Cryolite process for the solidification of radioactive wastes
Wielang, Joseph A.; Taylor, Larry L.
1976-01-01
An improved method is provided for solidifying liquid wastes containing significant quantities of sodium or sodium compounds by calcining in a fluidized-bed calciner. The formation of sodium nitrate which will cause agglomeration of the fluidized-bed particles is retarded by adding aluminum and a fluoride to the waste in order to produce cryolite during calcination. The off-gas of the calciner is scrubbed with a solution containing aluminum in order to complex any fluoride which may be liberated by subsequent dissolution of cryolite and prevent corrosion in the off-gas cleanup system.
Schwerdt, Ian J; Olsen, Adam; Lusk, Robert; Heffernan, Sean; Klosterman, Michael; Collins, Bryce; Martinson, Sean; Kirkham, Trenton; McDonald, Luther W
2018-01-01
The analytical techniques typically utilized in a nuclear forensic investigation often provide limited information regarding the process history and production conditions of interdicted nuclear material. In this study, scanning electron microscopy (SEM) analysis of the surface morphology of amorphous-UO 3 samples calcined at 250, 300, 350, 400, and 450°C from uranyl peroxide was performed to determine if the morphology was indicative of the synthesis route and thermal history for the samples. Thermogravimetic analysis-mass spectrometry (TGA-MS) and differential scanning calorimetry (DSC) were used to correlate transitions in the calcined material to morphological transformations. The high-resolution SEM images were processed using the Morphological Analysis for Material Attribution (MAMA) software. Morphological attributes, particle area and circularity, indicated significant trends as a result of calcination temperature. The quantitative morphological analysis was able to track the process of particle fragmentation and subsequent sintering as calcination temperature was increased. At the 90% confidence interval, with 1000 segmented particles, the use of Kolmogorov-Smirnov statistical comparisons allowed discernment between all calcination temperatures for the uranyl peroxide route. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Synthesis and physical characterization of γ-Fe2O3 and (α+γ)-Fe2O3 nanoparticles
NASA Astrophysics Data System (ADS)
Bhavani, P.; Reddy, N. Ramamanohar; Reddy, I. Venkata Subba
2017-01-01
Magnetic nanoparticles were synthesized at different hydrothermal temperatures (HT; 100, 130, 160 and 190 °C) by using a facile hydrothermal route combined with a subsequent calcination process. The calcined materials were analyzed for phase, microstructure, and magnetic and dielectric properties through different characterization techniques. The structural analyses revealed that the material prepared at a HT of 100 °C and sequentially calcined at 300 °C for 3 h showed a high degree of the maghemite structure. On the other hand calcined materials showed a small additional peak belonging to the hematite structure. FESEM micrographs of the materials calcined at HT, of 100 °C and 190 °C showed spherical-like nanoparticles with diameters in range 30 - 54 nm. Materials prepared at a HT of 160 °C followed by calcination at 300 °C for 3 h exhibited the highest saturation magnetization, Ms = 67 emu/g, with a lower coercivity; all materials were in a single domain state. A high dielectric constant (105.54) was observed for the calcined material that had been prepared at a HT of 130 °C. The dielectric properties of synthesized materials showed an almost frequency-independent behavior.
NASA Astrophysics Data System (ADS)
Wang, Pengcheng; Zhou, Yingke; Hu, Min; Chen, Jian
2017-01-01
Nitrogen-doped carbon nanotube supporting NiO nanoparticles were synthesized by a chemical precipitation process coupled with subsequent calcination. The morphology and structure of the composites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performance was evaluated using cyclic voltammetry and chronoamperometric technique. The effects of nitrogen doping, calcination temperature and content of NiO nanoparticles on the electrocatalytic activity toward methanol oxidation were systematically studied. The results show that the uniformly dispersed ultrafine NiO nanoparticles supported on nitrogen-doped carbon nanotube are obtained after calcination at 400 °C. The optimized composite catalysts present high electrocatalytic activity, fast charge-transfer process, excellent accessibility and stability for methanol oxidation reaction, which are promising for application in the alkaline direct methanol fuel cells.
Wang, Ai-Qin; Chang, Chun-Ming; Mou, Chung-Yuan
2005-10-13
We report a novel Au-Ag alloy catalyst supported on mesoporous aluminosilicate Au-Ag@MCM prepared by a one-pot synthesis procedure, which is very active for low-temperature CO oxidation. The activity was highly dependent on the hydrogen pretreatment conditions. Reduction at 550-650 degrees C led to high activity at room temperature, whereas as-synthesized or calcined samples did not show any activity at the same temperature. Using various characterization techniques, such as XRD, UV-vis, XPS, and EXAFS, we elucidated the structure and surface composition change during calcination and the reduction process. The XRD patterns show that particle size increased only during the calcination process on those Ag-containing samples. XPS and EXAFS data demonstrate that calcination led to complete phase segregation of the Au-Ag alloy and the catalyst surface is greatly enriched with AgBr after the calcination process. However, subsequent reduction treatment removed Br- completely and the Au-Ag alloy was formed again. The surface composition of the reduced Au-Ag@MCM (nominal Au/Ag = 3/1) was more enriched with Ag, with the surface Au/Ag ratio being 0.75. ESR spectra show that superoxides are formed on the surface of the catalyst and its intensity change correlates well with the trend of catalytic activity. A DFT calculation shows that CO and O2 coadsorption on neighboring sites on the Au-Ag alloy was stronger than that on either Au or Ag. The strong synergism in the coadsorption of CO and O2 on the Au-Ag nanoparticle can thus explain the observed synergetic effect in catalysis.
Synthesis of Monodispersed Tantalum(V) oxide Nanospheres by an Ethylene Glycol Mediated Route
Tantalum(V) oxide (Ta2O5) nanospheres have been synthesized by a very simple ethylene glycol mediated route. The two-step process involves the formation of glycolate nanoparticles and their subsequent hydrolysis and calcination to generate the final Ta2O5 nanospheres. The synthes...
Methane adsorption capacity on graphene derived from glucose and ferric chloride
NASA Astrophysics Data System (ADS)
Ismail, M. S.; Yusof, N.; Yusop, M. Zamri; Ismail, A. F.; Nasri, N. S.; Othman, F. E. Che
2018-05-01
This study examines the methane adsorption capacity using graphene derived from glucose and ferric chloride (FeCl3). The graphene was prepared via simple method by dissolution of glucose and FeCl3 in water, vaporization of water in oven, and calcination process in quartz furnace. Graphene was successfully produced with impregnation ratio of glucose and FeCl3 at 1:1 and calcination temperature of 650 °C. The prepared graphene subsequently underwent a volumetric adsorption setup, to measure the adsorption capacity of methane (CH4). The highest CH4 adsorption capacity obtained was 6.37 mmol/g at 3.5 bar and 298 K for 40 minutes. These result shows that the prepared graphene displayed good adsorption characteristic for CH4.
Ultrafine manganese dioxide nanowire network for high-performance supercapacitors.
Jiang, Hao; Zhao, Ting; Ma, Jan; Yan, Chaoyi; Li, Chunzhong
2011-01-28
Ultrafine MnO(2) nanowires with sub-10 nm diameters have been synthesized by a simple process of hydrothermal treatment with subsequent calcinations to form networks that exhibit an enhanced specific capacitance (279 F g(-1) at 1 A g(-1)), high rate capability (54.5% retention at 20 A g(-1)) and good cycling stability (1.7% loss after 1000 cycles).
Synthesis of nano-sized lithium cobalt oxide via a sol-gel method
NASA Astrophysics Data System (ADS)
Li, Guangfen; Zhang, Jing
2012-07-01
In this study, nano-structured LiCoO2 thin film were synthesized by coupling a sol-gel process with a spin-coating method using polyacrylic acid (PAA) as chelating agent. The optimized conditions for obtaining a better gel formulation and subsequent homogenous dense film were investigated by varying the calcination temperature, the molar mass of PAA, and the precursor's molar ratios of PAA, lithium, and cobalt ions. The gel films on the silicon substrate surfaces were deposited by multi-step spin-coating process for either increasing the density of the gel film or adjusting the quantity of PAA in the film. The gel film was calcined by an optimized two-step heating procedure in order to obtain regular nano-structured LiCoO2 materials. Both atomic force microscopy (AFM) and scanning electron microscopy (SEM) were utilized to analyze the crystalline and the morphology of the films, respectively.
Ghosal, Partha S; Kattil, Krishna V; Yadav, Manoj K; Gupta, Ashok K
2018-03-01
Olivine, a low-cost natural material, impregnated with iron is introduced in the adsorptive removal of arsenic. A wet impregnation method and subsequent calcination were employed for the preparation of iron/olivine composite. The major preparation process parameter, viz., iron loading and calcination temperature were optimized through the response surface methodology coupled with a factorial design. A significant variation of adsorption capacity of arsenic (measured as total arsenic), i.e., 63.15 to 310.85 mg/kg for arsenite [As(III) T ] and 76.46 to 329.72 mg/kg for arsenate [As(V) T ] was observed, which exhibited the significant effect of the preparation process parameters on the adsorption potential. The iron loading delineated the optima at central points, whereas a monotonous decreasing trend of adsorption capacity for both the As(III) T and As(V) T was observed with the increasing calcination temperature. The variation of adsorption capacity with the increased iron loading is more at lower calcination temperature showing the interactive effect between the factors. The adsorbent prepared at the optimized condition of iron loading and calcination temperature, i.e., 10% and 200 °C, effectively removed the As(III) T and As(V) T by more than 96 and 99%, respectively. The material characterization of the adsorbent showed the formation of the iron compound in the olivine and increase in specific surface area to the tune of 10 multifold compared to the base material, which is conducive to the enhancement of the adsorption capacity. An artificial neural network was applied for the multivariate optimization of the adsorption process from the experimental data of the univariate optimization study and the optimized model showed low values of error functions and high R 2 values of more than 0.99 for As(III) T and As(V) T . The adsorption isotherm and kinetics followed Langmuir model and pseudo second order model, respectively demonstrating the chemisorption in this study. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakel, Allen J.; Conner, Cliff; Quigley, Kevin
One of the missions of the Reduced Enrichment for Research and Test Reactors (RERTR) program (and now the National Nuclear Security Administrations Material Management and Minimization program) is to facilitate the use of low enriched uranium (LEU) targets for 99Mo production. The conversion from highly enriched uranium (HEU) to LEU targets will require five to six times more uranium to produce an equivalent amount of 99Mo. The work discussed here addresses the technical challenges encountered in the treatment of uranyl nitrate hexahydrate (UNH)/nitric acid solutions remaining after the dissolution of LEU targets. Specifically, the focus of this work is themore » calcination of the uranium waste from 99Mo production using LEU foil targets and the Modified Cintichem Process. Work with our calciner system showed that high furnace temperature, a large vent tube, and a mechanical shield are beneficial for calciner operation. One- and two-step direct calcination processes were evaluated. The high-temperature one-step process led to contamination of the calciner system. The two-step direct calcination process operated stably and resulted in a relatively large amount of material in the calciner cup. Chemically assisted calcination using peroxide was rejected for further work due to the difficulty in handling the products. Chemically assisted calcination using formic acid was rejected due to unstable operation. Chemically assisted calcination using oxalic acid was recommended, although a better understanding of its chemistry is needed. Overall, this work showed that the two-step direct calcination and the in-cup oxalic acid processes are the best approaches for the treatment of the UNH/nitric acid waste solutions remaining from dissolution of LEU targets for 99Mo production.« less
Xie, Man; Luo, Rui; Lu, Jun; Chen, Renjie; Wu, Feng; Wang, Xiaoming; Zhan, Chun; Wu, Huiming; Albishri, Hassan M; Al-Bogami, Abdullah S; El-Hady, Deia Abd; Amine, Khalil
2014-10-08
Research on sodium batteries has made a comeback because of concern regarding the limited resources and cost of lithium for Li-ion batteries. From the standpoint of electrochemistry and economics, Mn- or Fe-based layered transition metal oxides should be the most suitable cathode candidates for affordable sodium batteries. Herein, this paper reports a novel cathode material, layered Na1+x(Fey/2Niy/2Mn1-y)1-xO2 (x = 0.1-0.5), synthesized through a facile coprecipitation process combined with subsequent calcination. For such cathode material calcined at 800 °C for 20 h, the Na/Na1+x(Fey/2Niy/2Mn1-y)1-xO2 (x = 0.4) electrode exhibited a good capacity of 99.1 mAh g(-1) (cycled at 1.5-4.0 V) and capacity retention over 87% after 50 cycles. Optimization of this material would make layered transition metal oxides a strong candidate for the Na-ion battery cathode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chudnovsky, Yaroslav; Kozlov, Aleksandr
Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increasemore » efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel petroleum coke calcination process. - Increase the opportunity of heat (chemical and physical) utilization from process off-gases and solid product. - Develop a design of advanced CHP system utilizing off-gases as an “opportunity fuel” for petroleum coke calcinations and sensible heat of calcined coke. A successful accomplishment of the aforementioned objectives will contribute toward the following U.S. DOE programmatic goals: - Drive a 25% reduction in U. S. industrial energy intensity by 2017 in support of EPAct 2005; - Contribute to an 18% reduction in U.S. carbon intensity by 2012 as established by the Administration’s “National Goal to Reduce Emissions Intensity.” 8« less
NASA Astrophysics Data System (ADS)
Bu, Dan; Zhuang, Huisheng
2013-01-01
Copper-doped titania (Cu/TiO2) hollow microspheres were fabricated using the rape pollen as biotemplates via an improved sol-gel method and a followed calcinations process. In the fabricated process, a titanium(IV)-isopropoxide-based sol directly coated onto the surface of rape pollen. Subsequently, after calcinations, rape pollen was removed by high temperature and the hollow microsphere structure was retained. The average diameter of as-obtained hollow microspheres is 15-20 μm and the thickness of shell is approximately 0.6 μm. Knowing from XRD results, the main crystal phase of microspheres is anatase, coupled with rutile. The specific surface area varied between 141.80 m2/g and 172.51 m2/g. This hollow sphere photocatalysts with high specific surface area exhibited stronger absorption ability and higher photoactivity, stimulated by visible light. The degradation process of chlortetracycline (CTC) solution had been studied. The degradated results indicate that CTC could be effective degradated by fabricated hollow spherical materials. And the intermediate products formed in the photocatalytic process had been identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowder, M.; Pierce, R.
2012-08-22
H-Canyon and HB-Line are tasked with the production of PuO{sub 2} from a feed of plutonium metal. The PuO{sub 2} will provide feed material for the MOX Fuel Fabrication Facility. After dissolution of the Pu metal in H-Canyon, the solution will be transferred to HB-Line for purification by anion exchange. Subsequent unit operations include Pu(IV) oxalate precipitation, filtration and calcination to form PuO{sub 2}. This report details the results from SRNL anion exchange, precipitation, filtration, calcination, and characterization tests, as requested by HB-Line1 and described in the task plan. This study involved an 80-g batch of Pu and employed testmore » conditions prototypical of HB-Line conditions, wherever feasible. In addition, this study integrated lessons learned from earlier anion exchange and precipitation and calcination studies. H-Area Engineering selected direct strike Pu(IV) oxalate precipitation to produce a more dense PuO{sub 2} product than expected from Pu(III) oxalate precipitation. One benefit of the Pu(IV) approach is that it eliminates the need for reduction by ascorbic acid. The proposed HB-Line precipitation process involves a digestion time of 5 minutes after the time (44 min) required for oxalic acid addition. These were the conditions during HB-line production of neptunium oxide (NpO{sub 2}). In addition, a series of small Pu(IV) oxalate precipitation tests with different digestion times were conducted to better understand the effect of digestion time on particle size, filtration efficiency and other factors. To test the recommended process conditions, researchers performed two nearly-identical larger-scale precipitation and calcination tests. The calcined batches of PuO{sub 2} were characterized for density, specific surface area (SSA), particle size, moisture content, and impurities. Because the 3013 Standard requires that the calcination (or stabilization) process eliminate organics, characterization of PuO{sub 2} batches monitored the presence of oxalate by thermogravimetric analysis-mass spectrometry (TGA-MS). To use the TGA-MS for carbon or oxalate content, some method development will be required. However, the TGA-MS is already used for moisture measurements. Therefore, SRNL initiated method development for the TGA-MS to allow quantification of oxalate or total carbon. That work continues at this time and is not yet ready for use in this study. However, the collected test data can be reviewed later as those analysis tools are available.« less
Evaluation of Vitrification Processing Step for Rocky Flats Incinerator Ash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wigent, W.L.; Luey, J.K.; Scheele, R.D.
In 1997, Pacific Northwest National Laboratory (PNNL) staff developed a processing option for incinerator ash at the Rocky Flats Environmental Technology Sites (RFETS). This work was performed with support from Los Alamos National Laboratory (LANL) and Safe Sites of Colorado (SSOC). A description of the remediation needs for the RFETS incinerator ash is provided in a report summarizing the recommended processing option for treatment of the ash (Lucy et al. 1998). The recommended process flowsheet involves a calcination pretreatment step to remove carbonaceous material followed by a vitrification processing step for a mixture of glass tit and calcined incinerator ash.more » Using the calcination pretreatment step to remove carbonaceous material reduced process upsets for the vitrification step, allowed for increased waste loading in the final product, and improved the quality of the final product. Figure 1.1 illustrates the flow sheet for the recommended processing option for treatment of RFETS incinerator ash. In 1998, work at PNNL further developed the recommended flow sheet through a series of studies to better define the vitrification operating parameters and to address secondary processing issues (such as characterizing the offgas species from the calcination process). Because a prototypical rotary calciner was not available for use, studies to evaluate the offgas from the calcination process were performed using a benchtop rotary calciner and laboratory-scale equipment (Lucy et al. 1998). This report focuses on the vitrification process step after ash has been calcined. Testing with full-scale containers was performed using ash surrogates and a muffle furnace similar to that planned for use at RFETS. Small-scale testing was performed using plutonium-bearing incinerator ash to verify performance of the waste form. Ash was not obtained from RFETS because of transportation requirements to calcine the incinerator ash prior to shipment of the material. Because part of PNNL's work was to characterize the ash prior to calcination and to investigate the effect of calcination on product quality, representative material was obtained from LANL. Ash obtained from LANL was selected based on its similarity to that currently stored at RFETS. The plutonium-bearing ashes obtained from LANL are likely from a RFETS incinerator, but the exact origin was not identified.« less
Surface modification and characterization of basalt fibers as potential reinforcement of concretes
NASA Astrophysics Data System (ADS)
Iorio, M.; Santarelli, M. L.; González-Gaitano, G.; González-Benito, J.
2018-01-01
Basalt fibers were surface treated with silane coupling agents as a method to enhance the adhesion and durability of fiber-matrix interfaces in concrete based composite materials. In particular, this work has been focused on the study of basalt fibers chemical coatings with aminosilanes and their subsequent characterization. Surface treatments were carried out after removing the original sizing applied by manufacturer and pretreating them with an activation process of surface silanol regeneration. Different samples were considered to make convenient comparisons: as received fibers (commercial), calcinated fibers (without commercial sizing), activated samples (calcinated fibers subjected to an acid process for hydroxyl regeneration), and silanized fibers with γ-aminopropiltriethoxysilane, γ-aminopropilmethyldiethoxysilane and a mixture of 50% by weight of both silanes. A deep characterization was carried out in terms of structure using X-ray diffraction, XRD, and Fourier transform infrared spectroscopy, FTIR, thermal properties by thermogravimetric analysis, TGA, coupled with single differential thermal analysis, SDTA, and morphology by scanning electron microscopy, SEM, and atomic force microscopy, AFM.
Fang, Ruiqi; Tian, Panliang; Yang, Xianfeng
2018-01-01
The development of efficient encapsulation strategies has attracted intense interest for preparing highly active and stable heterogeneous metal catalysts. However, issues related to low loadings, costly precursors and complex synthesis processes restrict their potential applications. Herein, we report a novel and general strategy to encapsulate various ultrafine metal-oxides nanoparticles (NPs) into the mesoporous KIT-6. The synthesis is facile, which only involves self-assembly of a metal–organic framework (MOF) precursor in the silica mesopores and a subsequent calcination process to transform the MOF into metal-oxide NPs. After the controlled calcination, the metal-oxide NPs produced from MOF decomposition are exclusively confined and uniformly distributed in the mesopores of KIT-6 with high metal loadings. Benefitting from the encapsulation effects, as-synthesized Co@KIT-6 materials exhibit superior catalytic activity and recycling stability in biomass-derived HMF oxidation under mild reaction conditions. PMID:29675231
Alcoa Pressure Calcination Process for Alumina
NASA Astrophysics Data System (ADS)
Sucech, S. W.; Misra, C.
A new alumina calcination process developed at Alcoa Laboratories is described. Alumina is calcined in two stages. In the first stage, alumina hydrate is heated indirectly to 500°C in a decomposer vessel. Released water is recovered as process steam at 110 psig pressure. Partial transformation of gibbsite to boehmite occurs under hydrothermal conditions of the decomposer. The product from the decomposer containing about 5% LOI is then calcined by direct heating to 850°C to obtain smelting grade alumina. The final product is highly attrition resistant, has a surface area of 50-80 m2/g and a LOI of less than 1%. Accounting for the recovered steam, the effective fuel consumption for the new calcination process is only 1.6 GJ/t A12O3.
Summary of Calcine Disposal Development Using Hot Isostatic Pressing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, Ken; Wahlquist, Dennis; Hart, Edward
2015-03-01
Battelle Energy Alliance, LLC, has demonstrated the effectiveness of the hot isostatic press (HIP) process for treatment of hazardous high-level waste known as calcine that is stored at the Idaho Nuclear Technology and Engineering Center (INTEC) at Idaho National Laboratory. HIP trials performed with simulated calcines at Idaho National Laboratory’s Materials and Fuels Complex and an Australian Nuclear Science and Technology Organization facility from 2007 to 2010 produced a dense, monolithic waste form with increased chemical durability and effective (storage) volume reductions of ~10 to ~70% compared to granular calcine forms. In December 2009, the U.S. Department of Energy signedmore » an amended Record of Decision selecting HIP technology as the treatment method for the 4,400 m3 of granular zirconia and alumina calcine stored at INTEC. Testing showed that HIP treatment reduces the risks associated with radioactive and hazardous constituent release, post-production handling, and long-term (repository) storage of calcines and would result in estimated storage cost savings in the billions of dollars. Battelle Energy Alliance has the ability to complete pilot-scale HIP processing of INTEC calcine, which is the next necessary step in implementing HIP processing as a calcine treatment method.« less
Carbon dioxide capture from a cement manufacturing process
Blount, Gerald C [North Augusta, SC; Falta, Ronald W [Seneca, SC; Siddall, Alvin A [Aiken, SC
2011-07-12
A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.
Study of variation grain size in desulfurization process of calcined petroleum coke
NASA Astrophysics Data System (ADS)
Pintowantoro, Sungging; Setiawan, Muhammad Arif; Abdul, Fakhreza
2018-04-01
Indonesia is a country with abundant natural resources, such as mineral mining and petroleum. In petroleum processing, crude oil can be processed into a source of fuel energy such as gasoline, diesel, oil, petroleum coke, and others. One of crude oil potentials in Indonesia is petroleum coke. Petroleum coke is a product from oil refining process. Sulfur reducing process in calcined petroleum cokes can be done by desulfurization process. The industries which have potential to become petroleum coke processing consumers are industries of aluminum smelting (anode, graphite block, carbon mortar), iron riser, calcined coke, foundry coke, etc. Sulfur reducing process in calcined petroleum coke can be done by thermal desulfurization process with alkaline substance NaOH. Desulfurization of petroleum coke process can be done in two ways, which are thermal desulfurization and hydrodesulphurization. This study aims to determine the effect of various grain size on sulfur, carbon, and chemical bond which contained by calcined petroleum coke. The raw material use calcined petroleum coke with 0.653% sulfur content. The grain size that used in this research is 50 mesh, then varied to 20 mesh and 100 mesh for each desulfurization process. Desulfurization are tested by ICP, UV-VIS, and FTIR to determine levels of sulfur, carbon, chemical bonding and sulfur dissolved water which contained in the residual washing of calcined petroleum coke. From various grain size that mentioned before, the optimal value is on 100 mesh grain size, where the sulfur content in petroleum coke is 0.24% and carbon content reaches the highest level of 97.8%. Meanwhile for grain size 100 mesh in the desulfurization process is enough to break the chemical bonds of organic sulfur in petroleum coke.
Alumina Calcination in the Fluid-Flash Calciner
NASA Astrophysics Data System (ADS)
Fish, William M.
In the mid 40's, Alcoa turned to fluidized solids techniques as a means of improving the efficiency of the alumina calcining process. This paper traces calciner development from the first pilot operation in 1946 through the first plant fluid-bed unit in 1952, the early "fluid-flash" calciner designs in 1960, the first 300 ton/day fluid-flash calciner at Alcoa's Bauxite, Arkansas plant in 1963, the 600 ton/day calciners installed in Suriname and Australia in 1965 and 1966, up to the 1500 ton/day Mark III calciners now operating in Jamaica, Australia and the United States. These Mark III fluid-flash calciners have provided a 30 to 40 percent fuel saving in addition to major savings in capital investment and maintenance costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bundy, R.D.; Alderfer, R.B.
Bench-scale tests of the direct calcination process for Portsmouth were conducted using batch pot calcination of simulated and actual raffinate wastes. These studies included investigation of the evaporation step needed to concentrate the raffinate before calcination. Tests were conducted at calcination temperatures of 600, 700, 1000, and 1200/sup 0/F with two levels of evaporative concentration before calcination at 1000/sup 0/F. Evaporation only tests were also made. Performance of the bench-scale system was excellent. A calcination temperature of 715/sup 0/F indicated that 80 to 100% of the Tc was retained in the calcined solids, while all of the nitrates were decomposedmore » to oxides. With calcination temperatures of greater than or equal to 1000/sup 0/F, part of the Tc escaped from the calcination pot to the scrubber. Below 700/sup 0/F, not all of the nitrates were decomposed to oxides. Most of the U remained in the calcined solids for calcination temperatures of less than or equal to 1000/sup 0/F. The mass of solids remaining after calcination was 4 to 5% of the original raffinate for calcination temperatures from 700 to 1000/sup 0/F. Flow rate through the off-gas treatment system was variable. The water scrubber had a good removal efficiency for nitrate and most metals, but not for uranium. The trapping efficiency of the limestone trap for nitrate was low. Flowsheet studies indicate that enough U would pass through the scrubber and chemical traps to cause an unacceptably high release of radioactivity if the assay of the uranium exceeded 33%. A small HEPA filter after the limestone chemical traps is recommended to reduce U emissions. A flowsheet was developed for a full-scale process for the direct calcination of raffinate waste.« less
NASA Astrophysics Data System (ADS)
Xu, Feiyan; Le, Yao; Cheng, Bei; Jiang, Chuanjia
2017-12-01
Catalytic oxidation at room temperature over well-designed catalysts is an environmentally friendly method for the abatement of indoor formaldehyde (HCHO) pollution. Herein, nanocomposites of platinum (Pt) and titanium dioxide (TiO2) nanofibers with various phase compositions were prepared by calcining the electrospun TiO2 precursors at different temperatures and subsequently depositing Pt nanoparticles (NPs) on the TiO2 through a NaBH4-reduction process. The phase compositions and structures of Pt/TiO2 can be easily controlled by varying the calcination temperature. The Pt/TiO2 nanocomposites showed a phase-dependent activity towards the catalytic HCHO oxidation. Pt/TiO2 containing pure rutile phase showed enhanced activity with a turnover frequency (TOF) of 16.6 min-1 (for a calcination temperature of 800 °C) as compared to those containing the anatase phase or mixed phases. Density functional theory calculation shows that TiO2 nanofibers with pure rutile phase have stronger adsorption ability to Pt atoms than anatase phase, which favors the reduction of Pt over rutile phase TiO2, leading to higher contents of metallic Pt in the nanocomposite. In addition, the Pt/TiO2 with rutile phase possesses more abundant oxygen vacancies, which is conducive to the activation of adsorbed oxygen. Consequently, the Pt/rutile-TiO2 nanocomposite exhibited better catalytic activity towards HCHO oxidation at room temperature.
10. VIEW OF CALCINER IN ROOM 146148. THE CALCINER HEATED ...
10. VIEW OF CALCINER IN ROOM 146-148. THE CALCINER HEATED PLUTONIUM PEROXIDE TO CONVERT IT TO PLUTONIUM OXIDE. THE PROCESS REMOVED RESIDUAL WATER AND NITRIC ACID LEAVING A DRY, POWDERED PRODUCT. (4/29/65) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO
NASA Astrophysics Data System (ADS)
Seo, Min-Su; Lee, Hyukjae
2012-06-01
Carbon-coated titania nanotubes are synthesized via anodization in perchlorate containing electrolyte and subsequent hydrothermal reaction with glucose. Carbon coating improves the lithiation capacity of the titania nanotubes only when calcined at temperatures above 600°C, and the maximum capacity is ˜162 mAhg-1 at the 50th cycle from the titania nanotubes calcined at 700°C. The improved capacity of carbon-coated titania nanotubes is caused by the enhanced conductivity from the carbon. This is different from the role of the carbon coating in the hydrothermally prepared carbon-coated titania nanotubes, in which the coated carbon limits severe agglomeration.
Shape-Controlled Synthesis of NiCo2 O4 Microstructures and Their Application in Supercapacitors.
Xiang, Nannan; Ni, Yonghong; Ma, Xiang
2015-09-01
The shape-controlled synthesis of NiCo2 O4 microstructures through a facile hydrothermal method and subsequent calcinations was explored. By employing CoSO4 , NiSO4 , and urea as the starting reactants, flower-like NiCo2 O4 microstructures were obtained at 100 °C after 5 h without the assistance of any additive and subsequent calcination at 300 °C for 2 h; dumbbell-like NiCo2 O4 microstructures were prepared at 150 °C after 5 h in the presence of trisodium citrate and subsequent calcination at 300 °C for 2 h. The as-prepared NiCo2 O4 microstructures were characterized by X-ray powder diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and (high-resolution) transmission electron microscopy. Both the flower-like and dumbbell-like NiCo2 O4 microstructures could be used as electrode materials for supercapacitors, and they exhibited excellent electrochemical performance, including high specific capacitance, good rate capability, and excellent long-term cycle stability. Simultaneously, the shape-dependent electrochemical properties of the product were investigated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Retrieval System for Calcined Waste for the Idaho Cleanup Project - 12104
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eastman, Randy L.; Johnston, Beau A.; Lower, Danielle E.
This paper describes the conceptual approach to retrieve radioactive calcine waste, hereafter called calcine, from stainless steel storage bins contained within concrete vaults. The retrieval system will allow evacuation of the granular solids (calcine) from the storage bins through the use of stationary vacuum nozzles. The nozzles will use air jets for calcine fluidization and will be able to rotate and direct the fluidization or displacement of the calcine within the bin. Each bin will have a single retrieval system installed prior to operation to prevent worker exposure to the high radiation fields. The addition of an articulated camera armmore » will allow for operations monitoring and will be equipped with contingency tools to aid in calcine removal. Possible challenges (calcine bridging and rat-holing) associated with calcine retrieval and transport, including potential solutions for bin pressurization, calcine fluidization and waste confinement, are also addressed. The Calcine Disposition Project has the responsibility to retrieve, treat, and package HLW calcine. The calcine retrieval system has been designed to incorporate the functions and technical characteristics as established by the retrieval system functional analysis. By adequately implementing the highest ranking technical characteristics into the design of the retrieval system, the system will be able to satisfy the functional requirements. The retrieval system conceptual design provides the means for removing bulk calcine from the bins of the CSSF vaults. Top-down vacuum retrieval coupled with an articulating camera arm will allow for a robust, contained process capable of evacuating bulk calcine from bins and transporting it to the processing facility. The system is designed to fluidize, vacuum, transport and direct the calcine from its current location to the CSSF roof-top transport lines. An articulating camera arm, deployed through an adjacent access riser, will work in conjunction with the retrieval nozzle to aid in calcine fluidization, remote viewing, clumped calcine breaking and recovery from off-normal conditions. As the design of the retrieval system progresses from conceptual to preliminary, increasing attention will be directed toward detailed design and proof-of- concept testing. (authors)« less
NASA Astrophysics Data System (ADS)
Bennett, Barbara Ellen
The effects of calcination heating rate and ultimate calcination temperature upon calcined coke and subsequent graphitic material microstructures were studied for materials prepared from three different precursors. The pitch precursors used were Mitsubishi AR pitch (a synthetic, 100% mesophase pitch), the NMP-extracted portion of a raw coal, and the NMP-extracted fraction of a coal liquefaction residue obtained from an HTI pilot plant. These materials were all green-coked under identical conditions. Optical microscopy confirmed that the Mitsubishi coke was very anisotropic and the HTI coke was nearly as anisotropic. The coke produced from the direct coal extract was very isotropic. Crystalline development during calcination heating was verified by high-temperature x-ray diffraction. Experiments were performed to ascertain the effects of varying calcination heating rate and ultimate temperature. It was determined that calcined coke crystallite size increased with increasing temperature for all three materials but was found to be independent of heating rate. The graphene interplanar spacing decreased with increasing temperature for the isotropic NMP-extract material but increased with increasing temperature for the anisotropic materials---Mitsubishi and HTI cokes. Graphene interplanar spacing was also found to be independent of heating rate. Calcined coke real densities were, likewise, found to be independent of heating rate. The anisotropic cokes (Mitsubishi and HTI) exhibited increasing real density with increasing calcination temperature. The NMP-extract coke increased in density up to 1050°C and then suffered a dramatic reduction in real density when heated to 1250°C. This is indicative of puffing. Since there was no corresponding disruption in the crystalline structure, the puffing phenomena was determined to be intercrystalline rather than intracrystalline. After the calcined cokes were graphitized (under identical conditions), the microstructures were re-evaluated. The crystalline properties of the graphitic materials appeared to be independent of calcination conditions---both heating rate and final temperature---for all samples prepared from any given precursor. The calcination step did not influence the microstructure or graphitizability of any of the three materials. The crystallinity of a graphitic material appears to be dictated by the properties of the green coke and cannot be altered by manipulating calcination conditions.
NASA Astrophysics Data System (ADS)
Qing, Rui; Liu, Li; Bohling, Christian; Sigmund, Wolfgang
2015-01-01
TiO2 is one of the most exciting anode candidates for safe application in lithium ion batteries. However, its low intrinsic electronic conductivity limits application. In this paper, a simple sol-gel based route is presented to produce nanosize TiO2 fibers with 119 ± 27 nm diameters via electrospinning. Subsequent calcination in various atmospheres was applied to achieve anatase and anatase-rutile mixed phase crystallites with and without carbon coating. The crystallite size was 5 nm for argon calcined fibers and 13-20 nm for air calcined fibers. Argon calcined TiO2 nanofibers exhibited electronic conductivity orders of magnitude higher than those of air-calcined samples. Lithium diffusivity was increased by one time and specific capacity by 26.9% due to the enhanced conductivity. It also had a different intercalation mechanism of lithium. Hydrogen post heat-treatment was found to benefit electronic conductivity (by 3-4.5 times), lithium diffusivity (1.5-2 times) and consequently the high rate performance of the TiO2 nanofibers (over 80%). The inner mechanism and structure-property relations among these parameters were also discussed.
Dyer, Paul N.; Pierantozzi, Ronald; Withers, Howard P.
1987-01-01
A Fischer-Tropsch process utilizing a product selective and stable catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.
Calcination process for radioactive wastes
Kilian, Douglas C.
1976-05-04
The present invention provides a method for minimizing the volatilization of chlorides during solidification in a fluidized-bed calciner of liquids containing sodium, nitrate and chloride ions. Zirconium and fluoride are introduced into the liquid, and one-half mole of calcium nitrate is added per mole of fluoride present in the liquid mixture. The mixture is calcined in the fluidized-bed calciner at about 500.degree.C., producing a high bulk density calcine product containing the chloride, thus tying up the chloride in the solid product and minimizing chloride volatilization.
Investigation of the processing conditions for the synthesis of rod-shaped LiCoO2
NASA Astrophysics Data System (ADS)
Kim, Taejoong; Kim, Yongseon
2018-07-01
We investigate the processing conditions for the synthesis of rod-shaped LiCoO2 (LCO) by a solid-state calcination of a precursor material which was prepared by a hydrothermal method. The rod-like morphology appeared to be easily broken due to the growth of primary crystals recrystallized during the calcination process. Therefore, it is crucial to maintain the temperature under a certain limit. However, the temperature must be high enough to obtain proper crystallinity of the LCO, ideally above 800 °C. Thus, we determined the optimal calcination temperature condition from the common range of temperatures that satisfies both these limiting conditions. The precursor with average diameter of 1 µm sustained the rod shape at calcination temperatures of up to 900 °C; therefore, the optimum calcination temperature could be determined between 800 and 900 °C. Whereas, a proper calcination temperature could not be found for the precursor with 500 nm of diameter because the rod shape did not maintain even at 700 °C. Thus, the maximum temperature at which the rod shape is retained decreases with smaller diameter of the precursor rods, indicating adjusting the diameter above a limiting value is necessary to prepare LCO rod by conventional solid state calcination.
Calcinations effect on the grain size distributions Al2O3 powder
NASA Astrophysics Data System (ADS)
Issa, Tarik Talib; Mohammed, Awattif A.; Kamil, Dunia
2012-09-01
Fine of Al2O3 Powder was calcined at 200°C, 400°C, 600°C, and 800°C respectively for 2 hours under static air, x-ray diffraction, optical microscope and grain size distribution were done to analysis the resulting data after calcinations process. Batter particle size was achieved at 800°C of value (0.486) μm, while batter particles mean value of size 7.18 μm was found at 400°C. SEM micrographs shows that the agglomerate particles were vanished due to the calcinations process.
Aranaz, Inmaculada; Martínez-Campos, Enrique; Moreno-Vicente, Carolina; Civantos, Ana; García-Arguelles, Sara; del Monte, Francisco
2017-01-01
Calcium phosphate chitosan-based composites have gained much interest in recent years for biomedical purposes. In this paper, three-dimensional calcium phosphate chitosan-based composites with different mineral contents were produced using a green method called ice segregation induced self-assembly (ISISA). In this methodology, ice crystals were used as a template to produce porous structures from an aqueous solution of chitosan (CS) and hydroxyapatite (Hap) also containing acetic acid (pH = 4.5). For better characterization of the nature of the inorganic matter entrapped within the resulting composite, we performed either oxygen plasma or calcination processes to remove the organic matter. The nature of the phosphate salts was studied by XRD and NMR studies. Amorphous calcium phosphate (ACP) was identified as the mineral phase in the composites submitted to oxygen plasma, whereas crystalline Hap was obtained after calcination. SEM microscopy revealed the formation of porous structures (porosity around 80–85%) in the original composites, as well as in the inorganic matrices obtained after calcination, with porous channels of up to 50 µm in diameter in the former case and of up to 20 µm in the latter. The biocompatibility of the composites was assessed using two different cell lines: C2C12GFP premyoblastic cells and MC3T3 preosteoblastic cells. PMID:28772874
Macroporous ceramics by colloidal templating
NASA Astrophysics Data System (ADS)
Subramaniam, G.; Pine, David J.
2000-04-01
We describe a novel method of fabricating macroporous ceramics employing colloidal dispersion of ultrafine ceramic particles with latex particles as the templates. The colloidal particles form a particulate gel on drying and fill the voids of the ordered latex templates. Subsequent removal of the template by calcination results in the formation of an ordered macroporous ceramic. The process has significant advantages over the traditional sol-gel process employing alkoxide precursors. Most importantly, the much lower shrinkage compared to the sol-gel process enabled us to produce larger pieces of the sample. The larger shrinkage involved in the sol-gel process often results in small and fragile pieces of the macroporous material which has to be subsequently heat treated to induce crystallization. The ability to choose crystalline colloidal particles in our method obviates the need for heat treatment to achieve crystallinity. We have synthesized a variety of materials such as macroporous silica, titania, alumina and recently have also extended the approach to macroporous silicon which is not amenable to the sol-gel process.
Calcination does not remove all carbon from colloidal nanocrystal assemblies
Mohapatra, Pratyasha; Shaw, Santosh; Mendivelso-Perez, Deyny; ...
2017-12-11
Removing organics from hybrid nanostructures is a crucial step in many bottom-up materials fabrication approaches. It is usually assumed that calcination is an effective solution to this problem, especially for thin films. This assumption has led to its application in thousands of papers. Here in this paper, we show that this general assumption is incorrect by using a relevant and highly controlled model system consisting of thin films of ligand-capped ZrO 2 nanocrystals. After calcination at 800 °C for 12 h, while Raman spectroscopy fails to detect the ligands after calcination, elastic backscattering spectrometry characterization demonstrates that ~18% of themore » original carbon atoms are still present in the film. By comparison plasma processing successfully removes the ligands. Our growth kinetic analysis shows that the calcined materials have significantly different interfacial properties than the plasma-processed counterparts. Calcination is not a reliable strategy for the production of single-phase all-inorganic materials from colloidal nanoparticles.« less
Agarose encapsulated mesoporous carbonated hydroxyapatite nanocomposites powder for drug delivery.
Kolanthai, Elayaraja; Abinaya Sindu, P; Thanigai Arul, K; Sarath Chandra, V; Manikandan, E; Narayana Kalkura, S
2017-01-01
The powder composites are predominantly used for filling of voids in bone and as drug delivery carrier to prevent the infection or inflammatory reaction in the damaged tissues. The objective of this work was to study the synthesis of agarose encapsulation on carbonated hydroxyapatite powder and their biological and drug delivery properties. Mesoporous, nanosized carbonated hydroxyapatite/agarose (CHAp/agarose) powder composites were prepared by solvothermal method and subsequently calcined to study the physico-chemical changes, if it subjected to thermal exposure. The phase of the as-synthesized powder was CHAp/agarose whereas the calcinated samples were non-stoichiometric HAp. The CHAp/agarose nanorods were of length 10-80nm and width 40-190nm for the samples synthesized at temperatures 120°C (ST120) and 150°C (ST150). The calcination process produced spheres (10-50nm) and rods with reduced size (40-120nm length and 20-30nm width). Composites were partially dissolved in SBF solution followed by exhibited better bioactivity than non-stoichiometric HAp confirmed by gravimetric method. Hemo and biocompatibility remained unaffected by presence of agarose or carbonate in the HAp. Specific surface area of the composites was high and exhibited an enhanced amoxicillin and 5-fluorouracil release than the calcined samples. The composites demonstrated a strong antimicrobial activity against E. coli, S. aureus and S. epidermidis. The ST120 showed prolonged drug (AMX and 5-Fcil) release and antimicrobial efficacy than ST150 and calcined samples. This technique would be simple and rapid for composites preparation, to produce high quality crystalline, resorbable, mesoporous and bioactive nanocomposite (CHAp/agarose) powders. This work provides new insight into the role of agarose coated on bioceramics by solvothermal technique and suggests that CHAp/agarose composites powders are promising materials for filling of void in bone and drug delivery applications. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viklund, H.I.; Kennedy, R.H.
Uranium precipitates obtained from Congo leach liquors by an ion exchange process contained more than 0.1% chloride. Attempts were made to reduce the chloride content of typical precipitates by calcination of dried precipitate, releaching of dried precipitate with water, and washing of wet precipitate with water. Washing of wet precipitate with an aqueous solution of 0.25% Na/sub 2/SO/ sub 4/, to prevent peptization, provided a simple solution to the problem. Precipitation tests on Congo ion exchange eluates showed a marked advantage in subsequent thickening and filtration operations for precipitation from hot solution. (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohapatra, Pratyasha; Shaw, Santosh; Mendivelso-Perez, Deyny
Removing organics from hybrid nanostructures is a crucial step in many bottom-up materials fabrication approaches. It is usually assumed that calcination is an effective solution to this problem, especially for thin films. This assumption has led to its application in thousands of papers. Here in this paper, we show that this general assumption is incorrect by using a relevant and highly controlled model system consisting of thin films of ligand-capped ZrO 2 nanocrystals. After calcination at 800 °C for 12 h, while Raman spectroscopy fails to detect the ligands after calcination, elastic backscattering spectrometry characterization demonstrates that ~18% of themore » original carbon atoms are still present in the film. By comparison plasma processing successfully removes the ligands. Our growth kinetic analysis shows that the calcined materials have significantly different interfacial properties than the plasma-processed counterparts. Calcination is not a reliable strategy for the production of single-phase all-inorganic materials from colloidal nanoparticles.« less
Sodium Bearing Waste Processing Alternatives Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, James Anthony; Palmer, Brent J; Perry, Keith Joseph
2003-12-01
A multidisciplinary team gathered to develop a BBWI recommendation to DOE-ID on the processing alternatives for the sodium bearing waste in the INTEC Tank Farm. Numerous alternatives were analyzed using a rigorous, systematic approach. The data gathered were evaluated through internal and external peer reviews for consistency and validity. Three alternatives were identified to be top performers: Risk-based Calcination, MACT to WIPP Calcination and Cesium Ion Exchange. A dual-path through early Conceptual design is recommended for MACT to WIPP Calcination and Cesium Ion Exchange since Risk-based Calcination does not require design. If calcination alternatives are not considered based on givingmore » Type of Processing criteria significantly greater weight, the CsIX/TRUEX alternative follows CsIX in ranking. However, since CsIX/TRUEX shares common uncertainties with CsIX, reasonable backups, which follow in ranking, are the TRUEX and UNEX alternatives. Key uncertainties must be evaluated by the decision-makers to choose one final alternative. Those key uncertainties and a path forward for the technology roadmapping of these alternatives is provided.« less
CaO-based CO2 sorbents: from fundamentals to the development of new, highly effective materials.
Kierzkowska, Agnieszka M; Pacciani, Roberta; Müller, Christoph R
2013-07-01
The enormous anthropogenic emission of the greenhouse gas CO2 is most likely the main reason for climate change. Considering the continuing and indeed growing utilisation of fossil fuels for electricity generation and transportation purposes, development and implementation of processes that avoid the associated emissions of CO2 are urgently needed. CO2 capture and storage, commonly termed CCS, would be a possible mid-term solution to reduce the emissions of CO2 into the atmosphere. However, the costs associated with the currently available CO2 capture technology, that is, amine scrubbing, are prohibitively high, thus making the development of new CO2 sorbents a highly important research challenge. Indeed, CaO, readily obtained through the calcination of naturally occurring limestone, has been proposed as an alternative CO2 sorbent that could substantially reduce the costs of CO2 capture. However, one of the major drawbacks of using CaO derived from natural sources is its rapidly decreasing CO2 uptake capacity with repeated carbonation-calcination reactions. Here, we review the current understanding of fundamental aspects of the cyclic carbonation-calcination reactions of CaO such as its reversibility and kinetics. Subsequently, recent attempts to develop synthetic, CaO-based sorbents that possess high and cyclically stable CO2 uptakes are presented. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
In-situ XAFS study for calcination process of Cr catalyst supported on γ-Al2O3 and SiO2
NASA Astrophysics Data System (ADS)
Watanabe, T.; Ikeda, K.; Katayama, M.; Inada, Y.
2016-05-01
The catalytic performance is largely affected by the oxidation state of supported Cr species, and its control changes the activity of Cr catalysts and the selectivity of products. In this study, the calcination process of the supported Cr catalysts on γ-Al2O3 and SiO2 was investigated by in-situ XAFS spectroscopy. The hydrate species was first supported by the impregnation method and was converted to CrO3 via Cr2O3 during the calcination process on both supporting materials. It was found that the temperature to complete the oxidation from Cr2O3 to CrO3 on SiO2 was higher than that on γ-Al2O3. The similarity of the interatomic distance between the surface oxygen atoms of the intermediate Cr2O3 species to that of SiO2 contributes to the stabilization of Cr2O3 on SiO2 during the calcination process.
Wet calcining of trona (sodium sesquicarbonate) and bicarbonate in a mixed solvent
NASA Astrophysics Data System (ADS)
Gärtner, R. S.; Witkamp, G. J.
2002-04-01
Trona ore is used in large amounts for the production of soda ash. A key step in this process is the conversion of trona (sodium sesquicarbonate: Na 2CO 3·NaHCO 3·2H 2O) into soda (sodium carbonate anhydrate: Na 2CO 3). Currently, this conversion is done industrially by calcining of the raw ore in rotary calciners at ca. 120°C or higher (Natural Soda Ash—Occurrences, Processing, and Use, Van Nostrand Reinhold, New York, 1991, p. 267). Trona can however be converted at lower temperatures by using a "wet calcining" technique. In this technique, trona is contacted with an organic or mixed organic-aqueous solvent at a conversion temperature that depends on the water activity of the used solvent. In pure ethylene glycol this temperature can be as low as 55°C. The conversion by "wet calcining" occurs very similar to that in the regular dry calcining process via a solid phase conversion. The anhydrate crystals form directly from the solid trona. This produces pseudomorphs (J. Chem. Eng. Data 8(3) (1963) 301), i.e. agglomerates of fine anhydrate crystals (1-10 μm). At high temperatures, dense, finely pored agglomerates are formed, while the outer shape of the agglomerate retains the prism shape of the trona crystal. At low conversion temperatures, loosely packed or even unstable agglomerates are found.
NASA Astrophysics Data System (ADS)
Idayanti, N.; Dedi; Kristiantoro, T.; Mulyadi, D.; Sudrajat, N.; Alam, G. F. N.
2018-03-01
The utilization of iron oxide waste of grinding process as raw materials for making barium hexaferrite has been completed by powder metallurgy method. The iron oxide waste was purified by roasting at 800 °C temperature for 3 hours. The method used varying calcination temperature at 1000, 1100, 1200, and 1250 °C for 3 hours. The starting iron oxide waste (Fe2O3) and barium carbonate (BaCO3) were prepared by mol ratio of Fe2O3:BaCO3 from the formula BaO3.98Fe2O3. Some additives such as calcium oxide (CaO), silicon dioxide (SiO2), and polyvinyl alcohol (PVA) were added after calcination process. The samples were formed at the pressure of 2 ton/cm2 and sintered at the temperature of 1250 °C for 1 hour. The formation of barium hexaferrite compounds after calcination is determined by X-Ray diffraction. The magnetic properties were observed by Permagraph-Magnet Physik with the optimum characteristic at calcination temperature of 1250 °C with the induction of remanence (Br) = 1.38 kG, coercivity (HcJ) = 4.533 kOe, product energy maximum (BHmax) = 1.086 MGOe, and density = 4.33 g/cm3.
Londoño-Restrepo, S M; Jeronimo-Cruz, R; Rubio-Rosas, E; Rodriguez-García, M E
2018-05-02
This paper focus on physicochemical changes in bio-hydroxyapatite (BIO-HAp) from bovine femur obtained by calcination at high temperatures: 520-620 (each 20 °C) at 7.4 °C/min and from 700 to 1100 °C (each 100 °C) at three heating rates: 7.4, 9.9, and 11.1 °C/min. BIO-HAp samples were obtained using a multi-step process: cleaning, milling, hydrothermal process, calcination in an air atmosphere, and cooling in furnace air. Inductively Couple Plasma (ICP) showed that the presence of Mg, K, S, Ba, Zn, and Na, is not affected by the annealing temperature and heating rate. While Scanning Electron Microscopy (SEM) images showed the continuous growth of the HAp crystals during the calcination process due to the coalescence phenomenon, and the Full Width at the Half Maximum for the X-ray patterns for temperatures up to 700 is affected by the annealing temperature and the heating rate. Through X-ray diffraction, thermal, and calorimetric analysis (TGA-DSC), a partial dehydroxylation of hydroxyapatite was found in samples calcined up to 900 °C for the three heating rates. Also, Ca/P molar ratio decreased for samples calcined up to 900 °C as a result of the dehydroxylation process. NaCaPO 4 , CaCO 3 , Ca 3 (PO 4 ) 2 , MgO, and Ca(H 2 PO 4 ) 2 are some phases identified by X-ray diffraction; some of them are part of the bone and others were formed during the calcination process as a function of annealing temperature and heating rate, as it is the case for MgO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viayan, B.; Dimitrijevic, N. M.; Rajh, T.
Titania nanotubes having diameters 8 to 12 nm and lengths of 50-300 nm were prepared using a hydrothermal method. Further, the titania nanotubes were calcined over the temperature range 200-800 C in order to enhance their photocatalytic properties by altering their morphology. The calcined titania nanotubes were characterized by using X-ray diffraction and surface area analysis and their morphological features were studied by scanning and transmission electron microscopy. Nanotubes calcined at 400 C showed the maximum extent of photocatalyitc reduction of carbon dioxide to methane, whereas samples calcined at 600 C produced maximum photocatalytic oxidation of acetaldehyde. Electron paramagnetic resonancemore » (EPR) spectroscopy was used to interrogate the effects of nanotube structure on the charge separation and trapping as a function of calcination temperature. EPR results indicated that undercoordinated titania sites are associated with maximum CO{sub 2} reduction occurring in nanotubes calcined at 400 C. Despite the collapse of the nantube structure to form nanorods and the concomitant loss of surface area, the enhanced charge separation associated with increased crystallinity promoted high rates of oxidation of acetaldehyde in titania materials calcined at 600 C. These results illustrate that calcination temperature allows us to tune the morphological and surface features of the titania nanostructures for particular photocatalytic reactions.« less
ICPP tank farm closure study. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M.
1998-02-01
The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituentsmore » are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.« less
Characterization of Offgas Generated During Calcination of Incinerator Ash Surrogates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wigent, H.L.; Vienna, J.D.; Darab, J.G.
1999-01-28
The Pacific Northwest National Laboratory (PNNL), in cooperation with the Los Alamos National Laboratory (LANL) and Safe Sites of Colorado (SSOC), developed a recommended flowsheet for the processing of plutonium-bearing incinerator ash stored at the Rocky Flats Environmental Technology Site (RFETS) (Lucy et al. 1998). This flowsheet involves a calcination pretreatment step, the purpose of which is to remove carbonaceous material from the incinerator ash. Removal of this material reduced the probability of process upsets, improved product quality, and increases ash waste loading. As part of the continued development of the recommended flowsheet, PNNL performed a series of tests tomore » characterize the offgas generated during the calcination process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Lifeng; Zhao, Di; Yang, Yang
Mesoporous hollow α-Fe{sub 2}O{sub 3} bricks were synthesized via a hydrothermal method to create a precursor MIL-100(Fe) and a subsequent calcination process was applied to prepare the Fe{sub 2}O{sub 3} phase. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results showed the morphology of hollow α-Fe{sub 2}O{sub 3} bricks which inherited from the MIL-100(Fe) template. The catalytic activities of hollow α-Fe{sub 2}O{sub 3} bricks for CO oxidation are studied in this work. Due to better low temperature reduction behavior, mesoporous hollow α-Fe{sub 2}O{sub 3} bricks obtained at calcination temperature of 430 °C displayed high catalytic activity and excellent stabilitymore » with a complete CO conversion temperature (T{sub 100}) of 255 °C. - Graphical abstract: Synthesis of highly efficient α-Fe{sub 2}O{sub 3} catalysts for CO oxidation derived from MIL-100(Fe). - Highlights: • α-Fe{sub 2}O{sub 3} is prepared by the thermolysis of a MIL-100(Fe) template. • The morphology of hollow α-Fe{sub 2}O{sub 3} bricks is inherited from MIL-100(Fe) template. • α-Fe{sub 2}O{sub 3} obtained at calcined temperature of 430 °C displays high activity • Enhanced activity is attributed to crystal plane and reduction behavior.« less
Process and equipment development for hot isostatic pressing treatability study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, Ken; Wahlquist, Dennis; Malewitz, Tim
2015-03-01
Battelle Energy Alliance (BEA), LLC, has developed processes and equipment for a pilot-scale hot isostatic pressing (HIP) treatability study to stabilize and volume reduce radioactive calcine stored at Idaho National Laboratory (INL). In 2009, the U. S. Department of Energy signed a Record of Decision with the state of Idaho selecting HIP technology as the method to treat 5,800 yd^3 (4,400 m^3) of granular zirconia and alumina calcine produced between 1953 and 1992 as a waste byproduct of spent nuclear fuel reprocessing. Since the 1990s, a variety of radioactive and hazardous waste forms have been remotely treated using HIP withinmore » INL hot cells. To execute the remote process at INL, waste is loaded into a stainless-steel or aluminum can, which is evacuated, sealed, and placed into a HIP furnace. The HIP simultaneously heats and pressurizes the waste, reducing its volume and increasing its durability. Two 1 gal cans of calcine waste currently stored in a shielded cask were identified as candidate materials for a treatability study involving the HIP process. Equipment and materials for cask-handling and calcine transfer into INL hot cells, as well as remotely operated equipment for waste can opening, particle sizing, material blending, and HIP can loading have been designed and successfully tested. These results demonstrate BEA’s readiness for treatment of INL calcine.« less
Guo, Wen chao; Luo, Hui juan; Gong, Zhi jun; Li, Bao wei; Wu, Wen fei
2017-01-01
Biomass was used as reducing agent to roast the Baotou low-grade limonite in a high temperature vacuum atmosphere furnace. The effect of calcination temperature, time and ratio of reducing agent on the magnetic properties of calcined ore was studied by VSM. The phase and microstructure changes of limonite before and after calcination were analyzed by XRD and SEM. The results show that in the roasting process the phase transition process of the ferrous material in limonite is first dehydrated at high temperature to formα-Fe2O3, and then it is converted into Fe3O4 by the reduction of biomass. With the increase of calcination temperature, the magnetic properties of the calcined ore first increase and then decrease. When the temperature is higher than 650°C, Fe3O4 will become Fe2SiO4, resulting in reduced the magnetic material in calcined ore and the magnetic weakened. The best magnetization effect was obtained when the roasting temperature is 550°C, the percentage of biomass was 15% and the roasting time was 30min. The saturation magnetization can reach 60.13emu·g-1, the recovery of iron was 72% and the grade of iron was 58%. PMID:29040307
Zhang, Kai; Chen, Xiu Li; Guo, Wen Chao; Luo, Hui Juan; Gong, Zhi Jun; Li, Bao Wei; Wu, Wen Fei
2017-01-01
Biomass was used as reducing agent to roast the Baotou low-grade limonite in a high temperature vacuum atmosphere furnace. The effect of calcination temperature, time and ratio of reducing agent on the magnetic properties of calcined ore was studied by VSM. The phase and microstructure changes of limonite before and after calcination were analyzed by XRD and SEM. The results show that in the roasting process the phase transition process of the ferrous material in limonite is first dehydrated at high temperature to formα-Fe2O3, and then it is converted into Fe3O4 by the reduction of biomass. With the increase of calcination temperature, the magnetic properties of the calcined ore first increase and then decrease. When the temperature is higher than 650°C, Fe3O4 will become Fe2SiO4, resulting in reduced the magnetic material in calcined ore and the magnetic weakened. The best magnetization effect was obtained when the roasting temperature is 550°C, the percentage of biomass was 15% and the roasting time was 30min. The saturation magnetization can reach 60.13emu·g-1, the recovery of iron was 72% and the grade of iron was 58%.
Human health risk characterization of petroleum coke calcining facility emissions.
Singh, Davinderjit; Johnson, Giffe T; Harbison, Raymond D
2015-12-01
Calcining processes including handling and storage of raw petroleum coke may result in Particulate Matter (PM) and gaseous emissions. Concerns have been raised over the potential association between particulate and aerosol pollution and adverse respiratory health effects including decrements in lung function. This risk characterization evaluated the exposure concentrations of ambient air pollutants including PM10 and gaseous pollutants from a petroleum coke calciner facility. The ambient air pollutant levels were collected through monitors installed at multiple locations in the vicinity of the facility. The measured and modeled particulate levels in ambient air from the calciner facility were compared to standards protective of public health. The results indicated that exposure levels were, on occasions at sites farther from the facility, higher than the public health limit of 150 μg/m(3) 24-h average for PM10. However, the carbon fraction demonstrated that the contribution from the calciner facility was de minimis. Exposure levels of the modeled SO2, CO, NOx and PM10 concentrations were also below public health air quality standards. These results demonstrate that emissions from calcining processes involving petroleum coke, at facilities that are well controlled, are below regulatory standards and are not expected to produce a public health risk. Copyright © 2015 Elsevier Inc. All rights reserved.
Valverde, Jose Manuel; Medina, Santiago
2017-03-15
This work reports an in situ XRD analysis of whether the calcination/carbonation behavior of natural limestone (CaCO 3 ) is affected by the addition of H 2 O to the calciner at a very low concentration under relevant Calcium-Looping (CaL) conditions for CO 2 capture in coal fired power plants (CFPP) and Thermochemical Energy Storage (TCES) in Concentrated Solar Power plants (CSP). Previous studies have demonstrated that the presence of steam in the calciner at a high concentration yields a significant increase in the reaction rate. However, a further undesired consequence is the serious deterioration of the CaO mechanical strength, which would lead to particle attrition and mass loss in any CaL process based on the use of circulating fluidized beds. The results presented in this manuscript on the time evolution of the wt% and crystallite size of the phases involved in the calcination/carbonation reactions indicate that the calcination rate is still notably increased by the presence of H 2 O at very low concentrations whereas the reactivity toward carbonation and crystal structure of the formed CaO are not essentially affected, which suggests that the CaO mechanical strength is not impaired. Thus, the benefit of using steam for calcination in the CaL process could be still retained while at the same time particle attrition would not be promoted.
NASA Astrophysics Data System (ADS)
Park, Jin-Sung; Cho, Jung Sang; Kang, Yun Chan
2018-03-01
Closely in line with advances in next-generation energy storage materials, anode materials for lithium-ion batteries (LIBs) with high capacity and long cycle life have been widely explored. As part of the current effort, nickel molybdate (NiMoO4) microspheres with empty nanovoids are synthesized via spray drying process and subsequent one-step calcination in air. Dextrin in the atomized droplet is phase segregated during the spray drying process and calcined in air atmosphere, resulting in numerous empty nanovoids well-distributed within a microsphere. The empty nanovoids alleviate volume expansion during cycling, shorten lithium-ion diffusion length, and facilitate contact between electrode and electrolyte materials. Along with the high discharge capacity of NiMoO4 material, as high as 1240 mA h g-1 for the 2nd cycle at a high current density of 1 A g-1, uniquity of the structure enables longer cycle life and higher quality performances. The discharge capacity corresponding to the 500th cycle is 1020 mA h g-1 and the capacity retention calculated from the 2nd cycle is 82%. In addition, a discharge capacity of 413 mA g-1 is obtained at an extremely high current density of 10 A g-1.
Dadash, Mohammad Saleh; Karbasi, Saeed; Esfahani, Mojtaba Nasr; Ebrahimi, Mohammad Reza; Vali, Hojatollah
2011-04-01
Thick films of calcinated and non calcinated nanobioglass (NBG)-titania composite coatings were prepared on stainless steel substrates by alkoxide sol-gel process. Dip-coating method was used for the films preparation. The morphology, structure and composition of the nano composite films were evaluated using environmental scanning electron microscope, X-ray diffraction and Fourier transform infrared spectroscope. The SEM investigation results showed that prepared thick NBG-titania films are smooth and free of macrocracking, fracture or flaking. The grain size of these films was uniform and nano scale (50-60 nm) which confirmed with TEM. Also FTIR confirmed the presence of Si-O-Si bands on the calcinated NBG-titania films. The hardness of the prepared films (TiO(2)-calcinated NBG and TiO(2)-Non calcinated NBG) was compared by using micro hardness test method. The results verified that the presence of calcinated NBG particles in NBG-titania composite enhanced gradually the mechanical data of the prepared films. The in vitro bioactivity of these films was discussed based on the analysis of the variations of Ca and P concentrations in the simulated body fluid (SBF) and their surface morphologies against immersion time. Surface morphology and Si-O-Si bands were found to be of great importance with respect to the bioactivity of the studied films. The results showed that calcinated NBG-titania films have better bioactivity than non calcinated NBG-titania films.
The Ca-looping process for CO2 capture and energy storage: role of nanoparticle technology
NASA Astrophysics Data System (ADS)
Valverde, Jose Manuel
2018-02-01
The calcium looping (CaL) process, based on the cyclic carbonation/calcination of CaO, has come into scene in the last years with a high potential to be used in large-scale technologies aimed at mitigating global warming. In the CaL process for CO2 capture, the CO2-loaded flue gas is used to fluidize a bed of CaO particles at temperatures around 650 °C. The carbonated particles are then circulated into a calciner reactor wherein the CaO solids are regenerated at temperatures near 950 °C under high CO2 concentration. Calcination at such harsh conditions causes a marked sintering and loss of reactivity of the regenerated CaO. This main drawback could be however compensated from the very low cost of natural CaO precursors such as limestone or dolomite. Another emerging application of the CaL process is thermochemical energy storage (TCES) in concentrated solar power (CSP) plants. Importantly, carbonation/calcination conditions to maximize the global CaL-CSP plant efficiency could differ radically from those used for CO2 capture. Thus, carbonation could be carried out at high temperatures under high CO2 partial pressure for maximum efficiency, whereas the solids could be calcined at relatively low temperatures in the absence of CO2 to promote calcination. Our work highlights the critical role of carbonation/calcination conditions on the performance of CaO derived from natural precursors. While conditions in the CaL process for CO2 capture lead to a severe CaO deactivation with the number of cycles, the same material may exhibit a high and stable conversion at optimum CaL-CSP conditions. Moreover, the type of CaL conditions influences critically the reaction kinetics, which plays a main role on the optimization of relevant operation parameters such as the residence time in the reactors. This paper is devoted to a brief review on the latest research activity in our group concerning these issues as well as the possible role of nanoparticle technology to enhance the activity of Ca-based materials at CaL conditions for CO2 capture and energy storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xia; Liang, Pan; Huang, Hong-Sheng
2014-04-01
Graphical abstract: LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphor was obtained by calcining the precursor which was synthesized by boric acid melting method. It (a) exhibits much stronger PL intensity than that (b) prepared by conventional solid state reaction method. - Highlights: • A calcining precursor method was used for preparation of LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphor. • Precursor was prepared by boric acid melting method. • The luminescence intensity of LaB{sub 3}O{sub 6}:Eu{sup 3+} was enhanced by the present method. - Abstract: The LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphors were prepared by calcining the precursors which were synthesized by boric acid meltingmore » method using rare earth oxide and boric acid as raw materials, and they were characterized by EDS, XRD, IR, SEM and PL. The influences of reaction temperature for the preparation of precursor and subsequent calcination temperature and time of precursor on the luminescence properties of LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphor were investigated. The results showed that the LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphors with maximum luminescent intensity were obtained by calcining precursor at 1000 °C for 6 h, in which the precursor was prepared at 200 °C for 72 h. Compared with the conventional high temperature solid-state reaction method, the pure LaB{sub 3}O{sub 6}:Eu{sup 3+} phosphor can be obtained at relatively lower calcination temperature by the precursor method and exhibits much stronger emission intensity.« less
Guo, Qinghai; Zhang, Yin; Cao, Yaowu; Wang, Yanxin; Yan, Weide
2013-11-01
Hydrotalcite and its calcination product were used to treat pure water spiked with various concentrations of boron and geothermal water containing boron as a major undesirable element. The kinetics process of boron sorption by uncalcined hydrotalcite is controlled by the diffusion of boron from bulk solution to sorbent-solution boundary film and its exchange with interlayer chloride of hydrotalcite, whereas the removal rate of boron by calcined hydrotalcite rests with the restoration process of its layered structure. The results of isotherm sorption experiments reveal that calcined hydrotalcite generally has much stronger ability to lower solution boron concentration than uncalcined hydrotalcite. The combination of adsorption of boron on the residue of MgO-Al2O3 solid solution and intercalation of boron into the reconstructed hydrotalcite structure due to "structural memory effect" is the basic mechanism based on which the greater boron removal by calcined hydrotalcite was achieved. As 15 geothermal water samples were used to test the deboronation ability of calcined hydrotalcite at 65 °C, much lower boron removal efficiencies were observed. The competitive sorption of the other anions in geothermal water, such as HCO3-, SO4(2-), and F-, is the reason why calcined hydrotalcite could not remove boron from geothermal water as effectively as from pure boron solution. However, boron removal percents ranging from 89.3 to 99.0% could be obtained if 50 times of sorbent were added to the geothermal water samples. Calcined hydrotalcite is a good candidate for deboronation of geothermal water.
Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite.
Sofronia, Ancuta M; Baies, Radu; Anghel, Elena M; Marinescu, Cornelia A; Tanasescu, Speranta
2014-10-01
The aim of this work was to study the thermal stability on heating and to obtain the processing parameters of synthetic and bone-derived hydroxyapatite over temperatures between room temperature and 1400°C by thermal analysis (thermogravimetry (TG)/differential scanning calorimetry (DSC) and thermo-mechanical analysis-TMA). Structural and surface modifications related to samples origin and calcination temperature were investigated by Fourier transformed infrared (FTIR) and Raman spectroscopy, X-ray diffraction (XRD) and BET method. FTIR spectra indicated that the organic constituents and carbonate are no longer present in the natural sample calcined at 800°C. Raman spectra highlighted the decomposition products of the hydroxyapatite. The calcination treatment modifies the processes kinetics of the synthetic samples, being able to isolate lattice water desorption processes of decarbonization and the dehydroxylation processes. Shrinkage of calcined synthetic sample increases by 10% compared to uncalcined synthetic powder. From the TMA correlated with TG analysis and heat capacity data it can be concluded that sintering temperature of the synthetic samples should be chosen in the temperature range of the onset of dehydroxylation and the temperature at which oxyapatite decomposition begins. Copyright © 2014 Elsevier B.V. All rights reserved.
Supported fischer-tropsch catalyst and method of making the catalyst
Dyer, Paul N.; Pierantozzi, Ronald; Withers, Howard P.
1987-01-01
A Fischer-Tropsch catalyst and a method of making the catalyst for a Fischer-Tropsch process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas, is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.
Development of a low-pressure materials pre-treatment process for improved energy efficiency
NASA Astrophysics Data System (ADS)
Lee, Kwanghee; You, Byung Don
2017-09-01
Low pressure materials pre-treatment process has been developed as an alternative to the existing high-temperature sludge drying, limestone calcination, and limonite dehydroxylation. Using the thermodynamic equilibrium relationship between temperature and pressure represented by the Clausius-Clapeyron equation, the operational temperature of these reactions could be lowered at reduced pressure for increased energy efficiency. For industrial sludge drying, the evaporation rate was controlled by interfacial kinetics showing a constant rate with time and significant acceleration in the reaction could be observed with reduced pressure. At this modified reaction rate under low pressure, the rate was also partially controlled by mass transfer. Temperature of limestone calcination was lowered, but the reaction was limited at the calculated equilibrium temperature of the Clausius-Clapeyron equation and slightly higher temperatures were required. The energy consumption during limestone calcination and limonite dehydroxylation were evaluated, where lower processing pressures could enhance the energy efficiency for limestone calcination, but limonite dehydroxylation could not achieve energy-savings due to the greater power consumption of the vacuum pump under lower pressure and reduced temperatures.
NASA Astrophysics Data System (ADS)
Wang, X. W.; Zheng, D. L.; Yang, P. Z.; Wang, X. E.; Zhu, Q. Q.; Ma, P. F.; Sun, L. Y.
2017-01-01
The precursor of NiO-Co3O4 composites was synthesized via a simple hydrothermal process. After that, the precursor was calcined at 300 °C for 3 h to obtain the composite powders. The powders calcined at 300 °C showed amorphous, and the powders calcined at 400 °C and 500 °C for comparison showed the composite phase of NiO and Co3O4. The composite products showed a microstructure of micro-spheres. For the samples calcined at 300 °C for 3 h, the specific capacitance reached 801 F g-1 at a current density of 1 A g-1.
NASA Astrophysics Data System (ADS)
Shesterkina, A. A.; Shuvalova, E. V.; Kirichenko, O. A.; Strelkova, A. A.; Nissenbaum, V. D.; Kapustin, G. I.; Kustov, L. M.
2017-02-01
Supported bimetallic Fe-Cu/SiO2 materials are synthesized, and their catalytic activity in hydrogenation of dinitrobenzene to phenylenediamine at 145-180°C and 1.3 MPa hydrogen pressure is studied for the first time. The best results (89% selectivity toward p-phenylenediamine at complete conversion of p-dinitrobenzene) are obtained for the sample synthesized via co-deposition with subsequent calcination at 300°C. The sample contains 7% iron and 3% copper. The formation of separate phases of metal oxides (for the catalysts prepared by impregnation) and mixed bimetallic oxide phases (in case of co-deposition procedure) in calcined samples is revealed via thermoprogrammed reduction with hydrogen.
Thermal decomposition of dolomite under CO2: insights from TGA and in situ XRD analysis.
Valverde, Jose Manuel; Perejon, Antonio; Medina, Santiago; Perez-Maqueda, Luis A
2015-11-28
Thermal decomposition of dolomite in the presence of CO2 in a calcination environment is investigated by means of in situ X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The in situ XRD results suggest that dolomite decomposes directly at a temperature around 700 °C into MgO and CaO. Immediate carbonation of nascent CaO crystals leads to the formation of calcite as an intermediate product of decomposition. Subsequently, decarbonation of this poorly crystalline calcite occurs when the reaction is thermodynamically favorable and sufficiently fast at a temperature depending on the CO2 partial pressure in the calcination atmosphere. Decarbonation of this dolomitic calcite occurs at a lower temperature than limestone decarbonation due to the relatively low crystallinity of the former. Full decomposition of dolomite leads also to a relatively low crystalline CaO, which exhibits a high reactivity as compared to limestone derived CaO. Under CO2 capture conditions in the Calcium-Looping (CaL) process, MgO grains remain inert yet favor the carbonation reactivity of dolomitic CaO especially in the solid-state diffusion controlled phase. The fundamental mechanism that drives the crystallographic transformation of dolomite in the presence of CO2 is thus responsible for its fast calcination kinetics and the high carbonation reactivity of dolomitic CaO, which makes natural dolomite a potentially advantageous alternative to limestone for CO2 capture in the CaL technology as well as SO2in situ removal in oxy-combustion fluidized bed reactors.
Khalil, Khalil Abdelrazek; Sherif, El-Sayed M; Nabawy, A M; Abdo, Hany S; Marzouk, Wagih W; Alharbi, Hamad F
2016-05-20
TiC nanofibers reinforced Al matrix composites were produced by High Frequency Induction Heat Sintering (HFIHS).The titanium carbide nanofibers with an average diameter of 90 nm are first prepared by electrospinning technique and high temperature calcination process. A composite solution containing polyacrylonitrile and titanium isopropoxide is first electrospun into the nanofibers, which are subsequently stabilized and then calcined to produce the desired TiC nanofibers. The X-ray diffraction pattern and transmission electron microscopy results show that the main phase of the as-synthesized nanofibers is titanium carbide. The TiC nanofibers is then mixed with the aluminum powders and introduced into high frequency induction heat sintering (HFIHS) to produce composites of TiC nanofibers reinforced aluminum matrix. The potential application of the TiC nanofibers reinforced aluminum matrix composites was systematically investigated. 99.5% relative density and around 85 HV (833 MPa) Vickers hardness of the Al reinforced with 5 wt % TiC nanofiber has been obtained. Furthermore, the sample of Al contains 5 wt % TiC, has the highest value of compression and yield strength of about 415 and 350 MPa, respectively. The ductility of the Al/5 wt % TiC showed increasing with increasing the TiC contents.
NASA Astrophysics Data System (ADS)
Nikolić, Vesna; Kamberović, Željko; Anđić, Zoran; Korać, Marija; Sokić, Miroslav; Maksimović, Vesna
2014-08-01
A method of synthesizing Ni-based catalysts supported on α-Al2O3-based foams was developed. The foams were impregnated with aqueous solutions of metal chlorides under an air atmosphere using an aerosol route. Separate procedures involved calcination to form oxides and drying to obtain chlorides on the foam surface. The synthesized samples were subsequently reduced with hydrogen. With respect to the Ni/Al2O3 catalysts, the chloride reduction route enabled the formation of a Ni coating without agglomerates or cracks. Further research included catalyst modification by the addition of Pd, Cu, and Fe. The influences of the additives on the degree of reduction and on the low-temperature reduction effectiveness (533 and 633 K) were examined and compared for the catalysts obtained from oxides and chlorides. Greater degrees of reduction were achieved with chlorides, whereas Pd was the most effective modifier among those investigated. The reduction process was nearly complete at 533 K in the sample that contained 0.1wt% Pd. A lower reduction temperature was utilized, and the calcination step was avoided, which may enhance the economical and technological aspects of the developed catalyst production method.
Calcined polyaniline-iron composite as a high efficient cathodic catalyst in microbial fuel cells.
Lai, Bin; Wang, Peng; Li, Haoran; Du, Zhuwei; Wang, Lijuan; Bi, Sichao
2013-03-01
A new type of carbon-nitrogen-metal catalyst, PANI-Fe-C, was synthesized by calcination process. According to the results of FT-IR and XPS analysis, polyaniline chain was broken by calcination. Small nitrogen-contained molecular fragments were gasified during calcination process, while the remaining nitrogen atoms were enchased in the new produced multiple carbon rings by C-N and CN bonds and performed as the catalytic active sites and the covalent centers for soluble iron components. Calculated from the polarization curves, a maximum power density of 10.17W/m(3) for the MFC with the synthetic catalyst was obtained, which was slightly higher than the MFC with Pt/C catalyst of 9.56W/m(3). All the results obtained in this paper proved that the newly synthetic nitrogen-carbon-metal catalyst would be a potential alternative to the expensive Pt/C catalyst in the field of MFC. Copyright © 2012 Elsevier Ltd. All rights reserved.
Khalil, Kamal M S
2007-03-01
Mesoporous ceria/alumina, CeO(2)/Al(2)O(3), composites containing 10, 20 and 30% (w/w) ceria were prepared by a novel gel mixing method. In the method, ceria gel (formed via hydrolysis of ammonium cerium(IV) nitrate by aqueous ammonium carbonate solution) and alumina gel (formed via controlled hydrolysis of aluminum tri-isopropoxide) were mixed together. The mixed gel was subjected to subsequent drying and calcination for 3 h at 400, 600, 800 and 1000 degrees C. The uncalcined (dried at 110 degrees C) and the calcined composites were investigated by different techniques including TGA, DSC, FTIR, XRD, SEM and nitrogen adsorption/desorption isotherms. Results indicated that composites calcined for 3 h at 800 degrees C mainly kept amorphous alumina structure and gamma-alumina formed only upon calcinations at 1000 degrees C. On the other hand, CeO(2) was found to crystallize in the common ceria, cerinite, phase and it kept this structure over the entire calcination range (400-1000 degrees C). Therefore, high surface areas, stable surface textures, and non-aggregated nano-sized ceria dispersions were obtained. A systematic texture change based on ceria ratio was observed, however in all cases mesoporous composite materials exposing thermally stable texture and structure were obtained. The presented method produces composite ceria/alumina materials that suit different applications in the field of catalysis and membranes technology, and throw some light on physicochemical factors that determine textural morphology and thermal stability of such important composite.
Busto, Raquel Vieira; Gonçalves, Maraisa; Coelho, Lúcia Helena Gomes
2016-09-01
This study aimed to investigate the use of red mud (RM) - a byproduct of aluminum production, as a photocatalyst, which was characterized physical-chemically and used in the photodegradation of the target compound bisphenol A (BPA). Chemical processing was performed in the RM (acid treatment, chemical reduction and calcination) to verify the most active catalyst. From the results obtained, a complete degradation kinetics of BPA was carried out using a synthetic matrix (BPA in deionized water) and a real matrix (BPA in wastewater) using natural RM/calcined and TiO 2 for comparison. The results indicated the potential use of the RM/calcined, which was able to degrade between 88 and 100% of the pollutant in a synthetic sample. Tests on a real effluent sample resulted in degradation rates that ranged from 59 to 100% with chemical oxygen demand reductions of up to 23% using natural RM/calcined in comparison to TiO 2 . The blank system (irradiation of the solution without the use of a photocatalyst) and the natural RM/calcined one, resulted in reductions of the toxicity in the effluent sample (measured by EC 20 using the marine bacteria Vibrio fischeri) of about 12 times, whereas the same treatment using TiO 2 resulted in a toxicity reduction of only seven times. Within these results, the RM/calcined showed potential to be used in wastewater treatment in polishing processes.
40 CFR 98.314 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements. (a) You must measure your consumption of calcined petroleum coke using plant instruments used for accounting purposes including direct measurement weighing the petroleum coke fed into your process (by belt... used to ensure the accuracy of monthly calcined petroleum coke consumption measurements. (c) You must...
40 CFR 98.314 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements. (a) You must measure your consumption of calcined petroleum coke using plant instruments used for accounting purposes including direct measurement weighing the petroleum coke fed into your process (by belt... used to ensure the accuracy of monthly calcined petroleum coke consumption measurements. (c) You must...
40 CFR 98.314 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements. (a) You must measure your consumption of calcined petroleum coke using plant instruments used for accounting purposes including direct measurement weighing the petroleum coke fed into your process (by belt... used to ensure the accuracy of monthly calcined petroleum coke consumption measurements. (c) You must...
40 CFR 98.314 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements. (a) You must measure your consumption of calcined petroleum coke using plant instruments used for accounting purposes including direct measurement weighing the petroleum coke fed into your process (by belt... used to ensure the accuracy of monthly calcined petroleum coke consumption measurements. (c) You must...
Synthesis of alumina ceramic encapsulation for self-healing materials on thermal barrier coating
NASA Astrophysics Data System (ADS)
Golim, O. P.; Prastomo, N.; Izzudin, H.; Hastuty, S.; Sundawa, R.; Sugiarti, E.; Thosin, K. A. Z.
2018-03-01
Durability of Thermal Barrier Coating or TBC can be optimized by inducing Self-Healing capabilities with intermetallic materials MoSi2. Nevertheless, high temperature operation causes the self-healing materials to become oxidized and lose its healing capabilities. Therefore, a method to introduce ceramic encapsulation for MoSi2 is needed to protect it from early oxidation. The encapsulation process is synthesized through a simple precipitation method with colloidal aluminum hydroxide as precursor and variations on calcination process. Semi-quantitative analysis on the synthesized sample is done by using X-ray diffraction (XRD) method. Meanwhile, qualitative analysis on the morphology of the encapsulation was carried out by using Scanning Electron Microscope (SEM) and Field Emission Scanning Electron Microscope (FESEM) equipped with dual Focus Ion Beam (FIB). The result of the experiment shows that calcination process significantly affects the final characteristic of encapsulation. The optimum encapsulation process was synthesized by colloidal aluminum hydroxide as a precursor, with a double step calcination process in low pressure until 900 °C.
NASA Astrophysics Data System (ADS)
Badr, A. M.; El-Anssary, E. H.; Elshaikh, H. A.; Afify, H. H.
2017-12-01
In the current study, α-MoO3 nanocrystals were successfully synthesized from ammonium heptamolybdate tetrahydrate using a simple hydrothermal route. The influence of calcination temperature on the structural, optical and electrical properties was systematically investigated for the MoO3 powder products. The XRD results were analyzed for these powders, revealing the formation of a mixed phase (β- and α-MoO3) at calcination temperatures ranging from 350 °C-450 °C, and hence a residual monoclinic phase still exists in the samples at the calcination temperature of 450 °C. Subsequently, the mixed phase was completely converted to a pure single phase of α-MoO3 at a calcination temperature of 500 °C. The optical properties of the MoO3 powders were investigated using the transformed diffuse reflectance technique according to Kubelka-Munk theory. For such a powder product, the results of the optical measurements demonstrated the realization of indirect and direct allowed transitions at the spectral ranges 3.31-3.91 eV and 3.66-4.27 eV, respectively. The indirect- and direct-allowed band-gaps of the MoO3 products were found to increase from 2.69-3.12 eV and from 3.43-3.64 eV, respectively, by increasing the calcination temperature from 350 °C-600 °C. The MoO3 powders calcined at different temperatures were converted into five dense tablets for performing the electrical measurements. These measurements were carried out at different working temperatures using a system operating under high vacuum conditions. The results revealed that the dc-conductivity of such a tablet typically increases by more than five orders of magnitude with an increase in the working temperature from 77-300 K. These results also demonstrated a high dependence of dc-conductivity on the calcination temperature for the MoO3 products. The dc-conductivity as a function of the operating temperature revealed the presence of at least three different electrical conduction mechanisms for the same MoO3 tablet.
Wang, Cheng-Li; Hwang, Weng-Sing; Chang, Kuo-Ming; Ko, Horng-Huey; Hsi, Chi-Shiung; Huang, Hong-Hsin; Wang, Moo-Chin
2011-01-28
Synthesis of Zn(2)Ti(3)O(8) powders for attenuating UVA using TiCl(4), Zn(NO(3))(2)·6H(2)O and NH(4)OH as precursor materials by hydrothermal process has been investigated. The X-ray diffractometry (XRD) results show the phases of ZnO, anatase TiO(2) and Zn(2)Ti(3)O(8) coexisted when the zinc titanate powders were calcined at 600 °C for 1 h. When calcined at 900 °C for 1 h, the XRD results reveal the existence of ZnO, Zn(2)TiO(4), rutile TiO(2) and ZnTiO(3). Scanning electron microscope (SEM) observations show extensive large agglomeration in the samples. Transmission electron microscope (TEM) and electron diffraction (ED) examination results indicate that ZnTiO(3) crystallites formed with a size of about 5 nm on the matrix of plate-like ZnO when calcined at 700 °C for 1 h. The calcination samples have acceptable absorbance at a wavelength of 400 nm, indicating that the zinc titanate precursor powders calcined at 700 °C for 1 h can be used as an UVA-attenuating agent.
Wang, Cheng-Li; Hwang, Weng-Sing; Chang, Kuo-Ming; Ko, Horng-Huey; Hsi, Chi-Shiung; Huang, Hong-Hsin; Wang, Moo-Chin
2011-01-01
Synthesis of Zn2Ti3O8 powders for attenuating UVA using TiCl4, Zn(NO3)2·6H2O and NH4OH as precursor materials by hydrothermal process has been investigated. The X-ray diffractometry (XRD) results show the phases of ZnO, anatase TiO2 and Zn2Ti3O8 coexisted when the zinc titanate powders were calcined at 600 °C for 1 h. When calcined at 900 °C for 1 h, the XRD results reveal the existence of ZnO, Zn2TiO4, rutile TiO2 and ZnTiO3. Scanning electron microscope (SEM) observations show extensive large agglomeration in the samples. Transmission electron microscope (TEM) and electron diffraction (ED) examination results indicate that ZnTiO3 crystallites formed with a size of about 5 nm on the matrix of plate-like ZnO when calcined at 700 °C for 1 h. The calcination samples have acceptable absorbance at a wavelength of 400 nm, indicating that the zinc titanate precursor powders calcined at 700 °C for 1 h can be used as an UVA-attenuating agent. PMID:21541035
40 CFR 98.317 - Records that must be retained.
Code of Federal Regulations, 2012 CFR
2012-07-01
... coke purchases. (2) Annual operating hours for each titanium dioxide process line. (b) If a CEMS is not... paraghraph: (1) Records of all calcined petroleum coke purchases (tons). (2) Records of all analyses and... content of consumed calcined petroleum coke (percent by weight expressed as a decimal fraction). (4...
40 CFR 98.317 - Records that must be retained.
Code of Federal Regulations, 2011 CFR
2011-07-01
... coke purchases. (2) Annual operating hours for each titanium dioxide process line. (b) If a CEMS is not... paraghraph: (1) Records of all calcined petroleum coke purchases (tons). (2) Records of all analyses and... content of consumed calcined petroleum coke (percent by weight expressed as a decimal fraction). (4...
40 CFR 98.317 - Records that must be retained.
Code of Federal Regulations, 2014 CFR
2014-07-01
... coke purchases. (2) Annual operating hours for each titanium dioxide process line. (b) If a CEMS is not... paraghraph: (1) Records of all calcined petroleum coke purchases (tons). (2) Records of all analyses and... content of consumed calcined petroleum coke (percent by weight expressed as a decimal fraction). (4...
40 CFR 98.317 - Records that must be retained.
Code of Federal Regulations, 2013 CFR
2013-07-01
... coke purchases. (2) Annual operating hours for each titanium dioxide process line. (b) If a CEMS is not... paraghraph: (1) Records of all calcined petroleum coke purchases (tons). (2) Records of all analyses and... content of consumed calcined petroleum coke (percent by weight expressed as a decimal fraction). (4...
Catalyst for selective conversion of synthesis gas and method of making the catalyst
Dyer, Paul N.; Pierantozzi, Ronald
1986-01-01
A Fischer-Tropsch (F-T) catalyst, a method of making the catalyst and an F-T process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range. In general, the selective and notably stable catalyst, consists of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of an F-T metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.
NASA Astrophysics Data System (ADS)
Wijayaratne, Hasini; McIntosh, Grant; Hyland, Margaret; Perander, Linus; Metson, James
2017-06-01
The mechanical strength of smelter grade alumina (SGA) is of considerable practical significance for the aluminum reduction process. Attrition of alumina during transportation and handling generates an increased level of fines. This results in generation of dust, poor flow properties, and silo segregation that interfere with alumina feeding systems. These lead to process instabilities which in turn result in current efficiency losses that are costly. Here we are concerned with developing a fundamental understanding of SGA strength in terms of its microstructure. Nanoindentation and ultrasound-mediated particle breakage tests have been conducted to study the strength. Strength of SGA samples both industry calcined and laboratory prepared, decrease with increasing α-alumina (corundum) content contrary to expectation. The reducing strength of alumina with increasing degree of calcination is attributed to the development of a macroporous and abrasion-prone microstructure resulting from the `pseudomorphic' transformation of precursor gibbsite during the calcination process.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, S. M.; Su, J.; Chintamaneni, V.
2007-10-01
Detailed investigation of superconducting films of YBa2Cu3O7-δ (YBCO) prepared from solution-based precursors have been performed. Two precursors have been compared in this study: the presently used trifluoroacetate (TFA) solution and a recently developed colloidal suspension containing nanoparticles of mixed oxide. Detailed analyses of the evolution of microstructure and chemistry of the films have been performed, and process parameters have been correlated with final superconducting properties. Both films need two heating steps: a low temperature calcination and a higher temperature crystallization step. For TFA films, it was seen that the heating rate during calcination needs to be carefully optimized and is expected to be slow. For the alternate process using a nanoparticle precursor, a significantly faster calcination rate is possible. In the TFA process, the Ba ion remains as fluoride and the Y remains as oxyfluoride after calcination. This implies that, during the final crystallization stage to form YBCO, fluorine-containing gases will evolve, resulting in residual porosity. On the other hand, the film from the nanoparticle process is almost fully oxidized after calcination. Therefore, no gases evolve at the final firing (crystallization) stage, and the film has much lower porosity. The superconducting properties of both types of films are adequate, but the nanoparticle films appear to have persistently higher J c values. Moreover, they show improved flux pinning in higher magnetic fields, probably due to nanoscale precipitates of a Cu-rich phase. In addition, the nanocolloid films seem to show additionally enhanced flux pinning when doped with minute amounts of second phase precipitates. It therefore appears that, whereas the TFA process is already quite successful, the newly developed nanoparticle process has significant scope for additional improvement. It can be scaled-up with ease, and can be easily adapted to incorporate nanoscale flux pinning defects for in-field performance.
METHOD FOR PREPARATION OF SINTERABLE BERYLLIUM OXIDE
Sturm, B.J.
1963-08-13
High-purity beryllium oxide for nuclear reactor applications can be prepared by precipitation of beryllium oxalate monohydrate from aqueous solution at a temperature above 50 deg C and subsequent calcination of the precipitate. Improved purification with respect to metallic impurities is obtained, and the product beryllium oxide sinters reproducibly to a high density. (AEC)
NASA Astrophysics Data System (ADS)
Cosano, Daniel; Esquinas, Carlos; Jiménez-Sanchidrián, César; Ruiz, José Rafael
2016-02-01
Calcining magnesium/aluminium layered double hydroxides (Mg/Al LDHs) at 450 °C provides excellent sorbents for removing cyanide from aqueous solutions. The process is based on the "memory effect" of LDHs; thus, rehydrating a calcined LDH in an aqueous solution restores its initial structure. The process, which conforms to a first-order kinetics, was examined by Raman spectroscopy. The metal ratio of the LDH was found to have a crucial influence on the adsorption capacity of the resulting mixed oxide. In this work, Raman spectroscopy was for the first time use to monitor the adsorption process. Based on the results, this technique is an effective, expeditious choice for the intended purpose and affords in situ monitoring of the adsorption process. The target solids were characterized by using various instrumental techniques including X-ray diffraction spectroscopy, which confirmed the layered structure of the LDHs and the periclase-like structure of the mixed oxides obtained by calcination.
Recycling Lithium Carbonate/Lithium Hydroxide Waste
NASA Technical Reports Server (NTRS)
Flowers, J.; Flowers, J.
1983-01-01
Hazardous waste disposal problem eliminated by regeneration. Li2CO3/ LiOH recycling process relies on low solubility of alkali carbonates in corresponding hydroxides. Li2CO3 precipitate calcined to LI2O, then rehydrated LiOH. Regeneration eliminates need to dispose caustic waste and uses less energy than simple calcination of entire waste mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, D.Y.; Hughes, R.W.; Anthony, E.J.
Sintering during calcination/carbonation may introduce substantial economic penalties for a CO{sub 2} looping cycle using limestone/dolomite-derived sorbents. Cyclic carbonation and calcination reactions were investigated for CO{sub 2} capture under fluidized bed combustion (FBC) conditions. The cyclic carbonation characteristics of CaCO{sub 3}-derived sorbents were compared at various calcination temperatures (700-925{sup o} C) and different gas stream compositions: pure -2 and a realistic calciner environment where high concentrations of CO{sub 2}>80-90% are expected. The conditions during carbonation were 700 {sup o}C and 15% CO{sub 2} in N{sub 2} and 0.18% or 0.50% SO{sub 2} in selected tests. Up to 20 calcination/carbonation cyclesmore » were conducted using a thermogravimetric analyzer (TGA) apparatus. Three Canadian limestones were tested: Kelly Rock, Havelock, and Cadomin, using a prescreened particle size range of 400-650 {mu} m. Calcined Kelly Rock and Cadomin samples were hydrated by steam and examined. Sorbent reactivity was reduced whenever SO{sub 2} was introduced to either the calcining or carbonation streams. The multicyclic capture capacity of CaO for CO{sub 2} was substantially reduced at high concentrations of CO{sub 2} during the sorbent regeneration process and carbonation conversion of the Kelly Rock sample obtained after 20 cycles was only 10.5%. Hydrated sorbents performed better for CO{sub 2} capture but showed deterioration following calcination in high CO{sub 2} gas streams indicating that high CO{sub 2} and SO{sub 2} levels in the gas stream lead to lower CaO conversion because of enhanced sintering and irreversible formation of CaSO{sub 4}.« less
Vitrification of radioactive high-level waste by spray calcination and in-can melting
NASA Astrophysics Data System (ADS)
Hanson, M. S.; Bjorklund, W. J.
1980-07-01
After several nonradioactive test runs, radioactive waste from the processing of 1.5 t of spent, light water reactor fuel was successfully concentrated, dried and converted to a vitreous product. A total of 97 L of waste glass (in two stainless steel canisters) was produced. The spray calcination process coupled to the in-can melting process, as developed at Pacific Northwest Labortory, was used to vitrify the waste. An effluent system consisting of a variety of condensation of scrubbing steps more than adequately decontaminated the process off gas before it was released to the atmosphere.
The effect of heat treatment on superhydrophilicity of TiO2 nano thin films
NASA Astrophysics Data System (ADS)
Ashkarran, A. A.; Mohammadizadeh, M. R.
2007-11-01
TiO2 thin films were synthesized by the sol-gel method and spin coating process. The calcination temperature was changed from 100 to 550°C. XRD patterns show increasing the content of polycrystalline anatase phase with increasing the calcination temperature. The AFM results indicate granular morphology of the films, which particle size changes from 22 to 166nm by increasing the calcination temperature. The RBS, EDX and Raman spectroscopy of the films show the ratio of Ti:O ~0.5, and diffusion of sodium ions from substrate into the layer, by increasing the calcination temperature. The UV-vis spectroscopy of the films indicates a red shift by increasing the calcination temperature. The contact angle meter experiment shows that superhydrophilicity of the films depends on the formation of anatase crystal structure and diffused sodium content from substrate to the layer. The best hydrophilicity property was observed at 450°C calcination temperature, where the film is converted to a superhydrophilic surface after 10min under 2mW/cm2 UV irradiation. Water droplet on TiO2 thin film on Si(111), Si(100), and quartz substrates is spread to smaller angles rather than glass and polycrystalline Si substrates under UV irradiation.
NASA Astrophysics Data System (ADS)
Aleksandrov, P. V.; Medvedev, A. S.; Imideev, V. A.; Moskovskikh, D. O.
2017-04-01
Roasting of molybdenum concentrates with sodium chloride has high potential and can be an alternative to oxidizing roasting and autoclave leaching; however, the chemistry and mechanism are poorly known. The chemical mechanism of the roasting process between molybdenite concentrate and sodium chloride in the presence of atmospheric oxygen is proposed. It is demonstrated that the process occurs through molybdenite oxidation, up to molybdenum trioxide, with subsequent formation of sodium polymolybdates and molybdenum dioxydichloride from molybdenum trioxide. It is found that the formation of water-soluble sodium polymolybdates from molybdenum trioxide stops over time due to passivation of sodium chloride surface by polymolybdates. It is proved experimentally that preliminary grinding of the mixture in a furnace charge leads to an increase in the polymolybdate fraction of the roasting products, which constitutes approximately 65 pct of molybdenum initially in the roasted mixture against 20 to 22 pct in a nonground mixture (or 75 to 77 pct against 30 to 33 pct of molybdenum in calcine). For the first time, the presence of the Na2S2O7 phase in the calcine was confirmed experimentally. The suggested mechanism gives possible explanations for the sharp increase of MoO2Cl2 formation within the temperature range of 673 K to 723 K (400 °C to 450 °C) that is based on the catalytic reaction of molybdenum dioxydichloride from the Na2S2O7 liquid phase as it runs in a melt.
Effects of Coke Calcination Level on Pore Structure in Carbon Anodes
NASA Astrophysics Data System (ADS)
Fang, Ning; Xue, Jilai; Lang, Guanghui; Bao, Chongai; Gao, Shoulei
2016-02-01
Effects of coke calcination levels on pore structure of carbon anodes have been investigated. Bench anodes were prepared by 3 types of cokes with 4 calcination temperatures (800°C, 900°C, 1000°C and 1100°C). The cokes and anodes were characterized using hydrostatic method, air permeability determination, mercury porosimetry, image analysis and confocal microscopy (CSLM). The cokes with different calcination levels are almost the same in LC values (19-20 Å) and real density (1.967-1.985 g/cm3), while the anode containing coke calcined at 900°C has the lowest open porosity and air permeability. Pore size distribution (represented by Anode H sample) can be roughly divided into two ranges: small and medium pores in diameter of 10-400 μm and large pores of 400-580 μm. For the anode containing coke calcined at 800°C, a number of long, narrow pores in the pore size range of 400-580 μm are presented among cokes particles. Formation of these elongated pores may be attributed to coke shrinkages during the anode baking process, which may develop cracking in the anode under cell operations. More small or medium rounded pores with pore size range of 10-400 μm emerge in the anodes with coke calcination temperatures of 900°C, 1000°C and 1100°C, which may be generated due to release of volatiles from the carbon anode during baking. For the anode containing coke calcined at 1100°C, it is found that many rounded pores often closely surround large coke particles, which have potential to form elongated, narrow pores.
Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine
2012-02-10
In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as themore » need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of MAT in the US lime industry. This estimate showed that 7.3 TBTU/year could be saved, with reduction of 270 MMlbs of CO2 emissions, and $29 MM/year in economic savings. Taking into account estimates for MAT implementation in the US cement industry, an additional 39 TBTU/year, 3 Blbs of CO2 and $155 MM/year could be saved. One of the main remaining barriers to commercialization of MAT for the lime and cement industries is the sheer size of production. Through this project, it was realized that a production size MAT rotary calciner was not feasible, and a different approach was adapted. The concept of a microwave post heat section located in the upper portion of the cooler was devised and appears to be a more realistic approach for MAT implementation. Commercialization of this technology will require (1) continued pilot scale calcining demonstrations, (2) involvement of lime kiln companies, and (3) involvement of an industrial microwave equipment provider. An initial design concept for a MAT post-heat treatment section was conceived as a retrofit into the cooler sections of existing lime rotary calciners with a 1.4 year payback. Retrofitting will help spur implementation of this technology, as the capital investment will be minimal for enhancing the efficiency of current rotary lime kilns. Retrofits would likely be attractive to lime manufacturers, as the purchase of a new lime kiln is on the order of a $30 million dollar investment, where as a MAT retrofit is estimated on the order of $1 million. The path for commercialization lies in partnering with existing lime kiln companies, who will be able to implement the microwave post heat sections in existing and new build kilns. A microwave equipment provider has been identified, who would make up part of the continued development and commercialization team.« less
Study on Al2O3 extraction from activated coal gangue under different calcination atmospheres
NASA Astrophysics Data System (ADS)
Dong, Ling; Liang, Xinxing; Song, Qiang; Gao, Gewu; Song, Lihua; Shu, Yuanfeng; Shu, Xinqian
2017-12-01
Coal gangue was calcinated under air, nitrogen, carbon dioxide, air-hydrogen, and hydrogen atmospheres. The effects of different calcination temperatures and atmospheres on the mineral composition of activated coal gangue were investigated by X-ray diffraction. Moreover, the acid leaching kinetics of aluminum oxide from coal gangue was investigated with sulfuric acid. It showed that the air atmosphere promoted kaolinite decomposition during coal gangue calcination. The hydrogen atmosphere promoted the activation and decomposition of kaolinite at reaction temperatures exceeding 650°C. The carbon dioxide atmosphere eliminated the influence of residual carbon on coal gangue. When the ratio of acid/coal gangue was 1.5 and reaction temperature was 650°C, the sulfuric acid leaching rate under air, air-hydrogen, carbon dioxide, hydrogen and nitrogen atmospheres were 93.66%, 90.90%, 84.06%, 81.91% and 77.54% respectively. The acid leaching reaction process conformed to unreacted shrinking core model of particle unchanged, and was controlled by the interfacial chemical reaction. The reaction kinetic equation for the leaching process was 1-(1-x)1/3=kt with an apparent activation energy of 48.97 kJ/mol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard D. Boardman; B. H. O'Brien; N. R. Soelberg
About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste are stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Calcination at high-temperature conditions (600 C, with alumina nitrate and calcium nitrate chemical addition to the feed) is one of four options currently being considered by the Department of Energy for treatment of the remaining tank wastes. If calcination is selected for future processing of the sodium-bearing waste, it will be necessary to install new off-gas control equipment in themore » New Waste Calcining Facility (NWCF) to comply with the Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors and incinerators. This will require, as a minimum, installing a carbon bed to reduce mercury emissions from their current level of up to 7,500 to <45 {micro}g/dscm, and a staged combustor to reduce unburned kerosene fuel in the off-gas discharge to <100 ppm CO and <10 ppm hydrocarbons. The staged combustor will also reduce NOx concentrations of about 35,000 ppm by 90-95%. A pilot-plant calcination test was completed in a newly constructed 15-cm diameter calciner vessel. The pilot-plant facility was equipped with a prototype MACT off-gas control system, including a highly efficient cyclone separator and off-gas quench/venturi scrubber for particulate removal, a staged combustor for unburned hydrocarbon and NOx destruction, and a packed activated carbon bed for mercury removal and residual chloride capture. Pilot-plant testing was performed during a 50-hour system operability test January 14-16, followed by a 100-hour high-temperature calcination pilot-plant calcination run January 19-23. Two flowsheet blends were tested: a 50-hour test with an aluminum-to-alkali metal molar ratio (AAR) of 2.25, and a 50-hour test with an AAR of 1.75. Results of the testing indicate that sodium-bearing waste can be successfully calcined at 600 C with an AAR of 1.75. Unburned hydrocarbons are reduced to less than 10 ppm (7% O2, dry basis), with >90% reduction of NOx emissions. Mercury removal by the carbon bed reached 99.99%, surpassing the control efficiency needed to meet MACT emissions standards. No deleterious impacts on the carbon bed were observed during the tests. The test results imply that upgrading the NWCF calciner with a more efficient cyclone separator and the proposed MACT equipment can process the remaining tanks wastes in 3 years or less, and comply with the MACT standards.« less
Modification of waste coal gangue and its application in the removal of Mn(2+) from aqueous solution.
Qiu, Ruifang; Cheng, Fangqin
We developed a new calcination method to convert coal gangue (CG), a common waste generated from coal production process, into a modified form, which could be used as an adsorbent to remove Mn(2+) from aqueous solution. Sodium tetraborate (Na2B4O7·10H2O) was added into the CG calcination process as an additive, and the concentrations of Na2B4O7·10H2O were optimized along with the calcination temperature to obtain the best adsorbent capacity of modified coal gangue (MCG). We applied multiple analytical methods such as scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller analysis to characterize the MCG. The results showed it had a smaller particle size and a larger specific surface area and pore volume after modification. It also indicated that the phase of CG transformed from kaolinite to metakaolinite after calcination. Moreover, a new substance was generated with two new peaks at 1,632 cm(-1) and 799 cm(-1). The Mn(2+) absorption capacity of MCG was evaluated using a series of experiments with different adsorbent doses, pH values and initial Mn(2+) concentrations during the adsorption process. We found that Mn(2+) adsorbent capacity of MCG increased by more than seven-fold compared to that of CG. The Langmuir isotherm model and the pseudo-second-order kinetic model provided the best fit to the adsorption processes.
NASA Astrophysics Data System (ADS)
Charerntanom, Wissanu; Pecharapa, Wisanu; Pavasupree, Suttipan; Pavasupree, Sorapong
2017-07-01
This research has experimentally synthesized the nanosheets from the naturally-mineral magnetic leucoxene under the hydrothermal synthesis condition of 105 °C for 24 h. Magnetic leucoxene was utilized as the starting material due to its high TiO2 content (70-80%) and inexpensiveness. The characterization of the synthesized nanosheets was subsequently carried out: the crystalline structure, the chemical composition, the shape, the size and the specific surface area, by the X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) specific surface area analysis. The analysis results indicated that the starting magnetic leucoxene is of rutile phase while the synthesized nanosheets are of titanate structure (H2TixO2x + 1). After calcination at the temperature range of 300 and 400 °C, the calcined samples demonstrated TiO2 (B). At 500 and 600 °C, the calcined nanosheets revealed a bi-crystalline mixture consisting of TiO2 (B) and anatase TiO2. At 700-1000 °C, the crystalline structure shows anatase and rutile phase. At 1100 °C, the prepared samples consisted of a mixture of anatase, rutile phase of TiO2, and Fe2O3 phase. The synthesized product also exhibited the flower-like morphology with 2-5 μm in diameter, and the nanosheets structure was slightly curved, with 100 nm to 2 μm in width and 1-3 nm in thickness. At 100-200 °C showed sheets-like structure. At 300-1100 °C, the calcined nanosheets became unstable and began to decompose and transform into nanoparticles. The increasing size of nanoparticle decreased the specific surface area of the nanosheets, caused by increasing calcination temperature. Furthermore, the BET specific surface area of the nanosheets was approximately 279.8 m2/g. More importantly, the synthesized nanosheets achieved the higher photocatalytic activity under UV and visible light than did the commercial TiO2 nanoparticles (JRC-01, JRC-03, ST-01 and P-25).
Study of Catalyst Variation Effect in Glycerol Conversion Process to Hydrogen Gas by Steam Reforming
NASA Astrophysics Data System (ADS)
Widayat; Hartono, R.; Elizabeth, E.; Annisa, A. N.
2018-04-01
Along with the economic development, needs of energy being increase too. Hydrogen as alternative energy has many usages. Besides that, hydrogen is one source of energy that is a clean fuel, but process production of hydrogen from natural gas as a raw material has been used for a long time. Therefore, there is need new invention to produce hydrogen from the others raw material. Glycerol, a byproduct of biodiesel production, is a compound which can be used as a raw material for hydrogen production. By using glycerol as a raw material of hydrogen production, we can get added value of glycerol as well as an energy source solution. The process production of hydrogen by steam reforming is a thermochemical process with efficiency 70%. This process needs contribution of catalyst to improve its efficiency and selectivity of the process. In this study will be examined the effect variation of catalyst for glycerol conversion process to hydrogen by steam reforming. The method for catalyst preparation was variation of catalyst impregnation composition, catalyst calcined with difference concentration of hydrochloric acid and calcined with difference hydrochloric acid ratio. After that, all of catalyst which have been prepared, used for steam reforming process for hydrogen production from glycerol as a raw material. From the study, the highest yield of hydrogen gas showed in the process production by natural zeolite catalyst with 1:15 Hydrochloric acid ratio was 42.28%. Hydrogen yield for 2M calcined natural zeolite catalyst was 38.37%, for ZSM-5 catalyst was 15.83%, for 0.5M calcined natural zeolite was 13.09% and for ultrasonic natural zeolite was 11.43%. The lowest yield of hydrogen gas showed in catalyst 2Zn/ZSM-5 with 11.22%. This result showed that hydrogen yield product was affected by catalyst variation because of the catalyst has difference characteristic and difference catalytic activity after the catalyst preparation process.
Screen-printed SnO2/CNT quasi-solid-state gel-electrolyte supercapacitor
NASA Astrophysics Data System (ADS)
Kuok, Fei-Hong; Liao, Chen-Yu; Chen, Chieh-Wen; Hao, Yu-Chuan; Yu, Ing-Song; Chen, Jian-Zhang
2017-11-01
This study investigates a quasi-solid-state gel-electrolyte supercapacitor fabricated with nanoporous SnO2/CNT nanocomposite electrodes and a polyvinyl alcohol/sulfuric acid (PVA/H2SO4) gel electrolyte. First, pastes containing SnO2 nanoparticles, CNTs, ethyl cellulose, and terpineol are screen-printed onto carbon cloth. A tube furnace is then used for calcining the SnO2/CNT electrodes on carbon cloth. After furnace-calcination, the wettability of SnO2/CNT significantly improved; furthermore, the XPS analysis shows that number of C-O bond and oxygen content significantly decrease after furnace-calcination owing to the burnout of the ethyl cellulose by the furnace calcination processes. The furnace-calcined SnO2/CNT electrodes sandwich the PVA/H2SO4 gel electrolyte to form a supercapacitor. The fabricated supercapacitor exhibits an areal capacitance of 5.61 mF cm-2 when flat and 5.68 mF cm-2 under bending with a bending radius (R) of 1.0 cm. After a 1000 cycle stability test, the capacitance retention rates of the supercapacitor are 96% and 97% when flat and under bending (R = 1.0 cm), respectively.
Phosphorous removal from aqueous solution can be enhanced through the calcination of lime sludge.
Bal Krishna, K C; Niaz, Mohamed R; Sarker, Dipok C; Jansen, Troy
2017-09-15
Water treatment plants generate an enormous amount of the sludge which is normally treated as waste. In the recent past, many investigations have been focused on developing an economical adsorbent using water treatment sludge to remove phosphorous (P) from aqueous solutions. However, the great extents of the studies have been limited in the use of alum- and iron-based sludges. This study, therefore, investigated the P removal performance of the calcined lime sludge. Calcined lime sludge at 700 °C significantly enhanced the P removal efficiency whereas marginal improvement was noted when the sludge calcined at 400 °C was tested. With increase P removal efficiency, final pH values of the solution also significantly increased. P removal efficiency of the calcined sludge decreased with increasing the initial P concentrations. However, the removal efficiency could be improved by increasing the weight of the sludge. Further analysis demonstrated that P removal trend followed both pseudo-second order and diffusion-chemisorption kinetics signifying the P removal is potentially due to a multi-mechanistic reaction in which, the process is controlled by intra-particle diffusion followed by chemisorptions. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cao, Ensi; Yang, Yuqing; Cui, Tingting; Zhang, Yongjia; Hao, Wentao; Sun, Li; Peng, Hua; Deng, Xiao
2017-01-01
LaFeO3-δ nanoparticles were prepared by citric sol-gel method with different raw material choosing and calcination process. The choosing of polyethylene glycol instead of ethylene glycol as raw material and additional pre-calcination at 400 °C rather than direct calcination at 600 °C could result in the decrease of resistance due to the reduction of activation energy Ea. Meanwhile, the choosing of ethylene glycol as raw material and additional pre-calcination leads to the enhancement of sensitivity to ethanol. Comprehensive analysis on the sensitivity and XRD, SEM, TEM, XPS results indicates that the sensing performance of LaFeO3-δ should be mainly determined by the adsorbed oxygen species on Fe ions, with certain contribution from native active oxygen. The best sensitivity of 46.1-200 ppm ethanol at prime working temperature of 112 °C is obtained by the sample using ethylene glycol as raw material with additional pre-calcination, which originates from its uniformly-sized and well-dispersed particles as well as high atomic ratio of Fe/La at surface region.
Process parameters in the manufacture of ceramic ZnO nanofibers made by electrospinning
NASA Astrophysics Data System (ADS)
Nonato, Renato C.; Morales, Ana R.; Rocha, Mateus C.; Nista, Silvia V. G.; Mei, Lucia H. I.; Bonse, Baltus C.
2017-01-01
Zinc oxide (ZnO) nanofibers were prepared by electrospinning under different conditions using a solution of poly(vinyl alcohol) and zinc acetate as precursor. A 23 factorial design was made to study the influence of the process parameters in the electrospinning (collector distance, flow rate and voltage), and a 22 factorial design was made to study the influence of the calcination process (time and temperature). SEM images were made to analyze the fiber morphology before and after calcination process, and the images were made to measure the nanofiber diameter. X-ray diffraction was made to analyze the total precursor conversion to ZnO and the elimination of the polymeric carrier.
NASA Astrophysics Data System (ADS)
Wiederhold, J. G.; Jew, A. D.; Brown, G. E.; Bourdon, B.; Kretzschmar, R.
2010-12-01
The seven stable isotopes of Hg are fractionated in the environment as a result of mass-dependent (MDF) and mass-independent (MIF) fractionation processes that can be studied in parallel by analyzing the ratios of even and odd mass Hg isotopes. MDF and MIF Hg isotope signatures of natural samples may provide a new tool to trace sources and transformations in environmental Hg cycling. However, the mechanisms controlling the extent of kinetic and equilibrium Hg isotope fractionations are still only partially understood. Thus, development of this promising tracer requires experimental calibration of relevant fractionation factors as well as assessment of natural variations of Hg isotope ratios under different environmental conditions. The inoperative Hg mine in New Idria (California, USA) represents an ideal case study to explore Hg isotope fractionation during Hg transformation and transport processes. More than a century of Hg mining and on-site thermal refining to obtain elemental Hg until 1972 produced large volumes of contaminated mine wastes which now represent sources of Hg pollution for the surrounding ecosystems. Here, we present Hg isotope data from various materials collected at New Idria using Cold-Vapor-MC-ICPMS with a long-term δ202Hg reproducibility of ±0.1‰ (2SD). Uncalcined mine waste samples were isotopically similar to NIST-3133 and did not exhibit any MIF signatures. In contrast, calcine samples, which represent the residue of the thermal ore processing at 700°C, had significantly heavier δ202Hg values of up to +1.5‰. In addition, we observed small negative MIF anomalies of the odd-mass Hg isotopes in the calcine samples, which could be caused either by nuclear volume fractionation or a magnetic isotope effect during or after the roasting process. The mass-dependent enrichment of heavy Hg isotopes in the calcine materials indicates that light Hg isotopes were preferentially removed during the roasting process, in agreement with a previous study by Stetson et al. (ES&T, 2009, 43:7331-7336). In order to further elucidate the Hg isotope signatures of the New Idria samples, we performed a three-step sequential extraction procedure to separate different Hg pools. The calcine samples exhibited a higher proportion of leachable Hg phases compared with the unrefined ore waste samples. The most soluble Hg pool (HAc/HCl, pH 2) had a significantly heavier MDF and more negative MIF signature than the bulk calcine samples, suggesting that the dissolution of more soluble Hg phases from calcine materials results in an enhanced flux of leached Hg which is isotopically distinct from the original ore. Moreover, this finding demonstrates that the Hg isotope fractionation during the ore roasting cannot be solely explained by a kinetic Rayleigh-type process which removes light Hg isotopes, but must additionally involve the formation of isotopically heavy secondary Hg phases in the calcine. The analysis of additional samples will enable us to test this hypothesis and to gain further insights into the applicability of stable Hg isotope ratios as source and process tracers in Hg-contaminated environments.
SO2 retention by reactivated CaO-based sorbent from multiple CO2 capture cycles.
Manovic, Vasilije; Anthony, Edward J
2007-06-15
This paper examines the reactivation of spent sorbent, produced from multiple CO2 capture cycles, for use in SO2 capture. CaO-based sorbent samples were obtained from Kelly Rock limestone using three particle size ranges, each containing different impurities levels. Using a thermogravimetric analyzer (TGA), the sulfation behavior of partially sulfated and unsulfated samples obtained after multiple calcination-carbonation cycles in a tube furnace (TF), following steam reactivation in a pressurized reactor, is examined. In addition, samples calcined/sintered under different conditions after hydration are also examined. The results show that suitably treated spent sorbent has better sulfation characteristics than that of the original sorbent. Thus for example, after 2 h sulfation, > 80% of the CaO was sulfated. In addition, the sorbent showed significant activity even after 4 h when > 95% CaO was sulfated. The results were confirmed by X-ray diffraction (XRD) analysis, which showed that, by the end of the sulfation process, samples contained CaSO4 with only traces of unreacted CaO. The superior behavior of spent reactivated sorbent appears to be due to swelling of the sorbent particles during steam hydration. This enables the development of a more suitable pore surface area and pore volume distribution for sulfation, and this has been confirmed by N2 adsorption-desorption isotherms and the Barrett-Joyner-Halenda (BJH) method. The surface area morphology of sorbent after reactivation was examined by scanning electron microscopy (SEM). Ca(OH)2 crystals were seen, which displayed their regular shape, and their elemental composition was confirmed by energy-dispersive X-ray (EDX) analysis. The improved characteristics of spent reactivated sorbent in comparison to the original and to the sorbent calcined under different conditions and hydrated indicate the beneficial effect of CO2 cycles on sorbent reactivation and subsequent sulfation. These results allow us to propose a new process for the use of CaO-based sorbent in fluidized bed combustion (FBC) systems, which incorporates CO2 capture, sorbent reactivation, and SO2 retention.
High strength yttria-reinforced HA scaffolds fabricated via honeycomb ceramic extrusion.
Elbadawi, M; Shbeh, M
2018-01-01
The present study investigated the effects of hydroxyapatite (HA) reinforced with yttria on porous scaffolds fabricated via honeycomb ceramic extrusion. Yttria was selected as it has been demonstrated to toughen other ceramics. Moreover, yttria has been surmised to suppress dehydroxylation in HA, a characteristic that prefigures decomposition thereof during sintering into mechanically weaker phases. However, the compressive strength of yttria-reinforced hydroxyapatite (Y-HA) porous scaffolds has hitherto not been reported. Y-HA was synthesised by calcining a commercially available HA with 10wt% yttria at 1000°C. Y-HA was then fabricated into porous scaffolds using an in-house honeycomb extruder, and subsequently sintered at 1200 and 1250°C. The results were compared to the uncalcined as-received commercial powder (AR-HA) and calcined pure HA powder at 1000°C (C-HA). It was discovered that calcination alone caused marked improvements to the stoichiometry, thermal stability, porosity and compressive strength of scaffolds. The improvements were ascribed to the calcined powders with less susceptibility to both agglomeration and enhanced densification. Still, differences were observed between C-HA and Y-HA at 1250°C. The compressive strength increased from 105.9 to 127.3MPa, a larger microporosity was descried and the HA matrix in Y-HA was more stoichiometric. The latter was confirmed by XRD and EDS analyses. Therefore, it was concluded that the reinforcing of hydroxyapatite with yttria improved the compressive strength and suppressed dehydroxylation of porous HA scaffolds. In addition, the compressive strength achieved demonstrated great potential for load-bearing application. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schwerdt, Ian J; Brenkmann, Alexandria; Martinson, Sean; Albrecht, Brent D; Heffernan, Sean; Klosterman, Michael R; Kirkham, Trenton; Tasdizen, Tolga; McDonald Iv, Luther W
2018-08-15
The use of a limited set of signatures in nuclear forensics and nuclear safeguards may reduce the discriminating power for identifying unknown nuclear materials, or for verifying processing at existing facilities. Nuclear proliferomics is a proposed new field of study that advocates for the acquisition of large databases of nuclear material properties from a variety of analytical techniques. As demonstrated on a common uranium trioxide polymorph, α-UO 3 , in this paper, nuclear proliferomics increases the ability to improve confidence in identifying the processing history of nuclear materials. Specifically, α-UO 3 was investigated from the calcination of unwashed uranyl peroxide at 350, 400, 450, 500, and 550 °C in air. Scanning electron microscopy (SEM) images were acquired of the surface morphology, and distinct qualitative differences are presented between unwashed and washed uranyl peroxide, as well as the calcination products from the unwashed uranyl peroxide at the investigated temperatures. Differential scanning calorimetry (DSC), UV-Vis spectrophotometry, powder X-ray diffraction (p-XRD), and thermogravimetric analysis-mass spectrometry (TGA-MS) were used to understand the source of these morphological differences as a function of calcination temperature. Additionally, the SEM images were manually segmented using Morphological Analysis for MAterials (MAMA) software to identify quantifiable differences in morphology for three different surface features present on the unwashed uranyl peroxide calcination products. No single quantifiable signature was sufficient to discern all calcination temperatures with a high degree of confidence; therefore, advanced statistical analysis was performed to allow the combination of a number of quantitative signatures, with their associated uncertainties, to allow for complete discernment by calcination history. Furthermore, machine learning was applied to the acquired SEM images to demonstrate automated discernment with at least 89% accuracy. Copyright © 2018 Elsevier B.V. All rights reserved.
High speed production of YBCO precursor films by advanced TFA-MOD process
NASA Astrophysics Data System (ADS)
Ichikawa, H.; Nakaoka, K.; Miura, M.; Sutoh, Y.; Nakanishi, T.; Nakai, A.; Yoshizumi, M.; Izumi, T.; Shiohara, Y.
2009-10-01
YBa 2Cu 3O 7-y (YBCO) long tapes derived from the metal-organic deposition (MOD) method using the starting solution containing trifluoroacetate (TFA) have been developed with high critical currents ( I c) over 200 A/cm-width. However, high speed production of YBCO films is simultaneously necessary to satisfy the requirements of electric power device applications in terms of cost and the amounts of the tapes. In this work, we developed a new TFA-MOD starting solution using F-free salt of Y, TFA salt of Ba and Cu-Octylate for application to the coating/calcination process and discussed several issues by using the Multi-turn (MT) Reel-to-Reel (RTR) system calcination furnace for the purpose of high throughput without degradation of the properties. The coating system was improved for uniform deposition qualities in both longitudinal and transversal directions. YBCO films using the new starting solution at the traveling rate of 10 m/h in coating/calcination by the MT-RTR calcination furnace showed the values of the critical current density of 1.6 MA/cm 2 as thick as 1.5 μm at 77 K under the self fields after firing at the high heating rate in the crystallization.
NASA Astrophysics Data System (ADS)
Menon, N. Gayathri; Tatiparti, Sankara Sarma V.; Mukherji, Suparna
2018-04-01
TiO2-ZnO nanocomposites with a constant Ti:Zn molar ratio of 1:0.1 were prepared via sol-gel process followed by calcination at 300, 400, 500, 600, and 700 °C. The structural and compositional characterizations of these nanocomposites were performed through XRD, FTIR, SEM, and EDAX. Bandgap was measured using DRS. Photocatalytic performance of the nanocomposites was evaluated by decolorization of methyl orange dye under UV and visible irradiation with and without aeration. The results showed that increase in calcination temperature resulted in nanocomposites with well-defined morphology. Although the particle size increased with increase in calcination temperature, the crystallinity of the particles also increased, resulting in enhanced photocatalytic activity. A temperature-dependent anatase-to-rutile phase transformation was observed in TiO2-ZnO nanocomposite beyond 600 °C. The calcination temperature influenced both dye adsorption on the nanocomposites and also dye decolorization by photocatalysis. Even when present at low molar concentration, ZnO in the nanocomposite caused sufficient decrease in bandgap (2.6 eV) at temperatures as low as 400 °C, such that visible irradiation could cause dye decolorization. However, the best decolorization performance was observed in the presence of the nanocomposite calcined at 600 °C. Aerated systems showed better performance in all cases. Desorption of the dye remaining adsorbed on the nanocomposite at the end of the photocatalytic reaction, confirmed that adsorption accounted for only 6.6 and 3% of dye removal in the nanocomposites calcined at 600 °C with UV and visible irradiation, respectively. However, in other systems, ignoring adsorption may cause significant overestimation in photocatalytic loss of dye from the system.
Shi, Ting; Duan, Youyu; Lv, Kangle; Hu, Zhao; Li, Qin; Li, Mei; Li, Xiaofang
2018-01-01
Anatase TiO 2 (A-TiO 2 ) usually exhibits superior photocatalytic activity than rutile TiO 2 (R-TiO 2 ). However, the phase transformation from A-TiO 2 to R-TiO 2 will inevitably happens when the calcination temperature is up to 600°C, which hampers the practical applications of TiO 2 photocatalysis in hyperthermal situations. In this paper, high energy faceted TiO 2 nanosheets (TiO 2 -NSs) with super thermal stability was prepared by calcination of TiOF 2 cubes. With increase in the calcination temperature from 300 to 600°C, TiOF 2 transforms into TiO 2 hollow nanoboxes (TiO 2 -HNBs) assembly from TiO 2 -NSs via Ostwald Rippening process. Almost all of the TiO 2 -HNBs are disassembled into discrete TiO 2 -NSs when calcination temperature is higher than 700°C. Phase transformation from A-TiO 2 to R-TiO 2 begins at 1000°C. Only when the calcination temperature is higher than 1200°C can all the TiO 2 -NSs transforms into R-TiO 2 . The 500°C-calcined sample (T500) exhibits the highest photoreactivity toward acetone oxidation possibly because of the production of high energy TiO 2 -NSs with exposed high energy (001) facets and the surface adsorbed fluorine. Surface oxygen vacancy, due to the heat-induced removal of surface adsorbed fluoride ions, is responsible for the high thermal stability of TiO 2 -NSs which are prepared by calcination of TiOF 2 cubes.
Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staiger, Merle Daniel; M. C. Swenson
2005-01-01
This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-sitemore » facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.« less
The effect of calcination on multi-walled carbon nanotubes produced by dc-arc discharge.
Pillai, Sreejarani K; Augustyn, Willem G; Rossouw, Margaretha H; McCrindle, Robert I
2008-07-01
Multi-walled carbon nanotubes were synthesized by dc-arc discharge in helium atmosphere and the effect of calcination at different temperatures ranging from 300-600 degrees C was studied in detail. The degree of degradation to the structural integrity of the multi-walled carbon nanotubes during the thermal process was studied by Raman spectroscopy, Scanning electron microscopy and High resolution transmission electron microscopy. The thermal behaviour of the as prepared and calcined samples was investigated by thermogravimetric analysis. Calcination in air at 400 degrees C for 2 hours was found to be an efficient and simple method to eliminate carbonaceous impurities from the nanotube bundles with minimal damage to the tube walls and length. The impurities were oxidized at a faster rate when compared to the nanotubes and gave good yield of about 50%. The nanotubes were observed to be damaged at temperature higher than 450 degrees C. The results show that this method is less destructive when compared liquid phase oxidation with 5 M HNO3.
Direct cementitious waste option study report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dafoe, R.E.; Losinski, S.J.
A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) will be treated so that it is ready to be moved out of Idaho for disposal by a target data of 2035. This study investigates the direct grouting of all ICPP calcine (including the HLW dry calcine and those resulting from calcining sodium-bearing liquid waste currently residing in the ICPP storage tanks) as the treatment method to comply with the settlement agreement. This method involves grouting the calcined waste andmore » casting the resulting hydroceramic grout into stainless steel canisters. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory (INEEL) until they are sent to a national geologic repository. The operating period for grouting treatment will be from 2013 through 2032, and all the HLW will be treated and in interim storage by the end of 2032.« less
Phase analysis of ZrO2-SiO2 systems synthesized through Ball milling mechanical activations
NASA Astrophysics Data System (ADS)
Nurlaila, Rizka; Musyarofah, Muwwaqor, Nibras Fuadi; Triwikantoro, Kuswoyo, Anton; Pratapa, Suminar
2017-01-01
Zircon powders have been produced from raw materials of amorphous zirconia and amorphous silica powders obtained from natural zircon sand of Kalimantan Tengah, Indonesia. Synthesis process was started with the extraction of zircon powder to produce sodium silicate solution and pure zircon powder. The amorphous zirconia and silica powders were prepared by alkali fusion and co-precipitation techniques. The powders were mixed using a planetary ball mill, followed by a calcination of various holding time of 3, 10, and 15 h. Phase characterization was done using X-Ray Diffraction (XRD) technique and analysis of the diffraction data was carried out using Rietica and MAUD software. The identified phases after the calcination were zircon, tetragonal zirconia, and cristobalite. The highest zircon content was obtained in the sample calcinated for15 hours - reaching 99.66 %wt. Crystallite size analysis revealed that the samples calcinated for 3, 10, and 15 h exhibited zircon crystal size of 176 (1) nm, 191 (1) nm and 233 (1) nm respectively.
Angle dependent antireflection property of TiO2 inspired by cicada wings
NASA Astrophysics Data System (ADS)
Zada, Imran; Zhang, Wang; Li, Yao; Sun, Peng; Cai, Nianjin; Gu, Jiajun; Liu, Qinglei; Su, Huilan; Zhang, Di
2016-10-01
Inspired by cicada wings, biomorphic TiO2 with antireflective structures (ARSs) was precisely fabricated using a simple, inexpensive, and highly effective sol-gel process combined with subsequent calcination. It was confirmed that the fabricated biomorphic TiO2 not only effectively inherited the ARS but also exhibited high-performance angle dependent antireflective properties ranging from normal to 45°. Reflectance spectra demonstrated that the reflectivity of the biomorphic TiO2 with ARSs gradually changed from 1.4% to 7.8% with the increasing incidence angle over a large visible wavelength range. This angle dependent antireflective property is attributed to an optimized gradient refractive index between air and TiO2 via ARSs on the surface. Such surfaces with ARSs may have potential application in solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N. R. Mann; T. A. Todd; K. N. Brewer
1999-04-01
Development of waste treatment processes for the remediation of radioactive wastes is currently underway. A number of experiments were performed at the Idaho Nuclear Technology and Environmental Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) with the commercially available sorbent material, IONSIV IE-911, crystalline silicotitanate (CST), manufactured by UOP LLC. The purpose of this work was to evaluate the removal efficiency, sorbent capacity and selectivity of CST for removing Cs-137 from actual and simulated acidic tank waste in addition to dissolved pilot-plant calcine solutions. The scope of this work included batch contact tests performed with non-radioactivemore » dissolved Al and Run-64 pilot plant calcines in addition to simulants representing the average composition of tank waste. Small-scale column tests were performed with actual INEEL tank WM-183 waste, tank waste simulant, dissolved Al and Run-64 pilot plant calcine solutions. Small-scale column experiments using actual WM-183 tank waste resulted in fifty-percent Cs-137 breakthrough at approximately 589 bed volumes. Small-scale column experiments using the tank waste simulant displayed fifty-percent Cs-137 breakthrough at approximately 700 bed volumes. Small-scale column experiments using dissolved Al calcine simulant displayed fifty-percent Cs-137 breakthrough at approximately 795 bed volumes. Column experiments with dissolved Run-64, pilot plant calcine did not reach fifty-percent breakthrough throughout the test.« less
Characterization and morphology of prepared titanium dioxide nanofibers by electrospinning.
