Sample records for subsequent genetic analysis

  1. Quantitative genetic tools for insecticide resistance risk assessment: estimating the heritability of resistance

    Treesearch

    Michael J. Firko; Jane Leslie Hayes

    1990-01-01

    Quantitative genetic studies of resistance can provide estimates of genetic parameters not available with other types of genetic analyses. Three methods are discussed for estimating the amount of additive genetic variation in resistance to individual insecticides and subsequent estimation of heritability (h2) of resistance. Sibling analysis and...

  2. A case report of Fanconi anemia diagnosed by genetic testing followed by prenatal diagnosis.

    PubMed

    Lee, Hwa Jeen; Park, Seungman; Kang, Hyoung Jin; Jun, Jong Kwan; Lee, Jung Ae; Lee, Dong Soon; Park, Sung Sup; Seong, Moon-Woo

    2012-09-01

    Fanconi anemia (FA) is a rare genetic disorder affecting multiple body systems. Genetic testing, including prenatal testing, is a prerequisite for the diagnosis of many clinical conditions. However, genetic testing is complicated for FA because there are often many genes that are associated with its development, and large deletions, duplications, or sequence variations are frequently found in some of these genes. This study describes successful genetic testing for molecular diagnosis, and subsequent prenatal diagnosis, of FA in a patient and his family in Korea. We analyzed all exons and flanking regions of the FANCA, FANCC, and FANCG genes for mutation identification and subsequent prenatal diagnosis. Multiplex ligation-dependent probe amplification analysis was performed to detect large deletions or duplications in the FANCA gene. Molecular analysis revealed two mutations in the FANCA gene: a frameshift mutation c.2546delC and a novel splice-site mutation c.3627-1G>A. The FANCA mutations were separately inherited from each parent, c.2546delC was derived from the father, whereas c.3627-1G>A originated from the mother. The amniotic fluid cells were c.3627-1G>A heterozygotes, suggesting that the fetus was unaffected. This is the first report of genetic testing that was successfully applied to molecular diagnosis of a patient and subsequent prenatal diagnosis of FA in a family in Korea.

  3. INTEGRATING NEW TESTS OF SPERM GENETIC INTEGRITY INTO SEMEN ANALYSIS: BREAKOUT GROUP DISCUSSION

    EPA Science Inventory

    The First International Conference on Male-Mediated Developmental Toxicity, held in September 1992, reported that the spermatozoon can bring genetic damage into the oocyte at fertilization and thereby contribute to subsequent abnormal pregnancy outcomes. At that time, laboratory ...

  4. Phenotypic plasticity in female mate choice behavior is mediated by an interaction of direct and indirect genetic effects in Drosophila melanogaster.

    PubMed

    Filice, David C S; Long, Tristan A F

    2017-05-01

    Female mate choice is a complex decision-making process that involves many context-dependent factors. In Drosophila melanogaster , a model species for the study of sexual selection, indirect genetic effects (IGEs) of general social interactions can influence female mate choice behaviors, but the potential impacts of IGEs associated with mating experiences are poorly understood. Here, we examined whether the IGEs associated with a previous mating experience had an effect on subsequent female mate choice behaviors and quantified the degree of additive genetic variation associated with this effect. Females from 21 different genetic backgrounds were housed with males from one of two distinct genetic backgrounds for either a short (3 hr) or long (48 hr) exposure period and their subsequent mate choice behaviors were scored. We found that the genetic identity of a previous mate significantly influenced a female's subsequent interest in males and preference of males. Additionally, a hemiclonal analysis revealed significant additive genetic variation associated with experience-dependent mate choice behaviors, indicating a genotype-by-environment interaction for both of these parameters. We discuss the significance of these results with regard to the evolution of plasticity in female mate choice behaviors and the maintenance of variation in harmful male traits.

  5. Genetic Variation and Population Differentiation in a Medical Herb Houttuynia cordata in China Revealed by Inter-Simple Sequence Repeats (ISSRs)

    PubMed Central

    Wei, Lin; Wu, Xian-Jin

    2012-01-01

    Houttuynia cordata is an important traditional Chinese herb with unresolved genetics and taxonomy, which lead to potential problems in the conservation and utilization of the resource. Inter-simple sequence repeat (ISSR) markers were used to assess the level and distribution of genetic diversity in 226 individuals from 15 populations of H. cordata in China. ISSR analysis revealed low genetic variations within populations but high genetic differentiations among populations. This genetic structure probably mainly reflects the historical association among populations. Genetic cluster analysis showed that the basal clade is composed of populations from Southwest China, and the other populations have continuous and eastward distributions. The structure of genetic diversity in H. cordata demonstrated that this species might have survived in Southwest China during the glacial age, and subsequently experienced an eastern postglacial expansion. Based on the results of genetic analysis, it was proposed that as many as possible targeted populations for conservation be included. PMID:22942696

  6. Genetic variation and population differentiation in a medical herb Houttuynia cordata in China revealed by inter-simple sequence repeats (ISSRs).

    PubMed

    Wei, Lin; Wu, Xian-Jin

    2012-01-01

    Houttuynia cordata is an important traditional Chinese herb with unresolved genetics and taxonomy, which lead to potential problems in the conservation and utilization of the resource. Inter-simple sequence repeat (ISSR) markers were used to assess the level and distribution of genetic diversity in 226 individuals from 15 populations of H. cordata in China. ISSR analysis revealed low genetic variations within populations but high genetic differentiations among populations. This genetic structure probably mainly reflects the historical association among populations. Genetic cluster analysis showed that the basal clade is composed of populations from Southwest China, and the other populations have continuous and eastward distributions. The structure of genetic diversity in H. cordata demonstrated that this species might have survived in Southwest China during the glacial age, and subsequently experienced an eastern postglacial expansion. Based on the results of genetic analysis, it was proposed that as many as possible targeted populations for conservation be included.

  7. My Dog's Cheeks: A PBL Project on Collagen for Cell Biology and Genetics Courses

    ERIC Educational Resources Information Center

    Casla, Alberto Vicario; Zubiaga, Isabel Smith

    2010-01-01

    Students often have an oversimplified view of biological facts, which may hinder subsequent understanding when conceptual complexity gives rise to cognitive conflicts. To avoid this situation here, we present a PBL approach for the analysis of Ehlers-Danlos syndrome (EDS), which integrates a variety of topics in cell biology, genetics, and…

  8. Goethe and the ABC model of flower development.

    PubMed

    Coen, E

    2001-06-01

    About 10 years ago, the ABC model for the genetic control of flower development was proposed. This model was initially based on the analysis of mutant flowers but has subsequently been confirmed by molecular analysis. This paper describes the 200-year history behind this model, from the late 18th century when Goethe arrived at his idea of plant metamorphosis, to the genetic studies on flower mutants carried out on Arabidopsis and Antirrhinum in the late 20th century.

  9. Norrie disease: first mutation report and prenatal diagnosis in an Indian family.

    PubMed

    Ghosh, Manju; Sharma, Shipra; Shastri, Shivaram; Arora, Sadhna; Shukla, Rashmi; Gupta, Neerja; Deka, Deepika; Kabra, Madhulika

    2012-11-01

    Norrie Disease (ND) is a rare X-linked recessive disorder characterised by congenital blindness due to severe retinal dysgenesis. Hearing loss and intellectual disability is present in 30-50 % cases. ND is caused by mutations in the NDP gene, located at Xp11.3. The authors describe mutation analysis of a proband with ND and subsequently prenatal diagnosis. Sequence analysis of the NDP gene revealed a hemizygous missense mutation arginine to serine in codon 41 (p.Arg41Ser) in the affected child. Mother was carrier for the mutation. In a subsequent di-chorionic di-amniotic pregnancy, the authors performed prenatal diagnosis by mutation analysis on chorionic villi sample at 11 wk of gestation. The fetuses were unaffected. This is a first mutation report and prenatal diagnosis of a familial case of Norrie disease from India. The importance of genetic testing of Norrie disease for confirmation, carrier testing, prenatal diagnosis and genetic counseling is emphasized.

  10. Lost in Translation? A Comparison of Cancer-Genetics Reporting in the Press Release and its Subsequent Coverage in Lay Press1

    PubMed Central

    Brechman, Jean M.; Lee, Chul-joo; Cappella, Joseph N.

    2014-01-01

    Understanding how genetic science is communicated to the lay public is of great import, given that media coverage of genetics is increasing exponentially and that the ways in which discoveries are presented in the news can have significant effects on a variety of health outcomes. To address this issue, this study examines the presentation of genetic research relating to cancer outcomes and behaviors (i.e., prostate cancer, breast cancer, colon cancer, smoking and obesity) in both the press release (N = 23) and its subsequent news coverage (N = 71) by using both quantitative content analysis and qualitative textual analysis. In contrast to earlier studies reporting that news stories often misrepresent genetics by presenting biologically deterministic and simplified portrayals (e.g., Mountcastle-Shah et al., 2003; Ten Eych & Williment, 2003), our data shows no clear trends in the direction of distortion toward deterministic claims in news articles. Also, other errors commonly attributed to science journalism, such as lack of qualifying details and use of oversimplified language (e.g., “fat gene”) are observed in press releases. These findings suggest that the intermediary press release rather than news coverage may serve as a source of distortion in the dissemination of science to the lay public. The implications of this study for future research in this area are discussed. PMID:25568611

  11. Genes, Culture and Conservatism-A Psychometric-Genetic Approach.

    PubMed

    Schwabe, Inga; Jonker, Wilfried; van den Berg, Stéphanie M

    2016-07-01

    The Wilson-Patterson conservatism scale was psychometrically evaluated using homogeneity analysis and item response theory models. Results showed that this scale actually measures two different aspects in people: on the one hand people vary in their agreement with either conservative or liberal catch-phrases and on the other hand people vary in their use of the "?" response category of the scale. A 9-item subscale was constructed, consisting of items that seemed to measure liberalism, and this subscale was subsequently used in a biometric analysis including genotype-environment interaction, correcting for non-homogeneous measurement error. Biometric results showed significant genetic and shared environmental influences, and significant genotype-environment interaction effects, suggesting that individuals with a genetic predisposition for conservatism show more non-shared variance but less shared variance than individuals with a genetic predisposition for liberalism.

  12. The complex genetics of gait speed: genome-wide meta-analysis approach

    PubMed Central

    Lunetta, Kathryn L.; Smith, Jennifer A.; Eicher, John D.; Vered, Rotem; Deelen, Joris; Arnold, Alice M.; Buchman, Aron S.; Tanaka, Toshiko; Faul, Jessica D.; Nethander, Maria; Fornage, Myriam; Adams, Hieab H.; Matteini, Amy M.; Callisaya, Michele L.; Smith, Albert V.; Yu, Lei; De Jager, Philip L.; Evans, Denis A.; Gudnason, Vilmundur; Hofman, Albert; Pattie, Alison; Corley, Janie; Launer, Lenore J.; Knopman, Davis S.; Parimi, Neeta; Turner, Stephen T.; Bandinelli, Stefania; Beekman, Marian; Gutman, Danielle; Sharvit, Lital; Mooijaart, Simon P.; Liewald, David C.; Houwing-Duistermaat, Jeanine J.; Ohlsson, Claes; Moed, Matthijs; Verlinden, Vincent J.; Mellström, Dan; van der Geest, Jos N.; Karlsson, Magnus; Hernandez, Dena; McWhirter, Rebekah; Liu, Yongmei; Thomson, Russell; Tranah, Gregory J.; Uitterlinden, Andre G.; Weir, David R.; Zhao, Wei; Starr, John M.; Johnson, Andrew D.; Ikram, M. Arfan; Bennett, David A.; Cummings, Steven R.; Deary, Ian J.; Harris, Tamara B.; Kardia, Sharon L. R.; Mosley, Thomas H.; Srikanth, Velandai K.; Windham, Beverly G.; Newman, Ann B.; Walston, Jeremy D.; Davies, Gail; Evans, Daniel S.; Slagboom, Eline P.; Ferrucci, Luigi; Kiel, Douglas P.; Murabito, Joanne M.; Atzmon, Gil

    2017-01-01

    Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging. PMID:28077804

  13. Genetic analysis of PAX3 for diagnosis of Waardenburg syndrome type I.

    PubMed

    Matsunaga, Tatsuo; Mutai, Hideki; Namba, Kazunori; Morita, Noriko; Masuda, Sawako

    2013-04-01

    PAX3 genetic analysis increased the diagnostic accuracy for Waardenburg syndrome type I (WS1). Analysis of the three-dimensional (3D) structure of PAX3 helped verify the pathogenicity of a missense mutation, and multiple ligation-dependent probe amplification (MLPA) analysis of PAX3 increased the sensitivity of genetic diagnosis in patients with WS1. Clinical diagnosis of WS1 is often difficult in individual patients with isolated, mild, or non-specific symptoms. The objective of the present study was to facilitate the accurate diagnosis of WS1 through genetic analysis of PAX3 and to expand the spectrum of known PAX3 mutations. In two Japanese families with WS1, we conducted a clinical evaluation of symptoms and genetic analysis, which involved direct sequencing, MLPA analysis, quantitative PCR of PAX3, and analysis of the predicted 3D structure of PAX3. The normal-hearing control group comprised 92 subjects who had normal hearing according to pure tone audiometry. In one family, direct sequencing of PAX3 identified a heterozygous mutation, p.I59F. Analysis of PAX3 3D structures indicated that this mutation distorted the DNA-binding site of PAX3. In the other family, MLPA analysis and subsequent quantitative PCR detected a large, heterozygous deletion spanning 1759-2554 kb that eliminated 12-18 genes including a whole PAX3 gene.

  14. Genetic characterization and phylogeography of the wild boar Sus scrofa introduced into Uruguay

    PubMed Central

    García, Graciela; Vergara, Julia; Lombardi, Raúl

    2011-01-01

    The European wild boar Sus scrofa was first introduced into Uruguay, in southern South America during the early decades of the last century. Subsequently, and starting from founder populations, its range spread throughout the country and into the neighbouring Brazilian state Rio Grande do Sul. Due to the subsequent negative impact, it was officially declared a national pest. The main aim in the present study was to provide a more comprehensive scenario of wild boar differentiation in Uruguay, by using mtDNA markers to access the genetic characterization of populations at present undergoing rapid expansion. A high level of haplotype diversity, intermediate levels of nucleotide diversity and considerable population differentiation, were detected among sampled localities throughout major watercourses and catchment dams countrywide. Phylogenetic analysis revealed the existence of two different phylogroups, thereby reflecting two deliberate introduction events forming distantly genetic lineages in local wild boar populations. Our analysis lends support to the hypothesis that the invasive potential of populations emerge from introgressive hybridization with domestic pigs. On taking into account the appreciable differentiation and reduced migration between locales in wild boar populations, management strategies could be effective if each population were to be considered as a single management unit. PMID:21734838

  15. Genome-wide association analysis of secondary imaging phenotypes from the Alzheimer's disease neuroimaging initiative study.

    PubMed

    Zhu, Wensheng; Yuan, Ying; Zhang, Jingwen; Zhou, Fan; Knickmeyer, Rebecca C; Zhu, Hongtu

    2017-02-01

    The aim of this paper is to systematically evaluate a biased sampling issue associated with genome-wide association analysis (GWAS) of imaging phenotypes for most imaging genetic studies, including the Alzheimer's Disease Neuroimaging Initiative (ADNI). Specifically, the original sampling scheme of these imaging genetic studies is primarily the retrospective case-control design, whereas most existing statistical analyses of these studies ignore such sampling scheme by directly correlating imaging phenotypes (called the secondary traits) with genotype. Although it has been well documented in genetic epidemiology that ignoring the case-control sampling scheme can produce highly biased estimates, and subsequently lead to misleading results and suspicious associations, such findings are not well documented in imaging genetics. We use extensive simulations and a large-scale imaging genetic data analysis of the Alzheimer's Disease Neuroimaging Initiative (ADNI) data to evaluate the effects of the case-control sampling scheme on GWAS results based on some standard statistical methods, such as linear regression methods, while comparing it with several advanced statistical methods that appropriately adjust for the case-control sampling scheme. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Geologic events coupled with Pleistocene climatic oscillations drove genetic variation of Omei treefrog (Rhacophorus omeimontis) in southern China.

    PubMed

    Li, Jun; Zhao, Mian; Wei, Shichao; Luo, Zhenhua; Wu, Hua

    2015-12-21

    Pleistocene climatic oscillations and historical geological events may both influence current patterns of genetic variation, and the species in southern China that faced unique climatic and topographical events have complex evolutionary histories. However, the relative contributions of climatic oscillations and geographical events to the genetic variation of these species remain undetermined. To investigate patterns of genetic variation and to test the hypotheses about the factors that shaped the distribution of this genetic variation in species of southern China, mitochondrial genes (cytochrome b and NADH dehydrogenase subunit 2) and nine microsatellite loci of the Omei tree frog (Rhacophorus omeimontis) were amplified in this study. The genetic diversity in the populations of R. omeimontis was high. The phylogenetic trees reconstructed from the mitochondrial DNA (mtDNA) haplotypes and the Bayesian genetic clustering analysis based on microsatellite data both revealed that all populations were divided into three lineages (SC, HG and YN). The two most recent splitting events among the lineages coincided with recent geological events (including the intense uplift of the Qinghai-Tibet Plateau, QTP and the subsequent movements of the Yun-Gui Plateau, YGP) and the Pleistocene glaciations. Significant expansion signals were not detected in mismatch analyses or neutrality tests. And the effective population size of each lineage was stable during the Pleistocene. Based on the results of this study, complex geological events (the recent dramatic uplift of the QTP and the subsequent movements of the YGP) and the Pleistocene glaciations were apparent drivers of the rapid divergence of the R. omeimontis lineages. Each diverged lineages survived in situ with limited gene exchanges, and the stable demographics of lineages indicate that the Pleistocene climatic oscillations were inconsequential for this species. The analysis of genetic variation in populations of R. omeimontis contributes to the understanding of the effects of changes in climate and of geographical events on the dynamic development of contemporary patterns of genetic variation in the species of southern China.

  17. Homozygous/Compound Heterozygous Triadin Mutations Associated With Autosomal-Recessive Long-QT Syndrome and Pediatric Sudden Cardiac Arrest: Elucidation of the Triadin Knockout Syndrome.

    PubMed

    Altmann, Helene M; Tester, David J; Will, Melissa L; Middha, Sumit; Evans, Jared M; Eckloff, Bruce W; Ackerman, Michael J

    2015-06-09

    Long-QT syndrome (LQTS) may result in syncope, seizures, or sudden cardiac arrest. Although 16 LQTS-susceptibility genes have been discovered, 20% to 25% of LQTS remains genetically elusive. We performed whole-exome sequencing child-parent trio analysis followed by recessive and sporadic inheritance modeling and disease-network candidate analysis gene ranking to identify a novel underlying genetic mechanism for LQTS. Subsequent mutational analysis of the candidate gene was performed with polymerase chain reaction, denaturing high-performance liquid chromatography, and DNA sequencing on a cohort of 33 additional unrelated patients with genetically elusive LQTS. After whole-exome sequencing and variant filtration, a homozygous p.D18fs*13 TRDN-encoded triadin frameshift mutation was discovered in a 10-year-old female patient with LQTS with a QTc of 500 milliseconds who experienced recurrent exertion-induced syncope/cardiac arrest beginning at 1 year of age. Subsequent mutational analysis of TRDN revealed either homozygous or compound heterozygous frameshift mutations in 4 of 33 unrelated cases of LQTS (12%). All 5 TRDN-null patients displayed extensive T-wave inversions in precordial leads V1 through V4, with either persistent or transient QT prolongation and severe disease expression of exercise-induced cardiac arrest in early childhood (≤3 years of age) and required aggressive therapy. The overall yield of TRDN mutations was significantly greater in patients ≤10 years of age (5 of 10, 50%) compared with older patients (0 of 24, 0%; P=0.0009). We identified TRDN as a novel underlying genetic basis for recessively inherited LQTS. All TRDN-null patients had strikingly similar phenotypes. Given the recurrent nature of potential lethal arrhythmias, patients fitting this phenotypic profile should undergo cardiac TRDN genetic testing. © 2015 American Heart Association, Inc.

  18. A Novel ‘Gene Insertion/Marker Out’ (GIMO) Method for Transgene Expression and Gene Complementation in Rodent Malaria Parasites

    PubMed Central

    Sajid, Mohammed; Chevalley-Maurel, Séverine; Ramesar, Jai; Klop, Onny; Franke-Fayard, Blandine M. D.; Janse, Chris J.; Khan, Shahid M.

    2011-01-01

    Research on the biology of malaria parasites has greatly benefited from the application of reverse genetic technologies, in particular through the analysis of gene deletion mutants and studies on transgenic parasites that express heterologous or mutated proteins. However, transfection in Plasmodium is limited by the paucity of drug-selectable markers that hampers subsequent genetic modification of the same mutant. We report the development of a novel ‘gene insertion/marker out’ (GIMO) method for two rodent malaria parasites, which uses negative selection to rapidly generate transgenic mutants ready for subsequent modifications. We have created reference mother lines for both P. berghei ANKA and P. yoelii 17XNL that serve as recipient parasites for GIMO-transfection. Compared to existing protocols GIMO-transfection greatly simplifies and speeds up the generation of mutants expressing heterologous proteins, free of drug-resistance genes, and requires far fewer laboratory animals. In addition we demonstrate that GIMO-transfection is also a simple and fast method for genetic complementation of mutants with a gene deletion or mutation. The implementation of GIMO-transfection procedures should greatly enhance Plasmodium reverse-genetic research. PMID:22216235

  19. Genomic evidence for the population genetic differentiation of Misgurnus anguillicaudatus in the Yangtze River basin of China.

    PubMed

    Yi, Shaokui; Wang, Weimin; Zhou, Xiaoyun

    2018-02-21

    Misgurnus anguillicaudatus, an important aquatic species, is mainly distributed in the Yangtze River basin. To reveal the population genetic structure of M. anguillicaudatus distributed in the Yangtze River basin, genotyping by sequencing (GBS) technique was employed to detect the genome wide genetic variations of M. anguillicaudatus. A total of 30.03 Gb raw data were yielded from 70 samples collected from 15 geographic sites located in the Yangtze River basin. Subsequently, 2092 high quality SNPs were genotyped across these samples and used for a series of genetic analysis. The results of genetic analysis showed that high levels of genetic diversity were observed and the populations from upper reaches (UR) were significantly differentiated from the middle and lower reaches (MLR) of Yangtze River basin. Meanwhile, no significant isolation by distance was detected among the populations. Ecological factors (e.g. complicated topography and climatic environment) and anthropogenic factors (e.g. aquaculture and agriculture cultivation) might account for the genetic disconnectivity between UR and MLR populations. This study provided valuable genetic data for the future breeding program and also for the conversation and scientific utilization of those abundant genetic resources stored in the Yangtze River basin. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Genetic Factors of Individual Differences in Decision Making in Economic Behavior: A Japanese Twin Study using the Allais Problem.

    PubMed

    Shikishima, Chizuru; Hiraishi, Kai; Yamagata, Shinji; Ando, Juko; Okada, Mitsuhiro

    2015-01-01

    Why does decision making differ among individuals? People sometimes make seemingly inconsistent decisions with lower expected (monetary) utility even when objective information of probabilities and reward are provided. It is noteworthy, however, that a certain proportion of people do not provide anomalous responses, choosing the alternatives with higher expected utility, thus appearing to be more "rational." We investigated the genetic and environmental influences on these types of individual differences in decision making using a classical Allais problem task. Participants were 1,199 Japanese adult twins aged 20-47. Univariate genetic analysis revealed that approximately a third of the Allais problem response variance was explained by genetic factors and the rest by environmental factors unique to individuals and measurement error. The environmental factor shared between families did not contribute to the variance. Subsequent multivariate genetic analysis clarified that decision making using the expected utility theory was associated with general intelligence and that the association was largely mediated by the same genetic factor. We approach the mechanism underlying two types of "rational" decision making from the perspective of genetic correlations with cognitive abilities.

  1. Genetic diversity and geographical structure of the pitcher plant Nepenthes vieillardii in New Caledonia: A chloroplast DNA haplotype analysis.

    PubMed

    Kurata, Kaoruko; Jaffré, Tanguy; Setoguchi, Hiroaki

    2008-12-01

    Among the many species that grow in New Caledonia, the pitcher plant Nepenthes vieillardii (Nepenthaceae) has a high degree of morphological variation. In this study, we present the patterns of genetic differentiation of pitcher plant populations based on chloroplast DNA haplotype analysis using the sequences of five spacers. We analyzed 294 samples from 16 populations covering the entire range of the species, using 4660 bp of sequence. Our analysis identified 17 haplotypes, including one that is widely distributed across the islands, as well as regional and private haplotypes. The greatest haplotype diversity was detected on the eastern coast of the largest island and included several private haplotypes, while haplotype diversity was low in the southern plains region. The parsimony network analysis of the 17 haplotypes suggested that the genetic divergence is the result of long-term isolation of individual populations. Results from a spatial analysis of molecular variance and a cluster analysis suggest that the plants once covered the entire serpentine area of New Caledonia and that subsequent regional fragmentation resulted in the isolation of each population and significantly restricted seed flow. This isolation may have been an important factor in the development of the morphological and genetic variation among pitcher plants in New Caledonia.

  2. Next-Generation Sequence Analysis Reveals Transfer of Methicillin Resistance to a Methicillin-Susceptible Staphylococcus aureus Strain That Subsequently Caused a Methicillin-Resistant Staphylococcus aureus Outbreak: a Descriptive Study.

    PubMed

    Weterings, Veronica; Bosch, Thijs; Witteveen, Sandra; Landman, Fabian; Schouls, Leo; Kluytmans, Jan

    2017-09-01

    Resistance to methicillin in Staphylococcus aureus is caused primarily by the mecA gene, which is carried on a mobile genetic element, the staphylococcal cassette chromosome mec (SCC mec ). Horizontal transfer of this element is supposed to be an important factor in the emergence of new clones of methicillin-resistant Staphylococcus aureus (MRSA) but has been rarely observed in real time. In 2012, an outbreak occurred involving a health care worker (HCW) and three patients, all carrying a fusidic acid-resistant MRSA strain. The husband of the HCW was screened for MRSA carriage, but only a methicillin-susceptible S. aureus (MSSA) strain, which was also resistant to fusidic acid, was detected. Multiple-locus variable-number tandem-repeat analysis (MLVA) typing showed that both the MSSA and MRSA isolates were MT4053-MC0005. This finding led to the hypothesis that the MSSA strain acquired the SCC mec and subsequently caused an outbreak. To support this hypothesis, next-generation sequencing of the MSSA and MRSA isolates was performed. This study showed that the MSSA isolate clustered closely with the outbreak isolates based on whole-genome multilocus sequence typing and single-nucleotide polymorphism (SNP) analysis, with a genetic distance of 17 genes and 44 SNPs, respectively. Remarkably, there were relatively large differences in the mobile genetic elements in strains within and between individuals. The limited genetic distance between the MSSA and MRSA isolates in combination with a clear epidemiologic link supports the hypothesis that the MSSA isolate acquired a SCC mec and that the resulting MRSA strain caused an outbreak. Copyright © 2017 American Society for Microbiology.

  3. Identification of RAN1 orthologue associated with sex determination through whole genome sequencing analysis in fig (Ficus carica L.).

    PubMed

    Mori, Kazuki; Shirasawa, Kenta; Nogata, Hitoshi; Hirata, Chiharu; Tashiro, Kosuke; Habu, Tsuyoshi; Kim, Sangwan; Himeno, Shuichi; Kuhara, Satoru; Ikegami, Hidetoshi

    2017-01-25

    With the aim of identifying sex determinants of fig, we generated the first draft genome sequence of fig and conducted the subsequent analyses. Linkage analysis with a high-density genetic map established by a restriction-site associated sequencing technique, and genome-wide association study followed by whole-genome resequencing analysis identified two missense mutations in RESPONSIVE-TO-ANTAGONIST1 (RAN1) orthologue encoding copper-transporting ATPase completely associated with sex phenotypes of investigated figs. This result suggests that RAN1 is a possible sex determinant candidate in the fig genome. The genomic resources and genetic findings obtained in this study can contribute to general understanding of Ficus species and provide an insight into fig's and plant's sex determination system.

  4. The genetic architecture of long QT syndrome: A critical reappraisal.

    PubMed

    Giudicessi, John R; Wilde, Arthur A M; Ackerman, Michael J

    2018-03-30

    Collectively, the completion of the Human Genome Project and subsequent development of high-throughput next-generation sequencing methodologies have revolutionized genomic research. However, the rapid sequencing and analysis of thousands upon thousands of human exomes and genomes has taught us that most genes, including those known to cause heritable cardiovascular disorders such as long QT syndrome, harbor an unexpected background rate of rare, and presumably innocuous, non-synonymous genetic variation. In this Review, we aim to reappraise the genetic architecture underlying both the acquired and congenital forms of long QT syndrome by examining how the clinical phenotype associated with and background genetic variation in long QT syndrome-susceptibility genes impacts the clinical validity of existing gene-disease associations and the variant classification and reporting strategies that serve as the foundation for diagnostic long QT syndrome genetic testing. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Potential of SNP markers for the characterization of Brazilian cassava germplasm.

    PubMed

    de Oliveira, Eder Jorge; Ferreira, Cláudia Fortes; da Silva Santos, Vanderlei; de Jesus, Onildo Nunes; Oliveira, Gilmara Alvarenga Fachardo; da Silva, Maiane Suzarte

    2014-06-01

    High-throughput markers, such as SNPs, along with different methodologies were used to evaluate the applicability of the Bayesian approach and the multivariate analysis in structuring the genetic diversity in cassavas. The objective of the present work was to evaluate the diversity and genetic structure of the largest cassava germplasm bank in Brazil. Complementary methodological approaches such as discriminant analysis of principal components (DAPC), Bayesian analysis and molecular analysis of variance (AMOVA) were used to understand the structure and diversity of 1,280 accessions genotyped using 402 single nucleotide polymorphism markers. The genetic diversity (0.327) and the average observed heterozygosity (0.322) were high considering the bi-allelic markers. In terms of population, the presence of a complex genetic structure was observed indicating the formation of 30 clusters by DAPC and 34 clusters by Bayesian analysis. Both methodologies presented difficulties and controversies in terms of the allocation of some accessions to specific clusters. However, the clusters suggested by the DAPC analysis seemed to be more consistent for presenting higher probability of allocation of the accessions within the clusters. Prior information related to breeding patterns and geographic origins of the accessions were not sufficient for providing clear differentiation between the clusters according to the AMOVA analysis. In contrast, the F ST was maximized when considering the clusters suggested by the Bayesian and DAPC analyses. The high frequency of germplasm exchange between producers and the subsequent alteration of the name of the same material may be one of the causes of the low association between genetic diversity and geographic origin. The results of this study may benefit cassava germplasm conservation programs, and contribute to the maximization of genetic gains in breeding programs.

  6. A landscape genetic analysis of important agricultural pest species in Tunisia: The whitefly Bemisia tabaci

    PubMed Central

    Fakhfakh, Hatem; Belkadhi, Mohamed Sadok

    2017-01-01

    Combining landscape ecology and genetics provides an excellent framework to appreciate pest population dynamics and dispersal. The genetic architectures of many species are always shaped by environmental constraints. Because little is known about the ecological and genetic traits of Tunisian whitefly populations, the main objective of this work is to highlight patterns of biodiversity, genetic structure and migration routes of this pest. We used nuclear microsatellite loci to analyze B. tabaci populations collected from various agricultural areas across the country and we determine their biotype status. Molecular data were subsequently interpreted in an ecological context supplied from a species distribution model to infer habitat suitability and hereafter the potential connection paths between sampling localities. An analysis of landscape resistance to B. tabaci genetic flow was thus applied to take into account habitat suitability, genetic relatedness and functional connectivity of habitats within a varied landscape matrix. We shed light on the occurrence of three geographically delineated genetic groups with high levels of genetic differentiation within each of them. Potential migration corridors of this pest were then established providing significant advances toward the understanding of genetic features and the dynamic dispersal of this pest. This study supports the hypothesis of a long-distance dispersal of B. tabaci followed by infrequent long-term isolations. The Inference of population sources and colonization routes is critical for the design and implementation of accurate management strategies against this pest. PMID:28972992

  7. A landscape genetic analysis of important agricultural pest species in Tunisia: The whitefly Bemisia tabaci.

    PubMed

    Ben Abdelkrim, Ahmed; Hattab, Tarek; Fakhfakh, Hatem; Belkadhi, Mohamed Sadok; Gorsane, Faten

    2017-01-01

    Combining landscape ecology and genetics provides an excellent framework to appreciate pest population dynamics and dispersal. The genetic architectures of many species are always shaped by environmental constraints. Because little is known about the ecological and genetic traits of Tunisian whitefly populations, the main objective of this work is to highlight patterns of biodiversity, genetic structure and migration routes of this pest. We used nuclear microsatellite loci to analyze B. tabaci populations collected from various agricultural areas across the country and we determine their biotype status. Molecular data were subsequently interpreted in an ecological context supplied from a species distribution model to infer habitat suitability and hereafter the potential connection paths between sampling localities. An analysis of landscape resistance to B. tabaci genetic flow was thus applied to take into account habitat suitability, genetic relatedness and functional connectivity of habitats within a varied landscape matrix. We shed light on the occurrence of three geographically delineated genetic groups with high levels of genetic differentiation within each of them. Potential migration corridors of this pest were then established providing significant advances toward the understanding of genetic features and the dynamic dispersal of this pest. This study supports the hypothesis of a long-distance dispersal of B. tabaci followed by infrequent long-term isolations. The Inference of population sources and colonization routes is critical for the design and implementation of accurate management strategies against this pest.

  8. Analysis of genetic diversity and differentiation of seven stocks of Litopenaeus vannamei using microsatellite markers

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Wang, Weiji; Li, Weiya; Zhang, Quanqi; Kong, Jie

    2014-08-01

    Seven microsatellite markers were used to evaluate the genetic diversity and differentiation of seven stocks of Litopenaeus vannamei, which were introduced from Central and South America to China. All seven microsatellite loci were polymorphic, with polymorphism information content ( PIC) values ranging from 0.593 to 0.952. Totally 92 alleles were identified, and the number of alleles ( Na) and effective alleles ( Ne) varied between 4 and 21 and 2.7 and 14.6, respectively. Observed heterozygosity ( H o) values were lower than the expected heterozygosity ( H e) values (0.526-0.754), which indicated that the seven stocks possessed a rich genetic diversity. Thirty-seven tests were detected for reasonable significant deviation from Hardy-Weinberg equilibrium. F is values were positive at five loci, suggesting that there was a relatively high degree of inbreeding within stocks. Pairwise F st values ranged from 0.0225 to 0.151, and most of the stock pairs were moderately differentiated. Genetic distance and cluster analysis using UPGMA revealed a close genetic relationship of L. vannamei between Pop2 and Pop3. AMOVA indicated that the genetic variation among stocks (11.3%) was much lower than that within stocks (88.7%). Although the seven stocks had a certain degree of genetic differentiation and a rich genetic diversity, there is an increasing risk of decreased performance due to inbreeding in subsequent generations.

  9. Using survival analysis for assessing resistance to Phytophthora lateralis in Port-Orford-Cedar families

    Treesearch

    Sylvia R. Mori; Richard A. Sniezko; Angelia Kegley; Jim Hamlin

    2012-01-01

    In a greenhouse trial to examine genetic resistance among seedling families (half-sib, full-sib, and selfed) of Port-Orford-cedar (Chamaecyparis lawsoniana (A. Murr.) Parl.) to the root pathogen Phytophthora lateralis, the root tips of seedlings were inoculated, and the subsequent mortality was followed over a 3 year period....

  10. Reflections on J.V. Wertsch's "From Social Interaction to Higher Psychological Processes," "Human Development," 1979

    ERIC Educational Resources Information Center

    Saxe, Geoffrey B.

    2008-01-01

    In his 1979 "Human Development" article reprinted in this anniversary issue, James Wertsch presented an approach to genetic analysis of the shifting regulation of problem-solving behavior in early childhood. In my reflections on Wertsch's seminal contribution, I discuss ways that subsequent inquiry built upon ideas he elaborated in the…

  11. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity

    PubMed Central

    Dendrou, Calliope A.; Cortes, Adrian; Shipman, Lydia; Evans, Hayley G.; Attfield, Kathrine E.; Jostins, Luke; Barber, Thomas; Kaur, Gurman; Kuttikkatte, Subita Balaram; Leach, Oliver A.; Desel, Christiane; Faergeman, Soren L.; Cheeseman, Jane; Neville, Matt J.; Sawcer, Stephen; Compston, Alastair; Johnson, Adam R.; Everett, Christine; Bell, John I.; Karpe, Fredrik; Ultsch, Mark; Eigenbrot, Charles; McVean, Gil; Fugger, Lars

    2017-01-01

    Thousands of genetic variants have been identified that contribute to the development of complex diseases, but determining how to fully elucidate their biological consequences for translation into clinical benefit is challenging. Conflicting evidence regarding the functional impact of genetic variants in the tyrosine kinase 2 (TYK2) gene, which is differentially associated with common autoimmune diseases, currently obscures the potential of TYK2 as a therapeutic target. We aimed to resolve this conflict by performing genetic meta-analysis across disorders, subsequent molecular, cellular, in vivo and structural functional follow-up and epidemiological studies. Our data revealed a protective homozygous effect that defined a signaling optimum between autoimmunity and immunodeficiency and identified TYK2 as a potential drug target for multiple autoimmune disorders. PMID:27807284

  12. Lack of association between lipoprotein(a) genetic variants and subsequent cardiovascular events in Chinese Han patients with coronary artery disease after percutaneous coronary intervention.

