Sample records for subsequent gan layer

  1. Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template

    NASA Astrophysics Data System (ADS)

    Wang, Y. D.; Zang, K. Y.; Chua, S. J.; Tripathy, S.; Chen, P.; Fonstad, C. G.

    2005-12-01

    We report the growth of high-quality GaN epilayers on an ordered nanoporous GaN template by metalorganic chemical vapor deposition. The nanopores in GaN template were created by inductively coupled plasma etching using anodic aluminum oxide film as an etch mask. The average pore diameter and interpore distance is about 65 and 110nm, respectively. Subsequent overgrowth of GaN first begins at the GaN crystallite surface between the pores, and then air-bridge-mediated lateral overgrowth leads to the formation of the continuous layer. Microphotoluminescence and micro-Raman measurements show improved optical properties and significant strain relaxation in the overgrown layer when compared to GaN layer of same thickness simultaneously grown on sapphire without any template. Similar to conventional epitaxial lateral overgrown GaN, such overgrown GaN on a nanopatterned surface would also serve as a template for the growth of ultraviolet-visible light-emitting III-nitride devices.

  2. Spin injection in epitaxial MnGa(111)/GaN(0001) heterostructures

    NASA Astrophysics Data System (ADS)

    Zube, Christian; Malindretos, Joerg; Watschke, Lars; Zamani, Reza R.; Disterheft, David; Ulbrich, Rainer G.; Rizzi, Angela; Iza, Michael; Keller, Stacia; DenBaars, Steven P.

    2018-01-01

    Ferromagnetic MnGa(111) layers were grown on GaN(0001) by molecular beam epitaxy. MnGa/GaN Schottky diodes with a doping level of around n = 7 × 1018 cm-3 were fabricated to achieve single step tunneling across the metal/semiconductor junction. Below the GaN layer, a thin InGaN quantum well served as optical spin detector ("spin-LED"). For electron spin injection from MnGa into GaN and subsequent spin transport through a 45 nm (70 nm) thick GaN layer, we observe a circular polarization of 0.3% (0.2%) in the electroluminescence at 80 K. Interface mixing, spin polarization losses during electrical transport in the GaN layer, and spin relaxation in the InGaN quantum well are discussed in relation with the low value of the optically detected spin polarization.

  3. A Microstructural Comparison of the Initial Growth of AIN and GaN Layers on Basal Plane Sapphire and SiC Substrates by Low Pressure Metalorganic Chemical Vapor Depositon

    NASA Technical Reports Server (NTRS)

    George, T.; Pike, W. T.; Khan, M. A.; Kuznia, J. N.; Chang-Chien, P.

    1994-01-01

    The initial growth by low pressure metalorganic chemical vapor deposition and subsequent thermal annealing of AIN and GaN epitaxial layers on SiC and sapphire substrates is examined using high resolution transmission electron microscopy and atomic force microscopy.

  4. Epitaxial GaN layers formed on langasite substrates by the plasma-assisted MBE method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobanov, D. N., E-mail: dima@ipmras.ru; Novikov, A. V.; Yunin, P. A.

    2016-11-15

    In this publication, the results of development of the technology of the epitaxial growth of GaN on single-crystal langasite substrates La{sub 3}Ga{sub 5}SiO{sub 14} (0001) by the plasma-assisted molecular-beam epitaxy (PA MBE) method are reported. An investigation of the effect of the growth temperature at the initial stage of deposition on the crystal quality and morphology of the obtained GaN layer is performed. It is demonstrated that the optimal temperature for deposition of the initial GaN layer onto the langasite substrate is about ~520°C. A decrease in the growth temperature to this value allows the suppression of oxygen diffusion frommore » langasite into the growing layer and a decrease in the dislocation density in the main GaN layer upon its subsequent high-temperature deposition (~700°C). Further lowering of the growth temperature of the nucleation layer leads to sharp degradation of the GaN/LGS layer crystal quality. As a result of the performed research, an epitaxial GaN/LGS layer with a dislocation density of ~10{sup 11} cm{sup –2} and low surface roughness (<2 nm) is obtained.« less

  5. Polarity-inverted lateral overgrowth and selective wet-etching and regrowth (PILOSWER) of GaN.

    PubMed

    Jang, Dongsoo; Jue, Miyeon; Kim, Donghoi; Kim, Hwa Seob; Lee, Hyunkyu; Kim, Chinkyo

    2018-03-07

    On an SiO 2 -patterned c-plane sapphire substrate, GaN domains were grown with their polarity controlled in accordance with the pattern. While N-polar GaN was grown on hexagonally arranged circular openings, Ga-polar GaN was laterally overgrown on mask regions due to polarity inversion occurring at the boundary of the circular openings. After etching of N-polar GaN on the circular openings by H 3 PO 4 , this template was coated with 40-nm Si by sputtering and was slightly etched by KOH. After slight etching, a thin layer of Si left on the circular openings of sapphire,but not on GaN, was oxidized during thermal annealing and served as a dielectric mask during subsequent regrowth. Thus, the subsequent growth of GaN was made only on the existing Ga-polar GaN domains, not on the circular openings of the sapphire substrate. Transmission electron microscopy analysis revealed no sign of threading dislocations in this film. This approach may help fabricating an unholed and merged GaN film physically attached to but epitaxially separated from the SiO 2 -patterned sapphire.

  6. Coaxial metal-oxide-semiconductor (MOS) Au/Ga2O3/GaN nanowires.

    PubMed

    Hsieh, Chin-Hua; Chang, Mu-Tung; Chien, Yu-Jen; Chou, Li-Jen; Chen, Lih-Juann; Chen, Chii-Dong

    2008-10-01

    Coaxial metal-oxide-semiconductor (MOS) Au-Ga2O3-GaN heterostructure nanowires were successfully fabricated by an in situ two-step process. The Au-Ga2O3 core-shell nanowires were first synthesized by the reaction of Ga powder, a mediated Au thin layer, and a SiO2 substrate at 800 degrees C. Subsequently, these core-shell nanowires were nitridized in ambient ammonia to form a GaN coating layer at 600 degrees C. The GaN shell is a single crystal, an atomic flat interface between the oxide and semiconductor that ensures that the high quality of the MOS device is achieved. These novel 1D nitride-based MOS nanowires may have promise as building blocks to the future nitride-based vertical nanodevices.

  7. Improvement of optical quality of semipolar (11 2 ¯ 2 ) GaN on m-plane sapphire by in-situ epitaxial lateral overgrowth

    NASA Astrophysics Data System (ADS)

    Monavarian, Morteza; Izyumskaya, Natalia; Müller, Marcus; Metzner, Sebastian; Veit, Peter; Can, Nuri; Das, Saikat; Özgür, Ümit; Bertram, Frank; Christen, Jürgen; Morkoç, Hadis; Avrutin, Vitaliy

    2016-04-01

    Among the major obstacles for development of non-polar and semipolar GaN structures on foreign substrates are stacking faults which deteriorate the structural and optical quality of the material. In this work, an in-situ SiNx nano-network has been employed to achieve high quality heteroepitaxial semipolar (11 2 ¯ 2 ) GaN on m-plane sapphire with reduced stacking fault density. This approach involves in-situ deposition of a porous SiNx interlayer on GaN that serves as a nano-mask for the subsequent growth, which starts in the nanometer-sized pores (window regions) and then progresses laterally as well, as in the case of conventional epitaxial lateral overgrowth (ELO). The inserted SiNx nano-mask effectively prevents the propagation of defects, such as dislocations and stacking faults, in the growth direction and thus reduces their density in the overgrown layers. The resulting semipolar (11 2 ¯ 2 ) GaN layers exhibit relatively smooth surface morphology and improved optical properties (PL intensity enhanced by a factor of 5 and carrier lifetimes by 35% to 85% compared to the reference semipolar (11 2 ¯ 2 ) GaN layer) which approach to those of the c-plane in-situ nano-ELO GaN reference and, therefore, holds promise for light emitting and detecting devices.

  8. Deep level transient spectroscopy signatures of majority traps in GaN p-n diodes grown by metal-organic vapor-phase epitaxy technique on GaN substrates

    NASA Astrophysics Data System (ADS)

    PŁaczek-Popko, E.; Trzmiel, J.; Zielony, E.; Grzanka, S.; Czernecki, R.; Suski, T.

    2009-12-01

    In this study, we present the results of investigation on p-n GaN diodes by means of deep level transient spectroscopy (DLTS) within the temperature range of 77-350 K. Si-doped GaN layers were grown by metal-organic vapor-phase epitaxy technique (MOVPE) on the free-standing GaN substrates. Subsequently Mg-doped GaN layers were grown. To perform DLTS measurements Ni/Au contacts to p-type material and Ti/Au contacts to n-type material were processed. DLTS signal spectra revealed the presence of two majority traps of activation energies obtained from Arrhenius plots equal to E1=0.22 eV and E2=0.65 eV. In present work we show that the trap E1 is linked with the extended defects whereas the trap E2 is the point defect related. Its capture cross section is thermally activated with energy barrier for capture equal to 0.2 eV.

  9. Emission dynamics of hybrid plasmonic gold/organic GaN nanorods

    NASA Astrophysics Data System (ADS)

    Mohammadi, F.; Schmitzer, H.; Kunert, G.; Hommel, D.; Ge, J.; Duscher, G.; Langbein, W.; Wagner, H. P.

    2017-12-01

    We studied the emission of bare and aluminum quinoline (Alq3)/gold coated wurtzite GaN nanorods by temperature- and intensity-dependent time-integrated and time-resolved photoluminescence (PL). The GaN nanorods of ˜1.5 μm length and ˜250 nm diameter were grown by plasma-assisted molecular beam epitaxy. Gold/Alq3 coated GaN nanorods were synthesized by organic molecular beam deposition. The near band-edge and donor-acceptor pair luminescence was investigated in bare GaN nanorods and compared with multilevel model calculations providing the dynamical parameters for electron-hole pairs, excitons, impurity bound excitons, donors and acceptors. Subsequently, the influence of a 10 nm gold coating without and with an Alq3 spacer layer was studied and the experimental results were analyzed with the multilevel model. Without a spacer layer, a significant PL quenching and lifetime reduction of the near band-edge emission is found. The behavior is attributed to surface band-bending and Förster energy transfer from excitons to surface plasmons in the gold layer. Inserting a 5 nm Alq3 spacer layer reduces the PL quenching and lifetime reduction which is consistent with a reduced band-bending and Förster energy transfer. Increasing the spacer layer to 30 nm results in lifetimes which are similar to uncoated structures, showing a significantly decreased influence of the gold coating on the excitonic dynamics.

  10. Emission dynamics of hybrid plasmonic gold/organic GaN nanorods.

    PubMed

    Mohammadi, F; Schmitzer, H; Kunert, G; Hommel, D; Ge, J; Duscher, G; Langbein, W; Wagner, H P

    2017-12-15

    We studied the emission of bare and aluminum quinoline (Alq 3 )/gold coated wurtzite GaN nanorods by temperature- and intensity-dependent time-integrated and time-resolved photoluminescence (PL). The GaN nanorods of ∼1.5 μm length and ∼250 nm diameter were grown by plasma-assisted molecular beam epitaxy. Gold/Alq 3 coated GaN nanorods were synthesized by organic molecular beam deposition. The near band-edge and donor-acceptor pair luminescence was investigated in bare GaN nanorods and compared with multilevel model calculations providing the dynamical parameters for electron-hole pairs, excitons, impurity bound excitons, donors and acceptors. Subsequently, the influence of a 10 nm gold coating without and with an Alq 3 spacer layer was studied and the experimental results were analyzed with the multilevel model. Without a spacer layer, a significant PL quenching and lifetime reduction of the near band-edge emission is found. The behavior is attributed to surface band-bending and Förster energy transfer from excitons to surface plasmons in the gold layer. Inserting a 5 nm Alq 3 spacer layer reduces the PL quenching and lifetime reduction which is consistent with a reduced band-bending and Förster energy transfer. Increasing the spacer layer to 30 nm results in lifetimes which are similar to uncoated structures, showing a significantly decreased influence of the gold coating on the excitonic dynamics.

  11. Influence of in-situ deposited SiNx interlayer on crystal quality of GaN epitaxial films

    NASA Astrophysics Data System (ADS)

    Fan, Teng; Jia, Wei; Tong, Guangyun; Zhai, Guangmei; Li, Tianbao; Dong, Hailiang; Xu, Bingshe

    2018-05-01

    GaN epitaxial films with SiNx interlayers were prepared by metal organic chemical vapor deposition (MOCVD) on c-plane sapphire substrates. The influences of deposition times and locations of SiNx interlayers on crystal quality of GaN epitaxial films were studied. Under the optimal growth time of 120 s for the SiNx interlayer, the dislocation density of GaN film is reduced to 4.05 × 108 cm-2 proved by high resolution X-ray diffraction results. It is found that when the SiNx interlayer deposits on the GaN nucleation islands, the subsequent GaN film has the lowest dislocation density of only 2.89 × 108 cm-2. Moreover, a model is proposed to illustrate the morphological evolution and associated propagation processes of TDs in GaN epi-layers with SiNx interlayers for different deposition times and locations.

  12. GaN growth via HVPE on SiC/Si substrates: growth mechanisms

    NASA Astrophysics Data System (ADS)

    Sharofidinov, Sh Sh; Redkov, A. V.; Osipov, A. V.; Kukushkin, S. A.

    2017-11-01

    The article focuses on the study of GaN thin film growth via chloride epitaxy on SiC/Si hybrid substrate. SiC buffer layer was grown by a method of substitution of atoms, which allows one to reduce impact of mechanical stress therein on subsequent growth of III-nitride films. It is shown, that change in GaN growth conditions leads to change in its growth mechanism. Three mechanisms: epitaxial, spiral and stepwise growth are considered and mechanical stresses are estimated via Raman spectroscopy.

  13. Photochemical Modification of Single Crystalline GaN Film Using n-Alkene with Different Carbon Chain Lengths as Biolinker.

    PubMed

    Wang, Chun; Zhuang, Hao; Huang, Nan; Heuser, Steffen; Schlemper, Christoph; Zhai, Zhaofeng; Liu, Baodan; Staedler, Thorsten; Jiang, Xin

    2016-06-14

    As a potential material for biosensing applications, gallium nitride (GaN) films have attracted remarkable attention. In order to construct GaN biosensors, a corresponding immobilization of biolinkers is of great importance in order to render a surface bioactive. In this work, two kinds of n-alkenes with different carbon chain lengths, namely allylamine protected with trifluoroacetamide (TFAAA) and 10-aminodec-1-ene protected with trifluoroacetamide (TFAAD), were used to photochemically functionalize single crystalline GaN films. The successful linkage of both TFAAA and TFAAD to the GaN films is confirmed by time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurement. With increased UV illumination time, the intensity of the secondary ions corresponding to the linker molecules initially increases and subsequently decreases in both cases. Based on the SIMS measurements, the maximum coverage of TFAAA is achieved after 14 h of UV illumination, while only 2 h is required in the case of TFAAD to reach the situation of a fully covered GaN surface. This finding leads to the conclusion that the reaction rate of TFAAD is significantly higher compared to TFAAA. Measurements by atomic force microscopy (AFM) indicate that the coverage of GaN films by a TFAAA layer leads to an increased surface roughness. The atomic terraces, which are clearly observable for the pristine GaN films, disappear once the surface is fully covered by a TFAAA layer. Such TFAAA layers will feature a homogeneous surface topography even for reaction times of 24 h. In contrast to this, TFAAD shows strong cross-polymerization on the surface, this is confirmed by optical microscopy. These results demonstrate that TFAAA is a more suitable candidate as biolinker in context of the GaN surfaces due to its improved controllability.

  14. The Effect of Growth Environment on the Morphological and Extended Defect Evolution in GaN Grown by Metalorganic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Fini, P.; Wu, X.; Tarsa, E.; Golan, Y.; Srikant, V.; Keller, S.; Denbaars, S.; Speck, J.

    1998-08-01

    The evolution of morphology and associated extended defects in GaN thin films grown on sapphire by metalorganic chemical vapor deposition (MOCVD) are shown to depend strongly on the growth environment. For the commonly used two-step growth process, a change in growth parameter such as reactor pressure influences the initial high temperature (HT) GaN growth mechanism. By means of transmission electron microscopy (TEM), atomic force microscopy (AFM), and high resolution X-ray diffraction (HRXRD) measurements, it is shown that the initial density of HT islands on the nucleation layer (NL) and subsequently the threading dislocation density in the HT GaN film may be directly controlled by tailoring the initial HT GaN growth conditions.

  15. Preparation of freestanding GaN wafer by hydride vapor phase epitaxy on porous silicon

    NASA Astrophysics Data System (ADS)

    Wu, Xian; Li, Peng; Liang, Renrong; Xiao, Lei; Xu, Jun; Wang, Jing

    2018-05-01

    A freestanding GaN wafer was prepared on porous Si (111) substrate using hydride vapor phase epitaxy (HVPE). To avoid undesirable effects of the porous surface on the crystallinity of the GaN, a GaN seed layer was first grown on the Si (111) bare wafer. A pattern with many apertures was fabricated in the GaN seed layer using lithography and etching processes. A porous layer was formed in the Si substrate immediately adjacent to the GaN seed layer by an anodic etching process. A 500-μm-thick GaN film was then grown on the patterned GaN seed layer using HVPE. The GaN film was separated from the Si substrate through the formation of cracks in the porous layer caused by thermal mismatch stress during the cooling stage of the HVPE. Finally, the GaN film was polished to obtain a freestanding GaN wafer.

  16. A DFT study on NEA GaN photocathode with an ultrathin n-type Si-doped GaN cap layer

    NASA Astrophysics Data System (ADS)

    Xia, Sihao; Liu, Lei; Kong, Yike; Diao, Yu

    2016-10-01

    Due to the drawbacks of conventional negative electron affinity (NEA) GaN photocathodes activated by Cs or Cs/O, a new-type NEA GaN photocathodes with heterojunction surface dispense with Cs activation are proposed. This structure can be obtained through the coverage of an ultrathin n-type Si-doped GaN cap layer on the p-type Mg-doped GaN emission layer. The influences of the cap layer on the photocathode are calculated using DFT. This study indicates that the n-type cap layer can promote the photoemission characteristics of GaN photocathode and demonstrates the probability of the preparation of a NEA GaN photocathode with an n-type cap layer.

  17. GaN Micromechanical Resonators with Meshed Metal Bottom Electrode.

    PubMed

    Ansari, Azadeh; Liu, Che-Yu; Lin, Chien-Chung; Kuo, Hao-Chung; Ku, Pei-Cheng; Rais-Zadeh, Mina

    2015-03-17

    This work describes a novel architecture to realize high-performance gallium nitride (GaN) bulk acoustic wave (BAW) resonators. The method is based on the growth of a thick GaN layer on a metal electrode grid. The fabrication process starts with the growth of a thin GaN buffer layer on a Si (111) substrate. The GaN buffer layer is patterned and trenches are made and refilled with sputtered tungsten (W)/silicon dioxide (SiO₂) forming passivated metal electrode grids. GaN is then regrown, nucleating from the exposed GaN seed layer and coalescing to form a thick GaN device layer. A metal electrode can be deposited and patterned on top of the GaN layer. This method enables vertical piezoelectric actuation of the GaN layer using its largest piezoelectric coefficient ( d 33 ) for thickness-mode resonance. Having a bottom electrode also results in a higher coupling coefficient, useful for the implementation of acoustic filters. Growth of GaN on Si enables releasing the device from the frontside using isotropic xenon difluoride (XeF₂) etch and therefore eliminating the need for backside lithography and etching.

  18. III-nitride integration on ferroelectric materials of lithium niobate by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Namkoong, Gon; Lee, Kyoung-Keun; Madison, Shannon M.; Henderson, Walter; Ralph, Stephen E.; Doolittle, W. Alan

    2005-10-01

    Integration of III-nitride electrical devices on the ferroelectric material lithium niobate (LiNbO3) has been demonstrated. As a ferroelectric material, lithium niobate has a polarization which may provide excellent control of the polarity of III-nitrides. However, while high temperature, 1000°C, thermal treatments produce atomically smooth surfaces, improving adhesion of GaN epitaxial layers on lithium niobate, repolarization of the substrate in local domains occurs. These effects result in multi domains of mixed polarization in LiNbO3, producing inversion domains in subsequent GaN epilayers. However, it is found that AlN buffer layers suppress inversion domains of III-nitrides. Therefore, two-dimensional electron gases in AlGaN /GaN heterojunction structures are obtained. Herein, the demonstration of the monolithic integration of high power devices with ferroelectric materials presents possibilities to control LiNbO3 modulators on compact optoelectronic/electronic chips.

  19. Influence of the AlN nucleation layer on the properties of AlGaN/GaN heterostructure on Si (1 1 1) substrates

    NASA Astrophysics Data System (ADS)

    Pan, Lei; Dong, Xun; Li, Zhonghui; Luo, Weike; Ni, Jinyu

    2018-07-01

    AlGaN/GaN heterostructures were grown on Si (1 1 1) substrates with different AlN nucleation layers (NL) by metal-organic chemical vapor deposition (MOCVD). The results indicate that the growth temperature of AlN NL has a noticeable influence on the structural, electronic and optical properties of the AlGaN/GaN heterostructures. Optimizing the growth temperature to 1040 °C led to quasi-2D smooth surface of the AlN NL with providing sufficient compressive stress to suppress cracking of the subsequent GaN layer during the cooling process, resulting in improved crystalline quality of GaN layer and superior two-dimensional electron gas (2DEG) performance of the AlGaN/GaN heterostructure.

  20. Preparation of gallium nitride surfaces for atomic layer deposition of aluminum oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, A. J.; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093; Chagarov, E.

    2014-09-14

    A combined wet and dry cleaning process for GaN(0001) has been investigated with XPS and DFT-MD modeling to determine the molecular-level mechanisms for cleaning and the subsequent nucleation of gate oxide atomic layer deposition (ALD). In situ XPS studies show that for the wet sulfur treatment on GaN(0001), sulfur desorbs at room temperature in vacuum prior to gate oxide deposition. Angle resolved depth profiling XPS post-ALD deposition shows that the a-Al{sub 2}O{sub 3} gate oxide bonds directly to the GaN substrate leaving both the gallium surface atoms and the oxide interfacial atoms with XPS chemical shifts consistent with bulk-like charge.more » These results are in agreement with DFT calculations that predict the oxide/GaN(0001) interface will have bulk-like charges and a low density of band gap states. This passivation is consistent with the oxide restoring the surface gallium atoms to tetrahedral bonding by eliminating the gallium empty dangling bonds on bulk terminated GaN(0001)« less

  1. Deep-level traps in lightly Si-doped n-GaN on free-standing m-oriented GaN substrates

    NASA Astrophysics Data System (ADS)

    Yamada, H.; Chonan, H.; Takahashi, T.; Yamada, T.; Shimizu, M.

    2018-04-01

    In this study, we investigated the deep-level traps in Si-doped GaN epitaxial layers by metal-organic chemical vapor deposition on c-oriented and m-oriented free-standing GaN substrates. The c-oriented and m-oriented epitaxial layers, grown at a temperature of 1000 °C and V/III ratio of 1000, contained carbon atomic concentrations of 1.7×1016 and 4.0×1015 cm-3, respectively. A hole trap was observed at about 0.89 eV above the valence band maximum by minority carrier transient spectroscopy. The trap concentrations in the c-oriented and m-oriented GaN epitaxial layers were consistent with the carbon atomic concentrations from secondary ion mass spectroscopy and the yellow luminescence intensity at 2.21 eV from photoluminescence. The trap concentrations in the m-oriented GaN epitaxial layers were lower than those in the c-oriented GaN. Two electron traps, 0.24 and 0.61 eV below the conduction band (EC) minimum, were observed in the c-oriented GaN epitaxial layer. In contrast, the m-oriented GaN epitaxial layer was free from the electron trap at EC - 0.24 eV, and the trap concentration at EC - 0.61 eV in the m-oriented GaN epitaxial layer was lower than that in the c-oriented GaN epitaxial layer. The m-oriented GaN epitaxial layer exhibited fewer hole and electron traps compared to the c-oriented GaN epitaxial layers.

  2. Structural and optical properties of vanadium ion-implanted GaN

    NASA Astrophysics Data System (ADS)

    Macková, A.; Malinský, P.; Jagerová, A.; Sofer, Z.; Klímová, K.; Sedmidubský, D.; Mikulics, M.; Lorinčík, J.; Veselá, D.; Böttger, R.; Akhmadaliev, S.

    2017-09-01

    The field of advanced electronic and optical devices searches for a new generation of transistors and lasers. The practical development of these novel devices depends on the availability of materials with the appropriate magnetic and optical properties, which is strongly connected to the internal morphology and the structural properties of the prepared doped structures. In this contribution, we present the characterisation of V ion-doped GaN epitaxial layers. GaN layers, oriented along the (0 0 0 1) crystallographic direction, grown by low-pressure metal-organic vapour-phase epitaxy (MOVPE) on c-plane sapphire substrates were implanted with 400 keV V+ ions at fluences of 5 × 1015 and 5 × 1016 cm-2. Elemental depth profiling was accomplished by Rutherford Backscattering Spectrometry (RBS) and Secondary Ion Mass Spectrometry (SIMS) to obtain precise information about the dopant distribution. Structural investigations are needed to understand the influence of defect distribution on the crystal-matrix recovery and the desired structural and optical properties. The structural properties of the ion-implanted layers were characterised by RBS-channelling and Raman spectroscopy to get a comprehensive insight into the structural modification of implanted GaN and to study the influence of subsequent annealing on the crystalline matrix reconstruction. Photoluminescence measurement was carried out to check the optical properties of the prepared structures.

  3. Enhanced optical output power of InGaN/GaN light-emitting diodes grown on a silicon (111) substrate with a nanoporous GaN layer.

    PubMed

    Lee, Kwang Jae; Chun, Jaeyi; Kim, Sang-Jo; Oh, Semi; Ha, Chang-Soo; Park, Jung-Won; Lee, Seung-Jae; Song, Jae-Chul; Baek, Jong Hyeob; Park, Seong-Ju

    2016-03-07

    We report the growth of InGaN/GaN multiple quantum wells blue light-emitting diodes (LEDs) on a silicon (111) substrate with an embedded nanoporous (NP) GaN layer. The NP GaN layer is fabricated by electrochemical etching of n-type GaN on the silicon substrate. The crystalline quality of crack-free GaN grown on the NP GaN layer is remarkably improved and the residual tensile stress is also decreased. The optical output power is increased by 120% at an injection current of 20 mA compared with that of conventional LEDs without a NP GaN layer. The large enhancement of optical output power is attributed to the reduction of threading dislocation, effective scattering of light in the LED, and the suppression of light propagation into the silicon substrate by the NP GaN layer.

  4. Effect of ZnO seed layer on the morphology and optical properties of ZnO nanorods grown on GaN buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, R., E-mail: rajunandi@iitb.ac.in; Mohan, S., E-mail: rajunandi@iitb.ac.in; Major, S. S.

    2014-04-24

    ZnO nanorods were grown by chemical bath deposition on sputtered, polycrystalline GaN buffer layers with and without ZnO seed layer. Scanning electron microscopy and X-ray diffraction show that the ZnO nanorods on GaN buffer layers are not vertically well aligned. Photoluminescence spectrum of ZnO nanorods grown on GaN buffer layer, however exhibits a much stronger near-band-edge emission and negligible defect emission, compared to the nanorods grown on ZnO buffer layer. These features are attributed to gallium incorporation at the ZnO-GaN interface. The introduction of a thin (25 nm) ZnO seed layer on GaN buffer layer significantly improves the morphology andmore » vertical alignment of ZnO-NRs without sacrificing the high optical quality of ZnO nanorods on GaN buffer layer. The presence of a thick (200 nm) ZnO seed layer completely masks the effect of the underlying GaN buffer layer on the morphology and optical properties of nanorods.« less

  5. Selectively Enhanced UV-A Photoresponsivity of a GaN MSM UV Photodetector with a Step-Graded AlxGa1-xN Buffer Layer.

    PubMed

    Lee, Chang-Ju; Won, Chul-Ho; Lee, Jung-Hee; Hahm, Sung-Ho; Park, Hongsik

    2017-07-21

    The UV-to-visible rejection ratio is one of the important figure of merits of GaN-based UV photodetectors. For cost-effectiveness and large-scale fabrication of GaN devices, we tried to grow a GaN epitaxial layer on silicon substrate with complicated buffer layers for a stress-release. It is known that the structure of the buffer layers affects the performance of devices fabricated on the GaN epitaxial layers. In this study, we show that the design of a buffer layer structure can make effect on the UV-to-visible rejection ratio of GaN UV photodetectors. The GaN photodetector fabricated on GaN-on-silicon substrate with a step-graded Al x Ga -x N buffer layer has a highly-selective photoresponse at 365-nm wavelength. The UV-to-visible rejection ratio of the GaN UV photodetector with the step-graded Al x Ga 1-x N buffer layer was an order-of-magnitude higher than that of a photodetector with a conventional GaN/AlN multi buffer layer. The maximum photoresponsivity was as high as 5 × 10 - ² A/W. This result implies that the design of buffer layer is important for photoresponse characteristics of GaN UV photodetectors as well as the crystal quality of the GaN epitaxial layers.

  6. The effects of GaN nanocolumn arrays and thin SixNy buffer layers on the morphology of GaN layers grown by plasma-assisted molecular beam epitaxy on Si(111) substrates

    NASA Astrophysics Data System (ADS)

    Shubina, K. Yu; Pirogov, E. V.; Mizerov, A. M.; Nikitina, E. V.; Bouravleuv, A. D.

    2018-03-01

    The effects of GaN nanocolumn arrays and a thin SixNy layer, used as buffer layers, on the morphology of GaN epitaxial layers are investigated. Two types of samples with different buffer layers were synthesized by PA-MBE. The morphology of the samples was characterized by SEM. The crystalline quality of the samples was assessed by XRD. The possibility of synthesis of continuous crystalline GaN layers on Si(111) substrates without the addition of other materials such as aluminum nitride was demonstrated.

  7. Selective area growth of N-polar GaN nanorods by plasma-assisted MBE on micro-cone-patterned c-sapphire substrates

    NASA Astrophysics Data System (ADS)

    Jmerik, V. N.; Kuznetsova, N. V.; Nechaev, D. V.; Shubina, T. V.; Kirilenko, D. A.; Troshkov, S. I.; Davydov, V. Yu.; Smirnov, A. N.; Ivanov, S. V.

    2017-11-01

    The site-controlled selective area growth of N-polar GaN nanorods (NR) was developed by plasma-assisted MBE (PA MBE) on micro-cone-patterned sapphire substrates (μ-CPSS) by using a two-stage growth process. A GaN nucleation layer grown by migration enhanced epitaxy provides the best selectivity for nucleation of NRs on the apexes of 3.5-μm-diameter cones, whereas the subsequent growth of 1-μm-high NRs with a constant diameter of about 100 nm proceeds by standard high-temperature PA MBE at nitrogen-rich conditions. These results are explained by anisotropy of the surface energy for GaN of different polarity and crystal orientation. The InGaN single quantum wells inserted in the GaN NRs grown on the μ-CPSS demonstrate photoluminescence at 510 nm with a spatially periodic variation of its intensity with a period of ∼6 μm equal to that of the substrate patterning profile.

  8. Understanding the Growth Mechanism of GaN Epitaxial Layers on Mechanically Exfoliated Graphite

    NASA Astrophysics Data System (ADS)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe; Jiang, Haiwei

    2018-04-01

    The growth mechanism of GaN epitaxial layers on mechanically exfoliated graphite is explained in detail based on classic nucleation theory. The number of defects on the graphite surface can be increased via O-plasma treatment, leading to increased nucleation density on the graphite surface. The addition of elemental Al can effectively improve the nucleation rate, which can promote the formation of dense nucleation layers and the lateral growth of GaN epitaxial layers. The surface morphologies of the nucleation layers, annealed layers and epitaxial layers were characterized by field-emission scanning electron microscopy, where the evolution of the surface morphology coincided with a 3D-to-2D growth mechanism. High-resolution transmission electron microscopy was used to characterize the microstructure of GaN. Fast Fourier transform diffraction patterns showed that cubic phase (zinc-blend structure) GaN grains were obtained using conventional GaN nucleation layers, while the hexagonal phase (wurtzite structure) GaN films were formed using AlGaN nucleation layers. Our work opens new avenues for using highly oriented pyrolytic graphite as a substrate to fabricate transferable optoelectronic devices.

  9. Understanding the Growth Mechanism of GaN Epitaxial Layers on Mechanically Exfoliated Graphite.

    PubMed

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe; Jiang, Haiwei

    2018-04-27

    The growth mechanism of GaN epitaxial layers on mechanically exfoliated graphite is explained in detail based on classic nucleation theory. The number of defects on the graphite surface can be increased via O-plasma treatment, leading to increased nucleation density on the graphite surface. The addition of elemental Al can effectively improve the nucleation rate, which can promote the formation of dense nucleation layers and the lateral growth of GaN epitaxial layers. The surface morphologies of the nucleation layers, annealed layers and epitaxial layers were characterized by field-emission scanning electron microscopy, where the evolution of the surface morphology coincided with a 3D-to-2D growth mechanism. High-resolution transmission electron microscopy was used to characterize the microstructure of GaN. Fast Fourier transform diffraction patterns showed that cubic phase (zinc-blend structure) GaN grains were obtained using conventional GaN nucleation layers, while the hexagonal phase (wurtzite structure) GaN films were formed using AlGaN nucleation layers. Our work opens new avenues for using highly oriented pyrolytic graphite as a substrate to fabricate transferable optoelectronic devices.

  10. Exciton Emission from Bare and Alq3/Gold Coated GaN Nanorods

    NASA Astrophysics Data System (ADS)

    Mohammadi, Fatemesadat; Kuhnert, Gerd; Hommel, Detlef; Schmitzer, Heidrun; Wagner, Hans-Peter

    We study the excitonic and impurity related emission in bare and aluminum quinoline (Alq3)/gold coated wurtzite GaN nanorods by temperature-dependent time-integrated (TI) and time-resolved (TR) photoluminescence (PL). The GaN nanorods were grown by molecular beam epitaxy. Alq3 as well as Alq3/gold covered nanorods were synthesized by organic molecular beam deposition. In the near-band edge region a donor-bound-exciton (D0X) emission is observed at 3.473 eV. Another emission band at 3.275 eV reveals LO-phonon replica and is attributed to a donor-acceptor-pair (DAP) luminescence. TR PL traces at 20 K show a nearly biexponential decay for the D0X with lifetimes of approximately 180 and 800 ps for both bare and Alq3 coated nanorods. In GaN nanorods which were coated with an Alq3 film and subsequently with a 10 nm thick gold layer we observe a PL quenching of D0X and DAP band and the lifetimes of the D0X transition shorten. The quenching behaviour is partially attributed to the energy-transfer from free excitons and donor-bound-excitons to plasmon oscillations in the gold layer.

  11. Theoretical study for heterojunction surface of NEA GaN photocathode dispensed with Cs activation

    NASA Astrophysics Data System (ADS)

    Xia, Sihao; Liu, Lei; Wang, Honggang; Wang, Meishan; Kong, Yike

    2016-09-01

    For the disadvantages of conventional negative electron affinity (NEA) GaN photocathodes activated by Cs or Cs/O, new-type NEA GaN photocathodes with heterojunction surface dispensed with Cs activation are investigated based on first-principle study with density functional theory. Through the growth of an ultrathin n-type GaN cap layer on p-type GaN emission layer, a p-n heterojunction is formed on the surface. According to the calculation results, it is found that Si atoms tend to replace Ga atoms to result in an n-type doped cap layer which contributes to the decreasing of work function. After the growth of n-type GaN cap layer, the atom structure near the p-type emission layer is changed while that away from the surface has no obvious variations. By analyzing the E-Mulliken charge distribution of emission surface with and without cap layer, it is found that the positive charge of Ga and Mg atoms in the emission layer decrease caused by the cap layer, while the negative charge of N atom increases. The conduction band moves downwards after the growth of cap layer. Si atom produces donor levels around the valence band maximum. The absorption coefficient of GaN emission layer decreases and the reflectivity increases caused by n-type GaN cap layer.

  12. Effect of Si, Mg, and Mg Zn doping on structural properties of a GaN layer grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Cho, H. K.; Lee, J. Y.; Kim, K. S.; Yang, G. M.

    2001-12-01

    We have studied the structural properties of undoped, Si-doped, Mg-doped, and Mg-Zn codoped GaN using high-resolution X-ray diffraction (HRXRD) and transmission electron microscopy. When compared with undoped GaN, the dislocation density at the surface of the GaN layer decreases with Si doping and increases with Mg doping. In addition, we observed a reduction of dislocation density by codoping with Zn atoms in the Mg-doped GaN layer. The full width at half maximum of HRXRD shows that Si doping and Mg-Zn codoping improve the structural quality of the GaN layer as compared with undoped and Mg-doped GaN, respectively.

  13. Structural defects in GaN revealed by Transmission Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liliental-Weber, Zuzanna

    This paper reviews the various types of structural defects observed by Transmission Electron Microscopy in GaN heteroepitaxial layers grown on foreign substrates and homoepitaxial layers grown on bulk GaN substrates. The structural perfection of these layers is compared to the platelet self-standing crystals grown by High Nitrogen Pressure Solution. Defects in undoped and Mg doped GaN are discussed. Lastly, some models explaining the formation of inversion domains in heavily Mg doped layers that are possible defects responsible for the difficulties of p-doping in GaN are also reviewed.

  14. Structural defects in GaN revealed by Transmission Electron Microscopy

    DOE PAGES

    Liliental-Weber, Zuzanna

    2014-09-08

    This paper reviews the various types of structural defects observed by Transmission Electron Microscopy in GaN heteroepitaxial layers grown on foreign substrates and homoepitaxial layers grown on bulk GaN substrates. The structural perfection of these layers is compared to the platelet self-standing crystals grown by High Nitrogen Pressure Solution. Defects in undoped and Mg doped GaN are discussed. Lastly, some models explaining the formation of inversion domains in heavily Mg doped layers that are possible defects responsible for the difficulties of p-doping in GaN are also reviewed.

  15. GaN: From three- to two-dimensional single-layer crystal and its multilayer van der Waals solids

    NASA Astrophysics Data System (ADS)

    Onen, A.; Kecik, D.; Durgun, E.; Ciraci, S.

    2016-02-01

    Three-dimensional (3D) GaN is a III-V compound semiconductor with potential optoelectronic applications. In this paper, starting from 3D GaN in wurtzite and zinc-blende structures, we investigated the mechanical, electronic, and optical properties of the 2D single-layer honeycomb structure of GaN (g -GaN ) and its bilayer, trilayer, and multilayer van der Waals solids using density-functional theory. Based on high-temperature ab initio molecular-dynamics calculations, we first showed that g -GaN can remain stable at high temperature. Then we performed a comparative study to reveal how the physical properties vary with dimensionality. While 3D GaN is a direct-band-gap semiconductor, g -GaN in two dimensions has a relatively wider indirect band gap. Moreover, 2D g -GaN displays a higher Poisson ratio and slightly less charge transfer from cation to anion. In two dimensions, the optical-absorption spectra of 3D crystalline phases are modified dramatically, and their absorption onset energy is blueshifted. We also showed that the physical properties predicted for freestanding g -GaN are preserved when g -GaN is grown on metallic as well as semiconducting substrates. In particular, 3D layered blue phosphorus, being nearly lattice-matched to g -GaN , is found to be an excellent substrate for growing g -GaN . Bilayer, trilayer, and van der Waals crystals can be constructed by a special stacking sequence of g -GaN , and they can display electronic and optical properties that can be controlled by the number of g -GaN layers. In particular, their fundamental band gap decreases and changes from indirect to direct with an increasing number of g -GaN layers.

  16. Single-crystal gallium nitride nanotubes.

    PubMed

    Goldberger, Joshua; He, Rongrui; Zhang, Yanfeng; Lee, Sangkwon; Yan, Haoquan; Choi, Heon-Jin; Yang, Peidong

    2003-04-10

    Since the discovery of carbon nanotubes in 1991 (ref. 1), there have been significant research efforts to synthesize nanometre-scale tubular forms of various solids. The formation of tubular nanostructure generally requires a layered or anisotropic crystal structure. There are reports of nanotubes made from silica, alumina, silicon and metals that do not have a layered crystal structure; they are synthesized by using carbon nanotubes and porous membranes as templates, or by thin-film rolling. These nanotubes, however, are either amorphous, polycrystalline or exist only in ultrahigh vacuum. The growth of single-crystal semiconductor hollow nanotubes would be advantageous in potential nanoscale electronics, optoelectronics and biochemical-sensing applications. Here we report an 'epitaxial casting' approach for the synthesis of single-crystal GaN nanotubes with inner diameters of 30-200 nm and wall thicknesses of 5-50 nm. Hexagonal ZnO nanowires were used as templates for the epitaxial overgrowth of thin GaN layers in a chemical vapour deposition system. The ZnO nanowire templates were subsequently removed by thermal reduction and evaporation, resulting in ordered arrays of GaN nanotubes on the substrates. This templating process should be applicable to many other semiconductor systems.

  17. Retardation mechanism of ultrathin Al2O3 interlayer on Y2O3 passivated gallium nitride surface.

    PubMed

    Quah, Hock Jin; Cheong, Kuan Yew

    2014-05-28

    A systematic investigation was carried out by incorporating an ultrathin aluminum oxide (Al2O3) as an interlayer between yttrium oxide (Y2O3) passivation layer and GaN substrate. The sandwiched samples were then subjected to postdeposition annealing in oxygen ambient from 400 to 800 °C. The Al2O3 interlayer was discovered to play a significant role in slowing down inward diffusion of oxygen through the Y2O3 passivation layer as well as in impeding outward diffusion of Ga(3+) and N(3-) from the decomposed GaN surface. These beneficial effects have suppressed subsequent formation of interfacial layer. A mechanism in association with the function of Al2O3 as an interlayer was suggested and discussed. The mechanism was explicitly described on the basis of the obtained results from X-ray diffraction, X-ray photoelectron spectroscopy, energy-filtered transmission electron microscopy (TEM), high resolution TEM, and electron energy loss spectroscopy line scan. A correlation between the proposed mechanism and metal-oxide-semiconductor characteristics of Y2O3/Al2O3/GaN structure has been proposed.

  18. Mechanical properties of nanoporous GaN and its application for separation and transfer of GaN thin films.

    PubMed

    Huang, Shanjin; Zhang, Yu; Leung, Benjamin; Yuan, Ge; Wang, Gang; Jiang, Hao; Fan, Yingmin; Sun, Qian; Wang, Jianfeng; Xu, Ke; Han, Jung

    2013-11-13

    Nanoporous (NP) gallium nitride (GaN) as a new class of GaN material has many interesting properties that the conventional GaN material does not have. In this paper, we focus on the mechanical properties of NP GaN, and the detailed physical mechanism of porous GaN in the application of liftoff. A decrease in elastic modulus and hardness was identified in NP GaN compared to the conventional GaN film. The promising application of NP GaN as release layers in the mechanical liftoff of GaN thin films and devices was systematically studied. A phase diagram was generated to correlate the initial NP GaN profiles with the as-overgrown morphologies of the NP structures. The fracture toughness of the NP GaN release layer was studied in terms of the voided-space-ratio. It is shown that the transformed morphologies and fracture toughness of the NP GaN layer after overgrowth strongly depends on the initial porosity of NP GaN templates. The mechanical separation and transfer of a GaN film over a 2 in. wafer was demonstrated, which proves that this technique is useful in practical applications.

  19. Atomic force microscopy studies of homoepitaxial GaN layers grown on GaN template by laser MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, B. S.; Rajasthan Technical University, Rawatbhata Road, Kota 324010; Singh, A.

    We have grown homoepitaxial GaN films on metal organic chemical vapor deposition (MOCVD) grown 3.5 µm thick GaN on sapphire (0001) substrate (GaN template) using an ultra-high vacuum (UHV) laser assisted molecular beam epitaxy (LMBE) system. The GaN films were grown by laser ablating a polycrystalline solid GaN target in the presence of active r.f. nitrogen plasma. The influence of laser repetition rates (10-30 Hz) on the surface morphology of homoepitaxial GaN layers have been studied using atomic force microscopy. It was found that GaN layer grown at 10 Hz shows a smooth surface with uniform grain size compared to the rough surfacemore » with irregular shape grains obtained at 30 Hz. The variation of surface roughness of the homoepitaxial GaN layer with and without wet chemical etching has been also studied and it was observed that the roughness of the film decreased after wet etching due to the curved structure/rough surface.« less

  20. Anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using double AlN buffer layers.

    PubMed

    Zhao, Guijuan; Wang, Lianshan; Yang, Shaoyan; Li, Huijie; Wei, Hongyuan; Han, Dongyue; Wang, Zhanguo

    2016-02-10

    We report the anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using a three-step growth method which consisted of a low temperature AlN buffer layer, followed by a high temperature AlN buffer layer and GaN growth. By introducing double AlN buffer layers, we substantially improve the crystal and optical qualities of semi-polar (11-22) GaN, and significantly reduce the density of stacking faults and dislocations. The high resolution x-ray diffraction measurement revealed that the in-plane anisotropic structural characteristics of GaN layer are azimuthal dependent. Transmission electron microscopy analysis showed that the majority of dislocations in the GaN epitaxial layer grown on m-sapphire are the mixed-type and the orientation of GaN layer was rotated 58.4° against the substrate. The room temperature photoluminescence (PL) spectra showed the PL intensity and wavelength have polarization dependence along parallel and perpendicular to the [1-100] axis (polarization degrees ~ 0.63). The realization of a high polarization semi-polar GaN would be useful to achieve III-nitride based lighting emission device for displays and backlighting.

  1. Non-polar a-plane ZnO films grown on r-Al2O3 substrates using GaN buffer layers

    NASA Astrophysics Data System (ADS)

    Xu, C. X.; Chen, W.; Pan, X. H.; Chen, S. S.; Ye, Z. Z.; Huang, J. Y.

    2016-09-01

    In this work, GaN buffer layer has been used to grow non-polar a-plane ZnO films by laser-assisted and plasma-assisted molecular beam epitaxy. The thickness of GaN buffer layer ranges from ∼3 to 12 nm. The GaN buffer thickness effect on the properties of a-plane ZnO thin films is carefully investigated. The results show that the surface morphology, crystal quality and optical properties of a-plane ZnO films are strongly correlated with the thickness of GaN buffer layer. It was found that with 6 nm GaN buffer layer, a-plane ZnO films display the best crystal quality with X-ray diffraction rocking curve full-width at half-maximum of only 161 arcsec for the (101) reflection.

  2. Influence of growth temperature on laser molecular beam epitaxy and properties of GaN layers grown on c-plane sapphire

    NASA Astrophysics Data System (ADS)

    Dixit, Ripudaman; Tyagi, Prashant; Kushvaha, Sunil Singh; Chockalingam, Sreekumar; Yadav, Brajesh Singh; Sharma, Nita Dilawar; Kumar, M. Senthil

    2017-04-01

    We have investigated the influence of growth temperature on the in-plane strain, structural, optical and mechanical properties of heteroepitaxially grown GaN layers on sapphire (0001) substrate by laser molecular beam epitaxy (LMBE) technique in the temperature range 500-700 °C. The GaN epitaxial layers are found to have a large in-plane compressive stress of about 1 GPa for low growth temperatures but the strain drastically reduced in the layer grown at 700 °C. The nature of the in-plane strain has been analyzed using high resolution x-ray diffraction, atomic force microscopy (AFM), Raman spectroscopy and photoluminescence (PL) measurements. From AFM, a change in GaN growth mode from grain to island is observed at the high growth temperature above 600 °C. A blue shift of 20-30 meV in near band edge PL emission line has been noticed for the GaN layers containing the large in-plane strain. These observations indicate that the in-plane strain in the GaN layers is dominated by a biaxial strain. Using nanoindentation, it is found that the indentation hardness and Young's modulus of the GaN layers increases with increasing growth temperature. The results disclose the critical role of growth mode in determining the in-plane strain and mechanical properties of the GaN layers grown by LMBE technique.

  3. Resistivity control of unintentionally doped GaN films

    NASA Astrophysics Data System (ADS)

    Grzegorczyk, A. P.; Macht, L.; Hageman, P. R.; Rudzinski, M.; Larsen, P. K.

    2005-05-01

    GaN epilayers were grown on sapphire substrates via low temperature GaN and AlN nucleation layers (NL) by metalorganic chemical vapor phase epitaxy (MOCVD). The morphology of the individual NLs strongly depends on the carrier gas used during the growth and recrystallization and this is the key factor for control of the resistivity of the GaN layer grown on it. The GaN nucleation layer grown in presence of N2 has a higher density of islands with a statistically smaller diameter than the samples grown in H2 atmosphere. The NL grown in N2 enables the growth GaN with a sheet resistivity higher than 3×104 cm as opposed to a 0.5 cm value obtained for the NL grown in H2. Introduction of an additional intermediate (IL) low temperature (GaN or AlN) nucleation layer changes the GaN epilayer resistivity to about 50 cm, regardless of the carrier gas used during the growth of the IL. Defect selective etching demonstrated that control of the type and density of the dislocations in GaN enables the growth of highly resistive layers without any intentional acceptor doping (Mg, Zn). It will be demonstrated that by changing the ratio of edge type to screw dislocations the resistivity of the layer can be changed by a few orders of magnitude.

  4. P-type doping of GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Raechelle Kimberly

    2000-04-01

    After implantation of As, As + Be, and As + Ga into GaN and annealing for short durations at temperatures as high as 1500 C, the GaN films remained highly resistive. It was apparent from c-RBS studies that although implantation damage did not create an amorphous layer in the GaN film, annealing at 1500 C did not provide enough energy to completely recover the radiation damage. Disorder recovered significantly after annealing at temperatures up to 1500 C, but not completely. From SIMS analysis, oxygen contamination in the AIN capping layer causes oxygen diffusion into the GaN film above 1400 C.more » The sapphire substrate (A1203) also decomposed and oxygen penetrated into the backside of the GaN layer above 1400 C. To prevent donor-like oxygen impurities from the capping layer and the substrate from contaminating the GaN film and compensating acceptors, post-implantation annealing should be done at temperatures below 1500 C. Oxygen in the cap could be reduced by growing the AIN cap on the GaN layer after the GaN growth run or by depositing the AIN layer in a ultra high vacuum (UHV) system post-growth to minimize residual oxygen and water contamination. With longer annealing times at 1400 C or at higher temperatures with a higher quality AIN, the implantation drainage may fully recover.« less

  5. P-type surface effects for thickness variation of 2um and 4um of n-type layer in GaN LED

    NASA Astrophysics Data System (ADS)

    Halim, N. S. A. Abdul; Wahid, M. H. A.; Hambali, N. A. M. Ahmad; Rashid, S.; Ramli, M. M.; Shahimin, M. M.

    2017-09-01

    The internal quantum efficiency of III-Nitrides group, GaN light-emitting diode (LED) has been considerably limited due to the insufficient hole injection and this is caused by the lack of performance p-type doping and low hole mobility. The low hole mobility makes the hole less energetic, thus reduced the performance operation of GaN LED itself. The internal quantum efficiency of GaN-based LED with surface roughness (texture) can be changed by texture size, density, and thickness of GaN film or by the combined effects of surface shape and thickness of GaN film. Besides, due to lack of p-type GaN, attempts to look forward the potential of GaN LED relied on the thickness of n-type layer and surface shape of p-type GaN layer. This work investigates the characteristics of GaN LED with undoped n-GaN layer of different thickness and the surface shape of p-type layer. The LEDs performance is significantly altered by modifying the thickness and shape. Enhancement of n-GaN layer has led to the annihilation of electrical conductivity of the chip. Different surface geometry governs the emission rate extensively. Internal quantum efficiency is also predominantly affected by the geometry of n-GaN layer which subjected to the current spreading. It is recorded that the IQE droop can be minimized by varying the thickness of the active layer without amplifying the forward voltage. Optimum forward voltage (I-V), total emission rate relationship with the injected current and internal quantum efficiency (IQE) for 2,4 µm on four different surfaces of p-type layer are also reported in this paper.

  6. Ultra-thin ohmic contacts for p-type nitride light emitting devices

    DOEpatents

    Raffetto, Mark; Bharathan, Jayesh; Haberern, Kevin; Bergmann, Michael; Emerson, David; Ibbetson, James; Li, Ting

    2014-06-24

    A flip-chip semiconductor based Light Emitting Device (LED) can include an n-type semiconductor substrate and an n-type GaN epi-layer on the substrate. A p-type GaN epi-layer can be on the n-type GaN epi-layer and a metal ohmic contact p-electrode can be on the p-type GaN epi-layer, where the metal ohmic contact p-electrode can have an average thickness less than about 25 .ANG.. A reflector can be on the metal ohmic contact p-electrode and a metal stack can be on the reflector. An n-electrode can be on the substrate opposite the n-type GaN epi-layer and a bonding pad can be on the n-electrode.

  7. A new approach to epitaxially grow high-quality GaN films on Si substrates: the combination of MBE and PLD.

    PubMed

    Wang, Wenliang; Wang, Haiyan; Yang, Weijia; Zhu, Yunnong; Li, Guoqiang

    2016-04-22

    High-quality GaN epitaxial films have been grown on Si substrates with Al buffer layer by the combination of molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) technologies. MBE is used to grow Al buffer layer at first, and then PLD is deployed to grow GaN epitaxial films on the Al buffer layer. The surface morphology, crystalline quality, and interfacial property of as-grown GaN epitaxial films on Si substrates are studied systematically. The as-grown ~300 nm-thick GaN epitaxial films grown at 850 °C with ~30 nm-thick Al buffer layer on Si substrates show high crystalline quality with the full-width at half-maximum (FWHM) for GaN(0002) and GaN(102) X-ray rocking curves of 0.45° and 0.61°, respectively; very flat GaN surface with the root-mean-square surface roughness of 2.5 nm; as well as the sharp and abrupt GaN/AlGaN/Al/Si hetero-interfaces. Furthermore, the corresponding growth mechanism of GaN epitaxial films grown on Si substrates with Al buffer layer by the combination of MBE and PLD is hence studied in depth. This work provides a novel and simple approach for the epitaxial growth of high-quality GaN epitaxial films on Si substrates.

  8. Nitrogen-Polar (000 1 ¯ ) GaN Grown on c-Plane Sapphire with a High-Temperature AlN Buffer.

    PubMed

    Song, Jie; Han, Jung

    2017-03-02

    We demonstrate growing nitrogen-polar (N-polar) GaN epilayer on c-plane sapphire using a thin AlN buffer layer by metalorganic chemical vapor deposition. We have studied the influence of the AlN buffer layer on the polarity, crystalline quality, and surface morphology of the GaN epilayer and found that the growth temperature of the AlN buffer layer played a critical role in the growth of the GaN epilayer. The low growth temperature of the AlN buffer results in gallium-polar GaN. Even a nitridation process has been conducted. High growth temperature for an AlN buffer layer is required to achieve pure N-polarity, high crystalline quality, and smooth surface morphology for a GaN epilayer.

  9. Determination of carrier diffusion length in GaN

    NASA Astrophysics Data System (ADS)

    Hafiz, Shopan; Zhang, Fan; Monavarian, Morteza; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit; Metzner, Sebastian; Bertram, Frank; Christen, Jürgen; Gil, Bernard

    2015-01-01

    Diffusion lengths of photo-excited carriers along the c-direction were determined from photoluminescence (PL) and cross-sectional cathodoluminescence (CL) measurements in p- and n-type GaN epitaxial layers grown on c-plane sapphire by metal-organic chemical vapor deposition. The investigated samples incorporate a 6 nm thick In0.15Ga0.85N active layer capped with either 500 nm p-GaN or 1500 nm n-GaN. The top GaN layers were etched in steps and PL from the InGaN active region and the underlying layers was monitored as a function of the top GaN thickness upon photo-generation near the surface region by above bandgap excitation. Taking into consideration the absorption in the top GaN layer as well as active and underlying layers, the diffusion lengths at 295 K and at 15 K were measured to be 93 ± 7 nm and 70 ± 7 nm for Mg-doped p-type GaN and 432 ± 30 nm and 316 ± 30 nm for unintentionally doped n-type GaN, respectively, at photogenerated carrier densities of 4.2 × 1018 cm-3 using PL spectroscopy. CL measurements of the unintentionally doped n-type GaN layer at much lower carrier densities of 1017 cm-3 revealed a longer diffusion length of 525 ± 11 nm at 6 K.

  10. Effect of the nand p-type Si(100) substrates with a SiC buffer layer on the growth mechanism and structure of epitaxial layers of semipolar AlN and GaN

    NASA Astrophysics Data System (ADS)

    Bessolov, V. N.; Grashchenko, A. S.; Konenkova, E. V.; Myasoedov, A. V.; Osipov, A. V.; Red'kov, A. V.; Rodin, S. N.; Rubets, V. P.; Kukushkin, S. A.

    2015-10-01

    A new effect of the n-and p-type doping of the Si(100) substrate with a SiC film on the growth mechanism and structure of AlN and GaN epitaxial layers has been revealed. It has been experimentally shown that the mechanism of AlN and GaN layer growth on the surface of a SiC layer synthesized by substituting atoms on n- and p-Si substrates is fundamentally different. It has been found that semipolar AlN and GaN layers on the SiC/Si(100) surface grow in the epitaxial and polycrystalline structures on p-Si and n-Si substrates, respectively. A new method for synthesizing epitaxial semipolar AlN and GaN layers by chloride-hydride epitaxy on silicon substrates has been proposed.

  11. Determination of carrier diffusion length in p- and n-type GaN

    NASA Astrophysics Data System (ADS)

    Hafiz, Shopan; Metzner, Sebastian; Zhang, Fan; Monavarian, Morteza; Avrutin, Vitaliy; Morkoç, Hadis; Karbaum, Christopher; Bertram, Frank; Christen, Jürgen; Gil, Bernard; Özgür, Ümit

    2014-03-01

    Diffusion lengths of photo-excited carriers along the c-direction were determined from photoluminescence (PL) measurements in p- and n-type GaN epitaxial layers grown on c-plane sapphire by metal-organic chemical vapor deposition. The investigated samples incorporate a 6 nm thick In0.15Ga0.85N active layer capped with either 500 nm p- GaN or 1300 nm n-GaN. The top GaN layers were etched in steps and PL from the InGaN active region and the underlying layers was monitored as a function of the top GaN thickness upon photogeneration near the surface region by above bandgap excitation. Taking into consideration the absorption in the active and underlying layers, the diffusion lengths at 295 K and at 15 K were measured to be about 92 ± 7 nm and 68 ± 7 nm for Mg-doped p-type GaN and 432 ± 30 nm and 316 ± 30 nm for unintentionally doped n-type GaN, respectively. Cross-sectional cathodoluminescence line-scan measurement was performed on a separate sample and the diffusion length in n-type GaN was measured to be 280 nm.

  12. Enhanced characteristics of blue InGaN /GaN light-emitting diodes by using selective activation to modulate the lateral current spreading length

    NASA Astrophysics Data System (ADS)

    Lin, Ray-Ming; Lu, Yuan-Chieh; Chou, Yi-Lun; Chen, Guo-Hsing; Lin, Yung-Hsiang; Wu, Meng-Chyi

    2008-06-01

    We have studied the characteristics of blue InGaN /GaN multiquantum-well light-emitting diodes (LEDs) after reducing the length of the lateral current path through the transparent layer through formation of a peripheral high-resistance current-blocking region in the Mg-doped GaN layer. To study the mechanism of selective activation in the Mg-doped GaN layer, we deposited titanium (Ti), gold (Au), Ti /Au, silver, and copper individually onto the Mg-doped GaN layer and investigated their effects on the hole concentration in the p-GaN layer. The Mg-doped GaN layer capped with Ti effectively depressed the hole concentration in the p-GaN layer by over one order of magnitude relative to that of the as-grown layer. This may suggest that high resistive regions are formed by diffusion of Ti and depth of high resistive region from the p-GaN surface depends on the capped Ti film thickness. Selective activation of the Mg-doped GaN layer could be used to modulate the length of the lateral current path. Furthermore, the external quantum efficiency of the LEDs was improved significantly after reducing the lateral current spreading length. In our best result, the external quantum efficiency was 52.3% higher (at 100mA) than that of the as-grown blue LEDs.

  13. Ultralow threading dislocation density in GaN epilayer on near-strain-free GaN compliant buffer layer and its applications in hetero-epitaxial LEDs.

    PubMed

    Shih, Huan-Yu; Shiojiri, Makoto; Chen, Ching-Hsiang; Yu, Sheng-Fu; Ko, Chung-Ting; Yang, Jer-Ren; Lin, Ray-Ming; Chen, Miin-Jang

    2015-09-02

    High threading dislocation (TD) density in GaN-based devices is a long unresolved problem because of the large lattice mismatch between GaN and the substrate, which causes a major obstacle for the further improvement of next-generation high-efficiency solid-state lighting and high-power electronics. Here, we report InGaN/GaN LEDs with ultralow TD density and improved efficiency on a sapphire substrate, on which a near strain-free GaN compliant buffer layer was grown by remote plasma atomic layer deposition. This "compliant" buffer layer is capable of relaxing strain due to the absorption of misfit dislocations in a region within ~10 nm from the interface, leading to a high-quality overlying GaN epilayer with an unusual TD density as low as 2.2 × 10(5) cm(-2). In addition, this GaN compliant buffer layer exhibits excellent uniformity up to a 6" wafer, revealing a promising means to realize large-area GaN hetero-epitaxy for efficient LEDs and high-power transistors.

  14. GaN epitaxial layers grown on multilayer graphene by MOCVD

    NASA Astrophysics Data System (ADS)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe

    2018-04-01

    In this study, GaN epitaxial layers were successfully deposited on a multilayer graphene (MLG) by using metal-organic chemical vapor deposition (MOCVD). Highly crystalline orientations of the GaN films were confirmed through electron backscatter diffraction (EBSD). An epitaxial relationship between GaN films and MLG is unambiguously established by transmission electron microscope (TEM) analysis. The Raman spectra was used to analyze the internal stress of GaN films, and the spectrum shows residual tensile stress in the GaN films. Moreover, the results of the TEM analysis and Raman spectra indicate that the high quality of the MLG substrate is maintained even after the growth of the GaN film. This high-quality MLG makes it possible to easily remove epitaxial layers from the supporting substrate by micro-mechanical exfoliation technology. This work can aid in the development of transferable devices using GaN films.

  15. AlGaN materials for semiconductor sensors and emitters in 200- to 365-nm range

    NASA Astrophysics Data System (ADS)

    Usikov, Alexander S.; Shapvalova, Elizaveta V.; Melnik, Yuri V.; Ivantsov, Vladimir A.; Dmitriev, Vladimir A.; Collins, Charles J.; Sampath, Anand V.; Garrett, Gregory A.; Shen, Paul H.; Wraback, Michael

    2004-12-01

    In this paper we report on the fabrication and characterization of GaN, AlGaN, and AlN layers grown by hydride vapor phase epitaxy (HVPE). The layers were grown on 2-inch and 4-inch sapphire and 2-inch silicon carbide substrates. Thickness of the GaN layers was varied from 2 to 80 microns. Surface roughness, Rms, for the smoothest GaN layers was less than 0.5 nm, as measured by AFM using 10 μm x 10 μm scans. Background Nd-Na concentration for undoped GaN layers was less than 1x1016 cm-3. For n-type GaN layers doped with Si, concentration Nd-Na was controlled from 1016 to 1019 cm-3. P-type GaN layers were fabricated using Mg doping with concentration Na-Nd ranging from 4x1016 to 3x1018 cm-3, for various samples. Zn doping also resulted in p-type GaN formation with concnetration ND-NA in the 1017 cm-3 range. UV transmission, photoluminescence, and crystal structure of AlGaN layers with AlN concentration up to 85 mole.% were studied. Dependence of optical band gap on AlGaN alloy composition was measured for the whole composition range. Thick (up to 75 microns) crack-free AlN layers were grown on SiC substrates. Etch pit density for such thick AlN layers was in the 107 cm-2 range.

  16. Isotype InGaN/GaN heterobarrier diodes by ammonia molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fireman, Micha N.; Browne, David A.; Speck, James S.

    The design of isotype InGaN/GaN heterobarrier diode structures grown by ammonia molecular beam epitaxy is presented. On the (0001) Ga-polar plane, a structure consisting of a surface n{sup +} GaN contact layer, followed by a thin InGaN layer, followed by a thick unintentionally doped (UID) GaN layer, and atop a buried n{sup +} GaN contact layer induces a large conduction band barrier via a depleted UID GaN layer. Suppression of reverse and subthreshold current in such isotype barrier devices under applied bias depends on the quality of this composite layer polarization. Sample series were grown under fixed InGaN growth conditionsmore » that varied either the UID GaN NH{sub 3} flow rate or the UID GaN thickness, and under fixed UID GaN growth conditions that varied InGaN growth conditions. Decreases in subthreshold current and reverse bias current were measured for thicker UID GaN layers and increasing InGaN growth rates. Temperature-dependent analysis indicated that although extracted barrier heights were lower than those predicted by 1D Schrödinger Poisson simulations (0.9 eV–1.4 eV for In compositions from 10% to 15%), optimized growth conditions increased the extracted barrier height from ∼11% to nearly 85% of the simulated values. Potential subthreshold mechanisms are discussed, along with those growth factors which might affect their prevalence.« less

  17. Direct growth of freestanding GaN on C-face SiC by HVPE.

    PubMed

    Tian, Yuan; Shao, Yongliang; Wu, Yongzhong; Hao, Xiaopeng; Zhang, Lei; Dai, Yuanbin; Huo, Qin

    2015-06-02

    In this work, high quality GaN crystal was successfully grown on C-face 6H-SiC by HVPE using a two steps growth process. Due to the small interaction stress between the GaN and the SiC substrate, the GaN was self-separated from the SiC substrate even with a small thickness of about 100 μm. Moreover, the SiC substrate was excellent without damage after the whole process so that it can be repeatedly used in the GaN growth. Hot phosphoric acid etching (at 240 °C for 30 min) was employed to identify the polarity of the GaN layer. According to the etching results, the obtained layer was Ga-polar GaN. High-resolution X-ray diffraction (HRXRD) and electron backscatter diffraction (EBSD) were done to characterize the quality of the freestanding GaN. The Raman measurements showed that the freestanding GaN film grown on the C-face 6H-SiC was stress-free. The optical properties of the freestanding GaN layer were determined by photoluminescence (PL) spectra.

  18. The trap states in lightly Mg-doped GaN grown by MOVPE on a freestanding GaN substrate

    NASA Astrophysics Data System (ADS)

    Narita, Tetsuo; Tokuda, Yutaka; Kogiso, Tatsuya; Tomita, Kazuyoshi; Kachi, Tetsu

    2018-04-01

    We investigated traps in lightly Mg-doped (2 × 1017 cm-3) p-GaN fabricated by metalorganic vapor phase epitaxy (MOVPE) on a freestanding GaN substrate and the subsequent post-growth annealing, using deep level transient spectroscopy. We identified four hole traps with energy levels of EV + 0.46, 0.88, 1.0, and 1.3 eV and one electron trap at EC - 0.57 eV in a p-type GaN layer uniformly doped with magnesium (Mg). The Arrhenius plot of hole traps with the highest concentration (˜3 × 1016 cm-3) located at EV + 0.88 eV corresponded to those of hole traps ascribed to carbon on nitrogen sites in n-type GaN samples grown by MOVPE. In fact, the range of the hole trap concentrations at EV + 0.88 eV was close to the carbon concentration detected by secondary ion mass spectroscopy. Moreover, the electron trap at EC - 0.57 eV was also identical to the dominant electron traps commonly observed in n-type GaN. Together, these results suggest that the trap states in the lightly Mg-doped GaN grown by MOVPE show a strong similarity to those in n-type GaN, which can be explained by the Fermi level close to the conduction band minimum in pristine MOVPE grown samples due to existing residual donors and Mg-hydrogen complexes.

  19. AlGaN/GaN High Electron Mobility Transistor Grown and Fabricated on ZrTi Metallic Alloy Buffer Layers

    DOE PAGES

    Ren, Fan; Pearton, Stephen J.; Ahn, Shihyun; ...

    2017-09-26

    AlGaN/GaN high electron mobility transistors (HEMTs) were demonstrated for structures grown on ZrTi metallic alloy buffer layers, which provided lattice matching of the in-plane lattice parameter (“a-parameter”) to hexagonal GaN. The quality of the GaN buffer layer and HEMT structure were confirmed with X-ray 2θ and rocking scans as well as cross-section transmission electron microscopy (TEM) images. The X-ray 2θ scans showed full widths at half maximum (FWHM) of 0.06°, 0.05° and 0.08° for ZrTi alloy, GaN buffer layer, and the entire HEMT structure, respectively. TEM of the lower section of the HEMT structure containing the GaN buffer layer andmore » the AlN/ZrTi/AlN stack on the Si substrate showed that it was important to grow AlN on the top of ZrTi prior to growing the GaN buffer layer. Finally, the estimated threading dislocation (TD) density in the GaN channel layer of the HEMT structure was in the 10 8 cm -2 range.« less

  20. Ultralow threading dislocation density in GaN epilayer on near-strain-free GaN compliant buffer layer and its applications in hetero-epitaxial LEDs

    PubMed Central

    Shih, Huan-Yu; Shiojiri, Makoto; Chen, Ching-Hsiang; Yu, Sheng-Fu; Ko, Chung-Ting; Yang, Jer-Ren; Lin, Ray-Ming; Chen, Miin-Jang

    2015-01-01

    High threading dislocation (TD) density in GaN-based devices is a long unresolved problem because of the large lattice mismatch between GaN and the substrate, which causes a major obstacle for the further improvement of next-generation high-efficiency solid-state lighting and high-power electronics. Here, we report InGaN/GaN LEDs with ultralow TD density and improved efficiency on a sapphire substrate, on which a near strain-free GaN compliant buffer layer was grown by remote plasma atomic layer deposition. This “compliant” buffer layer is capable of relaxing strain due to the absorption of misfit dislocations in a region within ~10 nm from the interface, leading to a high-quality overlying GaN epilayer with an unusual TD density as low as 2.2 × 105 cm−2. In addition, this GaN compliant buffer layer exhibits excellent uniformity up to a 6” wafer, revealing a promising means to realize large-area GaN hetero-epitaxy for efficient LEDs and high-power transistors. PMID:26329829

  1. Photoluminescence and capacitance voltage characterization of GaAs surface passivated by an ultrathin GaN interface control layer

    NASA Astrophysics Data System (ADS)

    Anantathanasarn, Sanguan; Hasegawa, Hideki

    2002-05-01

    A novel surface passivation technique for GaAs using an ultrathin GaN interface control layer (GaN ICL) formed by surface nitridation was characterized by ultrahigh vacuum (UHV) photoluminescence (PL) and capacitance-voltage ( C- V) measurements. The PL quantum efficiency was dramatically enhanced after being passivated by the GaN ICL structure, reaching as high as 30 times of the initial clean GaAs surface. Further analysis of PL data was done by the PL surface state spectroscopy (PLS 3) simulation technique. PL and C- V results are in good agreement indicating that ultrathin GaN ICL reduces the gap states and unpins the Fermi level, realizing a wide movement of Fermi level within the midgap region and reduction of the effective surface recombination velocity by a factor of 1/60. GaN layer also introduced a large negative surface fixed charge of about 10 12 cm -2. A further improvement took place by depositing a Si 3N 4 layer on GaN ICL/GaAs structure.

  2. Conductivity based on selective etch for GaN devices and applications thereof

    DOEpatents

    Zhang, Yu; Sun, Qian; Han, Jung

    2015-12-08

    This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm.sup.2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.

  3. Infrared Reflectance Analysis of Epitaxial n-Type Doped GaN Layers Grown on Sapphire.

    PubMed

    Tsykaniuk, Bogdan I; Nikolenko, Andrii S; Strelchuk, Viktor V; Naseka, Viktor M; Mazur, Yuriy I; Ware, Morgan E; DeCuir, Eric A; Sadovyi, Bogdan; Weyher, Jan L; Jakiela, Rafal; Salamo, Gregory J; Belyaev, Alexander E

    2017-12-01

    Infrared (IR) reflectance spectroscopy is applied to study Si-doped multilayer n + /n 0 /n + -GaN structure grown on GaN buffer with GaN-template/sapphire substrate. Analysis of the investigated structure by photo-etching, SEM, and SIMS methods showed the existence of the additional layer with the drastic difference in Si and O doping levels and located between the epitaxial GaN buffer and template. Simulation of the experimental reflectivity spectra was performed in a wide frequency range. It is shown that the modeling of IR reflectance spectrum using 2 × 2 transfer matrix method and including into analysis the additional layer make it possible to obtain the best fitting of the experimental spectrum, which follows in the evaluation of GaN layer thicknesses which are in good agreement with the SEM and SIMS data. Spectral dependence of plasmon-LO-phonon coupled modes for each GaN layer is obtained from the spectral dependence of dielectric of Si doping impurity, which is attributed to compensation effects by the acceptor states.

  4. Metalorganic chemical vapor deposition of gallium nitride on sacrificial substrates

    NASA Astrophysics Data System (ADS)

    Fenwick, William Edward

    GaN-based light emitting diodes (LEDs) face several challenges if the technology is to continue to make a significant impact in general illumination, and on technology that has become known as solid state lighting (SSL). Two of the most pressing challenges for the continued penetration of SSL into traditional lighting applications are efficacy and total lumens from the device, and their related cost. The development of alternative substrate technologies is a promising avenue toward addressing both of these challenges, as both GaN-based device technology and the associated metalorganic chemical vapor deposition (MOCVD) technology are already relatively mature technologies with a well-understood cost base. Zinc oxide (ZnO) and silicon (Si) are among the most promising alternative substrates for GaN epitaxy. These substrates offer the ability to access both higher efficacy and lumen devices (ZnO) at a much reduced cost. This work focuses on the development of MOCVD growth processes to yield high quality GaN-based materials and devices on both ZnO and Si. ZnO is a promising substrate for growth of low defect-density GaN because of its similar lattice constant and thermal expansion coefficient. The major hurdles for GaN growth on ZnO are the instability of the substrate in a hydrogen atmosphere, which is typical of nitride growth conditions, and the inter-diffusion of zinc and oxygen from the substrate into the GaN-based epitaxial layer. A process was developed for the MOCVD growth of GaN and InxGa 1-xN on ZnO that attempted to address these issues. The structural and optical properties of these films were studied using various techniques. X-ray diffraction (XRD) showed the growth of wurtzite GaN on ZnO, and room-temperature photoluminescence (RT-PL) showed near band-edge luminescence from the GaN and InxGa1-xN layers. However, high zinc and oxygen concentrations due to interdiffusion near the ZnO substrate remained an issue; therefore, the diffusion of zinc and oxygen into the subsequent GaN layer was studied in more detail. Several approaches were investigated---for example, transition layers such as Al2O3 and Al xGa1-xN/GaN---to minimize diffusion of these impurities into the GaN layer. Silicon, due to its prevalence, is the most promising material for the development of an inexpensive, large-area substrate technology. The challenge in MOCVD growth of GaN on Si is the tensile strain induced by the lattice and thermal mismatch between GaN and Si and the formation of anti-phase boundaries. Typical approaches to solve these problems involve complicated and multiple buffer layer structures, which lead to relatively slow growth rates. In this work, a thin atomic layer deposition (ALD)-grown Al2O3 interlayer was employed to relieve strain and increase material quality while also simplifying the growth process. While some residual strain was still observed in the GaN material by XRD and PL, the use of this oxide interlayer leads to an improvement in thin film quality as seen by a reduction in both crack density (<1 mm-2) on ALD-Al2O3/Si) and screw dislocation density (from 3x109cm-2 on bare Si to 2x108cm-2 on ALD-Al 2O3/Si) in the GaN films. A side-by-side comparison of GaN-based multiple quantum well LEDs grown on sapphire and on Al2O3/Si shows similar performance characteristic for both device structures. A redshift in peak emission wavelength was also observed on silicon compared to sapphire, and this is attributed to higher indium content due to the slight tensile strain in the layers on silicon. IQE of the devices on silicon is ˜32% as measured by LT-PL, compared to ˜37% on sapphire, but this difference can be assigned to the difference in indium compositions. These results show a great promise toward an inexpensive, large-area, silicon-based substrate technology for MOCVD growth of the next generation of GaN-based optoelectronic devices for SSL and other applications.

