbon determination by EPA methods. GAPI tool not only provides an immediately perceptible perspective to the user/reader but also offers exhaustive information on evaluated procedures. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Peng; Zhang, Yunchang; Lv, Yi; Hou, Xiandeng
2006-12-01
A simple, low cost and highly sensitive method based on cloud point extraction (CPE) for separation/preconcentration and thermospray flame quartz furnace atomic absorption spectrometry was proposed for the determination of ultratrace cadmium in water and urine samples. The analytical procedure involved the formation of analyte-entrapped surfactant micelles by mixing the analyte solution with an ammonium pyrrolidinedithiocarbamate (APDC) solution and a Triton X-114 solution. When the temperature of the system was higher than the cloud point of Triton X-114, the complex of cadmium-PDC entered the surfactant-rich phase and thus separation of the analyte from the matrix was achieved. Under optimal chemical and instrumental conditions, the limit of detection was 0.04 μg/L for cadmium with a sample volume of 10 mL. The analytical results of cadmium in water and urine samples agreed well with those by ICP-MS.
NASA Astrophysics Data System (ADS)
Bastrakova, I.; Klump, J. F.; McInnes, B.; Wyborn, L. A.; Brown, A.
2015-12-01
The International Geo-Sample Number (IGSN) provides a globally unique identifier for physical samples used to generate analytical data. This unique identifier provides the ability to link each physical sample to any analytical data undertaken on that sample, as well as to any publications derived from any data derived on the sample. IGSN is particularly important for geochemical and geochronological data, where numerous analytical techniques can be undertaken at multiple analytical facilities not only on the parent rock sample itself, but also on derived sample splits and mineral separates. Australia now has three agencies implementing IGSN: Geoscience Australia, CSIRO and Curtin University. All three have now combined into a single project, funded by the Australian Research Data Services program, to better coordinate the implementation of IGSN in Australia, in particular how these agencies allocate IGSN identifiers. The project will register samples from pilot applications in each agency including the CSIRO National Collection of Mineral Spectra database, the Geoscience Australia sample collection, and the Digital Mineral Library of the John De Laeter Centre for Isotope Research at Curtin University. These local agency catalogues will then be aggregated into an Australian portal, which will ultimately be expanded for all geoscience specimens. The development of this portal will also involve developing a common core metadata schema for the description of Australian geoscience specimens, as well as formulating agreed governance models for registering Australian samples. These developments aim to enable a common approach across Australian academic, research organisations and government agencies for the unique identification of geoscience specimens and any analytical data and/or publications derived from them. The emerging pattern of governance and technical collaboration established in Australia may also serve as a blueprint for similar collaborations internationally.
Zgoła-Grześkowiak, Agnieszka; Grześkowiak, Tomasz; Rydlichowski, Robert; Łukaszewski, Zenon
2009-04-01
Water samples from agricultural drains were tested for the presence of nonylphenol and nonylphenol mono- and diethoxylates. The analytes belong to biodegradation products of long-chained nonylphenol ethoxylates, which are used as additives in pesticide formulations. Quantification of these analytes was performed by HPLC with fluorescence detection after isolation by using multi-capillary polytetrafluoroethylene (PTFE) trap extraction. This newly developed technique allowed obtaining about 90% recovery of these analytes in synthetic samples and several percent lower recovery in real samples. Also, no additional sample cleaning was needed before chromatographic analysis. The limit of quantitation for all the analytes was 0.1 microg L(-1). The nonylphenol, nonylphenol mono- and diethoxylates were detected at the concentrations ranging from 0.5 to 6.0 microg L(-1), from 0.2 to 0.7 microg L(-1) and from below 0.02 to 0.4 microg L(-1), respectively. Concentrations of nonylphenol and its derivatives were higher in samples taken in spring than in summer.
SUBMICROSCOPIC ( less than 1 mu m) MINERAL CONTENTS OF VITRINITES IN SELECTED BITUMINOUS COAL BEDS.
Minkin, J.A.; Chao, E.C.T.; Thompson, C.L.; Wandless, M.-V.; Dulong, F.T.; Larson, R.R.; Neuzil, S.G.; ,
1983-01-01
An important aspect of the petrographic description of coal is the characterization of coal quality, including chemical attributes. For geologic investigations, data on the concentrations, distribution, and modes of occurrence of minor and trace elements provide a basis for reconstructing the probable geochemical environment of the swamp material that was converted into peat, and the geochemical conditions that prevailed during and subsequent to coalification. We have been using electron (EPMA) and proton (PIXE) microprobe analytical methods to obtain data on the chemical characteristics of specific coal constituents in their original associations within coal samples. The present study is aimed at evaluation of the nature of mineral occurrences and heterogeneous elemental concentrations within vitrinites. Vitrinites are usually the most abundant, and therefore most important, maceral group in bituminous coal. 8 refs.
Further analyses of human kidney cell populations separated on the Space Shuttle
NASA Technical Reports Server (NTRS)
Stewart, Robin M.; Todd, Paul; Cole, Kenneth D.; Morrison, Dennis R.
1992-01-01
Cultured human embryonic kidney cells were separated into electrophoretic subpopulations in laboratory experiments and in two separation experiments on the STS-8 (Challenger) Space Shuttle flight using the mid-deck Continuous Flow Electrophoretic Separator (CFES). Populations of cells from each fraction were cultured for the lifetime of the cells, and supernatant medium was withdrawn and replaced at 4-day intervals. Withdrawn medium was frozen at -120 C for subsequent analysis. Enzyme assays, antibodies and gel electrophoresis were used as analytical tools for the detection and quantization of plasminogen activators in these samples. These assays of frozen-culture supernatant fluids confirmed the electrophoretic separation of plasminogen-activator-producing cells from nonproducing cells, the isolation of cells capable of sustained production, and the separation of cells that produce different plasminogen activators from one other.
Courtade-Saïdi, Monique; Fleury Feith, Jocelyne
2015-10-01
The pre-analytical step includes sample collection, preparation, transportation and storage in the pathology unit where the diagnosis is performed. The pathologist ensures that pre-analytical conditions are in line with expectations. The lack of standardization for handling cytological samples makes this pre-analytical step difficult to harmonize. Moreover, this step depends on the nature of the sample: fresh liquid or fixed material, air-dried smears, liquid-based cytology. The aim of the study was to review the different practices in French structures of pathology on the pre-analytical phase concerning cytological fluids such as broncho-alveolar lavage (BALF), serous fluids and urine. A survey was conducted on the basis of the pre-analytical chapter of the ISO 15189 and sent to 191 French pathological structures (105 public and 86 private). Fifty-six laboratories replied to the survey. Ninety-five per cent have a computerized management system and 70% a manual on sample handling. The general instructions requested for the patients and sample identification were highly correctly filled with a short time routing and additional tests prescription. By contrast, information are variable concerning the clinical information requested and the type of tubes for collecting fluids and the volumes required as well as the actions taken in case of non-conformity. For the specific items concerning BALF, serous fluids and urine, this survey has shown a great heterogeneity according to sample collection, fixation and of clinical information. This survey demonstrates that the pre-analytical quality for BALF, serous fluids and urine is not optimal and that some corrections of the practices are recommended with a standardization of numerous steps in order to increase the reproducibility of additional tests such as immunocytochemistry, cytogenetic and molecular biology. Some recommendations have been written. Copyright © 2015 Elsevier Masson SAS. All rights reserved.