Park, Ju-Young; Lee, In-Hwa
2010-05-01
Dispersed titanium dioxide in polymer nanofibers were prepared by sol-gel processing and electrospinning techniques using titanium isopropoxide (TiP)/polyvinylpyrrolidone (PVP) solution. The prepared titanium dioxide nanofibers were characterized by FE-SEM, TEM, XRD, and FT-IR. Pure titanium dioxide nanofibers were obtained from calcination of inorganic-organic composite fiber. The diameter of titanium oxide nanofibers were in the range of 70 nm to 150 nm. Prepared titanium dioxide nanofibers show rough surface and rather small diameter compare with TiP/PVP composite nanofibers. After calcined at 500 degrees C, TiO2 nanofibers convert into anatase and rutile mixed phased from amorphous structure. Calcination of these composite fibers above 600 degrees C resulted in pure rutile TiO2 nanofibers.
NASA Astrophysics Data System (ADS)
Tzvetkov, George; Spassov, Tony; Kaneva, Nina; Tsyntsarski, Boyko
Here, a series of cellular-structured and predominantly mesoporous carbons were prepared via carbonization of glucose-fructose syrup (GFS) with sulfuric acid and subsequent calcination between 400∘C and 700∘C. Comparative results on the microstructure, chemical and textural properties of the newly produced carbons are presented. Furthermore, their adsorption performance for removal of acetaminophen from water was tested and it was found that the carbon calcined at 700∘C has a maximum adsorption capacity (98.7mgṡg-1) among all samples due to its suitable textural properties (BET surface area of 418m2ṡg-1 and total pore volume of 0.2cm3ṡg-1). This study demonstrates the potential use of GFS as a precursor in the preparation of carbonaceous materials for removal of biologically-active micropollutants from water.
Studies of redox active silicalite-2 and the development of stable white-light phosphors
NASA Astrophysics Data System (ADS)
Lita, Adrian
Mn-silicalite-2 was synthesized at high pH using the molecular cluster, Mn12O12(O2CCH3)16 as a Mn Source. No precipitation of manganese hydroxide was observed with this cluster even with the use of tetrabutylammonium hydroxide as a templating agent. This synthetic approach resulted in the incorporation of up to 2.5 mol % Mn into the silicalite-2 with direct substitution into the framework verified by a linear relationship between unit cell volume and loading. The Mn is reduced to Mn(II) during hydrothermal synthesis and incorporated into the silicalite-2 framework during calcination at 500°C. Further calcination at 750°C does not affect the crystallinity but oxidizes essentially all of the Mn(II) to Mn(III). Cr(IV) substituted silicalite-2 was generated by reduction of Cr(VI)-silicalite-2 lattice sites at in a CO atmosphere. The reduction process, Reduction at high pressures was found to give almost complete conversion of the Cr(VI) sites to Cr(IV). As generated, the Cr(IV) sites do not reoxidize to Cr(VI) under ambient conditions or in the presence of oxidants under reaction conditions. We report the development of new class solid-state white-light phosphors based on stable nanoparticle-silica glass composites. These materials are made from the incorporating of CdSe nanoparticles into a silica Sol-gel solution. Once it gelled and aged the materials are calcined at 500°C under oxygen. The solid that results are robust with a bright white luminescence (20%) under UV excitation that gives virtually pure white light with coordinates of (0.34, 0.36) on the CIE 1931 chromaticity diagram and, more importantly, the emission envelope coincides nearly identically with the scotopic eye response function. The white-light phosphors have a scotopic/phtopic ratio of 2.56, indicating that these phosphors will be perceived as a particularly efficient illumination source in a dark environment thereby being more energy efficient. The emission comes from a distribution of nanoscale CdSe particles, with size-polydispersity brought on by calcination and subsequent fusing of nanoparticle agglomerates in the micropores of the silica xerogel. The silica matrix makes them exceedingly robust, with no changes in the emission properties observed for periods in excess of 18 months.
Synthesis of CaCu3Ti4O12 by modified Sol-gel method with Hydrothermal process
NASA Astrophysics Data System (ADS)
Masingboon, C.; Rungruang, S.
2017-09-01
CaCu3Ti4O12 powders were synthesized by modified Sol-gel method with Hydrothermal process using Ca(NO3)2· 4H2O, Cu(NO3)2·3H2O, Ti(OC3H7)4 and freshly extracted egg white (ovalbumin) in aqueous medium. The precursor was calcined at 800, 900 and 1000 °C in air for 8 h to obtain nanocrystalline powders of CaCu3Ti4O12. The calcined CaCu3Ti4O12 powders were characterized by XRD, TEM and EDX. The XRD results indicated that all calcined samples have a typical perovskite CaCu3Ti4O12 structure and a small amount of CaTiO3, CuO and TiO2. TEM micrographs showed particle size 100 - 500 nm and EDX results showed elements of CaCu3Ti4O12 powders have calcium, copper, titanium and oxygen.
Aqueous Chloride Operations Overview: Plutonium and Americium Purification/Recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, Kyle Shelton; Kimball, David Bryan; Skidmore, Bradley Evan
These are a set of slides intended for an information session as part of recruiting activities at Brigham Young University. It gives an overview of aqueous chloride operations, specifically on plutonium and americium purification/recovery. This presentation details the steps taken perform these processes, from plutonium size reduction, dissolution, solvent extraction, oxalate precipitation, to calcination. For americium recovery, it details the CLEAR (chloride extraction and actinide recovery) Line, oxalate precipitation and calcination.
Constantino, Leonel Vinicius; Quirino, Juliana Nunes; Abrão, Taufik; Parreira, Paulo Sérgio; Urbano, Alexandre; Santos, Maria Josefa
2018-02-15
Calcined hydrotalcite can be applied to remove anionic contaminants from aqueous systems such as antimony species due to its great anion exchange capacity and high surface area. Hence, this study evaluated antimonite and antimonate sorption-desorption processes onto calcined hydrotalcite in the presence of nitrate, sulfate and phosphate. Sorption and desorption experiments of antimonite and antimonate were carried out in batch equilibrium and the post-sorption solids were analyzed by X-ray fluorescence (EDXRF). Sorption data were better fitted by dual-mode Langmuir-Freundlich model (R 2 >0.99) and desorption data by Langmuir model. High maximum sorption capacities were found for the calcined hydrotalcite, ranging from 617 to 790meqkg -1 . The competing anions strongly affected the antimony sorption. EDXRF analysis and mathematical modelling showed that sulfate and phosphate presented higher effect on antimonite and antimonate sorption, respectively. High values for sorption efficiency (SE=99%) and sorption capacity were attributed to the sorbent small particles and the large surface area. Positive hysteresis indexes and low mobilization factors (MF>3%) suggest very low desorption capacity to antimony species from LDH. These calcined hydrotalcite characteristics are desirable for sorption of antimony species from aqueous solutions. Copyright © 2017. Published by Elsevier B.V.
Krýsová, Hana; Krýsa, Josef; Kavan, Ladislav
2018-01-01
For proper function of the negative electrode of dye-sensitized and perovskite solar cells, the deposition of a nonporous blocking film is required on the surface of F-doped SnO 2 (FTO) glass substrates. Such a blocking film can minimise undesirable parasitic processes, for example, the back reaction of photoinjected electrons with the oxidized form of the redox mediator or with the hole-transporting medium can be avoided. In the present work, thin, transparent, blocking TiO 2 films are prepared by semi-automatic spray pyrolysis of precursors consisting of titanium diisopropoxide bis(acetylacetonate) as the main component. The variation in the layer thickness of the sprayed films is achieved by varying the number of spray cycles. The parameters investigated in this work were deposition temperature (150, 300 and 450 °C), number of spray cycles (20-200), precursor composition (with/without deliberately added acetylacetone), concentration (0.05 and 0.2 M) and subsequent post-calcination at 500 °C. The photo-electrochemical properties were evaluated in aqueous electrolyte solution under UV irradiation. The blocking properties were tested by cyclic voltammetry with a model redox probe with a simple one-electron-transfer reaction. Semi-automatic spraying resulted in the formation of transparent, homogeneous, TiO 2 films, and the technique allows for easy upscaling to large electrode areas. The deposition temperature of 450 °C was necessary for the fabrication of highly photoactive TiO 2 films. The blocking properties of the as-deposited TiO 2 films (at 450 °C) were impaired by post-calcination at 500 °C, but this problem could be addressed by increasing the number of spray cycles. The modification of the precursor by adding acetylacetone resulted in the fabrication of TiO 2 films exhibiting perfect blocking properties that were not influenced by post-calcination. These results will surely find use in the fabrication of large-scale dye-sensitized and perovskite solar cells.
Wilson, Clayton E; Kruyt, Moyo C; de Bruijn, Joost D; van Blitterswijk, Clemens A; Oner, F Cumhur; Verbout, Abraham J; Dhert, Wouter J A
2006-01-01
This study presents a new screening model for evaluating the influence of multiple conditions on the initial process of bone formation in the posterior lumbar spine of a large animal. This model uses cages designed for placement on the decorticated transverse process of the goat lumbar spine. Five conduction channels per cage, each be defined by a different material treatment, are open to both the underlying bone and overlying soft tissue. The model was validated in ten adult Dutch milk goats, with each animal implanted with two cages containing a total of ten calcium phosphate material treatments according to a randomized complete block design. The ten calcium phosphate ceramic materials were created through a combination of material chemistry (BCP, TCP, HA), sintering temperature (low, medium, high), calcination and surface roughness treatments. To monitor the bone formation over time, fluorochrome markers were administered at 3, 5 and 7 weeks and the animals were sacrificed at 9 weeks after implantation. Bone formation in the conduction channels was investigated by histology and histomorphometry of non-decalcified sections using traditional light and epifluorescent microscopy. According to both observed and measured bone formation parameters, materials were ranked in order of increasing magnitude as follows: low sintering temperature BCP (rough and smooth) approximately medium sintering temperature BCP approximately = TCP > calcined low sintering temperature HA > non-calcined low sintering temperature HA > high sintering temperature BCP (rough and smooth) > high sintering temperature HA (calcined and non-calcined). These results agree closely with those obtained in previous studies of osteoconduction and bioactivity of ceramics thereby validating the screening model presented in this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerber, Mark A.; Schmidt, Andrew J.; Delegard, Calvin H.
2000-09-28
This document summarizes an evaluation of the magnesium hydroxide [Mg(OH)2] process to be used at the Hanford Plutonium Finishing Plant (PFP) for stabilizing plutonium/nitric acid solutions to meet the goal of stabilizing the plutonium in an oxide form suitable for storage under DOE-STD-3013-99. During the treatment process, nitric acid solutions bearing plutonium nitrate are neutralized with Mg(OH)2 in an air sparge reactor. The resulting slurry, containing plutonium hydroxide, is filtered and calcined. The process evaluation included a literature review and extensive laboratory- and bench-scale testing. The testing was conducted using cerium as a surrogate for plutonium to identify and quantifymore » the effects of key processing variables on processing time (primarily neutralization and filtration time) and calcined product properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Weishi; Shen, Jianfeng; Wan, Lei
2012-11-15
Graphical abstract: Well-shaped Y{sub 2}O{sub 3}:Yb/Er nanotubes have been successfully synthesized on a large scale via layer-by-layer assembly on carbon nanotubes templates followed by a subsequent heat treatment process. The as-prepared Y{sub 2}O{sub 3}:Yb/Er nanotubes show a strong red emission corresponding to the {sup 4}F{sub 9/2}–{sup 4}I{sub 15/2} transition of the Er{sup 3+} ions under excitation at 980 nm. Display Omitted Highlights: ► Well-shaped Y{sub 2}O{sub 3}:Yb/Er nanotubes have been successfully synthesized. ► CNTs were used as templates for Y{sub 2}O{sub 3}:Yb/Er nanotubes. ► LBL assembly and calcination were used for preparation of Y{sub 2}O{sub 3}:Yb/Er nanotubes. ► The as-preparedmore » Y{sub 2}O{sub 3}:Yb/Er nanotubes show a strong red emission. -- Abstract: Well-shaped Y{sub 2}O{sub 3}:Yb/Er nanotubes have been successfully synthesized on a large scale via layer-by-layer (LBL) assembly on carbon nanotubes (CNTs) templates followed by a subsequent heat treatment process. The crystal structure, element analysis, morphology and upconversion luminescence properties were characterized. XRD results demonstrate that the diffraction peaks of the samples calcinated at 800 °C or above can be indexed to the pure cubic phase of Y{sub 2}O{sub 3}. SEM images indicate that a large quantity of uniform and rough nanotubes with diameters of about 30–60 nm can be observed. The as-prepared Y{sub 2}O{sub 3}:Yb/Er nanotubes show a strong red emission corresponding to the {sup 4}F{sub 9/2}–{sup 4}I{sub 15/2} transition of the Er{sup 3+} ions under excitation at 980 nm, which have potential applications in such fields as nanoscale devices, molecular catalysts, nanobiotechnology, photonics and optoelectronics.« less
PCDD/PCDF reduction by the co-combustion process.
Lee, Vinci K C; Cheung, Wai-Hung; McKay, Gordon
2008-01-01
A novel process, termed the co-combustion process, has been developed and designed to utilise the thermal treatment of municipal solid waste (MSW) in cement clinker production and reduce PCDD/PCDF emissions. To test the conceptual design; detailed engineering design of the process and equipment was performed and a pilot plant was constructed to treat up to 40 tonnes MSW per day. The novel process features included several units external to the main traditional cement rotary kiln: an external calcinations unit in which the hot gas calcined the limestone thus making significant energy savings for this chemical reaction; the lime generated was used in a second chamber to act as a giant acid gas scrubber to remove SOx and particularly HCl (a source of chloride); an external rotary kiln and secondary combustion unit capable of producing a hot gas at 1200 degrees C; a gas cooler to simulate a boiler turbogenerator set for electricity generation; the incorporation of some of the bottom ash, calcined lime and dust collector solids into the cement clinker. A PCDD/PCDF inventory has been completed for the entire process and measured PCDD/PCDF emissions were 0.001 ng I-TEQ/Nm(3) on average which is 1% of the best practical means [Hong Kong Environmental Protection Department, 2001. A guidance note on the best practicable means for incinerators (municipal waste incineration), BPM12/1] MSW incineration emission limit values.
40 CFR 98.86 - Data reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Monthly fraction of total CaO, total MgO, non-calcined CaO and non-calcined MgO in clinker for each kiln (as wt-fractions). (7) Method used to determine non-calcined CaO and non-calcined MgO in clinker. (8) Quarterly fraction of total CaO, total MgO, non-calcined CaO and non-calcined MgO in CKD not recycled to the...
NASA Astrophysics Data System (ADS)
Thein, Myo Thuya; Pung, Swee-Yong; Aziz, Azizan; Lockman, Zainovia; Itoh, Mitsuru
2017-07-01
ZnO based composite is an attractive UV light driven semiconductor photocatalyst to degrade organic compounds attributed to its wide bandgap (3.37 eV). In this study, Ni/ZnO composites were synthesized via solution precipitation method. The composites were calcinated at various temperature, i.e. from 250 °C to 700 °C and subsequently annealed at 500°C in reductive environment (hydrogen atmosphere). The diffraction peaks of all samples could be indexed to the hexagonal wurtzite ZnO. No diffraction peaks from Ni could be observed in all samples, suggesting that the amount of Ni in the composites were below the detection limit of X-ray diffraction (XRD). The field emission scanning electron microscope (FESEM) images confirm that all samples were rod-like structure with hexagonal tips. In addition, small Ni particles were homogeneously deposited on the surface of ZnO rods. This observation is supported by energy dispersive X-ray spectroscopy (EDX) analysis, showing present of Zn, O and Ni elements. It is noted that ZnO rods coupled with Ni experienced quenching of visible emission and enhancing of UV emission in room temperature photoluminescence (RTPL) analysis. The photodegradation efficiency of Ni/ZnO rods was improved when a higher calcination temperature was used. The removal of RhB dye under UV light (352 nm) by these photocatalysts followed pseudo first-order kinetic reaction. The Ni/ZnO composites synthesized at calcination temperature of 500 °C demonstrated the highest photodegradation efficiency of 37 % and the largest rate constant of 0.0053 min-1 after 75 min UV irradiation.
2009-01-01
The isotopic composition of mercury (Hg) was determined in cinnabar ore, mine-waste calcine (retorted ore), and leachates obtained from water leaching experiments of calcine from two large Hg mining districts in the U.S. This study is the first to report significant mass-dependent Hg isotopic fractionation between cinnabar ore and resultant calcine. Data indicate that δ202Hg values relative to NIST 3133 of calcine (up to 1.52‰) in the Terlingua district, Texas, are as much as 3.24‰ heavier than cinnabar (−1.72‰) prior to retorting. In addition, δ202Hg values obtained from leachates of Terlingua district calcines are isotopically similar to, or as much as 1.17‰ heavier than associated calcines, most likely due to leaching of soluble, byproduct Hg compounds formed during ore retorting that are a minor component in the calcines. As a result of the large fractionation found between cinnabar and calcine, and because calcine is the dominant source of Hg contamination from the mines studied, δ202Hg values of calcine may be more environmentally important in these mined areas than the primary cinnabar ore. Measurement of the Hg isotopic composition of calcine is necessary when using Hg isotopes for tracing Hg sources from areas mined for Hg, especially mine water runoff. PMID:19848142
Stetson, S.J.; Gray, J.E.; Wanty, R.B.; Macalady, D.L.
2009-01-01
The isotopic composition of mercury (Hg) was determined in cinnabar ore, mine-waste calcine (retorted ore), and leachates obtained from water leaching experiments of calcine from two large Hg mining districts in the U.S. This study is the first to report significant mass-dependent Hg isotopic fractionation between cinnabar ore and resultant calcine. Data indicate that ??202Hg values relative to NIST 3133 of calcine (up to 1.52???) in the Terlingua district, Texas, are as much as 3.24??? heavier than cinnabar (-1.72???) prior to retorting. In addition, ??202Hg values obtained from leachates of Terlingua district calcines are isotopically similar to, or as much as 1.17??? heavier than associated calcines, most likely due to leaching of soluble, byproduct Hg compounds formed during ore retorting that are a minor component in the calcines. As a result of the large fractionation found between cinnabar and calcine, and because calcine is the dominant source of Hg contamination from the mines studied, ??202Hg values of calcine may be more environmentally important in these mined areas than the primary cinnabar ore. Measurement of the Hg isotopic composition of calcine is necessary when using Hg isotopes for tracing Hg sources from areas mined for Hg, especially mine water runoff. ?? 2009 American Chemical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Khaled R., E-mail: Kh_rezk966@yahoo.com; Mousa, Sahar M.; Inorganic Chemistry Department, National Research Centre, Dokki, P.O. Box 12622, 11787 Cairo
2014-02-01
Graphical abstract: (a) Schema of the process, (b) TEM of nano particles of biphasic materials and (c) SEM of post-immersion. - Highlights: • Ratio of HA and β-TCP phases were controlled by thermal treatment. • HA partially decomposed into β-TCP with other bioactive phases. • Calcined HA at 900 °C is the best for the bioactivity behavior. - Abstract: In this study, a novel process of preparing biphasic calcium phosphate (BCP) is proposed. Also its bioactivity for the utilization of the prepared BCP as a biomaterial is studied. A mixture of calcium hydroxyapatite (HAP) and tricalcium phosphate (β-TCP) could bemore » obtained by thermal treatment of HAP which was previously prepared from phosphogypsum (PG) waste. The chemical and phase composition, morphology and particle size of prepared samples was characterized by X-ray diffraction (XRD), Infrared spectroscopy (IR), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The bioactivity was investigated by soaking of the calcined samples in simulated body fluid (SBF). Results confirmed that the calcination temperatures played an important role in the formation of calcium phosphate (CP) materials. XRD results indicated that HAP was partially decomposed into β-TCP. The in vitro data confirmed that the calcined HAP forming BCP besides other phases such as pyrophosphate and silica are bioactive materials. Therefore, BCP will be used as good biomaterials for medical applications.« less
NASA Astrophysics Data System (ADS)
Shanaghi, A.
2012-02-01
Strontium hexaferrite was widely used in the fabrication of commercial permanent magnets and certain microwave devices. In this study, the strontium hexaferrite nanoparticle coatings were prepared by sol-gel method and using spin coating process on silicon substrate, then the effect of pH value, such as 5, 7 and 9, and calcination temperatures, such as 600°C, 800°C, and 1000°C, on structural and magnetic properties of strontium hexaferrite thin films were investigated by XRD, SEM and VSM measurements. The maximum saturation magnetization value of 57.43 emu/g and coercivity value of 3908 Oe were achieved for the thin film with crystallite size approximately 41 nm, prepared at pH value of 7 and calcinations temperature of 800°C.
Biodiesel production from waste frying oil using waste animal bone and solar heat.
Corro, Grisel; Sánchez, Nallely; Pal, Umapada; Bañuelos, Fortino
2016-01-01
A two-step catalytic process for the production of biodiesel from waste frying oil (WFO) at low cost, utilizing waste animal-bone as catalyst and solar radiation as heat source is reported in this work. In the first step, the free fatty acids (FFA) in WFO were esterified with methanol by a catalytic process using calcined waste animal-bone as catalyst, which remains active even after 10 esterification runs. The trans-esterification step was catalyzed by NaOH through thermal activation process. Produced biodiesel fulfills all the international requirements for its utilization as a fuel. A probable reaction mechanism for the esterification process is proposed considering the presence of hydroxyapatite at the surface of calcined animal bones. Copyright © 2015 Elsevier Ltd. All rights reserved.
Process for vitrification of contaminated sodium oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, H.T.; Mellinger, G.B.
1983-03-01
A glass composition was developed to accommodate 30 wt % sodium oxide and resist devitrification and leaching. An in-can melting process that is compatible with a comtaminated sodium calciner developed by Argonne National Laboratory was tested both on a laboratory and on an engineering scale and found to be viable. The Liquid Metal Fast Breeder Reactor experimental program continues to produce elemental sodium contaminated with radionuclides. This material is presently in temporary storage facilities because the current criterion will not permit alkali metals to be disposed of in shallow land burials. As a first step in treatment, Argonne National Laboratorymore » (ANL) has developed a calciner that will convert the sodium metal to an oxide. In work supported by the U.S. Department of Energy, Pacific Northwest Laboratory (PNL) is developing and demonstrating a process that is compatible with the calciner and facilities at ANL-West for incorporating sodium oxide into a glass. Glass, which normally contains sodium oxide, was chosen as the waste form because it is chemically durable and nondispersible. It is simple to produce, and the technology for incorporating nuclear wastes into glass is well developed.« less
Balancing Sodium Impurities in Alumina for Improved Properties
NASA Astrophysics Data System (ADS)
Wijayaratne, Hasini; Hyland, Margaret; McIntosh, Grant; Perander, Linus; Metson, James
2018-06-01
As there are direct and indirect impacts of feed material purity on the aluminum production process and metal grade, there is a high demand on the so-called pure smelter grade alumina (SGA)—the main feedstock for aluminum production. In this work, impurities within the precursor gibbsite used for SGA production and SGA are studied using NanoSIMS and XPS with a focus on sodium—the most abundant impurity. Although the industry trend is towards minimizing sodium due to the well-known negative impacts on the process, high sodium is also correlated with relatively attrition-resistant calcined products. Here, we show that this relationship is indirect and arises from sodium's role in inhibiting α-alumina formation. Alpha alumina formation in SGA has previously been demonstrated to induce a macro-porous and therefore attrition-prone microstructure. Sodium distribution within the precursor gibbsite and its migration during the calcination process are proposed to be most likely responsible for the spatial distribution of α-alumina within the calcined product grain. This in turn determines the behavior of the product during its transportation and handling (i.e., attrition). Therefore, tolerance of a certain amount of sodium within the precursor material does demonstrate a net benefit while balancing its negative impacts on the process.
NASA Astrophysics Data System (ADS)
Loganathan, A.; Kumar, K.
2016-06-01
In the present work, pure and Sr2+ ions substituted Mg ferrite nanoparticles (NPs) had been prepared by co-precipitation method and their structural, optical, and magnetic properties at different calcination temperatures were studied. On this purpose, thermo gravimetric and differential thermal analysis (TG-DTA), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy, UV-Visible diffused reflectance spectroscopy, impedance spectroscopy, and vibrating sample magnetometer were carried out. The exo- and endothermic processes of synthesized precursors were investigated by TG-DTA measurements. The structural properties of the obtained products were examined by XRD analysis and show that the synthesized NPs are in the cubic spinel structure. The existence of two bands around 578-583 and 430-436 cm-1 in FT-IR spectrum also confirmed the formation of spinel-structured ferrite NPs. The lattice constants and particle size are estimated using XRD data and found to be strongly dependent on calcination temperatures. The optical, electrical, and magnetic properties of ferrite compositions also investigated and found to be strongly dependant on calcination temperatures.
Spherical Lu2O2S:Eu3+ micro/nano-structure: Controlled synthesis and luminescence properties
NASA Astrophysics Data System (ADS)
Zhang, Bowen; Zou, Haifeng; Dai, Yunzhi; Guan, Hongxia; Song, Yanhua; Zheng, Keyan; Zhou, Xiuqing; Shi, Zhan; Sheng, Ye
2017-02-01
Monodisperse and uniform Lu2O2S:Eu3+ luminescent spheres have been successfully synthesized through a facile hydrothermal method followed by a subsequent calcination process. The sizes of the spheres can be tuned in the range of 65 nm-295 nm by only changing the pH value of the system. It is indicated that the luminescence properties of the spherical phosphors were strongly influenced by size of the spheres. Such a size-sensitive luminescence property was interpreted from the structures of the spheres, including the degree of crystallinity, band gap energy, crystal field symmetry around Eu3+. We expected that this study not only can provide important information for size-controlled synthesis of spherical phosphors, but also can give a reference for exploration of size-dependent luminescence.
Thermostable photocatalytically active TiO2 anatase nanoparticles
NASA Astrophysics Data System (ADS)
Qi, Fei; Moiseev, Anna; Deubener, Joachim; Weber, Alfred
2011-03-01
Anatase is the low-temperature (300-550 °C) crystalline polymorph of TiO2 and it transforms to rutile upon heating. For applications utilizing the photocatalytic properties of nanoscale anatase at elevated temperatures (over 600 °C) the issue of phase stabilisation is of major interest. In this study, binary TiO2/SiO2 particles were synthesized by a flame aerosol process with TiCl4 and SiCl4 as precursors. The theoretical Si/Ti ratio was varied in the range of 0.7-1.3 mol/mol. The synthesized TiO2/SiO2 samples were heat treated at 900 and 1,000 °C for 3 h to determine the thermostability of anatase. Pyrogenic TiO2 P25 (from Evonik/Degussa, Germany) widely applied as photocatalyst was used as non-thermostabilized reference material for comparison of photocatalytic activity of powders. Both the non-calcinated and calcinated powders were characterized by means of XRD, TEM and BET. Photocatalytic activity was examined with dichloroacetic acid (DCA) chosen as a model compound. It was found that SiO2 stabilized the material retarding the collapse of catalyst surface area during calcination. The weighted anatase content of 85% remains completely unchanged even after calcination at 1,000 °C. The presence of SiO2 layer/bridge as spacer between TiO2 particles freezes the grain growth: the average crystallite size increased negligibly from 17 to 18 nm even during the calcination at 1,000 °C. Due to the stabilizing effect of SiO2 the titania nanoparticles calcinated at 900 and 1,000 °C show significant photocatalytic activity. Furthermore, the increase in photocatalytic activity with calcination temperature indicates that the titania surface becomes more accessible either due to intensified cracking of the SiO2 layer or due to enhanced transport of SiO2 into the necks thus releasing additional titania surface.
UV-vis-DR study of VO x/SiO 2 catalysts prepared by sol-gel method
NASA Astrophysics Data System (ADS)
Moussa, N.; Ghorbel, A.
2008-12-01
Vanadia-silica catalysts with different vanadium loadings were prepared by sol-gel process. UV-vis diffuse-reflectance spectroscopy was used to elucidate the effect of drying mode (i.e., xerogel vs. aerogel), vanadium loading and calcination on the molecular structure of supported vanadium species. The results indicate that for vanadium loading ranging from 2.8 to 11.2 wt.%, the band-gap energies of all catalysts varying from 2.28 to 2.68 eV which demonstrate that vanadium oxides are predominantly in octahedral structure with the presence of tetrahedral species. The discrimination of different surface VO x species has been based on their characteristic Ligand to Metal Charge Transfer (LMCT) O → V(V) and d-d transition. It was found that the LMCT band position of V dbnd O bond is not affected by calcination either in xerogels or in aerogels but the position and the shape of bands relative to bridging V sbnd O sbnd V bonds are affected by vanadium loading, calcination and drying mode. For the same V/Si ratio, band-gap energy of xerogel is lower than that of aerogel which indicate that vanadium species are more dispersed in aerogels than in xerogels. Drying and calcination led to rearrangement, dehydration, cleavage and crystallization of vanadium species which explain the presence of some amount of crystalline V 2O 5 in calcined samples.
Ko, Horng-Huey; Chen, Hui-Ting; Yen, Feng-Ling; Lu, Wan-Chen; Kuo, Chih-Wei; Wang, Moo-Chin
2012-01-01
The preparation of TiO(2) nanocrystallite powders coated with and without 9 mol% ZnO has been studied for cosmetic applications in sunscreens by a co-precipitation process using TiCl(4) and Zn(NO(3))(2)·6H(2)O as starting materials. XRD results show that the phases of anatase TiO(2) and rutile TiO(2) coexist for precursor powders without added ZnO (T-0Z) and calcined at 523 to 973 K for 2 h. When the T-0Z precursor powders are calcined at 1273 K for 2 h, only the rutile TiO(2) appears. In addition, when the TiO(2) precursor powders contain 9 mol% ZnO (T-9Z) are calcined at 873 to 973 K for 2 h, the crystallized samples are composed of the major phase of rutile TiO(2) and the minor phases of anatase TiO(2) and Zn(2)Ti(3)O(8). The analyses of UV/VIS/NIR spectra reveal that the absorption of the T-9Z precursor powders after being calcined has a red-shift effect in the UV range with increasing calcination temperature. Therefore, the TiO(2) nanocrystallite powders coated with 9 mol% ZnO can be used as the attenuate agent in the UV-A region for cosmetic applications in sunscreens.
Ko, Horng-Huey; Chen, Hui-Ting; Yen, Feng-Ling; Lu, Wan-Chen; Kuo, Chih-Wei; Wang, Moo-Chin
2012-01-01
The preparation of TiO2 nanocrystallite powders coated with and without 9 mol% ZnO has been studied for cosmetic applications in sunscreens by a co-precipitation process using TiCl4 and Zn(NO3)2·6H2O as starting materials. XRD results show that the phases of anatase TiO2 and rutile TiO2 coexist for precursor powders without added ZnO (T-0Z) and calcined at 523 to 973 K for 2 h. When the T-0Z precursor powders are calcined at 1273 K for 2 h, only the rutile TiO2 appears. In addition, when the TiO2 precursor powders contain 9 mol% ZnO (T-9Z) are calcined at 873 to 973 K for 2 h, the crystallized samples are composed of the major phase of rutile TiO2 and the minor phases of anatase TiO2 and Zn2Ti3O8. The analyses of UV/VIS/NIR spectra reveal that the absorption of the T-9Z precursor powders after being calcined has a red-shift effect in the UV range with increasing calcination temperature. Therefore, the TiO2 nanocrystallite powders coated with 9 mol% ZnO can be used as the attenuate agent in the UV-A region for cosmetic applications in sunscreens. PMID:22408415
NASA Astrophysics Data System (ADS)
Hwang, Hojin; Shin, Haeun; Lee, Wan-Jin
2017-04-01
Triple-shelled ZnFe2O4 hollow microspheres (ZFO) as anode materials for lithium ion battery are prepared through a one-pot hydrothermal reaction using the composite solution consisting of sucrose in water and metal ions in ethylene glycol (EG), followed by different calcination processes. The architectures of ZFO micro spheres are differently synthesized through a mutual cooperation of inward and outward ripening with three different calcination temperatures. Thin triple-shelled ZnFe2O4 hollow microspheres calcined at 450 °C (ZFO-450) delivers a high reversible capacity of 932 mA h g-1 at a current density of 2 A g-1 even at the 200th cycle without obvious decay. Furthermore, ZFO-450 delivers 1235, 1005, 865, 834, and 845 mA h g-1 at high current densities of 0.5, 2, 5, 10, and 20 A g-1 after 100 cycles. Thin triple-shelled hollow microsphere prepared at an optimum calcination temperature provides exceptional rate capability and outstanding rate retention due to (i) the formation of nanoparticles leading to thin shell with morphological integrity, (ii) the facile mass transfer by thin shell with mesoporous structure, and (iii) the void space with macroporous structure alleviating volume change occurring during cycling.
Hwang, Hojin; Shin, Haeun; Lee, Wan-Jin
2017-01-01
Triple-shelled ZnFe2O4 hollow microspheres (ZFO) as anode materials for lithium ion battery are prepared through a one-pot hydrothermal reaction using the composite solution consisting of sucrose in water and metal ions in ethylene glycol (EG), followed by different calcination processes. The architectures of ZFO micro spheres are differently synthesized through a mutual cooperation of inward and outward ripening with three different calcination temperatures. Thin triple-shelled ZnFe2O4 hollow microspheres calcined at 450 °C (ZFO-450) delivers a high reversible capacity of 932 mA h g−1 at a current density of 2 A g−1 even at the 200th cycle without obvious decay. Furthermore, ZFO-450 delivers 1235, 1005, 865, 834, and 845 mA h g−1 at high current densities of 0.5, 2, 5, 10, and 20 A g−1 after 100 cycles. Thin triple-shelled hollow microsphere prepared at an optimum calcination temperature provides exceptional rate capability and outstanding rate retention due to (i) the formation of nanoparticles leading to thin shell with morphological integrity, (ii) the facile mass transfer by thin shell with mesoporous structure, and (iii) the void space with macroporous structure alleviating volume change occurring during cycling. PMID:28418001
Process for preparing fine grain silicon carbide powder
Wei, G.C.
Finely divided silicon carbide powder is obtained by mixing colloidal silica and unreacted phenolic resin in either acetone or methanol, evaporating solvent from the obtained solution to form a gel, drying and calcining the gel to polymerize the phenolic resin therein, pyrolyzing the dried and calcined gel at a temperature in the range of 500 to 1000/sup 0/C, and reacting silicon and carbon in the pyrolyzed gel at a temperature in the range of 1550 to 1700/sup 0/C to form the powder.
Processing Studies for Optically Transparent La(2)O(3)-Doped Y(2)O(3).
1986-07-31
sintering. EXPERIMENTAL PROCEDURE ’ "’ The control powder (A) used in this investigation was prepared by a standard oxalate coprecip- itation procedure...Possible sources of CO2 are the decomposition of any oxalate remaining after calcination and/or formation of ’.’ carbonates during exposure to air. The...all the volatiles are removed from oxalate -derived powders during calcining or prefiring to 15000C. C02 is the major species present and probably
Vasylkiv, Oleg; Borodianska, Hanna; Badica, Petre; Zhen, Yongda; Tok, Alfred
2009-01-01
Four-cation nanograined strontium and magnesium doped lanthanum gallate (La0.8Sr0.2) (Ga0.9Mg0.1)O(3-delta) (LSGM) and its composite with 2 wt% of ceria (LSGM-Ce) were prepared. Morphologically homogeneous nanoreactors, i.e., complex intermediate metastable aggregates of desired composition were assembled by spray atomization technique, and subsequently loaded with nanoparticles of highly energetic C3H6N6O6. Rapid nanoblast calcination technique was applied and the final composition was synthesized within the preliminary localized volumes of each single nanoreactor on the first step of spark plasma treatment. Subsequent SPS consolidations of nanostructured extremely active LSGM and LSGM-Ce powders were achieved by rapid treatment under pressures of 90-110 MPa. This technique provided the heredity of the final structure of nanosize multimetal oxide, allowed the prevention of the uncontrolled agglomeration during multicomponent aggregates assembling, subsequent nanoblast calcination, and final ultra-rapid low-temperature SPS consolidation of nanostructured ceramics. LaSrGaMgCeO(3-delta) nanocrystalline powder consisting of approximately 11 nm crystallites was consolidated to LSGM-Ce nanoceramic with average grain size of approximately 14 nm by low-temperature SPS at 1250 degrees C. Our preliminary results indicate that nanostructured samples of (La0.8Sr0.2)(Ga0.9Mg0.1)O(3-delta) with 2 wt% of ceria composed of approximataley 14 nm grains can exhibit giant magnetoresistive effect in contrast to the usual paramagnetic properties measured on the samples with larger grain size.
He, Zhiyang; Liu, Qiao; Hou, Huilin; Gao, Fengmei; Tang, Bin; Yang, Weiyou
2015-05-27
In this work, polycrystalline WO3 nanobelts were fabricated via an electrospinning process combined with subsequent air calcination. The resultant products were characterized by X-ray diffraction, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy in regard to the structures. It has been found that the applied voltage during the electrospinning process played the determined role in the formation of the WO3 nanobelts, allowing the controlled growth of the nanobelts. The ultraviolet (UV) photodetector assembled by an individual WO3 nanobelt exhibits a high sensitivity and a precise selectivity to the different wavelength lights, with a very low dark current and typical photo-dark current ratio up to 1000, which was the highest for any WO3 photodectectors ever reported. This work could not only push forward the facile preparation of WO3 nanobelts but also represent, for the first time, the possibility that the polycrystalline WO3 nanobelts could be a promising building block for the highly efficient UV photodetectors.
Recycling of Ammonia Wastewater During Vanadium Extraction from Shale
NASA Astrophysics Data System (ADS)
Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing
2018-03-01
In the vanadium metallurgical industry, massive amounts of ammonia hydroxide or ammonia salt are added during the precipitation process to obtain V2O5; therefore, wastewater containing a high level of NH4 + is generated, which poses a serious threat to environmental and hydrologic safety. In this article, a novel process was developed to recycle ammonia wastewater based on a combination of ammonia wastewater leaching and crystallization during vanadium extraction from shale. The effects of the NH4 + concentration, temperature, time and liquid-to-solid ratio on the leaching efficiencies of vanadium, aluminum and potassium were investigated, and the results showed that 93.2% of vanadium, 86.3% of aluminum and 96.8% of potassium can be leached from sulfation-roasted shale. Subsequently, 80.6% of NH4 + was separated from the leaching solution via cooling crystallization. Vanadium was recovered via a combined method of solvent extraction, precipitation and calcination. Therefore, ammonia wastewater was successfully recycled during vanadium extraction from shale.
Khalil, Kamal M S; Elsamahy, Ahmed A; Elanany, Mohamed S
2002-05-15
A direct synthetic route leading to titania particles dispersed on nonporous spherical silica particles has been investigated; 5, 10, and 20% (w/w) titania/silica sols mixtures were achieved via hydrolyzation of titanium tetra-isopropxide solution in the mother liquor of a freshly prepared sol of spherical silica particles (Stöber particles). Titania/silica materials were produced by subsequent drying and calcination of the xerogels so obtained for 3 h at 400 and 600 degrees C. The materials were investigated by means of thermal analyses (TGA and DSC), FT-IR, N(2) gas adsorption-desorption, powder X-ray diffraction (XRD), and transmission electron microscopy (TEM). In spite of the low surface area (13.1 m(2)/g) of the pure spherical silica particles calcined at 400 degrees C, high surface area and mesoporous texture titania/silica materials were obtained (e.g., S(BET) ca. 293 m(2)/g for the 10% titania/silica calcined at 400 degrees C). Moreover, the materials were shown to be amorphous toward XRD up to 600 degrees C, while reasonable surface areas were preserved. It has been concluded that dispersion of titania particles onto the surface of the nonporous spherical silica particles increase their roughness, therefore leading to composite materials of less firm packing and mesoporosity.
Method for calcining radioactive wastes
Bjorklund, William J.; McElroy, Jack L.; Mendel, John E.
1979-01-01
This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.
The Influence of Alumina Properties on its Dissolution in Smelting Electrolyte
NASA Astrophysics Data System (ADS)
Bagshaw, A. N.; Welch, B. J.
The dissolution of a wide range of commercially produced aluminas in modified cryolite bath was studied on a laboratory scale. Most of the aluminas were products of conventional refineries and smelter dry scrubbing systems; a few were produced in laboratory and pilot calciners, enabling greater flexibility in the calcination process and the final properties. The mode of alumina feeding and the size of addition approximated to the point feeder situation. Alpha-alumina content, B.E.T. surface area and median particle size had little impact on dissolution behaviour. The volatiles content, expressed as L.O.I., the morphology of the original hydrate and the mode of calcination had the most influence. Discrete intermediate oxide phases were identified in all samples; delta-alumina content impacted most on dissolution. The flow properties of an alumina affected its overall dissolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng Jun; Liu Jing; Lv Dongping
The porous hierarchical spherical Co{sub 3}O{sub 4} assembled by nanosheets have been successfully fabricated. The porosity and the particle size of the product can be controlled by simply altering calcination temperature. SEM, TEM and SAED were performed to confirm that mesoporous Co{sub 3}O{sub 4} nanostructures are built-up by numerous nanoparticles with random attachment. The BET specific surface area and pore size of the product calcined at 280 deg. C are 72.5 m{sup 2} g{sup -1} and 4.6 nm, respectively. Our experiments further demonstrated that electrochemical performances of the synthesized products working as an anode material of lithium-ion battery are stronglymore » dependent on the porosity. - Graphical abstract: The flower-like Co{sub 3}O{sub 4} porous spheres with hierarchical structure have been successfully prepared via a simple calcination process using cobalt hydroxide as precursor.« less
Baig, Shams Ali; Sheng, TianTian; Sun, Chen; Xue, XiaoQin; Tan, LiSha; Xu, XinHua
2014-01-01
The presence of elevated concentration of arsenic in water sources is considered to be health hazard globally. Calcination process is known to change the surface efficacy of the adsorbent. In current study, five adsorbent composites: uncalcined and calcined Fe3O4-HBC prepared at different temperatures (400°C and 1000°C) and environment (air and nitrogen) were investigated for the adsorptive removal of As(V) and As(III) from aqueous solutions determining the influence of solution's pH, contact time, temperature, arsenic concentration and phosphate anions. Characterizations from FTIR, XRD, HT-XRD, BET and SEM analyses revealed that the Fe3O4-HBC composite at higher calcination temperature under nitrogen formed a new product (fayalite, Fe2SiO4) via phase transformation. In aqueous medium, ligand exchange between arsenic and the effective sorbent site ( = FeOOH) was established from the release of hydroxyl group. Langmuir model suggested data of the five adsorbent composites follow the order: Fe3O4-HBC-1000°C(N2)>Fe3O4-HBC (uncalcined)>Fe3O4-HBC-400°C(N2)>Fe3O4-HBC-400°C(air)>Fe3O4-HBC-1000°C(air) and the maximum As(V) and As(III) adsorption capacities were found to be about 3.35 mg g(-1) and 3.07 mg g(-1), respectively. The adsorption of As(V) and As(III) remained stable in a wider pH range (4-10) using Fe3O4-HBC-1000°C(N2). Additionally, adsorption data fitted well in pseudo-second-order (R2>0.99) rather than pseudo-first-order kinetics model. The adsorption of As(V) and As(III) onto adsorbent composites increase with increase in temperatures indicating that it is an endothermic process. Phosphate concentration (0.0l mM or higher) strongly inhibited As(V) and As(III) removal through the mechanism of competitive adsorption. This study suggests that the selective calcination process could be useful to improve the adsorbent efficiency for enhanced arsenic removal from contaminated water.
Baig, Shams Ali; Sheng, TianTian; Sun, Chen; Xue, XiaoQin; Tan, LiSha; Xu, XinHua
2014-01-01
The presence of elevated concentration of arsenic in water sources is considered to be health hazard globally. Calcination process is known to change the surface efficacy of the adsorbent. In current study, five adsorbent composites: uncalcined and calcined Fe3O4-HBC prepared at different temperatures (400°C and 1000°C) and environment (air and nitrogen) were investigated for the adsorptive removal of As(V) and As(III) from aqueous solutions determining the influence of solution's pH, contact time, temperature, arsenic concentration and phosphate anions. Characterizations from FTIR, XRD, HT-XRD, BET and SEM analyses revealed that the Fe3O4-HBC composite at higher calcination temperature under nitrogen formed a new product (fayalite, Fe2SiO4) via phase transformation. In aqueous medium, ligand exchange between arsenic and the effective sorbent site ( = FeOOH) was established from the release of hydroxyl group. Langmuir model suggested data of the five adsorbent composites follow the order: Fe3O4-HBC-1000°C(N2)>Fe3O4-HBC (uncalcined)>Fe3O4-HBC-400°C(N2)>Fe3O4-HBC-400°C(air)>Fe3O4-HBC-1000°C(air) and the maximum As(V) and As(III) adsorption capacities were found to be about 3.35 mg g−1 and 3.07 mg g−1, respectively. The adsorption of As(V) and As(III) remained stable in a wider pH range (4–10) using Fe3O4-HBC-1000°C(N2). Additionally, adsorption data fitted well in pseudo-second-order (R 2>0.99) rather than pseudo-first-order kinetics model. The adsorption of As(V) and As(III) onto adsorbent composites increase with increase in temperatures indicating that it is an endothermic process. Phosphate concentration (0.0l mM or higher) strongly inhibited As(V) and As(III) removal through the mechanism of competitive adsorption. This study suggests that the selective calcination process could be useful to improve the adsorbent efficiency for enhanced arsenic removal from contaminated water. PMID:24967645
Role of manganese dioxide in the recovery of oxide-sulphide zinc ore.
Yang, Kun; Zhang, Libo; Zhu, Xingcai; Peng, Jinhui; Li, Shiwei; Ma, Aiyuan; Li, Haoyu; Zhu, Fei
2018-02-05
In this article, the role of MnO 2 in the recovery of oxide-sulphide zinc ore discussed. Through adopting various modern analysis techniques (such as X-ray diffraction pattern, X-ray photoelectron spectroscopy, scanning electron microscope, energy dispersive X-ray analysis, and fourier transform infrared spectroscopy), the function and mechanism of MnO 2 during the phase transformation process is found out. Thermodynamic mechanisms involved in the phase transformation process with or without addition of manganese dioxide investigated by exploiting the Equilib module of FactSage. What's more, XRD patterns, XPS spectra and SEM-EDAX analyses of zinc calcines verify well the calculations of FactSage. Results reveal that the addition of MnO 2 will produce an aggregation of ZnMn 2 O 4 , a valuable energy material, while roasting on its own, results in generating undesirable Zn 2 SiO 4 , the oxidation degree being relatively low. Moreover, XRD pattern of zinc calcine and FT-IR spectrum of yellow product collected in the calcination process prove that the sulphur-fixing value of the additive MnO 2 , which can promote transforming to the elemental sulphur. The volatile S can be collected through a simple guiding device. In this process, the emission of SO 2 effectively avoids, thus MnO 2 deems as a potential additive in the recovery of oxide-sulphide zinc ore. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Geng, Qin; Tong, Xin; Wenya, Gideon Evans; Yang, Chao; Wang, Jide; Maloletnev, A. S.; Wang, Zhiming M.; Su, Xintai
2018-04-01
A facile, cost-effective, non-toxic, and surfactant-free route has been developed to synthesize MoS2/carbon (MoS2/C) nanocomposites. Potassium humate consists of a wide variety of oxygen-containing functional groups, which is considered as promising candidates for functionalization of graphene. Using potassium humate as carbon source, two-dimensional MoS2/C nanosheets with irregular shape were synthesized via a stabilized co-precipitation/calcination process. Electrochemical performance of the samples as an anode of lithium ion battery was measured, demonstrating that the MoS2/C nanocomposite calcinated at 700 °C (MoS2/C-700) electrode showed outstanding performance with a high discharge capacity of 554.9 mAh g- 1 at a current density of 100 mA g- 1 and the Coulomb efficiency of the sample maintained a high level of approximately 100% after the first 3 cycles. Simultaneously, the MoS2/C-700 electrode exhibited good cycling stability and rate performance. The success in synthesizing MoS2/C nanocomposites via co-precipitation/calcination route may pave a new way to realize promising anode materials for high-performance lithium ion batteries.
Hasan, Zubair; Cho, Dong-Wan; Nam, In-Hyun; Chon, Chul-Min; Song, Hocheol
2016-01-01
Zirconia-carbon (ZC) composites were prepared via calcination of Zr-based metal organic frameworks, UiO-66 and amino-functionalized UiO-66, under N2 atmosphere. The prepared composites were characterized using a series of instrumental analyses. The surface area of the ZC composites increased with the increase of calcination temperature, with the formation of a graphite oxide phase observed at 900 °C. The composites were used for adsorptive removal of a dye (crystal violet, CV) and a pharmaceutical and personal care product (salicylic acid, SA). The increase of the calcination temperature resulted in enhanced adsorption capability of the composites toward CV. The composite calcined at 900 °C exhibited a maximum uptake of 243 mg·g−1, which was much greater than that by a commercial activated carbon. The composite was also effective in SA adsorption (102 mg·g−1), and N-functionalization of the composite further enhanced its adsorption capability (109 mg·g−1). CV adsorption was weakly influenced by solution pH, but was more dependent on the surface area and pore volume of the ZC composite. Meanwhile, SA adsorption showed strong pH dependence, which implies an active role of electrostatic interactions in the adsorption process. Base-base repulsion and hydrogen bonding are also suggested to influence the adsorption of CV and SA, especially for the N-functionalized composite. PMID:28773387
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kordouli, Eleana; Dracopoulos, Vassileios; Vaimakis, Tiverios
2015-12-15
The effect of calcination temperature and time on structural and textural changes of two commercial TiO{sub 2} samples (pure anatase and a mixture of anatase and rutile) has been investigated using N{sub 2} physisorption, ex-situ and in-situ X-ray powder diffraction, differential scanning calorimetry and UV–vis diffuse reflectance spectroscopy. The increase of the calcination temperature (up to 700 °C) and time (up to 8 h) causes only textural changes in the pure anatase, whereas a transformation of the anatase to rutile takes place, in addition, in the mixed titania (containing anatase and rutile). The textural changes observed in pure anatase samplemore » were attributed to solid state diffusion leading to an increase in the size of anatase nanocrystals, through sintering. Thus, the mean pore diameter shifts to higher values and the pore volume and specific surface area decrease. The successful application of the Johnson–Mehl–Avrami–Kolmogorov model in the kinetic data concerning the pure anatase indicates a mass transfer control of sintering process. Similar textural changes were also observed upon calcination of the sample containing anatase and rutile. In this case not only sintering but the anatase to rutile transformation contributes also to the textural changes. Kinetic analysis showed that the rutile nanocrystals in the mixed titania served as seed for by-passing the high energy barrier nucleation step allowing/facilitating thus the anatase to rutile transformation. A fine control of the anatase to rutile ratio and thus of energy-gap and the population of hetero-junctions may be obtained by adjusting the calcination temperature and time. - Graphical Abstract: Dependence of anatase content of P25 on the calcination temperature (600 °C (■), 650 °C (●), 700 °C (▲)) and time. - Highlights: • Increase of calcination temperature up to 800 °C and time up to 8 h causes only textural changes in pure anatase • Progressive transformation of anatase to rutile with time takes place in the mixed titania above 600 °C • A high activation energy barrier inhibits the solid state transformation in pure anatase • Rutile nanocrystals in mixed titania serve as seeding for favouring transformation • Calcination temperature and time allow a fine control of E{sub g} and heterojunctions population in mixed titania.« less
2010-01-01
In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almadén, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 μg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 μg of Hg leached/g), serum-based fluid (as much as 1600 μg of Hg leached/g), and water of pH 5 (as much as 880 μg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway. PMID:20491469
Gray, John E; Plumlee, Geoffrey S; Morman, Suzette A; Higueras, Pablo L; Crock, James G; Lowers, Heather A; Witten, Mark L
2010-06-15
In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almaden, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 microg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 microg of Hg leached/g), serum-based fluid (as much as 1600 microg of Hg leached/g), and water of pH 5 (as much as 880 microg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway.
Gray, John E.; Plumlee, Geoffrey S.; Morman, Suzette A.; Higueras, Pablo L.; Crock, James G.; Lowers, Heather A.; Witten, Mark L.
2010-01-01
In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almadén, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 μg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 μg of Hg leached/g), serum-based fluid (as much as 1600 μg of Hg leached/g), and water of pH 5 (as much as 880 μg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway.
PROCESS FOR RECOVERY OF CONSTITUENTS OF ORES
McCullough, R.F.
1959-05-01
A process for U recovery from leached zone material is described. Calcination with alkali metal carbonate at 600 to 2000 deg F followed by digestion with H/sub 2/SO/sub 4/ and filtration forms the basis of the process. (T.R.H.)
Prasad, Krishnamurthy; Pinjari, D V; Pandit, A B; Mhaske, S T
2011-09-01
Nanostructured zirconium dioxide was synthesized from zirconyl nitrate using both conventional and ultrasound assisted precipitation in alkaline medium. The synthesized samples were calcinated at temperatures ranging from 400°C to 900°C in steps of 100°C. The ZrO(2) specimens were characterized using X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The thermal characteristics of the samples were studied via Differential Scanning Calorimetry-Thermo-Gravimetry Analysis (DSC-TGA). The influence of the calcination temperature on the phase transformation process from monoclinic to tetragonal to cubic zirconia and its consequent effect on the crystallite size and % crystallinity of the synthesized ZrO(2) was studied and interpreted. It was observed that the ultrasound assisted technique helped to hasten to the phase transformation and also at some point resulted in phase stabilization of the synthesized zirconia. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tiandho, Y.; Aldila, H.; Mustari; Megiyo; Afriani, F.
2018-05-01
Bangka Belitung Islands is the largest tin producer in Indonesia. The high activity of tin mining caused the environmental damage which had an impact on the emergence of clean water crisis in some areas in this province. In this paper, a simple water quality improvement method based on wasted cockle shell was developed. Based on x-ray diffraction analysis it is known that calcination of cockle shell powder at 700°C will decompose the powder into calcium oxide compound. The addition of calcined cockle shell powder into acidic water from Merawang Sub-district will increase the pH of water through the process of forming hydroxide groups in the water. The calcined cockle shell powder can also coagulate pollutants in some polluted water from Koba Sub-district. The coagulation results were analyzed using SEM/EDS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Nicholas Cole
2013-01-01
The world is currently facing an energy and environmental crisis for which new technologies are needed. Development of cost-competitive materials for catalysis and hydrogen storage on-board motor vehicles is crucial to lead subsequent generations into a more sustainable and energy independent future. This thesis presents work toward the scalable synthesis of bimetallic heterostructures that can enable hydrogen to compete with carbonaceous fuels by meeting the necessary gravimetric and volumetric energy densities and by enhancing hydrogen sorption/desorption kinetics near ambient temperatures and pressures. Utilizing the well-known phenomenon of hydrogen spillover, these bimetallic heterostructures could work by lowering the activation energy for hydrogenation and dehydrogenation of metals. Herein, we report a novel method for the scalable synthesis of silica templated zero-valent nickel particles (Nimore » $$\\subset$$ SiO 2) that hold promise for the synthesis of nickel nanorods for use in bimetallic heterostructures for hydrogen storage. Our synthesis proceeds by chemical reduction of a nickel-hydrazine complex with sodium borohydride followed by calcination under hydrogen gas to yield silica encapsulated nickel particles. Transmission electron microscopy and powder X-ray diffraction were used to characterize the general morphology of the resultant nanocapsules as well as the crystalline phases of the incorporated Ni 0 nanocrystals. The structures display strong magnetic behavior at room temperature and preliminary data suggests nickel particle size can be controlled by varying the amount of nickel precursor used in the synthesis. Calcination under different environments and TEM analysis provides evidence for an atomic migration mechanism of particle formation. Ni$$\\subset$$SiO 2 nanocapsules were used as seeds to induce heterogeneous nucleation and subsequent growth within the nanocapsule via electroless nickel plating. Nickel nanoparticle growth occurs under high temperature alkaline conditions, however silica nanocapsule integrity is not maintained due to the incompatibility of silica with the growth conditions. Silica nanocapsule integrity is maintained under low temperature neutral conditions, but nickel particle growth is not observed. Through FTIR and UV/Vis analysis, we show the degree of crosslinking and condensation increases in calcined silica compared to as-synthesized silica. We propose the increased density of the silica nanocapsule hinders mass transfer of the bulky nickel precursor complex from solution and onto the surface of the “catalytic” zero-valent nickel seed within the nanocapsule cavity. Decreasing the density of the silica nanocapsule can be achieved through co-condensation of tetraethylorthosilicate with an alkyl functionalized silane followed by calcination to remove the organic component or by chemical etching in alkaline solution, but will not be addressed in this thesis.« less
Wu, Chun; Cai, Junjie; Zhang, Qiaobao; Zhou, Xiang; Zhu, Ying; Shen, Pei Kang; Zhang, Kaili
2015-12-09
Nickel foam supported hierarchical mesoporous Zn-Ni-Co ternary oxide (ZNCO) nanowire arrays are synthesized by a simple two-step approach including a hydrothermal method and subsequent calcination process and directly utilized for supercapacitive investigation for the first time. The nickel foam supported hierarchical mesoporous ZNCO nanowire arrays possess an ultrahigh specific capacitance value of 2481.8 F g(-1) at 1 A g(-1) and excellent rate capability of about 91.9% capacitance retention at 5 A g(-1). More importantly, an asymmetric supercapacitor with a high energy density (35.6 Wh kg(-1)) and remarkable cycle stability performance (94% capacitance retention over 3000 cycles) is assembled successfully by employing the ZNCO electrode as positive electrode and activated carbon as negative electrode. The remarkable electrochemical behaviors demonstrate that the nickel foam supported hierarchical mesoporous ZNCO nanowire array electrodes are highly desirable for application as advanced supercapacitor electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senthoorselvan, S.; Gleis, S.; Hartmut, S.
2009-01-15
Naturally occurring limestone and dolomite samples, originating from different geographical locations, were tested as potential sorbents for carbonation/calcination based CO{sub 2} capture from combustion flue gases. Samples have been studied in a thermogravimetric analyzer under simulated flue gas conditions at three calcination temperatures, viz., 750{sup o}C, 875{sup o}C, and 930{sup o}C for four carbonation calcination reaction (CCR) cycles. The dolomite sample exhibited the highest rate of carbonation than the tested limestones. At the third cycle, its CO{sub 2} capture capacity per kilogram of the sample was nearly equal to that of Gotland, the highest reacting limestone tested. At the fourthmore » cycle it surpassed Gotland, despite the fact that the CaCO{sub 3} content of the Sibbo dolomite was only 2/3 of that of the Gotland. Decay coefficients were calculated by a curve fitting exercise and its value is lowest for the Sibbo dolomite. That means, most probably its capture capacity per kilogram of the sample would remain higher well beyond the fourth cycle. There was a strong correlation between the calcination temperature, the specific surface area of the calcined samples, and the degree of carbonation. It was observed that the higher the calcination temperature, the lower the sorbent reactivity. For a given limestone/dolomite sample, sorbents CO{sub 2} capture capacity depended on the number of CCR cycles and the calcination temperature. According to the equilibrium thermodynamics, the CO{sub 2} partial pressure in the calciner should be lowered to lower the calcination temperature. This can be achieved by additional steam supply into the calciner. Steam could then be condensed in an external condenser to single out the CO{sub 2} stream from the exit gas mixture of the calciner. A calciner design based on this concept is illustrated.« less
Carbothermic Synthesis of ~820- m UN Kernels. Investigation of Process Variables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindemer, Terrence; Silva, Chinthaka M; Henry, Jr, John James
2015-06-01
This report details the continued investigation of process variables involved in converting sol-gel-derived, urainia-carbon microspheres to ~820-μm-dia. UN fuel kernels in flow-through, vertical refractory-metal crucibles at temperatures up to 2123 K. Experiments included calcining of air-dried UO 3-H 2O-C microspheres in Ar and H 2-containing gases, conversion of the resulting UO 2-C kernels to dense UO 2:2UC in the same gases and vacuum, and its conversion in N 2 to in UC 1-xN x. The thermodynamics of the relevant reactions were applied extensively to interpret and control the process variables. Producing the precursor UO 2:2UC kernel of ~96% theoretical densitymore » was required, but its subsequent conversion to UC 1-xN x at 2123 K was not accompanied by sintering and resulted in ~83-86% of theoretical density. Decreasing the UC 1-xN x kernel carbide component via HCN evolution was shown to be quantitatively consistent with present and past experiments and the only useful application of H2 in the entire process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-09-01
The U.S. Department of Energy (DOE) is considering the selection of a strategy for the long-term management of the defense high-level wastes at the Idaho Chemical Processing Plant (ICPP). This report describes the environmental impacts of alternative strategies. These alternative strategies include leaving the calcine in its present form at the Idaho National Engineering Laboratory (INEL), or retrieving and modifying the calcine to a more durable waste form and disposing of it either at the INEL or in an offsite repository. This report addresses only the alternatives for a program to manage the high-level waste generated at the ICPP. 24more » figures, 60 tables.« less
Balachandran, Uthamalingam; Poeppel, Roger B.; Emerson, James E.; Johnson, Stanley A.
1992-01-01
An improved method for the preparation of single phase, fine grained ceramic materials from precursor powder mixtures where at least one of the components of the mixture is an alkali earth carbonate. The process consists of heating the precursor powders in a partial vacuum under flowing oxygen and under conditions where the partial pressure of CO.sub.2 evolved during the calcination is kept to a very low level relative to the oxygen. The process has been found particularly suitable for the preparation of high temperature copper oxide superconducting materials such as YBa.sub.2 Cu.sub.3 O.sub.x "123" and YBa.sub.2 Cu.sub.4 O.sub.8 "124".
Shao, Godlisten N; Jeon, Sun-Jeong; Haider, M Salman; Abbass, Nadir; Kim, Hee Taik
2016-07-15
Photoactive V, Fe and Ni doped TiO2 (M-TiO2) nanopowders were synthesized by a modified two-step sol-gel process in the absence of additives. Titanium oxychloride, which is a rarely-used TiO2 precursor was used to yield M-TiO2 photocatalysts with preferential photochemical performance in the presence of natural solar irradiation. The obtained samples were calcined at different calcination temperatures ranging from 450 to 800°C to evaluate the influence of the sintering on the physicochemical properties. The properties of the obtained samples were examined by XRF, XRD, Raman spectroscopy, UV-visible DRS, XPS, nitrogen gas physisorption studies, SEM-EDAX and HRTEM analyses. Structural characterization of the samples revealed the incorporation of these transition metal element into TiO2. It was also depicted that the morphology, crystal structure, optical and photochemical properties of the obtained samples were largely dependent on the calcination temperature and the type of dopant used during the preparation process. The photochemical performance of the samples was investigated in the photodegradation of methylene blue in the presence of natural sunlight. The experimental results indicated that the VT600 sample possessed the highest activity due to its superior properties. This study provides a systematic preparation and selection of the precursor, dopant and calcination temperature that are suitable for the formation of TiO2-based heterogeneous photocatalysts with appealing morphology, crystal structure, optical and photochemical properties for myriad of applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Extraction of caustic potash from spent tea for biodiesel Production
NASA Astrophysics Data System (ADS)
Sulaiman, Sarina; Faiz Che Fisol, Ahmad; Sharikh, Atikah Mohamed; Noraini Jimat, Dzun; Jamal, Parveen
2018-01-01
Biodiesel is an alternative to non-renewable fossil fuels due to its low gas emission and economical value. This study aims to extract caustic potash (KOH) from spent tea and to optimize the transesterfication process based on parameters such as amount of catalyst, reaction temperature and methanol to oil ratio. The spent tea was first dried at 60°C prior to calcination at 600°C for two hours. Caustic Potash were extracted from the calcined spent tea. The transesterification process was done based on Design of Experiments (DOE) to study the effects of amount of catalyst ranging from 0.5 wt % to 2.5 wt %, reaction temperature from 55°C to 65°C and methanol to oil ratio from 6:1 to 12:1 at a constant agitation rate of 300 rpm for three hours. The calcined spent tea produced was recorded the highest at 54.3 wt % and the extracted catalyst was 2.4 wt %. The optimized biodiesel yield recorded was 56.95% at the optimal conditions of 2.5 wt % amount of catalyst, 65°C reaction temperature and 9:1 methanol to oil ratio.
NASA Astrophysics Data System (ADS)
Sulaiman, Fatah; Sari, Denni Kartika; Kustiningsih, Indar
2017-05-01
Effect of ozone on the photocatalytic degradation of phenol using TiO2 photocatalyst which supported Bayah Natural Zeolite has been investigated. Phenol (merk Pro analys) was used as waste solution. TiO2 photocatalyst was obtained from Titanium isopropoxide using sol gel method which supported by Bayah Natural Zeolite. The influence of temperature of calcination and catalyst loading have been conducted. The calcination temperature of photocatalyst was 450°C, 500°C, 550°C dan 600°C while the catalyst loading of 0,1g/L; 0,3 g/L; 0,6 g/L; 1 g/L dan 1,2 g/L. Analysis of phenol concentration was used Hach Spechtrophotometer. To determine the effect of ozone on photocatalytic degradation during process ozone was flowed into reactor. The result showed the optimum calcination temperature was obtained at 500°C. The optimum catalyst loading to degrade the phenolic compounds was equal to 1g/L. In these optimum condition the conversion of phenol degradation was 87% after 5 hours. By adding ozone during the degradation process, the conversion reached 100% after 2 hours.
Rietveld analysis of the cubic crystal structure of Na-stabilized zirconia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fagherazzi, G.; Canton, P.; Benedetti, A.