  5. Influence of ammonia flow rate for improving properties of polycrystalline GaN

    NASA Astrophysics Data System (ADS)

    Ariff, A.; Ahmad, M. A.; Hassan, Z.; Zainal, N.

    2018-06-01

    Post-annealing treatment in ammonia ambient is widely accepted for GaN material, but less works have been done to investigate the influence of the ammonia (NH3) flow rate for reducing the N-deficiency as well as improving the quality of the material. In this work, we investigated the influence of NH3 flow rate at 1, 2, 3, and 4 slm in improving properties of a ∼1 μm thick polycrystalline GaN layer. Our simulation work suggested that the uniformity of temperature and pressure gradient of the NH3 gas did not lead to the reduction of N-deficiency of the polycrystalline GaN layer. Instead, it was found that the mitigation of the N-deficiency was strongly influenced by the fluid velocity of the NH3 gas, which had passed over the layer. Either at lower or higher fluid velocity, the chance for the active N atoms to incorporate into the GaN lattice structure was low. Therefore, the N-deficiency on the polycrystalline GaN layer could not be minimized under these conditions. As measured by EDX, the N atoms incorporation was the most effective when the NH3 flow rate at 3 slm, suggesting the flow rate significantly improved the N-deficiency of the polycrystalline GaN layer. Furthermore, it favored the formation of larger hexagonal faceted grains, with the smallest FWHM of XRD peaks from the GaN diffractions in (10 1 bar 0), (0002) and (10 1 bar 1) orientations, while allowing the polycrystalline GaN layer to show sharp and intense emissions peak of NBE in a PL spectrum.

  6. Cubic crystalline erbium oxide growth on GaN(0001) by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Yu; Posadas, Agham B.; Kwon, Sunah; Wang, Qingxiao; Kim, Moon J.; Demkov, Alexander A.; Ekerdt, John G.

    2017-12-01

    Growth of crystalline Er2O3, a rare earth sesquioxide, on GaN(0001) is described. Ex situ HCl and NH4OH solutions and an in situ N2 plasma are used to remove impurities on the GaN surface and result in a Ga/N stoichiometry of 1.02. Using atomic layer deposition with erbium tris(isopropylcyclopentadienyl) [Er(iPrCp)3] and water, crystalline cubic Er2O3 (C-Er2O3) is grown on GaN at 250 °C. The orientation relationships between the C-Er2O3 film and the GaN substrate are C-Er2O3(222) ǁ GaN(0001), C-Er2O3⟨-440⟩ ǁ GaN ⟨11-20⟩, and C-Er2O3⟨-211⟩ ǁ GaN ⟨1-100⟩. Scanning transmission electron microscopy and electron energy loss spectroscopy are used to examine the microstructure of C-Er2O3 and its interface with GaN. With post-deposition annealing at 600 °C, a thicker interfacial layer is observed, and two transition layers, crystalline GaNwOz and crystalline GaErxOy, are found between GaN and C-Er2O3. The tensile strain in the C-Er2O3 film is studied with x-ray diffraction by changes in both out-of-plane and in-plane d-spacing. Fully relaxed C-Er2O3 films on GaN are obtained when the film thickness is around 13 nm. Additionally, a valence band offset of 0.7 eV and a conduction band offset of 1.2 eV are obtained using x-ray photoelectron spectroscopy.

  7. Optimization design on breakdown voltage of AlGaN/GaN high-electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Changchun, Chai; Chunlei, Shi; Qingyang, Fan; Yuqian, Liu

    2016-12-01

    Simulations are carried out to explore the possibility of achieving high breakdown voltage of GaN HEMT (high-electron mobility transistor). GaN cap layers with gradual increase in the doping concentration from 2 × 1016 to 5 × 1019 cm-3 of N-type and P-type cap are investigated, respectively. Simulation results show that HEMT with P-doped GaN cap layer shows more potential to achieve higher breakdown voltage than N-doped GaN cap layer under the same doping concentration. This is because the ionized net negative space charges in P-GaN cap layer could modulate the surface electric field which makes more contribution to RESURF effect. Furthermore, a novel GaN/AlGaN/GaN HEMT with P-doped GaN buried layer in GaN buffer between gate and drain electrode is proposed. It shows enhanced performance. The breakdown voltage of the proposed structure is 640 V which is increased by 12% in comparison to UID (un-intentionally doped) GaN/AlGaN/GaN HEMT. We calculated and analyzed the distribution of electrons' density. It is found that the depleted region is wider and electric field maximum value is induced at the left edge of buried layer. So the novel structure with P-doped GaN buried layer embedded in GaN buffer has the better improving characteristics of the power devices. Project supported by the National Basic Research Program of China (No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (No. 2015-0214.XY.K).

  8. Stress engineering in GaN structures grown on Si(111) substrates by SiN masking layer application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szymański, Tomasz, E-mail: tomasz.szymanski@pwr.edu.pl; Wośko, Mateusz; Paszkiewicz, Bogdan

    2015-07-15

    GaN layers without and with an in-situ SiN mask were grown by using metal organic vapor phase epitaxy for three different approaches used in GaN on silicon(111) growth, and the physical and optical properties of the GaN layers were studied. For each approach applied, GaN layers of 1.4 μm total thickness were grown, using silan SiH{sub 4} as Si source in order to grow Si{sub x}N{sub x} masking layer. The optical micrographs, scanning electron microscope images, and atomic force microscope images of the grown samples revealed cracks for samples without SiN mask, and micropits, which were characteristic for the samples grownmore » with SiN mask. In situ reflectance signal traces were studied showing a decrease of layer coalescence time and higher degree of 3D growth mode for samples with SiN masking layer. Stress measurements were conducted by two methods—by recording micro-Raman spectra and ex-situ curvature radius measurement—additionally PLs spectra were obtained revealing blueshift of PL peak positions with increasing stress. The authors have shown that a SiN mask significantly improves physical and optical properties of GaN multilayer systems reducing stress in comparison to samples grown applying the same approaches but without SiN masking layer.« less

  9. Growth behavior and growth rate dependency in LEDs performance for Mg-doped a-plane GaN

    NASA Astrophysics Data System (ADS)

    Song, Keun-Man; Kim, Jong-Min; Lee, Dong-Hun; Shin, Chan-Soo; Ko, Chul-Gi; Kong, Bo-Hyun; Cho, Hyung-Koun; Yoon, Dae-Ho

    2011-07-01

    We investigated the influence of growth rate of Mg-doped a-plane GaN on the surface morphological and electrical properties, and the characteristics of InGaN-based nonpolar LEDs. Mg-doped a-plane GaN layers were grown on r-plane sapphire substrate by metalorganic chemical vapor deposition (MOCVD). Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cathode luminescence (CL) analysis exhibited that the surface morphology changed from stripe features with large triangular pits to rough and rugged surface with small asymmetric V-shape pits, as the growth rate increased. The Mg incorporation into a-plane GaN layers increased with increasing growth rate of Mg-doped a-plane GaN, while the activation efficiency of Mg dopants decreased in a-plane GaN. Additionally, it was found that operation voltage at 20 mA decreased in characteristics of LEDs, as the growth rate of Mg-doped a-plane GaN decreased. Meanwhile, the EL intensity of LEDs with p-GaN layers grown at higher growth rate was improved compared to that of LEDs with p-GaN layers grown at lower growth rate. Such an increase of EL intensity is attributed to the rougher surface morphology with increasing growth rate of Mg-doped a-plane GaN.

  10. Performance Analysis of GaN Capping Layer Thickness on GaN/AlGaN/GaN High Electron Mobility Transistors.

    PubMed

    Sharma, N; Periasamy, C; Chaturvedi, N

    2018-07-01

    In this paper, we present an investigation of the impact of GaN capping layer and AlGaN layer thickness on the two-dimensional (2D)-electron mobility and the carrier concentration which was formed close to the AlGaN/GaN buffer layer for Al0.25Ga0.75N/GaN and GaN/Al0.25Ga0.75N/GaN heterostructures deposited on sapphire substrates. The results of our analysis clearly indicate that expanding the GaN capping layer thickness from 1 nm to 100 nm prompts an increment in the electron concentration at hetero interface. As consequence of which drain current was additionally increments with GaN cap layer thicknesses, and eventually saturates at approximately 1.85 A/mm for capping layer thickness greater than 40 nm. Interestingly, for the same structure, the 2D-electron mobility, decrease monotonically with GaN capping layer thickness, and saturate at approximately 830 cm2/Vs for capping layer thickness greater than 50 nm. A device with a GaN cap layer didn't exhibit gate leakage current. Furthermore, it was observed that the carrier concentration was first decrease 1.03 × 1019/cm3 to 6.65 × 1018/cm3 with AlGaN Layer thickness from 5 to 10 nm and after that it increases with the AlGaN layer thickness from 10 to 30 nm. The same trend was followed for electric field distributions. Electron mobility decreases monotonically with AlGaN layer thickness. Highest electron mobility 1354 cm2/Vs were recorded for the AlGaN layer thickness of 5 nm. Results obtained are in good agreement with published experimental data.

  11. Growth and characterizations of various GaN nanostructures on C-plane sapphire using laser MBE

    NASA Astrophysics Data System (ADS)

    Ch., Ramesh; Tyagi, P.; Maurya, K. K.; Kumar, M. Senthil; Kushvaha, S. S.

    2017-05-01

    We have grown various GaN nanostructures such as three-dimensional islands, nanowalls and nanocolumns on c-plane sapphire substrates using laser assisted molecular beam epitaxy (LMBE) system. The shape of the GaN nanostructures was controlled by using different nucleation surfaces such as bare and nitridated sapphire with GaN or AlN buffer layers. The structural and surface morphological properties of grown GaN nanostructures were characterized by ex-situ high resolution x-ray diffraction, Raman spectroscopy and field emission scanning electron microscopy. The symmetric x-ray rocking curve along GaN (0002) plane shows that the GaN grown on pre-nitridated sapphire with GaN or AlN buffer layer possesses good crystalline quality compared to sapphire without nitridation. The Raman spectroscopy measurements revealed the wurtzite phase for all the GaN nanostructures grown on c-sapphire.

  12. The metalorganic chemical vapor deposition of III-V nitrides for optoelectronic device applications

    NASA Astrophysics Data System (ADS)

    Grudowski, Paul Alexander

    Nitride-based light-emitting diodes (LEDs) and laser diodes are important for large-area LED displays, flat-panel displays, traffic signals, and optical data storage, due to their characteristic ultraviolet and visible light emission. However, much of the research and development addressing material related problems is recent. The room-temperature continuous wave (CW) operation of nitride-based laser diodes remains a major milestone because the material quality requirements for these devices are extremely high. This study investigates nitride material development by the metalorganic chemical vapor deposition (MOCVD) and characterization of GaN, AlGaN, and InGaN, and by qualifying these materials with fabricated devices. The ultimate goal was to develop a working laser diode. The nitride epitaxial films were characterized by 300K Hall effect, x-ray diffraction (XRD), photoluminescence (PL), cathodoluminescence (CL), secondary ion mass spectroscopy (SIMS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). GaN grown heteroepitaxially on (0001) sapphire substrates was first optimized. A low-temperature GaN nucleation layer was developed that gave subsequent high-temperature GaN layers with low background carrier concentrations (n < 1×10sp{17}\\ cmsp{-3}). Intentional p-type hole concentrations up to 2× 10sp{18} cmsp{-3} and n-type electron concentrations up to 1× 10sp{19} cmsp{-3} were achieved at 300K with magnesium and silicon, respectively. The ternary alloy Insb{x}Gasb{1-x}N was grown with indium compositions up to x = 0.25. These films exhibited strong and narrow 300K PL bandedge peaks. Multiple-quantum-well structures with Insb{0.13}Gasb{0.87}N wells and Insb{0.03}Gasb{0.97}N barriers were grown and gave enhanced PL intensity compared to single InGaN layers. Modulation-doped MQW's produced enhanced PL intensity compared to uniformly-doped MQW's. 300K photopumping experiments produced stimulated emission from a five-period MQW. Light-emitting device structures comprised of InGaN MQW active regions and p-type and n-type GaN contact layers and AlGaN confinement layers were grown and fabricated. LED's showed bright emission at a wavelength of 400 nm. While optically pumped lasers were demonstrated, no injection lasing action was achieved in these devices. GaN grown by selective area lateral epitaxial overgrowth (SALEO) has reduced dislocation defect density and, therefore, may prove to be a promising substrate for nearly defect-free device structures. Plan-view and cross-sectional CL was used to compare spatial inhomogeneities in the bandedge luminescence.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surodin, S. I., E-mail: surodin.bsn@mail.ru; Nikolitchev, D. E.; Kryukov, R. N.

    The concentration profiles of species in silicon subjected to gallium and nitrogen co-implantation and subsequent annealing have been investigated by the method of X-ray photoelectron spectroscopy combined with the layer-by-layer ion etching of the implanted layer. It is shown that practically entire implanted gallium undergoes out-diffusion, but the preliminary implantation of nitrogen for the synthesis of a barrier SiN{sub x} layer makes it possible to avoid the essential loss of gallium. In this case, about 14 % of implanted gallium bond to nitrogen. The obtained data are discussed from the viewpoint of the possibility of ion synthesis of GaN inclusionsmore » in silicon matrix.« less

  14. Linearly polarized photoluminescence of anisotropically strained c-plane GaN layers on stripe-shaped cavity-engineered sapphire substrate

    NASA Astrophysics Data System (ADS)

    Kim, Jongmyeong; Moon, Daeyoung; Lee, Seungmin; Lee, Donghyun; Yang, Duyoung; Jang, Jeonghwan; Park, Yongjo; Yoon, Euijoon

    2018-05-01

    Anisotropic in-plane strain and resultant linearly polarized photoluminescence (PL) of c-plane GaN layers were realized by using a stripe-shaped cavity-engineered sapphire substrate (SCES). High resolution X-ray reciprocal space mapping measurements revealed that the GaN layers on the SCES were under significant anisotropic in-plane strain of -0.0140% and -0.1351% along the directions perpendicular and parallel to the stripe pattern, respectively. The anisotropic in-plane strain in the GaN layers was attributed to the anisotropic strain relaxation due to the anisotropic arrangement of cavity-incorporated membranes. Linearly polarized PL behavior such as the observed angle-dependent shift in PL peak position and intensity comparable with the calculated value based on k.p perturbation theory. It was found that the polarized PL behavior was attributed to the modification of valence band structures induced by anisotropic in-plane strain in the GaN layers on the SCES.

  15. Probing defect states in polycrystalline GaN grown on Si(111) by sub-bandgap laser-excited scanning tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Hsiao, F.-M.; Schnedler, M.; Portz, V.; Huang, Y.-C.; Huang, B.-C.; Shih, M.-C.; Chang, C.-W.; Tu, L.-W.; Eisele, H.; Dunin-Borkowski, R. E.; Ebert, Ph.; Chiu, Y.-P.

    2017-01-01

    We demonstrate the potential of sub-bandgap laser-excited cross-sectional scanning tunneling microscopy and spectroscopy to investigate the presence of defect states in semiconductors. The characterization method is illustrated on GaN layers grown on Si(111) substrates without intentional buffer layers. According to high-resolution transmission electron microscopy and cathodoluminescence spectroscopy, the GaN layers consist of nanoscale wurtzite and zincblende crystallites with varying crystal orientations and hence contain high defect state densities. In order to discriminate between band-to-band excitation and defect state excitations, we use sub-bandgap laser excitation. We probe a clear increase in the tunnel current at positive sample voltages during sub-bandgap laser illumination for the GaN layer with high defect density, but no effect is found for high quality GaN epitaxial layers. This demonstrates the excitation of free charge carriers at defect states. Thus, sub-bandgap laser-excited scanning tunneling spectroscopy is a powerful complimentary characterization tool for defect states.

  16. RBS/Channeling Studies of Swift Heavy Ion Irradiated GaN Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathish, N.; Dhamodaran, S.; Pathak, A. P.

    2009-03-10

    Epitaxial GaN layers grown by MOCVD on c-plane sapphire substrates were irradiated with 150 MeV Ag ions at a fluence of 5x10{sup 12} ions/cm{sup 2}. Samples used in this study are 2 {mu}m thick GaN layers, with and without a thin AlN cap-layer. Energy dependent RBS/Channeling measurements have been carried out on both irradiated and unirradiated samples for defects characterization. Observed results are compared and correlated with previous HRXRD, AFM and optical studies. The {chi}{sub min} values for unirradiated samples show very high value and the calculated defect densities are of the order of 10{sup 10} cm{sup -2} as expectedmore » in these samples. Effects of irradiation on these samples are different as initial samples had different defect densities. Epitaxial reconstruction of GaN buffer layer has been attributed to the observed changes, which are generally grown to reduce the strain between GaN and Sapphire.« less

  17. Tellurium n-type doping of highly mismatched amorphous GaN 1-xAs x alloys in plasma-assisted molecular beam epitaxy

    DOE PAGES

    Novikov, S. V.; Ting, M.; Yu, K. M.; ...

    2014-10-01

    In this paper we report our study on n-type Te doping of amorphous GaN 1-xAs x layers grown by plasma-assisted molecular beam epitaxy. We have used a low temperature PbTe source as a source of tellurium. Reproducible and uniform tellurium incorporation in amorphous GaN 1-xAs x layers has been successfully achieved with a maximum Te concentration of 9×10²⁰ cm⁻³. Tellurium incorporation resulted in n-doping of GaN 1-xAs x layers with Hall carrier concentrations up to 3×10¹⁹ cm⁻³ and mobilities of ~1 cm²/V s. The optimal growth temperature window for efficient Te doping of the amorphous GaN 1-xAs x layers hasmore » been determined.« less

  18. AlGaN/GaN field effect transistors for power electronics—Effect of finite GaN layer thickness on thermal characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodges, C., E-mail: chris.hodges@bristol.ac.uk; Anaya Calvo, J.; Kuball, M.

    2013-11-11

    AlGaN/GaN heterostructure field effect transistors with a 150 nm thick GaN channel within stacked Al{sub x}Ga{sub 1−x}N layers were investigated using Raman thermography. By fitting a thermal simulation to the measured temperatures, the thermal conductivity of the GaN channel was determined to be 60 W m{sup −1} K{sup −1}, over 50% less than typical GaN epilayers, causing an increased peak channel temperature. This agrees with a nanoscale model. A low thermal conductivity AlGaN buffer means the GaN spreads heat; its properties are important for device thermal characteristics. When designing power devices with thin GaN layers, as well as electrical considerations, the reducedmore » channel thermal conductivity must be considered.« less

  19. Study of the effects of GaN buffer layer quality on the dc characteristics of AlGaN/GaN high electron mobility transistors

    DOE PAGES

    Ahn, Shihyun; Zhu, Weidi; Dong, Chen; ...

    2015-04-21

    Here we studied the effect of buffer layer quality on dc characteristics of AlGaN/GaN high electron mobility (HEMTs). AlGaN/GaN HEMT structures with 2 and 5 μm GaN buffer layers on sapphire substrates from two different vendors with the same Al concentration of AlGaN were used. The defect densities of HEMT structures with 2 and 5 μm GaN buffer layer were 7 × 10 9 and 5 × 10 8 cm ₋2, respectively, as measured by transmission electron microscopy. There was little difference in drain saturation current or in transfer characteristics in HEMTs on these two types of buffer. However, theremore » was no dispersion observed on the nonpassivated HEMTs with 5 μm GaN buffer layer for gate-lag pulsed measurement at 100 kHz, which was in sharp contrast to the 71% drain current reduction for the HEMT with 2 μm GaN buffer layer.« less

  20. Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer.

    PubMed

    Schumann, T; Gotschke, T; Limbach, F; Stoica, T; Calarco, R

    2011-03-04

    GaN nanowires (NWs) were grown selectively in holes of a patterned silicon oxide mask, by rf-plasma-assisted molecular beam epitaxy (PAMBE), without any metal catalyst. The oxide was deposited on a thin AlN buffer layer previously grown on a Si(111) substrate. Regular arrays of holes in the oxide layer were obtained using standard e-beam lithography. The selectivity of growth has been studied varying the substrate temperature, gallium beam equivalent pressure and patterning layout. Adjusting the growth parameters, GaN NWs can be selectively grown in the holes of the patterned oxide with complete suppression of the parasitic growth in between the holes. The occupation probability of a hole with a single or multiple NWs depends strongly on its diameter. The selectively grown GaN NWs have one common crystallographic orientation with respect to the Si(111) substrate via the AlN buffer layer, as proven by x-ray diffraction (XRD) measurements. Based on the experimental data, we present a schematic model of the GaN NW formation in which a GaN pedestal is initially grown in the hole.

  1. Improved performance of GaN based light emitting diodes with ex-situ sputtered AlN nucleation layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shuo-Wei; Epistar Corporation, Hsinchu 300, Taiwan; Li, Heng

    The crystal quality, electrical and optical properties of GaN based light emitting diodes (LEDs) with ex-situ sputtered physical vapor deposition (PVD) aluminum nitride (AlN) nucleation layers were investigated. It was found that the crystal quality in terms of defect density and x-ray diffraction linewidth was greatly improved in comparison to LEDs with in-situ low temperature GaN nucleation layer. The light output power was 3.7% increased and the reverse bias voltage of leakage current was twice on LEDs with ex-situ PVD AlN nucleation layers. However, larger compressive strain was discovered in LEDs with ex-situ PVD AlN nucleation layers. The study showsmore » the potential and constrain in applying ex-situ PVD AlN nucleation layers to fabricate high quality GaN crystals in various optoelectronics.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikov, S. V.; Ting, M.; Yu, K. M.

    In this paper we report our study on n-type Te doping of amorphous GaN 1-xAs x layers grown by plasma-assisted molecular beam epitaxy. We have used a low temperature PbTe source as a source of tellurium. Reproducible and uniform tellurium incorporation in amorphous GaN 1-xAs x layers has been successfully achieved with a maximum Te concentration of 9×10²⁰ cm⁻³. Tellurium incorporation resulted in n-doping of GaN 1-xAs x layers with Hall carrier concentrations up to 3×10¹⁹ cm⁻³ and mobilities of ~1 cm²/V s. The optimal growth temperature window for efficient Te doping of the amorphous GaN 1-xAs x layers hasmore » been determined.« less

  3. White emission from non-planar InGaN/GaN MQW LEDs grown on GaN template with truncated hexagonal pyramids.

    PubMed

    Lee, Ming-Lun; Yeh, Yu-Hsiang; Tu, Shang-Ju; Chen, P C; Lai, Wei-Chih; Sheu, Jinn-Kong

    2015-04-06

    Non-planar InGaN/GaN multiple quantum well (MQW) structures are grown on a GaN template with truncated hexagonal pyramids (THPs) featuring c-plane and r-plane surfaces. The THP array is formed by the regrowth of the GaN layer on a selective-area Si-implanted GaN template. Transmission electron microscopy shows that the InGaN/GaN epitaxial layers regrown on the THPs exhibit different growth rates and indium compositions of the InGaN layer between the c-plane and r-plane surfaces. Consequently, InGaN/GaN MQW light-emitting diodes grown on the GaN THP array emit multiple wavelengths approaching near white light.

  4. Novel approach for III-N on Si (111) templates fabrication by low-temperature PA MBE using porous Si layer

    NASA Astrophysics Data System (ADS)

    Zolotukhin, D.; Seredin, P.; Lenshin, A.; Goloshchapov, D.; Mizerov, A.

    2017-11-01

    We report on successful growth of GaN nanorods by low-temperature plasma-assisted molecular beam epitaxy on a Si(111) substrate with and without preformed thin porous Si layer (por-Si). The deposited GaN initially forms islands which act as a seed for the wires. Porous structure of the por-Si layer helps to control nucleation islands sizes and achieve homogeneous distribution of the nanorods diameters. In addition 850 nm-thick crack-free GaN layer was formed on Si(111) substrate with preformed por-Si layer.

  5. All metalorganic chemical vapor phase epitaxy of p/n-GaN tunnel junction for blue light emitting diode applications

    NASA Astrophysics Data System (ADS)

    Neugebauer, S.; Hoffmann, M. P.; Witte, H.; Bläsing, J.; Dadgar, A.; Strittmatter, A.; Niermann, T.; Narodovitch, M.; Lehmann, M.

    2017-03-01

    We report on III-Nitride blue light emitting diodes (LEDs) comprising a GaN-based tunnel junction (TJ) all realized by metalorganic vapor phase epitaxy in a single growth process. The TJ grown atop the LED structures consists of a Mg-doped GaN layer and subsequently grown highly Ge-doped GaN. Long thermal annealing of 60 min at 800 °C is important to reduce the series resistance of the LEDs due to blockage of acceptor-passivating hydrogen diffusion through the n-type doped top layer. Secondary ion mass spectroscopy measurements reveal Mg-incorporation into the topmost GaN:Ge layer, implying a non-abrupt p-n tunnel junction and increased depletion width. Still, significantly improved lateral current spreading as compared to conventional semi-transparent Ni/Au p-contact metallization and consequently a more homogeneous electroluminescence distribution across 1 × 1 mm2 LED structures is achieved. Direct estimation of the depletion width is obtained from electron holography experiments, which allows for a discussion of the possible tunneling mechanism.

  6. Effect of annealing time and NH3 flow on GaN films deposited on amorphous SiO2 by MOCVD

    NASA Astrophysics Data System (ADS)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Xu, Bingshe

    2018-05-01

    GaN polycrystalline films were successfully grown on amorphous SiO2 by metal-organic chemical vapour deposition to fabricate transferable devices using inorganic films. Field-emission scanning electron microscopy images show that by prolonging the annealing time, re-evaporation is enhanced, which reduced the uniformity of the nucleation layer and GaN films. X-ray diffraction patterns indicate that the decomposition rate of the nucleation layer increases when the annealing flow rate of NH3 is 500 sccm, which makes the unstable plane and amorphous domains decompose rapidly, thereby improving the crystallinity of the GaN films. Photoluminescence spectra also indicate the presence of fewer defects when the annealing flow rate of NH3 is 500 sccm. The excellent crystal structure of the GaN films grown under optimized conditions was revealed by transmission electron microscopy analysis. More importantly, the crystal structure and orientation of GaN grown on SiO2 are the same as that of GaN grown on conventional sapphire substrate when a buffer layer is used. This work can aid in the development of transferable devices using GaN films.

  7. Colloidal quantum dot active layers for light emitting diodes

    NASA Astrophysics Data System (ADS)

    Pagan, Jennifer G.; Stokes, Edward B.; Patel, Kinnari; Burkhart, Casey C.; Ahrens, Michael T.; Barletta, Philip T.; O'Steen, Mark

    2006-07-01

    In this paper the preliminary results of incorporating a novel active layer into a GaN light emitting diode (LED) are discussed. Integration of colloidal CdSe quantum dots into a GaN LED active layer is demonstrated. Properties of p-type Mg doped overgrowth GaN are examined via circular transmission line method (CTLM). Effects on surface roughness due to the active layer incorporation are examined using atomic force microscopy (AFM). Electroluminescence of LED test structures is reported, and an ideality factor of n = 1.6 is demonstrated.

  8. Structural and optical studies of GaN pn-junction with AlN buffer layer grown on Si (111) by RF plasma enhanced MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusoff, Mohd Zaki Mohd; Hassan, Zainuriah; Woei, Chin Che

    2012-06-29

    GaN pn-junction grown on silicon substrates have been the focus in a number of recent reports and further effort is still necessary to improve its crystalline quality for practical applications. GaN has the high n-type background carrier concentration resulting from native defects commonly thought to be nitrogen vacancies. In this work, we present the growth of pn-junction of GaN on Si (111) substrate using RF plasma-enhanced molecular beam epitaxy (MBE). Both of the layers show uniformity with an average thickness of 0.709 {mu}m and 0.095 {mu}m for GaN and AlN layers, respectively. The XRD spectra indicate that no sign ofmore » cubic phase of GaN are found, so it is confirmed that the sample possessed hexagonal structure. It was found that all the allowed Raman optical phonon modes of GaN, i.e. the E2 (low), E1 (high) and A1 (LO) are clearly visible.« less

  9. Nanostructural engineering of nitride nucleation layers for GaN substrate dislocation reduction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koleske, Daniel David; Lee, Stephen Roger; Lemp, Thomas Kerr

    2009-07-01

    With no lattice matched substrate available, sapphire continues as the substrate of choice for GaN growth, because of its reasonable cost and the extensive prior experience using it as a substrate for GaN. Surprisingly, the high dislocation density does not appear to limit UV and blue LED light intensity. However, dislocations may limit green LED light intensity and LED lifetime, especially as LEDs are pushed to higher current density for high end solid state lighting sources. To improve the performance for these higher current density LEDs, simple growth-enabled reductions in dislocation density would be highly prized. GaN nucleation layers (NLs)more » are not commonly thought of as an application of nano-structural engineering; yet, these layers evolve during the growth process to produce self-assembled, nanometer-scale structures. Continued growth on these nuclei ultimately leads to a fully coalesced film, and we show in this research program that their initial density is correlated to the GaN dislocation density. In this 18 month program, we developed MOCVD growth methods to reduce GaN dislocation densities on sapphire from 5 x 10{sup 8} cm{sup -2} using our standard delay recovery growth technique to 1 x 10{sup 8} cm{sup -2} using an ultra-low nucleation density technique. For this research, we firmly established a correlation between the GaN nucleation thickness, the resulting nucleation density after annealing, and dislocation density of full GaN films grown on these nucleation layers. We developed methods to reduce the nuclei density while still maintaining the ability to fully coalesce the GaN films. Ways were sought to improve the GaN nuclei orientation by improving the sapphire surface smoothness by annealing prior to the NL growth. Methods to eliminate the formation of additional nuclei once the majority of GaN nuclei were developed using a silicon nitride treatment prior to the deposition of the nucleation layer. Nucleation layer thickness was determined using optical reflectance and the nucleation density was determined using atomic force microscopy (AFM) and Nomarski microscopy. Dislocation density was measured using X-ray diffraction and AFM after coating the surface with silicon nitride to delineate all dislocation types. The program milestone of producing GaN films with dislocation densities of 1 x 10{sup 8} cm{sup -2} was met by silicon nitride treatment of annealed sapphire followed by the multiple deposition of a low density of GaN nuclei followed by high temperature GaN growth. Details of this growth process and the underlying science are presented in this final report along with problems encountered in this research and recommendations for future work.« less

  10. Systematic study on dynamic atomic layer epitaxy of InN on/in +c-GaN matrix and fabrication of fine-structure InN/GaN quantum wells: Role of high growth temperature

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akihiko; Kusakabe, Kazuhide; Hashimoto, Naoki; Hwang, Eun-Sook; Imai, Daichi; Itoi, Takaomi

    2016-12-01

    The growth kinetics and properties of nominally 1-ML (monolayer)-thick InN wells on/in +c-GaN matrix fabricated using dynamic atomic layer epitaxy (D-ALEp) by plasma-assisted molecular beam epitaxy were systematically studied, with particular attention given to the effects of growth temperature. Attention was also given to how and where the ˜1-ML-thick InN layers were frozen or embedded on/in the +c-GaN matrix. The D-ALEp of InN on GaN was a two-stage process; in the 1st stage, an "In+N" bilayer/monolayer was formed on the GaN surface, while in the 2nd, this was capped by a GaN barrier layer. Each process was monitored in-situ using spectroscopic ellipsometry. The target growth temperature was above 620 °C and much higher than the upper critical epitaxy temperature of InN (˜500 °C). The "In+N" bilayer/monolayer tended to be an incommensurate phase, and the growth of InN layers was possible only when they were capped with a GaN layer. The InN layers could be coherently inserted into the GaN matrix under self-organizing and self-limiting epitaxy modes. The growth temperature was the most dominant growth parameter on both the growth process and the structure of the InN layers. Reflecting the inherent growth behavior of D-ALEp grown InN on/in +c-GaN at high growth temperature, the embedded InN layers in the GaN matrix were basically not full-ML in coverage, and the thickness of sheet-island-like InN layers was essentially either 1-ML or 2-ML. It was found that these InN layers tended to be frozen at the step edges on the GaN and around screw-type threading dislocations. The InN wells formed type-I band line-up heterostructures with GaN barriers, with exciton localization energies of about 300 and 500 meV at 15 K for the 1-ML and 2-ML InN wells, respectively.

  11. Molecular-beam heteroepitaxial growth and characterization of wide-band-gap semiconductor films and devices

    NASA Astrophysics Data System (ADS)

    Piquette, Eric Charles

    The thesis consists of two parts. Part I describes work on the molecular beam epitaxial (MBE) growth of GaN, AlN, and AlxGa 1-xN alloys, as well as efforts in the initial technical development and demonstration of nitride-based high power electronic devices. The major issues pertaining to MBE growth are discussed, including special requirements of the growth system, substrates, film nucleation, n - and p-type doping, and the dependence of film quality on growth parameters. The GaN films were characterized by a variety of methods, including high resolution x-ray diffraction, photoluminescence, and Hall effect measurement. It is found that the film polarity and extended defect density as well as quality of photoluminescence and electrical transport properties depend crucially on how the nitride layer is nucleated on the substrate and how the subsequent film surface morphology evolves, which can be controlled by the growth conditions. A technique is proposed and demonstrated that utilizes the control of morphology evolution to reduce defect density and improve the structural quality of MBE GaN films. In addition to growth, the design and processing of high voltage GaN Schottky diodes is presented, as well as an experimental study of sputter-deposited ohmic and rectifying metal contacts to GaN. Simple models for high power devices, based on materials properties such as minority carrier diffusion length and critical electric breakdown field, are used to estimate the voltage standoff capability, current carrying capacity, and maximum operating frequency of unipolar and bipolar GaN power devices. The materials and transport properties of GaN pertinent to high power device design were measured experimentally. High voltage Schottky rectifiers were fabricated which verify the impressive electric breakdown field of GaN (2--5 MV/cm). Electron beam induced current (EBIC) experiments were also conducted to measure the minority carrier diffusion length for both electrons and holes in GaN. Part II of the thesis describes studies of the MBE growth of ZnS and investigations of ZnS/GaN fight emitting heterojunctions which show promise for application as blue and green light emitters. Zinc sulfide layers doped with Ag and Al were grown by MBE on sapphire, GaAs, and GaN substrates and characterized by x-ray diffraction and photoluminescence. Preliminary current-voltage and electroluminescence results are presented for a processed ZnS:Al,Ag/GaN:Mg prototype blue light emitting device.

  12. Optical and structural characterisation of epitaxial nanoporous GaN grown by CVD.

    PubMed

    Mena, Josué; Carvajal, Joan J; Martínez, Oscar; Jiménez, Juan; Zubialevich, Vitaly Z; Parbrook, Peter J; Diaz, Francesc; Aguiló, Magdalena

    2017-09-15

    In this paper we study the optical properties of nanoporous gallium nitride (GaN) epitaxial layers grown by chemical vapour deposition on non-porous GaN substrates, using photoluminescence, cathodoluminescence, and resonant Raman scattering, and correlate them with the structural characteristic of these films. We pay special attention to the analysis of the residual strain of the layers and the influence of the porosity in the light extraction. The nanoporous GaN epitaxial layers are under tensile strain, although the strain is progressively reduced as the deposition time and the thickness of the porous layer increases, becoming nearly strain free for a thickness of 1.7 μm. The analysis of the experimental data point to the existence of vacancy complexes as the main source of the tensile strain.

  13. Fabrication of current confinement aperture structure by transforming a conductive GaN:Si epitaxial layer into an insulating GaOx layer.

    PubMed

    Lin, Chia-Feng; Lee, Wen-Che; Shieh, Bing-Cheng; Chen, Danti; Wang, Dili; Han, Jung

    2014-12-24

    We report here a simple and robust process to convert embedded conductive GaN epilayers into insulating GaOx and demonstrate its efficacy in vertical current blocking and lateral current steering in a working LED device. The fabrication processes consist of laser scribing, electrochemical (EC) wet-etching, photoelectrochemical (PEC) oxidation, and thermal oxidization of a sacrificial n(+)-GaN:Si layer. The conversion of GaN is made possible through an intermediate stage of porosification where the standard n-type GaN epilayers can be laterally and selectively anodized into a nanoporous (NP) texture while keeping the rest of the layers intact. The fibrous texture of NP GaN with an average wall thickness of less than 100 nm dramatically increases the surface-to-volume ratio and facilitates a rapid oxidation process of GaN into GaOX. The GaOX aperture was formed on the n-side of the LED between the active region and the n-type GaN layer. The wavelength blueshift phenomena of electroluminescence spectra is observed in the treated aperture-emission LED structure (441.5 nm) when compared to nontreated LED structure (443.7 nm) at 0.1 mA. The observation of aperture-confined electroluminescence from an InGaN LED structure suggests that the NP GaN based oxidation will play an enabling role in the design and fabrication of III-nitride photonic devices.

  14. Nitridation- and Buffer-Layer-Free Growth of [1100]-Oriented GaN Domains on m-Plane Sapphire Substrates by Using Hydride Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Seo, Yeonwoo; Lee, Sanghwa; Jue, Miyeon; Yoon, Hansub; Kim, Chinkyo

    2012-12-01

    Over a wide range of growth conditions, GaN domains were grown on bare m-plane sapphire substrates by using hydride vapor phase epitaxy (HVPE), and the relation between these growth conditions and three possible preferred crystallographic orientations ([1100], [1103], [1122]) of GaN domains was investigated. In contrast with the previous reports by other groups, our results revealed that preferentially [1100]-oriented GaN domains were grown without low-temperature nitridation or a buffer layer, and that the growth condition of preferentially [1100]-oriented GaN was insensitive to V/III ratio.

  15. Optical and structural characteristics of high indium content InGaN/GaN multi-quantum wells with varying GaN cap layer thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J.; Zhao, D. G., E-mail: dgzhao@red.semi.ac.cn; Jiang, D. S.

    2015-02-07

    The optical and structural properties of InGaN/GaN multi-quantum wells (MQWs) with different thicknesses of low temperature grown GaN cap layers are investigated. It is found that the MQW emission energy red-shifts and the peak intensity decreases with increasing GaN cap layer thickness, which may be partly caused by increased floating indium atoms accumulated at quantum well (QW) surface. They will result in the increased interface roughness, higher defect density, and even lead to a thermal degradation of QW layers. An extra growth interruption introduced before the growth of GaN cap layer can help with evaporating the floating indium atoms, andmore » therefore is an effective method to improve the optical properties of high indium content InGaN/GaN MQWs.« less

  16. GaN microring waveguide resonators bonded to silicon substrate by a two-step polymer process.

    PubMed

    Hashida, Ryohei; Sasaki, Takashi; Hane, Kazuhiro

    2018-03-20

    Using a polymer bonding technique, GaN microring waveguide resonators were fabricated on a Si substrate for future hybrid integration of GaN and Si photonic devices. The designed GaN microring consisted of a rib waveguide having a core of 510 nm in thickness, 1000 nm in width, and a clad of 240 nm in thickness. A GaN crystalline layer of 1000 nm in thickness was grown on a Si(111) substrate by metal organic chemical vapor deposition using a buffer layer of 300 nm in thickness for the compensation of lattice constant mismatch between GaN and Si crystals. The GaN/Si wafer was bonded to a Si(100) wafer by a two-step polymer process to prevent it from trapping air bubbles. The bonded GaN layer was thinned from the backside by a fast atom beam etching to remove the buffer layer and to generate the rib waveguides. The transmission characteristics of the GaN microring waveguide resonators were measured. The losses of the straight waveguides were measured to be 4.0±1.7  dB/mm around a wavelength of 1.55 μm. The microring radii ranged from 30 to 60 μm, where the measured free-spectral ranges varied from 2.58 to 5.30 nm. The quality factors of the microring waveguide resonators were from 1710 to 2820.

  17. Atomic layer epitaxy of GaN over sapphire using switched metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Khan, M. A.; Skogman, R. A.; van Hove, J. M.; Olson, D. T.; Kuznia, J. N.

    1992-03-01

    In this letter the first switched atomic layer epitaxy (SALE) of single crystal GaN over basal plane sapphire substrates is reported. A low pressure metalorganic chemical vapor deposition (LPMOCVD) system was used for the epilayer depositions. In contrast to conventional LPMOCVD requiring temperatures higher than 700 C, the SALE process resulted in single crystal insulating GaN layers at growth temperatures ranging from 900 to 450 C. The band-edge transmission and the photoluminescence of the films from the SALE process were comparable to the best LPMOCVD films. As best as is known this is the first report of insulating GaN films which show excellent band-edge photoluminescence.

  18. Atomic layer epitaxy of GaN over sapphire using switched metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Asif Khan, M.; Skogman, R. A.; Van Hove, J. M.; Olson, D. T.; Kuznia, J. N.

    1992-03-01

    In this letter we report the first switched atomic layer epitaxy (SALE) of single crystal GaN over basal plane sapphire substrates. A low pressure metalorganic chemical vapor deposition (LPMOCVD) system was used for the epilayer depositions. In contrast to conventional LPMOCVD requiring temperatures higher than 700 °C, the SALE process resulted in single crystal insulating GaN layers at growth temperatures ranging from 900 to 450 °C. The band-edge transmission and the photoluminescence of the films from the SALE process were comparable to the best LPMOCVD films. To the best of our knowledge this is the first report of insulating GaN films which show excellent band-edge photoluminescence.

  19. Use of hydrogen etching to remove existing dislocations in GaN epitaxial layers

    NASA Astrophysics Data System (ADS)

    Yeh, Yen-Hsien; Chu, Chung-Ming; Wu, Yin-Hao; Hsu, Ying-Chia; Yu, Tzu-Yi; Lee, Wei-I.

    2015-08-01

    In this paper, based on the anisotropic nature of hydrogen (H2) etching on GaN, we describe a new approach to the removal of threading dislocations in GaN layers. The top surfaces of c-plane (Ga-face) and a-plane GaNs are considered stable in H2; therefore, H2 etches only crystal imperfections such as dislocation and basal plane stacking fault (BSF) sites. We used H2 to etch undoped c-plane GaN, n-type c-plane GaN, a-plane GaN, and an InGaN/GaN multiple quantum well structure. Several examinations were performed, indicating deep cavities on the c-plane GaN samples after H2 etching; furthermore, gorge-like grooves were observed on the a-plane GaN samples. The deep cavities on the c-plane GaN were considered the etched dislocation sites, and the gorge-like grooves on the a-plane GaN were considered the etched BSF sites. Photoluminescence measurements were performed and the results indicated that the H2-etched samples demonstrate superior optoelectronic properties, probably because of the elimination of dislocations.

  20. Suppression of Mg propagation into subsequent layers grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Agarwal, Anchal; Tahhan, Maher; Mates, Tom; Keller, Stacia; Mishra, Umesh

    2017-01-01

    Low temperature (LT) flow modulation epitaxy (FME) or "pulsed" growth was successfully used to prevent magnesium from Metalorganic Chemical Vapor Deposition (MOCVD) grown p-GaN:Mg layers riding into subsequently deposited n-type layers. Mg concentration in the subsequent layers was lowered from ˜1 × 1018 cm-3 for a medium temperature growth at 950 °C to ˜1 × 1016 cm-3 for a low temperature growth at 700 °C via FME. The slope of the Mg concentration drop in the 700 °C FME sample was 20 nm/dec—the lowest ever demonstrated by MOCVD. For growth on Mg implanted GaN layers, the drop for a medium temperature regrowth at 950 °C was ˜10 nm/dec compared to >120 nm/dec for a high temperature regrowth at 1150 °C. This drop-rate obtained at 950 °C or lower was maintained even when the growth temperature in the following layers was raised to 1150 °C. A controlled silicon doping series using LT FME was also demonstrated with the lowest and highest achieved doping levels being 5 × 1016 cm-3 and 6 × 1019 cm-3, respectively.

  1. Growth of crack-free GaN films on Si(111) substrate by using Al-rich AlN buffer layer

    NASA Astrophysics Data System (ADS)

    Lu, Yuan; Cong, Guangwei; Liu, Xianglin; Lu, Da-Cheng; Zhu, Qinsheng; Wang, Xiaohui; Wu, Jiejun; Wang, Zhanguo

    2004-11-01

    GaN epilayers were grown on Si(111) substrate by metalorganic chemical vapor deposition. By using the Al-rich AlN buffer which contains Al beyond stoichiometry, crack-free GaN epilayers with 1 μm thickness were obtained. Through x-ray diffraction (XRD) and secondary ion mass spectroscopy analyses, it was found that a lot of Al atoms have diffused into the under part of the GaN epilayer from the Al-rich AlN buffer, which results in the formation of an AlxGa1-xN layer at least with 300 nm thickness in the 1 μm thick GaN epilayer. The Al fraction x was estimated by XRD to be about 2.5%. X-ray photoelectron spectroscopy depth analysis was also applied to investigate the stoichiometry in the Al-rich buffer before GaN growth. It is suggested that the underlayer AlxGa1-xN originated from Al diffusion probably provides a compressive stress to the upper part of the GaN epilayer, which counterbalances a part of tensile stress in the GaN epilayer during cooling down and consequently reduces the cracks of the film effectively. The method using the Al diffusion effect to form a thick AlGaN layer is really feasible to achieve the crack-free GaN films and obtain a high crystal quality simultaneously.

  2. MBE growth and optical properties of GaN layers on SiC/Si(111) hybrid substrate

    NASA Astrophysics Data System (ADS)

    Reznik, R. R.; Kotlyar, K. P.; Soshnikov, I. P.; Kukushkin, S. A.; Osipov, A. V.; Nikitina, E. V.; Cirlin, G. E.

    2017-11-01

    The fundamental possibility of the growth of GaN layers by molecular-beam epitaxy on a silicon substrate with nanoscale buffer layer of silicon carbide without any AlN layers has been demonstrated for the first time. Morphological properties of the resulting system have been studied.

  3. Two-dimensional X-ray diffraction and transmission electron microscopy study on the effect of magnetron sputtering atmosphere on GaN/SiC interface and gallium nitride thin film crystal structure

    NASA Astrophysics Data System (ADS)

    Shen, Huaxiang; Zhu, Guo-Zhen; Botton, Gianluigi A.; Kitai, Adrian

    2015-03-01

    The growth mechanisms of high quality GaN thin films on 6H-SiC by sputtering were investigated by X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM). The XRD θ-2θ scans show that high quality ( 0002 ) oriented GaN was deposited on 6H-SiC by reactive magnetron sputtering. Pole figures obtained by 2D-XRD clarify that GaN thin films are dominated by ( 0002 ) oriented wurtzite GaN and { 111 } oriented zinc-blende GaN. A thin amorphous silicon oxide layer on SiC surfaces observed by STEM plays a critical role in terms of the orientation information transfer from the substrate to the GaN epilayer. The addition of H2 into Ar and/or N2 during sputtering can reduce the thickness of the amorphous layer. Moreover, adding 5% H2 into Ar can facilitate a phase transformation from amorphous to crystalline in the silicon oxide layer and eliminate the unwanted { 3 3 ¯ 02 } orientation in the GaN thin film. Fiber texture GaN thin films can be grown by adding 10% H2 into N2 due to the complex reaction between H2 and N2.

  4. Evaluation of AlGaN/GaN high electron mobility transistors grown on ZrTi buffer layers with sapphire substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Fan; Pearton, Stephen J.; Ahn, Shihyun

    Here, AlGaN/GaN high electron mobility transistors (HEMTs) have been grown on sapphire substrates, using ZrTi buffer layers to provide in-plane lattice-matching to hexagonal GaN. X-ray diffraction (XRD) as well as cross-section transmission electron microscopy (TEM) were used to assess the quality of the HEMT structure. The XRD 2θ scans showed full-width-at-half-maximum values of 0.16°, 0.07°, and 0.08° for ZrTi alloy, GaN buffer layer, and the entire HEMT structure, respectively. TEM studies of the GaN buffer layer and the AlN/ZrTi/AlN stack showed the importance of growing thin AlN buffer layers on the ZrTi layer prior to growth of the GaN buffermore » layer. The density of threading dislocations in the GaN channel layer of the HEMT structure was estimated to be in the 10 8 cm –2 range. The HEMT device exhibited a saturation drain current density of 820 mA/mm, and the channel of the fabricated HEMTs could be well modulated. A cutoff frequency (f T) of 8.9 GHz and a maximum frequency of oscillation (f max) of 17.3 GHz were achieved for HEMTs with gate dimensions of 1 × 200 μm.« less

  5. Evaluation of AlGaN/GaN high electron mobility transistors grown on ZrTi buffer layers with sapphire substrates

    DOE PAGES

    Ren, Fan; Pearton, Stephen J.; Ahn, Shihyun; ...

    2016-09-21

    Here, AlGaN/GaN high electron mobility transistors (HEMTs) have been grown on sapphire substrates, using ZrTi buffer layers to provide in-plane lattice-matching to hexagonal GaN. X-ray diffraction (XRD) as well as cross-section transmission electron microscopy (TEM) were used to assess the quality of the HEMT structure. The XRD 2θ scans showed full-width-at-half-maximum values of 0.16°, 0.07°, and 0.08° for ZrTi alloy, GaN buffer layer, and the entire HEMT structure, respectively. TEM studies of the GaN buffer layer and the AlN/ZrTi/AlN stack showed the importance of growing thin AlN buffer layers on the ZrTi layer prior to growth of the GaN buffermore » layer. The density of threading dislocations in the GaN channel layer of the HEMT structure was estimated to be in the 10 8 cm –2 range. The HEMT device exhibited a saturation drain current density of 820 mA/mm, and the channel of the fabricated HEMTs could be well modulated. A cutoff frequency (f T) of 8.9 GHz and a maximum frequency of oscillation (f max) of 17.3 GHz were achieved for HEMTs with gate dimensions of 1 × 200 μm.« less

  6. Catalytic Activation of Mg-Doped GaN by Hydrogen Desorption Using Different Metal Thin Layers

    NASA Astrophysics Data System (ADS)

    Wei, Tongbo; Wang, Junxi; Liu, Naixin; Lu, Hongxi; Zeng, Yiping; Wang, Guohong; Li, Jinmin

    2010-10-01

    The annealing of Mg-doped GaN with Pt and Mo layers has been found to effectively improve the hole concentration of such material by more than 2 times as high as those in the same material without metal. Compared with the Ni and Mo catalysts, Pt showed good activation effect for hydrogen desorption and ohmic contact to the Ni/Au electrode. Despite the weak hydrogen desorption, Mo did not diffuse into the GaN epilayer in the annealing process, thus suppressing the carrier compensation phenomenon with respect to Ni and Pt depositions, which resulted in the high activation of Mg acceptors. For the GaN activated with the Ni, Pt, and Mo layers, the blue emission became dominant, followed by a clear peak redshift and the degradation of photoluminescence signal when compared with that of GaN without metal.

  7. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    NASA Astrophysics Data System (ADS)

    Puybaret, Renaud; Patriarche, Gilles; Jordan, Matthew B.; Sundaram, Suresh; El Gmili, Youssef; Salvestrini, Jean-Paul; Voss, Paul L.; de Heer, Walt A.; Berger, Claire; Ougazzaden, Abdallah

    2016-03-01

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5-8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metal organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.

  8. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puybaret, Renaud; Jordan, Matthew B.; Voss, Paul L.

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5–8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metalmore » organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.« less

  9. The investigation of stress in freestanding GaN crystals grown from Si substrates by HVPE.

    PubMed

    Lee, Moonsang; Mikulik, Dmitry; Yang, Mino; Park, Sungsoo

    2017-08-17

    We investigate the stress evolution of 400 µm-thick freestanding GaN crystals grown from Si substrates by hydride vapour phase epitaxy (HVPE) and the in situ removal of Si substrates. The stress generated in growing GaN can be tuned by varying the thickness of the MOCVD AlGaN/AlN buffer layers. Micro Raman analysis shows the presence of slight tensile stress in the freestanding GaN crystals and no stress accumulation in HVPE GaN layers during the growth. Additionally, it is demonstrated that the residual tensile stress in HVPE GaN is caused only by elastic stress arising from the crystal quality difference between Ga- and N-face GaN. TEM analysis revealed that the dislocations in freestanding GaN crystals have high inclination angles that are attributed to the stress relaxation of the crystals. We believe that the understanding and characterization on the structural properties of the freestanding GaN crystals will help us to use these crystals for high-performance opto-electronic devices.

  10. Growth of GaN Layers on Sapphire by Low-Temperature-Deposited Buffer Layers and Realization of p-type GaN by Magesium Doping and Electron Beam Irradiation (Nobel Lecture).

    PubMed

    Amano, Hiroshi

    2015-06-26

    This Review is a personal reflection on the research that led to the development of a method for growing gallium nitride (GaN) on a sapphire substrate. The results paved the way for the development of smart display systems using blue LEDs. The most important work was done in the mid to late 80s. The background to the author's work and the process by which the technology that enables the growth of GaN and the realization of p-type GaN was established are reviewed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Formation of definite GaN p-n junction by Mg-ion implantation to n--GaN epitaxial layers grown on a high-quality free-standing GaN substrate

    NASA Astrophysics Data System (ADS)

    Oikawa, Takuya; Saijo, Yusuke; Kato, Shigeki; Mishima, Tomoyoshi; Nakamura, Tohru

    2015-12-01

    P-type conversion of n--GaN by Mg-ion implantation was successfully performed using high quality GaN epitaxial layers grown on free-standing low-dislocation-density GaN substrates. These samples showed low-temperature PL spectra quite similar to those observed from Mg-doped MOVPE-grown p-type GaN, consisting of Mg related donor-acceptor pair (DAP) and acceptor bound exciton (ABE) emission. P-n diodes fabricated by the Mg-ion implantation showed clear rectifying I-V characteristics and UV and blue light emissions were observed at forward biased conditions for the first time.

  12. Growth of ZnO(0001) on GaN(0001)/4H-SiC buffer layers by plasma-assisted hybrid molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Adolph, David; Tingberg, Tobias; Ive, Tommy

    2015-09-01

    Plasma-assisted molecular beam epitaxy was used to grow ZnO(0001) layers on GaN(0001)/4H-SiC buffer layers deposited in the same growth chamber equipped with both N- and O-plasma sources. The GaN buffer layers were grown immediately before initiating the growth of ZnO. Using a substrate temperature of 445 °C and an O2 flow rate of 2.5 standard cubic centimeters per minute, we obtained ZnO layers with statistically smooth surfaces having a root-mean-square roughness of 0.3 nm and a peak-to-valley distance of 3 nm as revealed by atomic force microscopy. The full-width-at-half-maximum for x-ray rocking curves obtained across the ZnO(0002) and ZnO(10 1 bar 5) reflections was 198 and 948 arcsec, respectively. These values indicated that the mosaicity of the ZnO layer was comparable to the corresponding values of the underlying GaN buffer layer. Reciprocal space maps showed that the in-plane relaxation of the GaN and ZnO layers was 82% and 73%, respectively, and that the relaxation occurred abruptly during the growth. Room-temperature Hall-effect measurements revealed that the layers were inherently n-type and had an electron concentration of 1×1019 cm-3 and a Hall mobility of 51 cm2/V s.

  13. Comparison of trimethylgallium and triethylgallium as “Ga” source materials for the growth of ultrathin GaN films on Si (100) substrates via hollow-cathode plasma-assisted atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr; Haider, Ali; Kizir, Seda

    2016-01-15

    GaN films grown by hollow cathode plasma-assisted atomic layer deposition using trimethylgallium (TMG) and triethylgallium (TEG) as gallium precursors are compared. Optimized and saturated TMG/TEG pulse widths were used in order to study the effect of group-III precursors. The films were characterized by grazing incidence x-ray diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and spectroscopic ellipsometry. Refractive index follows the same trend of crystalline quality, mean grain, and crystallite sizes. GaN layers grown using TMG precursor exhibited improved structural and optical properties when compared to GaN films grown with TEG precursor.

  14. Epitaxial MoS2/GaN structures to enable vertical 2D/3D semiconductor heterostructure devices

    NASA Astrophysics Data System (ADS)

    Ruzmetov, D.; Zhang, K.; Stan, G.; Kalanyan, B.; Eichfeld, S.; Burke, R.; Shah, P.; O'Regan, T.; Crowne, F.; Birdwell, A. G.; Robinson, J.; Davydov, A.; Ivanov, T.

    MoS2/GaN structures are investigated as a building block for vertical 2D/3D semiconductor heterostructure devices that utilize a 3D substrate (GaN) as an active component of the semiconductor device without the need of mechanical transfer of the 2D layer. Our CVD-grown monolayer MoS2 has been shown to be epitaxially aligned to the GaN lattice which is a pre-requisite for high quality 2D/3D interfaces desired for efficient vertical transport and large area growth. The MoS2 coverage is nearly 50 % including isolated triangles and monolayer islands. The GaN template is a double-layer grown by MOCVD on sapphire and allows for measurement of transport perpendicular to the 2D layer. Photoluminescence, Raman, XPS, Kelvin force probe microscopy, and SEM analysis identified high quality monolayer MoS2. The MoS2/GaN structures electrically conduct in the out-of-plane direction and across the van der Waals gap, as measured with conducting AFM (CAFM). The CAFM current maps and I-V characteristics are analyzed to estimate the MoS2/GaN contact resistivity to be less than 4 Ω-cm2 and current spreading in the MoS2 monolayer to be approx. 1 μm in diameter. Epitaxial MoS2/GaN heterostructures present a promising platform for the design of energy-efficient, high-speed vertical devices incorporating 2D layered materials with 3D semiconductors.

  15. Microstructure and Optical Properties of Nonpolar m-Plane GaN Films Grown on m-Plane Sapphire by Hydride Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Wei, Tongbo; Duan, Ruifei; Wang, Junxi; Li, Jinmin; Huo, Ziqiang; Yang, Jiankun; Zeng, Yiping

    2008-05-01

    Thick nonpolar (1010) GaN layers were grown on m-plane sapphire substrates by hydride vapor phase epitaxy (HVPE) using magnetron sputtered ZnO buffers, while semipolar (1013) GaN layers were obtained by the conventional two-step growth method using the same substrate. The in-plane anisotropic structural characteristics and stress distribution of the epilayers were revealed by high resolution X-ray diffraction and polarized Raman scattering measurements. Atomic force microscopy (AFM) images revealed that the striated surface morphologies correlated with the basal plane stacking faults for both (1010) and (1013) GaN films. The m-plane GaN surface showed many triangular-shaped pits aligning uniformly with the tips pointing to the c-axis after etching in boiled KOH, whereas the oblique hillocks appeared on the semipolar epilayers. In addition, the dominant emission at 3.42 eV in m-plane GaN films displayed a red shift with respect to that in semipolar epilayers, maybe owing to the different strain states present in the two epitaxial layers.

  16. Epitaxial Growth of GaN Films by Pulse-Mode Hot-Mesh Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Komae, Yasuaki; Yasui, Kanji; Suemitsu, Maki; Endoh, Tetsuo; Ito, Takashi; Nakazawa, Hideki; Narita, Yuzuru; Takata, Masasuke; Akahane, Tadashi

    2009-07-01

    Intermittent gas supplies for hot-mesh chemical vapor deposition (CVD) for the epitaxial growth of gallium nitride (GaN) films were investigated to improve film crystallinity and optical properties. The GaN films were deposited on SiC/Si(111) substrates using an alternating-source gas supply or an intermittent supply of source gases such as ammonia (NH3) and trimethylgallium (TMG) in hot-mesh CVD after deposition of an aluminum nitride (AlN) buffer layer. The AlN layer was deposited using NH3 and trimethylaluminum (TMA) on a SiC layer grown by carbonization of a Si substrate using propane (C3H8). GaN films were grown on the AlN layer by a reaction between NHx radicals generated on a ruthenium (Ru)-coated tungsten (W) mesh and TMG molecules. After testing various gas supply modes, GaN films with good crystallinity and surface morphology were obtained using an intermittent supply of TMG and a continuous supply of NH3 gas. An optimal interval for the TMG gas supply was also obtained for the apparatus employed.

  17. Si Complies with GaN to Overcome Thermal Mismatches for the Heteroepitaxy of Thick GaN on Si.

    PubMed

    Tanaka, Atsunori; Choi, Woojin; Chen, Renjie; Dayeh, Shadi A

    2017-10-01

    Heteroepitaxial growth of lattice mismatched materials has advanced through the epitaxy of thin coherently strained layers, the strain sharing in virtual and nanoscale substrates, and the growth of thick films with intermediate strain-relaxed buffer layers. However, the thermal mismatch is not completely resolved in highly mismatched systems such as in GaN-on-Si. Here, geometrical effects and surface faceting to dilate thermal stresses at the surface of selectively grown epitaxial GaN layers on Si are exploited. The growth of thick (19 µm), crack-free, and pure GaN layers on Si with the lowest threading dislocation density of 1.1 × 10 7 cm -2 achieved to date in GaN-on-Si is demonstrated. With these advances, the first vertical GaN metal-insulator-semiconductor field-effect transistors on Si substrates with low leakage currents and high on/off ratios paving the way for a cost-effective high power device paradigm on an Si CMOS platform are demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolat, S., E-mail: bolat@ee.bilkent.edu.tr, E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, B.; UNAM, National Nanotechnology Research Center, Bilkent University, Ankara 06800

    We report GaN thin film transistors (TFT) with a thermal budget below 250 °C. GaN thin films are grown at 200 °C by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD). HCPA-ALD-based GaN thin films are found to have a polycrystalline wurtzite structure with an average crystallite size of 9.3 nm. TFTs with bottom gate configuration are fabricated with HCPA-ALD grown GaN channel layers. Fabricated TFTs exhibit n-type field effect characteristics. N-channel GaN TFTs demonstrated on-to-off ratios (I{sub ON}/I{sub OFF}) of 10{sup 3} and sub-threshold swing of 3.3 V/decade. The entire TFT device fabrication process temperature is below 250 °C, which is the lowest process temperaturemore » reported for GaN based transistors, so far.« less

  19. Accumulation of Background Impurities in Hydride Vapor Phase Epitaxy Grown GaN Layers

    NASA Astrophysics Data System (ADS)

    Usikov, Alexander; Soukhoveev, Vitali; Kovalenkov, Oleg; Syrkin, Alexander; Shapovalov, Liza; Volkova, Anna; Ivantsov, Vladimir

    2013-08-01

    We report on accumulation of background Si and O impurities measured by secondary ion mass spectrometry (SIMS) at the sub-interfaces in undoped, Zn- and Mg-doped multi-layer GaN structures grown by hydride vapor phase epitaxy (HVPE) on sapphire substrates with growth interruptions. The impurities accumulation is attributed to reaction of ammonia with the rector quartz ware during the growth interruptions. Because of this effect, HVPE-grown GaN layers had excessive Si and O concentration on the surface that may hamper forming of ohmic contacts especially in the case of p-type layers and may complicate homo-epitaxial growth of a device structure.

  20. Surface potential barrier in m-plane GaN studied by contactless electroreflectance

    NASA Astrophysics Data System (ADS)

    Janicki, Lukasz; Misiewicz, Jan; Cywiński, Grzegorz; Sawicka, Marta; Skierbiszewski, Czeslaw; Kudrawiec, Robert

    2016-02-01

    Contactless electroreflectance (CER) is used to study the surface potential barrier in m-plane GaN UN+ [GaN (d = 20,30,50,70 nm)/GaN:Si] structures grown by using molecular beam epitaxy. Clear bandgap-related transitions followed by Franz-Keldysh oscillations (FKO) have been observed in the CER spectra of all samples at room temperature. The built-in electric fields in the undoped cap layers have been determined from the FKO period. From the built-in electric field and the undoped GaN layer thickness, the Fermi level location at the air-exposed m-plane GaN surface has been estimated as 0.42 ± 0.05 eV below the conduction band.

  1. Design, fabrication, and performance analysis of GaN vertical electron transistors with a buried p/n junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeluri, Ramya, E-mail: ramyay@ece.ucsb.edu; Lu, Jing; Keller, Stacia

    2015-05-04

    The Current Aperture Vertical Electron Transistor (CAVET) combines the high conductivity of the two dimensional electron gas channel at the AlGaN/GaN heterojunction with better field distribution offered by a vertical design. In this work, CAVETs with buried, conductive p-GaN layers as the current blocking layer are reported. The p-GaN layer was regrown by metalorganic chemical vapor deposition and the subsequent channel regrowth was done by ammonia molecular beam epitaxy to maintain the p-GaN conductivity. Transistors with high ON current (10.9 kA/cm{sup 2}) and low ON-resistance (0.4 mΩ cm{sup 2}) are demonstrated. Non-planar selective area regrowth is identified as the limiting factormore » to transistor breakdown, using planar and non-planar n/p/n structures. Planar n/p/n structures recorded an estimated electric field of 3.1 MV/cm, while non-planar structures showed a much lower breakdown voltage. Lowering the p-GaN regrowth temperature improved breakdown in the non-planar n/p/n structure. Combining high breakdown voltage with high current will enable GaN vertical transistors with high power densities.« less

  2. Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer

    DOEpatents

    Chavarkar, Prashant; Smorchkova, Ioulia P.; Keller, Stacia; Mishra, Umesh; Walukiewicz, Wladyslaw; Wu, Yifeng

    2005-02-01

    A Group III nitride based high electron mobility transistors (HEMT) is disclosed that provides improved high frequency performance. One embodiment of the HEMT comprises a GaN buffer layer, with an Al.sub.y Ga.sub.1-y N (y=1 or y 1) layer on the GaN buffer layer. An Al.sub.x Ga.sub.1-x N (0.ltoreq.x.ltoreq.0.5) barrier layer on to the Al.sub.y Ga.sub.1-y N layer, opposite the GaN buffer layer, Al.sub.y Ga.sub.1-y N layer having a higher Al concentration than that of the Al.sub.x Ga.sub.1-x N barrier layer. A preferred Al.sub.y Ga.sub.1-y N layer has y=1 or y.about.1 and a preferred Al.sub.x Ga.sub.1-x N barrier layer has 0.ltoreq.x.ltoreq.0.5. A 2DEG forms at the interface between the GaN buffer layer and the Al.sub.y Ga.sub.1-y N layer. Respective source, drain and gate contacts are formed on the Al.sub.x Ga.sub.1-x N barrier layer. The HEMT can also comprising a substrate adjacent to the buffer layer, opposite the Al.sub.y Ga.sub.1-y N layer and a nucleation layer between the Al.sub.x Ga.sub.1-x N buffer layer and the substrate.

  3. Impact of substrate off-angle on the m-plane GaN Schottky diodes

    NASA Astrophysics Data System (ADS)

    Yamada, Hisashi; Chonan, Hiroshi; Takahashi, Tokio; Shimizu, Mitsuaki

    2018-04-01

    We investigated the effects of the substrate off-angle on the m-plane GaN Schottky diodes. GaN epitaxial layers were grown by metal-organic chemical vapor deposition on m-plane GaN substrates having an off-angle of 0.1, 1.1, 1.7, or 5.1° toward [000\\bar{1}]. The surface of the GaN epitaxial layers on the 0.1°-off substrate consisted of pyramidal hillocks and contained oxygen (>1017 cm-3) and carbon (>1016 cm-3) impurities. The residual carbon and oxygen impurities decreased to <1016 cm-3 when the off-angle of the m-plane GaN substrate was increased. The leakage current of the 0.1°-off m-plane GaN Schottky diodes originated from the +c facet of the pyramidal hillocks. The leakage current was efficiently suppressed through the use of an off-angle that was observed to be greater than 1.1°. The off-angle of the m-plane GaN substrate is critical in obtaining high-performance Schottky diodes.

  4. Self-assembled growth and structural analysis of inclined GaN nanorods on nanoimprinted m-sapphire using catalyst-free metal-organic chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyuseung; Chae, Sooryong; Jang, Jongjin

    2016-04-15

    In this study, self-assembled inclined (1-10-3)-oriented GaN nanorods (NRs) were grown on nanoimprinted (10-10) m-sapphire substrates using catalyst-free metal-organic chemical vapor deposition. According to X-ray phi-scans, the inclined GaN NRs were tilted at an angle of ∼57.5° to the [10-10]{sub sapp} direction. Specifically, the GaN NRs grew in a single inclined direction to the [11-20]{sub sapp}. Uni-directionally inclined NRs were formed through the one-sided (10-11)-faceted growth of the interfacial a-GaN plane layer. It was confirmed that a thin layer of a-GaN was formed on r-facet nanogrooves of the m-sapphire substrate by nitridation. The interfacial a-GaN nucleation affected both the inclinedmore » angle and the growth direction of the inclined GaN NRs. Using X-ray diffraction and selective area electron diffraction, the epitaxial relationship between the inclined (1-10-3) GaN NRs and interfacial a-GaN layer on m-sapphire substrates was systematically investigated. Moreover, the inclined GaN NRs were observed to be mostly free of stacking fault-related defects using high-resolution transmission electron microscopy.« less

  5. Vertically Oriented Growth of GaN Nanorods on Si Using Graphene as an Atomically Thin Buffer Layer.

    PubMed

    Heilmann, Martin; Munshi, A Mazid; Sarau, George; Göbelt, Manuela; Tessarek, Christian; Fauske, Vidar T; van Helvoort, Antonius T J; Yang, Jianfeng; Latzel, Michael; Hoffmann, Björn; Conibeer, Gavin; Weman, Helge; Christiansen, Silke

    2016-06-08

    The monolithic integration of wurtzite GaN on Si via metal-organic vapor phase epitaxy is strongly hampered by lattice and thermal mismatch as well as meltback etching. This study presents single-layer graphene as an atomically thin buffer layer for c-axis-oriented growth of vertically aligned GaN nanorods mediated by nanometer-sized AlGaN nucleation islands. Nanostructures of similar morphology are demonstrated on graphene-covered Si(111) as well as Si(100). High crystal and optical quality of the nanorods are evidenced through scanning transmission electron microscopy, micro-Raman, and cathodoluminescence measurements supported by finite-difference time-domain simulations. Current-voltage characteristics revealed high vertical conduction of the as-grown GaN nanorods through the Si substrates. These findings are substantial to advance the integration of GaN-based devices on any substrates of choice that sustains the GaN growth temperatures, thereby permitting novel designs of GaN-based heterojunction device concepts.

  6. Ultrathin silicon oxynitride layer on GaN for dangling-bond-free GaN/insulator interface.

    PubMed

    Nishio, Kengo; Yayama, Tomoe; Miyazaki, Takehide; Taoka, Noriyuki; Shimizu, Mitsuaki

    2018-01-23

    Despite the scientific and technological importance of removing interface dangling bonds, even an ideal model of a dangling-bond-free interface between GaN and an insulator has not been known. The formation of an atomically thin ordered buffer layer between crystalline GaN and amorphous SiO 2 would be a key to synthesize a dangling-bond-free GaN/SiO 2 interface. Here, we predict that a silicon oxynitride (Si 4 O 5 N 3 ) layer can epitaxially grow on a GaN(0001) surface without creating dangling bonds at the interface. Our ab initio calculations show that the GaN/Si 4 O 5 N 3 structure is more stable than silicon-oxide-terminated GaN(0001) surfaces. The electronic properties of the GaN/Si 4 O 5 N 3 structure can be tuned by modifying the chemical components near the interface. We also propose a possible approach to experimentally synthesize the GaN/Si 4 O 5 N 3 structure.

  7. The fabrication of white light-emitting diodes using the n-ZnO/NiO/p-GaN heterojunction with enhanced luminescence.

    PubMed

    Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Hussain, Mushtaque; Nur, Omer; Willander, Magnus

    2013-07-13

    Cheap and efficient white light-emitting diodes (LEDs) are of great interest due to the energy crisis all over the world. Herein, we have developed heterojunction LEDs based on the well-aligned ZnO nanorods and nanotubes on the p-type GaN with the insertion of the NiO buffer layer that showed enhancement in the light emission. Scanning electron microscopy have well demonstrated the arrays of the ZnO nanorods and the proper etching into the nanotubes. X-ray diffraction study describes the wurtzite crystal structure array of ZnO nanorods with the involvement of GaN at the (002) peak. The cathodoluminescence spectra represent strong and broad visible emission peaks compared to the UV emission and a weak peak at 425 nm which is originated from GaN. Electroluminescence study has shown highly improved luminescence response for the LEDs fabricated with NiO buffer layer compared to that without NiO layer. Introducing a sandwich-thin layer of NiO between the n-type ZnO and the p-type GaN will possibly block the injection of electrons from the ZnO to the GaN. Moreover, the presence of NiO buffer layer might create the confinement effect.

  8. Polarity determination of polar and semipolar (112¯2) InN and GaN layers by valence band photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Skuridina, D.; Dinh, D. V.; Lacroix, B.; Ruterana, P.; Hoffmann, M.; Sitar, Z.; Pristovsek, M.; Kneissl, M.; Vogt, P.

    2013-11-01

    We demonstrate that the polarity of polar (0001), (0001¯) and semipolar (112¯2) InN and GaN thin layers can be determined by valence band X-ray photoemission spectroscopy (XPS). The polarity of the layers has been confirmed by wet etching and convergent beam electron diffraction. Unlike these two techniques, XPS is a non-destructive method and unaffected by surface oxidation or roughness. Different intensities of the valence band states in spectra recorded by using AlKα X-ray radiation are observed for N-polar and group-III-polar layers. The highest intensity of the valence band state at ≈3.5 eV for InN and ≈5.2 eV for GaN correlates with the group-III polarity, while the highest intensity at ≈6.7 eV for InN and ≈9.5 eV for GaN correlates with the N-polarity. The difference between the peaks for the group-III- and N-polar orientations was found to be statistically significant at the 0.05 significance level. The polarity of semipolar (112¯2) InN and GaN layers can be determined by recording valence band photoelectrons emitted along the [000 ± 1] direction.

  9. Diffusion of Mg dopant in metal-organic vapor-phase epitaxy grown GaN and AlxGa1-xN

    NASA Astrophysics Data System (ADS)

    Köhler, K.; Gutt, R.; Wiegert, J.; Kirste, L.

    2013-02-01

    Diffusion of the p-type dopant Mg in GaN and AlxGa1-xN which is accompanied by segregation and affected by transient effects in metal-organic vapor-phase epitaxy reactors is investigated. We have grown 110 nm thick Mg doped GaN and Al0.1Ga0.9N layers on top of undoped GaN and Al0.1Ga0.9N layers, respectively, in a temperature range between 925 °C and 1050 °C where we placed special emphasis on the lower temperature limit without diffusion to allow separation of Mg transients, diffusion, and segregation. Hereby, AlxGa1-xN layers enable monitoring of the resolution limit by secondary ion mass spectrometry analyses for the respective samples; therefore, thin AlxGa1-xN marker layers are incorporated in the thick GaN layers. We found an upper limit of 1.25 × 1019 cm-3 for diffusing Mg atoms in both sample types. Owing to the marked influence of Mg segregation in Al0.1Ga0.9N, diffusion is only seen by using a GaN cap on top of the Al0.1Ga0.9N layer sequence. Diffusion in Al0.1Ga0.9N is shown to be increased by about 25%-30% compared to GaN. Post growth annealing experiments under conditions equivalent to those used for growth of the Mg doped samples showed negligible diffusion. Comparing the results to well established findings on other doped III-V compounds, diffusion is explained by an interstitial-substitutional mechanism with a diffusion coefficient, which is concentration dependent. Analysis of the temperature dependent diffusivity revealed an activation energy of 5.0 eV for GaN:Mg and 5.2 eV for Al0.1Ga0.9N:Mg.