    PubMed

    Li, Zhi-Gen; Li, Guang; Zhou, Ying-Ling; Chen, Zhu-Jun; Yang, Jun-Qing; Zhang, Ying; Sun, Shuo; Zhong, Shi-Long

    2013-08-27

    Elevated lipoprotein(a) [Lp(a)] levels predict cardiovascular events incidence in patients with coronary artery disease (CAD). Genetic variants in the rs3798220, rs10455872 and rs6415084 single-nucleotide polymorphisms (SNPs) in the Lp(a) gene (LPA) correlate with elevated Lp(a) levels, but whether these SNPs have prognostic value for CAD patients is unknown. The present study evaluated the association of LPA SNPs with incidence of subsequent cardiovascular events in CAD patients after percutaneous coronary intervention (PCI). TaqMan SNP genotyping assays were performed to detect the rs6415084, rs3798220 and rs10455872 genotypes in 517 Chinese Han patients with CAD after PCI. We later assessed whether there was an association of these SNPs with incidence of major adverse cardiovascular events (MACE: cardiac death, nonfatal myocardial infarction, ischemic stroke and coronary revascularization). Serum lipid profiles were also determined using biochemical methods. Only the rs6415084 variant allele was associated with higher Lp(a) levels [41.3 (20.8, 74.6) vs. 18.6 (10.3, 40.9) mg/dl, p < 0.001]. During a 2-year follow-up period, 102 patients suffered MACE, and Cox regression analysis demonstrated that elevated Lp(a) (≥30 mg/dl) levels correlated with increased MACE (adjusted HR, 1.69; 95% CI 1.13-2.53), but there was no association between LPA genetic variants (rs6415084 and rs3798220) and MACE incidence (p > 0.05). Our data did not support a relationship between genetic LPA variants (rs6415084 and rs3798220) and subsequent cardiovascular events after PCI in Chinese Han CAD patients.

  13. A roadmap for the genetic analysis of renal aging

    PubMed Central

    Noordmans, Gerda A; Hillebrands, Jan-Luuk; van Goor, Harry; Korstanje, Ron

    2015-01-01

    Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this opinion article will give an overview of the phenotypes that can be observed in age-related kidney disease. Accurate phenotyping is essential in performing genetic analysis. For kidney aging, this could include both functional and structural changes. Subsequently, this article reviews the studies that report on candidate genes associated with renal aging in humans and mice. Several loci or candidate genes have been found associated with kidney disease, but identification of the specific genetic variants involved has proven to be difficult. CUBN, UMOD, and SHROOM3 were identified by human GWAS as being associated with albuminuria, kidney function, and chronic kidney disease (CKD). These are promising examples of genes that could be involved in renal aging, and were further mechanistically evaluated in animal models. Eventually, we will provide approaches for performing genetic analysis. We should leverage the power of mouse models, as testing in humans is limited. Mouse and other animal models can be used to explain the underlying biological mechanisms of genes and loci identified by human GWAS. Furthermore, mouse models can be used to identify genetic variants associated with age-associated histological changes, of which Far2, Wisp2, and Esrrg are examples. A new outbred mouse population with high genetic diversity will facilitate the identification of genes associated with renal aging by enabling high-resolution genetic mapping while also allowing the control of environmental factors, and by enabling access to renal tissues at specific time points for histology, proteomics, and gene expression. PMID:26219736

  14. Progressive erosion of genetic and epigenetic variation in callus-derived cocoa (Theobroma cacao) plants.

    PubMed

    Rodríguez López, Carlos M; Wetten, Andrew C; Wilkinson, Michael J

    2010-06-01

    *Relatively little is known about the timing of genetic and epigenetic forms of somaclonal variation arising from callus growth. We surveyed for both types of change in cocoa (Theobroma cacao) plants regenerated from calli of various ages, and also between tissues from the source trees. *For genetic change, we used 15 single sequence repeat (SSR) markers from four source trees and from 233 regenerated plants. For epigenetic change, we used 386 methylation-sensitive amplified polymorphism (MSAP) markers on leaf and explant (staminode) DNA from two source trees and on leaf DNA from 114 regenerants. *Genetic variation within source trees was limited to one slippage mutation in one leaf. Regenerants were far more variable, with 35% exhibiting at least one mutation. Genetic variation initially accumulated with culture age but subsequently declined. MSAP (epigenetic) profiles diverged between leaf and staminode samples from source trees. Multivariate analysis revealed that leaves from regenerants occupied intermediate eigenspace between leaves and staminodes of source plants but became progressively more similar to source tree leaves with culture age. *Statistical analysis confirmed this rather counterintuitive finding that leaves of 'late regenerants' exhibited significantly less genetic and epigenetic divergence from source leaves than those exposed to short periods of callus growth.

  15. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters.

    PubMed

    Hadfield, J D; Nakagawa, S

    2010-03-01

    Although many of the statistical techniques used in comparative biology were originally developed in quantitative genetics, subsequent development of comparative techniques has progressed in relative isolation. Consequently, many of the new and planned developments in comparative analysis already have well-tested solutions in quantitative genetics. In this paper, we take three recent publications that develop phylogenetic meta-analysis, either implicitly or explicitly, and show how they can be considered as quantitative genetic models. We highlight some of the difficulties with the proposed solutions, and demonstrate that standard quantitative genetic theory and software offer solutions. We also show how results from Bayesian quantitative genetics can be used to create efficient Markov chain Monte Carlo algorithms for phylogenetic mixed models, thereby extending their generality to non-Gaussian data. Of particular utility is the development of multinomial models for analysing the evolution of discrete traits, and the development of multi-trait models in which traits can follow different distributions. Meta-analyses often include a nonrandom collection of species for which the full phylogenetic tree has only been partly resolved. Using missing data theory, we show how the presented models can be used to correct for nonrandom sampling and show how taxonomies and phylogenies can be combined to give a flexible framework with which to model dependence.

  16. Externalizing Problems in Childhood and Adolescence Predict Subsequent Educational Achievement but for Different Genetic and Environmental Reasons

    ERIC Educational Resources Information Center

    Lewis, Gary J.; Asbury, Kathryn; Plomin, Robert

    2017-01-01

    Background: Childhood behavior problems predict subsequent educational achievement; however, little research has examined the etiology of these links using a longitudinal twin design. Moreover, it is unknown whether genetic and environmental innovations provide incremental prediction for educational achievement from childhood to adolescence.…

  17. Genetic diversity and genetic structure of consecutive breeding generations of golden mandarin fish (Siniperca scherzeri Steindachner) using microsatellite markers.

    PubMed

    Luo, X N; Yang, M; Liang, X F; Jin, K; Lv, L Y; Tian, C X; Yuan, Y C; Sun, J

    2015-09-25

    In this study, 12 polymorphic microsatellites were inves-tigated to determine the genetic diversity and structure of 5 consecu-tive selected populations of golden mandarin fish (Siniperca scherzeri Steindachner). The total numbers of alleles, average heterozyosity, and average polymorphism information content showed that the genetic diversity of these breeding populations was decreasing. Additionally, pairwise fixation index FST values among populations and Da values in-creased from F1 generation to subsequent generations (FST values from 0.0221-0.1408; Da values from 0.0608-0.1951). Analysis of molecular variance indicated that most genetic variations arise from individuals within populations (about 92.05%), while variation among populations accounted for only 7.95%. The allele frequency of the loci SC75-220 and SC101-222 bp changed regularly in the 5 breeding generations. Their frequencies were gradually increased and showed an enrichment trend, indicating that there may be genetic correlations between these 2 loci and breeding traits. Our study indicated that microsatellite markers are effective for assessing the genetic variability in the golden mandarin fish breeding program.

  18. Heritable influences on behavioural problems from early childhood to mid-adolescence: evidence for genetic stability and innovation.

    PubMed

    Lewis, G J; Plomin, R

    2015-07-01

    Although behavioural problems (e.g., anxiety, conduct, hyperactivity, peer problems) are known to be heritable both in early childhood and in adolescence, limited work has examined prediction across these ages, and none using a genetically informative sample. We examined, first, whether parental ratings of behavioural problems (indexed by the Strengths and Difficulties questionnaire) at ages 4, 7, 9, 12, and 16 years were stable across these ages. Second, we examined the extent to which stability reflected genetic or environmental effects through multivariate quantitative genetic analysis on data from a large (n > 3000) population (UK) sample of monozygotic and dizygotic twins. Behavioural problems in early childhood (age 4 years) showed significant associations with the corresponding behavioural problem at all subsequent ages. Moreover, stable genetic influences were observed across ages, indicating that biological bases underlying behavioural problems in adolescence are underpinned by genetic influences expressed as early as age 4 years. However, genetic and environmental innovations were also observed at each age. These observations indicate that genetic factors are important for understanding stable individual differences in behavioural problems across childhood and adolescence, although novel genetic influences also facilitate change in such behaviours.

  19. Identification of A Novel Missense Mutation in The Norrie Disease Gene: The First Molecular Genetic Analysis and Prenatal Diagnosis of Norrie Disease in An Iranian Family.

    PubMed

    Talebi, Farah; Ghanbari Mardasi, Farideh; Mohammadi Asl, Javad; Lashgari, Ali; Farhadi, Freidoon

    2018-07-01

    Norrie disease (ND) is a rare X-linked recessive disorder, which is characterized by congenital blindness and, in several cases, accompanied with mental retardation and deafness. ND is caused by mutations in NDP, located on the proximal short arm of the X chromosome (Xp11.3). The disease has been observed in many ethnic groups worldwide, however, no such case has been reported from Iran. In this study, we present the molecular analysis of two patients with ND and the subsequent prenatal diagnosis. Screening of NDP identified a hemizygous missense mutation (p.Ser133Cys) in the affected male siblings of the family. The mother was the carrier for the mutation (p.Ser133Cys). In a subsequent chorionic amniotic pregnancy, we carried out prenatal diagnosis by sequencing NDP in the chorionic villi sample at 11 weeks of gestation. The fetus was carrying the mutation and thus unaffected. This is the first mutation report and prenatal diagnosis of an Iranian family with ND, and highlights the importance of prenatal diagnostic screening of this congenital disorder and relevant genetic counseling. Copyright© by Royan Institute. All rights reserved.

  20. Hemiclonal analysis of interacting phenotypes in male and female Drosophila melanogaster

    PubMed Central

    2014-01-01

    Background Identifying the sources of variation in mating interactions between males and females is important because this variation influences the strength and/or the direction of sexual selection that populations experience. While the origins and effects of variation in male attractiveness and ornamentation have received much scrutiny, the causes and consequences of intraspecific variation in females have been relatively overlooked. We used cytogenetic cloning techniques developed for Drosophila melanogaster to create “hemiclonal” males and females with whom we directly observed sexual interaction between individuals of different known genetic backgrounds and measured subsequent reproductive outcomes. Using this approach, we were able to quantify the genetic contribution of each mate to the observed phenotypic variation in biologically important traits including mating speed, copulation duration, and subsequent offspring production, as well as measure the magnitude and direction of intersexual genetic correlation between female choosiness and male attractiveness. Results We found significant additive genetic variation contributing to mating speed that can be attributed to male genetic identity, female genetic identity, but not their interaction. Furthermore we found that phenotypic variation in copulation duration had a significant male-associated genetic component. Female genetic identity and the interaction between male and female genetic identity accounted for a substantial amount of the observed phenotypic variation in egg size. Although previous research predicts a trade-off between egg size and fecundity, this was not evident in our results. We found a strong negative genetic correlation between female choosiness and male attractiveness, a result that suggests a potentially important role for sexually antagonistic alleles in sexual selection processes in our population. Conclusion These results further our understanding of sexual selection because they identify that genetic identity plays a significant role in phenotypic variation in female behaviour and fecundity. This variation may be potentially due to ongoing sexual conflict found between the sexes for interacting phenotypes. Our unexpected observation of a negative correlation between female choosiness and male attractiveness highlights the need for more explicit theoretical models of genetic covariance to investigate the coevolution of female choosiness and male attractiveness. PMID:24884361

  1. Effects of religion, economics, and geography on genetic structure of Fogo Island, Newfoundland.

    PubMed

    Crawford, M H; Koertevlyessy, T; Huntsman, R G; Collins, M; Duggirala, R; Martin, L; Keeping, D

    1995-01-01

    The population structure of Fogo Island, Newfoundland is described using geography, religious affiliation, economic factors (such as the presence of a fish-packing plant), and genetic markers. Five different analytic methods, R-matrix analysis, r ii VS. mean per locus heterozygosity, predicted kinship (ϕ), mean first passage time, and Mantel matrix comparisons, were applied to the Fogo Island genetic and demographic data. The results suggest that geography plays a role on Fogo Island in the distribution of genes, while religion, ethnicity, and economic factors play less significant roles. The communities with fish-packing plants and tourism serve as migratory "sinks" for Fogo islanders seeking employment. Reproductively, the most isolated village on Fogo Island is Tilting, and this is reflected in its genetic uniqueness, initially caused by Irish settlement and subsequently the action of stochastic processes. © 1995 Wiley-Liss, Inc. Copyright © 1995 Wiley-Liss, Inc., A Wiley Company.

  2. Genetic Considerations in Recurrent Pregnancy Loss

    PubMed Central

    Hyde, Kassie J.; Schust, Danny J.

    2015-01-01

    Human reproduction is remarkably inefficient; nearly 70% of human conceptions do not survive to live birth. Spontaneous fetal aneuploidy is the most common cause for spontaneous loss, particularly in the first trimester of pregnancy. Although losses owing to de novo fetal aneuploidy occur at similar frequencies among women with sporadic and recurrent losses, some couples with recurrent pregnancy loss have additional associated genetic factors and some have nongenetic etiologies. Genetic testing of the products of conception from couples experiencing two or more losses may aid in defining the underlying etiology and in counseling patients about prognosis in a subsequent pregnancy. Parental karyotyping of couples who have experienced recurrent pregnancy loss (RPL) will detect some couples with an increased likelihood of recurrent fetal aneuploidy; this may direct interventions. The utility of preimplantation genetic analysis in couples with RPL is unproven, but new approaches to this testing show great promise. PMID:25659378

  3. Genetic considerations in recurrent pregnancy loss.

    PubMed

    Hyde, Kassie J; Schust, Danny J

    2015-02-06

    Human reproduction is remarkably inefficient; nearly 70% of human conceptions do not survive to live birth. Spontaneous fetal aneuploidy is the most common cause for spontaneous loss, particularly in the first trimester of pregnancy. Although losses owing to de novo fetal aneuploidy occur at similar frequencies among women with sporadic and recurrent losses, some couples with recurrent pregnancy loss have additional associated genetic factors and some have nongenetic etiologies. Genetic testing of the products of conception from couples experiencing two or more losses may aid in defining the underlying etiology and in counseling patients about prognosis in a subsequent pregnancy. Parental karyotyping of couples who have experienced recurrent pregnancy loss (RPL) will detect some couples with an increased likelihood of recurrent fetal aneuploidy; this may direct interventions. The utility of preimplantation genetic analysis in couples with RPL is unproven, but new approaches to this testing show great promise. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  4. Genome-Wide Analysis of the World's Sheep Breeds Reveals High Levels of Historic Mixture and Strong Recent Selection

    PubMed Central

    Kijas, James W.; Lenstra, Johannes A.; Hayes, Ben; Boitard, Simon; Porto Neto, Laercio R.; San Cristobal, Magali; Servin, Bertrand; McCulloch, Russell; Whan, Vicki; Gietzen, Kimberly; Paiva, Samuel; Barendse, William; Ciani, Elena; Raadsma, Herman; McEwan, John; Dalrymple, Brian

    2012-01-01

    Through their domestication and subsequent selection, sheep have been adapted to thrive in a diverse range of environments. To characterise the genetic consequence of both domestication and selection, we genotyped 49,034 SNP in 2,819 animals from a diverse collection of 74 sheep breeds. We find the majority of sheep populations contain high SNP diversity and have retained an effective population size much higher than most cattle or dog breeds, suggesting domestication occurred from a broad genetic base. Extensive haplotype sharing and generally low divergence time between breeds reveal frequent genetic exchange has occurred during the development of modern breeds. A scan of the genome for selection signals revealed 31 regions containing genes for coat pigmentation, skeletal morphology, body size, growth, and reproduction. We demonstrate the strongest selection signal has occurred in response to breeding for the absence of horns. The high density map of genetic variability provides an in-depth view of the genetic history for this important livestock species. PMID:22346734

  5. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity.

    PubMed

    Dendrou, Calliope A; Cortes, Adrian; Shipman, Lydia; Evans, Hayley G; Attfield, Kathrine E; Jostins, Luke; Barber, Thomas; Kaur, Gurman; Kuttikkatte, Subita Balaram; Leach, Oliver A; Desel, Christiane; Faergeman, Soren L; Cheeseman, Jane; Neville, Matt J; Sawcer, Stephen; Compston, Alastair; Johnson, Adam R; Everett, Christine; Bell, John I; Karpe, Fredrik; Ultsch, Mark; Eigenbrot, Charles; McVean, Gil; Fugger, Lars

    2016-11-02

    Thousands of genetic variants have been identified, which contribute to the development of complex diseases, but determining how to elucidate their biological consequences for translation into clinical benefit is challenging. Conflicting evidence regarding the functional impact of genetic variants in the tyrosine kinase 2 (TYK2) gene, which is differentially associated with common autoimmune diseases, currently obscures the potential of TYK2 as a therapeutic target. We aimed to resolve this conflict by performing genetic meta-analysis across disorders; subsequent molecular, cellular, in vivo, and structural functional follow-up; and epidemiological studies. Our data revealed a protective homozygous effect that defined a signaling optimum between autoimmunity and immunodeficiency and identified TYK2 as a potential drug target for certain common autoimmune disorders. Copyright © 2016, American Association for the Advancement of Science.

  6. Transcriptome profile and unique genetic evolution of positively selected genes in yak lungs.

    PubMed

    Lan, DaoLiang; Xiong, XianRong; Ji, WenHui; Li, Jian; Mipam, Tserang-Donko; Ai, Yi; Chai, ZhiXin

    2018-04-01

    The yak (Bos grunniens), which is a unique bovine breed that is distributed mainly in the Qinghai-Tibetan Plateau, is considered a good model for studying plateau adaptability in mammals. The lungs are important functional organs that enable animals to adapt to their external environment. However, the genetic mechanism underlying the adaptability of yak lungs to harsh plateau environments remains unknown. To explore the unique evolutionary process and genetic mechanism of yak adaptation to plateau environments, we performed transcriptome sequencing of yak and cattle (Bos taurus) lungs using RNA-Seq technology and a subsequent comparison analysis to identify the positively selected genes in the yak. After deep sequencing, a normal transcriptome profile of yak lung that containing a total of 16,815 expressed genes was obtained, and the characteristics of yak lungs transcriptome was described by functional analysis. Furthermore, Ka/Ks comparison statistics result showed that 39 strong positively selected genes are identified from yak lungs. Further GO and KEGG analysis was conducted for the functional annotation of these genes. The results of this study provide valuable data for further explorations of the unique evolutionary process of high-altitude hypoxia adaptation in yaks in the Tibetan Plateau and the genetic mechanism at the molecular level.

  7. From ecology to base pairs: nursing and genetic science.

    PubMed

    Williams, J K; Tripp-Reimer, T

    2001-07-01

    With the mapping of the human genome has come the opportunity for nursing research to explore topics of concern to the maintenance, restoration, and attainment of genetic-related health. Initially, nursing research on genetic topics originated primarily from physical anthropology and from a clinical, disease-focused perspective. Nursing research subsequently focused on psychosocial aspects of genetic conditions for individuals and their family members. As findings emerge from current human genome discovery, new programs of genetic nursing research are originating from a biobehavioral interface, ranging from the investigations of the influence of specific molecular changes on gene function to social/ethical issues of human health and disease. These initiatives reflect nursing's response to discoveries of gene mutations related to phenotypic expression in both clinical and community-based populations. Genetic research programs are needed that integrate or adapt theoretical and methodological advances in epidemiology, family systems, anthropology, and ethics with those from nursing. Research programs must address not only populations with a specific disease but also community-based genetic health care issues. As genetic health care practice evolves, so will opportunities for research by nurses who can apply genetic concepts and interventions to improve the health of the public. This article presents an analysis of the evolution of genetic nursing research and challengesfor the future.

  8. Genetic population structure of muskellunge in the Great Lakes

    USGS Publications Warehouse

    Kapuscinski, Kevin L.; Sloss, Brian L.; Farrell, John M.

    2013-01-01

    We quantified genetic relationships among Muskellunge Esox masquinongy from 15 locations in the Great Lakes to determine the extent and distribution of measurable population structure and to identify appropriate spatial scales for fishery management and genetic conservation. We hypothesized that Muskellunge from each area represented genetically distinct populations, which would be evident from analyses of genotype data. A total of 691 Muskellunge were sampled (n = 10–127/site) and genetic data were collected at 13 microsatellite loci. Results from a suite of analyses (including pairwise genetic differentiation, Bayesian admixture prediction, analysis of molecular variance, and tests of isolation by distance) indicated the presence of nine distinct genetic groups, including two that were approximately 50 km apart. Geographic proximity and low habitat complexity seemed to facilitate genetic similarity among areas, whereas Muskellunge from areas of greater habitat heterogeneity exhibited high differentiation. Muskellunge from most areas contained private alleles, and mean within-area genetic variation was similar to that reported for other freshwater fishes. Management programs aimed at conserving the broader diversity and long-term sustainability of Muskellunge could benefit by considering the genetically distinct groups as independent fisheries, and individual spawning and nursery habitats could subsequently be protected to conserve the evolutionary potential of Muskellunge.

  9. Genetic Ancestry, Serum Interferon-α Activity, and Autoantibodies in Systemic Lupus Erythematosus

    PubMed Central

    Ko, Kichul; Franek, Beverly S.; Marion, Miranda; Kaufman, Kenneth M.; Langefeld, Carl D.; Harley, John B.; Niewold, Timothy B.

    2012-01-01

    Objective To investigate and refine the relationships among systemic lupus erythematosus (SLE) and related autoantibodies, interferon-α (IFN-α), and various ancestral backgrounds. Methods We investigated quantitatively defined genetic ancestry through principal component analysis in place of self-reported ancestry. Results African ancestry was found to be associated with presence of anti-RNP antibody (p = 0.0026), and anti-RNP was correlated with high levels of IFN-α (p = 2.8 × 10−5). Conclusion Our data support a model in which African ancestry increases the likelihood of SLE-associated autoantibody formation, which subsequently results in higher levels of serum IFN-α. PMID:22505704

  10. A novel mutation of the beta myosin heavy chain gene responsible for familial hypertrophic cardiomyopathy.

    PubMed

    Wang, Juan; Xu, Shi-Jie; Zhou, Hua; Wang, Li-Jie; Hu, Bo; Fang, Fang; Zhang, Xu-Min; Luo, Yi-Wei; He, Xiao-Yan; Zhuang, Shao-Wei; Li, Xin-Ming; Liu, Zhong-Ming; Hu, Da-Yi

    2009-09-01

    Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disorder and shows high variability in genetic heterogeneity and phenotypic characteristics. The genetic etiology responsible for HCM in many individuals remains unclear. This instigation was sought to identify novel genetic determinants for familial hypertrophic cardiomyopathy. Six unrelated Chinese families with HCM were studied. For each of the 13 established HCM-susceptibility genes, 3 to 5 microsatellite markers were selected to perform genotyping and haplotype analysis. The linked genes were sequenced. Haplotype analyses on candidate genetic loci revealed cosegregation of the gene beta-myosin heavy chain (MYH7) with HCM in a single family. A novel double heterozygous missense mutation of Ala26Val plus Arg719Trp in MYH7 was subsequently identified by sequencing in this family and was associated with a severe phenotype of HCM. The novel double mutation of Ala26Val plus Arg719Trp in MYH7 identified in a Chinese family highlights the remarkable genetic heterogeneity of HCM, which provides important information for genetic counseling, accurate diagnosis, prognostic evaluation, and appropriate clinical management. Copyright 2009 Wiley Periodicals, Inc.

  11. A Genome Wide Survey of SNP Variation Reveals the Genetic Structure of Sheep Breeds

    USDA-ARS?s Scientific Manuscript database

    The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identi...

  12. Comment on "Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage".

    PubMed

    Nakagome, Shigeki; Mano, Shuhei; Hasegawa, Masami

    2013-03-29

    Based on nuclear and mitochondrial DNA, Hailer et al. (Reports, 20 April 2012, p. 344) suggested early divergence of polar bears from a common ancestor with brown bears and subsequent introgression. Our population genetic analysis that traces each of the genealogies in the independent nuclear loci does not support the evolutionary model proposed by the authors.

  13. Genomic Prediction and Association Mapping of Curd-Related Traits in Gene Bank Accessions of Cauliflower.

    PubMed

    Thorwarth, Patrick; Yousef, Eltohamy A A; Schmid, Karl J

    2018-02-02

    Genetic resources are an important source of genetic variation for plant breeding. Genome-wide association studies (GWAS) and genomic prediction greatly facilitate the analysis and utilization of useful genetic diversity for improving complex phenotypic traits in crop plants. We explored the potential of GWAS and genomic prediction for improving curd-related traits in cauliflower ( Brassica oleracea var. botrytis ) by combining 174 randomly selected cauliflower gene bank accessions from two different gene banks. The collection was genotyped with genotyping-by-sequencing (GBS) and phenotyped for six curd-related traits at two locations and three growing seasons. A GWAS analysis based on 120,693 single-nucleotide polymorphisms identified a total of 24 significant associations for curd-related traits. The potential for genomic prediction was assessed with a genomic best linear unbiased prediction model and BayesB. Prediction abilities ranged from 0.10 to 0.66 for different traits and did not differ between prediction methods. Imputation of missing genotypes only slightly improved prediction ability. Our results demonstrate that GWAS and genomic prediction in combination with GBS and phenotyping of highly heritable traits can be used to identify useful quantitative trait loci and genotypes among genetically diverse gene bank material for subsequent utilization as genetic resources in cauliflower breeding. Copyright © 2018 Thorwarth et al.

  14. The near demise and subsequent revival of classical genetics for investigating Caenorhabditis elegans embryogenesis: RNAi meets next-generation DNA sequencing.

    PubMed

    Bowerman, Bruce

    2011-10-01

    Molecular genetic investigation of the early Caenorhabditis elegans embryo has contributed substantially to the discovery and general understanding of the genes, pathways, and mechanisms that regulate and execute developmental and cell biological processes. Initially, worm geneticists relied exclusively on a classical genetics approach, isolating mutants with interesting phenotypes after mutagenesis and then determining the identity of the affected genes. Subsequently, the discovery of RNA interference (RNAi) led to a much greater reliance on a reverse genetics approach: reducing the function of known genes with RNAi and then observing the phenotypic consequences. Now the advent of next-generation DNA sequencing technologies and the ensuing ease and affordability of whole-genome sequencing are reviving the use of classical genetics to investigate early C. elegans embryogenesis.

  15. No genetic adaptation of the Mediterranean keystone shrub Cistus ladanifer in response to experimental fire and extreme drought.

    PubMed

    Torres, Iván; Parra, Antonio; Moreno, José M; Durka, Walter

    2018-01-01

    In Mediterranean ecosystems, climate change is projected to increase fire danger and summer drought, thus reducing post-fire recruitment of obligate seeder species, and possibly affecting the population genetic structure. We performed a genome-wide genetic marker study, using AFLP markers, on individuals from one Central Spain population of the obligate post-fire seeder Cistus ladanifer L. that established after experimental fire and survived during four subsequent years under simulated drought implemented with a rainout shelter system. We explored the effects of the treatments on marker diversity, spatial genetic structure and presence of outlier loci suggestive of selection. We found no effect of fire or drought on any of the genetic diversity metrics. Analysis of Molecular Variance showed very low genetic differentiation among treatments. Neither fire nor drought altered the small-scale spatial genetic structure of the population. Only one locus was significantly associated with the fire treatment, but inconsistently across outlier detection methods. Neither fire nor drought are likely to affect the genetic makeup of emerging C. ladanifer, despite reduced recruitment caused by drought. The lack of genetic change suggests that reduced recruitment is a random, non-selective process with no genome-wide consequences on this keystone, drought- and fire tolerant Mediterranean species.

  16. A Genome Wide Survey of SNP Variation Reveals the Genetic Structure of Sheep Breeds

    PubMed Central

    Kijas, James W.; Townley, David; Dalrymple, Brian P.; Heaton, Michael P.; Maddox, Jillian F.; McGrath, Annette; Wilson, Peter; Ingersoll, Roxann G.; McCulloch, Russell; McWilliam, Sean; Tang, Dave; McEwan, John; Cockett, Noelle; Oddy, V. Hutton; Nicholas, Frank W.; Raadsma, Herman

    2009-01-01

    The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identifying the first genome-wide set of SNP for sheep, we report on levels of genetic variability both within and between a diverse sample of ovine populations. Then, using cluster analysis and the partitioning of genetic variation, we demonstrate sheep are characterised by weak phylogeographic structure, overlapping genetic similarity and generally low differentiation which is consistent with their short evolutionary history. The degree of population substructure was, however, sufficient to cluster individuals based on geographic origin and known breed history. Specifically, African and Asian populations clustered separately from breeds of European origin sampled from Australia, New Zealand, Europe and North America. Furthermore, we demonstrate the presence of stratification within some, but not all, ovine breeds. The results emphasize that careful documentation of genetic structure will be an essential prerequisite when mapping the genetic basis of complex traits. Furthermore, the identification of a subset of SNP able to assign individuals into broad groupings demonstrates even a small panel of markers may be suitable for applications such as traceability. PMID:19270757

  17. Genetic analysis of mitochondrial DNA control region variations in four tribes of Khyber Pakhtunkhwa, Pakistan.

    PubMed

    Bhatti, Shahzad; Aslamkhan, M; Abbas, Sana; Attimonelli, Marcella; Aydin, Hikmet Hakan; de Souza, Erica Martinha Silva

    2017-09-01

    Due to its geo strategic position at the crossroad of Asia, Pakistan has gained crucial importance of playing its pivotal role in subsequent human migratory events, both prehistoric and historic. This human movement became possible through an ancient overland network of trails called "The Silk Route" linking Asia Minor, Middle East China, Central Asia and Southeast Asia. This study was conducted to analyze complete mitochondrial control region samples of 100 individuals of four major Pashtun tribes namely, Bangash, Khattak, Mahsuds and Orakzai in the province of Khyber Pakhtunkhwa, Pakistan. All Pashtun tribes revealed high genetic diversity which is comparable to the other Central Asian, Southeast Asian and European populations. The configuration of genetic variation and heterogeneity further unveiled through Multidimensional Scaling, Principal Component Analysis and phylogenetic analysis. The results revealed that Pashtun are the composite mosaic of West Eurasian ancestry of numerous geographic origin. They received substantial gene flow during different invasive movements and have a high element of the Western provenance. The most common haplogroups reported in this study are: South Asian haplogroups M (28%) and R (8%); whereas, West Asians haplogroups are present, albeit in high frequencies (67%) and widespread over all; HV (15%), U (17%), H (9%), J (8%), K (8%), W (4%), N (3%) and T (3%). Moreover, we linked the unexplored genetic connection between Ashkenazi Jews and Pashtun. The presence of specific haplotypes J1b (4%) and K1a1b1a (5%) pointed to a genetic connection of Jewish conglomeration in Khattak tribe. This was a result of an ancient genetic influx in the early Neolithic period that led to the formation of a diverse genetic substratum in present day Pashtun.

  18. Application of the Linux cluster for exhaustive window haplotype analysis using the FBAT and Unphased programs.

    PubMed

    Mishima, Hiroyuki; Lidral, Andrew C; Ni, Jun

    2008-05-28

    Genetic association studies have been used to map disease-causing genes. A newly introduced statistical method, called exhaustive haplotype association study, analyzes genetic information consisting of different numbers and combinations of DNA sequence variations along a chromosome. Such studies involve a large number of statistical calculations and subsequently high computing power. It is possible to develop parallel algorithms and codes to perform the calculations on a high performance computing (HPC) system. However, most existing commonly-used statistic packages for genetic studies are non-parallel versions. Alternatively, one may use the cutting-edge technology of grid computing and its packages to conduct non-parallel genetic statistical packages on a centralized HPC system or distributed computing systems. In this paper, we report the utilization of a queuing scheduler built on the Grid Engine and run on a Rocks Linux cluster for our genetic statistical studies. Analysis of both consecutive and combinational window haplotypes was conducted by the FBAT (Laird et al., 2000) and Unphased (Dudbridge, 2003) programs. The dataset consisted of 26 loci from 277 extended families (1484 persons). Using the Rocks Linux cluster with 22 compute-nodes, FBAT jobs performed about 14.4-15.9 times faster, while Unphased jobs performed 1.1-18.6 times faster compared to the accumulated computation duration. Execution of exhaustive haplotype analysis using non-parallel software packages on a Linux-based system is an effective and efficient approach in terms of cost and performance.

  19. Application of the Linux cluster for exhaustive window haplotype analysis using the FBAT and Unphased programs

    PubMed Central

    Mishima, Hiroyuki; Lidral, Andrew C; Ni, Jun

    2008-01-01

    Background Genetic association studies have been used to map disease-causing genes. A newly introduced statistical method, called exhaustive haplotype association study, analyzes genetic information consisting of different numbers and combinations of DNA sequence variations along a chromosome. Such studies involve a large number of statistical calculations and subsequently high computing power. It is possible to develop parallel algorithms and codes to perform the calculations on a high performance computing (HPC) system. However, most existing commonly-used statistic packages for genetic studies are non-parallel versions. Alternatively, one may use the cutting-edge technology of grid computing and its packages to conduct non-parallel genetic statistical packages on a centralized HPC system or distributed computing systems. In this paper, we report the utilization of a queuing scheduler built on the Grid Engine and run on a Rocks Linux cluster for our genetic statistical studies. Results Analysis of both consecutive and combinational window haplotypes was conducted by the FBAT (Laird et al., 2000) and Unphased (Dudbridge, 2003) programs. The dataset consisted of 26 loci from 277 extended families (1484 persons). Using the Rocks Linux cluster with 22 compute-nodes, FBAT jobs performed about 14.4–15.9 times faster, while Unphased jobs performed 1.1–18.6 times faster compared to the accumulated computation duration. Conclusion Execution of exhaustive haplotype analysis using non-parallel software packages on a Linux-based system is an effective and efficient approach in terms of cost and performance. PMID:18541045

  20. In situ genetic differentiation in a Hispaniolan lizard (Ameiva chrysolaema): a multilocus perspective.

    PubMed

    Gifford, Matthew E; Larson, Allan

    2008-10-01

    A previous phylogeographic study of mitochondrial haplotypes for the Hispaniolan lizard Ameiva chrysolaema revealed deep genetic structure associated with seawater inundation during the late Pliocene/early Pleistocene and evidence of subsequent population expansion into formerly inundated areas. We revisit hypotheses generated by our previous study using increased geographic sampling of populations and analysis of three nuclear markers (alpha-enolase intron 8, alpha-cardiac-actin intron 4, and beta-actin intron 3) in addition to mitochondrial haplotypes (ND2). Large genetic discontinuities correspond spatially and temporally with historical barriers to gene flow (sea inundations). NCPA cross-validation analysis and Bayesian multilocus analyses of divergence times (IMa and MCMCcoal) reveal two separate episodes of fragmentation associated with Pliocene and Pleistocene sea inundations, separating the species into historically separate Northern, East-Central, West-Central, and Southern population lineages. Multilocus Bayesian analysis using IMa indicates asymmetrical migration from the East-Central to the West-Central populations following secondary contact, consistent with expectations from the more pervasive sea inundation in the western region. The West-Central lineage has a genetic signature of population growth consistent with the expectation of geographic expansion into formerly inundated areas. Within each lineage, significant spatial genetic structure indicates isolation by distance at comparable temporal scales. This study adds to the growing body of evidence that vicariant speciation may be the prevailing source of lineage accumulation on oceanic islands. Thus, prior theories of island biogeography generally underestimate the role and temporal scale of intra-island vicariant processes.

  1. Immunohistochemical characterization of endometrial carcinomas: endometrioid, serous and clear cell adenocarcinomas in association with genetic analysis.

    PubMed

    Yasuda, Masanori

    2014-12-01

    Developments in immunohistochemistry, which are closely linked with the advances in the analyses of genetic abnormalities and their associated molecular disorders as early and late histogenetic events, have contributed greatly to the improvement of pathological diagnostic confirmation and validation. Immunohistochemistry has also generated great benefit to the innovation of therapeutic strategies for various kinds of cancers. In this article, the three representative histological types of corpus cancer, namely, endometrioid adenocarcinoma, serous adenocarcinoma and clear cell adenocarcinoma, will be histologically approached in association with their immunohistochemical profiles as well as genetic disorders. First, the focus will be on 'Conventional/prototypic features,' followed by 'Controversy over conventional histological subclassification,' and subsequently 'Tumorigenesis and re-subclassification'. © 2014 The Author. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  2. Linkage disequilibrium analysis in young populations: Pseudo-vitamin D-deficiency rickets and the founder effect in French Canadians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labuda, M.; Glorieux, F.H.; Labuda, D.