Using x-ray Rietveld analysis the fcc (fluorite-type) structure of a Na-containing nanocrystalline zirconia powder (9.5 nm estimated of crystallite size) obtained by precipitation and subsequent calcination has been confirmed. The result shows that using conventional x-ray diffraction techniques the cubic crystallographic form of ZrO{sub 2} from the tetragonal one in nanosized powders. These conclusions are supported by the findings of independent Raman scattering experiments. {copyright} {ital 1997 Materials Research Society.}
Lithium-Air Battery: Study of Rechargeability and Scalability
2012-07-01
nanowires: MnO2 nanowires were prepared by hydrothermal method. In a typical procedure, an aqueous solution of KMnO4 (0.5 g KMnO4 in 60 ml DD water) was...reduction and oxygen evolution in Li-O2 cell. It was prepared by precipitation method, in which cerium source precipitated as cerium oxalate and...subsequent calcinations yield CeO2 nanoparticles. In a typical procedure, 0.15 M cerous nitrate solution was added drop wise to 1.5 M ammonium oxalate
Krýsová, Hana; Kavan, Ladislav
2018-01-01
For proper function of the negative electrode of dye-sensitized and perovskite solar cells, the deposition of a nonporous blocking film is required on the surface of F-doped SnO2 (FTO) glass substrates. Such a blocking film can minimise undesirable parasitic processes, for example, the back reaction of photoinjected electrons with the oxidized form of the redox mediator or with the hole-transporting medium can be avoided. In the present work, thin, transparent, blocking TiO2 films are prepared by semi-automatic spray pyrolysis of precursors consisting of titanium diisopropoxide bis(acetylacetonate) as the main component. The variation in the layer thickness of the sprayed films is achieved by varying the number of spray cycles. The parameters investigated in this work were deposition temperature (150, 300 and 450 °C), number of spray cycles (20–200), precursor composition (with/without deliberately added acetylacetone), concentration (0.05 and 0.2 M) and subsequent post-calcination at 500 °C. The photo-electrochemical properties were evaluated in aqueous electrolyte solution under UV irradiation. The blocking properties were tested by cyclic voltammetry with a model redox probe with a simple one-electron-transfer reaction. Semi-automatic spraying resulted in the formation of transparent, homogeneous, TiO2 films, and the technique allows for easy upscaling to large electrode areas. The deposition temperature of 450 °C was necessary for the fabrication of highly photoactive TiO2 films. The blocking properties of the as-deposited TiO2 films (at 450 °C) were impaired by post-calcination at 500 °C, but this problem could be addressed by increasing the number of spray cycles. The modification of the precursor by adding acetylacetone resulted in the fabrication of TiO2 films exhibiting perfect blocking properties that were not influenced by post-calcination. These results will surely find use in the fabrication of large-scale dye-sensitized and perovskite solar cells. PMID:29719764
Yang, Liusai; Li, Liping; Zhao, Minglei; Fu, Chaochao; Li, Guangshe
2013-08-02
Metal oxide nanomaterials have been found to have great potential for diverse applications due to their unique relationships between structure and properties. Lattice expansion as particle size reduces was previously considered to be general for metal oxide nanomaterials. It is now a great challenge to see if lattice contraction could be induced by the size effect for metal oxide nanomaterials. ABO4 metal oxides (e.g., CaWO4, GdVO4, and CdWO4) are some of the most important functional materials with many applications, while such oxides at the nanoscale are never reported to show a lattice contraction. This work presents a first report on the variation from lattice expansion to lattice contraction by tuning the microstructures of GdVO4:Eu(3+) nanocrystals. A hydrothermal method was adopted to synthesize GdVO4:Eu(3+) nanocrystals, and then these nanoparticles were calcined at 600 ° C in air. It is found that particle size reduction led to a lattice contraction for the calcined samples, which is in contrast to the lattice expansion observed for the hydrothermally synthesized counterparts or many other metal oxide nanomaterials. In addition, the lattice symmetry of the calcined samples remained almost a constant. The results indicate that the negative surface stress was eliminated by calcination treatment, leading to a homogeneous compression process in the lattice structure of the calcined GdVO4:Eu(3+) nanocrystals. Furthermore, Eu(3+) was taken as a structural probe and a luminescence center to study the local environments pertinent to these structural changes and to optimize the photoluminescence performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpraditpan, Athapon; Wirunmongkol, Thanakorn; Pavasupree, Sorapong, E-mail: sorapongp@yahoo.com
2013-09-01
Graphical abstract: - Highlights: • Nanofibers were prepared from low-cost ilmenite mineral via simple hydrothermal. • High photocatalyst nanofibers were prepared via post heat treatment method. • The nanofibers calcined at 100–700 °C for 2 h maintained nanofiber structure. • The calcined nanofibers at 400 °C showed the highest photocatalytic activity. - Abstract: Titanate nanofibers were synthesized via the hydrothermal method (120 °C for 72 h) using natural ilmenite mineral (FeTiO{sub 3}) as the starting material. The samples were characterized by X-ray diffraction (XRD), X-ray fluorescent (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Brunauer–Emmett–Teller (BET) for specificmore » surface area. The nanofibers were 20–90 nm in diameter and 2–7 μm in length. The as-synthesized nanofibers calcined at 300–400 °C showed TiO{sub 2} (B) whereas the nanofibers calcined at 500 °C revealed a mixture of two phases of TiO{sub 2} (B) and anatase. The nanofibers calcined at high temperature of 600–1000 °C showed a mixture of tri-crystalline of anatase, rutile, and Fe{sub 2}O{sub 3}. The rutile phase increased with increasing calcination temperature. The nanofibers calcined at 300–700 °C maintained their structure while the morphology of the nanofibers calcined at 800–1000 °C transformed into submicron rod-like structure. This increase of calcination temperature led to the phase transformation from thermodynamically metastable anatase to the most stable form of rutile phase. The crystallite size of prepared samples increased with increasing calcination temperature. Interestingly, with increasing calcination temperature, the absorption edge of the prepared samples shows an obvious shift to visible light region due to the change of crystallite phase and increased crystallite size. Therefore, the band gap energy of the prepared samples became narrower with increasing calcination temperature. Furthermore, the photocatalytic activity of the nanofibers calcined at 400 °C for 2 h was found to be not merely higher than those of the commercially available TiO{sub 2} nanoparticles powders (P-25, JRC-01, and JRC-03) but also the highest of all the samples in this study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. L. Abbott; K. N. Keck; R. E. Schindler
This screening level risk assessment evaluates potential adverse human health and ecological impacts resulting from continued operations of the calciner at the New Waste Calcining Facility (NWCF) at the Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Engineering and Environmental Laboratory (INEEL). The assessment was conducted in accordance with the Environmental Protection Agency (EPA) report, Guidance for Performing Screening Level Risk Analyses at Combustion Facilities Burning Hazardous Waste. This screening guidance is intended to give a conservative estimate of the potential risks to determine whether a more refined assessment is warranted. The NWCF uses a fluidized-bed combustor to solidifymore » (calcine) liquid radioactive mixed waste from the INTEC Tank Farm facility. Calciner off volatilized metal species, trace organic compounds, and low-levels of radionuclides. Conservative stack emission rates were calculated based on maximum waste solution feed samples, conservative assumptions for off gas partitioning of metals and organics, stack gas sampling for mercury, and conservative measurements of contaminant removal (decontamination factors) in the off gas treatment system. Stack emissions were modeled using the ISC3 air dispersion model to predict maximum particulate and vapor air concentrations and ground deposition rates. Results demonstrate that NWCF emissions calculated from best-available process knowledge would result in maximum onsite and offsite health and ecological impacts that are less then EPA-established criteria for operation of a combustion facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pransisco, Prengki, E-mail: prengkipransisco@gmail.com, E-mail: afza@petronas.com.my; Shafie, Afza, E-mail: prengkipransisco@gmail.com, E-mail: afza@petronas.com.my; Guan, Beh Hoe, E-mail: beh.hoeguan@petronas.com.my
2014-10-24
This paper examines the effect of calcination process on the structural and magnetic properties material nanostructure composite of Ni{sub 0Ð}œ‡{sub 5}Zn{sub 0Ð}œ‡{sub 25}Cu{sub 0.25} Fe{sub 2}O{sub 4} ferrites. The samples were successfully prepared by sol-gel method at different calcination temperature, which are 600°C, 700°C, 800°C and 900°C. Morphological investigation, average crystallite size and microstructure of the material were examined by using X-ray diffraction (XRD) and confirmed by high resolution transmission electron microscope (HRTEM) and field emission scanning electron microscope (FESEM). The effects of calcination temperature on the magnetic properties were calculated by using vibrating sample magnetometer (VSM). The XRD resultmore » shows single-phase cubic spinel structure with interval average size 5.9-38 nm, and grain size microstructure of the material was increasing with temperature increases. The highest magnetization saturation was reached at a temperature 800°C with value 53.89 emu/g, and the value coercive force (Hc) was inversely with the grain size.« less
Green synthesis and characterization of ANbO3 (A = Na, K) nanopowders fabricated using a biopolymer
NASA Astrophysics Data System (ADS)
Khorrami, Gh. H.; Mousavi, M.; Khayatian, S. A.; Kompany, A.; Khorsand Zak, A.
2017-10-01
Lead-free sodium niobate (NaNbO3, NN) and potassium niobate (KNbO3, KN) nanopowders were successfully synthesized by a simple and green synthesis process in gelatin media. Gelatin, which is a biopolymer, was used as stabilizer. In order to determine the lowest calcination temperature needed to obtain pure NN and KN nanopowders, the produced gels were analyzed by thermogravometric analyzer (TGA). The produced gels were calcined at 500∘C and 600∘C. The structural and optical properties of the prepared powders were examined using X-ray diffraction (XRD) technique, transmission electron microscopy (TEM), and UV-Vis spectroscopy. The XRD results revealed that pure phase NN and KN nanopowders were formed at low temperature calcination of 500∘C and 600∘C, respectively. The Scherrer formula and size-strain plot (SSP) method were employed to estimate crystallite size and lattice strain of the samples. The TEM images show that the NN and KN samples calcined at 600∘C have cubic shape with an average particle size of 60.95 and 39.29 nm, respectively. The optical bandgap energy of the samples was calculated using UV-Vis diffused reflectance spectra of the samples and Kubelka-Munck relation.
STUDY ON SYNTHESIS AND EVOLUTION OF NANOCRYSTALLINE Mg4Ta2O9 BY AQUEOUS SOL-GEL PROCESS
NASA Astrophysics Data System (ADS)
Wu, H. T.; Yang, C. H.; Wu, W. B.; Yue, Y. L.
2012-06-01
Nanosized and highly reactive Mg4Ta2O9 were successfully synthesized by aqueous sol-gel method compared with conventional solid-state method. Ta-Mg-citric acid solution was first formed and then evaporated resulting in a dry gel for calcination in the temperature ranging from 600°C to 800°C for crystallization in oxygen atmosphere. The crystallization process from the gel to crystalline Mg4Ta2O9 was identified by thermal analysis and phase evolution of powders was studied using X-ray diffraction (XRD) technique during calcinations. Particle size and morphology were examined by transmission electron microscopy (TEM) and high resolution scanning electron microscopy (HR-SEM). The results revealed that sol-gel process showed great advantages over conventional solid-state method and Mg4Ta2O9 nanopowders with the size of 20-30 nm were obtained at 800°C.
Zhang, Jishi; Zhang, Junjie; Zang, Lihua
2015-12-01
This study investigated the use of calcined-lime mud from papermaking process (CLMP) pretreatment to improve fermentative hydrogen yields from corn-bran residue (CBR). CBR samples were pretreated with different concentrations (0-15 g/L) of CLMP at 55°C for 48 h, prior to the thermophilic fermentation with heat-treated anaerobic sludge inoculum. The maximum hydrogen yield (MHY) of 338.91 ml/g-VS was produced from the CBR pretreated with 10 g/L CLMP, with the corresponding lag-phase time of 8.24h. Hydrogen yield increments increased from 27.76% to 48.07%, compared to the control. The CLMP hydrolyzed more cellulose, which provided adequate substrates for hydrogen production. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zainul, R.; Oktavia, B.; Dewata, I.; Efendi, J.
2018-04-01
This research aims to investigate the process of forming a multi-scale copper oxide semiconductor (CuO/Cu2O) through a process of calcining a copper plate. The changes that occur during the formation of the oxide are thermally and surface evaluated. Evaluation using Differential Thermal Analysis (DTA) obtained by surface change of copper plate happened at temperature 380°C. Calcination of oxide formation was carried out at temperature 380°C for 1 hour. Surface evaluation process by using Scanning Electron Microscope (SEM) surface and cross-section, to determine diffusion of oxide formation on copper plate. The material composition is monitored by XRF and XRD to explain the process of structural and physical changes of the copper oxide plate formed during the heating process. The thickness of Cu plates used is 200-250 μm. SEM analysis results, the oxygen atom interruption region is in the range of 20-30 μm, and diffuses deeper during thermal oxidation process. The maximum diffusion depth of oxygen atoms reaches 129 μm.
Xiao, Zhenyu; Fan, Lili; Xu, Ben; Zhang, Shanqing; Kang, Wenpei; Kang, Zixi; Lin, Huan; Liu, Xiuping; Zhang, Shiyu; Sun, Daofeng
2017-12-06
Two-dimensional cobalt oxide (Co 3 O 4 ) is a promising candidate for robust electrochemical capacitors with high performance. Herein, we use 2,3,5,6-tetramethyl-1,4-diisophthalate as a recyclable ligand to construct a Co-based metal-organic framework of UPC-9, and subsequently, we obtain ultrathin hierarchical Co 3 O 4 hexagonal nanosheets with a thickness of 3.5 nm through a hydrolysis and calcination process. A remarkable and excellent specific capacitance of 1121 F·g -1 at a current density of 1 A·g -1 and 873 F·g -1 at a current density of 25 A·g -1 were achieved for the as-prepared asymmetric supercapacitor, which can be attributed to the ultrathin 2D morphology and the rich macroporous and mesoporous structures of the ultrathin Co 3 O 4 nanosheets. This synthesis strategy is environmentally benign and economically viable due to the fact that the costly organic ligand molecules are recycled, reducing the materials cost as well as the environmental cost for the synthesis process.
Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. D. Staiger
2007-06-01
This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.
Calcination Conditions on the Properties of Porous TiO2 Film
NASA Astrophysics Data System (ADS)
Zhang, Wenjie; Pei, Xiaobei; Bai, Jiawei; He, Hongbo
2014-03-01
Porous TiO2 films were deposited on SiO2 precoated glass-slides by sol-gel method using PEG1000 as template. The strongest XRD diffraction peak at 2θ = 25.3° is attributed to [101] plane of anatase TiO2 in the film. The increases of calcination temperature and time lead to stronger diffraction peak intensity. High transmittance and blue shift of light absorption edge are the properties of the film prepared at high calcination temperature. The average pore size of the films increases with the increasing calcination temperature as the result of TiO2 crystalline particles growing up and aggregation, accompanied with higher specific surface area. Photocatalytic activity of porous TiO2 films increases with the increasing calcination temperature. The light absorption edge of the films slightly moves to longer wavelength region along with the increasing calcination time. The mesoporous film calcinated at 500 °C for 2 h has the highest transmittance, the maximum surface area, and the maximum total pore volume. Consequently, the optimum degradation activity is achieved on the porous TiO2 film calcinated at 500 °C for 2 h.
NASA Astrophysics Data System (ADS)
Meng, Wei; Virkar, Anil V.
1999-12-01
A number of mixed perovskites of the types Ba2B‧B″O6 (BaB‧1/2B″1/2O3) and Ba3B*B″2O9 (BaB*1/3B″2/3O3) where B‧=Gd, La, Nd, Sm, or Y; B″=Nb and B*=Ca were synthesized by a conventional calcination process, as well as by the molten salt method. The former consists of calcining appropriate mixtures of oxide or carbonate precursors in air at elevated temperatures (∼1250°C). The latter method consists of adding appropriate mixtures of oxide or carbonate precursors to a molten salt bath at relatively low temperatures (on the order of 300 to 500°C) so that the requisite compound is formed by dissolution-reprecipitation. X-ray diffraction confirmed the formation of a single-phase perovskite in each case with calcination at 1250°C. In a molten salt bath, however, all except Ba2LaNbO6 and Ba2NdNbO6 formed the perovskite structure. On the contrary, powders of Ba2LaNbO6 and Ba2NdNbO6 formed by a high-temperature calcination process readily decomposed when introduced into the molten salt bath. The formation of the requisite perovskite at a temperature as low as 350°C in a molten salt suggests that: (a) The perovskite is stable at 350°C. (b) The molten salt exhibits sufficient precursor solubility for the dissolution-reprecipitation process to occur in a reasonable time. Similarly, the decomposition of Ba2LaNbO6 and Ba2NdNbO6 in a molten salt bath shows that these materials are thermodynamically unstable at the temperature of the molten salt bath.
NASA Astrophysics Data System (ADS)
Majumder, Supriyo; Choudhary, R. J.; Tripathi, M.; Phase, D. M.
2018-05-01
We have investigated the phase formation and correlation between electronic and magnetic properties of oxygen deficient BaTiO3 ceramics, synthesized by solid state reaction method, following different calcination paths. The phase analysis divulge that a higher calcination temperature above 1000° C is favored for tetragonal phase formation than the cubic phase. The core level X-ray photo electron spectroscopy measurements confirm the presence of oxygen vacancies and oxygen vacancy mediated Ti3+ states. As the calcination temperature and calcination time increases these oxygen vacancies and hence Ti3+ concentrations reduce in the sample. The temperature dependent magnetization curves suggest unexpected magnetic ordering, which may be due to the presence of unpaired electron at the t2g state (d1) of nearest-neighbor Ti atoms. In magnetization vs magnetic field isotherms, the regular decrease of saturation moment value with increasing calcination temperature and calcination time, can be discussed considering the amount of oxygen deficiency induced Ti3+ concentrations, present in the sample.
Calcined Mg-Fe layered double hydroxide as an absorber for the removal of methyl orange
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Chao; State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070; Dai, Jing
2015-05-15
In this work, methyl orange (MO) was effectively removed from aqueous solution with the calcined product of hydrothermal synthesized Mg/Fe layered double hydroxide (Mg/Fe-LDH). The structure, composition, morphology and textural properties of the Mg/Fe-LDH before and after adsorption were characterized by X-ray diffraction, Fourier transformation infrared spectroscopy, transmission electron microscopy, nitrogen adsorption apparatus and X-ray photoelectron spectroscopy. It was confirmed that MO had been absorbed by calcined Mg/Fe-LDH which had strong interactions with MO. The adsorption of MO onto the Mg/Fe-LDH was systematically investigated by batch tests. The adsorption capacity of the Mg/Fe-LDH toward MO was found to be 194.9more » mg • g{sup −1}. Adsorption kinetics and isotherm studies revealed that the adsorption of MO onto Mg/Fe-LDH was a spontaneous and endothermic process. These results indicate that Mg/Fe-LDH is a promising material for the removal of MO.« less
Sankaranarayanan, Sivashunmugam; Antonyraj, Churchil A; Kannan, S
2012-04-01
Fatty acid methyl esters (FAME) were produced from edible, non-edible and used cooking oils with different fatty acid contents by transesterification with methanol using calcined layered double hydroxides (LDHs) as solid base catalysts. Among the catalysts, calcined CaAl2-LDH (hydrocalumite) showed the highest activity with >90% yield of FAME using low methanol:oil molar ratio (<6:1) at 65 °C in 5 h. The activity of the catalyst was attributed to its high basicity as supported by Hammett studies and CO(2)-TPD measurements. The catalyst was successfully reused in up to four cycles. Some of the properties such as density, viscosity, neutralization number and glycerol content of the obtained biodiesel matched well with the standard DIN values. It is concluded that a scalable heterogeneously catalyzed process for production of biodiesel in high yields from a wide variety of triglyceride oils including used oils is possible using optimized conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Experimental study on the effect of calcination on the volcanic ash activity of diatomite
NASA Astrophysics Data System (ADS)
Xiao, Liguang; Pang, Bo
2017-09-01
The volcanic ash activity of diatomite was studied under the conditions of aerobic calcination and vacuum calcination by the combined water rate method, it was characterized by XRD, BET and SEM. The results showed that the volcanic ash activity of diatomite under vacuum conditions was higher than that of aerobic calcination, 600°C vacuum calcination 2h, the combined water rate of diatomite-Ca(OH)2-H2O system was increased from 6.24% to 71.43%, the volcanic ash activity reached the maximum value, the specific surface
Wang, Tianyu; Peng, Zheng; Wang, Yuhang; Tang, Jing; Zheng, Gengfeng
2013-01-01
We demonstrate a facile, two-step coating/calcination approach to grow a uniform MnO nanoparticle@mesoporous carbon (MnO@C) composite on conducting substrates, by direct coating of the Mn-oleate precursor solution without any conducting/binding reagents, and subsequent thermal calcination. The monodispersed, sub-10 nm MnO nanoparticles offer high theoretical energy storage capacities and catalytic properties, and the mesoporous carbon coating allows for enhanced electrolyte transport and charge transfer towards/from MnO surface. In addition, the direct growth and attachment of the MnO@C nanocomposite in the supporting conductive substrates provide much reduced contact resistances and efficient charge transfer. These excellent features allow the use of MnO@C nanocomposites as lithium-ion battery and supercapacitor electrodes for energy storage, with high reversible capacity at large current densities, as well as excellent cycling and mechanical stabilities. Moreover, this MnO@C nanocomposite has also demonstrated a high sensitivity for H2O2 detection, and also exhibited attractive potential for the tumor cell analysis. PMID:24045767
NASA Astrophysics Data System (ADS)
Jabłońska, Magdalena; Nocuń, Marek; Gołąbek, Kinga; Palkovits, Regina
2017-11-01
The selective oxidation of ammonia into nitrogen and water vapour (NH3-SCO) was studied over Cu-Mg(Zn)-Al-(Zr) mixed metal oxides, obtained by coprecipitation and their subsequent calcination. The effect of acid-base properties of Cu-Mg-Al-Ox on catalytic activity was investigated by changing the Mg/Al molar ratio. Other Cu-containing oxides were prepared by rehydration of calcined Mg-Al hydrotalcite-like compounds or thermal decomposition of metal nitrate precursors. XRD, BET, NH3-TPD, H2-TPR, XPS, FTIR with adsorption of pyridine and CO as well as TEM techniques were used for catalysts characterization. The results of catalytic tests revealed a crucial role of easily reducible highly dispersed copper oxide species to obtain enhanced activity and N2 selectivity in NH3-SCO. The selective catalytic reduction of NO by NH3 (NH3-SCR) and in situ DRIFT of NH3 sorption indicated that NH3-SCO proceeds according to the internal selective catalytic reduction mechanism (i-SCR).
Cavitational synthesis of nanostructured inorganic materials for enhanced heterogeneous catalysis
NASA Astrophysics Data System (ADS)
Krausz, Ivo Michael
The synthesis of nanostructured inorganic materials by hydrodynamic cavitation processing was investigated. The goal of this work was to develop a general synthesis technique for nanostructured materials with a control over crystallite size in the 1--20 nm range. Materials with crystallite sizes in this range have shown enhanced catalytic activity compared to materials with larger crystallite sizes. Several supported and unsupported inorganic materials were studied to understand the effects of cavitation on crystallite size. Cavitation processing of calcium fluoride resulted in more spherical particles, attached to one another by melted necks. This work produced the first evidence of shock wave heating of nanostructured materials by hydrodynamic cavitation processing. Hydrodynamic cavitation synthesis of various catalytic support materials indicated that their phase composition and purity could be controlled by adjustment of the processing parameters. Zirconia/alumina supports synthesized using hydro-dynamic cavitation and calcined to 1368 K retained a high purity cubic zirconia phase, whereas classically prepared samples showed a phase transformation to monoclinic zirconia. Similarly, the synthesis of alumina resulted in materials with varying Bohmite and Bayerite contents as a function of the process parameters. High temperature calcination resulted in stable alumina supports with varying amounts of delta-, and theta-alumina. Synthesis studies of palladium and silver showed modest variations in crystallite size as a function of cavitation process parameters. Calcination resulted in larger grain materials, indicating a disappearance of intergrain boundaries. Based on these results, a new synthesis method was studied involving controlled agglomeration of small silver crystallites by hydrodynamic cavitation processing, followed by deposition on alumina. The optimal pH, concentration, and processing time for controlling the silver crystallite size in the cavitation equipment were determined using a statistical design of experiments approach. Three series of alumina supported silver catalysts were prepared, with silver weight loadings of 1%, 2%, and 5%. Variation of cavitation processing time between 1--64 min allowed the systematic control of silver crystallite size in the range of 3--19 nm. The preferred oxidation of CO in hydrogen (PROX) was chosen as a catalytic test reaction, because of its increasing importance for fuel cell applications. It was found that the catalytic activity was significantly increased for silver crystallite sizes below 5 nm. This work is the first experimental evidence of independent crystallite size control by hydrodynamic cavitation for alumina supported silver catalysts. The synthesis method involving controlled agglomeration and calcination is a general synthesis procedure that can be used to synthesize a wide range of novel catalysts and advanced materials.
High saturation magnetization of γ-Fe2O3 nano-particles by a facile one-step synthesis approach
Cao, Derang; Li, Hao; Pan, Lining; Li, Jianan; Wang, Xicheng; Jing, Panpan; Cheng, Xiaohong; Wang, Wenjie; Wang, Jianbo; Liu, Qingfang
2016-01-01
We have demonstrated the synthesis of γ-Fe2O3 nano-particles through a facile and novel calcination process in the air. There is no pH regulation, gas atmosphere, additive, centrifugation or other complicated procedures during the preparing process. A detailed formation process of the nano-particles is proposed, and DMF as a polar solvent may slower the reaction process of calcination. The structures, morphologies, and magnetic properties of γ-Fe2O3 nano-particles were investigated systematically, and the pure γ-Fe2O3 nano-particles obtained at 200 °C display uniform morphology good magnetic property. The saturation magnetization of obtained pure γ-Fe2O3 is about 74 emu/g, which is comparable with bulk material (76 emu/g) and larger than other results. In addition, the photocatalytic activity for degradation of methylene blue is also studied, which shows proper photocatalytic activity. PMID:27581732
Hepa filter dissolution process
Brewer, Ken N.; Murphy, James A.
1994-01-01
A process for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal.
Is there lattice contraction in multicomponent metal oxides? Case study for GdVO4:Eu3+ nanoparticles
NASA Astrophysics Data System (ADS)
Yang, Liusai; Li, Liping; Zhao, Minglei; Fu, Chaochao; Li, Guangshe
2013-08-01
Metal oxide nanomaterials have been found to have great potential for diverse applications due to their unique relationships between structure and properties. Lattice expansion as particle size reduces was previously considered to be general for metal oxide nanomaterials. It is now a great challenge to see if lattice contraction could be induced by the size effect for metal oxide nanomaterials. ABO4 metal oxides (e.g., CaWO4, GdVO4, and CdWO4) are some of the most important functional materials with many applications, while such oxides at the nanoscale are never reported to show a lattice contraction. This work presents a first report on the variation from lattice expansion to lattice contraction by tuning the microstructures of GdVO4:Eu3+ nanocrystals. A hydrothermal method was adopted to synthesize GdVO4:Eu3+ nanocrystals, and then these nanoparticles were calcined at 600 ° C in air. It is found that particle size reduction led to a lattice contraction for the calcined samples, which is in contrast to the lattice expansion observed for the hydrothermally synthesized counterparts or many other metal oxide nanomaterials. In addition, the lattice symmetry of the calcined samples remained almost a constant. The results indicate that the negative surface stress was eliminated by calcination treatment, leading to a homogeneous compression process in the lattice structure of the calcined GdVO4:Eu3+ nanocrystals. Furthermore, Eu3+ was taken as a structural probe and a luminescence center to study the local environments pertinent to these structural changes and to optimize the photoluminescence performance.
NASA Astrophysics Data System (ADS)
Kuok, Fei-Hong; Kan, Ken-Yuan; Yu, Ing-Song; Chen, Chieh-Wen; Hsu, Cheng-Che; Cheng, I.-Chun; Chen, Jian-Zhang
2017-12-01
We use a dc-pulse nitrogen atmospheric-pressure plasma jet (APPJ) to calcine carbon nanotubes (CNTs) pastes that are screen-printed on carbon cloth. 30-s APPJ treatment can efficiently oxidize and vaporize the organic binders, thereby forming porous structures. As indicated by X-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA), the oxygen content decreases after APPJ treatment owing to the oxidation and vaporization of ethyl cellulose, terpineol, and ethanol. Nitrogen doping was introduced to the materials by the nitrogen APPJ. APPJ-calcination improves the wettability of the CNTs printed on carbon cloth, as evidenced by water contact angle measurement. Raman spectroscopy indicates that reactive species of nitrogen APPJ react violently with CNTs in only 30-s APPJ processing time and introduce defects and/or surface functional groups on CNTs. Carbon cloths with calcined CNT layers are used as electrodes for liquid and quasi-solid-state electrolyte supercapacitors. Under a cyclic voltammetry test with a 2 mV/s potential scan rate, the specific capacitance is 73.84 F/g (areal capacitance = 5.89 mF/cm2) with a 2 M KCl electrolyte and 66.47 F/g (areal capacitance = 6.10 mF/cm2) with a H2SO4/polyvinyl alcohol (PVA) gel electrolyte.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajesh, E-mail: rkkaushik06@gmail.com; Deptt. of Physics,Vaish College of Engineering, Rohtak-124001, Haryana; Praveen,
2016-05-06
In present work Magnesium oxide (MgO) samples were doped with different concentration of Transition metal Nickel Oxide(NiO) by using Chemical co-precipitation method. The doping levels were varied from NiO (5%, 10%, 15%) and all the samples were calcined at 600°C for 4hrs and 8hrs respectively. Structural analysis of these calcined materials is carried out by X-ray diffraction (XRD) techniques which reveals that average crystalline sizes are in nano region i.e. 21.77nm-31.13 nm and tabulated in table 1. The powder of calcined samples were also characterized by using various other techniques i.e. Scanning Electron Microscopy (SEM), Fourier Transformation Infrared Spectroscopy (FTIR), UV-Visiblemore » spectroscopy, Transmission Electron Microscopy (TEM) etc. The effects of dopant concentration, calcined temperature, calcinations duration on samples were studied and also investigate the effect of varying dopant concentration on morphology and optical properties of calcined nanomaterials. From results it was observed that the crystallite size of nanocomposites increases with increases dopant concentration or increases calcinations duration. The optical band gap decreases with increases sintering time and increase with increases dopant concentrations. TEM results coincide with XRD results and show that particles are polycrystalline in nature. FTIR spectra show that for all samples particles are pure in composition and transmission rate increases with calcinations duration.« less
46 CFR 148.295 - Petroleum coke, calcined or uncalcined, at 55 °C (131 °F) or above.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Petroleum coke, calcined or uncalcined, at 55 °C (131 Â... Requirements for Certain Materials § 148.295 Petroleum coke, calcined or uncalcined, at 55 °C (131 °F) or above. (a) This part does not apply to shipments of petroleum coke, calcined or uncalcined, on any vessel...
46 CFR 148.295 - Petroleum coke, calcined or uncalcined, at 55 °C (131 °F) or above.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Petroleum coke, calcined or uncalcined, at 55 °C (131 Â... Requirements for Certain Materials § 148.295 Petroleum coke, calcined or uncalcined, at 55 °C (131 °F) or above. (a) This part does not apply to shipments of petroleum coke, calcined or uncalcined, on any vessel...
46 CFR 148.295 - Petroleum coke, calcined or uncalcined, at 55 °C (131 °F) or above.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Petroleum coke, calcined or uncalcined, at 55 °C (131 Â... Requirements for Certain Materials § 148.295 Petroleum coke, calcined or uncalcined, at 55 °C (131 °F) or above. (a) This part does not apply to shipments of petroleum coke, calcined or uncalcined, on any vessel...
46 CFR 148.295 - Petroleum coke, calcined or uncalcined, at 55 °C (131 °F) or above.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Petroleum coke, calcined or uncalcined, at 55 °C (131 Â... Requirements for Certain Materials § 148.295 Petroleum coke, calcined or uncalcined, at 55 °C (131 °F) or above. (a) This part does not apply to shipments of petroleum coke, calcined or uncalcined, on any vessel...
1. CONTEXTUAL VIEW OF WASTE CALCINING FACILITY. CAMERA FACING NORTHEAST. ...
1. CONTEXTUAL VIEW OF WASTE CALCINING FACILITY. CAMERA FACING NORTHEAST. ON RIGHT OF VIEW IS PART OF EARTH/GRAVEL SHIELDING FOR BIN SET. AERIAL STRUCTURE MOUNTED ON POLES IS PNEUMATIC TRANSFER SYSTEM FOR DELIVERY OF SAMPLES BEING SENT FROM NEW WASTE CALCINING FACILITY TO THE CPP REMOTE ANALYTICAL LABORATORY. INEEL PROOF NUMBER HD-17-1. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
21. CONSTRUCTION PROGRESS VIEW OF CALCINER VESSEL ON LOW BOY ...
21. CONSTRUCTION PROGRESS VIEW OF CALCINER VESSEL ON LOW BOY EN ROUTE TO FACILITY. INEEL PHOTO NUMBER NRTS-60-2487. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
22. CONSTRUCTION PROGRESS PHOTO SHOWING WORKERS LOWERING CALCINER VESSEL INTO ...
22. CONSTRUCTION PROGRESS PHOTO SHOWING WORKERS LOWERING CALCINER VESSEL INTO CELL THROUGH THE HATCH. INEEL PHOTO NUMBER NRTS-60-2485. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
Sol gel method for synthesis of semiconducting ferrite and the study of FTIR, DTA, SEM and CV
NASA Astrophysics Data System (ADS)
Alva, Sagir; Hua, Tang Ing; Kalmar Nizar, Umar; Wahyudi, Haris; Sundari, Rita
2018-03-01
In this study, a sol gel method using citric acid as anionic surfactant is used for synthesis of magnesium ferrite. Calcinations of magnesium ferrite at temperature (300°C, 600°C and 800°C) have been conducted after sol gel process. Characterization study of the prepared magnesium ferrite related to calcinations using Fourier transform infrared spectrometry (FTIR), Differential thermogravic analysis (DTA), and Scanning electron microscope (SEM) has been discussed. The study of Cyclic voltammetry (CV) of the prepared magnesium ferrite has been examined to assay the semiconducting behavior of magnesium ferrite in relation to its electrochemical behavior.
A novel approach for fabricating NiO hollow spheres for gas sensors
NASA Astrophysics Data System (ADS)
Kuang, Chengwei; Zeng, Wen; Ye, Hong; Li, Yanqiong
2018-03-01
Hollow spheres are usually fabricated by hard template methods or soft template methods with soft surfactants, which is quiet tedious and time-consuming. In this paper, NiO hollow spheres with fluffy surface were successfully synthesized by a facile hydrothermal method and subsequent calcination, where bubbles acted as the template. NiO hollow spheres exhibited excellent gas sensing performances, which results from its hollow structure and high specific surface area. In addition, a possible evolution mechanism of NiO hollow spheres was proposed based on experimental results.
Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag.
Moon, Deok Hyun; Wazne, Mahmoud; Cheong, Kyung Hoon; Chang, Yoon-Young; Baek, Kitae; Ok, Yong Sik; Park, Jeong-Hun
2015-07-01
In this study, As-, Pb-, and Cu-contaminated soil was stabilized using calcined oyster shells (COS) and steel slag (SS). The As-contaminated soil was obtained from a timber mill site where chromate copper arsenate (CCA) was used as a preservative. On the other hand, Pb- and Cu-contaminated soil was obtained from a firing range. These two soils were thoroughly mixed to represent As-, Pb-, and Cu-contaminated soil. Calcined oyster shells were obtained by treating waste oyster shells at a high temperature using the calcination process. The effectiveness of stabilization was evaluated by 1-N HCl extraction for As and 0.1-N HCl extraction for Pb and Cu. The treatment results showed that As, Pb, and Cu leachability were significantly reduced upon the combination treatment of COS and SS. The sole treatment of SS (10 wt%) did not show effective stabilization. However, the combination treatment of COS and SS showed a significant reduction in As, Pb, and Cu leachability. The best stabilization results were obtained from the combination treatment of 15 wt% COS and 10 wt% SS. The SEM-EDX results suggested that the effective stabilization of As was most probably achieved by the formation of Ca-As and Fe-As precipitates. In the case of Pb and Cu, stabilization was most probably associated with the formation of pozzolanic reaction products such as CSHs and CAHs.
Ahmad, A L; Mustafa, N N N
2006-09-15
The alumina ceramic membrane has been modified by the addition of palladium in order to improve the H(2) permeability and selectivity. Palladium-alumina ceramic membrane was prepared via a sol-gel method and subjected to thermal treatment in the temperature range 500-1100 degrees C. Fractal analysis from nitrogen adsorption isotherm is used to study the pore surface roughness of palladium-alumina ceramic membrane with different chemical composition (nitric acid, PVA and palladium) and calcinations process in terms of surface fractal dimension, D. Frenkel-Halsey-Hill (FHH) model was used to determine the D value of palladium-alumina membrane. Following FHH model, the D value of palladium-alumina membrane increased as the calcinations temperature increased from 500 to 700 degrees C but decreased after calcined at 900 and 1100 degrees C. With increasing palladium concentration from 0.5 g Pd/100 ml H(2)O to 2 g Pd/100 ml H(2)O, D value of membrane decreased, indicating to the smoother surface. Addition of higher amount of PVA and palladium reduced the surface fractal of the membrane due to the heterogeneous distribution of pores. However, the D value increased when nitric acid concentration was increased from 1 to 15 M. The effect of calcinations temperature, PVA ratio, palladium and acid concentration on membrane surface area, pore size and pore distribution also studied.
25. CONSTRUCTION PROGRESS AERIAL VIEW OF WASTE CALCINING FACILITY TAKEN ...
25. CONSTRUCTION PROGRESS AERIAL VIEW OF WASTE CALCINING FACILITY TAKEN WHEN STRUCTURE WAS 99 PERCENT COMPLETE. INEEL PHOTO NUMBER NRTS-60-5409. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
Water-assisted crystallization of mesoporous anatase TiO2 nanospheres
NASA Astrophysics Data System (ADS)
Li, Na; Zhang, Qiao; Joo, Ji Bong; Lu, Zhenda; Dahl, Michael; Gan, Yang; Yin, Yadong
2016-04-01
We report a facile water-assisted crystallization process for the conversion of amorphous sol-gel derived TiO2 into mesoporous anatase nanostructures with a high surface area and well-controlled porosity and crystallinity. As an alternative to conventional calcination methods, this approach works under very mild conditions and is therefore much desired for broad biological, environmental and catalytic applications.We report a facile water-assisted crystallization process for the conversion of amorphous sol-gel derived TiO2 into mesoporous anatase nanostructures with a high surface area and well-controlled porosity and crystallinity. As an alternative to conventional calcination methods, this approach works under very mild conditions and is therefore much desired for broad biological, environmental and catalytic applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01892k
Zhang, Zewu; Zhou, Yuming; Zhang, Yiwei; Zhou, Shijian; Shi, Junjun; Kong, Jie; Zhang, Sicheng
2013-04-14
Mesoporous anatase-phase TiO2 hollow shells were successfully fabricated by the solvothermal and calcination process. This method involves preparation of SiO2@TiO2 core-shell colloidal templates, sequential deposition of carbon and then silica layers through solvothermal and sol-gel processes, crystallization of TiO2 by calcination and finally removal of the inner and outer silica to produce hollow anatase TiO2 shells. The prepared samples were characterized by transmission electron microscopy, X-ray diffraction, N2 adsorption-desorption isotherms and UV-vis absorption spectroscopy. The results show that a uniform carbon layer is coated on the core-shell particles through the solvothermal process. The combustion of carbon offers the space for the TiO2 to further grow into large crystal grains, and the outer silica layer serves as a barrier against the excessive growth of anatase TiO2 nanocrystals. Furthermore, the initial crystallization of TiO2 generated in the carbon coating step and the heat generated by the combustion of the carbon layer allow the crystallization of TiO2 at a relatively low temperature without changing the uniform structure. When used as photocatalysts for the oxidation decomposition of Rhodamine B in aqueous solution under UV irradiation, the hollow TiO2 shells showed enhanced catalytic activity. Moreover, the TiO2 hollow shells prepared with optimal crystallinity by this method showed a higher performance than commercial P25 TiO2.
Quantification of process variables for carbothermic synthesis of UC 1-xN x fuel microspheres
Lindemer, Terrance B.; Silva, Chinthaka M.; Henry, Jr, John James; ...
2016-11-05
This report details the continued investigation of process variables involved in converting sol-gel-derived, urania-carbon microspheres to ~820-μm-dia. UC 1-xN x fuel kernels in flow-through, vertical Mo and W crucibles at temperatures up to 2123 K. Experiments included calcining of air-dried UO 3-H 2O-C microspheres in Ar and H 2-containing gases, conversion of the resulting UO 2-C kernels to dense UO2:2UC in the same gases and vacuum, and its conversion in N 2 to UC 1-xN x (x = ~0.85). The thermodynamics of the relevant reactions were applied extensively to interpret and control the process variables. Producing the precursor UO 2:2UCmore » kernel of ~96% theoretical density was required, but its subsequent conversion to UC 1-xN x at 2123 K was not accompanied by sintering and resulted in ~83-86% of theoretical density. Increasing the UC 1-xN x kernel nitride component to ~0.98 in flowing N 2-H 2 mixtures to evolve HCN was shown to be quantitatively consistent with present and past experiments and the only useful application of H 2 in the entire process.« less
Quantification of process variables for carbothermic synthesis of UC1-xNx fuel microspheres
NASA Astrophysics Data System (ADS)
Lindemer, T. B.; Silva, C. M.; Henry, J. J.; McMurray, J. W.; Voit, S. L.; Collins, J. L.; Hunt, R. D.
2017-01-01
This report details the continued investigation of process variables involved in converting sol-gel-derived, urania-carbon microspheres to ∼820-μm-dia. UC1-xNx fuel kernels in flow-through, vertical Mo and W crucibles at temperatures up to 2123 K. Experiments included calcining of air-dried UO3-H2O-C microspheres in Ar and H2-containing gases, conversion of the resulting UO2-C kernels to dense UO2:2UC in the same gases and vacuum, and its conversion in N2 to UC1-xNx (x = ∼0.85). The thermodynamics of the relevant reactions were applied extensively to interpret and control the process variables. Producing the precursor UO2:2UC kernel of ∼96% theoretical density was required, but its subsequent conversion to UC1-xNx at 2123 K was not accompanied by sintering and resulted in ∼83-86% of theoretical density. Increasing the UC1-xNx kernel nitride component to ∼0.98 in flowing N2-H2 mixtures to evolve HCN was shown to be quantitatively consistent with present and past experiments and the only useful application of H2 in the entire process.
NASA Astrophysics Data System (ADS)
Shin, Hyeon Ung
The nanoscale of the supporting fibers may provide enhancements such as restricting the migration of metal catalyst particles. In this work, palladium nanoparticle doped alumina fibers were electrospun into template submicron fibers. These fibers were calcined at temperatures between 650°C and 1150°C to vary the crystal structures of the calcined fibers with the Pd particle size. Higher calcination temperatures led to higher reaction temperatures from 250 to about 450°C for total conversion, indicating the effective reactivity of the fiber-supported catalysts decreased with increase in calcination temperature. Pd-Au alloy nanoparticle doped titania fibers were also fabricated using an electrospinning method and assembled into a fibrous porous medium structure by a vacuum molding process. In reactor tests, the fiber media with Pd-Au alloy nanoparticle catalyst had greater reactivity in conversion of NO and CO gases than that of fiber media with Pd monometallic catalyst alone, attributed to a lower activation energy of the Pd-Au catalyst particles. In carbon monoxide oxidation reaction tests, the results showed that the performance was optimal for a catalyst of composition Pd2Au1 molar ratio that was active at 125°C, which had higher dispersion of active components and better catalytic performance compared to monometallic particle Au/TiO 2 and Pd/TiO2 fiber media. Moreover, the improved reaction activity of Pd2Au1/TiO2 fiber medium was attributed to a decreased in the activation energy. Further experiments were conducted using the electrospun ceramic fibers biodurability study. The properties of nano-sized fiber structures have attracted the attention of recent research on ceramic nanostructures as nonwoven media for applications in hazardous chemical and high temperature environments. However, health and safety concerns of micro and nano scale ceramic materials have not been fully investigated. Little is known about the physicochemical effects of the properties of small alumina fibers, including fiber sizes, surface morphologies, crystalline, phases, and surface areas with respect to submicron sized alumina fibers formed by calcination of electrospun polymeric fibers. Therefore, in this work, sub-micron sized alumina fibers were fabricated by electrospinning and calcination of a polymer template fiber. In the calcination step, different controlled temperature heating cycles were conducted to obtain fibers of different crystalline structures. Their biodurabilities were evaluated in two types of artificial lung fluids (i.e., mimicking the airway and alveolar macrophages). Though the variation in the soak temperature, their dissolution half times were not significantly affected. The solubility half-times of the alumina fibers were shortest for fibers calcined at the fastest temperature ramp rate (though soak temperature did not have an effect).
NASA Astrophysics Data System (ADS)
Ratnawulan, Fauzi, Ahmad; AE, Sukma Hayati
2017-08-01
Copper oxide powder was prepared from Copper iron from South Solok, Indonesia. The samples was dried and calcined for an hour at temperatures of 145°C, 300°C,850°C, 1000°C. Phase transformation and crystallite size of the calcined powders have been investigated as a function of calcination temperature by room-temperature X-ray diffraction (XRD). It was seen that the tenorite, CuO was successfully obtained. With increasing calcining temperature, CuO transformed from malachite Cu2(CO3)(OH)2 to tenorite phase (CuO) and crystallite size of prepared samples increased from 36 nm to 76 nm.
Conversion of Conventional Rotary Kiln Into Effective Sandy Alumina Calciner
NASA Astrophysics Data System (ADS)
Ishihara, M.; Hirano, T.; Yajima, H.
Using conventional rotary kiln for calcining sandy alumina in potlines, remakable heat-saving and capacity-improving can be achieved. 83 liters of oil per tonne of alumina (3200MJ/tonne) were required for calcining 800 m.t.p.d. of sandy alumina in the rotary kiln at Shimizu Works. The kiln is installed with two stages of flash dryers and planetary coolers, and was originally designed for calcining floury alumina at 550 m.t.p.d. This improvement in capacity and unit oil consumption was achieved mainly through shortening the flame by using a special burner and effective heat recovery. The quality of sandy alumina calcined by the kiln is good enough for potlines.
HEPA filter dissolution process
Brewer, K.N.; Murphy, J.A.
1994-02-22
A process is described for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal. 4 figures.
NASA Astrophysics Data System (ADS)
Chen, Wen; Wu, Wenwei; Zhou, Chong; Zhou, Shifang; Li, Miaoyu; Ning, Yu
2018-03-01
M-type hexagonal Sr1- x Co x Nd x Fe12- x O19 ( x = 0, 0.08, 0.16, and 0.24) has been synthesized by ball milling, followed by calcination in air. The calcined products have been characterized by x-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectra, and vibrating sample magnetometry. XRD and SEM analyses confirm the formation of M-type Sr hexaferrite with platelet-like morphology when Sr1- x Co x Nd x Fe12- x O19 ( x = 0, 0.08, 0.16, and 0.24) precursors are calcined at 950°C in air for 2.5 h. Lattice parameters " a" and " c" values of Sr1- x Co x Nd x Fe12- x O19 reflect a very small variation after doping of Nd3+ and Co2+ ions. Average crystallite size of Sr1- x Co x Nd x Fe12- x O19 sample, calcined at 1150°C, decreased obviously after doping of Co2+ and Nd3+ ions. This is because the bond energy of Nd3+-O2- is much larger than that of Sr2+-O2-. Magnetic characterization indicates that all the samples exhibit good magnetic properties. Substitution of Sr2+ and Fe3+ ions by Nd3+ and Co2+ ions can improve the specific saturation magnetizations and remanence of Sr1- x Co x Nd x Fe12- x O19. Sr0.84Co0.16Nd0.16Fe11.84O19, calcined at 1050°C, has the highest specific saturation magnetization value (74.75 ± 0.60 emu/g), remanence (45.15 ± 0.32 emu/g), and magnetic moment (14.34 ± 0.11 μ B); SrFe12O19, calcined at 1150°C, has the highest coercivity value (4037.01 ± 42.39 Oe). These magnetic parameters make this material a promising candidate for applications such as high-density magnetic recording and microwave absorbing materials.
Dong, Zuo-chao; Xia, Jun-wu; Duan, Xiao-mu; Cao, Ji-chang
2016-03-01
By using X-ray diffraction (XRD) and environmental scanning electron microscope (SEM) analysis method, we stud- ied the activity of coal gangue fine aggregate under different calcination temperature. In view of the activity of the highest-700 degrees C high temperature calcined coal gangue fine aggregate mortar of hydration products, microstructure and strength were discussed in this paper, and the change laws of mortar strength with curing age (3, 7, 14, 28, 60 and 90 d) growth were analyzed. Test results showed that coal gangue fine aggregate with the increase of calcination temperature, the active gradually increases. When the calcination temperature reaches 700 degrees C, the activity of coal gangue fine aggregate is the highest. When calcining temperature continues to rise, activity falls. After 700 degrees C high temperature calcined coal gangue fine aggregate has obvious ash activity, the active components of SiO2 and Al2 O3 can be with cement hydration products in a certain degree of secondary hydration reaction. Through on the top of the activity of different curing age 700 degrees C high temperature calcined coal gangue fine aggregate mortar, XRD and SEM analysis showed that with the increase of curing age, secondary hydration reaction will be more fully, and the amount of hydration products also gradually increases. Compared with the early ages of the cement mortar, the products are more stable hydration products filling in mortar microscopic pore, which can further improve the microstructure of mortar, strengthen the interface performance of the mortar. The mortar internal structure is more uniform, calcined coal gangue fine aggregate and cement mortar are more of a strong continuous whole, which increase the later strength of hardened cement mortar, 700 degrees C high temperature calcined coal gangue fine aggregate pozzolanic effect is obvious.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barkaoui, Sami; Haddaoui, Marwa; Dhaouadi, Hassouna, E-mail: dhaouadihassouna@yahoo.fr
Nanostructured tricobalt tetraoxide, Co{sub 3}O{sub 4}, was hydrothermally synthesized starting from cobalt dichloride hexahydrate (CoCl{sub 2}·6H{sub 2}O) and urea (H{sub 2}NCONH{sub 2}) as precursor and polyethylene glycol-400 (PEG-400) as a structure-directing agent. Uniform urchin-like nanostructures were hydrothermally obtained at 150 °C for 16 h, and the Co{sub 3}O{sub 4} morphology did not collapse after a subsequent calcination at 300 °C for 2 h. XRD measurements indicated that the average sizes of Co{sub 3}O{sub 4} particles prior and after heating at 300 °C are 64 and 44 nm, respectively. This material has been successfully used for the nanostructuration of screen-printed carbonmore » electrodes (SPCEs) which were used for the sensitive electrochemical detection of hydrogen peroxide (H{sub 2}O{sub 2}). The sensor is endowed with a large dynamic range (0.1 to 50 µM) and a limit of detection of 0.145 µM. The as obtained results show that the Co{sub 3}O{sub 4} nanomaterial could be a candidate to be used as sensors for the detection of analytes. - Graphical abstract: The nanowires appear to have a common center and grow to the outside along the radial direction. - Highlights: • Nanostructured was hydrothermally prepared using PEG-400. • Uniform urchin-like Co{sub 3}O{sub 4} nanostructures were hydrothermally obtained. • X-ray diffraction showed a cubic structure after calcinations process. • Nanostructured Co{sub 3}O{sub 4} was used for the sensitive electrochemical detection of H{sub 2}O{sub 2.} • The sensor is endowed with a large dynamic range 0.1 to 50 µM.« less
NASA Astrophysics Data System (ADS)
Onishi, Yuya; Nakamura, Toshihiro; Adachi, Sadao
2017-02-01
Tb3Al5O12:Ce3+ garnet (TAG:Ce3+) phosphor was synthesized by the metal organic decomposition (MOD) method and subsequent calcination at Tc = 800-1200°C for 1 h in air. The effects of Ce3+ concentration on the phosphor properties were investigated in detail using X-ray diffraction (XRD) analysis, photoluminescence (PL) analysis, PL excitation (PLE) spectroscopy, and PL decay measurements. The maximum intensity in the Ce3+ yellow emission was observed at the Ce3+ concentration of ∼0.20%. PLE and PL decay measurements suggested an evidence of the energy transfer from Tb3+ to Ce3+. Calcination temperature dependence of the XRD and PL intensities yielded an energy of ∼1.5 eV both for the TAG formation in the MOD process and for the optical activation of Ce3+ in its lattice sites. Temperature dependences of the PL intensity for the TAG:Ce3+ yellow-emitting and K2SiF6:Mn4+ red-emitting phosphors were also examined for the future solid-state lighting applications at T = 20-500 K in 10-K steps. The data of TAG:Ce3+ were analyzed using a theoretical model with considering a reservoir level of Et ∼9 meV, yielding a quenching energy of Eq ∼0.35 eV, whereas the K2SiF6:Mn4+ red-emitting phosphor data yielded a value of Eq ∼1.0 eV. The schematic energy-level diagrams for Tb3+ and Ce3+ were proposed for the sake of a better understanding of these ions in the TAG host.
NASA Astrophysics Data System (ADS)
Hwang, Jinkwang; Matsumoto, Kazuhiko; Orikasa, Yuki; Katayama, Misaki; Inada, Yasuhiro; Nohira, Toshiyuki; Hagiwara, Rika
2018-02-01
Maricite NaFePO4 (m-NaFePO4) was investigated as a positive electrode material for intermediate-temperature operation of sodium secondary batteries using ionic liquid electrolytes. Powdered m-NaFePO4 was prepared by a conventional solid-state method at 873 K and subsequently fabricated in two different conditions; one is ball-milled in acetone and the other is re-calcined at 873 K after the ball-milling. Electrochemical properties of the electrodes prepared with the as-synthesized m-NaFePO4, the ball-milled m-NaFePO4, and the re-calcined m-NaFePO4 were investigated in Na[FSA]-[C2C1im][FSA] (C2C1im+ = 1-ethyl-3-methylimidazolium, FSA- = bis(fluorosulfonyl)amide) ionic liquid electrolytes at 298 K and 363 K to assess the effects of temperature and particle size on their electrochemical properties. A reversible charge-discharge capacity of 107 mAh g-1 was achieved with a coulombic efficiency >98% from the 2nd cycle using the ball-milled m-NaFePO4 electrode at a C-rate of 0.1 C and 363 K. Electrochemical impedance spectroscopy using m-NaFePO4/m-NaFePO4 symmetric cells indicated that inactive m-NaFePO4 becomes an active material through ball-milling treatment and elevation of operating temperature. X-ray diffraction analysis of crystalline m-NaFePO4 confirmed the lattice contraction and expansion upon charging and discharging, respectively. These results indicate that the desodiation-sodiation process in m-NaFePO4 is reversible in the intermediate-temperature range.
Mesoporous TiO2 nanosheets anchored on graphene for ultra long life Na-ion batteries.
Zhang, Ruifang; Wang, Yuankun; Zhou, Han; Lang, Jinxin; Xu, Jingjing; Xiang, Yang; Ding, Shujiang
2018-06-01
Sodium-ion batteries, which have a similar electrochemical reaction mechanism to lithium-ion batteries, have been considered as one of the most potential lithium-ion battery alternatives due to the rich reserves of sodium. However, it is very hard to find appropriate electrode materials imputing the large radius of sodium-ion. TiO 2 is particularly interesting as anodes for sodium-ion batteries due to their reasonable operation voltage, cost, and nontoxicity. To obtain a better electrochemical property, mesoporous TiO 2 nanosheets (NSs)/reduced graphene oxide (rGO) composites have been synthesized via a scalable hydrothermal-solvothermal method with a subsequent calcination process. Benefitting from unique structure design, TiO 2 NSs@rGO exhibits a superior cycle stability (90 mAh g -1 after 10 000 cycles at a high current rate of 20 C) and satisfactory rate performance (97.3 mAh g -1 at 25 C). To our knowledge, such ultra long cycle life has not previously been reported.
Fu, Junwei; Cao, Shaowen; Yu, Jiaguo; Low, Jingxiang; Lei, Yongpeng
2014-06-28
Photocatalytic reduction of CO2 into renewable hydrocarbon fuels using semiconductor photocatalysts is considered as a potential solution to the energy deficiency and greenhouse effect. In this work, mesoporous TiO2 nanofibers with high specific surface areas and abundant surface hydroxyl groups are prepared using an electrospinning strategy combined with a subsequent calcination process, followed by a solvothermal treatment. The solvothermally treated mesoporous TiO2 nanofibers exhibit excellent photocatalytic performance on CO2 reduction into hydrocarbon fuels. The significantly improved photocatalytic activity can be attributed to the enhanced CO2 adsorption capacity and the improved charge separation after solvothermal treatment. The highest activity is achieved for the sample with a 2-h solvothermal treatment, showing 6- and 25-fold higher CH4 production rate than those of TiO2 nanofibers without solvothermal treatment and P25, respectively. This work may also provide a prototype for studying the effect of solvothermal treatment on the structure and photocatalytic activity of semiconductor photocatalysts.
NASA Astrophysics Data System (ADS)
Zhu, Weibo; Zhuang, Zhenyuan; Yang, Yanmin; Zhang, Ruidan; Lin, Zhiya; Lin, Yingbin; Huang, Zhigao
2016-06-01
Hole-rich Li4Ti5O12 composites are synthesized by spray drying using carbon nanotubes as additives in precursor solution, subsequently followed calcinated at high temperature in air. The structure, morphology, and texture of the as-prepared composites are characterized with XRD, Raman, BET and SEM techniques. The electrochemical properties of the as-prepared composites are investigated systematically by charge/discharge testing, cyclic voltammograms and AC impedance spectroscopy, respectively. In comparison with the pristine Li4Ti5O12, the hole-rich Li4Ti5O12 induced by carbon nanotubes exhibits superior electrochemical performance, especially at high rates. The obtained excellent electrochemical performances of should be attributed to the hole-rich structure of the materials, which offers more connection-area with the electrolyte, shorter diffusion-path length as well faster migration rate for both Li ions and electrons during the charge/discharge process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Wangcheng; He, Qian; Liu, Xiaofei
Supported gold (Au) nanocatalysts hold great promise for heterogeneous catalysis; however, their practical application is greatly hampered by poor thermodynamic stability. Herein, a general synthetic strategy is reported where discrete metal nanoparticles are made resistant to sintering, preserving their catalytic activities in high-temperature oxidation processes. Taking advantage of the unique coating chemistry of dopamine, sacrificial carbon layers are constructed on the material surface, stabilizing the supported catalyst. Upon annealing at high temperature under an inert atmosphere, the interactions between support and metal nanoparticle are dramatically enhanced, while the sacrificial carbon layers can be subsequently removed through oxidative calcination in air.more » Owing to the improved metal-support contact and strengthened electronic interactions, the resulting Au nanocatalysts are resistant to sintering and exhibit excellent durability for catalytic combustion of propylene at elevated temperatures. Moreover, the facile synthetic strategy can be extended to the stabilization of other supported catalysts on a broad range of supports, providing a general approach to enhancing the thermal stability and sintering resistance of supported nanocatalysts.« less
Mesoporous TiO2 nanosheets anchored on graphene for ultra long life Na-ion batteries
NASA Astrophysics Data System (ADS)
Zhang, Ruifang; Wang, Yuankun; Zhou, Han; Lang, Jinxin; Xu, Jingjing; Xiang, Yang; Ding, Shujiang
2018-06-01
Sodium-ion batteries, which have a similar electrochemical reaction mechanism to lithium-ion batteries, have been considered as one of the most potential lithium-ion battery alternatives due to the rich reserves of sodium. However, it is very hard to find appropriate electrode materials imputing the large radius of sodium-ion. TiO2 is particularly interesting as anodes for sodium-ion batteries due to their reasonable operation voltage, cost, and nontoxicity. To obtain a better electrochemical property, mesoporous TiO2 nanosheets (NSs)/reduced graphene oxide (rGO) composites have been synthesized via a scalable hydrothermal-solvothermal method with a subsequent calcination process. Benefitting from unique structure design, TiO2 NSs@rGO exhibits a superior cycle stability (90 mAh g‑1 after 10 000 cycles at a high current rate of 20 C) and satisfactory rate performance (97.3 mAh g‑1 at 25 C). To our knowledge, such ultra long cycle life has not previously been reported.
Fabrication of hierarchical porous ZnO/NiO hollow microspheres for adsorptive removal of Congo red
NASA Astrophysics Data System (ADS)
Lei, Chunsheng; Pi, Meng; Cheng, Bei; Jiang, Chuanjia; Qin, Jiaqian
2018-03-01
Hierarchical porous zinc oxide (ZnO)/nickel(II) oxide (NiO) hollow microspheres were fabricated by a facile hydrothermal approach and subsequent calcination process. The synthesized samples were used as adsorbent for removing Congo red (CR), a commercial azo dye. The synthesized hierarchical porous ZnO/NiO composites exhibit a superior adsorption capacity for CR (518 mg/g), compared with pure NiO (397 mg/g) and ZnO (304 mg/g). The high CR adsorption capacity of ZnO/NiO composites was associated with its hierarchical porous hollow structures and large specific surface area (130 m2/g), which provide a large quantity of active sites for CR molecules. The adsorption kinetics data were perfectly fitted to a pseudo-second-order model. The isotherms were accurately described by the Langmuir model. The results suggest that the as-prepared hierarchical porous ZnO/NiO composites are a highly efficient adsorbent for treating organic dye-impacted wastewater.
29. FLOOR PLAN OF WASTE CALCINATION FACILITY SHOWING MAIN ABOVEGRADE ...
29. FLOOR PLAN OF WASTE CALCINATION FACILITY SHOWING MAIN ABOVE-GRADE FLOOR LEVEL. INEEL DRAWING NUMBER 200-0633-00-287-106354. FLUOR NUMBER 5775-CPP-633-A-4. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
Colloidal approach to dispersion and enhanced deaggregation of aqueous ferrite suspensions
NASA Astrophysics Data System (ADS)
Mandanas, Michael Patrick M.
The role of solution and surface chemistry on deaggregation of calcined ferrites during attrition (stirred-media) milling of aqueous suspensions were investigated. Suspensions of commercially calcined Fe2O 3 powder (d50 ˜ 5.0 mum) were milled at different solid loadings and suspension pH. The drift of suspension pH, from pH 2.5 to pH 7.0, during solid loading experiments accounted for the observed reagglomeration with milling time. The observed deaggregation rates during pH stat milling, in the acidic region, can be related to (i) elevated solubility and (ii) enhanced dispersion via surface charge. Proton adsorption density during pH stat milling at different pH values is also comparable to existing potentiometric titration plots and can be related to deaggregation rates. A passivation-dispersion approach for dispersing manganese zinc ferrite (MnxZn(1 - x)Fe2O4) powder is presented. Addition of oxalic acid can help control dissolution reactions from particle surfaces and is subsequently dispersed with polyethyleneimine (PEI). Fully dissociated oxalic acid (pK1 = 1.2, pK2 = 4.3) solutions reacted with MnxZn(1 - x)Fe 2O4 leads to the formation of a uniform negative charge on the particle surface, resulting from the sparingly soluble salt formed on the surface. The resulting rheological data for passivation/dispersion of relatively high solid MnxZn(1 - x)Fe2O 4 suspensions (˜80 w/o, (˜40 v/o)) demonstrate improved colloid stability with improved rheological properties. Using the passivation dispersion scheme developed, deaggregation of commercially calcined MnxZn(1 - x)Fe2O4 powders during attrition milling was investigated. Reagglomeration is apparent when using a typical treatment, 2 w/w of a sulfonated based naphthalene condensate, during deaggregation of the calcined MnxZn(1 - x)Fe 2O4. However, is not observed for select oxalate/PEI treatments. The determined ideal treatment is 2 w/w oxalate and 3 w/w PEI based on the particle size and rheological characteristics of the suspensions during milling. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Keong, Choo Cheng; Sunitha Vivek, Yamini; Salamatinia, Babak; Amini Horri, Bahman
2017-04-01
In this study, zinc oxide (ZnO) was prepared via extrusion-dripping method through an ion exchange mediated process using sodium alginate. The samples were synthesized at 500 °C and 600 °C to study the effect of calcination temperature. The morphology, microstructure and optical activity of the calcined ZnO nanoparticles were analyzed by TGA, FESEM and XRD. It was found that ZnO nanoparticles synthesized at 600 °C was of higher purity with high crystallinity. To enhance the photocatalytic efficiency of zinc oxide, ZnO/NCC films were synthesized at varying ZnO loading fractions of 10 wt%, 15 wt%, 20 wt% and 25 wt% and were evaluated by photodegradation of Methylene blue dye and the highest dye percentage removal is found to be 96% which is obtained at ZnO loadings of 25 wt%. The usage of ion-exchange process has shown promising results in producing ZnO of desirable characteristics.
Easily recycled Bi2O3 photocatalyst coatings prepared via ball milling followed by calcination
NASA Astrophysics Data System (ADS)
Cheng, Lijun; Hu, Xumin; Hao, Liang
2017-06-01
Bi2O3 photocatalyst coatings derived from Bi coatings were first prepared by a two-step method, namely ball milling followed by the calcination process. The as-prepared samples were characterized by XRD, SEM, XPS and UV-Vis spectra, respectively. The results showed that monoclinic Bi2O3 coatings were obtained after sintering Bi coatings at 673 or 773 K, while monoclinic and triclinic mixed phase Bi2O3 coatings were obtained at 873 or 973 K. The topographies of the samples were observably different, which varied from flower-like, irregular, polygonal to nanosized particles with the increase in calcination temperature. Photodegradation of malachite green under simulated solar irradiation for 180 min showed that the largest degradation efficiency of 86.2% was achieved over Bi2O3 photocatalyst coatings sintered at 873 K. The Bi2O3 photocatalyst coatings, encapsulated with Al2O3 ball with an average diameter around 1 mm, are quite easily recycled, which provides an alternative visible light-driven photocatalyst suitable for practical water treatment application.
Synthesis process and photocatalytic properties of BiOBr nanosheets for gaseous benzene.