  10. Suppression of the self-heating effect in GaN HEMT by few-layer graphene heat spreading elements

    NASA Astrophysics Data System (ADS)

    Volcheck, V. S.; Stempitsky, V. R.

    2017-11-01

    Self-heating has an adverse effect on characteristics of gallium nitride (GaN) high electron mobility transistors (HEMTs). Various solutions to the problem have been proposed, however, a temperature rise due to dissipated electrical power still hinders the production of high power and high speed GaN devices. In this paper, thermal management of GaN HEMT via few-layer graphene (FLG) heat spreading elements is investigated. It is shown that integration of the FLG elements on top of the device structure considerably reduces the maximum temperature and improves the DC and small signal AC performance.

  11. Doping of free-standing zinc-blende GaN layers grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Novikov, S. V.; Powell, R. E. L.; Staddon, C. R.; Kent, A. J.; Foxon, C. T.

    2014-10-01

    Currently there is high level of interest in developing of vertical device structures based on the group III nitrides. We have studied n- and p-doping of free-standing zinc-blende GaN grown by plasma-assisted molecular beam epitaxy (PA-MBE). Si was used as the n-dopant and Mg as the p-dopant for zinc-blende GaN. Controllable levels of doping with Si and Mg in free-standing zinc-blende GaN have been achieved by PA-MBE. The Si and Mg doping depth uniformity through the zinc-blende GaN layers have been confirmed by secondary ion mass spectrometry (SIMS). Controllable Si and Mg doping makes PA-MBE a promising method for the growth of conducting group III-nitrides bulk crystals.

  12. Comparison of as-grown and annealed GaN/InGaN : Mg samples

    NASA Astrophysics Data System (ADS)

    Deng, Qingwen; Wang, Xiaoliang; Xiao, Hongling; Wang, Cuimei; Yin, Haibo; Chen, Hong; Lin, Defeng; Jiang, Lijuan; Feng, Chun; Li, Jinmin; Wang, Zhanguo; Hou, Xun

    2011-08-01

    Mg-doped InGaN was grown on unintentionally doped GaN layer, and Mg and defect behaviours in both GaN and InGaN : Mg were investigated through photoluminescence measurement at 7 K. Mg acceptor was found in unintentionally doped GaN after thermal annealing in N2 ambient, and Mg activation energy was estimated to be 200 meV and 110 meV for GaN and InGaN, respectively. Particularly, the ultraviolet band (3.0-3.2 eV) in the GaN layer was infrequently observed in the unannealed sample but quenched in the annealed sample; this band may be associated with oxygen-substituted nitrogen defects. Moreover, the measurement errors of photoluminescence and x-ray diffraction originated from strain were taken into account.

  13. Nitride Semiconductors for Ultraviolet Detection

    DTIC Science & Technology

    1992-12-01

    intrinsic n- and p-type doped GaN, (4) deposition of monocrystalline GaN via atomic layer epitaxy, (5) the initial conduct of studies regarding the ion...crystalline quality of the films; it indicated that all the films for x ranging from I to 0 to be monocrystalline . The Al/Ga composition ratios in the...shown in Figure 1. An analysis of these RHEED patterns indicated that both the AIN buffer layer and the GaN film are monocrystalline films. The RHEED

  14. GaN membrane MSM ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Muller, A.; Konstantinidis, G.; Kostopoulos, A.; Dragoman, M.; Neculoiu, D.; Androulidaki, M.; Kayambaki, M.; Vasilache, D.; Buiculescu, C.; Petrini, I.

    2006-12-01

    GaN exhibits unique physical properties, which make this material very attractive for wide range of applications and among them ultraviolet detection. For the first time a MSM type UV photodetector structure was manufactured on a 2.2 μm. thick GaN membrane obtained using micromachining techniques. The low unintentionally doped GaN layer structure was grown by MOCVD on high resistivity (ρ>10kΩcm) <111> oriented silicon wafers, 500μm thick. The epitaxially grown layers include a thin AlN layer in order to reduce the stress in the GaN layer and avoid cracking. Conventional contact lithography, e-gun Ni/Au (10nm /200nm) evaporation and lift-off techniques were used to define the interdigitated Schottky metalization on the top of the wafer. Ten digits with a width of 1μm and a length of 100μm were defined for each electrode. The distance between the digits was also 1μm. After the backside lapping of the wafer to a thickness of approximately 150μm, a 400nm thick Al layer was patterned and deposited on the backside, to be used as mask for the selective reactive ion etching of silicon. The backside mask, for the membrane formation, was patterned using double side alignment techniques and silicon was etched down to the 2.2μm thin GaN layer using SF 6 plasma. A very low dark current (30ρA at 3V) was obtained. Optical responsivity measurements were performed at 1.5V. A maximum responsivity of 18mA/W was obtained at a wavelength of 370nm. This value is very good and can be further improved using transparent contacts for the interdigitated structure.

  15. Enhancement of indium incorporation to InGaN MQWs on AlN/GaN periodic multilayers

    NASA Astrophysics Data System (ADS)

    Monavarian, Morteza; Hafiz, Shopan; Das, Saikat; Izyumskaya, Natalia; Özgür, Ümit; Morkoç, Hadis; Avrutin, Vitaliy

    2016-02-01

    The effect of compressive strain in buffer layer on strain relaxation and indium incorporation in InGaN multi-quantum wells (MQWs) is studied for two sets of samples grown side by side on both relaxed GaN layers and strained 10-pairs of AlN/GaN periodic multilayers. The 14-nm AlN layers were utilized in both multilayers, while GaN thickness was 4.5 and 2.5 nm in the first and the second set, respectively. The obtained results for the InGaN active layers on relaxed GaN and AlN/GaN periodic multilayers indicate enhanced indium incorporation for more relaxed InGaN active layers providing a variety of emission colors from purple to green.

  16. Effect of screw threading dislocations and inverse domain boundaries in GaN on the shape of reciprocal-space maps.

    PubMed

    Barchuk, Mykhailo; Motylenko, Mykhaylo; Lukin, Gleb; Pätzold, Olf; Rafaja, David

    2017-04-01

    The microstructure of polar GaN layers, grown by upgraded high-temperature vapour phase epitaxy on [001]-oriented sapphire substrates, was studied by means of high-resolution X-ray diffraction and transmission electron microscopy. Systematic differences between reciprocal-space maps measured by X-ray diffraction and those which were simulated for different densities of threading dislocations revealed that threading dislocations are not the only microstructure defect in these GaN layers. Conventional dark-field transmission electron microscopy and convergent-beam electron diffraction detected vertical inversion domains as an additional microstructure feature. On a series of polar GaN layers with different proportions of threading dislocations and inversion domain boundaries, this contribution illustrates the capability and limitations of coplanar reciprocal-space mapping by X-ray diffraction to distinguish between these microstructure features.

  17. Design of high breakdown voltage GaN vertical HFETs with p-GaN buried buffer layers for power switching applications

    NASA Astrophysics Data System (ADS)

    Du, Jiangfeng; Liu, Dong; Zhao, Ziqi; Bai, Zhiyuan; Li, Liang; Mo, Jianghui; Yu, Qi

    2015-07-01

    To achieve a high breakdown voltage, a GaN vertical heterostructure field effect transistor with p-GaN buried layers (PBL-VHFET) is proposed in this paper. The breakdown voltage of this GaN-based PBL-VHFET could be improved significantly by the optimizing thickness of p-GaN buried layers and doping concentration in PBL. When the GaN buffer layer thickness is 15 μm, the thickness, length and p-doping concentration of PBL are 0.3 μm, 2.7 μm, and 3 × 1017 cm-3, respectively. Simulation results show that the breakdown voltage and on-resistance of the device with two p-GaN buried layers are 3022 V and 3.13 mΩ cm2, respectively. The average breakdown electric field would reach as high as 201.5 V/μm. Compared with the typical GaN vertical heterostructure FETs without PBL, both of breakdown voltage and average breakdown electric field of device are increased more than 50%.

  18. Effect of substrate nitridation temperature on the persistent photoconductivity of unintentionally-doped GaN layer grown by PAMBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, Nisha, E-mail: prakasnisha@gmail.com; Barvat, Arun; Anand, Kritika

    2016-05-23

    The surface roughness and defect density of GaN epitaxial layers grown on c-plane sapphire substrate are investigated and found to be dependent on nitridation temperature. GaN epitaxial layers grown after nitridation of sapphire at 200°C have a higher defect density and higher surface roughness compared to the GaN layers grown at 646°C nitridation as confirmed by atomic force microscopy (AFM). The persistent photoconductivity (PPC) was observed in both samples and it was found to be decreasing with decreasing temperature in the range 150-300°C due to long carrier lifetime and high electron mobility at low temperature. The photoresponse of the GaNmore » films grown in this study exhibit improved PPC due to their better surface morphology at 646°C nitrided sample. The point defects or extended microstructure defects limits the photocarrier lifetime and electron mobility at 200°C nitrided sample.« less

  19. Heat resistive dielectric multi-layer micro-mirror array in epitaxial lateral overgrowth gallium nitride.

    PubMed

    Huang, Chen-Yang; Ku, Hao-Min; Liao, Wei-Tsai; Chao, Chu-Li; Tsay, Jenq-Dar; Chao, Shiuh

    2009-03-30

    Ta2O5 / SiO2 dielectric multi-layer micro-mirror array (MMA) with 3mm mirror size and 6mm array period was fabricated on c-plane sapphire substrate. The MMA was subjected to 1200 degrees C high temperature annealing and remained intact with high reflectance in contrast to the continuous multi-layer for which the layers have undergone severe damage by 1200 degrees C annealing. Epitaxial lateral overgrowth (ELO) of gallium nitride (GaN) was applied to the MMA that was deposited on both sapphire and sapphire with 2:56 mm GaN template. The MMA was fully embedded in the ELO GaN and remained intact. The result implies that our MMA is compatible to the high temperature growth environment of GaN and the MMA could be incorporated into the structure of the micro-LED array as a one to one micro backlight reflector, or as the patterned structure on the large area LED for controlling the output light.

  20. Self-organization of dislocation-free, high-density, vertically aligned GaN nanocolumns involving InGaN quantum wells on graphene/SiO2 covered with a thin AlN buffer layer.

    PubMed

    Hayashi, Hiroaki; Konno, Yuta; Kishino, Katsumi

    2016-02-05

    We demonstrated the self-organization of high-density GaN nanocolumns on multilayer graphene (MLG)/SiO2 covered with a thin AlN buffer layer by RF-plasma-assisted molecular beam epitaxy. MLG/SiO2 substrates were prepared by the transfer of CVD graphene onto thermally oxidized SiO2/Si [100] substrates. Employing the MLG with an AlN buffer layer enabled the self-organization of high-density and vertically aligned nanocolumns. Transmission electron microscopy observation revealed that no threading dislocations, stacking faults, or twinning defects were included in the self-organized nanocolumns. The photoluminescence (PL) peak intensities of the self-organized GaN nanocolumns were 2.0-2.6 times higher than those of a GaN substrate grown by hydride vapor phase epitaxy. Moreover, no yellow luminescence or ZB-phase GaN emission was observed from the nanocolumns. An InGaN/GaN MQW and p-type GaN were integrated into GaN nanocolumns grown on MLG, displaying a single-peak PL emission at a wavelength of 533 nm. Thus, high-density nitride p-i-n nanocolumns were fabricated on SiO2/Si using the transferred MLG interlayer, indicating the possibility of developing visible nanocolumn LEDs on graphene/SiO2.

  1. Investigation on Surface Polarization of Al2O3-capped GaN/AlGaN/GaN Heterostructure by Angle-Resolved X-ray Photoelectron Spectroscopy.

    PubMed

    Duan, Tian Li; Pan, Ji Sheng; Wang, Ning; Cheng, Kai; Yu, Hong Yu

    2017-08-17

    The surface polarization of Ga-face gallium nitride (GaN) (2 nm)/AlGaN (22 nm)/GaN channel (150 nm)/buffer/Si with Al 2 O 3 capping layer is investigated by angle-resolved X-ray photoelectron spectroscopy (ARXPS). It is found that the energy band varies from upward bending to downward bending in the interface region, which is believed to be corresponding to the polarization variation. An interfacial layer is formed between top GaN and Al 2 O 3 due to the occurrence of Ga-N bond break and Ga-O bond forming during Al 2 O 3 deposition via the atomic layer deposition (ALD). This interfacial layer is believed to eliminate the GaN polarization, thus reducing the polarization-induced negative charges. Furthermore, this interfacial layer plays a key role for the introduction of the positive charges which lead the energy band downward. Finally, a N 2 annealing at 400 °C is observed to enhance the interfacial layer growth thus increasing the density of positive charges.

  2. Hybrid device based on GaN nanoneedles and MEH-PPV/PEDOT:PSS polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Min Jeong; Gwon, Dong-Oh; Lee, Chan-Mi

    2015-08-15

    Highlights: • A hybrid device was demonstrated by using MEH-PPV, PEDOT:PSS, and GaN nanoneedles. • I–V curve of the hybrid device showed its rectification behaviour, similar to a diode. • EL peak originated by the different potential barriers at MEH-PPV and GaN interface. - Abstract: A hybrid device that combines the properties of organic and inorganic semiconductors was fabricated and studied. It incorporated poly[2-methoxy-5-(2-ethylhexyloxy)- 1,4-phenylenevinylene] (MEH-PPV) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as organic polymers and GaN nanoneedles as an inorganic semiconductor. Layers of the two polymers were spin coated on to the GaN nanoneedles. The one peak in the electroluminescence spectrum originatedmore » from the MEH-PPV layer owing to the different potential barriers of electrons and holes at its interface with the GaN nanoneedles. However, the photoluminescence spectrum showed peaks due to both GaN nanoneedles and MEH-PPV. Such hybrid structures, suitably developed, might be able to improve the efficiency of optoelectronic devices.« less

  3. Hafnium nitride buffer layers for growth of GaN on silicon

    DOEpatents

    Armitage, Robert D.; Weber, Eicke R.

    2005-08-16

    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 {character pullout}m. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.

  4. Metal-organic chemical vapor deposition of N-polar InN quantum dots and thin films on vicinal GaN

    NASA Astrophysics Data System (ADS)

    Lund, Cory; Catalano, Massimo; Wang, Luhua; Wurm, Christian; Mates, Thomas; Kim, Moon; Nakamura, Shuji; DenBaars, Steven P.; Mishra, Umesh K.; Keller, Stacia

    2018-02-01

    N-polar InN layers were deposited using MOCVD on GaN-on-sapphire templates which were miscut 4° towards the GaN m-direction. For thin layers, quantum dot-like features were spontaneously formed to relieve the strain between the InN and GaN layers. As the thickness was increased, the dots elongated along the step direction before growing outward perpendicular to the step direction and coalescing to form a complete InN layer. XRD reciprocal space maps indicated that the InN films relaxed upon quantum dot formation after nominally 1 nm thick growth, resulting in 5-7 nm tall dots with diameters around 20-50 nm. For thicker layers above 10 nm, high electron mobilities of up to 706 cm2/V s were measured using Hall effect measurements indicating high quality layers.

  5. Plasma-assisted molecular beam epitaxy of ZnO on in-situ grown GaN/4H-SiC buffer layers

    NASA Astrophysics Data System (ADS)

    Adolph, David; Tingberg, Tobias; Andersson, Thorvald; Ive, Tommy

    2015-04-01

    Plasma-assisted molecular beam epitaxy (MBE) was used to grow ZnO (0001) layers on GaN(0001)/4H-SiC buffer layers deposited in the same growth chamber equipped with both N- and O-plasma sources. The GaN buffer layers were grown immediately before initiating the growth of ZnO. Using a substrate temperature of 440°C-445°C and an O2 flow rate of 2.0-2.5 sccm, we obtained ZnO layers with smooth surfaces having a root-mean-square roughness of 0.3 nm and a peak-to-valley distance of 3 nm shown by AFM. The FWHM for X-ray rocking curves recorded across the ZnO(0002) and ZnO(10bar 15) reflections were 200 and 950 arcsec, respectively. These values showed that the mosaicity (tilt and twist) of the ZnO film was comparable to corresponding values of the underlying GaN buffer. It was found that a substrate temperature > 450°C and a high Zn-flux always resulted in a rough ZnO surface morphology. Reciprocal space maps showed that the in-plane relaxation of the GaN and ZnO layers was 82.3% and 73.0%, respectively and the relaxation occurred abruptly during the growth. Room-temperature Hall-effect measurements showed that the layers were intrinsically n-type with an electron concentration of 1019 cm-3 and a Hall mobility of 50 cm2·V-1·s-1.

  6. Cantilever epitaxial process

    DOEpatents

    Ashby, Carol I.; Follstaedt, David M.; Mitchell, Christine C.; Han, Jung

    2003-07-29

    A process of growing a material on a substrate, particularly growing a Group II-VI or Group III-V material, by a vapor-phase growth technique where the growth process eliminates the need for utilization of a mask or removal of the substrate from the reactor at any time during the processing. A nucleation layer is first grown upon which a middle layer is grown to provide surfaces for subsequent lateral cantilever growth. The lateral growth rate is controlled by altering the reactor temperature, pressure, reactant concentrations or reactant flow rates. Semiconductor materials, such as GaN, can be produced with dislocation densities less than 10.sup.7 /cm.sup.2.

  7. Atomic-scale and pit-free flattening of GaN by combination of plasma pretreatment and time-controlled chemical mechanical polishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Hui; Endo, Katsuyoshi; Yamamura, Kazuya, E-mail: yamamura@upst.eng.osaka-u.ac.jp

    2015-08-03

    Chemical mechanical polishing (CMP) combined with atmospheric-pressure plasma pretreatment was applied to a GaN (0001) substrate. The irradiation of a CF{sub 4}-containing plasma was proven to be very useful for modifying the surface of GaN. When CMP was conducted on a plasma-irradiated surface, a modified layer of GaF{sub 3} acted as a protective layer on GaN by preventing the formation of etch pits. Within a short duration (8 min) of CMP using a commercially available CeO{sub 2} slurry, an atomically flat surface with a root mean square (rms) roughness of 0.11 nm was obtained. Moreover, etch pits, which are inevitably introduced inmore » conventional CMP, could not be observed at the dislocation sites on the polished GaN surface. It was revealed that CMP combined with the plasma pretreatment was very effective for obtaining a pit-free and atomically flat GaN surface.« less

  8. Microwave annealing of Mg-implanted and in situ Be-doped GaN

    NASA Astrophysics Data System (ADS)

    Aluri, Geetha S.; Gowda, Madhu; Mahadik, Nadeemullah A.; Sundaresan, Siddarth G.; Rao, Mulpuri V.; Schreifels, John A.; Freitas, J. A.; Qadri, S. B.; Tian, Y.-L.

    2010-10-01

    An ultrafast microwave annealing method, different from conventional thermal annealing, is used to activate Mg-implants in GaN layer. The x-ray diffraction measurements indicated complete disappearance of the defect sublattice peak, introduced by the implantation process for single-energy Mg-implantation, when the annealing was performed at ≥1400 °C for 15 s. An increase in the intensity of Mg-acceptor related luminescence peak (at 3.26 eV) in the photoluminescence spectra confirms the Mg-acceptor activation in single-energy Mg-implanted GaN. In case of multiple-energy implantation, the implant generated defects persisted even after 1500 °C/15 s annealing, resulting in no net Mg-acceptor activation of the Mg-implant. The Mg-implant is relatively thermally stable and the sample surface roughness is 6 nm after 1500 °C/15 s annealing, using a 600 nm thick AlN cap. In situ Be-doped GaN films, after 1300 °C/5 s annealing have shown Be out-diffusion into the AlN layer and also in-diffusion toward the GaN/SiC interface. The in-diffusion and out-diffusion of the Be increased with increasing annealing temperature. In fact, after 1500 °C/5 s annealing, only a small fraction of in situ doped Be remained in the GaN layer, revealing the inadequateness of using Be-implantation for forming p-type doped layers in the GaN.

  9. Characterization of an Mg-implanted GaN p-i-n Diode

    DTIC Science & Technology

    2016-03-31

    unintentionally doped GaN layer was grown by metal organic chemical vapor deposition (MOCVD) on a n+ Ga -face c-oriented GaN substrate. The as-grown MOCVD film...their proper lattice sites. In the case of Mg implanted GaN , the Mg must replace Ga to result in p-type material. In many other semiconductor...Characterization of an Mg-implanted GaN p-i-n Diode Travis J. Anderson, Jordan D. Greenlee, Boris N. Feigelson, Karl D. Hobart, and Francis J

  10. Metalorganic chemical vapor deposition growth of high-mobility AlGaN/AlN/GaN heterostructures on GaN templates and native GaN substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jr-Tai, E-mail: jrche@ifm.liu.se; Hsu, Chih-Wei; Forsberg, Urban

    2015-02-28

    Severe surface decomposition of semi-insulating (SI) GaN templates occurred in high-temperature H{sub 2} atmosphere prior to epitaxial growth in a metalorganic chemical vapor deposition system. A two-step heating process with a surface stabilization technique was developed to preserve the GaN template surface. Utilizing the optimized heating process, a high two-dimensional electron gas mobility ∼2000 cm{sup 2}/V·s was obtained in a thin AlGaN/AlN/GaN heterostructure with an only 100-nm-thick GaN spacer layer homoepitaxially grown on the GaN template. This technique was also demonstrated viable for native GaN substrates to stabilize the surface facilitating two-dimensional growth of GaN layers. Very high residual silicon andmore » oxygen concentrations were found up to ∼1 × 10{sup 20 }cm{sup −3} at the interface between the GaN epilayer and the native GaN substrate. Capacitance-voltage measurements confirmed that the residual carbon doping controlled by growth conditions of the GaN epilayer can be used to successfully compensate the donor-like impurities. State-of-the-art structural properties of a high-mobility AlGaN/AlN/GaN heterostructure was then realized on a 1 × 1 cm{sup 2} SI native GaN substrate; the full width at half maximum of the X-ray rocking curves of the GaN (002) and (102) peaks are only 21 and 14 arc sec, respectively. The surface morphology of the heterostructure shows uniform parallel bilayer steps, and no morphological defects were noticeable over the entire epi-wafer.« less

  11. High-Quality GaN Epilayers Achieved by Facet-Controlled Epitaxial Lateral Overgrowth on Sputtered AlN/PSS Templates.

    PubMed

    He, Chenguang; Zhao, Wei; Zhang, Kang; He, Longfei; Wu, Hualong; Liu, Ningyang; Zhang, Shan; Liu, Xiaoyan; Chen, Zhitao

    2017-12-13

    It is widely believed that the lack of high-quality GaN wafers severely hinders the progress in GaN-based devices, especially for defect-sensitive devices. Here, low-cost AlN buffer layers were sputtered on cone-shaped patterned sapphire substrates (PSSs) to obtain high-quality GaN epilayers. Without any mask or regrowth, facet-controlled epitaxial lateral overgrowth was realized by metal-organic chemical vapor deposition. The uniform coating of the sputtered AlN buffer layer and the optimized multiple modulation guaranteed high growth selectivity and uniformity of the GaN epilayer. As a result, an extremely smooth surface was achieved with an average roughness of 0.17 nm over 3 × 3 μm 2 . It was found that the sputtered AlN buffer layer could significantly suppress dislocations on the cones. Moreover, the optimized three-dimensional growth process could effectively promote dislocation bending. Therefore, the threading dislocation density (TDD) of the GaN epilayer was reduced to 4.6 × 10 7 cm -2 , which is about an order of magnitude lower than the case of two-step GaN on the PSS. In addition, contamination and crack in the light-emitting diode fabricated on the obtained GaN were also effectively suppressed by using the sputtered AlN buffer layer. All of these advantages led to a high output power of 116 mW at 500 mA with an emission wavelength of 375 nm. This simple, yet effective growth technique is believed to have great application prospects in high-performance TDD-sensitive optoelectronic and electronic devices.

  12. Mg doping of GaN by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lieten, R. R.; Motsnyi, V.; Zhang, L.; Cheng, K.; Leys, M.; Degroote, S.; Buchowicz, G.; Dubon, O.; Borghs, G.

    2011-04-01

    We present a systematic study on the influence of growth conditions on the incorporation and activation of Mg in GaN layers grown by plasma-assisted molecular beam epitaxy. We show that high quality p-type GaN layers can be obtained on GaN-on-silicon templates. The Mg incorporation and the electrical properties have been investigated as a function of growth temperature, Ga : N flux ratio and Mg : Ga flux ratio. It was found that the incorporation of Mg and the electrical properties are highly sensitive to the Ga : N flux ratio. The highest hole mobility and lowest resistivity were achieved for slightly Ga-rich conditions. In addition to an optimal Ga : N ratio, an optimum Mg : Ga flux ratio was also observed at around 1%. We observed a clear Mg flux window for p-type doping of GaN : 0.31% < Mg : Ga < 5.0%. A lowest resistivity of 0.98 Ω cm was obtained for optimized growth conditions. The p-type GaN layer then showed a hole concentration of 4.3 × 1017 cm-3 and a mobility of 15 cm2 V-1 s-1. Temperature-dependent Hall effect measurements indicate an acceptor depth in these samples of 100 meV for a hole concentration of 5.5 × 1017 cm-3. The corresponding Mg concentration is 5 × 1019 cm-3, indicating approximately 1% activation at room temperature. In addition to continuous growth of Mg-doped GaN layers we also investigated different modulated growth procedures. We show that a modulated growth procedure has only limited influence on Mg doping at a growth temperature of 800 °C or higher. This result is thus in contrast to previously reported GaN : Mg doping at much lower growth temperatures of 500 °C.

  13. Annealing of gallium nitride under high-N 2 pressure

    NASA Astrophysics Data System (ADS)

    Porowski, S.; Jun, J.; Krukowski, S.; Grzegory, I.; Leszczynski, M.; Suski, T.; Teisseyre, H.; Foxon, C. T.; Korakakis, D.

    1999-04-01

    GaN is the key material for blue and ultraviolet optoelectronics. It is a strongly bonded wurztite structure semiconductor with the direct energy gap 3.5 eV. Due to strong bonding, the diffusion processes require high temperatures, above 1300 K. However at this temperature range at ambient pressure, GaN becomes unstable and dissociates into Ga and N 2. Therefore high pressure of N 2 is required to study the diffusion and other annealing related processes. We studied annealing of bulk GaN nitride single crystals grown under high pressure and also annealing of homo- and heteroepitaxial GaN layers grown by MOCVD technique. Annealing at temperatures above 1300 K influences strongly the structural and optical properties of GaN crystals and layers. At this temperature diffusion of the Mg and Zn acceptors have been observed. In spite of very interesting experimental observations the understanding of microscopic mechanisms of these processes is limited.

  14. Phonon conduction in GaN-diamond composite substrates

    NASA Astrophysics Data System (ADS)

    Cho, Jungwan; Francis, Daniel; Altman, David H.; Asheghi, Mehdi; Goodson, Kenneth E.

    2017-02-01

    The integration of strongly contrasting materials can enable performance benefits for semiconductor devices. One example is composite substrates of gallium nitride (GaN) and diamond, which promise dramatically improved conduction cooling of high-power GaN transistors. Here, we examine phonon conduction in GaN-diamond composite substrates fabricated using a GaN epilayer transfer process through transmission electron microscopy, measurements using time-domain thermoreflectance, and semiclassical transport theory for phonons interacting with interfaces and defects. Thermoreflectance amplitude and ratio signals are analyzed at multiple modulation frequencies to simultaneously extract the thermal conductivity of GaN layers and the thermal boundary resistance across GaN-diamond interfaces at room temperature. Uncertainties in the measurement of these two properties are estimated considering those of parameters, including the thickness of a topmost metal transducer layer, given as an input to a multilayer thermal model, as well as those associated with simultaneously fitting the two properties. The volume resistance of an intermediate, disordered SiN layer between the GaN and diamond, as well as a presence of near-interfacial defects in the GaN and diamond, dominates the measured GaN-diamond thermal boundary resistances as low as 17 m2 K GW-1. The GaN thermal conductivity data are consistent with the semiclassical phonon thermal conductivity integral model that accounts for the size effect as well as phonon scattering on point defects at concentrations near 3 × 1018 cm-3.

  15. Interface science of virtual GaN substrates on Si(111) via Sc2O3/Y2O3 buffers: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Tarnawska, L.; Dabrowski, J.; Grzela, T.; Lehmann, M.; Niermann, T.; Paszkiewicz, R.; Storck, P.; Schroeder, T.

    2013-06-01

    The final film quality of GaN on foreign substrates is known to crucially depend on the initial GaN interface and nucleation characteristics. To shed light on these characteristics of recently pioneered virtual, hexagonal GaN(0001) substrates on Si(111) via step graded Sc2O3(111)/Y2O3(111) buffers, a complex GaN(0001)/Sc2O3(111) interface structure model and the initial nucleation scenario is derived from a combined experimental (reflection high energy electron diffraction and X-ray photoelectron spectroscopy) and theoretical ab initio study. It is shown that the GaN/Sc2O3 interface chemistry is determined by a N-Ga-O-Sc atomic arrangement leading to N-polar GaN films. However, the atomic GaN(0001)/Sc2O3(111) interface configuration is complex and local perturbations might be at the origin of Ga-polar inversion domains in the mainly N-polar GaN films. The initial growth of GaN on Sc2O3 is characterized by an ultrathin N-Ga-O-Sc wetting layer which carries tensile strain and relaxes with increasing thickness. Further GaN deposition results in the formation of 3D islands which fully relax before island coalescence occurs. The implications of the GaN/Sc2O3 interface configuration, the 3D nucleation growth mode, and the coalescence process of misaligned islands are discussed with respect to the defect characteristics (inversion domains, cubic inclusions, threading dislocations) of the final GaN layer.

  16. Polar semiconductor heterojunction structure energy band diagram considerations

    NASA Astrophysics Data System (ADS)

    Lin, Shuxun; Wen, Cheng P.; Wang, Maojun; Hao, Yilong

    2016-03-01

    The unique nature of built-in electric field induced positive/negative charge pairs of polar semiconductor heterojunction structure has led to a more realistic device model for hexagonal III-nitride HEMT. In this modeling approach, the distribution of charge carriers is dictated by the electrostatic potential profile instead of Femi statistics. The proposed device model is found suitable to explain peculiar properties of GaN HEMT structures, including: (1) Discrepancy in measured conventional linear transmission line model (LTLM) sheet resistance and contactless sheet resistance of GaN HEMT with thin barrier layer. (2) Below bandgap radiation from forward biased Nickel Schottky barrier diode on GaN HEMT structure. (3) GaN HEMT barrier layer doping has negligible effect on transistor channel sheet charge density.

  17. Evolution and characteristics of GaN nanowires produced via maskless reactive ion etching.

    PubMed

    Haab, Anna; Mikulics, Martin; Sutter, Eli; Jin, Jiehong; Stoica, Toma; Kardynal, Beata; Rieger, Torsten; Grützmacher, Detlev; Hardtdegen, Hilde

    2014-06-27

    The formation of nanowires (NWs) by reactive ion etching (RIE) of maskless GaN layers was investigated. The morphological, structural and optical characteristics of the NWs were studied and compared to those of the layer they evolve from. It is shown that the NWs are the result of a defect selective etching process. The evolution of density and length with etching time is discussed. Densely packed NWs with a length of more than 1 μm and a diameter of ∼60 nm were obtained by RIE of a ∼2.5 μm thick GaN layer. The NWs are predominantly free of threading dislocations and show an improvement of optical properties compared to their layer counterpart. The production of NWs via a top down process on non-masked group III-nitride layers is assessed to be very promising for photovoltaic applications.

  18. Insight into the Near-Conduction Band States at the Crystallized Interface between GaN and SiN x Grown by Low-Pressure Chemical Vapor Deposition.

    PubMed

    Liu, Xinyu; Wang, Xinhua; Zhang, Yange; Wei, Ke; Zheng, Yingkui; Kang, Xuanwu; Jiang, Haojie; Li, Junfeng; Wang, Wenwu; Wu, Xuebang; Wang, Xianping; Huang, Sen

    2018-06-12

    Constant-capacitance deep-level transient Fourier spectroscopy is utilized to characterize the interface between a GaN epitaxial layer and a SiN x passivation layer grown by low-pressure chemical vapor deposition (LPCVD). A near-conduction band (NCB) state E LP ( E C - E T = 60 meV) featuring a very small capture cross section of 1.5 × 10 -20 cm -2 was detected at 70 K at the LPCVD-SiN x /GaN interface. A partially crystallized Si 2 N 2 O thin layer was detected at the interface by high-resolution transmission electron microscopy. Based on first-principles calculations of crystallized Si 2 N 2 O/GaN slabs, it was confirmed that the NCB state E LP mainly originates from the strong interactions between the dangling bonds of gallium and its vicinal atoms near the interface. The partially crystallized Si 2 N 2 O interfacial layer might also give rise to the very small capture cross section of the E LP owing to the smaller lattice mismatch between the Si 2 N 2 O and GaN epitaxial layer and a larger mean free path of the electron in the crystallized portion compared with an amorphous interfacial layer.

  19. Impact of Mg-ion implantation with various fluence ranges on optical properties of n-type GaN

    NASA Astrophysics Data System (ADS)

    Tsuge, Hirofumi; Ikeda, Kiyoji; Kato, Shigeki; Nishimura, Tomoaki; Nakamura, Tohru; Kuriyama, Kazuo; Mishima, Tomoyoshi

    2017-10-01

    Optical characteristics of Mg-ion implanted GaN layers with various fluence ranges were evaluated. Mg ion implantation was performed twice at energies of 30 and 60 keV on n-GaN layers. The first implantation at 30 keV was performed with three different fluence ranges of 1.0 × 1014, 1.0 × 1015 and 5.0 × 1015 cm-2. The second implantation at an energy of 60 keV was performed with a fluence of 6.5 × 1013 cm-2. After implantation, samples were annealed at 1250 °C for 1 min under N2 atmosphere. Photoluminescence (PL) spectrum of the GaN layer with the Mg ion implantation at the fluence range of 1.0 × 1014 cm-2 at 30 keV was similar to the one of Mg-doped p-GaN layers grown by MOVPE (Metal-Organic Vapor Phase Epitaxy) on free-standing GaN substrates and those at the fluence ranges over 1.0 × 1015 cm-2 were largely degraded.

  20. Study of gain and photoresponse characteristics for back-illuminated separate absorption and multiplication GaN avalanche photodiodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaodong; Pan, Ming; Hou, Liwei

    2014-01-07

    The gain and photoresponse characteristics have been numerically studied for back-illuminated separate absorption and multiplication (SAM) GaN avalanche photodiodes (APDs). The parameters of fundamental models are calibrated by simultaneously comparing the simulated dark and light current characteristics with the experimental results. Effects of environmental temperatures and device dimensions on gain characteristics have been investigated, and a method to achieve the optimum thickness of charge layer is obtained. The dependence of gain characteristics and breakdown voltage on the doping concentration of the charge layer is also studied in detail to get the optimal charge layer. The bias-dependent spectral responsivity and quantummore » efficiency are then presented to study the photoresponse mechanisms inside SAM GaN APDs. It is found the responsivity peak red-shifts at first due to the Franz-Keldysh effect and then blue-shifts due to the reach-through effect of the absorption layer. Finally, a new SAM GaN/AlGaN heterojunction APD structure is proposed for optimizing SAM GaN APDs.« less

  1. Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate

    PubMed Central

    2013-01-01

    Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques. PMID:23448090

  2. Structural and electrical properties of Pb(Zr ,Ti)O3 grown on (0001) GaN using a double PbTiO3/PbO bridge layer

    NASA Astrophysics Data System (ADS)

    Xiao, Bo; Gu, Xing; Izyumskaya, Natalia; Avrutin, Vitaliy; Xie, Jinqiao; Liu, Huiyong; Morkoç, Hadis

    2007-10-01

    Pb(Zr0.52Ti0.48)O3 films were deposited by rf magnetron sputtering on silicon-doped GaN(0001)/c-sapphire with a PbTiO3/PbO oxide bridge layer grown by molecular beam epitaxy. X-ray diffraction data showed the highly (111)-oriented perovskite phase in lead zirconate titanate (PZT) films with PbTiO3/PbO bridge layers, compared to the pyrochlore phase grown directly on GaN. The in-plane epitaxial relationships were found from x-ray pole figures to be PZT[112¯]‖GaN[11¯00] and PZT[11¯0]‖GaN[112¯0]. The polarization-electric field measurements revealed the ferroelectric behavior with remanent polarization of 30-40μC /cm2 and asymmetric hysteresis loops due to the depletion layer formed in GaN under reverse bias which resulted in a high negative coercive electric field (950kV/cm).

  3. Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate.

    PubMed

    Wei, Xianqi; Zhao, Ranran; Shao, Minghui; Xu, Xijin; Huang, Jinzhao

    2013-02-28

    Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques.

  4. Effects of strain and thickness on the electronic and optical behaviors of two-dimensional hexagonal gallium nitride

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh

    2017-06-01

    The full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory has been used to study effects of strain and thickness on the electronic and optical properties of two-dimensional GaN. The band gap of monolayer and bilayer GaN under compressive in-plane strain change from indirect to direct with bond length shortening. Also, the semiconductor to semimetal transition occurs for monolayer and bilayer GaN under in-plane tensile strain with bond length elongation. It is found that the tensile and compressive strains cause the red and blue shifts in the optical spectra, respectively, for both monolayer and bilayer GaN. Applying the perpendicular strain on the bilayer GaN by decreasing the inter layer distance leads to the shift of valence band maximum towards the Γ point in the band structure and shift of peak positions and variation of peak intensities in ε2(ω) spectrum. The results show that the n-layer GaN has an indirect band gap for n < 16. The results suggest that monolayer and multilayer GaN are good candidates for application in optoelectronics and flexible electronics.

  5. Thermal functionalization of GaN surfaces with 1-alkenes.

    PubMed

    Schwarz, Stefan U; Cimalla, Volker; Eichapfel, Georg; Himmerlich, Marcel; Krischok, Stefan; Ambacher, Oliver

    2013-05-28

    A thermally induced functionalization process for gallium nitride surfaces with 1-alkenes is introduced. The resulting functionalization layers are characterized with atomic force microscopy and X-ray photoelectron spectroscopy and compared to reference samples without and with a photochemically generated functionalization layer. The resulting layers show very promising characteristics as functionalization for GaN based biosensors. On the basis of the experimental results, important characteristics of the functionalization layers are estimated and a possible chemical reaction scheme is proposed.

  6. Optical properties of wide gap semiconductors studied by means of cathodoluminescence

    NASA Astrophysics Data System (ADS)

    Fischer Ponce, Alec Mirco

    III-nitride semiconductors have been found to be a suitable material for the fabrication of light-emitting diodes (LEDs) emitting in the visible and ultraviolet range through the use of indium gallium nitride (InGaN) active layers. Yet, achieving high-efficient and long lasting LEDs in the long wavelength range, especially in the green spectral region, is limited by difficulties of growth of InGaN layers with high indium content. Additionally, device efficiency is strongly dependent on the formation of low-resistive p-type gallium nitride (GaN)-based layers. In this dissertation, the optical properties of wide gap semiconductor are analyzed using cathodoluminescence imaging and spectroscopy, and time-resolved spectroscopic techniques. A transition at 3.2 eV in magnesium (Mg)-doped GaN has been revealed and it has been identified as a Mg-related donor-acceptor pair, which may be responsible for the increase in intensity with increasing magnesium concentration in the commonly observed donor-acceptor pair region. In a separate study, a decrease of the Mg acceptor energy level and the bulk resistivity in Mg-doped InGaN with increasing indium composition is observed, implying that InGaN p-layers should improve the device performance. Next, Mg-doped GaN and InGaN capping layers in LED structures grown under different ambient gases are shown to alter the quantum well (QW) luminescence. QWs grown with InGaN p-layers exhibit an improvement in the luminescence efficiency and a blue-shift due to reduction of the compressive misfit strain in the QWs. However, p-GaN layers grown under hydrogen ambient gas present a blue-shift of the QW emission. Hydrogen diffusion occurring after thermal annealing of the p-GaN layer may explain the reduction of piezoelectric field effects in polar InGaN quantum wells. In another study, InGaN QWs with high indium content grown in non-polar m-plane GaN were found to exhibit stacking faults originating at the first QW, relaxing the misfit strain in the subsequent layers. Finally, the optical and structural properties of highly luminescent zinc oxide (ZnO) tetrapod powders emitting in the visible green spectral range were studied with high spatial resolution. ZnO nanostructures are strong candidates for devices emitting light with very high efficiencies.

  7. Influence of different aspect ratios on the structural and electrical properties of GaN thin films grown on nanoscale-patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Lee, Fang-Wei; Ke, Wen-Cheng; Cheng, Chun-Hong; Liao, Bo-Wei; Chen, Wei-Kuo

    2016-07-01

    This study presents GaN thin films grown on nanoscale-patterned sapphire substrates (NPSSs) with different aspect ratios (ARs) using a homemade metal-organic chemical vapor deposition system. The anodic aluminum oxide (AAO) technique is used to prepare the dry etching mask. The cross-sectional view of the scanning electron microscope image shows that voids exist between the interface of the GaN thin film and the high-AR (i.e. ∼2) NPSS. In contrast, patterns on the low-AR (∼0.7) NPSS are filled full of GaN. The formation of voids on the high-AR NPSS is believed to be due to the enhancement of the lateral growth in the initial growth stage, and the quick-merging GaN thin film blocks the precursors from continuing to supply the bottom of the pattern. The atomic force microscopy images of GaN on bare sapphire show a layer-by-layer surface morphology, which becomes a step-flow surface morphology for GaN on a high-AR NPSS. The edge-type threading dislocation density can be reduced from 7.1 × 108 cm-2 for GaN on bare sapphire to 4.9 × 108 cm-2 for GaN on a high-AR NPSS. In addition, the carrier mobility increases from 85 cm2/Vs for GaN on bare sapphire to 199 cm2/Vs for GaN on a high-AR NPSS. However, the increased screw-type threading dislocation density for GaN on a low-AR NPSS is due to the competition of lateral growth on the flat-top patterns and vertical growth on the bottom of the patterns that causes the material quality of the GaN thin film to degenerate. Thus, the experimental results indicate that the AR of the particular patterning of a NPSS plays a crucial role in achieving GaN thin film with a high crystalline quality.

  8. Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy.

    PubMed

    Wei, Wei; Qin, Zhixin; Fan, Shunfei; Li, Zhiwei; Shi, Kai; Zhu, Qinsheng; Zhang, Guoyi

    2012-10-10

    A sample of the β-Ga2O3/wurtzite GaN heterostructure has been grown by dry thermal oxidation of GaN on a sapphire substrate. X-ray diffraction measurements show that the β-Ga2O3 layer was formed epitaxially on GaN. The valence band offset of the β-Ga2O3/wurtzite GaN heterostructure is measured by X-ray photoelectron spectroscopy. It is demonstrated that the valence band of the β-Ga2O3/GaN structure is 1.40 ± 0.08 eV.

  9. Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy

    PubMed Central

    2012-01-01

    A sample of the β-Ga2O3/wurtzite GaN heterostructure has been grown by dry thermal oxidation of GaN on a sapphire substrate. X-ray diffraction measurements show that the β-Ga2O3 layer was formed epitaxially on GaN. The valence band offset of the β-Ga2O3/wurtzite GaN heterostructure is measured by X-ray photoelectron spectroscopy. It is demonstrated that the valence band of the β-Ga2O3/GaN structure is 1.40 ± 0.08 eV. PMID:23046910

  10. Energetics of cubic and hexagonal phases in Mn-doped GaN : First-principles pseudopotential calculations

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Ae; Kang, Joongoo; Chang, K. J.

    2006-12-01

    We perform first-principles pseudopotential calculations to study the influence of Mn doping on the stability of two polytypes, wurtzite and zinc-blende, in GaN . In Mn δ -doped GaN and GaMnN alloys, we find similar critical concentrations of the Mn ions for stabilizing the zinc-blende phase against the wurtzite phase. Using a slab geometry of hexagonal lattices, we find that it is energetically unfavorable to form inversion domains with Mn exposure, in contrast to Mg doping. At the initial stage of epitaxial growth, a stacking fault that leads to the cubic bonds can be generated with the Mn exposure to the Ga-polar surface. However, the influence of the Mn δ -doped layer on the formation of the cubic phase is only effective for GaN layers deposited up to two monolayers. We find that the Mn ions are energetically more stable on the growth front than in the bulk, indicating that these ions act as a surfactant. Thus it is possible to grow cubic GaN if the Mn ions are periodically supplied or diffuse out from the Mn δ -doped layer to the growth front during the growth process.

  11. Improved growth of GaN layers on ultra thin silicon nitride/Si (1 1 1) by RF-MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Mahesh; Roul, Basanta; Central Research Laboratory, Bharat Electronics, Bangalore 560013

    High-quality GaN epilayers were grown on Si (1 1 1) substrates by molecular beam epitaxy using a new growth process sequence which involved a substrate nitridation at low temperatures, annealing at high temperatures, followed by nitridation at high temperatures, deposition of a low-temperature buffer layer, and a high-temperature overgrowth. The material quality of the GaN films was also investigated as a function of nitridation time and temperature. Crystallinity and surface roughness of GaN was found to improve when the Si substrate was treated under the new growth process sequence. Micro-Raman and photoluminescence (PL) measurement results indicate that the GaN filmmore » grown by the new process sequence has less tensile stress and optically good. The surface and interface structures of an ultra thin silicon nitride film grown on the Si surface are investigated by core-level photoelectron spectroscopy and it clearly indicates that the quality of silicon nitride notably affects the properties of GaN growth.« less

  12. Elimination of macrostep-induced current flow nonuniformity in vertical GaN PN diode using carbon-free drift layer grown by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Fujikura, Hajime; Hayashi, Kentaro; Horikiri, Fumimasa; Narita, Yoshinobu; Konno, Taichiro; Yoshida, Takehiro; Ohta, Hiroshi; Mishima, Tomoyoshi

    2018-04-01

    In vertical GaN PN diodes (PNDs) grown entirely by metal–organic chemical vapor deposition (MOCVD), large current nonuniformity was observed. This nonuniformity was induced by macrosteps on the GaN surface through modulation of carbon incorporation into the n-GaN crystal. It was eliminated in a hybrid PND consisting of a carbon-free n-GaN layer grown by hydride vapor phase epitaxy (HVPE) and an MOCVD-regrown p-GaN layer. The hybrid PND showed a fairly low on-resistance (2 mΩ cm2) and high breakdown voltage (2 kV) even without a field plate electrode. These results clearly indicated the strong advantages of the HVPE-grown drift layer for improving power device performance, uniformity, and yield.

  13. Effect of same-temperature GaN cap layer on the InGaN/GaN multiquantum well of green light-emitting diode on silicon substrate.

    PubMed

    Zheng, Changda; Wang, Li; Mo, Chunlan; Fang, Wenqing; Jiang, Fengyi

    2013-01-01

    GaN green LED was grown on Si (111) substrate by MOCVD. To enhance the quality of InGaN/GaN MQWs, same-temperature (ST) GaN protection layers with different thickness of 8 Å, 15 Å, and 30 Å were induced after the InGaN quantum wells (QWs) layer. Results show that a relative thicker cap layer is benefit to get InGaN QWs with higher In percent at fixed well temperature and obtain better QW/QB interface. As the cap thickness increases, the indium distribution becomes homogeneous as verified by fluorescence microscope (FLM). The interface of MQWs turns to be abrupt from XRD analysis. The intensity of photoluminescence (PL) spectrum is increased and the FWHM becomes narrow.

  14. Surfactant effect of gallium during molecular-beam epitaxy of GaN on AlN (0001)

    NASA Astrophysics Data System (ADS)

    Mula, Guido; Adelmann, C.; Moehl, S.; Oullier, J.; Daudin, B.

    2001-11-01

    We study the adsorption of Ga on (0001) GaN surfaces by reflection high-energy electron diffraction. It is shown that a dynamically stable Ga bilayer can be formed on the GaN surface for appropriate Ga fluxes and substrate temperatures. The influence of the presence of this Ga film on the growth mode of GaN on AlN(0001) by plasma-assisted molecular-beam epitaxy is studied. It is demonstrated that under nearly stoichiometric and N-rich conditions, the GaN layer relaxes elastically during the first stages of epitaxy. At high temperatures the growth follows a Stranski-Krastanov mode, whereas at lower temperatures kinetically formed flat platelets are observed. Under Ga-rich conditions-where a Ga bilayer is rapidly formed due to excess Ga accumulating on the surface-the growth follows a Frank-van der Merwe layer-by-layer mode at any growth temperature and no initial elastic relaxation occurs. Hence, it is concluded that excess Ga acts as a surfactant, effectively suppressing both Stranski-Krastanov islanding and platelet formation. It is further demonstrated that the Stranski-Krastanov transition is in competition with elastic relaxation by platelets, and it is only observed when relaxation by platelets is inefficient. As a result, a growth mode phase diagram is outlined for the growth of GaN on AlN(0001).

  15. Effect of p-GaN layer doping on the photoresponse of GaN-based p-i-n ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Guo, Jin; Xie, Feng; Wang, Wanjun; Wang, Guosheng; Wu, Haoran; Wang, Tanglin; Song, Man

    2015-08-01

    We report on two-dimensional (2D) numerical simulations of photoresponse characteristics for GaN based p-i-n ultraviolet (UV) photodetectors. Effects of doping density of p-GaN layer on the photoresponse have been investigated. In order to accurately simulate the device performance, the theoretical calculation includes doping-dependent mobility degradation by Arora model and high field saturation model. Theoretical modeling shows that the doping density of p- GaN layer can significantly affect the photoresponse of GaN based p-i-n UV photodetectors, especially at schottky contact. We have to make a suitable choice of the doping in the device design according to the simulation results.

  16. Methods for improved growth of group III nitride buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphologymore » of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).« less

  17. Change in equilibrium position of misfit dislocations at the GaN/sapphire interface by Si-ion implantation into sapphire—I. Microstructural characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sung Bo, E-mail: bolee@snu.ac.kr; Han, Heung Nam, E-mail: hnhan@snu.ac.kr; Lee, Dong Nyung

    Much research has been done to reduce dislocation densities for the growth of GaN on sapphire, but has paid little attention to the elastic behavior at the GaN/sapphire interface. In this study, we have examined effects of the addition of Si to a sapphire substrate on its elastic property and on the growth of GaN deposit. Si atoms are added to a c-plane sapphire substrate by ion implantation. The ion implantation results in scratches on the surface, and concomitantly, inhomogeneous distribution of Si. The scratch regions contain a higher concentration of Si than other regions of the sapphire substrate surface,more » high-temperature GaN being poorly grown there. However, high-temperature GaN is normally grown in the other regions. The GaN overlayer in the normally-grown regions is observed to have a lower TD density than the deposit on the bare sapphire substrate (with no Si accommodated). As compared with the film on an untreated, bare sapphire, the cathodoluminescence defect density decreases by 60 % for the GaN layer normally deposited on the Si-ion implanted sapphire. As confirmed by a strain mapping technique by transmission electron microscopy (geometric phase analysis), the addition of Si in the normally deposited regions forms a surface layer in the sapphire elastically more compliant than the GaN overlayer. The results suggest that the layer can largely absorb the misfit strain at the interface, which produces the overlayer with a lower defect density. Our results highlight a direct correlation between threading-dislocation density in GaN deposits and the elastic behavior at the GaN/sapphire interface, opening up a new pathway to reduce threading-dislocation density in GaN deposits.« less

  18. Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles.

    PubMed

    Braniste, Tudor; Tiginyanu, Ion; Horvath, Tibor; Raevschi, Simion; Cebotari, Serghei; Lux, Marco; Haverich, Axel; Hilfiker, Andres

    2016-01-01

    Nanotechnology is a rapidly growing and promising field of interest in medicine; however, nanoparticle-cell interactions are not yet fully understood. The goal of this work was to examine the interaction between endothelial cells and gallium nitride (GaN) semiconductor nanoparticles. Cellular viability, adhesion, proliferation, and uptake of nanoparticles by endothelial cells were investigated. The effect of free GaN nanoparticles versus the effect of growing endothelial cells on GaN functionalized surfaces was examined. To functionalize surfaces with GaN, GaN nanoparticles were synthesized on a sacrificial layer of zinc oxide (ZnO) nanoparticles using hydride vapor phase epitaxy. The uptake of GaN nanoparticles by porcine endothelial cells was strongly dependent upon whether they were fixed to the substrate surface or free floating in the medium. The endothelial cells grown on surfaces functionalized with GaN nanoparticles demonstrated excellent adhesion and proliferation, suggesting good biocompatibility of the nanostructured GaN.

  19. Study on photoemission surface of varied doping GaN photocathode

    NASA Astrophysics Data System (ADS)

    Qiao, Jianliang; Du, Ruijuan; Ding, Huan; Gao, Youtang; Chang, Benkang

    2014-09-01

    For varied doping GaN photocathode, from bulk to surface the doping concentrations are distributed from high to low. The varied doping GaN photocathode may produce directional inside electric field within the material, so the higher quantum efficiency can be obtained. The photoemission surface of varied doping GaN photocathode is very important to the high quantum efficiency, but the forming process of the surface state after Cs activation or Cs/O activation has been not known completely. Encircling the photoemission mechanism of varied GaN photocathode, considering the experiment phenomena during the activation and the successful activation results, the varied GaN photocathode surface model [GaN(Mg):Cs]:O-Cs after activation with cesium and oxygen was given. According to GaN photocathode activation process and the change of electronic affinity, the comparatively ideal NEA property can be achieved by Cs or Cs/O activation, and higher quantum efficiency can be obtained. The results show: The effective NEA characteristic of GaN can be gotten only by Cs. [GaN(Mg):Cs] dipoles form the first dipole layer, the positive end is toward the vacuum side. In the activation processing with Cs/O, the second dipole layer is formed by O-Cs dipoles, A O-Cs dipole includes one oxygen atom and two Cs atoms, and the positive end is also toward the vacuum side thus the escape of electrons can be promoted.

  20. Substrate nitridation induced modulations in transport properties of wurtzite GaN/p-Si (100) heterojunctions grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, Thirumaleshwara N.; Rajpalke, Mohana K.; Krupanidhi, S. B.

    Phase pure wurtzite GaN films were grown on Si (100) substrates by introducing a silicon nitride layer followed by low temperature GaN growth as buffer layers. GaN films grown directly on Si (100) were found to be phase mixtured, containing both cubic ({beta}) and hexagonal ({alpha}) modifications. The x-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy studies reveal that the significant enhancement in the structural as well as in the optical properties of GaN films grown with silicon nitride buffer layer grown at 800 deg. C when compared to the samples grown in the absence of silicon nitridemore » buffer layer and with silicon nitride buffer layer grown at 600 deg. C. Core-level photoelectron spectroscopy of Si{sub x}N{sub y} layers reveals the sources for superior qualities of GaN epilayers grown with the high temperature substrate nitridation process. The discussion has been carried out on the typical inverted rectification behavior exhibited by n-GaN/p-Si heterojunctions. Considerable modulation in the transport mechanism was observed with the nitridation conditions. The heterojunction fabricated with the sample of substrate nitridation at high temperature exhibited superior rectifying nature with reduced trap concentrations. Lowest ideality factors ({approx}1.5) were observed in the heterojunctions grown with high temperature substrate nitridation which is attributed to the recombination tunneling at the space charge region transport mechanism at lower voltages and at higher voltages space charge limited current conduction is the dominating transport mechanism. Whereas, thermally generated carrier tunneling and recombination tunneling are the dominating transport mechanisms in the heterojunctions grown without substrate nitridation and low temperature substrate nitridation, respectively.« less

  1. Optical losses in p-type layers of GaN ridge waveguides in the IR region

    NASA Astrophysics Data System (ADS)

    Westreich, Ohad; Katz, Moti; Atar, Gil; Paltiel, Yossi; Sicron, Noam

    2017-07-01

    Optical losses in c-plane (0001) GaN ridge waveguides, containing Mg-doped layers, were measured at 1064 nm, using the Fabry-Perot method. The losses increase linearly with the modal content of the p-layer, indicating that the absorption in these waveguides is dominated by p-layer absorption. The p-layer absorption is strongly anisotropic with E⊥c losses 4 times higher than E∥c. The absorption is temperature independent between 10 °C and 60 °C, supporting the possibility that it is related to Mg-bound holes.

  2. Integration of (208) oriented epitaxial Hf-doped Bi4Ti3O12 with (0002) GaN using SrTiO3/TiO2 buffer layer

    NASA Astrophysics Data System (ADS)

    Luo, W. B.; Zhu, J.; Li, Y. R.; Wang, X. P.; Zhang, Y.

    2009-05-01

    Hf-doped Bi4Ti3O12 (BTH) ferroelectric films with excellent electrical properties were epitaxially integrated with GaN semiconductor using (111) SrTiO3 (STO)/rutile (200) TiO2 as buffer layer. The STO/TiO2 buffer layer was deposited by laser molecular beam epitaxy. The structural characteristics of the buffer layer were in situ and ex situ characterized by reflective high energy electron diffraction, x-ray diffraction (XRD), and high resolution transmission microscopy. The overlaying SrRuO3 (SRO) and BTH films were then deposited by pulsed laser deposition. XRD spectra, including θ-2θ and Φ scans, show that the (208) BTH films were epitaxially grown on GaN, and the BTH films inherit the in-plane twin-domain of STO buffer layer. Electrical measurements demonstrate that the non-c axis BTH films possess a large remnant polarization (2Pr=45 μC/cm2), excellent fatigue endurance (10.2% degradation after 1.1×1010 switching cycles), and a low leakage current density (1.94×10-7 A/cm2 at an electric field of 200 kV/cm). These results reveal that the (208) BTH films with favorable electrical performance could be epitaxially grown on GaN template using STO/TiO2 buffer layer.

  3. Substrate impact on the low-temperature growth of GaN thin films by plasma-assisted atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kizir, Seda; Haider, Ali; Biyikli, Necmi, E-mail: biyikli@unam.bilkent.edu.tr

    2016-07-15

    Gallium nitride (GaN) thin films were grown on Si (100), Si (111), and c-plane sapphire substrates at 200 °C via hollow-cathode plasma-assisted atomic layer deposition (HCPA-ALD) using GaEt{sub 3} and N{sub 2}/H{sub 2} plasma as group-III and V precursors, respectively. The main aim of the study was to investigate the impact of substrate on the material properties of low-temperature ALD-grown GaN layers. Structural, chemical, and optical characterizations were carried out in order to evaluate and compare film quality of GaN on different substrates. X-ray reflectivity measurements showed film density values of 5.70, 5.74, and 5.54 g/cm{sup 3} for GaN grown on Simore » (100), Si (111), and sapphire, respectively. Grazing incidence x-ray diffraction measurements exhibited hexagonal wurtzite structure in all HCPA-ALD grown GaN samples. However, dominant diffraction peak for GaN films grown on Si and sapphire substrates were detected differently as (002) and (103), respectively. X-ray diffraction gonio scans measured from GaN grown on c-plane sapphire primarily showed (002) orientation. All samples exhibited similar refractive index values (∼2.17 at 632 nm) with 2–3 at. % of oxygen impurity existing within the bulk of the films. The grain size was calculated as ∼9–10 nm for GaN grown on Si (100) and Si (111) samples while it was ∼5 nm for GaN/sapphire sample. Root-mean-square surface roughness values found as 0.68, 0.76, and 1.83 nm for GaN deposited on Si (100), Si (111), and sapphire, respectively. Another significant difference observed between the samples was the film growth per cycle: GaN/sapphire sample showed a considerable higher thickness value when compared with GaN/Si samples, which might be attributed to a possibly more-efficient nitridation and faster nucleation of sapphire surface.« less

  4. Luminescence from defects in GaN

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Morkoç, H.

    2006-04-01

    We briefly review the luminescence properties of defects in GaN and focus on the most interesting defects. In particular, the blue luminescence band peaking at about 3 eV is assigned to different defects and even different types of transitions in undoped, Zn-, C-, and Mg-doped GaN. Another omnipresent luminescence band, the yellow luminescence band may have different origin in nearly dislocation-free freestanding GaN templates, undoped thin layers, and carbon-doped GaN. The Y4 and Y7 lines are caused by recombination at unidentified point defects captured by threading edge dislocations.

  5. Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation.

    PubMed

    Hwang, Jih-Shang; Liu, Tai-Yan; Chattopadhyay, Surjit; Hsu, Geng-Ming; Basilio, Antonio M; Chen, Han-Wei; Hsu, Yu-Kuei; Tu, Wen-Hsun; Lin, Yan-Gu; Chen, Kuei-Hsien; Li, Chien-Cheng; Wang, Sheng-Bo; Chen, Hsin-Yi; Chen, Li-Chyong

    2013-02-08

    Enhanced photoelectrochemical (PEC) performances of Ga(2)O(3) and GaN nanowires (NWs) grown in situ from GaN were demonstrated. The PEC conversion efficiencies of Ga(2)O(3) and GaN NWs have been shown to be 0.906% and 1.09% respectively, in contrast to their 0.581% GaN thin film counterpart under similar experimental conditions. A low crystallinity buffer layer between the grown NWs and the substrate was found to be detrimental to the PEC performance, but the layer can be avoided at suitable growth conditions. A band bending at the surface of the GaN NWs generates an electric field that drives the photogenerated electrons and holes away from each other, preventing recombination, and was found to be responsible for the enhanced PEC performance. The enhanced PEC efficiency of the Ga(2)O(3) NWs is aided by the optical absorption through a defect band centered 3.3 eV above the valence band of Ga(2)O(3). These findings are believed to have opened up possibilities for enabling visible absorption, either by tailoring ion doping into wide bandgap Ga(2)O(3) NWs, or by incorporation of indium to form InGaN NWs.

  6. High-quality GaN epitaxially grown on Si substrate with serpentine channels

    NASA Astrophysics Data System (ADS)

    Wei, Tiantian; Zong, Hua; Jiang, Shengxiang; Yang, Yue; Liao, Hui; Xie, Yahong; Wang, Wenjie; Li, Junze; Tang, Jun; Hu, Xiaodong

    2018-06-01

    A novel serpentine-channeled mask was introduced to Si substrate for low-dislocation GaN epitaxial growth and the fully coalesced GaN film on the masked Si substrate was achieved for the first time. Compared with the epitaxial lateral overgrowth (ELOG) growth method, this innovative mask only requires one-step epitaxial growth of GaN which has only one high-dislocation region per mask opening. This new growth method can effectively reduce dislocation density, thus improving the quality of GaN significantly. High-quality GaN with low dislocation density ∼2.4 × 107 cm-2 was obtained, which accounted for about eighty percent of the GaN film in area. This innovative technique is promising for the growth of high-quality GaN templates and the subsequent fabrication of high-performance GaN-based devices like transistors, laser diodes (LDs), and light-emitting diodes (LEDs) on Si substrate.

  7. Size dictated thermal conductivity of GaN

    NASA Astrophysics Data System (ADS)

    Beechem, Thomas E.; McDonald, Anthony E.; Fuller, Elliot J.; Talin, A. Alec; Rost, Christina M.; Maria, Jon-Paul; Gaskins, John T.; Hopkins, Patrick E.; Allerman, Andrew A.

    2016-09-01

    The thermal conductivity of n- and p-type doped gallium nitride (GaN) epilayers having thicknesses of 3-4 μm was investigated using time domain thermoreflectance. Despite possessing carrier concentrations ranging across 3 decades (1015-1018 cm-3), n-type layers exhibit a nearly constant thermal conductivity of 180 W/mK. The thermal conductivity of p-type epilayers, in contrast, reduces from 160 to 110 W/mK with increased doping. These trends—and their overall reduction relative to bulk—are explained leveraging established scattering models where it is shown that, while the decrease in p-type layers is partly due to the increased impurity levels evolving from its doping, size effects play a primary role in limiting the thermal conductivity of GaN layers tens of microns thick. Device layers, even of pristine quality, will therefore exhibit thermal conductivities less than the bulk value of 240 W/mK owing to their finite thickness.

  8. Effect of Same-Temperature GaN Cap Layer on the InGaN/GaN Multiquantum Well of Green Light-Emitting Diode on Silicon Substrate

    PubMed Central

    Zheng, Changda; Wang, Li; Mo, Chunlan; Fang, Wenqing; Jiang, Fengyi

    2013-01-01

    GaN green LED was grown on Si (111) substrate by MOCVD. To enhance the quality of InGaN/GaN MQWs, same-temperature (ST) GaN protection layers with different thickness of 8 Å, 15 Å, and 30 Å were induced after the InGaN quantum wells (QWs) layer. Results show that a relative thicker cap layer is benefit to get InGaN QWs with higher In percent at fixed well temperature and obtain better QW/QB interface. As the cap thickness increases, the indium distribution becomes homogeneous as verified by fluorescence microscope (FLM). The interface of MQWs turns to be abrupt from XRD analysis. The intensity of photoluminescence (PL) spectrum is increased and the FWHM becomes narrow. PMID:24369453

  9. Engineering future light emitting diodes and photovoltaics with inexpensive materials: Integrating ZnO and Si into GaN-based devices

    NASA Astrophysics Data System (ADS)

    Bayram, C.; Shiu, K. T.; Zhu, Y.; Cheng, C. W.; Sadana, D. K.; Teherani, F. H.; Rogers, D. J.; Sandana, V. E.; Bove, P.; Zhang, Y.; Gautier, S.; Cho, C.-Y.; Cicek, E.; Vashaei, Z.; McClintock, R.; Razeghi, M.

    2013-03-01

    Indium Gallium Nitride (InGaN) based PV have the best fit to the solar spectrum of any alloy system and emerging LED lighting based on InGaN technology and has the potential to reduce energy consumption by nearly one half while enabling significant carbon emission reduction. However, getting the maximum benefit from GaN diode -based PV and LEDs will require wide-scale adoption. A key bottleneck for this is the device cost, which is currently dominated by the substrate (i.e. sapphire) and the epitaxy (i.e. GaN). This work investigates two schemes for reducing such costs. First, we investigated the integration of Zinc Oxide (ZnO) in InGaN-based diodes. (Successful growth of GaN on ZnO template layers (on sapphire) was illustrated. These templates can then be used as sacrificial release layers for chemical lift-off. Such an approach provides an alternative to laser lift-off for the transfer of GaN to substrates with a superior cost-performance profile, plus an added advantage of reclaiming the expensive single-crystal sapphire. It was also illustrated that substitution of low temperature n-type ZnO for n-GaN layers can combat indium leakage from InGaN quantum well active layers in inverted p-n junction structures. The ZnO overlayers can also double as transparent contacts with a nanostructured surface which enhances light in/out coupling. Thus ZnO was confirmed to be an effective GaN substitute which offers added flexibility in device design and can be used in order to simultaneously reduce the epitaxial cost and boost the device performance. Second, we investigated the use of GaN templates on patterned Silicon (100) substrates for reduced substrate cost LED applications. Controlled local metal organic chemical vapor deposition epitaxy of cubic phase GaN with on-axis Si(100) substrates was illustrated. Scanning electron microscopy and transmission electron microscopy techniques were used to investigate uniformity and examine the defect structure in the GaN. Our results suggest that groove structures are very promising for controlled local epitaxy of cubic phase GaN. Overall, it is concluded that there are significant opportunities for cost reduction in novel hybrid diodes based on ZnO-InGaN-Si hybridization.

  10. Impacts of oxidants in atomic layer deposition method on Al2O3/GaN interface properties

    NASA Astrophysics Data System (ADS)

    Taoka, Noriyuki; Kubo, Toshiharu; Yamada, Toshikazu; Egawa, Takashi; Shimizu, Mitsuaki

    2018-01-01

    The electrical interface properties of GaN metal-oxide-semiconductor (MOS) capacitors with an Al2O3 gate insulator formed by atomic layer deposition method using three kinds of oxidants were investigated by the capacitance-voltage technique, Terman method, and conductance method. We found that O3 and the alternate supply of H2O and O3 (AS-HO) are effective for reducing the interface trap density (D it) at the energy range of 0.15 to 0.30 eV taking from the conduction band minimum. On the other hand, we found that surface potential fluctuation (σs) induced by interface charges for the AS-HO oxidant is much larger than that for a Si MOS capacitor with a SiO2 layer formed by chemical vapor deposition despite the small D it values for the AS-HO oxidant compared with the Si MOS capacitor. This means that the total charged center density including the fixed charge density, charged slow trap density, and charged interface trap density for the GaN MOS capacitor is higher than that for the Si MOS capacitor. Therefore, σs has to be reduced to improve the performances and reliability of GaN devices with the Al2O3/GaN interfaces.

  11. Analysis of light extraction efficiency enhancement for thin-film-flip-chip InGaN quantum wells light-emitting diodes with GaN micro-domes.

    PubMed

    Zhao, Peng; Zhao, Hongping

    2012-09-10

    The enhancement of light extraction efficiency for thin-film flip-chip (TFFC) InGaN quantum wells (QWs) light-emitting diodes (LEDs) with GaN micro-domes on n-GaN layer was studied. The light extraction efficiency of TFFC InGaN QWs LEDs with GaN micro-domes were calculated and compared to that of the conventional TFFC InGaN QWs LEDs with flat surface. The three dimensional finite difference time domain (3D-FDTD) method was used to calculate the light extraction efficiency for the InGaN QWs LEDs emitting at 460nm and 550 nm, respectively. The effects of the GaN micro-dome feature size and the p-GaN layer thickness on the light extraction efficiency were studied systematically. Studies indicate that the p-GaN layer thickness is critical for optimizing the TFFC LED light extraction efficiency. Significant enhancement of the light extraction efficiency (2.5-2.7 times for λ(peak) = 460nm and 2.7-2.8 times for λ(peak) = 550nm) is achievable from TFFC InGaN QWs LEDs with optimized GaN micro-dome diameter and height.

  12. Effect of growth pressure on the morphology evolution and doping characteristics in nonpolar a-plane GaN

    NASA Astrophysics Data System (ADS)

    Song, Keun Man; Kim, Jong Min; Kang, Bong Kyun; Shin, Chan Soo; Ko, Chul Gi; Kong, Bo Hyun; Cho, Hyung Koun; Yoon, Dae Ho; Kim, Hogyoung; Hwang, Sung Min

    2012-02-01

    Nonpolar a-plane GaN layers grown on r-plane sapphire substrates were examined by using a two-step growth process. The higher initial growth pressure for the nucleation layer resulted in the improved crystalline quality with lower density of both threading dislocations and basal stacking faults. This was attributed to the higher degree of initial roughening and recovery time via a growth mode transition from three-dimensional (3D) to quasi two-dimensional (2D) lateral growth. Using Hall-effect measurements, the overgrown Si doped GaN layers grown with higher initial growth pressure were found to have higher mobility. The scattering mechanism due to the dislocations was dominant especially at low temperature (<200 K) for the lower initial growth pressure, which was insignificant for the higher initial growth pressure. The temperature-dependent Hall-effect measurements for the Mg doped GaN with a higher initial growth pressure yielded the activation energy and the acceptor concentration to be 128 meV and 1.2 × 1019 cm-3, respectively, corresponding to about 3.6% of activation at room temperature. Two-step growth scheme with a higher initial growth pressure is suggested as a potential method to improve the performance of nonpolar a-plane GaN based devices.

  13. The origin of the residual conductivity of GaN films on ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Keun; Cai, Zhuhua; Ziemer, Katherine; Doolittle, William Alan

    2009-08-01

    In this paper, the origin of the conductivity of GaN films grown on ferroelectric materials was investigated using XPS, AES, and XRD analysis tools. Depth profiles confirmed the existence of impurities in the GaN film originating from the substrates. Bonding energy analysis from XPS and AES verified that oxygen impurities from the substrates were the dominant origin of the conductivity of the GaN film. Furthermore, Ga-rich GaN films have a greater chance of enhancing diffusion of lithium oxide from the substrates, resulting in more substrate phase separation and a wider inter-mixed region confirmed by XRD. Therefore, the direct GaN film growth on ferroelectric materials causes impurity diffusion from the substrates, resulting in highly conductive GaN films. Future work needs to develop non-conductive buffer layers for impurity suppression in order to obtain highly resistive GaN films.

  14. Gallium nitride photocathodes for imaging photon counters

    NASA Astrophysics Data System (ADS)

    Siegmund, Oswald H. W.; Hull, Jeffrey S.; Tremsin, Anton S.; McPhate, Jason B.; Dabiran, Amir M.

    2010-07-01

    Gallium nitride opaque and semitransparent photocathodes provide high ultraviolet quantum efficiencies from 100 nm to a long wavelength cutoff at ~380 nm. P (Mg) doped GaN photocathode layers ~100 nm thick with a barrier layer of AlN (22 nm) on sapphire substrates also have low out of band response, and are highly robust. Opaque GaN photocathodes are relatively easy to optimize, and consistently provide high quantum efficiency (70% at 120 nm) provided the surface cleaning and activation (Cs) processes are well established. We have used two dimensional photon counting imaging microchannel plate detectors, with an active area of 25 mm diameter, to investigate the imaging characteristics of semitransparent GaN photocathodes. These can be produced with high (20%) efficiency, but the thickness and conductivity of the GaN must be carefully optimized. High spatial resolution of ~50 μm with low intrinsic background (~7 events sec-1 cm-2) and good image uniformity have been achieved. Selectively patterned deposited GaN photocathodes have also been used to allow quick diagnostics of optimization parameters. GaN photocathodes of both types show great promise for future detector applications in ultraviolet Astrophysical instruments.