    1996-09-01

    Pseudo-vitamin D-deficiency rickets (PDDR) was mapped close to D12S90 and between proximal D12S312 and distal (D12S305, D12S104) microsatellites that were subsequently found on a single YAC clone. Analysis of a complex haplotype in linkage disequilibrium (LD) with the disease discriminated among distinct founder effects in French Canadian populations in Acadia and in Charlevoix-Saguenay-Lac-Saint-Jean (Ch-SLSJ), as well as an earlier one in precolonial Europe. A simple demographic model suggested the historical age of the founder effect in Ch-SLSJ to be {approximately}12 generations. The corresponding LD data are consistent with this figure when they are analyzed within the framework of Luria-Delbruck model,more » which takes into account the population growth. Population sampling due to a limited number of first settlers and the rapid demographic expansion appear to have played a major role in the founding of PDDR in Ch-SLSJ and, presumably, other genetic disorders endemic to French Canada. Similarly, the founder effect in Ashkenazim, coinciding with their early settlement in medieval Poland and subsequent expansion eastward, could explain the origin of frequent genetic diseases in this population. 48 refs., 5 figs., 2 tabs.« less

  3. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family.

    PubMed

    Danisman, Selahattin; van Dijk, Aalt D J; Bimbo, Andrea; van der Wal, Froukje; Hennig, Lars; de Folter, Stefan; Angenent, Gerco C; Immink, Richard G H

    2013-12-01

    Analyses of the functions of TEOSINTE-LIKE1, CYCLOIDEA, and PROLIFERATING CELL FACTOR1 (TCP) transcription factors have been hampered by functional redundancy between its individual members. In general, putative functionally redundant genes are predicted based on sequence similarity and confirmed by genetic analysis. In the TCP family, however, identification is impeded by relatively low overall sequence similarity. In a search for functionally redundant TCP pairs that control Arabidopsis leaf development, this work performed an integrative bioinformatics analysis, combining protein sequence similarities, gene expression data, and results of pair-wise protein-protein interaction studies for the 24 members of the Arabidopsis TCP transcription factor family. For this, the work completed any lacking gene expression and protein-protein interaction data experimentally and then performed a comprehensive prediction of potential functional redundant TCP pairs. Subsequently, redundant functions could be confirmed for selected predicted TCP pairs by genetic and molecular analyses. It is demonstrated that the previously uncharacterized class I TCP19 gene plays a role in the control of leaf senescence in a redundant fashion with TCP20. Altogether, this work shows the power of combining classical genetic and molecular approaches with bioinformatics predictions to unravel functional redundancies in the TCP transcription factor family.

  4. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family

    PubMed Central

    Danisman, Selahattin; de Folter, Stefan; Immink, Richard G. H.

    2013-01-01

    Analyses of the functions of TEOSINTE-LIKE1, CYCLOIDEA, and PROLIFERATING CELL FACTOR1 (TCP) transcription factors have been hampered by functional redundancy between its individual members. In general, putative functionally redundant genes are predicted based on sequence similarity and confirmed by genetic analysis. In the TCP family, however, identification is impeded by relatively low overall sequence similarity. In a search for functionally redundant TCP pairs that control Arabidopsis leaf development, this work performed an integrative bioinformatics analysis, combining protein sequence similarities, gene expression data, and results of pair-wise protein–protein interaction studies for the 24 members of the Arabidopsis TCP transcription factor family. For this, the work completed any lacking gene expression and protein–protein interaction data experimentally and then performed a comprehensive prediction of potential functional redundant TCP pairs. Subsequently, redundant functions could be confirmed for selected predicted TCP pairs by genetic and molecular analyses. It is demonstrated that the previously uncharacterized class I TCP19 gene plays a role in the control of leaf senescence in a redundant fashion with TCP20. Altogether, this work shows the power of combining classical genetic and molecular approaches with bioinformatics predictions to unravel functional redundancies in the TCP transcription factor family. PMID:24129704

  5. Diagnostic Genetics at a Distance: Von Hippel-Lindau Disease and a Novel Mutation

    PubMed Central

    Prosser, Debra O.; Love, Jennifer M.; Gardner, R. J. McKinlay; Love, Donald R.

    2013-01-01

    Genetic testing at a distance is commonplace where members of a family with a segregating germline mutation are geographically separated. For the most part, this challenge is addressed through the intervention of health professionals in taking and/or processing blood samples for subsequent couriering of DNA to a referral laboratory. In some circumstances, however, the collecting of pivotal clinical material may involve direct patient involvement. We describe such a situation where noninvasive saliva samples were provided by members of a family manifesting Von Hippel-Lindau (VHL) disease. The analysis identified a novel mutation in the VHL gene that was used to exclude other family members as being at risk of VHL disease. PMID:24062953

  6. Quantitative and Comparative Profiling of Protease Substrates through a Genetically Encoded Multifunctional Photocrosslinker.

    PubMed

    He, Dan; Xie, Xiao; Yang, Fan; Zhang, Heng; Su, Haomiao; Ge, Yun; Song, Haiping; Chen, Peng R

    2017-11-13

    A genetically encoded, multifunctional photocrosslinker was developed for quantitative and comparative proteomics. By bearing a bioorthogonal handle and a releasable linker in addition to its photoaffinity warhead, this probe enables the enrichment of transient and low-abundance prey proteins after intracellular photocrosslinking and prey-bait separation, which can be subject to stable isotope dimethyl labeling and mass spectrometry analysis. This quantitative strategy (termed isoCAPP) allowed a comparative proteomic approach to be adopted to identify the proteolytic substrates of an E. coli protease-chaperone dual machinery DegP. Two newly identified substrates were subsequently confirmed by proteolysis experiments. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Comparative genetic diversity in a sample of pony breeds from the U.K. and North America: a case study in the conservation of global genetic resources.

    PubMed

    Winton, Clare L; Plante, Yves; Hind, Pamela; McMahon, Robert; Hegarty, Matthew J; McEwan, Neil R; Davies-Morel, Mina C G; Morgan, Charly M; Powell, Wayne; Nash, Deborah M

    2015-08-01

    Most species exist as subdivided ex situ daughter population(s) derived from a single original group of individuals. Such subdivision occurs for many reasons both natural and manmade. Traditional British and Irish pony breeds were introduced to North America (U.S.A. and Canada) within the last 150 years, and subsequently equivalent breed societies were established. We have analyzed selected U.K. and North American equivalent pony populations as a case study for understanding the relationship between putative source and derived subpopulations. Diversity was measured using mitochondrial DNA and a panel of microsatellite markers. Genetic signatures differed between the North American subpopulations according to historical management processes. Founder effect and stochastic drift was apparent, particularly pronounced in some breeds, with evidence of admixture of imported mares of different North American breeds. This demonstrates the importance of analysis of subpopulations to facilitate understanding the genetic effects of past management practices and to lead to informed future conservation strategies.

  8. Draft genome assembly of the Bengalese finch, Lonchura striata domestica, a model for motor skill variability and learning

    PubMed Central

    Mets, David G; Brainard, Michael S

    2018-01-01

    Abstract Background Vocal learning in songbirds has emerged as a powerful model for sensorimotor learning. Neurobehavioral studies of Bengalese finch (Lonchura striata domestica) song, naturally more variable and plastic than songs of other finch species, have demonstrated the importance of behavioral variability for initial learning, maintenance, and plasticity of vocalizations. However, the molecular and genetic underpinnings of this variability and the learning it supports are poorly understood. Findings To establish a platform for the molecular analysis of behavioral variability and plasticity, we generated an initial draft assembly of the Bengalese finch genome from a single male animal to 151× coverage and an N50 of 3.0 MB. Furthermore, we developed an initial set of gene models using RNA-seq data from 8 samples that comprise liver, muscle, cerebellum, brainstem/midbrain, and forebrain tissue from juvenile and adult Bengalese finches of both sexes. Conclusions We provide a draft Bengalese finch genome and gene annotation to facilitate the study of the molecular-genetic influences on behavioral variability and the process of vocal learning. These data will directly support many avenues for the identification of genes involved in learning, including differential expression analysis, comparative genomic analysis (through comparison to existing avian genome assemblies), and derivation of genetic maps for linkage analysis. Bengalese finch gene models and sequences will be essential for subsequent manipulation (molecular or genetic) of genes and gene products, enabling novel mechanistic investigations into the role of variability in learned behavior. PMID:29618046

  9. Draft genome assembly of the Bengalese finch, Lonchura striata domestica, a model for motor skill variability and learning.

    PubMed

    Colquitt, Bradley M; Mets, David G; Brainard, Michael S

    2018-03-01

    Vocal learning in songbirds has emerged as a powerful model for sensorimotor learning. Neurobehavioral studies of Bengalese finch (Lonchura striata domestica) song, naturally more variable and plastic than songs of other finch species, have demonstrated the importance of behavioral variability for initial learning, maintenance, and plasticity of vocalizations. However, the molecular and genetic underpinnings of this variability and the learning it supports are poorly understood. To establish a platform for the molecular analysis of behavioral variability and plasticity, we generated an initial draft assembly of the Bengalese finch genome from a single male animal to 151× coverage and an N50 of 3.0 MB. Furthermore, we developed an initial set of gene models using RNA-seq data from 8 samples that comprise liver, muscle, cerebellum, brainstem/midbrain, and forebrain tissue from juvenile and adult Bengalese finches of both sexes. We provide a draft Bengalese finch genome and gene annotation to facilitate the study of the molecular-genetic influences on behavioral variability and the process of vocal learning. These data will directly support many avenues for the identification of genes involved in learning, including differential expression analysis, comparative genomic analysis (through comparison to existing avian genome assemblies), and derivation of genetic maps for linkage analysis. Bengalese finch gene models and sequences will be essential for subsequent manipulation (molecular or genetic) of genes and gene products, enabling novel mechanistic investigations into the role of variability in learned behavior.

  10. Externalizing problems in childhood and adolescence predict subsequent educational achievement but for different genetic and environmental reasons.

    PubMed

    Lewis, Gary J; Asbury, Kathryn; Plomin, Robert

    2017-03-01

    Childhood behavior problems predict subsequent educational achievement; however, little research has examined the etiology of these links using a longitudinal twin design. Moreover, it is unknown whether genetic and environmental innovations provide incremental prediction for educational achievement from childhood to adolescence. We examined genetic and environmental influences on parental ratings of behavior problems across childhood (age 4) and adolescence (ages 12 and 16) as predictors of educational achievement at age 16 using a longitudinal classical twin design. Shared-environmental influences on anxiety, conduct problems, and peer problems at age 4 predicted educational achievement at age 16. Genetic influences on the externalizing behaviors of conduct problems and hyperactivity at age 4 predicted educational achievement at age 16. Moreover, novel genetic and (to a lesser extent) nonshared-environmental influences acting on conduct problems and hyperactivity emerged at ages 12 and 16, adding to the genetic prediction from age 4. These findings demonstrate that genetic and shared-environmental factors underpinning behavior problems in early childhood predict educational achievement in midadolescence. These findings are consistent with the notion that early-childhood behavior problems reflect the initiation of a life-course persistent trajectory with concomitant implications for social attainment. However, we also find evidence that genetic and nonshared-environment innovations acting on behavior problems have implications for subsequent educational achievement, consistent with recent work arguing that adolescence represents a sensitive period for socioaffective development. © 2016 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for Child and Adolescent Mental Health.

  11. Cancer Cytogenetics: Methodology Revisited

    PubMed Central

    2014-01-01

    The Philadelphia chromosome was the first genetic abnormality discovered in cancer (in 1960), and it was found to be consistently associated with CML. The description of the Philadelphia chromosome ushered in a new era in the field of cancer cytogenetics. Accumulating genetic data have been shown to be intimately associated with the diagnosis and prognosis of neoplasms; thus, karyotyping is now considered a mandatory investigation for all newly diagnosed leukemias. The development of FISH in the 1980s overcame many of the drawbacks of assessing the genetic alterations in cancer cells by karyotyping. Karyotyping of cancer cells remains the gold standard since it provides a global analysis of the abnormalities in the entire genome of a single cell. However, subsequent methodological advances in molecular cytogenetics based on the principle of FISH that were initiated in the early 1990s have greatly enhanced the efficiency and accuracy of karyotype analysis by marrying conventional cytogenetics with molecular technologies. In this review, the development, current utilization, and technical pitfalls of both the conventional and molecular cytogenetics approaches used for cancer diagnosis over the past five decades will be discussed. PMID:25368816

  12. A de novo deletion mutation in SOX10 in a Chinese family with Waardenburg syndrome type 4.

    PubMed

    Wang, Xiong; Zhu, Yaowu; Shen, Na; Peng, Jing; Wang, Chunyu; Liu, Haiyi; Lu, Yanjun

    2017-01-27

    Waardenburg syndrome type 4 (WS4) or Waardenburg-Shah syndrome is a rare genetic disorder with a prevalence of <1/1,000,000 and characterized by the association of congenital sensorineural hearing loss, pigmentary abnormalities, and intestinal aganglionosis. There are three types of WS4 (WS4A-C) caused by mutations in endothelin receptor type B, endothelin 3, and SRY-box 10 (SOX10), respectively. This study investigated a genetic mutation in a Chinese family with one WS4 patient in order to improve genetic counselling. Genomic DNA was extracted, and mutation analysis of the three WS4 related genes was performed using Sanger sequencing. We detected a de novo heterozygous deletion mutation [c.1333delT (p.Ser445Glnfs*57)] in SOX10 in the patient; however, this mutation was absent in the unaffected parents and 40 ethnicity matched healthy controls. Subsequent phylogenetic analysis and three-dimensional modelling of the SOX10 protein confirmed that the c.1333delT heterozygous mutation was pathogenic, indicating that this mutation might constitute a candidate disease-causing mutation.

  13. A de novo deletion mutation in SOX10 in a Chinese family with Waardenburg syndrome type 4

    PubMed Central

    Wang, Xiong; Zhu, Yaowu; Shen, Na; Peng, Jing; Wang, Chunyu; Liu, Haiyi; Lu, Yanjun

    2017-01-01

    Waardenburg syndrome type 4 (WS4) or Waardenburg-Shah syndrome is a rare genetic disorder with a prevalence of <1/1,000,000 and characterized by the association of congenital sensorineural hearing loss, pigmentary abnormalities, and intestinal aganglionosis. There are three types of WS4 (WS4A–C) caused by mutations in endothelin receptor type B, endothelin 3, and SRY-box 10 (SOX10), respectively. This study investigated a genetic mutation in a Chinese family with one WS4 patient in order to improve genetic counselling. Genomic DNA was extracted, and mutation analysis of the three WS4 related genes was performed using Sanger sequencing. We detected a de novo heterozygous deletion mutation [c.1333delT (p.Ser445Glnfs*57)] in SOX10 in the patient; however, this mutation was absent in the unaffected parents and 40 ethnicity matched healthy controls. Subsequent phylogenetic analysis and three-dimensional modelling of the SOX10 protein confirmed that the c.1333delT heterozygous mutation was pathogenic, indicating that this mutation might constitute a candidate disease-causing mutation. PMID:28128317

  14. Genetic heritage of the Old Order Mennonites of southeastern Pennsylvania.

    PubMed

    Puffenberger, E G

    2003-08-15

    The Old Order Mennonites of southeastern Pennsylvania are a religious isolate with origins in 16th-century Switzerland. The Swiss Mennonites immigrated to Pennsylvania over a 50-year period in the early 18th century. The history of this population in the United States provides insight into the increased incidence of several genetic diseases, most notably maple syrup urine disease (MSUD), Hirschsprung disease (HSCR), and congenital nephrotic syndrome. A comparison between the Old Order Mennonites and the Old Order Amish demonstrates the unique genetic heritage of each group despite a common religious and geographic history. Unexpectedly, several diseases in both groups demonstrate allelic and/or locus heterogeneity. The population genetics of the 1312T --> A BCKDHA gene mutation, which causes classical MSUD, are presented in detail. The incidence of MSUD in the Old Order Mennonites is estimated to be 1/358 births, yielding a corrected carrier frequency of 7.96% and a mutation allele frequency of 4.15%. Analysis of the population demonstrates that repeated cycles of sampling effects, population bottlenecks, and subsequent genetic drift were important in shaping the current allele frequencies. A linkage disequilibrium analysis of 1312T --> A mutation haplotypes is provided and discussed in the context of the known genealogical history of the population. Finally, data from microsatellite marker genotyping within the Old Order Mennonite population are provided that show a significant but modest decrease in genetic diversity and elevated levels of background linkage disequilibrium. Copyright 2003 Wiley-Liss, Inc.

  15. Lack of validation of genetic variants associated with anti-tumor necrosis factor therapy response in rheumatoid arthritis: a genome-wide association study replication and meta-analysis.

    PubMed

    Márquez, Ana; Ferreiro-Iglesias, Aida; Dávila-Fajardo, Cristina L; Montes, Ariana; Pascual-Salcedo, Dora; Perez-Pampin, Eva; Moreno-Ramos, Manuel J; García-Portales, Rosa; Navarro, Federico; Moreira, Virginia; Magro, César; Caliz, Rafael; Ferrer, Miguel Angel; Alegre-Sancho, Juan José; Joven, Beatriz; Carreira, Patricia; Balsa, Alejandro; Vasilopoulos, Yiannis; Sarafidou, Theologia; Cabeza-Barrera, José; Narvaez, Javier; Raya, Enrique; Cañete, Juan D; Fernández-Nebro, Antonio; Ordóñez, María del Carmen; de la Serna, Arturo R; Magallares, Berta; Gomez-Reino, Juan J; González, Antonio; Martín, Javier

    2014-03-11

    In this study, our aim was to elucidate the role of four polymorphisms identified in a prior large genome-wide association study (GWAS) in which the investigators analyzed the responses of patients with rheumatoid arthritis (RA) to treatment with tumor necrosis factor inhibitors (TNFi). The authors of that study reported that the four genetic variants were significantly associated. However, none of the associations reached GWAS significance, and two subsequent studies failed to replicate these associations. The four polymorphisms (rs12081765, rs1532269, rs17301249 and rs7305646) were genotyped in a total of 634 TNFi-treated RA patients of Spanish Caucasian origin. Four outcomes were evaluated: changes in the Disease Activity Score in 28 joints (DAS28) after 6 and 12 months of treatment and classification according to the European League Against Rheumatism (EULAR) response criteria at the same time points. Association with DAS28 changes was assessed by linear regression using an additive genetic model. Contingency tables of genotype and allele frequencies between EULAR responder and nonresponder patients were compared. In addition, we combined our data with those of previously reported studies in a meta-analysis including 2,998 RA patients. None of the four genetic variants showed an association with response to TNFi in any of the four outcomes analyzed in our Spanish patients. In addition, only rs1532269 yielded a suggestive association (P = 0.0033) with the response to TNFi when available data from previous studies were combined in the meta-analysis. Our data suggest that the rs12081765, rs1532269, rs17301249 and rs7305646 genetic variants do not have a role as genetic predictors of TNFi treatment outcomes.

  16. Genetic affinities of the Siddis of South India: an emigrant population of East Africa.

    PubMed

    Gauniyal, Mansi; Chahal, S M S; Kshatriya, Gautam K

    2008-06-01

    Historical records indicate that the Portuguese brought the African Siddis to Goa, India, as slaves about 500 years ago. Subsequently, the Siddis moved into the interior regions of the state of Karnataka, India, and have remained there ever since. Over time the Siddis have experienced considerable cultural changes because of their proximity to neighboring population groups. To understand the biological consequences of these changes, we studied the Siddis to determine the extent of genetic variation and the contributions from the African, European, and Indian ancestral populations. In the present study we typed the Siddis for 20 polymorphic serological, red cell, and Alu insertion-deletion loci. The overall pattern of phenotype (and genotype) distribution is in accordance with Hardy-Weinberg expectations. Considering the ethnohistorical records and the availability of secondary-source genetic data, we used two data sets in the analysis: one comprising eight serological and red cell enzyme markers with eight population groups and another comprising six Alu insertion-deletion markers with seven tribal groups of South India. The dendrograms generated from these two data sets on the basis of genetic distance analysis between the selected populations of African, European, and Indian descent reveals that the Siddis are closer to the Africans than they are to the South Indian populations. Genetic admixture analysis using a dihybrid model (19 loci) and a trihybrid model (10 loci and 8 loci) shows that the predominant influence comes from the Africans, a lesser contribution from the South Indians, and a slight contribution from the Portuguese. Thus the original composition of the African genes among the Siddis has been diluted to some extent by the contribution from southern Indian population groups. There is no nonrandom association of alleles among a set of 10 genetic marker systems considered in the present study. The demonstration of genetic homogeneity of the Siddis, despite their admixed origin, suggests the utility of this population for genetic and epidemiological studies.

  17. Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean.

    PubMed

    Planes, S; Fauvelot, C

    2002-02-01

    We studied the genetic diversity of a coral reef fish species to investigate the origin of the differentiation. A total of 727 Acanthurus triostegus collected from 15 locations throughout the Pacific were analyzed for 20 polymorphic loci. The genetic structure showed limited internal disequilibrium within each population; 3.7% of the loci showed significant Hardy-Weinberg disequilibrium, mostly associated with Adh*, and we subsequently removed this locus from further analysis of geographic pattern. The genetic structure of A. triostegus throughout the tropical Pacific Ocean revealed a strong geographic pattern. Overall, there was significant population differentiation (multilocus F(ST) = 0.199), which was geographically structured according to bootstraps of neighbor-joining analysis on Nei's unbiased genetic distances and AMOVA analysis. The genetic structure revealed five geographic groups in the Pacific Ocean: western Pacific (Guam, Philippines, Palau, and Great Barrier Reef); central Pacific (Solomons, New Caledonia, and Fiji); and three groups made up of the eastern populations, namely Hawaiian Archipelago (north), Marquesas (equatorial), and southern French Polynesia (south) that incorporates Clipperton Island located in the northeastern Pacific. In addition, heterozygosity values were found to be geographically structured with higher values grouped within Polynesian and Clipperton populations, which exhibited lower population size. Finally, the genetic differentiation (F(ST)) was significantly correlated with geographic distance when populations from the Hawaiian and Marquesas archipelagos were separated from all the other locations. These results show that patterns of differentiation vary within the same species according to the spatial scale, with one group probably issued from vicariance, whereas the other followed a pattern of isolation by distance. The geographic pattern for A. triostegus emphasizes the diversity of the evolutionary processes that lead to the present genetic structure with some being more influential in certain areas or according to a particular spatial scale.

  18. Whole Genome Analysis of a Wine Yeast Strain

    PubMed Central

    Hauser, Nicole C.; Fellenberg, Kurt; Gil, Rosario; Bastuck, Sonja; Hoheisel, Jörg D.

    2001-01-01

    Saccharomyces cerevisiae strains frequently exhibit rather specific phenotypic features needed for adaptation to a special environment. Wine yeast strains are able to ferment musts, for example, while other industrial or laboratory strains fail to do so. The genetic differences that characterize wine yeast strains are poorly understood, however. As a first search of genetic differences between wine and laboratory strains, we performed DNA-array analyses on the typical wine yeast strain T73 and the standard laboratory background in S288c. Our analysis shows that even under normal conditions, logarithmic growth in YPD medium, the two strains have expression patterns that differ significantly in more than 40 genes. Subsequent studies indicated that these differences correlate with small changes in promoter regions or variations in gene copy number. Blotting copy numbers vs. transcript levels produced patterns, which were specific for the individual strains and could be used for a characterization of unknown samples. PMID:18628902

  19. The genomics of selection in dogs and the parallel evolution between dogs and humans.

    PubMed

    Wang, Guo-dong; Zhai, Weiwei; Yang, He-chuan; Fan, Ruo-xi; Cao, Xue; Zhong, Li; Wang, Lu; Liu, Fei; Wu, Hong; Cheng, Lu-guang; Poyarkov, Andrei D; Poyarkov, Nikolai A; Tang, Shu-sheng; Zhao, Wen-ming; Gao, Yun; Lv, Xue-mei; Irwin, David M; Savolainen, Peter; Wu, Chung-I; Zhang, Ya-ping

    2013-01-01

    The genetic bases of demographic changes and artificial selection underlying domestication are of great interest in evolutionary biology. Here we perform whole-genome sequencing of multiple grey wolves, Chinese indigenous dogs and dogs of diverse breeds. Demographic analysis show that the split between wolves and Chinese indigenous dogs occurred 32,000 years ago and that the subsequent bottlenecks were mild. Therefore, dogs may have been under human selection over a much longer time than previously concluded, based on molecular data, perhaps by initially scavenging with humans. Population genetic analysis identifies a list of genes under positive selection during domestication, which overlaps extensively with the corresponding list of positively selected genes in humans. Parallel evolution is most apparent in genes for digestion and metabolism, neurological process and cancer. Our study, for the first time, draws together humans and dogs in their recent genomic evolution.

  20. Optimization to the Culture Conditions for Phellinus Production with Regression Analysis and Gene-Set Based Genetic Algorithm

    PubMed Central

    Li, Zhongwei; Xin, Yuezhen; Wang, Xun; Sun, Beibei; Xia, Shengyu; Li, Hui

    2016-01-01

    Phellinus is a kind of fungus and is known as one of the elemental components in drugs to avoid cancers. With the purpose of finding optimized culture conditions for Phellinus production in the laboratory, plenty of experiments focusing on single factor were operated and large scale of experimental data were generated. In this work, we use the data collected from experiments for regression analysis, and then a mathematical model of predicting Phellinus production is achieved. Subsequently, a gene-set based genetic algorithm is developed to optimize the values of parameters involved in culture conditions, including inoculum size, PH value, initial liquid volume, temperature, seed age, fermentation time, and rotation speed. These optimized values of the parameters have accordance with biological experimental results, which indicate that our method has a good predictability for culture conditions optimization. PMID:27610365

  1. Common variants in ZMIZ1 and near NGF confer risk for primary dysmenorrhoea

    PubMed Central

    Li, Zhiqiang; Chen, Jianhua; Zhao, Ying; Wang, Yujiong; Xu, Jinrui; Ji, Jue; Shen, Jingyi; Zhang, Weiping; Chen, Zuosong; Sun, Qilin; Mao, Lijuan; Cheng, Shulin; Yang, Bo; Zhang, Dongtao; Xu, Yufeng; Zhao, Yingying; Liu, Danping; Shen, Yinhuan; Zhang, Weijie; Li, Changgui; Shen, Jiawei; Shi, Yongyong

    2017-01-01

    Primary dysmenorrhoea, defined as painful menstrual cramps in the absence of pelvic pathology, is a common problem in women of reproductive age. Its aetiology and pathophysiology remain largely unknown. Here we performed a two-stage genome-wide association study and subsequent replication study to identify genetic factors associated with primary dysmenorrhoea in a total of 6,770 Chinese individuals. Our analysis provided evidence of a significant (P<5 × 10−8) association at rs76518691 in the gene ZMIZ1 and at rs7523831 near NGF. ZMIZ1 has previously been associated with several autoimmune diseases, and NGF plays a key role in the generation of pain and hyperalgesia and has been associated with migraine. These findings provide future directions for research on susceptibility mechanisms for primary dysmenorrhoea. Furthermore, our genetic architecture analysis provides molecular support for the heritability and polygenic nature of this condition. PMID:28447608

  2. Retrospective and statistical analysis of breeding management on the Italian Heavy Draught Horse breed.

    PubMed

    Mantovani, R; Sartori, C; Pigozzi, G

    2013-07-01

    This study investigated some aspects of breeding management in the Italian Heavy Draught Horse breed, aiming at improving its efficiency at stud farm level. A first aim was to evaluate the risk of unsuccessful reproduction in mares after an early (3 years) or normal (4 years) age at first foaling, in interaction with different stud rearing systems. A second objective was the examination of the mean time length in which young 2-year-old stallions maintain a genetic superiority on older proven stallions, identifying a 'genetic lifespan' in which young stallions can be safely used for reducing the cost of services. Reproductive performance at first and second foaling of 1513 mares were used. Mares had a normal first foal at 3 (n = 745) or 4 years of age (n = 768) in stud farms on the basis of stable (n = 488), feral (n = 345) or semi-feral (n = 680) rearing systems. Logistic regression analysis was performed by modeling the risk of unsuccessful reproduction in the subsequent season (i.e., results at second foaling), as affected by the interaction of age at first foaling × rearing system (six classes). Genetic lifespan of young stallions was estimated by regressing the least square means from a mixed model analysis for repeated measures of individual differences in 'total merit' estimated breeding values (EBVs) between young stallions (mean no. of 45/year) and the mean EBV of all proven stallions in a given year of genetic evaluation (mean no. of 483/year). Young stallions born between 1999 and 2005 were used, following each generation (i.e., birth year) from 2 to 7 subsequent yearly genetic evaluations. In comparison with the best reproductive success of second foaling at 4 years in stable systems, the greatest risk of unsuccessful reproduction was at 3 years in feral (+167%) and 3 years in semi-feral conditions (+91%). Young stallions showed a 0.50 s.d. greater EBV at the first evaluation than proven stallions, with a mean annual decrease in EBV of 0.07 s.d./year on proven stallions. Optimal breeding management could be obtained in stud farms by limiting foaling at 3 years, particularly in feral and semi-feral rearing systems, and using young stallions for 3 to 4 years to maintain a perceptible selection differential with older proven stallions and to reduce cost of services. Later, the selection differential with proven stallions become less consistent and genetic improvement could be slowed down.

  3. Discordant genetic diversity and geographic patterns between Crassicutis cichlasomae (Digenea: Apocreadiidae) and its cichlid host, "Cichlasoma" urophthalmus (Osteichthyes: Cichlidae), in Middle-America.

    PubMed

    Razo-Mendivil, Ulises; Vázquez-Domínguez, Ella; de León, Gerardo Pérez-Ponce

    2013-12-01

    Genetic analyses of hosts and their parasites are key to understand the evolutionary patterns and processes that have shaped host-parasite associations. We evaluated the genetic structure of the digenean Crassicutis cichlasomae and its most common host, the Mayan cichlid "Cichlasoma" urophthalmus, encompassing most of their geographical range in Middle-America (river basins in southeastern Mexico, Belize, and Guatemala together with the Yucatan Peninsula). Genetic diversity and structure analyses were done based on 167 cytochrome c oxidase subunit 1 sequences (330 bp) for C. cichlasomae from 21 populations and 161 cytochrome b sequences (599 bp) for "C." urophthalmus from 26 populations. Analyses performed included phylogenetic tree estimation under Bayesian inference and maximum likelihood analysis, genetic diversity, distance and structure estimates, haplotype networks, and demographic evaluations. Crassicutis cichlasomae showed high genetic diversity values and genetic structuring, corresponding with 4 groups clearly differentiated and highly divergent. Conversely, "C." urophthalmus showed low levels of genetic diversity and genetic differentiation, defined as 2 groups with low divergence and with no correspondence with geographical distribution. Our results show that species of cichlids parasitized by C. cichlasomae other than "C." urophthalmus, along with multiple colonization events and subsequent isolation in different basins, are likely factors that shaped the genetic structure of the parasite. Meanwhile, historical long-distance dispersal and drought periods during the Holocene, with significant population size reductions and fragmentations, are factors that could have shaped the genetic structure of the Mayan cichlid.

  4. [THE TECHNOLOGY "CELL BLOCK" IN CYTOLOGICAL PRACTICE].

    PubMed

    Volchenko, N N; Borisova, O V; Baranova, I B

    2015-08-01

    The article presents summary information concerning application of "cell block" technology in cytological practice. The possibilities of implementation of various modern techniques (immune cytochemnical analysis. FISH, CISH, polymerase chain reaction) with application of "cell block" method are demonstrated. The original results of study of "cell block" technology made with gelatin, AgarCyto and Shadon Cyoblock set are presented. The diagnostic effectiveness of "cell block" technology and common cytological smear and also immune cytochemical analysis on samples of "cell block" technology and fluid cytology were compared. Actually application of "cell block" technology is necessary for ensuring preservation of cell elements for subsequent immune cytochemical and molecular genetic analysis.

  5. Korean, Japanese, and Chinese populations featured similar genes encoding drug-metabolizing enzymes and transporters: a DMET Plus microarray assessment.

    PubMed

    Yi, SoJeong; An, Hyungmi; Lee, Howard; Lee, Sangin; Ieiri, Ichiro; Lee, Youngjo; Cho, Joo-Youn; Hirota, Takeshi; Fukae, Masato; Yoshida, Kenji; Nagatsuka, Shinichiro; Kimura, Miyuki; Irie, Shin; Sugiyama, Yuichi; Shin, Dong Wan; Lim, Kyoung Soo; Chung, Jae-Yong; Yu, Kyung-Sang; Jang, In-Jin

    2014-10-01

    Interethnic differences in genetic polymorphism in genes encoding drug-metabolizing enzymes and transporters are one of the major factors that cause ethnic differences in drug response. This study aimed to investigate genetic polymorphisms in genes involved in drug metabolism, transport, and excretion among Korean, Japanese, and Chinese populations, the three major East Asian ethnic groups. The frequencies of 1936 variants representing 225 genes encoding drug-metabolizing enzymes and transporters were determined from 786 healthy participants (448 Korean, 208 Japanese, and 130 Chinese) using the Affymetrix Drug-Metabolizing Enzymes and Transporters Plus microarray. To compare allele or genotype frequencies in the high-dimensional data among the three East Asian ethnic groups, multiple testing, principal component analysis (PCA), and regularized multinomial logit model through least absolute shrinkage and selection operator were used. On microarray analysis, 1071 of 1936 variants (>50% of markers) were found to be monomorphic. In a large number of genetic variants, the fixation index and Pearson's correlation coefficient of minor allele frequencies were less than 0.034 and greater than 0.95, respectively, among the three ethnic groups. PCA identified 47 genetic variants with multiple testing, but was unable to discriminate ethnic groups by the first three components. Multinomial least absolute shrinkage and selection operator analysis identified 269 genetic variants that showed different frequencies among the three ethnic groups. However, none of those variants distinguished between the three ethnic groups during subsequent PCA. Korean, Japanese, and Chinese populations are not pharmacogenetically distant from one another, at least with regard to drug disposition, metabolism, and elimination.

  6. Methamphetamine drinking microstructure in mice bred to drink high or low amounts of methamphetamine

    PubMed Central

    Eastwood, Emily C.; Barkley-Levenson, Amanda M.; Phillips, Tamara J.

    2014-01-01

    Genetic factors likely influence individual sensitivity to positive and negative effects of methamphetamine (MA) and risk for MA dependence. Genetic influence on MA consumption has been confirmed by selectively breeding mouse lines to consume high (MAHDR) or low (MALDR) amounts of MA, using a two-bottle choice MA drinking (MADR) procedure. Here, we employed a lickometer system to characterize the microstructure of MA (20, 40, and 80 mg/l) and water intake in MAHDR and MALDR mice in 4-h limited access sessions, during the initial 4 hours of the dark phase of their 12:12 h light:dark cycle. Licks at one-minute intervals and total volume consumed were recorded, and bout analysis was performed. MAHDR and MALDR mice consumed similar amounts of MA in mg/kg on the first day of access, but MAHDR mice consumed significantly more MA than MALDR mice during all subsequent sessions. The higher MA intake of MAHDR mice was associated with a larger number of MA bouts, longer bout duration, shorter interbout interval, and shorter latency to the first bout. In a separate 4-h limited access MA drinking study, MALDR and MAHDR mice had similar blood MA levels on the first day MA was offered, but MAHDR mice had higher blood MA levels on all subsequent days, which corresponded with MA intake. These data provide insight into the microstructure of MA intake in an animal model of differential genetic risk for MA consumption, which may be pertinent to MA use patterns relevant to genetic risk for MA dependence. PMID:24978098

  7. Congenital combined pituitary hormone deficiency attributable to a novel PROP1 mutation (467insT).

    PubMed

    Nose, Osamu; Tatsumi, Keita; Nakano, Yukiko; Amino, Nobuyuki

    2006-04-01

    Combined pituitary hormone deficiency (CPHD) is an anterior pituitary disorder, commonly resulting in growth retardation. PROP1 gene mutations appear to be frequently responsible for CPHD, particularly in Middle and Eastern Europe and the Americas, but few cases have been reported in Japan. Two sisters (aged 8.4 and 4.3 years at presentation) exhibited proportional short stature from about 2 years of age. Genetic analysis determined the nature and location of mutations. Pituitary size by magnetic resonance imaging (MRI) indicated only slight hypoplasia, while hormone analysis revealed deficiencies in secretion of growth hormone (GH), thyroid stimulating hormone, prolactin and gonadotropins; adrenocortinotropin secretion appeared adequate. Genetic analysis revealed a novel familial inherited PROP1 mutation. A unique insertion mutation was found in codon 156 (467insT) located in the transcription-activating region of the PROP1 gene. The resulting PROP1 protein (191 amino acids) would lack the transcription activation domain and consequently be non-functional. Gene analysis suggested that the siblings had inherited a unique autosomal recessive PROP1 gene mutation resulting in severe GH deficiency and subsequent growth retardation.

  8. How the knowledge of genetic "makeup" and cellular data can affect the analysis of repolarization in surface electrocardiogram.