Liu, Yu; Yin, Yongquan; Jia, Xueqing; Cui, Xiangyu; Tian, Canrui; Sang, Yuanhua; Liu, Hong
2016-09-01
A series of nano-BiOBr were prepared by an effective hydrothermal method in the presence of cetyltrimethyl ammonium bromide (CTAB) and ethanol at different calcination temperatures. The as-prepared nano-BiOBr samples were characterized by measuring the specific area (S BET), UV-Vis diffuse reflectance spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The results show that the calcination temperature has an important impact on the morphology and microstructure of BiOBr. The nano-BiOBr calcined at 120 °C showed excellent photocatalytic degradation properties for benzene, with photocatalytic degradation rate of 75 % for benzene under UV irradiation for 90 min, and removal efficiency of benzene was significantly enhanced by using nano-BiOBr catalyst compared to UV irradiation alone. BiOBr catalyst possessed good photocatalytic activity even after three consecutive photocatalytic reaction cycles, illustrating its excellent stability. The photocatalytic degradation of benzene followed the first-order kinetics, and the good catalytic capability of nano-BiOBr catalyst can be attributed to its crystalline, hierarchical nanostructure and nanosheet thickness.
3. CONTEXTUAL VIEW OF WASTE CALCINING FACILITY, CAMERA FACING NORTHEAST. ...
3. CONTEXTUAL VIEW OF WASTE CALCINING FACILITY, CAMERA FACING NORTHEAST. SHOWS RELATIONSHIP BETWEEN DECONTAMINATION ROOM, ADSORBER REMOVAL HATCHES (FLAT ON GRADE), AND BRIDGE CRANE. INEEL PROOF NUMBER HD-17-2. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
31. FLOOR PLANS OF WASTE CALCINATION FACILITY. SHOWS ACCESS CORRIDOR ...
31. FLOOR PLANS OF WASTE CALCINATION FACILITY. SHOWS ACCESS CORRIDOR AT MEZZANINE AND LOWER LEVELS. INEEL DRAWING NUMBER 200-0633-00-287-106352. FLUOR NUMBER 5775-CPP-633-A-2. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
Nanometric study of nickel oxide prepared by sol gel process
NASA Astrophysics Data System (ADS)
Dessai, R. Raut; Desa, J. A. E.; Sen, D.; Babu, P. D.
2018-04-01
Nickel oxide nanopowder was synthesized by sol gel method using nickel nitrate as the starting material. Nickel oxide nanoparticles with a grain size of 15-90 nm have been studied by; small angle neutron scattering; scanning electron microscopy; and vibrating sample magnetometry. A combination of Ferro and paramagnetic behaviour of the particles after calcination at 800 °C is observed while for powder calcined at 400 °C, soft magnetic character with saturation is seen. The system of nanoparticles ofNiO embedded in a silica matrix is also studied for the structural change. Weak magnetic ordering is observed in this case with the likely-hood of particles being evenly distributed in the silica.
Electrosprayed Cerium Oxide Nanoparticles
NASA Astrophysics Data System (ADS)
Azar, Pedram Bagherzadeh; Tavanai, Hossein; Allafchian, Ali Reza
2018-04-01
Cerium oxide nanoparticles were fabricated via the calcination of electrosprayed polyvinyl alcohol (PVA)/cerium nitrate nanoparticles. The effect of material variables of PVA/cerium nitrate electrospraying solution, i.e. viscosity, surface tension and electrical conductivity, as well as important process variables like voltage, nozzle-collector distance and feed rate on cerium oxide nanoparticle size, are investigated. Scanning electron microscopy and Fourier-transform infrared (FTIR) spectroscopy analysis have also been carried out. The results showed that electrospraying of PVA/cerium nitrate (25% w/v) was only possible with PVA concentrations in the range of 5-8% w/v. With other conditions constant, decreasing PVA concentration, decreasing feed rate, increasing nozzle-collector distance and increasing voltage decreased the size of the final cerium oxide nanoparticles. The gross average size of all cerium oxide nanoparticles obtained in this work was about 80 nm. FTIR analysis proved the formation of cerium oxide after the calcination process.
NASA Astrophysics Data System (ADS)
Sun, Xiaojuan; Yang, Jiakuan; Zhang, Wei; Zhu, Xinfeng; Hu, Yuchen; Yang, Danni; Yuan, Xiqing; Yu, Wenhao; Dong, Jinxin; Wang, Haifeng; Li, Lei; Vasant Kumar, R.; Liang, Sha
2014-12-01
A novel green recycling process is investigated to prepare lead acetate trihydrate precursors and novel ultrafine lead oxide from spent lead acid battery pastes. The route contains the following four processes. (1) The spent lead pastes are desulphurized by (NH4)2CO3. (2) The desulphurized pastes are converted into lead acetate solution by leaching with acetic acid solution and H2O2; (3) The Pb(CH3COO)2·3H2O precursor is crystallized and purified from the lead acetate solution with the addition of glacial acetic acid; (4) The novel ultrafine lead oxide is prepared by the calcination of lead acetate trihydrate precursor in N2 or air at 320-400 °C. Both the lead acetate trihydrate and lead oxide products are characterized by TG-DTA, XRD, and SEM techniques. The calcination products are mainly α-PbO, β-PbO, and a small amount of metallic Pb. The particle size of the calcination products in air is significantly larger than that in N2. Cyclic voltammetry measurements of the novel ultrafine lead oxide products show good reversibility and cycle stability. The assembled batteries using the lead oxide products as cathode active materials show a good cyclic stability in 80 charge/discharge cycles with the depth of discharge (DOD) of 100%.
Lowry, G.V.; Shaw, S.; Kim, C.S.; Rytuba, J.J.; Brown, Gordon E.
2004-01-01
Mercury (Hg) release from inoperative Hg mines in the California Coast Range has been documented, but little is known about the release and transport mechanisms. In this study, tailings from Hg mines located in different geologic settings-New Idria (NI), a Si-carbonate Hg deposit, and Sulphur Bank (SB), a hot-spring Hg deposit-were characterized, and particle release from these wastes was studied in column experiments to (1) investigate the mechanisms of Hg release from NI and SB mine wastes, (2) determine the speciation of particle-bound Hg released from the mine wastes, and (3) determine the effect of calcinations on Hg release processes. The physical and chemical properties of tailings and the colloids released from them were determined using chemical analyses, selective chemical extractions, XRD, SEM, TEM, and X-ray absorption spectroscopy techniques. The total Hg concentration in tailings increased with decreasing particle size in NI and SB calcines (roasted ore), but reached a maximum at an intermediate particle size in the SB waste rock (unroasted ore). Hg in the tailings exists predominantly as low-solubility HgS (cinnabar and metacinnabar), with NI calcines having >50% HgS, SB calcines having >89% HgS, and SB waste rock having ???100% HgS. Leaching experiments with a high-ionic-strength solution (0.1 M NaCl) resulted in a rapid but brief release of soluble and particulate Hg. Lowering the ionic strength of the leach solution (0.005 M NaCl) resulted in the release of colloidal Hg from two of the three mine wastes studied (NI calcines and SB waste rock). Colloid-associated Hg accounts for as much as 95% of the Hg released during episodic particle release. Colloids generated from the NI calcines are produced by a breakup and release mechanism and consist of hematite, jarosite/alunite, and Al-Si gel with particle sizes of 10-200 nm. ATEM and XAFS analyses indicate that the majority (???78%) of the mercury is present in the form of HgS. SB calcines also produced HgS colloids. The colloids generated from the SB waste rock were heterogeneous and varied in composition according to the column influent composition. ATEM and XAFS results indicate that Hg is entirely in the HgS form. Data from this study identify colloidal HgS as the dominant transported form of Hg from these mine waste materials.
39. CALCINER CELL PLANS. TOGETHER WITH HAER ID33C37 ILLUSTRATES COMPLEXITY ...
39. CALCINER CELL PLANS. TOGETHER WITH HAER ID-33-C-37 ILLUSTRATES COMPLEXITY OF PIPING. INEEL DRAWING NUMBER 200-0633-00-287-106445. FLUOR NUMBER 5775-CPP-633-P-50 - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
40. CALCINER CELL SECTIONS. TOGETHER WITH HAER ID33C37 ILLUSTRATES COMPLEXITY ...
40. CALCINER CELL SECTIONS. TOGETHER WITH HAER ID-33-C-37 ILLUSTRATES COMPLEXITY OF PIPING. INEEL DRAWING NUMBER 200-0633-00-287-106446. FLUOR NUMBER 5775-CPP-P-51. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
30. FLOOR PLANS OF WASTE CALCINATION FACILITY. SHOWS LEVELS ABOVE ...
30. FLOOR PLANS OF WASTE CALCINATION FACILITY. SHOWS LEVELS ABOVE GRADE AND AT LEVEL OF OPERATING CORRIDOR. INEEL DRAWING NUMBER 200-0633-00-287-106351. FLUOR NUMBER 5775-CPP-633-A-1. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Lu, Lianying; Wang, Guohong; Zou, Min; Wang, Juan; Li, Jun
2018-05-01
Hierarchical TiO2/g-C3N4 heterojunction photocatalysts with well-defined multiscale porous TiO2 framework are synthesized by simply calcinating tetrabutyl titanate and melamine precursors. The samples have been characterized by XRD, XPS, SEM, TEM, FTIR, nitrogen absorption-desorption equipment and TGA. The photocatalytic activity of these samples has been investigated in photo-degradation of Rhodamine B (RhB). The results show that calcining temperature critically affects the microstructure, surface area, interface structure and catalytic properties of the prepared samples. At the optimal calcining temperature of 550 °C, the apparent reaction rate constant of the catalyst is 55.0 × 10-3 min-1, which is 16.2 fold of pure TiO2 (3.4 × 10-3 min-1) and 3.4 fold of pure g-C3N4 (16.4 × 10-3 min-1), respectively. The strengthened visible-light-driven photocatalytic activity is attributed to the formation of a unique Z-scheme TiO2/g-C3N4 heterojunction due to C- or N-doping at the surface of the porous TiO2 framework. This mechanism explains the observation in a series of radical trapping experiments that superoxide ions and photo-generated holes play major roles in the photo-decolorizing process while hydroxyl radicals are also involved with a minor role.
CALCINATION AND SINTERING OF SORBENTS DURING BOILER INJECTION FOR DRY SULFUR DIOXIDE CONTROL
The paper discusses the calcination and sintering of sorbents during boiler injection for dry sulfur dioxide (S02) control, with emphasis on calcium hydroxide--Ca(OH)2--because of its superior reactivity with S02 and its wide commercial availability. Calcination and sintering are...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, Jack Douglas; Wood, David James; Todd, Terry Allen
1999-02-01
Laboratory experimentation has indicated that the SREX process is effective for partitioning 90 Sr from acidic radioactive waste solutions located at the Idaho Nuclear Technology and Engineering Center. These laboratory results were used to develop a flowsheet for countercurrent testing of the SREX process with dissolved pilot plant calcine. Testing was performed using 24 stages of 2-cm diameter centrifugal contactors which are installed in the Remote Analytical Laboratory hot cell. Dissolved Run #64 pilot plant calcine spiked with 85 Sr was used as feed solution for the testing. The flowsheet tested consisted of an extraction section (0.15 M 4',4'(5')-di-(tert-butylcyclohexo)-18-crown-6 andmore » 1.5 M TBP in Isopar-L.), a 1.0 M NaNO3 scrub section to remove extracted K from the SREX solvent, a 0.01 M HNO3 strip section for the removal of Sr from the SREX solvent, a 0.25 M Na2CO3 wash section to remove degradation products from the solvent, and a 0.1 M HNO3 rinse section. The behavior of 85 Sr, Na, K, Al, B, Ca, Cr, Fe, Ni, and Zr was evaluated. The described flowsheet successfully extracted 85 Sr from the dissolved pilot plant calcine with a removal efficiency of 99.6%. Distribution coefficients for 85 Sr ranged from 3.6 to 4.5 in the extraction section. With these distribution coefficients a removal efficiency of approximately >99.99% was expected. It was determined that the lower than expected removal efficiency can be attributed to a stage efficiency of only 60% in the extraction section. Extracted K was effectively scrubbed from the SREX solvent with the 1.0 M NaNO3 resulting in only 6.4% of the K in the HLW strip product. Sodium was not extracted from the dissolved calcine by the SREX solvent; however, the use of a 1.0 M NaNO3 scrub solution resulted in a Na concentration of 70 mg/L (12.3% of the feed concentration) in the HLW strip product. Al, B, Ca, Cr, Fe, Ni, and Zr were determined to be essentially inextractable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, J.D.; Wood, D.J.; Todd, T.A.
1999-01-01
Laboratory experimentation has indicated that the SREX process is effective for partitioning {sup 90}Sr from acidic radioactive waste solutions located at the Idaho Nuclear Technology and Engineering Center. These laboratory results were used to develop a flowsheet for countercurrent testing of the SREX process with dissolved pilot plant calcine. Testing was performed using 24 stages of 2-cm diameter centrifugal contactors which are installed in the Remote Analytical Laboratory hot cell. Dissolved Run No.64 pilot plant calcine spiked with {sup 85}Sr was used as feed solution for the testing. The flowsheet tested consisted of an extraction section (0.15 M 4{prime},4{prime}(5{prime})-di-(tert-butylcyclohexo)-18-crown-6 andmore » 1.5 M TBP in Isopar-L.), a 1.0 M NaNO{sub 3} scrub section to remove extracted K from the SREX solvent, a 0.01 M HNO{sub 3} strip section for the removal of Sr from the SREX solvent, a 0.25 M Na2CO{sub 3} wash section to remove degradation products from the solvent, and a 0.1 M HNO{sub 3} rinse section. The behavior of {sup 85}Sr, Na, K, Al, B, Ca, Cr, Fe, Ni, and Zr was evaluated. The described flowsheet successfully extracted {sup 85}Sr from the dissolved pilot plant calcine with a removal efficiency of 99.6%. Distribution coefficients for {sup 85}Sr ranged from 3.6 to 4.5 in the extraction section. With these distribution coefficients a removal efficiency of approximately >99.99% was expected. It was determined that the lower than expected removal efficiency can be attributed to a stage efficiency of only 60% in the extraction section. Extracted K was effectively scrubbed from the SREX solvent with the 1.0 M NaNO{sub 3} resulting in only 6.4% of the K in the HLW strip product. Sodium was not extracted from the dissolved calcine by the SREX solvent; however, the use of a 1.0 M NaNO{sub 3} scrub solution resulted in a Na concentration of 70 mg/L (12.3% of the feed concentration) in the HLW strip product. Al, B, Ca, Cr, Fe, Ni, and Zr were determined to be essentially inextractable.« less
XANES analysis of dried and calcined bones.
Rajendran, Jayapradhi; Gialanella, Stefano; Aswath, Pranesh B
2013-10-01
The structure of dried and calcined bones from chicken, bovine, deer, pig, sheep and chamois was examined using X-ray Absorption Near Edge Structure (XANES) spectroscopy. The oxygen K-edge absorption edge indicates that the surface of dried bone has a larger proportion of carbonate than the interior that is made up of phosphates. The phosphorus L and K edge clearly indicate that pyrophosphates, α-tricalcium phosphate (α-TCP) and hydrogen phosphates of Ca do not exist in either the dried bone or calcined bone and phosphorus exists as either β-tricalcium phosphate (β-TCP) or hydroxyapatite, both in the dried and calcined conditions. The Ca K-edge analysis indicates that β-TCP is the likely form of phosphate in both the dried and calcined conditions. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Indrayana, I. P. T.; Siregar, N.; Suharyadi, E.; Kato, T.; Iwata, S.
2016-11-01
Effect of calcination temperature on microstructural, vibrational, and magnetic properties of Mn0.5Zn0.5Fe2O4 nanoparticles have been successfully investigated. The nanoparticles were synthesized via coprecipitation method and calcined at different temperatures varying from 400, 600, 800, and 1000°C. The X-ray diffraction (XRD) pattern confirmed the formation of cubic spinel structure Mn0.5Zn0.5Fe2O4 with crystallite size ranging from 18.3 nm to 24.8 nm. The TEM micrograph showed the morphology of nanoparticles change from nearly spherical to cubic form after calcination. The FTIR spectra confirmed the existence of vibrations at 416.6 cm-1 - 455.2 cm-1 and 555.5 cm-1 -578.6 cm-1 which corresponds to the intrinsic stretching vibration of metal-oxygen at octahedral and tetrahedral sites, respectively. The maximum specific magnetization and coercivity increase with increasing calcination temperature. The maximum specific magnetization value of 54.7emu/gram was obtained for sample calcined at 1000°C. The results showed that calcination treatment will facilitate the tunability of microstructural and magnetic properties of nanoparticles for expanding the field of application.
Kim, Yongsung; Kang, Seunggu
2014-11-01
Enhancement of the mechanical strength of metakaolin-based geopolymers activated with NaOH was attempted by calcining metakaolin at a higher temperature than that commonly reported. Increasing the calcination temperature from 750 degrees C to 1150 degrees C promoted the recrystallization of mullite. Two type of zeolite of sodium aluminum silicate hydrates were found in the geopolymers made of metakaolin calcined at 750 degrees C-1050 degrees C. The h-zeolite [Na6(AlSiO4)6 x H2O] was not found in the geopolymer made of metakaolin calcined above 900 degrees C, while Z-zeolite [Na2O x Al2O3 x SiO2 x H2O] remained in specimens calcined at up to 1050 degrees C, All zeolite disappeared above 1150 degrees C. The pozzolanic reaction generates very small particles of 10-30 nm on the surface of metakaolin grains of 0.2-0.6 μm, rendering the matrix denser by binding the grains. The maximum compressive strength was revealed with the geopolymer made of metakaolin calcined at 1050 degrees C. The reason for the increased strength of the geopolymer obtained using higher calcination temperature is thought to be the combined effects of matrix hardening by geopolymeric reaction and reinforcement by mullite crystal phases.
Immobilization of TiO 2 nanofibers on titanium plates for implant applications
NASA Astrophysics Data System (ADS)
Lim, Jin Ik; Yu, Bin; Woo, Kyung Mi; Lee, Yong-Keun
2008-12-01
Nanofibers have shown good biological performances such as improved cell adhesion and differentiation; therefore, nanofibrous modification of dental and bone implants might enhance osseo-integration. The purpose of this study was to investigate the nanofibrous modification of titanium implants. TiO 2 nanofibers were fabricated by the electrospinning method using a mixture of Ti(IV)isopropoxide and poly(vinyl pyrrolidone) (PVP) in acidic alcohol solution. Then the nanofibers were immobilized on the NaOH/HCl-treated titanium plates by inducing the alcohol condensation reaction of Ti(IV)isopropoxide with Ti-OH group on the titanium surface and subsequent calcination (500-1000 °C). The immobilized TiO 2 nanofibers were characterized by SEM, XRD and a simulated removal test. The diameter of the TiO 2 nanofibers could be controlled within the range of 20-350 nm by changing the amounts of Ti(IV)isopropoxide and PVP. Phase transformation from anatase to rutile was observed after calcination. After the simulated removal test, TiO 2 nanofibers remained on titanium surface. These TiO 2 nanofibers on titanium plates could be used for the surface modification of titanium implants to improve the osseo-integration.
Large-size porous ZnO flakes with superior gas-sensing performance
NASA Astrophysics Data System (ADS)
Wen, Wei; Wu, Jin-Ming; Wang, Yu-De
2012-06-01
A simple top-down route is developed to fabricate large size porous ZnO flakes via solution combustion synthesis followed by a subsequent calcination in air, which is template-free and can be easily enlarged to an industrial scale. The achieved porous ZnO flakes, which are tens to hundreds of micrometers in flat and tens of nanometers in thickness, exhibit high response for detecting acetone and ethanol, because the unique two-dimensional architecture shortens effectively the gas diffusion distance and provides highly accessible open channels and active surfaces for the target gas.
NASA Astrophysics Data System (ADS)
Xiao, Jiajia; Li, Po; Wen, Xiaogang
2018-04-01
Novel jujube-like hierarchical TiO2 microspheres (HTMs) were synthesized by an alkali-corrosion process of titanium phosphate (Ti2O3(H2PO4)2 · 2H2O) microspheres. The hierarchical titanium phosphate microsphere (HTPM) intermediates consisting of nanoflakes with a thickness of 20 nm were firstly prepared by a facile hydrothermal method. After reacting with diluted NaOH at low temperature and atmospheric pressure, followed by subsequent acid washing and a calcination process, the HTPM intermediates were transformed to TiO2 with the microsphere morphology well retained, while the nanoflakes became porous, and some new nanowires were formed between the nanoflakes. Finally, HTMs consisting of porous nanoflakes and nanowires were obtained. The possible growth mechanisms of HTPMs and HTMs are discussed. The HTMs demonstrate high specific surface area and excellent light-scattering ability. The performance of the dye sensitized solar cells (DSSCs) of the HTMs synthesized under different conditions is studied, and a total conversion efficiency of up to 8.93% was obtained. The improved DSSC performance was attributed to the enhanced dye loading, light-scattering, and charge transporting ability of the HTMs with a unique hierarchical nanostructure.
Xiao, Jiajia; Li, Po; Wen, Xiaogang
2018-04-27
Novel jujube-like hierarchical TiO 2 microspheres (HTMs) were synthesized by an alkali-corrosion process of titanium phosphate (Ti 2 O 3 (H 2 PO 4 ) 2 · 2H 2 O) microspheres. The hierarchical titanium phosphate microsphere (HTPM) intermediates consisting of nanoflakes with a thickness of 20 nm were firstly prepared by a facile hydrothermal method. After reacting with diluted NaOH at low temperature and atmospheric pressure, followed by subsequent acid washing and a calcination process, the HTPM intermediates were transformed to TiO 2 with the microsphere morphology well retained, while the nanoflakes became porous, and some new nanowires were formed between the nanoflakes. Finally, HTMs consisting of porous nanoflakes and nanowires were obtained. The possible growth mechanisms of HTPMs and HTMs are discussed. The HTMs demonstrate high specific surface area and excellent light-scattering ability. The performance of the dye sensitized solar cells (DSSCs) of the HTMs synthesized under different conditions is studied, and a total conversion efficiency of up to 8.93% was obtained. The improved DSSC performance was attributed to the enhanced dye loading, light-scattering, and charge transporting ability of the HTMs with a unique hierarchical nanostructure.
López de Dicastillo, Carol; Patiño, Cristian; Galotto, María Jose; Palma, Juan Luis; Alburquenque, Daniela; Escrig, Juan
2018-02-24
The search for new antimicrobial substances has increased in recent years. Antimicrobial nanostructures are one of the most promising alternatives. In this work, titanium dioxide nanotubes were obtained by an atomic layer deposition (ALD) process over electrospun polyvinyl alcohol nanofibers (PVN) at different temperatures with the purpose of obtaining antimicrobial nanostructures with a high specific area. Electrospinning and ALD parameters were studied in order to obtain PVN with smallest diameter and highest deposition rate, respectively. Chamber temperature was a key factor during ALD process and an appropriate titanium dioxide deposition performance was achieved at 200 °C. Subsequently, thermal and morphological analysis by SEM and TEM microscopies revealed hollow nanotubes were obtained after calcination process at 600 °C. This temperature allowed complete polymer removal and influenced the resulting anatase crystallographic structure of titanium dioxide that positively affected their antimicrobial activities. X-ray analysis confirmed the change of titanium dioxide crystallographic structure from amorphous phase of deposited PVN to anatase crystalline structure of nanotubes. These new nanostructures with very large surface areas resulted in interesting antimicrobial properties against Gram-positive and Gram-negative bacteria. Titanium dioxide nanotubes presented the highest activity against Escherichia coli with 5 log cycles reduction at 200 μg/mL concentration.
Patiño, Cristian; Galotto, María Jose; Palma, Juan Luis; Alburquenque, Daniela
2018-01-01
The search for new antimicrobial substances has increased in recent years. Antimicrobial nanostructures are one of the most promising alternatives. In this work, titanium dioxide nanotubes were obtained by an atomic layer deposition (ALD) process over electrospun polyvinyl alcohol nanofibers (PVN) at different temperatures with the purpose of obtaining antimicrobial nanostructures with a high specific area. Electrospinning and ALD parameters were studied in order to obtain PVN with smallest diameter and highest deposition rate, respectively. Chamber temperature was a key factor during ALD process and an appropriate titanium dioxide deposition performance was achieved at 200 °C. Subsequently, thermal and morphological analysis by SEM and TEM microscopies revealed hollow nanotubes were obtained after calcination process at 600 °C. This temperature allowed complete polymer removal and influenced the resulting anatase crystallographic structure of titanium dioxide that positively affected their antimicrobial activities. X-ray analysis confirmed the change of titanium dioxide crystallographic structure from amorphous phase of deposited PVN to anatase crystalline structure of nanotubes. These new nanostructures with very large surface areas resulted in interesting antimicrobial properties against Gram-positive and Gram-negative bacteria. Titanium dioxide nanotubes presented the highest activity against Escherichia coli with 5 log cycles reduction at 200 μg/mL concentration. PMID:29495318
Chromium Extraction via Chemical Processing of Fe-Cr Alloys Fine Powder with High Carbon Content
NASA Astrophysics Data System (ADS)
Torres, D. M.; Navarro, R. C. S.; Souza, R. F. M.; Brocchi, E. A.
2017-06-01
Ferrous alloys are important raw materials for special steel production. In this context, alloys from the Fe-Cr system, with typical Cr weight fraction ranging from 0.45 to 0.95, are prominent, particularly for the stainless steel industry. During the process in which these alloys are obtained, there is considerable production of fine powder, which could be reused after suitable chemical treatment, for example, through coupling pyrometallurgical and hydrometallurgical processes. In the present study, the extraction of chromium from fine powder generated during the production of a Fe-Cr alloy with high C content was investigated. Roasting reactions were performed at 1073 K, 1173 K, and 1273 K (800 °C, 900 °C, and 1000 °C) with 300 pct (w/w) excess NaOH in an oxidizing atmosphere (air), followed by solubilization in deionized water, selective precipitation, and subsequent calcination at 1173 K (900 °C) in order to convert the obtained chromium hydroxide to Cr2O3. The maximum achieved Cr recovery was around 86 pct, suggesting that the proposed chemical route was satisfactory regarding the extraction of the chromium initially present. Moreover, after X-ray diffraction analysis, the final produced oxide has proven to be pure Cr2O3 with a mean crystallite size of 200 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Shanshan; Jing Xiaoyan; Liu Jingyuan
2013-01-15
Porous sheet-like cobalt oxide (Co{sub 3}O{sub 4}) were successfully synthesized by precipitation method combined with calcination of cobalt hydroxide precursors. The structure, morphology and porosity properties of the products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption-desorption measurement. The as-prepared sheet-like microstructures were approximately 2-3 {mu}m in average diameter, and the morphology of the cobalt hydroxide precursors was retained after the calcination process. However, it appeared a large number of uniform pores in the sheets after calcination. In order to calculate the potential catalytic activity, the thermal decomposition of ammoniummore » perchlorate (AP) has been analyzed, in which cobalt oxide played a role of an additive and the porous sheet-like Co{sub 3}O{sub 4} microstructures exhibited high catalytic performance and considerable decrease in the thermal decomposition temperature of AP. Moreover, a formation mechanism for the sheet-like microstructures has been discussed. - Graphical abstract: Porous sheet-like Co{sub 3}O{sub 4} were synthesized by facile precipitation method combined with calcination of {beta}-Co(OH){sub 2} precursors. Thermogravimetric-differential scanning calorimetric analysis indicates potential catalytic activity in the thermal decomposition of ammonium perchlorate. Highlights: Black-Right-Pointing-Pointer Synthesis of sheet-like {beta}-Co(OH){sub 2} precursors by precipitation method. Black-Right-Pointing-Pointer Porous sheet-like Co{sub 3}O{sub 4} were obtained by calcining {beta}-Co(OH){sub 2} precursors. Black-Right-Pointing-Pointer The possible formation mechanism of porous sheet-like Co{sub 3}O{sub 4} has been discussed. Black-Right-Pointing-Pointer Porous sheet-like Co{sub 3}O{sub 4} decrease the thermal decomposition temperature of ammonium perchlorate.« less
32. SECTIONS AA, BB, CC, DD, AND EE WASTE CALCINATION ...
32. SECTIONS A-A, B-B, C-C, D-D, AND E-E WASTE CALCINATION FACILITY SHOWING RELATIONSHIPS OF DIFFERENT FLOOR LEVELS TO ONE ANOTHER. INEEL DRAWING NUMBER 200-0633-00-287-106353. FLUOR NUMBER 5775-CPP-633-A-3. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
40 CFR 98.213 - Calculating GHG emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... calcination fractions with Equation U-1 of this section. ER30OC09.077 Where: ECO2 = Annual CO2 mass emissions... ton carbonate consumed. Fi = Fraction calcination achieved for each particular carbonate type i (decimal fraction). As an alternative to measuring the calcination fraction, a value of 1.0 can be used. n...
Yu, Jiaguo; Qi, Lifang; Cheng, Bei; Zhao, Xiufeng
2008-12-30
Tungsten trioxide hollow microspheres were prepared by immersing SrWO4 microspheres in a concentrated HNO3 solution, and then calcined at different temperatures. The prepared tungsten oxide samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectra, differential thermal analysis-thermogravimetry, UV-visible spectrophotometry, scanning electron microscopy, N2 adsorption/desorption measurements. The photocatalytic activity of the samples was evaluated by photocatalytic decolorization of rhodamine B aqueous solution under visible-light irradiation. It was found that with increasing calcination temperatures, the average crystallite size and average pore size increased, on the contrary, Brunauer-Emmett-Teller-specific surface areas decreased. However, pore volume and porosity increased firstly, and then decreased. Increasing calcination temperatures resulted in the changes of surface morphology of hollow microspheres. The un-calcined and 300 degrees C-calcined samples showed higher photocatalytic activity than other samples. At 400 degrees C, the photocatalytic activity decreased greatly due to the decrease of specific surface areas. At 500 degrees C, the photocatalytic activity of the samples increased again due to the junction effect of two phases.
Removal of Dissolved Silica using Calcinated Hydrotalcite in Real-life Applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasan, Koroush; Brady, Patrick Vane.; Krumhansl, James L.
Water shortages are a growing global problem. Reclamation of industrial and municipal wastewater will be necessary in order to mitigate water scarcity. However, many operational challenges, such as silica scaling, prevent large scale water reuse. Previously, our team at Sandia has demonstrated the use of selective ion exchange materials, such as calcinated hydrotalcite (HTC, (Mg 6 Al 2 (OH) 16 (CO 3 )*4H 2 O)), for the low cost removal of silica from synthetic cooling tower water. However, it is not currently know if calcinated HTC has similar capabilities in realistic applications. The purpose of this study was to investigatemore » the ability of calcinated HTC to remove silica from real cooling tower water. This was investigated under both batch and continuous conditions, and in the presence of competing ions. It was determined that calcinated HTC behaved similarly in real and synthetic cooling tower water; the HTC is highly selective for the silica even in the presence of competing cations. Therefore, the data concludes that calcinated HTC is a viable anti-scaling pretreatment for the reuse of industrial wastewaters.« less
Passivation of pigment particles for thermal control coatings
NASA Technical Reports Server (NTRS)
Farley, E. P.; Sancier, K. M.; Morrison, S. R.
1973-01-01
Five powders were received for plasma calcining during this report period. The particle size using a fluid energy mill, and obtained pigments that could be plasma calcined. Optimum results are obtained in the plasma calcining of zinc orthotitanate when finely dispersed particles are subjected to a calculated plasma temperature of 1670 C. Increasing the plasma calcining time by using multiple passes through the plasma stabilized the pigment to vacuum UV irradiation was evidenced by the resulting ESR spectra but slightly decreased the whiteness of the pigment. The observed darkening is apparently associated with the formation of Ti(+3) color centers.
40 CFR 98.213 - Calculating GHG emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... emissions. You must determine CO2 process emissions from carbonate use in accordance with the procedures specified in either paragraphs (a) or (b) of this section. (a) Calculate the process emissions of CO2 using calcination fractions with Equation U-1 of this section. ER30OC09.077 Where: ECO2 = Annual CO2 mass emissions...
40 CFR 98.213 - Calculating GHG emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... emissions. You must determine CO2 process emissions from carbonate use in accordance with the procedures specified in either paragraphs (a) or (b) of this section. (a) Calculate the process emissions of CO2 using calcination fractions with Equation U-1 of this section. ER30OC09.077 Where: ECO2 = Annual CO2 mass emissions...
40 CFR 98.213 - Calculating GHG emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... emissions. You must determine CO2 process emissions from carbonate use in accordance with the procedures specified in either paragraphs (a) or (b) of this section. (a) Calculate the process emissions of CO2 using calcination fractions with Equation U-1 of this section. ER30OC09.077 Where: ECO2 = Annual CO2 mass emissions...
40 CFR 98.213 - Calculating GHG emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... emissions. You must determine CO2 process emissions from carbonate use in accordance with the procedures specified in either paragraphs (a) or (b) of this section. (a) Calculate the process emissions of CO2 using calcination fractions with Equation U-1 of this section. ER30OC09.077 Where: ECO2 = Annual CO2 mass emissions...
Research on the Treatment of Wastewater by Waste Ceramic Adsorption
NASA Astrophysics Data System (ADS)
He, Lingfeng; Zhang, Yongli; Shi, Liang
2018-03-01
The process of preparing porous ceramic with waste porcelain powder as aggregate was researched. The affect of assimilate time on cuprum removal efficiency in wastewater containing copper was investigated. The results show the water copper removal rate increased along with the augment of assimilate time, and the assimilate time is suitable for 35 min; XRD characterizations show the porous ceramic catalyst before and after calcination in active components of X ray diffraction peak position almost had no changes, and the diffraction intensity slightly changed with calcination and absorption, and diffraction peaks became sharper, and its crystallinity was improved. Baking leads to the growth of crystal particles, and the performance of porous ceramics is stable before and after adsorption.
The effect of calcination temperature on the formation and magnetic properties of ZnMn2O4 spinel
NASA Astrophysics Data System (ADS)
Hermanto, B.; Ciswandi; Afriani, F.; Aryanto, D.; Sudiro, T.
2018-03-01
The spinel based on transition-metal oxides has a typical composition of AB2O4. In this study, the ZnMn2O4 spinel was synthesized using a powder metallurgy technique. The Zn and Mn metallic powders with an atomic ratio of 1:2 were mechanically alloyed for 3 hours in aqueous solution. The mixed powder was then calcined in a muffle furnace at elevated temperature of 400, 500 and 600 °C. The X-ray Diffractometer (XRD) was used to evaluate the formation of a ZnMn2O4 spinel structure. The magnetic properties of the sample at varying calcination temperatures were characterized by a Vibrating Sample Magnetometer (VSM). The results show that the fraction of ZnMn2O4 spinel formation increases with the increase of calcination temperature. The calcination temperature also affects the magnetic properties of the samples.
NASA Technical Reports Server (NTRS)
Haertling, Gene H.; Grabert, Gregory; Gilmour, Phillip
1992-01-01
Experimental work has continued on the development and characterization of bulk and hot pressed powders and tapecast materials in the Bi-Sr-Ca-Cu-O and Tl-Ba-Ca-Cu-O systems. A process for producing warp-free, sintered, superconducting tapes of Bi composition Bi2Sr2Ca2Cu3O(x) with a mixed oxide process was established. This procedure required a triple calcination at 830 C for 24 hours and sintering at 845 C from 20 to 200 hours. Hot pressing the triple calcined powder at 845 C for 6 hours at 5000 psi yielded a dense material which on further heat treatment at 845 C for 24 hours exhibited a Tc of 108.2 K. A further improvement in the processing of the bismuth materials was achieved via a chemical coprecipitation process wherein the starting nitrate materials were coprecipitated with oxalic acid, thus yielding a more chemically homogeneous, more reactive powder. With the coprecipitated powders, only one calcine at 830 C for 12 hours and a final sinter at 845 C for 30 hours was sufficient to produce a bulk superconducting material with a Tc of 108.4 K. SAFIRE-type grounding links were successfully fabricated from sintered, tapecast, coprecipitated BSCCO 2223 powders. Compositional and processing investigations were continued on the Tl-based superconductors. Manganese and lithium additions and sintering temperature and time were examined to determine their influence on superconducting properties. It was found that lithium substitutions for copper enhance the transition temperatures while manganese additions produced deleterious effects on the superconducting properties. A suitable procedure for producing reproducible bulk and tapecast material of Tl composition Tl2Ba2Ca2Cu3O(x) was developed and used in fabricating uniform superconducting tapes. The highest transition temperature for Tl-based tapes was measured at 110.2 K. Thallium superconducting SAFIRE-type grounding links were fabricated from the tapes.
NASA Astrophysics Data System (ADS)
Huang, Liang; Ao, Lijiao; Xie, Xiaobin; Gao, Guanhui; Foda, Mohamed F.; Su, Wu
2014-12-01
Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m2 g-1). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality.Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m2 g-1). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality. Electronic supplementary information (ESI) available: Fig. S1-S5. See DOI: 10.1039/c4nr05931j
NASA Astrophysics Data System (ADS)
Drmota, A.; Žnidaršič, A.; Košak, A.
2010-01-01
Strontium hexaferrite (SrFe12O19) nanoparticles have been prepared with co-precipitation in aqueous solutions and precipitation in microemulsion system water/SDS/n-butanol/cyclohexane, using iron and strontium nitrates in different molar rations as a starting materials. The mixed Sr2+, Fe3+ hydroxide precursors obtained during the reaction between corresponding metal nitrates and tetramethylammonium hydroxide (TMAH), which served as a precipitating reagent, were calcined in a wide temperature range, from 350 °C to 1000 °C in a static air atmosphere. The influence of the Sr2+/Fe3+ molar ratio and the calcination temperature to the chemistry of the product formation, its crystallite size, morphology and magnetic properties were investigated. It was found that the formation of single phase SrFe12O19 with relatively high specific magnetization (54 Am2/kg) was achieved at the Sr2+/Fe3+ molar ration of 6.4 and calcination at 800 °C for 3h with heating/cooling rate 5 °C/min. The prepared powders were characterized using X-ray diffractometry (XRD) and specific surface area measurements (BET). The specific magnetization (DSM-10, magneto-susceptometer) of the prepared samples was measured.
Operation of a 25 KWth Calcium Looping Pilot-plant with High Oxygen Concentrations in the Calciner.
Erans, María; Jeremias, Michal; Manovic, Vasilije; Anthony, Edward J
2017-10-25
Calcium looping (CaL) is a post-combustion CO2 capture technology that is suitable for retrofitting existing power plants. The CaL process uses limestone as a cheap and readily available CO2 sorbent. While the technology has been widely studied, there are a few available options that could be applied to make it more economically viable. One of these is to increase the oxygen concentration in the calciner to reduce or eliminate the amount of recycled gas (CO2, H2O and impurities); therefore, decreasing or removing the energy necessary to heat the recycled gas stream. Moreover, there is a resulting increase in the energy input due to the change in the combustion intensity; this energy is used to enable the endothermic calcination reaction to occur in the absence of recycled flue gases. This paper presents the operation and first results of a CaL pilot plant with 100% oxygen combustion of natural gas in the calciner. The gas coming into the carbonator was a simulated flue gas from a coal-fired power plant or cement industry. Several limestone particle size distributions are also tested to further explore the effect of this parameter on the overall performance of this operating mode. The configuration of the reactor system, the operating procedures, and the results are described in detail in this paper. The reactor showed good hydrodynamic stability and stable CO2 capture, with capture efficiencies of up to 70% with a gas mixture simulating the flue gas of a coal-fired power plant.
NASA Astrophysics Data System (ADS)
Petrović, S.; Rožić, Lj; Vuković, Z.; Grbić, B.; Radić, N.; Stojadinović, S.; Vasilić, R.
2017-04-01
This article presents the comparison of structural and fractal properties of nanocrystalline titanium dioxide (TiO2) and TiO2 modified with tungstophosphoric acid (TiO2/HPW) and their impact on the photocatalytic degradation of hazardous water pollutants. TiO2 and TiO2/HPW samples were synthesized by a combined sol-gel and hydrothermal processing. The XRD analysis of pure TiO2 samples revealed that phase composition was mainly dependent on the calcination temperature, changing from amorphous TiO2 to crystalline anatase and rutile by increasing the temperature. On the other hand, the XRD of TiO2/HPW samples calcined at temperatures above 600 °C showed crystalline peaks associated to formation of WO3 and WO2.92 crystalline domains. The N2 adsorption-desorption isotherm and pore size distribution of TiO2/HPW samples detected the existence of mesoporous characteristic with very narrow bimodal pores in the mesoporous region. The structural heterogeneity of samples was analyzed by means of pore size distribution functions, while the variation in fractal dimension were determined from the nitrogen adsorption isotherms, using the modified Frenkel-Halsey-Hill method. The results demonstrate that the approach is capable of characterizing complex textures such as those present in the TiO2 and TiO2/HPW photocatalysts. Besides, the effect of calcinations condition on photocatalytic properties of the samples was also investigated. The highest efficiency with respect to methyl orange photodecomposition was observed for TiO2/HPW photocatalysts calcined at 700 °C.
Chen, Huichao; Zhao, Changsui; Ren, Qiangqiang
2012-01-01
The calcination/carbonation cycle using calcium-based sorbents appears to be a viable method for carbon dioxide (CO₂) capture from combustion gases. Recent attempts to improve the CO₂/SO₂ uptake of a calcium-based sorbent modified by using rice husk ash (RHA) in the hydration process have succeeded in enhancing its effectiveness. The optimal mole ratio of RHA to calcined limestone (M(Si/Ca)) was adjusted to 0.2. The cyclic CO₂ capture characteristics and the SO₂ uptake activity of the modified sorbent were evaluated in a calcination/pressurized carbonation reactor system. Scanning electron microscope (SEM) images and X-ray diffraction (XRD) spectrum of the sorbent were also taken to supplement the study. The results showed that the carbonation conversion was greatly increased for the sorbent with M(Si/Ca) ratio of 0.2. For this sorbent formulation the optimal operating conditions were 700-750 °C and 0.5-0.7 MPa. CO₂ absorption was not proportional to CO₂ concentration in the carbonation atmosphere, but was directly related to reaction time. The CO₂ uptake decreased in the presence of SO₂. SO₂ uptake increased, and the total calcium utilization was maintained over multiple cycles. Analysis has shown that the silicate component is evenly or well distributed, and this serves as a framework to prevent sintering, thus preserving the available microstructure for reaction. The sorbent also displayed high activity to SO₂ absorption and could be used to capture CO₂ and SO₂ simultaneously. Copyright © 2011 Elsevier Ltd. All rights reserved.
A new gel route to synthesize LiCoO{sub 2} for lithium-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, N.; Ge, X.W.; Chen, C.H.
2005-09-01
A new synthetic route, i.e. the radiated polymer gel (RPG) method, has been developed and demonstrated for the production of LiCoO{sub 2} powders. The process involved two processes: (1) obtaining a gel by polymerizing a mixed solution of an acrylic monomer and an aqueous solution of lithium and cobalt salts under {gamma}-ray irradiation conditions and (2) obtaining LiCoO{sub 2} powders by drying and calcining the gel. Thermogravimetric analysis (TGA), X-ray diffraction (XRD) and electron scanning microscopy (SEM) were employed to study the reaction process and the structures of the powders. Galvanostatic cell cycling, cyclic voltammetry and ac impedance spectroscopy weremore » used to evaluate the electrochemical properties of the LiCoO{sub 2} powders. It was found that a pure phase of LiCoO{sub 2} can be obtained at the calcination temperature of 800 deg. C. Both the particle size (micrometer range) and specific charge/discharge capacity of an RPG-LiCoO{sub 2} powder increase with increasing the concentration of its precursor solution.« less
NASA Astrophysics Data System (ADS)
Alosmanov, R. M.; Szuwarzyński, M.; Schnelle-Kreis, J.; Matuschek, G.; Magerramov, A. M.; Azizov, A. A.; Zimmermann, R.; Zapotoczny, S.
2018-04-01
Fabrication of magnetic nanocomposites containing iron oxide nanoparticles formed in situ within a phosphorus-containing polymer matrix as well as its structural characterization and its thermal degradation is reported here. Comparative structural studies of the parent polymer and nanocomposites were performed using FTIR spectroscopy, x-ray diffraction, and atomic force microscopy. The results confirmed the presence of dispersed iron oxide magnetic nanoparticles in the polymer matrix. The formed composite combines the properties of porous polymer carriers and magnetic particles enabling easy separation and reapplication of such polymeric carriers used in, for example, catalysis or environmental remediation. Studies on thermal degradation of the composites revealed that the process proceeds in three stages while a significant influence of the embedded magnetic particles on that process was observed in the first two stages. Magnetic force microscopy studies revealed that nanocomposites and its calcinated form have strong magnetic properties. The obtained results provide a comprehensive characterization of magnetic nanocomposites and the products of their calcination that are important for their possible applications as sorbents (regeneration conditions, processing temperature, disposal, etc).
NASA Astrophysics Data System (ADS)
Sun, Ya-Ping; Sun, Bao-Min; Zhai, Gang; Guo, Yong-Hong; Jia, Xiao-Wei; Kang, Zhi-Zhong
2018-05-01
Carbon nanotubes (CNTs) were synthesized via carbon monoxide decomposition with aid of various Fe/Mo-Al2O3 catalysts by V-type flame method. The influences of support calcination and competitive adsorbates on the morphology and properties of CNTs were studied. SEM, HRTEM, TPO and Raman spectroscopy were applied to investigate the morphology and microstructure of CNT products. XRD, H2-TPR were employed to characterize catalysts. The obtained results indicate that calcinated support can increase production and promote the formation of CNTs with small diameter. Utilizing citric acid as a competitive adsorbate is successful in improving the quality of CNTs. Besides, the addition of citric acid and calcinated support in catalyst enhances the catalytic growth activity. The obtained CNTs have a diameter around 4–6 nm within a narrow diameter distribution range. Raman spectrum analysis also illustrates that highly graphitized CNTs are produced on the catalyst with calcinated support and citric acid. These results suggest that support calcination and competitive adsorbate have pronounced effect on the average diameter, diameter distribution, and graphitization of CNTs, which provides a simple and effective way to tune the properties of CNTs.
Evenson, Carl; Mackay, Richard
2013-07-23
A process is disclosed for the preparation of electroactive cathode compounds useful in lithium-ion batteries, comprising exothermic mixing of low-cost precursors and calcination under appropriate conditions. The exothermic step may be a spontaneous flameless combustion reaction. The disclosed process can be used to prepare any lithium metal phosphate or lithium mixed metal phosphate as a high surface area single phase compound.
A new synthesis route to high surface area sol gel bioactive glass through alcohol washing
M. Mukundan, Lakshmi; Nirmal, Remya; Vaikkath, Dhanesh; Nair, Prabha D.
2013-01-01
Bioactive glass is one of the widely used bone repair material due to its unique properties like osteoconductivity, osteoinductivity and biodegradability. In this study bioactive glass is prepared by the sol gel process and stabilized by a novel method that involves a solvent instead of the conventional calcinations process. This study represents the first attempt to use this method for the stabilization of bioactive glass. The bioactive glass stabilized by this ethanol washing process was characterized for its physicochemical and biomimetic property in comparison with similar composition of calcined bioactive glass. The compositional similarity of the two stabilized glass powders was confirmed by spectroscopic and thermogravimetric analysis. Other physicochemical characterizations together with the cell culture studies with L929 fibroblast cells and bone marrow mesenchymal stem cells proved that the stabilization was achieved with the retention of its inherent bioactive potential. However an increase in the surface area of the glass powder was obtained as a result of this ethanol washing process and this add up to the success of the study. Hence the present study exhibits a promising route for high surface area bioactive glass for increasing biomimicity. PMID:23512012
Code of Federal Regulations, 2011 CFR
2011-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Phosphate Rock Plants § 60.401 Definitions. (a) Phosphate rock plant means any plant which produces or prepares phosphate rock product by any or..., calcining, and grinding. (b) Phosphate rock feed means all material entering the process unit, including...
Code of Federal Regulations, 2012 CFR
2012-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Phosphate Rock Plants § 60.401 Definitions. (a) Phosphate rock plant means any plant which produces or prepares phosphate rock product by any or..., calcining, and grinding. (b) Phosphate rock feed means all material entering the process unit, including...
Code of Federal Regulations, 2013 CFR
2013-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Phosphate Rock Plants § 60.401 Definitions. (a) Phosphate rock plant means any plant which produces or prepares phosphate rock product by any or..., calcining, and grinding. (b) Phosphate rock feed means all material entering the process unit, including...
Code of Federal Regulations, 2014 CFR
2014-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Phosphate Rock Plants § 60.401 Definitions. (a) Phosphate rock plant means any plant which produces or prepares phosphate rock product by any or..., calcining, and grinding. (b) Phosphate rock feed means all material entering the process unit, including...
40 CFR 98.314 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... accounting purposes including direct measurement weighing the petroleum coke fed into your process (by belt... line dioxide using plant instruments used for accounting purposes including direct measurement weighing... used to ensure the accuracy of monthly calcined petroleum coke consumption measurements. (c) You must...
NASA Astrophysics Data System (ADS)
Zhang, Yanjun; Jiang, Li; Wang, Chunru
2015-07-01
A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process, using stannous octoate as the Sn source and glucose as the C source. The as-prepared Sn@C nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries.A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process, using stannous octoate as the Sn source and glucose as the C source. The as-prepared Sn@C nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries. Electronic supplementary information (ESI) available: Detailed experimental procedure and additional characterization, including a Raman spectrum, TGA curve, N2 adsorption-desorption isotherm, TEM images and SEM images. See DOI: 10.1039/c5nr03093e
Synthesis of cage-like LiFePO4/C microspheres for high performance lithium ion batteries
NASA Astrophysics Data System (ADS)
Deng, Honggui; Jin, Shuangling; Zhan, Liang; Wang, Yanli; Qiao, Wenming; Ling, Licheng
2012-12-01
Cage-like LiFePO4 microspheres are synthesized by a solvothermal reaction-calcination process, using Fe(NO3)3·9H2O as iron source and ethylene glycol/water as co-solvent medium. The microsphere is the assembly of LiFePO4 nanoparticles with an open porous structure, thus the carbon coating can be easily introduced on the surface of the nanoparticles by the chemical vapor deposition of C2H4 during calcination process. When used as the cathode materials for the lithium-ion batteries, the resultant cage-like LiFePO4/C microsphere shows high capacity and good cycle stability (160 mAh g-1 at 0.1 C over 300 cycles), as well as good rate capability (120 mAh g-1 at 10 C). The desirable electrochemical performance can be attributed to high rate of ionic/electronic conduction and the high structural stability arising from the interconnected open pores, carbon-coated nanoparticles and microsized structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eller, P. G.; Stakebake, J. L.; Cooper, T. D.
2001-01-01
This paper evaluates potential analytical bias in application of the Loss on Ignition (LOI) technique for moisture measurement to relatively pure (plutonium assay of 80 wt.% or higher) oxides containing uranium that have been stabilized according to stabilization and storage standard DOE-STD-3013-2000 (STD-3013). An immediate application is to Rocky Flats (RF) materials derived from highgrade metal hydriding separations subsequently treated by multiple calcination cycles. Specifically evaluated are weight changes due to oxidatiodreduction of multivalent impurity oxides that could mask true moisture equivalent content measurement. Process knowledge and characterization of materials representing complex-wide materials to be stabilized and packaged according tomore » STD-3013, and particularly for the immediate RF target stream, indicate that oxides of uranium, iron and gallium are the only potential multivalent constituents expected to be present above 0.5 wt.%. The evaluation shows that of these constituents, with few exceptions, only uranium oxides can be present at a sufficient level to produce weight gain biases significant with respect to the LO1 stability test. In general, these formerly high-value, high-actinide content materials are reliably identifiable by process knowledge and measurement. Si&icant bias also requires that UO1 components remain largely unoxidized after calcination and are largely converted to U30s clsning LO1 testing at only slightly higher temperatures. Based on wellestablished literature, it is judged unlikely that this set of conditions will be realized in practice. We conclude that it is very likely that LO1 weight gain bias will be small for the immediate target RF oxide materials containing greater than 80 wt.% plutonium plus a much smaller uranium content. Recommended tests are in progress to confum these expectations and to provide a more authoritative basis for bounding LO1 oxidatiodreduction biases. LO1 bias evaluation is more difficult for lower purity materials and for fuel-type uranium-plutonium oxides. However, even in these cases testing may show that bias effects are manageable.« less
Integrated Mg/TiO2-ionic liquid system for deep desulfurization
NASA Astrophysics Data System (ADS)
Yin, Yee Cia; Kait, Chong Fai; Fatimah, Hayyiratul; Wilfred, Cecilia
2014-10-01
A series of Mg/TiO2 photocatalysts were prepared using wet impregnation method followed by calcination at 300, 400 and 500°C for 1 h. The photocatalysts were characterized using Thermal Gravimetric Analysis, Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Field Emission Scanning Electron Microscopy. The performance for deep desulfurization was investigated using model oil with 100 ppm sulfur (in the form of dibenzothiophene). The integrated system involves photocatalytic oxidation followed by ionic liquid-extraction processes. The best performing photocatalyst was 0.25wt% Mg loaded on titania calcined at 400°C (0.25Mg400), giving 98.5% conversion of dibenzothiophene to dibenzothiophene sulfone. The highest extraction efficiency of 97.8% was displayed by 1,2-diethylimidazolium diethylphosphate. The overall total sulfur removal was 96.3%.
Preparation and characterization of nanosilica from oil shale ash.
Li, Jinhong; Qian, Tingting; Tong, Lingxin; Shen, Jie
2014-05-01
Nano-sized silica powders was prepared using oil shale ash (OSA) as starting materials. A combined process was proposed for the utilization of OSA in the production of the nanosilica, including three stages: calcination, alkaline leaching and carbon dioxide separation. Effects of the calcining temperature, sodium hydroxide concentration and holding time on the desilication ratio were investigated. The microstructure and morphologies of the nano-sized silica were characterized by X-ray diffraction, transmission electron microscopy, and Brunauer-Emmett-Teller nitrogen-gas adsorption method. The results indicated that the obtained powders with particle size of about 40 nm are homegeneously dispersed and its specific surface area is 387 m2/g. The properties of the nano-sized silica powder meet the requirements of the Chinese Chemical Industry Standard HG/T 3061-1999.
Removal of oxytetracycline from aqueous solutions by hydroxyapatite as a low-cost adsorbent
NASA Astrophysics Data System (ADS)
Harja, Maria; Ciobanu, Gabriela
2017-11-01
The present paper involved a study of the adsorption process of the oxytetracycline drug from aqueous medium by using the hydroxyapatite nanopowders as adsorbent materials. The batch adsorption experiments were performed by monitoring the solution pH, contact time, adsorbent dosage and drug solution concentration. At pH 8 and ambient temperature, high oxytetracycline removal rates of about 97.58% and 89.95% for the uncalcined and calcined nanohydroxyapatites, respectively, were obtained. The kinetic studies indicate that the oxytetracycline adsorption onto nanohydroxyapatite samples follows a pseudo-second order kinetic model. The maximum adsorption capacities of 291.32 mg/g and 278.27 mg/g for uncalcined and calcined nanohydroxyapatite samples, respectively, have been found. So, the conclusion can be drawn that the hydroxyapatite shows good adsorption ability towards oxytetracycline.
NASA Astrophysics Data System (ADS)
Takano, Hiroyuki; Izumiya, Koichi; Kumagai, Naokazu; Hashimoto, Koji
2011-07-01
The active catalysts for methane formation from the gas mixture of CO 2 + 4H 2 with almost 100% methane selectivity were prepared by reduction of the oxide mixture of NiO and ZrO 2 prepared by calcination of aqueous ZrO 2 sol with Sm(NO 3) 3 and Ni(NO 3) 2. The 50 at%Ni-50 at%(Zr-Sm oxide) catalyst consisting of 50 at%Ni-50 at%(Zr + Sm) with Zr/Sm = 5 calcined at 650 or 800 °C showed the highest activity for methanation. The active catalysts were Ni supported on tetragonal ZrO 2, and the activity for methanation increased by an increase in inclusion of Sm 3+ ions substituting Zr 4+ ions in the tetragonal ZrO 2 lattice as a result of an increase in calcination temperature. However, the increase in calcination temperature decreased BET surface area, metal dispersion and hydrogen uptake due to grain growth. Thus, the optimum calcination temperature existed.
Moisan, Stéphanie; Rucay, Pierre; Ghali, Alaa; Penneau-Fontbonne, Dominique; Lavigne, Christian
2010-10-01
Silica-associated systemic sclerosis can occur in persons using calcined diatomaceous earth for filtration purpose. A limited systemic sclerosis was diagnosed in a 52-year-old male winegrower who had a combination of Raynaud's phenomenon, oesophageal dysfunction, sclerodactyly and telangectasia. The anti-centromere antibodies titre was 1/5000. The patient was frequently exposed to high atmospheric concentrations of calcined diatomaceous earth when performing the filtration of wines. Calcined diatomaceous earth is almost pure crystalline silica under the cristobalite form. The diagnosis of silica-associated limited systemic sclerosis after exposure to calcined diatomaceous earth was made. The patient's disease met the medical, administrative and occupational criteria given in the occupational diseases list 22 bis of the agriculture Social Security scheme and thence was presumed to be occupational in origin, without need to be proved. The diagnosis of occupational disease had been recognized by the compensation system of the agricultural health insurance. Copyright © 2010 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.
The effect of precipitation and calcination parameters on oxalate derived ThO2 pellets
NASA Astrophysics Data System (ADS)
Wangle, Tadeas; Tyrpekl, Vaclav; Cagno, Simone; Delloye, Thierry; Larcher, Olivier; Cardinaels, Thomas; Vleugels, Jozef; Verwerft, Marc
2017-11-01
Thorium oxalate is easy to prepare, but the derived oxide powders retain the platelet morphology of the primary oxalate. This negatively impacts packing and sintering. If powder milling is to be avoided, powder synthesis needs to be optimized. That is the goal of this paper, where different precipitation strategies were used and their effect on powder characteristics and pellet synthesis was investigated. Oxalates prepared by adding a thorium nitrate solution to an oxalic acid solution proved most promising. Further optimizing of the calcination temperature revealed that with increasing calcination temperature the packing density improved significantly. This came at the cost of decreased early stage sintering and a higher frequency of end-capping during compaction. The calcination temperature at which the highest final density can be reached was dependent on the sintering cycle. Furthermore, the ThO2 powders had less surface area and thus adsorbed less gases during storage when calcined at higher temperatures.
NASA Astrophysics Data System (ADS)
Cui, Yuanyuan; Wang, Ying; Fan, Kangnian; Dai, Wei-Lin
2013-08-01
A series of AuAg/TiO2 catalysts calcined at different temperatures were used for single-pot, solvent-free synthesis of sodium benzoate and benzoic acid through the green oxidation of benzyl alcohol. The best catalytic performance, which produced a sodium benzoate yield of up to 85%, was obtained over the AuAg/TiO2 catalyst calcined at 623 K. Systematic characterizations including BET, XRD, TEM, XPS, and UV-vis DRS and ICP were carried out to investigate the influence of calcined temperature on the structural evolution of the bimetallic AuAg/TiO2 catalysts. TEM images showed that both low (473 K) and high calcinations temperatures (973 K) resulted in larger particles. The smallest particles (8.2 nm) were obtained at 623 K. This decrease in particle size may have been induced by the re-dispersion and interaction of the bimetallic species. XRD and XPS results showed that proper calcination temperature (623 K) could promote interactions between the bimetallic particles and the TiO2 support as well as the dispersion of active bimetallic species. The higher catalytic performance of the 623 K calcined catalyst could be attributed to the smaller particle size and the synergetic interaction between nano-bimetallic gold and silver species.
NASA Astrophysics Data System (ADS)
Fan, Jiajie; Zhao, Li; Yu, Jiaguo; Liu, Gang
2012-09-01
TiO2-based composite nanotubes, based on an in situ template dissolution method, were one-step fabricated in a mixed aqueous solution of ammonium hexafluorotitanate and boric acid using ZnO nanorods as templates, and then the samples were calcined at different temperatures. The photocatalytic activity of the samples was evaluated by photocatalytic decoloration of Methyl Orange (MO) aqueous solution at ambient temperature under UV light. The results showed that the prepared sample possessed nanoscale tubular morphology with a wall thickness of ca. 30-50 nm, inner diameters of ca. 50-150 nm and lengths of ca. 400-2000 nm. The calcined samples exhibited excellent stabilization of the anatase phase in a wide temperature range of 300-800 °C. The un-calcined and calcined samples possessed hierarchically macro-mesoporous structures. The sample calcined at 600 °C exhibited the highest photocatalytic activity, corresponding to the maximal formation rate of \\z.rad OH on the photocatalyst. This is attributed to the improvement of anatase TiO2 crystallization, the formation of multi-phase structures including anatase, cubic Zn2TiO4, hexagonal ZnTiO3 and cubic ZnTiO3, and the presence of hierarchically macro-mesoporous structures.
Copper-encapsulated vertically aligned carbon nanotube arrays.
Stano, Kelly L; Chapla, Rachel; Carroll, Murphy; Nowak, Joshua; McCord, Marian; Bradford, Philip D
2013-11-13
A new procedure is described for the fabrication of vertically aligned carbon nanotubes (VACNTs) that are decorated, and even completely encapsulated, by a dense network of copper nanoparticles. The process involves the conformal deposition of pyrolytic carbon (Py-C) to stabilize the aligned carbon-nanotube structure during processing. The stabilized arrays are mildly functionalized using oxygen plasma treatment to improve wettability, and they are then infiltrated with an aqueous, supersaturated Cu salt solution. Once dried, the salt forms a stabilizing crystal network throughout the array. After calcination and H2 reduction, Cu nanoparticles are left decorating the CNT surfaces. Studies were carried out to determine the optimal processing parameters to maximize Cu content in the composite. These included the duration of Py-C deposition and system process pressure as well as the implementation of subsequent and multiple Cu salt solution infiltrations. The optimized procedure yielded a nanoscale hybrid material where the anisotropic alignment from the VACNT array was preserved, and the mass of the stabilized arrays was increased by over 24-fold because of the addition of Cu. The procedure has been adapted for other Cu salts and can also be used for other metal salts altogether, including Ni, Co, Fe, and Ag. The resulting composite is ideally suited for application in thermal management devices because of its low density, mechanical integrity, and potentially high thermal conductivity. Additionally, further processing of the material via pressing and sintering can yield consolidated, dense bulk composites.
pH sensitive silica nanotubes as rationally designed vehicles for NSAIDs delivery.
Sousa, Célia T; Nunes, Cláudia; Proença, Mariana P; Leitão, Diana C; Lima, José L F C; Reis, Salette; Araújo, João P; Lúcio, Marlene
2012-06-01
A novel pH-sensitive drug delivery system based on functionalized silica nanotubes was developed for the incorporation of non-steroidal anti-inflammatory drugs (NSAIDs), aimed at a tailored drug release in acidic conditions characteristic of inflamed tissues. Silica nanotubes (SNTs) were synthesized by a nanoporous alumina template assisted sol-gel method. Inner surfaces were physically and chemically modified to improve both the functionalization and subsequent incorporation of the drug. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM) were used to characterize the designed nanocarriers and their functionalization. To achieve the highest degree of functionalization, three types of aminosilanes were tested and calcination conditions were optimized. APTES was shown to be the most effective aminosilane regarding the functionalization of the SNTs' inner surface and an adequate calcination temperature (220°C) was found to attain mechanical stability without compromising functionalization efficiency. Finally, the incorporation of naproxen into the nanotubes was accessed by fluorescence measurements and drug release studies were performed, revealing that the electrostatic linkage ensures effective release of the drug in the acidic pH typical of inflamed cells, while maintaining the SNT-drug conjugates stable at the typical bloodstream pH. Copyright © 2012 Elsevier B.V. All rights reserved.
Bo, Arixin; Sarina, Sarina; Liu, Hongwei; Zheng, Zhanfeng; Xiao, Qi; Gu, Yuantong; Ayoko, Godwin A; Zhu, Huaiyong
2016-06-29
Hydrotalcite (HT)-based materials are usually applied to capture anionic pollutants in aqueous solutions. Generally considered anion exchangers, their ability to capture radioactive cations is rarely exploited. In the present work, we explored the ability of pristine and calcined HT getters to effectively capture radioactive cations (Sr(2+) and Ba(2+)) which can be securely stabilized at the getter surface. It is found that calcined HT outperforms its pristine counterpart in cation removal ability. Meanwhile, a novel anion removal mechanism targeting radioactive I(-) is demonstrated. This approach involves HT surface modification with silver species, namely, Ag2CO3 nanoparticles, which can attach firmly on HT surface by forming coherent interface. This HT-based anion getter can be further used to capture I(-) in aqueous solution. The observed I(-) uptake mechanism is distinctly different from the widely reported ion exchange mechanism of HT and much more efficient. As a result of the high local concentrations of precipitants on the getters, radioactive ions in water can be readily immobilized onto the getter surface by forming precipitates. The secured ionic pollutants can be subsequently removed from water by filtration or sedimentation for safe disposal. Overall, these stable, inexpensive getters are the materials of choice for removal of trace ionic pollutants from bulk radioactive liquids, especially during episodic environmental crisis.
Xekoukoulotakis, N P; Mantzavinos, D; Dillert, R; Bahnemann, D
2010-01-01
Boron-doped TiO(2) photocatalysts were synthesized employing a sol-gel method. Boric acid was used as the boron source and titanium tetra-isopropoxide as the TiO(2) precursor, both dissolved in isopropanol. Nominal boron to titanium atomic ratios were in the range 0 to 4%. After the hydrolysis step, two different procedures for the recovery of TiO(2) were followed, based on either centrifugation of the resulting reaction mixture or evaporation of the solvent under reduced pressure, both followed by a subsequent calcination step performed at 400 or 500 degrees C. The photocatalytic efficiency of the synthesized photocatalysts was assessed by measuring the photocatalytic mineralization of dichloroacetic acid in aqueous suspensions under UV-A irradiation and it was compared to the corresponding efficiency of the commercial Degussa P 25 TiO(2). Photocatalytic efficiency of the synthesized catalysts was higher for the boron-doped TiO(2) synthesized at 2% boron to titanium nominal atomic ratio, centrifuged after the hydrolysis step followed by calcinations at 400 degrees C. However, all photocatalysts synthesized in this work showed lower photocatalytic activity than Degussa P 25 TiO(2), thus highlighting the need of further improvements of the proposed method.