  15. Interfacing epitaxial oxides to gallium nitride

    NASA Astrophysics Data System (ADS)

    Losego, Mark Daniel

    Molecular beam epitaxy (MBE) is lauded for its ability to control thin film material structures at the atomic level. This precision of control can improve performance of microelectronic devices and cultivate the development of novel device structures. This thesis explores the utility of MBE for designing interfaces between oxide epilayers and the wide band gap semiconductor gallium nitride (GaN). The allure of wide gap semiconductor microelectronics (like GaN, 3.4 eV) is their ability to operate at higher frequencies, higher powers, and higher temperatures than current semiconductor platforms. Heterostructures between ferroelectric oxides and GaN are also of interest for studying the interaction between GaN's fixed polarization and the ferroelectric's switchable polarization. Two major obstacles to successful integration of oxides with GaN are: (1) interfacial trap states; and (2) small electronic band offsets across the oxide/nitride interface due to the semiconductor's large band gap. For this thesis, epitaxial rocksalt oxide interfacial layers (˜8 eV band gap) are investigated as possible solutions to overcoming the challenges facing oxide integration with GaN. The cubic close-packed structure of rocksalt oxides forms a suitable epitaxial interface with the hexagonal close-packed wurtzite lattice of GaN. Three rocksalt oxide compounds are investigated in this thesis: MgO, CaO, and YbO. All are found to have a (111) MO || (0001) GaN; <1 10> MO || <11 20> GaN epitaxial relationship. Development of the epilayer microstructure is dominated by the high-energy polar growth surface (drives 3D nucleation) and the interfacial symmetry, which permits the formation of twin boundaries. Using STEM, strain relief for these ionicly bonded epilayers is observed to occur through disorder within the initial monolayer of growth. All rocksalt oxides demonstrate chemical stability with GaN to >1000°C. Concurrent MBE deposition of MgO and CaO is known to form complete solid solutions. By controlling the composition of these alloys, the oxide's lattice parameter can be engineered to match GaN and reduce interfacial state density. Compositional control is a universal challenge to oxide MBE, and the MgO-CaO system (MCO) is further complicated by magnesium's high volatility and the lack of a thermodynamically stable phase. Through a detailed investigation of MgO's deposition rate and subsequent impact on MCO composition, the process space for achieving lattice-matched compositions to GaN are fully mapped. Lattice-matched compositions are demonstrated to have the narrowest off-axis rocking curve widths ever reported for an epitaxial oxide deposited directly on GaN (0.7° in φ-circle for 200 reflection). Epitaxial deposition of the ferroelectric (Ba,Sr)TiO3 by hot RF sputtering on GaN surfaces is also demonstrated. Simple MOS capacitors are fabricated from epitaxial rocksalt oxides and (Ba,Sr)TiO3 layers deposited on n-GaN substrates. Current-voltage measurements reveal that BST epilayers have 5 orders of magnitude higher current leakage than rocksalt epilayers. This higher leakage is attributed to the smaller band offset expected at this interface; modeling confirms that electronic transport occurs by Schottky emission. In contrast, current transport across the rocksalt oxide/GaN interface occurs by Frenkel-Poole emission and can be reduced with pre-deposition surface treatments. Finally, through this work, it is realized that the integration of oxides with III-nitrides requires an appreciation of many different fields of research including materials science, surface science, and electrical engineering. By recognizing the importance that each of these fields play in designing oxide/III-nitride interfaces, this thesis has the opportunity to explore other related phenomena including accessing metastable phases through MBE (ytterbium monoxide), spinodal decomposition in metastable alloys (MCO), how polar surfaces grown by MBE compensate their bound surface charge, room temperature epitaxy, and the use of surface modification to achieve selective epitaxial deposition (SeEDed growth).

  16. Ultraviolet GaN photodetectors on Si via oxide buffer heterostructures with integrated short period oxide-based distributed Bragg reflectors and leakage suppressing metal-oxide-semiconductor contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szyszka, A., E-mail: szyszka@ihp-microelectronics.com, E-mail: adam.szyszka@pwr.wroc.pl; Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw; Lupina, L.

    2014-08-28

    Based on a novel double step oxide buffer heterostructure approach for GaN integration on Si, we present an optimized Metal-Semiconductor-Metal (MSM)-based Ultraviolet (UV) GaN photodetector system with integrated short-period (oxide/Si) Distributed Bragg Reflector (DBR) and leakage suppressing Metal-Oxide-Semiconductor (MOS) electrode contacts. In terms of structural properties, it is demonstrated by in-situ reflection high energy electron diffraction and transmission electron microscopy-energy dispersive x-ray studies that the DBR heterostructure layers grow with high thickness homogeneity and sharp interface structures sufficient for UV applications; only minor Si diffusion into the Y{sub 2}O{sub 3} films is detected under the applied thermal growth budget. Asmore » revealed by comparative high resolution x-ray diffraction studies on GaN/oxide buffer/Si systems with and without DBR systems, the final GaN layer structure quality is not significantly influenced by the growth of the integrated DBR heterostructure. In terms of optoelectronic properties, it is demonstrated that—with respect to the basic GaN/oxide/Si system without DBR—the insertion of (a) the DBR heterostructures and (b) dark current suppressing MOS contacts enhances the photoresponsivity below the GaN band-gap related UV cut-off energy by almost up to two orders of magnitude. Given the in-situ oxide passivation capability of grown GaN surfaces and the one order of magnitude lower number of superlattice layers in case of higher refractive index contrast (oxide/Si) systems with respect to classical III-N DBR superlattices, virtual GaN substrates on Si via functional oxide buffer systems are thus a promising robust approach for future GaN-based UV detector technologies.« less

  17. Dislocation blocking by AlGaN hot electron injecting layer in the epitaxial growth of GaN terahertz Gunn diode

    NASA Astrophysics Data System (ADS)

    Li, Liang; Yang, Lin'an; Zhang, Jincheng; Hao, Yue

    2013-09-01

    This paper reports an efficient method to improve the crystal quality of GaN Gunn diode with AlGaN hot electron injecting layer (HEI). An evident reduction of screw dislocation and edge dislocation densities is achieved by the strain management and the enhanced lateral growth in high temperature grown AlGaN HEI layer. Compared with the top hot electron injecting layer (THEI) structure, the bottom hot electron injecting layer (BHEI) structure enhances the crystal quality of transit region due to the growth sequence modulation of HEI layer. A high Hall mobility of 2934 cm2/Vs at 77 K, a nearly flat downtrend of Hall mobility at the temperature ranging from 300 to 573 K, a low intensity of ratio of yellow luminescence band to band edge emission, a narrow band edge emission line-width, and a smooth surface morphology are observed for the BHEI structural epitaxy of Gunn diode, which indicates that AlGaN BHEI structure is a promising candidate for fabrication of GaN Gunn diodes in terahertz regime.

  18. Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles

    PubMed Central

    Braniste, Tudor; Tiginyanu, Ion; Horvath, Tibor; Raevschi, Simion; Cebotari, Serghei; Lux, Marco; Haverich, Axel

    2016-01-01

    Summary Nanotechnology is a rapidly growing and promising field of interest in medicine; however, nanoparticle–cell interactions are not yet fully understood. The goal of this work was to examine the interaction between endothelial cells and gallium nitride (GaN) semiconductor nanoparticles. Cellular viability, adhesion, proliferation, and uptake of nanoparticles by endothelial cells were investigated. The effect of free GaN nanoparticles versus the effect of growing endothelial cells on GaN functionalized surfaces was examined. To functionalize surfaces with GaN, GaN nanoparticles were synthesized on a sacrificial layer of zinc oxide (ZnO) nanoparticles using hydride vapor phase epitaxy. The uptake of GaN nanoparticles by porcine endothelial cells was strongly dependent upon whether they were fixed to the substrate surface or free floating in the medium. The endothelial cells grown on surfaces functionalized with GaN nanoparticles demonstrated excellent adhesion and proliferation, suggesting good biocompatibility of the nanostructured GaN. PMID:27826507

  19. Growth process for gallium nitride porous nanorods

    DOEpatents

    Wildeson, Isaac Harshman; Sands, Timothy David

    2015-03-24

    A GaN nanorod and formation method. Formation includes providing a substrate having a GaN film, depositing SiN.sub.x on the GaN film, etching a growth opening through the SiN.sub.x and into the GaN film, growing a GaN nanorod through the growth opening, the nanorod having a nanopore running substantially through its centerline. Focused ion beam etching can be used. The growing can be done using organometallic vapor phase epitaxy. The nanopore diameter can be controlled using the growth opening diameter or the growing step duration. The GaN nanorods can be removed from the substrate. The SiN.sub.x layer can be removed after the growing step. A SiO.sub.x template can be formed on the GaN film and the GaN can be grown to cover the SiO.sub.x template before depositing SiN.sub.x on the GaN film. The SiO.sub.x template can be removed after growing the nanorods.

  20. Growth of GaN on Sapphire via Low-Temperature Deposited Buffer Layer and Realization of p-Type GaN by Mg Doping Followed by Low-Energy Electron Beam Irradiation

    NASA Astrophysics Data System (ADS)

    Amano, Hiroshi

    2015-12-01

    This is a personal history of one of the Japanese researchers engaged in developing a method for growing GaN on a sapphire substrate, paving the way for the realization of smart television and display systems using blue LEDs. The most important work was done in the mid- to late 80s. The background to the author's work and the process by which the technology enabling the growth of GaN and the realization of p-type GaN was established are reviewed.

  1. Study on high breakdown voltage GaN-based vertical field effect transistor with interfacial charge engineering for power applications

    NASA Astrophysics Data System (ADS)

    Du, Jiangfeng; Liu, Dong; Liu, Yong; Bai, Zhiyuan; Jiang, Zhiguang; Liu, Yang; Yu, Qi

    2017-11-01

    A high voltage GaN-based vertical field effect transistor with interfacial charge engineering (GaN ICE-VFET) is proposed and its breakdown mechanism is presented. This vertical FET features oxide trenches which show a fixed negative charge at the oxide/GaN interface. In the off-state, firstly, the trench oxide layer acts as a field plate; secondly, the n-GaN buffer layer is inverted along the oxide/GaN interface and thus a vertical hole layer is formed, which acts as a virtual p-pillar and laterally depletes the n-buffer pillar. Both of them modulate electric field distribution in the device and significantly increase the breakdown voltage (BV). Compared with a conventional GaN vertical FET, the BV of GaN ICE-VFET is increased from 1148 V to 4153 V with the same buffer thickness of 20 μm. Furthermore, the proposed device achieves a great improvement in the tradeoff between BV and on-resistance; and its figure of merit even exceeds the GaN one-dimensional limit.

  2. Vertical GaN power diodes with a bilayer edge termination

    DOE PAGES

    Dickerson, Jeramy R.; Allerman, Andrew A.; Bryant, Benjamin N.; ...

    2015-12-07

    Vertical GaN power diodes with a bilayer edge termination (ET) are demonstrated. The GaN p-n junction is formed on a low threading dislocation defect density (10 4 - 10 5 cm -2) GaN substrate, and has a 15-μm-thick n-type drift layer with a free carrier concentration of 5 × 10 15 cm -3. The ET structure is formed by N implantation into the p+-GaN epilayer just outside the p-type contact to create compensating defects. The implant defect profile may be approximated by a bilayer structure consisting of a fully compensated layer near the surface, followed by a 90% compensated (p)more » layer near the n-type drift region. These devices exhibit avalanche breakdown as high as 2.6 kV at room temperature. In addition simulations show that the ET created by implantation is an effective way to laterally distribute the electric field over a large area. This increases the voltage at which impact ionization occurs and leads to the observed higher breakdown voltages.« less

  3. Nanoporous distributed Bragg reflectors on free-standing nonpolar m-plane GaN

    NASA Astrophysics Data System (ADS)

    Mishkat-Ul-Masabih, Saadat; Luk, Ting Shan; Rishinaramangalam, Ashwin; Monavarian, Morteza; Nami, Mohsen; Feezell, Daniel

    2018-01-01

    We report the fabrication of m-plane nanoporous distributed Bragg reflectors (DBRs) on free-standing GaN substrates. The DBRs consist of 15 pairs of alternating undoped and highly doped n-type ([Si] = ˜3.7 × 1019 cm-3) GaN. Electrochemical (EC) etching was performed to convert the highly doped regions into a porous material, consequently reducing the effective refractive index of the layers. We demonstrate a DBR with peak reflectance greater than 98% at 450 nm with a stopband width of ˜72 nm. The polarization ratio of an incident polarized light source remains identical after reflection from the DBR, verifying that there is no drop in the polarization ratio due to the interfaces between the porous layers. We also quantify the porosity under various EC bias conditions for layers with different doping concentrations. The bias voltage controls the average pore diameter, while the pore density is primarily determined by the doping concentration. The results show that nanoporous DBRs on nonpolar free-standing GaN are promising candidates for high-reflectance, lattice-matched DBR mirrors for GaN-based resonant cavity devices.

  4. Study of GaN nanowires converted from β-Ga2O3 and photoconduction in a single nanowire

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Kumar, Sudheer; Chauhan, Neha; Sakthi Kumar, D.; Kumar, Vikram; Singh, R.

    2017-08-01

    The formation of GaN nanowires from β-Ga2O3 nanowires and photoconduction in a fabricated single GaN nanowire device has been studied. Wurtzite phase GaN were formed from monoclinic β-Ga2O3 nanowires with or without catalyst particles at their tips. The formation of faceted nanostructures from catalyst droplets presented on a nanowire tip has been discussed. The nucleation of GaN phases in β-Ga2O3 nanowires and their subsequent growth due to interfacial strain energy has been examined using a high resolution transmission electron microscope. The high quality of the converted GaN nanowire is confirmed by fabricating single nanowire photoconducting devices which showed ultra high responsivity under ultra-violet illumination.

  5. Band-Bending of Ga-Polar GaN Interfaced with Al2O3 through Ultraviolet/Ozone Treatment.

    PubMed

    Kim, Kwangeun; Ryu, Jae Ha; Kim, Jisoo; Cho, Sang June; Liu, Dong; Park, Jeongpil; Lee, In-Kyu; Moody, Baxter; Zhou, Weidong; Albrecht, John; Ma, Zhenqiang

    2017-05-24

    Understanding the band bending at the interface of GaN/dielectric under different surface treatment conditions is critically important for device design, device performance, and device reliability. The effects of ultraviolet/ozone (UV/O 3 ) treatment of the GaN surface on the energy band bending of atomic-layer-deposition (ALD) Al 2 O 3 coated Ga-polar GaN were studied. The UV/O 3 treatment and post-ALD anneal can be used to effectively vary the band bending, the valence band offset, conduction band offset, and the interface dipole at the Al 2 O 3 /GaN interfaces. The UV/O 3 treatment increases the surface energy of the Ga-polar GaN, improves the uniformity of Al 2 O 3 deposition, and changes the amount of trapped charges in the ALD layer. The positively charged surface states formed by the UV/O 3 treatment-induced surface factors externally screen the effect of polarization charges in the GaN, in effect, determining the eventual energy band bending at the Al 2 O 3 /GaN interfaces. An optimal UV/O 3 treatment condition also exists for realizing the "best" interface conditions. The study of UV/O 3 treatment effect on the band alignments at the dielectric/III-nitride interfaces will be valuable for applications of transistors, light-emitting diodes, and photovoltaics.

  6. Zero lattice mismatch and twin-free single crystalline ScN buffer layers for GaN growth on silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lupina, L.; Zoellner, M. H.; Dietrich, B.

    2015-11-16

    We report the growth of thin ScN layers deposited by plasma-assisted molecular beam epitaxy on Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/Si(111) substrates. Using x-ray diffraction, Raman spectroscopy, and transmission electron microscopy, we find that ScN films grown at 600 °C are single crystalline, twin-free with rock-salt crystal structure, and exhibit a direct optical band gap of 2.2 eV. A high degree of crystalline perfection and a very good lattice matching between ScN and GaN (misfit < 0.1%) makes the ScN/Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3} buffer system a very promising template for the growth of high quality GaN layers on silicon.

  7. Ultra High p-doping Material Research for GaN Based Light Emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vladimir Dmitriev

    2007-06-30

    The main goal of the Project is to investigate doping mechanisms in p-type GaN and AlGaN and controllably fabricate ultra high doped p-GaN materials and epitaxial structures. Highly doped p-type GaN-based materials with low electrical resistivity and abrupt doping profiles are of great importance for efficient light emitters for solid state lighting (SSL) applications. Cost-effective hydride vapor phase epitaxial (HVPE) technology was proposed to investigate and develop p-GaN materials for SSL. High p-type doping is required to improve (i) carrier injection efficiency in light emitting p-n junctions that will result in increasing of light emitting efficiency, (ii) current spreading inmore » light emitting structures that will improve external quantum efficiency, and (iii) parameters of Ohmic contacts to reduce operating voltage and tolerate higher forward currents needed for the high output power operation of light emitters. Highly doped p-type GaN layers and AlGaN/GaN heterostructures with low electrical resistivity will lead to novel device and contact metallization designs for high-power high efficiency GaN-based light emitters. Overall, highly doped p-GaN is a key element to develop light emitting devices for the DOE SSL program. The project was focused on material research for highly doped p-type GaN materials and device structures for applications in high performance light emitters for general illumination P-GaN and p-AlGaN layers and multi-layer structures were grown by HVPE and investigated in terms of surface morphology and structure, doping concentrations and profiles, optical, electrical, and structural properties. Tasks of the project were successfully accomplished. Highly doped GaN materials with p-type conductivity were fabricated. As-grown GaN layers had concentration N{sub a}-N{sub d} as high as 3 x 10{sup 19} cm{sup -3}. Mechanisms of doping were investigated and results of material studies were reported at several International conferences providing better understanding of p-type GaN formation for Solid State Lighting community. Grown p-type GaN layers were used as substrates for blue and green InGaN-based LEDs made by HVPE technology at TDI. These results proved proposed technical approach and facilitate fabrication of highly conductive p-GaN materials by low-cost HVPE technology for solid state lighting applications. TDI has started the commercialization of p-GaN epitaxial materials.« less

  8. Design of high breakdown voltage vertical GaN p-n diodes with high-K/low-K compound dielectric structure for power electronics applications

    NASA Astrophysics Data System (ADS)

    Du, Jiangfeng; Li, Zhenchao; Liu, Dong; Bai, Zhiyuan; Liu, Yang; Yu, Qi

    2017-11-01

    In this work, a vertical GaN p-n diode with a high-K/low-K compound dielectric structure (GaN CD-VGD) is proposed and designed to achieve a record high breakdown voltage (BV) with a low specific on-resistance (Ron,sp). By introducing compound dielectric structure, the electric field near the p-n junction interface is suppressed due to the effects of high-K passivation layer, and a new electric field peak is induced into the n-type drift region, because of a discontinuity of electrical field at the interface of high-K and low-K layer. Therefore the distribution of electric field in GaN p-n diode becomes more uniform and an enhancement of breakdown voltage can be achieved. Numerical simulations demonstrate that GaN CD-VGD with a BV of 10650 V and a Ron,sp of 14.3 mΩ cm2, resulting in a record high figure-of-merit of 8 GW/cm2.

  9. Co-adsorption of water and oxygen on GaN: Effects of charge transfer and formation of electron depletion layer.

    PubMed

    Wang, Qi; Puntambekar, Ajinkya; Chakrapani, Vidhya

    2017-09-14

    Species from ambient atmosphere such as water and oxygen are known to affect electronic and optical properties of GaN, but the underlying mechanism is not clearly known. In this work, we show through careful measurement of electrical resistivity and photoluminescence intensity under various adsorbates that the presence of oxygen or water vapor alone is not sufficient to induce electron transfer to these species. Rather, the presence of both water and oxygen is necessary to induce electron transfer from GaN that leads to the formation of an electron depletion region on the surface. Exposure to acidic gases decreases n-type conductivity due to increased electron transfer from GaN, while basic gases increase n-type conductivity and PL intensity due to reduced charge transfer from GaN. These changes in the electrical and optical properties, as explained using a new electrochemical framework based on the phenomenon of surface transfer doping, suggest that gases interact with the semiconductor surface through electrochemical reactions occurring in an adsorbed water layer present on the surface.

  10. Growth and characterization of spindle-like Ga2O3 nanocrystals by electrochemical reaction in hydrofluoric solution

    NASA Astrophysics Data System (ADS)

    Feng, Lungang; Li, Yufeng; Su, Xilin; Wang, Shuai; Liu, Hao; Wang, Jiangteng; Gong, Zhina; Ding, Wen; Zhang, Ye; Yun, Feng

    2016-12-01

    We report a novel fabrication method of spindle-like gallium oxide (Ga2O3) nanocrystals via two steps processed by electrochemical reaction of the MOVPE-grown GaN epitaxial layer in HF/ethanol (1:6) electrolyte and subsequent heat treatment. Depending on the electrolyte concentration, reaction time and applied voltage, micrometer- to nanometer-size spindle-like gallium fluoride tri-hydrate (GaF3·3H2O) of different densities and geometrical dimensions were formed on the surface of GaN. EDS, XPS and XRD were used to characterize the properties of the material before and after heat treatment. It is found that due to heat treatment at above 600 °C, nanocrystalline Ga2O3 were transformed from the GaF3·3H2O via pyrohydrolysis reaction mechanism. The band gap of ∼5.1 eV of the spindle-like Ga2O3 was measured by the optical absorption spectroscopy.

  11. Oxygen induced strain field homogenization in AlN nucleation layers and its impact on GaN grown by metal organic vapor phase epitaxy on sapphire: An x-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Bläsing, J.; Krost, A.; Hertkorn, J.; Scholz, F.; Kirste, L.; Chuvilin, A.; Kaiser, U.

    2009-02-01

    This paper presents an x-ray study of GaN, which is grown on nominally undoped and oxygen-doped AlN nucleation layers on sapphire substrates by metal organic vapor phase epitaxy. Without additional oxygen doping a trimodal nucleation distribution of AlN is observed leading to inhomogeneous in-plane strain fields, whereas in oxygen-doped layers a homogeneous distribution of nucleation centers is observed. In both types of nucleation layers extremely sharp correlation peaks occur in transverse ω-scans which are attributed to a high density of edge-type dislocations having an in-plane Burgers vector. The correlation peaks are still visible in the (0002) ω-scans of 500 nm GaN which might mislead an observer to conclude incorrectly that there exists an extremely high structural quality. For the undoped nucleation layers depth-sensitive measurements in grazing incidence geometry reveal a strong thickness dependence of the lattice parameter a, whereas no such dependence is observed for doped samples. For oxygen-doped nucleation layers, in cross-sectional transmission electron microscopy images a high density of stacking faults parallel to the substrate surface is found in contrast to undoped nucleation layers where a high density of threading dislocations is visible. GaN of 2.5 μm grown on top of 25 nm AlN nucleation layers with an additional in situ SiN mask show full widths at half maximum of 160″ and 190″ in (0002) and (10-10) high-resolution x-ray diffraction ω-scans, respectively.

  12. Gallium nitride based logpile photonic crystals.

    PubMed

    Subramania, Ganapathi; Li, Qiming; Lee, Yun-Ju; Figiel, Jeffrey J; Wang, George T; Fischer, Arthur J

    2011-11-09

    We demonstrate a nine-layer logpile three-dimensional photonic crystal (3DPC) composed of single crystalline gallium nitride (GaN) nanorods, ∼100 nm in size with lattice constants of 260, 280, and 300 nm with photonic band gap in the visible region. This unique GaN structure is created through a combined approach of a layer-by-layer template fabrication technique and selective metal organic chemical vapor deposition (MOCVD). These GaN 3DPC exhibit a stacking direction band gap characterized by strong optical reflectance between 380 and 500 nm. By introducing a "line-defect" cavity in the fifth (middle) layer of the 3DPC, a localized transmission mode with a quality factor of 25-30 is also observed within the photonic band gap. The realization of a group III nitride 3DPC with uniform features and a band gap at wavelengths in the visible region is an important step toward realizing complete control of the electromagnetic environment for group III nitride based optoelectronic devices.

  13. AlGaN/GaN heterostructures with an AlGaN layer grown directly on reactive-ion-etched GaN showing a high electron mobility (>1300 cm2 V-1 s-1)

    NASA Astrophysics Data System (ADS)

    Yamamoto, Akio; Makino, Shinya; Kanatani, Keito; Kuzuhara, Masaaki

    2018-04-01

    In this study, the metal-organic-vapor-phase-epitaxial growth behavior and electrical properties of AlGaN/GaN structures prepared by the growth of an AlGaN layer on a reactive-ion-etched (RIE) GaN surface without regrown GaN layers were investigated. The annealing of RIE-GaN surfaces in NH3 + H2 atmosphere, employed immediately before AlGaN growth, was a key process in obtaining a clean GaN surface for AlGaN growth, that is, in obtaining an electron mobility as high as 1350 cm2 V-1 s-1 in a fabricated AlGaN/RIE-GaN structure. High-electron-mobility transistors (HEMTs) were successfully fabricated with AlGaN/RIE-GaN wafers. With decreasing density of dotlike defects observed on the surfaces of AlGaN/RIE-GaN wafers, both two-dimensional electron gas properties of AlGaN/RIE-GaN structures and DC characteristics of HEMTs were markedly improved. Since dotlike defect density was markedly dependent on RIE lot, rather than on growth lot, surface contaminations of GaN during RIE were believed to be responsible for the formation of dotlike defects and, therefore, for the inferior electrical properties.

  14. Quantum state engineering with ultra-short-period (AlN)m/(GaN)n superlattices for narrowband deep-ultraviolet detection.

    PubMed

    Gao, Na; Lin, Wei; Chen, Xue; Huang, Kai; Li, Shuping; Li, Jinchai; Chen, Hangyang; Yang, Xu; Ji, Li; Yu, Edward T; Kang, Junyong

    2014-12-21

    Ultra-short-period (AlN)m/(GaN)n superlattices with tunable well and barrier atomic layer numbers were grown by metal-organic vapour phase epitaxy, and employed to demonstrate narrowband deep ultraviolet photodetection. High-resolution transmission electron microscopy and X-ray reciprocal space mapping confirm that superlattices containing well-defined, coherently strained GaN and AlN layers as thin as two atomic layers (∼ 0.5 nm) were grown. Theoretical and experimental results demonstrate that an optical absorption band as narrow as 9 nm (210 meV) at deep-ultraviolet wavelengths can be produced, and is attributable to interband transitions between quantum states along the [0001] direction in ultrathin GaN atomic layers isolated by AlN barriers. The absorption wavelength can be precisely engineered by adjusting the thickness of the GaN atomic layers because of the quantum confinement effect. These results represent a major advance towards the realization of wavelength selectable and narrowband photodetectors in the deep-ultraviolet region without any additional optical filters.

  15. Mechanisms of Loss in Internal Quantum Efficiency in III-Nitride-based Blue-and Green-Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Huang, Li

    The overarching goals of the research conducted for this dissertation have been to understand the scientific reasons for the losses in the internal quantum efficiency (IQE) in Group III-nitride-based blue and especially green light-emitting diodes (LEDs) containing a multi-quantum well (MQW) active region and to simultaneously develop LED epitaxial structures to ameliorate these losses. The p-type AlGaN EBL was determined to be both mandatory and effective in the prevention of electron overflow from the MQW region into the p-type cladding layer and the resultant lowering of the IQE. The overflow phenomenon was partially due to the low concentration (˜ 5 x 1017 cm-3) and mobility (˜ 10 cm2/(V•s)) of the holes injected into the active region. Electroluminescence (EL) studies of LEDs without an EBL revealed a dominant emission from donor-acceptor pair recombination in the p-type GaN layer. The incorporation of a 90 nm compositionally graded In0-0.1 Ga1-0.9N buffer layer between each MQW and n-GaN cladding layer grown on an Al/SiC substrate resulted in an increase in the luminescence intensity and a blue-shift in the emission wavelength, as observed in photoluminescence (PL) spectra. The graded InGaN buffer layer reduced the stress and thus the piezoelectric field across the MQW; this improved the electron/hole overlap that, in turn, resulted in an enhanced radiative recombination rate and an increase in efficiency. A direct correlation was observed between an increase in the IQE measured in temperature-dependent PL (TDPL) and an increase in the roughness of all the upper InGaN QW/GaN barrier interfaces, as determined using cross-sectional transmission electron microscopy of the MQW. These results agreed in general with the average surface roughness values of the pit-free region on the top GaN barrier determined via atomic force microscopy and the average roughness values of all the interfaces in the MQW calculated from the FWHM of the emission peak in the PL spectra acquired at 10 K for LED structures grown on both SiC and GaN substrates. This improvement occurred as a result of carrier localization at the rougher interfaces that, in turn, resulted in shorter carrier lifetimes and faster decay rates, as determined using time-resolved PL. The peak current densities determined from the curves of external quantum efficiency as a function of current density calculated from EL spectra acquired from a set of LEDs having 3 QWs, 5 QWs, and 6 QWs were 63 A/cm2, 78 A/cm2 and 78 A/cm2, respectively. These data indicated that the minority carrier (holes) in our powered devices penetrated into at least the 4th QW from the top p-type cladding layer. The peak emission from these LEDs occurred at 522 nm. The hole density decreased with distance away from the top p-type layer. Finally, a new process route was developed in this research for the epitaxial deposition of GaN(0001) thin films on chemo-mechanically polished GaN(0001) substrates. The latter possessed threading dislocations (TDs) having a density of the order of 5 x 107 cm-2, predominantly edge in character and oriented along [0001]. Step-flow-controlled growth of the films was achieved; thus, no additional TDs were generated at the film/substrate interface. The density of V-defects in InGaN films and in subsequently grown MQWs containing In0.26Ga0.74N wells grown on the GaN substrates was also reduced to within an order of 107 cm -2. The density of the latter defects was determined to be a function of both the density of the TDs and the growth temperature when the latter was > 900 °C. (Abstract shortened by UMI.)

  16. Gallium hydride vapor phase epitaxy of GaN nanowires

    PubMed Central

    2011-01-01

    Straight GaN nanowires (NWs) with diameters of 50 nm, lengths up to 10 μm and a hexagonal wurtzite crystal structure have been grown at 900°C on 0.5 nm Au/Si(001) via the reaction of Ga with NH3 and N2:H2, where the H2 content was varied between 10 and 100%. The growth of high-quality GaN NWs depends critically on the thickness of Au and Ga vapor pressure while no deposition occurs on plain Si(001). Increasing the H2 content leads to an increase in the growth rate, a reduction in the areal density of the GaN NWs and a suppression of the underlying amorphous (α)-like GaN layer which occurs without H2. The increase in growth rate with H2 content is a direct consequence of the reaction of Ga with H2 which leads to the formation of Ga hydride that reacts efficiently with NH3 at the top of the GaN NWs. Moreover, the reduction in the areal density of the GaN NWs and suppression of the α-like GaN layer is attributed to the reaction of H2 with Ga in the immediate vicinity of the Au NPs. Finally, the incorporation of H2 leads to a significant improvement in the near band edge photoluminescence through a suppression of the non-radiative recombination via surface states which become passivated not only via H2, but also via a reduction of O2-related defects. PMID:21711801

  17. Gallium hydride vapor phase epitaxy of GaN nanowires.

    PubMed

    Zervos, Matthew; Othonos, Andreas

    2011-03-28

    Straight GaN nanowires (NWs) with diameters of 50 nm, lengths up to 10 μm and a hexagonal wurtzite crystal structure have been grown at 900°C on 0.5 nm Au/Si(001) via the reaction of Ga with NH3 and N2:H2, where the H2 content was varied between 10 and 100%. The growth of high-quality GaN NWs depends critically on the thickness of Au and Ga vapor pressure while no deposition occurs on plain Si(001). Increasing the H2 content leads to an increase in the growth rate, a reduction in the areal density of the GaN NWs and a suppression of the underlying amorphous (α)-like GaN layer which occurs without H2. The increase in growth rate with H2 content is a direct consequence of the reaction of Ga with H2 which leads to the formation of Ga hydride that reacts efficiently with NH3 at the top of the GaN NWs. Moreover, the reduction in the areal density of the GaN NWs and suppression of the α-like GaN layer is attributed to the reaction of H2 with Ga in the immediate vicinity of the Au NPs. Finally, the incorporation of H2 leads to a significant improvement in the near band edge photoluminescence through a suppression of the non-radiative recombination via surface states which become passivated not only via H2, but also via a reduction of O2-related defects.

  18. MOCVD growth and study of thin films of indium nitride

    NASA Astrophysics Data System (ADS)

    Jain, Abhishek

    This thesis is focused on a study of MOCVD growth of InN with the goal of providing new information on the effects of growth conditions and buffer/substrate materials on InN film properties. Initial studies, using both (111) Si and (0001) sapphire substrates, identified an optimum growth temperature window of 540--560°C for the formation of stable InN films. When attempting to grow InN films on sapphire with thicknesses greater than approximately 150 nanometers using an AlN buffer layer, the InN films were observed to delaminate from the buffer/substrate at growth temperature. The combined effect of compressive stress due to high lattice mismatch between InN and AlN (˜14%) and tensile stress due to grain coalescence along with the relatively weak bond strength of InN compared to GaN and AlN, is believed to cause the InN film to crack along the interface and delaminate. To further investigate the effect of the buffer layer on InN growth, studies were carried out using GaN films grown on sapphire as the growth template. Recent MBE results had indicated a significant difference in the thermal stability and growth mode of In-polar and N-polar InN, with improved properties reported for N-polar material grown on N-polar GaN. MOCVD growth of N-polar GaN is very difficult; consequently, all of the results reported in the literature for InN growth on GaN were likely carried out on Ga-polar material resulting in films with a high surface roughness. By utilizing N-polar and Ga-polar GaN films, it was possible to produce N-polar and In-polar InN films by MOCVD, as determined by convergent beam electron diffraction (CBED) analysis. Furthermore, the polarity was found to dramatically alter the surface roughness and growth mode of the InN films with enhanced lateral growth and reduced surface roughness obtained for N-polar InN. A qualitative model was proposed to explain the different growth mechanisms observed for In-polar and N-polar InN. In spite of the improvements in surface morphology obtained with growth of N-polar InN, delamination at the InN/GaN interface was still observed in these films, and was also present in In-polar InN samples. Attempts were made to further reduce the lattice mismatch and improve the adhesion between InN and GaN by using a compositionally graded InGaN buffer layer. The fabrication of InGaN over its entire composition range is challenging since the optimal growth parameters window for InGaN varies with composition and film quality is strongly dependent on temperature and precursor flow rates. The structural properties of the InN films grown on the graded InGaN layers were comparable to films grown directly on GaN, however, the film adhesion was significantly improved with no evidence of interfacial cracks between the InN and GaN. These preliminary results indicate that graded InGaN layers can be used to improve the adhesion of InN on both Ga-polar and N-polar GaN, however, further work is needed to develop graded InGaN buffer layers or constant composition InGaN interlayers with improved structural properties for InN growth. (Abstract shortened by UMI.)

  19. Size dictated thermal conductivity of GaN

    DOE PAGES

    Thomas Edwin Beechem; McDonald, Anthony E.; Fuller, Elliot James; ...

    2016-04-01

    The thermal conductivity on n- and p-type doped gallium nitride (GaN) epilayers having thickness of 3-4 μm was investigated using time domain thermoreflectance (TDTR). Despite possessing carrier concentrations ranging across 3 decades (10 15 – 10 18 cm –3), n-type layers exhibit a nearly constant thermal conductivity of 180 W/mK. The thermal conductivity of p-type epilayers, in contrast, reduces from 160 to 110 W/mK with increased doping. These trends–and their overall reduction relative to bulk–are explained leveraging established scattering models where it is shown that size effects play a primary role in limiting thermal conductivity for layers even tens ofmore » microns thick. GaN device layers, even of pristine quality, will therefore exhibit thermal conductivities less than the bulk value of 240 W/mK owing to their finite thickness.« less

  20. InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers.

    PubMed

    Lv, Wenbin; Wang, Lai; Wang, Jiaxing; Hao, Zhibiao; Luo, Yi

    2012-11-07

    InGaN/GaN multilayer quantum dot (QD) structure is a potential type of active regions for yellow-green light-emitting diodes (LEDs). The surface morphologies and crystalline quality of GaN barriers are critical to the uniformity of InGaN QD layers. While GaN barriers were grown in multi-QD layers, we used improved growth parameters by increasing the growth temperature and switching the carrier gas from N2 to H2 in the metal organic vapor phase epitaxy. As a result, a 10-layer InGaN/GaN QD LED is demonstrated successfully. The transmission electron microscopy image shows the uniform multilayer InGaN QDs clearly. As the injection current increases from 5 to 50 mA, the electroluminescence peak wavelength shifts from 574 to 537 nm.

  1. InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers

    PubMed Central

    2012-01-01

    InGaN/GaN multilayer quantum dot (QD) structure is a potential type of active regions for yellow-green light-emitting diodes (LEDs). The surface morphologies and crystalline quality of GaN barriers are critical to the uniformity of InGaN QD layers. While GaN barriers were grown in multi-QD layers, we used improved growth parameters by increasing the growth temperature and switching the carrier gas from N2 to H2 in the metal organic vapor phase epitaxy. As a result, a 10-layer InGaN/GaN QD LED is demonstrated successfully. The transmission electron microscopy image shows the uniform multilayer InGaN QDs clearly. As the injection current increases from 5 to 50 mA, the electroluminescence peak wavelength shifts from 574 to 537 nm. PMID:23134721

  2. Strain relaxation of thick (11–22) semipolar InGaN layer for long wavelength nitride-based device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jaehwan; Min, Daehong; Jang, Jongjin

    2014-10-28

    In this study, the properties of thick stress-relaxed (11–22) semipolar InGaN layers were investigated. Owing to the inclination of growth orientation, misfit dislocations (MDs) occurred at the heterointerface when the strain state of the (11–22) semipolar InGaN layers reached the critical point. We found that unlike InGaN layers based on polar and nonpolar growth orientations, the surface morphologies of the stress-relaxed (11–22) semipolar InGaN layers did not differ from each other and were similar to the morphology of the underlying GaN layer. In addition, misfit strain across the whole InGaN layer was gradually relaxed by MD formation at the heterointerface.more » To minimize the effect of surface roughness and defects in GaN layers on the InGaN layer, we conducted further investigation on a thick (11–22) semipolar InGaN layer grown on an epitaxial lateral overgrown GaN template. We found that the lateral indium composition across the whole stress-relaxed InGaN layer was almost uniform. Therefore, thick stress-relaxed (11–22) semipolar InGaN layers are suitable candidates for use as underlying layers in long-wavelength devices, as they can be used to control strain accumulation in the heterostructure active region without additional influence of surface roughness.« less

  3. Growth kinetics for temperature-controlled atomic layer deposition of GaN using trimethylgallium and remote-plasma-excited NH3

    NASA Astrophysics Data System (ADS)

    Pansila, P.; Kanomata, K.; Miura, M.; Ahmmad, B.; Kubota, S.; Hirose, F.

    2015-12-01

    Fundamental surface reactions in the atomic layer deposition of GaN with trimethylgallium (TMG) and plasma-excited NH3 are investigated by multiple-internal-reflection infrared absorption spectroscopy (MIR-IRAS) at surface temperatures varying from room temperature (RT) to 400 °C. It is found that TMG is saturated at RT on GaN surfaces when the TMG exposure exceeds 8 × 104 Langmuir (L), where 1 L corresponds to 1.33 × 10-4 Pa s (or 1.0 × 10-6 Torr s), and its saturation density reaches the maximum value at RT. Nitridation with the plasma-excited NH3 on the TMG-saturated GaN surface is investigated by X-ray photoelectron spectroscopy (XPS). The nitridation becomes effective at surface temperatures in excess of 100 °C. The reaction models of TMG adsorption and nitridation on the GaN surface are proposed in this paper. Based on the surface analysis, a temperature-controlled ALD process consisting of RT-TMG adsorption and nitridation at 115 °C is examined, where the growth per cycle of 0.045 nm/cycle is confirmed. XPS analysis indicates that all N atoms are bonded as GaN. Atomic force microscopy indicates an average roughness of 0.23 nm. We discuss the reaction mechanism of GaN ALD in the low-temperature region at around 115 °C with TMG and plasma-excited NH3.

  4. Processing for Highly Efficient AlGaN/GaN Emitters

    DTIC Science & Technology

    2009-09-09

    effects of SiCl4 plasma treatment and subsequent cleaning in BOE, HCl, and NH4OH solutions on n-GaN and n- AlGaN surfaces using XPS and AES. The...was the as-grown GaN layer without any surface treatment while sample 2 was treated with SiCl4 plasma in a reactive ion etching (RIE) system with a...plasma self-bias voltage of −300 V for 60 s. Samples 3, 4, and 5 were treated with SiCl4 plasma and followed by a 2-min dip in NH4OH, HCl, and BOE

  5. Ion implantation damage, annealing and dopant activation in epitaxial gallium nitride

    NASA Astrophysics Data System (ADS)

    Suvkhanov, Agajan

    2001-07-01

    Successful n- and p-doping of GaN is an extremely important technological problem. More recently, ion implantation has been used to achieve both n- and p-type GaN. The ion implantation process is accompanied by the presence of radiation defects as the result of the ion-solid interactions. The temperatures (above 1000°C) required for recovery of the implantation induced damage and dopant activation strongly affect the GaN's surface integrity due to the significant nitrogen vapor pressure. Preservation of the surface integrity of GaN during high temperature post-implantation annealing is one of the key issues in the fabrication of GaN-based light-emitting devices. The radiation damage build-up in the implanted GaN layers has been investigated as a function of ion dose and the substrate's temperature. Results of measurements of structural damage by the Rutherford backscattering/Channeling (RBS/C) and the spectroscopic ellipsometry (SE) techniques have demonstrated the complex nature of the damage build-up. Analysis of GaN implanted at high temperature has demonstrated the presence of competing processes of layer-by-layer damage build-up and defect annihilation. Using a capping layer and annealing in a sealed quartz capsule filled with dry nitrogen can preserve the integrity of the GaN's surface. In this work the ion-implanted GaN samples were capped with 40 run MOCVD (Metal Organic Chemical Vapor Deposition) grown AlN film prior to annealing. The results of this work showed the advantage of high-temperature annealing of implanted GaN in a quartz capsule with nitrogen ambient, as compared with annealing in argon and nitrogen gas flow. Partial to complete decomposition of the AlN cap and underlying GaN has been observed by RBS/C and SEM (Scanning electron microscopy) for the samples annealed in flowing argon, as well as for the samples processed in flowing nitrogen. Encapsulation with nitrogen overpressure prevented the decomposition of the AlN capping film and the GaN crystal, and made it possible to achieve optical activation of the implanted Mg + and Si+ ions. PL measurements at 16 K of GaN samples implanted with Mg+ and annealed in a capsule showed three relatively strong peaks at 211, 303, and 395 meV from the band-edge emission. The relative intensity of the "yellow" band emission (i.e. defect band) was several times lower in the case of annealing in a sealed capsule as compared to that of open anneals in flowing argon or nitrogen. A separate set of specially-grown GaN samples was used for low temperature (1.8 K) PL analysis of the activation properties of Mg+-implanted and Mg+/P+-implanted samples. The samples were annealed in Rapid thermal processor (RTP) at 1300°C for 10 s with AlON encapsulation in flowing N2. The Mg+ implants showed good optical activation, producing a dose-correlated acceptor bound exciton peak with 12.2 meV localization energy, and donor-to-acceptor and band-to-acceptor peaks at 3.270 and 3.284 eV, respectively. The spectroscopic Mg acceptor binding energy was found to be 224 meV. A broad peak at 2.35 eV is attributed to implantation-induced defects stable in p-type material.

  6. Ultraviolet light-absorbing and emitting diodes consisting of a p-type transparent-semiconducting NiO film deposited on an n-type GaN homoepitaxial layer

    NASA Astrophysics Data System (ADS)

    Nakai, Hiroshi; Sugiyama, Mutsumi; Chichibu, Shigefusa F.

    2017-05-01

    Gallium nitride (GaN) and related (Al,Ga,In)N alloys provide practical benefits in the production of light-emitting diodes (LEDs) and laser diodes operating in ultraviolet (UV) to green wavelength regions. However, obtaining low resistivity p-type AlN or AlGaN of large bandgap energies (Eg) is a critical issue in fabricating UV and deep UV-LEDs. NiO is a promising candidate for useful p-type transparent-semiconducting films because its Eg is 4.0 eV and it can be doped into p-type conductivity of sufficiently low resistivity. By using these technologies, heterogeneous junction diodes consisting of a p-type transparent-semiconducting polycrystalline NiO film on an n-type single crystalline GaN epilayer on a low threading-dislocation density, free-standing GaN substrate were fabricated. The NiO film was deposited by using the conventional RF-sputtering method, and the GaN homoepitaxial layer was grown by metalorganic vapor phase epitaxy. They exhibited a significant photovoltaic effect under UV light and also exhibited an electroluminescence peak at 3.26 eV under forward-biased conditions. From the conduction and valence band (EV) discontinuities, the NiO/GaN heterointerface is assigned to form a staggered-type (TYPE-II) band alignment with the EV of NiO higher by 2.0 eV than that of GaN. A rectifying property that is consistent with the proposed band diagram was observed in the current-voltage characteristics. These results indicate that polycrystalline NiO functions as a hole-extracting and injecting layer of UV optoelectronic devices.

  7. Role of low-temperature AlGaN interlayers in thick GaN on silicon by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Fritze, S.; Drechsel, P.; Stauss, P.; Rode, P.; Markurt, T.; Schulz, T.; Albrecht, M.; Bläsing, J.; Dadgar, A.; Krost, A.

    2012-06-01

    Thin AlGaN interlayers have been grown into a thick GaN stack on Si substrates to compensate tensile thermal stress and significantly improve the structural perfection of the GaN. In particular, thicker interlayers reduce the density in a-type dislocations as concluded from x-ray diffraction (XRD) measurements. Beyond an interlayer thickness of 28 nm plastic substrate deformation occurs. For a thick GaN stack, the first two interlayers serve as strain engineering layers to obtain a crack-free GaN structure, while a third strongly reduces the XRD ω-(0002)-FWHM. The vertical strain and quality profile determined by several XRD methods demonstrates the individual impact of each interlayer.

  8. The effect of surfactants on epitaxial growth of gallium nitride from gas phase in the Ga-HCl-NH3-H2-Ar system

    NASA Astrophysics Data System (ADS)

    Zhilyaev, Yu. V.; Zelenin, V. V.; Orlova, T. A.; Panteleev, V. N.; Poletaev, N. K.; Rodin, S. N.; Snytkina, S. A.

    2015-05-01

    We have studied epitaxial layers of gallium nitride (GaN) in a template composition grown by surfactant-mediated hydride-chloride vapor phase epitaxy. The surfactant component was provided by 5 mass % additives of antimony and indium to the source of gallium. Comparative analysis of the obtained results shows evidence of the positive influence of surfactants on the morphology of epitaxial GaN layers.

  9. Increase the threshold voltage of high voltage GaN transistors by low temperature atomic hydrogen treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erofeev, E. V., E-mail: erofeev@micran.ru; Fedin, I. V.; Kutkov, I. V.

    High-electron-mobility transistors (HEMTs) based on AlGaN/GaN epitaxial heterostructures are a promising element base for the fabrication of high voltage electronic devices of the next generation. This is caused by both the high mobility of charge carriers in the transistor channel and the high electric strength of the material, which makes it possible to attain high breakdown voltages. For use in high-power switches, normally off-mode GaN transistors operating under enhancement conditions are required. To fabricate normally off GaN transistors, one most frequently uses a subgate region based on magnesium-doped p-GaN. However, optimization of the p-GaN epitaxial-layer thickness and the doping levelmore » makes it possible to attain a threshold voltage of GaN transistors close to V{sub th} = +2 V. In this study, it is shown that the use of low temperature treatment in an atomic hydrogen flow for the p-GaN-based subgate region before the deposition of gate-metallization layers makes it possible to increase the transistor threshold voltage to V{sub th} = +3.5 V. The effects under observation can be caused by the formation of a dipole layer on the p-GaN surface induced by the effect of atomic hydrogen. The heat treatment of hydrogen-treated GaN transistors in a nitrogen environment at a temperature of T = 250°C for 12 h reveals no degradation of the transistor’s electrical parameters, which can be caused by the formation of a thermally stable dipole layer at the metal/p-GaN interface as a result of hydrogenation.« less

  10. Strained layer relaxation effect on current crowding and efficiency improvement of GaN based LED

    NASA Astrophysics Data System (ADS)

    Aurongzeb, Deeder

    2012-02-01

    Efficiency droop effect of GaN based LED at high power and high temperature is addressed by several groups based on career delocalization and photon recycling effect(radiative recombination). We extend the previous droop models to optical loss parameters. We correlate stained layer relaxation at high temperature and high current density to carrier delocalization. We propose a third order model and show that Shockley-Hall-Read and Auger recombination effect is not enough to account for the efficiency loss. Several strained layer modification scheme is proposed based on the model.

  11. Electronic and optical device applications of hollow cathode plasma assisted atomic layer deposition based GaN thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolat, Sami, E-mail: bolat@ee.bilkent.edu.tr; Tekcan, Burak; Ozgit-Akgun, Cagla

    2015-01-15

    Electronic and optoelectronic devices, namely, thin film transistors (TFTs) and metal–semiconductor–metal (MSM) photodetectors, based on GaN films grown by hollow cathode plasma-assisted atomic layer deposition (PA-ALD) are demonstrated. Resistivity of GaN thin films and metal-GaN contact resistance are investigated as a function of annealing temperature. Effect of the plasma gas and postmetallization annealing on the performances of the TFTs as well as the effect of the annealing on the performance of MSM photodetectors are studied. Dark current to voltage and responsivity behavior of MSM devices are investigated as well. TFTs with the N{sub 2}/H{sub 2} PA-ALD based GaN channels aremore » observed to have improved stability and transfer characteristics with respect to NH{sub 3} PA-ALD based transistors. Dark current of the MSM photodetectors is suppressed strongly after high-temperature annealing in N{sub 2}:H{sub 2} ambient.« less

  12. Flexible GaN for High Performance, Strainable Radio Frequency Devices (Postprint)

    DTIC Science & Technology

    2017-11-02

    devices on van der Waals (vdW) layers has been facilitated by the recent avail - ability of high -quality atomically smooth BN and graphene epi- taxial...AFRL-RX-WP-JA-2017-0333 FLEXIBLE GaN FOR HIGH PERFORMANCE, STRAINABLE RADIO FREQUENCY DEVICES (POSTPRINT) Elizabeth A. Moore and Timothy...2. REPORT TYPE 3. DATES COVERED (From - To) 5 April 2017 Interim 8 September 2014 – 5 March 2017 4. TITLE AND SUBTITLE FLEXIBLE GaN FOR HIGH

  13. Optical waveguiding properties into porous gallium nitride structures investigated by prism coupling technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alshehri, Bandar; Dogheche, Elhadj, E-mail: elhadj.dogheche@univ-valenciennes.fr; Lee, Seung-Min

    2014-08-04

    In order to modulate the refractive index and the birefringence of Gallium Nitride (GaN), we have developed a chemical etching method to perform porous structures. The aim of this research is to demonstrate that optical properties of GaN can be tuned by controlling the pores density. GaN films are prepared on sapphire by metal organic chemical vapor deposition and the microstructure is characterized by transmission electron microscopy, and scanning electron microscope analysis. Optical waveguide experiment is demonstrated here to determine the key properties as the ordinary (n{sub 0}) and extraordinary (n{sub e}) refractive indices of etched structures. We report heremore » the dispersion of refractive index for porous GaN and compare it to the bulk material. We observe that the refractive index decreases when the porous density p is increased: results obtained at 0.975 μm have shown that the ordinary index n{sub 0} is 2.293 for a bulk layer and n{sub 0} is 2.285 for a pores density of 20%. This value corresponds to GaN layer with a pore size of 30 nm and inter-distance of 100 nm. The control of the refractive index into GaN is therefore fundamental for the design of active and passive optical devices.« less

  14. Integrating AlGaN/GaN high electron mobility transistor with Si: A comparative study of integration schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, Nagaboopathy; Raghavan, Srinivasan; Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012

    2015-10-07

    AlGaN/GaN high electron mobility transistor stacks deposited on a single growth platform are used to compare the most common transition, AlN to GaN, schemes used for integrating GaN with Si. The efficiency of these transitions based on linearly graded, step graded, interlayer, and superlattice schemes on dislocation density reduction, stress management, surface roughness, and eventually mobility of the 2D-gas are evaluated. In a 500 nm GaN probe layer deposited, all of these transitions result in total transmission electron microscopy measured dislocations densities of 1 to 3 × 10{sup 9}/cm{sup 2} and <1 nm surface roughness. The 2-D electron gas channels formed atmore » an AlGaN-1 nm AlN/GaN interface deposited on this GaN probe layer all have mobilities of 1600–1900 cm{sup 2}/V s at a carrier concentration of 0.7–0.9 × 10{sup 13}/cm{sup 2}. Compressive stress and changes in composition in GaN rich regions of the AlN-GaN transition are the most effective at reducing dislocation density. Amongst all the transitions studied the step graded transition is the one that helps to implement this feature of GaN integration in the simplest and most consistent manner.« less

  15. Growth diagram of N-face GaN (0001{sup ¯}) grown at high rate by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okumura, Hironori, E-mail: okumura@engineering.ucsb.edu; McSkimming, Brian M.; Speck, James S.

    2014-01-06

    N-face GaN was grown on free-standing GaN (0001{sup ¯}) substrates at a growth rate of 1.5 μm/h using plasma-assisted molecular beam epitaxy. Difference in growth rate between (0001{sup ¯}) and (0001) oriented GaN depends on nitrogen plasma power, and the (0001{sup ¯}) oriented GaN had only 70% of the growth rate of the (0001) oriented GaN at 300 W. Unintentional impurity concentrations of silicon, carbon, and oxygen were 2 × 10{sup 15}, 2 × 10{sup 16}, and 7 × 10{sup 16} cm{sup −3}, respectively. A growth diagram was constructed that shows the dependence of the growth modes on the difference in the Ga and active nitrogen flux, Φ{sub Ga} − Φ{submore » N*}, and the growth temperature. At high Φ{sub Ga} − Φ{sub N*} (Φ{sub Ga} ≫ Φ{sub N*}), two-dimensional (step-flow and layer-by-layer) growth modes were realized. High growth temperature (780 °C) expanded the growth window of the two-dimensional growth modes, achieving a surface with rms roughness of 0.48 nm without Ga droplets.« less

  16. Optimal activation condition of nonpolar a-plane p-type GaN layers grown on r-plane sapphire substrates by MOCVD

    NASA Astrophysics Data System (ADS)

    Son, Ji-Su; Hyeon Baik, Kwang; Gon Seo, Yong; Song, Hooyoung; Hoon Kim, Ji; Hwang, Sung-Min; Kim, Tae-Geun

    2011-07-01

    The optimal conditions of p-type activation for nonpolar a-plane (1 1 -2 0) p-type GaN films on r-plane (1 -1 0 2) sapphire substrates with various off-axis orientations have been investigated. Secondary ion mass spectrometry (SIMS) measurements show that Mg doping concentrations of 6.58×10 19 cm -3 were maintained in GaN during epitaxial growth. The samples were activated at various temperatures and periods of time in air, oxygen (O 2) and nitrogen (N 2) gas ambient by conventional furnace annealing (CFA) and rapid thermal annealing (RTA). The activation of nonpolar a-plane p-type GaN was successful in similar annealing times and temperatures when compared with polar c-plane p-type GaN. However, activation ambient of nonpolar a-plane p-type GaN was clearly different, where a-plane p-type GaN was effectively activated in air ambient. Photoluminescence shows that the optical properties of Mg-doped a-plane GaN samples are enhanced when activated in air ambient.

  17. Fabrication and characterization of GaN-based light-emitting diodes without pre-activation of p-type GaN.

    PubMed

    Hu, Xiao-Long; Wang, Hong; Zhang, Xi-Chun

    2015-01-01

    We fabricated GaN-based light-emitting diodes (LEDs) without pre-activation of p-type GaN. During the fabrication process, a 100-nm-thick indium tin oxide film was served as the p-type contact layer and annealed at 500°C in N2 ambient for 20 min to increase its transparency as well as to activate the p-type GaN. The electrical measurements showed that the LEDs were featured by a lower forward voltage and higher wall-plug efficiency in comparison with LEDs using pre-activation of p-type GaN. We discussed the mechanism of activation of p-type GaN at 500°C in N2 ambient. Furthermore, x-ray photoemission spectroscopy examinations were carried out to study the improved electrical performances of the LEDs without pre-activation of p-type GaN.

  18. III-nitride core–shell nanorod array on quartz substrates

    PubMed Central

    Bae, Si-Young; Min, Jung-Wook; Hwang, Hyeong-Yong; Lekhal, Kaddour; Lee, Ho-Jun; Jho, Young-Dahl; Lee, Dong-Seon; Lee, Yong-Tak; Ikarashi, Nobuyuki; Honda, Yoshio; Amano, Hiroshi

    2017-01-01

    We report the fabrication of near-vertically elongated GaN nanorods on quartz substrates. To control the preferred orientation and length of individual GaN nanorods, we combined molecular beam epitaxy (MBE) with pulsed-mode metal–organic chemical vapor deposition (MOCVD). The MBE-grown buffer layer was composed of GaN nanograins exhibiting an ordered surface and preferred orientation along the surface normal direction. Position-controlled growth of the GaN nanorods was achieved by selective-area growth using MOCVD. Simultaneously, the GaN nanorods were elongated by the pulsed-mode growth. The microstructural and optical properties of both GaN nanorods and InGaN/GaN core–shell nanorods were then investigated. The nanorods were highly crystalline and the core–shell structures exhibited optical emission properties, indicating the feasibility of fabricating III-nitride nano-optoelectronic devices on amorphous substrates. PMID:28345641

  19. Characterization of Pb-Doped GaN Thin Films Grown by Thermionic Vacuum Arc

    NASA Astrophysics Data System (ADS)

    Özen, Soner; Pat, Suat; Korkmaz, Şadan

    2018-03-01

    Undoped and lead (Pb)-doped gallium nitride (GaN) thin films have been deposited by a thermionic vacuum arc (TVA) method. Glass and polyethylene terephthalate were selected as optically transparent substrates. The structural, optical, morphological, and electrical properties of the deposited thin films were investigated. These physical properties were interpreted by comparison with related analysis methods. The crystalline structure of the deposited GaN thin films was hexagonal wurtzite. The optical bandgap energy of the GaN and Pb-doped GaN thin films was found to be 3.45 eV and 3.47 eV, respectively. The surface properties of the deposited thin films were imaged using atomic force microscopy and field-emission scanning electron microscopy, revealing a nanostructured, homogeneous, and granular surface structure. These results confirm that the TVA method is an alternative layer deposition system for Pb-doped GaN thin films.

  20. Free and bound excitons in thin wurtzite GaN layers on sapphire

    NASA Astrophysics Data System (ADS)

    Merz, C.; Kunzer, M.; Kaufmann, U.; Akasaki, I.; Amano, H.

    1996-05-01

    Free and bound excitons have been studied by photoluminescence in thin (0268-1242/11/5/010/img8) wurtzite-undoped GaN, n-type GaN:Si as well as p-type GaN:Mg and GaN:Zn layers grown by metal-organic chemical vapour phase deposition (MOCVD). An accurate value for the free A exciton binding energy and an estimate for the isotropically averaged hole mass of the uppermost 0268-1242/11/5/010/img9 valence band are deduced from the data on undoped samples. The acceptor-doped samples reveal recombination lines which are attributed to excitons bound to 0268-1242/11/5/010/img10 and 0268-1242/11/5/010/img11 respectively. These lines are spectrally clearly separated and the exciton localization energies are in line with Haynes' rule. Whenever a comparison is possible, it is found that the exciton lines in these thin MOCVD layers are ultraviolet-shifted by 20 to 25 meV as compared to quasi-bulk (0268-1242/11/5/010/img12) samples. This effect is interpreted in terms of the compressive hydrostatic stress component which thin GaN layers experience when grown on sapphire with an AlN buffer layer.

  1. High-voltage vertical GaN Schottky diode enabled by low-carbon metal-organic chemical vapor deposition growth

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Chu, R.; Li, R.; Chen, M.; Chang, R.; Hughes, B.

    2016-02-01

    Vertical GaN Schottky barrier diode (SBD) structures were grown by metal-organic chemical vapor deposition on free-standing GaN substrates. The carbon doping effect on SBD performance was studied by adjusting the growth conditions and spanning the carbon doping concentration between ≤3 × 1015 cm-3 and 3 × 1019 cm-3. Using the optimized growth conditions that resulted in the lowest carbon incorporation, a vertical GaN SBD with a 6-μm drift layer was fabricated. A low turn-on voltage of 0.77 V with a breakdown voltage over 800 V was obtained from the device.

  2. Structural investigations of GaN grown by low-pressure chemical vapor deposition on 6H{endash}SiC and Al{sub 2}O{sub 3} from GaCl{sub 3} and NH{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koynov, S.; Topf, M.; Fischer, S.

    1997-08-01

    GaN films grown on (0001) 6H{endash}SiC and (0001) Al{sub 2}O{sub 3} substrates using low-pressure chemical vapor deposition with GaCl{sub 3} and NH{sub 3} as precursors are comparatively explored by optical, scanning tunneling, and transmission electron microscopy. Independent of the substrate material used, the surface of the GaN layers is covered by hexagonally shaped islands. For GaN on 6H{endash}SiC, the islands are larger in diameter ({approx}50 {mu}m) and rather uniformly distributed. An atomically flat interface is observed for GaN on Al{sub 2}O{sub 3} in contrast to GaN grown on 6H{endash}SiC, where the interface is characterized by large steps. For both substrates,more » faceted holes (named as pinholes) are observed in near-surface regions of the GaN layers occurring with a density of about 7{times}10{sup 8} cm{sup {minus}2}. No unequivocal correlation between the density of pinholes and the density of threading dislocations ({approx}1.6{times}10{sup 10} cm{sup {minus}2} for GaN/Al{sub 2}O{sub 3} and {approx}4{times}10{sup 9} cm{sup {minus}2} for GaN/6H{endash}SiC) can be found. Rather, different types of defects are identified to be correlated with the pinholes, implying a dislocation-independent mechanism for the pinhole formation. Despite the small lattice mismatch between GaN and 6H{endash}SiC, the pronounced original surface roughness of this substrate material is believed to account for both the marked interfacial roughness and the still existing high density of threading dislocations. {copyright} {ital 1997 American Institute of Physics.}« less

  3. Ion channeling studies on mixed phases formed in metalorganic chemical vapor deposition grown Mg-doped GaN on Al2O3(0001)

    NASA Astrophysics Data System (ADS)

    Sundaravel, B.; Luo, E. Z.; Xu, J. B.; Wilson, I. H.; Fong, W. K.; Wang, L. S.; Surya, C.

    2000-01-01

    Rutherford backscattering spectrometry and ion channeling were used to determine the relative quantities of wurtzite and zinc-blende phases in metalorganic chemical vapor deposition grown Mg-doped GaN(0001) on an Al2O3(0001) substrate with a GaN buffer layer. Offnormal axial channeling scans were used. High-resolution x-ray diffraction measurements also confirmed the presence of mixed phases. The in-plane orientation was found to be GaN[11¯0]‖GaN[112¯0]‖Al2O3[112¯0]. The effects of rapid thermal annealing on the relative phase content, thickness and crystalline quality of the GaN epilayer were also studied.

  4. GaN grown on nano-patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Jing, Kong; Meixin, Feng; Jin, Cai; Hui, Wang; Huaibing, Wang; Hui, Yang

    2015-04-01

    High-quality gallium nitride (GaN) film was grown on nano-patterned sapphire substrates (NPSS) and investigated using XRD and SEM. It was found that the optimum thickness of the GaN buffer layer on the NPSS is 15 nm, which is thinner than that on micro-patterned sapphire substrates (MPSS). An interesting phenomenon was observed for GaN film grown on NPSS:GaN mainly grows on the trench regions and little grows on the sidewalls of the patterns at the initial growth stage, which is dramatically different from GaN grown on MPSS. In addition, the electrical and optical properties of LEDs grown on NPSS were characterized. Project supported by the Suzhou Nanojoin Photonics Co., Ltd and the High-Tech Achievements Transformation of Jiangsu Province, China (No.BA2012010).

  5. A high open-circuit voltage gallium nitride betavoltaic microbattery

    NASA Astrophysics Data System (ADS)

    Cheng, Zaijun; Chen, Xuyuan; San, Haisheng; Feng, Zhihong; Liu, Bo

    2012-07-01

    A high open-circuit voltage betavoltaic microbattery based on a gallium nitride (GaN) p-i-n homojunction is demonstrated. As a beta-absorbing layer, the low electron concentration of the n-type GaN layer is achieved by the process of Fe compensation doping. Under the irradiation of a planar solid 63Ni source with activity of 0.5 mCi, the open-circuit voltage of the fabricated microbattery with 2 × 2 mm2 area reaches as much as 1.64 V, which is the record value reported for betavoltaic batteries with 63Ni source, the short-circuit current was measured as 568 pA and the conversion effective of 0.98% was obtained. The experimental results suggest that GaN is a high-potential candidate for developing the betavoltaic microbattery.

  6. Advanced processing of gallium nitride and gallium nitride-based devices: Ultra-high temperature annealing and implantation incorporation

    NASA Astrophysics Data System (ADS)

    Yu, Haijiang

    This dissertation is focused on three fields: ultra-high temperature annealing of GaN, activation of implanted GaN and the implantation incorporation into AlGaN/GaN HEMT processing, with an aim to increase the performance, manufacturability and reliability of AlGaN/GaN HEMTs. First, the ultra high temperature (around 1500°C) annealing of MOCVD grown GaN on sapphire has been studied, and a thermally induced threading dislocation (TD) motion and reaction are reported. Using a rapid thermal annealing (RTA) approach capable of heating 2 inch wafers to around 1500°C with 100 bar N2 over-pressure, evidence of dislocation motion was first observed in transmission electron microscopy (TEM) micrographs of both planar and patterned GaN films protected by an AIN capping layer. An associated decrease in x-ray rocking curve (XRC) full-width-half-maximum (FWHM) was also observed for both the symmetric and asymmetric scans. After annealing, the AIN capping layer remained intact, and optical measurements showed no degradation of the opto-electronic properties of the films. Then activation annealing of Si implants in MOCVD grown GaN has been studied for use in ohmic contacts. Si was implanted in semi-insulating GaN at 100 keV with doses from 5 x 1014 cm-2 to 1.5 x 1016 cm-2. Rapid thermal annealing at 1500°C with 100 bar N2 over-pressure was used for dopant activation, resulting in a minimum sheet resistance of 13.9 O/square for a dose of 7 x 1015 cm-2. Secondary ion mass spectroscopy measurements showed a post-activation broadening of the dopant concentration peak by 20 nm (at half the maximum), while X-Ray triple axis o-2theta scans indicated nearly complete implant damage recovery. Transfer length method measurements of the resistance of Ti/Al/Ni/Au contacts to activated GaN:Si (5 x 1015 cm-2 at 100 keV) indicated lowest contact resistances of 0.07 Omm and 0.02 Omm for as-deposited and subsequently annealed contacts, respectively. Finally, the incorporation of Si implantation into AlGaN/GaN high electron mobility transistor processing has been first demonstrated. An ultra-high temperature (1500°C) rapid thermal annealing technique was developed for the activation of Si dopants implanted in the source and drain. In comparison to control devices processed by conventional fabrication, the implanted device with nonalloyed ohmic contact showed comparable device performance with a contact resistance of 0.4 Omm Imax 730 mA/mm ft/f max; 26/62 GHz and power 3.4 W/mm on sapphire. These early results demonstrate the feasibility of implantation incorporation into GaN based device processing as well as the potential to increase yield, reproducibility and reliability in AlGaN/GaN HEMTs.

  7. Approach to high quality GaN lateral nanowires and planar cavities fabricated by focused ion beam and metal-organic vapor phase epitaxy.

    PubMed

    Pozina, Galia; Gubaydullin, Azat R; Mitrofanov, Maxim I; Kaliteevski, Mikhail A; Levitskii, Iaroslav V; Voznyuk, Gleb V; Tatarinov, Evgeniy E; Evtikhiev, Vadim P; Rodin, Sergey N; Kaliteevskiy, Vasily N; Chechurin, Leonid S

    2018-05-08

    We have developed a method to fabricate GaN planar nanowires and cavities by combination of Focused Ion Beam (FIB) patterning of the substrate followed by Metal Organic Vapor Phase Epitaxy (MOVPE). The method includes depositing a silicon nitride mask on a sapphire substrate, etching of the trenches in the mask by FIB with a diameter of 40 nm with subsequent MOVPE growth of GaN within trenches. It was observed that the growth rate of GaN is substantially increased due to enhanced bulk diffusion of the growth precursor therefore the model for analysis of the growth rate was developed. The GaN strips fabricated by this method demonstrate effective luminescence properties. The structures demonstrate enhancement of spontaneous emission via formation of Fabry-Perot modes.

  8. Growth optimization and characterization of GaN epilayers on multifaceted (111) surfaces etched on Si(100) substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ansah-Antwi, KwaDwo Konadu, E-mail: kakadee@gmail.com; Chua, Soo Jin; Department of Electrical and Computer Engineering, National University of Singapore, E4-5-45, 4 Engineering Drive 3, Singapore 117576

    2015-11-15

    The four nearest Si(111) multifaceted sidewalls were exposed inside an array of 3 μm-wide square holes patterned on an Si(100) substrate, and this patterned Si(100) substrate was used as a substrate for the deposition of a gallium nitride (GaN) epilayer. Subsequently the effect that the growth pressure, the etched-hole profiles, and the etched-hole arrangement had upon the quality of the as-grown GaN was investigated. The coalescence of the as-grown GaN epilayer on the exposed Si(111) facets was observed to be enhanced with reduced growth pressure from 120 to 90 Torr. A larger Si(001) plane area at the bottom of the etched holesmore » resulted in bidirectional GaN domains, which resulted in poor material quality. The bidirectional GaN domains were observed as two sets of six peaks via a high-resolution x-ray diffraction phi scan of the GaN(10-11) reflection. It was also shown that a triangular array of etched holes was more desirable than square arrays of etched holes for the growth high-quality and continuous GaN films.« less

  9. Interface Trap Density Reduction for Al2O3/GaN (0001) Interfaces by Oxidizing Surface Preparation prior to Atomic Layer Deposition.

    PubMed

    Zhernokletov, Dmitry M; Negara, Muhammad A; Long, Rathnait D; Aloni, Shaul; Nordlund, Dennis; McIntyre, Paul C

    2015-06-17

    We correlate interfacial defect state densities with the chemical composition of the Al2O3/GaN interface in metal-oxide-semiconductor (MOS) structures using synchrotron photoelectron emission spectroscopy (PES), cathodoluminescence and high-temperature capacitance-voltage measurements. The influence of the wet chemical pretreatments involving (1) HCl+HF etching or (2) NH4OH(aq) exposure prior to atomic layer deposition (ALD) of Al2O3 were investigated on n-type GaN (0001) substrates. Prior to ALD, PES analysis of the NH4OH(aq) treated surface shows a greater Ga2O3 component compared to either HCl+HF treated or as-received surfaces. The lowest surface concentration of oxygen species is detected on the acid etched surface, whereas the NH4OH treated sample reveals the lowest carbon surface concentration. Both surface pretreatments improve electrical characteristics of MOS capacitors compared to untreated samples by reducing the Al2O3/GaN interface state density. The lowest interfacial trap density at energies in the upper band gap is detected for samples pretreated with NH4OH. These results are consistent with cathodoluminescence data indicating that the NH4OH treated samples show the strongest band edge emission compared to as-received and acid etched samples. PES results indicate that the combination of reduced carbon contamination while maintaining a Ga2O3 interfacial layer by NH4OH(aq) exposure prior to ALD results in fewer interface traps after Al2O3 deposition on the GaN substrate.

  10. Impact of Plasma Electron Flux on Plasma Damage-Free Sputtering of Ultrathin Tin-Doped Indium Oxide Contact Layer on p-GaN for InGaN/GaN Light-Emitting Diodes.

    PubMed

    Son, Kwang Jeong; Kim, Tae Kyoung; Cha, Yu-Jung; Oh, Seung Kyu; You, Shin-Jae; Ryou, Jae-Hyun; Kwak, Joon Seop

    2018-02-01

    The origin of plasma-induced damage on a p -type wide-bandgap layer during the sputtering of tin-doped indium oxide (ITO) contact layers by using radiofrequency-superimposed direct current (DC) sputtering and its effects on the forward voltage and light output power (LOP) of light-emitting diodes (LEDs) with sputtered ITO transparent conductive electrodes (TCE) is systematically studied. Changing the DC power voltage from negative to positive bias reduces the forward voltages and enhances the LOP of the LEDs. The positive DC power drastically decreases the electron flux in the plasma obtained by plasma diagnostics using a cutoff probe and a Langmuir probe, suggesting that the repulsion of plasma electrons from the p -GaN surface can reduce plasma-induced damage to the p -GaN. Furthermore, electron-beam irradiation on p -GaN prior to ITO deposition significantly increases the forward voltages, showing that the plasma electrons play an important role in plasma-induced damage to the p -GaN. The plasma electrons can increase the effective barrier height at the ITO/deep-level defect (DLD) band of p -GaN by compensating DLDs, resulting in the deterioration of the forward voltage and LOP. Finally, the plasma damage-free sputtered-ITO TCE enhances the LOP of the LEDs by 20% with a low forward voltage of 2.9 V at 20 mA compared to LEDs with conventional e-beam-evaporated ITO TCE.

  11. Carrier concentration dependence of donor activation energy in n-type GaN epilayers grown on Si (1 1 1) by plasma-assisted MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Mahesh; Central Research Laboratory, Bharat Electronics, Bangalore 560 013; Bhat, Thirumaleshwara N.

    Highlights: ► The n-type GaN layers were grown by plasma-assisted molecular beam epitaxy. ► The optical characteristics of a donor level in Si-doped GaN were studied. ► Activation energy of a Si-related donor was estimated from temperature dependent PL measurements. ► PL peak positions, FWHM of PL and activation energies are found to be proportional to the cube root of carrier density. ► The involvement of donor levels is supported by the temperature-dependent electron concentration measurements. -- Abstract: The n-type GaN layers were grown by plasma-assisted MBE and either intentionally doped with Si or unintentionally doped. The optical characteristics ofmore » a donor level in Si-doped, GaN were studied in terms of photoluminescence (PL) spectroscopy as a function of electron concentration. Temperature dependent PL measurements allowed us to estimate the activation energy of a Si-related donor from temperature-induced decay of PL intensity. PL peak positions, full width at half maximum of PL and activation energies are found to be proportional to the cube root of carrier density. The involvement of donor levels is supported by the temperature-dependent electron concentration measurements.« less

  12. High-Brightness Blue Light-Emitting Diodes Enabled by a Directly Grown Graphene Buffer Layer.

    PubMed

    Chen, Zhaolong; Zhang, Xiang; Dou, Zhipeng; Wei, Tongbo; Liu, Zhiqiang; Qi, Yue; Ci, Haina; Wang, Yunyu; Li, Yang; Chang, Hongliang; Yan, Jianchang; Yang, Shenyuan; Zhang, Yanfeng; Wang, Junxi; Gao, Peng; Li, Jinmin; Liu, Zhongfan

    2018-06-08

    Single-crystalline GaN-based light-emitting diodes (LEDs) with high efficiency and long lifetime are the most promising solid-state lighting source compared with conventional incandescent and fluorescent lamps. However, the lattice and thermal mismatch between GaN and sapphire substrate always induces high stress and high density of dislocations and thus degrades the performance of LEDs. Here, the growth of high-quality GaN with low stress and a low density of dislocations on graphene (Gr) buffered sapphire substrate is reported for high-brightness blue LEDs. Gr films are directly grown on sapphire substrate to avoid the tedious transfer process and GaN is grown by metal-organic chemical vapor deposition (MOCVD). The introduced Gr buffer layer greatly releases biaxial stress and reduces the density of dislocations in GaN film and In x Ga 1- x N/GaN multiple quantum well structures. The as-fabricated LED devices therefore deliver much higher light output power compared to that on a bare sapphire substrate, which even outperforms the mature process derived counterpart. The GaN growth on Gr buffered sapphire only requires one-step growth, which largely shortens the MOCVD growth time. This facile strategy may pave a new way for applications of Gr films and bring several disruptive technologies for epitaxial growth of GaN film and its applications in high-brightness LEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A Hybrid Multi-gate Model of a Gallium Nitride (GaN) High Electron Mobility Transistor (HEMT) Device Incorporating GaN-substrate Thermal Boundary Resistance

    DTIC Science & Technology

    2012-10-01

    right by a pitch (P) and subsequently summed to provide a multi-gate superimposed temperature distribution ( TMG (x)). An example is shown in figure...temperature rise over the coolant, or the difference between the centerline multi gate junction temperature on the upper surface ( TMG ,GaN(0)) of the GaN...TC coolant temperature (°C) TCP(x) cold plate temperature distribution (°C) TGaN(x,y) temperature distribution within GaN (°C) TMG (x) multiple gate

  14. Site-controlled GaN nanocolumns with InGaN insertions grown by MBE

    NASA Astrophysics Data System (ADS)

    Nechaev, D. V.; Semenov, A. N.; Koshelev, O. A.; Jmerik, V. N.; Davydov, V. Yu; Smirnov, A. N.; Pozina, G.; Shubina, T. V.; Ivanov, S. V.