    PubMed

    Shimizu, Wataru

    2010-01-01

    This review article sought to describe patterns of repolarization on the surface electrocardiogram in inherited cardiac arrhythmias and to discuss how the knowledge of genetic makeup and cellular data can affect the analysis based on the data derived from the experimental studies using arterially perfused canine ventricular wedge preparations. Molecular genetic studies have established a link between a number of inherited cardiac arrhythmia syndromes and mutations in genes encoding cardiac ion channels or membrane components during the past 2 decades. Twelve forms of congenital long QT syndrome have been so far identified, and genotype-phenotype correlations have been investigated especially in the 3 major genotypes-LQT1, LQT2, and LQT3. Abnormal T waves are reported in the LQT1, LQT2, and LQT3, and the differences in the time course of repolarization of the epicardial, midmyocardial, and endocardial cells give rise to voltage gradients responsible for the manifestation of phenotypic appearance of abnormal T waves. Brugada syndrome is characterized by ST-segment elevation in leads V1 to V3 and an episode of ventricular fibrillation, in which 7 genotypes have been reported. An intrinsically prominent transient outward current (I(to))-mediated action potential notch and a subsequent loss of action potential dome in the epicardium, but not in the endocardium of the right ventricular outflow tract, give rise to a transmural voltage gradient, resulting in ST-segment elevation, and a subsequent phase 2 reentry-induced ventricular fibrillation. In conclusion, transmural electrical heterogeneity of repolarization across the ventricular wall profoundly affects the phenotypic manifestation of repolarization patterns on the surface electrocardiogram in inherited cardiac arrhythmias. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. An investigation of natural genetic variation in the circadian system of Drosophila melanogaster: rhythm characteristics and methods of quantification.

    PubMed

    Emery, P T; Morgan, E; Birley, A J

    1994-04-01

    Variation in four characteristics of the circadian locomotor activity rhythm was investigated in 24 true-breeding strains of Drosophila melanogaster with a view to establishing methods of phenotypic measurement sufficiently robust to allow subsequent biometric analysis. Between them, these strains formed a representative sample of the genetic variability of a natural population. Period, phase, definition (the degree to which a rhythmic signal was obscured by noise), and rhythm waveform were all found to vary continuously among the strains, although within each strain the rhythm phenotype was remarkably consistent. Each characteristic was found to be sufficiently robust to permit objective measurement using several different methods of quantification, which were then compared.

  10. Estimation of genetic parameters and response to selection for a continuous trait subject to culling before testing.

    PubMed

    Arnason, T; Albertsdóttir, E; Fikse, W F; Eriksson, S; Sigurdsson, A

    2012-02-01

    The consequences of assuming a zero environmental covariance between a binary trait 'test-status' and a continuous trait on the estimates of genetic parameters by restricted maximum likelihood and Gibbs sampling and on response from genetic selection when the true environmental covariance deviates from zero were studied. Data were simulated for two traits (one that culling was based on and a continuous trait) using the following true parameters, on the underlying scale: h² = 0.4; r(A) = 0.5; r(E) = 0.5, 0.0 or -0.5. The selection on the continuous trait was applied to five subsequent generations where 25 sires and 500 dams produced 1500 offspring per generation. Mass selection was applied in the analysis of the effect on estimation of genetic parameters. Estimated breeding values were used in the study of the effect of genetic selection on response and accuracy. The culling frequency was either 0.5 or 0.8 within each generation. Each of 10 replicates included 7500 records on 'test-status' and 9600 animals in the pedigree file. Results from bivariate analysis showed unbiased estimates of variance components and genetic parameters when true r(E) = 0.0. For r(E) = 0.5, variance components (13-19% bias) and especially (50-80%) were underestimated for the continuous trait, while heritability estimates were unbiased. For r(E) = -0.5, heritability estimates of test-status were unbiased, while genetic variance and heritability of the continuous trait together with were overestimated (25-50%). The bias was larger for the higher culling frequency. Culling always reduced genetic progress from selection, but the genetic progress was found to be robust to the use of wrong parameter values of the true environmental correlation between test-status and the continuous trait. Use of a bivariate linear-linear model reduced bias in genetic evaluations, when data were subject to culling. © 2011 Blackwell Verlag GmbH.

  11. Detection of genetic diversity and selection at the coding region of the melanocortin receptor 1 (MC1R) gene in Tibetan pigs and Landrace pigs.

    PubMed

    Liu, Rui; Jin, Long; Long, Keren; Chai, Jie; Ma, Jideng; Tang, Qianzi; Tian, Shilin; Hu, Yaodong; Lin, Ling; Wang, Xun; Jiang, Anan; Li, Xuewei; Li, Mingzhou

    2016-01-10

    Domestication and subsequent selective pressures have produced a large variety of pig coat colors in different regions and breeds. The melanocortin 1 receptor (MC1R) gene plays a crucial role in determining coat color of mammals. Here, we investigated genetic diversity and selection at the coding region of the porcine melanocortin receptor 1 (MC1R) in Tibetan pigs and Landrace pigs. By contrast, genetic variability was much lower in Landrace pigs than in Tibetan pigs. Meanwhile, haplotype analysis showed that Tibetan pigs possessed shared haplotypes, suggesting a possibility of recent introgression event by way of crossbreeding with neighboring domestic pigs or shared ancestral polymorphism. Additionally, we detected positive selection at the MC1R in both Tibetan pigs and Landrace pigs through the dN/dS analysis. These findings suggested that novel phenotypic change (dark coat color) caused by novel mutations may help Tibetan pigs against intensive solar ultraviolet (UV) radiation and camouflage in wild environment, whereas white coat color in Landrace were intentionally selected by human after domestication. Furthermore, both the phylogenetic analysis and the network analysis provided clues that MC1R in Asian and European wild boars may have initially experienced different selective pressures, and MC1R alleles diversified in modern domesticated pigs. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A genome-wide association study of corneal astigmatism: The CREAM Consortium.

    PubMed

    Shah, Rupal L; Li, Qing; Zhao, Wanting; Tedja, Milly S; Tideman, J Willem L; Khawaja, Anthony P; Fan, Qiao; Yazar, Seyhan; Williams, Katie M; Verhoeven, Virginie J M; Xie, Jing; Wang, Ya Xing; Hess, Moritz; Nickels, Stefan; Lackner, Karl J; Pärssinen, Olavi; Wedenoja, Juho; Biino, Ginevra; Concas, Maria Pina; Uitterlinden, André; Rivadeneira, Fernando; Jaddoe, Vincent W V; Hysi, Pirro G; Sim, Xueling; Tan, Nicholas; Tham, Yih-Chung; Sensaki, Sonoko; Hofman, Albert; Vingerling, Johannes R; Jonas, Jost B; Mitchell, Paul; Hammond, Christopher J; Höhn, René; Baird, Paul N; Wong, Tien-Yin; Cheng, Chinfsg-Yu; Teo, Yik Ying; Mackey, David A; Williams, Cathy; Saw, Seang-Mei; Klaver, Caroline C W; Guggenheim, Jeremy A; Bailey-Wilson, Joan E

    2018-01-01

    To identify genes and genetic markers associated with corneal astigmatism. A meta-analysis of genome-wide association studies (GWASs) of corneal astigmatism undertaken for 14 European ancestry (n=22,250) and 8 Asian ancestry (n=9,120) cohorts was performed by the Consortium for Refractive Error and Myopia. Cases were defined as having >0.75 diopters of corneal astigmatism. Subsequent gene-based and gene-set analyses of the meta-analyzed results of European ancestry cohorts were performed using VEGAS2 and MAGMA software. Additionally, estimates of single nucleotide polymorphism (SNP)-based heritability for corneal and refractive astigmatism and the spherical equivalent were calculated for Europeans using LD score regression. The meta-analysis of all cohorts identified a genome-wide significant locus near the platelet-derived growth factor receptor alpha ( PDGFRA ) gene: top SNP: rs7673984, odds ratio=1.12 (95% CI:1.08-1.16), p=5.55×10 -9 . No other genome-wide significant loci were identified in the combined analysis or European/Asian ancestry-specific analyses. Gene-based analysis identified three novel candidate genes for corneal astigmatism in Europeans-claudin-7 ( CLDN7 ), acid phosphatase 2, lysosomal ( ACP2 ), and TNF alpha-induced protein 8 like 3 ( TNFAIP8L3 ). In addition to replicating a previously identified genome-wide significant locus for corneal astigmatism near the PDGFRA gene, gene-based analysis identified three novel candidate genes, CLDN7 , ACP2 , and TNFAIP8L3 , that warrant further investigation to understand their role in the pathogenesis of corneal astigmatism. The much lower number of genetic variants and genes demonstrating an association with corneal astigmatism compared to published spherical equivalent GWAS analyses suggest a greater influence of rare genetic variants, non-additive genetic effects, or environmental factors in the development of astigmatism.

  13. Using coordinate-based meta-analyses to explore structural imaging genetics.

    PubMed

    Janouschek, Hildegard; Eickhoff, Claudia R; Mühleisen, Thomas W; Eickhoff, Simon B; Nickl-Jockschat, Thomas

    2018-05-05

    Imaging genetics has become a highly popular approach in the field of schizophrenia research. A frequently reported finding is that effects from common genetic variation are associated with a schizophrenia-related structural endophenotype. Genetic contributions to a structural endophenotype may be easier to delineate, when referring to biological rather than diagnostic criteria. We used coordinate-based meta-analyses, namely the anatomical likelihood estimation (ALE) algorithm on 30 schizophrenia-related imaging genetics studies, representing 44 single-nucleotide polymorphisms at 26 gene loci investigated in 4682 subjects. To test whether analyses based on biological information would improve the convergence of results, gene ontology (GO) terms were used to group the findings from the published studies. We did not find any significant results for the main contrast. However, our analysis enrolling studies on genotype × diagnosis interaction yielded two clusters in the left temporal lobe and the medial orbitofrontal cortex. All other subanalyses did not yield any significant results. To gain insight into possible biological relationships between the genes implicated by these clusters, we mapped five of them to GO terms of the category "biological process" (AKT1, CNNM2, DISC1, DTNBP1, VAV3), then five to "cellular component" terms (AKT1, CNNM2, DISC1, DTNBP1, VAV3), and three to "molecular function" terms (AKT1, VAV3, ZNF804A). A subsequent cluster analysis identified representative, non-redundant subsets of semantically similar terms that aided a further interpretation. We regard this approach as a new option to systematically explore the richness of the literature in imaging genetics.

  14. Population genomic analysis suggests strong influence of river network on spatial distribution of genetic variation in invasive saltcedar across the southwestern United States

    USGS Publications Warehouse

    Lee, Soo-Rang; Jo, Yeong-Seok; Park, Chan-Ho; Friedman, Jonathan M.; Olson, Matthew S.

    2018-01-01

    Understanding the complex influences of landscape and anthropogenic elements that shape the population genetic structure of invasive species provides insight into patterns of colonization and spread. The application of landscape genomics techniques to these questions may offer detailed, previously undocumented insights into factors influencing species invasions. We investigated the spatial pattern of genetic variation and the influences of landscape factors on population similarity in an invasive riparian shrub, saltcedar (Tamarix L.) by analysing 1,997 genomewide SNP markers for 259 individuals from 25 populations collected throughout the southwestern United States. Our results revealed a broad-scale spatial genetic differentiation of saltcedar populations between the Colorado and Rio Grande river basins and identified potential barriers to population similarity along both river systems. River pathways most strongly contributed to population similarity. In contrast, low temperature and dams likely served as barriers to population similarity. We hypothesize that large-scale geographic patterns in genetic diversity resulted from a combination of early introductions from distinct populations, the subsequent influence of natural selection, dispersal barriers and founder effects during range expansion.

  15. Persistent Genetic and Family-Wide Environmental Contributions to Early Number Knowledge and Later Achievement in Mathematics.

    PubMed

    Garon-Carrier, Gabrielle; Boivin, Michel; Kovas, Yulia; Feng, Bei; Brendgen, Mara; Vitaro, Frank; Séguin, Jean R; Tremblay, Richard E; Dionne, Ginette

    2017-12-01

    This study investigated the stable and transient genetic and environmental contributions to individual differences in number knowledge in the transition from preschool (age 5) to Grade 1 (age 7) and to the predictive association between early number knowledge and later math achievement (age 10-12). We conducted genetic simplex modeling across these three time points. Genetic variance was transmitted from preschool number knowledge to late-elementary math achievement; in addition, significant genetic innovation (i.e., new influence) occurred at ages 10 through 12 years. The shared and nonshared environmental contributions decreased during the transition from preschool to school entry, but shared and nonshared environment contributed to the continuity across time from preschool number knowledge to subsequent number knowledge and math achievement. There was no new environmental contribution at time points subsequent to preschool. Results are discussed in light of their practical implications for children who have difficulties with mathematics, as well as for preventive intervention.

  16. Integrated analyses for genetic markers of polycystic ovary syndrome with 9 case-control studies of gene expression profiles.

    PubMed

    Lu, Chenqi; Liu, Xiaoqin; Wang, Lin; Jiang, Ning; Yu, Jun; Zhao, Xiaobo; Hu, Hairong; Zheng, Saihua; Li, Xuelian; Wang, Guiying

    2017-01-10

    Due to genetic heterogeneity and variable diagnostic criteria, genetic studies of polycystic ovary syndrome are particularly challenging. Furthermore, lack of sufficiently large cohorts limits the identification of susceptibility genes contributing to polycystic ovary syndrome. Here, we carried out a systematic search of studies deposited in the Gene Expression Omnibus database through August 31, 2016. The present analyses included studies with: 1) patients with polycystic ovary syndrome and normal controls, 2) gene expression profiling of messenger RNA, and 3) sufficient data for our analysis. Ultimately, a total of 9 studies with 13 datasets met the inclusion criteria and were performed for the subsequent integrated analyses. Through comprehensive analyses, there were 13 genetic factors overlapped in all datasets and identified as significant specific genes for polycystic ovary syndrome. After quality control assessment, there were six datasets remained. Further gene ontology enrichment and pathway analyses suggested that differentially expressed genes mainly enriched in oocyte pathways. These findings provide potential molecular markers for diagnosis and prognosis of polycystic ovary syndrome, and need in-depth studies on the exact function and mechanism in polycystic ovary syndrome.

  17. Whole-exome sequencing for diagnosis of hereditary ichthyosis.

    PubMed

    Sitek, J C; Kulseth, M A; Rypdal, K B; Skodje, T; Sheng, Y; Retterstøl, L

    2018-02-14

    Hereditary ichthyosis constitutes a diverse group of cornification disorders. Identification of the molecular cause facilitates optimal patient care. We wanted to estimate the diagnostic yield of applying whole-exome sequencing (WES) in the routine genetic workup of inherited ichthyosis. During a 3-year-period, all ichthyosis patients, except X-linked and mild vulgar ichthyosis, consecutively admitted to a university hospital clinic were offered WES with subsequent analysis of ichthyosis-related genes as a first-line genetic investigation. Clinical and molecular data have been collected retrospectively. Genetic variants causative for the ichthyosis were identified in 27 of 34 investigated patients (79.4%). In all, 31 causative mutations across 13 genes were disclosed, including 12 novel variants. TGM1 was the most frequently mutated gene, accounting for 43.7% of patients suffering from autosomal recessive congenital ichthyosis (ARCI). Whole-exome sequencing appears an effective tool in disclosing the molecular cause of patients with hereditary ichthyosis seen in clinical practice and should be considered a first-tier genetic test in these patients. © 2018 European Academy of Dermatology and Venereology.

  18. Evaluation of body condition score measured throughout lactation as an indicator of fertility in dairy cattle.

    PubMed

    Banos, G; Brotherstone, S; Coffey, M P

    2004-08-01

    Body condition score (BCS) records of primiparous Holstein cows were analyzed both as a single measure per animal and as repeated measures per sire of cow. The former resulted in a single, average, genetic evaluation for each sire, and the latter resulted in separate genetic evaluations per day of lactation. Repeated measure analysis yielded genetic correlations of less than unity between days of lactation, suggesting that BCS may not be the same trait across lactation. Differences between daily genetic evaluations on d 10 or 30 and subsequent daily evaluations were used to assess BCS change at different stages of lactation. Genetic evaluations for BCS level or change were used to estimate genetic correlations between BCS measures and fertility traits in order to assess the capacity of BCS to predict fertility. Genetic correlation estimates with calving interval and non-return rate were consistently higher for daily BCS than single measure BCS evaluations, but results were not always statistically different. Genetic correlations between BCS change and fertility traits were not significantly different from zero. The product of the accuracy of BCS evaluations with their genetic correlation with the UK fertility index, comprising calving interval and non-return rate, was consistently higher for daily than for single BCS evaluations, by 28 to 53%. This product is associated with the conceptual correlated response in fertility from BCS selection and was highest for early (d 10 to 75) evaluations.

  19. Transcript expression and genetic variability analysis of caspases in breast carcinomas suggests CASP9 as the most interesting target.

    PubMed

    Brynychova, Veronika; Hlavac, Viktor; Ehrlichova, Marie; Vaclavikova, Radka; Nemcova-Furstova, Vlasta; Pecha, Vaclav; Trnkova, Marketa; Mrhalova, Marcela; Kodet, Roman; Vrana, David; Gatek, Jiri; Bendova, Marie; Vernerova, Zdenka; Kovar, Jan; Soucek, Pavel

    2017-01-01

    Apoptosis plays a critical role in cancer cell survival and tumor development. We provide a hypothesis-generating screen for further research by exploring the expression profile and genetic variability of caspases (2, 3, 7, 8, 9, and 10) in breast carcinoma patients. This study addressed isoform-specific caspase transcript expression and genetic variability in regulatory sequences of caspases 2 and 9. Gene expression profiling was performed by quantitative real-time PCR in tumor and paired non-malignant tissues of two independent groups of patients. Genetic variability was determined by high resolution melting, allelic discrimination, and sequencing analysis in tumor and peripheral blood lymphocyte DNA of the patients. CASP3 A+B and S isoforms were over-expressed in tumors of both patient groups. The CASP9 transcript was down-regulated in tumors of both groups of patients and significantly associated with expression of hormonal receptors and with the presence of rs4645978-rs2020903-rs4646034 haplotype in the CASP9 gene. Patients with a low intratumoral CASP9A/B isoform expression ratio (predicted to shift equilibrium towards anti-apoptotic isoform) subsequently treated with adjuvant chemotherapy had a significantly shorter disease-free survival than those with the high ratio (p=0.04). Inheritance of CC genotype of rs2020903 in CASP9 was associated with progesterone receptor expression in tumors (p=0.003). Genetic variability in CASP9 and expression of its splicing variants present targets for further study.

  20. Glutamatergic and GABAergic gene sets in attention-deficit/hyperactivity disorder: association to overlapping traits in ADHD and autism.

    PubMed

    Naaijen, J; Bralten, J; Poelmans, G; Glennon, J C; Franke, B; Buitelaar, J K

    2017-01-10

    Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorders (ASD) often co-occur. Both are highly heritable; however, it has been difficult to discover genetic risk variants. Glutamate and GABA are main excitatory and inhibitory neurotransmitters in the brain; their balance is essential for proper brain development and functioning. In this study we investigated the role of glutamate and GABA genetics in ADHD severity, autism symptom severity and inhibitory performance, based on gene set analysis, an approach to investigate multiple genetic variants simultaneously. Common variants within glutamatergic and GABAergic genes were investigated using the MAGMA software in an ADHD case-only sample (n=931), in which we assessed ASD symptoms and response inhibition on a Stop task. Gene set analysis for ADHD symptom severity, divided into inattention and hyperactivity/impulsivity symptoms, autism symptom severity and inhibition were performed using principal component regression analyses. Subsequently, gene-wide association analyses were performed. The glutamate gene set showed an association with severity of hyperactivity/impulsivity (P=0.009), which was robust to correcting for genome-wide association levels. The GABA gene set showed nominally significant association with inhibition (P=0.04), but this did not survive correction for multiple comparisons. None of single gene or single variant associations was significant on their own. By analyzing multiple genetic variants within candidate gene sets together, we were able to find genetic associations supporting the involvement of excitatory and inhibitory neurotransmitter systems in ADHD and ASD symptom severity in ADHD.

  1. Influences of history, geography, and religion on genetic structure: the Maronites in Lebanon

    PubMed Central

    Haber, Marc; Platt, Daniel E; Badro, Danielle A; Xue, Yali; El-Sibai, Mirvat; Bonab, Maziar Ashrafian; Youhanna, Sonia C; Saade, Stephanie; Soria-Hernanz, David F; Royyuru, Ajay; Wells, R Spencer; Tyler-Smith, Chris; Zalloua, Pierre A; Adhikarla, Syama; Adler, Christina J; Balanovska, Elena; Balanovsky, Oleg; Bertranpetit, Jaume; Clarke, Andrew C; Comas, David; Cooper, Alan; Der Sarkissian, Clio S I; Dulik, Matthew C; Erasmus, Christoff J; Gaieski, Jill B; GaneshPrasad, ArunKumar; Haak, Wolfgang; Hobbs, Angela; Javed, Asif; Jin, Li; Kaplan, Matthew E; Li, Shilin; Martínez-Cruz, Begoña; Matisoo-Smith, Elizabeth A; Melé, Marta; Merchant, Nirav C; Mitchell, R John; Owings, Amanda C; Parida, Laxmi; Pitchappan, Ramasamy; Quintana-Murci, Lluis; Renfrew, Colin; Lacerda, Daniela R; Santos, Fabrício R; Schurr, Theodore G; Soodyall, Himla; Swamikrishnan, Pandikumar; Valampuri John, Kavitha; Santhakumari, Arun Varatharajan; Vieira, Pedro Paulo; Ziegle, Janet S

    2011-01-01

    Cultural expansions, including of religions, frequently leave genetic traces of differentiation and in-migration. These expansions may be driven by complex doctrinal differentiation, together with major population migrations and gene flow. The aim of this study was to explore the genetic signature of the establishment of religious communities in a region where some of the most influential religions originated, using the Y chromosome as an informative male-lineage marker. A total of 3139 samples were analyzed, including 647 Lebanese and Iranian samples newly genotyped for 28 binary markers and 19 short tandem repeats on the non-recombinant segment of the Y chromosome. Genetic organization was identified by geography and religion across Lebanon in the context of surrounding populations important in the expansions of the major sects of Lebanon, including Italy, Turkey, the Balkans, Syria, and Iran by employing principal component analysis, multidimensional scaling, and AMOVA. Timing of population differentiations was estimated using BATWING, in comparison with dates of historical religious events to determine if these differentiations could be caused by religious conversion, or rather, whether religious conversion was facilitated within already differentiated populations. Our analysis shows that the great religions in Lebanon were adopted within already distinguishable communities. Once religious affiliations were established, subsequent genetic signatures of the older differentiations were reinforced. Post-establishment differentiations are most plausibly explained by migrations of peoples seeking refuge to avoid the turmoil of major historical events. PMID:21119711

  2. Single-cell codetection of metabolic activity, intracellular functional proteins, and genetic mutations from rare circulating tumor cells.

    PubMed

    Zhang, Yu; Tang, Yin; Sun, Shuai; Wang, Zhihua; Wu, Wenjun; Zhao, Xiaodong; Czajkowsky, Daniel M; Li, Yan; Tian, Jianhui; Xu, Ling; Wei, Wei; Deng, Yuliang; Shi, Qihui

    2015-10-06

    The high glucose uptake and activation of oncogenic signaling pathways in cancer cells has long made these features, together with the mutational spectrum, prime diagnostic targets of circulating tumor cells (CTCs). Further, an ability to characterize these properties at a single cell resolution is widely believed to be essential, as the known extensive heterogeneity in CTCs can obscure important correlations in data obtained from cell population-based methods. However, to date, it has not been possible to quantitatively measure metabolic, proteomic, and genetic data from a single CTC. Here we report a microchip-based approach that allows for the codetection of glucose uptake, intracellular functional proteins, and genetic mutations at the single-cell level from rare tumor cells. The microchip contains thousands of nanoliter grooves (nanowells) that isolate individual CTCs and allow for the assessment of their glucose uptake via imaging of a fluorescent glucose analog, quantification of a panel of intracellular signaling proteins using a miniaturized antibody barcode microarray, and retrieval of the individual cell nuclei for subsequent off-chip genome amplification and sequencing. This approach integrates molecular-scale information on the metabolic, proteomic, and genetic status of single cells and permits the inference of associations between genetic signatures, energy consumption, and phosphoproteins oncogenic signaling activities in CTCs isolated from blood samples of patients. Importantly, this microchip chip-based approach achieves this multidimensional molecular analysis with minimal cell loss (<20%), which is the bottleneck of the rare cell analysis.

  3. Tightly Regulated Expression of Autographa californica Multicapsid Nucleopolyhedrovirus Immediate Early Genes Emerges from Their Interactions and Possible Collective Behaviors

    PubMed Central

    Taka, Hitomi; Asano, Shin-ichiro; Matsuura, Yoshiharu; Bando, Hisanori

    2015-01-01

    To infect their hosts, DNA viruses must successfully initiate the expression of viral genes that control subsequent viral gene expression and manipulate the host environment. Viral genes that are immediately expressed upon infection play critical roles in the early infection process. In this study, we investigated the expression and regulation of five canonical regulatory immediate-early (IE) genes of Autographa californica multicapsid nucleopolyhedrovirus: ie0, ie1, ie2, me53, and pe38. A systematic transient gene-expression analysis revealed that these IE genes are generally transactivators, suggesting the existence of a highly interactive regulatory network. A genetic analysis using gene knockout viruses demonstrated that the expression of these IE genes was tolerant to the single deletions of activator IE genes in the early stage of infection. A network graph analysis on the regulatory relationships observed in the transient expression analysis suggested that the robustness of IE gene expression is due to the organization of the IE gene regulatory network and how each IE gene is activated. However, some regulatory relationships detected by the genetic analysis were contradictory to those observed in the transient expression analysis, especially for IE0-mediated regulation. Statistical modeling, combined with genetic analysis using knockout alleles for ie0 and ie1, showed that the repressor function of ie0 was due to the interaction between ie0 and ie1, not ie0 itself. Taken together, these systematic approaches provided insight into the topology and nature of the IE gene regulatory network. PMID:25816136

  4. A novel method for the transport and analysis of genetic material from polyps and zooxanthellae of scleractinian corals.

    PubMed

    Crabbe, M James C

    2003-08-29

    We have developed a new simple method for transport, storage, and analysis of genetic material from the corals Agaricia agaricites, Dendrogyra cylindrica, Eusmilia ancora, Meandrina meandrites, Montastrea annularis, Porites astreoides, Porites furcata, Porites porites, and Siderastrea siderea at room temperature. All species yielded sufficient DNA from a single FTA card (19 microg-43 ng) for subsequent PCR amplification of both coral and zooxanthellar DNA. The D1 and D2 variable region of the large subunit rRNA gene (LSUrDNA) was amplified from the DNA of P. furcata and S. siderea by PCR. Electrophoresis yielded two major DNA bands: an 800-base pair (bp) DNA, which represented the coral ribosomal RNA (rRNA) gene, and a 600-bp DNA, which represented the zooxanthellar srRNA gene. Extraction of DNA from the bands yielded between 290 microg total DNA (S. siderea coral DNA) and 9 microg total DNA (P. furcata zooxanthellar DNA). The ability to transport and store genetic material from scleractinian corals without resort to laboratory facilities in the field allows for the molecular study of a far wider range and variety of coral sites than have been studied to date.

  5. Genetic evolution of H5 highly pathogenic avian influenza virus in domestic poultry in Vietnam between 2011 and 2013.

    PubMed

    Lee, Eun-Kyoung; Kang, Hyun-Mi; Kim, Kwang-Il; Choi, Jun-Gu; To, Thanh Long; Nguyen, Tho Dang; Song, Byung-Min; Jeong, Jipseol; Choi, Kang-Seuk; Kim, Ji-Ye; Lee, Hee-Soo; Lee, Youn-Jeong; Kim, Jae-Hong

    2015-04-01

    In spite of highly pathogenic avian influenza H5N1 vaccination campaigns for domestic poultry, H5N1 viruses continue to circulate in Vietnam. To estimate the prevalence of avian influenza virus in Vietnam, surveillance was conducted between November 2011 and February 2013. Genetic analysis of 312 highly pathogenic avian influenza H5 viruses isolated from poultry in Vietnam was conducted and possible genetic relationships with strains from neighboring countries were investigated. As previously reported, phylogenetic analysis of the avian influenza virus revealed two H5N1 HPAI clades that were circulating in Vietnam. Clade 1.1, related to Cambodian strains, was predominant in the southern provinces, while clade 2.3.2.1 viruses were predominant in the northern and central provinces. Sequence analysis revealed evidence of active genetic evolution. In the gene constellation of clade 2.3.2.1, genotypes A, B, and B(II) existed during the 2011/2012 winter season. In June 2012, new genotype C emerged by reassortment between genotype A and genotype B(II), and this genotype was predominant in 2013 in the northern and central provinces. Interestingly, enzootic Vietnamese clade 2.3.2.1C H5 virus subsequently reassorted with N2, which originated from wild birds, to generate H5N2 highly pathogenic avian influenza, which was isolated from duck in the northeast region. This investigation indicated that H5N1 outbreaks persist in Vietnam and cause genetic reassortment with circulating viruses. It is necessary to strengthen active influenza surveillance to eradicate highly pathogenic avian influenza viruses and sever the link between highly pathogenic avian influenza and other circulating influenza viruses. © 2015 Poultry Science Association Inc.

  6. Molecular Diversity Analysis and Genetic Mapping of Pod Shatter Resistance Loci in Brassica carinata L.

    PubMed Central

    Raman, Rosy; Qiu, Yu; Coombes, Neil; Song, Jie; Kilian, Andrzej; Raman, Harsh

    2017-01-01

    Seed lost due to easy pod dehiscence at maturity (pod shatter) is a major problem in several members of Brassicaceae family. We investigated the level of pod shatter resistance in Ethiopian mustard (Brassica carinata) and identified quantitative trait loci (QTL) for targeted introgression of this trait in Ethiopian mustard and its close relatives of the genus Brassica. A set of 83 accessions of B. carinata, collected from the Australian Grains Genebank, was evaluated for pod shatter resistance based on pod rupture energy (RE). In comparison to B. napus (RE = 2.16 mJ), B. carinata accessions had higher RE values (2.53 to 20.82 mJ). A genetic linkage map of an F2 population from two contrasting B. carinata selections, BC73526 (shatter resistant with high RE) and BC73524 (shatter prone with low RE) comprising 300 individuals, was constructed using a set of 6,464 high quality DArTseq markers and subsequently used for QTL analysis. Genetic analysis of the F2 and F2:3 derived lines revealed five statistically significant QTL (LOD ≥ 3) that are linked with pod shatter resistance on chromosomes B1, B3, B8, and C5. Herein, we report for the first time, identification of genetic loci associated with pod shatter resistance in B. carinata. These characterized accessions would be useful in Brassica breeding programs for introgression of pod shatter resistance alleles in to elite breeding lines. Molecular markers would assist marker-assisted selection for tracing the introgression of resistant alleles. Our results suggest that the value of the germplasm collections can be harnessed through genetic and genomics tools. PMID:29250080

  7. Genetic Analysis of a Novel Human Adenovirus With a Serologically Unique Hexon and a Recombinant Fiber Gene

    DTIC Science & Technology

    2011-09-07

    diarrhea and was subsequently hospitalized. Cryptosporidium parvum and Giardia lamblia were also found in the fecal matter of the patient; therefore, the... bovine serum (FBS), penicillin (200 U/ml), L-glutamine (2 mM), Fungizone (1 mg/ml), and streptomycin (200 mg/ml). HAdV-D58 was investigated serologi... particles were separated from Hep-2 cells by ultracentrifugation. Genomic DNA was acquired from viral particles using AccuPrep Genomic DNA Extraction Kit

  8. Genetic management guidelines for captive propagation of freshwater mussels (unionoidea)

    USGS Publications Warehouse

    Jones, J.W.; Hallerman, E.M.; Neves, R.J.

    2006-01-01

    Although the greatest global diversity of freshwater mussels (???300 species) resides in the United States, the superfamily Unionoidea is also the most imperiled taxon of animals in the nation. Thirty-five species are considered extinct, 70 species are listed as endangered or threatened, and approximately 100 more are species of conservation concern. To prevent additional species losses, biologists have developed methods for propagating juvenile mussels for release into the wild to restore or augment populations. Since 1997, mussel propagation facilities in the United States have released over 1 million juveniles of more than a dozen imperiled species, and survival of these juveniles in the wild has been documented. With the expectation of continued growth of these programs, agencies and facilities involved with mussel propagation must seriously consider the genetic implications of releasing captive-reared progeny. We propose 10 guidelines to help maintain the genetic resources of cultured and wild populations. Preservation of genetic diversity will require robust genetic analysis of source populations to define conservation units for valid species, subspecies, and unique populations. Hatchery protocols must be implemented that minimize risks of artificial selection and other genetic hazards affecting adaptive traits of progeny subsequently released to the wild. We advocate a pragmatic, adaptive approach to species recovery that incorporates the principles of conservation genetics into breeding programs, and prioritizes the immediate demographic needs of critically endangered mussel species.

  9. A systematic analysis of online marketing materials used by providers of expanded carrier screening.

    PubMed

    Chokoshvili, Davit; Borry, Pascal; Vears, Danya F

    2017-12-14

    PurposeExpanded carrier screening (ECS) for a large number of recessive disorders is available to prospective parents through commercial providers. This study aimed to analyze the content of marketing materials on ECS providers' websites.MethodsTo identify providers of ECS tests, we undertook a comprehensive online search, reviewed recent academic literature on commercial carrier screening, and consulted with colleagues familiar with the current ECS landscape. The identified websites were archived in April 2017, and inductive content analysis was performed on website text, brochures and educational materials, and video transcripts.ResultsWe identified 18 ECS providers, including 16 commercial genetic testing companies. Providers typically described ECS as an important family planning tool. The content differed in both the tone used to promote ECS and the accuracy and completeness of the test information provided. We found that most providers offered complimentary genetic counseling to their consumers, although this was often optional, limited to the posttest context, and, in some cases, appeared to be available only to test-positive individuals.ConclusionThe quality of ECS providers' websites could be improved by offering more complete and accurate information about ECS and their tests. Providers should also ensure that all carrier couples receive posttest genetic counseling to inform their subsequent reproductive decision making.Genet Med advance online publication, 14 December 2017; doi:10.1038/gim.2017.222.

  10. Resampling to Address the Winner's Curse in Genetic Association Analysis of Time to Event

    PubMed Central

    Poirier, Julia G.; Faye, Laura L.; Dimitromanolakis, Apostolos; Paterson, Andrew D.; Sun, Lei

    2015-01-01

    ABSTRACT The “winner's curse” is a subtle and difficult problem in interpretation of genetic association, in which association estimates from large‐scale gene detection studies are larger in magnitude than those from subsequent replication studies. This is practically important because use of a biased estimate from the original study will yield an underestimate of sample size requirements for replication, leaving the investigators with an underpowered study. Motivated by investigation of the genetics of type 1 diabetes complications in a longitudinal cohort of participants in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Genetics Study, we apply a bootstrap resampling method in analysis of time to nephropathy under a Cox proportional hazards model, examining 1,213 single‐nucleotide polymorphisms (SNPs) in 201 candidate genes custom genotyped in 1,361 white probands. Among 15 top‐ranked SNPs, bias reduction in log hazard ratio estimates ranges from 43.1% to 80.5%. In simulation studies based on the observed DCCT/EDIC genotype data, genome‐wide bootstrap estimates for false‐positive SNPs and for true‐positive SNPs with low‐to‐moderate power are closer to the true values than uncorrected naïve estimates, but tend to overcorrect SNPs with high power. This bias‐reduction technique is generally applicable for complex trait studies including quantitative, binary, and time‐to‐event traits. PMID:26411674

  11. Osteogenesis imperfecta presenting as aneurysmal subarachnoid haemorrhage in a 53-year-old man

    PubMed Central

    Kaliaperumal, Chandrasekaran; Walsh, Tom; Balasubramanian, Chandramouli; Wyse, Gerry; Fanning, Noel; Kaar, George

    2011-01-01

    The authors describe a case of aneurysmal subarachnoid haemorrhage in a 53-year-old man with background of osteogenesis imperfecta (OI). CT brain revealed diffuse subarachnoid haemorrhage (SAH) and cerebral angiogram subsequently confirmed vertebral artery aneurysm rupture leading to SAH. To the authors knowledge this is the first case of vertebral artery aneurysmal SAH described in OI. A previously undiagnosed OI was confirmed by genetic analysis (COL1A1 gene mutation). This aneurysm was successfully treated by endovascular route. Post interventional treatment patient developed stroke secondary to vasospasm. Communicating hydrocephalus, which developed in the process of management, was successfully treated with ventriculo-peritoneal shunt. The aetio-pathogenesis and management of this condition is described. The authors have reviewed the literature and genetic basis of this disease. PMID:22674700

  12. The Complex Demographic History and Evolutionary Origin of the Western Honey Bee, Apis Mellifera

    PubMed Central

    Tsutsui, Neil D.; Ramírez, Santiago R.