NASA Astrophysics Data System (ADS)
Gao, Pengran; Liu, Yi; Bu, Xianfu; Hu, Meng; Dai, Yuan; Gao, Xiaorui; Lei, Lixu
2013-11-01
Lead acid batteries have been widely used and have dominated the global secondary battery market. It is very important to recycle the spent batteries efficiently to eliminate possible pollution and to ensure sustainable production. In this paper, we report our investigation on the solvothermal treatment of PbO2, which is one of the model compounds for the positive active mixture, in methanol and the subsequent calcination of its product. The results show that the solvothermal treatment of PbO2 in pure methanol at 140 °C can produce a mixture of PbO and lead oxide carbonate, which can be calcined at a temperature below 500 °C to produce α-PbO. The as-prepared PbO powders are rod-like particles of about 0.5 micrometer in diameter and several micrometers in length, which can achieve a high discharge capacity of 165 mAh g-1 at the discharge current density of 5 mA g-1, and more than 90 mAh g-1 at 200 mA g-1 with excellent cycle stability. This study demonstrates a new way for the reuse of lead dioxide in spent lead acid batteries to produce highly active PbO.
Srirodpai, Onruthai; Wootthikanokkhan, Jatuphorn; Nawalertpanya, Saiwan; Yuwawech, Kitti; Meeyoo, Vissanu
2017-01-01
Thermochromic films based on vanadium dioxide (VO2)/ethylene vinyl acetate copolymer (EVA) composite were developed. The monoclinic VO2 particles was firstly prepared via hydrothermal and calcination processes. The effects of hydrothermal time and tungsten doping agent on crystal structure and morphology of the calcined metal oxides were reported. After that, 1 wt % of the prepared VO2 powder was mixed with EVA compound, using two different mixing processes. It was found that mechanical properties of the EVA/VO2 films prepared by the melt process were superior to those of which prepared by the solution process. On the other hand, percentage visible light transmittance of the solution casted EVA/VO2 film was greater than that of the melt processed composite film. This was related to the different gel content of EVA rubber and state of dispersion and distribution of VO2 within the polymer matrix phase. Thermochromic behaviors and heat reflectance of the EVA/VO2 film were also verified. In overall, this study demonstrated that it was possible to develop a thermochromic film using the polymer composite approach. In this regard, the mixing condition was found to be one of the most important factors affecting morphology and thermo-mechanical properties of the films. PMID:28772413
Srirodpai, Onruthai; Wootthikanokkhan, Jatuphorn; Nawalertpanya, Saiwan; Yuwawech, Kitti; Meeyoo, Vissanu
2017-01-11
Thermochromic films based on vanadium dioxide (VO₂)/ethylene vinyl acetate copolymer (EVA) composite were developed. The monoclinic VO₂ particles was firstly prepared via hydrothermal and calcination processes. The effects of hydrothermal time and tungsten doping agent on crystal structure and morphology of the calcined metal oxides were reported. After that, 1 wt % of the prepared VO₂ powder was mixed with EVA compound, using two different mixing processes. It was found that mechanical properties of the EVA/VO₂ films prepared by the melt process were superior to those of which prepared by the solution process. On the other hand, percentage visible light transmittance of the solution casted EVA/VO₂ film was greater than that of the melt processed composite film. This was related to the different gel content of EVA rubber and state of dispersion and distribution of VO₂ within the polymer matrix phase. Thermochromic behaviors and heat reflectance of the EVA/VO₂ film were also verified. In overall, this study demonstrated that it was possible to develop a thermochromic film using the polymer composite approach. In this regard, the mixing condition was found to be one of the most important factors affecting morphology and thermo-mechanical properties of the films.
NASA Astrophysics Data System (ADS)
Zhu, Mengnan; Kong, Xiangzhong; Yang, Hulin; Zhu, Ting; Liang, Shuquan; Pan, Anqiang
2018-01-01
Antimony (Sb) has been intensively investigated as a promising anode material for sodium ion batteries (SIBs) in recent years. However, bulk Sb particles usually suffer from excessive volume expansion thus leading to dramatic capacity decay after cycling. To address this issue, Sb has been uniformly decorated on Polyacrylonitrile (PAN) derived carbon nanofibers (PCFs) via a simple chemical deposition strategy to form a one-dimensional (1D) core-shell nanostructure of Sb@PCFs. PCFs were first derived from electrospun PAN fibers and treated with subsequent calcination. The PCFs constructed an interwoven carbon network were later employed for Sb deposition, which can effectively alleviate aggregation or further cracking of Sb nanoparticles occurred in electrochemical kinetic process. The as-obtained Sb@PCFs nanocomposites demonstrated excellent cycling stability with good rate performances. This carefully designed core-shell nanostructure of antimony nanoparticles wrapped PCFs are responsible for good electrochemical Na-ion storage. Moreover, the 1D nanostructure manage to pave pathways for fast ions transfer during charge-discharge, which could extra contribute to the enhanced SIBs performances.
Zhan, Wangcheng; He, Qian; Liu, Xiaofei; ...
2016-11-22
Supported gold (Au) nanocatalysts hold great promise for heterogeneous catalysis; however, their practical application is greatly hampered by poor thermodynamic stability. Herein, a general synthetic strategy is reported where discrete metal nanoparticles are made resistant to sintering, preserving their catalytic activities in high-temperature oxidation processes. Taking advantage of the unique coating chemistry of dopamine, sacrificial carbon layers are constructed on the material surface, stabilizing the supported catalyst. Upon annealing at high temperature under an inert atmosphere, the interactions between support and metal nanoparticle are dramatically enhanced, while the sacrificial carbon layers can be subsequently removed through oxidative calcination in air.more » Owing to the improved metal-support contact and strengthened electronic interactions, the resulting Au nanocatalysts are resistant to sintering and exhibit excellent durability for catalytic combustion of propylene at elevated temperatures. Moreover, the facile synthetic strategy can be extended to the stabilization of other supported catalysts on a broad range of supports, providing a general approach to enhancing the thermal stability and sintering resistance of supported nanocatalysts.« less
TiO₂ Nanobelt@Co₉S₈ Composites as Promising Anode Materials for Lithium and Sodium Ion Batteries.
Zhou, Yanli; Zhu, Qian; Tian, Jian; Jiang, Fuyi
2017-09-02
TiO₂ anodes have attracted great attention due to their good cycling stability for lithium ion batteries and sodium ion batteries (LIBs and SIBs). Unfortunately, the low specific capacity and poor conductivity limit their practical application. The mixed phase TiO₂ nanobelt (anatase and TiO₂-B) based Co₉S₈ composites have been synthesized via the solvothermal reaction and subsequent calcination. During the formation process of hierarchical composites, glucose between TiO₂ nanobelts and Co₉S₈ serves as a linker to increase the nucleation and growth of sulfides on the surface of TiO₂ nanobelts. As anode materials for LIBs and SIBs, the composites combine the advantages of TiO₂ nanobelts with those of Co₉S₈ nanomaterials. The reversible specific capacity of TiO₂ nanobelt@Co₉S₈ composites is up to 889 and 387 mAh·g -1 at 0.1 A·g -1 after 100 cycles, respectively. The cooperation of excellent cycling stability of TiO₂ nanobelts and high capacities of Co₉S₈ nanoparticles leads to the good electrochemical performances of TiO₂ nanobelt@Co₉S₈ composites.
Surface Structure and Photocatalytic Activity of Nano-TiO2 Thin Film
Controlled titanium dioxide (TiO2) thin films were deposited on stainless steel surfaces using flame aerosol synthetic technique, which is a one-step coating process, that doesn’t require further calcination. Solid state characterization of the coatings was conducted by different...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This document contains information about the research programs being conducted at the Savannah River Plant. Topics of discussion include: thermal cycling absorption process, development of new alloys, ion exchange, oxalate precipitation, calcination, environmental research, remedial action, ecological risk assessments, chemical analysis of salt cakes, natural phenomena hazards assessment, and sampling of soils and groundwater.
PROCESSING OF RADIOACTIVE WASTE
Johnson, B.M. Jr.; Barton, G.B.
1961-11-14
A process for treating radioactive waste solutions prior to disposal is described. A water-soluble phosphate, borate, and/or silicate is added. The solution is sprayed with steam into a space heated from 325 to 400 deg C whereby a powder is formed. The powder is melted and calcined at from 800 to 1000 deg C. Water vapor and gaseous products are separated from the glass formed. (AEC)
Pulsed atmospheric fluidized bed combustor apparatus and process
Mansour, Momtaz N.
1992-01-01
A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g. organic and medical waste, drying, calcining and the like.
Furuzono, Tsutomu; Motaharul, Mazumder; Kogai, Yasumichi; Azuma, Yoshinao; Sawa, Yoshiki
2015-05-01
Dispersible hydroxyapatite (HAp) nanoparticles are very useful for applying a monolayer to implantable medical devices using the nano-coating technique. To improve tolerance to infection on implanted medical devices, silver-doped HAp (Ag-HAp) nanoparticles with dispersiblity and crystallinity were synthesized, avoiding calcination-induced sintering, and evaluated for antibacterial activity. The Ca10-xAgx(PO4)6(OH)2 with x = 0 and 0.2 were prepared by wet chemical processing at 100°C. Before calcination at 700°C for 2 h, two kinds of anti-sintering agents, namely a Ca(NO3)2 (Ca salt) and a polyacrylic acid/Ca salt mixture (PAA-Ca), were used. Escherichia coli was used to evaluate the antibacterial activity of the nanopowder. When PAA-Ca was used as an anti-sintering agent in calcination to prepare the dispersible nanoparticles, strong metallic Ag peaks were observed at 38.1° and 44.3° (2θ) in the X-ray diffraction (XRD) profile. However, the Ag peak was barely observed when Ca salt was used alone as the anti-sintering agent. Thus, using Ca salt alone was more effective for preparation of dispersible Ag-HAp than PAA-Ca. The particle average size of Ag-HAp with 0.5 mol% of Ag content was found to be 325 ± 70 nm when the formation of large particleaggregations was prevented, as determined by dynamic light scattering instrument. The antibacterial activity of the Ag-HAp nanoparticles possessing 0.5 mol% against E. coli was greater than 90.0%. Dispersible and crystalline nano Ag-HAp can be obtained by using Ca salt alone as an anti-sintering agent. The nanoparticles showed antibacterial activity.
Characterization of the enhancement effect of Na2CO3 on the sulfur capture capacity of limestones.
Laursen, Karin; Kern, Arnt A; Grace, John R; Lim, C Jim
2003-08-15
It has been known for a long time that certain additives (e.g., NaCl, CaCl2, Na2CO3, Fe2O3) can increase the sulfur dioxide capture-capacity of limestones. In a recent study we demonstrated that very small amounts of Na2CO3 can be very beneficial for producing sorbents of very high sorption capacities. This paper explores what contributes to these significant increases. Mercury porosimetry measurements of calcined limestone samples reveal a change in the pore-size from 0.04-0.2 microm in untreated samples to 2-10 microm in samples treated with Na2CO3--a pore-size more favorable for penetration of sulfur into the particles. The change in pore-size facilitates reaction with lime grains throughout the whole particle without rapid plugging of pores, avoiding premature change from a fast chemical reaction to a slow solid-state diffusion controlled process, as seen for untreated samples. Calcination in a thermogravimetric reactor showed that Na2CO3 increased the rate of calcination of CaCO3 to CaO, an effect which was slightly larger at 825 degrees C than at 900 degrees C. Peak broadening analysis of powder X-ray diffraction data of the raw, calcined, and sulfated samples revealed an unaffected calcite size (approximately 125-170 nm) but a significant increase in the crystallite size for lime (approximately 60-90 nm to approximately 250-300 nm) and less for anhydrite (approximately 125-150 nm to approximately 225-250 nm). The increase in the crystallite and pore-size of the treated limestones is attributed to an increase in ionic mobility in the crystal lattice due to formation of vacancies in the crystals when Ca is partly replaced by Na.
Ye, Mao; Sun, Mingming; Chen, Xu; Feng, Yanfang; Wan, Jinzhong; Liu, Kuan; Tian, Da; Liu, Manqiang; Wu, Jun; Schwab, Arthur P; Jiang, Xin
2017-05-01
High abundance of human pathogen and antibiotic resistance genes (ARGs) in landfill leachate has become an emerging threat against human health. Therefore, sulfate- and calcination-modified eggshells as green agricultural bioresource were applied to test the feasibility of removing pathogenic bacteria and ARGs from leachate. The highest removal of Escherichia coli (E. coil) and gentamycin resistant gene (gmrA) from artificial contaminated landfill leachate was achieved by the application of eggshell with combined treatment of sulfate and calcination. The 16S and gmrA gene copies of E. coil declined significantly from 1.78E8±8.7E6 and 4.12E8±5.9E6 copies mL -1 to 1.32E7±2.6E6 and 2.69E7±7.2E6 copies mL -1 , respectively, within 24h dynamic adsorption equilibrium process (p<0.05). Moreover, according to the Langmuir kinetic model, the greatest adsorption amount (1.56×10 9 CFU E. coil per gram of modified eggshells) could be obtained at neutral pH of 7.5. The optimal adsorption eggshells were then screened to the further application in three typical landfill leachates in Nanjing, eastern China. Significant decrease in species and abundance of pathogenic bacteria and ARGs (tet, sul, erm, qnr, and ampC) indicated its great efficiency to purify landfill leachates. This study demonstrated that sulfate-calcined eggshells can be an environmentally-friendly and highly efficient bioadsorbent to the management of reducing dissemination risk of pathogen and ARGs in landfill leachate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Small-scale studies of roasted ore waste reveal extreme ranges of stable mercury isotope signatures
NASA Astrophysics Data System (ADS)
Smith, Robin S.; Wiederhold, Jan G.; Jew, Adam D.; Brown, Gordon E.; Bourdon, Bernard; Kretzschmar, Ruben
2014-07-01
Active and closed Hg mines are significant sources of Hg contamination to the environment, mainly due to large volumes of mine waste material disposed of on-site. The application of Hg isotopes as source tracer from such contaminated sites requires knowledge of the Hg isotope signatures of different materials potentially released to the environment. Previous work has shown that calcine, the waste residue of the on-site ore roasting process, can exhibit distinct Hg isotope signatures compared with the primary ore. Here, we report results from a detailed small-scale study of Hg isotope variations in calcine collected from the closed New Idria Hg mine, San Benito County, CA, USA. The calcine samples exhibited different internal layering features which were investigated using optical microscopy, micro X-ray fluorescence, micro X-ray absorption spectroscopy (μ-XAS), and stable Hg isotope analysis. Significant Fe, S, and Hg concentration gradients were found across the different internal layers. Isotopic analyses revealed an extreme variation with pronounced isotopic gradients across the internal layered features. Overall, δ202Hg (±0.10‰, 2 SD) describing mass-dependent fractionation (MDF) ranged from -5.96 to 14.49‰, which is by far the largest range of δ202Hg values reported for any environmental sample. In addition, Δ199Hg (±0.06‰, 2 SD) describing mass-independent fractionation (MIF) ranged from -0.17 to 0.21‰. The μ-XAS analyses suggested that cinnabar and metacinnabar are the dominant Hg-bearing phases in the calcine. Our results demonstrate that the incomplete roasting of HgS ores in Hg mines can cause extreme mass-dependent Hg isotope fractionations at the scale of individual calcine pieces with enrichments in both light and heavy Hg isotopes relative to the primary ore signatures. This finding has important implications for the application of Hg isotopes as potential source tracers for Hg released to the environment from closed Hg mines and highlights the need for detailed source signature identification.
7. WASTE CALCINING FACILITY, LOOKING AT NORTH END OF BUILDING. ...
7. WASTE CALCINING FACILITY, LOOKING AT NORTH END OF BUILDING. CAMERA FACING SOUTH. TENT-ROOFED COVER IN RIGHT OF VIEW IS A TEMPORARY WEATHER-PROOFING SHELTER OVER THE BLOWER PIT IN CONNECTION WITH DEMOLITION PROCEDURES. SMALL BUILDING CPP-667 IN CENTER OF VIEW WAS USED FOR SUPPLEMENTARY OFFICE SPACE BY HEALTH PHYSICISTS AND OTHERS. INEEL PROOF SHEET NOT NUMBERED. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
A modified sulfate process to lunar oxygen
NASA Technical Reports Server (NTRS)
Sullivan, Thomas A.
1992-01-01
A modified sulfate process which produces oxygen from iron oxide-bearing minerals in lunar soil is under development. Reaction rates of ilmenite in varying strength sulfuric acid have been determined. Quantitative conversion of ilmenite to ferrous sulfate was observed over a range of temperatures and concentrations. Data has also been developed on the calcination of by-product sulfates. System engineering for overall operability and simplicity has begun, suggesting that a process separating the digestion and sulfate dissolution steps may offer an optimum process.
Li, Xiao-Yun; Chen, Li-Hua; Rooke, Joanna Claire; Deng, Zhao; Hu, Zhi-Yi; Wang, Shao-Zhuan; Wang, Li; Li, Yu; Krief, Alain; Su, Bao-Lian
2013-03-15
Mesoporous TiO(2) with a hierarchically 3D dendrimeric nanostructure comprised of nanoribbon building units has been synthesized via a spontaneous self-formation process from various titanium alkoxides. These hierarchically 3D dendrimeric architectures can be obtained by a very facile, template-free method, by simply dropping a titanium butoxide precursor into methanol solution. The novel configuration of the mesoporous TiO(2) nanostructure in nanoribbon building units yields a high surface area. The calcined samples show significantly enhanced photocatalytic activity and degradation rates owing to the mesoporosity and their improved crystallinity after calcination. Furthermore, the 3D dendrimeric architectures can be preserved after phase transformation from amorphous TiO(2) to anatase or rutile, which occurs during calcination. In addition, the spontaneous self-formation process of mesoporous TiO(2) with hierarchically 3D dendrimeric architectures from the hydrolysis and condensation reaction of titanium butoxide in methanol has been followed by in situ optical microscopy (OM), revealing the secret on the formation of hierarchically 3D dendrimeric nanostructures. Moreover, mesoporous TiO(2) nanostructures with similar hierarchically 3D dendrimeric architectures can also be obtained using other titanium alkoxides. The porosities and nanostructures of the resultant products were characterized by SEM, TEM, XRD, and N(2) adsorption-desorption measurements. The present work provides a facile and reproducible method for the synthesis of novel mesoporous TiO(2) nanoarchitectures, which in turn could herald the fabrication of more efficient photocatalysts. Copyright © 2012 Elsevier Inc. All rights reserved.
40 CFR 63.605 - Monitoring requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the mass flow of phosphorus-bearing feed material to the process. The monitoring system shall have an... either the mass flow of phosphorus-bearing feed material to the dryer or calciner, or the mass flow of... total mass rate in metric ton/hour of phosphorus bearing feed using a monitoring system for measuring...
40 CFR 63.605 - Monitoring requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the mass flow of phosphorus-bearing feed material to the process. The monitoring system shall have an... either the mass flow of phosphorus-bearing feed material to the dryer or calciner, or the mass flow of... total mass rate in metric ton/hour of phosphorus bearing feed using a monitoring system for measuring...
A simple and innovative process is described for the eco-friendly preparation of ceria foams via the carboxymethylcellulose gelation by Ce4+ cations; heat treatment of the ensuing xerogels produces ceria foams. The influence of the concentration of cerium and of the calcination t...
Process for solidifying high-level nuclear waste
Ross, Wayne A.
1978-01-01
The addition of a small amount of reducing agent to a mixture of a high-level radioactive waste calcine and glass frit before the mixture is melted will produce a more homogeneous glass which is leach-resistant and suitable for long-term storage of high-level radioactive waste products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javad Abbasian; Armin Hassanzadeh Khayyat; Rachid B. Slimane
The specific objective of this project was to develop physically durable and chemically regenerable MgO-based sorbents that can remove carbon dioxide from raw coal gas at operating condition prevailing in IGCC processes. A total of sixty two (62) different sorbents were prepared in this project. The sorbents were prepared either by various sol-gel techniques (22 formulations) or modification of dolomite (40 formulations). The sorbents were prepared in the form of pellets and in granular forms. The solgel based sorbents had very high physical strength, relatively high surface area, and very low average pore diameter. The magnesium content of the sorbentsmore » was estimated to be 4-6 % w/w. To improve the reactivity of the sorbents toward CO{sub 2}, The sorbents were impregnated with potassium salts. The potassium content of the sorbents was about 5%. The dolomite-based sorbents were prepared by calcination of dolomite at various temperature and calcination environment (CO{sub 2} partial pressure and moisture). Potassium carbonate was added to the half-calcined dolomite through wet impregnation method. The estimated potassium content of the impregnated sorbents was in the range of 1-6% w/w. In general, the modified dolomite sorbents have significantly higher magnesium content, larger pore diameter and lower surface area, resulting in significantly higher reactivity compared to the sol-gel sorbents. The reactivities of a number of sorbents toward CO{sub 2} were determined in a Thermogravimetric Analyzer (TGA) unit. The results indicated that at the low CO{sub 2} partial pressures (i.e., 1 atm), the reactivities of the sorbents toward CO{sub 2} are very low. At elevated pressures (i.e., CO{sub 2} partial pressure of 10 bar) the maximum conversion of MgO obtained with the sol-gel based sorbents was about 5%, which corresponds to a maximum CO{sub 2} absorption capacity of less than 1%. The overall capacity of modified dolomite sorbents were at least one order of magnitude higher than those of the sol-gel based sorbents. The results of the tests conducted with various dolomite-based sorbent indicate that the reactivity of the modified dolomite sorbent increases with increasing potassium concentration, while higher calcination temperature adversely affects the sorbent reactivity. Furthermore, the results indicate that as long as the absorption temperature is well below the equilibrium temperature, the reactivity of the sorbent improves with increasing temperature (350-425 C). As the temperature approaches the equilibrium temperature, because of the significant increase in the rate of reverse (i.e., regeneration) reaction, the rate of CO{sub 2} absorption decreases. The results of cyclic tests show that the reactivity of the sorbent gradually decreases in the cyclic process. To improve long-term durability (i.e., reactivity and capacity) of the sorbent, the sorbent was periodically re-impregnated with potassium additive and calcined. The results indicate that, in general, re-treatment improves the performance of the sorbent, and that, the extent of improvement gradually decreases in the cyclic process. The presence of steam significantly enhances the sorbent reactivity and significantly decreases the rate of decline in sorbent deactivation in the cyclic process.« less
Effects of Coal Gangue on Cement Grouting Material Properties
NASA Astrophysics Data System (ADS)
Liu, J. Y.; Chen, H. X.
2018-05-01
The coal gangue is one of the most abundant industrial solid wastes and pollute source of air and water. The use of coal gangue in the production of cement grouting material comforms to the basic state policy of environment protection and the circular using of natural resources. Through coal gangue processing experiment, coal gangue cement grouting materials making test, properties detection of properties and theoretical analysis, the paper studied the effects of coal gangue on the properties of cement grouting materials. It is found that at the range of 600 to 700 °C, the fluidity and the compressive and flexural strengths of the cement grouting materials increase with the rising up of the calcination temperatures of coal gangue. The optimum calcination temperature is around 700 °C. The part substitution of cement by the calcined coal gangue in the cement grouting material will improve the mechanical properties of the cement grouting material, even thought it will decrease its fluidity. The best substitution amount of cement by coal gangue is about 30%. The fluidity and the long term strength of the ordinary silicate cement grouting material is obviously higher than that of the sulphoaluminate cement one as well as that of the silicate-sulphoaluminate complex cement one.
Lee, Sang-Jin; Jung, Choong-Hwan
2012-01-01
Nano-sized yttria (Y2O3) powders were successfully synthesized at a low temperature of 400 degrees C by a simple polymer solution route. PVA polymer, as an organic carrier, contributed to an atom-scale homogeneous precursor gel and it resulted in fully crystallized, nano-sized yttria powder with high specific surface area through the low temperature calcination. In this process, the content of PVA, calcination temperature and heating time affected the microstructure and crystallization behavior of the powders. The development of crystalline phase and the final particle size were strongly dependant on the oxidation reaction from the polymer burn-out step and the PVA content. In this paper, the PVA solution technique for the fabrication of nano-sized yttria powders is introduced. The effects of PVA content and holding time on the powder morphology and powder specific surface area are also studied. The characterization of the synthesized powders is examined by using XRD, DTA/TG, SEM, TEM and nitrogen gas adsorption. The yttria powder synthesized from the PVA content of 3:1 ratio and calcined at 400 degrees C had a crystallite size of about 20 nm or less with a high surface areas of 93.95-120.76 m2 g(-1).
Properties of carbonate rocks related to SO2 reactivity
Borgwardt, R.H.; Harvey, R.D.
1972-01-01
Petrographic examination and grain size-distribution measurements were made on 11 specimens representing a broad spectrum of limestones and dolomites. The SO2 reaction kinetics of calcines prepared from each rock type were determined at 980??C. Stones of various geological types yield calcines of distinctly different physical structures that show correspondingly large differences in both rate of reaction and capacity for SO2 sorption. Pore size and particle size together determine the extent to which the interiors of individual particles react. Particles smaller than 0.01 cm with pores larger than 0.1 ?? react throughout their internal pore structure at a rate directly proportional to the BET surface. The rate decays exponentially as sulfation proceeds until the pores are filled with reaction product. The ultimate capacity of small particles is determined by the pore volume available for product accumulation, which is generally equivalent to about 50% conversion of the CaO in limestones. Variations in effectiveness of carbonate rocks for flue gas desulfurization are explained by the physical properties of their calcines, which are related to the crystal structure of the original rock. The high reaction rates achieved in the limestone injection process apparently result from the large surface area existing for short periods immediately following the dissociation of CaCO3.
Study of TiO2 anatase nano and microstructures with dominant {001} facets for NO oxidation.
Sofianou, Maria-Veronica; Trapalis, Christos; Psycharis, Vassils; Boukos, Nikos; Vaimakis, Tiverios; Yu, Jiaguo; Wang, Wenguang
2012-11-01
TiO(2) anatase nanoplates and hollow microspheres were fabricated by a solvothermal-hydrothermal method using titanium isopropoxide as a titanium precursor and hydrofluoric acid as a capping agent in order to enhance the formation of the {001} crystal facets of the anatase nanocrystals. These different morphological structures of TiO(2) anatase can be achieved by only changing the solvent, keeping the amount of the precursor and of the capping agent identical during the solvothermal-hydrothermal process. After calcination of the samples, the adsorbed fluoride atoms on the {001} crystal facets of the TiO(2) anatase nanocrystals were completely removed from their surface according to XPS analysis. The calcined TiO(2) anatase structures were higher crystallized and the specific surface area of the catalysts increased, enhancing their photocatalytic activity in comparison to the non-calcined TiO(2) anatase structures. All TiO(2) anatase samples with adsorbed as well as non-adsorbed fluoride atoms on their {001} crystal facets, exhibited a higher photonic efficiency than Degussa P25, which was used as a reference. The fluoride free TiO(2) anatase nanoplates exhibited the best photocatalytic activity in oxidizing the NO gas to NO(2) and NO(3) (-).
Reactivity improvement of Ca(OH)2 sorbent using diatomaceous earth (DE) from Aceh Province
NASA Astrophysics Data System (ADS)
Mariana, M.; Mahidin, M.; Mulana, F.; Agam, T.; Hafdiansyah, F.
2018-04-01
In this study, the diatomaceous earth (DE) from Aceh Province was used to increase the reactivity of Ca(OH)2sorbent. The high silica (SiO2) content of about 97% in the diatomaceous earth allows the increasing reactivity of Ca(OH)2sorbent by forming calcium silicate hydrate (CSH). The CSH improved the porosity characteristic of the sorbent. The improvement process was performed by mixing Ca(OH)2sorbent, diatomaceous earth and water in a beaker glass at the Ca(OH)2/DE weight ratio of 1:10 for 2 hand then dried at 120 °C for 24 h. The dried sorbent was calcined at 500 °C and 800 °C for 2 h. The activated sorbent was characterized using Scanning Electron Microscopy (SEM) for the morphological properties; X- Ray Diffraction (XRD) for the materials characteristics. The adsorption capacity of thesorbent was tested by methylene blue adsorption. The results showed that the Ca(OH)2/DEsorbent had a higher porosity than the Ca(OH)2 adsorbent.The results also showed that Ca(OH)2/DE which was calcined at higher temperature of 800 °C had a higher adsorption capacity compared to Ca(OH)2/DE which was calcined at lower temperature of 500 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machovsky, Michal, E-mail: machovsky@ft.utb.cz; Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, Nam. T.G. Masaryka 275, 762 72 Zlin; Kuritka, Ivo, E-mail: ivo@kuritka.net
2013-10-15
Graphical abstract: - Highlights: • Zinc hydroxy sulphate was synthesized in 3 min via microwave hydrothermal route. • Zinc hydroxy sulphate was converted into mesh like porous ZnO by calcining at 900°. • The process of transformation is topotactic. - Abstract: Layered zinc hydroxide sulphate (ZHS) was prepared by microwave-assisted hydrothermal precipitation of zinc sulphate monohydrate with hexamethylenetetramine. Under ambient conditions, the structure of ZHS determined by X-ray diffraction (XRD) was found to be a mixture of zinc hydroxide sulphate pentahydrate Zn{sub 4}SO{sub 4}(OH){sub 6}·5H{sub 2}O and tetrahydrate Zn{sub 4}SO{sub 4}(OH){sub 6}·4H{sub 2}O. Fourier transform infrared (FTIR) spectroscopy was usedmore » for characterization of the prepared materials. Based on the interpretation of ZHS's thermal decomposition profile obtained by thermogravimetric analysis, ZnO of high purity was prepared by calcination at 900 °C for 2 h. The structure of the resulting ZnO was confirmed by the XRD. The morphology examination by scanning electron microscopy revealed a porous mesh-like ZnO structure developed from the ZHS precursor at the expense of mass removal due to the release of water and sulphate during the calcination.« less
Gallego, J R; Esquinas, N; Rodríguez-Valdés, E; Menéndez-Aguado, J M; Sierra, C
2015-12-30
The abandonment of Hg-As mining and metallurgy sites, together with long-term weathering, can dramatically degrade the environment. In this work it is exemplified the complex legacy of contamination that afflicts Hg-As brownfields through the detailed study of a paradigmatic site. Firstly, an in-depth study of the former industrial process was performed to identify sources of different types of waste. Subsequently, the composition and reactivity of As- and Hg-rich wastes (calcines, As-rich soot, stupp, and flue dust) was analyzed by means of multielemental analysis, mineralogical characterization (X-ray diffraction, electronic, and optical microscopy, microbrobe), chemical speciation, and sequential extractions. As-rich soot in the form of arsenolite, a relatively mobile by-product of the pyrometallurgical process, and stupp, a residue originated in the former condensing system, were determined to be the main risk at the site. In addition, the screening of organic pollution was also aimed, as shown by the outcome of benzo(a) pyrene and other PAHs, and by the identification of unexpected Hg organo-compounds (phenylmercury propionate). The approach followed unravels evidence from waste from the mining and metallurgy industry that may be present in other similar sites, and identifies unexpected contaminants overlooked by conventional analyses. Copyright © 2015 Elsevier B.V. All rights reserved.
Bottom-up Fabrication of Multilayer Stacks of 3D Photonic Crystals from Titanium Dioxide.
Kubrin, Roman; Pasquarelli, Robert M; Waleczek, Martin; Lee, Hooi Sing; Zierold, Robert; do Rosário, Jefferson J; Dyachenko, Pavel N; Montero Moreno, Josep M; Petrov, Alexander Yu; Janssen, Rolf; Eich, Manfred; Nielsch, Kornelius; Schneider, Gerold A
2016-04-27
A strategy for stacking multiple ceramic 3D photonic crystals is developed. Periodically structured porous films are produced by vertical convective self-assembly of polystyrene (PS) microspheres. After infiltration of the opaline templates by atomic layer deposition (ALD) of titania and thermal decomposition of the polystyrene matrix, a ceramic 3D photonic crystal is formed. Further layers with different sizes of pores are deposited subsequently by repetition of the process. The influence of process parameters on morphology and photonic properties of double and triple stacks is systematically studied. Prolonged contact of amorphous titania films with warm water during self-assembly of the successive templates is found to result in exaggerated roughness of the surfaces re-exposed to ALD. Random scattering on rough internal surfaces disrupts ballistic transport of incident photons into deeper layers of the multistacks. Substantially smoother interfaces are obtained by calcination of the structure after each infiltration, which converts amorphous titania into the crystalline anatase before resuming the ALD infiltration. High quality triple stacks consisting of anatase inverse opals with different pore sizes are demonstrated for the first time. The elaborated fabrication method shows promise for various applications demanding broadband dielectric reflectors or titania photonic crystals with a long mean free path of photons.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Kraft Lime Kiln and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O AA Table AA-2 to Subpart AA of Part 98 Protection of Environment... and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O Fuel Fossil fuel-based emissions...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Kraft Lime Kiln and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O AA Table AA-2 to Subpart AA of Part 98 Protection of Environment... and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O Fuel Fossil fuel-based emissions...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Kraft Lime Kiln and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O AA Table AA-2 to Subpart AA of Part 98 Protection of Environment... and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O Fuel Fossil fuel-based emissions...
NASA Astrophysics Data System (ADS)
Zaid, Hayyiratul Fatimah Mohd; Kait, Chong Fai; Mutalib, Mohamed Ibrahim Abdul
2014-10-01
Photocatalyts TiO2 doped with Cu, Fe and Cu-Fe metal at different calcination temperature and duration were successfully prepared and characterized. Photocatalytic oxidative desulfurization of model oil containing dibenzothiophene as the sulfur compound (100 ppm) using the prepared photocatalyst was investigated. The photocatalyst calcined at 500°C and duration of 1 h showed the best performance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Kraft Lime Kiln and Calciner Emissions Factors for CH4 and N2O AA Table AA-2 to Subpart AA of Part 98 Protection of Environment ENVIRONMENTAL... Manufacturing Pt. 98, Subpt. AA, Table AA -2 Table AA-2 to Subpart AA of Part 98—Kraft Lime Kiln and Calciner...
Zhang, Na; Liu, Xiaoming; Sun, Henghu; Li, Longtu
2011-01-15
Red mud is generated from alumina production, and its disposal is currently a worldwide problem. In China, large quantities of red mud derived from bauxite calcination method are being discharged annually, and its utilization has been an urgent topic. This experimental research was to evaluate the feasibility of blends red mud derived from bauxite calcination method with other industrial wastes for use as a cementitious material. The developed cementitious material containing 30% of the bauxite-calcination-method red mud possessed compressive strength properties at a level similar to normal Portland cement, in the range of 45.3-49.5 MPa. Best compressive strength values were demonstrated by the specimen RSFC2 containing 30% bauxite-calcination-method red mud, 21% blast-furnace slag, 10% fly ash, 30% clinker, 8% gypsum and 1% compound agent. The mechanical and physical properties confirm the usefulness of RSFC2. The hydration characteristics of RSFC2 were characterized by XRD, FTIR, (27)Al MAS-NMR and SEM. As predominant hydration products, ettringite and amorphous C-S-H gel are principally responsible for the strength development of RSFC2. Comparing with the traditional production for ordinary Portland cement, this green technology is easier to be implemented and energy saving. This paper provides a key solution to effectively utilize bauxite-calcination-method red mud. Copyright © 2010 Elsevier B.V. All rights reserved.
Yaakob, Zahira; Bshish, Ahmed; Ebshish, Ali; Tasirin, Siti Masrinda; Alhasan, Fatah H.
2013-01-01
Selecting a proper support in the catalyst system plays an important role in hydrogen production via ethanol steam reforming. In this study, sol gel made alumina supports prepared for nickel (Ni) catalysts were calcined at different temperatures. A series of (Ni/AlS.G.) catalysts were synthesized by an impregnation procedure. The influence of varying the calcination temperature of the sol gel made supports on catalyst activity was tested in ethanol reforming reaction. The characteristics of the sol gel alumina supports and Ni catalysts were affected by the calcination temperature of the supports. The structure of the sol gel made alumina supports was transformed in the order of γ → (γ + θ) → θ-alumina as the calcination temperature of the supports increased from 600 °C to 1000 °C. Both hydrogen yield and ethanol conversion presented a volcano-shaped behavior with maximum values of 4.3 mol/mol ethanol fed and 99.5%, respectively. The optimum values were exhibited over Ni/AlS.G800 (Ni catalyst supported on sol gel made alumina calcined at 800 °C). The high performance of the Ni/AlS.G800 catalyst may be attributed to the strong interaction of Ni species and sol gel made alumina which lead to high nickel dispersion and small particle size. PMID:28809270
Yaakob, Zahira; Bshish, Ahmed; Ebshish, Ali; Tasirin, Siti Masrinda; Alhasan, Fatah H
2013-05-30
Selecting a proper support in the catalyst system plays an important role in hydrogen production via ethanol steam reforming. In this study, sol gel made alumina supports prepared for nickel (Ni) catalysts were calcined at different temperatures. A series of (Ni/Al S.G. ) catalysts were synthesized by an impregnation procedure. The influence of varying the calcination temperature of the sol gel made supports on catalyst activity was tested in ethanol reforming reaction. The characteristics of the sol gel alumina supports and Ni catalysts were affected by the calcination temperature of the supports. The structure of the sol gel made alumina supports was transformed in the order of γ → (γ + θ) → θ-alumina as the calcination temperature of the supports increased from 600 °C to 1000 °C. Both hydrogen yield and ethanol conversion presented a volcano-shaped behavior with maximum values of 4.3 mol/mol ethanol fed and 99.5%, respectively. The optimum values were exhibited over Ni/Al S.G800 (Ni catalyst supported on sol gel made alumina calcined at 800 °C). The high performance of the Ni/Al S.G800 catalyst may be attributed to the strong interaction of Ni species and sol gel made alumina which lead to high nickel dispersion and small particle size.
Compositional inhomogeneityand segregation in (K 0.5Na 0.5)NbO 3 ceramics
Chen, Kepi; Tang, Jing; Chen, Yan
2016-03-11
The effects of the calcination temperature of (K 0.5Na 0.5)NbO 3 (KNN) powder on the sintering and piezoelectric properties of KNN ceramics have been investigated in this report. KNN powders are synthesized via the solid-state approach. Scanning electron microscopy and X-ray diffraction characterizations indicate that the incomplete reaction at 700 °C and 750 °C calcination results in the compositional inhomogeneity of the K-rich and Na-rich phases while the orthorhombic single phase is obtained after calcination at 900 °C. During the sintering, the presence of the liquid K-rich phase due to the lower melting point has a significant impact on themore » densification, the abnormal grain growth and the deteriorated piezoelectric properties. From the standpoint of piezoelectric properties, the optimal calcination temperature obtained for KNN ceramics calcined at this temperature is determined to be 800 °C, with piezoelectric constant d 33=128.3 pC/N, planar electromechanical coupling coefficient k p=32.2%, mechanical quality factor Q m=88, and dielectric loss tan δ=2.1%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kepi; Tang, Jing; Chen, Yan
The effects of the calcination temperature of (K 0.5Na 0.5)NbO 3 (KNN) powder on the sintering and piezoelectric properties of KNN ceramics have been investigated in this report. KNN powders are synthesized via the solid-state approach. Scanning electron microscopy and X-ray diffraction characterizations indicate that the incomplete reaction at 700 °C and 750 °C calcination results in the compositional inhomogeneity of the K-rich and Na-rich phases while the orthorhombic single phase is obtained after calcination at 900 °C. During the sintering, the presence of the liquid K-rich phase due to the lower melting point has a significant impact on themore » densification, the abnormal grain growth and the deteriorated piezoelectric properties. From the standpoint of piezoelectric properties, the optimal calcination temperature obtained for KNN ceramics calcined at this temperature is determined to be 800 °C, with piezoelectric constant d 33=128.3 pC/N, planar electromechanical coupling coefficient k p=32.2%, mechanical quality factor Q m=88, and dielectric loss tan δ=2.1%.« less
NASA Astrophysics Data System (ADS)
Min, Yu-Lin; Wan, Yong; Yu, Shu-Hong
2009-01-01
A facile method to synthesize novel Au@Y 2O 3:Eu 3+ hollow sub-microspheres encapsulated with moveable gold nanoparticle core and Y 2O 3:Eu 3+ as shell via two-step coating processes and a succeeding calcination process has been developed. Silica coating on citrate-stabilized gold nanoparticles with a size of 25 nm can be obtained through a slightly modified Stöber process. Gold particles coated with double shell silica and Eu doped Y(OH) 3 can be obtained by coating on the Au@SiO 2 spheres through simply adding Y(NO 3) 3, Eu(NO 3) 3 and an appropriate quantity of NH 3·H 2O. Au@Y 2O 3:Eu 3+ hollow sub-microspheres with moveable individual Au nanoparticle as core can be obtained after calcination of Au@Y 2O 3:Eu 3+ particles at 600 °C for 2 h. These new core-shell structures with encapsulated gold nanoparticles have combined optical properties of both the Au nanoparticles and the Y 2O 3:Eu 3+ phosphor materials which might have potential applications.
Treatment options for low-level radiologically contaminated ORNL filtercake
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hom-Ti; Bostick, W.D.
1996-04-01
Water softening sludge (>4000 stored low level contaminated drums; 600 drums per year) generated by the ORNL Process Waste Treatment Plant must be treated, stabilized, and placed in safe storage/disposal. The sludge is primarily CaCO{sub 3} and is contaminated by low levels of {sup 90}Sr and {sup 137}Cs. In this study, microwave sintering and calcination were evaluated for treating the sludge. The microwave melting experiments showed promise: volume reductions were significant (3-5X), and the waste form was durable with glass additives (LiOH, fly ash). A commercial vendor using surrogate has demonstrated a melt mineralization process that yields a dense monolithicmore » waste form with a volume reduction factor (VR) of 7.7. Calcination of the sludge at 850-900 C yielded a VR of 2.5. Compaction at 4500 psi increased the VR to 4.2, but the compressed form is not dimensionally stable. Addition of paraffin helped consolidate fines and yielded a VR of 3.5. In conclusion, microwave melting or another form of vitrification is likely to be the best method; however for immediate implementation, the calculation/compaction/waxing process is viable.« less
Spectroscopic observations of nanosized TiO2 by the hydrothermal method
NASA Astrophysics Data System (ADS)
Zikriya, Mohamed; Nadaf, Y. F.; Bharathy, P. Vijai; Renuka, C. G.
2018-05-01
Metal oxides are useful materials that have various applications in advanced field such as, in view of their different properties, hardness, thermal dependability and compound resistance. Novel utilizations of the nanostructures of these oxides are drawing in critical enthusiasm as new preparation process are created and new structures are described. Hydrothermal synthesis is a fruitful procedure to prepare different sensitive structures of metal oxides on the scales from a couple to several nanometres, particularly, the hugely scattered middle structures which are hardly through pyro-preparation. Titanium dioxide nanocrystals are synthesis by a hydrolysis procedure of metatitanic acid. Nano precious crystal of different sizes is procure in the after calcinations from 150 to 225°C. Raman scattering was utilized to examine the advancement of the anatase stage in the nano crystal during calcinations.
Data on calcium oxide and cow bone catalysts used for soybean biodiesel production.
Ayodeji, Ayoola A; Blessing, Igho E; Sunday, Fayomi O
2018-06-01
Biodiesel was produced from soybean oil using calcium oxide and cow bone as heterogeneous catalysts, through transesterification process. The soybean oil used was characterized using gas chromatography mass spectrometer (GCMS) and the cow bone catalyst produced was characterized X-ray fluorescence (XRF) spectrometer. The effects of the variation of methanol/oil mole ratio, catalyst concentration and reaction temperature on biodiesel yield during the transesterification of soybean oil were investigated. Reaction time of 3 h and stirring rate of 500 rpm were kept constant. Using Response Optimizer (Minitab 17), the optimum conditions for biodiesel production were established. It was observed that the calcination of cow bone catalyst enhanced its conversion to apatite-CaOH. Also, the results obtained showed that the performance trends of calcined cow bone catalyst and the conventional CaO catalyst were similar.
Calcinated tea and cellulose composite films and its dielectric and lead adsorption properties.
Jayaramudu, Tippabattini; Varaprasad, Kokkarachedu; Kim, Hyun Chan; Kafy, Abdullahil; Kim, Jung Woong; Kim, Jaehwan
2017-09-01
In this paper, calcinated tea and cellulose composite (CTCC) films were fabricated via solution casting method. Chemical structure, morphology, crystallinity and thermal stability of the fabricated films were characterized by using Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and thermogravimetric analysis. The effect of calcinated tea loading on the properties of the prepared CTCC films was studied. The results suggest that the prepared CTCC films show higher mechanical properties, thermal stability and dielectric constant than the neat cellulose film. In addition, the CTCC films adsorb Pb 2+ ions and its adsorption performance depends on the calcinated tea content and pH level. The CTCC films are useful for sensors, flexible capacitor as well as lead adsorption applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Improving Drinking Water Quality by Remineralisation.
Luptáková, Anna; Derco, Ján
2015-01-01
The reason of low mineral content in source water is its origin in poorly soluble mineral geological structures. There are many areas with very soft low-mineralised water around the world. All people involved in drinking water treatment as well as some public health experts and producers of chemicals used for water treatment may be interested in the study. Enrichment of drinking water by minerals including calcium and magnesium is very important particularly in regions where drinking water is prepared by desalination. The aim of this work was to study and intensify the recarbonization process. Half-calcined dolomite in combination with carbon dioxide constitutes the chemistry of the applied method. Advantages of using a fluidised bed reactor contributed also significantly to the process efficiency enhancement. Continuous input of carbon dioxide into the fluidised bed recarbonization reactor resulted in an increase in the recarbonization rate by about one order of magnitude compared with the process in without carbon dioxide addition. Very good fit of experimental data for hydrodynamic characteristics of fluidised bed was obtained using simple model based on the Richardson and Zaki expansion equation. The first order model describes kinetic data from the recarbonization process with a good accuracy. Higher recarbonization rates were observed with smaller particles of half-calcined dolomite.
Advanced Ceramic Technology for Space Applications at NASA MSFC
NASA Technical Reports Server (NTRS)
Alim, Mohammad A.
2003-01-01
The ceramic processing technology using conventional methods is applied to the making of the state-of-the-art ceramics known as smart ceramics or intelligent ceramics or electroceramics. The sol-gel and wet chemical processing routes are excluded in this investigation considering economic aspect and proportionate benefit of the resulting product. The use of ceramic ingredients in making coatings or devices employing vacuum coating unit is also excluded in this investigation. Based on the present information it is anticipated that the conventional processing methods provide identical performing ceramics when compared to that processed by the chemical routes. This is possible when sintering temperature, heating and cooling ramps, peak temperature (sintering temperature), soak-time (hold-time), etc. are considered as variable parameters. In addition, optional calcination step prior to the sintering operation remains as a vital variable parameter. These variable parameters constitute a sintering profile to obtain a sintered product. Also it is possible to obtain identical products for more than one sintering profile attributing to the calcination step in conjunction with the variables of the sintering profile. Overall, the state-of-the-art ceramic technology is evaluated for potential thermal and electrical insulation coatings, microelectronics and integrated circuits, discrete and integrated devices, etc. applications in the space program.
The Research Process on Converter Steelmaking Process by Using Limestone
NASA Astrophysics Data System (ADS)
Tang, Biao; Li, Xing-yi; Cheng, Han-chi; Wang, Jing; Zhang, Yun-long
2017-08-01
Compared with traditional converter steelmaking process, steelmaking process with limestone uses limestone to replace lime partly. A lot of researchers have studied about the new steelmaking process. There are much related research about material balance calculation, the behaviour of limestone in the slag, limestone powder injection in converter and application of limestone in iron and steel enterprises. The results show that the surplus heat of converter can meet the need of the limestone calcination, and the new process can reduce the steelmaking process energy loss in the whole steelmaking process, reduce carbon dioxide emissions, and improve the quality of the gas.
NASA Astrophysics Data System (ADS)
Zhang, Min; Yu, Xinluan; Lu, Dandan; Yang, Jianjun
2013-12-01
Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail.
2013-01-01
Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail. PMID:24369051
Photocatalytic oxidation of propylene on La and N codoped TiO2 nanoparticles
NASA Astrophysics Data System (ADS)
Liu, Jinfeng; Li, Haiyan; Zong, Lanlan; Li, Qiuye; Wang, Xiaodong; Zhang, Min; Yang, Jianjun
2015-02-01
Lanthanum- and nitrogen-codoped TiO2 photocatalysts was synthesized using orthorhombic nanotubes titanic acid as the precursor by a simple impregnation and subsequent calcination method. The morphology, phase structure, and properties of La- and N-codoped TiO2 were well characterized by transmission electron microscopy, X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectra. The La-/N-codoped TiO2 showed excellent photoactivity of propylene oxidation compared with the single-doped TiO2 and La-/N-codoped P25 TiO2 nanoparticles under visible light irradiation. The origin of the enhancement of the visible light-responsive photocatalytic activity was discussed in detail.
Zhang, Min; Yu, Xinluan; Lu, Dandan; Yang, Jianjun
2013-12-26
Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail.
Behavior of radioactive iodine and technetium in the spray calcination of high-level waste
NASA Astrophysics Data System (ADS)
Knox, C. A.; Farnsworth, R. K.
1981-08-01
The Remote Laboratory-Scale Waste Treatment Facility (RLSWTF) was designed and built as a part of the High-Level Waste Immobilization Program (now the High-Level Waste Process Development Program) at the Pacific Northwest Laboratory. In facility, installed in a radiochemical cell, is described in which installed in a radiochemical cell is described in which small volumes of radioactive liquid wastes can be solidified, the process off gas can be analyzed, and the methods for decontaminating this off gas can be tested. During the spray calcination of commercial high-level liquid waste spiked with Tc-99 and I-131 and 31 wt% loss of I-131 past the sintered-metal filters. These filters and venturi scrubber were very efficient in removing particulates and Tc-99 from the the off-gas stream. Liquid scrubbers were not efficient in removing I-131 as 25% of the total lost went to the building off-gas system. Therefore, solid adsorbents are needed to remove iodine. For all future operations where iodine is present, a silver zeolite adsorber is to be used.
Effect of microwave-assisted sintering on dielectric properties of CaCu3Ti4O12 ceramic
NASA Astrophysics Data System (ADS)
Rani, Suman; Ahlawat, Neetu; Punia, R.; Kundu, R. S.; Ahlawat, N.
2016-05-01
In this present work, CaCu3Ti4O12 (CCTO) was synthesized by conventional solid-state reaction technique. The synthesis process was carried out in two phases; by conventional process (calcination and sintering at 1080°C for 10 hours) and phase II involves the micro assisted pre sintering of conventionally calcined CCTO for very short soaking time of 30 min at 1080°C in a microwave furnace followed by sintering at 1080°C for 10 hours in conventional furnace. X-ray diffraction (XRD) patterns confirmed the formation of single phase ceramic. Dielectric properties were studied over the frequency range from 50Hz -5MHz at temperatures (273K-343K). It was observed that pre- microwave sintering enhance the dielectric constant values from 10900 to 11893 and respectively reduces the dielectric loss values from 0.49 to 0.34 at room temperature(1 KHz). CCTO ceramics which are found desirable for many technological applications. The effect is more pronounced at low frequencies of applied electric field.
NASA Technical Reports Server (NTRS)
Haertling, Gene; Grabert, Gregory; Gilmour, Phillip
1991-01-01
Experimental work was continued on the development and characterization of bulk and hot pressed powders and tapecast materials in the Bi-Sr-Ca-Cu-O and Tl-Ba-Ca-Cu-O systems. A process for producing warp-free, sintered, superconducting tapes of Bi composition Bi1Sr2Ca2 Cu3O(x) was established. The procedure requires a triple calcination at 830 C for 24 hours and sintering at 845 C from 20 to 200 hours. Hot pressing the triple calcined powder at 845 C for 6 hours at 5000 psi yielded a dense material, which on further heat treatment at 845 C for 24 hours, exhibited a Tc of 108.2K. The Bi compositions were found to be much less oxygen sensitive than the Y compositions. This was especially noted in the case of the hot pressed materials which were superconducting as hot pressed, a condition that could not be achieved in the Y compositions. Safire-type grounding links are in the process of being fabricated from these materials.
NASA Astrophysics Data System (ADS)
Liao, L. M.; Wang, Z. Q.; Liang, H.; Feng, J.; Zhang, D.
2016-08-01
Supported nano-TiO2photocatalysts play an important role in water environment restoration because of their potential application to photocatalytic degradation of organic contaminants in waste water. With sepiolite as the support, the nano-TiO2/sepiolite composite photocatalysts were synthesized by an easily operated and mild solid-state sintering process.The microstructureand photocatalytic property of the sepiolite supportednano-TiO2 composites were characterized and analyzed by X-ray diffraction spectroscopy, UV-Visible spectroscopy and fluorescence spectroscopy. In addition, the influences of calcination temperature and load ratios on the photocatalytic activity of sepiolite supported nano-TiO2 composites were studied.The results indicated that appropriate ratios of sepiolite supports to nano-TiO2contributed to uniform dispersion of nanoparticles, and enhanced the absorption ability within the UV-Vis range, and consequently increased the photocatalytic activity of the composites.Under the preparation conditions of 90 wt. % TiO2 loading and calcinated at 400 °C, a maximum in photocatalytic activity ofnano-TiO2 sepiolite composite was obtained.
Voigt, J.A.; Sipola, D.L.; Tuttle, B.A.; Anderson, M.T.
1999-06-01
A process is disclosed for producing powders of perovskite-type compounds which comprises mixing a metal alkoxide solution with a lead acetate solution to form a homogeneous, clear metal solution, adding an oxalic acid/n-propanol solution to this metal solution to form an easily filterable, free-flowing precursor powder and then calcining this powder. This process provides fine perovskite-phase powders with ferroelectric properties which are particularly useful in a variety of electronic applications. 4 figs.
Voigt, James A.; Sipola, Diana L.; Tuttle, Bruce A.; Anderson, Mark T.
1999-01-01
A process for producing powders of perovskite-type compounds which comprises mixing a metal alkoxide solution with a lead acetate solution to form a homogeneous, clear metal solution, adding an oxalic acid/n-propanol solution to this metal solution to form an easily filterable, free-flowing precursor powder and then calcining this powder. This process provides fine perovskite-phase powders with ferroelectric properties which are particularly useful in a variety of electronic applications.
NASA Astrophysics Data System (ADS)
Amirsalari, A.; Farjami Shayesteh, S.
2015-06-01
In this study, we describe the synthesis of alumina nanoparticles using a chemical wet method in at varying pH. The optimized prepared particles with pH equals to 9 were calcined at various temperatures. For characterization of structural and optical properties of nanoparticles had been used X-ray diffraction, Infrared Fourier transform spectroscopy, field effect-scanning electron microscopy, photoluminescence and ultraviolet-visible spectroscopy. The results revealed that the nanoparticles calcined at 500 °C consist of an Al2O3 tetragonal structure and tetragonal distortion decreases with increasing calcination temperature up to 750 °C then increased with increasing temperature. Another phase similar to γ-Al2O3 was formed instead of δ-Al2O3 in the transition sequence from the γ to θ phase. FT-IR analysis; suggests that there are a few different types of functional groups on the surface of the alumina nanoparticles such as hydroxy groups and oxy groups. The transmittance spectra showed that the absorption bands in the UV region strongly depend on the calcination temperature. Moreover, the results showed that alumina has an optical direct band gap and that the energy gap decreases with increasing the calcination temperature and pH of the reaction. Luminescence spectra showed that some luminescent centers such as OH-related radiative centers and oxygen vacancies (F, F22+ and F2 centers) centers exist in the nanoparticles.
Catalytic dehydration of fructose to 5-hydroxymethylfurfural over Nb2O5 catalyst in organic solvent.
Wang, Fenfen; Wu, Hai-Zhen; Liu, Chun-Ling; Yang, Rong-Zhen; Dong, Wen-Sheng
2013-03-07
The catalytic dehydration of fructose to 5-hydroxymethylfurfural (HMF) in DMSO was performed over Nb2O5 derived from calcination of niobic acid at various temperatures (300-700 °C). The catalysts were characterized by powder X-ray diffraction, N2 physical adsorption, temperature-programed desorption of NH3, n-butylamine titration using Hammett indicators, infrared spectroscopy of adsorbed pyridine, and X-ray photoelectron spectroscopy. It was found that both catalytic activity and surface acid sites decrease with increasing calcination temperatures. The Nb2O5 derived from calcination of niobic acid at 400 °C reveals the maximum yield of HMF among all the catalysts, although the amount of acid sites on the catalyst is lower than that on the sample calcined at 300 °C. The results suggest that the presence of larger amounts of strong acid sites on the surface of the Nb2O5 calcined at 300 °C may promote side reactions. The Nb2O5 prepared at 400 °C shows 100% fructose conversion with 86.2% HMF yield in DMSO at 120 °C after 2 h. The activity of the catalyst decreases gradually during recycle because of coke deposition; however, it can be fully recovered by calcination at 400 °C for 2 h, suggesting that this catalyst is of significance for practical applications. Copyright © 2012 Elsevier Ltd. All rights reserved.
Recovery of SO2 and MgO from By-Products of MgO Wet Flue Gas Desulfurization.
Yan, Liyun; Lu, Xiaofeng; Wang, Quanhai; Guo, Qiang
2014-11-01
An industrial demonstration unit using natural gas as a heat source was built to calcine the by-products of MgO wet flue gas desulfurization from power plants; influencing factors on the SO 2 content in calciner gas were comprehensively analyzed; and an advantageous recycling condition of MgO and SO 2 from by-products was summarized. Results showed that the SO 2 content in the calciner gas was increased by more than 10 times under a lower excess air coefficient, a higher feed rate, a lower crystal water in by-products, and a higher feed port position. For the tests conducted under the excess air coefficient above and below one, the effect of the furnace temperature on the SO 2 content in the calciner gas was reversed. Results of activity analysis indicate that particles of MgO generated under the calcination temperature of 900-1,000°C had a high activity. In contrast, due to the slight sintering, MgO generated under the calcination temperature of 1,100°C had a low activity. To recycle SO 2 as well as MgO, a temperature range of 900-927°C for TE103 is proposed. These studies will prompt the desulfurization market diversification, reduce the sulfur's dependence on imports for making sulfuric acid, be meaningful to balance the usage of the natural resource in China, and be regarded as a reference for the development of this technology for other similar developing countries.
Le, Nhung Thi Tuyet; Nagata, Hirofumi; Aihara, Mutsumi; Takahashi, Akira; Okamoto, Toshihiro; Shimohata, Takaaki; Mawatari, Kazuaki; Kinouchi, Yhosuke; Akutagawa, Masatake; Haraguchi, Masanobu
2011-01-01
There is an increasing interest in the application of photocatalytic properties for disinfection of surfaces, air, and water. Titanium dioxide is widely used as a photocatalyst, and the addition of silver reportedly enhances its bactericidal action. However, the synergy of silver nanoparticles and TiO2 is not well understood. The photocatalytic elimination of Bacillus atrophaeus was examined under different calcination temperatures, dip-coating speeds, and ratios of TiO2, SiO2, and Ag to identify optimal production conditions for the production of TiO2- and/or TiO2/Ag-coated glass for surface disinfection. Photocatalytic disinfection of pure TiO2 or TiO2 plus Ag nanoparticles was dependent primarily on the calcination temperature. The antibacterial activity of TiO2 films was optimal with a high dip-coating speed and high calcination temperature (600°C). Maximal bacterial inactivation using TiO2/Ag-coated glass was also observed following high-speed dip coating but with a low calcination temperature (250°C). Scanning electron microscopy (SEM) showed that the Ag nanoparticles combined together at a high calcination temperature, leading to decreased antibacterial activity of TiO2/Ag films due to a smaller surface area of Ag nanoparticles. The presence of Ag enhanced the photocatalytic inactivation rate of TiO2, producing a more pronounced effect with increasing levels of catalyst loading. PMID:21724887
NASA Astrophysics Data System (ADS)
Liqiang, Jing; Xiaojun, Sun; Baifu, Xin; Baiqi, Wang; Weimin, Cai; Honggang, Fu
2004-10-01
In this paper, pure and La doped TiO2 nanoparticles with different La content were prepared by a sol-gel process using Ti (OC4H9)4 as raw material, and also were characterized by XRD, TG-DTA, TEM, XPS, DRS and Photoluminescence (PL) spectra. We mainly investigated the effects of calcining temperature and La content on the properties and the photocatalytic activity for degrading phenol of as-prepared TiO2 samples, and also discussed the relationships between PL spectra and photocatalytic activity as well as the mechanisms of La doping on TiO2 phase transformation. The results showed that La3+ did not enter into the crystal lattices of TiO2 and was uniformly dispersed onto TiO2 as the form of La2O3 particles with small size, which possibly made La dopant have a great inhibition on TiO2 phase transformation; La dopant did not give rise to a new PL signal, but it could improve the intensity of PL spectra with a appropriate La content, which was possibly attributed to the increase in the content of surface oxygen vacancies and defects after doping La; La doped TiO2 nanoparticles calcined at 600°C exhibited higher photocatalytic activity, indicating that 600°C was an appropriate calcination temperature. The order of photocatalytic activity of La doped TiO2 samples with different La content was as following: 1>1.5>3>0.5>5>0 mol%, which was the same as the order of their PL intensity, namely, the stronger the PL intensity, the higher the photocatalytic activity, demonstrating that there were certain relationships between PL spectra and photocatalytic activity. This could be explained by the points that PL spectra mainly resulted from surface oxygen vacancies and defects during the process of PL, while surface oxygen vacancies and defects could be favorable in capturing the photoinduced electrons during the process of photocatalytic reactions.
[Preparation of porous ceramics based on waste ceramics and its Ni2+ adsorption characteristics].
Zhang, Yong-Li; Wang, Cheng-Zhi; Shi, Ce; Shang, Ling-Ling; Ma, Rui; Dong, Wan-Li
2013-07-01
The preparation conditions of porous ceramics were determined by SEM, XRD and FT-IR characterizations as well as the nickel removal ability of porous ceramics to be: the mass fraction w of sesbania powder doped was 4%, and the calcination temperature was 800 degrees C. SEM and pore structure characterization illustrated that calcination caused changes in the structure and morphology of waste ceramics. With the increase of calcination temperature, the specific surface area and pore volume decreased, while the aperture increased. EDS analyses showed that the main elements of both the original waste porcelain powder and the porous ceramics were Si, Al and O. The SEM, XRD and FT-IR characterization of porous ceramics illustrated that the structure of porous ceramics was stable before and after adsorption. The series of experiments of Ni2+ adsorption using these porous ceramics showed that when the dosage of porous ceramics was 10 g x L(-1), the adsorption time was 60 min, the pH value was 6.32, and the concentration of nickel-containing wastewater was below 100 mg x L(-1), the Ni2+ removal of wastewater reached 89.7%. Besides, the porous ceramics showed higher removal efficiency on nickel in the wastewater. The Ni(2+)-containing wastewater was processed by the porous ceramics prepared, and the adsorption dynamics and adsorption isotherms of Ni2+ in wastewater by porous ceramics were investigated. The research results showed that the Ni2+ adsorption process of porous ceramics was in accordance with the quasi second-order kinetic model (R2 = 0.999 9), with Q(e) of 9.09 mg x g(-1). The adsorption process can be described by the Freundlich equation and Langmuir equation, and when the temperature increased from 20 degrees C to 40 degrees C, the maximum adsorption capacity Q(m) increased from 14.49 mg x g(-1) to 15.38 mg x g(-1).
Joshi, C; Dwivedi, A; Rai, S B
2014-08-14
Infrared-to-visible upconverting rare earths Er(3+)/Yb(3+) co-doped Y2O3 nano-crystalline phosphor samples have been prepared by solution combustion method followed by post-heat treatment at higher temperatures. A slight increase in average crystallite size has been found on calcinations verified by X-ray analysis. Transmission electron microscopy (TEM) confirms the nano-crystalline nature of the as-prepared and calcinated samples. Fourier transform infrared (FTIR) analysis shows the structural changes in as-prepared and calcinated samples. Upconversion and downconversion emission recorded using 976 and 532 nm laser sources clearly demonstrates a better luminescence properties in the calcinated samples as compared to as-prepared sample. Upconversion emission has been quantified in terms of standard chromaticity diagram (CIE) showing a shift in overall upconversion emission of as-prepared and calcinated samples. Temperature sensing behaviour of this material has also been investigated by measurement of fluorescence intensity ratio (FIR) of various signals in green emission in the temperature range of 315 to 555 K under 976 nm laser excitation. Copyright © 2014 Elsevier B.V. All rights reserved.
Crystallite Size-Lattice Strain Estimation and Optical Properties of Mn0.5Zn0.5Fe2O4 Nanoparticles
NASA Astrophysics Data System (ADS)
Indrayana, I. P. T.; Suharyadi, E.
2018-04-01
In the present work, we performed William-Hall plot using uniform deformation model (UDM) to estimate the crystallite size and lattice strain of Mn0.5Zn0.5Fe2O4 with various calcination temperature. The calculated crystallite sizes are 25.86 nm, 29.55 nm and 24.97 nm for nanoparticles which were calcined at a temperature of 600°C, 800°C and 1000°C, consecutively. The strain of nanoparticles has value in the order of 10-3. Controlling the calcination temperature will facilitate a change in crystallinity of nanoparticles and influence their crystallite size and strain of the crystal lattice. The optical band gap energy of samples nanoparticles is in a range of 1.09 eV – 3.30 eV. Increasing calcination temperature increased the direct and indirect band gap energy. The Urbach energy was found to increase with increased of gap energy. These results demonstrated that higher structural and optical properties of Mn0.5Zn0.5Fe2O4 can be obtained from a higher calcination temperature.