    2017-11-01

    The site-controlled plasma-assisted molecular beam epitaxy (PA MBE) has been developed to fabricate the regular array of GaN nanocolumns (NCs) with InGaN insertions on micro-cone patterned sapphire substrates (μ-CPSSs). Two-stage growth of GaN NCs, including a nucleation layer grown at metal-rich conditions and high temperature GaN growth in strong N-rich condition, has been developed to achieve the selective growth of the NCs. Microcathodoluminescence measurements have demonstrated pronounced emission from the InGaN insertions in 450-600 nm spectral range. The optically isolated NCs can be used as effective nano-emitters operating in the visible range.

  15. GaN based nanorods for solid state lighting

    NASA Astrophysics Data System (ADS)

    Li, Shunfeng; Waag, Andreas

    2012-04-01

    In recent years, GaN nanorods are emerging as a very promising novel route toward devices for nano-optoelectronics and nano-photonics. In particular, core-shell light emitting devices are thought to be a breakthrough development in solid state lighting, nanorod based LEDs have many potential advantages as compared to their 2 D thin film counterparts. In this paper, we review the recent developments of GaN nanorod growth, characterization, and related device applications based on GaN nanorods. The initial work on GaN nanorod growth focused on catalyst-assisted and catalyst-free statistical growth. The growth condition and growth mechanisms were extensively investigated and discussed. Doping of GaN nanorods, especially p-doping, was found to significantly influence the morphology of GaN nanorods. The large surface of 3 D GaN nanorods induces new optical and electrical properties, which normally can be neglected in layered structures. Recently, more controlled selective area growth of GaN nanorods was realized using patterned substrates both by metalorganic chemical vapor deposition (MOCVD) and by molecular beam epitaxy (MBE). Advanced structures, for example, photonic crystals and DBRs are meanwhile integrated in GaN nanorod structures. Based on the work of growth and characterization of GaN nanorods, GaN nanoLEDs were reported by several groups with different growth and processing methods. Core/shell nanoLED structures were also demonstrated, which could be potentially useful for future high efficient LED structures. In this paper, we will discuss recent developments in GaN nanorod technology, focusing on the potential advantages, but also discussing problems and open questions, which may impose obstacles during the future development of a GaN nanorod based LED technology.

  16. Tolerance of GaAs as an original substrate for HVPE growth of free standing GaN

    NASA Astrophysics Data System (ADS)

    Suzuki, Mio; Sato, T.; Suemasu, T.; Hasegawa, F.

    2004-09-01

    In order to investigate possibility of thick GaN growth on a GaAs substrate by halide vapar phase epitaxy (HVPE), GaN was grown on GaAs(111)/Ti wafer with Ti deposited by E-gun. It was found that surface treatment of the GaAs substrate by HF solution deteriorated greatly the tolerence of GaAs and that Ti can protected GaAs from erosion by NH3. By depositing Ti on GaAs(111)A surface, a millor-like GaN layer could be grown at 1000 °C for 1 hour without serious deterioration of the original GaAs substrate. By increasing the growth rate, a thick free standing GaN will be obtained with GaAs as an original substrate in near future.

  17. Vacancy-type defects in Al2O3/GaN structure probed by monoenergetic positron beams

    NASA Astrophysics Data System (ADS)

    Uedono, Akira; Nabatame, Toshihide; Egger, Werner; Koschine, Tönjes; Hugenschmidt, Christoph; Dickmann, Marcel; Sumiya, Masatomo; Ishibashi, Shoji

    2018-04-01

    Defects in the Al2O3(25 nm)/GaN structure were probed by using monoenergetic positron beams. Al2O3 films were deposited on GaN by atomic layer deposition at 300 °C. Temperature treatment above 800 °C leads to the introduction of vacancy-type defects in GaN due to outdiffusion of atoms from GaN into Al2O3. The width of the damaged region was determined to be 40-50 nm from the Al2O3/GaN interface, and some of the vacancies were identified to act as electron trapping centers. In the Al2O3 film before and after annealing treatment at 300-900 °C, open spaces with three different sizes were found to coexist. The density of medium-sized open spaces started to decrease above 800 °C, which was associated with the interaction between GaN and Al2O3. Effects of the electron trapping/detrapping processes of interface states on the flat band voltage and the defects in GaN were also discussed.

  18. Optical and Structural Properties of Microcrystalline GaN on an Amorphous Substrate Prepared by a Combination of Molecular Beam Epitaxy and Metal-Organic Chemical Vapor Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Jung-Wook; Hwang, Hyeong-Yong; Kang, Eun-Kyu

    2016-05-01

    Microscale platelet-shaped GaN grains were grown on amorphous substrates by a combined epitaxial growth method of molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD). First, MBE GaN was grown on an amorphous substrate as a pre-orienting layer and its structural properties were investigated. Second, MOCVD grown GaN samples using the different growth techniques of planar and selective area growth (SAG) were comparatively investigated by transmission electron microscopy (TEM), cathodoluminescence (CL), and photoluminescence (PL). In MOCVD planar GaN, strong bound exciton peaks dominated despite the high density of the threading dislocations (TDs). In MOCVD SAG GaN, on the othermore » hand, TDs were clearly reduced with bending, but basal stacking fault (BSF) PL peaks were observed at 3.42 eV. The combined epitaxial method not only provides a deep understanding of the growth behavior but also suggests an alternative approach for the growth of GaN on amorphous substances.« less

  19. Kinetic instability of AlGaN alloys during MBE growth under metal-rich conditions on m-plane GaN miscut towards the -c axis

    NASA Astrophysics Data System (ADS)

    Shirazi-HD, M.; Diaz, R. E.; Nguyen, T.; Jian, J.; Gardner, G. C.; Wang, H.; Manfra, M. J.; Malis, O.

    2018-04-01

    AlxGa1-xN layers with Al-composition above 0.6 (0.6 < x < 0.9) grown under metal-rich conditions by plasma-assisted molecular beam epitaxy on m-plane GaN miscut towards the -c axis are kinetically unstable. Even under excess Ga flux, the effective growth rate of AlGaN is drastically reduced, likely due to suppression of Ga-N dimer incorporation. The defect structure generated during these growth conditions is studied with energy dispersive x-ray spectroscopy scanning transmission electron microscopy as a function of Al flux. The AlGaN growth results in the formation of thin Al(Ga)N layers with Al-composition higher than expected and lower Al-composition AlGaN islands. The AlGaN islands have a flat top and are elongated along the c-axis (i.e., stripe-like shape). Possible mechanisms for the observed experimental results are discussed. Our data are consistent with a model in which Al-N dimers promote release of Ga-N dimers from the m-plane surface.

  20. Optimization of ion-atomic beam source for deposition of GaN ultrathin films.

    PubMed

    Mach, Jindřich; Šamořil, Tomáš; Kolíbal, Miroslav; Zlámal, Jakub; Voborny, Stanislav; Bartošík, Miroslav; Šikola, Tomáš

    2014-08-01

    We describe the optimization and application of an ion-atomic beam source for ion-beam-assisted deposition of ultrathin films in ultrahigh vacuum. The device combines an effusion cell and electron-impact ion beam source to produce ultra-low energy (20-200 eV) ion beams and thermal atomic beams simultaneously. The source was equipped with a focusing system of electrostatic electrodes increasing the maximum nitrogen ion current density in the beam of a diameter of ≈15 mm by one order of magnitude (j ≈ 1000 nA/cm(2)). Hence, a successful growth of GaN ultrathin films on Si(111) 7 × 7 substrate surfaces at reasonable times and temperatures significantly lower (RT, 300 °C) than in conventional metalorganic chemical vapor deposition technologies (≈1000 °C) was achieved. The chemical composition of these films was characterized in situ by X-ray Photoelectron Spectroscopy and morphology ex situ using Scanning Electron Microscopy. It has been shown that the morphology of GaN layers strongly depends on the relative Ga-N bond concentration in the layers.

  1. Plasma-assisted Molecular Beam Epitaxy of N-polar InAlN-barrier High-electron-mobility Transistors.

    PubMed

    Hardy, Matthew T; Storm, David F; Katzer, D Scott; Downey, Brian P; Nepal, Neeraj; Meyer, David J

    2016-11-24

    Plasma-assisted molecular beam epitaxy is well suited for the epitaxial growth of III-nitride thin films and heterostructures with smooth, abrupt interfaces required for high-quality high-electron-mobility transistors (HEMTs). A procedure is presented for the growth of N-polar InAlN HEMTs, including wafer preparation and growth of buffer layers, the InAlN barrier layer, AlN and GaN interlayers and the GaN channel. Critical issues at each step of the process are identified, such as avoiding Ga accumulation in the GaN buffer, the role of temperature on InAlN compositional homogeneity, and the use of Ga flux during the AlN interlayer and the interrupt prior to GaN channel growth. Compositionally homogeneous N-polar InAlN thin films are demonstrated with surface root-mean-squared roughness as low as 0.19 nm and InAlN-based HEMT structures are reported having mobility as high as 1,750 cm 2 /V∙sec for devices with a sheet charge density of 1.7 x 10 13 cm -2 .

  2. Single layers and multilayers of GaN and AlN in square-octagon structure: Stability, electronic properties, and functionalization

    NASA Astrophysics Data System (ADS)

    Gürbüz, E.; Cahangirov, S.; Durgun, E.; Ciraci, S.

    2017-11-01

    Further to planar single-layer hexagonal structures, GaN and AlN can also form free-standing, single-layer structures constructed from squares and octagons. We performed an extensive analysis of dynamical and thermal stability of these structures in terms of ab initio finite-temperature molecular dynamics and phonon calculations together with the analysis of Raman and infrared active modes. These single-layer square-octagon structures of GaN and AlN display directional mechanical properties and have wide, indirect fundamental band gaps, which are smaller than their hexagonal counterparts. These density functional theory band gaps, however, increase and become wider upon correction. Under uniaxial and biaxial tensile strain, the fundamental band gaps decrease and can be closed. The electronic and magnetic properties of these single-layer structures can be modified by adsorption of various adatoms, or by creating neutral cation-anion vacancies. The single-layer structures attain magnetic moment by selected adatoms and neutral vacancies. In particular, localized gap states are strongly dependent on the type of vacancy. The energetics, binding, and resulting electronic structure of bilayer, trilayer, and three-dimensional (3D) layered structures constructed by stacking the single layers are affected by vertical chemical bonds between adjacent layers. In addition to van der Waals interaction, these weak vertical bonds induce buckling in planar geometry and enhance their binding, leading to the formation of stable 3D layered structures. In this respect, these multilayers are intermediate between van der Waals solids and wurtzite crystals, offering a wide range of tunability.

  3. Emission rate and internal quantum efficiency enhancement in different geometrical shapes of GaN LED

    NASA Astrophysics Data System (ADS)

    Rashid, S.; Wahid, M. H. A.; Hambali, N. A. M. Ahmad; Halim, N. S. A. Abdul; Ramli, M. M.; Shahimin, M. M.

    2017-09-01

    This work is based on the development of light emitting diode (LED) using different geometry of top surface on GaN p-n junction structure. Three types of LED chips are designed with different top surface to differ whether p-type layer or p contact plays an important role in improving its efficiency. The voltage applied ranges from 0V to 4V. Current-voltage characteristic for all three samples are obtained and analyzed. The results show that dome shaped of p-type layer operating at 4V increases the emission rate and internal quantum efficiency up to 70%, which is two times higher than basic cylindrically LED chip. Moreover, this new design effectively solved the higher forward voltage problem of the usual curve surface of p-contact GaN LED.

  4. Properties of Mg and Zn acceptors in MOVPE GaN as studied by optically detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Kunzer, M.; Baur, J.; Kaufmann, U.; Schneider, J.; Amano, H.; Akasaki, I.

    1997-02-01

    We have studied the photoluminescence (PL) and optically detected magnetic resonance (ODMR) of undoped, n-doped and p-doped thin wurtzite GaN layers grown by metal-organic chemical vapor deposition on sapphire substrates. The ODMR data obtained for undoped. Mg-doped and Zn-doped GaN layers provide an insight into the recombination mechanisms responsible for the broad yellow (2.25 eV), the violet (3.15 eV) and the blue (2.8 eV) PL bands, respectively. The ODMR results for Mg and Zn also show that these acceptors do not behave effective mass like and indicate that the acceptor hole is mainly localized in the nearest neighbor shell surrounding the acceptor core. In addition concentration effects in heavily doped GaN:Mg have been studied.

  5. Advanced Technologies for Heterodyne Radio Astronomy Instrumentation - Part1 By A. Pavolotsky, and Advanced Technologies for Heterodyne Radio Astronomy Instrumentation - Part2 By V. Desmaris

    NASA Astrophysics Data System (ADS)

    Desmaris, Vincent

    2018-01-01

    We present the advanced micro/nano technological engineering at the atomic level producing state-of-the-art epitaxial NbN thin-films on GaN buffer layers. Furthermore, we report the outstanding performance of the hot electron bolometers fabricated on epitaxial NbN thin films on GaN buffer layers. Finally we present advanced passive devices such as waveguide hybrids, IF hybrids and combiners for the realization of heterodyne THz receivers.

  6. Wafer-scale Fabrication of Non-Polar Mesoporous GaN Distributed Bragg Reflectors via Electrochemical Porosification.

    PubMed

    Zhu, Tongtong; Liu, Yingjun; Ding, Tao; Fu, Wai Yuen; Jarman, John; Ren, Christopher Xiang; Kumar, R Vasant; Oliver, Rachel A

    2017-03-27

    Distributed Bragg reflectors (DBRs) are essential components for the development of optoelectronic devices. For many device applications, it is highly desirable to achieve not only high reflectivity and low absorption, but also good conductivity to allow effective electrical injection of charges. Here, we demonstrate the wafer-scale fabrication of highly reflective and conductive non-polar gallium nitride (GaN) DBRs, consisting of perfectly lattice-matched non-polar (11-20) GaN and mesoporous GaN layers that are obtained by a facile one-step electrochemical etching method without any extra processing steps. The GaN/mesoporous GaN DBRs exhibit high peak reflectivities (>96%) across the entire visible spectrum and wide spectral stop-band widths (full-width at half-maximum >80 nm), while preserving the material quality and showing good electrical conductivity. Such mesoporous GaN DBRs thus provide a promising and scalable platform for high performance GaN-based optoelectronic, photonic, and quantum photonic devices.

  7. Interface Engineering of Monolayer MoS2/GaN Hybrid Heterostructure: Modified Band Alignment for Photocatalytic Water Splitting Application by Nitridation Treatment.

    PubMed

    Zhang, Zhaofu; Qian, Qingkai; Li, Baikui; Chen, Kevin J

    2018-05-23

    Interface engineering is a key strategy to deal with the two-dimensional (2D)/three-dimensional (3D) hybrid heterostructure, since the properties of this atomic-layer-thick 2D material can easily be impacted by the substrate environment. In this work, the structural, electronic, and optical properties of the 2D/3D heterostructure of monolayer MoS 2 on wurtzite GaN surface without and with nitridation interfacial layer are systematically investigated by first-principles calculation and experimental analysis. The nitridation interfacial layer can be introduced into the 2D/3D heterostructure by remote N 2 plasma treatment to GaN sample surface prior to stacking monolayer MoS 2 on top. The calculation results reveal that the 2D/3D integrated heterostructure is energetically favorable with a negative formation energy. Both interfaces demonstrate indirect band gap, which is a benefit for longer lifetime of the photoexcited carriers. Meanwhile, the conduction band edge and valence band edge of the MoS 2 side increases after nitridation treatment. The modification to band alignment is then verified by X-ray photoelectron spectroscopy measurement on MoS 2 /GaN heterostructures constructed by a modified wet-transfer technique, which indicates that the MoS 2 /GaN heterostructure without nitridation shows a type-II alignment with a conduction band offset (CBO) of only 0.07 eV. However, by the deployment of interface nitridation, the band edges of MoS 2 move upward for ∼0.5 eV as a result of the nitridized substrate property. The significantly increased CBO could lead to better electron accumulation capability at the GaN side. The nitridized 2D/3D heterostructure with effective interface treatment exhibits a clean band gap and substantial optical absorption ability and could be potentially used as practical photocatalyst for hydrogen generation by water splitting using solar energy.

  8. Effect of 60Co γ-irradiation on the nature of electronic transport in heavily doped n-type GaN based Schottky photodetectors

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhishek; Khamari, Shailesh K.; Porwal, S.; Kher, S.; Sharma, T. K.

    2018-04-01

    GaN Schottky photodetectors are fabricated on heavily doped n-type GaN epitaxial layers grown by the hydride vapour phase epitaxy technique. The effect of 60Co γ-radiation on the electronic transport in GaN epilayers and Schottky detectors is studied. In contrast to earlier observations, a steady rise in the carrier concentration with increasing irradiation dose is clearly seen. By considering a two layer model, the contribution of interfacial dislocations in carrier transport is isolated from that of the bulk layer for both the pristine and irradiated samples. The bulk carrier concentration is fitted by using the charge balance equation which indicates that no new electrically active defects are generated by γ-radiation even at 500 kGy dose. The irradiation induced rise in the bulk carrier concentration is attributed to the activation of native Si impurities that are already present in an electrically inert form in the pristine sample. Further, the rise in interfacial contribution in the carrier concentration is governed by the enhanced rate of formation of nitrogen vacancies by irradiation, which leads to a larger diffusion of oxygen impurities. A large value of the characteristic tunnelling energy for both the pristine and irradiated Au/Ni/GaN Schottky devices confirms that the dislocation-assisted tunnelling dominates the low temperature current transport even after irradiation. The advantage of higher displacement energy and larger bandgap of GaN as compared to GaAs is evident from the change in leakage current after irradiation. Further, a fast recovery of the photoresponse of GaN photodetectors after irradiation signifies their compatibility to operate in high radiation zones. The results presented here are found to be crucial in understanding the interaction of 60Co γ-irradiation with n+-GaN epilayers.

  9. High power blue laser diodes on semipolar (202¯1¯) GaN substrates

    NASA Astrophysics Data System (ADS)

    Pourhashemi, Seyed Arash

    High power blue laser didoes (LDs), among other applications, show the promise of realizing efficient and reliable solid state lighting systems. Since first GaN optoelectronic devices were demonstrated in early 1990s, GaN LDs were traditionally fabricated on polar c-plane. However in recent years there has been a growing interest in nonpolar and semipolar planes. Nonpolar and semipolar devices offer the prospect of achieving higher efficiencies though elimination or reduction of polarization-related electric fields. In this project I investigated semipolar (202 ¯1 ¯) plane of GaN for blue LDs fabrication. Results include blue LD (Lambda=450 nm) with highest output power, differential quantum efficiency (?d) and external quantum efficiency (EQE) reported for a GaN LD on a semipolar plane to date. Output power of 2.52 W, etad=50% and EQE=39% were achieved in pulsed mode and output power of 1.71 W was achieved in true CW mode. Moreover, use of indium tin oxide (ITO) as cladding layer in order to reduce the thickness of Mg-doped p-GaN layer was investigated. Blue LDs with ITO cladding were demonstrated in this work with highest output power, etad and EQE reported for a GaN LD with transparent conducting oxide (TCO) cladding layer to date. The lack of any natural cleavage plane orthogonal to the in-plane projection of the c-axis on semipolar planes has made Cl2-based dry etch processes the most common way to form mirror facets for semipolar LDs. However, mirror facets fabricated by dry etching can be inclined or rough. For this work, mechanical polishing was used to form LD mirror facets. The dependence of output power on current did not change with repeated CW measurements, indicating that the polished facets did not degrade under high power CW operation. These results show that polished facets are a viable alternative to cleaved or etched facets for high power CW semipolar LDs.

  10. A charge inverter for III-nitride light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zi-Hui, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn; Zhang, Yonghui; Bi, Wengang, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn

    In this work, we propose a charge inverter that substantially increases the hole injection efficiency for InGaN/GaN light-emitting diodes (LEDs). The charge inverter consists of a metal/electrode, an insulator, and a semiconductor, making an Electrode-Insulator-Semiconductor (EIS) structure, which is formed by depositing an extremely thin SiO{sub 2} insulator layer on the p{sup +}-GaN surface of a LED structure before growing the p-electrode. When the LED is forward-biased, a weak inversion layer can be obtained at the interface between the p{sup +}-GaN and SiO{sub 2} insulator. The weak inversion region can shorten the carrier tunnel distance. Meanwhile, the smaller dielectric constantmore » of the thin SiO{sub 2} layer increases the local electric field within the tunnel region, and this is effective in promoting the hole transport from the p-electrode into the p{sup +}-GaN layer. Due to the improved hole injection, the external quantum efficiency is increased by 20% at 20 mA for the 350 × 350 μm{sup 2} LED chip. Thus, the proposed EIS holds great promise for high efficiency LEDs.« less

  11. Microstructures of GaN1-xPx layers grown on (0001) GaN substrates by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Seong, Tae-Yeon; Bae, In-Tae; Choi, Chel-Jong; Noh, D. Y.; Zhao, Y.; Tu, C. W.

    1999-03-01

    Transmission electron microscope (TEM), transmission electron diffraction (TED), and synchrotron x-ray diffraction (XRD) studies have been performed to investigate microstructural behavior of gas source molecular beam epitaxial GaN1-xPx layers grown on (0001) GaN/sapphire at temperatures (Tg) in the range 500-760 °C. TEM, TED, and XRD results indicate that the samples grown at Tg⩽600 °C undergo phase separation resulting in a mixture of GaN-rich and GaP-rich GaNP with zinc-blende structure. However, the samples grown at Tg⩾730 °C are found to be binary zinc-blende GaN(P) single crystalline materials. As for the 500 °C layer, the two phases are randomly oriented and distributed, whereas the 600 °C layer consists of phases that are elongated and inclined by 60°-70° clockwise from the [0001]α-GaN direction. The samples grown at Tg⩾730 °C are found to consist of two types of microdomains, namely, GaN(P)I and GaN(P)II; the former having twin relation to the latter.

  12. Growth rate independence of Mg doping in GaN grown by plasma-assisted MBE

    NASA Astrophysics Data System (ADS)

    Turski, Henryk; Muzioł, Grzegorz; Siekacz, Marcin; Wolny, Pawel; Szkudlarek, Krzesimir; Feduniewicz-Żmuda, Anna; Dybko, Krzysztof; Skierbiszewski, Czeslaw

    2018-01-01

    Doping of Ga(Al)N layers by plasma-assisted molecular beam epitaxy in Ga-rich conditions on c-plane bulk GaN substrates was studied. Ga(Al)N samples, doped with Mg or Si, grown using different growth conditions were compared. In contrast to Si doped layers, no change in the Mg concentration was observed for layers grown using different growth rates for a constant Mg flux and constant growth temperature. This effect enables the growth of Ga(Al)N:Mg layers at higher growth rates, leading to shorter growth time and lower residual background doping, without the need of increasing Mg flux. Enhancement of Mg incorporation for Al containing layers was also observed. Change of Al content from 0% to 17% resulted in more than two times higher Mg concentration.

  13. Effect of SiC buffer layer on GaN growth on Si via PA-MBE

    NASA Astrophysics Data System (ADS)

    Kukushkin, S. A.; Mizerov, A. M.; Osipov, A. V.; Redkov, A. V.; Telyatnik, R. S.; Timoshnev, S. N.

    2017-11-01

    The study is devoted to comparison of GaN thin films grown on SiC/Si substrates made by the method of atoms substitution with the films grown directly on Si substrates. The growth was performed in a single process via plasma assisted molecular beam epitaxy. The samples were studied via optical microscopy, Raman spectroscopy, ellipsometry, and a comparison of their characteristics was made. Using chemical etching in KOH, the polarity of GaN films grown on SiC/Si and Si substrates was determined.

  14. p-type zinc-blende GaN on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Lin, M. E.; Xue, G.; Zhou, G. L.; Greene, J. E.; Morkoç, H.

    1993-08-01

    We report p-type cubic GaN. The Mg-doped layers were grown on vicinal (100) GaAs substrates by plasma-enhanced molecular beam epitaxy. Thermally sublimed Mg was, with N2 carrier gas, fed into an electron-cyclotron resonance source. p-type zinc-blende-structure GaN films were achieved with hole mobilities as high as 39 cm2/V s at room temperature. The cubic nature of the films were confirmed by x-ray diffractometry. The depth profile of Mg was investigated by secondary ions mass spectroscopy.

  15. Proximity Effects of Beryllium-Doped GaN Buffer Layers on the Electronic Properties of Epitaxial AlGaN/GaN Heterostructures

    DTIC Science & Technology

    2010-05-17

    arranged by Prof. A. Zaslavsky Keywords: Gallium nitride High electron mobility transistor Molecular beam epitaxy Homoepitaxy Doping a b s t r a c t AlGaN...GaN/Be:GaN heterostructures have been grown by rf-plasma molecular beam epitaxy on free- standing semi-insulating GaN substrates, employing...hydride vapor phase epitaxy (HVPE) grown GaN sub- strates has enabled the growth by molecular beam epitaxy (MBE) of AlGaN/GaNHEMTswith significantly

  16. Room-temperature optically pumped laser emission from a-plane GaN with high optical gain characteristics

    NASA Astrophysics Data System (ADS)

    Kuokstis, E.; Chen, C. Q.; Yang, J. W.; Shatalov, M.; Gaevski, M. E.; Adivarahan, V.; Khan, M. Asif

    2004-04-01

    Photoluminescence (PL) and optical gain (OG) spectra of a-plane GaN layers have been analyzed over a wide range of excitation intensities. The samples were fully coalesced layers grown by metalorganic chemical vapor deposition over r-plane sapphire substrates using epitaxial layer overgrowth (ELOG) and selective area lateral epitaxy (SALE) procedures. ELOG and SALE a-plane samples showed a strong stimulated emission line in backscattering-geometry PL spectra along with extremely high OG coefficient values (in SALE samples more than 2000 cm-1). Structures prepared with natural cleaved facet cavities based on these films were used to demonstrate optically pumped room-temperature lasing.

  17. Reduced-droop green III-nitride light-emitting diodes utilizing GaN tunnel junction

    NASA Astrophysics Data System (ADS)

    Alhassan, Abdullah I.; Young, Erin C.; Alyamani, Ahmed Y.; Albadri, Abdulrahman; Nakamura, Shuji; DenBaars, Steven P.; Speck, James S.

    2018-04-01

    We report the fabrication of low-droop high-efficiency green c-plane light-emitting diodes (LEDs) utilizing GaN tunnel junction (TJ) contacts. The LED epitaxial layers with a top p-GaN layer were grown by metal organic chemical vapor deposition and an n++-GaN layer was deposited by molecular beam epitaxy to form a TJ. The TJ LEDs were then compared with equivalent LEDs having a tin-doped indium oxide (ITO) contact. The TJ LEDs exhibited a higher performance and a lower efficiency droop than did the ITO LEDs. At 35 A/cm2, the external quantum efficiencies for the TJ and ITO LEDs were 31.2 and 27%, respectively.

  18. The photocatalytic properties of hollow (GaN)1-x(ZnO)x composite nanofibers synthesized by electrospinning

    NASA Astrophysics Data System (ADS)

    Wang, Ding; Zhang, Minglu; Zhuang, Huaijuan; Chen, Xu; Wang, Xianying; Zheng, Xuejun; Yang, Junhe

    2017-02-01

    (GaN)1-x(ZnO)x composite nanofibers with hollow structure were prepared by initial electrospinning, and the subsequent calcination and nitridation. The structure and morphology characteristics of samples were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The characterization results showed the phase transition from ZnGa2O4 to (GaN)1-x(ZnO)x solid-solution under ammonia atmosphere. The preparation conditions were explored and the optimum nitridation temperature and holding time are 750 °C and 2 h, respectively. The photocatalytic properties of (GaN)1-x(ZnO)x with different Ga:Zn atomic ratios were investigated by degrading Rhodamine B under the visible light irradiation. The photocatalytic activity sequence is (GaN)1-x(ZnO)x (Ga:Zn = 1:2) > (GaN)1-x(ZnO)x (Ga:Zn = 1:3) > ZnO nanofibers > (GaN)1-x(ZnO)x (Ga:Zn = 1:4) > (GaN)1-x(ZnO)x (Ga:Zn = 1:1). The photocatalytic mechanism of the (GaN)1-x(ZnO)x hollow nanofibers was further studied by UV-vis diffuse reflectance spectra. The excellent photocatalytic performance of (GaN)1-x(ZnO)x hollow nanofibers was attributed to the narrow band gap and high surface area of porous nanofibers with hollow structure.

  19. Ambient-temperature diffusion and gettering of Pt atoms in GaN with surface defect region under 60Co gamma or MeV electron irradiation

    NASA Astrophysics Data System (ADS)

    Hou, Ruixiang; Li, Lei; Fang, Xin; Xie, Ziang; Li, Shuti; Song, Weidong; Huang, Rong; Zhang, Jicai; Huang, Zengli; Li, Qiangjie; Xu, Wanjing; Fu, Engang; Qin, G. G.

    2018-01-01

    Generally, the diffusion and gettering of impurities in GaN needs high temperature. Calculated with the ambient-temperature extrapolation value of the high temperature diffusivity of Pt atoms in GaN reported in literature, the time required for Pt atoms diffusing 1 nm in GaN at ambient temperature is about 19 years. Therefore, the ambient-temperature diffusion and gettering of Pt atoms in GaN can hardly be observed. In this work, the ambient-temperature diffusion and gettering of Pt atoms in GaN is reported for the first time. It is demonstrated by use of secondary ion mass spectroscopy that in the condition of introducing a defect region on the GaN film surface by plasma, and subsequently, irradiated by 60Co gamma-ray or 3 MeV electrons, the ambient-temperature diffusion and gettering of Pt atoms in GaN can be detected. It is more obvious with larger irradiation dose and higher plasma power. With a similar surface defect region, the ambient-temperature diffusion and gettering of Pt atoms in GaN stimulated by 3 MeV electron irradiation is more marked than that stimulated by gamma irradiation. The physical mechanism of ambient-temperature diffusion and gettering of Pt atoms in a GaN film with a surface defect region stimulated by gamma or MeV electron irradiation is discussed.

  20. Separation of effects of InGaN/GaN superlattice on performance of light-emitting diodes using mid-temperature-grown GaN layer

    NASA Astrophysics Data System (ADS)

    Sugimoto, Kohei; Okada, Narihito; Kurai, Satoshi; Yamada, Yoichi; Tadatomo, Kazuyuki

    2018-06-01

    We evaluated the electrical properties of InGaN-based light-emitting diodes (LEDs) with a superlattice (SL) layer or a mid-temperature-grown GaN (MT-GaN) layer just beneath the multiple quantum wells (MQWs). Both the SL layer and the MT-GaN layer were effective in improving the electroluminescence (EL) intensity. However, the SL layer had a more pronounced effect on the EL intensity than did the MT-GaN layer. Based on a comparison with devices with an MT-GaN layer, the overall effects of the SL could be separated into the effect of the V-pits and the structural or compositional effect of the SL. It was observed that the V-pits formed account for 30% of the improvement in the LED performance while the remaining 70% can be attributed to the structural or compositional effect of the SL.

  1. Epitaxial Single-Layer MoS2 on GaN with Enhanced Valley Helicity.

    PubMed

    Wan, Yi; Xiao, Jun; Li, Jingzhen; Fang, Xin; Zhang, Kun; Fu, Lei; Li, Pan; Song, Zhigang; Zhang, Hui; Wang, Yilun; Zhao, Mervin; Lu, Jing; Tang, Ning; Ran, Guangzhao; Zhang, Xiang; Ye, Yu; Dai, Lun

    2018-02-01

    Engineering the substrate of 2D transition metal dichalcogenides can couple the quasiparticle interaction between the 2D material and substrate, providing an additional route to realize conceptual quantum phenomena and novel device functionalities, such as realization of a 12-time increased valley spitting in single-layer WSe 2 through the interfacial magnetic exchange field from a ferromagnetic EuS substrate, and band-to-band tunnel field-effect transistors with a subthreshold swing below 60 mV dec -1 at room temperature based on bilayer n-MoS 2 and heavily doped p-germanium, etc. Here, it is demonstrated that epitaxially grown single-layer MoS 2 on a lattice-matched GaN substrate, possessing a type-I band alignment, exhibits strong substrate-induced interactions. The phonons in GaN quickly dissipate the energy of photogenerated carriers through electron-phonon interaction, resulting in a short exciton lifetime in the MoS 2 /GaN heterostructure. This interaction enables an enhanced valley helicity at room temperature (0.33 ± 0.05) observed in both steady-state and time-resolved circularly polarized photoluminescence measurements. The findings highlight the importance of substrate engineering for modulating the intrinsic valley carriers in ultrathin 2D materials and potentially open new paths for valleytronics and valley-optoelectronic device applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dynamic atomic layer epitaxy of InN on/in +c-GaN matrix: Effect of “In+N” coverage and capping timing by GaN layer on effective InN thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, Akihiko, E-mail: yoshi@faculty.chiba-u.jp; Graduate School of Engineering, Kogakuin University, Hachioji, Tokyo 192-0015; Kusakabe, Kazuhide

    2016-01-11

    The growth front in the self-organizing and self-limiting epitaxy of ∼1 monolayer (ML)-thick InN wells on/in +c-GaN matrix by molecular beam epitaxy (MBE) has been studied in detail, with special attention given to the behavior and role of the N atoms. The growth temperatures of interest are above 600 °C, far higher than the typical upper critical temperature of 500 °C in MBE. It was confirmed that 2 ML-thick InN wells can be frozen/inserted in GaN matrix at 620 °C, but it was found that N atoms at the growth front tend to selectively re-evaporate more quickly than In atoms at temperatures highermore » than 650 °C. As a result, the effective thickness of inserted InN wells in the GaN matrix at 660–670 °C were basically 1 ML or sub-ML, even though they were capped by a GaN barrier at the time of 2 ML “In+N” coverage. Furthermore, it was found that the N atoms located below In atoms in the dynamic atomic layer epitaxy growth front had remarkably weaker bonding to the +c-GaN surface.« less

  3. Control of the inversion-channel MOS properties by Mg doping in homoepitaxial p-GaN layers

    NASA Astrophysics Data System (ADS)

    Takashima, Shinya; Ueno, Katsunori; Matsuyama, Hideaki; Inamoto, Takuro; Edo, Masaharu; Takahashi, Tokio; Shimizu, Mitsuaki; Nakagawa, Kiyokazu

    2017-12-01

    Lateral GaN MOSFETs on homoepitaxial p-GaN layers with different Mg doping concentrations ([Mg]) have been evaluated to investigate the impact of [Mg] on MOS channel properties. It is demonstrated that the threshold voltage (V th) can be controlled by [Mg] along with the theoretical curve. The field effect mobility also shows [Mg] dependence and a maximum field effect mobility of 123 cm2 V-1 s-1 is achieved on [Mg] = 6.5 × 1016 cm-3 layer with V th = 3.0 V. The obtained results indicate that GaN MOSFETs can be designed on the basis of the doping concentration of the p-GaN layer with promising characteristics for the realization of power MOSFETs.

  4. Inversion by metalorganic chemical vapor deposition from N- to Ga-polar gallium nitride and its application to multiple quantum well light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosalli, A. M.; Van Den Broeck, D. M.; Bedair, S. M.

    2013-12-02

    We demonstrate a metalorganic chemical vapor deposition growth approach for inverting N-polar to Ga-polar GaN by using a thin inversion layer grown with high Mg flux. The introduction of this inversion layer allowed us to grow p-GaN films on N-polar GaN thin film. We have studied the dependence of hole concentration, surface morphology, and degree of polarity inversion for the inverted Ga-polar surface on the thickness of the inversion layer. We then use this approach to grow a light emitting diode structure which has the MQW active region grown on the advantageous N-polar surface and the p-layer grown on themore » inverted Ga-polar surface.« less

  5. Oxygen adsorption and incorporation at irradiated GaN(0001) and GaN(0001¯) surfaces: First-principles density-functional calculations

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Selloni, Annabella; Myers, T. H.; Doolittle, W. Alan

    2006-11-01

    Density functional theory calculations of oxygen adsorption and incorporation at the polar GaN(0001) and GaN(0001¯) surfaces have been carried out to explain the experimentally observed reduced oxygen concentration in GaN samples grown by molecular beam epitaxy in the presence of high energy (˜10keV) electron beam irradiation [Myers , J. Vac. Sci. Technol. B 18, 2295 (2000)]. Using a model in which the effect of the irradiation is to excite electrons from the valence to the conduction band, we find that both the energy cost of incorporating oxygen impurities in deeper layers and the oxygen adatom diffusion barriers are significantly reduced in the presence of the excitation. The latter effect leads to a higher probability for two O adatoms to recombine and desorb, and thus to a reduced oxygen concentration in the irradiated samples, consistent with experimental observations.

  6. P-type doping of GaN(000\\bar{1}) by magnesium ion implantation

    NASA Astrophysics Data System (ADS)

    Narita, Tetsuo; Kachi, Tetsu; Kataoka, Keita; Uesugi, Tsutomu

    2017-01-01

    Magnesium ion implantation has been performed on a GaN(000\\bar{1}) substrate, whose surface has a high thermal stability, thus allowing postimplantation annealing without the use of a protective layer. The current-voltage characteristics of p-n diodes fabricated on GaN(000\\bar{1}) showed distinct rectification at a turn-on voltage of about 3 V, although the leakage current varied widely among the diodes. Coimplantation with magnesium and hydrogen ions effectively suppressed the leakage currents and device-to-device variations. In addition, an electroluminescence band was observed at wavelengths shorter than 450 nm for these diodes. These results provide strong evidence that implanted magnesium ions create acceptors in GaN(000\\bar{1}).

  7. Structures and optical properties of \\text{H}_{2}^{+} -implanted GaN epi-layers

    NASA Astrophysics Data System (ADS)

    Li, B. S.; Wang, Z. G.

    2015-06-01

    The implantation damage build-up and optical properties of GaN epitaxial films under \\text{H}2+ ion implantation have been investigated by a combination of Rutherford backscattering in channeling geometry, Raman spectroscopy, UV-visible spectroscopy and transmission electron microscopy. GaN epitaxial films were implanted with 134 keV \\text{H}2+ ions to doses ranging from 3.75   ×   1016 to 1.75   ×   1017 \\text{H}2+  cm-2 at room temperature or the same dose of 1.5   ×   1017 \\text{H}2+  cm-2 at room temperature, 573 and 723 K. The dependence of lattice disorder induced by \\text{H}2+ -implantation on the ion dose can be divided into a three-step damage process. A strong influence of the H concentration on the defect accumulation is discussed. The decrease in relative Ga disorder induced by \\text{H}2+ -implantation is linear with increasing implantation temperature. The absorption coefficient of GaN epitaxial films increases with increasing ion dose, leading to the decrease in Raman scattering spectra of Ga-N vibration. With increasing implantation doses up to 5   ×   1016 \\text{H}2+  cm-2, nanoscale hydrogen bubbles are observed in the H deposition peak region. Interstitial-type dislocation loops are observed in the damaged layer located near the damage peak region, and the geometry of the dislocation loops produced by H implantation is analyzed. The surface layer is almost free of lattice disorder induced by \\text{H}2+ -implantation.

  8. Polarization-Engineered Ga-Face GaN-Based Heterostructures for Normally-Off Heterostructure Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Kim, Hyeongnam; Nath, Digbijoy; Rajan, Siddharth; Lu, Wu

    2013-01-01

    Polarization-engineered Ga-face GaN-based heterostructures with a GaN cap layer and an AlGaN/ p-GaN back barrier have been designed for normally-off field-effect transistors (FETs). The simulation results show that an unintentionally doped GaN cap and p-GaN layer in the buffer primarily deplete electrons in the channel and the Al0.2Ga0.8N back barrier helps to pinch off the channel. Experimentally, we have demonstrated a normally-off GaN-based field-effect transistor on the designed GaN cap/Al0.3Ga0.7N/GaN channel/Al0.2Ga0.8N/ p-GaN/GaN heterostructure. A positive threshold voltage of 0.2 V and maximum transconductance of 2.6 mS/mm were achieved for 80- μm-long gate devices. The device fabrication process does not require a dry etching process for gate recessing, while highly selective etching of the GaN cap against a very thin Al0.3GaN0.7N top barrier has to be performed to create a two-dimensional electron gas for both the ohmic and access regions. A self-aligned, selective etch of the GaN cap in the access region is introduced, using the gate metal as an etch mask. The absence of gate recess etching is promising for uniform and repeatable threshold voltage control in normally-off AlGaN/GaN heterostructure FETs for power switching applications.

  9. Hydrogen incorporation in high hole density GaN:Mg

    NASA Astrophysics Data System (ADS)

    Zvanut, M. E.; Uprety, Y.; Dashdorj, J.; Moseley, M.; Doolittle, W. Alan

    2011-03-01

    We investigate hydrogen passivation in heavily doped p-type GaN using electron paramagnetic resonance (EPR) spectroscopy. Samples include both conventionally grown GaN (1019 cm-3 Mg, 1017 cm-3 holes) and films grown by metal modulation epitaxy (MME), which yielded higher Mg (1- 4 x 1020 cm-3) and hole (1- 40 x 1018 cm-3) densities than found in conventionally grown GaN. The Mg acceptor signal is monitored throughout 30 minute annealing steps in N2 :H2 (92%:7%)) and subsequently pure N2 . N2 :H2 heat treatments of the lower hole density films begin to reduce the Mg EPR intensity at 750 o C, but quench the signal in high hole density films at 600 o C. Revival of the signal by subsequent N2 annealing occurs at 800 o C for the low hole density material and 600 o C in MME GaN. The present work highlights chemical differences between heavily Mg doped and lower doped films; however, it is unclear whether the difference is due to changes in hydrogen-Mg complex formation or hydrogen diffusion. The work at UAB is supported by the NSF.

  10. Superconductivity and tunneling-junctions in epitaxial Nb2N/AlN/GaN heterojunctions

    NASA Astrophysics Data System (ADS)

    Yan, Rusen; Han, Yimo; Khalsa, Guru; Vishwanath, Suresh; Katzer, Scott; Nepal, Neeraj; Downey, Brian; Muller, David; Meyer, David; Xing, Grace; Jena, Debdeep; ECE Collaboration; AEP Collaboration; MSE Collaboration; NRL Collaboration

    We have discovered that ultrathin highly crystalline Nb2N layers grown epitaxially (by MBE) on SiC and integrated with AlN and GaN heterostructures are high-quality superconductors with transition temperatures from 9-13 K. The out-of-plane critical magnetic fields are found to be 14 Tesla range, and the critical current density is 4*1E5 A/cm2 at 5 K. Preliminary in-plane magnetotransport measurements on 4 nm thin films indicate a significantly high critical magnetic field exceeding 40 T. Since Nb2N superconducting layers can be epitaxially integrated with GaN, AlN, and AlGaN, we also demonstrate Nb2N superconductivity in a layer located beneath an N-polar GaN high-electron-mobility transistor (HEMT) heterostructure that uses a 2DEG channel as a microwave amplifier; such a demonstration illustrates the potential emergence of a new paradigm where an all-epitaxial III-N/Nb2N platform could serve as the basis for microwave qubits to power quantum computation as well as quantum communications.

  11. Characteristics of Mg-doped and In-Mg co-doped p-type GaN epitaxial layers grown by metal organic chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Chung, S. J.; Senthil Kumar, M.; Lee, Y. S.; Suh, E.-K.; An, M. H.

    2010-05-01

    Mg-doped and In-Mg co-doped p-type GaN epilayers were grown using the metal organic chemical vapour deposition technique. The effect of In co-doping on the physical properties of p-GaN layer was examined by high resolution x-ray diffraction (HRXRD), transmission electron microscopy (TEM), Hall effect, photoluminescence (PL) and persistent photoconductivity (PPC) at room temperature. An improved crystalline quality and a reduction in threading dislocation density are evidenced upon In doping in p-GaN from HRXRD and TEM images. Hole conductivity, mobility and carrier density also significantly improved by In co-doping. PL studies of the In-Mg co-doped sample revealed that the peak position is blue shifted to 3.2 eV from 2.95 eV of conventional p-GaN and the PL intensity is increased by about 25%. In addition, In co-doping significantly reduced the PPC effect in p-type GaN layers. The improved electrical and optical properties are believed to be associated with the active participation of isolated Mg impurities.

  12. Electronic and Optical Properties of Two-Dimensional GaN from First-Principles.

    PubMed

    Sanders, Nocona; Bayerl, Dylan; Shi, Guangsha; Mengle, Kelsey A; Kioupakis, Emmanouil

    2017-12-13

    Gallium nitride (GaN) is an important commercial semiconductor for solid-state lighting applications. Atomically thin GaN, a recently synthesized two-dimensional material, is of particular interest because the extreme quantum confinement enables additional control of its light-emitting properties. We performed first-principles calculations based on density functional and many-body perturbation theory to investigate the electronic, optical, and excitonic properties of monolayer and bilayer two-dimensional (2D) GaN as a function of strain. Our results demonstrate that light emission from monolayer 2D GaN is blueshifted into the deep ultraviolet range, which is promising for sterilization and water-purification applications. Light emission from bilayer 2D GaN occurs at a similar wavelength to its bulk counterpart due to the cancellation of the effect of quantum confinement on the optical gap by the quantum-confined Stark shift. Polarized light emission at room temperature is possible via uniaxial in-plane strain, which is desirable for energy-efficient display applications. We compare the electronic and optical properties of freestanding two-dimensional GaN to atomically thin GaN wells embedded within AlN barriers in order to understand how the functional properties are influenced by the presence of barriers. Our results provide microscopic understanding of the electronic and optical characteristics of GaN at the few-layer regime.

  13. Nucleation mechanisms of epitaxial GaN nanowires: Origin of their self-induced formation and initial radius

    NASA Astrophysics Data System (ADS)

    Consonni, V.; Knelangen, M.; Geelhaar, L.; Trampert, A.; Riechert, H.

    2010-02-01

    The formation mechanisms of epitaxial GaN nanowires grown within a self-induced approach by molecular-beam epitaxy have been investigated at the onset of the nucleation process by combining in situ reflection high-energy electron-diffraction measurements and ex situ high-resolution transmission electron microscopy imaging. It is shown that the self-induced growth of GaN nanowires on the AlN buffer layer is initially governed by the nucleation of dislocation-free coherent islands. These coherent islands develop through a series of shape transitions from spherical caps through truncated to full pyramids in order to elastically relieve the lattice-mismatch-induced strain. A strong correlation between the subsequent process of plastic relaxation and the final shape transition from full pyramids toward the very first nanowires is found. The experimental critical radius at which the misfit dislocation nucleates is in very good agreement with the theoretical critical radius for the formation of the misfit dislocation in full pyramids, showing that the plastic relaxation process does take place within full pyramids: this critical size corresponds to the initial radius of the very first nanowires. We associate the plastic relaxation of the lattice-mismatch-induced strain occurring within full pyramids with a drastic change in their total free energy: this gives rise to a driving force for the shape transition toward the very first nanowires, which is mainly due to the anisotropy of surface energy.

  14. Structural and optical properties of semi-polar (11-22) InGaN/GaN green light-emitting diode structure

    NASA Astrophysics Data System (ADS)

    Zhao, Guijuan; Wang, Lianshan; Li, Huijie; Meng, Yulin; Li, Fangzheng; Yang, Shaoyan; Wang, Zhanguo

    2018-01-01

    Semi-polar (11-22) InGaN multiple quantum well (MQW) green light-emitting diode (LED) structures have been realized by metal-organic chemical vapor deposition on an m-plane sapphire substrate. By introducing double GaN buffer layers, we improve the crystal quality of semi-polar (11-22) GaN significantly. The vertical alignment of the diffraction peaks in the (11-22) X-ray reciprocal space mapping indicates the fully strained MQW on the GaN layer. The photoluminescence spectra of the LED structure show stronger emission intensity along the [1-100] InGaN/GaN direction. The electroluminescence emission of the LED structure is very broad with peaks around 550 nm and 510 nm at the 100 mA current injection for samples A and B, respectively, and exhibits a significant blue-shift with increasing drive current.

  15. Substrate temperature influence on the properties of GaN thin films grown by hollow-cathode plasma-assisted atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr; Gungor, Neşe; Haider, Ali

    2016-01-15

    Gallium nitride films were grown by hollow cathode plasma-assisted atomic layer deposition using triethylgallium and N{sub 2}/H{sub 2} plasma. An optimized recipe for GaN film was developed, and the effect of substrate temperature was studied in both self-limiting growth window and thermal decomposition-limited growth region. With increased substrate temperature, film crystallinity improved, and the optical band edge decreased from 3.60 to 3.52 eV. The refractive index and reflectivity in Reststrahlen band increased with the substrate temperature. Compressive strain is observed for both samples, and the surface roughness is observed to increase with the substrate temperature. Despite these temperature dependent material properties,more » the chemical composition, E{sub 1}(TO), phonon position, and crystalline phases present in the GaN film were relatively independent from growth temperature.« less

  16. Self-assembled Multilayers of Silica Nanospheres for Defect Reduction in Non- and Semipolar Gallium Nitride Epitaxial Layers

    PubMed Central

    2015-01-01

    Non- and semipolar GaN have great potential to improve the efficiency of light emitting devices due to much reduced internal electric fields. However, heteroepitaxial GaN growth in these crystal orientations suffers from very high dislocation and stacking faults densities. Here, we report a facile method to obtain low defect density non- and semipolar heteroepitaxial GaN via selective area epitaxy using self-assembled multilayers of silica nanospheres (MSN). Nonpolar (11–20) and semipolar (11–22) GaN layers with high crystal quality have been achieved by epitaxial integration of the MSN and a simple one-step overgrowth process, by which both dislocation and basal plane stacking fault densities can be significantly reduced. The underlying defect reduction mechanisms include epitaxial growth through the MSN covered template, island nucleation via nanogaps in the MSN, and lateral overgrowth and coalescence above the MSN. InGaN/GaN multiple quantum wells structures grown on a nonpolar GaN/MSN template show more than 30-fold increase in the luminescence intensity compared to a control sample without the MSN. This self-assembled MSN technique provides a new platform for epitaxial growth of nitride semiconductors and offers unique opportunities for improving the material quality of GaN grown on other orientations and foreign substrates or heteroepitaxial growth of other lattice-mismatched materials. PMID:27065755

  17. Synthesis of p-type GaN nanowires.

    PubMed

    Kim, Sung Wook; Park, Youn Ho; Kim, Ilsoo; Park, Tae-Eon; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2013-09-21

    GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo-junction structure (consisting of annealed Cu:GaN NW/n-type GaN thin film) exhibited p-n junction characteristics. A hybrid organic light emitting diode (OLED) employing the annealed Cu:GaN NWs as a hole injection layer (HIL) also demonstrated current injected luminescence. These results suggest that Cu can be used as a p-type dopant for GaN NWs.

  18. Gallium nitride microcavities formed by photoenhanced wet oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, L.-H.; Lu, C.-Y.; Wu, W.-H.

    We report the formation of gallium nitride (GaN) microcavities by manipulating a photoenhanced oxidation rate difference between the polar and nonpolar crystallographic planes of GaN. When immersed in a buffered acetic (CH{sub 3}COOH) electrolyte of pH{approx}6.2 at room temperature, it is shown that the photo-oxidation can proceed at a rate that is one order of magnitude slower on the nonpolar plane of {l_brace}1100{r_brace}{sub GaN} than on the polar plane of {l_brace}0001{r_brace}{sub GaN} due to the reduced surface field action. Gallium nitride microcavities bounded by optically smooth {l_brace}1100{r_brace} and {l_brace}1103{r_brace} facets can thus be preferentially formed on the c-plane sapphire substratemore » after dissolving the oxide layer. The optical properties of these GaN hexagonal cavities reveal characteristic peaks of whispering gallery modes in resonance with the GaN band edge emission spectrum. A typical cavity Q factor of 10{sup 3} is observed in these GaN microcavities due to a reduced optical scattering loss in the wet chemical reaction process.« less

  19. Curvature evolution of 200 mm diameter GaN-on-insulator wafer fabricated through metalorganic chemical vapor deposition and bonding

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Lee, Kwang Hong; Kadir, Abdul; Wang, Yue; Lee, Kenneth E.; Tan, Chuan Seng; Chua, Soo Jin; Fitzgerald, Eugene A.

    2018-05-01

    Crack-free 200 mm diameter N-polar GaN-on-insulator (GaN-OI) wafers are demonstrated by the transfer of metalorganic chemical vapor deposition (MOCVD)-grown Ga-polar GaN layers from Si(111) wafers onto SiO2/Si(100) wafers. The wafer curvature of the GaN-OI wafers after the removal of the original Si(111) substrate is correlated with the wafer curvature of the starting GaN-on-Si wafers and the voids on the GaN-on-Si surface that evolve into cracks on the GaN-OI wafers. In crack-free GaN-OI wafers, the wafer curvature during the removal of the AlN nucleation layer, AlGaN strain-compensation buffer layers and GaN layers is correlated with the residual stress distribution within individual layers in the GaN-OI wafer.

  20. Engineering Strain for Improved III-Nitride Optoelectronic Device Performance

    NASA Astrophysics Data System (ADS)

    Van Den Broeck, Dennis Marnix

    Due to growing environmental and economic concerns, renewable energy generation and high-efficiency lighting are becoming even more important in the scientific community. III-Nitride devices have been essential in production of high-brightness light-emitting diodes (LEDs) and are now entering the photovoltaic (PV) realm as the technology advances. InGaN/GaN multiple quantum well LEDs emitting in the blue/green region have emerged as promising candidates for next-generation lighting technologies. Due to the large lattice mismatch between InN and GaN, large electric fields exist within the quantum well layers and result in low rates of radiative recombination, especially for the green spectral region. This is commonly referred to as the "green gap" and results in poor external quantum efficiencies for light-emitting diodes and laser diodes. In order to mitigate the compressive stress of InGaN QWs, a novel growth technique is developed in order to grown thick, strain-relaxed In yGa1-yN templates for 0.08 < y < 0.11. By inserting 2 nm GaN interlayers into the growing InyGa1-yN film, and subsequently annealing the structure, "semibulk" InGaN templates were achieved with vastly superior crystal and optical properties than bulk InGaN films. These semibulk InGaN templates were then utilized as new templates for multiple quantum well active layers, effectively reducing the compressive strain in the InGaN wells due to the larger lattice constant of the InGaN template with respect to a GaN template. A zero-stress balance method was used in order to realize a strain-balanced multiple quantum well structure, which again showed improved optical characteristics when compared to fully-strain active regions. The semibulk InGaN template was then implemented into "strain-compensated" LED structures, where light emission was achieved with very little leakage current. Discussion of these strain-compensated devices compared to conventional LEDs is detailed.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moutanabbir, O.; Scholz, R.; Senz, S.

    We investigated the microstructural transformations during hydrogen ion-induced splitting of GaN thin layers. Cross-sectional transmission electron microscopy and positron annihilation spectroscopy data show that the implanted region is decorated with a high density of 1-2 nm bubbles resulting from vacancy clustering during implantation. These nanobubbles persist up to 450 deg. C. Ion channeling data show a strong dechanneling enhancement in this temperature range tentatively attributed to strain-induced lattice distortion. The dechanneling level decreases following the formation of plateletlike structures at 475 deg. C. Extended internal surfaces develop around 550 deg. C leading to the exfoliation of GaN thin layer.

  2. Selective formation of GaN-based nanorod heterostructures on soda-lime glass substrates by a local heating method.

    PubMed

    Hong, Young Joon; Kim, Yong-Jin; Jeon, Jong-Myeong; Kim, Miyoung; Choi, Jun Hee; Baik, Chan Wook; Kim, Sun Il; Park, Sung Soo; Kim, Jong Min; Yi, Gyu-Chul

    2011-05-20

    We report on the fabrication of high-quality GaN on soda-lime glass substrates, heretofore precluded by both the intolerance of soda-lime glass to the high temperatures required for III-nitride growth and the lack of an epitaxial relationship with amorphous glass. The difficulties were circumvented by heteroepitaxial coating of GaN on ZnO nanorods via a local microheating method. Metal-organic chemical vapor deposition of ZnO nanorods and GaN layers using the microheater arrays produced high-quality GaN/ZnO coaxial nanorod heterostructures at only the desired regions on the soda-lime glass substrates. High-resolution transmission electron microscopy examination of the coaxial nanorod heterostructures indicated the formation of an abrupt, semicoherent interface. Photoluminescence and cathodoluminescence spectroscopy was also applied to confirm the high optical quality of the coaxial nanorod heterostructures. Mg-doped GaN/ZnO coaxial nanorod heterostructure arrays, whose GaN shell layers were grown with various different magnesocene flow rates, were further investigated by using photoluminescence spectroscopy for the p-type doping characteristics. The suggested method for fabrication of III-nitrides on glass substrates signifies potentials for low-cost and large-size optoelectronic device applications.

  3. Ionic liquid gating on atomic layer deposition passivated GaN: Ultra-high electron density induced high drain current and low contact resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hong; Du, Yuchen; Ye, Peide D., E-mail: yep@purdue.edu

    2016-05-16

    Herein, we report on achieving ultra-high electron density (exceeding 10{sup 14 }cm{sup −2}) in a GaN bulk material device by ionic liquid gating, through the application of atomic layer deposition (ALD) of Al{sub 2}O{sub 3} to passivate the GaN surface. Output characteristics demonstrate a maximum drain current of 1.47 A/mm, the highest reported among all bulk GaN field-effect transistors, with an on/off ratio of 10{sup 5} at room temperature. An ultra-high electron density exceeding 10{sup 14 }cm{sup −2} accumulated at the surface is confirmed via Hall-effect measurement and transfer length measurement. In addition to the ultra-high electron density, we also observe a reductionmore » of the contact resistance due to the narrowing of the Schottky barrier width on the contacts. Taking advantage of the ALD surface passivation and ionic liquid gating technique, this work provides a route to study the field-effect and carrier transport properties of conventional semiconductors in unprecedented ultra-high charge density regions.« less

  4. GaN light-emitting device based on ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Hirai, Tomoaki; Sakanoue, Tomo; Takenobu, Taishi

    2018-06-01

    Ionic liquids (ILs) are attractive materials for fabricating unique hybrid devices based on electronics and electrochemistry; thus, IL-gated transistors and organic light-emitting devices of light-emitting electrochemical cells (LECs) are investigated for future low-voltage and high-performance devices. In LECs, voltage application induces the formation of electrochemically doped p–n homojunctions owing to ion rearrangements in composites of semiconductors and electrolytes, and achieves electron–hole recombination for light emission at the homojunctions. In this work, we applied this concept of IL-induced electrochemical doping to the fabrication of GaN-based light-emitting devices. We found that voltage application to the layered IL/GaN structure accumulated electrons on the GaN surface owing to ion rearrangements and improved the conductivity of GaN. The ion rearrangement also enabled holes to be injected by the strong electric field of electric double layers on hole injection contacts. This simultaneous injection of holes and electrons into GaN mediated by ions achieves light emission at a low voltage of around 3.4 V. The light emission from the simple IL/GaN structure indicates the usefulness of an electrochemical technique in generating light emission with great ease of fabrication.

  5. More Efficient Power Conversion for EVs: Gallium-Nitride Advanced Power Semiconductor and Packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-02-01

    Broad Funding Opportunity Announcement Project: Delphi is developing power converters that are smaller and more energy efficient, reliable, and cost-effective than current power converters. Power converters rely on power transistors which act like a very precisely controlled on-off switch, controlling the electrical energy flowing through an electrical circuit. Most power transistors today use silicon (Si) semiconductors. However, Delphi is using semiconductors made with a thin layer of gallium-nitride (GaN) applied on top of the more conventional Si material. The GaN layer increases the energy efficiency of the power transistor and also enables the transistor to operate at much higher temperatures,more » voltages, and power-density levels compared to its Si counterpart. Delphi is packaging these high-performance GaN semiconductors with advanced electrical connections and a cooling system that extracts waste heat from both sides of the device to further increase the device’s efficiency and allow more electrical current to flow through it. When combined with other electronic components on a circuit board, Delphi’s GaN power transistor package will help improve the overall performance and cost-effectiveness of HEVs and EVs.« less

  6. Surface Preparation and Deposited Gate Oxides for Gallium Nitride Based Metal Oxide Semiconductor Devices

    PubMed Central

    Long, Rathnait D.; McIntyre, Paul C.

    2012-01-01

    The literature on polar Gallium Nitride (GaN) surfaces, surface treatments and gate dielectrics relevant to metal oxide semiconductor devices is reviewed. The significance of the GaN growth technique and growth parameters on the properties of GaN epilayers, the ability to modify GaN surface properties using in situ and ex situ processes and progress on the understanding and performance of GaN metal oxide semiconductor (MOS) devices are presented and discussed. Although a reasonably consistent picture is emerging from focused studies on issues covered in each of these topics, future research can achieve a better understanding of the critical oxide-semiconductor interface by probing the connections between these topics. The challenges in analyzing defect concentrations and energies in GaN MOS gate stacks are discussed. Promising gate dielectric deposition techniques such as atomic layer deposition, which is already accepted by the semiconductor industry for silicon CMOS device fabrication, coupled with more advanced physical and electrical characterization methods will likely accelerate the pace of learning required to develop future GaN-based MOS technology.

  7. Exciton emission of quasi-2D InGaN in GaN matrix grown by molecular beam epitaxy

    PubMed Central

    Ma, Dingyu; Rong, Xin; Zheng, Xiantong; Wang, Weiying; Wang, Ping; Schulz, Tobias; Albrecht, Martin; Metzner, Sebastian; Müller, Mathias; August, Olga; Bertram, Frank; Christen, Jürgen; Jin, Peng; Li, Mo; Zhang, Jian; Yang, Xuelin; Xu, Fujun; Qin, Zhixin; Ge, Weikun; Shen, Bo; Wang, Xinqiang

    2017-01-01

    We investigate the emission from confined excitons in the structure of a single-monolayer-thick quasi-two-dimensional (quasi-2D) InxGa1−xN layer inserted in GaN matrix. This quasi-2D InGaN layer was successfully achieved by molecular beam epitaxy (MBE), and an excellent in-plane uniformity in this layer was confirmed by cathodoluminescence mapping study. The carrier dynamics have also been investigated by time-resolved and excitation-power-dependent photoluminescence, proving that the recombination occurs via confined excitons within the ultrathin quasi-2D InGaN layer even at high temperature up to ~220 K due to the enhanced exciton binding energy. This work indicates that such structure affords an interesting opportunity for developing high-performance photonic devices. PMID:28417975

  8. Electric field dynamics in nitride structures containing quaternary alloy (Al, In, Ga)N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borysiuk, J., E-mail: jolanta.borysiuk@ifpan.edu.pl; Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw; Sakowski, K.

    2016-07-07

    Molecular beam epitaxy growth and basic physical properties of quaternary AlInGaN layers, sufficiently thick for construction of electron blocking layers (EBL), embedded in ternary InGaN layers are presented. Transmission electron microscopy (TEM) measurement revealed good crystallographic structure and compositional uniformity of the quaternary layers contained in other nitride layers, which are typical for construction of nitride based devices. The AlInGaN layer was epitaxially compatible to InGaN matrix, strained, and no strain related dislocation creation was observed. The strain penetrated for limited depth, below 3 nm, even for relatively high content of indium (7%). For lower indium content (0.6%), the strain wasmore » below the detection limit by TEM strain analysis. The structures containing quaternary AlInGaN layers were studied by time dependent photoluminescence (PL) at different temperatures and excitation powers. It was shown that PL spectra contain three peaks: high energy donor bound exciton peak from the bulk GaN (DX GaN) and the two peaks (A and B) from InGaN layers. No emission from quaternary AlInGaN layers was observed. An accumulation of electrons on the EBL interface in high-In sample and formation of 2D electron gas (2DEG) was detected. The dynamics of 2DEG was studied by time resolved luminescence revealing strong dependence of emission energy on the 2DEG concentration. Theoretical calculations as well as power-dependence and temperature-dependence analysis showed the importance of electric field inside the structure. At the interface, the field was screened by carriers and could be changed by illumination. From these measurements, the dynamics of electric field was described as the discharge of carriers accumulated on the EBL.« less

  9. Evaluation of metal/indium-tin-oxide for transparent low-resistance contacts to p-type GaN.

    PubMed

    Hou, Wenting; Stark, Christoph; You, Shi; Zhao, Liang; Detchprohm, Theeradetch; Wetzel, Christian

    2012-08-10

    In search of a better transparent contact to p-GaN, we analyze various metal/indium-tin-oxide (ITO) (Ag/ITO, AgCu/ITO, Ni/ITO, and NiZn/ITO) contact schemes and compare to Ni/Au, NiZn/Ag, and ITO. The metal layer boosts conductivity while the ITO thickness can be adjusted to constructive transmission interference on GaN that exceeds extraction from bare GaN. We find a best compromise for an Ag/ITO (3 nm/67 nm) ohmic contact with a relative transmittance of 97% of the bare GaN near 530 nm and a specific contact resistance of 0.03 Ω·cm2. The contact proves suitable for green light-emitting diodes in epi-up geometry.

  10. In0.15Ga0.85N visible-light metal-semiconductor-metal photodetector with GaN interlayers deposited by pulsed NH3

    NASA Astrophysics Data System (ADS)

    Wang, Hongxia; Zhang, Xiaohan; Wang, Hailong; Lv, Zesheng; Li, Yongxian; Li, Bin; Yan, Huan; Qiu, Xinjia; Jiang, Hao

    2018-05-01

    InGaN visible-light metal-semiconductor-metal photodetectors with GaN interlayers deposited by pulsed NH3 were fabricated and characterized. By periodically inserting the GaN thin interlayers, the surface morphology of InGaN active layer is improved and the phase separation is suppressed. At 5 V bias, the dark current reduced from 7.0 × 10-11 A to 7.0 × 10-13 A by inserting the interlayers. A peak responsivity of 85.0 mA/W was measured at 420 nm and 5 V bias, corresponding to an external quantum efficiency of 25.1%. The insertion of GaN interlayers also lead to a sharper spectral response cutoff.

  11. Laser-induced local activation of Mg-doped GaN with a high lateral resolution for high power vertical devices

    NASA Astrophysics Data System (ADS)

    Kurose, Noriko; Matsumoto, Kota; Yamada, Fumihiko; Roffi, Teuku Muhammad; Kamiya, Itaru; Iwata, Naotaka; Aoyagi, Yoshinobu

    2018-01-01

    A method for laser-induced local p-type activation of an as-grown Mg-doped GaN sample with a high lateral resolution is developed for realizing high power vertical devices for the first time. As-grown Mg-doped GaN is converted to p-type GaN in a confined local area. The transition from an insulating to a p-type area is realized to take place within about 1-2 μm fine resolution. The results show that the technique can be applied in fabricating the devices such as vertical field effect transistors, vertical bipolar transistors and vertical Schottkey diode so on with a current confinement region using a p-type carrier-blocking layer formed by this technique.

  12. Growth and optical characteristics of Tm-doped AlGaN layer grown by organometallic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Takatsu, J.; Fuji, R.; Tatebayashi, J.; Timmerman, D.; Lesage, A.; Gregorkiewicz, T.; Fujiwara, Y.

    2018-04-01

    We report on the growth and optical properties of Tm-doped AlGaN layers by organometallic vapor phase epitaxy (OMVPE). The morphological and optical properties of Tm-doped GaN (GaN:Tm) and Tm-doped AlGaN (AlGaN:Tm) were investigated by Nomarski differential interference contrast microscopy and photoluminescence (PL) characterization. Nomarski images reveal an increase of surface roughness upon doping Tm into both GaN and AlGaN layers. The PL characterization of GaN:Tm shows emission in the near-infrared range originating from intra-4f shell transitions of Tm3+ ions. In contrast, AlGaN:Tm also exhibits blue light emission from Tm3+ ions. In that case, the wider band gap of the AlGaN host allows energy transfer to higher states of the Tm3+ ions. With time-resolved PL measurements, we could distinguish three types of luminescent sites of Tm3+ in the AlGaN:Tm layer, having different decay times. Our results confirm that Tm ions can be doped into GaN and AlGaN by OMVPE, and show potential for the fabrication of novel high-color-purity blue light emitting diodes.

  13. Simulation based comparative analysis of photoresponse in front- and back-illuminated GaN P-I-N ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Guo, Jin; Xie, Feng; Wang, Guosheng; Wu, Haoran; Song, Man; Yi, Yuanyuan

    2016-10-01

    This paper presents the comparative analysis of influence of doping level and doping profile of the active region on zero bias photoresponse characteristics of GaN-based p-i-n ultraviolet (UV) photodetectors operating at front- and back-illuminated. A two dimensional physically-based computer simulation of GaN-based p-i-n UV photodetectors is presented. We implemented GaN material properties and physical models taken from the literature. It is shown that absorption layer doping profile has notable impacts on the photoresponse of the device. Especially, the effect of doping concentration and distribution of the absorption layer on photoresponse is discussed in detail. In the case of front illumination, comparative to uniform n-type doping, the device with n-type Gaussian doping profiles at absorption layer has higher responsivity. Comparative to front illumination, back illuminated detector with p-type doping profiles at absorption layer has higher maximum photoresponse, while the Gaussian doping profiles have a weaker ability to enhance the device responsivity. It is demonstrated that electric field distribution, mobility degradation, and recombinations are jointly responsible for the variance of photoresponse. Our work enriches the understanding and utilization of GaN based p-i-n UV photodetectors.

  14. Stress in (Al, Ga)N heterostructures grown on 6H-SiC and Si substrates byplasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Koshelev, O. A.; Nechaev, D. V.; Sitnikova, A. A.; Ratnikov, V. V.; Ivanov, S. V.; Jmerik, V. N.

    2017-11-01

    The paper describes experimental results on low temperature plasma-assisted molecular beam epitaxy of GaN/AlN heterostructures on both 6H-SiC and Si(111) substrates. We demonstrate that application of migration enhanced epitaxy and metal-modulated epitaxy for growth of AlN nucleation and buffer layers lowers the screw and edge(total)threading dislocation (TD) densities down to 1.7·108 and 2·109 cm-2, respectively, in a 2.8-μm-thick GaN buffer layer grown atop of AlN/6H-SiC. The screw and total TD densities of 1.2·109 and 7.4·109 cm-2, respectively, were achieved in a 1-μm-thickGaN/AlNheterostructure on Si(111). Stress generation and relaxation in GaN/AlN heterostructures were investigated by using multi-beam optical stress sensor (MOSS) to achieve zero substrate curvature at room temperature. It is demonstrated that a 1-μm-thick GaN/AlN buffer layer grown by PA MBE provides planar substrate morphology in the case of growth on Si substrates whereas 5-μm-thick GaN buffer layers have to be used to achieve the same when growing on 6H-SiC substrates.

  15. Preparation of Graphene-Modified Acupuncture Needle and Its Application in Detecting Neurotransmitters

    PubMed Central

    Tang, Lina; Du, Danxin; Yang, Fan; Liang, Zhong; Ning, Yong; Wang, Hua; Zhang, Guo-Jun

    2015-01-01

    We report a unique nanosensing platform by combining modern nanotechnology with traditional acupuncture needle to prepare graphene-modified acupuncture needle (G-AN), and using it for sensitive detection of neurotransmitters via electrochemistry. An electrochemical deposition method was employed to deposit Au nanoparticles (AuNPs) on the tip surface of the traditional acupuncture needle, while the other part of the needle was coated with insulation paste. Subsequently, the G-AN was obtained by cyclic voltammetry reduction of a graphene oxide solution on the surface of the AuNPs. To investigate the sensing property of the G-AN, pH dependence was measured by recording the open circuit potential in the various pH buffer solutions ranging from 2.0 to 10.0. What’s more, the G-AN was further used for detection of dopamine (DA) with a limit of detection of 0.24 μM. This novel G-AN exhibited a good sensitivity and selectivity, and could realize direct detection of DA in human serum. PMID:26112773

  16. Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres

    PubMed Central

    Kim, Jonghak; Woo, Heeje; Joo, Kisu; Tae, Sungwon; Park, Jinsub; Moon, Daeyoung; Park, Sung Hyun; Jang, Junghwan; Cho, Yigil; Park, Jucheol; Yuh, Hwankuk; Lee, Gun-Do; Choi, In-Suk; Nanishi, Yasushi; Han, Heung Nam; Char, Kookheon; Yoon, Euijoon

    2013-01-01

    Light-emitting diodes (LEDs) become an attractive alternative to conventional light sources due to high efficiency and long lifetime. However, different material properties between GaN and sapphire cause several problems such as high defect density in GaN, serious wafer bowing, particularly in large-area wafers, and poor light extraction of GaN-based LEDs. Here, we suggest a new growth strategy for high efficiency LEDs by incorporating silica hollow nanospheres (S-HNS). In this strategy, S-HNSs were introduced as a monolayer on a sapphire substrate and the subsequent growth of GaN by metalorganic chemical vapor deposition results in improved crystal quality due to nano-scale lateral epitaxial overgrowth. Moreover, well-defined voids embedded at the GaN/sapphire interface help scatter lights effectively for improved light extraction, and reduce wafer bowing due to partial alleviation of compressive stress in GaN. The incorporation of S-HNS into LEDs is thus quite advantageous in achieving high efficiency LEDs for solid-state lighting. PMID:24220259

  17. Preparation of Graphene-Modified Acupuncture Needle and Its Application in Detecting Neurotransmitters

    NASA Astrophysics Data System (ADS)

    Tang, Lina; Du, Danxin; Yang, Fan; Liang, Zhong; Ning, Yong; Wang, Hua; Zhang, Guo-Jun

    2015-06-01

    We report a unique nanosensing platform by combining modern nanotechnology with traditional acupuncture needle to prepare graphene-modified acupuncture needle (G-AN), and using it for sensitive detection of neurotransmitters via electrochemistry. An electrochemical deposition method was employed to deposit Au nanoparticles (AuNPs) on the tip surface of the traditional acupuncture needle, while the other part of the needle was coated with insulation paste. Subsequently, the G-AN was obtained by cyclic voltammetry reduction of a graphene oxide solution on the surface of the AuNPs. To investigate the sensing property of the G-AN, pH dependence was measured by recording the open circuit potential in the various pH buffer solutions ranging from 2.0 to 10.0. What’s more, the G-AN was further used for detection of dopamine (DA) with a limit of detection of 0.24 μM. This novel G-AN exhibited a good sensitivity and selectivity, and could realize direct detection of DA in human serum.

  18. Spatial identification of traps in AlGaN/GaN heterostructures by the combination of lateral and vertical electrical stress measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Anqi; Yang, Xuelin, E-mail: xlyang@pku.edu.cn; Cheng, Jianpeng

    2016-01-25

    We present a methodology and the corresponding experimental results to identify the exact location of the traps that induce hot electron trapping in AlGaN/GaN heterostructures grown on Si substrates. The methodology is based on a combination of lateral and vertical electrical stress measurements employing three ohmic terminals on the test sample structure with different GaN buffer designs. By monitoring the evolution of the lateral current during lateral as well as vertical stress application, we investigate the trapping/detrapping behaviors of the hot electrons and identify that the traps correlated with current degradation are in fact located in the GaN buffer layers.more » The trap activation energies (0.38–0.39 eV and 0.57–0.59 eV) extracted from either lateral or vertical stress measurements are in good agreement with each other, also confirming the identification. By further comparing the trapping behaviors in two samples with different growth conditions of an unintentionally doped GaN layer, we conclude that the traps are most likely in the unintentionally doped GaN layer but of different origins. It is suggested that the 0.38–0.39 eV trap is related to residual carbon incorporation while the 0.57–0.59 eV trap is correlated with native defects or complexes.« less

  19. Aqueous synthesis of zinc oxide films for GaN optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Reading, Arthur H.