    2017-01-01

    The western honey bee, Apis mellifera, provides critical pollination services to agricultural crops worldwide. However, despite substantial interest and prior investigation, the early evolution and subsequent diversification of this important pollinator remain uncertain. The primary hypotheses place the origin of A. mellifera in either Asia or Africa, with subsequent radiations proceeding from one of these regions. Here, we use two publicly available whole-genome data sets plus newly sequenced genomes and apply multiple population genetic analysis methods to investigate the patterns of ancestry and admixture in native honey bee populations from Europe, Africa, and the Middle East. The combination of these data sets is critical to the analyses, as each contributes samples from geographic locations lacking in the other, thereby producing the most complete set of honey bee populations available to date. We find evidence supporting an origin of A. mellifera in the Middle East or North Eastern Africa, with the A and Y lineages representing the earliest branching lineages. This finding has similarities with multiple contradictory hypotheses and represents a disentangling of genetic relationships, geographic proximity, and secondary contact to produce a more accurate picture of the origins of A. mellifera. We also investigate how previous studies came to their various conclusions based on incomplete sampling of populations, and illustrate the importance of complete sampling in understanding evolutionary processes. These results provide fundamental knowledge about genetic diversity within Old World honey bee populations and offer insight into the complex history of an important pollinator. PMID:28164223

  13. Synthetic Genetic Arrays: Automation of Yeast Genetics.

    PubMed

    Kuzmin, Elena; Costanzo, Michael; Andrews, Brenda; Boone, Charles

    2016-04-01

    Genome-sequencing efforts have led to great strides in the annotation of protein-coding genes and other genomic elements. The current challenge is to understand the functional role of each gene and how genes work together to modulate cellular processes. Genetic interactions define phenotypic relationships between genes and reveal the functional organization of a cell. Synthetic genetic array (SGA) methodology automates yeast genetics and enables large-scale and systematic mapping of genetic interaction networks in the budding yeast,Saccharomyces cerevisiae SGA facilitates construction of an output array of double mutants from an input array of single mutants through a series of replica pinning steps. Subsequent analysis of genetic interactions from SGA-derived mutants relies on accurate quantification of colony size, which serves as a proxy for fitness. Since its development, SGA has given rise to a variety of other experimental approaches for functional profiling of the yeast genome and has been applied in a multitude of other contexts, such as genome-wide screens for synthetic dosage lethality and integration with high-content screening for systematic assessment of morphology defects. SGA-like strategies can also be implemented similarly in a number of other cell types and organisms, includingSchizosaccharomyces pombe,Escherichia coli, Caenorhabditis elegans, and human cancer cell lines. The genetic networks emerging from these studies not only generate functional wiring diagrams but may also play a key role in our understanding of the complex relationship between genotype and phenotype. © 2016 Cold Spring Harbor Laboratory Press.

  14. Conservation genetics of Lake Superior brook trout: Issues, questions, and directions

    USGS Publications Warehouse

    Wilson, C.C.; Stott, W.; Miller, L.; D'Amelio, S.; Jennings, Martin J.; Cooper, A.M.

    2008-01-01

    Parallel efforts by several genetic research groups have tackled common themes relating to management concerns about and recent rehabilitation opportunities for coaster brook trout Salvelinus fontinalis in Lake Superior. The questions that have been addressed include the evolutionary and genetic status of coaster brook trout, the degree of relatedness among coaster populations and their relationship to riverine tributary brook trout populations, and the role and effectiveness of stocking in maintaining and restoring coasters to Lake Superior. Congruent genetic results indicate that coasters are an ecotype (life history variant) rather than an evolutionarily significant unit or genetically distinct strain. Regional structure exists among brook trout stocks, coasters being produced from local populations. Introgression of hatchery genes into wild populations appears to vary regionally and may relate to local population size, habitat integrity, and anthropogenic pressures. Tracking the genetic diversity and integrity associated with captive breeding programs is helping to ensure that the fish used for stocking are representative of their source populations and appropriate for rehabilitation efforts. Comparative analysis of shared samples among collaborating laboratories is enabling standardization of genotype scoring and interpretation as well as the development of a common toolkit for assessing genetic structure and diversity. Incorporation of genetic data into rehabilitation projects will facilitate monitoring efforts and subsequent adaptive management. Together, these multifaceted efforts provide comprehensive insights into the biology of coaster brook trout and enhance restoration options. ?? Copyright by the American Fisheries Society 2008.

  15. Advances in studies of disease-navigating webs: Sarcoptes scabiei as a case study

    PubMed Central

    2014-01-01

    The discipline of epidemiology is the study of the patterns, causes and effects of health and disease conditions in defined anima populations. It is the key to evidence-based medicine, which is one of the cornerstones of public health. One of the important facets of epidemiology is disease-navigating webs (disease-NW) through which zoonotic and multi-host parasites in general move from one host to another. Epidemiology in this context includes (i) classical epidemiological approaches based on the statistical analysis of disease prevalence and distribution and, more recently, (ii) genetic approaches with approximations of disease-agent population genetics. Both approaches, classical epidemiology and population genetics, are useful for studying disease-NW. However, both have strengths and weaknesses when applied separately, which, unfortunately, is too often current practice. In this paper, we use Sarcoptes scabiei mite epidemiology as a case study to show how important an integrated approach can be in understanding disease-NW and subsequent disease control. PMID:24406101

  16. DNA barcoding coupled to HRM analysis as a new and simple tool for the authentication of Gadidae fish species.

    PubMed

    Fernandes, Telmo J R; Costa, Joana; Oliveira, M Beatriz P P; Mafra, Isabel

    2017-09-01

    This work aimed to exploit the use of DNA mini-barcodes combined with high resolution melting (HRM) for the authentication of gadoid species: Atlantic cod (Gadus morhua), Pacific cod (Gadus macrocephalus), Alaska pollock (Theragra chalcogramma) and saithe (Pollachius virens). Two DNA barcode regions, namely cytochrome c oxidase subunit I (COI) and cytochrome b (cytb), were analysed in silico to identify genetic variability among the four species and used, subsequently, to develop a real-time PCR method coupled with HRM analysis. The cytb mini-barcode enabled best discrimination of the target species with a high level of confidence (99.3%). The approach was applied successfully to identify gadoid species in 30 fish-containing foods, 30% of which were not as declared on the label. Herein, a novel approach for rapid, simple and cost-effective discrimination/clustering, as a tool to authenticate Gadidae fish species, according to their genetic relationship, is proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Schizophrenia and subsequent neighborhood deprivation: revisiting the social drift hypothesis using population, twin and molecular genetic data.

    PubMed

    Sariaslan, A; Fazel, S; D'Onofrio, B M; Långström, N; Larsson, H; Bergen, S E; Kuja-Halkola, R; Lichtenstein, P

    2016-05-03

    Neighborhood influences in the etiology of schizophrenia have been emphasized in a number of systematic reviews, but causality remains uncertain. To test the social drift hypothesis, we used three complementary genetically informed Swedish cohorts. First, we used nationwide Swedish data on approximately 760 000 full- and half-sibling pairs born between 1951 and 1974 and quantitative genetic models to study genetic and environmental influences on the overlap between schizophrenia in young adulthood and subsequent residence in socioeconomically deprived neighborhoods. Schizophrenia diagnoses were ascertained using the National Patient Registry. Second, we tested the overlap between childhood psychotic experiences and neighborhood deprivation in early adulthood in the longitudinal Twin Study of Child and Adolescent Development (TCHAD; n=2960). Third, we investigated to what extent polygenic risk scores for schizophrenia predicted residence in deprived neighborhoods during late adulthood using the TwinGene sample (n=6796). Sibling data suggested that living in deprived neighborhoods was substantially heritable; 65% (95% confidence interval (95% CI): 60-71%) of the variance was attributed to genetic influences. Although the correlation between schizophrenia and neighborhood deprivation was moderate in magnitude (r=0.22; 95% CI: 0.20-0.24), it was entirely explained by genetic influences. We replicated these findings in the TCHAD sample. Moreover, the association between polygenic risk for schizophrenia and neighborhood deprivation was statistically significant (R(2)=0.15%, P=0.002). Our findings are primarily consistent with a genetic selection interpretation where genetic liability for schizophrenia also predicts subsequent residence in socioeconomically deprived neighborhoods. Previous studies may have overemphasized the relative importance of environmental influences in the social drift of schizophrenia patients. Clinical and policy interventions will therefore benefit from the future identification of potentially causal pathways between different dimensions of cognitive functions and socioeconomic trajectories derived from studies adopting family-based research designs.

  18. Disentangling the role of hybridization in the evolution of the endangered Arizona cliffrose (Purshia subintegra; Rosaceae): A molecular and morphological analysis

    USGS Publications Warehouse

    Travis, S.E.; Baggs, J.E.; Maschinski, J.

    2008-01-01

    Hybridization may threaten the conservation status of rare species through genetic assimilation and may confound the ability to distinguish among taxa. We studied these issues in an endangered shrub, Purshia subintegra (Rosaceae), known from four populations growing on limestone outcrops in central Arizona (USA). Using amplified fragment length polymorphisms (AFLP) and the Bayesian clustering algorithm implemented in STRUCTURE, we identified three distinct genetic lineages among Arizona Purshia subintegra and P. stansburiana. An initial split divided San Carlos Basin P. subintegra (considered P. pinkavae by Schaack) from northern P. stansburiana populations (FST = 0.394). A subsequent split separated northern P. stansburiana from two P. subintegra populations at Horseshoe Lake and Burro Creek (FST = 0.207), which comprised a nearly perfect admixture of the two lineages identified in the initial analysis. In the Verde River Valley P. subintegra is sympatric with P. stansburiana and exhibited an average 27% P. stansburiana genes for 5 of 6 stands analyzed, indicating ongoing hybridization and backcrossing with P. subintegra. Individuals carrying >90% P. subintegra markers are identifiable 68% of the time based on morphology, with leaf lobing, leaf size, and leaf length acting as the most reliable indicators of taxonomic status. However, the genetic and morphological distance correlation among individuals was low (r = 0.17, P = 0.0002), indicating that morphology cannot always accurately predict genetic admixture or taxonomy. Overall, our study confirmed the genetic distinctiveness of the San Carlos Basin population, an ancient natural hybrid origin of P. subintegra, and the presence of a hybrid swarm in the Verde Valley, whose conservation value may lie in its heightened genetic diversity. ?? 2007 Springer Science+Business Media B.V.

  19. Insights into the Genetic History of French Cattle from Dense SNP Data on 47 Worldwide Breeds

    PubMed Central

    Gautier, Mathieu; Laloë, Denis; Moazami-Goudarzi, Katayoun

    2010-01-01

    Background Modern cattle originate from populations of the wild extinct aurochs through a few domestication events which occurred about 8,000 years ago. Newly domesticated populations subsequently spread worldwide following breeder migration routes. The resulting complex historical origins associated with both natural and artificial selection have led to the differentiation of numerous different cattle breeds displaying a broad phenotypic variety over a short period of time. Methodology/Principal Findings This study gives a detailed assessment of cattle genetic diversity based on 1,121 individuals sampled in 47 populations from different parts of the world (with a special focus on French cattle) genotyped for 44,706 autosomal SNPs. The analyzed data set consisted of new genotypes for 296 individuals representing 14 French cattle breeds which were combined to those available from three previously published studies. After characterizing SNP polymorphism in the different populations, we performed a detailed analysis of genetic structure at both the individual and population levels. We further searched for spatial patterns of genetic diversity among 23 European populations, most of them being of French origin, under the recently developed spatial Principal Component analysis framework. Conclusions/Significance Overall, such high throughput genotyping data confirmed a clear partitioning of the cattle genetic diversity into distinct breeds. In addition, patterns of differentiation among the three main groups of populations—the African taurine, the European taurine and zebus—may provide some additional support for three distinct domestication centres. Finally, among the European cattle breeds investigated, spatial patterns of genetic diversity were found in good agreement with the two main migration routes towards France, initially postulated based on archeological evidence. PMID:20927341

  20. Single strand conformation polymorphism analysis of androgen receptor gene mutations in patients with androgen insensitivity syndromes: Application for diagnosis, genetic counseling, and therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiort, O.; Huang, Q.; Sinnecker, G.H.G.

    Recent studies indicate that mutations in the androgen receptor gene are associated with androgen insensitivity syndromes, a heterogeneous group of related disorders involving defective sexual differentiation in karyotypic males. In this report, the authors address the possibility of rapid mutational analysis of the androgen receptor gene for initial diagnosis, genetic counseling, and molecular subclassification of affected patients and their families. DNA from peripheral blood leukocytes of six patients from five families with various degrees of androgen insensitivity was studied. Exons 2 to 8 of the androgen receptor gene were analyzed using a combination of single strand conformation polymorphism analysis andmore » direct DNA sequencing. Female family members were also studied to identify heterozygote carriers. Point mutations in the AR gene were identified in all six patients, and all mutations caused amino acid substitutions. One patient with incomplete androgen insensitivity was a mosaic for the mutation. Four of the five mothers, as well as a young sister of one patient, were carriers of the mutation present in the affected child. The data show that new mutations may occur in the androgen receptor gene leading to sporadic androgen insensitivity syndrome. Molecular genetic characterization of the variant allele can serve as a primary tool for diagnosis and subsequent therapy, and can provide a basis for distinguishing heterozygous carriers in familial androgen resistance. The identification of carriers is of substantial clinical importance for genetic counseling. 29 refs., 2 figs., 1 tab.« less

  1. Mixed Responses to Systemic Therapy Revealed Potential Genetic Heterogeneity and Poor Survival in Patients with Non-Small Cell Lung Cancer.

    PubMed

    Dong, Zhong-Yi; Zhai, Hao-Ran; Hou, Qing-Yi; Su, Jian; Liu, Si-Yang; Yan, Hong-Hong; Li, Yang-Si; Chen, Zhi-Yong; Zhong, Wen-Zhao; Wu, Yi-Long

    2017-01-01

    A subset of patients with non-small cell lung cancer (NSCLC) fosters mixed responses (MRs) to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) or chemotherapy. However, little is known about the clinical and molecular features or the prognostic significance and potential mechanisms. The records of 246 consecutive patients with NSCLC receiving single-line chemotherapy or TKI treatment and who were assessed by baseline and interim positron emission tomography/computed tomography scans were collected retrospectively. The clinicopathological correlations of the MR were analyzed, and a multivariate analysis was performed to explore the prognostic significance of MR. The overall incidence of MR to systemic therapy was 21.5% (53/246) and predominated in patients with stage IIIB-IV, EGFR mutations and those who received TKI therapy (p < .05). Subgroup analyses based on MR classification (efficacious versus inefficacious) showed significant differences in subsequent treatment between the two groups (p < .001) and preferable progression-free survival (PFS) and overall survival (OS) in the efficacious MR group. Multivariate analyses demonstrated that the presence of MR was an independent unfavorable prognostic factor for PFS (hazard ratio [HR], 1.474; 95% confidence interval [CI], 1.018-2.134; p = .040) and OS (HR, 1.849; 95% CI, 1.190-2.871; p = .006) in patients with NSCLC. Induced by former systemic therapy, there were more T790M (18%), concomitant EGFR mutations (15%), and changes to EGFR wild type (19%) in the MR group among patients with EGFR mutations, which indicated higher incidence of genetic heterogeneity. MR was not a rare event in patients with NSCLC and tended to occur in those with advanced lung adenocarcinoma treated with a TKI. MR may result from genetic heterogeneity and is an unfavorable prognostic factor for survival. Further studies are imperative to explore subsequent treatment strategies. The Oncologist 2017;22:61-69Implications for Practice: Tumor heterogeneity tends to produce mixed responses (MR) to systemic therapy, including TKI and chemotherapy; however, the clinical significance and potential mechanisms are not fully understood, and the subsequent treatment after MR is also a clinical concern. The present study systemically assessed patients by PET/CT and differentiated MR and therapies. The study identified a relatively high incidence of MR in patients with advanced NSCLC, particularly those treated with targeted therapies. An MR may be an unfavorable prognostic factor and originate from genetic heterogeneity. Further studies are imperative to explore subsequent treatment strategies. © AlphaMed Press 2017.

  2. Mixed Responses to Systemic Therapy Revealed Potential Genetic Heterogeneity and Poor Survival in Patients with Non‐Small Cell Lung Cancer

    PubMed Central

    Dong, Zhong‐Yi; Zhai, Hao‐Ran; Hou, Qing‐Yi; Su, Jian; Liu, Si‐Yang; Yan, Hong‐Hong; Li, Yang‐Si; Chen, Zhi‐Yong; Zhong, Wen‐Zhao

    2017-01-01

    Abstract Background. A subset of patients with non‐small cell lung cancer (NSCLC) fosters mixed responses (MRs) to epidermal growth factor receptor (EGFR)‐tyrosine kinase inhibitors (TKIs) or chemotherapy. However, little is known about the clinical and molecular features or the prognostic significance and potential mechanisms. Methods. The records of 246 consecutive patients with NSCLC receiving single‐line chemotherapy or TKI treatment and who were assessed by baseline and interim positron emission tomography/computed tomography scans were collected retrospectively. The clinicopathological correlations of the MR were analyzed, and a multivariate analysis was performed to explore the prognostic significance of MR. Results. The overall incidence of MR to systemic therapy was 21.5% (53/246) and predominated in patients with stage IIIB–IV, EGFR mutations and those who received TKI therapy (p < .05). Subgroup analyses based on MR classification (efficacious versus inefficacious) showed significant differences in subsequent treatment between the two groups (p < .001) and preferable progression‐free survival (PFS) and overall survival (OS) in the efficacious MR group. Multivariate analyses demonstrated that the presence of MR was an independent unfavorable prognostic factor for PFS (hazard ratio [HR], 1.474; 95% confidence interval [CI], 1.018–2.134; p = .040) and OS (HR, 1.849; 95% CI, 1.190–2.871; p = .006) in patients with NSCLC. Induced by former systemic therapy, there were more T790M (18%), concomitant EGFR mutations (15%), and changes to EGFR wild type (19%) in the MR group among patients with EGFR mutations, which indicated higher incidence of genetic heterogeneity. Conclusion. MR was not a rare event in patients with NSCLC and tended to occur in those with advanced lung adenocarcinoma treated with a TKI. MR may result from genetic heterogeneity and is an unfavorable prognostic factor for survival. Further studies are imperative to explore subsequent treatment strategies. Implications for Practice. Tumor heterogeneity tends to produce mixed responses (MR) to systemic therapy, including TKI and chemotherapy; however, the clinical significance and potential mechanisms are not fully understood, and the subsequent treatment after MR is also a clinical concern. The present study systemically assessed patients by PET/CT and differentiated MR and therapies. The study identified a relatively high incidence of MR in patients with advanced NSCLC, particularly those treated with targeted therapies. An MR may be an unfavorable prognostic factor and originate from genetic heterogeneity. Further studies are imperative to explore subsequent treatment strategies. PMID:28126915

  3. Genetic Diversity and Demographic History of Wild and Cultivated/Naturalised Plant Populations: Evidence from Dalmatian Sage (Salvia officinalis L., Lamiaceae).

    PubMed

    Rešetnik, Ivana; Baričevič, Dea; Batîr Rusu, Diana; Carović-Stanko, Klaudija; Chatzopoulou, Paschalina; Dajić-Stevanović, Zora; Gonceariuc, Maria; Grdiša, Martina; Greguraš, Danijela; Ibraliu, Alban; Jug-Dujaković, Marija; Krasniqi, Elez; Liber, Zlatko; Murtić, Senad; Pećanac, Dragana; Radosavljević, Ivan; Stefkov, Gjoshe; Stešević, Danijela; Šoštarić, Ivan; Šatović, Zlatko

    2016-01-01

    Dalmatian sage (Salvia officinalis L., Lamiaceae) is a well-known aromatic and medicinal Mediterranean plant that is native in coastal regions of the western Balkan and southern Apennine Peninsulas and is commonly cultivated worldwide. It is widely used in the food, pharmaceutical and cosmetic industries. Knowledge of its genetic diversity and spatiotemporal patterns is important for plant breeding programmes and conservation. We used eight microsatellite markers to investigate evolutionary history of indigenous populations as well as genetic diversity and structure within and among indigenous and cultivated/naturalised populations distributed across the Balkan Peninsula. The results showed a clear separation between the indigenous and cultivated/naturalised groups, with the cultivated material originating from one restricted geographical area. Most of the genetic diversity in both groups was attributable to differences among individuals within populations, although spatial genetic analysis of indigenous populations indicated the existence of isolation by distance. Geographical structuring of indigenous populations was found using clustering analysis, with three sub-clusters of indigenous populations. The highest level of gene diversity and the greatest number of private alleles were found in the central part of the eastern Adriatic coast, while decreases in gene diversity and number of private alleles were evident towards the northwestern Adriatic coast and southern and eastern regions of the Balkan Peninsula. The results of Ecological Niche Modelling during Last Glacial Maximum and Approximate Bayesian Computation suggested two plausible evolutionary trajectories: 1) the species survived in the glacial refugium in southern Adriatic coastal region with subsequent colonization events towards northern, eastern and southern Balkan Peninsula; 2) species survived in several refugia exhibiting concurrent divergence into three genetic groups. The insight into genetic diversity and structure also provide the baseline data for conservation of S. officinalis genetic resources valuable for future breeding programmes.

  4. Genetic Diversity and Demographic History of Wild and Cultivated/Naturalised Plant Populations: Evidence from Dalmatian Sage (Salvia officinalis L., Lamiaceae)

    PubMed Central

    Rešetnik, Ivana; Baričevič, Dea; Batîr Rusu, Diana; Carović-Stanko, Klaudija; Chatzopoulou, Paschalina; Dajić-Stevanović, Zora; Gonceariuc, Maria; Grdiša, Martina; Greguraš, Danijela; Ibraliu, Alban; Jug-Dujaković, Marija; Krasniqi, Elez; Liber, Zlatko; Murtić, Senad; Pećanac, Dragana; Radosavljević, Ivan; Stefkov, Gjoshe; Stešević, Danijela; Šoštarić, Ivan; Šatović, Zlatko

    2016-01-01

    Dalmatian sage (Salvia officinalis L., Lamiaceae) is a well-known aromatic and medicinal Mediterranean plant that is native in coastal regions of the western Balkan and southern Apennine Peninsulas and is commonly cultivated worldwide. It is widely used in the food, pharmaceutical and cosmetic industries. Knowledge of its genetic diversity and spatiotemporal patterns is important for plant breeding programmes and conservation. We used eight microsatellite markers to investigate evolutionary history of indigenous populations as well as genetic diversity and structure within and among indigenous and cultivated/naturalised populations distributed across the Balkan Peninsula. The results showed a clear separation between the indigenous and cultivated/naturalised groups, with the cultivated material originating from one restricted geographical area. Most of the genetic diversity in both groups was attributable to differences among individuals within populations, although spatial genetic analysis of indigenous populations indicated the existence of isolation by distance. Geographical structuring of indigenous populations was found using clustering analysis, with three sub-clusters of indigenous populations. The highest level of gene diversity and the greatest number of private alleles were found in the central part of the eastern Adriatic coast, while decreases in gene diversity and number of private alleles were evident towards the northwestern Adriatic coast and southern and eastern regions of the Balkan Peninsula. The results of Ecological Niche Modelling during Last Glacial Maximum and Approximate Bayesian Computation suggested two plausible evolutionary trajectories: 1) the species survived in the glacial refugium in southern Adriatic coastal region with subsequent colonization events towards northern, eastern and southern Balkan Peninsula; 2) species survived in several refugia exhibiting concurrent divergence into three genetic groups. The insight into genetic diversity and structure also provide the baseline data for conservation of S. officinalis genetic resources valuable for future breeding programmes. PMID:27441834

  5. Connectivity in a pond system influences migration and genetic structure in threespine stickleback.

    PubMed

    Seymour, Mathew; Räsänen, Katja; Holderegger, Rolf; Kristjánsson, Bjarni K

    2013-03-01

    Neutral genetic structure of natural populations is primarily influenced by migration (the movement of individuals and, subsequently, their genes) and drift (the statistical chance of losing genetic diversity over time). Migration between populations is influenced by several factors, including individual behavior, physical barriers, and environmental heterogeneity among populations. However, drift is expected to be stronger in populations with low immigration rate and small effective population size. With the technological advancement in geological information systems and spatial analysis tools, landscape genetics now allows the development of realistic migration models and increased insight to important processes influencing diversity of natural populations. In this study, we investigated the relationship between landscape connectivity and genetic distance of threespine stickleback (Gasterosteus aculeatus) inhabiting a pond complex in Belgjarskógur, Northeast Iceland. We used two landscape genetic approaches (i.e., least-cost-path and isolation-by-resistance) and asked whether gene flow, as measured by genetic distance, was more strongly associated with Euclidean distance (isolation-by-distance) or with landscape connectivity provided by areas prone to flooding (as indicated by Carex sp. cover)? We found substantial genetic structure across the study area, with pairwise genetic distances among populations (DPS) ranging from 0.118 to 0.488. Genetic distances among populations were more strongly correlated with least-cost-path and isolation-by-resistance than with Euclidean distance, whereas the relative contribution of isolation-by-resistance and Euclidian distance could not be disentangled. These results indicate that migration among stickleback populations occurs via periodically flooded areas. Overall, this study highlights the importance of transient landscape elements influencing migration and genetic structure of populations at small spatial scales.

  6. Genetic analysis of Aedes albopictus (Diptera, Culicidae) reveals a deep divergence in the original regions.

    PubMed

    Ruiling, Zhang; Tongkai, Liu; Zhendong, Huang; Guifen, Zhuang; Dezhen, Ma; Zhong, Zhang

    2018-05-02

    Aedes albopictus has been described as one of the 100 worst invasive species in the world. This mosquito originated from southeastern Asia and currently has a widespread presence in every continent except Antarctica. The rapid global expansion of Ae. albopictus has increased public health concerns about arbovirus-related disease threats. Adaptation, adaption to novel areas is a biological challenge for invasive species, and the underlying processes can be studied at the molecular level. In this study, genetic analysis was performed using mitochondrial gene NADH dehydrogenase subunit 5 (ND5), based on both native and invasive populations. Altogether, 38 haplotypes were detected with H1 being the dominant and widely distributed in 21 countries. Both phylogenetic and network analyses supported the existence of five clades, with only clade I being involved in the subsequent global spread of Asian tiger mosquito. The other four clades (II, III, IV and V) were restricted to their original regions, which could be ancestral populations that had diverged from clade I in the early stages of evolution. Neutrality tests suggested that most of the populations had experienced recent expansion. Analysis of molecular variance and the population-pair statistic F ST revealed that most populations lacked genetic structure, while high variability was detected within populations. Multiple and independent human-mediated introductions may explain the present results. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV).

    PubMed

    Snow, M; Bain, N; Black, J; Taupin, V; Cunningham, C O; King, J A; Skall, H F; Raynard, R S

    2004-10-21

    The nucleotide sequences of a specific region of the nucleoprotein gene were compared in order to investigate the genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV). Analysis of the sequence from 128 isolates of diverse geographic and host origin renders this the most comprehensive molecular epidemiological study of marine VHSV conducted to date. Phylogenetic analysis of nucleoprotein gene sequences confirmed the existence of the 4 major genotypes previously identified based on N- and subsequent G-gene based analyses. The range of Genotype I included subgroups of isolates associated with rainbow trout aquaculture (Genotype Ia) and those from the Baltic marine environment (Genotype Ib) to emphasise the relatively close genetic relationship between these isolates. The existence of an additional genotype circulating within the Baltic Sea (Genotype II) was also confirmed. Genotype III included marine isolates from around the British Isles in addition to those associated with turbot mariculture, highlighting a continued risk to the development of this industry. Genotype IV consisted of isolates from the marine environment in North America. Taken together, these findings suggest a marine origin of VHSV in rainbow trout aquaculture. The implications of these findings with respect to the future control of VHSV are discussed. The capacity for molecular phylogenetic analysis to resolve complex epidemiological problems is also demonstrated and its likely future importance to disease management issues highlighted.

  8. Genetic variants of TREML2 are associated with HLA-B27-positive ankylosing spondylitis.

    PubMed

    Feng, Yuan; Hong, Yaqiang; Zhang, Xin; Cao, Chunwei; Yang, Xichao; Lai, Shujuan; Fan, Chunmei; Cheng, Feng; Yan, Mei; Li, Chaohua; Huang, Wan; Chen, Wei; Zhu, Ping; Zeng, Changqing

    2018-08-20

    Although ankylosing spondylitis (AS) is a common, highly heritable arthropathy, the precise genetic mechanism underlying the disease remains elusive. Here, we investigate the disease-causing mutations in a large AS family with distinguished complexity, consisting of 23 patients covering four generations and exhibiting a mixed HLA-B27 (+) and (-) status. Linkage analysis with 32 members using three methods and whole-exome sequencing analysis with three HLA-B27 (+) patients, one HLA-B27 (-) patient, and one healthy individual did not identify a mutation common to all of the patients, strongly suggesting the existence of genetic heterogeneity in this large pedigree. However, if only B27-positive patients were analyzed, the linkage analysis located a 22-Mb region harboring the HLA gene cluster in chromosome 6 (LOD = 4.2), and the subsequent exome analysis identified two non-synonymous mutations in the TREML2 and IP6K3 genes. These genes were resequenced among 370 sporadic AS patients and 487 healthy individuals. A significantly higher mutation frequency of TREML2 was observed in AS patients (1.51% versus 0.21%). The results obtained for the AS pedigree and sporadic patients suggest that mutation of TREML2 is a major factor leading to AS for HLA-B27 (+) members in this large family and that TREML2 is also a susceptibility gene promoting the development of ankylosing spondylitis in HLA-B27 (+) individuals. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Capturing neutral and adaptive genetic diversity for conservation in a highly structured tree species.

    PubMed

    Rodríguez-Quilón, Isabel; Santos-Del-Blanco, Luis; Serra-Varela, María Jesús; Koskela, Jarkko; González-Martínez, Santiago C; Alía, Ricardo

    2016-10-01

    Preserving intraspecific genetic diversity is essential for long-term forest sustainability in a climate change scenario. Despite that, genetic information is largely neglected in conservation planning, and how conservation units should be defined is still heatedly debated. Here, we use maritime pine (Pinus pinaster Ait.), an outcrossing long-lived tree with a highly fragmented distribution in the Mediterranean biodiversity hotspot, to prove the importance of accounting for genetic variation, of both neutral molecular markers and quantitative traits, to define useful conservation units. Six gene pools associated to distinct evolutionary histories were identified within the species using 12 microsatellites and 266 single nucleotide polymorphisms (SNPs). In addition, height and survival standing variation, their genetic control, and plasticity were assessed in a multisite clonal common garden experiment (16 544 trees). We found high levels of quantitative genetic differentiation within previously defined neutral gene pools. Subsequent cluster analysis and post hoc trait distribution comparisons allowed us to define 10 genetically homogeneous population groups with high evolutionary potential. They constitute the minimum number of units to be represented in a maritime pine dynamic conservation program. Our results uphold that the identification of conservation units below the species level should account for key neutral and adaptive components of genetic diversity, especially in species with strong population structure and complex evolutionary histories. The environmental zonation approach currently used by the pan-European genetic conservation strategy for forest trees would be largely improved by gradually integrating molecular and quantitative trait information, as data become available. © 2016 by the Ecological Society of America.

  10. Population genetic dynamics of an invasion reconstructed from the sediment egg bank.

    PubMed

    Möst, Markus; Oexle, Sarah; Marková, Silvia; Aidukaite, Dalia; Baumgartner, Livia; Stich, Hans-Bernd; Wessels, Martin; Martin-Creuzburg, Dominik; Spaak, Piet

    2015-08-01

    Biological invasions are a global issue with far-reaching consequences for single species, communities and whole ecosystems. Our understanding of modes and mechanisms of biological invasions requires knowledge of the genetic processes associated with successful invasions. In many instances, this information is particularly difficult to obtain as the initial phases of the invasion process often pass unnoticed and we rely on inferences from contemporary population genetic data. Here, we combined historic information with the genetic analysis of resting eggs to reconstruct the invasion of Daphnia pulicaria into Lower Lake Constance (LLC) in the 1970s from the resting egg bank in the sediments. We identified the invader as 'European D. pulicaria' originating from meso- and eutrophic lowland lakes and ponds in Central Europe. The founding population was characterized by extremely low genetic variation in the resting egg bank that increased considerably over time. Furthermore, strong evidence for selfing and/or biparental inbreeding was found during the initial phase of the invasion, followed by a drop of selfing rate to low levels in subsequent decades. Moreover, the increase in genetic variation was most pronounced during early stages of the invasion, suggesting additional introductions during this period. Our study highlights that genetic data covering the entire invasion process from its beginning can be crucial to accurately reconstruct the invasion history of a species. We show that propagule banks can preserve such information enabling the study of population genetic dynamics and sources of genetic variation in successful invasive populations. © 2015 John Wiley & Sons Ltd.

  11. Identification of evolutionary hotspots based on genetic data from multiple terrestrial and aquatic taxa and gap analysis of hotspots in protected lands encompassed by the South Atlantic Landscape Conservation Cooperative.

    USGS Publications Warehouse

    Robinson, J.; Snider, M.; Duke, J.; Moyer, G.R.

    2014-01-01

     The southeastern United States is a recognized hotspot of biodiversity for a variety of aquatic taxa, including fish, amphibians, and mollusks. Unfortunately, the great diversity of the area is accompanied by a large proportion of species at risk of extinction . Gap analysis was employed to assess the representation of evolutionary hotspots in protected lands w h ere an evolutionary hotspot was defined as an area with high evolutionary potential and measured by atypical patterns of genetic divergence, genetic diversity, and to a lesser extent genetic similarity across multiple terrestrial or aquatic taxa. A survey of the primary literature produced 16 terrestrial and 14 aquatic genetic datasets for estimation of genetic divergence and diversity. Relative genetic diversity and divergence values for each terrestrial and aquatic dataset were used for interpolation of multispecies genetic surfaces and subsequent visualization using ArcGIS. The multispecies surfaces interpolated from relative divergences and diversity data identified numerous evolutionary hotspots for both terrestrial and aquatic taxa , many of which were afforded some current protection. For instance, 14% of the cells identified as hotspots of aquatic diversity were encompassed by currently protected areas. Additionally, 25% of the highest 1% of terrestrial diversity cells were afforded some level of protection. In contrast, areas of high and low divergence among species, and areas of high variance in diversity were poorly represented in the protected lands. Of particular interest were two areas that were consistently identified by several different measures as important from a conservation perspective. These included an area encompassing the panhandle of Florida and southern Georgia near the Apalachicola National Forest (displaying varying levels of genetic divergence and greater than average levels of genetic diversity) and a large portion of the coastal regions of North and South Carolina (displaying low genetic divergence and greater than average levels of genetic diversity) . Our results show the utility o f genetic data sets for identifying cross - species patterns of genetic  diversity and divergence (i.e., evolutionary hotspots) in aquatic and terrestrial environments for use in conservation design and delivery across the southeastern United States. 

  12. Glutamatergic and GABAergic gene sets in attention-deficit/hyperactivity disorder: association to overlapping traits in ADHD and autism

    PubMed Central

    Naaijen, J; Bralten, J; Poelmans, G; Faraone, Stephen; Asherson, Philip; Banaschewski, Tobias; Buitelaar, Jan; Franke, Barbara; P Ebstein, Richard; Gill, Michael; Miranda, Ana; D Oades, Robert; Roeyers, Herbert; Rothenberger, Aribert; Sergeant, Joseph; Sonuga-Barke, Edmund; Anney, Richard; Mulas, Fernando; Steinhausen, Hans-Christoph; Glennon, J C; Franke, B; Buitelaar, J K

    2017-01-01

    Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorders (ASD) often co-occur. Both are highly heritable; however, it has been difficult to discover genetic risk variants. Glutamate and GABA are main excitatory and inhibitory neurotransmitters in the brain; their balance is essential for proper brain development and functioning. In this study we investigated the role of glutamate and GABA genetics in ADHD severity, autism symptom severity and inhibitory performance, based on gene set analysis, an approach to investigate multiple genetic variants simultaneously. Common variants within glutamatergic and GABAergic genes were investigated using the MAGMA software in an ADHD case-only sample (n=931), in which we assessed ASD symptoms and response inhibition on a Stop task. Gene set analysis for ADHD symptom severity, divided into inattention and hyperactivity/impulsivity symptoms, autism symptom severity and inhibition were performed using principal component regression analyses. Subsequently, gene-wide association analyses were performed. The glutamate gene set showed an association with severity of hyperactivity/impulsivity (P=0.009), which was robust to correcting for genome-wide association levels. The GABA gene set showed nominally significant association with inhibition (P=0.04), but this did not survive correction for multiple comparisons. None of single gene or single variant associations was significant on their own. By analyzing multiple genetic variants within candidate gene sets together, we were able to find genetic associations supporting the involvement of excitatory and inhibitory neurotransmitter systems in ADHD and ASD symptom severity in ADHD. PMID:28072412

  13. How important are direct fitness benefits of sexual selection?

    NASA Astrophysics Data System (ADS)

    Møller, A. P.; Jennions, M. D.

    2001-10-01

    Females may choose mates based on the expression of secondary sexual characters that signal direct, material fitness benefits or indirect, genetic fitness benefits. Genetic benefits are acquired in the generation subsequent to that in which mate choice is performed, and the maintenance of genetic variation in viability has been considered a theoretical problem. Consequently, the magnitude of indirect benefits has traditionally been considered to be small. Direct fitness benefits can be maintained without consideration of mechanisms sustaining genetic variability, and they have thus been equated with the default benefits acquired by choosy females. There is, however, still debate as to whether or not males should honestly advertise direct benefits such as their willingness to invest in parental care. We use meta-analysis to estimate the magnitude of direct fitness benefits in terms of fertility, fecundity and two measures of paternal care (feeding rate in birds, hatching rate in male guarding ectotherms) based on an extensive literature survey. The mean coefficients of determination weighted by sample size were 6.3%, 2.3%, 1.3% and 23.6%, respectively. This compares to a mean weighted coefficient of determination of 1.5% for genetic viability benefits in studies of sexual selection. Thus, for several fitness components, direct benefits are only slightly more important than indirect ones arising from female choice. Hatching rate in male guarding ectotherms was by far the most important direct fitness component, explaining almost a quarter of the variance. Our analysis also shows that male sexual advertisements do not always reliably signal direct fitness benefits.