Jin, Mingjie; Long, Mingce; Su, Hanrui; Pan, Yue; Zhang, Qiuzhuo; Wang, Juan; Zhou, Baoxue; Zhang, Yanwu
2017-01-01
To develop highly efficient and conveniently separable iron containing catalysts is crucial to remove recalcitrant organic pollutants in wastewater through a heterogeneous Fenton-like reaction. A maghemite/montmorillonite composite was synthesized by a coprecipitation and calcination method. The physiochemical properties of catalysts were characterized by XRD, TEM, nitrogen physisorption, thermogravimetric analysis/differential scanning calorimetry (TG/DSC), zeta potential, and magnetite susceptibility measurements. The influence of calcination temperatures and reaction parameters was investigated. The calcined composites retain magnetism because the presence of montmorillonite inhibited the growth of γ-Fe 2 O 3 nanoparticles, as well as their phase transition. The catalytic activities for phenol degradation were significantly enhanced by calcinations, which strengthen the interaction between iron oxides and aluminosilicate framework and result in more negatively charged surface. The composite (73 m 2 /g) calcined at 350 °C had the highest catalytic activities, with more than 99 % phenol reduction after only 35 min reaction at pH 3.6. Simultaneously, this catalyst exhibited high stability, low iron leaching, and magnetically separable ability for consecutive usage, making it promising for the removal of recalcitrant organic pollutants in wastewater.
Wei, Guangtao; Shao, Luhua; Mo, Jihua; Li, Zhongmin; Zhang, Linye
2017-06-01
Using molasses wastewater as partial acidifying agent, a new Fenton-like catalyst (ACRM sm ) was prepared through a simple process of acidification and calcination using red mud as main material. With molasses wastewater, both the free alkali and the chemically bonded alkali in red mud were effectively removed under the action of H 2 SO 4 and molasses wastewater, and the prepared ACRM sm was a near-neutral catalyst. The ACRM sm preparation conditions were as follows: for 3 g of red mud, 9 mL of 0.7 mol/L H 2 SO 4 plus 2 g of molasses wastewater as the acidifying agent, calcination temperature 573 K, and calcination time 1 h. Iron phase of ACRM sm was mainly α-Fe 2 O 3 and trace amount of carbon existed in ACRM sm . The addition of molasses wastewater not only effectively reduced the consumption of H 2 SO 4 in acidification of red mud but also resulted in the generation of carbon and significantly improved the distribution of macropore in prepared ACRM sm . It was found that near-neutral pH of catalyst, generated carbon, and wide distribution of macropore were the main reasons for the high catalytic activity of ACRM sm . The generated carbon and wide distribution of macropore were entirely due to the molasses wastewater added. In degradation of orange II, ACRM sm retained most of its catalytic stability and activity after five recycling times, indicating ACRM sm had an excellent long-term stability in the Fenton-like process. Furthermore, the performance test of settling showed ACRM sm had an excellent settleability. ACRM sm was a safe and green catalytic material used in Fenton-like oxidation for wastewater treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Kun; Wang, Dan; Yang, Ping
Graphical abstract: Anatase TiO{sub 2} nanocaps prepared by HF-assisted chemical etching method exhibit enhanced photocatalytic activity compared with commercial P25 because of HF served as an etching agent to remove doped impurities. - Highlights: • Anatase TiO{sub 2} nanocaps were synthesized by HF etching process. • The optimal conditions of experiment are 700 °C calcination and 0.2 mL HF solution. • The photocatalytic properties was studied upon UV and Visible irradiation. • The unique TiO{sub 2} nanocaps structure shows excellent photocatalytic activity. - Abstract: Anatase titanium dioxide (TiO{sub 2}) nanocaps were created via a four-step process including the preparation ofmore » SiO{sub 2} spheres, the deposition of a TiO{sub 2} layer to fabricate SiO{sub 2}@TiO{sub 2} composite spheres, the calcination for obtaining the crystal structure of anatase phase, and hydrofluoric acid (HF) etching to dissolve SiO{sub 2} cores. The SiO{sub 2}@TiO{sub 2} spheres calcined at 700 °C revealed fine photocatalytic activity. Interestingly, most of samples transformed into TiO{sub 2} nanocaps via HF etching, and TiO{sub 2} nanocaps prepared using optimal conditions exhibited quick degradation (k is 0.052 min{sup −1}) compared with commercial P25 (k is 0.030 min{sup −1}) and the TiO{sub 2} nanostructures etched by a NaOH solution. The excellent photocatalytic performance is attributed to its unique hollow hemispherical nanocaps structure, which is in favor of making full use of incident light. The photocatalysis phenomenon in visible light was also observed after depositing Au nanoparticles on anantase TiO{sub 2} nanocaps.« less
A Comparison of the Greenhouse Impacts of Magnesium Produced By Electrolytic and Pidgeon Processes
NASA Astrophysics Data System (ADS)
Ramakrishnan, Subramania; Koltun, Paul
With a focus on the global warming impact, this paper deals with the cradle-to-gate life cycle study of the following two practical production systems for producing magnesium ingots: (i) Magnesite ore is processed using the Australian Magnesium process to produce anhydrous magnesium chloride, which is then electrolysed to produce magnesium; and (ii) Dolomite ore is calcined to produce magnesium oxide, which is then thermally reduced with ferrosilicon using the Pidgeon process, based on the current practice used in China for magnesium production
Process Technology for Tunable Fischer Tropsch Synthesis Towards Middle Distillate Fuel Fractions
2008-08-04
Catalyst Preparation (III) ● Incipient Wetness Used to impregnate Potassium Solution onto Iron (K / Fe atomic ratio = .02). Catalyst dried overnight at T...80oC then calcined for 1 hour at T = 350oC ● Incipient Wetness Used to impregnate Copper Solution onto Iron ( Cu / Fe atomic ratio = .01...Fischer Tropsch technologies that target the production of TP SBF through process, catalyst , and reactor improvements. Investigate Supercritical
40 CFR 60.734 - Monitoring of emissions and operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... fuller's earth rotary dryer, a gypsum rotary dryer, a gypsum flash calciner, gypsum kettle calciner, an... water column gauge pressure at the level of operation. The liquid flow rate monitoring device must be...
40 CFR 60.734 - Monitoring of emissions and operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... fuller's earth rotary dryer, a gypsum rotary dryer, a gypsum flash calciner, gypsum kettle calciner, an... water column gauge pressure at the level of operation. The liquid flow rate monitoring device must be...
40 CFR 60.734 - Monitoring of emissions and operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... fuller's earth rotary dryer, a gypsum rotary dryer, a gypsum flash calciner, gypsum kettle calciner, an... water column gauge pressure at the level of operation. The liquid flow rate monitoring device must be...
40 CFR 60.734 - Monitoring of emissions and operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fuller's earth rotary dryer, a gypsum rotary dryer, a gypsum flash calciner, gypsum kettle calciner, an... water column gauge pressure at the level of operation. The liquid flow rate monitoring device must be...
Mercury mine drainage and processes that control its environmental impact
Rytuba, J.J.
2000-01-01
Mine drainage from mercury mines in the California Coast Range mercury mineral belt is an environmental concern because of its acidity and high sulfate, mercury, and methylmercury concentrations. Two types of mercury deposits are present in the mineral belt, silica-carbonate and hot-spring type. Mine drainage is associated with both deposit types but more commonly with the silica-carbonate type because of the extensive underground workings present at these mines. Mercury ores consisting primarily of cinnabar were processed in rotary furnaces and retorts and elemental mercury recovered from condensing systems. During the roasting process mercury phases more soluble than cinnabar are formed and concentrated in the mine tailings, commonly termed calcines. Differences in mineralogy and trace metal geochemistry between the two deposit types are reflected in mine drainage composition. Silica-carbonate type deposits have higher iron sulfide content than hot- spring type deposits and mine drainage from these deposits may have extreme acidity and very high concentrations of iron and sulfate. Mercury and methylmercury concentrations in mine drainage are relatively low at the point of discharge from mine workings. The concentration of both mercury species increases significantly in mine drainage that flows through and reacts with calcines. The soluble mercury phases in the calcines are dissolved and sulfate is added such that methylation of mercury by sulfate reducing bacteria is enhanced in calcines that are saturated with mine drainage. Where mercury mine drainage enters and first mixes with stream water, the addition of high concentrations of mercury and sulfate generates a favorable environment for methylation of mercury. Mixing of oxygenated stream water with mine drainage causes oxidation of dissolved iron(II) and precipitation of iron oxyhydroxide that accumulates in the streambed. Both mercury and methylmercury are strongly adsorbed onto iron oxyhydroxide over the pH range of 3.2-7.1 in streams impacted by mine drainage. The dissolved fraction of both mercury species is depleted and concentrated in iron oxyhydroxide such that the amount of iron oxyhydroxide in the water column reflects the concentration of mercury species. In streams impacted by mine drainage, mercury and methylmercury are transported and adsorbed onto particulate phases. During periods of low stream flow, fine-grained iron hydroxide sediment accumulates in the bed load of the stream and adsorbs mercury and methylmercury such that both forms of mercury become highly enriched in the iron oxyhydroxide sediment. During high-flow events, mercury- and methylmercury-enriched iron hydroxide sediment is transported into larger aquatic systems producing a high flux of bioavailable mercury. (C) 2000 Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Cai, Yong; Zhao, Bote; Wang, Jie; Shao, Zongping
2014-05-01
Mesoporous TiO2 microspheres, synthesized by a facile template-free solvothermal method and subsequent heat treatment, are exploited as the electrode for hybrid supercapacitors. The effects of the calcination temperature on the phase composition, particulate microstructure and morphology are characterized by XRD, Raman, FE-SEM and N2 adsorption/desorption measurements. Hybrid supercapacitors utilizing the as-prepared TiO2 mesoporous microspheres as the negative electrode and activated carbon (AC) as the positive electrode in a non-aqueous electrolyte are fabricated. The electrochemical performance of these hybrid supercapacitors is studied by galvanostatic charge-discharge and cyclic voltammetry (CV). The hybrid supercapacitor built from TiO2 microspheres calcined at 400 °C shows the best performance, delivering an energy density of 79.3 Wh kg-1 at a power density of 178.1 W kg-1. Even at a power density of 9.45 kW kg-1, an energy density of 31.5 Wh kg-1 is reached. These values are much higher than the AC-AC symmetric supercapacitor. In addition, the hybrid supercapacitor exhibits excellent cycling performance, retaining 98% of the initial energy density after 1000 cycles. Such outstanding electrochemical performance of the hybrid supercapacitor is attributed to the matched reaction kinetics between the two electrodes with different energy storage mechanisms.
NASA Astrophysics Data System (ADS)
Baksi, Arnab; Cocke, David L.; Gomes, Andrew; Gossage, John; Riggs, Mark; Beall, Gary; McWhinney, Hylton
Complex multi-metal catalysts require several stages in their preparation. These are: co-mixing, co-precipitation, milling and sol-gel, drying, dehydroxylation, and calcination and sometimes regeneration of the hydroxide by rehydration. These processes require thermal analysis (DTA, TGA, DSC) and accompanying off gas analysis, plus one or more of these: XRD, XPS, SEMEDS, FTIR and UV-VIS. In this study, hydrotalcite, hopcalite and mixed systems were prepared and guided by the above characterization techniques. The systems were initiated by mixing the chlorides or nitrates followed by hydrothermal treatments to produce the hydroxides which were further treated by washing, drying, and calcination. The thermal analysis was critical to guide the preparation through these stages and when combined with structural determination methods considerable understanding of their chemical and physical changes was obtained. The correlations between preparation and characterization will be discussed.
Highly transparent, flexible, and thermally stable superhydrophobic ORMOSIL aerogel thin films.
Budunoglu, Hulya; Yildirim, Adem; Guler, Mustafa O; Bayindir, Mehmet
2011-02-01
We report preparation of highly transparent, flexible, and thermally stable superhydrophobic organically modified silica (ORMOSIL) aerogel thin films from colloidal dispersions at ambient conditions. The prepared dispersions are suitable for large area processing with ease of coating and being directly applicable without requiring any pre- or post-treatment on a variety of surfaces including glass, wood, and plastics. ORMOSIL films exhibit and retain superhydrophobic behavior up to 500 °C and even on bent flexible substrates. The surface of the films can be converted from superhydrophobic (contact angle of 179.9°) to superhydrophilic (contact angle of <5°) by calcination at high temperatures. The wettability of the coatings can be changed by tuning the calcination temperature and duration. The prepared films also exhibit low refractive index and high porosity making them suitable as multifunctional coatings for many application fields including solar cells, flexible electronics, and lab on papers.
NASA Astrophysics Data System (ADS)
Bosnar, Sanja; Vrankić, Martina; Bosnar, Damir; Ren, Nan; Šarić, Ankica
2017-11-01
The synthesis of high silica zeolites in many cases implies the usage of organic structural direction agents (SDA). However, to manifest their functionalities, the SDA occluded inside the channels of the as-synthesized structure should be removed, usually by a high temperature treatment (calcination). In this paper, the positron annihilation lifetime spectroscopy (PALS) was used to monitor the development of accessible spaces, their sizes and distributions in MFI zeolites, ZSM-5 and silicalite-1 in order to give an additional insight in the process of the SDA removal. For that purpose, a conventional PALS setup with 22Na positron source was applied. It was established that there is a pronounced difference between positron annihilation data for these two zeolites of the same structural type. The samples were additionally analysed by X-ray powder diffraction at room temperature with a crystal structure refinement and thermogravimetry.
Scientific Insights in the Preparation and Characterisation of a Lead-based Naga Bhasma.
Nagarajan, S; Krishnaswamy, S; Pemiah, Brindha; Rajan, K S; Krishnan, Umamaheswari; Sethuraman, S
2014-01-01
Naga bhasma is one of the herbo-metallic preparations used in Ayurveda, a traditional Indian System of Medicine. The preparation of Naga bhasma involves thermal treatment of 'Naga' (metallic lead) in a series of quenching liquids, followed by reaction with realgar and herbal constituents, before calcination to prepare a fine product. We have analysed the intermediates obtained during different stages of preparation to understand the relevance and importance of different steps involved in the preparation. Our results show that 'Sodhana' (purification process) removes heavy metals other than lead, apart from making it soft and amenable for trituration. The use of powders of tamarind bark and peepal bark maintains the oxidation state of lead in Jarita Naga (lead oxide) as Pb(2+). The repeated calcination steps result in the formation of nano-crystalline lead sulphide, the main chemical species present in Naga bhasma.
Scientific Insights in the Preparation and Characterisation of a Lead-based Naga Bhasma
Nagarajan, S.; Krishnaswamy, S.; Pemiah, Brindha; Rajan, K. S.; Krishnan, Umamaheswari; Sethuraman, S.
2014-01-01
Naga bhasma is one of the herbo-metallic preparations used in Ayurveda, a traditional Indian System of Medicine. The preparation of Naga bhasma involves thermal treatment of ‘Naga’ (metallic lead) in a series of quenching liquids, followed by reaction with realgar and herbal constituents, before calcination to prepare a fine product. We have analysed the intermediates obtained during different stages of preparation to understand the relevance and importance of different steps involved in the preparation. Our results show that ‘Sodhana’ (purification process) removes heavy metals other than lead, apart from making it soft and amenable for trituration. The use of powders of tamarind bark and peepal bark maintains the oxidation state of lead in Jarita Naga (lead oxide) as Pb2+. The repeated calcination steps result in the formation of nano-crystalline lead sulphide, the main chemical species present in Naga bhasma. PMID:24799737
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-01
... Coke Calcining Operations-- 01/18/11 06/20/11 Oxides of Sulfur. SJVUAPCD Synthesized Pharmaceutical.... (a) * * * (6) * * * (ix) Petroleum Coke Calcining Operations--Oxides of Sulfur submitted on June 20...
The alcohol-sensing behaviour of SnO2 nanorods prepared by a facile solid state reaction
NASA Astrophysics Data System (ADS)
Gao, F.; Ren, X. P.; Wan, W. J.; Zhao, Y. P.; Li, Y. H.; Zhao, H. Y.
2017-02-01
SnO2 nanorods with the range of 12-85 nm in diameter were fabricated by a facile solid state reaction in the medium of NaCl-KCl mixture at room temperature and calcined at 600, 680, 760 and 840 oC, respectively. The XRD, TEM and XPS were employed to characterize the structure and morphology of the SnO2 nanorods. The influence of the calcination temperature on the gas sensing behaviour of the SnO2 nanorods with different diameter was investigated. The result showed that all the sensors had good response to alcohol. The response of the gracile nanorods prepared at a low calcined temperature demonstrated significantly better than the thick nanorods prepared at a high calcined temperature. The mechanism was attributed to the nonstoichiometric ratio of Sn/O and larger surface area of the gracile nanorods to enhance the oxygen surface adsorption.
Preparation of ZrO II/nano-TiO II composite powder by sol-gel method
NASA Astrophysics Data System (ADS)
Baharvandi, H. R.; Mohammadi, E.; Abdizadeh, H.; Hadian, A. M.; Ehsani, N.
2007-07-01
The effects of concentration of TTIP, amount of distilled water, and calcination temperature on morphology and particle size distribution of ZrO II/nano-TiO II catalysts were investigated. Mixed ZrO II/nano-TiO II powders were prepared by a modified sol-gel method by varying the mole fraction of TTIP from 0.002 to 0.01, H IIO/TTIP fraction from 2 to 8, and various stirring time (2, 4, and 10 h). The prepared ZrO II/nano-TiO II powders have been characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and TG/DTA. Each oxide was calcined at the temperature between 110 and 1000°C. The results showed that the calcinations temperature has a pronounced effect on the phase formation and particle size of the calcined zirconium titanate (ZT) powders.
Photooxidative desulfurization for diesel using Fe / N - TiO2 photocatalyst
NASA Astrophysics Data System (ADS)
Khan, Muhammad Saqib; Kait, Chong Fai; Mutalib, Mohd Ibrahim Abdul
2014-10-01
A series of N - TiO2 with different mol% N was synthesized via sol-gel method and characterized using thermal gravimetric analyzer and raman spectroscopy. 0.2 wt% Fe was incorporated onto the calcined (200°C) N - TiO2 followed by calcination at 200°C, 250°C and 300°C. Photooxidative desulfurization was conducted in the presence of 0.2wt% Fe / N - TiO2 with different mol% N with and without oxidant (H2O2). Oxidative desulfurization was only achieved when H2O2 was used while without H2O2 no major effect on the sulfur removal. 0.2Fe -30N - H2O2 photocatalysts showed best performance at all calcination temperatures as compared to other mol% N - H2O2 photocatalysts. 16.45% sulfur removal was achieved using photocatalysts calcined at 300 °C.
Mahato, T H; Singh, Beer; Srivastava, A K; Prasad, G K; Srivastava, A R; Ganesan, K; Vijayaraghavan, R
2011-09-15
Present study investigates the potential of CuO nanoparticles calcined at different temperature for the decontamination of persistent chemical warfare agent sulphur mustard (HD) at room temperature (30 ± 2 °C). Nanoparticles were synthesized by precipitation method and characterized by using SEM, EDAX, XRD, and Raman Spectroscopy. Synthesized nanoparticles were tested as destructive adsorbents for the degradation of HD. Reactions were monitored by GC-FID technique and the reaction products characterized by GC-MS. It was observed that the rate of degradation of HD decreases with the increase in calcination temperature and there is a change in the percentage of product of HD degradation. GC-MS data indicated that the elimination product increases with increase in calcination temperature whereas the hydrolysis product decreases. Copyright © 2011 Elsevier B.V. All rights reserved.
Synthesis of Hydroxyapatite through Ultrasound and Calcination Techniques
NASA Astrophysics Data System (ADS)
Akindoyo, John O.; Beg, M. D. H.; Ghazali, Suriati; Akindoyo, Edward O.; Jeyaratnam, Nitthiyah
2017-05-01
There is a growing demand for hydroxyapatite (HA) especially in medical applications, production of HA which is totally green is however a challenge. In this research, HA was produced from biowaste through ultrasound followed by calcination techniques. Pre-treatment of the biowaste was effectively achieved through the help of ultrasound. After calcination at 950°C, the obtained HA was characterized through Thermogravimetric (TGA) analysis, X-ray diffraction analysis (XRD) and Fourier transform infrared spectroscopy (FTIR). Spectrum of the produced HA was compared with standard HA index. The spectrum is in agreement with the standard HA as confirmed through FTIR, XRD and TGA result. Furthermore, morphological study of the HA through Field emission scanning electron microscope (FESEM) shows almost uniform spherical shape for the HA as expected. Based on the results obtained herein, combining ultrasound with calcination can help to produce pure HA with potential medical applications without the use of any organic solvent.
NASA Astrophysics Data System (ADS)
Thim, Gilmar P.; Brito, Hermi F.; Silva, Sandra A.; Oliveira, Maria A. S.; Felinto, Maria C. F. C.
2003-02-01
The photoluminescence properties of the Eu3+ ion doped into α-cordierite were studied based on the excitation and emission spectra and lifetime measurements. These samples were prepared by the sol-gel method and calcined by heating the xerogel at different temperatures: 873, 1133, 1223 and 1473 K. X-ray diffraction patterns were used to characterize the luminescent material. The 5D0→7F0 transition of the samples exhibits only one broad peak arising from the inhomogeneous linewidth of the amorphous phase, except for the ceramic material obtained at 1473 K that presents two peaks. Also, in the latter case the luminescence decay lifetime exhibits a bi-exponential fit when excited at 280 nm, corroborating that the Eu3+ ion exists in two sites of symmetry. The experimental intensity parameter Ω2 (10.0×10-20 cm2) indicates a moderately polarizable chemical environment around the Eu3+ ion. The emission spectra of the Mg2Al4Si5O18:Eu3+ samples calcined at 873, 1133 and 1223 K also presented inhomogeneous profiles for the 5D0→7FJ transitions suggesting disorder of the material. On the other hand, the sample calcined at 1473 K shows narrow bands indicating the crystalline form. The emission quantum efficiency (η) of the α-cordierite system is also discussed.
Highly Visible Light Activity of Nitrogen Doped TiO2 Prepared by Sol-Gel Approach
NASA Astrophysics Data System (ADS)
Than, Le Dien; Luong, Ngo Sy; Ngo, Vu Dinh; Tien, Nguyen Manh; Dung, Ta Ngoc; Nghia, Nguyen Manh; Loc, Nguyen Thai; Thu, Vu Thi; Lam, Tran Dai
2017-01-01
A simple approach was explored to prepare N-doped anatase TiO2 nanoparticles (N-TiO2 NPs) from titanium chloride (TiCl4) and ammonia (NH3) via sol-gel method. The effects of important process parameters such as calcination temperatures, NH3/TiCl4 molar ratio ( R N) on crystallite size, structure, phase transformation, and photocatalytic activity of titanium dioxide (TiO2) were thoroughly investigated. The as-prepared samples were characterized by ultraviolet-visible spectroscopy, x-ray diffraction, transmission electron microscopy, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. The photocatalytic activity of the samples was evaluated upon the degradation of methylene blue aqueous solution under visible-light irradiation. The results demonstrated that both calcination temperatures and NH3/TiCl4 molar ratios had significant impacts on the formation of crystallite nanostructures, physicochemical, as well as catalytic properties of the obtained TiO2. Under the studied conditions, calcination temperature of 600°C and NH3/TiCl4 molar ratio of 4.2 produced N-TiO2 with the best crystallinity and photocatalytic activity. The high visible light activity of the N-TiO2 nanomaterials was ascribed to the interstitial nitrogen atoms within TiO2 lattice units. These findings could provide a practical pathway capable of large-scale production of a visible light-active N-TiO2 photocatalyst.
NASA Astrophysics Data System (ADS)
Fang, Liping; Hou, Jingwei; Xu, Cuihong; Wang, Yaru; Li, Ji; Xiao, Feng; Wang, Dongsheng
2018-06-01
Natural organic matters (NOMs) can generate disinfection by-products during water treatment process, threatening to human health. However, the removal of NOM is still unsatisfactory in water treatment. Hence, this work investigated the removal efficiency of humic and fulvic acids (HA and FA) by layered double hydroxide (LDH) and its calcined forms under different conditions. Our results show that calcination of LDH at 500 °C can effectively enhance the NOM removal with adsorption capacities of 98.8 mg/g for HA and 97.6 mg/g for FA at pH 9.5. The removal efficiency of HA and FA notably increases by decreasing pH. The presence of SO42- and CO32- significantly suppresses the removal of HA or FA by CLDHs. The release of Al from LDH and CLDH is negligible and safe to aquatic organisms at pH > 6.5. Moreover, CLDH shows a good reusability for NOM removal in water treatment. The removal of HA and FA by CLDH is governed through electrostatic interactions and intercalation into the interlayers of LDH was not observed. Fluorescence and molecular weight analyses show that the microbial by-products with mid-molecular weight are more difficult to be removed than HA and FA. This study provides a new insight into the NOM removal using LDH and CLDH.
Recovery of SO2 and MgO from By-Products of MgO Wet Flue Gas Desulfurization
Yan, Liyun; Lu, Xiaofeng; Wang, Quanhai; Guo, Qiang
2014-01-01
Abstract An industrial demonstration unit using natural gas as a heat source was built to calcine the by-products of MgO wet flue gas desulfurization from power plants; influencing factors on the SO2 content in calciner gas were comprehensively analyzed; and an advantageous recycling condition of MgO and SO2 from by-products was summarized. Results showed that the SO2 content in the calciner gas was increased by more than 10 times under a lower excess air coefficient, a higher feed rate, a lower crystal water in by-products, and a higher feed port position. For the tests conducted under the excess air coefficient above and below one, the effect of the furnace temperature on the SO2 content in the calciner gas was reversed. Results of activity analysis indicate that particles of MgO generated under the calcination temperature of 900–1,000°C had a high activity. In contrast, due to the slight sintering, MgO generated under the calcination temperature of 1,100°C had a low activity. To recycle SO2 as well as MgO, a temperature range of 900–927°C for TE103 is proposed. These studies will prompt the desulfurization market diversification, reduce the sulfur's dependence on imports for making sulfuric acid, be meaningful to balance the usage of the natural resource in China, and be regarded as a reference for the development of this technology for other similar developing countries. PMID:25371652
IDAHO CHEMICAL PROCESSING PLANT TECHNICAL PROGRESS REPORT FOR APRIL THROUGH JUNE 1958
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevenson, C.E.
1958-11-01
Processing of uranium -aluminum alloy was continued with slight process modifications. Means for recovering rare gases from dissolver off-gas are described. Results of extensive decontamination procedures required to enable entrance to the continuous dissolver cell are also indicated. Pilot plant studies of dissolving aluminum continuously showed that rates of dissolution were decreased by factors of 2 to 4 as the concentration of nitric acid fed was increased from 5.4 to 11N. The rate of aluminum dissolution was found to be proportional to initial area exposed for pieces of different shape. It was found possible to produce a highly basic aluminummore » nitrate solution at a reasonable rate by dissolving to low concentration in dilute acid, followed by evaporation to the desired level. Uranium exchange rate measurements for the TBP extraction process are described. A canned rotor pump under test with graphite bearings operated 6000 hours with nominal wear. Difficulties were experienced in testing a nutating disc pump. Measurements of the potential of zirconium in hydrofluoric acid as a function of pH confirmed the predicted equation. In teflon vessels, zirconium dissolves a little more rapidly in nitric-hydrofluoric acid mixtures than in glass vessels, presumably due to reaction of fluoride with silica. Titunium alloy Types 55A and 75A were found to resist corrosion by certain boiling nitric-hydrochloric acid mixtures. Initial tests have commenced with a NaK-heated 100 liter/hour pilot plant aluminum nitrate calciner to continue process demonstration. In tests in the smaller pilot plant unit, increasing feed spray air ratio was found to increase particle loading in the cyclone effluent. Laboratory studies indicated that a venturi scrubber using dilute nitric acid at 80 C should remove ruthenium effectively from calciner off-gas. In a pilot plant test in which a significant fraction of ruthenium feed was retained by the alumina, substantial absorption of volatilized ruthenium was obtained. Thermal conductivity of alumina near 3000 F was about 0.26 Btu/hr)(ft)( F). In leaching studies, very little strontium or plutonium was removed by water from alumina calcined at 550 C. Dilute nitric acid, however, extracted strontium from this material to the same degree (~ 50 percent) as from material calcined at 400 C. Concentrated basic aluminum nitrate was produced from simulated aluminum nitrate waste by slow hydrolysis with urea followed by evaporation. Aluminum was efficiently extracted from buffered aluminum nitrate solution by acetylacetone and was stripped back into nitric acid. A filterable aluminum phosphate was precipituted from aluminum nitrate solution by urea hydrolysis; the phosphate effectively carried fission products, however. Spectrophotometric methods were developed for macro and micro quantities of uranium, in the presence of high concentrations of other ions, based on tetrapropylammonium nitrate extraction. (For preceding period see ID0-14443.) (auth)« less
40 CFR 98.82 - GHGs to report.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (General Stationary Fuel Combustion Sources) by following the requirements of subpart C. (d) CO2, CH4, and... GREENHOUSE GAS REPORTING Cement Production § 98.82 GHGs to report. You must report: (a) CO2 process emissions from calcination in each kiln. (b) CO2 combustion emissions from each kiln. (c) CH4 and N2O combustion...
40 CFR 98.82 - GHGs to report.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (General Stationary Fuel Combustion Sources) by following the requirements of subpart C. (d) CO2, CH4, and... GREENHOUSE GAS REPORTING Cement Production § 98.82 GHGs to report. You must report: (a) CO2 process emissions from calcination in each kiln. (b) CO2 combustion emissions from each kiln. (c) CH4 and N2O combustion...
40 CFR 98.82 - GHGs to report.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (General Stationary Fuel Combustion Sources) by following the requirements of subpart C. (d) CO2, CH4, and... GREENHOUSE GAS REPORTING Cement Production § 98.82 GHGs to report. You must report: (a) CO2 process emissions from calcination in each kiln. (b) CO2 combustion emissions from each kiln. (c) CH4 and N2O combustion...
40 CFR Appendix I to Part 265 - Recordkeeping Instructions
Code of Federal Regulations, 2014 CFR
2014-07-01
... T10Infrared furnace incinerator T11Molten salt destructor T12Pyrolysis T13Wet Air oxidation T14Calcination... T21Chemical fixation T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination... Chloride Process Oxidation Reactor T89Methane Reforming Furnace T90Pulping Liquor Recovery Furnace...
40 CFR Appendix I to Part 265 - Recordkeeping Instructions
Code of Federal Regulations, 2011 CFR
2011-07-01
... T10Infrared furnace incinerator T11Molten salt destructor T12Pyrolysis T13Wet Air oxidation T14Calcination... T21Chemical fixation T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination... Chloride Process Oxidation Reactor T89Methane Reforming Furnace T90Pulping Liquor Recovery Furnace...
40 CFR Appendix I to Part 265 - Recordkeeping Instructions
Code of Federal Regulations, 2013 CFR
2013-07-01
... T10Infrared furnace incinerator T11Molten salt destructor T12Pyrolysis T13Wet Air oxidation T14Calcination... T21Chemical fixation T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination... Chloride Process Oxidation Reactor T89Methane Reforming Furnace T90Pulping Liquor Recovery Furnace...
40 CFR Appendix I to Part 264 - Recordkeeping Instructions
Code of Federal Regulations, 2011 CFR
2011-07-01
... incinerator T11Molten salt destructor T12Pyrolysis T13Wet air oxidation T14Calcination T15Microwave discharge... T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination T26Chlorinolysis... Furnace T87Smelting, Melting, or Refining Furnace T88Titanium Dioxide Chloride Process Oxidation Reactor...
40 CFR Appendix I to Part 264 - Recordkeeping Instructions
Code of Federal Regulations, 2012 CFR
2012-07-01
... incinerator T11Molten salt destructor T12Pyrolysis T13Wet air oxidation T14Calcination T15Microwave discharge... T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination T26Chlorinolysis... Furnace T87Smelting, Melting, or Refining Furnace T88Titanium Dioxide Chloride Process Oxidation Reactor...
40 CFR Appendix I to Part 264 - Recordkeeping Instructions
Code of Federal Regulations, 2013 CFR
2013-07-01
... incinerator T11Molten salt destructor T12Pyrolysis T13Wet air oxidation T14Calcination T15Microwave discharge... T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination T26Chlorinolysis... Furnace T87Smelting, Melting, or Refining Furnace T88Titanium Dioxide Chloride Process Oxidation Reactor...
40 CFR Appendix I to Part 265 - Recordkeeping Instructions
Code of Federal Regulations, 2012 CFR
2012-07-01
... T10Infrared furnace incinerator T11Molten salt destructor T12Pyrolysis T13Wet Air oxidation T14Calcination... T21Chemical fixation T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination... Chloride Process Oxidation Reactor T89Methane Reforming Furnace T90Pulping Liquor Recovery Furnace...
40 CFR Appendix I to Part 264 - Recordkeeping Instructions
Code of Federal Regulations, 2014 CFR
2014-07-01
... incinerator T11Molten salt destructor T12Pyrolysis T13Wet air oxidation T14Calcination T15Microwave discharge... T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination T26Chlorinolysis... Furnace T87Smelting, Melting, or Refining Furnace T88Titanium Dioxide Chloride Process Oxidation Reactor...
Energy-conscious production of titania and titanium powders from slag
NASA Astrophysics Data System (ADS)
Middlemas, Scott C.
Titanium dioxide (TiO2) is used as a whitening agent in numerous domestic and technological applications and is mainly produced by the high temperature chloride process. A new hydrometallurgical process for making commercially pure TiO2 pigment is described with the goal of reducing the necessary energy consumption and CO2 emissions. The process includes alkaline roasting of titania slag with subsequent washing, HCl leaching, solvent extraction, hydrolysis, and calcination stages. The thermodynamics of the roasting reaction were analyzed, and the experimental parameters for each step in the new process were optimized with respect to TiO 2 recovery, final product purity, and total energy requirements. Contacting the leach solution with a tertiary amine extractant resulted in complete Fe extraction in a single stage and proved effective in reducing the concentration of discoloring impurities in the final pigment to commercially acceptable levels. Additionally, a new method of producing Ti powders from titania slag is proposed as a potentially more energy efficient and lower cost alternative to the traditional Kroll process. Thermodynamic analysis and initial experimental results validate the concept of reducing titanium slag with a metal hydride to produce titanium hydride (TiH2) powders, which are subsequently purified by leaching and dehydrided to form Ti powders. The effects of reducing agent type, heating time and temperature, ball milling, powder compaction, and eutectic chloride salts on the conversion of slag to TiH2 powders were determined. The purification of reduced powders through NH4Cl, NaOH, and HCl leaching stages was investigated, and reagent concentration, leaching temperature, and time were varied in order to determine the best conditions for maximum impurity removal and recovery of TiH2. A model plant producing 100,000 tons TiO2 per year was designed that would employ the new method of pigment manufacture. A comparison of the new process and the chloride process indicated a 25% decrease in energy consumption and CO2 emissions. For the Ti powder making process, a 10,000 tons per year model plant employing the metal hydride reduction was designed and a comparison with the Kroll process indicated potential for over 60% less energy consumption and 50% less CO2 emission.
NASA Astrophysics Data System (ADS)
Zhang, Yu Xin; Hao, Xiao Dong; Kuang, Min; Zhao, Han; Wen, Zhong Quan
2013-10-01
In this work, Au/ZnAl-layer double oxides (LDO) nanocomposties were prepared through a facile calcination process of AuCl4- intercalated ZnAl-layered double hydroxides (LDHs) nanocomposites. The morphology and crystal structure of these nanocomposites were characterized by Scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and N2 sorption analysis. By tailoring the process parameter, such as calcination temperature, heating time and the component composition, the adsorption properties of methyl orange (MO) on the Au/ZnAl-LDO nanocomposites were investigated in this work. In a typical adsorption process, it was found that 0.985 mg of MO (0.01 g L-1, 100 mL, 1 mg of MO in total) can be removed in 60 min by utilizing only 2.5 mg of Au/ZnAl-LDO (Au content, 1%) as adsorbents. Our adsorption data obtained from the Langmuir model also gave good values of the determination coefficient, and the saturated adsorption capacity of Au/ZnAl-LDO nanocomposites for MO was found to be 627.51 mg/g under ambient condition (e.g., room temperature, 1 atm). In principle, these hybrid nanostructures with higher adsorption abilities could be very promising adsorbents for wastewater treatment.
The mechanism of vapor phase hydration of calcium oxide: implications for CO2 capture.
Kudłacz, Krzysztof; Rodriguez-Navarro, Carlos
2014-10-21
Lime-based sorbents are used for fuel- and flue-gas capture, thereby representing an economic and effective way to reduce CO2 emissions. Their use involves cyclic carbonation/calcination which results in a significant conversion reduction with increasing number of cycles. To reactivate spent CaO, vapor phase hydration is typically performed. However, little is known about the ultimate mechanism of such a hydration process. Here, we show that the vapor phase hydration of CaO formed after calcination of calcite (CaCO3) single crystals is a pseudomorphic, topotactic process, which progresses via an intermediate disordered phase prior to the final formation of oriented Ca(OH)2 nanocrystals. The strong structural control during this solid-state phase transition implies that the microstructural features of the CaO parent phase predetermine the final structural and physicochemical (reactivity and attrition) features of the product hydroxide. The higher molar volume of the product can create an impervious shell around unreacted CaO, thereby limiting the efficiency of the reactivation process. However, in the case of compact, sintered CaO structures, volume expansion cannot be accommodated in the reduced pore volume, and stress generation leads to pervasive cracking. This favors complete hydration but also detrimental attrition. Implications of these results in carbon capture and storage (CCS) are discussed.
Sakamoto, Takeshi; Nagao, Daisuke; Noba, Masahiro; Ishii, Haruyuki; Konno, Mikio
2014-06-24
Submicrometer-sized amorphous titania spheres incorporating Au nanoparticles (NPs) were prepared in a one-pot synthesis consisting of a sol-gel reaction of titanium(IV) isopropoxide in the presence of chloroauric acid and a successive reduction with sodium borohydride in a mixed solvent of ethanol/acetonitrile. The synthesis was allowed to prepare monodisperse titania spheres that homogeneously incorporated Au NPs with sizes of ca. 7 nm. The Au NP-loaded titania spheres underwent different crystallization processes, including 500 °C calcination in air, high-temperature hydrothermal treatment (HHT), and/or low-temperature hydrothermal treatment (LHT). Photocatalytic experiments were conducted with the Au NP-loaded crystalline titania spheres under irradiation of UV and visible light. A combined process of LHT at 80 °C followed by calcination at 500 °C could effectively crystallize titania spheres maintaining the dispersion state of Au NPs, which led to photocatalytic activity higher than that of commercial P25 under UV irradiation. Under visible light irradiation, the Au NP-titania spheres prepared with a crystallization process of LHT at 80 °C for 6 h showed photocatalytic activity much higher than a commercial product of visible light photocatalyst. Structure analysis of the visible light photocatalysts indicates the importance of prevention of the Au NPs aggregation in the crystallization processes for enhancement of photocatalytic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hongjing, E-mail: wuhongjing@mail.nwpu.edu.cn; Wu, Guanglei, E-mail: wuguanglei@mail.xjtu.edu.cn; Wu, Qiaofeng
2014-11-15
We reported the preparation of C@Ni–NiO core–shell hybrid solid spheres or multi-shelled NiO hollow spheres by combining a facile hydrothermal route with a calcination process in H{sub 2} or air atmosphere, respectively. The synthesized C@Ni–NiO core–shell solid spheres with diameters of approximately 2–6 μm were in fact built from dense NiO nanoparticles coated by random two-dimensional metal Ni nanosheets without any visible pores. The multi-shelled NiO hollow spheres were built from particle-like ligaments and there are a lot of pores with size of several nanometers on the surface. Combined Raman spectra with X-ray photoelectron spectra (XPS), it suggested that themore » defects in the samples play a limited role in the dielectric loss. Compared with the other samples, the permeability of the samples calcined in H{sub 2} and air was increased slightly and the natural resonance frequency shifted to higher frequency (7, 11 and 14 GHz, respectively), leading to an enhancement of microwave absorption property. For the sample calcined in H{sub 2}, an optimal reflection loss less than − 10 was obtained at 7 GHz with a matching thickness of 5.0 mm. Our study demonstrated the potential application of C@Ni–NiO core–shell hybrid solid sphere or multi-shelled NiO hollow sphere as a more efficient electromagnetic (EM) wave absorber. - Highlights: • C@Ni–NiO core–shell hybrid solid sphere was synthesized by a facile method. • Multi-shelled NiO hollow sphere was synthesized by a facile method. • It suggested that the defects in the samples play a limited role in dielectric loss. • The permeability of the samples calcined in H{sub 2} and air was increased. • Microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere was investigated.« less
NASA Astrophysics Data System (ADS)
Shoaib, Anwer; Huang, Yongxin; Liu, Jia; Liu, Jiajia; Xu, Meng; Wang, Ziheng; Chen, Renjie; Zhang, Jiatao; Wu, Feng
2017-02-01
In view of the growing concern about energy management issues, sodium ion batteries (SIBs) as cheap and environmentally friendly devices have increasingly received wide research attentions. The high current rate and long cycle-life of SIBs are considered as two key parameters determining its potential for practical applications. In this work, the rigid single-crystalline anatase TiO2 nanosheets (NSs) with a thickness of ∼4 nm has been firstly prepared, based on which a stable nanostructured network consisting of ultrathin anatase TiO2 NSs homogeneously anchored on graphene through chemical bonding (TiO2 NSs-G) has fabricated by hydrothermal process and subsequent calcination treatment. The morphology, crystallization, chemical compositions and the intimate maximum contact between TiO2 NSs and graphene are confirmed by TEM, SEM, XRD, XPS and Raman characterizations. The results of electrochemical performance tests indicated that the TiO2 NSs-G hybrid network could be consider as a promising anode material for SIBs, in assessment of its remarkably high current rate and long cycle-life aside from the improved specific capacity, rate capability and cycle stability.
Synthesis of Carbon-Coated ZnO Composite and Varistor Properties Study
NASA Astrophysics Data System (ADS)
Sun, Wei-Jie; Liu, Jin-Ran; Yao, Da-Chuan; Chen, Yong; Wang, Mao-Hua
2017-03-01
In this article, monodisperse ZnO composite nanoparticles were successfully prepared by sol-gel mixed precursor method. Subsequently, carbon as the shell was homogeneously coated on the surface of the ZnO composite nanoparticles via a simple adsorption and calcination process. Microstructural studies of the as-obtained powders were carried out using the techniques of the x-ray powder diffraction, scanning electron microscopy, field emission scanning electron microscopy, transmission electron microscopy with energy dispersive x-ray spectroscopy, and Fourier transform infrared spectroscopy. The results show that the pink ZnO composite powders were fully coated by carbon. Based on the results, the effect of glucose content on the microstructure of the synthesized composites and the electrical properties of the ZnO varistors sintered in air at 1150°C for 2 h were also fully studied. As the amount of glucose increased, the thickness of carbon can be increased from 2.5 nm to 5 nm. In particular, the ZnO varistor fabricated with the appropriate thickness of the carbon coating (5 nm) leads to the superior electrical performance, with present high breakdown voltage ( V b = 420 V/mm) and excellent nonlinear coefficient ( α = 61.7), compared with the varistors obtained without carbon coating.
The improvement of SiO2 nanotubes electrochemical behavior by hydrogen atmosphere thermal treatment
NASA Astrophysics Data System (ADS)
Spataru, Nicolae; Anastasescu, Crina; Radu, Mihai Marian; Balint, Ioan; Negrila, Catalin; Spataru, Tanta; Fujishima, Akira
2018-06-01
Highly defected SiO2 nanotubes (SiO2-NT) were obtained by a simple sol-gel procedure followed by calcination. Boron-doped diamond (BDD) polycrystalline films coated with SiO2-NT were used as working electrodes and, unexpectedly, cyclic voltammetric experiments have shown that the concentration of both positive and negative defects at the surface is high enough to enable redox processes involving positively charged Ru(bpy)32+/3+ to occur. Conversely, no electrochemical activity was put into evidence for Fe(CN)63-/4- species, most likely as a result of the strong electrostatic repulsion exerted by the negatively charged SiO2 surface. The concentration of surface defects was further increased by a subsequent thermal treatment in a hydrogen atmosphere which, as EIS measurements have shown, significantly promotes Ru(bpy)32+ anodic oxidation. Digital simulation of the voltammetric responses demonstrated that this treatment does not lead to a similar increase of the number of electron-donor sites. It was also found that methanol anodic oxidation at hydrogenated SiO2-NT-supported platinum results in Tafel slopes of 116-220 mV decade-1, comparable to those reported for both conventional PtRu and Pt-oxide catalysts.
NASA Astrophysics Data System (ADS)
Li, Zhen; Lv, Qianqian; Huang, Xiaoxiong; Tan, Yueyue; Tang, Bohejin
2017-01-01
Sulfated metal oxide SO4 2-/Fe2O3 was prepared by a novel facile sol-gel method combined with a subsequent heating treatment process. The as-synthesized products were analyzed by XRD, FTIR, and FE-SEM. Compared with the unsulfated Fe2O3, the agglomeration of particles has been alleviated after the incorporation of SO4 2-. Interestingly, the primary particle size of the SO4 2-/Fe2O3 (about 5 nm) is similar to its normal counterparts even after the calcination treatment. More importantly, SO4 2-/Fe2O3 exhibits a porous architecture, which is an intriguing feature for electrode materials. When used as anode materials in Li-ion batteries, SO4 2-/Fe2O3 delivered a higher reversible discharge capacity (992 mAh g-1), with smaller charge transfer resistance, excellent rate performance, and better cycling stability than normal Fe2O3. We believed that the presence of SO4 2- and porous architecture should be responsible for the enhanced electrochemical performance, which could provide more continuous and accessible conductive paths for Li+ and electrons.
Wu, Chun; Cai, Junjie; Zhu, Ying; Zhang, Kaili
2017-06-07
Hybrid reduced graphene oxide (RGO) nanosheet supported Mn-Ni-Co ternary oxides (MNCO) are prepared through a facile coprecipitation reaction with a subsequent calcination process as electrodes for supercapacitors. Electrochemical measurements prove that RGO can significantly improve the supercapacitive behaviors, compared with the pure MNCO electrode. A high specific capacity of 646.1 C g -1 at 1 A g -1 can be achieved and about 89.6% of the capacity can be remained at 30 A g -1 relative to that of the low-current capacity, indicating attractive rate capability of the RGO-MNCO electrode. Moreover, an asymmetric supercapacitor (ASC) device is fabricated with nitrogen-enriched RGO as the negative electrode and the synthesized RGO-MNCO as the positive electrode. Electrochemical performances investigated at different potential range reveal that the ASC device presents excellent capacitive behavior and reversibility. A maximum energy density of 35.6 Wh kg -1 at power density of 699.9 W kg -1 can be delivered. Furthermore, stable cycle capability with 100% Coulombic efficiency and 77.2% the capacitance retention is also achieved after 10000 cycles. The achieved outstanding electrochemical properties indicate that the obtained RGO-MNCO electrode materials are fairly ideal for progressive supercapacitors.
Preparation and properties of calcium oxide from eggshells via calcination
NASA Astrophysics Data System (ADS)
Tangboriboon, N.; Kunanuruksapong, R.; Sirivat, A.
2012-12-01
Duck eggs are one of the most versatile cooking ingredients in which residue eggshells are discarded. Raw duck eggshells were calcined at temperatures between 300 to 900 °C, for 1, 3, and 5 h. Both the raw and calcined duck eggshells were characterized by FTIR, STA, XRD, XRF, TEM, BET, a particle size analyzer, and an impedance analyzer. The proper calcination conditions are: 900 °C and 1 h, yielding calcium oxide with a purity of 99.06 % w/w. The calcium carbonate of the rhombohedral form (CaCO3) transforms completely into the calcium oxide or lime of the face centered cubic form (CaO) at 900 °C, as shown by XRD diffraction patterns. The transmission electron microscopy (TEM) images of the calcium oxide reveal a moderately good dispersion of nearly uniform particles. The calcium oxide has a white color, a spherical shape, high porosity, and narrow particles size distribution. The percentage of ceramic yield of the calcium oxide is 53.53, as measured by STA (TG-DTA-DTG). The calcium oxide has a N2 adsorption-desorption isotherm indicating the meso-porosity range. The dielectric constant and the electrical conductivity of the calcined calcium oxide are 35 and 1:0×10-6(Ω·m)-1, respectively, at the frequency of 500 Hz.
Effect of sulfuric acid concentration of bentonite and calcination time of pillared bentonite
NASA Astrophysics Data System (ADS)
Mara, Ady; Wijaya, Karna; Trisunaryati, Wega; Mudasir
2016-04-01
An activation of natural clay has been developed. Activation was applied by refluxing the natural bentonite in variation of the sulfuric acid concentration and calcination time of pillared bentonite (PLC). Calcination was applied using oven in microwave 2,45 GHz. Determination of acidity was applied by measuring the amount of adsorbed ammonia and pyridine. Morphological, functional groups and chrystanility characterizations were analyzed using SEM, TEM, FTIR and XRD. Porosity was analyzed using SSA. The results showed that the greater of the concentration of sulfuric acid and calcination time was, the greater the acidity of bentonite as well as the pore diameter were. FTIR spectra showed no fundamental changes in the structure of the natural bentonite, SEM, and TEM images were showing an increase in space or field due to pillarization while the XRD patterns showed a shift to a lower peak. Optimization was obtained at a concentration of 2 M of sulfuric acid and calcination time of 20 minutes, keggin ion of 2.2 and suspension of 10 mmol, respectively each amounted to 11.7490 mmol/gram of ammonia and 2.4437 mmol/gram of pyridine with 154.6391 m2/gram for surface area, 0.130470 m3/gram of pore volume and 3.37484 nm of pore diameter.
Effect of fly ash calcination in geopolymer synthesis
NASA Astrophysics Data System (ADS)
Samadhi, Tjokorde Walmiki; Jatiningrum, Mirna; Arisiani, Gresia
2015-12-01
Geopolymer, a largely amorphous class of inorganic polymer consisting of aluminosilicate repeat units, is an environmentally attractive engineering material due to its ability to consume aluminosilicate waste as raw materials. This work studies the effect of the calcination temperature of a coal fly ash generated by a low-efficiency boiler on the mechanical strength of geopolymer mortar synthesized using a mixture of the fly ash, potassium hydroxide as the alkali activator, and locally available sand as the filler aggregate. The calcination temperature is varied between 500-700 °C, with a calcination period of 2 hours in an electric furnace. Two sand samples with different particle size distributions are used. The key response variable is the compressive strength at room temperature, measured after curing at 80 °C for 7 and 14 days. Uncalcined ash, with a carbon content of approximately 31.0%, is not amenable for geopolymer synthesis. Analysis of experimental data using the ANOVA method for general factorial design identifies significant main effects for all three experimental variables. Two-way interactions are significant, except that between sand type and curing period. Higher calcination temperature significantly improves the strength of the mortar. However, the strength of the obtained geopolymer mortars are still significantly lower than that of ordinary Portland cement mortar.
Composition and process for making an insulating refractory material
Pearson, A.; Swansiger, T.G.
1998-04-28
A composition and process are disclosed for making an insulating refractory material. The composition includes calcined alumina powder, flash activated alumina powder, an organic polymeric binder and a liquid vehicle which is preferably water. Starch or modified starch may also be added. A preferred insulating refractory material made with the composition has a density of about 2.4--2.6 g/cm{sup 3} with reduced thermal conductivity, compared with tabular alumina. Of importance, the formulation has good abrasion resistance and crush strength during intermediate processing (commercial sintering) to attain full strength and refractoriness.
One pot synthesis of exchange coupled Nd2Fe14B/alpha-Fe by pechini type sol-gel method.
Hussain, Abid; Jadhav, Abhijit P; Baek, Yeon Kyung; Choi, Hul Jin; Lee, Jaeho; Kang, Young Soo
2013-11-01
In this work, a combination of nanoparticles of Nd2Fe14B hard magnetic phase and alpha-Fe soft magnetic phase were synthesized by one pot chemical synthesis technique using sol-gel method. A gel of Nd-Fe-B was prepared using NdCl3 x 6H2O, FeCl3 x 6H2O, H3BO3, citric acid, and ethylene glycol by pechini type sol-gel method. The gel was subsequently calcined and annealed to obtain the mixed oxide powders. The produced metal oxide particles were identified with XRD, SEM, TEM to obtain the crystal structure, shape and domain structure of them. The nanoparticles of mixed phase of Nd2Fe14B/alpha-Fe were obtained from these oxides by a process of reduction-diffusion in vacuum by employing CaH2 as reducing agent. During this process it was optimized by controlling temperature, reaction time and concentration of the reducing agent (CaH2). The phase formation of Nd2Fe14B was resulted by the direct diffusion of NdH2, Fe and B. The magnetic property of produced hard and soft phases was successfully identified with vibrating sample magnetometer (VSM). The mixed domains of the hard and soft phases were identified with selected area electron diffraction method (SAED) patterns.
Wan, Wei; Sun, Junliang; Su, Jie; Hovmöller, Sven; Zou, Xiaodong
2013-01-01
Implementation of a computer program package for automated collection and processing of rotation electron diffraction (RED) data is described. The software package contains two computer programs: RED data collection and RED data processing. The RED data collection program controls the transmission electron microscope and the camera. Electron beam tilts at a fine step (0.05–0.20°) are combined with goniometer tilts at a coarse step (2.0–3.0°) around a common tilt axis, which allows a fine relative tilt to be achieved between the electron beam and the crystal in a large tilt range. An electron diffraction (ED) frame is collected at each combination of beam tilt and goniometer tilt. The RED data processing program processes three-dimensional ED data generated by the RED data collection program or by other approaches. It includes shift correction of the ED frames, peak hunting for diffraction spots in individual ED frames and identification of these diffraction spots as reflections in three dimensions. Unit-cell parameters are determined from the positions of reflections in three-dimensional reciprocal space. All reflections are indexed, and finally a list with hkl indices and intensities is output. The data processing program also includes a visualizer to view and analyse three-dimensional reciprocal lattices reconstructed from the ED frames. Details of the implementation are described. Data collection and data processing with the software RED are demonstrated using a calcined zeolite sample, silicalite-1. The structure of the calcined silicalite-1, with 72 unique atoms, could be solved from the RED data by routine direct methods. PMID:24282334
Wan, Wei; Sun, Junliang; Su, Jie; Hovmöller, Sven; Zou, Xiaodong
2013-12-01
Implementation of a computer program package for automated collection and processing of rotation electron diffraction (RED) data is described. The software package contains two computer programs: RED data collection and RED data processing. The RED data collection program controls the transmission electron microscope and the camera. Electron beam tilts at a fine step (0.05-0.20°) are combined with goniometer tilts at a coarse step (2.0-3.0°) around a common tilt axis, which allows a fine relative tilt to be achieved between the electron beam and the crystal in a large tilt range. An electron diffraction (ED) frame is collected at each combination of beam tilt and goniometer tilt. The RED data processing program processes three-dimensional ED data generated by the RED data collection program or by other approaches. It includes shift correction of the ED frames, peak hunting for diffraction spots in individual ED frames and identification of these diffraction spots as reflections in three dimensions. Unit-cell parameters are determined from the positions of reflections in three-dimensional reciprocal space. All reflections are indexed, and finally a list with hkl indices and intensities is output. The data processing program also includes a visualizer to view and analyse three-dimensional reciprocal lattices reconstructed from the ED frames. Details of the implementation are described. Data collection and data processing with the software RED are demonstrated using a calcined zeolite sample, silicalite-1. The structure of the calcined silicalite-1, with 72 unique atoms, could be solved from the RED data by routine direct methods.
Mercury isotope fractionation during ore retorting in the Almadén mining district, Spain
Gray, John E.; Pribil, Michael J.; Higueras, Pablo L.
2013-01-01
Almadén, Spain, is the world's largest mercury (Hg) mining district, which has produced over 250,000 metric tons of Hg representing about 30% of the historical Hg produced worldwide. The objective of this study was to measure Hg isotopic compositions of cinnabar ore, mine waste calcine (retorted ore), elemental Hg (Hg0(L)), and elemental Hg gas (Hg0(g)), to evaluate potential Hg isotopic fractionation. Almadén cinnabar ore δ202Hg varied from − 0.92 to 0.15‰ (mean of − 0.56‰, σ = 0.35‰, n = 7), whereas calcine was isotopically heavier and δ202Hg ranged from − 0.03‰ to 1.01‰ (mean of 0.43‰, σ = 0.44‰, n = 8). The average δ202Hg enrichment of 0.99‰ between cinnabar ore and calcines generated during ore retorting indicated Hg isotopic mass dependent fractionation (MDF). Mass independent fractionation (MIF) was not observed in any of the samples in this study. Laboratory retorting experiments of cinnabar also were carried out to evaluate Hg isotopic fractionation of products generated during retorting such as calcine, Hg0(L), and Hg0(g). Calcine and Hg0(L) generated during these retorting experiments showed an enrichment in δ202Hg of as much as 1.90‰ and 0.67‰, respectively, compared to the original cinnabar ore. The δ202Hg for Hg0(g) generated during the retorting experiments was as much as 1.16‰ isotopically lighter compared to cinnabar, thus, when cinnabar ore was roasted, the resultant calcines formed were isotopically heavier, whereas the Hg0(g) generated was isotopically lighter in Hg isotopes.
Effect of TiO2 calcination temperature on the photocatalytic oxidation of gaseous NH3.
Wu, Hongmin; Ma, Jinzhu; Zhang, Changbin; He, Hong
2014-03-01
Carbon-modified titanium dioxide (TiO2) was prepared by a sol-gel method using tetrabutyl titanate as precursor, with calcination at various temperatures, and tested for the photocatalytic oxidation (PCO) of gaseous NH3 under visible and UV light. The test results showed that no samples had visible light activity, while the TiO2 calcined at 400°C had the best UV light activity among the series of catalysts, and was even much better than the commercial catalyst P25. The catalysts were then characterized by X-ray diffractometry, Brunauer-Emmett-Teller adsorption analysis, Raman spectroscopy, thermogravimetry/differential scanning calorimetry coupled with mass spectrometry, ultraviolet-visible diffuse reflectance spectra, photoluminescence spectroscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy. It was shown that the carbon species residuals on the catalyst surfaces induced the visible light adsorption of the samples calcined in the low temperature range (< 300°C). However, the surface acid sites played a determining role in the PCO of NH3 under visible and UV light over the series of catalysts. Although the samples calcined at low temperatures had very high SSA, good crystallinity, strong visible light absorption and also low PL emission intensity, they showed very low PCO activity due to their very low number of acid sites for NH3 adsorption and activation. The TiO2 sample calcined at 400°C contained the highest number of acid sites among the series of catalysts, therefore showing the highest performance for the PCO of NH3 under UV light. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Gray, J.E.; Greaves, I.A.; Bustos, D.M.; Krabbenhoft, D.P.
2003-01-01
The Palawan Quicksilver mine, Philippines, produced about 2,900 t of mercury during mining of cinnabar ore from 1953 to 1976. More than 2,000,000 t of mine-waste calcines (retorted ore) were produced during mining, much of which were used to construct a jetty in nearby Honda Bay. Since 1995, high Hg contents have been found in several people living near the mine, and 21 of these people were treated for mercury poisoning. Samples of mine-waste calcine contain high total Hg concentrations ranging from 43-660 ??g/g, whereas total Hg concentrations in sediment samples collected from a mine pit lake and local stream vary from 3.7-400 ??g/g. Mine water flowing through the calcines is acidic, pH 3.1-4.3, and total Hg concentrations ranging from 18-31 ??g/l in this water significantly exceed the 1.0-??g/l drinking water standard for Hg recommended by the World Health Organization (WHO). Total Hg contents are generally lower in water samples collected from surrounding domestic wells, the mine pit lake, Honda Bay, and the nearby stream, varying from 0.008-1.4 ??g/l. Methylmercury concentrations in water draining mine calcines range from <0.02-1.4 ng/l, but methylmercury is highest in the pit lake water, ranging from 1.7-3.1 ng/l. Mercury methylation at the Palawan mine is similar to or higher than that found in other mercury mines worldwide. Much of the methylmercury generated in Palawan mine-waste calcines and those in Honda Bay is transferred to water, and then to marine fish and seafood. A food source pathway of Hg to humans is most likely in this coastal, high fish-consuming population.
Method for producing refractory nitrides
Quinby, Thomas C.
1989-01-24
A process for making fine, uniform metal nitride powders that can be hot pressed or sintered. A metal salt is placed in a solvent with Melamine and warmed until a metal-Melamine compound forms. The solution is cooled and the metal-Melamine precipitate is calcined at a temperature below 700.degree. C. to form the metal nitrides and to avoid formation of the metal oxide.
Americium recovery from reduction residues
Conner, W.V.; Proctor, S.G.
1973-12-25
A process for separation and recovery of americium values from container or bomb'' reduction residues comprising dissolving the residues in a suitable acid, adjusting the hydrogen ion concentration to a desired level by adding a base, precipitating the americium as americium oxalate by adding oxalic acid, digesting the solution, separating the precipitate, and thereafter calcining the americium oxalate precipitate to form americium oxide. (Official Gazette)
12. PHOTOGRAPH OF A PHOTOGRAPH OF A SCALE MODEL OF ...
12. PHOTOGRAPH OF A PHOTOGRAPH OF A SCALE MODEL OF THE WASTE CALCINER FACILITY, SHOWING WEST ELEVATION. (THE ORIGINAL MODEL HAS BEEN LOST.) INEEL PHOTO NUMBER 95-903-1-3. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
Hydrogen production from carbonaceous material
Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.
2004-09-14
Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rani, Suman, E-mail: sumanranigju@gmail.com; Ahlawat, Neetu; Punia, R.
2016-05-23
In this present work, CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) was synthesized by conventional solid-state reaction technique. The synthesis process was carried out in two phases; by conventional process (calcination and sintering at 1080°C for 10 hours) and phase II involves the micro assisted pre sintering of conventionally calcined CCTO for very short soaking time of 30 min at 1080°C in a microwave furnace followed by sintering at 1080°C for 10 hours in conventional furnace. X-ray diffraction (XRD) patterns confirmed the formation of single phase ceramic. Dielectric properties were studied over the frequency range from 50Hz -5MHz at temperatures (273K-343K). It wasmore » observed that pre- microwave sintering enhance the dielectric constant values from 10900 to 11893 and respectively reduces the dielectric loss values from 0.49 to 0.34 at room temperature(1 KHz). CCTO ceramics which are found desirable for many technological applications. The effect is more pronounced at low frequencies of applied electric field.« less
Ceramic-like open-celled geopolymer foam as a porous substrate for water treatment catalyst
NASA Astrophysics Data System (ADS)
Kovářík, T.; Křenek, T.; Pola, M.; Rieger, D.; Kadlec, J.; Franče, P.
2017-02-01
This paper presents results from experimental study on microstructural and mechanical properties of geopolymer-based foam filters. The process for making porous ceramic-like geopolymer body was experimentally established, consists of (a) geopolymer paste synthesis, (b) ceramic filler incorporation, (c) coating of open-celled polyurethane foam with geopolymer mixture, (d) rapid setting procedure, (e) thermal treatment. Geopolymer paste was based on potassium silicate solution n(SiO2)/n(K2O)=1.6 and powder mixture of calcined kaolin and precipitated silica. Various types of ceramic granular filler (alumina, calcined schistous clay and cordierite) were tested in relation to aggregate gradation design and particle size distribution. The small amplitude oscillatory rheometry in strain controlled regime 0.01% with angular frequency 10 rad/s was applied for determination of rheology behavior of prepared mixtures. Thermal treatment conditions were applied in the temperature range 1100 - 1300 °C. The developed porous ceramic-like foam effectively served as a substrate for highly active nanoparticles of selected Fe+2 spinels. Such new-type of nanocomposite was tested as a heterogeneous catalyst for technological process of advanced oxidative degradation of resistive antibiotics occurring in waste waters.
Biodiesel synthesis using calcined layered double hydroxide catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumaker, J. Link; Crofcheck, Czarena; TAckett, S. Adam
2008-01-01
The catalytic properties of calcined Li-Al, Mg-Al and Mg-Fe layered double hydroxides (LDHs) were examined in two transesterification reactions, namely, the reaction of glyceryl tributyrate with methanol, and the reaction of soybean oil with methanol. While the Li-Al catalysts showed high activity in these reactions at the reflux temperature of methanol, the Mg-Fe and Mg-Al catalysts exhibited much lower methyl ester yields. CO2 TPD measurements revealed the presence of sites of weak, medium and strong basicity on both Mg-Al and Li-Al catalysts, the latter showing higher concentrations of medium and strong base sites; by implication, these are the main sitesmore » active in transesterification catalyzed by calcined Li-Al LDHs. Maximum activity was observed for the Li-Al catalysts when a calcination temperature of 450-500 aC was applied, corresponding to decomposition of the layered double hydroxide to the mixed oxide without formation of crystalline lithium aluminate phases.« less
Bismuth doping effect on crystal structure and photodegradation activity of Bi-TiO2 nanoparticles
NASA Astrophysics Data System (ADS)
Wu, Ming-Chung; Chang, Yin-Hsuan; Lin, Ting-Han
2017-04-01
The bismuth precursor is adopted as dopant to synthesize bismuth doped titanium dioxide nanoparticles (Bi-TiO2 NPs) with sol-gel method following by the thermal annealing treatment. We systematically developed a series of Bi-TiO2 NPs at several calcination temperatures and discovered the corresponding crystal structure by varying the bismuth doping concentration. At a certain 650 °C calcination temperature, the crystal structure of bismuth titanate (Bi2Ti2O7) is formed when the bismuth doping concentration is as high as 10.0 mol %. The photocatalytic activity of Bi-TiO2 NPs is increased by varying the doping concentration at the particular calcination temperature. By the definition X-ray diffraction (XRD) structural identification, a phase diagram of Bi-TiO2 NPs in doping concentration versus calcination temperature is provided. It can be useful for further study in the crystal structure engineering and the development of photocatalyst.