    GaN-based LEDs have generally made use of ITO transparent contacts as current-spreading layers for uniform current injection. However, the high raw material and processing costs of ITO layers have generated interest in potentially cheaper alternatives. In this work, zinc oxide transparent layers were fabricated by a low-cost, low-temperature aqueous epitaxial growth method at 90°C for use as transparent contacts to GaN LEDs on c-plane sapphire, and on semipolar bulk GaN substrates. Low-voltage operation was achieved for c-plane devices, with voltages below 3.8V for 1mm2 broad-area LEDs at a current density of 30A/cm 2. Blue-green LEDs on 202¯1¯-plane GaN also showed low voltage operation below 3.5V at 30A/cm2. Ohmic contact resistivity of 1:8 x 10-2Ocm2 was measured for films on (202¯1) p-GaN templates. Ga-doped films had electrical conductivities as high as 660S/cm after annealing at 300°C. Optical characterization revealed optical absorption coefficients in the 50--200cm -1 range for visible light, allowing thick films with sheet resistances below 10O/□ to be grown while minimizing absorption of the emitted light. Accurate and reproducible etch-free patterning of the ZnO films was achieved using templated growths with SiOx hard masks. A roughening method is described which was found to increase peak LED efficiencies by 13% on c-plane patterned sapphire (PSS) substrates. In addition, ZnO films were successfully employed as laser-cladding layers for blue (202¯1) lasers, with a threshold current density of 8.8kA/cm 2.

  20. In situ chemical functionalization of gallium nitride with phosphonic acid derivatives during etching.

    PubMed

    Wilkins, Stewart J; Greenough, Michelle; Arellano, Consuelo; Paskova, Tania; Ivanisevic, Albena

    2014-03-04

    In situ functionalization of polar (c plane) and nonpolar (a plane) gallium nitride (GaN) was performed by adding (3-bromopropyl) phosphonic acid or propyl phosphonic acid to a phosphoric acid etch. The target was to modulate the emission properties and oxide formation of GaN, which was explored through surface characterization with atomic force microscopy, X-ray photoelectron spectroscopy, photoluminescence (PL), inductively coupled plasma-mass spectrometry, and water contact angle. The use of (3-bromopropyl) phosphonic acid and propyl phosphonic acid in phosphoric acid demonstrated lower amounts of gallium oxide formation and greater hydrophobicity for both sample sets, while also improving PL emission of polar GaN samples. In addition to crystal orientation, growth-related factors such as defect density in bulk GaN versus thin GaN films residing on sapphire substrates were investigated as well as their responses to in situ functionalization. Thin nonpolar GaN layers were the most sensitive to etching treatments due in part to higher defect densities (stacking faults and threading dislocations), which accounts for large surface depressions. High-quality GaN (both free-standing bulk polar and bulk nonpolar) demonstrated increased sensitivity to oxide formation. Room-temperature PL stands out as an excellent technique to identify nonradiative recombination as observed in the spectra of heteroepitaxially grown GaN samples. The chemical methods applied to tune optical and physical properties of GaN provide a quantitative framework for future novel chemical and biochemical sensor development.

  1. Atomic layer deposition TiO 2-Al 2O 3 stack: An improved gate dielectric on Ga-polar GaN metal oxide semiconductor capacitors

    DOE PAGES

    Wei, Daming; Edgar, James H.; Briggs, Dayrl P.; ...

    2014-10-15

    This research focuses on the benefits and properties of TiO 2-Al 2O 3 nano-stack thin films deposited on Ga 2O 3/GaN by plasma-assisted atomic layer deposition (PA-ALD) for gate dielectric development. This combination of materials achieved a high dielectric constant, a low leakage current, and a low interface trap density. Correlations were sought between the films’ structure, composition, and electrical properties. The gate dielectrics were approximately 15 nm thick and contained 5.1 nm TiO 2, 7.1 nm Al 2O 3 and 2 nm Ga 2O 3 as determined by spectroscopic ellipsometry. The interface carbon concentration, as measured by x-ray photoelectronmore » spectroscopy (XPS) depth profile, was negligible for GaN pretreated by thermal oxidation in O 2 for 30 minutes at 850°C. The RMS roughness slightly increased after thermal oxidation and remained the same after ALD of the nano-stack, as determined by atomic force microscopy. The dielectric constant of TiO 2-Al 2O 3 on Ga2O3/GaN was increased to 12.5 compared to that of pure Al 2O 3 (8~9) on GaN. In addition, the nano-stack's capacitance-voltage (C-V) hysteresis was small, with a total trap density of 8.74 × 10 11 cm -2. The gate leakage current density (J=2.81× 10 -8 A/cm 2) was low at +1 V gate bias. These results demonstrate the promising potential of plasma ALD deposited TiO 2/Al 2O 3 for serving as the gate oxide on Ga 2O 3/GaN based MOS devices.« less

  2. Atomic layer deposition TiO 2-Al 2O 3 stack: An improved gate dielectric on Ga-polar GaN metal oxide semiconductor capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Daming; Edgar, James H.; Briggs, Dayrl P.

    This research focuses on the benefits and properties of TiO 2-Al 2O 3 nano-stack thin films deposited on Ga 2O 3/GaN by plasma-assisted atomic layer deposition (PA-ALD) for gate dielectric development. This combination of materials achieved a high dielectric constant, a low leakage current, and a low interface trap density. Correlations were sought between the films’ structure, composition, and electrical properties. The gate dielectrics were approximately 15 nm thick and contained 5.1 nm TiO 2, 7.1 nm Al 2O 3 and 2 nm Ga 2O 3 as determined by spectroscopic ellipsometry. The interface carbon concentration, as measured by x-ray photoelectronmore » spectroscopy (XPS) depth profile, was negligible for GaN pretreated by thermal oxidation in O 2 for 30 minutes at 850°C. The RMS roughness slightly increased after thermal oxidation and remained the same after ALD of the nano-stack, as determined by atomic force microscopy. The dielectric constant of TiO 2-Al 2O 3 on Ga2O3/GaN was increased to 12.5 compared to that of pure Al 2O 3 (8~9) on GaN. In addition, the nano-stack's capacitance-voltage (C-V) hysteresis was small, with a total trap density of 8.74 × 10 11 cm -2. The gate leakage current density (J=2.81× 10 -8 A/cm 2) was low at +1 V gate bias. These results demonstrate the promising potential of plasma ALD deposited TiO 2/Al 2O 3 for serving as the gate oxide on Ga 2O 3/GaN based MOS devices.« less

  3. ZnO nanorod arrays and direct wire bonding on GaN surfaces for rapid fabrication of antireflective, high-temperature ultraviolet sensors

    NASA Astrophysics Data System (ADS)

    So, Hongyun; Senesky, Debbie G.

    2016-11-01

    Rapid, cost-effective, and simple fabrication/packaging of microscale gallium nitride (GaN) ultraviolet (UV) sensors are demonstrated using zinc oxide nanorod arrays (ZnO NRAs) as an antireflective layer and direct bonding of aluminum wires to the GaN surface. The presence of the ZnO NRAs on the GaN surface significantly reduced the reflectance to less than 1% in the UV and 4% in the visible light region. As a result, the devices fabricated with ZnO NRAs and mechanically stable aluminum bonding wires (pull strength of 3-5 gf) showed higher sensitivity (136.3% at room temperature and 148.2% increase at 250 °C) when compared with devices with bare (uncoated) GaN surfaces. In addition, the devices demonstrated reliable operation at high temperatures up to 300 °C, supporting the feasibility of simple and cost-effective UV sensors operating with higher sensitivity in high-temperature conditions, such as in combustion, downhole, and space exploration applications.

  4. Effects of GaN interlayer on the transport properties of lattice-matched AlInN/AlN/GaN heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, F.; Gao, K. H., E-mail: khgao@tju.edu.cn; Li, Z. Q.

    2015-04-21

    We study the effects of GaN interlayer on the transport properties of two-dimensional electron gases confined in lattice-matched AlInN/AlN/GaN heterostructures. It is found that the Hall mobility is evidently enhanced when an additional ultrathin GaN interlayer is introduced between AlInN and AlN layers. The enhancement of the Hall mobility is especially remarkable at low temperature. The high Hall mobility results in a low sheet resistance of 23 Ω/◻ at 2 K. Meanwhile, Shubnikov-de Haas oscillations (SdH) are also remarkably enhanced due to the existence of GaN interlayer. The enhancement of the SdH oscillations is related to the larger quantum mobility μ{sub q}more » owing to the suppression of the interface roughness, alloy disorder, and ionized impurity scatterings by the GaN interlayer.« less

  5. Three-Dimensional Hetero-Integration of Faceted GaN on Si Pillars for Efficient Light Energy Conversion Devices.

    PubMed

    Kim, Dong Rip; Lee, Chi Hwan; Cho, In Sun; Jang, Hanmin; Jeon, Min Soo; Zheng, Xiaolin

    2017-07-25

    An important pathway for cost-effective light energy conversion devices, such as solar cells and light emitting diodes, is to integrate III-V (e.g., GaN) materials on Si substrates. Such integration first necessitates growth of high crystalline III-V materials on Si, which has been the focus of many studies. However, the integration also requires that the final III-V/Si structure has a high light energy conversion efficiency. To accomplish these twin goals, we use single-crystalline microsized Si pillars as a seed layer to first grow faceted Si structures, which are then used for the heteroepitaxial growth of faceted GaN films. These faceted GaN films on Si have high crystallinity, and their threading dislocation density is similar to that of GaN grown on sapphire. In addition, the final faceted GaN/Si structure has great light absorption and extraction characteristics, leading to improved performance for GaN-on-Si light energy conversion devices.

  6. Fine structure of the red luminescence band in undoped GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reshchikov, M. A., E-mail: mreshchi@vcu.edu; Usikov, A.; Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics, 49 Kronverkskiy Ave., 197101 Saint Petersburg

    2014-01-20

    Many point defects in GaN responsible for broad photoluminescence (PL) bands remain unidentified. Their presence in thick GaN layers grown by hydride vapor phase epitaxy (HVPE) detrimentally affects the material quality and may hinder the use of GaN in high-power electronic devices. One of the main PL bands in HVPE-grown GaN is the red luminescence (RL) band with a maximum at 1.8 eV. We observed the fine structure of this band with a zero-phonon line (ZPL) at 2.36 eV, which may help to identify the related defect. The shift of the ZPL with excitation intensity and the temperature-related transformation of the RLmore » band fine structure indicate that the RL band is caused by transitions from a shallow donor (at low temperature) or from the conduction band (above 50 K) to an unknown deep acceptor having an energy level 1.130 eV above the valence band.« less

  7. The structure of crystallographic damage in GaN formed during rare earth ion implantation with and without an ultrathin AlN capping layer

    NASA Astrophysics Data System (ADS)

    Gloux, F.; Ruterana, P.; Wojtowicz, T.; Lorenz, K.; Alves, E.

    2006-10-01

    The crystallographic nature of the damage created in GaN implanted by rare earth ions at 300 keV and room temperature has been investigated by transmission electron microscopy versus the fluence, from 7×10 13 to 2×10 16 at/cm 2, using Er, Eu or Tm ions. The density of point defect clusters was seen to increase with the fluence. From about 3×10 15 at/cm 2, a highly disordered 'nanocrystalline layer' (NL) appears on the GaN surface. Its structure exhibits a mixture of voids and misoriented nanocrystallites. Basal stacking faults (BSFs) of I 1, E and I 2 types have been noticed from the lowest fluence, they are I 1 in the majority. Their density increases and saturates when the NL is observed. Many prismatic stacking faults (PSFs) with Drum atomic configuration have been identified. The I 1 BSFs are shown to propagate easily through GaN by folding from basal to prismatic planes thanks to the PSFs. When implanting through a 10 nm AlN cap, the NL threshold goes up to about 3×10 16 at/cm 2. The AlN cap plays a protective role against the dissociation of the GaN up to the highest fluences. The flat surface after implantation and the absence of SFs in the AlN cap indicate its high resistance to the damage formation.

  8. Aluminum gallium nitride-cladding-free nonpolar m-plane gallium nitride-based laser diodes

    NASA Astrophysics Data System (ADS)

    Schmidt, Mathew Corey

    The recent demonstration of nonpolar GaN laser diode operation along with rapid device improvements signal a paradigm shift in GaN-based optoelectronic technology. Up until now, GaN optoelectronics have been trapped on the c-plane facet, where built-in polarization fields place limitations on device design and performance. The advent of bulk GaN substrates has allowed for the full exploration of not only the nonpolar m-plane facet, but all crystal orientations of GaN. This dissertation focuses on the development of some of the world's first nonpolar m-plane GaN laser diodes as well as on the AlGaN-cladding-free concept invented at UCSB. The absence of built-in electric fields allows for thicker quantum wells (≥8 nm) than those allowed on c-plane which improves the optical waveguiding characteristics and eliminates the need for AlGaN cladding layers. The benefits of this design include more uniform growth, more reproducible growth, no tensile cracking, lower operating voltages and currents, and higher yields. The first iteration of device design optimization is presented. Design and growth aspects investigated include quantum well number, quantum well thickness, Mg doping of the p-GaN cladding, aluminum composition of the AlGaN cladding layer and the implementation of an InGaN separate confined heterostructure. These optimizations led to threshold current densities as low as 2.4 kA/cm2.

  9. Carbon doped GaN buffer layer using propane for high electron mobility transistor applications: Growth and device results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X.; Nilsson, D.; Danielsson, Ö.

    2015-12-28

    The creation of a semi insulating (SI) buffer layer in AlGaN/GaN High Electron Mobility Transistor (HEMT) devices is crucial for preventing a current path beneath the two-dimensional electron gas (2DEG). In this investigation, we evaluate the use of a gaseous carbon gas precursor, propane, for creating a SI GaN buffer layer in a HEMT structure. The carbon doped profile, using propane gas, is a two stepped profile with a high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) epitaxial layer closest to the substrate and a lower doped layer (3 × 10{sup 16 }cm{sup −3}) closest to the 2DEG channel. Secondary Ion Mass Spectrometry measurement showsmore » a uniform incorporation versus depth, and no memory effect from carbon doping can be seen. The high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) does not influence the surface morphology, and a roughness root-mean-square value of 0.43 nm is obtained from Atomic Force Microscopy. High resolution X-ray diffraction measurements show very sharp peaks and no structural degradation can be seen related to the heavy carbon doped layer. HEMTs are fabricated and show an extremely low drain induced barrier lowering value of 0.1 mV/V, demonstrating an excellent buffer isolation. The carbon doped GaN buffer layer using propane gas is compared to samples using carbon from the trimethylgallium molecule, showing equally low leakage currents, demonstrating the capability of growing highly resistive buffer layers using a gaseous carbon source.« less

  10. Self-organization of palladium nanoislands on GaN and AlxGa1-xN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Stafiniak, Andrzej; Szymański, Tomasz; Paszkiewicz, Regina

    2017-12-01

    We report on systematic study on the dewetting process of thin Pd layer and self-organized Pd nano-islands on SiO2, GaN and AlxGa1-xN/GaN heterostructures with various Al content. The influence of factors such as the thickness of metal layer, type of top layer of AlGaN/GaN heterostructures, temperature and time of annealing process on the dimensions, shapes and density of Pd islands was analyzed. Comparing the behavior of self-organization of Pd islands on Al0.25Ga0.75N/GaN and SiO2 we can conclude that solid-state dewetting process on SiO2 occures much faster than on Al0.25Ga0.75N. For substrates with SiO2 this process requires less energy and can arise for thicker layer. On the Al0.25Ga0.75N surface the islands take more crystalline shape which is probably due to surface reconstruction of Pd-Ga alloy thin layer on interface. For thin metal layer the coalescence of islands into larger islands similar to Ostwald ripening mechanism was observed. Greater surface roughness of AlxGa1-xN/GaN heterostructures with higher Al content causes an increase of surface density of islands and the reduction of their sizes which improves the roundness. In case of GaN and AlxGa1-xN layers with Al content lower than 20%, the surface degradation caused by annealing process was observed. Probably, this is due to the decomposition of layers with gallium droplet formation on catalytic metal islands.

  11. Polarity Control of Heteroepitaxial GaN Nanowires on Diamond.

    PubMed

    Hetzl, Martin; Kraut, Max; Hoffmann, Theresa; Stutzmann, Martin

    2017-06-14

    Group III-nitride materials such as GaN nanowires are characterized by a spontaneous polarization within the crystal. The sign of the resulting sheet charge at the top and bottom facet of a GaN nanowire is determined by the orientation of the wurtzite bilayer of the different atomic species, called N and Ga polarity. We investigate the polarity distribution of heteroepitaxial GaN nanowires on different substrates and demonstrate polarity control of GaN nanowires on diamond. Kelvin Probe Force Microscopy is used to determine the polarity of individual selective area-grown and self-assembled nanowires over a large scale. At standard growth conditions, mixed polarity occurs for selective GaN nanowires on various substrates, namely on silicon, on sapphire and on diamond. To obtain control over the growth orientation on diamond, the substrate surface is modified by nitrogen and oxygen plasma exposure prior to growth, and the growth parameters are adjusted simultaneously. We find that the surface chemistry and the substrate temperature are the decisive factors for obtaining control of up to 93% for both polarity types, whereas the growth mode, namely selective area or self-assembled growth, does not influence the polarity distribution significantly. The experimental results are discussed by a model based on the interfacial bonds between the GaN nanowires, the termination layer, and the substrate.

  12. Study on GaN buffer leakage current in AlGaN/GaN high electron mobility transistor structures grown by ammonia-molecular beam epitaxy on 100-mm Si(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravikiran, L.; Radhakrishnan, K., E-mail: ERADHA@e.ntu.edu.sg; Ng, G. I.

    2015-06-28

    The effect of carbon doping on the structural and electrical properties of GaN buffer layer of AlGaN/GaN high electron mobility transistor (HEMT) structures has been studied. In the undoped HEMT structures, oxygen was identified as the dominant impurity using secondary ion mass spectroscopy and photoluminescence (PL) measurements. In addition, a notable parallel conduction channel was identified in the GaN buffer at the interface. The AlGaN/GaN HEMT structures with carbon doped GaN buffer using a CBr{sub 4} beam equivalent pressure of 1.86 × 10{sup −7} mTorr showed a reduction in the buffer leakage current by two orders of magnitude. Carbon doped GaN buffersmore » also exhibited a slight increase in the crystalline tilt with some pits on the growth surface. PL and Raman measurements indicated only a partial compensation of donor states with carbon acceptors. However, AlGaN/GaN HEMT structures with carbon doped GaN buffer with 200 nm thick undoped GaN near the channel exhibited good 2DEG characteristics.« less

  13. Energy band structure and electrical properties of Ga-oxide/GaN interface formed by remote oxygen plasma

    NASA Astrophysics Data System (ADS)

    Yamamoto, Taishi; Taoka, Noriyuki; Ohta, Akio; Truyen, Nguyen Xuan; Yamada, Hisashi; Takahashi, Tokio; Ikeda, Mitsuhisa; Makihara, Katsunori; Nakatsuka, Osamu; Shimizu, Mitsuaki; Miyazaki, Seiichi

    2018-06-01

    The energy band structure of a Ga-oxide/GaN structure formed by remote oxygen plasma exposure and the electrical interface properties of the GaN metal–oxide–semiconductor (MOS) capacitors with the SiO2/Ga-oxide/GaN structures with postdeposition annealing (PDA) at various temperatures have been investigated. Reflection high-energy electron diffraction and X-ray photoelectron spectroscopy clarified that the formed Ga-oxide layer is neither a single nor polycrystalline phase with high crystallinity. We found that the energy band offsets at the conduction band minimum and at the valence band maximum between the Ga-oxide layer and the GaN surface were 0.4 and 1.2 ± 0.2 eV, respectively. Furthermore, capacitance–voltage (C–V) characteristics revealed that the interface trap density (D it) is lower than the evaluation limit of Terman method without depending on the PDA temperatures, and that the SiO2/Ga-oxide stack can work as a protection layer to maintain the low D it, avoiding the significant decomposition of GaN at the high PDA temperature of 800 °C.

  14. Buffer transport mechanisms in intentionally carbon doped GaN heterojunction field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uren, Michael J.; Cäsar, Markus; Kuball, Martin

    2014-06-30

    Temperature dependent pulsed and ramped substrate bias measurements are used to develop a detailed understanding of the vertical carrier transport in the buffer layers in a carbon doped GaN power heterojunction field effect transistor. Carbon doped GaN and multiple layers of AlGaN alloy are used in these devices to deliver an insulating and strain relieved buffer with high breakdown voltage capability. However, understanding of the detailed physical mechanism for its operation is still lacking. At the lowest electric fields (<10 MV/m), charge redistribution within the C doped layer is shown to occur by hole conduction in the valence band withmore » activation energy 0.86 eV. At higher fields, leakage between the two-dimensional electron gas and the buffer dominates occurring by a Poole-Frenkel mechanism with activation energy ∼0.65 eV, presumably along threading dislocations. At higher fields still, the strain relief buffer starts to conduct by a field dependent process. Balancing the onset of these leakage mechanisms is essential to allow the build-up of positive rather than negative space charge, and thus minimize bulk-related current-collapse in these devices.« less

  15. Ultraviolet electroluminescence from nitrogen-doped ZnO-based heterojuntion light-emitting diodes prepared by remote plasma in situ atomic layer-doping technique.

    PubMed

    Chien, Jui-Fen; Liao, Hua-Yang; Yu, Sheng-Fu; Lin, Ray-Ming; Shiojiri, Makoto; Shyue, Jing-Jong; Chen, Miin-Jang

    2013-01-23

    Remote plasma in situ atomic layer doping technique was applied to prepare an n-type nitrogen-doped ZnO (n-ZnO:N) layer upon p-type magnesium-doped GaN (p-GaN:Mg) to fabricate the n-ZnO:N/p-GaN:Mg heterojuntion light-emitting diodes. The room-temperature electroluminescence exhibits a dominant ultraviolet peak at λ ≈ 370 nm from ZnO band-edge emission and suppressed luminescence from GaN, as a result of the decrease in electron concentration in ZnO and reduced electron injection from n-ZnO:N to p-GaN:Mg because of the nitrogen incorporation. The result indicates that the in situ atomic layer doping technique is an effective approach to tailoring the electrical properties of materials in device applications.

  16. Efficiency and droop improvement in a blue InGaN-based light emitting diode with a p-InGaN layer inserted in the GaN barriers

    NASA Astrophysics Data System (ADS)

    Wang, Xing-Fu; Tong, Jin-Hui; Zhao, Bi-Jun; Chen, Xin; Ren, Zhi-Wei; Li, Dan-Wei; Zhuo, Xiang-Jing; Zhang, Jun; Yi, Han-Xiang; Li, Shu-Ti

    2013-09-01

    The advantages of a blue InGaN-based light-emitting diode with a p-InGaN layer inserted in the GaN barriers is studied. The carrier concentration in the quantum well, radiative recombination rate in the active region, output power, and internal quantum efficiency are investigated. The simulation results show that the InGaN-based light-emitting diode with a p-InGaN layer inserted in the barriers has better performance over its conventional counterpart and the light emitting diode with p-GaN inserted in the barriers. The improvement is due to enhanced Mg acceptor activation and enhanced hole injection into the quantum wells.

  17. Thermal etching rate of GaN during MOCVD growth interruption in hydrogen and ammonia ambient determined by AlGaN/GaN superlattice structures

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Ikeda, Masao; Zhang, Shuming; Liu, Jianping; Tian, Aiqin; Wen, Pengyan; Cheng, Yang; Yang, Hui

    2017-10-01

    Thermal etching effect of GaN during growth interruption in the metalorganic chemical vapor deposition reactor was investigated in this paper. The thermal etching rate was determined by growing a series of AlGaN/GaN superlattice structures with fixed GaN growth temperature at 735 °C and various AlGaN growth temperature changing from 900 °C to 1007 °C. It was observed that the GaN layer was etched off during the growth interruption when the growth temperature ramped up to AlGaN growth temperature. The etching thickness was determined by high resolution X-ray diffractometer and the etching rate was deduced accordingly. An activation energy of 2.53 eV was obtained for the thermal etching process.

  18. Improvement in crystal quality and optical properties of n-type GaN employing nano-scale SiO2 patterned n-type GaN substrate.

    PubMed

    Jo, Min Sung; Sadasivam, Karthikeyan Giri; Tawfik, Wael Z; Yang, Seung Bea; Lee, Jung Ju; Ha, Jun Seok; Moon, Young Boo; Ryu, Sang Wan; Lee, June Key

    2013-01-01

    n-type GaN epitaxial layers were regrown on the patterned n-type GaN substrate (PNS) with different size of silicon dioxide (SiO2) nano dots to improve the crystal quality and optical properties. PNS with SiO2 nano dots promotes epitaxial lateral overgrowth (ELOG) for defect reduction and also acts as a light scattering point. Transmission electron microscopy (TEM) analysis suggested that PNS with SiO2 nano dots have superior crystalline properties. Hall measurements indicated that incrementing values in electron mobility were clear indication of reduction in threading dislocation and it was confirmed by TEM analysis. Photoluminescence (PL) intensity was enhanced by 2.0 times and 3.1 times for 1-step and 2-step PNS, respectively.

  19. Investigation of Defect Distributions in SiO2/AlGaN/GaN High-Electron-Mobility Transistors by Using Capacitance-Voltage Measurement with Resonant Optical Excitation

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Soo; Lim, Seung-Young; Park, Yong-Keun; Jung, Gunwoo; Song, Jung-Hoon; Cha, Ho-Young; Han, Sang-Woo

    2018-06-01

    We investigated the distributions and the energy levels of defects in SiO2/AlGaN/GaN highelectron-mobility transistors (HEMTs) by using frequency-dependent ( F- D) capacitance-voltage ( C- V) measurements with resonant optical excitation. A Schottky barrier (SB) and a metal-oxidesemiconductor (MOS) HEMT were prepared to compare the effects of defects in their respective layers. We also investigated the effects of those layers on the threshold voltage ( V th ). A drastic voltage shift in the C- V curve at higher frequencies was caused by the large number of defect levels in the SiO2/GaN interface. A significant shift in V th with additional light illumination was observed due to a charging of the defect states in the SiO2/GaN interface. The voltage shifts were attributed to the detrapping of defect states at the SiO2/GaN interface.

  20. Effect of V/III ratio on the surface morphology and electrical properties of m-plane (10 1 bar 0) GaN homoepitaxial layers

    NASA Astrophysics Data System (ADS)

    Barry, Ousmane I.; Tanaka, Atsushi; Nagamatsu, Kentaro; Bae, Si-Young; Lekhal, Kaddour; Matsushita, Junya; Deki, Manato; Nitta, Shugo; Honda, Yoshio; Amano, Hiroshi

    2017-06-01

    We have investigated the effect of V/III ratio on the surface morphology, impurity concentration and electrical properties of m-plane (10 1 bar 0) Gallium Nitride (GaN) homoepitaxial layers. Four-sided pyramidal hillocks are observed on the nominally on-axis m-plane GaN films. Hillocks sizes relatively increase by increasing the V/III ratio. All facets of pyramidal hillocks exhibit well-defined step-terrace features. Secondary ion mass spectrometry depth profiles reveal that carbon impurities decrease by increasing the V/III ratio while the lowest oxygen content is found at an optimized V/III ratio of 900. Vertical Schottky barrier diodes fabricated on the m-GaN samples were characterized. Low leakage current densities of the order of 10-10 A/cm2 at -5 V are obtained at the optimum V/III ratio. Oxygen impurities and screw-component dislocations around hillocks are found to have more detrimental impact on the leakage current mechanism.

  1. MARTA GANs: Unsupervised Representation Learning for Remote Sensing Image Classification

    NASA Astrophysics Data System (ADS)

    Lin, Daoyu; Fu, Kun; Wang, Yang; Xu, Guangluan; Sun, Xian

    2017-11-01

    With the development of deep learning, supervised learning has frequently been adopted to classify remotely sensed images using convolutional networks (CNNs). However, due to the limited amount of labeled data available, supervised learning is often difficult to carry out. Therefore, we proposed an unsupervised model called multiple-layer feature-matching generative adversarial networks (MARTA GANs) to learn a representation using only unlabeled data. MARTA GANs consists of both a generative model $G$ and a discriminative model $D$. We treat $D$ as a feature extractor. To fit the complex properties of remote sensing data, we use a fusion layer to merge the mid-level and global features. $G$ can produce numerous images that are similar to the training data; therefore, $D$ can learn better representations of remotely sensed images using the training data provided by $G$. The classification results on two widely used remote sensing image databases show that the proposed method significantly improves the classification performance compared with other state-of-the-art methods.

  2. High quality lamella preparation of gallium nitride compound semiconductor using Triple Beam™ system

    NASA Astrophysics Data System (ADS)

    Sato, T.; Nakano, K.; Matsumoto, H.; Torikawa, S.; Nakatani, I.; Kiyohara, M.; Isshiki, T.

    2017-09-01

    Gallium nitride (GaN) compound semiconductors have been known to be very sensitive to Ga focused ion beam (FIB) processing. Due to the nature of GaN based materials it is often difficult to produce damage-free lamellae, therefore applying the Triple Beam™ system which incorporates an enhanced method for amorphous removal is presented to make a high quality lamella. The damage or distortion layer thickness of GaN single crystal prepared with 30 kV Ga FIB and 1 kV Ga FIB were about 17 nm and 1.5 nm respectively. The crystallinity at the uppermost surface remained unaffected when the condition of 1 kV Ar ion milling with the Triple Beam™ system was used. The technique of combining traditional Ga FIB processing with an enhanced method for amorphous layer removal by low energy Ar ion milling allows us to analyse the InGaN/GaN interface using aberration corrected scanning transmission electron microscopy at atomic resolution levels.

  3. The management of stress in MOCVD-grown InGaN/GaN LED multilayer structures on Si(1 1 1) substrates

    NASA Astrophysics Data System (ADS)

    Jiang, Quanzhong; Allsopp, Duncan W. E.; Bowen, Chris R.; Wang, Wang N.

    2013-09-01

    The tensile stress in light-emitting diode (LED)-on-Si(1 1 1) multilayer structures must be reduced so that it does not compromise the multiple quantum well emission wavelength uniformity and structural stability. In this paper it is shown for non-optimized LED structures grown on Si(1 1 1) substrates that both emission wavelength uniformity and structural stability can be achieved within the same growth process. In order to gain a deeper understanding of the stress distribution within such a structure, cross-sectional Raman and photo-luminescence spectroscopy techniques were developed. It is observed that for a Si:GaN layer grown on a low-temperature (LT) AlN intermediate layer there is a decrease in compressive stress with increasing Si:GaN layer thickness during MOCVD growth which leads to a high level of tensile stress in the upper part of the layer. This may lead to the development of cracks during cooling to room temperature. Such a phenomenon may be associated with annihilation of defects such as dislocations. Therefore, a reduction of dislocation intensity should take place at the early stage of GaN growth on an AlN or AlGaN layer in order to reduce a build up of tensile stress with thickness. Furthermore, it is also shown that a prolonged three dimensional GaN island growth on a LT AlN interlayer for the reduction of dislocations may result in a reduction in the compressive stress in the resulting GaN layer.

  4. Strain engineering of atomic and electronic structures of few-monolayer-thick GaN

    NASA Astrophysics Data System (ADS)

    Kolobov, A. V.; Fons, P.; Saito, Y.; Tominaga, J.; Hyot, B.; André, B.

    2017-07-01

    Two-dimensional (2D) semiconductors possess the potential to ultimately minimize the size of devices and concomitantly drastically reduce the corresponding energy consumption. In addition, materials in their atomic-scale limit often possess properties different from their bulk counterparts paving the way to conceptually novel devices. While graphene and 2D transition-metal dichalcogenides remain the most studied materials, significant interest also exists in the fabrication of atomically thin structures from traditionally 3D semiconductors such as GaN. While in the monolayer limit GaN possesses a graphenelike structure and an indirect band gap, it was recently demonstrated that few-layer GaN acquires a Haeckelite structure in the direction of growth with an effectively direct gap. In this work, we demonstrate the possibility of strain engineering of the atomic and electronic structure of few-monolayer-thick GaN structures, which opens new avenues for their practical application in flexible nanoelectronics and nano-optoelectronics. Our simulations further suggest that due to the weak van der Waals-like interaction between a substrate and an overlayer, the use of a MoS2 substrate may be a promising route to fabricate few-monolayer Haeckelite GaN experimentally.

  5. Characterization of vertical GaN p-n diodes and junction field-effect transistors on bulk GaN down to cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Kizilyalli, I. C.; Aktas, O.

    2015-12-01

    There is great interest in wide-bandgap semiconductor devices and most recently in vertical GaN structures for power electronic applications such as power supplies, solar inverters and motor drives. In this paper the temperature-dependent electrical behavior of vertical GaN p-n diodes and vertical junction field-effect transistors fabricated on bulk GaN substrates of low defect density (104 to 106 cm-2) is described. Homoepitaxial MOCVD growth of GaN on its native substrate and the ability to control the doping in the drift layers in GaN have allowed the realization of vertical device architectures with drift layer thicknesses of 6 to 40 μm and net carrier electron concentrations as low as 1 × 1015 cm-3. This parameter range is suitable for applications requiring breakdown voltages of 1.2 kV to 5 kV. Mg, which is used as a p-type dopant in GaN, is a relatively deep acceptor (E A ≈ 0.18 eV) and susceptible to freeze-out at temperatures below 200 K. The loss of holes in p-GaN has a deleterious effect on p-n junction behavior, p-GaN contacts and channel control in junction field-effect transistors at temperatures below 200 K. Impact ionization-based avalanche breakdown (BV > 1200 V) in GaN p-n junctions is characterized between 77 K and 423 K for the first time. At higher temperatures the p-n junction breakdown voltage improves due to increased phonon scattering. A positive temperature coefficient in the breakdown voltage is demonstrated down to 77 K; however, the device breakdown characteristics are not as abrupt at temperatures below 200 K. On the other hand, contact resistance to p-GaN is reduced dramatically above room temperature, improving the overall device performance in GaN p-n diodes in all cases except where the n-type drift region resistance dominates the total forward resistance. In this case, the electron mobility can be deconvolved and is found to decrease with T -3/2, consistent with a phonon scattering model. Also, normally-on vertical junction field-effect transistors with BV = 1000 V and drain currents of 4 A are fabricated and characterized over the same temperature range. It is demonstrated that vertical GaN devices (diodes and transistors) utilizing p-n junctions are suitable for most practical applications including automotive ones (210 K < T < 423 K). While devices are functional at cryogenic temperatures (77 K) there may be some limitations to their performance due the freeze-out of Mg acceptors.

  6. NH3-free growth of GaN nanostructure on n-Si (1 1 1) substrate using a conventional thermal evaporation technique

    NASA Astrophysics Data System (ADS)

    Saron, K. M. A.; Hashim, M. R.; Farrukh, M. A.

    2012-06-01

    We have investigated the influence of carrier gas on grown gallium nitride (GaN) epitaxial layers deposited on n-Si (1 1 1) by a physical vapour deposition (PVD) via thermal evaporation of GaN powder at 1150 °C. The GaN nanostructures were grown at a temperature of 1050 °C for 60 min under various gases (N2, H2 mixed with N2, and Ar2) with absence of NH3. The morphology, structure, and optical properties (SEM) images showed that the morphology of GaN displayed various shapes of nanostructured depending on the type of carrier gas. X-ray diffraction (XRD) pattern showed that the GaN polycrystalline reveals a wurtzite-hexagonal structure with [0 0 1] crystal orientation. Raman spectra exhibited a red shift in peaks of E2 (high) as a result of tensile stress. Photoluminescence (PL) measurements showed two band emissions aside from the UV emission. The ultraviolet band gap of GaN nanostructure displayed a red shift as compared with the bulk GaN; this might be attributed to an increase in the defect and stress present in the GaN nanostructure. In addition, the observed blue and green-yellow emissions indicated defects due to the N vacancy and C impurity of the supplied gas. These results clearly indicated that the carrier gas, similar to the growth temperature, is one of the important parameters to control the quality of thermal evaporation (TE)-GaN epilayers.

  7. Fast Growth of GaN Epilayers via Laser-Assisted Metal-Organic Chemical Vapor Deposition for Ultraviolet Photodetector Applications.

    PubMed

    Rabiee Golgir, Hossein; Li, Da Wei; Keramatnejad, Kamran; Zou, Qi Ming; Xiao, Jun; Wang, Fei; Jiang, Lan; Silvain, Jean-François; Lu, Yong Feng

    2017-06-28

    In this study, we successfully developed a carbon dioxide (CO 2 )-laser-assisted metal-organic chemical vapor deposition (LMOCVD) approach to fast synthesis of high-quality gallium nitride (GaN) epilayers on Al 2 O 3 [sapphire(0001)] substrates. By employing a two-step growth procedure, high crystallinity and smooth GaN epilayers with a fast growth rate of 25.8 μm/h were obtained. The high crystallinity was confirmed by a combination of techniques, including X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and atomic force microscopy. By optimizing growth parameters, the ∼4.3-μm-thick GaN films grown at 990 °C for 10 min showed a smooth surface with a root-mean-square surface roughness of ∼1.9 nm and excellent thickness uniformity with sharp GaN/substrate interfaces. The full-width at half-maximum values of the GaN(0002) X-ray rocking curve of 313 arcsec and the GaN(101̅2) X-ray rocking curve of 390 arcsec further confirmed the high crystallinity of the GaN epilayers. We also fabricated ultraviolet (UV) photodetectors based on the as-grown GaN layers, which exhibited a high responsivity of 0.108 A W -1 at 367 nm and a fast response time of ∼125 ns, demonstrating its high optical quality with potential in optoelectronic applications. Our strategy thus provides a simple and cost-effective means toward fast and high-quality GaN heteroepitaxy growth suitable for fabricating high-performance GaN-based UV detectors.

  8. Mocvd Growth of Group-III Nitrides on Silicon Carbide: From Thin Films to Atomically Thin Layers

    NASA Astrophysics Data System (ADS)

    Al Balushi, Zakaria Y.

    Group-III nitride semiconductors (AlN, GaN, InN and their alloys) are considered one of the most important class of materials for electronic and optoelectronic devices. This is not limited to the blue light-emitting diode (LED) used for efficient solid-state lighting, but other applications as well, such as solar cells, radar and a variety of high frequency power electronics, which are all prime examples of the technological importance of nitride based wide bandgap semiconductors in our daily lives. The goal of this dissertation work was to explore and establish new growth schemes to improve the structural and optical properties of thick to atomically thin films of group-III nitrides grown by metalorganic chemical vapor deposition (MOCVD) on SiC substrates for future novel devices. The first research focus of this dissertation was on the growth of indium gallium nitride (InGaN). This wide bandgap semiconductor has attracted much research attention as an active layer in LEDs and recently as an absorber material for solar cells. InGaN has superior material properties for solar cells due to its wavelength absorption tunability that nearly covers the entire solar spectrum. This can be achieved by controlling the indium content in thick grown material. Thick InGaN films are also of interest as strain reducing based layers for deep-green and red light emitters. The growth of thick films of InGaN is, however, hindered by several combined problems. This includes poor incorporation of indium in alloys, high density of structural and morphological defects, as well as challenges associated with the segregation of indium in thick films. Overcoming some of these material challenges is essential in order integrate thick InGaN films into future optoelectronics. Therefore, this dissertation research investigated the growth mechanism of InGaN layers grown in the N-polar direction by MOCVD as a route to improve the structural and optical properties of thick InGaN films. The growth of N-polar InGaN by MOCVD is challenging. These challenges arise from the lack of available native substrates suitable for N-polar film growth. As a result, InGaN layers are conventionally grown in the III-polar direction (i.e. III-polar InGaN) and typically grow under considerable amounts of stress on III-polar GaN base layers. While the structure-property relations of thin III-polar InGaN layers have been widely studied in quantum well structures, insight into the growth of thick films and N-polar InGaN layers have been limited. Therefore, this dissertation research compared the growth of both thick III-polar and N-polar InGaN films grown on optimized GaN base layers. III-polar InGaN films were rough and exhibited a high density of V-pits, while the growth of thick N-polar InGaN films showed improved structural quality and low surface roughness. The results of this dissertation work thereby provide an alternative route to the fabrication of thick InGaN films for potential use in solar cells as well as strain reducing schemes for deep-green and red light emitters. Moreover, this dissertation investigated stress relaxation in thick N-polar films using in situ reflectivity and curvature measurements. The results showed that stress relaxation in N-polar InGaN significantly differed from III-polar InGaN due to the absence of V-pits and it was hypothesized that plastic relaxation in N-polar InGaN could occur by dislocation glide, which typically is kinetically limited at such low growth temperatures required for InGaN. The second part of this dissertation research work focused on buffer free growth of GaN directly on SiC and on epitaxial graphene produced on SiC for potential vertical devices. The studies presented in this dissertation work on the growth of GaN directly on SiC compared the stress evolution of GaN films grown with and without an AlN buffer layer. Films grown directly on SiC showed reduced threading dislocation densities and improved surface roughness when compared to the growth of GaN on an AlN buffer layer. The dislocations in the GaN films grown di

  9. Formation of gallium nitride templates and freestanding substrates by hydride vapor phase epitaxy for homoepitaxial growth of III-nitride devices

    NASA Astrophysics Data System (ADS)

    Williams, Adrian Daniel

    Gallium nitride (GaN) is a direct wide band gap semiconductor currently under heavy development worldwide due to interest in its applications in ultra-violet optoelectronics, power electronics, devices operating in harsh environments (high temperature or corrorsive), etc. While a number of devices have been demonstrated with this material and its related alloys, the unavailability of GaN substrates is seen as one of the current major bottlenecks to both material quality and device performance. This dissertation is concerned with the synthesis of high quality GaN substrates by the hydride vapor phase epitaxy method (HVPE). In this work, the flow of growth precursors in a home-built HVPE reactor was modeled by the Navier-Stokes equation and solved by finite element analysis to promote uniformity of GaN on 2'' sapphire substrates. Kinetics of growth was studied and various regimes of growth were identified to establish a methodology for HVPE GaN growth, independent of reactor geometry. GaN templates as well as bulk substrates were fabricated in this work. Realization of freestanding GaN substrates was achieved through discovery of a natural stress-induced method of separating bulk GaN from sapphire via mechanical failure of a low-temperature GaN buffer layer. Such a process eliminates the need for pre- or post-processing of sapphire substrates, as is currently the standard. Stress in GaN-on-sapphire is discussed, with the dominant contributor identified as thermal stress due to thermal expansion coefficient mismatch between the two materials. This thermal stress is analyzed using Stoney's equation and conditions for crack-free growth of thick GaN substrates were identified. An etch-back process for planarizing GaN templates was also developed and successfully applied to rough GaN templates. The planarization of GaN has been mainly addressed by chemo-mechanical polishing (CMP) methods in the literature, with notable shortcomings including the inability to effectively planarize gallium-polar GaN, the preferred growth plane for devices. The process developed in this work bypasses the constraints of CMP, allowing for the planarization of all surfaces of GaN irrespective of crystal orientation. The GaN samples grown for this dissertation were studied by various techniques to characterize their structural, optical, and electrical properties.

  10. Defect reduction in GaN on dome-shaped patterned-sapphire substrates

    NASA Astrophysics Data System (ADS)

    Chen, Po-Hsun; Su, Vin-Cent; Wu, Shang-Hsuan; Lin, Ray-Ming; Kuan, Chieh-Hsiung

    2018-02-01

    This paper demonstrates the behavior of defect reduction in un-doped GaN (u-GaN) grown on a commercial dome-shaped patterned-sapphire substrate (CDPSS). Residual strain inside the u-GaN grown on the CDPSS have been investigated as well. As verified by the experimentally measured data, the limited growth rate of the u-GaN on the sidewall of the CDPSS enhances the lateral growth of the GaN on the trench region while increasing the growth time. This subsequently contributes to improve the crystalline quality of the GaN on the CDPSS. The more prominent dislocations occur in the u-GaN epilayers on the CDPSS after reaching the summit of the accumulated strain inside the epilayers. Such prominent bent dislocations improve their blocking abilities, followed by the achievement of the better crystalline quality for the growth of the u-GaN on the CDPSS.

  11. Elimination of trench defects and V-pits from InGaN/GaN structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smalc-Koziorowska, Julita; Grzanka, Ewa; Czernecki, Robert

    2015-03-09

    The microstructural evolution of InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor phase epitaxy was studied as a function of the growth temperature of the GaN quantum barriers (QBs). We observed the formation of basal stacking faults (BSFs) in GaN QBs grown at low temperature. The presence of BSFs terminated by stacking mismatch boundaries (SMBs) leads to the opening of the structure at the surface into a V-shaped trench loop. This trench may form above an SMB, thereby terminating the BSF, or above a junction between the SMB and a subsequent BSF. Fewer BSFs and thus fewer trench defectsmore » were observed in GaN QBs grown at temperatures higher than 830 °C. Further increase in the growth temperature of the GaN QBs led to the suppression of the threading dislocation opening into V-pits.« less

  12. Growth and characterization of GaN nanostructures under various ammoniating time with fabricated Schottky gas sensor based on Si substrate

    NASA Astrophysics Data System (ADS)

    Abdullah, Q. N.; Ahmed, A. R.; Ali, A. M.; Yam, F. K.; Hassan, Z.; Bououdina, M.; Almessiere, M. A.

    2018-05-01

    This paper presents the investigation of the influence of the ammoniating time of GaN nanowires (NWs) on the crystalline structure, surface morphology, and optical characteristics. Morphological analysis indicates the growth of good quality and high density of NWs with diameters around 50 nm and lengths up to tens of microns after ammoniating for 30 min. Structural analysis shows that GaN NWs have a typical hexagonal wurtzite crystal structure. Raman spectroscopy confirms the formation of GaN compound with the presence of compressive stress. Photoluminescence (PL) measurements revealed two band emissions, an UV and a broad visible emission. Hydrogen sensor was subsequently fabricated by depositing Pt Schottky contact onto GaN NWs film. The sensor response was measured at various H2 concentrations ranged from 200 up to 1200 ppm at room temperature. It was found that the response increases significantly for low H2 concentration (200-300 ppm) to reach about 50% then increases smoothly to reach 60% at 1200 ppm. The as-fabricated sensor possesses higher performances as compared to similar devices reported in the literature.

  13. Epitaxy of Polar Oxides and Semiconductors

    NASA Astrophysics Data System (ADS)

    Shelton, Christopher Tyrel

    Integrating polar oxide materials with wide-bandgap nitride semiconductors offers the possibility of a tunable 2D carrier gas (2DCG) - provided defect densities are low and interfaces are abrupt. This dissertation investigates a portion of the synthesis science necessary to produce a "semiconductor-grade" interface between these highly dissimilar materials. A significant portion of this work is aligned with efforts to engineer a step-free GaN substrate to produce single in-plane oriented rocksalt oxide films. Initially, we explore the homoepitaxial MOCVD growth conditions necessary to produce highquality GaN films on ammonothermally grown substrates. Ammono substrates are only recently available for purchase and are the market leader in low-dislocation density material. Their novelty requires development of an understanding of morphology trade-offs in processing space. This includes preservation of the epi-polished surface in aggressive MOCVD environments and an understanding of the kinetic barriers affecting growth morphologies. Based on several factors, it was determined that GaN exhibits an 'uphill' diffusion bias that may likely be ascribed to a positive Ehrlich-Schwoebel (ES) barrier. This barrier should have a stabilizing effect against step-bunching but, for many growth conditions, regular step bunching was observed. One possible explanation for the step-bunching instability is the presence of impurities. Experimentally, conditions which incorporate more carbon into GaN homoepitaxial layers are correlated with step-bunching while conditions that suppress carbon produce bilayer stepped morphologies. These observations lead us to the conclusion that GaN homoepitaxial morphology is a competition between impurity induced step-bunching and a stabilizing diffusion bias due to a positive ES barrier. Application of the aforementioned homoepitaxial growth techniques to discrete substrate regions using selected- and confined area epitaxy (SAE,CAE) produces some remarkable surface morphologies. This work represents the first effort to extend SAE and CAE to true bulk single-crystal GaN substrates. By carefully controlling supersaturation during growth it is possible to prepare confined areas with a range of step densities, including surfaces that are entirely step-free. Single terrace GaN mesas up to 100 m in size have been observed, however the potential exists, due to the extremely low dislocation density of the substrate, to further extend the dimensions of these regions. Step-free GaN templates are ideal substrates for rocksalt heteroepitaxy and solve a long-standing challenge related to the integration of cubic and hexagonal materials. It has been previously observed that the origin of the two in-plane orientations in rocksalts grown on III-nitrides is a consequence of the stepped GaN surface. By using a substrate that is effectively step-free across a 100 m region, it is possible to prepare a rocksalt // GaN film with a single in-plane orientation. Heterojunctions of this type are disclination defect free and highly crystalline. The ability to locally prepare a single orientation rocksalt film, coupled with commensurate 2D layer-by-layer growth techniques, allows growth, for the first time, of a truly 'semiconductor-grade' oxide-nitride interface. To study the transport properties of oxide-nitride heterostructures, a series of experiments on standard GaN // sapphire template layers were conducted. Devices that allowed contact to the buried oxide-nitride interface were prepared and characterized using low-temperature Hall measurements. Although a high mobility 2DEG was not observed in these samples, a conduction path at the lattice matched Mg0.52Ca0.48O // GaN interface did appear. If confirmed, this finding could represent the first evidence for interfacial polar coupling between an oxide and a nitride. Overcoming the significant symmetry, chemistry and bonding environment barriers to forming a structurally perfect oxide-nitride interface has required many innovations and the development of several new technologies. It is encouraging, however, that a path around such challenging obstacles exists. We believe the techniques and findings presented in this work are general to many systems, offering hope for a future 'materials functionality' based integration strategy. (Abstract shortened by ProQuest.).

  14. Substrate misorientation induced strong increase in the hole concentration in Mg doped GaN grown by metalorganic vapor phase epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suski, T.; Litwin-Staszewska, E.; Piotrzkowski, R.

    We demonstrate that relatively small GaN substrate misorientation can strongly change hole carrier concentration in Mg doped GaN layers grown by metalorganic vapor phase epitaxy. In this work intentionally misoriented GaN substrates (up to 2 deg. with respect to ideal <0001> plane) were employed. An increase in the hole carrier concentration to the level above 10{sup 18} cm{sup -3} and a decrease in GaN:Mg resistivity below 1 {omega} cm were achieved. Using secondary ion mass spectroscopy we found that Mg incorporation does not change with varying misorientation angle. This finding suggests that the compensation rate, i.e., a decrease in unintentionalmore » donor density, is responsible for the observed increase in the hole concentration. Analysis of the temperature dependence of electrical transport confirms this interpretation.« less

  15. Comparing electrical characteristics of in situ and ex situ Al2O3/GaN interfaces formed by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Chan, Silvia H.; Bisi, Davide; Tahhan, Maher; Gupta, Chirag; DenBaars, Steven P.; Keller, Stacia; Zanoni, Enrico; Mishra, Umesh K.

    2018-04-01

    Al2O3/n-GaN MOS-capacitors grown by metalorganic chemical vapor deposition with in-situ- and ex-situ-formed Al2O3/GaN interfaces were characterized. Capacitors grown entirely in situ exhibited ˜4 × 1012 cm-2 fewer positive fixed charges and up to ˜1 × 1013 cm-2 eV-1 lower interface-state density near the band-edge than did capacitors with ex situ oxides. When in situ Al2O3/GaN interfaces were reformed via the insertion of a 10-nm-thick GaN layer, devices exhibited behavior between the in situ and ex situ limits. These results illustrate the extent to which an in-situ-formed dielectric/GaN gate stack improves the interface quality and breakdown performance.

  16. Pyramidal defects in highly Mg-doped GaN: atomic structure and influence on optoelectronic properties

    NASA Astrophysics Data System (ADS)

    Leroux, M.; Vennéguès, P.; Dalmasso, S.; de Mierry, P.; Lorenzini, P.; Damilano, B.; Beaumont, B.; Gibart, P.; Massies, J.

    2004-07-01

    A detailed transmission electron microscopy study is performed on the pyramidal inversion domains that appear in highly Mg-doped GaN grown by metalorganics vapor phase epitaxy or by the high-pressure, high-temperature method. From a comparison between high resolution images of the inversion domain boundaries and simulations using different atomic models, we conclude that both basal and inclined domain boundaries are likely formed of a monomolecular layer of the definite compound Mg{3}N{2}. We show that, due to their high concentration, the formation of these defects may account for auto-compensation in Mg-doped GaN. We also show that the local band bending induced by the polarity inversion due to these defects can be at the origin of the blue luminescence of highly Mg-doped GaN, always observed when nanometric pyramidal inversion domains are also present.

  17. Theoretical prediction of a self-forming gallium oxide layer at an n-type GaN/SiO2 interface

    NASA Astrophysics Data System (ADS)

    Chokawa, Kenta; Narita, Tetsuo; Kikuta, Daigo; Kachi, Tetsu; Shiozaki, Koji; Shiraishi, Kenji

    2018-03-01

    We examine the energy band diagram at the n-type GaN (n-GaN)/SiO2 interface and show that electron transfer from n-GaN to SiO2 leads to the formation of negatively charged oxygen vacancies in the SiO2, resulting in the self-formation of an n-GaN/Ga2O3/SiO2 structure. On the other hand, it is difficult to automatically form Ga2O3 at a p-type GaN (p-GaN)/SiO2 interface. This electron-transfer-induced self-formation of Ga2O3 causes an interface dipole, which leads to band bending, resulting in an increase in the conduction band offset between GaN and SiO2. Accordingly, by using this self-forming phenomenon, GaN MOSFETs with lower leakage current can be realized.

  18. Hydrogen Surfactant Effect on ZnO/GaN Heterostructures Growth

    NASA Astrophysics Data System (ADS)

    Zhang, Jingzhao; Zhang, Yiou; Tse, Kinfai; Zhu, Junyi

    To grow high quality heterostructures based on ZnO and GaN, growth conditions that favor the layer by layer (Frank-Van der Merwe) growth mode have to be applied. However, if A wets B, B would not wet A without special treatments. A famous example is the epitaxial growth of Si/Ge/Si heterostructure with the help of arsenic surfactant in the late 1980s. It has been confirmed by the previous experiments and our calculations that poor crystal quality and 3D growth mode were obtained when GaN grown on ZnO polar surfaces while high quality ZnO was achieved on (0001) and (000-1)-oriented GaN. During the standard OMVPE growth processes, hydrogen is a common impurity and hydrogen-involved surface reconstructions have been well investigated experimentally and theoretically elsewhere. Due to the above facts, we proposed key growth strategies by using hydrogen as a surfactant to achieve ideal growth mode for GaN on ZnO (000-1) surface. This novel strategy may for the first time make the growth of high quality GaN single crystal on ZnO substrate possible. This surfactant effect is expected to largely improve the crystal quality and the efficiency of ZnO/GaN super lattices or other heterostructure devices. Part of the computing resources was provided by the High Performance Cluster Computing Centre, Hong Kong Baptist University. This work was supported by the start-up funding and direct Grant with the Project code of 4053134 and 3132748 at CUHK.

  19. Ohmic contacts to n-GaN formed by ion-implanted Si into p-GaN

    NASA Astrophysics Data System (ADS)

    Bao, Xichang; Xu, Jintong; Zhang, Wenjing; Wang, Ling; Chu, Kaihui; Li, Chao; Li, Xiangyang

    2009-07-01

    In this paper, we report the ohmic contact to n-GaN fabricated by implanting silicon into Mg-doped GaN using an alloy of Ti/Al/Ti/Au metallization. The used materials were grown on (001) sapphire substrates by metal-organic chemical-vapor deposition (MOCVD). The layer structure was comprised of a GaN buffer layer and followed by a 2 μm thickness Mg-doped GaN (Na=5×1017cm-3) and then double silicon implantation was performed in order to convert p-type GaN into n-type GaN films. The as-implanted samples were then thermal annealed at 1150 °C for 5 min in N2 ambient. The carrier concentration and Hall mobility were 3.13×1018 cm3 and 112 cm2/ (VÂ.s) measured by Hall method. Multilayer electrode of Ti (50 nm)/Al (50 nm)/Ti (30 nm)/Au (30 nm) was deposited on n-GaN using an electron-beam evaporation and contacts were formed by a N2 annealing technique ranging from 600 to 900 °C. After annealing lower than 700 °C, the contacts exhibited a rectifying behavior and became ohmic contact only after high temperature processes (>=700 °C). Specific contact resistance was as low as 9.58×10-4 ΩÂ.cm2 after annealing at 800 °C for 60 seconds. While annealing temperature is higher than 800 °C, the specific contact resistance becomes worse. This phenomenon is caused by the surface morphology degradation.

  20. Fundamentals, progress, and future directions of nitride-based semiconductors and their composites in two-dimensional limit: A first-principles perspective to recent synthesis

    NASA Astrophysics Data System (ADS)

    Kecik, D.; Onen, A.; Konuk, M.; Gürbüz, E.; Ersan, F.; Cahangirov, S.; Aktürk, E.; Durgun, E.; Ciraci, S.

    2018-03-01

    Potential applications of bulk GaN and AlN crystals have made possible single and multilayer allotropes of these III-V compounds to be a focus of interest recently. As of 2005, the theoretical studies have predicted that GaN and AlN can form two-dimensional (2D) stable, single-layer (SL) structures being wide band gap semiconductors and showing electronic and optical properties different from those of their bulk parents. Research on these 2D structures have gained importance with recent experimental studies achieving the growth of ultrathin 2D GaN and AlN on substrates. It is expected that these two materials will open an active field of research like graphene, silicene, and transition metal dichalcogenides. This topical review aims at the evaluation of previous experimental and theoretical works until 2018 in order to provide input for further research attempts in this field. To this end, starting from three-dimensional (3D) GaN and AlN crystals, we review 2D SL and multilayer (ML) structures, which were predicted to be stable in free-standing states. These are planar hexagonal (or honeycomb), tetragonal, and square-octagon structures. First, we discuss earlier results on dynamical and thermal stability of these SL structures, as well as the predicted mechanical properties. Next, their electronic and optical properties with and without the effect of strain are reviewed and compared with those of the 3D parent crystals. The formation of multilayers, hence prediction of new periodic layered structures and also tuning their physical properties with the number of layers are other critical subjects that have been actively studied and discussed here. In particular, an extensive analysis pertaining to the nature of perpendicular interlayer bonds causing planar GaN and AlN to buckle is presented. In view of the fact that SL GaN and AlN can be fabricated only on a substrate, the question of how the properties of free-standing, SL structures are affected if they are grown on a substrate is addressed. We also examine recent works treating the composite structures of GaN and AlN joined commensurately along their zigzag and armchair edges and forming heterostructures, δ-doping, single, and multiple quantum wells, as well as core/shell structures. Finally, outlooks and possible new research directions are briefly discussed.

  1. Method to grow group III-nitrides on copper using passivation layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qiming; Wang, George T; Figiel, Jeffrey T

    Group III-nitride epilayers can be grown directly on copper substrates using intermediate passivation layers. For example, single crystalline c-plane GaN can be grown on Cu (110) substrates with MOCVD. The growth relies on a low temperature AlN passivation layer to isolate any alloying reaction between Ga and Cu.

  2. Real-time x-ray studies of crystal growth modes during metal-organic vapor phase epitaxy of GaN on c- and m-plane single crystals

    DOE PAGES

    Perret, Edith; Highland, M. J.; Stephenson, G. B.; ...

    2014-08-04

    Non-polar orientations of III-nitride semiconductors have attracted significant interest due to their potential application in optoelectronic devices with enhanced efficiency. Using in-situ surface x-ray scattering during metal-organic vapor phase epitaxy (MOVPE) of GaN on non-polar (m-plane) and polar (c-plane) orientations of single crystal substrates, we have observed the homoepitaxial growth modes as a function of temperature and growth rate. On the m-plane surface we observe all three growth modes (step-flow, layer-by-layer, and three-dimensional) as conditions are varied. In contrast, the +c-plane surface exhibits a direct cross over between step-flow and 3-D growth, with no layer-by-layer regime. The apparent activation energymore » of 2.8 ± 0.2 eV observed for the growth rate at the layer-by-layer to step-flow boundary on the m-plane surface is consistent with those observed for MOVPE growth of other III-V compounds, indicating a large critical nucleus size for islands.« less

  3. Nano-scaled Pt/Ag/Ni/Au contacts on p-type GaN for low contact resistance and high reflectivity.

    PubMed

    Kwon, Y W; Ju, I C; Kim, S K; Choi, Y S; Kim, M H; Yoo, S H; Kang, D H; Sung, H K; Shin, K; Ko, C G

    2011-07-01

    We synthesized the vertical-structured LED (VLED) using nano-scaled Pt between p-type GaN and Ag-based reflector. The metallization scheme on p-type GaN for high reflectance and low was the nano-scaled Pt/Ag/Ni/Au. Nano-scaled Pt (5 A) on Ag/Ni/Au exhibited reasonably high reflectance of 86.2% at the wavelength of 460 nm due to high transmittance of light through nano-scaled Pt (5 A) onto Ag layer. Ohmic behavior of contact metal, Pt/Ag/Ni/Au, to p-type GaN was achieved using surface treatments of p-type GaN prior to the deposition of contact metals and the specific contact resistance was observed with decreasing Pt thickness of 5 A, resulting in 1.5 x 10(-4) ohms cm2. Forward voltages of Pt (5 A)/Ag/Ni contact to p-type GaN showed 4.19 V with the current injection of 350 mA. Output voltages with various thickness of Pt showed the highest value at the smallest thickness of Pt due to its high transmittance of light onto Ag, leading to high reflectance. Our results propose that nano-scaled Pt/Ag/Ni could act as a promising contact metal to p-type GaN for improving the performance of VLEDs.

  4. Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Ting; Chen, Hong-Wei; Lee, Hsin-Ying

    2003-06-01

    Using a photoelectrochemical method involving a He-Cd laser, Ga2O3 oxide layers were directly grown on n-type GaN. We demonstrated the performance of the resultant metal-oxide-semiconductor devices based on the grown Ga2O3 layer. An extremely low reverse leakage current of 200 pA was achieved when devices operated at -20 V. Furthermore, high forward and reverse breakdown electric fields of 2.80 MV/cm and 5.70 MV/cm, respectively, were obtained. Using a photoassisted current-voltage method, a low interface state density of 2.53×1011 cm-2 eV-1 was estimated. The varactor devices permit formation of inversion layers, so that they may be applied for the fabrication of metal-oxide-semiconductor field-effect transistors.

  5. Near-ultraviolet micro-Raman study of diamond grown on GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazari, M., E-mail: m-n79@txstate.edu; Hancock, B. L.; Anderson, J.

    2016-01-18

    Ultraviolet (UV) micro-Raman measurements are reported of diamond grown on GaN using chemical vapor deposition. UV excitation permits simultaneous investigation of the diamond (D) and disordered carbon (DC) comprising the polycrystalline layer. From line scans of a cross-section along the diamond growth direction, the DC component of the diamond layer is found to be highest near the GaN-on-diamond interface and diminish with characteristic length scale of ∼3.5 μm. Transmission electron microscopy (TEM) of the diamond near the interface confirms the presence of DC. Combined micro-Raman and TEM are used to develop an optical method for estimating the DC volume fraction.

  6. Dislocations limited electronic transport in hydride vapour phase epitaxy grown GaN templates: A word of caution for the epitaxial growers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Abhishek, E-mail: cabhishek@rrcat.gov.in; Khamari, Shailesh K.; Kumar, R.

    2015-01-12

    GaN templates grown by hydride vapour phase epitaxy (HVPE) and metal organic vapour phase epitaxy (MOVPE) techniques are compared through electronic transport measurements. Carrier concentration measured by Hall technique is about two orders larger than the values estimated by capacitance voltage method for HVPE templates. It is learnt that there exists a critical thickness of HVPE templates below which the transport properties of epitaxial layers grown on top of them are going to be severely limited by the density of charged dislocations lying at layer-substrate interface. On the contrary MOVPE grown templates are found to be free from such limitations.

  7. Compositionally graded relaxed AlGaN buffers on semipolar GaN for mid-ultraviolet emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Erin C.; Wu Feng; Haeger, Daniel A.

    In this Letter, we report on the growth and properties of relaxed, compositionally graded Al{sub x}Ga{sub 1-x}N buffer layers on freestanding semipolar (2021) GaN substrates. Continuous and step compositional grades with Al concentrations up to x = 0.61 have been achieved, with emission wavelengths in the mid-ultraviolet region as low as 265 nm. Coherency stresses were relaxed progressively throughout the grades by misfit dislocation generation via primary (basal) slip and secondary (non-basal) slip systems. Threading dislocation densities in the final layers of the grades were less than 10{sup 6}/cm{sup 2} as confirmed by plan-view transmission electron microscopy and cathodoluminescence studies.

  8. Compositionally graded relaxed AlGaN buffers on semipolar GaN for mid-ultraviolet emission

    NASA Astrophysics Data System (ADS)

    Young, Erin C.; Wu, Feng; Romanov, Alexey E.; Haeger, Daniel A.; Nakamura, Shuji; Denbaars, Steven P.; Cohen, Daniel A.; Speck, James S.

    2012-10-01

    In this Letter, we report on the growth and properties of relaxed, compositionally graded AlxGa1 - xN buffer layers on freestanding semipolar (202¯1) GaN substrates. Continuous and step compositional grades with Al concentrations up to x = 0.61 have been achieved, with emission wavelengths in the mid-ultraviolet region as low as 265 nm. Coherency stresses were relaxed progressively throughout the grades by misfit dislocation generation via primary (basal) slip and secondary (non-basal) slip systems. Threading dislocation densities in the final layers of the grades were less than 106/cm2 as confirmed by plan-view transmission electron microscopy and cathodoluminescence studies.

  9. Catalytic activity of enzymes immobilized on AlGaN /GaN solution gate field-effect transistors

    NASA Astrophysics Data System (ADS)

    Baur, B.; Howgate, J.; von Ribbeck, H.-G.; Gawlina, Y.; Bandalo, V.; Steinhoff, G.; Stutzmann, M.; Eickhoff, M.

    2006-10-01

    Enzyme-modified field-effect transistors (EnFETs) were prepared by immobilization of penicillinase on AlGaN /GaN solution gate field-effect transistors. The influence of the immobilization process on enzyme functionality was analyzed by comparing covalent immobilization and physisorption. Covalent immobilization by Schiff base formation on GaN surfaces modified with an aminopropyltriethoxysilane monolayer exhibits high reproducibility with respect to the enzyme/substrate affinity. Reductive amination of the Schiff base bonds to secondary amines significantly increases the stability of the enzyme layer. Electronic characterization of the EnFET response to penicillin G indicates that covalent immobilization leads to the formation of an enzyme (sub)monolayer.

  10. Characterization of nonpolar a-plane GaN epi-layers grown on high-density patterned r-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Jinno, Daiki; Otsuki, Shunya; Sugimori, Shogo; Daicho, Hisayoshi; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu

    2018-02-01

    To reduce the number of threading dislocations (TDs) in nonpolar a-plane GaN (a-GaN) epi-layers grown on flat r-plane sapphire substrates (r-FSS), we investigated the effects on the crystalline quality of the a-GaN epi-layers of high-density patterned r-plane sapphire substrates (r-HPSS), the patterns of which were placed at intervals of several hundred nanometers. Two types of r-HPSS, the patterns of which had diameters and heights on the order of several hundred nanometers (r-NHPSS) or several micrometers (r-MHPSS), were prepared with conventional r-FSS. The effect of these r-HPSS on the a-GaN epi-layers was demonstrated by evaluating the surface morphology and the crystalline quality of the epi-layers. The surfaces of the a-GaN epi-layer grown on r-FSS and r-NHPSS were pit-free and mirror-like, whereas the surface of the a-GaN epi-layer grown on r-MHPSS was very rough due to the large, irregular GaN islands that grew on the patterns, mainly at the initial growth stage. The crystalline quality of the a-GaN epi-layer grown on r-NHPSS was better than that of the a-GaN epi-layer grown on r-FSS. We confirmed that there were fewer TDs in the a-GaN epi-layer grown on r-NHPSS than there were in the a-GaN epi-layer grown on r-FSS. The TDs propagating to the surface in a-GaN epi-layer grown on r-NHPSS were mainly generated on the flat sapphire regions between the patterns. Interestingly, it was also found that the TDs that propagated to the surface concentrated with a periodic pitch along the c-axis direction. The TD densities of a-GaN epi-layers grown on r-FSS and r-NHPSS were estimated to be approximately 5.0 × 1010 and 1.5 × 109 cm-2, respectively. This knowledge will contribute to the further development of a-GaN epi-layers for high-performance devices.

  11. Structural defects in bulk GaN

    NASA Astrophysics Data System (ADS)

    Liliental-Weber, Z.; dos Reis, R.; Mancuso, M.; Song, C. Y.; Grzegory, I.; Porowski, S.; Bockowski, M.

    2014-10-01

    Transmission Electron Microscopy (TEM) studies of undoped and Mg doped GaN layers grown on the HVPE substrates by High Nitrogen Pressure Solution (HNPS) with the multi-feed-seed (MFS) configuration are shown. The propagation of dislocations from the HVPE substrate to the layer is observed. Due to the interaction between these dislocations in the thick layers much lower density of these defects is observed in the upper part of the HNPS layers. Amorphous Ga precipitates with attached voids pointing toward the growth direction are observed in the undoped layer. This is similar to the presence of Ga precipitates in high-pressure platelets, however the shape of these precipitates is different. The Mg doped layers do not show Ga precipitates, but MgO rectangular precipitates are formed, decorating the dislocations. Results of TEM studies of HVPE layers grown on Ammonothermal substrates are also presented. These layers have superior crystal quality in comparison to the HNPS layers, as far as density of dislocation is concern. Occasionally some small inclusions can be found, but their chemical composition was not yet determined. It is expected that growth of the HNPS layers on these substrate will lead to large layer thickness obtained in a short time and with high crystal perfection needed in devices.

  12. GaN and ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Fündling, Sönke; Sökmen, Ünsal; Behrends, Arne; Al-Suleiman, Mohamed Aid Mansur; Merzsch, Stephan; Li, Shunfeng; Bakin, Andrey; Wehmann, Hergo-Heinrich; Waag, Andreas; Lähnemann, Jonas; Jahn, Uwe; Trampert, Achim; Riechert, Henning

    2010-07-01

    GaN and ZnO are both wide band gap semiconductors with interesting properties concerning optoelectronic and sensor device applications. Due to the lack or the high costs of native substrates, alternatives like sapphire, silicon, or silicon carbide are taken, but the resulting lattice and thermal mismatches lead to increased defect densities which reduce the material quality. In contrast, nanostructures with high aspect ratio have lower defect densities as compared to layers. In this work, we give an overview on our results achieved on both ZnO as well as GaN based nanorods. ZnO nanostructures were grown by a wet chemical approach as well as by VPT on different substrates - even on flexible polymers. To compare the growth results we analyzed the structures by XRD and PL and show possible device applications. The GaN nano- and microstructures were grown by metal organic vapor phase epitaxy either in a self- organized process or by selective area growth for a better control of shape and material composition. Finally we take a look onto possible device applications, presenting our attempts, e.g., to build LEDs based on GaN nanostructures.

  13. Dislocation confinement in the growth of Na flux GaN on metalorganic chemical vapor deposition-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeuchi, S., E-mail: takeuchi@ee.es.osaka-u.ac.jp; Asazu, H.; Nakamura, Y.

    2015-12-28

    We have demonstrated a GaN growth technique in the Na flux method to confine c-, (a+c)-, and a-type dislocations around the interface between a Na flux GaN crystal and a GaN layer grown by metalorganic chemical vapor deposition (MOCVD) on a (0001) sapphire substrate. Transmission electron microscopy (TEM) clearly revealed detailed interface structures and dislocation behaviors that reduced the density of vertically aligned dislocations threading to the Na flux GaN surface. Submicron-scale voids were formed at the interface above the dislocations with a c component in MOCVD-GaN, while no such voids were formed above the a-type dislocations. The penetration ofmore » the dislocations with a c component into Na flux GaN was, in most cases, effectively blocked by the presence of the voids. Although some dislocations with a c component in the MOCVD-GaN penetrated into the Na flux GaN, their propagation direction changed laterally through the voids. On the other hand, the a-type dislocations propagated laterally and collectively near the interface, when these dislocations in the MOCVD-GaN penetrated into the Na flux GaN. These results indicated that the dislocation propagation behavior was highly sensitive to the type of dislocation, but all types of dislocations were confined to within several micrometers region of the Na flux GaN from the interface. The cause of void formation, the role of voids in controlling the dislocation behavior, and the mechanism of lateral and collective dislocation propagation are discussed on the basis of TEM results.« less

  14. Dependence of N-polar GaN rod morphology on growth parameters during selective area growth by MOVPE

    NASA Astrophysics Data System (ADS)

    Li, Shunfeng; Wang, Xue; Mohajerani, Matin Sadat; Fündling, Sönke; Erenburg, Milena; Wei, Jiandong; Wehmann, Hergo-Heinrich; Waag, Andreas; Mandl, Martin; Bergbauer, Werner; Strassburg, Martin

    2013-02-01

    Selective area growth of GaN rods by metalorganic vapor phase epitaxy has attracted great interest due to its novel applications in optoelectronic and photonics. In this work, we will present the dependence of GaN rod morphology on various growth parameters i.e. growth temperature, H2/N2 carrier gas concentration, V/III ratio, total carrier gas flow and reactor pressure. It is found that higher growth temperature helps to increase the aspect ratio of the rods, but reduces the height homogeneity. Furthermore, H2/N2 carrier gas concentration is found to be a critical factor to obtain vertical rod growth. Pure nitrogen carrier gas leads to irregular growth of GaN structure, while an increase of hydrogen carrier gas results in vertical GaN rod growth. Higher hydrogen carrier gas concentration also reduces the diameter and enhances the aspect of the GaN rods. Besides, increase of V/III ratio causes reduction of the aspect ratio of N-polar GaN rods, which could be explained by the relatively lower growth rate on (000-1) N-polar top surface when supplying more ammonia. In addition, an increase of the total carrier gas flow leads to a decrease in the diameter and the average volume of GaN rods. These phenomena are tentatively explained by the change of partial pressure of the source materials and boundary layer thickness in the reactor. Finally, it is shown that the average volume of the N-polar GaN rods keeps a similar value for a reactor pressure PR of 66 and 125 mbar, while an incomplete filling of the pattern opening is observed with PR of 250 mbar. Room temperature photoluminescence spectrum of the rods is also briefly discussed.

  15. Phosphor-Free InGaN White Light Emitting Diodes Using Flip-Chip Technology

    PubMed Central

    Li, Ying-Chang; Chang, Liann-Be; Chen, Hou-Jen; Yen, Chia-Yi; Pan, Ke-Wei; Huang, Bohr-Ran; Kuo, Wen-Yu; Chow, Lee; Zhou, Dan; Popko, Ewa

    2017-01-01

    Monolithic phosphor-free two-color gallium nitride (GaN)-based white light emitting diodes (LED) have the potential to replace current phosphor-based GaN white LEDs due to their low cost and long life cycle. Unfortunately, the growth of high indium content indium gallium nitride (InGaN)/GaN quantum dot and reported LED’s color rendering index (CRI) are still problematic. Here, we use flip-chip technology to fabricate an upside down monolithic two-color phosphor-free LED with four grown layers of high indium quantum dots on top of the three grown layers of lower indium quantum wells separated by a GaN tunneling barrier layer. The photoluminescence (PL) and electroluminescence (EL) spectra of this white LED reveal a broad spectrum ranging from 475 to 675 nm which is close to an ideal white-light source. The corresponding color temperature and color rendering index (CRI) of the fabricated white LED, operated at 350, 500, and 750 mA, are comparable to that of the conventional phosphor-based LEDs. Insights of the epitaxial structure and the transport mechanism were revealed through the TEM and temperature dependent PL and EL measurements. Our results show true potential in the Epi-ready GaN white LEDs for future solid state lighting applications. PMID:28772792

  16. Investigation of efficiency enhancement in InGaN MQW LED with compositionally step graded GaN/InAlN/GaN multi-layer barrier

    NASA Astrophysics Data System (ADS)

    Prajoon, P.; Anuja Menokey, M.; Charles Pravin, J.; Ajayan, J.; Rajesh, S.; Nirmal, D.