  14. Patterns and processes in the genetic differentiation of the Brachionus calyciflorus complex, a passively dispersing freshwater zooplankton.

    PubMed

    Xiang, Xian-ling; Xi, Yi-long; Wen, Xin-li; Zhang, Gen; Wang, Jin-xia; Hu, Ke

    2011-05-01

    Elucidating the evolutionary patterns and processes of extant species is an important objective of any research program that seeks to understand population divergence and, ultimately, speciation. The island-like nature and temporal fluctuation of limnetic habitats create opportunities for genetic differentiation in rotifers through space and time. To gain further understanding of spatio-temporal patterns of genetic differentiation in rotifers other than the well-studied Brachionus plicatilis complex in brackish water, a total of 318 nrDNA ITS sequences from the B. calyciflorus complex in freshwater were analysed using phylogenetic and phylogeographic methods. DNA taxonomy conducted by both the sequence divergence and the GMYC model suggested the occurrence of six potential cryptic species, supported also by reproductive isolation among the tested lineages. The significant genetic differentiation and non-significant correlation between geographic and genetic distances existed in the most abundant cryptic species, BcI-W and Bc-SW. The large proportion of genetic variability for cryptic species Bc-SW was due to differences between sampling localities within seasons, rather than between different seasons. Nested Clade Analysis suggested allopatric or past fragmentation, contiguous range expansion and long-distance colonization possibly coupled with subsequent fragmentation as the probable main forces shaping the present-day phylogeographic structure of the B. calyciflorus species complex. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Seasonal Genetic Changes of Aedes aegypti (Diptera: Culicidae) Populations in Selected Sites of Cebu City, Philippines

    PubMed Central

    Sayson, S. L.; Gloria-Soria, A.; Powell, J. R.; Edillo, F. E.

    2015-01-01

    Aedes aegypti (L.) is the primary vector of dengue virus in the Philippines, where dengue is endemic. We examined the genetic changes of Ae. aegypti collected from three selected sites in Cebu city, Philippines, during the relatively wet (2011–2012) and dry seasons (2012 and 2013). A total of 493 Ae. aegypti adults, reared in the laboratory from field-collected larvae, were analyzed using 11 microsatellite loci. Seasonal variation was observed in allele frequencies and allelic richness. Average genetic differentiation (DEST = 0.018; FST = 0.029) in both dry seasons was higher, due to reduced Ne, than in the wet season (DEST=0.006; FST=0.009). Thus, average gene flow was higher in the wet season than in the dry seasons. However, the overall FST estimate (0.02) inclusive of the two seasons showed little genetic differentiation as supported by Bayesian clustering analysis. Results suggest that during the dry season the intense selection that causes a dramatic reduction of population size favors heterozygotes, leading to small pockets of mosquitoes (refuges) that exhibit random genetic differentiation. During the wet season, the genetic composition of the population is reconstituted by the expansion of the refuges that survived the preceding dry season. Source reduction of mosquitoes during the nonepidemic dry season is thus recommended to prevent dengue re-emergence in the subsequent wet season. PMID:26335470

  16. Homozygosity mapping and sequencing identify two genes that might contribute to pointing behavior in hunting dogs.

    PubMed

    Akkad, Denis A; Gerding, Wanda M; Gasser, Robin B; Epplen, Jörg T

    2015-01-01

    The domestic dog represents an important model for studying the genetics of behavior. In spite of technological advances in genomics and phenomics, the genetic basis of most specific canine behaviors is largely unknown. Some breeds of hunting dogs exhibit a behavioral trait called "pointing" (a prolonged halt of movement to indicate the position of a game animal). Here, the genomes of pointing dogs (Large Munsterlander and Weimaraner) were compared with those of behaviorally distinct herding dogs (Berger des Pyrenées and Schapendoes). We assumed (i) that these four dog breeds initially represented inbred populations and (ii) that selective breeding for pointing behavior promotes an enrichment of the genetic trait in a homozygous state. The homozygosity mapping of 52 dogs (13 of each of the four breeds) followed by subsequent interval resequencing identified fixed genetic differences on chromosome 22 between pointers and herding dogs. In addition, we identified one non-synonomous variation in each of the coding genes SETDB2 and CYSLTR2 that might have a functional consequence. Genetic analysis of additional hunting and non-hunting dogs revealed consistent homozygosity for these two variations in six of seven pointing breeds. Based on the present findings, we propose that, together with other genetic, training and/or environmental factors, the nucleotide and associated amino acid variations identified in genes SETDB2 and CYSLTR2 contribute to pointing behavior.

  17. Molecular autopsy of sudden unexplained deaths reveals genetic predispositions for cardiac diseases among young forensic cases.

    PubMed

    Hellenthal, Nicole; Gaertner-Rommel, Anna; Klauke, Bärbel; Paluszkiewicz, Lech; Stuhr, Markus; Kerner, Thoralf; Farr, Martin; Püschel, Klaus; Milting, Hendrik

    2017-11-01

    Coronary artery disease accounts for the majority of sudden cardiac deaths (SCD) in the older population whereas cardiomyopathies and arrhythmogenic abnormalities predominate in younger SCD victims (<35 years) with a significant genetic component. The elucidation of the pathogenetic cause of death might be relevant for the prevention of further deaths within affected families. Aim of this study was to determine the portion of underlying genetic heart diseases among unexplained putative SCD cases from a large German forensic department. We included 10 forensic cases of sudden unexplained death (SUD) victims aged 19-40 years, who died by SCD due to forensic autopsy. DNA was analysed by next generation panel sequencing of 174 candidate genes for channelopathies and cardiomyopathies. Cardiological examinations, genetic counselling, and subsequent genetic testing were offered to all affected families. We identified within 1 year 10 cases of SUD among 172 forensic cases. Evidence for a genetic disposition was found in 8 of 10 (80%) cases, with pathogenic mutations in 3 and variants of uncertain significance in 5 of SCD cases. Subsequent selective screening of family members revealed two additional mutation carriers. The study provides strong evidence that molecular genetics improves the post mortem diagnosis of fatal genetic heart diseases among SUD victims. Molecular genetics should be integrated in forensic and pathological routine practice. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  18. Systematic analysis of the gerontome reveals links between aging and age-related diseases

    PubMed Central

    Fernandes, Maria; Wan, Cen; Tacutu, Robi; Barardo, Diogo; Rajput, Ashish; Wang, Jingwei; Thoppil, Harikrishnan; Thornton, Daniel; Yang, Chenhao; Freitas, Alex

    2016-01-01

    Abstract In model organisms, over 2,000 genes have been shown to modulate aging, the collection of which we call the ‘gerontome’. Although some individual aging-related genes have been the subject of intense scrutiny, their analysis as a whole has been limited. In particular, the genetic interaction of aging and age-related pathologies remain a subject of debate. In this work, we perform a systematic analysis of the gerontome across species, including human aging-related genes. First, by classifying aging-related genes as pro- or anti-longevity, we define distinct pathways and genes that modulate aging in different ways. Our subsequent comparison of aging-related genes with age-related disease genes reveals species-specific effects with strong overlaps between aging and age-related diseases in mice, yet surprisingly few overlaps in lower model organisms. We discover that genetic links between aging and age-related diseases are due to a small fraction of aging-related genes which also tend to have a high network connectivity. Other insights from our systematic analysis include assessing how using datasets with genes more or less studied than average may result in biases, showing that age-related disease genes have faster molecular evolution rates and predicting new aging-related drugs based on drug-gene interaction data. Overall, this is the largest systems-level analysis of the genetics of aging to date and the first to discriminate anti- and pro-longevity genes, revealing new insights on aging-related genes as a whole and their interactions with age-related diseases. PMID:28175300

  19. Species delimitation, genetic diversity and population historical dynamics of Cycas diannanensis (Cycadaceae) occurring sympatrically in the Red River region of China

    PubMed Central

    Liu, Jian; Zhou, Wei; Gong, Xun

    2015-01-01

    Delimitating species boundaries could be of critical importance when evaluating the species' evolving process and providing guidelines for conservation genetics. Here, species delimitation was carried out on three endemic and endangered Cycas species with resembling morphology and overlapped distribution range along the Red River (Yuanjiang) in China: Cycas diananensis Z. T. Guan et G. D. Tao, Cycas parvula S. L. Yang and Cycas multiovula D. Y. Wang. A total of 137 individuals from 15 populations were genotyped by using three chloroplastic (psbA-trnH, atpI-atpH, and trnL-rps4) and two single copy nuclear (RPB1 and SmHP) DNA sequences. Basing on the carefully morphological comparison and cladistic haplotype aggregation (CHA) analysis, we propose all the populations as one species, with the rest two incorporated into C. diannanensis. Genetic diversity and structure analysis of the conflated C. diannanensis revealed this species possessed a relative lower genetic diversity than estimates of other Cycas species. The higher genetic diversity among populations and relative lower genetic diversity within populations, as well as obvious genetic differentiation among populations inferred from chloroplastic DNA (cpDNA) suggested a recent genetic loss within this protected species. Additionally, a clear genetic structure of C. diannanensis corresponding with geography was detected based on cpDNA, dividing its population ranges into “Yuanjiang-Nanhun” basin and “Ejia-Jiepai” basin groups. Demographical history analyses based on combined cpDNA and one nuclear DNA (nDNA) SmHP both showed the population size of C. diannanensis began to decrease in Quaternary glaciation with no subsequent expansion, while another nDNA RPB1 revealed a more recent sudden expansion after long-term population size contraction, suggesting its probable bottleneck events in history. Our findings offer grounded views for clarifying species boundaries of C. diannanensis when determining the conservation objectives. For operational guidelines, the downstream populations which occupy high and peculiar haplotypes should be given prior in-situ conservation. In addition, ex-situ conservation and reintroduction measures for decades of generations are supplemented for improving the population size and genetic diversity of the endemic and endangered species. PMID:26442013

  20. Genetic relatedness of indigenous ethnic groups in northern Borneo to neighboring populations from Southeast Asia, as inferred from genome-wide SNP data.

    PubMed

    Yew, Chee Wei; Hoque, Mohd Zahirul; Pugh-Kitingan, Jacqueline; Minsong, Alexander; Voo, Christopher Lok Yung; Ransangan, Julian; Lau, Sophia Tiek Ying; Wang, Xu; Saw, Woei Yuh; Ong, Rick Twee-Hee; Teo, Yik-Ying; Xu, Shuhua; Hoh, Boon-Peng; Phipps, Maude E; Kumar, S Vijay

    2018-07-01

    The region of northern Borneo is home to the current state of Sabah, Malaysia. It is located closest to the southern Philippine islands and may have served as a viaduct for ancient human migration onto or off of Borneo Island. In this study, five indigenous ethnic groups from Sabah were subjected to genome-wide SNP genotyping. These individuals represent the "North Borneo"-speaking group of the great Austronesian family. They have traditionally resided in the inland region of Sabah. The dataset was merged with public datasets, and the genetic relatedness of these groups to neighboring populations from the islands of Southeast Asia, mainland Southeast Asia and southern China was inferred. Genetic structure analysis revealed that these groups formed a genetic cluster that was independent of the clusters of neighboring populations. Additionally, these groups exhibited near-absolute proportions of a genetic component that is also common among Austronesians from Taiwan and the Philippines. They showed no genetic admixture with Austro-Melanesian populations. Furthermore, phylogenetic analysis showed that they are closely related to non-Austro-Melansian Filipinos as well as to Taiwan natives but are distantly related to populations from mainland Southeast Asia. Relatively lower heterozygosity and higher pairwise genetic differentiation index (F ST ) values than those of nearby populations indicate that these groups might have experienced genetic drift in the past, resulting in their differentiation from other Austronesians. Subsequent formal testing suggested that these populations have received no gene flow from neighboring populations. Taken together, these results imply that the indigenous ethnic groups of northern Borneo shared a common ancestor with Taiwan natives and non-Austro-Melanesian Filipinos and then isolated themselves on the inland of Sabah. This isolation presumably led to no admixture with other populations, and these individuals therefore underwent strong genetic differentiation. This report contributes to addressing the paucity of genetic data on representatives from this strategic region of ancient human migration event(s). © 2018 John Wiley & Sons Ltd/University College London.

  1. Species delimitation, genetic diversity and population historical dynamics of Cycas diannanensis (Cycadaceae) occurring sympatrically in the Red River region of China.

    PubMed

    Liu, Jian; Zhou, Wei; Gong, Xun

    2015-01-01

    Delimitating species boundaries could be of critical importance when evaluating the species' evolving process and providing guidelines for conservation genetics. Here, species delimitation was carried out on three endemic and endangered Cycas species with resembling morphology and overlapped distribution range along the Red River (Yuanjiang) in China: Cycas diananensis Z. T. Guan et G. D. Tao, Cycas parvula S. L. Yang and Cycas multiovula D. Y. Wang. A total of 137 individuals from 15 populations were genotyped by using three chloroplastic (psbA-trnH, atpI-atpH, and trnL-rps4) and two single copy nuclear (RPB1 and SmHP) DNA sequences. Basing on the carefully morphological comparison and cladistic haplotype aggregation (CHA) analysis, we propose all the populations as one species, with the rest two incorporated into C. diannanensis. Genetic diversity and structure analysis of the conflated C. diannanensis revealed this species possessed a relative lower genetic diversity than estimates of other Cycas species. The higher genetic diversity among populations and relative lower genetic diversity within populations, as well as obvious genetic differentiation among populations inferred from chloroplastic DNA (cpDNA) suggested a recent genetic loss within this protected species. Additionally, a clear genetic structure of C. diannanensis corresponding with geography was detected based on cpDNA, dividing its population ranges into "Yuanjiang-Nanhun" basin and "Ejia-Jiepai" basin groups. Demographical history analyses based on combined cpDNA and one nuclear DNA (nDNA) SmHP both showed the population size of C. diannanensis began to decrease in Quaternary glaciation with no subsequent expansion, while another nDNA RPB1 revealed a more recent sudden expansion after long-term population size contraction, suggesting its probable bottleneck events in history. Our findings offer grounded views for clarifying species boundaries of C. diannanensis when determining the conservation objectives. For operational guidelines, the downstream populations which occupy high and peculiar haplotypes should be given prior in-situ conservation. In addition, ex-situ conservation and reintroduction measures for decades of generations are supplemented for improving the population size and genetic diversity of the endemic and endangered species.

  2. P450 GENETIC VARIATION: IMPLICATIONS FOR ENVIRONMENTAL AND WORKPLACE EXPOSURE

    EPA Science Inventory

    The Cytochrome P450 array detoxifies many chemicals by catalyzing the conversion of mostly hydrophobic chemicals into more hydrophilic forms that can subsequently be excreted by the body. Human genetic variation in the genes for these enzymes produces wide variations in the abili...

  3. Author Correction: Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos.

    PubMed

    Floros, Vasileios I; Pyle, Angela; Dietmann, Sabine; Wei, Wei; Tang, Walfred W C; Irie, Naoko; Payne, Brendan; Capalbo, Antonio; Noli, Laila; Coxhead, Jonathan; Hudson, Gavin; Crosier, Moira; Strahl, Henrik; Khalaf, Yacoub; Saitou, Mitinori; Ilic, Dusko; Surani, M Azim; Chinnery, Patrick F

    2018-04-19

    In the version of this Letter originally published, an author error led to the affiliations for Brendan Payne, Jonathan Coxhead and Gavin Hudson being incorrect. The correct affiliations are: Brendan Payne: 3 Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK. 6 Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK; this is a new affiliation 6 and subsequent existing affiliations have been renumbered. Jonathan Coxhead: 11 Genomic Core Facility, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK; this is a new affiliation 11 and subsequent existing affiliations have been renumbered. Gavin Hudson: 3 Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK. In addition, in Fig. 2d, the numbers on the x-axis of the left plot were incorrectly labelled as negative; they should have been positive. These errors have now been corrected in all online versions of the Letter.

  4. Concerns and coping during cancer genetic risk assessment.

    PubMed

    Bennett, P; Phelps, C; Hilgart, J; Hood, K; Brain, K; Murray, A

    2012-06-01

    To gain an 'in-depth' understanding of patients' concerns and their related coping strategies during the genetic risk assessment process. Participants were the 'usual care' arm of a trial of a coping intervention targeted at men and women undergoing assessment of genetic risk for familial cancer. Participants completed questionnaires measuring the degree to which they experienced up to 11 concerns and which of 8 coping strategies they used to respond to each of them at entry into the programme and 1 month subsequently (before they received their risk information). A majority of participants were at least 'quite worried' about all the identified concerns, although the levels of concern fell over the waiting period. Participants used several strategies in response to their varying concerns - although a primary coping strategy for each concern was identifiable. The emotion-focused strategies of acceptance and positive appraisal were generally used in response to concerns they could not change, and seeking social support was used primarily to gain information, but not emotional support from their family. Cluster analysis identified three unique clusters of coping responses. Genetic risk assessment comprises a number of different stressors each of which is coped with using different strategies. Copyright © 2011 John Wiley & Sons, Ltd.

  5. [The research-study of pneumococci transformation in the laboratory, and the rise of bacterial genetics and molecular biology].

    PubMed

    Carrada-Bravo, Teodoro

    2016-02-01

    The virulence of pneumococci for mice depends on the production of a polysaccharide-capsule, which encloses the bacteria and protects it against phagocytosis. Capsulated pneumococci yield smooth, brilliant colonies designated S, but mutant strains arise frequently which have lost the capacity to sinthetise the capsule, are avirulent and rough designated R. F. Griffith discovery of bacterial "transformation" in 1928, is a landmark in the history of genetics, because hereditary determinants could be transferred from one bacteria to another, and laid the foundation for the subsequent recognition of deoxyribonucleic acid (DNA) as the hereditary material. A systematic analysis of the chemical nature of the "transforming principle", by O. T. Avery and his colleagues during next 10 years, culminated in a formidable weight of evidence that it possessed all properties of DNA. In 1953, J. D. Watson and F. H. C Crick by a brilliant synthesis, fitted the chemical X-ray diffraction data together into a symmetrical double-helix structure, which possessed the inherent properties of genetic material, and carries the information necessary to direct all biochemical-cellular activities and self-replications. This paper describes de early rise and development of bacterial genetics and molecular biology.

  6. Molecular evidence of RNA polymerase II gene reveals the origin of worldwide cultivated barley

    PubMed Central

    Wang, Yonggang; Ren, Xifeng; Sun, Dongfa; Sun, Genlou

    2016-01-01

    The origin and domestication of cultivated barley have long been under debate. A population-based resequencing and phylogenetic analysis of the single copy of RPB2 gene was used to address barley domestication, to explore genetic differentiation of barley populations on the worldwide scale, and to understand gene-pool exchanges during the spread and subsequent development of barley cultivation. Our results revealed significant genetic differentiation among three geographically distinct wild barley populations. Differences in haplotype composition among populations from different geographical regions revealed that modern cultivated barley originated from two major wild barley populations: one from the Near East Fertile Crescent and the other from the Tibetan Plateau, supporting polyphyletic origin of cultivated barley. The results of haplotype frequencies supported multiple domestications coupled with widespread introgression events that generated genetic admixture between divergent barley gene pools. Our results not only provide important insight into the domestication and evolution of cultivated barley, but also enhance our understanding of introgression and distinct selection pressures in different environments on shaping the genetic diversity of worldwide barley populations, thus further facilitating the effective use of the wild barley germplasm. PMID:27786300

  7. Life trajectories, genetic testing, and risk reduction decisions in 18–39 year old women at risk for hereditary breast and ovarian cancer

    PubMed Central

    Williams, Janet K.; Bowers, Barbara J.; Calzone, Kathleen

    2009-01-01

    This qualitative study identified four life trajectories that influenced the decision in young women to have genetic testing for mutations in BRCA1/2 and subsequent risk reduction decisions after receiving a positive mutation result. Fifty nine women between the ages of 18–39 years were interviewed in this grounded theory study, 44 of those tested were found to have a mutation in either BRCA1 or BRCA2. Of those with a mutation, 23 had no history of cancer and 21 had a breast cancer diagnosis. Analysis of the 44 participants tested found that risk reducing decisions were related to the life trajectories that preceded genetic testing. These life trajectories included: 1) Long-standing awareness of breast cancer in the family, 2) Loss of one’s mother to breast cancer at a young age, 3) Expression of concern by a health care provider, and 4) Personal diagnosis of breast cancer. Understanding possible influences behind decision making for genetic testing and risk reduction in young women may assist health care providers in offering age appropriate guidance and support. PMID:18979190

  8. Speciation: more likely through a genetic or through a learned habitat preference?

    PubMed Central

    Beltman, J.B; Metz, J.A.J

    2005-01-01

    A problem in understanding sympatric speciation is establishing how reproductive isolation can arise when there is disruptive selection on an ecological trait. One of the solutions that has been proposed is that a habitat preference evolves, and that mates are chosen within the preferred habitat. We present a model where the habitat preference can evolve either by means of a genetic mechanism or by means of learning. Employing an adaptive-dynamical analysis, we show that evolution proceeds either to a single population of specialists with a genetic preference for their optimal habitat, or to a population of generalists without a habitat preference. The generalist population subsequently experiences disruptive selection. Learning promotes speciation because it increases the intensity of disruptive selection. An individual-based version of the model shows that, when loci are completely unlinked and learning confers little cost, the presence of disruptive selection most probably leads to speciation via the simultaneous evolution of a learned habitat preference. For high costs of learning, speciation is most likely to occur via the evolution of a genetic habitat preference. However, the latter only happens when the effect of mutations is large, or when there is linkage between genes coding for the different traits. PMID:16011920

  9. Genome Editing in Human Pluripotent Stem Cells.

    PubMed

    Carlson-Stevermer, Jared; Saha, Krishanu

    2017-01-01

    Genome editing in human pluripotent stem cells (hPSCs) enables the generation of reporter lines and knockout cell lines. Zinc finger nucleases, transcription activator-like effector nucleases (TALENs), and CRISPR/Cas9 technology have recently increased the efficiency of proper gene editing by creating double strand breaks (DSB) at defined sequences in the human genome. These systems typically use plasmids to transiently transcribe nucleases within the cell. Here, we describe the process for preparing hPSCs for transient expression of nucleases via electroporation and subsequent analysis to create genetically modified stem cell lines.

  10. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development.

    PubMed

    Covassin, L D; Siekmann, A F; Kacergis, M C; Laver, E; Moore, J C; Villefranc, J A; Weinstein, B M; Lawson, N D

    2009-05-15

    In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development.

  11. Vitamin D receptor genetic polymorphisms and tuberculosis: updated systematic review and meta-analysis.

    PubMed

    Gao, L; Tao, Y; Zhang, L; Jin, Q

    2010-01-01

    Host genetic susceptibility has been suggested as one of the most important explanations for inter-individual differences in tuberculosis (TB) risk. The vitamin D receptor (VDR) gene has been studied as a candidate locus due to genetic polymorphisms that affects the activity of the receptor and subsequent downstream vitamin D-mediated effects. We reviewed published studies on VDR polymorphisms and TB susceptibility up to 15 April 2009 and quantitatively summarised associations of the most widely studied polymorphisms (FokI, TaqI, ApaI and BsmI) using meta-analysis. A total of 23 eligible studies were included in this review. Heterogeneous results were observed, which may be partly explained by the differences between populations. Among Asians, the FokI ff genotype showed a pronounced positive association (OR 2.0, 95%CI 1.3-3.2), a significant inverse association was observed for the BsmI bb genotype (OR 0.5, 95%CI 0.4-0.8), and marginal significant associations were found for TaqI and ApaI polymorphisms. However, none of the polymorphisms was significantly related to TB among Africans or South Americans. The association of VDR polymorphisms with risk of TB observed in our analyses supports the hypothesis that vitamin D deficiency might play a role as risk factor during the development of TB.

  12. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development

    PubMed Central

    Covassin, L. D.; Siekmann, A. F.; Kacergis, M. C.; Laver, E.; Moore, J. C.; Villefranc, J. A.; Weinstein, B. M.; Lawson, N. D.

    2009-01-01

    In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development. PMID:19269286

  13. Environmental enrichment imparts disease-modifying and transgenerational effects on genetically-determined epilepsy and anxiety.

    PubMed

    Dezsi, Gabi; Ozturk, Ezgi; Salzberg, Michael R; Morris, Margaret; O'Brien, Terence J; Jones, Nigel C

    2016-09-01

    The absence epilepsies are presumed to be caused by genetic factors, but the influence of environmental exposures on epilepsy development and severity, and whether this influence is transmitted to subsequent generations, is not well known. We assessed the effects of environmental enrichment on epilepsy and anxiety outcomes in multiple generations of GAERS - a genetic rat model of absence epilepsy that manifests comorbid elevated anxiety-like behaviour. GAERS were exposed to environmental enrichment or standard housing beginning either prior to, or after epilepsy onset, and underwent EEG recordings and anxiety testing. Then, we exposed male GAERS to early enrichment or standard housing and generated F1 progeny, which also underwent EEG recordings. Hippocampal CRH mRNA expression and DNA methylation were assessed using RT-PCR and pyrosequencing, respectively. Early environmental enrichment delayed the onset of epilepsy in GAERS, and resulted in fewer seizures in adulthood, compared with standard housed GAERS. Enrichment also reduced the frequency of seizures when initiated in adulthood. Anxiety levels were reduced by enrichment, and these anti-epileptogenic and anxiolytic effects were heritable into the next generation. We also found reduced expression of CRH mRNA in GAERS exposed to enrichment, but this was not due to changes in DNA methylation. Environmental enrichment produces disease-modifying effects on genetically determined absence epilepsy and anxiety, and these beneficial effects are transferable to the subsequent generation. Reduced CRH expression was associated with these phenotypic improvements. Environmental stimulation holds promise as a naturalistic therapy for genetically determined epilepsy which may benefit subsequent generations. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The phylogeographical history of the Iberian steppe plant Ferula loscosii (Apiaceae): a test of the abundant-centre hypothesis.

    PubMed

    Pérez-Collazos, E; Sanchez-Gómez, P; Jiménez, F; Catalán, P

    2009-03-01

    The geology and climate of the western Mediterranean area were strongly modified during the Late Tertiary and the Quaternary. These geological and climatic events are thought to have induced changes in the population histories of plants in the Iberian Peninsula. However, fine-scale genetic spatial architecture across western Mediterranean steppe plant refugia has rarely been investigated. A population genetic analysis of amplified fragment length polymorphism variation was conducted on present-day, relict populations of Ferula loscosii (Apiaceae). This species exhibits high individual/population numbers in the middle Ebro river valley and, according to the hypothesis of an abundant-centre distribution, these northern populations might represent a long-standing/ancestral distribution centre. However, our results suggest that the decimated southern and central Iberian populations are more variable and structured than the northeastern ones, representing the likely vestiges of an ancestral distribution centre of the species. Phylogeographical analysis suggests that F. loscosii likely originated in southern Spain and then migrated towards the central and northeastern ranges, further supporting a Late Miocene southern-bound Mediterranean migratory way for its oriental steppe ancestors. In addition, different glacial-induced conditions affected the southern and northern steppe Iberian refugia during the Quaternary. The contrasting genetic homogeneity of the Ebro valley range populations compared to the southern Iberian ones possibly reflects more severe bottlenecks and subsequent genetic drift experienced by populations of the northern Iberia refugium during the Pleistocene, followed by successful postglacial expansion from only a few founder plants.

  15. High-resolution phylogenetic analysis of southeastern Europe traces major episodes of paternal gene flow among Slavic populations.

    PubMed

    Pericić, Marijana; Lauc, Lovorka Barać; Klarić, Irena Martinović; Rootsi, Siiri; Janićijevic, Branka; Rudan, Igor; Terzić, Rifet; Colak, Ivanka; Kvesić, Ante; Popović, Dan; Sijacki, Ana; Behluli, Ibrahim; Dordevic, Dobrivoje; Efremovska, Ljudmila; Bajec, Dorde D; Stefanović, Branislav D; Villems, Richard; Rudan, Pavao

    2005-10-01

    The extent and nature of southeastern Europe (SEE) paternal genetic contribution to the European genetic landscape were explored based on a high-resolution Y chromosome analysis involving 681 males from seven populations in the region. Paternal lineages present in SEE were compared with previously published data from 81 western Eurasian populations and 5,017 Y chromosome samples. The finding that five major haplogroups (E3b1, I1b* (xM26), J2, R1a, and R1b) comprise more than 70% of SEE total genetic variation is consistent with the typical European Y chromosome gene pool. However, distribution of major Y chromosomal lineages and estimated expansion signals clarify the specific role of this region in structuring of European, and particularly Slavic, paternal genetic heritage. Contemporary Slavic paternal gene pool, mostly characterized by the predominance of R1a and I1b* (xM26) and scarcity of E3b1 lineages, is a result of two major prehistoric gene flows with opposite directions: the post-Last Glacial Maximum R1a expansion from east to west, the Younger Dryas-Holocene I1b* (xM26) diffusion out of SEE in addition to subsequent R1a and I1b* (xM26) putative gene flows between eastern Europe and SEE, and a rather weak extent of E3b1 diffusion toward regions nowadays occupied by Slavic-speaking populations.

  16. Genetic structure, divergence and admixture of Han Chinese, Japanese and Korean populations.

    PubMed

    Wang, Yuchen; Lu, Dongsheng; Chung, Yeun-Jun; Xu, Shuhua

    2018-01-01

    Han Chinese, Japanese and Korean, the three major ethnic groups of East Asia, share many similarities in appearance, language and culture etc., but their genetic relationships, divergence times and subsequent genetic exchanges have not been well studied. We conducted a genome-wide study and evaluated the population structure of 182 Han Chinese, 90 Japanese and 100 Korean individuals, together with the data of 630 individuals representing 8 populations wordwide. Our analyses revealed that Han Chinese, Japanese and Korean populations have distinct genetic makeup and can be well distinguished based on either the genome wide data or a panel of ancestry informative markers (AIMs). Their genetic structure corresponds well to their geographical distributions, indicating geographical isolation played a critical role in driving population differentiation in East Asia. The most recent common ancestor of the three populations was dated back to 3000 ~ 3600 years ago. Our analyses also revealed substantial admixture within the three populations which occurred subsequent to initial splits, and distinct gene introgression from surrounding populations, of which northern ancestral component is dominant. These estimations and findings facilitate to understanding population history and mechanism of human genetic diversity in East Asia, and have implications for both evolutionary and medical studies.

  17. Assessment on induced genetic variability and divergence in the mutagenized lentil populations of microsperma and macrosperma cultivars developed using physical and chemical mutagenesis

    PubMed Central

    2017-01-01

    Induced mutagenesis was employed to create genetic variation in the lentil cultivars for yield improvement. The assessments were made on genetic variability, character association, and genetic divergence among the twelve mutagenized populations and one parent population of each of the two lentil cultivars, developed by single and combination treatments with gamma rays and hydrazine hydrates. Analysis of variance revealed significant inter-population differences for the observed quantitative phenotypic traits. The sample mean of six treatment populations in each of the cultivar exhibited highly superior quantitative phenotypic traits compared to their parent cultivars. The higher values of heritability and genetic advance with a high genotypic coefficient of variation for most of the yield attributing traits confirmed the possibilities of lentil yield improvement through phenotypic selection. The number of pods and seeds per plant appeared to be priority traits in selection for higher yield due to their strong direct association with yield. The cluster analysis divided the total populations into three divergent groups in each lentil cultivar with parent genotypes in an independent group showing the high efficacy of the mutagens. Considering the highest contribution of yield trait to the genetic divergence among the clustered population, it was confirmed that the mutagenic treatments created a wide heritable variation for the trait in the mutant populations. The selection of high yielding mutants from the mutant populations of DPL 62 (100 Gy) and Pant L 406 (100Gy + 0.1% HZ) in the subsequent generation is expected to give elite lentil cultivars. Also, hybridization between members of the divergent group would produce diverse segregants for crop improvement. Apart from this, the induced mutations at loci controlling economically important traits in the selected high yielding mutants have successfully contributed in diversifying the accessible lentil genetic base and will definitely be of immense value to the future lentil breeding programmes in India. PMID:28922405

  18. The Complex Demographic History and Evolutionary Origin of the Western Honey Bee, Apis Mellifera.

    PubMed

    Cridland, Julie M; Tsutsui, Neil D; Ramírez, Santiago R

    2017-02-01

    The western honey bee, Apis mellifera, provides critical pollination services to agricultural crops worldwide. However, despite substantial interest and prior investigation, the early evolution and subsequent diversification of this important pollinator remain uncertain. The primary hypotheses place the origin of A. mellifera in either Asia or Africa, with subsequent radiations proceeding from one of these regions. Here, we use two publicly available whole-genome data sets plus newly sequenced genomes and apply multiple population genetic analysis methods to investigate the patterns of ancestry and admixture in native honey bee populations from Europe, Africa, and the Middle East. The combination of these data sets is critical to the analyses, as each contributes samples from geographic locations lacking in the other, thereby producing the most complete set of honey bee populations available to date. We find evidence supporting an origin of A. mellifera in the Middle East or North Eastern Africa, with the A and Y lineages representing the earliest branching lineages. This finding has similarities with multiple contradictory hypotheses and represents a disentangling of genetic relationships, geographic proximity, and secondary contact to produce a more accurate picture of the origins of A. mellifera. We also investigate how previous studies came to their various conclusions based on incomplete sampling of populations, and illustrate the importance of complete sampling in understanding evolutionary processes. These results provide fundamental knowledge about genetic diversity within Old World honey bee populations and offer insight into the complex history of an important pollinator. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. A genome-wide association study of corneal astigmatism: The CREAM Consortium

    PubMed Central

    Shah, Rupal L.; Li, Qing; Zhao, Wanting; Tedja, Milly S.; Tideman, J. Willem L.; Khawaja, Anthony P.; Fan, Qiao; Yazar, Seyhan; Williams, Katie M.; Verhoeven, Virginie J.M.; Xie, Jing; Wang, Ya Xing; Hess, Moritz; Nickels, Stefan; Lackner, Karl J.; Pärssinen, Olavi; Wedenoja, Juho; Biino, Ginevra; Concas, Maria Pina; Uitterlinden, André; Rivadeneira, Fernando; Jaddoe, Vincent W.V.; Hysi, Pirro G.; Sim, Xueling; Tan, Nicholas; Tham, Yih-Chung; Sensaki, Sonoko; Hofman, Albert; Vingerling, Johannes R.; Jonas, Jost B.; Mitchell, Paul; Hammond, Christopher J.; Höhn, René; Baird, Paul N.; Wong, Tien-Yin; Cheng, Chinfsg-Yu; Teo, Yik Ying; Mackey, David A.; Williams, Cathy; Saw, Seang-Mei; Klaver, Caroline C.W.; Bailey-Wilson, Joan E.

    2018-01-01

    Purpose To identify genes and genetic markers associated with corneal astigmatism. Methods A meta-analysis of genome-wide association studies (GWASs) of corneal astigmatism undertaken for 14 European ancestry (n=22,250) and 8 Asian ancestry (n=9,120) cohorts was performed by the Consortium for Refractive Error and Myopia. Cases were defined as having >0.75 diopters of corneal astigmatism. Subsequent gene-based and gene-set analyses of the meta-analyzed results of European ancestry cohorts were performed using VEGAS2 and MAGMA software. Additionally, estimates of single nucleotide polymorphism (SNP)-based heritability for corneal and refractive astigmatism and the spherical equivalent were calculated for Europeans using LD score regression. Results The meta-analysis of all cohorts identified a genome-wide significant locus near the platelet-derived growth factor receptor alpha (PDGFRA) gene: top SNP: rs7673984, odds ratio=1.12 (95% CI:1.08–1.16), p=5.55×10−9. No other genome-wide significant loci were identified in the combined analysis or European/Asian ancestry-specific analyses. Gene-based analysis identified three novel candidate genes for corneal astigmatism in Europeans—claudin-7 (CLDN7), acid phosphatase 2, lysosomal (ACP2), and TNF alpha-induced protein 8 like 3 (TNFAIP8L3). Conclusions In addition to replicating a previously identified genome-wide significant locus for corneal astigmatism near the PDGFRA gene, gene-based analysis identified three novel candidate genes, CLDN7, ACP2, and TNFAIP8L3, that warrant further investigation to understand their role in the pathogenesis of corneal astigmatism. The much lower number of genetic variants and genes demonstrating an association with corneal astigmatism compared to published spherical equivalent GWAS analyses suggest a greater influence of rare genetic variants, non-additive genetic effects, or environmental factors in the development of astigmatism. PMID:29422769

  20. Genetic control of chromosome behaviour: Implications in evolution, crop improvement, and human biology

    USDA-ARS?s Scientific Manuscript database

    Chromosomes and chromosome pairing are pivotal to all biological sciences. The study of chromosomes helps unravel several aspects of an organism. Although the foundation of genetics occurred with the formulation of the laws of heredity in 1865, long before the discovery of chromosomes, their subsequ...