Ye, Mao; Sun, Mingming; Feng, Yanfang; Li, Xu; Schwab, Arthur P; Wan, Jinzhong; Liu, Manqiang; Tian, Da; Liu, Kuan; Wu, Jun; Jiang, Xin
2016-07-13
The combined accumulation of antibiotics, heavy metals, antibiotic-resistant bacteria (ARB)/antibiotic resistance genes (ARGs) in vegetables has become a new threat to human health. This is the first study to investigate the feasibility of calcined eggshells modified by aluminum sulfate as novel agricultural wastes to impede mixed contaminants from transferring to bell pepper (Capsicum annuum L.). In this work, calcined eggshell amendment mitigated mixed pollutant accumulation in bell pepper significantly, enhanced the dissipation of soil tetracycline, sulfadiazine, roxithromycin, and chloramphenicol, decreased the water-soluble fractions of antibiotics, and declined the diversity of ARB/ARGs inside the vegetable. Moreover, quantitative polymerase chain reaction analysis detected that ARG levels in the bell pepper fruits significantly decreased to 10(-10) copies/16S copies, indicating limited risk of ARGs transferring along the food chain. Furthermore, the restoration of soil microbial biological function suggests that calcined eggshell is an environmentally friendly amendment to control the dissemination of soil ARB/ARGs in the soil-vegetable system.
Chen, N.; Goretta, K.C.; Lanagan, M.T.
1998-10-13
A (BiPb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x}(Bi223) superconductor with high J{sub c}, phase purity, density and mechanical strength is formed from Bi2223 powder which is synthesized from a mixture of Bi{sub 2}O{sub 3}, PbO, SrCO{sub 3}, CaCo{sub 3} and CuO. The mixture is milled, then dried and calcined to synthesize the Bi2223 powder with the desired phase purity. The calcination is performed by heating the dried mixture for 50 hours at 840 C. The partially synthesized powder is then milled for 1--4 hours before calcining further for another 50 hours at 855 C to complete the synthesis. After calcination, the Bi2223 powder is cold pressed to a predetermined density and sinter forged under controlled temperature and time to form a Bi2223 superconductor with the desired superconducting properties. 5 figs.
Chen, Nan; Goretta, Kenneth C.; Lanagan, Michael T.
1998-01-01
A (BiPb).sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x (Bi223) superconductor with high J.sub.c, phase purity, density and mechanical strength is formed from Bi2223 powder which is synthesized from a mixture of Bi.sub.2 O.sub.3, PbO, SrCO.sub.3, CaCo.sub.3 and CuO. The mixture is milled, then dried and calcined to synthesize the Bi2223 powder with the desired phase purity. The calcination is performed by heating the dried mixture for 50 hours at 840.degree. C. The partially synthesized powder is then milled for 1-4 hours before calcining further for another 50 hours at 855.degree. C. to complete the synthesis. After calcination, the Bi2223 powder is cold pressed to a predetermined density and sinter forged under controlled temperature and time to form a Bi2223 superconductor with the desired superconducting properties.
NASA Astrophysics Data System (ADS)
Noerochim, Lukman; Ginanjar, Edith Setia; Susanti, Diah; Prihandoko, Bambang
2018-04-01
Lithium vanadium oxide (LiV3O8) has been successfully synthesized by hydrothermal method followed by calcination via the reaction of Lithium hydroxide (LiOH) and ammonium metavanade (NH4VO3). The precursors were heated at hydrothermal at 200 °C and then calcined at different calcination temperature in 400, 450, and 500 °C. The characterization by X-ray diffraction (XRD) and scanning electron microscope (SEM) is indicated that LiV3O8 micro-rod have been obtained by this method. The cyclic voltammetry (CV) result showed that redox reaction occur in potential range between 2.42 - 3.57 V for the reduction reaction and oxidation reaction in potential range between 2.01 V-3.69 V. The highest result was obtained for sample 450 °C with specific discharge capacity of 138 mA/g. The result showed that LiV3O8 has a promising candidate as a cathode material for lithium ion batteries.
Refractory concentrate gold leaching: Cyanide vs. bromine
NASA Astrophysics Data System (ADS)
Dadgar, Ahmad
1989-12-01
Gold extraction, recovery and economics for two refractory concentrates were investigated using cyanide and bromine reagents. Gold extractions for cyanide leaching (24-48 hours) and bromine leaching (six hours) were the same and ranged from 94 to 96%. Gold recoveries from bromine pregnant solutions using carbon adsorption, ion exchange, solvent extraction, and zinc and aluminum precipitation methods were better than 99.9%. A preliminary economic analysis indicates that chemical costs for cyanidation and bromine process are 11.70 and 11.60 respectively, per tonne of calcine processed.
García, Rosario; Rubio, Virginia; Vegas, Iñigo; Frías, Moisés
2009-05-01
One of the problems to affect Portland cement matrices is low resistance to aggressive agents, due principally to the presence of a high content of portlandite in the hydrated cements. Pozzolanic materials have played an important role in the improving the durability of cement-based materials for decades. This work studies the behaviour of cement mortar matrices blended with 10% calcined paper sludge (source for metakaolinite) and exposed to different environmental conditions (saline and non-saline environments) after 6 and 12 months of exposure. Two cements were studied: an ordinary Portland cement (CEM 1, 42.5R), acting as reference cement, and a blended cement formulated by mixing 90% (by mass) of CEM 1, 42.5R with 10% (by mass) of paper sludge calcined at 700 degrees C for 2 h. The specimens were exposed 1 year to saline and non-saline environments. All the mineralogy samples were studied through X-ray diffraction and scanning electron microscopy (SEM) equipped with an energy dispersive X-ray analyser. The in-depth study on ionic mobility was performed on samples subjected to natural exposure (coast and tableland) for 6 and 12 months. Portland cement was composed of quartz, calcite, calcium hydroxide and tobermorite gels. The pozzolanic cement (10% calcined paper sludge) is of the same composition but a high calcite concentration and barium carbonate. SEM analysis from coastline show deposits of variable composition. The deposits are identified on the surface of different mineral components. The minerals from tableland are much fractured, i.e. calcite and feldspars. Inside the fractures, the deposits and the ions are located and trapped superficially. SEM analysis of control cement Portland and 10% calcined paper sludge shows deposits on quartz and calcite with a very high concentration of Pb, Zn, Cl and barium sulphate. A very porous aspect is due to the presence of the different aggregate types. This porous configuration permits retention of the ion environment. The pozzolanic cement in environments subject to the saline mist favours the retention and transport of ions observed. Something similar also happens with the increase in exposure to outdoor weather. Non-saline samples show temperature changes (ice or thaw cycles). Barium retention is kept on the surface in fracture lines by the gelification processes. In general, it may be inferred that an increase in exposure time increases the diffusion of ions towards test piece interiors. The chemical composition profiles show that the ions present different penetration speeds. The results indicate the better vulnerability of pozzolanic cements from calcined paper sludge in saline and non-saline environments. The cements with a 10% addition of calcined paper sludge favour retention and transport of ion has been observed. Today, projects are centred on a new recycling line for industrial waste of this kind, with special attention on its incorporation in cement manufacture as a pozzolanic material, setting the most appropriate activation conditions of the mineralogical compound in this waste (kaolinite and metakaolinite) and taking them as a starting point for this project. The use of pozzolanic cement with 10% addition of calcined paper sludge is a system which favours ionic retention.
In vitro cytotoxicity and quantitative silica analysis of diatomaceous earth products.
Bye, E; Davies, R; Griffiths, D M; Gylseth, B; Moncrieff, C B
1984-05-01
Mouse peritoneal macrophages were used to evaluate the relative cytotoxicity of a series of diatomaceous earth products in vitro. The amorphous and crystalline silica content of the products was determined by a combination of infrared spectroscopy and x ray powder diffraction techniques. The cytotoxicities of the high cristobalite content flux calcined materials were similar to that of the standard cristobalite ; both the natural and straight calcined materials had significantly greater activities than the flux calcined materials. Thus within the limitations of the macrophage cytotoxicity test the hypothesis that crystalline content is the only determinant of fibrogenicity of diatomaceous earth is not supported.
In vitro cytotoxicity and quantitative silica analysis of diatomaceous earth products.
Bye, E; Davies, R; Griffiths, D M; Gylseth, B; Moncrieff, C B
1984-01-01
Mouse peritoneal macrophages were used to evaluate the relative cytotoxicity of a series of diatomaceous earth products in vitro. The amorphous and crystalline silica content of the products was determined by a combination of infrared spectroscopy and x ray powder diffraction techniques. The cytotoxicities of the high cristobalite content flux calcined materials were similar to that of the standard cristobalite ; both the natural and straight calcined materials had significantly greater activities than the flux calcined materials. Thus within the limitations of the macrophage cytotoxicity test the hypothesis that crystalline content is the only determinant of fibrogenicity of diatomaceous earth is not supported. Images PMID:6326795
NASA Astrophysics Data System (ADS)
Bahar, Mahmoud; Mozaffari, Masoud; Esmaeili, Sahar
2017-03-01
In this work, nanoparticles of titanium dioxide (TiO2) were synthesized by means of TiCl4 as precursor. Effects of alcohol type, calcination, gelatinizing time and microwave exposure on the particle size, morphology, crystallinity and particle phase are studied using XRD patterns and SEM images. Results showed that alcohols such as ethanol increased the particle size; calcination increased the particle size and improved the crystallinity of particles. Microwave exposure of particles resulted in smaller particles; adding water increased the impact of microwave. Effect of microwave exposure in rutile phase formation is also observed during this study.
Cements for Structural Concrete in Cold Regions.
1977-10-01
ability to reduce the early evolu- tion of heat: slag and obsidian, pumicite and calcined shale, fly-ash , tuff and calcined diatomite , natural cement...and uncalcined diatomite . Variations in initial set times of cements can be controlled ‘cy varying the percentages of different cement mixtures . Wh it
Zhao, Yuanyuan; Fan, Haimei; Li, Wen; Bi, Lihua; Wang, Dejun; Wu, Lixin
2010-09-21
In this paper, we demonstrated a new convenient route for in situ fabrication of well separated small sized WO(3) nanoparticles in silica spheres, through a predeposition of surfactant encapsulated polyoxotungates as tungsten source, and followed by a calcination process. In a typical procedure, selected polyoxotungates with different charges were enwrapped with dioctadecyldimethylammonium cations through electrostatic interaction. Elemental analysis, thermogravimetric analysis, and spectral characterization confirmed the formation of prepared complexes with the anticipated chemical structure. The complexes were then phase-transferred into aqueous solution that predissolved surfactant cetyltrimethylammonium bromide, and finally incorporated into silica spheres through a joint sol-gel reaction with tetraethyl orthosilicate in a well dispersed state under the protection of organic layer for polyoxotungates from the alkaline reaction condition. Transmission electron microscopic images illustrated the well dispersed WO(3) nanoparticles in the size range of ca. 2.2 nm in the silica spheres after the calcination at 465 °C. The sizes of both the silica spheres and WO(3) nanoparticles could be adjusted independently through changing the doping content to a large extent. Meanwhile, the doped polyoxotungate complexes acted as the template for the mesoporous structure in silica spheres after the calcination. Along with the increase of doping content and surfactant, the mesopore size changed little (2.0-2.9 nm), but the specific surface areas increased quite a lot. Importantly, the WO(3)-nanoparticle-doped silica spheres displayed an interesting photovoltaic property, which is favorable for the funtionalization of these nanomaterials.
Quantifying Morphological Features of α-U3O8 with Image Analysis for Nuclear Forensics.
Olsen, Adam M; Richards, Bryony; Schwerdt, Ian; Heffernan, Sean; Lusk, Robert; Smith, Braxton; Jurrus, Elizabeth; Ruggiero, Christy; McDonald, Luther W
2017-03-07
Morphological changes in U 3 O 8 based on calcination temperature have been quantified enabling a morphological feature to serve as a signature of processing history in nuclear forensics. Five separate calcination temperatures were used to synthesize α-U 3 O 8 , and each sample was characterized using powder X-ray diffraction (p-XRD) and scanning electron microscopy (SEM). The p-XRD spectra were used to evaluate the purity of the synthesized U-oxide; the morphological analysis for materials (MAMA) software was utilized to quantitatively characterize the particle shape and size as indicated by the SEM images. Analysis comparing the particle attributes, such as particle area at each of the temperatures, was completed using the Kolmogorov-Smirnov two sample test (K-S test). These results illustrate a distinct statistical difference between each calcination temperature. To provide a framework for forensic analysis of an unknown sample, the sample distributions at each temperature were compared to randomly selected distributions (100, 250, 500, and 750 particles) from each synthesized temperature to determine if they were statistically different. It was found that 750 particles were required to differentiate between all of the synthesized temperatures with a confidence interval of 99.0%. Results from this study provide the first quantitative morphological study of U-oxides, and reveals the potential strength of morphological particle analysis in nuclear forensics by providing a framework for a more rapid characterization of interdicted uranium oxide samples.
Yan, Junqing; Wu, Guangjun; Guan, Naijia; Li, Landong; Li, Zhuoxin; Cao, Xingzhong
2013-07-14
The sole effect of surface/bulk defects of TiO2 samples on their photocatalytic activity was investigated. Nano-sized anatase and rutile TiO2 were prepared by hydrothermal method and their surface/bulk defects were adjusted simply by calcination at different temperatures, i.e. 400-700 °C. High temperature calcinations induced the growth of crystalline sizes and a decrease in the surface areas, while the crystalline phase and the exposed facets were kept unchanged during calcination, as indicated by the characterization results from XRD, Raman, nitrogen adsorption-desorption, TEM and UV-Vis spectra. The existence of surface/bulk defects in calcined TiO2 samples was confirmed by photoluminescence and XPS spectra, and the surface/bulk defect ratio was quantitatively analyzed according to positron annihilation results. The photocatalytic activity of calcined TiO2 samples was evaluated in the photocatalytic reforming of methanol and the photocatalytic oxidation of α-phenethyl alcohol. Based on the characterization and catalytic results, a direct correlation between the surface specific photocatalytic activity and the surface/bulk defect density ratio could be drawn for both anatase TiO2 and rutile TiO2. The surface defects of TiO2, i.e. oxygen vacancy clusters, could promote the separation of electron-hole pairs under irradiation, and therefore, enhance the activity during photocatalytic reaction.
NASA Astrophysics Data System (ADS)
Kafle, Madhav; Kapadi, Ramesh K.; Joshi, Leela Pradhan; Rajbhandari, Armila; Subedi, Deepak P.; Gyawali, Gobinda; Lee, Soo W.; Adhikari, Rajendra; Kafle, Bhim P.
2017-07-01
The dependence of the structural, optical and electrical properties of the FTO thin films on the film thickness (276 nm - 546 nm), calcination environment, and low temperature plasma treatment were examined. The FTO thin films, prepared by spray pyrolysis, were calcinated under air followed by either further heat treatment under N2 gas or treatment in low temperature atmospheric plasma. The samples before and after calcination under N2, and plasma treatment will be represented by Sair, SN2 and SPl, respectively, hereafter. The thin films were characterized by measuring the XRD spectra, SEM images, optical transmittance and reflectance, and sheet resistance of the films before and after calcination in N2 environment or plasma treatment. The presence of sharp and narrow multiple peaks in XRD spectra hint us that the films were highly crystalline (polycrystalline). The samples Sair with the thickness of 471 nm showed as high as 92 % transmittance in the visible range. Moreover, from the tauc plot, the optical bandgap Eg values of the Sair found to be noticeably lower than that of the samples SN2. Very surprisingly, the electrical sheet resistance (Rsh) found to decrease following the trend as Rshair > RshN2 > RshPl. The samples exposed to plasma found to possess the lowest RshPl (for film with thickness 546 nm, the RshPl was 17 Ω /sq.).
A preliminary study on the reduction of limonite ore by using rice husk as a reducing agent
NASA Astrophysics Data System (ADS)
Maksum, Ahmad; Husein, Michael Kelvin E.; Permana, Sulaksana; Rustandi, Andi; Wahyuadi Soedarsono, Johny
2018-03-01
The abundant of rice husk in Indonesia has encouraged researchers to study the feasibility of rice husk for substituting material that is more expensive or dangerous. In previous study, silica with a purity of 99.9% has been obtained from rice husk with calcinations process. Nevertheless, the gases resulting from the process were not used and left useless. Therefore, in this study, those gases derived from rice husk calcinations process were used as reducing agents during the ferronickel (Fe-Ni) production through a direct reduction process. The objective of this study was to investigate the effect of the amount of rice husk in the pellets on the increase of nickel content in the limonite reduction process. The limonite ore were crushed to the size of less than 150 mesh using disc-mill, and then were mixed with rice husk powder (10, 20, 30 in wt % mass) before being pelletized using bentonite as a binder. The resulted pellets were roasted at 500°C for 60 minutes and then quenched in water media. After drying process, the reduction process of 40g pellets was conducted at 1000°C for 90 minutes with 20g rice husk in furnace. The effects of additional rice husk on the direct reduction of limonite ore pellets were qualitatively analyzed by using X-ray powder diffraction (XRD) and quantitatively by Atomic absorption spectroscopy (AAS). Both analysis results showed that the reduction process followed the reaction scheme: Fe2O3→Fe3O4→FeO and NiO phase was detected in the sample with 20% rice husk addition. The optimum concentration of Ni 1.23% was obtained for 20% rice husk addition.
NASA Astrophysics Data System (ADS)
Chanda, Debabrata; Hnát, Jaromir; Bystron, Tomas; Paidar, Martin; Bouzek, Karel
2017-04-01
In this work, the Ni-Co spinel oxides are synthesized via different methods and using different calcination temperatures. Properties of the prepared materials are compared. The best route is selected and used to prepare a Ni1+xCo2-xO4 (-1 ≤ x ≤ 1) series of materials in order to investigate their catalytic activity towards the oxygen evolution reaction (OER). The results show that hydroxide preparation yields NiCo2O4 oxide with the highest activity. 325 °C is identified as the optimum calcination temperature. Subsequently, the catalysts are tested in an electrolysis cell. To prepare an anode catalyst layer based on NiCo2O4 catalyst on top of a nickel foam substrate for membrane electrode assembly (MEA) construction, following polymer binders are used: anion-selective quaternized polyphenylene oxide (qPPO), inert polytetrafluoroethylene (PTFE®), and cation-selective Nafion®. qPPO ionomer containing MEA exhibited highest OER activity. The current density obtained using a MEA containing qPPO binder attains a value of 135 mA cm-2 at a cell voltage of 1.85 V. After 7 h chronopotentiometric experiment at a constant current density of 225 mA cm-2, the MEA employing PTFE® binder shows higher stability than the other binders in alkaline water electrolysis at 50 °C. Under similar conditions, stability of the PTFE®-binding MEA is examined for 135 h.
Nanosized IrO2 electrocatalysts for oxygen evolution reaction in an SPE electrolyzer
NASA Astrophysics Data System (ADS)
Cruz, J. C.; Baglio, V.; Siracusano, S.; Ornelas, R.; Ortiz-Frade, L.; Arriaga, L. G.; Antonucci, V.; Aricò, A. S.
2011-04-01
Nanosized IrO2 electrocatalysts ( d 7-9 nm) with specific surface area up to 100 m2 g-1 were synthesized and characterized for the oxygen evolution reaction in a solid polymer electrolyte (SPE) electrolyzer. The catalysts were prepared by a colloidal method in aqueous solution and a subsequent thermal treatment. An iridium hydroxide hydrate precursor was obtained at 100 °C, which was, successively, calcined at different temperatures from 200 to 500 °C. The physico-chemical characterization was carried out by X-ray diffraction (XRD), thermogravimetry-differential scanning calorimetry (TG-DSC) and transmission electron microscopy (TEM). IrO2 catalysts were sprayed onto a Nafion 115 membrane up to a loading of 3 mg cm-2. A Pt catalyst was used at the cathode compartment with a loading of 0.6 mg cm-2. The electrochemical activity for water electrolysis of the membrane-electrode assemblies (MEAs) was investigated in a single cell SPE electrolyzer by steady-state polarization curves, impedance spectroscopy and chrono-amperometric measurements. A maximum current density of 1.3 A cm-2 was obtained at 1.8 V and 80 °C for the IrO2 catalyst calcined at 400 °C for 1 h. A stable performance was recorded in single cell for this anode catalyst at 80 °C. The suitable catalytic activity and stability of the most performing catalyst were interpreted in terms of proper combination between nanostructure and suitable morphology.
NASA Astrophysics Data System (ADS)
Masoudpanah, S. M.; Seyyed Ebrahimi, S. A.
2012-07-01
Nanostructured single phase strontium hexaferrite, SrFe12O19, thin films have been synthesized on the (100) silicon substrate using a spin coating sol-gel process. The thin films with various Fe/Sr molar ratios of 8-12 were calcined at different temperatures from 500 to 900 °C. The composition, microstructure and magnetic properties of the SrFe12O19 thin films were characterized using Fourier transform infrared spectroscopy, differential thermal analysis, thermogravimetry, X-ray diffraction, electron microscopy and vibrating sample magnetometer. The results showed that the optimum molar ratio for Fe/Sr was 10 at which the lowest calcination temperature to obtain the single phase strontium hexaferrite thin film was 800 °C. The magnetic measurements revealed that the sample with Fe/Sr molar ratio of 10, exhibited higher saturation magnetization (267.5 emu/cm3) and coercivity (4290 Oe) in comparison with those synthesized under other Fe/Sr molar ratios.
Yang, Zhenzhou; Zhang, Yingyi; Liu, Lili; Seetharaman, Seshadri; Wang, Xidong; Zhang, Zuotai
2016-01-01
The present study firstly proposed a method of integrated utilization of sewage sludge (SS) and coal gangue (CG), two waste products, for cement clinker products with the aim of heat recovery and environment protection. The results demonstrated that the incremental amounts of SS and CG addition was favorable for the formation of tricalcium silicate (C3S) during the calcinations, but excess amount of SS addition could cause the impediment effect on C3S formation. Furthermore, it was also observed that the C3S polymorphs showed the transition from rhombohedral to monoclinic structure as SS addition was increased to 15 wt %. During the calcinations, most of trace elements could be immobilized especially Zn and cannot be easily leached out. Given the encouraging results in the present study, the co-process of sewage sludge and coal gangue in the cement kiln can be expected with a higher quality of cement products and minimum pollution to the environment. PMID:28773400
NASA Astrophysics Data System (ADS)
Marlot, Caroline; Barraud, Elodie; Le Gallet, Sophie; Eichhorn, Marc; Bernard, Frédéric
2012-07-01
YAG nanopowders with an average grain size of 30 nm have been successfully synthesized by the co-precipitation method using nitrates with precipitant of ammonium hydrogen carbonate. The influence of precipitation conditions such as pH, aging time and calcination temperature on the formation of secondary phases has been studied. The accurate control of pH value at every stage of precipitation process is crucial to avoid the presence of YAM (Yttrium Aluminium Monoclinic, Y4Al2O9) and yttrium oxide (Y2O3) after calcination. The reaction mechanisms have been investigated using different techniques such as infrared spectroscopy, x-ray diffraction and thermal analyses. The YAG phase is formed around 1050 °C passing through an intermediate phase called YAP (Yttrium Aluminium Perovskite, YAlO3). Local chemical heterogeneities are responsible for the deviation of the Y:Al ratio and the formation of YAP during heat treatment.
Direct fabrication of /sup 238/PuO/sub 2/ fuel forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burney, G.A.; Congdon, J.W.
1982-07-01
The current process for the fabrication of /sup 238/PuO/sub 2/ heat sources includes precipitation of small particle plutonium oxalate crystals (4 to 6 ..mu..m diameter), a calcination to PuO/sub 2/, ball milling, cold pressing, granulation (60 to 125 ..mu..m), and granule sintering prior to hot pressing the fuel pellet. A new two-step direct-strike Pu(III) oxalate precipitation method which yields mainly large well-developed rosettes (50 to 100 ..mu..m diameter) has been demonstrated in the laboratory and in the plant. These large rosettes are formed by agglomeration of small (2 to 4 ..mu..m) crystals, and after calcining and sintering, were directly hotmore » pressed into fuel forms, thus eliminating several of the powder conditioning steps. Conditions for direct hot pressing of the large heat-treated rosettes were determined and a full-scale General Purpose Heat Source pellet was fabricated. The pellet had the desired granule-type microstructure to provide dimensional stability at high temperature. 27 figures.« less
Low temperature pyrolysis of coal or oil shale in the presence of calcium compounds
Khan, M. Rashid
1988-01-01
A coal pyrolysis technique or process is described in which particulate coal is pyrolyzed in the presence of about 5 to 21 wt. % of a calcium compound selected from calcium oxide, calcined (hydrate) dolomite, or calcined calcium hydrate to produce a high quality hydrocarbon liquid and a combustible product gas which are characterized by low sulfur content. The pyrolysis is achieved by heating the coal-calcium compound mixture at a relatively slow rate at a temperature of about 450.degree. to 700.degree. C. over a duration of about 10 to 60 minutes in a fixed or moving bed reactor. The gas exhibits an increased yield in hydrogen and C.sub.1 -C.sub.8 hydrocarbons and a reduction in H.sub.2 S over gas obtainable by pyrolyzing cola without the calcium compound. The liquid product obtained is of a sufficient quality to permit its use directly as a fuel and has a reduced sulfur and oxygen content which inhibits polymerization during storage.
Gold Leaching Characteristics and Intensification of a High S and As-Bearing Gold Concentrate
NASA Astrophysics Data System (ADS)
Yang, Yong-bin; Liu, Xiao-liang; Jiang, Tao; Li, Qian; Xu, Bin; Zhang, Yan
Some high sulfur and arsenic-bearing gold concentrate has a gold leaching rate less than 80% by oxidation roasting-pickling-cyanidation process. The characteristics and intensification of gold leaching were studied systemically. By combining chemical composition and phase analysis, the low gold leaching rate was found to lie in the capsulation of gold by iron-containing phases including iron oxides, arsenopyrite and pyrite. 96.66% of gold in the industrial leaching residue was capsulated and 95.88% of the capsulated turned out to be in the iron-containing phases. The results of laboratory pickling-cyanidation experiments on the calcine and industrial leaching residue presented further demonstration for the fact that gold capsulated in the iron-containing phases was hard to be leached. However, the gold cyanide leaching rate of calcine could be raised over 95% by a reduction roasting-pickling pretreatment which played such a significant role in exposing the capsulated gold that gold leaching was intensified remarkably.
Thermal characteristic of limonite ore upon calcination and reduction
NASA Astrophysics Data System (ADS)
Febriana, Eni; Manaf, Azwar; Prasetyo, A. B.; Mayangsari, W.
2018-05-01
Thermal characteristics of the limonite laterite ore types have been studied using TG / DTA. There are four endothermic peaks at 250, 646, 900, and 1023 °C with a total mass loss of 10.07wt%. These four peaks correspond to the XRD results on samples calcined at 600-1000 °C. Analysis of TG / DTA to the mixture of limonite and graphite showed two endothermic reaction peaks at 641 and 900 °C and an exothermic peak at 1180 °C. Reduction of the limonite-graphite mixture was done by heating at 800-1100 °C for 1 hour, and the reduced samples were analyzed using XRD. The results indicate that the reduction process proceed completely at higher temperatures, indicated by the increasing intensity of kamacite and Fe metal phase, and the decrease of peak intensity of carbon due to reaction with metal oxides. At 1100 °C, intensity of Fe-metal decreased due to sintering of Fe which may occur because the temperature was too high.
Practical method of CO.sub.2 sequestration
Goswami, D Yogi [Gainesville, FL; Lee, Man Su [Houston, TX; Kothurkar, Nikhil K [Tampa, FL; Stefanakos, Elias K [Tampa, FL
2011-03-01
A process and device to capture of CO.sub.2 at its originating source, such as a power plant, is disclosed. Absorbent material is recharged by desorbing CO.sub.2, so that it may be sequestered or used in another application. Continual recharging results in loss of absorbent surface area, due to pore plugging and sintering of particles. Calcium oxide or calcium hydroxide was immobilized to a fibrous ceramic-based fabric substrate as a thin film and sintered, creating an absorbent material. The samples were characterized, showing continuous cyclic carbonation conversions between about 62% and 75% under mild calcination conditions at 750.degree. C. and no CO.sub.2 in N.sub.2. Under the more severe calcination condition at 850.degree. C. and 20 wt % CO.sub.2 in N.sub.2, yttria fabric was superior to alumina as a substrate for carbon dioxide capture and the reactivity of the calcium oxide absorbent immobilized to yttria was maintained at the same level in the 12 cycles.
Utilization of waste of coal-mining enterprise in production of building materials
NASA Astrophysics Data System (ADS)
Chugunov, A. D.; Filatova, E. G.; Yakovleva, A. A.
2018-03-01
Wastes of coal producers often include substances allowing treating such wastes as valuable feeds for metallurgy, chemical and construction processes. This study concerned elemental and phase composition of samples obtained by calcination of bottom sediments of the coal producer spoil bank. The research has shown that the samples contain significant amounts of carbon, iron, silicon, aluminum and other valuable components.
NASA Astrophysics Data System (ADS)
Bumanis, G.; Bajare, D.; Dembovska, L.
2015-11-01
Alkali activation technology can be applied for a wide range of alumo-silicates to produce innovative materials with various areas of application. Most researches focuse on the application of alumo-silicate materials in building industry as cement binder replacement to produce mortar and concrete [1]. However, alkali activation technology offers high potential also in biotechnologies [2]. In the processes where certain pH level, especially alkaline environment, must be ensured, alkali activated materials can be applied. One of such fields is water treatment systems where high level pH (up to pH 10.5) ensures efficient removal of water pollutants such as manganese [3]. Previous investigations had shown that alkali activation technology can be applied to calcined clay powder and aluminium scrap recycling waste as a foam forming agent to create porous alkali activated materials. This investigation focuses on the structural investigation of calcined kaolin and illite clay alkali activation processes. Chemical and mineralogical composition of both clays were determined and structural investigation of alkali activated materials was made by using XRD, DTA, FTIR analysis; the microstructure of hardened specimens was observed by SEM. Physical properties of the obtained material were determined. Investigation indicates the essential role of chemical composition of the clay used in the alkali activation process, and potential use of the obtained material in water treatment systems.
Facile preparation and formation mechanism of Sr2Si5N8:Eu2+ red-emitting phosphors
NASA Astrophysics Data System (ADS)
Wang, Yang; Wang, Yunli; Wang, Ming; Shao, Yiran; Zhu, Yingchun
2018-05-01
The red-emitting Sr2Si5N8:Eu2+ phosphors have been synthesized in a new facile process using (oxy)nitride precursors by inductive calcination under N2 atmosphere at ordinary pressure. Different from the prevailing methods, lower cost raw materials, simpler pretreatment, without harsh conditions and a shorter reaction time are achieved. It was found that red-emitting Sr2Si5N8:Eu2+ phosphors were synthesized with high crystallinity and purity after 1 h inductive calcination. The formation mechanism was characterized by XRD, SEM, TEM and Fluorescence microscopy. It was demonstrated that a hexagonal mesophase of Sr-doped α-Si3N4 was primarily formed in the reaction process, which transformed into the final product of the orthorhombic Sr2Si5N8:Eu2+ phosphors. During the reaction process, the color of the samples transforms from greenish-yellow to orange and eventually to red. The as-prepared phosphors have a wide excitation in the range of 250 ∼ 570 nm which matches blue light chips and give a red-light emission peaking at 610 nm. The results indicate a promising prospect for a simple, efficient and inexpensive way to prepare Sr2Si5N8:Eu2+ phosphors for blue/UV-based warm-white LEDs and other fluorescent applications.
Caisso, Marie; Picart, Sébastien; Belin, Renaud C; Lebreton, Florent; Martin, Philippe M; Dardenne, Kathy; Rothe, Jörg; Neuville, Daniel R; Delahaye, Thibaud; Ayral, André
2015-04-14
Transmutation of americium in heterogeneous mode through the use of U1-xAmxO2±δ ceramic pellets, also known as Americium Bearing Blankets (AmBB), has become a major research axis. Nevertheless, in order to consider future large-scale deployment, the processes involved in AmBB fabrication have to minimize fine particle dissemination, due to the presence of americium, which considerably increases the risk of contamination. New synthesis routes avoiding the use of pulverulent precursors are thus currently under development, such as the Calcined Resin Microsphere Pelletization (CRMP) process. It is based on the use of weak-acid resin (WAR) microspheres as precursors, loaded with actinide cations. After two specific calcinations under controlled atmospheres, resin microspheres are converted into oxide microspheres composed of a monophasic U1-xAmxO2±δ phase. Understanding the different mechanisms during thermal conversion, that lead to the release of organic matter and the formation of a solid solution, appear essential. By combining in situ techniques such as XRD and XAS, it has become possible to identify the key temperatures for oxide formation, and the corresponding oxidation states taken by uranium and americium during mineralization. This paper thus presents the first results on the mineralization of (U,Am) loaded resin microspheres into a solid solution, through in situ XAS analysis correlated with HT-XRD.
Jo, Yong Beom; Park, Sung Hoon; Jeon, Jong-Ki; Ko, Chang Hyun; Ryu, Changkook; Park, Young-Kwon
2013-07-01
Calcined waste starfish was used as a base catalyst for the production of biodiesel from soybean oil for the first time. A batch reactor was used for the transesterification reaction. The thermal characteristics and crystal structures of the waste starfish were investigated by thermo-gravimetric analysis and X-ray diffraction. The biodiesel yield was determined by measuring the content of fatty acid methyl esters (FAME). The calcination temperature appeared to be a very important parameter affecting the catalytic activity. The starfish-derived catalyst calcined at 750 °C or higher exhibited high activity for the transesterification reaction. The FAME content increased with increasing catalyst dose and methanol-over-oil ratio.
NASA Astrophysics Data System (ADS)
Zhang, Guangshan; Hu, Limin; Wang, Peng; Yuan, Yixing
2017-11-01
In this work, a time-saving microwave-assisted method for synthesis of Co3O4-Bi2O3 was reported. The synthesized Co3O4-Bi2O3 samples were characterized with different techniques to probe their crystalline structures and morphologies. The catalytic performances of synthesized Co3O4-Bi2O3 as peroxymonosulfate activator were evaluated by the degradation of bisphenol A. The effect of calcination temperature on Co3O4-Bi2O3 products was explored and the result showed that the sample calcined at 400 °C possessing superior catalytic activity.
Carter, J.M.; Larson, C.E.
1958-10-01
A process is presented for recovering uranium values from calutron deposits. The process consists in treating such deposits to produce an oxidlzed acidic solution containing uranium together with the following imparities: Cu, Fe, Cr, Ni, Mn, Zn. The uranium is recovered from such an impurity-bearing solution by adjusting the pH of the solution to the range 1.5 to 3.0 and then treating the solution with hydrogen peroxide. This results in the precipitation of uranium peroxide which is substantially free of the metal impurities in the solution. The peroxide precipitate is then separated from the solution, washed, and calcined to produce uranium trioxide.
Composition and process for making an insulating refractory material
Pearson, Alan; Swansiger, Thomas G.
1998-04-28
A composition and process for making an insulating refractory material. The composition includes calcined alumina powder, flash activated alumina powder, an organic polymeric binder and a liquid vehicle which is preferably water. Starch or modified starch may also be added. A preferred insulating refractory material made with the composition has a density of about 2.4-2.6 g/cm.sup.3 with reduced thermal conductivity, compared with tabular alumina. Of importance, the formulation has good abrasion resistance and crush strength during intermediate processing (commercial sintering) to attain full strength and refractoriness, good abrasion resistance and crush strength.
46 CFR 148.04-15 - Petroleum coke, uncalcined; petroleum coke, uncalcined and calcined (mixture).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Petroleum coke, uncalcined; petroleum coke, uncalcined and calcined (mixture). 148.04-15 Section 148.04-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... Requirements for Certain Material § 148.04-15 Petroleum coke, uncalcined; petroleum coke, uncalcined and...
Attrition resistant Fischer-Tropsch catalyst and support
Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.
2004-05-25
A catalyst support having improved attrition resistance and a catalyst produced therefrom. The catalyst support is produced by a method comprising the step of treating calcined .gamma.-alumina having no catalytic material added thereto with an acidic aqueous solution having an acidity level effective for increasing the attrition resistance of the calcined .gamma.-alumina.
Standardization and quality control parameters for Muktā Bhasma (calcined pearl)
Joshi, Namrata; Sharma, Khemchand; Peter, Hema; Dash, Manoj Kumar
2015-01-01
Background: Muktā Bhasma (MB) is a traditional Ayurvedic preparation for cough, breathlessness, and eye disorders and is a powerful cardiac tonic, mood elevator, and known to promote strength, intellect, and semen production. Objectives: The present research work was conducted to generate fingerprint for raw and processed MB for quality assessment and standardization using classical and other techniques. Setting and Design: Three samples of MB were prepared by purification (śodhana) of Muktā (pearl) followed by repeated calcinations (Māraṇa). Resultant product was subjected to organoleptic tests and Ayurvedic tests for quality control such as rekhāpūrṇatā, vāritaratva, and nirdhūmatva. Materials and Methods: For quality control, physicochemical parameters such as loss on drying, total ash value, acid insoluble ash, specific gravity, pH value, and other tests using techniques such as elemental analysis with energy dispersive X-ray analysis (EDAX), Structural study with powder X-ray diffraction, particle size with scanning electron microscopy (SEM) were carried out on raw Muktā, Śodhita Muktā, and triplicate batches of MB. Results: The study showed that the raw material Muktā was calcium carbonate in aragonite form, which on repeated calcinations was converted into a more stable calcite form. SEM studies revealed that in raw and purified materials the particles were found scattered and unevenly arranged in the range of 718.7–214.7 nm while in final product, uniformly arranged, stable, rod-shaped, and rounded particles with more agglomerates were observed in the range of 279.2–79.93 nm. EDAX analysis revealed calcium as a major ingredient in MB (average 46.32%) which increased gradually in the stages of processing (raw 34.11%, Śodhita 37.5%). Conclusion: Quality control parameters have been quantified for fingerprinting of MB prepared using a particular method. PMID:26600667
Zhu, Qi; Song, Caiyun; Li, Xiaodong; Sun, Xudong; Li, Ji-Guang
2018-04-09
Submicron sized, monodispersed spheres of Mn2+, Yb3+/Er3+ and Mn2+/Yb3+/Er3+ doped α-NaYF4 were easily autoclaved from mixed solutions of the component nitrates and ammonium fluoride (NH4F), in the presence of EDTA-2Na. Detailed characterizations of the resultant phosphors were obtained using XRD, Raman spectroscopy, FE-SEM, HR-TEM, STEM, PLE/PL spectroscopy, and fluorescence decay analysis. Finer structure and better crystal perfection was observed at a higher calcination temperature, and the spherical shape and excellent dispersion of the original particles was retained at temperatures up to 600 °C. Under the 980 nm infrared excitation, the Yb3+/Er3+-doped sample (calcined at 400 °C) exhibits a stronger green emission centered at ∼524 nm (2H11/2 → 4I15/2 transition of Er3+) and a weaker red emission centered at ∼657 nm (4F9/2 → 4I15/2 transition of Er3+). A 200 °C increase in the temperature from 400 °C to 600 °C resulted in the dominant red emission originating from the 4F9/2 → 4I15/2 transition of Er3+, instead of the previously dominant green one. Mn2+ doping induced a remarkable more enhanced intensity at ∼657 nm and ∼667 nm (red emission area) than that at ∼524 nm and ∼546 nm (green emission area), because of the non-radiative energy transfer between Mn2+ and Er3+. However, a poor thermal stability was induced by Mn2+ doping. The observed upconversion luminescence of the samples calcined at 400 °C and 600 °C followed the two photon process and the four photon process, respectively.
Ghiazza, Mara; Gazzano, Elena; Bonelli, Barbara; Fenoglio, Ivana; Polimeni, Manuela; Ghigo, Dario; Garrone, Edoardo; Fubini, Bice
2009-01-01
To understand the effect of the commercial processing of diatomaceous earths (DEs) on their ultimate surface structure and potential toxicity, we investigated the influence of the industrial processing and the nature of the deposit. Two flux calcined specimens from different deposits, DE/1-FC and DE/2-FC, and the simply calcined sample DE/1-C, from the same deposit as DE/1-FC, were compared in both their bulk and their surface properties. X-ray diffraction (XRD) analysis in a heating chamber revealed the presence of cristobalite in all samples, more abundant on the flux calcined ones. The crystal lattice is probably imperfect, as the alpha-beta transition, visible by XRD in DE/1-FC and DE/2-FC, is not detected by differential scanning calorimetry. Progressive etching with HF solutions suggests that most of the crystalline phase is at the core and not at the outer region of the samples. The combined use of spectroscopic (UV-vis and IR) and calorimetric techniques (heat of adsorption of water as a measure of hydrophilicity) reveals that DE/1-FC and DE/2-FC particles have an external layer of glass, absent in DE/1-C, where iron impurities act as network-forming and sodium ions as modifier species, with few patches of a hydrophobic phase, the latter relatable to a heated pure silica phase. When tested on a macrophage cell line (MH-S) in comparison with appropriate positive and negative controls (an active and an inactive quartz dust, respectively), only DE/1-C exhibited a cell damage and activation similar to that of active quartz (measured by lactate dehydrogenase release, peroxidation of membrane lipids and synthesis of NO). It is likely that the presence of a vitreous phase mitigates or even eliminates the cellular responses of silica in DE.
NASA Astrophysics Data System (ADS)
Kato, Zenta; Kashima, Ryo; Tatsumi, Kohei; Fukuyama, Shinnosuke; Izumiya, Koichi; Kumagai, Naokazu; Hashimoto, Koji
2016-12-01
For oxygen formation without forming chlorine in seawater electrolysis for hydrogen production we have been using the anode consisting of three layers of MnO2-type multiple oxide catalyst, intermediate layer and titanium substrate. The intermediate layer was used for prevention of oxidation of the titanium substrate during anodic polarization for oxygen evolution and was prepared by calcination of butanol solutions of H2IrCl6 and SnCl4 coated on titanium. The protectiveness of Ir1-xSnxO2 layer formed was directly examined using Ir1-xSnxO2/Ti anodes in H2SO4 solution changing the preparation conditions of the layer. When the sum of Ir4+ and Sn4+ was 0.1 M, the highest protectiveness was observed at 0.06 M Sn4+. Although an increase in calcination temperature led to the formation of Ir1-x-ySnxTiyO2 triple oxide with a slightly lower catalytic activity for oxygen evolution, the anode calcined at 450 °C showed the highest protectiveness.
NASA Astrophysics Data System (ADS)
Mohammed, J.; Sharma, Jyoti; Kumar, Sachin; Trudel, T. T. Carol; Srivastava, A. K.
2017-07-01
M-type hexagonal ferrites have found wide application in electronics industry due to the possibility of tuning properties such as dielectric properties. An improved dielectric property is useful in high frequency application. In this paper, we studied the effect of calcination temperature on structural and dielectric properties of Al-Mn substituted M-type strontium hexagonal ferrites with chemical composition Sr1-xAlxFe12-yMnyO19 (x=0.3 and y=0.6) synthesized by sol-gel auto-combustion method. The prepared sample was sintered at four different temperatures (T=750°C, 850°C, 950°C and 1050°C) for 5 hours. Characterisations of the synthesized samples were carried out using X-ray diffraction (XRD), impedance analyser, field emission electron microscope (FE-SEM) and energy dispersive X-ray (EDX) spectroscopy. The dielectric properties were explained on the basis of Koop's phenomenological theory and Maxwell Wagner theory. The sample calcinated at 750°C shows the highest value of dielectric constant and AC conductivity whereas that calcinated at 1050°C exhibit the lowest dielectric losses.
NASA Astrophysics Data System (ADS)
Wannapop, Surangkana; Thongtem, Titipun; Thongtem, Somchai
2012-03-01
Mixtures of magnesium acetate tetrahydrate ((CH3COO)2Mg·4H2O), ammonium tungstate tetrahydrate ((NH4)6W7O24·4H2O), and poly(vinyl alcohol) with the molecular weight of 72,000 were electrospun through a +15 kV direct voltage to form fibers on ground flat aluminum foils. The electrospun fibers of 1.5, 3.0, and 4.5 mmol of each starting material containing 1.3 g poly(vinyl alcohol) were further calcined at 500-700 °C for 3 h constant length of time. At 500 and 600 °C calcination, both monoclinic and anorthic phases of MgWO4 particles with different sizes connecting as fibrous assemblies were detected. Upon increasing the calcination temperature to 700 °C, only monoclinic phase of facet nanoparticles interconnecting along the fibrous axes with 4.19 eV indirect band gap and 461 nm photoemission was synthesized. In the present research, formation of MgWO4 molecules as well as nucleation and growth of nanoparticles was also proposed.
NASA Astrophysics Data System (ADS)
Shah, Shreya; Marin-Flores, Oscar G.; Norton, M. Grant; Ha, Su
2015-10-01
In this study, NiMo alloys supported on Mo2C are synthesized by wet impregnation for partial oxidation of methyl oleate, a surrogate biodiesel, to produce syngas. When compared to single phase Mo2C, the H2 yield increases from 70% up to >95% at the carbon conversion of ∼100% for NiMo alloy nanoparticles that are dispersed over the Mo2C surface. Supported NiMo alloy samples are prepared at two different calcination temperatures in order to determine its effect on particle dispersion, crystalline phase and catalytic properties. The reforming test data indicate that catalyst prepared at lower calcination temperature shows better nanoparticle dispersion over the Mo2C surface, which leads to higher initial performance when compared to catalysts synthesized at higher calcination temperature. Activity tests using the supported NiMo alloy on Mo2C that are calcined at the lower temperature of 400 °C shows 100% carbon conversion with 90% H2 yield without deactivation due to coking over 24 h time-on-stream.
NASA Astrophysics Data System (ADS)
Pan, Denghui; Zhang, Mingmei; Wang, Ying; Yan, Zaoxue; Jing, Junjie; Xie, Jimin
2017-10-01
In this article, we synthesize Ni(OH)2 homogeneous grown on nitrogen-doped graphene (Ni(OH)2/NG), subsequently, small and uniform nickel oxide nanoparticle (NiO/NG) is also successfully obtained through tube furnace calcination method. The high specific capacitance of the NiO/NG electrode can reach to 1314.1 F/g at a charge and discharge current density of 2 A/g, meanwhile the specific capacitance of Ni(OH)2/NG electrode is also 1350 F/g. The capacitance of NiO/NG can remain 93.7% of the maximum value after 1000 cycles, while the Ni(OH)2/NG electrode losses 16.9% of the initial capacitance after 1000 cycles. It can be attributed to nickel hydroxide instability during charge-discharge cycles.
Ahmad, Mahtab; Hashimoto, Yohey; Moon, Deok Hyun; Lee, Sang Soo; Ok, Yong Sik
2012-03-30
This study evaluated the effectiveness of eggshell and calcined eggshell on lead (Pb) immobilization in a shooting range soil. Destructive and non-destructive analytical techniques were employed to determine the mechanism of Pb immobilization. The 5% additions of eggshell and calcined eggshell significantly decreased the TCLP-Pb concentration by 68.8% due mainly to increasing soil pH. Eggshell and calcined-eggshell amendments decreased the exchangeable Pb fraction to ≈ 1% of the total Pb in the soil, while the carbonate-associated Pb fraction was increased to 40.0-47.1% at >15% application rates. The thermodynamic modeling on Pb speciation in the soil solution predicted the precipitation of Pb-hydroxide [Pb(OH)(2)] in soils amended with eggshell and calcined eggshell. The SEM-EDS, XAFS and elemental dot mapping revealed that Pb in soil amended with calcined eggshell was associated with Si and Ca, and may be immobilized by entrapping into calcium-silicate-hydrate. Comparatively, in the soil amended with eggshell, Pb was immobilized via formation of Pb-hydroxide or lanarkite [Pb(2)O(SO(4))]. Applications of amendments increased activities of alkaline phosphatase up to 3.7 times greater than in the control soil. The use of eggshell amendments may have potential as an integrated remediation strategy that enables Pb immobilization and soil biological restoration in shooting range soils. Copyright © 2012 Elsevier B.V. All rights reserved.
Kim, C.S.; Rytuba, J.J.; Brown, Gordon E.
2004-01-01
The speciation of Hg is a critical determinant of its mobility, reactivity, and potential bioavailability in mine-impacted regions. Furthermore, Hg speciation in these complex natural systems is influenced by a number of physical, geological, and anthropogenic variables. In order to investigate the degree to which several of these variables may affect Hg speciation, extended X-ray absorption fine structure (EXAFS) spectroscopy was used to determine the Hg phases and relative proportions of these phases present in Hg-bearing wastes from selected mine-impacted regions in California and Nevada. The geological origin of Hg ore has a significant effect on Hg speciation in mine wastes. Specifically, samples collected from hot-spring Hg deposits were found to contain soluble Hg-chloride phases, while such phases were largely absent in samples from silica-carbonate Hg deposits; in both deposit types, however, Hg-sulfides in the form of cinnabar (HgS, hex.) and metacinnabar (HgS, cub.) dominate. Calcined wastes in which Hg ore was crushed and roasted in excess of 600??C, contain high proportions of metacinnabar while the main Hg-containing phase in unroasted waste rock samples from the same mines is cinnabar. The calcining process is thought to promote the reconstructive phase transformation of cinnabar to metacinnabar, which typically occurs at 345??C. The total Hg concentration in calcines is strongly correlated with particle size, with increases of nearly an order of magnitude in total Hg concentration between the 500-2000 ??m and <45 ??m size fractions (e.g., from 97-810 mg/kg Hg in calcines from the Sulphur Bank Mine, CA). The proportion of Hg-sulfides present also increased by 8-18% as particle size decreased over the same size range. This finding suggests that insoluble yet soft Hg-sulfides are subject to preferential mechanical weathering and become enriched in the fine-grained fraction, while soluble Hg phases are leached out more readily as particle size decreases. The speciation of Hg in mine wastes is similar to that in distributed sediments located downstream from the same waste piles, indicating that the transport of Hg from mine waste piles does not significantly impact Hg speciation. Hg LIII-EXAFS analysis of samples from Au mining regions, where elemental Hg(0) was introduced to aid in the Au recovery process, identified the presence of Hg-sulfides and schuetteite (Hg3O2SO4), which may have formed as a result of long-term Hg(0) burial in reducing high-sulfide sediments. ?? 2003 Elsevier Ltd. All rights reserved.
In-situ X-ray diffraction activation study on an Fe/TiO2 pre-catalyst.
Rayner, Matthew K; Billing, David G; Coville, Neil J
2014-06-01
This study focuses on the use of in situ powder X-ray diffraction (PXRD) and quantitative phase analysis using the Rietveld method to monitor the structural properties of a titania-supported iron (10% Fe/TiO2) pre-catalyst during calcination (oxidation) and activation (reduction) in the temperature range 25-900°C. The TiO2 oxidation study revealed an increase in anatase particle size before the anatase to rutile phase transformation, lending credibility to the bridging mechanism proposed by Kim et al. [(2007), Mater. Sci. Forum, 534-536, 65-68]. Pre-catalyst oxidation experiments allowed for the determination of a suitable calcination temperature (450°C) of the pre-catalyst in terms of maximum hematite concentration and appropriate particle size. These experiments also confirmed that the anatase to rutile phase transformation occurred at higher temperatures after Fe addition and that anatase was the sole donor of Ti(4+) ions, which are known to migrate into hematite (Gennari et al., 1998), during the formation of pseudobrookite (Fe2TiO5) at temperatures above 690°C. Using the results from the oxidation experiments, two pre-catalyst samples were calcined at different temperatures; one to represent the preferred case and one to represent a case where the pre-catalyst had been excessively heated. Samples of the excessively heated catalysts were exposed to different reducing gas atmospheres (5, 10 and 100% H2/N2) and heated in the in situ PXRD reactor, so that diffraction data could be collected during the activation process. The results show that reduction with gases containing low concentrations of H2 (5 and 10%) led to the formation of ilmenite (FeTiO3) and we were able to show that both anatase and rutile are consumed in the reaction. Higher concentrations of H2 led to the formation of magnetite (Fe3O4) and metallic iron (Fe(0)). We also noted a decrease in the anatase to rutile transformation temperature under reducing atmospheres when compared with the pre-catalyst heat-treatment experiment. A reduced calcination temperature prior to reduction allowed more facile Fe reduction.
PROCESS OF MAKING A NEUTRONIC REACTOR FUEL ELEMENT COMPOSITION
Alter, H.W.; Davidson, J.K.; Miller, R.S.; Mewherter, J.L.
1959-01-13
A process is presented for making a ceramic-like material suitable for use as a nuclear fuel. The material consists of a solid solution of plutonium dioxide in uranium dioxide and is produced from a uranyl nitrate -plutonium nitrate solution containing uraniunm and plutonium in the desired ratio. The uranium and plutonium are first precipitated from the solution by addition of NH/ sub 4/OH and the dried precipitate is then calcined at 600 C in a hydrogen atmosphere to yield the desired solid solution of PuO/sub 2/ in UO/sub 2/.
Cryochemical method for forming spherical metal oxide particles from metal salt solutions
Tinkle, M.C.
1973-12-01
A method is described of preparing small metal oxide spheres cryochemically utilizing metal salts (e.g., nitrates) that cannot readily be dried and calcined without loss of sphericity of the particles. Such metal salts are cryochemically formed into small spheres, partially or completely converted to an insoluble salt, and dried and calcined. (Official Gazette)
Method for calcining nuclear waste solutions containing zirconium and halides
Newby, Billie J.
1979-01-01
A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate.
To simulate the staged availability of transient high surface area CaO observed in high-temperature flow-reactor data, the rate of calcination of CaCO3 or Ca(OH)2 is described by an empirical modification of the shrinking-core model. The physical model depicts particle decomposi...
Calcination of calcium carbonate and blend therefor
Mallow, William A.; Dziuk, Jr., Jerome J.
1989-01-01
A method for calcination of a calcium carbonate material comprising heating the calcium carbonate material to a temperature and for a time sufficient to calcine the material to the degree desired while in the presence of a catalyst; said catalyst comprising at least one fused salt having the formula MCO.sub.3.CaCO.sub.3.CaO.H.sub.2 O.sub.x, wherein M is an alkali metal and x is 0 to 1 and formed by fusing MCO.sub.3 and CaCO.sub.3 in a molar ratio of about 1:2 to 2:1, and a blend adapted to be heated to CaO comprising a calcium carbonate material and at least one such fused salt.
Synthesis and characterization of Ni doped ZnO nanoparticles
NASA Astrophysics Data System (ADS)
Tamgadge, Y. S.; Gedam, P. P.; Ganorkar, R. P.; Mahure, M. A.; Pahurkar, V. G.; Muley, G. G.
2018-05-01
In this paper, we present synthesis of L-valine assisted surface modification of Ni doped ZnO nanoparticles (NPs) using chemical precipitation method. Samples were calcined at 500oC for 2h. Uncalcined and calcined samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet-visible (UV-vis) spectroscopy. Ni doped ZnO NPs with average particle size of 8 nm have been successfully obtained using L-valine as surface modifying agent. Increase in the particle size was observed after the calcination. XRD and TEM studies confirmed the purity, surface morphology and hexagonal wurtzite crystal structure of ZnO NPs. UV-vis spectroscopy indicated the blue shift of excitons absorption wavelength and surface modification by L-valine.
Method of preparing porous, rigid ceramic separators for an electrochemical cell
Bandyopadhyay, Gautam; Dusek, Joseph T.
1981-01-01
Porous, rigid separators for electrochemical cells are prepared by first calcining particles of ceramic material at temperatures above about 1200.degree. C. for a sufficient period of time to reduce the sinterability of the particles. A ceramic powder that has not been calcined is blended with the original powder to control the porosity of the completed separator. The ceramic blend is then pressed into a sheet of the desired shape and sintered at a temperature somewhat lower than the calcination temperature. Separator sheets of about 1 to 2.5 mm thickness and 30 to 70% porosity can be prepared by this technique. Ceramics such as yttria, magnesium oxide and magnesium-aluminum oxide have advantageously been used to form separators by this method.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-10
... calciners and/or dryers used in the processing of kaolin and the production of a catalyst at the W.R. Grace... available on the Internet through the Office of Enforcement and Compliance Assurance (OECA) Web site at... promulgated requirements. See 40 CFR 60.13(i), 61.14(g), 63.8(b)(1), 63.8(f), and 63.10(f). EPA's written...
Pulsed atmospheric fluidized bed combustor apparatus
Mansour, Momtaz N.
1993-10-26
A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nardova, A.K.; Filippov, E.A.; Glagolenko, Y.B.
1996-05-01
This report presents the results of investigations of plutonium immobilization from solutions on inorganic matrices with the purpose of producing a solid waste form. High-temperature sorption is described which entails the adsorption of radionuclides from solutions on porous, inorganic matrices, as for example silica gel. The solution is brought to a boil with additional thermal process (calcination) of the saturated granules.
Process of making supported catalyst
Schwarz, James A.; Subramanian, Somasundaram
1992-01-01
Oxide supported metal catalysts have an additional metal present in intimate association with the metal catalyst to enhance catalytic activity. In a preferred mode, iridium or another Group VIII metal catalyst is supported on a titania, alumina, tungsten oxide, silica, or composite oxide support. Aluminum ions are readsorbed onto the support and catalyst, and reduced during calcination. The aluminum can be added as aluminum nitrate to the iridium impregnate solution, e.g. chloroiridic acid.
Lin, Xiangfeng; Fang, Jian; Chen, Menglin; Huang, Zhi; Su, Chengyuan
2016-08-01
An efficient adsorbent/catalyst Co and Fe-catalysts loaded on sepiolite (Co-Fe/sepiolite) was successfully prepared for high temperature gas flow catalytic reaction by a simple impregnation method. The impact of preparation conditions (such as pH value of impregnation solution, impregnation time, calcination temperature, and time) on catalytic activity was studied. We found that the catalytic activity of Co-Fe/sepiolite was strongly influenced by all the investigated parameters. The regeneration efficiency (RE) was used to evaluate the catalytic activity. The RE is more noticeable at pH 5.0 of impregnation solution, impregnation time 18 h, calcination temperature 650 °C, and calcination time 3 h. This Co-Fe/sepiolite has great adsorption capacity in absorbing dye. It is used for an adsorbent to adsorb dye from wastewater solution under dynamic adsorption and saturated with dye, then regenerated with high temperature gas flow for adsorption/oxidation cycles. The Co-Fe/sepiolite acts as a catalyst to degrade the dye during regeneration under high temperature gas flow. Hence, the Co-Fe/sepiolite is not only an adsorbent but also a catalyst. The Co-Fe/sepiolite is more stable than sepiolite when applied in the treatment of plant's wastewater. The Co-Fe/sepiolite can be reused in adsorption-regeneration cycle. The results indicate the usability of the proposed combined process, dye adsorption on Co-Fe/sepiolite followed by the catalytic oxidation in high temperature gas flow.
Preparation of hydroxyapatite-titania hybrid coatings on titanium alloy.
Un, Serhat; Durucan, Caner
2009-08-01
Hydroxypapatite-titania hybrid films on Ti6Al4V alloys were prepared by sol-gel technique by incorporating presynthesized hydroxypapatite (Ca(10)(PO(4))(6)(OH)(2) or HAp) powders into a titanium-alkoxide dip coating solution. Titania network was formed by the hydrolysis and condensation of Ti-isopropoxide Ti[OCH(CH(3))(2)](4)-based sols. The effect of titania sol formulation, specifically the effect of organic solvents on the microstructure of the dip coated films calcined at 500 degrees C has been investigated. The coatings exhibit higher tendency for cracking when a high vapor pressure solvent, such as ethanol (C(2)H(5)OH) is used causing development of higher macroscopic stresses during evaporation of the sol. Titania sol formulations replacing the solvent with n-proponal (CH(3)(CH(2))(2)OH) and acetly-acetone (C(5)H(8)O) combinations enhanced the microstructural integrity of the coating during evaporation and calcination treatments. Sol-gel processing parameters, such as multilayer coating application and withdrawal rate, can be employed to change the titania thickness in the range of 0.120-1.1 microm and to control the microstructure of HAp-titania hybrid coatings. A high-calcination temperature in the range of 400-600 degrees C does not cause a distinct change in crystals nature of the titania matrix or HAp, but results in more cracking due to the combined effect of densification originated stresses and thermal stresses upon cooling. Slower withdraw rates and multilayer dip coating lead to coatings more vulnerable to microcracking.
Interfacial interactions between calcined hydroxyapatite nanocrystals and substrates.
Okada, Masahiro; Furukawa, Keiko; Serizawa, Takeshi; Yanagisawa, Yoshihiko; Tanaka, Hidekazu; Kawai, Tomoji; Furuzono, Tsutomu
2009-06-02
Interfacial interactions between calcined hydroxyapatite (HAp) nanocrystals and surface-modified substrates were investigated by measuring adsorption behavior and adhesion strength with a quartz crystal microbalance (QCM) and a contact-mode atomic force microscope (AFM), respectively. The goal was to develop better control of HAp-nanocrystal coatings on biomedical materials. HAp nanocrystals with rodlike or spherical morphology were prepared by a wet chemical process followed by calcination at 800 degrees C with an antisintering agent to prevent the formation of sintered polycrystals. The substrate surface was modified by chemical reaction with a low-molecular-weight compound, or graft polymerization with a functional monomer. QCM measurement showed that the rodlike HAp nanocrystals adsorbed preferentially onto anionic COOH-modified substrates compared to cationic NH2- or hydrophobic CH3-modified substrates. On the other hand, the spherical nanocrystals adsorbed onto NH2- and COOH-modified substrates, which indicates that the surface properties of the HAp nanocrystals determined their adsorption behavior. The adhesion strength, which was estimated from the force required to move the nanocrystal in contact-mode AFM, on a COOH-grafted substrate prepared by graft polymerization was almost 9 times larger than that on a COOH-modified substrate prepared by chemical reaction with a low-molecular-weight compound, indicating that the long-chain polymer grafted on the substrate mitigated the surface roughness mismatch between the nanocrystal and the substrate. The adhesion strength of the nanocrystal bonded covalently by the coupling reaction to a Si(OCH3)-grafted substrate prepared by graft polymerization was approximately 1.5 times larger than that when adsorbed on the COOH-grafted substrate.
Mineral-Templated 3D Graphene Architectures for Energy-Efficient Electrodes.
Zhang, Mingchao; Chen, Ke; Wang, Chunya; Jian, Muqiang; Yin, Zhe; Liu, Zhenglian; Hong, Guo; Liu, Zhongfan; Zhang, Yingying
2018-05-01
3D graphene networks have shown extraordinary promise for high-performance electrochemical devices. Herein, the chemical vapor deposition synthesis of a highly porous 3D graphene foam (3D-GF) using naturally abundant calcined Iceland crystal as the template is reported. Intriguingly, the Iceland crystal transforms to CaO monolith with evenly distributed micro/meso/macropores through the releasing of CO 2 at high temperature. Meanwhile, the hierarchical structure of the calcined template could be easily tuned under different calcination conditions. By precisely inheriting fine structure from the templates, the as-prepared 3D-GF possesses a tunable hierarchical porosity and low density. Thus, the hierarchical pores offer space for guest hybridization and provide an efficient pathway for ion/charge transport in typical energy conversion/storage systems. The 3D-GF skeleton electrode hybridized with Ni(OH) 2 /Co(OH) 2 through an optimal electrodeposition condition exhibits a high specific capacitance of 2922.2 F g -1 at a scan rate of 10 mV s -1 , and 2138.4 F g -1 at a discharge current density of 3.1 A g -1 . The hybrid 3D-GF symmetry supercapacitor shows a high energy density of 83.0 Wh kg -1 at a power density of 1011.3 W kg -1 and 31.4 Wh kg -1 at a high power density of 18 845.2 W kg -1 . The facile fabrication process enables the mass production of hierarchical porous 3D-GF for high-performance supercapacitors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Porous metal oxide microspheres from ion exchange resin
NASA Astrophysics Data System (ADS)
Picart, S.; Parant, P.; Caisso, M.; Remy, E.; Mokhtari, H.; Jobelin, I.; Bayle, J. P.; Martin, C. L.; Blanchart, P.; Ayral, A.; Delahaye, T.
2015-07-01
This study is devoted to the synthesis and the characterization of porous metal oxide microsphere from metal loaded ion exchange resin. Their application concerns the fabrication of uranium-americium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP). Those mixed oxide ceramics are one of the materials envisaged for americium transmutation in sodium fast neutron reactors. The advantage of such microsphere precursor compared to classical oxide powder is the diminution of the risk of fine dissemination which can be critical for the handling of highly radioactive powders such as americium based oxides and the improvement of flowability for the filling of compaction chamber. Those millimetric oxide microspheres incorporating uranium and americium were synthesized and characterizations showed a very porous microstructure very brittle in nature which occurred to be adapted to shaping by compaction. Studies allowed to determine an optimal heat treatment with calcination temperature comprised between 700-800 °C and temperature rate lower than 2 °C/min. Oxide Precursors were die-pressed into pellets and then sintered under air to form regular ceramic pellets of 95% of theoretical density (TD) and of homogeneous microstructure. This study validated thus the scientific feasibility of the CRMP process to prepare bearing americium target in a powder free manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunaseelan, M.; Senthilselvan, J., E-mail: jsselvan@hotmail.com
2016-05-06
A simple and cost effective reverse microemulsion system was newly designed to synthesis NaYF{sub 4}:20%Yb,2%Er upconverting luminescent nanoparticles. XRD results confirms the cubic structure of NaYF{sub 4} nanophosphor in the as prepared condition without any other impurity phases. The as-prepared sample itself having highly crystalline nanoparticle with well dispersed uniform morphology is the advantage of this reverse microemulsion process. HRTEM images of as prepared and calcined samples revealed spherical nanoclusters morphology with size of ~210 nm and ~245 nm respectively. The characteristic absorption wavelength that occurs at 980 nm due to transition of energy levels {sup 2}F{sub 5/2} to {sup 2}F{sub 7/2} formore » Yb{sup 3+} rare earth ion in as prepared and calcined upconversion nanoparticle confirms the presence of Yb{sup 3+} by UV-Visible spectroscopy which can act as a sensitizer for photonic upconversion. Therefore the absorption at NIR region and emission spectrum at visible region suggests that NaYF{sub 4}:20%Yb,2%Er is suitable for upcoversion process, due to its optical property and chemical stability this material also be useful for bio imaging applications.« less