    2018-04-01

    The advantage of InGaN multiple Quantum well (MQW) Light emitting diode (LED) on a SiC substrate with compositionally step graded GaN/InAlN/GaN multi-layer barrier (MLB) is studied. The Internal quantum efficiency, Optical power, current-voltage characteristics, spontaneous emission rate and carrier distribution profile in the active region are investigated using Sentaurus TCAD simulation. An analytical model is also developed to describe the QW carrier injection efficiency, by including carrier leakage mechanisms like carrier overflow, thermionic emission and tunnelling. The enhanced electron confinement, reduced carrier asymmetry, and suppressed carrier overflow in the active region of the MLB MQW LED leads to render a superior performance than the conventional GaN barrier MQW LED. The simulation result also elucidates the efficiency droop behaviour in the MLB MQW LED, it suggests that the efficiency droop effect is remarkably improved when the GaN barrier is replaced with GaN/InAlN/GaN MLB barrier. The analysis shows a dominating behaviour of carrier escape mechanism due to tunnelling. Moreover, the lower lattice mismatching of SiC substrate with GaN epitaxial layer is attributed with good crystal quality and reduced polarization effect, ultimately enhances the optical performance of the LEDs.

  17. Large scale 2D/3D hybrids based on gallium nitride and transition metal dichalcogenides.

    PubMed

    Zhang, Kehao; Jariwala, Bhakti; Li, Jun; Briggs, Natalie C; Wang, Baoming; Ruzmetov, Dmitry; Burke, Robert A; Lerach, Jordan O; Ivanov, Tony G; Haque, Md; Feenstra, Randall M; Robinson, Joshua A

    2017-12-21

    Two and three-dimensional (2D/3D) hybrid materials have the potential to advance communication and sensing technologies by enabling new or improved device functionality. To date, most 2D/3D hybrid devices utilize mechanical exfoliation or post-synthesis transfer, which can be fundamentally different from directly synthesized layers that are compatible with large scale industrial needs. Therefore, understanding the process/property relationship of synthetic heterostructures is priority for industrially relevant material architectures. Here we demonstrate the scalable synthesis of molybdenum disulfide (MoS 2 ) and tungsten diselenide (WSe 2 ) via metal organic chemical vapor deposition (MOCVD) on gallium nitride (GaN), and elucidate the structure, chemistry, and vertical transport properties of the 2D/3D hybrid. We find that the 2D layer thickness and transition metal dichalcogenide (TMD) choice plays an important role in the transport properties of the hybrid structure, where monolayer TMDs exhibit direct tunneling through the layer, while transport in few layer TMDs on GaN is dominated by p-n diode behavior and varies with the 2D/3D hybrid structure. Kelvin probe force microscopy (KPFM), low energy electron microscopy (LEEM) and X-ray photoelectron spectroscopy (XPS) reveal a strong intrinsic dipole and charge transfer between n-MoS 2 and p-GaN, leading to a degraded interface and high p-type leakage current. Finally, we demonstrate integration of heterogeneous 2D layer stacks of MoS 2 /WSe 2 on GaN with atomically sharp interface. Monolayer MoS 2 /WSe 2 /n-GaN stacks lead to near Ohmic transport due to the tunneling and non-degenerated doping, while few layer stacking is Schottky barrier dominated.

  18. Multicycle rapid thermal annealing optimization of Mg-implanted GaN: Evolution of surface, optical, and structural properties

    NASA Astrophysics Data System (ADS)

    Greenlee, Jordan D.; Feigelson, Boris N.; Anderson, Travis J.; Tadjer, Marko J.; Hite, Jennifer K.; Mastro, Michael A.; Eddy, Charles R.; Hobart, Karl D.; Kub, Francis J.

    2014-08-01

    The first step of a multi-cycle rapid thermal annealing process was systematically studied. The surface, structure, and optical properties of Mg implanted GaN thin films annealed at temperatures ranging from 900 to 1200 °C were investigated by Raman spectroscopy, photoluminescence, UV-visible spectroscopy, atomic force microscopy, and Nomarski microscopy. The GaN thin films are capped with two layers of in-situ metal organic chemical vapor deposition -grown AlN and annealed in 24 bar of N2 overpressure to avoid GaN decomposition. The crystal quality of the GaN improves with increasing annealing temperature as confirmed by UV-visible spectroscopy and the full widths at half maximums of the E2 and A1 (LO) Raman modes. The crystal quality of films annealed above 1100 °C exceeds the quality of the as-grown films. At 1200 °C, Mg is optically activated, which is determined by photoluminescence measurements. However, at 1200 °C, the GaN begins to decompose as evidenced by pit formation on the surface of the samples. Therefore, it was determined that the optimal temperature for the first step in a multi-cycle rapid thermal anneal process should be conducted at 1150 °C due to crystal quality and surface morphology considerations.

  19. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swain, Basudev, E-mail: swain@iae.re.kr; Mishra, Chinmayee; Kang, Leeseung

    Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium,more » two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na{sub 2}CO{sub 3}, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na{sub 2}CO{sub 3}, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4 M HCl, 100 °C and pulp density of 20 g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching. - Highlights: • Simplest process for treatment of GaN an LED industry waste developed. • The process developed recovers gallium from waste LED waste dust. • Thermal analysis and phase properties of GaN to Ga{sub 2}O{sub 3} and GaN to NaGaO{sub 2} revealed. • Solid-state chemistry involved in this process reported. • Quantitative leaching of the GaN was achieved.« less

  20. Near-UV emission from In-rich InGaN/GaN single quantum well structure with compositional grading

    NASA Astrophysics Data System (ADS)

    Kwon, S.-Y.; Cho, M.-H.; Moon, P.; Kim, H. J.; Na, H.; Seo, H.-C.; Kim, H. J.; Shin, Y.; Moon, D. W.; Sun, Y.; Cho, Y.-H.; Yoon, E.

    2004-09-01

    We grew high quality In-rich InGaN/GaN single quantum well (SQW) structures by metal-organic chemical vapor deposition using growth interruption and obtained a sharp photoluminescence peak in near-ultraviolet (UV) region. During In-rich InGaN well layer growth, only TMIn and ammonia were supplied, however, atomic interdiffusion as well as defect generation occurred to relieve large lattice mismatch over 10% between InN and GaN. From medium-energy ion scattering measurement and subsequent fitting of the spectrum, we could find that the InGaN well layer was In-rich and it has 60-70% indium content. We also found the compositional grading of indium at top and bottom InGaN/GaN interfaces. The Fourier series method was used to calculate the energy levels and envelope functions in In-rich InGaN/GaN SQW with compositional grading and we could quantitatively explain the near-UV emission observed from the SQW.

  1. Strain dependence of In incorporation in m-oriented GaInN/GaN multi quantum well structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horenburg, Philipp, E-mail: p.horenburg@tu-braunschweig.de; Buß, Ernst Ronald; Rossow, Uwe

    We demonstrate a strong dependence of the indium incorporation efficiency on the strain state in m-oriented GaInN/GaN multi quantum well (MQW) structures. Insertion of a partially relaxed AlInN buffer layer opens up the opportunity to manipulate the strain situation in the MQW grown on top. By lattice-matching this AlInN layer to the c- or a-axis of the underlying GaN, relaxation towards larger a- or smaller c-lattice constants can be induced, respectively. This results in a modified template for the subsequent MQW growth. From X-ray diffraction and photoluminescence measurements, we derive significant effects on the In incorporation efficiency and In concentrationsmore » in the quantum well (QW) up to x = 38% without additional accumulation of strain energy in the QW region. This makes strain manipulation a very promising method for growth of high In-containing MQW structures for efficient, long wavelength light-emitting devices.« less

  2. Ab initio calculations on the initial stages of GaN and ZnO growth on lattice-matched ScAlMgO4 (0001) substrates

    NASA Astrophysics Data System (ADS)

    Guo, Yao; Wang, Yanfei; Li, Chengbo; Li, Xianchang; Niu, Yongsheng; Hou, Shaogang

    2016-12-01

    The initial stages of GaN and ZnO epitaxial growth on lattice-matched ScAlMgO4 substrates have been investigated by ab initio calculation. The geometrical parameters and electronic structure of ScAlMgO4 bulk and (0001) surface have been investigated by density-functional first-principles study. The effects of different surface terminations have been examined through surface energy and relaxation calculations. The O-Mg-O termination is more favorable than other terminations by comparing the calculated surface energies. It should be accepted as the appropriate surface structure in subsequent calculation. The initial stages of GaN and ZnO epitaxial growths are discussed based on the adsorption and diffusion of the adatoms on reconstructed ScAlMgO4 (0001) surface. According to theoretical characterizations, N adatom on the surface is more stable than Ga. O adatom is more favorable than Zn. These observations lead to the formation of GaN and ZnO epilayer and explain experimentally-confirmed in-plane alignment mechanisms of GaN and ZnO on ScAlMgO4 substrates. Furthermore, the polarity of GaN and ZnO surfaces on ScAlMgO4 (0001) at the initial growth stage have been explored by ab initio calculation. Theoretical studies indicate that the predominant growths of Ga-polar GaN and Zn-polar ZnO are determined by the initial growth stage.

  3. Optimization of GaN Nanorod Growth Conditions for Coalescence Overgrowth

    DTIC Science & Technology

    2016-02-04

    GaN core and QW deposition, an NR LED array can be implemented by covering the NRs with a transparent conductor . It has been demonstrated that the...with a transparent conductor . It has been demonstrated that the optical and electrical performances of an NR LED array can be comparable to those of a...a process of buffered oxide etching for removing this SiNx layer on the sidewalls is required before sidewall QW deposition. Nevertheless, the

  4. Modeling and optimization of a double-well double-barrier GaN/AlGaN/GaN/AlGaN resonant tunneling diode

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Gao, Bo; Gong, Min; Shi, Ruiying

    2017-06-01

    The influence of a GaN layer as a sub-quantum well for an AlGaN/GaN/AlGaN double barrier resonant tunneling diode (RTD) on device performance has been investigated by means of numerical simulation. The introduction of the GaN layer as the sub-quantum well turns the dominant transport mechanism of RTD from the 3D-2D model to the 2D-2D model and increases the energy difference between tunneling energy levels. It can also lower the effective height of the emitter barrier. Consequently, the peak current and peak-to-valley current difference of RTD have been increased. The optimal GaN sub-quantum well parameters are found through analyzing the electrical performance, energy band, and transmission coefficient of RTD with different widths and depths of the GaN sub-quantum well. The most pronounced electrical parameters, a peak current density of 5800 KA/cm2, a peak-to-valley current difference of 1.466 A, and a peak-to-valley current ratio of 6.35, could be achieved by designing RTD with the active region structure of GaN/Al0.2Ga0.8 N/GaN/Al0.2Ga0.8 N (3 nm/1.5 nm/1.5 nm/1.5 nm).

  5. A Comparative Study of AlGaN and InGaN Back-Barriers in Ultrathin-Barrier AlN/GaN Heterostructures

    NASA Astrophysics Data System (ADS)

    All Abbas, J. M.; Atmaca, G.; Narin, P.; Kutlu, E.; Sarikavak-Lisesivdin, B.; Lisesivdin, S. B.

    2017-08-01

    Investigations of the effects of back-barrier introduction on the two-dimensional electron gas (2DEG) of ultrathin-barrier AlN/GaN heterostructures with AlGaN and InGaN back-barriers are carried out using self-consistent solutions of 1-dimensional Schrödinger-Poisson equations. Inserted AlGaN and InGaN back-barriers are used to provide a good 2DEG confinement thanks to raising the conduction band edge of GaN buffer with respect to GaN channel layer. Therefore, in this paper the influence of these back-barrier layers on sheet carrier density, 2DEG confinement, and mobility are systematically and comparatively investigated. As a result of calculations, although sheet carrier density is found to decrease with InGaN back-barrier layer, it is not changed with AlGaN back-barrier layer for suggested optimise heterostructures. Obtained results can give some insights for further experimental studies.

  6. Systematic study on dynamic atomic layer epitaxy of InN on/in +c-GaN matrix and fabrication of fine-structure InN/GaN quantum wells: Impact of excess In-atoms at high growth temperature

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akihiko; Kusakabe, Kazuhide; Hashimoto, Naoki; Imai, Daichi; Hwang, Eun-Sook

    2016-12-01

    The growth kinetics of nominally one-monolayer (˜1-ML)-thick InN wells on/in the +c-GaN matrix fabricated using dynamic atomic layer epitaxy (D-ALEp) by plasma-assisted molecular beam epitaxy were systematically studied, with particular attention given to the impacts of excess In atoms and/or In droplets at a high growth temperature of 650 °C. Even at a constant growth temperature of 650 °C, the thickness of the sheet-island-like InN-well layers could be controlled/varied from 1-ML to 2-ML owing to the effect of excess In atoms and/or In droplets accumulated during growth. The possible growth mechanism is discussed based on the ring-shaped bright cathodoluminescence emissions introduced along the circumference of the In droplets during growth. The effective thermal stability of N atoms below the bilayer adsorbed In atoms was increased by the presence of In droplets, resulting in the freezing of 2-ML-thick InN wells into the GaN matrix. It therefore became possible to study the difference between the emission properties of 1-ML and 2-ML-thick InN wells/GaN matrix quantum wells (QWs) having similar GaN matrix crystallinity grown at the same temperature. InN/GaN QW-samples grown under widely different In + N* supply conditions characteristically separated into two groups with distinctive emission-peak wavelengths originating from 1-ML and 2-ML-thick InN wells embedded in the GaN matrix. Reflecting the growth mechanism inherent to the D-ALEp of InN on/in the +c-GaN matrix at high temperature, either 1-ML or 2-ML-thick "binary" InN well layers tended to be frozen into the GaN matrix rather InGaN random ternary-alloys. Both the structural quality and uniformity of the 1-ML InN well sample were better than those of the 2-ML InN well sample, essentially owing to the quite thin critical thickness of around 1-ML arising from the large lattice mismatch of InN and GaN.

  7. Hall-effect measurements of metalorganic vapor-phase epitaxy-grown p-type homoepitaxial GaN layers with various Mg concentrations

    NASA Astrophysics Data System (ADS)

    Horita, Masahiro; Takashima, Shinya; Tanaka, Ryo; Matsuyama, Hideaki; Ueno, Katsunori; Edo, Masaharu; Suda, Jun

    2016-05-01

    Mg-doped p-type gallium nitride (GaN) layers with doping concentrations in the range from 6.5 × 1016 cm-3 (lightly doped) to 3.8 × 1019 cm-3 (heavily doped) were investigated by Hall-effect measurement for the analysis of hole concentration and mobility. p-GaN was homoepitaxially grown on a GaN free-standing substrate by metalorganic vapor-phase epitaxy. The threading dislocation density of the p-GaN was 4 × 106 cm-2 measured by cathodoluminescence mapping. Hall-effect measurements of p-GaN were carried out at a temperature in the range from 160 to 450 K. A low compensation ratio of less than 1% was revealed. We also obtained the depth of the Mg acceptor level of 235 meV considering the lowering effect by the Coulomb potential of ionized acceptors. The hole mobilities of 33 cm2 V-1 s-1 at 300 K and 72 cm2 V-1 s-1 at 200 K were observed in lightly doped p-GaN.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhi, Ting; Tao, Tao; Liu, Bin, E-mail: bliu@nju.edu.cn, E-mail: rzhang@nju.edu.cn

    Through investigating the temperature dependent current-voltage (T-I-V) properties of GaN based blue and green LEDs in this study, we propose an asymmetric tunneling model to understand the leakage current below turn-on voltage (V < 3.2 V): At the forward bias within 1.5 V ∼ 2.1 V (region 1), the leakage current is main attributed to electrons tunneling from the conduction band of n-type GaN layer to the valence band of p-type GaN layer via defect states in space-charge region (SCR); While, at the forward bias within 2 V ∼ 2.4 V (region 2), heavy holes tunneling gradually becomes dominant atmore » low temperature (T < 200K) as long as they can overcome the energy barrier height. The tunneling barrier for heavy holes is estimated to be lower than that for electrons, indicating the heavy holes might only tunnel to the defect states. This asymmetric tunneling model shows a novel carrier transport process, which provides better understanding of the leakage characteristics and is vital for future device improvements.« less

  9. Contributions from gallium vacancies and carbon-related defects to the ``yellow luminescence'' in GaN

    NASA Astrophysics Data System (ADS)

    Armitage, R.; Hong, William; Yang, Qing; Feick, H.; Gebauer, J.; Weber, E. R.; Hautakangas, S.; Saarinen, K.

    2003-05-01

    Carbon-doped GaN layers grown by molecular-beam epitaxy are studied with photoluminescence and positron annihilation spectroscopy. Semi-insulating layers doped with >1018 cm-3 carbon show a strong luminescence band centered at ˜2.2 eV (yellow luminescence). The absolute intensity of the 2.2 eV band is compared with the gallium vacancy concentration determined by positron annihilation spectroscopy. The results indicate that a high concentration of gallium vacancies is not necessary for yellow luminescence and that there is in fact a causal relationship between carbon and the 2.2 eV band. Markedly different deep-level ionization energies are found for the high-temperature quenching of the 2.2 eV photoluminescence in carbon-doped and reference samples. We propose that while the model of Neugebauer and Van de Walle [Appl. Phys. Lett. 69, 503 (1996)] applies for GaN of low carbon concentration, a different yellow luminescence mechanism is involved when the interstitial carbon concentration is comparable to or exceeds the gallium vacancy concentration.

  10. Identification of the spatial location of deep trap states in AlGaN/GaN heterostructures by surface photovoltage spectroscopy

    NASA Astrophysics Data System (ADS)

    Jana, Dipankar; Porwal, S.; Sharma, T. K.

    2017-12-01

    Spatial and spectral origin of deep level defects in molecular beam epitaxy grown AlGaN/GaN heterostructures are investigated by using surface photovoltage spectroscopy (SPS) and pump-probe SPS techniques. A deep trap center ∼1 eV above the valence band is observed in SPS measurements which is correlated with the yellow luminescence feature in GaN. Capture of electrons and holes is resolved by performing temperature dependent SPS and pump-probe SPS measurements. It is found that the deep trap states are distributed throughout the sample while their dominance in SPS spectra depends on the density, occupation probability of deep trap states and the background electron density of GaN channel layer. Dynamics of deep trap states associated with GaN channel layer is investigated by performing frequency dependent photoluminescence (PL) and SPS measurements. A time constant of few millisecond is estimated for the deep defects which might limit the dynamic performance of AlGaN/GaN based devices.

  11. Far-infrared transmission in GaN, AlN, and AlGaN thin films grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibanez, J.; Hernandez, S.; Alarcon-Llado, E.

    2008-08-01

    We present a far-infrared transmission study on group-III nitride thin films. Cubic GaN and AlN layers and c-oriented wurtzite GaN, AlN, and Al{sub x}Ga{sub 1-x}N (x<0.3) layers were grown by molecular beam epitaxy on GaAs and Si(111) substrates, respectively. The Berreman effect allows us to observe simultaneously the transverse optic and the longitudinal optic phonons of both the cubic and the hexagonal films as transmission minima in the infrared spectra acquired with obliquely incident radiation. We discuss our results in terms of the relevant electromagnetic theory of infrared transmission in cubic and wurtzite thin films. We compare the infrared resultsmore » with visible Raman-scattering measurements. In the case of films with low scattering volumes and/or low Raman efficiencies and also when the Raman signal of the substrate material obscures the weaker peaks from the nitride films, we find that the Berreman technique is particularly useful to complement Raman spectroscopy.« less

  12. Stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Agrawal, M.; Ravikiran, L.; Dharmarasu, N.; Radhakrishnan, K.; Karthikeyan, G. S.; Zheng, Y.

    2017-01-01

    The stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy (PA-MBE) has been studied. AlN nucleation layer and GaN layer were grown as a function of III/V ratio. GaN/AlN structure is found to form buried cracks when AlN is grown in the intermediate growth regime(III/V˜1)and GaN is grown under N-rich growth regime (III/V<1). The III/V ratio determines the growth mode of the layers that influences the lattice mismatch at the GaN/AlN interface. The lattice mismatch induced interfacial stress at the GaN/AlN interface relaxes by the formation of buried cracks in the structure. Additionally, the stress also relaxes by misorienting the AlN resulting in two misorientations with different tilts. Crack-free layers were obtained when AlN and GaN were grown in the N-rich growth regime (III/V<1) and metal rich growth regime (III/V≥1), respectively. AlGaN/GaN high electron mobility transistor (HEMT) heterostructure was demonstrated on 2-inch SiC that showed good two dimensional electron gas (2DEG) properties with a sheet resistance of 480 Ω/sq, mobility of 1280 cm2/V.s and sheet carrier density of 1×1013 cm-2.

  13. Atomic scale morphology, growth behaviour and electronic properties of semipolar {101[overline]3} GaN surfaces.

    PubMed

    Kioseoglou, J; Kalesaki, E; Lymperakis, L; Karakostas, Th; Komninou, Ph

    2013-01-30

    First-principles calculations relating to the atomic structure and electronic properties of {101[overline]3} GaN surfaces reveal significant differentiations between the two polarity orientations. The (101[overline]3) surface exhibits a remarkable morphological stability, stabilizing a metallic structure (Ga adlayer) over the entire range of the Ga chemical potential. In contrast, the semiconducting, cleaved surface is favoured on (101[overline]3[overline]) under extremely and moderately N-rich conditions, a Ga bilayer is stabilized under corresponding Ga-rich conditions and various transitions between metallic reconstructions take place in intermediate growth stoichiometries. Efficient growth schemes for smooth, two-dimensional GaN layers and the isolation of {101[overline]3} material from parasitic orientations are identified.

  14. Selective Area Sublimation: A Simple Top-down Route for GaN-Based Nanowire Fabrication.

    PubMed

    Damilano, B; Vézian, S; Brault, J; Alloing, B; Massies, J

    2016-03-09

    Post-growth in situ partial SiNx masking of GaN-based epitaxial layers grown in a molecular beam epitaxy reactor is used to get GaN selective area sublimation (SAS) by high temperature annealing. Using this top-down approach, nanowires (NWs) with nanometer scale diameter are obtained from GaN and InxGa1-xN/GaN quantum well epitaxial structures. After GaN regrowth on InxGa1-xN/GaN NWs resulting from SAS, InxGa1-xN quantum disks (QDisks) with nanometer sizes in the three dimensions are formed. Low temperature microphotoluminescence experiments demonstrate QDisk multilines photon emission around 3 eV with individual line widths of 1-2 meV.

  15. Spin-gapless and half-metallic ferromagnetism in potassium and calcium δ-doped GaN digital magnetic heterostructures for possible spintronic applications: insights from first principles

    NASA Astrophysics Data System (ADS)

    Du, Jiangtao; Dong, Shengjie; Zhou, Baozeng; Zhao, Hui; Feng, Liefeng

    2017-04-01

    The reports previously issued predominantly paid attention to the d-block magnetic elements δ-doped digital magnetic materials. In this work, GaN δ-doped with non-magnetic main group s-block elements K and Ca as digital magnetic heterostructures were purposed and explored theoretically. We found that K- and Ca-embedded GaN digital alloys exhibit spin-gapless and half-metallic ferromagnetic characteristics, respectively. All compounds obey the Slater-Pauling rule with diverse electronic and magnetic properties. For these digital ferromagnetic heterostructures, spin polarization occurs in nitrogen within a confined space around the δ-doped layer, demonstrating a hole-mediated two-dimensional magnetic phenomenon.

  16. Wideband Reconfigurable Harmonically Tuned GaN SSPA for Cognitive Radios

    NASA Technical Reports Server (NTRS)

    Waldstein, Seth W.; Barbosa Kortright, Miguel A.; Simons, Rainee N.

    2017-01-01

    The paper presents the architecture of a wideband reconfigurable harmonically-tuned Gallium Nitrate (GaN) Solid State Power Amplifier (SSPA) for cognitive radios. When interfaced with the physical layer of a cognitive communication system, this amplifier topology offers broadband high efficiency through the use of multiple tuned input/output matching networks. This feature enables the cognitive radio to reconfigure the operating frequency without sacrificing efficiency. This paper additionally presents as a proof-of-concept the design, fabrication, and test results for a GaN inverse class-F type amplifier operating at X-band (8.4 GHz) that achieves a maximum output power of 5.14-W, Power Added Efficiency (PAE) of 38.6, and Drain Efficiency (DE) of 48.9 under continuous wave (CW) operation.

  17. Defects in N/Ge coimplanted GaN studied by positron annihilation

    NASA Astrophysics Data System (ADS)

    Nakano, Yoshitaka; Kachi, Tetsu

    2002-01-01

    We have applied positron annihilation spectroscopy to study the depth distributions and species of defects in N-, Ge-, and N/Ge-implanted GaN at dosages of 1×1015 cm-2. For all the implanted samples, Ga vacancies introduced by ion-implantation are found to diffuse into much deeper regions of the GaN layers during the implantation and to change into some other vacancy-type defects by the annealing at 1300 °C. In particular, markedly different defects turn out to be newly created in the electrically activated regions for both the Ge- and N/Ge-implanted samples after annealing, indicating that these new defects are probably associated with the presence of the implanted Ge dopant atoms.

  18. Special quasiordered structures: Role of short-range order in the semiconductor alloy (GaN) 1 -x(ZnO) x

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Fernández-Serra, Maria V.; Allen, Philip B.

    2016-02-01

    This paper studies short-range order (SRO) in the semiconductor alloy (GaN) 1 -x(ZnO) x. Monte Carlo simulations performed on a density functional theory (DFT)-based cluster expansion model show that the heterovalent alloys exhibit strong SRO because of the energetic preference for the valence-matched nearest-neighbor Ga-N and Zn-O pairs. To represent the SRO-related structural correlations, we introduce the concept of special quasiordered structure (SQoS). Subsequent DFT calculations reveal the dramatic influence of SRO on the atomic, electronic, and vibrational properties of the (GaN) 1 -x(ZnO) x alloy. Due to the enhanced statistical presence of the energetically unfavored Zn-N bonds with the strong Zn 3 d -N 2 p repulsion, the disordered alloys exhibit much larger lattice bowing and band-gap reduction than those of the short-range ordered alloys. Lattice vibrational entropy tilts the alloy toward less SRO.

  19. Influence of surface oxides on hydrogen-sensitive Pd:GaN Schottky diodes

    NASA Astrophysics Data System (ADS)

    Weidemann, O.; Hermann, M.; Steinhoff, G.; Wingbrant, H.; Lloyd Spetz, A.; Stutzmann, M.; Eickhoff, M.

    2003-07-01

    The hydrogen response of Pd:GaN Schottky diodes, prepared by in situ and ex situ deposition of catalytic Pd Schottky contacts on Si-doped GaN layers is compared. Ex situ fabricated devices show a sensitivity towards molecular hydrogen, which is about 50 times higher than for in situ deposited diodes. From the analysis of these results, we conclude that adsorption sites for atomic hydrogen in Pd:GaN sensors are provided by an oxidic intermediate layer. In addition, in situ deposited Pd Schottky contacts reveal lower barrier heights and drastically higher reverse currents. We suggest that the passivation of the GaN surface before ex situ deposition of Pd also results in quenching of leakage paths caused by structural defects.

  20. Planar Homojunction Gallium Nitride (GaN) P-i-N Device Evaluated for Betavoltaic Energy Conversion: Measurement and Analysis

    DTIC Science & Technology

    2016-09-01

    REPORT DATE (DD-MM-YYYY) September 2016 2. REPORT TYPE Technical Report 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Planar Homojunction...development of mass- production semiconductor processing methods of 4H-SiC. The ease of fabrication of thicker epitaxial layers make SiC a prime...the 0.1- and 1-nA current settings are very stable and represent the low intensity expected from radioisotope beta decay. 2.2 Planar GaN Device

  1. Investigation of transparent zinc oxide-based contacts for high performance III-nitride light emitting diodes

    NASA Astrophysics Data System (ADS)

    Jung, Sungpyo

    In this dissertation, we investigate Al-doped ZnO(AZO) contact structure to a variety of GaN LED structures. Our results show that ZnO is a potentially viable transparent contact for GaN-based LEDs. We began our investigation by depositing AZO and Ni/AZO contacts to p-GaN. However, these contacts are highly resistive. Next, we deposited thin Ni/Au layer, oxidized the Ni/Au layer to form a good ohmic contact to p-GaN, and then followed by the deposition of thick AZO layer. However, the electrical resistance of oxidized Ni/Au-AZO contacts is higher than that of the conventional Ni/Au contacts. We solve the high contact resistance problem by using a two-step thermal annealing process. In this method, Ni/Au layer is deposited first followed by the AZO layer without any annealing step. After finishing the device fabrication, the samples are annealed in air first to achieve low contact resistance with Ni/Au/AZO and p-GaN and then annealed in nitrogen to achieve low sheet resistance for the AZO layer. The improved electrical and optical characteristics of this scheme compared to conventional Ni/Au contact scheme are demonstrated on a variety of GaN LEDs: blue, green, small area, large area and bottom emitting LEDs. The benefits of ZnO-based contacts are more significant in large area LEDs that include lower forward voltage, and higher optical emission, better emission uniformity and reliability. The advantages of ZnO-based contact in terms of lower contact resistance and higher optical emission on LED fabricated on roughened GaN wafers are also demonstrated. For bottom emitting LED structure intended for flip chip applications, our original oxidized Ni/Au layer over coated with either Al or Ag contacts have shown to simultaneously yield superior I-V characteristics and greatly enhanced optical performance compared to conventional LEDs using a thick Ni/Au contact in the flip-chip configuration. However, the contact is unstable at operating temperatures > 100°C due to close proximity of Ag and Al with p-GaN. Here, the ZnO layer probably can be interdiffusion barrier layer of Al into GaN. We have demonstrated low contact resistance and higher light emission by using ZnO as a barrier material between oxidize Ni/Au and Al reflecting layer. In summary, our investigation demonstrates the applicability of ZnO-based transparent contacts for high performance LEDs that will be larger in size and are expected to be operating at higher current for solid-state lighting of the future. (Abstract shortened by UMI.)

  2. Advantages of InGaN/GaN multiple quantum wells with two-step grown low temperature GaN cap layers

    NASA Astrophysics Data System (ADS)

    Zhu, Yadan; Lu, Taiping; Zhou, Xiaorun; Zhao, Guangzhou; Dong, Hailiang; Jia, Zhigang; Liu, Xuguang; Xu, Bingshe

    2017-11-01

    Two-step grown low temperature GaN cap layers (LT-cap) are employed to improve the optical and structural properties of InGaN/GaN multiple quantum wells (MQWs). The first LT-cap layer is grown in nitrogen atmosphere, while a small hydrogen flow is added to the carrier gas during the growth of the second LT-cap layer. High-resolution X-ray diffraction results indicate that the two-step growth method can improve the interface quality of MQWs. Room temperature photoluminescence (PL) tests show about two-fold enhancement in integrated PL intensity, only 25 meV blue-shift in peak energy and almost unchanged line width. On the basis of temperature-dependent PL characteristics analysis, it is concluded that the first and the second LT-cap layer play a different role during the growth of MQWs. The first LT-cap layer acts as a protective layer, which protects quantum well from serious indium loss and interface roughening resulting from the hydrogen over-etching. The hydrogen gas employed in the second LT-cap layer is in favor of reducing defect density and indium segregation. Consequently, interface/surface and optical properties are improved by adopting the two-step growth method.

  3. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun

    2015-05-04

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrownmore » n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.« less

  4. In-situ transport and microstructural evolution in GaN Schottky diodes and epilayers exposed to swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Singh, R.; Kumar, Parmod; Singh, Udai B.; Asokan, K.; Karaseov, Platon A.; Titov, Andrei I.; Kanjilal, D.

    2018-04-01

    A systematic investigation of radiation hardness of Schottky barrier diodes and GaN epitaxial layers is carried out by employing in-situ electrical resistivity and cross sectional transmission electron microscopy (XTEM) microstructure measurements. The change in the current transport mechanism of Au/n-GaN Schottky barrier diodes due to irradiation is reported. The role of irradiation temperature and ion type was also investigated. Creation of damage is studied in low and medium electron energy loss regimes by selecting different ions, Ag (200 MeV) and O (100 MeV) at various fluences at two irradiation temperatures (80 K and 300 K). GaN resistivity increases up to 6 orders of magnitude under heavy Ag ions. Light O ion irradiation has a much lower influence on sheet resistance. The presence of isolated defect clusters in irradiated GaN epilayers is evident in XTEM investigation which is explained on the basis of the thermal spike model.

  5. Imaging TiO2 nanoparticles on GaN nanowires with electrostatic force microscopy

    NASA Astrophysics Data System (ADS)

    Xie, Ting; Wen, Baomei; Liu, Guannan; Guo, Shiqi; Motayed, Abhishek; Murphy, Thomas; Gomez, R. D.

    Gallium nitride (GaN) nanowires that are functionalized with metal-oxides nanoparticles have been explored extensively for gas sensing applications in the past few years. These sensors have several advantages over conventional schemes, including miniature size, low-power consumption and fast response and recovery times. The morphology of the oxide functionalization layer is critical to achieve faster response and recovery times, with the optimal size distribution of nanoparticles being in the range of 10 to 30 nm. However, it is challenging to characterize these nanoparticles on GaN nanowires using common techniques such as scanning electron microscopy, transmission electron microscopy, and x-ray diffraction. Here, we demonstrate electrostatic force microscopy in combination with atomic force microscopy as a non-destructive technique for morphological characterization of the dispersed TiO2 nanoparticles on GaN nanowires. We also discuss the applicability of this method to other material systems with a proposed tip-surface capacitor model. This project was sponsored through N5 Sensors and the Maryland Industrial Partnerships (MIPS, #5418).

  6. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires.

    PubMed

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; Pan, Wei; Wang, George T; Martinez, Julio A

    2016-01-08

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN core of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. Selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.

  7. The MOVPE growth mechanism of catalyst-free self-organized GaN columns in H2 and N2 carrier gases

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Jahn, Uwe; Ledig, Johannes; Wehmann, Hergo-H.; Mandl, Martin; Straßburg, Martin; Waag, Andreas

    2013-12-01

    Columnar structures of III-V semiconductors recently attract considerable attention because of their potential applications in novel optoelectronic and electronic devices. In the present study, the mechanisms for the growth of catalyst-free self-organized GaN columns on sapphire substrate by metal organic vapor phase epitaxy have been thoroughly investigated. The growth behaviours are strongly affected by the choice of carrier gas. If pure nitrogen is used, Ga droplets are able to accumulate on the top of columns during growth, and they are converted into a high quality GaN layer during the cool down phase due to nitridation. Hydrogen as the carrier gas can improve the optical quality of the overall GaN columns substantially, and in addition increase the vertical growth rate. In this case, no indication of Ga droplets could be detected. Furthermore, silane doping during the growth promotes the vertical growth in both cases either pure nitrogen or pure hydrogen as the carrier gas.

  8. Reflection high energy electron diffraction study of nitrogen plasma interactions with a GaAs (100) surface

    NASA Astrophysics Data System (ADS)

    Hauenstein, R. J.; Collins, D. A.; Cai, X. P.; O'Steen, M. L.; McGill, T. C.

    1995-05-01

    Effect of a nitrogen electron-cyclotron-resonance (ECR) microwave plasma on near-surface composition, crystal structure, and morphology of the As-stabilized GaAs (100) surface is investigated with the use of digitally image-processed in situ reflection high energy electron diffraction. Nitridation is performed on molecular beam epitaxially (MBE) grown GaAs surfaces near 600 °C under typical conditions for ECR microwave plasma-assisted MBE growth of GaN films on GaAs. Brief plasma exposures (≊3-5 s) are shown to result in a specular, coherently strained, relatively stable, GaN film approximately one monolayer in thickness, which can be commensurately overgrown with GaAs while longer exposures (up to 1 min) result in incommensurate zincblende epitaxial GaN island structures. Specular and nonspecular film formations are explained in terms of N-for-As surface and subsurface anion exchange reactions, respectively. Commensurate growth of ultrathin buried GaN layers in GaAs is achieved.

  9. Nanoscale characterization of GaN/InGaN multiple quantum wells on GaN nanorods by photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Weijian; Wen, Xiaoming; Latzel, Michael; Yang, Jianfeng; Huang, Shujuan; Shrestha, Santosh; Patterson, Robert; Christiansen, Silke; Conibeer, Gavin

    2017-02-01

    GaN/InGaN multiple quantum wells (MQW) and GaN nanorods have been widely studied as a candidate material for high-performance light emitting diodes. In this study, GaN/InGaN MQW on top of GaN nanorods are characterized in nanoscale using confocal microscopy associated with photoluminescence spectroscopy, including steady-state PL, timeresolved PL and fluorescence lifetime imaging (FLIM). Nanorods are fabricated by etching planar GaN/InGaN MQWs on top of a GaN layer on a c-plane sapphire substrate. Photoluminescence efficiency from the GaN/InGaN nanorods is evidently higher than that of the planar structure, indicating the emission improvement. Time-resolved photoluminescence (TRPL) prove that surface defects on GaN nanorod sidewalls have a strong influence on the luminescence property of the GaN/InGaN MWQs. Such surface defects can be eliminated by proper surface passivation. Moreover, densely packed nanorod array and sparsely standing nanorods have been studied for better understanding the individual property and collective effects from adjacent nanorods. The combination of the optical characterization techniques guides optoelectronic materials and device fabrication.

  10. High-electron-mobility GaN grown on free-standing GaN templates by ammonia-based molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyle, Erin C. H., E-mail: erinkyle@umail.ucsb.edu; Kaun, Stephen W.; Burke, Peter G.

    2014-05-21

    The dependence of electron mobility on growth conditions and threading dislocation density (TDD) was studied for n{sup −}-GaN layers grown by ammonia-based molecular beam epitaxy. Electron mobility was found to strongly depend on TDD, growth temperature, and Si-doping concentration. Temperature-dependent Hall data were fit to established transport and charge-balance equations. Dislocation scattering was analyzed over a wide range of TDDs (∼2 × 10{sup 6} cm{sup −2} to ∼2 × 10{sup 10} cm{sup −2}) on GaN films grown under similar conditions. A correlation between TDD and fitted acceptor states was observed, corresponding to an acceptor state for almost every c lattice translation along each threading dislocation. Optimizedmore » GaN growth on free-standing GaN templates with a low TDD (∼2 × 10{sup 6} cm{sup −2}) resulted in electron mobilities of 1265 cm{sup 2}/Vs at 296 K and 3327 cm{sup 2}/Vs at 113 K.« less

  11. Fabrication of full-color GaN-based light-emitting diodes on nearly lattice-matched flexible metal foils.

    PubMed

    Kim, Hyeryun; Ohta, Jitsuo; Ueno, Kohei; Kobayashi, Atsushi; Morita, Mari; Tokumoto, Yuki; Fujioka, Hiroshi

    2017-05-18

    GaN-based light-emitting diodes (LEDs) have been widely accepted as highly efficient solid-state light sources capable of replacing conventional incandescent and fluorescent lamps. However, their applications are limited to small devices because their fabrication process is expensive as it involves epitaxial growth of GaN by metal-organic chemical vapor deposition (MOCVD) on single crystalline sapphire wafers. If a low-cost epitaxial growth process such as sputtering on a metal foil can be used, it will be possible to fabricate large-area and flexible GaN-based light-emitting displays. Here we report preparation of GaN films on nearly lattice-matched flexible Hf foils using pulsed sputtering deposition (PSD) and demonstrate feasibility of fabricating full-color GaN-based LEDs. It was found that introduction of low-temperature (LT) grown layers suppressed the interfacial reaction between GaN and Hf, allowing the growth of high-quality GaN films on Hf foils. We fabricated blue, green, and red LEDs on Hf foils and confirmed their normal operation. The present results indicate that GaN films on Hf foils have potential applications in fabrication of future large-area flexible GaN-based optoelectronics.

  12. Reactive ion etching of GaN using BCl 3, BCl 3/Ar and BCl 3/ N 2 gas plasmas

    NASA Astrophysics Data System (ADS)

    Basak, D.; Nakanishi, T.; Sakai, S.

    2000-04-01

    Reactive ion etching (RIE) of GaN has been performed using BCl 3 and additives, Ar and N 2, to BCl 3 plasma. The etch rate, surface roughness and the etch profile have been investigated. The etch rate of GaN is found to be 104 nm/min at rf power of 200 W, pressure of 2 Pa, with 9.5 sccm flow rate of BCl 3. The addition of 5 sccm of Ar to 9.5 sccm of BCl 3 reduces the etch rate of GaN while the addition of N 2 does not influence the etch rate significantly. The RIE of GaN layer with BCl 3/Ar and BCl 3/N 2 results in a smoother surface compared to surfaces etched with BCl 3 only. The etched side-wall in BCl 3 plasma makes an angle of 60° with the normal surface, and the angle of inclination is more in cases of BCl 3/Ar and BCl 3/N 2 plasmas. The RIE induced damage to the surface is measured qualitatively by PL measurements. It is observed that the damage to the etched surfaces is similar for all the plasmas.

  13. Comparison of the physical, chemical and electrical properties of ALD Al 2 O 3 on c- and m- plane GaN: Comparison of the physical, chemical and electrical properties of ALD Al 2 O 3 on c- and m- plane GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, D.; Hossain, T.; Nepal, N.

    2014-02-01

    Our study compares the physical, chemical and electrical properties of Al 2O 3 thin films deposited on gallium polar c- and nonpolar m -plane GaN substrates by atomic layer deposition (ALD). Correlations were sought between the film's structure, composition, and electrical properties. The thickness of the Al 2O 3 films was 19.2 nm as determined from a Si witness sample by spectroscopic ellipsometry. We measured the gate dielectric was slightly aluminum-rich (Al:O=1:1.3) from X-ray photoelectron spectroscopy (XPS) depth profile, and the oxide-semiconductor interface carbon concentration was lower on c -plane GaN. The oxide's surface morphology was similar on both substrates,more » but was smoothest on c -plane GaN as determined by atomic force microscopy (AFM). Circular capacitors (50-300 μm diameter) with Ni/Au (20/100 nm) metal contacts on top of the oxide were created by standard photolithography and e-beam evaporation methods to form metal-oxide-semiconductor capacitors (MOSCAPs). Moreover, the alumina deposited on c -plane GaN showed less hysteresis (0.15 V) than on m -plane GaN (0.24 V) in capacitance-voltage (CV) characteristics, consistent with its better quality of this dielectric as evidenced by negligible carbon contamination and smooth oxide surface. These results demonstrate the promising potential of ALD Al 2O 3 on c -plane GaN, but further optimization of ALD is required to realize the best properties of Al 2O 3 on m -plane GaN.« less

  14. Catalyst and processing effects on metal-assisted chemical etching for the production of highly porous GaN

    NASA Astrophysics Data System (ADS)

    Geng, Xuewen; Duan, Barrett K.; Grismer, Dane A.; Zhao, Liancheng; Bohn, Paul W.

    2013-06-01

    Metal-assisted chemical etching is a facile method to produce micro-/nanostructures in the near-surface region of gallium nitride (GaN) and other semiconductors. Detailed studies of the production of porous GaN (PGaN) using different metal catalysts and GaN doping conditions have been performed in order to understand the mechanism by which metal-assisted chemical etching is accomplished in GaN. Patterned catalysts show increasing metal-assisted chemical etching activity to n-GaN in the order Ag < Au < Ir < Pt. In addition, the catalytic behavior of continuous films is compared to discontinuous island films. Continuous metal films strongly shield the surface, hindering metal-assisted chemical etching, an effect which can be overcome by using discontinuous films or increasing the irradiance of the light source. With increasing etch time or irradiance, PGaN morphologies change from uniform porous structures to ridge and valley structures. The doping type plays an important role, with metal-assisted chemical etching activity increasing in the order p-GaN < intrinsic GaN < n-GaN. Both the catalyst identity and the doping type effects are explained by the work functions and the related band offsets that affect the metal-assisted chemical etching process through a combination of different barriers to hole injection and the formation of hole accumulation/depletion layers at the metal-semiconductor interface.

  15. Sensitivity of Fermi level position at Ga-polar, N-polar, and nonpolar m-plane GaN surfaces to vacuum and air ambient

    NASA Astrophysics Data System (ADS)

    Janicki, Łukasz; Ramírez-López, Manolo; Misiewicz, Jan; Cywiński, Grzegorz; Boćkowski, Michał; Muzioł, Grzegorz; Chèze, Caroline; Sawicka, Marta; Skierbiszewski, Czesław; Kudrawiec, Robert

    2016-05-01

    Ga-polar, N-polar, and nonpolar m-plane GaN UN+ structures have been examined in air and vacuum ambient by contactless electroreflectance (CER). This technique is very sensitive to the surface electric field that varies with the Fermi level position at the surface. For UN+ GaN structures [i.e., GaN (undoped)/GaN (n-type)/substrate], a homogeneous built-in electric field is expected in the undoped GaN layer that is manifested by Franz-Keldysh oscillation (FKO) in CER spectra. A clear change in FKO has been observed in CER spectra for N-polar and nonpolar m-plane structures when changing from air to vacuum ambient. This means that those surfaces are very sensitive to ambient atmosphere. In contrast to that, only a small change in FKO can be seen in the Ga-polar structure. This clearly shows that the ambient sensitivity of the Fermi level position at the GaN surface varies with the crystallographic orientation and is very high for N-polar and nonpolar m-plane surfaces. This feature of the N-polar and nonpolar m-plane surfaces can be very important for GaN-based devices grown on these crystallographic orientations and can be utilized in some of the devices, e.g., sensors.

  16. Multicycle rapid thermal annealing optimization of Mg-implanted GaN: Evolution of surface, optical, and structural properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenlee, Jordan D., E-mail: jordan.greenlee.ctr@nrl.navy.mil; Feigelson, Boris N.; Anderson, Travis J.

    2014-08-14

    The first step of a multi-cycle rapid thermal annealing process was systematically studied. The surface, structure, and optical properties of Mg implanted GaN thin films annealed at temperatures ranging from 900 to 1200 °C were investigated by Raman spectroscopy, photoluminescence, UV-visible spectroscopy, atomic force microscopy, and Nomarski microscopy. The GaN thin films are capped with two layers of in-situ metal organic chemical vapor deposition -grown AlN and annealed in 24 bar of N{sub 2} overpressure to avoid GaN decomposition. The crystal quality of the GaN improves with increasing annealing temperature as confirmed by UV-visible spectroscopy and the full widths at halfmore » maximums of the E{sub 2} and A{sub 1} (LO) Raman modes. The crystal quality of films annealed above 1100 °C exceeds the quality of the as-grown films. At 1200 °C, Mg is optically activated, which is determined by photoluminescence measurements. However, at 1200 °C, the GaN begins to decompose as evidenced by pit formation on the surface of the samples. Therefore, it was determined that the optimal temperature for the first step in a multi-cycle rapid thermal anneal process should be conducted at 1150 °C due to crystal quality and surface morphology considerations.« less

  17. Anodic etching of GaN based film with a strong phase-separated InGaN/GaN layer: Mechanism and properties

    NASA Astrophysics Data System (ADS)

    Gao, Qingxue; Liu, Rong; Xiao, Hongdi; Cao, Dezhong; Liu, Jianqiang; Ma, Jin

    2016-11-01

    A strong phase-separated InGaN/GaN layer, which consists of multiple quantum wells (MQW) and superlattices (SL) layers and can produce a blue wavelength spectrum, has been grown on n-GaN thin film, and then fabricated into nanoporous structures by electrochemical etching method in oxalic acid. Scanning electron microscopy (SEM) technique reveals that the etching voltage of 8 V leads to a vertically aligned nanoporous structure, whereas the films etched at 15 V show branching pores within the n-GaN layer. Due to the low doping concentration of barriers (GaN layers) in the InGaN/GaN layer, we observed a record-low rate of etching (<100 nm/min) and nanopores which are mainly originated from the V-pits in the phase-separated layer. In addition, there exists a horizontal nanoporous structure at the interface between the phase-separated layer and the n-GaN layer, presumably resulting from the high transition of electrons between the barrier and the well (InGaN layer) at the interface. As compared to the as-grown MQW structure, the etched MQW structure exhibits a photoluminescence (PL) enhancement with a partial relaxation of compressive stress due to the increased light-extracting surface area and light-guiding effect. Such a compressive stress relaxation can be further confirmed by Raman spectra.

  18. Polarized edge emission from GaN-based light-emitting diodes sandwiched by dielectric/metal hybrid reflectors

    NASA Astrophysics Data System (ADS)

    Yan, L. J.; Sheu, J. K.; Huang, F. W.; Lee, M. L.

    2010-12-01

    Edge-emitting c-plane GaN/sapphire-based light-emitting diodes (LEDs) sandwiched by two dielectric/metal hybrid reflectors on both sapphire and GaN surfaces were studied to determine their light emission polarization. The hybrid reflectors comprised dielectric multiple thin films and a metal layer. The metal layers of Au or Ag used in this study were designed to enhance the polarization ratio from S-polarization (transverse electric wave, TE) to P-polarization (transverse magnetic wave, TM). The two sets of optimized dielectric multi thin films served as matching layers for wide-angle incident light on both sapphire and GaN surfaces. To determine which reflector scheme would achieve a higher polarization ratio, simulations of the reflectance at the hybrid reflectors on sapphire (or GaN) interface were performed before the fabrication of experimental LEDs. Compared with conventional c-plane InGaN/GaN/sapphire LEDs without dielectric/metal hybrid reflectors, the experimental LEDs exhibited higher polarization ratio (ITE-max/ITM-max) with r=2.174 (˜3.37 dB) at a wavelength of 460 nm. In contrast, the original polarized light (without dielectric/metal hybrid reflectors) was partially contributed (r=1.398) by C-HH or C-LH (C band to the heavy-hole sub-band or C band to the crystal-field split-off sub-band) transitions along the a-plane or m-plane direction.

  19. As-Grown Gallium Nitride Nanowire Electromechanical Resonators

    NASA Astrophysics Data System (ADS)

    Montague, Joshua R.

    Technological development in recent years has led to a ubiquity of micro- and nano-scale electromechanical devices. Sensors for monitoring temperature, pressure, mass, etc., are now found in nearly all electronic devices at both the industrial and consumer levels. As has been true for integrated circuit electronics, these electromechanical devices have continued to be scaled down in size. For many nanometer-scale structures with large surface-to-volume ratio, dissipation (energy loss) becomes prohibitively large causing a decreasing sensitivity with decreasing sensor size. In this work, gallium nitride (GaN) nanowires are investigated as singly-clamped (cantilever) mechanical resonators with typical mechanical quality factors, Q (equal to the ratio of resonance frequency to peak full-width-at-half-maximum-power) and resonance frequencies, respectively, at or above 30,000, and near 1 MHz. These Q values---in vacuum at room temperature---indicate very low levels of dissipation; they are essentially the same as those for bulk quartz crystal resonators that form the basis of simple clocks and mass sensors. The GaN nanowires have lengths and diameters, respectively, of approximately 15 micrometers and hundreds of nanometers. As-grown GaN nanowire Q values are larger than other similarly-sized, bottom-up, cantilever resonators and this property makes them very attractive for use as resonant sensors. We demonstrate the capability of detecting sub-monolayer levels of atomic layer deposited (ALD) films, and the robust nature of the GaN nanowires structure that allows for their 'reuse' after removal of such layers. In addition to electron microscope-based measurement techniques, we demonstrate the successful capacitive detection of a single nanowire using microwave homodyne reflectometry. This technique is then extended to allow for simultaneous measurements of large ensembles of GaN nanowires on a single sample, providing statistical information about the distribution of individual nanowire properties. We observe nanowire-to-nanowire variations in the temperature dependence of GaN nanowire resonance frequency and in the observed mechanical dissipation. We also use this ensemble measurement technique to demonstrate unique, very low-loss resonance behavior at low temperatures. The low dissipation (and corresponding large Q values) observed in as-grown GaN nanowires also provides a unique opportunity for studying fundamental energy loss mechanisms in nano-scale objects. With estimated mass sensitivities on the level of zeptograms (10-21 g) in a one second averaging time, GaN nanowires may be a significant addition to the field of resonant sensors and worthy of future research and device integration.

  20. Design and comparative study of vertical LEDs with graphene, ITO and Ni/Au as contact/current spreading layer

    NASA Astrophysics Data System (ADS)

    Singh, Sumitra; Mahala, Pramila; Pal, Suchandan

    2018-01-01

    This work evaluates the effect of graphene, indium tin oxide (ITO) and Ni/Au as contact/current spreading layer/current spreading layer for GaN vertical light emitting diodes (V-LEDs). In this simulation study, the effect of these contact/current spreading layers on different performance parameters of GaN V-LEDs has been studied. By using these three different types of contact/current spreading layers, we have comparatively studied the effect on light extraction efficiency (LEE), optical output power, wall plug efficiency and radiant intensity of V-LEDs. As per the simulation results, it shows that using graphene contact/current spreading layers, it is possible to achieve better performance than using ITO and Ni/Au contact/current spreading layers. For graphene/(Ni/Au) contact/current spreading layers, the LEE is improved by 36.77% whereas for ITO/(Ni/Au) contact/current spreading layers it is improved by 13.74%. Also, by using graphene/(Ni/Au) contact/current spreading layers, the optical output power of LEDs improved by 11.11% whereas for ITO/(Ni/Au) contact/current spreading layers shown 4.16% improvement. The radiant intensity is enhanced by 37.65% for graphene/(Ni/Au) contact/current spreading layers and 13.5% for ITO/(Ni/Au) contact/current spreading layers. In this report, we have given a detailed analysis of the obtained simulation results. The simulation was carried out in SimuLED tool.

  1. Understanding luminescence properties of grain boundaries in GaN thin films and their atomistic origin

    NASA Astrophysics Data System (ADS)

    Yoo, Hyobin; Yoon, Sangmoon; Chung, Kunook; Kang, Seoung-Hun; Kwon, Young-Kyun; Yi, Gyu-Chul; Kim, Miyoung

    2018-03-01

    We report our findings on the optical properties of grain boundaries in GaN films grown on graphene layers and discuss their atomistic origin. We combine electron backscatter diffraction with cathodoluminescence to directly correlate the structural defects with their optical properties, enabling the high-precision local luminescence measurement of the grain boundaries in GaN films. To further understand the atomistic origin of the luminescence properties, we carefully probed atomic core structures of the grain boundaries by exploiting aberration-corrected scanning transmission electron microscopy. The atomic core structures of grain boundaries show different ordering behaviors compared with those observed previously in threading dislocations. Energetics of the grain boundary core structures and their correlation with electronic structures were studied by first principles calculation.

  2. MOVPE growth of violet GaN LEDs on β-Ga2O3 substrates

    NASA Astrophysics Data System (ADS)

    Li, Ding; Hoffmann, Veit; Richter, Eberhard; Tessaro, Thomas; Galazka, Zbigniew; Weyers, Markus; Tränkle, Günther

    2017-11-01

    We report that a H2-free atmosphere is essential for the initial stage of metalorganic vapour phase epitaxy (MOVPE) growth of GaN on β-Ga2O3 to prevent the surface from damage. A simple growth method is proposed that can easily transfer established GaN growth recipes from sapphire to β-Ga2O3 with both (-2 0 1) and (1 0 0) orientations. This method features a thin AlN nucleation layer grown below 900 °C in N2 atmosphere to protect the surface of β-Ga2O3 from deterioration during further growth under the H2 atmosphere. Based on this, we demonstrate working violet vertical light emitting diodes (VLEDs) on n-conductive β-Ga2O3 substrates.

  3. Method of growing GaN films with a low density of structural defects using an interlayer

    DOEpatents

    Bourret-Courchesne, Edith D.

    2003-01-01

    A dramatic reduction of the dislocation density in GaN was obtained by insertion of a single thin interlayer grown at an intermediate temperature (IT-IL) after the growth of an initial grown at high temperature. A description of the growth process is presented with characterization results aimed at understanding the mechanisms of reduction in dislocation density. A large percentage of the threading dislocations present in the first GaN epilayer are found to bend near the interlayer and do not propagate into the top layer which grows at higher temperature in a lateral growth mode. TEM studies show that the mechanisms of dislocation reduction are similar to those described for the epitaxial lateral overgrowth process, however a notable difference is the absence of coalescence boundaries.

  4. Multiband Reconfigurable Harmonically Tuned Gallium Nitride (GaN) Solid-State Power Amplifier (SSPA) for Cognitive Radios

    NASA Technical Reports Server (NTRS)

    Waldstein, Seth W.; Kortright, Barbosa Miguel A.; Simons, Rainee N.

    2017-01-01

    The paper presents the architecture of a wideband reconfigurable harmonically-tuned Gallium Nitride (GaN) Solid State Power Amplifier (SSPA) for cognitive radios. When interfaced with the physical layer of a cognitive communication system, this amplifier topology offers broadband high efficiency through the use of multiple tuned input/output matching networks. This feature enables the cognitive radio to reconfigure the operating frequency without sacrificing efficiency. This paper additionally presents as a proof-of-concept the design, fabrication, and test results for a GaN inverse Class-F type amplifier operating at X-band (8.4 GHz) that achieves a maximum output power of 5.14-W, Power Added Efficiency (PAE) of 38.6 percent, and Drain Efficiency (DE) of 48.9 percent under continuous wave (CW) operation.

  5. Surface cleaning for negative electron affinity GaN photocathode

    NASA Astrophysics Data System (ADS)

    Qiao, Jianliang; Yin, Yingpeng; Gao, Youtang; Niu, Jun; Qian, Yunsheng; Chang, Benkang

    2012-10-01

    In the preparation process for negative electron affinity (NEA) GaN photocathode, the surface cleanness is very important to activation, it influences the sensitivity and stability of NEA GaN photocathode. The traditional corrosion methods based on oxidizing and dissolving can't remove oxygen (O) and carbon (C) on GaN surface effectively. How to get an ideal atom clean surface is still an important question at present. The cleaning techniques for GaN photocathode was studied by using NEA photocathode activation system and XPS surface analysis system. The experiment sample is p-type GaN doped with Mg, doped concentration is 1.37×1017 cm-3, the transfer rate is 3.08 cm2/V-S, and the thickness of activation layer is 0.51 μm, the substrate is 300 μm thick sapphire. The sample was dealed with chemical cleaning depuration at first. And to get the atom clean surface, the vacuum heat cleaning process was needed. The methods of chemical cleaning and the vacuum heating cleaning were given in detail. According to the X-ray photoelectron spectroscopy of GaN surface after chemical cleaning and the vacuum degree curve of the activation chamber during the heat cleaning, the cleaning effect and the cleaning mechanism were discussed. After the effective chemical cleaning and the heating of 700 Centigrade degree about 20 minutes in ultrahigh vacuum system, the oxides and carbon contaminants on cathode surface can be removed effectively, and the ideal atom clean surface can be obtained. The purpose of heating depuration process is that not only to get the atom clean GaN surface, but also to guarantee the contents of Ga, N on GaN surface stabilize and to keep the system ultra-high vacuum degree. Because of the volatilization of oxide and carbon impurity on the cathode surface, the vacuum degree curve drops with the rising of temperature on the whole.

  6. Neutral and charged gallium clusters: structures, physical properties and implications for the melting features

    NASA Astrophysics Data System (ADS)

    Núñez, Sara; López, José M.; Aguado, Andrés

    2012-09-01

    We report the putative Global Minimum (GM) structures and electronic properties of GaN+, GaN and GaN- clusters with N = 13-37 atoms, obtained from first-principles density functional theory structural optimizations. The calculations include spin polarization and employ an exchange-correlation functional which accounts for van der Waals dispersion interactions (vdW-DFT). We find a wide diversity of structural motifs within the located GM, including decahedral, polyicosahedral, polytetrahedral and layered structures. The GM structures are also extremely sensitive to the number of electrons in the cluster, so that the structures of neutral and charged clusters differ for most sizes. The main magic numbers (clusters with an enhanced stability) are identified and interpreted in terms of electronic and geometric shell closings. The theoretical results are consistent with experimental abundance mass spectra of GaN+ and with photoelectron spectra of GaN-. The size dependence of the latent heats of melting, the shape of the heat capacity peaks, and the temperature dependence of the collision cross-sections, all measured for GaN+ clusters, are properly interpreted in terms of the calculated cohesive energies, spectra of configurational excitations, and cluster shapes, respectively. The transition from ``non-melter'' to ``magic-melter'' behaviour, experimentally observed between Ga30+ and Ga31+, is traced back to a strong geometry change. Finally, the higher-than-bulk melting temperatures of gallium clusters are correlated with a more typically metallic behaviour of the clusters as compared to the bulk, contrary to previous theoretical claims.We report the putative Global Minimum (GM) structures and electronic properties of GaN+, GaN and GaN- clusters with N = 13-37 atoms, obtained from first-principles density functional theory structural optimizations. The calculations include spin polarization and employ an exchange-correlation functional which accounts for van der Waals dispersion interactions (vdW-DFT). We find a wide diversity of structural motifs within the located GM, including decahedral, polyicosahedral, polytetrahedral and layered structures. The GM structures are also extremely sensitive to the number of electrons in the cluster, so that the structures of neutral and charged clusters differ for most sizes. The main magic numbers (clusters with an enhanced stability) are identified and interpreted in terms of electronic and geometric shell closings. The theoretical results are consistent with experimental abundance mass spectra of GaN+ and with photoelectron spectra of GaN-. The size dependence of the latent heats of melting, the shape of the heat capacity peaks, and the temperature dependence of the collision cross-sections, all measured for GaN+ clusters, are properly interpreted in terms of the calculated cohesive energies, spectra of configurational excitations, and cluster shapes, respectively. The transition from ``non-melter'' to ``magic-melter'' behaviour, experimentally observed between Ga30+ and Ga31+, is traced back to a strong geometry change. Finally, the higher-than-bulk melting temperatures of gallium clusters are correlated with a more typically metallic behaviour of the clusters as compared to the bulk, contrary to previous theoretical claims. Electronic supplementary information (ESI) available: Atomic coordinates (in xyz format and Å units) and point group symmetries for the global minimum structures reported in this paper. See DOI: 10.1039/c2nr31222k

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szymański, Tomasz, E-mail: tomasz.szymanski@pwr.edu.pl; Wośko, Mateusz; Paszkiewicz, Bartłomiej

    Herein, silicon substrates in alternative orientations from the commonly used Si(111) were used to enable the growth of polar and semipolar GaN-based structures by the metalorganic vapor phase epitaxy method. Specifically, Si(112) and Si(115) substrates were used for the epitaxial growth of nitride multilayer structures, while the same layer schemes were also deposited on Si(111) for comparison purposes. Multiple approaches were studied to examine the influence of the seed layers and the growth process conditions upon the final properties of the GaN/Si(11x) templates. Scanning electron microscope images were acquired to examine the topography of the deposited samples. It was observedmore » that the substrate orientation and the process conditions allow control to produce an isolated GaN block growth or a coalesced layer growth, resulting in inclined c-axis GaN structures under various forms. The angles of the GaN c-axis inclination were determined by x-ray diffraction measurements and compared with the results obtained from the analysis of the atomic force microscope (AFM) images. The AFM image analysis method to determine the structure tilt was found to be a viable method to estimate the c-axis inclination angles of the isolated blocks and the not-fully coalesced layers. The quality of the grown samples was characterized by the photoluminescence method conducted at a wide range of temperatures from 77 to 297 K, and was correlated with the sample degree of coalescence. Using the free-excitation peak positions plotted as a function of temperature, analytical Bose-Einstein model parameters were fitted to obtain further information about the grown structures.« less

  8. High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer

    PubMed Central

    Muhammed, M. M.; Roldan, M. A.; Yamashita, Y.; Sahonta, S.-L.; Ajia, I. A.; Iizuka, K.; Kuramata, A.; Humphreys, C. J.; Roqan, I. S.

    2016-01-01

    We demonstrate the high structural and optical properties of InxGa1−xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 107 cm−2) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1−xN epilayers can be achieved with high optical quality of InxGa1−xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design. PMID:27412372

  9. High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer.

    PubMed

    Muhammed, M M; Roldan, M A; Yamashita, Y; Sahonta, S-L; Ajia, I A; Iizuka, K; Kuramata, A; Humphreys, C J; Roqan, I S

    2016-07-14

    We demonstrate the high structural and optical properties of InxGa1-xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 10(7) cm(-2)) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1-xN epilayers can be achieved with high optical quality of InxGa1-xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design.

  10. Spatial distribution of defect luminescence in GaN nanowires.

    PubMed

    Li, Qiming; Wang, George T

    2010-05-12

    The spatial distribution of defect-related and band-edge luminescence from GaN nanowires grown by metal-organic chemical vapor deposition was studied by spatially resolved cathodoluminescence imaging and spectroscopy. A surface layer exhibiting strong yellow luminescence (YL) near 566 nm in the nanowires was revealed, compared to weak YL in the bulk. In contrast, other defect-related luminescence near 428 nm (blue luminescence) and 734 nm (red luminescence), in addition to band-edge luminescence (BEL) at 366 nm, were observed in the bulk of the nanowires but were largely absent at the surface. As the nanowire width approaches a critical dimension, the surface YL layer completely quenches the BEL. The surface YL is attributed to the diffusion and piling up of mobile point defects, likely isolated gallium vacancies, at the surface during growth.

  11. Internal Quantum Efficiency of Led Structures at Various Charge Carrier Distributions Over InGaN/GaN Quantum Wells

    NASA Astrophysics Data System (ADS)

    Romanov, I. S.; Prudaev, I. A.; Kopyev, V. V.

    2018-06-01

    The results of studying the effect of the thickness of GaN barrier layers in the active region of LED structures with InGaN/GaN quantum wells on the internal quantum efficiency (IQE) of photoluminescence are presented. It is shown that a decrease in the thickness of the GaN barrier layers from 15 to 3 nm leads to an increase in the maximum value of IQE and to a shift of the maximum to the region of high excitation powers. The result obtained is explained with consideration for the decrease in the Auger recombination rate due to a more uniform distribution of charge carriers over the active region in structures with a barrier thickness of 3 nm.

  12. Improving hole injection efficiency by manipulating the hole transport mechanism through p-type electron blocking layer engineering.

    PubMed

    Zhang, Zi-Hui; Ju, Zhengang; Liu, Wei; Tan, Swee Tiam; Ji, Yun; Kyaw, Zabu; Zhang, Xueliang; Hasanov, Namig; Sun, Xiao Wei; Demir, Hilmi Volkan

    2014-04-15

    The p-type AlGaN electron blocking layer (EBL) is widely used in InGaN/GaN light-emitting diodes (LEDs) for electron overflow suppression. However, a typical EBL also reduces the hole injection efficiency, because holes have to climb over the energy barrier generated at the p-AlGaN/p-GaN interface before entering the quantum wells. In this work, to address this problem, we report the enhancement of hole injection efficiency by manipulating the hole transport mechanism through insertion of a thin GaN layer of 1 nm into the p-AlGaN EBL and propose an AlGaN/GaN/AlGaN-type EBL outperforming conventional AlGaN EBLs. Here, the position of the inserted thin GaN layer relative to the p-GaN region is found to be the key to enhancing the hole injection efficiency. InGaN/GaN LEDs with the proposed p-type AlGaN/GaN/AlGaN EBL have demonstrated substantially higher optical output power and external quantum efficiency.

  13. GaN ultraviolet p-i-n photodetectors with enhanced deep ultraviolet quantum efficiency

    NASA Astrophysics Data System (ADS)

    Wang, Guosheng; Xie, Feng; Wang, Jun; Guo, Jin

    2017-10-01

    GaN ultraviolet (UV) p-i-n photodetectors (PDs) with a thin p-AlGaN/GaN contact layer are designed and fabricated. The PD exhibits a low dark current density of˜7 nA/cm2 under -5 V, and a zero-bias peak responsivity of ˜0.16 A/W at 360 nm, which corresponds to a maximum quantum efficiency of 55%. It is found that, in the wavelength range between 250 and 365 nm, the PD with thin p-AlGaN/GaN contact layer exhibits enhanced quantum efficiency especially in a deep-UV wavelength range, than that of the control PD with conventional thin p-GaN contact layer. The improved quantum efficiency of the PD with thin p-AlGaN/GaN contact layer in the deep-UV wavelength range is mainly attributed to minority carrier reflecting properties of thin p-AlGaN/GaN heterojunction which could reduce the surface recombination loss of photon-generated carriers and improve light current collection efficiency.

  14. Large-roll growth of 25-inch hexagonal BN monolayer film for self-release buffer layer of free-standing GaN wafer

    NASA Astrophysics Data System (ADS)

    Wu, Chenping; Soomro, Abdul Majid; Sun, Feipeng; Wang, Huachun; Huang, Youyang; Wu, Jiejun; Liu, Chuan; Yang, Xiaodong; Gao, Na; Chen, Xiaohong; Kang, Junyong; Cai, Duanjun

    2016-10-01

    Hexagonal boron nitride (h-BN) is known as promising 2D material with a wide band-gap (~6 eV). However, the growth size of h-BN film is strongly limited by the size of reaction chamber. Here, we demonstrate the large-roll synthesis of monolayer and controllable sub-monolayer h-BN film on wound Cu foil by low pressure chemical vapor deposition (LPCVD) method. By winding the Cu foil substrate into mainspring shape supported by a multi-prong quartz fork, the reactor size limit could be overcome by extending the substrate area to a continuous 2D curl of plane inward. An extremely large-size monolayer h-BN film has been achieved over 25 inches in a 1.2” tube. The optical band gap of h-BN monolayer was determined to be 6.0 eV. The h-BN film was uniformly transferred onto 2” GaN or 4” Si wafer surfaces as a release buffer layer. By HVPE method, overgrowth of thick GaN wafer over 200 μm has been achieved free of residual strain, which could provide high quality homo-epitaxial substrate.

  15. Hall-effect measurements of metalorganic vapor-phase epitaxy-grown p-type homoepitaxial GaN layers with various Mg concentrations

    NASA Astrophysics Data System (ADS)

    Horita, Masahiro; Takashima, Shinya; Tanaka, Ryo; Matsuyama, Hideaki; Ueno, Katsunori; Edo, Masaharu; Takahashi, Tokio; Shimizu, Mitsuaki; Suda, Jun

    2017-03-01

    Mg-doped p-type gallium nitride (GaN) layers with doping concentrations in the range from 6.5 × 1016 cm-3 (lightly doped) to 3.8 × 1019 cm-3 (heavily doped) were investigated by Hall-effect measurement for the analysis of hole concentration and mobility. p-GaN was homoepitaxially grown on a GaN free-standing substrate by metalorganic vapor-phase epitaxy. The threading dislocation density of p-GaN was 4 × 106 cm-2 measured by cathodoluminescence mapping. Hall-effect measurements of p-GaN were carried out at a temperature in the range from 130 to 450 K. For the lightly doped p-GaN, the acceptor concentration of 7.0 × 1016 cm-3 and the donor concentration of 3.2 × 1016 cm-3 were obtained, where the compensation ratio was 46%. We also obtained the depth of the Mg acceptor level to be 220 meV. The hole mobilities of 86, 31, 14 cm2 V-1 s-1 at 200, 300, 400 K, respectively, were observed in the lightly doped p-GaN.

  16. High performance of Ga-doped ZnO transparent conductive layers using MOCVD for GaN LED applications.

    PubMed

    Horng, Ray-Hua; Shen, Kun-Ching; Yin, Chen-Yang; Huang, Chiung-Yi; Wuu, Dong-Sing

    2013-06-17

    High performance of Ga-doped ZnO (GZO) prepared using metalorganic chemical vapor deposition (MOCVD) was employed in GaN blue light-emitting diodes (LEDs) as transparent conductive layers (TCL). By the post-annealing process, the annealed 800°C GZO films exhibited a high transparency above 97% at wavelength of 450 nm. The contact resistance of GZO decreased with the annealing temperature increasing. It was attributed to the improvement of the GZO crystal quality, leading to an increase in electron concentration. It was also found that some Zn atom caused from the decomposition process diffused into the p-GaN surface of LED, which generated a stronger tunneling effect at the GZO/p-GaN interface and promoted the formation of ohmic contact. Moreover, contrast to the ITO-LED, a high light extraction efficiency of 77% was achieved in the GZO-LED at injection current of 20 mA. At 350 mA injection current, the output power of 256.51 mW of GZO-LEDs, corresponding to a 21.5% enhancement as compared to ITO-LEDs was obtained; results are promising for the development of GZO using the MOCVD technique for GaN LED applications.

  17. From GaN to ZnGa(2)O(4) through a low-temperature process: nanotube and heterostructure arrays.

    PubMed

    Lu, Ming-Yen; Zhou, Xiang; Chiu, Cheng-Yao; Crawford, Samuel; Gradečak, Silvija

    2014-01-22

    We demonstrate a method to synthesize GaN-ZnGa2O4 core-shell nanowire and ZnGa2O4 nanotube arrays by a low-temperature hydrothermal process using GaN nanowires as templates. Transmission electron microscopy and X-ray photoelectron spectroscopy results show that a ZnGa2O4 shell forms on the surface of GaN nanowires and that the shell thickness is controlled by the time of the hydrothermal process and thus the concentration of Zn ions in the solution. Furthermore, ZnGa2O4 nanotube arrays were obtained by depleting the GaN core from GaN-ZnGa2O4 core-shell nanowire arrays during the reaction and subsequent etching with HCl. The GaN-ZnGa2O4 core-shell nanowires exhibit photoluminescence peaks centered at 2.60 and 2.90 eV attributed to the ZnGa2O4 shell, as well as peaks centered at 3.35 and 3.50 eV corresponding to the GaN core. We also demonstrate the synthesis of GaN-ZnGa2O4 heterojunction nanowires by a selective formation process as a simple route toward development of heterojunction nanodevices for optoelectronic applications.

  18. Impact of GaN cap on charges in Al₂O₃/(GaN/)AlGaN/GaN metal-oxide-semiconductor heterostructures analyzed by means of capacitance measurements and simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ťapajna, M., E-mail: milan.tapajna@savba.sk; Jurkovič, M.; Válik, L.