  1. Naturally occurring variation in tadpole morphology and performance linked to predator regime

    Treesearch

    James B. Johnson; Daniel Saenz; Cory K. Adams; Toby J. Hibbitts

    2015-01-01

    Divergent natural selection drives a considerable amount of the phenotypic and genetic variation observed in natural populations. For example, variation in the predator community can generate conflicting selection on behavioral, life-history, morphological, and performance traits. Differences in predator regime can subsequently increase phenotypic and genetic...

  2. Breeding black walnuts in the age of genomics

    Treesearch

    Mark V. Coggeshall; Jeanne Romero-Severson

    2013-01-01

    Molecular markers have been used in several walnut species to help reconstruct breeding program pedigrees, to characterize genetic structure in natural Juglans populations, to determine the impact of different timber harvest scenarios on residual levels of genetic diversity, and to quantify the effects of interspecific hybridization on subsequent...

  3. Genetic polymorphisms of pharmacogenomic VIP variants in the Yi population from China.

    PubMed

    Yan, Mengdan; Li, Dianzhen; Zhao, Guige; Li, Jing; Niu, Fanglin; Li, Bin; Chen, Peng; Jin, Tianbo

    2018-03-30

    Drug response and target therapeutic dosage are different among individuals. The variability is largely genetically determined. With the development of pharmacogenetics and pharmacogenomics, widespread research have provided us a wealth of information on drug-related genetic polymorphisms, and the very important pharmacogenetic (VIP) variants have been identified for the major populations around the world whereas less is known regarding minorities in China, including the Yi ethnic group. Our research aims to screen the potential genetic variants in Yi population on pharmacogenomics and provide a theoretical basis for future medication guidance. In the present study, 80 VIP variants (selected from the PharmGKB database) were genotyped in 100 unrelated and healthy Yi adults recruited for our research. Through statistical analysis, we made a comparison between the Yi and other 11 populations listed in the HapMap database for significant SNPs detection. Two specific SNPs were subsequently enrolled in an observation on global allele distribution with the frequencies downloaded from ALlele FREquency Database. Moreover, F-statistics (Fst), genetic structure and phylogenetic tree analyses were conducted for determination of genetic similarity between the 12 ethnic groups. Using the χ2 tests, rs1128503 (ABCB1), rs7294 (VKORC1), rs9934438 (VKORC1), rs1540339 (VDR) and rs689466 (PTGS2) were identified as the significantly different loci for further analysis. The global allele distribution revealed that the allele "A" of rs1540339 and rs9934438 were more frequent in Yi people, which was consistent with the most populations in East Asia. F-statistics (Fst), genetic structure and phylogenetic tree analyses demonstrated that the Yi and CHD shared a closest relationship on their genetic backgrounds. Additionally, Yi was considered similar to the Han people from Shaanxi province among the domestic ethnic populations in China. Our results demonstrated significant differences on several polymorphic SNPs and supplement the pharmacogenomic information for the Yi population, which could provide new strategies for optimizing clinical medication in accordance with the genetic determinants of drug toxicity and efficacy. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The long-term evolution of multilocus traits under frequency-dependent disruptive selection.

    PubMed

    van Doorn, G Sander; Dieckmann, Ulf

    2006-11-01

    Frequency-dependent disruptive selection is widely recognized as an important source of genetic variation. Its evolutionary consequences have been extensively studied using phenotypic evolutionary models, based on quantitative genetics, game theory, or adaptive dynamics. However, the genetic assumptions underlying these approaches are highly idealized and, even worse, predict different consequences of frequency-dependent disruptive selection. Population genetic models, by contrast, enable genotypic evolutionary models, but traditionally assume constant fitness values. Only a minority of these models thus addresses frequency-dependent selection, and only a few of these do so in a multilocus context. An inherent limitation of these remaining studies is that they only investigate the short-term maintenance of genetic variation. Consequently, the long-term evolution of multilocus characters under frequency-dependent disruptive selection remains poorly understood. We aim to bridge this gap between phenotypic and genotypic models by studying a multilocus version of Levene's soft-selection model. Individual-based simulations and deterministic approximations based on adaptive dynamics theory provide insights into the underlying evolutionary dynamics. Our analysis uncovers a general pattern of polymorphism formation and collapse, likely to apply to a wide variety of genetic systems: after convergence to a fitness minimum and the subsequent establishment of genetic polymorphism at multiple loci, genetic variation becomes increasingly concentrated on a few loci, until eventually only a single polymorphic locus remains. This evolutionary process combines features observed in quantitative genetics and adaptive dynamics models, and it can be explained as a consequence of changes in the selection regime that are inherent to frequency-dependent disruptive selection. Our findings demonstrate that the potential of frequency-dependent disruptive selection to maintain polygenic variation is considerably smaller than previously expected.

  5. Population Genetic Analysis Infers Migration Pathways of Phytophthora ramorum in US Nurseries

    PubMed Central

    Goss, Erica M.; Larsen, Meg; Chastagner, Gary A.; Givens, Donald R.; Grünwald, Niklaus J.

    2009-01-01

    Recently introduced, exotic plant pathogens may exhibit low genetic diversity and be limited to clonal reproduction. However, rapidly mutating molecular markers such as microsatellites can reveal genetic variation within these populations and be used to model putative migration patterns. Phytophthora ramorum is the exotic pathogen, discovered in the late 1990s, that is responsible for sudden oak death in California forests and ramorum blight of common ornamentals. The nursery trade has moved this pathogen from source populations on the West Coast to locations across the United States, thus risking introduction to other native forests. We examined the genetic diversity of P. ramorum in United States nurseries by microsatellite genotyping 279 isolates collected from 19 states between 2004 and 2007. Of the three known P. ramorum clonal lineages, the most common and genetically diverse lineage in the sample was NA1. Two eastward migration pathways were revealed in the clustering of NA1 isolates into two groups, one containing isolates from Connecticut, Oregon, and Washington and the other isolates from California and the remaining states. This finding is consistent with trace forward analyses conducted by the US Department of Agriculture's Animal and Plant Health Inspection Service. At the same time, genetic diversities in several states equaled those observed in California, Oregon, and Washington and two-thirds of multilocus genotypes exhibited limited geographic distributions, indicating that mutation was common during or subsequent to migration. Together, these data suggest that migration, rapid mutation, and genetic drift all play a role in structuring the genetic diversity of P. ramorum in US nurseries. This work demonstrates that fast-evolving genetic markers can be used to examine the evolutionary processes acting on recently introduced pathogens and to infer their putative migration patterns, thus showing promise for the application of forensics to plant pathogens. PMID:19774068

  6. Genetic variation in GPR133 is associated with height: genome wide association study in the self-contained population of Sorbs.

    PubMed

    Tönjes, Anke; Koriath, Moritz; Schleinitz, Dorit; Dietrich, Kerstin; Böttcher, Yvonne; Rayner, Nigel W; Almgren, Peter; Enigk, Beate; Richter, Olaf; Rohm, Silvio; Fischer-Rosinsky, Antje; Pfeiffer, Andreas; Hoffmann, Katrin; Krohn, Knut; Aust, Gabriela; Spranger, Joachim; Groop, Leif; Blüher, Matthias; Kovacs, Peter; Stumvoll, Michael

    2009-12-01

    Recently, associations of several common genetic variants with height have been reported in different populations. We attempted to identify further variants associated with adult height in a self-contained population (the Sorbs in Eastern Germany) as discovery set. We performed a genome wide association study (GWAS) (approximately 390,000 genetic polymorphisms, Affymetrix gene arrays) on adult height in 929 Sorbian individuals. Subsequently, the best SNPs (P < 0.001) were taken forward to a meta-analysis together with two independent cohorts [Diabetes Genetics Initiative, British 1958 Birth Cohort, (58BC, publicly available)]. Furthermore, we genotyped our best signal for replication in two additional German cohorts (Leipzig, n = 1044 and Berlin, n = 1728). In the primary Sorbian GWAS, we identified 5 loci with a P-value < 10(-5) and 455 SNPs with P-value < 0.001. In the meta-analysis on those 455 SNPs, only two variants in GPR133 (rs1569019 and rs1976930; in LD with each other) retained a P-value at or below 10(-6) and were associated with height in the three cohorts individually. Upon replication, the SNP rs1569019 showed significant effects on height in the Leipzig cohort (P = 0.004, beta = 1.166) and in 577 men of the Berlin cohort (P = 0.049, beta = 1.127) though not in women. The combined analysis of all five cohorts (n = 6,687) resulted in a P-value of 4.7 x 10(-8) (beta = 0.949). In conclusion, our GWAS suggests novel loci influencing height. In view of the robust replication in five different cohorts, we propose GPR133 to be a novel gene associated with adult height.

  7. Genetic Biomarkers of Barrett's Esophagus Susceptibility and Progression to Dysplasia and Cancer: A Systematic Review and Meta-Analysis.

    PubMed

    Findlay, John M; Middleton, Mark R; Tomlinson, Ian

    2016-01-01

    Barrett's esophagus (BE) is a common and important precursor lesion of esophageal adenocarcinoma (EAC). A third of patients with BE are asymptomatic, and our ability to predict the risk of progression of metaplasia to dysplasia and EAC (and therefore guide management) is limited. There is an urgent need for clinically useful biomarkers of susceptibility to both BE and risk of subsequent progression. This study aims to systematically identify, review, and meta-analyze genetic biomarkers reported to predict both. A systematic review of the PubMed and EMBASE databases was performed in May 2014. Study and evidence quality were appraised using the revised American Society of Clinical Oncology guidelines, and modified Recommendations for Tumor Marker Scores. Meta-analysis was performed for all markers assessed by more than one study. A total of 251 full-text articles were reviewed; 52 were included. A total of 33 germline markers of susceptibility were identified (level of evidence II-III); 17 were included. Five somatic markers of progression were identified; meta-analysis demonstrated significant associations for chromosomal instability (level of evidence II). One somatic marker of progression/relapse following photodynamic therapy was identified. However, a number of failings of methodology and reporting were identified. This is the first systematic review and meta-analysis to evaluate genetic biomarkers of BE susceptibility and risk of progression. While a number of limitations of study quality temper the utility of those markers identified, some-in particular, those identified by genome-wide association studies, and chromosomal instability for progression-appear plausible, although robust validation is required.

  8. Programmable lab-on-a-chip system for single cell analysis

    NASA Astrophysics Data System (ADS)

    Thalhammer, S.

    2009-05-01

    The collection, selection, amplification and detection of minimum genetic samples became a part of everyday life in medical and biological laboratories, to analyze DNA-fragments of pathogens, patient samples and traces on crime scenes. About a decade ago, a handful of researchers began discussing an intriguing idea. Could the equipment needed for everyday chemistry and biology procedures be shrunk to fit on a chip in the size of a fingernail? Miniature devices for, say, analysing DNA and proteins should be faster and cheaper than conventional versions. Lab-on-a-chip is an advanced technology that integrates a microfluidic system on a microscale chip device. The "laboratory" is created by means of channels, mixers, reservoirs, diffusion chambers, integrated electrodes, pumps, valves and more. With lab-ona- chip technology, complete laboratories on a square centimetre can be created. Here, a multifunctional programmable Lab-on-a-Chip driven by nanofluidics and controlled by surface acoustic waves (SAW) is presented. This system combines serial DNA-isolation-, amplification- and array-detection-process on a modified glass-platform. The fluid actuation is controlled via SAW by interdigital transducers implemented in the chemical modified chip surface. The chemical surface modification allows fluid handling in the sub-microliter range. Minute amount of sample material is extracted by laser-based microdissection out of e.g. histological sections at the single cell level. A few picogram of genetic material are isolated and transferred via a low-pressure transfer system (SPATS) onto the chip. Subsequently the genetic material inside single droplets, which behave like "virtual" beaker, is transported to the reaction and analysis centers on the chip surface via surface acoustic waves, mainly known as noise dumping filters in mobile phones. At these "biological reactors" the genetic material is processed, e.g. amplified via polymerase chain reaction methods, and genetically characterized.

  9. Behavioural changes, sharing behaviour and psychological responses after receiving direct-to-consumer genetic test results: a systematic review and meta-analysis.

    PubMed

    Stewart, Kelly F J; Wesselius, Anke; Schreurs, Maartje A C; Schols, Annemie M W J; Zeegers, Maurice P

    2018-01-01

    It has been hypothesised that direct-to-consumer genetic tests (DTC-GTs) could stimulate health behaviour change. However, genetic testing may also lead to anxiety and distress or unnecessarily burden the health care system. The aim is to review and meta-analyse the effects of DTC-GT on (1) behaviour change, (2) psychological response and (3) medical consumption. A systematic literature search was performed in three databases, using "direct-to-consumer genetic testing" as a key search term. Random effects meta-analyses were performed when at least two comparable outcomes were available. After selection, 19 articles were included involving 11 unique studies. Seven studies involved actual consumers who paid the retail price, whereas four included participants who received free genetic testing as part of a research trial (non-actual consumers). In meta-analysis, 23% had a positive lifestyle change. More specifically, improved dietary and exercise practices were both reported by 12%, whereas 19% quit smoking. Seven percent of participants had subsequent preventive checks. Thirty-three percent shared their results with any health care professional and 50% with family and/or friends. Sub-analyses show that behaviour change was more prevalent among non-actual consumers, whereas sharing was more prevalent among actual consumers. Results on psychological responses showed that anxiety, distress and worry were low or absent and that the effect faded with time. DTC-GT has potential to be effective as a health intervention, but the right audience needs to be addressed with tailored follow-up. Research is needed to identify consumers who do and do not change behaviour or experience adverse psychological responses.

  10. Genotyping and Molecular Identification of Date Palm Cultivars Using Inter-Simple Sequence Repeat (ISSR) Markers.

    PubMed

    Ayesh, Basim M

    2017-01-01

    Molecular markers are credible for the discrimination of genotypes and estimation of the extent of genetic diversity and relatedness in a set of genotypes. Inter-simple sequence repeat (ISSR) markers rapidly reveal high polymorphic fingerprints and have been used frequently to determine the genetic diversity among date palm cultivars. This chapter describes the application of ISSR markers for genotyping of date palm cultivars. The application involves extraction of genomic DNA from the target cultivars with reliable quality and quantity. Subsequently the extracted DNA serves as a template for amplification of genomic regions flanked by inverted simple sequence repeats using a single primer. The similarity of each pair of samples is measured by calculating the number of mono- and polymorphic bands revealed by gel electrophoresis. Matrices constructed for similarity and genetic distance are used to build a phylogenetic tree and cluster analysis, to determine the molecular relatedness of cultivars. The protocol describes 3 out of 9 tested primers consistently amplified 31 loci in 6 date palm cultivars, with 28 polymorphic loci.

  11. Functional genetic variant in the Kozak sequence of WW domain-containing oxidoreductase (WWOX) gene is associated with oral cancer risk.

    PubMed

    Cheng, Hsin-Lin; Liu, Yu-Fan; Su, Chun-Wen; Su, Shih-Chi; Chen, Mu-Kuan; Yang, Shun-Fa; Lin, Chiao-Wen

    2016-10-25

    In Taiwan, oral cancer is the fourth leading cancer in males and is associated with exposure to environmental carcinogens. WW domain-containing oxidoreductase (WWOX), a tumor suppressor gene, is associated with the development of various cancers. We hypothesized that genetic variants of WWOX influence the susceptibility to oral cancer. Five polymorphisms of WWOX gene from 761 male patients with oral cancer and 1199 male cancer-free individuals were genotyped. We observed that individuals carrying the polymorphic allele of WWOX rs11545028 are more susceptible to oral cancer. Furthermore, patients with advanced-stage oral cancer were associated with a higher frequency of WWOX rs11545028 polymorphisms with the variant genotype TT than did patients with the wild-type gene. An additional integrated in silico analysis confirmed that rs11545028 affects WWOX expression, which significantly correlates with tumor expression and subsequently with tumor development and aggressiveness. In conclusion, genetic variants of WWOX contribute to the occurrence of oral cancer, and the findings regarding these biomarkers provided a prediction model for risk assessment.

  12. Bayesian inference for the genetic control of water deficit tolerance in spring wheat by stochastic search variable selection.

    PubMed

    Safari, Parviz; Danyali, Syyedeh Fatemeh; Rahimi, Mehdi

    2018-06-02

    Drought is the main abiotic stress seriously influencing wheat production. Information about the inheritance of drought tolerance is necessary to determine the most appropriate strategy to develop tolerant cultivars and populations. In this study, generation means analysis to identify the genetic effects controlling grain yield inheritance in water deficit and normal conditions was considered as a model selection problem in a Bayesian framework. Stochastic search variable selection (SSVS) was applied to identify the most important genetic effects and the best fitted models using different generations obtained from two crosses applying two water regimes in two growing seasons. The SSVS is used to evaluate the effect of each variable on the dependent variable via posterior variable inclusion probabilities. The model with the highest posterior probability is selected as the best model. In this study, the grain yield was controlled by the main effects (additive and non-additive effects) and epistatic. The results demonstrate that breeding methods such as recurrent selection and subsequent pedigree method and hybrid production can be useful to improve grain yield.

  13. Microfluidic droplet enrichment for targeted sequencing

    PubMed Central

    Eastburn, Dennis J.; Huang, Yong; Pellegrino, Maurizio; Sciambi, Adam; Ptáček, Louis J.; Abate, Adam R.

    2015-01-01

    Targeted sequence enrichment enables better identification of genetic variation by providing increased sequencing coverage for genomic regions of interest. Here, we report the development of a new target enrichment technology that is highly differentiated from other approaches currently in use. Our method, MESA (Microfluidic droplet Enrichment for Sequence Analysis), isolates genomic DNA fragments in microfluidic droplets and performs TaqMan PCR reactions to identify droplets containing a desired target sequence. The TaqMan positive droplets are subsequently recovered via dielectrophoretic sorting, and the TaqMan amplicons are removed enzymatically prior to sequencing. We demonstrated the utility of this approach by generating an average 31.6-fold sequence enrichment across 250 kb of targeted genomic DNA from five unique genomic loci. Significantly, this enrichment enabled a more comprehensive identification of genetic polymorphisms within the targeted loci. MESA requires low amounts of input DNA, minimal prior locus sequence information and enriches the target region without PCR bias or artifacts. These features make it well suited for the study of genetic variation in a number of research and diagnostic applications. PMID:25873629

  14. A high-throughput method for GMO multi-detection using a microfluidic dynamic array.

    PubMed

    Brod, Fábio Cristiano Angonesi; van Dijk, Jeroen P; Voorhuijzen, Marleen M; Dinon, Andréia Zilio; Guimarães, Luis Henrique S; Scholtens, Ingrid M J; Arisi, Ana Carolina Maisonnave; Kok, Esther J

    2014-02-01

    The ever-increasing production of genetically modified crops generates a demand for high-throughput DNA-based methods for the enforcement of genetically modified organisms (GMO) labelling requirements. The application of standard real-time PCR will become increasingly costly with the growth of the number of GMOs that is potentially present in an individual sample. The present work presents the results of an innovative approach in genetically modified crops analysis by DNA based methods, which is the use of a microfluidic dynamic array as a high throughput multi-detection system. In order to evaluate the system, six test samples with an increasing degree of complexity were prepared, preamplified and subsequently analysed in the Fluidigm system. Twenty-eight assays targeting different DNA elements, GM events and species-specific reference genes were used in the experiment. The large majority of the assays tested presented expected results. The power of low level detection was assessed and elements present at concentrations as low as 0.06 % were successfully detected. The approach proposed in this work presents the Fluidigm system as a suitable and promising platform for GMO multi-detection.

  15. Analysis of the genetic structure of the Malay population: Ancestry-informative marker SNPs in the Malay of Peninsular Malaysia.

    PubMed

    Yahya, Padillah; Sulong, Sarina; Harun, Azian; Wan Isa, Hatin; Ab Rajab, Nur-Shafawati; Wangkumhang, Pongsakorn; Wilantho, Alisa; Ngamphiw, Chumpol; Tongsima, Sissades; Zilfalil, Bin Alwi

    2017-09-01

    Malay, the main ethnic group in Peninsular Malaysia, is represented by various sub-ethnic groups such as Melayu Banjar, Melayu Bugis, Melayu Champa, Melayu Java, Melayu Kedah Melayu Kelantan, Melayu Minang and Melayu Patani. Using data retrieved from the MyHVP (Malaysian Human Variome Project) database, a total of 135 individuals from these sub-ethnic groups were profiled using the Affymetrix GeneChip Mapping Xba 50-K single nucleotide polymorphism (SNP) array to identify SNPs that were ancestry-informative markers (AIMs) for Malays of Peninsular Malaysia. Prior to selecting the AIMs, the genetic structure of Malays was explored with reference to 11 other populations obtained from the Pan-Asian SNP Consortium database using principal component analysis (PCA) and ADMIXTURE. Iterative pruning principal component analysis (ipPCA) was further used to identify sub-groups of Malays. Subsequently, we constructed an AIMs panel for Malays using the informativeness for assignment (I n ) of genetic markers, and the K-nearest neighbor classifier (KNN) was used to teach the classification models. A model of 250 SNPs ranked by I n , correctly classified Malay individuals with an accuracy of up to 90%. The identified panel of SNPs could be utilized as a panel of AIMs to ascertain the specific ancestry of Malays, which may be useful in disease association studies, biomedical research or forensic investigation purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Whole exome sequencing: a state-of-the-art approach for defining (and exploring!) genetic landscapes in pediatric nephrology.

    PubMed

    Gulati, Ashima; Somlo, Stefan

    2018-05-01

    The genesis of whole exome sequencing as a powerful tool for detailing the protein coding sequence of the human genome was conceptualized based on the availability of next-generation sequencing technology and knowledge of the human reference genome. The field of pediatric nephrology enriched with molecularly unsolved phenotypes is allowing the clinical and research application of whole exome sequencing to enable novel gene discovery and provide amendment of phenotypic misclassification. Recent studies in the field have informed us that newer high-throughput sequencing techniques are likely to be of high yield when applied in conjunction with conventional genomic approaches such as linkage analysis and other strategies used to focus subsequent analysis. They have also emphasized the need for the validation of novel genetic findings in large collaborative cohorts and the production of robust corroborative biological data. The well-structured application of comprehensive genomic testing in clinical and research arenas will hopefully continue to advance patient care and precision medicine, but does call for attention to be paid to its integrated challenges.

  17. Low Genetic Diversity in Wide-Spread Eurasian Liver Fluke Opisthorchis felineus Suggests Special Demographic History of This Trematode Species

    PubMed Central

    Brusentsov, Ilja I.; Katokhin, Alexey V.; Brusentsova, Irina V.; Shekhovtsov, Sergei V.; Borovikov, Sergei N.; Goncharenko, Grigoriy G.; Lider, Lyudmila A.; Romashov, Boris V.; Rusinek, Olga T.; Shibitov, Samat K.; Suleymanov, Marat M.; Yevtushenko, Andrey V.; Mordvinov, Viatcheslav A.

    2013-01-01

    Opisthorchis felineus or Siberian liver fluke is a trematode parasite (Opisthorchiidae) that infects the hepato-biliary system of humans and other mammals. Despite its public health significance, this wide-spread Eurasian species is one of the most poorly studied human liver flukes and nothing is known about its population genetic structure and demographic history. In this paper, we attempt to fill this gap for the first time and to explore the genetic diversity in O. felineus populations from Eastern Europe (Ukraine, European part of Russia), Northern Asia (Siberia) and Central Asia (Northern Kazakhstan). Analysis of marker DNA fragments from O. felineus mitochondrial cytochrome c oxidase subunit 1 and 3 (cox1, cox3) and nuclear rDNA internal transcribed spacer 1 (ITS1) sequences revealed that genetic diversity is very low across the large geographic range of this species. Microevolutionary processes in populations of trematodes may well be influenced by their peculiar biology. Nevertheless, we suggest that lack of population genetics structure observed in O. felineus can be primarily explained by the Pleistocene glacial events and subsequent sudden population growth from a very limited group of founders. Rapid range expansion of O. felineus through Asian and European territories after severe bottleneck points to a high dispersal potential of this trematode species. PMID:23634228

  18. Novel technologies in doubled haploid line development.

    PubMed

    Ren, Jiaojiao; Wu, Penghao; Trampe, Benjamin; Tian, Xiaolong; Lübberstedt, Thomas; Chen, Shaojiang

    2017-11-01

    haploid inducer line can be transferred (DH) technology can not only shorten the breeding process but also increase genetic gain. Haploid induction and subsequent genome doubling are the two main steps required for DH technology. Haploids have been generated through the culture of immature male and female gametophytes, and through inter- and intraspecific via chromosome elimination. Here, we focus on haploidization via chromosome elimination, especially the recent advances in centromere-mediated haploidization. Once haploids have been induced, genome doubling is needed to produce DH lines. This study has proposed a new strategy to improve haploid genome doubling by combing haploids and minichromosome technology. With the progress in haploid induction and genome doubling methods, DH technology can facilitate reverse breeding, cytoplasmic male sterile (CMS) line production, gene stacking and a variety of other genetic analysis. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Blood meal analysis of tabanid fly after it biting the rare Sumatran rhinoceros.

    PubMed

    Rovie-Ryan, Jeffrine Japning; Zainuddin, Zainal Zahari; Marni, Wahap; Ahmad, Abdul Hamid; Ambu, Laurentius N; Payne, Junaidi

    2013-02-01

    To demonstrate a noninvasive large mammalian genetic sampling method using blood meal obtained from a tabanid fly. Blood meal was recovered from the abdomen of an engorged tabanid fly (Haematopota sp.) which was captured immediately after biting a Sumatran rhino in captivity. The blood was applied on to a Whatman FTA(®) blood card. Subsequent laboratory work was conducted to extract, amplify and sequence the DNA from the sample. Validation was done by sampling the hair follicles and blood samples from the rhinoceros and subjecting it to the same laboratory process. BLAST search and constructed phylogenetic trees confirmed the blood meal samples were indeed from the rhino. This method could be used in the field application to noninvasively collect genetic samples. Collection of tabanids and other haematophagous arthropods (e.g. mosquitoes and ticks) and other blood-sucking parasites (e.g. leeches and worms) could also provide information on vector-borne diseases.

  20. Reevaluating Muscle Biopsies in the Diagnosis of Pompe Disease: A Corroborative Report.

    PubMed

    Genge, Angela; Campbell, Natasha

    2016-07-01

    Previous reports suggest that although a diagnostic muscle biopsy can confirm the presence of Pompe disease, the absence of a definitive biopsy result does not rule out the diagnosis. In this study, we reviewed patients with a limb-girdle syndrome who demonstrated nonspecific abnormalities of muscle, without evidence of the classical changes of acid maltase deficiency. These patients were rescreened for Pompe disease using dried blood spot (DBS) testing. Twenty-seven patients provided blood samples for the DBS test. Four patients underwent subsequent genetic testing. Genetic analysis demonstrated that one patient tested positive for Pompe disease and one patient had one copy of a pathogenic variant. In conclusion, the ability of a diagnostic muscle biopsy to definitively rule out the presence of Pompe disease is limited. There is a role for a screening DBS in all patients presenting with a limb-girdle syndrome without a clear diagnosis.

  1. Genetic effects influencing risk for major depressive disorder in China and Europe.

    PubMed

    Bigdeli, T B; Ripke, S; Peterson, R E; Trzaskowski, M; Bacanu, S-A; Abdellaoui, A; Andlauer, T F M; Beekman, A T F; Berger, K; Blackwood, D H R; Boomsma, D I; Breen, G; Buttenschøn, H N; Byrne, E M; Cichon, S; Clarke, T-K; Couvy-Duchesne, B; Craddock, N; de Geus, E J C; Degenhardt, F; Dunn, E C; Edwards, A C; Fanous, A H; Forstner, A J; Frank, J; Gill, M; Gordon, S D; Grabe, H J; Hamilton, S P; Hardiman, O; Hayward, C; Heath, A C; Henders, A K; Herms, S; Hickie, I B; Hoffmann, P; Homuth, G; Hottenga, J-J; Ising, M; Jansen, R; Kloiber, S; Knowles, J A; Lang, M; Li, Q S; Lucae, S; MacIntyre, D J; Madden, P A F; Martin, N G; McGrath, P J; McGuffin, P; McIntosh, A M; Medland, S E; Mehta, D; Middeldorp, C M; Milaneschi, Y; Montgomery, G W; Mors, O; Müller-Myhsok, B; Nauck, M; Nyholt, D R; Nöthen, M M; Owen, M J; Penninx, B W J H; Pergadia, M L; Perlis, R H; Peyrot, W J; Porteous, D J; Potash, J B; Rice, J P; Rietschel, M; Riley, B P; Rivera, M; Schoevers, R; Schulze, T G; Shi, J; Shyn, S I; Smit, J H; Smoller, J W; Streit, F; Strohmaier, J; Teumer, A; Treutlein, J; Van der Auwera, S; van Grootheest, G; van Hemert, A M; Völzke, H; Webb, B T; Weissman, M M; Wellmann, J; Willemsen, G; Witt, S H; Levinson, D F; Lewis, C M; Wray, N R; Flint, J; Sullivan, P F; Kendler, K S

    2017-03-28

    Major depressive disorder (MDD) is a common, complex psychiatric disorder and a leading cause of disability worldwide. Despite twin studies indicating its modest heritability (~30-40%), extensive heterogeneity and a complex genetic architecture have complicated efforts to detect associated genetic risk variants. We combined single-nucleotide polymorphism (SNP) summary statistics from the CONVERGE and PGC studies of MDD, representing 10 502 Chinese (5282 cases and 5220 controls) and 18 663 European (9447 cases and 9215 controls) subjects. We determined the fraction of SNPs displaying consistent directions of effect, assessed the significance of polygenic risk scores and estimated the genetic correlation of MDD across ancestries. Subsequent trans-ancestry meta-analyses combined SNP-level evidence of association. Sign tests and polygenic score profiling weakly support an overlap of SNP effects between East Asian and European populations. We estimated the trans-ancestry genetic correlation of lifetime MDD as 0.33; female-only and recurrent MDD yielded estimates of 0.40 and 0.41, respectively. Common variants downstream of GPHN achieved genome-wide significance by Bayesian trans-ancestry meta-analysis (rs9323497; log 10 Bayes Factor=8.08) but failed to replicate in an independent European sample (P=0.911). Gene-set enrichment analyses indicate enrichment of genes involved in neuronal development and axonal trafficking. We successfully demonstrate a partially shared polygenic basis of MDD in East Asian and European populations. Taken together, these findings support a complex etiology for MDD and possible population differences in predisposing genetic factors, with important implications for future genetic studies.

  2. Genetic effects influencing risk for major depressive disorder in China and Europe

    PubMed Central

    Bigdeli, T B; Ripke, S; Peterson, R E; Trzaskowski, M; Bacanu, S-A; Abdellaoui, A; Andlauer, T F M; Beekman, A T F; Berger, K; Blackwood, D H R; Boomsma, D I; Breen, G; Buttenschøn, H N; Byrne, E M; Cichon, S; Clarke, T-K; Couvy-Duchesne, B; Craddock, N; de Geus, E J C; Degenhardt, F; Dunn, E C; Edwards, A C; Fanous, A H; Forstner, A J; Frank, J; Gill, M; Gordon, S D; Grabe, H J; Hamilton, S P; Hardiman, O; Hayward, C; Heath, A C; Henders, A K; Herms, S; Hickie, I B; Hoffmann, P; Homuth, G; Hottenga, J-J; Ising, M; Jansen, R; Kloiber, S; Knowles, J A; Lang, M; Li, Q S; Lucae, S; MacIntyre, D J; Madden, P A F; Martin, N G; McGrath, P J; McGuffin, P; McIntosh, A M; Medland, S E; Mehta, D; Middeldorp, C M; Milaneschi, Y; Montgomery, G W; Mors, O; Müller-Myhsok, B; Nauck, M; Nyholt, D R; Nöthen, M M; Owen, M J; Penninx, B W J H; Pergadia, M L; Perlis, R H; Peyrot, W J; Porteous, D J; Potash, J B; Rice, J P; Rietschel, M; Riley, B P; Rivera, M; Schoevers, R; Schulze, T G; Shi, J; Shyn, S I; Smit, J H; Smoller, J W; Streit, F; Strohmaier, J; Teumer, A; Treutlein, J; Van der Auwera, S; van Grootheest, G; van Hemert, A M; Völzke, H; Webb, B T; Weissman, M M; Wellmann, J; Willemsen, G; Witt, S H; Levinson, D F; Lewis, C M; Wray, N R; Flint, J; Sullivan, P F; Kendler, K S

    2017-01-01

    Major depressive disorder (MDD) is a common, complex psychiatric disorder and a leading cause of disability worldwide. Despite twin studies indicating its modest heritability (~30–40%), extensive heterogeneity and a complex genetic architecture have complicated efforts to detect associated genetic risk variants. We combined single-nucleotide polymorphism (SNP) summary statistics from the CONVERGE and PGC studies of MDD, representing 10 502 Chinese (5282 cases and 5220 controls) and 18 663 European (9447 cases and 9215 controls) subjects. We determined the fraction of SNPs displaying consistent directions of effect, assessed the significance of polygenic risk scores and estimated the genetic correlation of MDD across ancestries. Subsequent trans-ancestry meta-analyses combined SNP-level evidence of association. Sign tests and polygenic score profiling weakly support an overlap of SNP effects between East Asian and European populations. We estimated the trans-ancestry genetic correlation of lifetime MDD as 0.33; female-only and recurrent MDD yielded estimates of 0.40 and 0.41, respectively. Common variants downstream of GPHN achieved genome-wide significance by Bayesian trans-ancestry meta-analysis (rs9323497; log10 Bayes Factor=8.08) but failed to replicate in an independent European sample (P=0.911). Gene-set enrichment analyses indicate enrichment of genes involved in neuronal development and axonal trafficking. We successfully demonstrate a partially shared polygenic basis of MDD in East Asian and European populations. Taken together, these findings support a complex etiology for MDD and possible population differences in predisposing genetic factors, with important implications for future genetic studies. PMID:28350396

  3. Antigenic and genetic evolution of contemporary swine H1 influenza viruses in the United States

    USDA-ARS?s Scientific Manuscript database

    Several lineages of influenza A viruses (IAV) currently circulate in North American pigs. Genetic diversity is further increased by the bidirectional transmission of IAV between swine and humans and the subsequent processes of antigenic shift and drift. Such evolution can be the basis for changes in...

  4. Single nucleotide polymorphisms in candidate genes associated with fertilizing ability of sperm and subsequent embryonic development in cattle

    USDA-ARS?s Scientific Manuscript database

    Fertilization and development of the preimplantation embryo is under genetic control. The goal of the current study was to test 434 single nucleotide polymorphisms (SNPs) for association with genetic variation in fertilization and early embryonic development. The approach was to produce embryos from...

  5. Genetics behind barbed wire: Masuo Kodani, émigré geneticists, and wartime genetics research at Manzanar relocation center.

    PubMed

    Smocovitis, Vassiliki Betty

    2011-02-01

    This article explores the sociopolitical backdrop of genetics research during the politically turbulent decades of the mid-20th century that saw the persecution, displacement, and relocation of unpopular minorities in both the United States and Europe. It explores how geneticists in the United States accommodated these disruptions through formal and informal émigré networks and how the subsequent war affected their research programs and their lives. It does so by focusing on the career and life of geneticist Masuo Kodani, who, as a Japanese American, found himself conducting unexpected cytogenetics research in Manzanar, a "relocation center," or internment camp, located in the California desert, after the attack on Pearl Harbor. After the war, Kodani's subsequent career continued to be shaped by his experiences as a Japanese American and by the specific skills as a cytogeneticist that he demonstrated at a critical period in the history of 20th-century genetics. His many relocations in search of employment culminated in his work with the Atomic Bomb Casualty Commission on human chromosomes, for which he is best known.

  6. Pre-Quaternary divergence and subsequent radiation explain longitudinal patterns of genetic and morphological variation in the striped skink, Heremites vittatus.

    PubMed

    Baier, Felix; Schmitz, Andreas; Sauer-Gürth, Hedwig; Wink, Michael

    2017-06-09

    Many animal and plant species in the Middle East and northern Africa have a predominantly longitudinal distribution, extending from Iran and Turkey along the eastern Mediterranean coast into northern Africa. These species are potentially characterized by longitudinal patterns of biological diversity, but little is known about the underlying biogeographic mechanisms and evolutionary timescales. We examined these questions in the striped skink, Heremites vittatus, one such species with a roughly longitudinal distribution across the Middle East and northern Africa, by analyzing range-wide patterns of mitochondrial DNA (mtDNA) sequence and multi-trait morphological variation. The striped skink exhibits a basic longitudinal organization of mtDNA diversity, with three major mitochondrial lineages inhabiting northern Africa, the eastern Mediterranean coast, and Turkey/Iran. Remarkably, these lineages are of pre-Quaternary origin, and are characterized by p-distances of 9-10%. In addition, within each of these lineages a more recent Quaternary genetic diversification was observed, as evidenced by deep subclades and high haplotype diversity especially in the Turkish/Iranian and eastern Mediterranean lineages. Consistent with the genetic variation, our morphological analysis revealed that the majority of morphological traits show significant mean differences between specimens from northern Africa, the eastern Mediterranean coast, and Turkey/Iran, suggesting lineage-specific trait evolution. In addition, a subset of traits exhibits clinal variation along the eastern Mediterranean coast, potentially indicating selection gradients at the geographic transition from northern Africa to Anatolia. The existence of allopatric, morphologically and genetically divergent lineages suggests that Heremites vittatus might represent a complex with several taxa. Our work demonstrates that early divergence events in the Pliocene, likely driven by both climatic and geological factors, established the longitudinal patterns and distribution of Heremites vittatus. Subsequent radiation during the Pleistocene generated the genetic and morphological diversity observed today. Our study provides further evidence that longitudinal diversity patterns and species distributions in the Middle East and northern Africa were shaped by complex evolutionary processes, involving the region's intricate geological history, climatic oscillations, and the presence of the Sahara.