    2014-09-14

    Oxide/semiconductor interface trap density (D{sub it}) and net charge of Al₂O₃/(GaN)/AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor (MOS-HEMT) structures with and without GaN cap were comparatively analyzed using comprehensive capacitance measurements and simulations. D{sub it} distribution was determined in full band gap of the barrier using combination of three complementary capacitance techniques. A remarkably higher D{sub it} (∼5–8 × 10¹²eV⁻¹ cm⁻²) was found at trap energies ranging from E C-0.5 to 1 eV for structure with GaN cap compared to that (D{sub it} ∼ 2–3 × 10¹²eV⁻¹ cm⁻²) where the GaN cap was selectively etched away. D{sub it} distributions were then used for simulation of capacitance-voltage characteristics. A good agreement betweenmore » experimental and simulated capacitance-voltage characteristics affected by interface traps suggests (i) that very high D{sub it} (>10¹³eV⁻¹ cm⁻²) close to the barrier conduction band edge hampers accumulation of free electron in the barrier layer and (ii) the higher D{sub it} centered about E C-0.6 eV can solely account for the increased C-V hysteresis observed for MOS-HEMT structure with GaN cap. Analysis of the threshold voltage dependence on Al₂O₃ thickness for both MOS-HEMT structures suggests that (i) positive charge, which compensates the surface polarization, is not necessarily formed during the growth of III-N heterostructure, and (ii) its density is similar to the total surface polarization charge of the GaN/AlGaN barrier, rather than surface polarization of the top GaN layer only. Some constraints for the positive surface compensating charge are discussed.« less

  19. Use of a bilayer lattice-matched AlInGaN barrier for improving the channel carrier confinement of enhancement-mode AlInGaN/GaN hetero-structure field-effect transistors

    NASA Astrophysics Data System (ADS)

    Rahbardar Mojaver, Hassan; Gosselin, Jean-Lou; Valizadeh, Pouya

    2017-06-01

    A quaternary lattice-matched layer structure based on employing a bilayer barrier for improving the carrier confinement in the channel of enhancement-mode metal-face c-plane wurtzite AlInGaN/GaN hetero-structure field effect transistors (HFETs) is for the first time proposed. Using the commercial self-consistent Poisson-Schrödinger solver Nextnano, electronic properties of the proposed hetero-structure, including the sheet charge density and carrier confinement on the GaN side of the hetero-interface, are evaluated. Based on these evaluations, it is shown that while the proposed layer structure substantially improves the carrier confinement in the GaN channel layer, it also upholds the merits of employing a lattice-matched barrier towards achieving an enhancement-mode operation (i.e., in the absence of the piezoelectric effect). According to these simulations, in terms of maintaining the required positive threshold-voltage for the enhancement-mode operation, it is also shown that the proposed layer structure substantially outperforms the quaternary AlInGaN/GaN HFETs employing a thin AlN spacer layer.

  20. Wide-bandgap III-Nitride based Second Harmonic Generation

    DTIC Science & Technology

    2014-10-02

    fabrication process for a GaN LPS. Fig. 1: 3-step Fabrication process of a GaN based lateral polar structure. ( a ) Growth of a 20 nm AlN buffer layer...etching of the LT-AlN stripes. This results are shown in Fig. 2 ( a ) and (b). Fig. 2: AFM images of KOH ( a ) and RIE (b) patterned templates for lateral ...was varied between 0.6 - 1.0. FIG. 3: Growth process of AlGaN based Lateral Polar Structures. ( a ) RIE patterning. (b) Growth of HT- AlN. (c

  1. Efficient Incorporation of Mg in Solution Grown GaN Crystals

    NASA Astrophysics Data System (ADS)

    Freitas, Jaime A., Jr.; Feigelson, Boris N.; Anderson, Travis J.

    2013-11-01

    Detailed spectrometry and optical spectroscopy studies carried out on GaN crystals grown in solution detect and identify Mg as the dominant shallow acceptor. Selective etching of crystals with higher Mg levels than that of the donor concentration background indicates that Mg acceptors incorporate preferentially in the N-polar face. Electrical transport measurements verified an efficient incorporation and activation of the Mg acceptors. These results suggest that this growth method has the potential to produce p-type doped epitaxial layers or p-type substrates characterized by high hole concentration and low defect density.

  2. Grouped and Multistep Nanoheteroepitaxy: Toward High-Quality GaN on Quasi-Periodic Nano-Mask.

    PubMed

    Feng, Xiaohui; Yu, Tongjun; Wei, Yang; Ji, Cheng; Cheng, Yutian; Zong, Hua; Wang, Kun; Yang, Zhijian; Kang, Xiangning; Zhang, Guoyi; Fan, Shoushan

    2016-07-20

    A novel nanoheteroepitaxy method, namely, the grouped and multistep nanoheteroepitaxy (GM-NHE), is proposed to attain a high-quality gallium nitride (GaN) epilayer by metal-organic vapor phase epitaxy. This method combines the effects of sub-100 nm nucleation and multistep lateral growth by using a low-cost but unique carbon nanotube mask, which consists of nanoscale growth windows with a quasi-periodic 2D fill factor. It is found that GM-NHE can facilely reduce threading dislocation density (TDD) and modulate residual stress on foreign substrate without any regrowth. As a result, high-quality GaN epilayer is produced with homogeneously low TDD of 4.51 × 10(7) cm(-2) and 2D-modulated stress, and the performance of the subsequent 410 nm near-ultraviolet light-emitting diode is greatly boosted. In this way, with the facile fabrication of nanomask and the one-off epitaxy procedure, GaN epilayer is prominently improved with the assistance of nanotechnology, which demonstrates great application potential for high-efficiency TDD-sensitive optoelectronic and electronic devices.

  3. Structural and optical characterization of ZnO/Mg(x)Zn(1-x)O multiple quantum wells based random laser diodes.

    PubMed

    Jiang, Qike; Zheng, He; Wang, Jianbo; Long, Hao; Fang, Guojia

    2012-12-01

    Two kinds of laser diodes (LDs) comprised of ZnO/Mg(x)Zn(1-x)O (ZnO/MZO) multiple quantum wells (MQWs) grown on GaN (MQWs/GaN) and Si (MQWs/Si) substrates, respectively, have been constructed. The LD with MQWs/GaN exhibits ultraviolet random lasing under electrical excitation, while that with MQWs/Si does not. In the MQWs/Si, ZnO/MZO MQWs consist of nanoscaled crystallites, and the MZO layers undergo a phase separation of cubic MgO and hexagonal ZnO. Moreover, the Mg atom predominantly locates in the MZO layers along with a significant aggregation at the ZnO/MZO interfaces; in sharp contrast, the ZnO/MZO MQWs in the MQWs/GaN show a well-crystallized structure with epitaxial relationships among GaN, MZO, and ZnO. Notably, Mg is observed to diffuse into the ZnO well layers. The structure-optical property relationship of these two LDs is further discussed.

  4. Optical properties of m-plane GaN grown on patterned Si(112) substrates by MOCVD using a two-step approach

    NASA Astrophysics Data System (ADS)

    Izyumskaya, N.; Okur, S.; Zhang, F.; Monavarian, M.; Avrutin, V.; Özgür, Ü.; Metzner, S.; Karbaum, C.; Bertram, F.; Christen, J.; Morkoç, H.

    2014-03-01

    Nonpolar m-plane GaN layers were grown on patterned Si (112) substrates by metal-organic chemical vapor deposition (MOCVD). A two-step growth procedure involving a low-pressure (30 Torr) first step to ensure formation of the m-plane facet and a high-pressure step (200 Torr) for improvement of optical quality was employed. The layers grown in two steps show improvement of the optical quality: the near-bandedge photoluminescence (PL) intensity is about 3 times higher than that for the layers grown at low pressure, and deep emission is considerably weaker. However, emission intensity from m-GaN is still lower than that of polar and semipolar (1 100 ) reference samples grown under the same conditions. To shed light on this problem, spatial distribution of optical emission over the c+ and c- wings of the nonpolar GaN/Si was studied by spatially resolved cathodoluminescence and near-field scanning optical microscopy.

  5. Strain modulation-enhanced Mg acceptor activation efficiency of Al0.14Ga0.86N/GaN superlattices with AlN interlayer

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Li, Rui; Li, Ding; Liu, Ningyang; Liu, Lei; Chen, Weihua; Wang, Cunda; Yang, Zhijian; Hu, Xiaodong

    2010-02-01

    AlN layer was grown as interlayer between undoped GaN and Mg doped Al0.14Ga0.86N/GaN superlattices (SLs) epilayer to modulate the strain distribution between Al0.14Ga0.86N barrier and GaN well layers in SLs sample. Strain relaxation was observed in the SLs sample with AlN interlayer by x-ray diffraction reciprocal space mapping method. The measured hole concentration of SLs sample with AlN interlayer at room temperature was over 1.6×1018 cm-3 but that was only 6.6×1016 cm-3 obtained in SLs sample without AlN interlayer. Variable temperature Hall-effect measurement showed that the acceptor activation energy decreased from 150 to 70 meV after inserting the AlN layer, which indicated that the strain modulation of SLs induced by AlN interlayer was beneficial to the Mg acceptor activation and hole concentration enhancement.

  6. On the photon annealing of silicon-implanted gallium-nitride layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seleznev, B. I., E-mail: Boris.Seleznev@novsu.ru; Moskalev, G. Ya.; Fedorov, D. G.

    2016-06-15

    The conditions for the formation of ion-doped layers in gallium nitride upon the incorporation of silicon ions followed by photon annealing in the presence of silicon dioxide and nitride coatings are analyzed. The conditions of the formation of ion-doped layers with a high degree of impurity activation are established. The temperature dependences of the surface concentration and mobility of charge carriers in ion-doped GaN layers annealed at different temperatures are studied.

  7. Effect of p-GaN layer grown with H2 carrier gas on wall-plug efficiency of high-power LEDs

    NASA Astrophysics Data System (ADS)

    Lu, Kuan Fu; Lin, Tien Kun; Liou, Jian Kai; Yang, Chyi Da; Lee, Chong Yi; Tsai, Jeng Da

    2017-06-01

    The effect of employing different carrier gases (H2 only and 1:1 vol% N2:H2) in the p-type GaN (p-GaN) layer on the wall-plug efficiency (WPE) of high-power light-emitting diodes (LEDs) is studied. Since GaN crystal could be a two-dimension (2-D) growth mode in H2 ambient, better quality and smoother surface of the p-GaN were obtained. The current spreading performance of the p-GaN layer using H2 alone as the carrier gas was enhanced, resulting in advanced light output power (LOP). In addition, turn-on voltage and dynamic resistance at 500 mA, which can strongly contribute to the WPE, were also reduced by 0.12 V and 0.13 Ω, respectively. The studied device with H2 as the carrier gas in the p-GaN layer (p-H2 layer) exhibits 9.5% and 12.4% improvements in LOP and WPE at 500 mA over the device (N2/H2 = 1:1), as well as significantly better electrostatic discharge robustness. Therefore, the use of a p-H2 layer can effectively improve the performance of GaN-based LEDs for high power applications.

  8. Surface plasmon enhanced SWIR absorption at the ultra n-doped substrate/PbSe nanostructure layer interface

    NASA Astrophysics Data System (ADS)

    Wittenberg, Vladimir; Rosenblit, Michael; Sarusi, Gabby

    2017-08-01

    This work presents simulation results of the plasmon enhanced absorption that can be achieved in the short wavelength infrared (SWIR - 1200 nm to 1800 nm) spectral range at the interface between ultra-heavily doped substrates and a PbSe nanostructure non-epitaxial growth absorbing layer. The absorption enhancement simulated in this study is due to surface plasmon polariton (SPP) excitation at the interface between these ultra-heavily n-doped GaAs or GaN substrates, which are nearly semimetals to SWIR light, and an absorption layer made of PbSe nano-spheres or nano-columns. The ultra-heavily doped GaAs or GaN substrates are simulated as examples, based on the Drude-Lorentz permittivity model. In the simulation, the substrates and the absorption layer were patterned jointly to forma blazed lattice, and then were back-illuminated using SWIR with a central wavelength of 1500 nm. The maximal field enhancement achieved was 17.4 with a penetration depth of 40 nm. Thus, such architecture of an ultra-heavily doped semiconductor and infrared absorbing layer can further increase the absorption due to the plasmonic enhanced absorption effect in the SWIR spectral band without the need to use a metallic layer as in the case of visible light.

  9. Contactless electroreflectance studies of surface potential barrier for N- and Ga-face epilayers grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudrawiec, R.; Janicki, L.; Gladysiewicz, M.

    2013-07-29

    Two series of N- and Ga-face GaN Van Hoof structures were grown by plasma-assisted molecular beam epitaxy to study the surface potential barrier by contactless electroreflectance (CER). A clear CER resonance followed by strong Franz-Keldysh oscillation of period varying with the thickness of undoped GaN layer was observed for these structures. This period was much shorter for N-polar structures that means smaller surface potential barrier in these structures than in Ga-polar structures. From the analysis of built-in electric field it was determined that the Fermi-level is located 0.27 ± 0.05 and 0.60 ± 0.05 eV below the conduction band formore » N- and Ga-face GaN surface, respectively.« less

  10. Nitrogen vacancies as a common element of the green luminescence and nonradiative recombination centers in Mg-implanted GaN layers formed on a GaN substrate

    NASA Astrophysics Data System (ADS)

    Kojima, Kazunobu; Takashima, Shinya; Edo, Masaharu; Ueno, Katsunori; Shimizu, Mitsuaki; Takahashi, Tokio; Ishibashi, Shoji; Uedono, Akira; Chichibu, Shigefusa F.

    2017-06-01

    The photoluminescences of ion-implanted (I/I) and epitaxial Mg-doped GaN (GaN:Mg) are compared. The intensities and lifetimes of the near-band-edge and ultraviolet luminescences associated with a MgGa acceptor of I/I GaN:Mg were significantly lower and shorter than those of the epilayers, respectively. Simultaneously, the green luminescence (GL) became dominant. These emissions were quenched far below room temperature. The results indicate the generation of point defects common to GL and nonradiative recombination centers (NRCs) by I/I. Taking the results of positron annihilation measurement into account, N vacancies are the prime candidate to emit GL and create NRCs with Ga vacancies, (VGa) m (VN) n , as well as to inhibit p-type conductivity.

  11. GdN nanoisland-based GaN tunnel junctions.

    PubMed

    Krishnamoorthy, Sriram; Kent, Thomas F; Yang, Jing; Park, Pil Sung; Myers, Roberto C; Rajan, Siddharth

    2013-06-12

    Tunnel junctions could have a great impact on gallium nitride and aluminum nitride-based devices such as light-emitting diodes and lasers by overcoming critical challenges related to hole injection and p-contacts. This paper demonstrates the use of GdN nanoislands to enhance interband tunneling and hole injection into GaN p-n junctions by several orders of magnitude, resulting in low tunnel junction specific resistivity (1.3 × 10(-3) Ω-cm(2)) compared to the previous results in wide band gap semiconductors. Tunnel injection of holes was confirmed by low-temperature operation of GaN p-n junction with a tunneling contact layer, and strong electroluminescence down to 20 K. The low tunnel junction resistance combined with low optical absorption loss in GdN is very promising for incorporation in GaN-based light emitters.

  12. High Temperature Annealing of MBE-grown Mg-doped GaN

    NASA Astrophysics Data System (ADS)

    Contreras, S.; Konczewicz, L.; Peyre, H.; Juillaguet, S.; Khalfioui, M. Al; Matta, S.; Leroux, M.; Damilano, B.; Brault, J.

    2017-06-01

    In this report, are shown the results of high temperature resistivity and Hall Effect studies of Mg-doped GaN epilayers. The samples studied were grown on (0001) (c-plane) sapphire by molecular beam epitaxy and 0.5 μm GaN:Mg layers have been achieved on low temperature buffers of GaN (30 nm) and AlN ( 150 nm). The experiments were carried out in the temperature range from 300 K up to 900 K. Up to about 870 K a typical thermally activated conduction process has been observed with the activation energy value EA = 215 meV. However, for higher temperatures, an annealing effect is observed in all the investigated samples. The increase of the free carrier concentration as a function of time leads to an irreversible decrease of sample resistivity of more than 60%.

  13. High-fluence ion implantation in silicon carbide for fabrication of a compliant substrate

    NASA Astrophysics Data System (ADS)

    Lioubtchenko, Mikhail

    GaN and related nitrides are promising materials for applications as UV/blue light emitters and in high-power, high-temperature electonic devices. Unfortunately, the vast potential of these materials cannot be realized effectively due to a large density of threading dislocations, arising from large lattice mismatch between GaN and utilized substrates. Therefore, a new approach to the heteroepitaxial growth is desirable, and a compliant substrate might help to remedy the situation. A modified model for the compliant substrate consisting of the compliant membrane glued to a thick handling substrate by a soft layer was proposed. We have chosen 6H-SiC as a starting substrate and ion implantation as a means of creating a buried layer. High fluence ion implantation of different species in 6H-SiC was performed at elevated temperatures and damage removal/accumulation was studied. It was found that temperatures around 1600°C are necessary to successfully recrystallize the radiation damage for Ti, Ga, Si and C implantations, but no damage removal was monitored for In implantation. In order to minimize the damage produced during ion implantation, it was decided to employ a multistep process in which each implantation step was followed by annealing. This approach was realized for 125 keV Ti++ and 300 keV Ga+ implantations up to a total dose of 1.8 x 1017 cm--2. Ti-implanted substrates were shown to retain good quality in the top layer, whereas Ga implantation preserves the quality of the near-surface region only at lower doses. The implanted species concentration was monitored after each step using Rutherford Backscattering (RBS). GaN films were grown on the prepared substrates and a control SiC sample by MOCVD. TEM and photoluminescence measurements have demonstrated that the quality of GaN films improves upon growth on compliant substrates.

  14. Study on the structural, optical, and electrical properties of the yellow light-emitting diode grown on free-standing (0001) GaN substrate

    NASA Astrophysics Data System (ADS)

    Deng, Gaoqiang; Zhang, Yuantao; Yu, Ye; Yan, Long; Li, Pengchong; Han, Xu; Chen, Liang; Zhao, Degang; Du, Guotong

    2018-04-01

    In this paper, GaN-based yellow light-emitting diodes (LEDs) were homoepitaxially grown on free-standing (0001) GaN substrates by metal-organic chemical vapor deposition. X-ray diffraction (XRD), photoluminescence (PL), and electroluminescence (EL) measurements were conducted to investigate the structural, optical, and electrical properties of the yellow LED. The XRD measurement results showed that the InGaN/GaN multiple quantum wells (MQWs) in the LED structure have good periodicity because the distinct MQWs related higher order satellite peaks can be clearly observed from the profile of 2θ-ω XRD scan. The low temperature (10 K) and room temperature PL measurement results yield an internal quantum efficiency of 16% for the yellow LED. The EL spectra of the yellow LED present well Gaussian distribution with relatively low linewidth (47-55 nm), indicating the homogeneous In-content in the InGaN quantum well layers in the yellow LED structure. It is believed that this work will aid in the future development of GaN on GaN LEDs with long emission wavelength.

  15. Characterization of 380nm UV-LEDs grown on free-standing GaN by atmospheric-pressure metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Shieh, C. Y.; Li, Z. Y.; Kuo, H. C.; Chang, J. Y.; Chi, G. C.

    2014-03-01

    We reported the defects and optical characterizations of the ultraviolet light-emitting diodes grown on free-standing GaN substrate (FS-GaN) and sapphire. Cross-sectional transmission electron microscopy (TEM) images showed that the total defect densities of grown UV LEDs on FS-GaN and sapphire including edge, screw and mixed type were 3.6×106 cm-2 and 5.5×108 cm-2. When substrate of UV LEDs was changed from sapphire to FS-GaN, it can be clearly found that the crystallography of GaN epilayers was drastically different from that GaN epilayers on sapphire. Besides, the microstructures or indium clustering can be not observed at UV LEDs on FS-GaN from TEM measurement. The internal quantum efficiency of UVLEDs on FS-GaN and sapphire were 34.8 % and 39.4 % respectively, which attributed to indium clustering in multi-layers quantum wells (MQWs) of UV LEDs on sapphire. The relationship between indiumclustering and efficiency droop were investigated by temperature-dependent electroluminescence (TDEL) measurements.

  16. Fuchs-Kliewer phonons of H-covered and clean GaN(1 1 bar 00)

    NASA Astrophysics Data System (ADS)

    Rink, M.; Himmerlich, M.; Krischok, S.; Kröger, J.

    2018-01-01

    Inelastic electron scattering is used to study surface phonon polaritons on H-covered and clean GaN(1 1 bar 00) surfaces. The Fuchs-Kliewer phonon of GaN(1 1 bar 00) -H gives rise to characteristic signatures of its single and multiple excitation in specular electron energy loss spectra. The loss intensities for multi-phonon scattering processes decrease according to a Poisson distribution. Vibrational spectra of this surface are invariant on the time scale of days reflecting its chemical passivation by the H layer. In contrast, vibrational spectra of pristine GaN(1 1 bar 00) are subject to a pronounced temporal evolution where spectroscopic weight is gradually shifted towards the multiple excitation of the Fuchs-Kliewer phonon. As a consequence, the monotonous decrease of the cross section for multiple quantum excitation as observed for the H-covered surface is not applicable. This remarkable effect is particularly strong in spectra acquired at low primary energies of incident electrons, which hints at processes occurring in the very surface region. Scenarios that may contribute to these observations are discussed.

  17. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Erdong; Li, Qiming; Swartzentruber, Brian

    2015-11-25

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN coremore » of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. As a result, selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.« less

  18. Surface Interaction Kinetics of GaAs (100) Surfaces Under Electron Cyclotron Resonance Nitrogen Plasma Exposure

    NASA Astrophysics Data System (ADS)

    O'Steen, M. L.; Hauenstein, R. J.; Bandić, Z. Z.; Feenstra, R. M.; Hwang, S. J.; McGill, T. C.

    1996-03-01

    GaN is a robust semiconducting material offering a large, direct bandgap appropriate for use in blue-green to UV light emitting diodes and laser diodes. Attainment of device quality GaN has been difficult due to the lack of substrate materials that are suitably matched to the unusually small lattice parameter of GaN. To better control heteroepitaxial growth quality, a fundamental study of the initial stages of GaN growth by Electron Cyclotron Resonance Nitrogen Plasma-Assisted Molecular Beam Epitaxy (ECR-MBE) has been performed. The effect of an ECR Nitrogen plasma on a GaAs (100) surface is examined through time resolved reflection high energy electron diffraction, high resolution x-ray diffraction, and cross-sectional scanning tunneling microscopy. Fully commensurate GaN_yAs_1-y/GaAs heterostructures involving ultrathin GaN_yAs_1-y layers are obtained, and thermally activated microscopic growth processes are identified and quantitatively characterized through the aid of a specially developed kinetic model. The implications for ECR-MBE growth of GaN/GaAs mutilayers is discussed.

  19. Basic Equations for the Modeling of Gallium Nitride (gan) High Electron Mobility Transistors (hemts)

    NASA Technical Reports Server (NTRS)

    Freeman, Jon C.

    2003-01-01

    Gallium nitride (GaN) is a most promising wide band-gap semiconductor for use in high-power microwave devices. It has functioned at 320 C, and higher values are well within theoretical limits. By combining four devices, 20 W has been developed at X-band. GaN High Electron Mobility Transistors (HEMTs) are unique in that the two-dimensional electron gas (2DEG) is supported not by intentional doping, but instead by polarization charge developed at the interface between the bulk GaN region and the AlGaN epitaxial layer. The polarization charge is composed of two parts: spontaneous and piezoelectric. This behavior is unlike other semiconductors, and for that reason, no commercially available modeling software exists. The theme of this document is to develop a self-consistent approach to developing the pertinent equations to be solved. A Space Act Agreement, "Effects in AlGaN/GaN HEMT Semiconductors" with Silvaco Data Systems to implement this approach into their existing software for III-V semiconductors, is in place (summer of 2002).

  20. Energetics of Mg incorporation at GaN(0001) and GaN(0001¯) surfaces

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Selloni, Annabella; Myers, T. H.; Doolittle, W. Alan

    2006-04-01

    By using density functional calculations in the generalized gradient approximation, we investigate the energetics of Mg adsorption and incorporation at GaN(0001) and GaN(0001¯) surfaces under various Ga and Mg coverage conditions as well as in presence of light or electron beam-induced electronic excitation. We find significant differences in Mg incorporation between Ga- and N-polar surfaces. Mg incorporation is easier at the Ga-polar surface, but high Mg coverages are found to cause important distortions which locally change the polarity from Ga to N polar. At the N-rich and moderately Ga-rich GaN(0001) surface, 0.25 ML of Mg substituting Ga in the top bilayer strongly reduce the surface diffusion barriers of Ga and N adatoms, in agreement with the surfactant effect observed in experiments. As the Mg coverage exceeds 0.5 ML, partial incorporation in the subsurface region (second bilayer) becomes favorable. A surface structure with 0.5 ML of incorporated Mg in the top bilayer and 0.25 ML in the second bilayer is found to be stable over a wide range of Ga chemical potential. At the Ga bilayer-terminated GaN(0001) surface, corresponding to Ga-rich conditions, configurations where Mg is incorporated in the interface region between the metallic Ga bilayer and the underlying GaN bilayer appear to be favored. At the N-polar surface, Mg is not incorporated under N-rich or moderately Ga-rich conditions, whereas incorporation in the adlayer may take place under Ga-rich conditions. In the presence of light or electron beam induced excitation, energy differences between Mg incorporated at the surface and in deeper layers are reduced so that the tendency toward surface segregation is also reduced.

  1. Insertion of NiO electron blocking layer in fabrication of GaN-organic heterostructures

    NASA Astrophysics Data System (ADS)

    Li, Junmei; Guo, Wei; Jiang, Jie'an; Gao, Pingqi; Bo, Baoxue; Ye, Jichun

    2018-03-01

    We report the fabrication of a NiO thin film on top of an n-type GaN epitaxial layer. The electron-blocking capability of NiO in a hybrid organic/inorganic heterostructure consisting of n-GaN/NiO/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is discussed. Surface morphology, crystallography orientation, bandgap, and fermi level information of NiO films were investigated in detail. A rectifying property consistent with the proposed band diagram was observed in the current-voltage measurement. Theoretical analysis also demonstrated the effective electron blocking due to band alignment and a more balanced carrier distribution inside the GaN region with NiO inserted into the n-GaN/PEDOT:PSS heterostructure. This work provides a promising approach to the fabrication of high-efficiency hybrid optoelectronic devices.

  2. Effect of growth temperature on the epitaxial growth of ZnO on GaN by ALD

    NASA Astrophysics Data System (ADS)

    Särkijärvi, Suvi; Sintonen, Sakari; Tuomisto, Filip; Bosund, Markus; Suihkonen, Sami; Lipsanen, Harri

    2014-07-01

    We report on the epitaxial growth of ZnO on GaN template by atomic layer deposition (ALD). Diethylzinc (DEZn) and water vapour (H2O) were used as precursors. The structure and the quality of the grown ZnO layers were studied with scanning electron microscope (SEM), X-ray diffraction (XRD), photoluminescence (PL) measurements and positron annihilation spectroscopy. The ZnO films were confirmed epitaxial, and the film quality was found to improve with increasing deposition temperature in the vicinity of the threshold temperature of two dimensional growth. We conclude that high quality ZnO thin films can be grown by ALD. Interestingly only separate Zn-vacancies were observed in the films, although ZnO thin films typically contain fairly high density of surface pits and vacancy clusters.

  3. Properties of tetrahedral clusters and medium range order in GaN during rapid solidification

    NASA Astrophysics Data System (ADS)

    Gao, Tinghong; Li, Yidan; Yao, Zhenzhen; Hu, Xuechen; Xie, Quan

    2017-12-01

    The solidification process of liquid gallium nitride has been studied by molecular dynamics simulation using the Stillinger-Weber potential at cooling rate of 10 K/ps. The structural properties of gallium nitride during the rapid cooling process were investigated in detail by the radial distribution functions, Voronoi polyhedron index and the visualization technology. The amorphous structures were formed with many medium range order structures at 200 K. The <4 0 0 0> polyhedron as the main polyhedron was more stable than other polyhedron in GaN during the quenching process. The cubic and hexahedral medium range order structures were formed by the close link between <4 0 0 0> polyhedron. The cubic crystal structures grew up through the crystalline surface by a layer-by-layer method to become more stable structures during the quenching process.

  4. Planar micro- and nano-patterning of GaN light-emitting diodes: Guidelines and limitations

    NASA Astrophysics Data System (ADS)

    Herrnsdorf, Johannes; Xie, Enyuan; Watson, Ian M.; Laurand, Nicolas; Dawson, Martin D.

    2014-02-01

    The emission area of GaN light-emitting diodes can be patterned by etch-free current aperturing methods which exploit the thin and highly resistive nature of the p-doped layer in these devices. Here, the fundamental underlying electrical and optical aspects of high-resolution current aperturing are investigated theoretically. The most critical parameter for the possible resolution is the thickness d of the p-GaN layer, but the interplay of p-GaN resistivity and electrical junction characteristics is also important. A spatial resolution of 1.59d can in principle be achieved, corresponding to about 300 nm in typical epitaxial structures. Furthermore, the emission from such a small emitter will spread by about 600 nm while propagating through the p-GaN. Both values can be reduced by reducing d.

  5. Mg doping of GaN grown by plasma-assisted molecular beam epitaxy under nitrogen-rich conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Bhattacharya, Pallab; Guo, Wei; Banerjee, Animesh

    2010-03-01

    Acceptor doping of GaN with Mg during plasma-assisted molecular beam epitaxy, under N-rich conditions and a relatively high growth temperature of 740 °C, was investigated. The p-doping level steadily increases with increasing Mg flux. The highest doping level achieved, determined from Hall measurements, is 2.1×1018 cm-3. The corresponding doping efficiency and hole mobility are ˜4.9% and 3.7 cm2/V s at room temperature. Cross-sectional transmission electron microscopy and photoluminescence measurements confirm good crystalline and optical quality of the Mg-doped layers. An InGaN/GaN quantum dot light emitting diode (λpeak=529 nm) with p-GaN contact layers grown under N-rich condition exhibits a low series resistance of 9.8 Ω.

  6. Growth kinetics and structural perfection of (InN){sub 1}/(GaN){sub 1–20} short-period superlattices on +c-GaN template in dynamic atomic layer epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusakabe, Kazuhide; Hashimoto, Naoki; Wang, Ke

    2016-04-11

    The growth kinetics and structural perfection of (InN){sub 1}/(GaN){sub 1–20} short-period superlattices (SPSs) were investigated with their application to ordered alloys in mind. The SPSs were grown on +c-GaN template at 650 °C by dynamic atomic layer epitaxy in conventional plasma-assisted molecular beam epitaxy. It was found that coherent structured InN/GaN SPSs could be fabricated when the thickness of the GaN barrier was 4 ML or above. Below 3 ML, the formation of SPSs was quite difficult owing to the increased strain in the SPS structure caused by the use of GaN as a template. The effective or average In composition of themore » (InN){sub 1}/(GaN){sub 4} SPSs was around 10%, and the corresponding InN coverage in the ∼1 ML-thick InN wells was 50%. It was found that the effective InN coverage in ∼1 ML-thick InN wells could be varied with the growth conditions. In fact, the effective In composition could be increased up to 13.5%, i.e., the corresponding effective InN coverage was about 68%, by improving the capping/freezing speed by increasing the growth rate of the GaN barrier layer.« less

  7. Process dependency on threshold voltage of GaN MOSFET on AlGaN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Wang, Qingpeng; Jiang, Ying; Miyashita, Takahiro; Motoyama, Shin-ichi; Li, Liuan; Wang, Dejun; Ohno, Yasuo; Ao, Jin-Ping

    2014-09-01

    GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) with recessed gate on AlGaN/GaN heterostructure are reported in which the drain and source ohmic contacts were fabricated on the AlGaN/GaN heterostructure and the electron channel was formed on the GaN buffer layer by removing the AlGaN barrier layer. Negative threshold voltages were commonly observed in all devices. To investigate the reasons of the negative threshold voltages, different oxide thickness, etching gas and bias power of inductively-coupled plasma (ICP) system were utilized in the fabrication process of the GaN MOSFETs. It is found that positive charges of around 1 × 1012 q/cm2 exist near the interface at the just threshold condition in both silane- and tetraethylorthosilicate (TEOS)-based devices. It is also found that the threshold voltages do not obviously change with the different etching gas (SiCl4, BCl3 and two-step etching of SiCl4/Cl2) at the same ICP bias power level (20-25 W) and will become deeper when higher bias power is used in the dry recess process which may be related to the much serious ion bombardment damage. Furthermore, X-ray photoelectron spectroscopy (XPS) experiments were done to investigate the surface conditions. It is found that N 1s peaks become lower with higher bias power of the dry etching process. Also, silicon contamination was found and could be removed by HNO3/HF solution. It indicates that the nitrogen vacancies are mainly responsible for the negative threshold voltages rather than the silicon contamination. It demonstrates that optimization of the ICP recess conditions and improvement of the surface condition are still necessary to realize enhancement-mode GaN MOSFETs on AlGaN/GaN heterostructure.

  8. Ab initio study of Ga-GaN system: Transition from adsorbed metal atoms to a metal–semiconductor junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witczak, Przemysław; Kempisty, Pawel; Strak, Pawel

    2015-11-15

    Ab initio studies of a GaN(0001)-Ga system with various thicknesses of a metallic Ga layer were undertaken. The studied systems extend from a GaN(0001) surface with a fractional coverage of gallium atoms to a Ga-GaN metal–semiconductor (m–s) contact. Electronic properties of the system are simulated using density functional theory calculations for different doping of the bulk semiconductor. It is shown that during transition from a bare GaN(0001) surface to a m–s heterostructure, the Fermi level stays pinned at a Ga-broken bond highly dispersive surface state to Ga–Ga states at the m–s interface. Adsorption of gallium leads to an energy gainmore » of about 4 eV for a clean GaN(0001) surface and the energy decreases to 3.2 eV for a thickly Ga-covered surface. The transition to the m–s interface is observed. For a thick Ga overlayer such interface corresponds to a Schottky contact with a barrier equal to 0.9 and 0.6 eV for n- and p-type, respectively. Bond polarization-related dipole layer occurring due to an electron transfer to the metal leads to a potential energy jump of 1.5 eV, independent on the semiconductor doping. Additionally high electron density in the Ga–Ga bond region leads to an energy barrier about 1.2 eV high and 4 Å wide. This feature may adversely affect the conductivity of the n-type m–s system.« less

  9. Structural and electronic properties of the V-V compounds isoelectronic to GaN and isostructural to gray arsenic

    NASA Astrophysics Data System (ADS)

    Yang, Zhao; Han, Dan; Chen, Guohong; Chen, Shiyou

    2018-03-01

    The III-V binary compound semiconductors such as GaN, GaP, InN and InP have extensive applications in various optoelectronic, microwave and power-electronic devices. Using first-principles calculation, we systematically studied the structural and electronic properties of the V-V binary compounds (BiN, BiP, SbN and SbP) that are isoelectronic to GaN, GaP, InN and InP if Bi and Sb are in the +3 valence state. Interestingly, we found that the ground-state structures of BiP, SbN and SbP have the R-3m symmetry and are isostructural to the layered structure of gray arsenic, whereas BiN prefers a different ground-state structure with the C2 symmetry. Electronic structure calculations showed that the bulk BiN is a narrow bandgap semiconductor for its bandgap is about 0.2 eV. In contrast, BiP, SbN and SbP are metallic. The layered ground-state structure of the V-V binary compounds motivates us to study the electronic properties of their few-layer structures. As the structure becomes monolayer, their bandgaps increase significantly and are all in the range from about 1 eV to 1.7 eV, which are comparative to the bandgap of the monolayer gray arsenic. The monolayer BiP, SbN and SbP have indirect bandgaps, and they show a semiconductor-metal transition as the number of layers increase. Interestingly, the monolayer BiP has the largest splitting (350 meV) of the CBM valley, and thus may have potential application in novel spintronics and valleytronics devices.

  10. Stress related aspects of GaN technology physics

    NASA Astrophysics Data System (ADS)

    Suhir, Ephraim

    2015-03-01

    Simple, easy-to-use and physically meaningful analytical models have been developed for the assessment of the combined effect of the lattice and thermal mismatch on the induced stresses in an elongated bi-material assembly, as well as on the thermal mismatch on the thermal stresses in a tri-material assembly, in which the lattice mismatched stresses are eliminated in one way or another. This could be done, e.g., by using a polished or an etched substrate. The analysis is carried out in application to Gallium Nitride (GaN)-Silicon Carbide (SiC) and GaN-diamond (C) filmsubstrate assemblies. The calculated data are obtained, assuming that no annealing or other stress reduction means is applied. The data agree reasonably well with the reported (available) in-situ measurements. The most important conclusion from the computed data is that even if a reasonably good lattice match takes place (as, e.g., in the case of a GaN film fabricated on a SiC substrate, when the mismatch strain is only about 3%) and, in addition, the temperature change (from the fabrication/growth temperature to the operation temperature) is significant (as high as 1000 °C), the thermal stresses are still considerably lower than the lattice-mismatch stresses. Although there are structural and technological means for further reduction of the lattice-mismatch stresses (e.g., by high temperature annealing or by providing one or more buffering layers, or by using patterned or porous substrates), there is still a strong incentive to eliminate completely the lattice mismatch stresses. This seems to be indeed possible, if polished or otherwise flattened (e.g., chemically etched) substrates and sputter deposited GaN film is employed. In such a case only thermal stresses remain, but even these could be reduced, if necessary, by using compliant buffering layers, including layers of variable compliance, or by introducing variable compliance into the properly engineered substrate. In any event, it is expected that strong adhesion could be achieved by using an appropriate fabrication technology, so that no GaN film cracking would be possible, if the film is in tension, or delamination buckling could occur if the film is in compression. The developed models can be used to assess the possibilities and opportunities associated with GaN materials technology.

  11. Large-area, laterally-grown epitaxial semiconductor layers

    DOEpatents

    Han, Jung; Song, Jie; Chen, Danti

    2017-07-18

    Structures and methods for confined lateral-guided growth of a large-area semiconductor layer on an insulating layer are described. The semiconductor layer may be formed by heteroepitaxial growth from a selective growth area in a vertically-confined, lateral-growth guiding structure. Lateral-growth guiding structures may be formed in arrays over a region of a substrate, so as to cover a majority of the substrate region with laterally-grown epitaxial semiconductor tiles. Quality regions of low-defect, stress-free GaN may be grown on silicon.

  12. Growth Optimization of Metal-polar III-Nitride High-electron-mobility Transistor Structures by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Kaun, Stephen William

    GaN-based high-electron-mobility transistors (HEMTs) will play an important role in the next generation of high-frequency amplifiers and power-switching devices. Since parasitic conduction (leakage) through the GaN buffer layer and (Al,Ga,In)N barrier reduces the efficiency of operation, HEMT performance hinges on the epitaxial quality of these layers. Increasing the sheet charge density and mobility of the two-dimensional electron gas (2DEG) is also essential for reducing the channel resistance and improving output. The growth conditions applied in plasma-assisted molecular beam epitaxy (PAMBE) and ammonia-based molecular beam epitaxy (NH3-MBE) that result in high-quality metal-polar HEMT structures are described. The effects of threading dislocations on the gate leakage and channel conductivity of AlGaN/GaN HEMTs were studied in detail. For this purpose, a series of HEMT structures were grown on GaN templates with threading dislocation densities (TDDs) that spanned three orders of magnitude. There was a clear trend of reduced gate leakage with reduced TDD for HEMTs grown by Ga-rich PAMBE; however, a reduction in TDD also entailed an increase in buffer leakage. By reducing the unintentionally doped (UID) GaN buffer thickness and including an AlGaN back barrier, a HEMT regrown by Ga-rich PAMBE on low-TDD free-standing (FS) GaN (~5 x 107 cm-2 TDD) yielded a three-terminal breakdown voltage greater than 50 V and a power output (power-added efficiency) of 6.7 W/mm (50 %) at 4 GHz with a 40 V drain bias. High TDD was then shown to severely degrade the 2DEG mobility of AlxGa1-xN/GaN (x = 0.24, 0.12, 0.06) and AlGaN/AlN/GaN heterostructures grown by Ga-rich PAMBE. By regrowing on low-TDD FS GaN and including a 2.5 nm AlN interlayer, an Al0.24Ga0.76N/AlN/GaN heterostructure achieved a room temperature (RT) 2DEG sheet resistance of 169 Ω/□. As evidenced by atom probe tomography, the AlN interlayer grown by Ga-rich PAMBE was pure with abrupt interfaces. The pure AlN interlayer greatly reduced alloy-related scattering. When AlGaN/AlN/GaN heterostructures were grown by NH3-MBE at 820 °C, the 2DEG sheet density was lower than expected. These AlN interlayers were shown to have a significant concentration of Ga impurities by atom probe tomography. The source of these impurities was most likely the decomposition of the underlying GaN layers, as reduction of the growth temperature below 750 °C yielded a much lower concentration of Ga impurities. Flux optimization and application of an In surfactant was necessary to reduce the interface roughness in AlGaN/AlN/GaN heterostructures grown by NH3-MBE at low temperature, yielding sheet resistances below 300 Ω/□. The growth of InAlN/(GaN)/(AlN)/GaN heterostructures with lattice-matched In0.17Al0.83N barriers by N-rich PAMBE is also described. Through flux optimization, the columnar microstructure previously observed in N-rich PAMBE-grown InAlN layers was eliminated. By including a 3 nm AlN interlayer and 2 nm GaN interlayer, an In0.17Al0.83N/GaN/AlN/GaN heterostructure regrown on low-TDD FS GaN achieved an exceptionally low RT 2DEG sheet resistance of 145 Ω/□.

  13. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching.

    PubMed

    Swain, Basudev; Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo; Lee, Chan Gi; Hong, Hyun Seon

    2015-04-01

    Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium, two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na2CO3, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na2CO3, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4M HCl, 100°C and pulp density of 20g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Near-field phase-change recording using a GaN laser diode

    NASA Astrophysics Data System (ADS)

    Kishima, Koichiro; Ichimura, Isao; Yamamoto, Kenji; Osato, Kiyoshi; Kuroda, Yuji; Iida, Atsushi; Saito, Kimihiro

    2000-09-01

    We developed a 1.5-Numerical-Aperture optical setup using a GaN blue-violet laser diode. We used a 1.0 mm-diameter super-hemispherical solid immersion lens, and optimized a phase-change disk structure including the cover layer by the method of MTF simulation. The disk surface was polished by tape burnishing technique. An eye-pattern of (1-7)-coded data at the linear density of 80 nm/bit was demonstrated on the phase-change disk below a 50 nm gap height, which was realized through our air-gap servo mechanism.

  15. Growth study of self-assembled GaN nanocolumns on silica glass by plasma assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Liudi Mulyo, Andreas; Konno, Yuta; Nilsen, Julie S.; van Helvoort, Antonius T. J.; Fimland, Bjørn-Ove; Weman, Helge; Kishino, Katsumi

    2017-12-01

    We demonstrate GaN nanocolumn growth on fused silica glass by plasma-assisted molecular beam epitaxy. The effect of the substrate temperature, Ga flux and N2 flow rate on the structural and optical properties are studied. At optimum growth conditions, GaN nanocolumns are vertically aligned and well separated with an average diameter, height and density of 72 nm, 1.2 μm and 1.6 × 109 cm-2, respectively. The nanocolumns exhibit wurtzite crystal structure with no threading dislocations, stacking faults or twinning and grow in the [0 0 0 1] direction. At the interface adjacent to the glass, there is a few atom layers thick intermediate phase with ABC stacking order (zinc blende). Photoluminescence measurements evidence intense and narrow excitonic emissions, along with the absence of any defect-related zinc blende and yellow luminescence emission.

  16. Determination of the electron-capture coefficients and the concentration of free electrons in GaN from time-resolved photoluminescence

    PubMed Central

    Reshchikov, M. A.; McNamara, J. D.; Toporkov, M.; Avrutin, V.; Morkoç, H.; Usikov, A.; Helava, H.; Makarov, Yu.

    2016-01-01

    Point defects in high-purity GaN layers grown by hydride vapor phase epitaxy are studied by steady-state and time-resolved photoluminescence (PL). The electron-capture coefficients for defects responsible for the dominant defect-related PL bands in this material are found. The capture coefficients for all the defects, except for the green luminescence (GL1) band, are independent of temperature. The electron-capture coefficient for the GL1 band significantly changes with temperature because the GL1 band is caused by an internal transition in the related defect, involving an excited state acting as a giant trap for electrons. By using the determined electron-capture coefficients, the concentration of free electrons can be found at different temperatures by a contactless method. A new classification system is suggested for defect-related PL bands in undoped GaN. PMID:27901025

  17. Control of Ga-oxide interlayer growth and Ga diffusion in SiO2/GaN stacks for high-quality GaN-based metal-oxide-semiconductor devices with improved gate dielectric reliability

    NASA Astrophysics Data System (ADS)

    Yamada, Takahiro; Watanabe, Kenta; Nozaki, Mikito; Yamada, Hisashi; Takahashi, Tokio; Shimizu, Mitsuaki; Yoshigoe, Akitaka; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2018-01-01

    A simple and feasible method for fabricating high-quality and highly reliable GaN-based metal-oxide-semiconductor (MOS) devices was developed. The direct chemical vapor deposition of SiO2 films on GaN substrates forming Ga-oxide interlayers was carried out to fabricate SiO2/GaO x /GaN stacked structures. Although well-behaved hysteresis-free GaN-MOS capacitors with extremely low interface state densities below 1010 cm-2 eV-1 were obtained by postdeposition annealing, Ga diffusion into overlying SiO2 layers severely degraded the dielectric breakdown characteristics. However, this problem was found to be solved by rapid thermal processing, leading to the superior performance of the GaN-MOS devices in terms of interface quality, insulating property, and gate dielectric reliability.

  18. Multilayer porous structures of HVPE and MOCVD grown GaN for photonic applications

    NASA Astrophysics Data System (ADS)

    Braniste, T.; Ciers, Joachim; Monaico, Ed.; Martin, D.; Carlin, J.-F.; Ursaki, V. V.; Sergentu, V. V.; Tiginyanu, I. M.; Grandjean, N.

    2017-02-01

    In this paper we report on a comparative study of electrochemical processes for the preparation of multilayer porous structures in hydride vapor phase epitaxy (HVPE) and metal organic chemical vapor phase deposition (MOCVD) grown GaN. It was found that in HVPE-grown GaN, multilayer porous structures are obtained due to self-organization processes leading to a fine modulation of doping during the crystal growth. However, these processes are not totally under control. Multilayer porous structures with a controlled design have been produced by optimizing the technological process of electrochemical etching in MOCVD-grown samples, consisting of five pairs of thin layers with alternating-doping profiles. The samples have been characterized by SEM imaging, photoluminescence spectroscopy, and micro-reflectivity measurements, accompanied by transfer matrix analysis and simulations by a method developed for the calculation of optical reflection spectra. We demonstrate the applicability of the produced structures for the design of Bragg reflectors.

  19. InGaN Light-Emitting Diodes with an Embedded Nanoporous GaN Distributed Bragg Reflectors.

    PubMed

    Shiu, Guo-Yi; Chen, Kuei-Ting; Fan, Feng-Hsu; Huang, Kun-Pin; Hsu, Wei-Ju; Dai, Jing-Jie; Lai, Chun-Feng; Lin, Chia-Feng

    2016-07-01

    InGaN light emitting diodes (LED) structure with an embedded 1/4λ-stack nanoporous-GaN/undoped-GaN distributed Bragg reflectors (DBR) structure have been demonstrated. Si-heavily doped GaN epitaxial layers (n(+)-GaN) in the 12-period n(+)-GaN/u-GaN stack structure are transformed into low refractive index nanoporous GaN structure through the doping-selective electrochemical wet etching process. The central wavelength of the nanoporous DBR structure was located at 442.3 nm with a 57 nm linewidth and a 97.1% peak reflectivity. The effective cavity length (6.0λ), the effective penetration depth (278 nm) in the nanoporous DBR structure, and InGaN active layer matching to Fabry-Pérot mode order 12 were observed in the far-field photoluminescence radiative spectra. High electroluminescence emission intensity and line-width narrowing effect were measured in the DBR-LED compared with the non-treated LED structure. Non-linear emission intensity and line-width reducing effect, from 11.8 nm to 0.73 nm, were observed by increasing the laser excited power. Resonant cavity effect was observed in the InGaN LED with bottom nanoporous-DBR and top GaN/air interface.

  20. InGaN Light-Emitting Diodes with an Embedded Nanoporous GaN Distributed Bragg Reflectors

    PubMed Central

    Shiu, Guo-Yi; Chen, Kuei-Ting; Fan, Feng-Hsu; Huang, Kun-Pin; Hsu, Wei-Ju; Dai, Jing-Jie; Lai, Chun-Feng; Lin, Chia-Feng

    2016-01-01

    InGaN light emitting diodes (LED) structure with an embedded 1/4λ-stack nanoporous-GaN/undoped-GaN distributed Bragg reflectors (DBR) structure have been demonstrated. Si-heavily doped GaN epitaxial layers (n+-GaN) in the 12-period n+-GaN/u-GaN stack structure are transformed into low refractive index nanoporous GaN structure through the doping-selective electrochemical wet etching process. The central wavelength of the nanoporous DBR structure was located at 442.3 nm with a 57 nm linewidth and a 97.1% peak reflectivity. The effective cavity length (6.0λ), the effective penetration depth (278 nm) in the nanoporous DBR structure, and InGaN active layer matching to Fabry-Pérot mode order 12 were observed in the far-field photoluminescence radiative spectra. High electroluminescence emission intensity and line-width narrowing effect were measured in the DBR-LED compared with the non-treated LED structure. Non-linear emission intensity and line-width reducing effect, from 11.8 nm to 0.73 nm, were observed by increasing the laser excited power. Resonant cavity effect was observed in the InGaN LED with bottom nanoporous-DBR and top GaN/air interface. PMID:27363290

  1. ZnO nanorods/graphene/Ni/Au hybrid structures as transparent conductive layer in GaN LED for low work voltage and high light extraction

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Xie, Yiyang; Ma, Huali; Du, Yinxiao; Zeng, Fanguang; Ding, Pei; Gao, Zhiyuan; Xu, Chen; Sun, Jie

    2016-12-01

    In this paper, by virtue of one-dimensional ZnO nanorods and two-dimensional graphene film hybrid structures, both the enhanced current spreading and enhanced light extraction were realized at the same time. A 1 nm/1 nm Ni/Au layer was used as an interlayer between graphene and pGaN to form ohmic contact, which makes the device have a good forward conduction properties. Through the comparison of the two groups of making ZnO nanorods or not, it was found that the 30% light extraction efficiency of the device was improved by using the ZnO nanorods. By analysis key parameters of two groups such as the turn-on voltage, work voltage and reverse leakage current, it was proved that the method for preparing surface nano structure by hydrothermal method self-organization growth ZnO nanorods applied in GaN LEDs has no influence to device's electrical properties. The hybrid structure application in GaN LED, make an achievement of a good ohmic contact, no use of ITO and enhancement of light extraction at the same time, meanwhile it does not change the device structure, introduce additional process, worsen the electrical properties.

  2. Electron density and currents of AlN/GaN high electron mobility transistors with thin GaN/AlN buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bairamis, A.; Zervos, Ch.; Georgakilas, A., E-mail: alexandr@physics.uoc.gr

    2014-09-15

    AlN/GaN high electron mobility transistor (HEMT) structures with thin GaN/AlN buffer layer have been analyzed theoretically and experimentally, and the effects of the AlN barrier and GaN buffer layer thicknesses on two-dimensional electron gas (2DEG) density and transport properties have been evaluated. HEMT structures consisting of [300 nm GaN/ 200 nm AlN] buffer layer on sapphire were grown by plasma-assisted molecular beam epitaxy and exhibited a remarkable agreement with the theoretical calculations, suggesting a negligible influence of the crystalline defects that increase near the heteroepitaxial interface. The 2DEG density varied from 6.8 × 10{sup 12} to 2.1 × 10{sup 13} cm{sup −2} as themore » AlN barrier thickness increased from 2.2 to 4.5 nm, while a 4.5 nm AlN barrier would result to 3.1 × 10{sup 13} cm{sup −2} on a GaN buffer layer. The 3.0 nm AlN barrier structure exhibited the highest 2DEG mobility of 900 cm{sup 2}/Vs for a density of 1.3 × 10{sup 13} cm{sup −2}. The results were also confirmed by the performance of 1 μm gate-length transistors. The scaling of AlN barrier thickness from 1.5 nm to 4.5 nm could modify the drain-source saturation current, for zero gate-source voltage, from zero (normally off condition) to 0.63 A/mm. The maximum drain-source current was 1.1 A/mm for AlN barrier thickness of 3.0 nm and 3.7 nm, and the maximum extrinsic transconductance was 320 mS/mm for 3.0 nm AlN barrier.« less

  3. Elimination of columnar microstructure in N-face InAlN, lattice-matched to GaN, grown by plasma-assisted molecular beam epitaxy in the N-rich regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmadi, Elaheh; Wienecke, Steven; Keller, Stacia

    2014-02-17

    The microstructure of N-face InAlN layers, lattice-matched to GaN, was investigated by scanning transmission electron microscopy and atom probe tomography. These layers were grown by plasma-assisted molecular beam epitaxy (PAMBE) in the N-rich regime. Microstructural analysis shows an absence of the lateral composition modulation that was previously observed in InAlN films grown by PAMBE. A room temperature two-dimensional electron gas (2DEG) mobility of 1100 cm{sup 2}/V s and 2DEG sheet charge density of 1.9 × 10{sup 13} cm{sup −2} was measured for N-face GaN/AlN/GaN/InAlN high-electron-mobility transistors with lattice-matched InAlN back barriers.

  4. Improved light extraction efficiency of GaN-based flip-chip light-emitting diodes with an antireflective interface layer

    NASA Astrophysics Data System (ADS)

    Wu, Dongxue; Ma, Ping; Liu, Boting; Zhang, Shuo; Wang, Junxi; Li, Jinmin

    2016-05-01

    GaN-based flip-chip light-emitting diodes (FC-LEDs) grown on nanopatterned sapphire substrates (NPSS) are fabricated using self-assembled SiO2 nanospheres as masks during inductively coupled plasma etching. By controlling the pattern spacing, epitaxial GaN can be grown from the top or bottom of patterns to obtain two different GaN/substrate interfaces. The optoelectronic characteristics of FC-LED chips with different GaN/sapphire interfaces are studied. The FC-LED with an antireflective interface layer consisting of a NPSS with GaN in the pattern spacings demonstrates better optical properties than the FC-LED with an interface embedded with air voids. Our study indicates that the two types of FC-LEDs grown on NPSS show higher crystal quality and improved electrical and optical characteristics compared with those of FC-LEDs grown on conventional planar sapphire substrates.

  5. MCP detector development for UV space missions

    NASA Astrophysics Data System (ADS)

    Conti, Lauro; Barnstedt, Jürgen; Hanke, Lars; Kalkuhl, Christoph; Kappelmann, Norbert; Rauch, Thomas; Stelzer, Beate; Werner, Klaus; Elsener, Hans-Rudolf; Schaadt, Daniel M.

    2018-04-01

    We are developing imaging and photon counting UV-MCP detectors, which are sensitive in the wavelength range from far ultraviolet to near ultraviolet. A good quantum efficiency, solar blindness and high spatial resolution is the aim of our development. The sealed detector has a Cs-activated photoactive layer of GaN (or similarly advanced photocathode), which is operated in semitransparent mode on (001)-MgF2. The detector comprises a stack of two long-life MCPs and a coplanar cross strip anode with advanced readout electronics. The main challenge is the flawless growth of the GaN photocathode layer as well as the requirements for the sealing of the detector, to prevent a degradation of the photocathode. We present here the detector concept and the experimental setup, examine in detail the status in the production and describe the current status of the readout electronics development.

  6. GaN nanowire arrays with nonpolar sidewalls for vertically integrated field-effect transistors

    NASA Astrophysics Data System (ADS)

    Yu, Feng; Yao, Shengbo; Römer, Friedhard; Witzigmann, Bernd; Schimpke, Tilman; Strassburg, Martin; Bakin, Andrey; Schumacher, Hans Werner; Peiner, Erwin; Suryo Wasisto, Hutomo; Waag, Andreas

    2017-03-01

    Vertically aligned gallium nitride (GaN) nanowire (NW) arrays have attracted a lot of attention because of their potential for novel devices in the fields of optoelectronics and nanoelectronics. In this work, GaN NW arrays have been designed and fabricated by combining suitable nanomachining processes including dry and wet etching. After inductively coupled plasma dry reactive ion etching, the GaN NWs are subsequently treated in wet chemical etching using AZ400K developer (i.e., with an activation energy of 0.69 ± 0.02 eV and a Cr mask) to form hexagonal and smooth a-plane sidewalls. Etching experiments using potassium hydroxide (KOH) water solution reveal that the sidewall orientation preference depends on etchant concentration. A model concerning surface bonding configuration on crystallography facets has been proposed to understand the anisotropic wet etching mechanism. Finally, NW array-based vertical field-effect transistors with wrap-gated structure have been fabricated. A device composed of 99 NWs exhibits enhancement mode operation with a threshold voltage of 1.5 V, a superior electrostatic control, and a high current output of >10 mA, which prevail potential applications in next-generation power switches and high-temperature digital circuits.

  7. GaN nanowire arrays with nonpolar sidewalls for vertically integrated field-effect transistors.

    PubMed

    Yu, Feng; Yao, Shengbo; Römer, Friedhard; Witzigmann, Bernd; Schimpke, Tilman; Strassburg, Martin; Bakin, Andrey; Schumacher, Hans Werner; Peiner, Erwin; Wasisto, Hutomo Suryo; Waag, Andreas

    2017-03-03

    Vertically aligned gallium nitride (GaN) nanowire (NW) arrays have attracted a lot of attention because of their potential for novel devices in the fields of optoelectronics and nanoelectronics. In this work, GaN NW arrays have been designed and fabricated by combining suitable nanomachining processes including dry and wet etching. After inductively coupled plasma dry reactive ion etching, the GaN NWs are subsequently treated in wet chemical etching using AZ400K developer (i.e., with an activation energy of 0.69 ± 0.02 eV and a Cr mask) to form hexagonal and smooth a-plane sidewalls. Etching experiments using potassium hydroxide (KOH) water solution reveal that the sidewall orientation preference depends on etchant concentration. A model concerning surface bonding configuration on crystallography facets has been proposed to understand the anisotropic wet etching mechanism. Finally, NW array-based vertical field-effect transistors with wrap-gated structure have been fabricated. A device composed of 99 NWs exhibits enhancement mode operation with a threshold voltage of 1.5 V, a superior electrostatic control, and a high current output of >10 mA, which prevail potential applications in next-generation power switches and high-temperature digital circuits.

  8. Surface characterization of gallium nitride modified with peptides before and after exposure to ionizing radiation in solution.

    PubMed

    Berg, Nora G; Nolan, Michael W; Paskova, Tania; Ivanisevic, Albena

    2014-12-30

    An aqueous surface modification of gallium nitride was employed to attach biomolecules to the surface. The modification was a simple two-step process using a single linker molecule and mild temperatures. The presence of the peptide on the surface was confirmed with X-ray photoelectron spectroscopy. Subsequently, the samples were placed in water baths and exposed to ionizing radiation to examine the effects of the radiation on the material in an environment similar to the body. Surface analysis confirmed degradation of the surface of GaN after radiation exposure in water; however, the peptide molecules successfully remained on the surface following exposure to ionizing radiation. We hypothesize that during radiation exposure of the samples, the radiolysis of water produces peroxide and other reactive species on the sample surface. Peroxide exposure promotes the formation of a more stable layer of gallium oxyhydroxide which passivates the surface better than other oxide species.

  9. Intensity Distribution of the Three-Wave Diffraction from Dislocation Epitaxial Layers in the Reciprocal Space

    NASA Astrophysics Data System (ADS)

    Kyutt, R. N.

    2018-04-01

    The three-wave X-ray diffraction in strongly disordered epitaxial layers of GaN and ZnO is experimentally investigated. The charts of the intensity distribution in the reciprocal space are plotted in coordinates q θ and q ϕ for the most intensive three-wave combination (1010)/(1011) by means of subsequent θ- and ϕ-scanning. A nontrivial shape of the θ-sections of these contours at a distance from the ϕ center of reflection is revealed; it is different for different samples. For the θ-curves at the center of reflection, we observed a common peak that may be approximated by the Voigt function with a power-low decrease in the intensity at the wings; the decrease law (from-4.5 to-5.0) is found to be considerably greater than that for the similar curves of two-wave diffraction and not depending on the dislocation density and distribution in layers. In some films we observed a coarse-block structure; in addition, it follows from the distribution in the reciprocal space that these blocks are turned with respect to each other around a normal to the surface, which allows us to suggest the existence of low-angle boundaries between them, consisting exclusively of edge dislocations.

  10. Unveiling structural, chemical and magnetic interfacial peculiarities in ε-Fe2O3/GaN (0001) epitaxial films.

    PubMed

    Ukleev, Victor; Suturin, Sergey; Nakajima, Taro; Arima, Taka-Hisa; Saerbeck, Thomas; Hanashima, Takayasu; Sitnikova, Alla; Kirilenko, Demid; Yakovlev, Nikolai; Sokolov, Nikolai

    2018-06-07

    The metastable ε-Fe 2 O 3 is known to be the most intriguing ferrimagnetic and multiferroic iron oxide phase exhibiting a bunch of exciting physical properties both below and above room temperature. The present paper unveils the structural and magnetic peculiarities of a few nm thick interface layer discovered in these films by a number of techniques. The polarized neutron reflectometry data suggests that the interface layer resembles GaFeO 3 in composition and density and is magnetically softer than the rest of the ε-Fe 2 O 3 film. While the in-depth density variation is in agreement with the transmission electron microscopy measurements, the layer-resolved magnetization profiles are qualitatively consistent with the unusual wasp-waist magnetization curves observed by superconducting quantum interference device magnetometry. Interestingly a noticeable Ga diffusion into the ε-Fe 2 O 3 films has been detected by secondary ion mass spectroscopy providing a clue to the mechanisms guiding the nucleation of exotic metastable epsilon ferrite phase on GaN at high growth temperature and influencing the interfacial properties of the studied films.

  11. Hybrid tunnel junction contacts to III-nitride light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Young, Erin C.; Yonkee, Benjamin P.; Wu, Feng; Oh, Sang Ho; DenBaars, Steven P.; Nakamura, Shuji; Speck, James S.

    2016-02-01

    In this work, we demonstrate highly doped GaN p-n tunnel junction (TJ) contacts on III-nitride heterostructures where the active region of the device and the top p-GaN layers were grown by metal organic chemical vapor deposition and highly doped n-GaN was grown by NH3 molecular beam epitaxy to form the TJ. The regrowth interface in these hybrid devices was found to have a high concentration of oxygen, which likely enhanced tunneling through the diode. For optimized regrowth, the best tunnel junction device had a total differential resistivity of 1.5 × 10-4 Ω cm2, including contact resistance. As a demonstration, a blue-light-emitting diode on a (20\\bar{2}\\bar{1}) GaN substrate with a hybrid tunnel junction and an n-GaN current spreading layer was fabricated and compared with a reference sample with a transparent conducting oxide (TCO) layer. The tunnel junction LED showed a lower forward operating voltage and a higher efficiency at a low current density than the TCO LED.

  12. New PLAD apparatus and fabrication of epitaxial films and junctions of functional materials: SiC, GaN, ZnO, diamond and GMR layers

    NASA Astrophysics Data System (ADS)

    Muto, Hachizo; Kusumori, Takeshi; Nakamura, Toshiyuki; Asano, Takashi; Hori, Takahiro

    2006-04-01

    We have developed a new pulsed laser ablation-deposition (PLAD) apparatus and techniques for fabricating films of high-temperature or functional materials, including two short-wavelength lasers: (a) a YAG 5th harmonic (213 nm) and (b) Raman-shifted lasers containing vacuum ultraviolet light; also involved are (c) a high-temperature heater with a maximum temperature of 1350 °C, (d) dual-target simultaneous ablation mechanics, and (e) hybrid PLAD using a pico-second YAG laser combined with (c) and/or (d). Using the high-T heater, hetero-epitaxial films of 3C-, 2H- and 4H-SiC have been prepared on sapphire-c. In situ p-doping for GaN epitaxial films is achieved by simultaneous ablation of GaN and Mg targets by (d) during film growth. Junctions such as pGaN (Mg-doped)-film/n-SiC(0 0 0 1) substrate and pGaN/n-Si(1 1 1) show good diode characteristics. Epitaxial films with a diamond lattice can be grown on the sapphire-c plane by hybrid PLAD (e) with a high-T heater using a 6H-SiC target. High quality epitaxial films of ZnO are grown by PLAD by introducing a low-temperature self-buffer layer; magnetization of ferromagnetic materials is enforced by overlaying on a ferromagnetic lattice plane of an anti-ferromagnetic material, showing the value of the layer-overlaying method in improving quality. The short-wavelength lasers are useful in reducing surface particles on functional films, including superconductors.

  13. Effect of strain on gallium nitride and gallium indium arsenide nitride growth and doping

    NASA Astrophysics Data System (ADS)

    G. S., Sudhir

    GaN and the related (Al,In)N materials are currently used in manufacturing optoelectronic and electronic devices. However, the efficiency of these devices is limited due to lack of high structural quality and of low resistive p-type GaN. The GaN thin films are under strain during growth due to the large lattice mismatch, thermal expansion difference, and low growth temperature. Developing a better understanding of the effect of strain on the properties of thin films is important in furthering our knowledge of thin film growth affecting the performance of III-nitride based devices. Pulsed laser deposition was used to grow thin films of AlN and GaN on sapphire substrates. It is shown that the structure and surface morphology of layers are controlled by the nitrogen partial pressure during the growth. Through these nitrogen pressure related effects, thin films with microstructure ranging from crystalline to amorphous can be produced. A minimal surface root mean square roughness of 0.7 nm for amorphous AlN is obtained which compares well with the substrate roughness of 0.5 nm. Incorporation of impurities changes the lattice constants of thin films of GaN deposited on basal plane sapphire by molecular beam epitaxy. Both Mg (1017 cm-3) and Zn (3 x 10 20 cm-3) doping were found to expand the c lattice parameter by +0.38 x 10-2 and +0.62 x 10 -2, respectively. Oxygen up to concentrations 9 x 10 21 cm-3 is shown to replace nitrogen in GaN thin films reducing the c parameter only by a small amount. Incorporation of Si leads to a large decrease of the c parameter, which can not be attributed to the different size of Ga and Si. It is suggested that doping alters the film stoichiometry by a predicted Fermi level dependence of defect formation energies and thereby, lattice parameters and stress. A proper buffer layer design is shown to increase the incorporation of Mg by two orders of magnitude Finally, the balance of lattice parameter change caused by dopant and native point defects with strain contributed by growth condition leads to high mobility p-type GaN thin films. Incorporation of N in thin films of GaAsN and GaInAsN on GaAs was studied by molecular beam epitaxy. X-ray diffraction results indicated that the amount of N in GaAs increased with the power to plasma source and the slower growth rate, but was not affected by the growth temperature. Photoluminescence (PL) results showed a drastic narrowing of the bandgap with increased N incorporation. High pressure measurements showed the pressure coefficient of the absorption edge of 4 mum thick GaInAsN layer to be unusually small (51 meV/GPa). Also, the temperature-induced shift of the edge is reduced by 50% compared to that of GaAs. Based on the results of the detailed materials characterization, optimized p-GaAs/i-GaInAsN/n-GaAs structures were grown for I mum photo-detectors. The device characteristics of the prototype devices are presented.

  14. Low dislocation density InAlN/AlN/GaN heterostructures grown on GaN substrates and the effects on gate leakage characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotani, Junji, E-mail: kotani.junji-01@jp.fujitsu.com; Yamada, Atsushi; Ishiguro, Tetsuro

    2016-04-11

    This paper reports on the electrical characterization of Ni/Au Schottky diodes fabricated on InAlN high-electron-mobility transistor (HEMT) structures grown on low dislocation density free-standing GaN substrates. InAlN HEMT structures were grown on sapphire and GaN substrates by metal-organic vapor phase epitaxy, and the effects of threading dislocation density on the leakage characteristics of Ni/Au Schottky diodes were investigated. Threading dislocation densities were determined to be 1.8 × 10{sup 4 }cm{sup −2} and 1.2 × 10{sup 9 }cm{sup −2} by the cathodoluminescence measurement for the HEMT structures grown on GaN and sapphire substrates, respectively. Leakage characteristics of Ni/Au Schottky diodes were compared between the two samples, andmore » a reduction of the leakage current of about three to four orders of magnitude was observed in the forward bias region. For the high reverse bias region, however, no significant improvement was confirmed. We believe that the leakage current in the low bias region is governed by a dislocation-related Frenkel–Poole emission, and the leakage current in the high reverse bias region originates from field emission due to the large internal electric field in the InAlN barrier layer. Our results demonstrated that the reduction of dislocation density is effective in reducing leakage current in the low bias region. At the same time, it was also revealed that another approach will be needed, for instance, band modulation by impurity doping and insertion of insulating layers beneath the gate electrodes for a substantial reduction of the gate leakage current.« less

  15. Comparative study of GaN-based ultraviolet LEDs grown on different-sized patterned sapphire substrates with sputtered AlN nucleation layer

    NASA Astrophysics Data System (ADS)

    Zhou, Shengjun; Hu, Hongpo; Liu, Xingtong; Liu, Mengling; Ding, Xinghuo; Gui, Chengqun; Liu, Sheng; Guo, L. Jay

    2017-11-01

    GaN-based ultraviolet-light-emitting diodes (UV LEDs) with 375 nm emission were grown on different-sized patterned sapphire substrates (PSSs) with ex situ 15-nm-thick sputtered AlN nucleation layers by metal-organic chemical vapor deposition (MOCVD). It was observed through in situ optical reflectance monitoring that the transition time from a three-dimensional (3D) island to a two-dimensional (2D) coalescence was prolonged when GaN was grown on a larger PSS, owing to a much longer lateral growth time of GaN. The full widths at half-maximum (FWHMs) of symmetric GaN(002) and asymmetric GaN(102) X-ray diffraction (XRD) rocking curves decreased as the PSS size increased. By cross-sectional transmission electron microscopy (TEM) analysis, it was found that the threading dislocation (TD) density in UV LEDs decreased with increasing pattern size and fill factor of the PSS, thereby resulting in a marked improvement in internal quantum efficiency (IQE). Finite-difference time-domain (FDTD) simulations quantitatively demonstrated a progressive decrease in light extraction efficiency (LEE) as the PSS size increased. However, owing to the significantly reduced TD density in InGaN/AlInGaN multiple quantum wells (MQWs) and thus improved IQE, the light output power of the UV LED grown on a large PSS with a fill factor of 0.71 was 131.8% higher than that of the UV LED grown on a small PSS with a fill factor of 0.4, albeit the UV LED grown on a large PSS exhibited a much lower LEE.

  16. Local electronic and optical behavior of ELO a-plane GaN

    NASA Astrophysics Data System (ADS)

    Baski, A. A.; Moore, J. C.; Ozgur, U.; Kasliwal, V.; Ni, X.; Morkoc, H.

    2007-03-01

    Conductive atomic force microscopy (CAFM) and near-field optical microscopy (NSOM) were used to study a-plane GaN films grown via epitaxial lateral overgrowth (ELO). The ELO films were prepared by metal organic chemical vapor deposition on a patterned SiO2 layer with 4-μm wide windows, which was deposited on a GaN template grown on r-plane sapphire. The window regions of the coalesced ELO films appear as depressions with a high density of surface pits. At reverse bias below 12 V, very low uniform conduction (2 pA) is seen in the window regions. Above 20 V, a lower-quality sample shows localized sites inside the window regions with significant leakage, indicating a correlation between the presence of surface pits and leakage sites. Room temperature NSOM studies also suggest a greater density of surface terminated dislocations in the window regions, while wing regions explicitly show enhanced optical quality of the overgrown GaN. The combination of CAFM and NSOM data therefore indicates a correlation between the presence of surface pits, localized reverse-bias current leakage, and low PL intensity in the window regions.

  17. Structural anisotropic properties of a-plane GaN epilayers grown on r-plane sapphire by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lotsari, A.; Kehagias, Th.; Katsikini, M.

    2014-06-07

    Heteroepitaxial non-polar III-Nitride layers may exhibit extensive anisotropy in the surface morphology and the epilayer microstructure along distinct in-plane directions. The structural anisotropy, evidenced by the “M”-shape dependence of the (112{sup ¯}0) x-ray rocking curve widths on the beam azimuth angle, was studied by combining transmission electron microscopy observations, Raman spectroscopy, high resolution x-ray diffraction, and atomic force microscopy in a-plane GaN epilayers grown on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). The structural anisotropic behavior was attributed quantitatively to the high dislocation densities, particularly the Frank-Shockley partial dislocations that delimit the I{sub 1} intrinsic basal stacking faults,more » and to the concomitant plastic strain relaxation. On the other hand, isotropic samples exhibited lower dislocation densities and a biaxial residual stress state. For PAMBE growth, the anisotropy was correlated to N-rich (or Ga-poor) conditions on the surface during growth, that result in formation of asymmetric a-plane GaN grains elongated along the c-axis. Such conditions enhance the anisotropy of gallium diffusion on the surface and reduce the GaN nucleation rate.« less

  18. Influence of surface hydroxylation on 3-aminopropyltriethoxysilane growth mode during chemical functionalization of GaN Surfaces: an angle-resolved X-ray photoelectron spectroscopy Study.

    PubMed

    Arranz, A; Palacio, C; García-Fresnadillo, D; Orellana, G; Navarro, A; Muñoz, E

    2008-08-19

    A comparative study of the chemical functionalization of undoped, n- and p-type GaN layers grown on sapphire substrates by metal-organic chemical vapor deposition was carried out. Both types of samples were chemically functionalized with 3-aminopropyltriethoxysilane (APTES) using a well-established silane-based approach for functionalizing hydroxylated surfaces. The untreated surfaces as well as those modified by hydroxylation and APTES deposition were analyzed using angle-resolved X-ray photoelectron spectroscopy. Strong differences were found between the APTES growth modes on n- and p-GaN surfaces that can be associated with the number of available hydroxyl groups on the GaN surface of each sample. Depending on the density of surface hydroxyl groups, different mechanisms of APTES attachment to the GaN surface take place in such a way that the APTES growth mode changes from a monolayer to a multilayer growth mode when the number of surface hydroxyl groups is decreased. Specifically, a monolayer growth mode with a surface coverage of approximately 78% was found on p-GaN, whereas the formation of a dense film, approximately 3 monolayers thick, was observed on n-GaN.

  19. Critical aspects of substrate nanopatterning for the ordered growth of GaN nanocolumns.

    PubMed

    Barbagini, Francesca; Bengoechea-Encabo, Ana; Albert, Steven; Martinez, Javier; Sanchez García, Miguel Angel; Trampert, Achim; Calleja, Enrique

    2011-12-14

    Precise and reproducible surface nanopatterning is the key for a successful ordered growth of GaN nanocolumns. In this work, we point out the main technological issues related to the patterning process, mainly surface roughness and cleaning, and mask adhesion to the substrate. We found that each of these factors, process-related, has a dramatic impact on the subsequent selective growth of the columns inside the patterned holes. We compare the performance of e-beam lithography, colloidal lithography, and focused ion beam in the fabrication of hole-patterned masks for ordered columnar growth. These results are applicable to the ordered growth of nanocolumns of different materials.

  20. Process for growing epitaxial gallium nitride and composite wafers

    DOEpatents

    Weber, Eicke R.; Subramanya, Sudhir G.; Kim, Yihwan; Kruger, Joachim

    2003-05-13

    A novel growth procedure to grow epitaxial Group III metal nitride thin films on lattice-mismatched substrates is proposed. Demonstrated are the quality improvement of epitaxial GaN layers using a pure metallic Ga buffer layer on c-plane sapphire substrate. X-ray rocking curve results indicate that the layers had excellent structural properties. The electron Hall mobility increases to an outstandingly high value of .mu.>400 cm.sup.2 /Vs for an electron background concentration of 4.times.10.sup.17 cm.sup.-3.

Top