  7. Integrating multiple evidences in taxonomy: species diversity and phylogeny of mustached bats (Mormoopidae: Pteronotus).

    PubMed

    Pavan, Ana Carolina; Marroig, Gabriel

    2016-10-01

    A phylogenetic systematic perspective is instrumental in recovering new species and their evolutionary relationships. The advent of new technologies for molecular and morphological data acquisition and analysis, allied to the integration of knowledge from different areas, such as ecology and population genetics, allows for the emergence of more rigorous, accurate and complete scientific hypothesis on species diversity. Mustached bats (genus Pteronotus) are a good model for the application of this integrative approach. They are a widely distributed and a morphologically homogeneous group, but comprising species with remarkable differences in their echolocation strategy and feeding behavior. The latest systematic review suggested six species with 17 subspecies in Pteronotus. Subsequent studies using discrete morphological characters supported the same arrangement. However, recent papers reported high levels of genetic divergence among conspecific taxa followed by bioacoustic and geographic agreement, suggesting an underestimated diversity in the genus. To date, no study merging genetic evidences and morphometric variation along the entire geographic range of this group has been attempted. Based on a comprehensive sampling including representatives of all current taxonomic units, we attempt to delimit species in Pteronotus through the application of multiple methodologies and hierarchically distinct datasets. The molecular approach includes six molecular markers from three genetic transmission systems; morphological investigations used 41 euclidean distances estimated through three-dimensional landmarks collected from 1628 skulls. The phylogenetic analysis reveals a greater diversity than previously reported, with a high correspondence among the genetic lineages and the currently recognized subspecies in the genus. Discriminant analysis of variables describing size and shape of cranial bones support the rising of the genetic groups to the specific status. Based on multiples evidences, we present an updated taxonomic arrangement composed by 16 extant species and a new and more robust phylogenetic hypothesis for the species included in the genus Pteronotus. Studies developed under such integrative taxonomic approach are timely for a deeper and wider comprehension of Neotropical diversity, representing the first step for answering broader questions on evolutionary and ecological aspects of Neotropical life history. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Consequences of a demographic bottleneck on genetic structure and variation in the Scandinavian brown bear.

    PubMed

    Xenikoudakis, G; Ersmark, E; Tison, J-L; Waits, L; Kindberg, J; Swenson, J E; Dalén, L

    2015-07-01

    The Scandinavian brown bear went through a major decline in population size approximately 100 years ago, due to intense hunting. After being protected, the population subsequently recovered and today numbers in the thousands. The genetic diversity in the contemporary population has been investigated in considerable detail, and it has been shown that the population consists of several subpopulations that display relatively high levels of genetic variation. However, previous studies have been unable to resolve the degree to which the demographic bottleneck impacted the contemporary genetic structure and diversity. In this study, we used mitochondrial and microsatellite DNA markers from pre- and postbottleneck Scandinavian brown bear samples to investigate the effect of the bottleneck. Simulation and multivariate analysis suggested the same genetic structure for the historical and modern samples, which are clustered into three subpopulations in southern, central and northern Scandinavia. However, the southern subpopulation appears to have gone through a marked change in allele frequencies. When comparing the mitochondrial DNA diversity in the whole population, we found a major decline in haplotype numbers across the bottleneck. However, the loss of autosomal genetic diversity was less pronounced, although a significant decline in allelic richness was observed in the southern subpopulation. Approximate Bayesian computations provided clear support for a decline in effective population size during the bottleneck, in both the southern and northern subpopulations. These results have implications for the future management of the Scandinavian brown bear because they indicate a recent loss in genetic diversity and also that the current genetic structure may have been caused by historical ecological processes rather than recent anthropogenic persecution. © 2015 John Wiley & Sons Ltd.

  9. Field-based detection of biological samples for forensic analysis: Established techniques, novel tools, and future innovations.

    PubMed

    Morrison, Jack; Watts, Giles; Hobbs, Glyn; Dawnay, Nick

    2018-04-01

    Field based forensic tests commonly provide information on the presence and identity of biological stains and can also support the identification of species. Such information can support downstream processing of forensic samples and generate rapid intelligence. These approaches have traditionally used chemical and immunological techniques to elicit the result but some are known to suffer from a lack of specificity and sensitivity. The last 10 years has seen the development of field-based genetic profiling systems, with specific focus on moving the mainstay of forensic genetic analysis, namely STR profiling, out of the laboratory and into the hands of the non-laboratory user. In doing so it is now possible for enforcement officers to generate a crime scene DNA profile which can then be matched to a reference or database profile. The introduction of these novel genetic platforms also allows for further development of new molecular assays aimed at answering the more traditional questions relating to body fluid identity and species detection. The current drive for field-based molecular tools is in response to the needs of the criminal justice system and enforcement agencies, and promises a step-change in how forensic evidence is processed. However, the adoption of such systems by the law enforcement community does not represent a new strategy in the way forensic science has integrated previous novel approaches. Nor do they automatically represent a threat to the quality control and assurance practices that are central to the field. This review examines the historical need and subsequent research and developmental breakthroughs in field-based forensic analysis over the past two decades with particular focus on genetic methods Emerging technologies from a range of scientific fields that have potential applications in forensic analysis at the crime scene are identified and associated issues that arise from the shift from laboratory into operational field use are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Identification of contemporary selection signatures using composite log likelihood and their associations with marbling score in Korean cattle.

    PubMed

    Ryu, Jihye; Lee, Chaeyoung

    2014-12-01

    Positive selection not only increases beneficial allele frequency but also causes augmentation of allele frequencies of sequence variants in close proximity. Signals for positive selection were detected by the statistical differences in subsequent allele frequencies. To identify selection signatures in Korean cattle, we applied a composite log-likelihood (CLL)-based method, which calculates a composite likelihood of the allelic frequencies observed across sliding windows of five adjacent loci and compares the value with the critical statistic estimated by 50,000 permutations. Data for a total of 11,799 nucleotide polymorphisms were used with 71 Korean cattle and 209 foreign beef cattle. As a result, 147 signals were identified for Korean cattle based on CLL estimates (P < 0.01). The signals might be candidate genetic factors for meat quality by which the Korean cattle have been selected. Further genetic association analysis with 41 intragenic variants in the selection signatures with the greatest CLL for each chromosome revealed that marbling score was associated with five variants. Intensive association studies with all the selection signatures identified in this study are required to exclude signals associated with other phenotypes or signals falsely detected and thus to identify genetic markers for meat quality. © 2014 Stichting International Foundation for Animal Genetics.

  11. [EST-SSR identification, markers development of Ligusticum chuanxiong based on Ligusticum chuanxiong transcriptome sequences].

    PubMed

    Yuan, Can; Peng, Fang; Yang, Ze-Mao; Zhong, Wen-Juan; Mou, Fang-Sheng; Gong, Yi-Yun; Ji, Pei-Cheng; Pu, De-Qiang; Huang, Hai-Yan; Yang, Xiao; Zhang, Chao

    2017-09-01

    Ligusticum chuanxiong is a well-known traditional Chinese medicine plant. The study on its molecular markers development and germplasm resources is very important. In this study, we obtained 24 422 unigenes by assembling transcriptome sequencing reads of L. chuanxiong root. EST-SSR was detected and 4 073 SSR loci were identified. EST-SSR distribution and characteristic analysis results showed that the mono-nucleotide repeats were the main repeat types, accounting for 41.0%. In addition, the sequences containing SSR were functionally annotated in Gene Ontology (GO) and KEGG pathway and were assigned to 49 GO categories, 242 KEGG pathways, among them 2 201 sequences were annotated against Nr database. By validating 235 EST-SSRs,74 primer pairs were ultimately proved to have high quality amplification. Subsequently, genetic diversity analysis, UPGMA cluster analysis, PCoA analysis and population structure analysis of 34 L. chuanxiong germplasm resources were carried out with 74 primer pairs. In both UPGMA tree and PCoA results, L. chuanxiong resources were clustered into two groups, which are believed to be partial related to their geographical distribution. In this study, EST-SSRs in L. chuanxiong was firstly identified, and newly developed molecular markers would contribute significantly to further genetic diversity study, the purity detection, gene mapping, and molecular breeding. Copyright© by the Chinese Pharmaceutical Association.

  12. Intercontinental spread of asian-origin H5N8 to North America through Beringia by migratory birds

    USGS Publications Warehouse

    Lee, Dong-Hun; Kim Torchetti, Mia; Winker, Kevin; Ip, Hon S.; Swayne, David E.; Song, Chang-Seon

    2015-01-01

    Phylogenetic network analysis and understanding of waterfowl migration patterns suggest the Eurasian H5N8 clade 2.3.4.4 avian influenza virus emerged in late 2013 in China, spread in early 2014 to South Korea and Japan, and reached Siberia and Beringia by summer 2014 via migratory birds. Three genetically distinct subgroups emerged and subsequently spread along different flyways during fall 2014 into Europe, North America, and East Asia, respectively. All three subgroups reappeared in Japan, a wintering site for waterfowl from Eurasia and parts of North America.

  13. Genetic discrimination and life insurance: a systematic review of the evidence

    PubMed Central

    2013-01-01

    Background Since the late 1980s, genetic discrimination has remained one of the major concerns associated with genetic research and clinical genetics. Europe has adopted a plethora of laws and policies, both at the regional and national levels, to prevent insurers from having access to genetic information for underwriting. Legislators from the United States and the United Kingdom have also felt compelled to adopt protective measures specifically addressing genetics and insurance. But does the available evidence really confirm the popular apprehension about genetic discrimination and the subsequent genetic exceptionalism? Methods This paper presents the results of a systematic, critical review of over 20 years of genetic discrimination studies in the context of life insurance. Results The available data clearly document the existence of individual cases of genetic discrimination. The significance of this initial finding is, however, greatly diminished by four observations. First, the methodology used in most of the studies is not sufficiently robust to clearly establish either the prevalence or the impact of discriminatory practices. Second, the current body of evidence was mostly developed around a small number of 'classic' genetic conditions. Third, the heterogeneity and small scope of most of the studies prevents formal statistical analysis of the aggregate results. Fourth, the small number of reported genetic discrimination cases in some studies could indicate that these incidents took place due to occasional errors, rather than the voluntary or planned choice, of the insurers. Conclusion Important methodological limitations and inconsistencies among the studies considered make it extremely difficult, at the moment, to justify policy action taken on the basis of evidence alone. Nonetheless, other empirical and theoretical factors have emerged (for example, the prevalence and impact of the fear of genetic discrimination among patients and research participants, the (un)importance of genetic information for the commercial viability of the private life insurance industry, and the need to develop more equitable schemes of access to life insurance) that should be considered along with the available evidence of genetic discrimination for a more holistic view of the debate. PMID:23369270

  14. Genetic discrimination and life insurance: a systematic review of the evidence.

    PubMed

    Joly, Yann; Ngueng Feze, Ida; Simard, Jacques

    2013-01-31

    Since the late 1980s, genetic discrimination has remained one of the major concerns associated with genetic research and clinical genetics. Europe has adopted a plethora of laws and policies, both at the regional and national levels, to prevent insurers from having access to genetic information for underwriting. Legislators from the United States and the United Kingdom have also felt compelled to adopt protective measures specifically addressing genetics and insurance. But does the available evidence really confirm the popular apprehension about genetic discrimination and the subsequent genetic exceptionalism? This paper presents the results of a systematic, critical review of over 20 years of genetic discrimination studies in the context of life insurance. The available data clearly document the existence of individual cases of genetic discrimination. The significance of this initial finding is, however, greatly diminished by four observations. First, the methodology used in most of the studies is not sufficiently robust to clearly establish either the prevalence or the impact of discriminatory practices. Second, the current body of evidence was mostly developed around a small number of 'classic' genetic conditions. Third, the heterogeneity and small scope of most of the studies prevents formal statistical analysis of the aggregate results. Fourth, the small number of reported genetic discrimination cases in some studies could indicate that these incidents took place due to occasional errors, rather than the voluntary or planned choice, of the insurers. Important methodological limitations and inconsistencies among the studies considered make it extremely difficult, at the moment, to justify policy action taken on the basis of evidence alone. Nonetheless, other empirical and theoretical factors have emerged (for example, the prevalence and impact of the fear of genetic discrimination among patients and research participants, the (un)importance of genetic information for the commercial viability of the private life insurance industry, and the need to develop more equitable schemes of access to life insurance) that should be considered along with the available evidence of genetic discrimination for a more holistic view of the debate.

  15. The Genetic Legacy of Religious Diversity and Intolerance: Paternal Lineages of Christians, Jews, and Muslims in the Iberian Peninsula

    PubMed Central

    Adams, Susan M.; Bosch, Elena; Balaresque, Patricia L.; Ballereau, Stéphane J.; Lee, Andrew C.; Arroyo, Eduardo; López-Parra, Ana M.; Aler, Mercedes; Grifo, Marina S. Gisbert; Brion, Maria; Carracedo, Angel; Lavinha, João; Martínez-Jarreta, Begoña; Quintana-Murci, Lluis; Picornell, Antònia; Ramon, Misericordia; Skorecki, Karl; Behar, Doron M.; Calafell, Francesc; Jobling, Mark A.

    2008-01-01

    Most studies of European genetic diversity have focused on large-scale variation and interpretations based on events in prehistory, but migrations and invasions in historical times could also have had profound effects on the genetic landscape. The Iberian Peninsula provides a suitable region for examination of the demographic impact of such recent events, because its complex recent history has involved the long-term residence of two very different populations with distinct geographical origins and their own particular cultural and religious characteristics—North African Muslims and Sephardic Jews. To address this issue, we analyzed Y chromosome haplotypes, which provide the necessary phylogeographic resolution, in 1140 males from the Iberian Peninsula and Balearic Islands. Admixture analysis based on binary and Y-STR haplotypes indicates a high mean proportion of ancestry from North African (10.6%) and Sephardic Jewish (19.8%) sources. Despite alternative possible sources for lineages ascribed a Sephardic Jewish origin, these proportions attest to a high level of religious conversion (whether voluntary or enforced), driven by historical episodes of social and religious intolerance, that ultimately led to the integration of descendants. In agreement with the historical record, analysis of haplotype sharing and diversity within specific haplogroups suggests that the Sephardic Jewish component is the more ancient. The geographical distribution of North African ancestry in the peninsula does not reflect the initial colonization and subsequent withdrawal and is likely to result from later enforced population movement—more marked in some regions than in others—plus the effects of genetic drift. PMID:19061982

  16. Flight of Rhyzopertha dominica (Coleoptera: Bostrichidae)-a Spatio-Temporal Analysis With Pheromone Trapping and Population Genetics.

    PubMed

    Ridley, A W; Hereward, J P; Daglish, G J; Raghu, S; McCulloch, G A; Walter, G H

    2016-12-01

    The flight of the lesser grain borer, Rhyzopertha dominica (F.), near grain storages and at distances from them, was investigated to assess the potential of these beetles to infest grain and spread insecticide resistance genes. We caught R. dominica in pheromone-baited flight traps (and blank controls) set at storages, in fields away from storages, and in native vegetation across a 12-mo period. A functional set of highly polymorphic microsatellite markers was developed, enabling population genetic analyses on the trapped beetles. Pheromone-baited traps caught just as many R. dominica adults at least 1 km from grain storages as were caught adjacent to grain storages. Samples of beetles caught were genetically homogeneous across the study area (over 7,000 km 2 ) in South Queensland, Australia. However, a change in genetic structure was detected at one bulk storage site. Subsequent analysis detected a heterozygous excess, which indicated a population bottleneck. Only a few beetles were caught during the winter months of June and July. To assess the mating status and potential fecundity of dispersing R. dominica females, we captured beetles as they left grain storages and quantified offspring production and life span in the laboratory. Nearly all (95%) of these dispersing females had mated and these produced an average of 242 offspring. We demonstrated that R. dominica populations in the study area display a high degree of connectivity and this is a result of the active dispersal of mated individuals of high potential fecundity. © Crown copyright 2016.

  17. MTHFR genetic polymorphisms may contribute to the risk of chronic myelogenous leukemia in adults: a meta-analysis of 12 genetic association studies.

    PubMed

    Li, Bin; Zhang, Jian; Wang, Lei; Li, Yan; Jin, Juping; Ai, Limei; Li, Chong; Li, Zhe; Mao, Shudan

    2014-05-01

    Chronic myelogenous leukemia (CML) is a complex disease with a genetic basis. The genetic association studies (GASs) that have investigated the association between adult CML and 5,10-methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms have produced contradictory and inconclusive results. The aim of this meta-analysis is to provide a relatively comprehensive assessment of the association of these polymorphisms with adult CML risk. A literature search for eligible GAS published before September 15, 2013 was conducted in PubMed, Embase, Web of Science, Cochrane Library, and China National Knowledge Infrastructure (CNKI) databases. Pooled odds ratios (ORs) with their corresponding 95% confidence intervals (95% CIs) were used to evaluate the strength of the association under a fixed or random effect model according to heterogeneity test results. All analyses were performed using the Stata software, version 12.0. Twelve case-control studies were included in this meta-analysis with a total of 932 CML patients and 3,465 healthy controls. For MTHFR C677T (dbSNP: rs1801133, C>T), though the pooled ORs were not significant in the overall population, all the ORs greater than 1 suggested an increased risk of CML for carriers of the risk allele. However, stratified analysis based on genotyping method revealed a significant association in the PCR-restriction fragment length polymorphism (RFLP) subgroup, possibly as a result of heterogeneity. For MTHFR A1298C (dbSNP: rs1801131, A>C), the combined results showed that carriers of the C allele may be associated with a decreased risk of adult CML. Stratified analysis showed that the magnitude of this effect was especially significant among Asians, indicating ethnicity differences in adult CML susceptibility. This meta-analysis shows that the C allele of MTHFR A1298C may be associated with a decreased risk in adult CML, especially among Asians, while MTHFR C677T may not be associated with adult CML risk. However, the development of adult CML may be the result of gene-gene and gene-environment interactions, which should be considered in future individual GAS and subsequent meta-analyses.

  18. Molecular identification and phylogenetic analysis of Wuchereria bancrofti from human blood samples in Egypt.

    PubMed

    Abdel-Shafi, Iman R; Shoieb, Eman Y; Attia, Samar S; Rubio, José M; Ta-Tang, Thuy-Huong; El-Badry, Ayman A

    2017-03-01

    Lymphatic filariasis (LF) is a serious vector-borne health problem, and Wuchereria bancrofti (W.b) is the major cause of LF worldwide and is focally endemic in Egypt. Identification of filarial infection using traditional morphologic and immunological criteria can be difficult and lead to misdiagnosis. The aim of the present study was molecular detection of W.b in residents in endemic areas in Egypt, sequence variance analysis, and phylogenetic analysis of W.b DNA. Collected blood samples from residents in filariasis endemic areas in five governorates were subjected to semi-nested PCR targeting repeated DNA sequence, for detection of W.b DNA. PCR products were sequenced; subsequently, a phylogenetic analysis of the obtained sequences was performed. Out of 300 blood samples, W.b DNA was identified in 48 (16%). Sequencing analysis confirmed PCR results identifying only W.b species. Sequence alignment and phylogenetic analysis indicated genetically distinct clusters of W.b among the study population. Study results demonstrated that the semi-nested PCR proved to be an effective diagnostic tool for accurate and rapid detection of W.b infections in nano-epidemics and is applicable for samples collected in the daytime as well as the night time. PCR products sequencing and phylogenitic analysis revealed three different nucleotide sequences variants. Further genetic studies of W.b in Egypt and other endemic areas are needed to distinguish related strains and the various ecological as well as drug effects exerted on them to support W.b elimination.

  19. The complete mitochondrial genome of an 11,450-year-old aurochsen (Bos primigenius) from Central Italy.

    PubMed

    Lari, Martina; Rizzi, Ermanno; Mona, Stefano; Corti, Giorgio; Catalano, Giulio; Chen, Kefei; Vernesi, Cristiano; Larson, Greger; Boscato, Paolo; De Bellis, Gianluca; Cooper, Alan; Caramelli, David; Bertorelle, Giorgio

    2011-01-31

    Bos primigenius, the aurochs, is the wild ancestor of modern cattle breeds and was formerly widespread across Eurasia and northern Africa. After a progressive decline, the species became extinct in 1627. The origin of modern taurine breeds in Europe is debated. Archaeological and early genetic evidence point to a single Near Eastern origin and a subsequent spread during the diffusion of herding and farming. More recent genetic data are instead compatible with local domestication events or at least some level of local introgression from the aurochs. Here we present the analysis of the complete mitochondrial genome of a pre-Neolithic Italian aurochs. In this study, we applied a combined strategy employing both multiplex PCR amplifications and 454 pyrosequencing technology to sequence the complete mitochondrial genome of an 11,450-year-old aurochs specimen from Central Italy. Phylogenetic analysis of the aurochs mtDNA genome supports the conclusions from previous studies of short mtDNA fragments--namely that Italian aurochsen were genetically very similar to modern cattle breeds, but highly divergent from the North-Central European aurochsen. Complete mitochondrial genome sequences are now available for several modern cattle and two pre-Neolithic mtDNA genomes from very different geographic areas. These data suggest that previously identified sub-groups within the widespread modern cattle mitochondrial T clade are polyphyletic, and they support the hypothesis that modern European breeds have multiple geographic origins.

  20. Genetic Characterization of Influenza A (H1N1) Pandemic 2009 Virus Isolates from Mumbai.

    PubMed

    Gohil, Devanshi; Kothari, Sweta; Shinde, Pramod; Meharunkar, Rhuta; Warke, Rajas; Chowdhary, Abhay; Deshmukh, Ranjana

    2017-08-01

    Pandemic influenza A (H1N1) 2009 virus was first detected in India in May 2009 which subsequently became endemic in many parts of the country. Influenza A viruses have the ability to evade the immune response through its ability of antigenic variations. The study aims to characterize influenza A (H1N1) pdm 09 viruses circulating in Mumbai during the pandemic and post-pandemic period. Nasopharyngeal swabs positive for influenza A (H1N1) pdm 09 viruses were inoculated on Madin-Darby canine kidney cell line for virus isolation. Molecular and phylogenetic analysis of influenza A (H1N1) pdm 09 isolates was conducted to understand the evolution and genetic diversity of the strains. Nucleotide and amino acid sequences of the HA gene of Mumbai isolates when compared to A/California/07/2009-vaccine strain revealed 14 specific amino acid differences located at the antigenic sites. Amino acid variations in HA and NA gene resulted in changes in the N-linked glycosylation motif which may lead to immune evasion. Phylogenetic analysis of the isolates revealed their evolutionary position with vaccine strain A/California/07/2009 but had undergone changes gradually. The findings in the present study confirm genetic variability of influenza viruses and highlight the importance of continuous surveillance during influenza outbreaks.

  1. A biometric latent curve analysis of memory decline in older men of the NAS-NRC twin registry.

    PubMed

    McArdle, John J; Plassman, Brenda L

    2009-09-01

    Previous research has shown cognitive abilities to have different biometric patterns of age-changes. We examined the variation in episodic memory (word recall task) for over 6,000 twin pairs who were initially aged 59-75, and were subsequently re-assessed up to three more times over 12 years. In cross-sectional analyses, variation in the number of words recalled independent of age was explained largely by non-shared influences (65-72%), with clear additive genetic influences (12-32%), and marginal shared family influences (1-18%). The longitudinal phenotypic analysis of the word recall task showed systematic linear declines over age, but several nonlinear models with more dramatic changes at later ages, improved the overall fit. A two-part spline model for the longitudinal twin data with an optimal turning point at age 74 led to: (a) a separation of non-shared environmental influences and transient measurement error (~50%); (b) strong additive genetic components of this latent curve (~44% at age 60) with increases (over 50%) up to age 74, but with no additional genetic variation after age 74; (c) the smaller influences of shared family environment (~15% at age 74) were constant over all ages; (d) non-shared effects play an important role over most of the life-span but diminish after age 74.

  2. Abdomen disease diagnosis in CT images using flexiscale curvelet transform and improved genetic algorithm.

    PubMed

    Sethi, Gaurav; Saini, B S

    2015-12-01

    This paper presents an abdomen disease diagnostic system based on the flexi-scale curvelet transform, which uses different optimal scales for extracting features from computed tomography (CT) images. To optimize the scale of the flexi-scale curvelet transform, we propose an improved genetic algorithm. The conventional genetic algorithm assumes that fit parents will likely produce the healthiest offspring that leads to the least fit parents accumulating at the bottom of the population, reducing the fitness of subsequent populations and delaying the optimal solution search. In our improved genetic algorithm, combining the chromosomes of a low-fitness and a high-fitness individual increases the probability of producing high-fitness offspring. Thereby, all of the least fit parent chromosomes are combined with high fit parent to produce offspring for the next population. In this way, the leftover weak chromosomes cannot damage the fitness of subsequent populations. To further facilitate the search for the optimal solution, our improved genetic algorithm adopts modified elitism. The proposed method was applied to 120 CT abdominal images; 30 images each of normal subjects, cysts, tumors and stones. The features extracted by the flexi-scale curvelet transform were more discriminative than conventional methods, demonstrating the potential of our method as a diagnostic tool for abdomen diseases.

  3. Dendritic Cell-Based Genetic Immunotherapy for Ovarian Cancer

    DTIC Science & Technology

    2007-12-01

    CAR. CD40 is a surface marker expressed by DCs that plays a crucial role in their maturation and subsequent stimulation of T cells. DC infection with... surface . CD40 is a cell surface marker expressed by DCs, is crucial for their maturation and the subsequent activation of the immune system by the DCs...cell surface . CD40 is a cell surface marker expressed by DCs, is crucial for their maturation and the subsequent activation of the immune system by the

  4. Calpastatin and µ-calpain differ in their control of genotype specific residual variance of beef tenderness in Angus and MARC III steers

    USDA-ARS?s Scientific Manuscript database

    Genotype variant effects of calpastatin (CAST) and µ-calpain (CAPN1) on mean beef tenderness have been widely characterized. We have tested whether these genetic variants also control residual (non-genetic) variation, and subsequently total phenotypic variation, of tenderness. Observation of rare ...

  5. Difference and Choice: Exploring Prenatal Testing and the Use of Genetic Information with People with Learning Difficulties.

    ERIC Educational Resources Information Center

    Ward, Linda; Howarth, Joyce; Rodgers, Jackie

    2002-01-01

    This article describes two workshops that explained the use of prenatal testing and genetic information to inform choices in pregnancy to people with learning difficulties, explored the issues with them, and describe the contribution subsequently made by these people to a British national conference on this subject. (Contains references.)…

  6. Using Student Writing and Lexical Analysis to Reveal Student Thinking about the Role of Stop Codons in the Central Dogma

    PubMed Central

    Prevost, Luanna B.; Smith, Michelle K.; Knight, Jennifer K.

    2016-01-01

    Previous work has shown that students have persistent difficulties in understanding how central dogma processes can be affected by a stop codon mutation. To explore these difficulties, we modified two multiple-choice questions from the Genetics Concept Assessment into three open-ended questions that asked students to write about how a stop codon mutation potentially impacts replication, transcription, and translation. We then used computer-assisted lexical analysis combined with human scoring to categorize student responses. The lexical analysis models showed high agreement with human scoring, demonstrating that this approach can be successfully used to analyze large numbers of student written responses. The results of this analysis show that students’ ideas about one process in the central dogma can affect their thinking about subsequent and previous processes, leading to mixed models of conceptual understanding. PMID:27909016

  7. Topological analysis of metabolic networks integrating co-segregating transcriptomes and metabolomes in type 2 diabetic rat congenic series.

    PubMed

    Dumas, Marc-Emmanuel; Domange, Céline; Calderari, Sophie; Martínez, Andrea Rodríguez; Ayala, Rafael; Wilder, Steven P; Suárez-Zamorano, Nicolas; Collins, Stephan C; Wallis, Robert H; Gu, Quan; Wang, Yulan; Hue, Christophe; Otto, Georg W; Argoud, Karène; Navratil, Vincent; Mitchell, Steve C; Lindon, John C; Holmes, Elaine; Cazier, Jean-Baptiste; Nicholson, Jeremy K; Gauguier, Dominique

    2016-09-30

    The genetic regulation of metabolic phenotypes (i.e., metabotypes) in type 2 diabetes mellitus occurs through complex organ-specific cellular mechanisms and networks contributing to impaired insulin secretion and insulin resistance. Genome-wide gene expression profiling systems can dissect the genetic contributions to metabolome and transcriptome regulations. The integrative analysis of multiple gene expression traits and metabolic phenotypes (i.e., metabotypes) together with their underlying genetic regulation remains a challenge. Here, we introduce a systems genetics approach based on the topological analysis of a combined molecular network made of genes and metabolites identified through expression and metabotype quantitative trait locus mapping (i.e., eQTL and mQTL) to prioritise biological characterisation of candidate genes and traits. We used systematic metabotyping by 1 H NMR spectroscopy and genome-wide gene expression in white adipose tissue to map molecular phenotypes to genomic blocks associated with obesity and insulin secretion in a series of rat congenic strains derived from spontaneously diabetic Goto-Kakizaki (GK) and normoglycemic Brown-Norway (BN) rats. We implemented a network biology strategy approach to visualize the shortest paths between metabolites and genes significantly associated with each genomic block. Despite strong genomic similarities (95-99 %) among congenics, each strain exhibited specific patterns of gene expression and metabotypes, reflecting the metabolic consequences of series of linked genetic polymorphisms in the congenic intervals. We subsequently used the congenic panel to map quantitative trait loci underlying specific mQTLs and genome-wide eQTLs. Variation in key metabolites like glucose, succinate, lactate, or 3-hydroxybutyrate and second messenger precursors like inositol was associated with several independent genomic intervals, indicating functional redundancy in these regions. To navigate through the complexity of these association networks we mapped candidate genes and metabolites onto metabolic pathways and implemented a shortest path strategy to highlight potential mechanistic links between metabolites and transcripts at colocalized mQTLs and eQTLs. Minimizing the shortest path length drove prioritization of biological validations by gene silencing. These results underline the importance of network-based integration of multilevel systems genetics datasets to improve understanding of the genetic architecture of metabotype and transcriptomic regulation and to characterize novel functional roles for genes determining tissue-specific metabolism.

  8. Practical experiences with an extended screening strategy for genetically modified organisms (GMOs) in real-life samples.

    PubMed

    Scholtens, Ingrid; Laurensse, Emile; Molenaar, Bonnie; Zaaijer, Stephanie; Gaballo, Heidi; Boleij, Peter; Bak, Arno; Kok, Esther

    2013-09-25

    Nowadays most animal feed products imported into Europe have a GMO (genetically modified organism) label. This means that they contain European Union (EU)-authorized GMOs. For enforcement of these labeling requirements, it is necessary, with the rising number of EU-authorized GMOs, to perform an increasing number of analyses. In addition to this, it is necessary to test products for the potential presence of EU-unauthorized GMOs. Analysis for EU-authorized and -unauthorized GMOs in animal feed has thus become laborious and expensive. Initial screening steps may reduce the number of GMO identification methods that need to be applied, but with the increasing diversity also screening with GMO elements has become more complex. For the present study, the application of an informative detailed 24-element screening and subsequent identification strategy was applied in 50 animal feed samples. Almost all feed samples were labeled as containing GMO-derived materials. The main goal of the study was therefore to investigate if a detailed screening strategy would reduce the number of subsequent identification analyses. An additional goal was to test the samples in this way for the potential presence of EU-unauthorized GMOs. Finally, to test the robustness of the approach, eight of the samples were tested in a concise interlaboratory study. No significant differences were found between the results of the two laboratories.

  9. [Pregnancy and delivery with transfer of vitrified blastocysts following trophectoderm biopsy].

    PubMed

    Mátyás, Szabolcs; Varga, Tünde; Kovács, Péter; Kónya, Márton; Rajczy, Klára; Babenko, Éva; Szabó, Barbara; Kaali, G Steven; Szentirmay, Zoltán

    2015-11-01

    Application of preimplantation genetic diagnosis makes it possible to transfer only embryos unaffected by a certain genetic disorder. The authors have applied the combination of trophectoderm biopsy and vitrification in order to detect a monogenic disorder. Previously diagnosed type 1 neurofibromatosis of the woman was the indication for genetic examination. In vitro fertilisation and embryo culture was performed using sequential culture mediums. Seven blastocysts could be sampled on the fifth day and were vitrified subsequently. Two blastocysts turned out to be genetically normal based on the result of genetic examination using polimerase chain reaction. A healthy boy was delivered following the transfer of warmed blastocysts and an uneventful singleton pregnancy.

  10. Genome-wide association study meta-analysis identifies five new loci for systemic lupus erythematosus.

    PubMed

    Julià, Antonio; López-Longo, Francisco Javier; Pérez Venegas, José J; Bonàs-Guarch, Silvia; Olivé, Àlex; Andreu, José Luís; Aguirre-Zamorano, Mª Ángeles; Vela, Paloma; Nolla, Joan M; de la Fuente, José Luís Marenco; Zea, Antonio; Pego-Reigosa, José María; Freire, Mercedes; Díez, Elvira; Rodríguez-Almaraz, Esther; Carreira, Patricia; Blanco, Ricardo; Taboada, Víctor Martínez; López-Lasanta, María; Corbeto, Mireia López; Mercader, Josep M; Torrents, David; Absher, Devin; Marsal, Sara; Fernández-Nebro, Antonio

    2018-05-30

    Systemic lupus erythematosus (SLE) is a common systemic autoimmune disease with a complex genetic inheritance. Genome-wide association studies (GWAS) have significantly increased the number of significant loci associated with SLE risk. To date, however, established loci account for less than 30% of the disease heritability and additional risk variants have yet to be identified. Here we performed a GWAS followed by a meta-analysis to identify new genome-wide significant loci for SLE. We genotyped a cohort of 907 patients with SLE (cases) and 1524 healthy controls from Spain and performed imputation using the 1000 Genomes reference data. We tested for association using logistic regression with correction for the principal components of variation. Meta-analysis of the association results was subsequently performed on 7,110,321 variants using genetic data from a large cohort of 4036 patients with SLE and 6959 controls of Northern European ancestry. Genetic association was also tested at the pathway level after removing the effect of known risk loci using PASCAL software. We identified five new loci associated with SLE at the genome-wide level of significance (p < 5 × 10 - 8 ): GRB2, SMYD3, ST8SIA4, LAT2 and ARHGAP27. Pathway analysis revealed several biological processes significantly associated with SLE risk: B cell receptor signaling (p = 5.28 × 10 - 6 ), CTLA4 co-stimulation during T cell activation (p = 3.06 × 10 - 5 ), interleukin-4 signaling (p = 3.97 × 10 - 5 ) and cell surface interactions at the vascular wall (p = 4.63 × 10 - 5 ). Our results identify five novel loci for SLE susceptibility, and biologic pathways associated via multiple low-effect-size loci.

  11. Genetic structure and evolution of the Leishmania genus in Africa and Eurasia: what does MLSA tell us.

    PubMed

    El Baidouri, Fouad; Diancourt, Laure; Berry, Vincent; Chevenet, François; Pratlong, Francine; Marty, Pierre; Ravel, Christophe

    2013-01-01

    Leishmaniasis is a complex parasitic disease from a taxonomic, clinical and epidemiological point of view. The role of genetic exchanges has been questioned for over twenty years and their recent experimental demonstration along with the identification of interspecific hybrids in natura has revived this debate. After arguing that genetic exchanges were exceptional and did not contribute to Leishmania evolution, it is currently proposed that interspecific exchanges could be a major driving force for rapid adaptation to new reservoirs and vectors, expansion into new parasitic cycles and adaptation to new life conditions. To assess the existence of gene flows between species during evolution we used MLSA-based (MultiLocus Sequence Analysis) approach to analyze 222 Leishmania strains from Africa and Eurasia to accurately represent the genetic diversity of this genus. We observed a remarkable congruence of the phylogenetic signal and identified seven genetic clusters that include mainly independent lineages which are accumulating divergences without any sign of recent interspecific recombination. From a taxonomic point of view, the strong genetic structuration of the different species does not question the current classification, except for species that cause visceral forms of leishmaniasis (L. donovani, L. infantum and L. archibaldi). Although these taxa cause specific clinical forms of the disease and are maintained through different parasitic cycles, they are not clearly distinct and form a continuum, in line with the concept of species complex already suggested for this group thirty years ago. These results should have practical consequences concerning the molecular identification of parasites and the subsequent therapeutic management of the disease.

  12. Predicting Landscape-Genetic Consequences of Habitat Loss, Fragmentation and Mobility for Multiple Species of Woodland Birds

    PubMed Central

    Amos, J. Nevil; Bennett, Andrew F.; Mac Nally, Ralph; Newell, Graeme; Pavlova, Alexandra; Radford, James Q.; Thomson, James R.; White, Matt; Sunnucks, Paul

    2012-01-01

    Inference concerning the impact of habitat fragmentation on dispersal and gene flow is a key theme in landscape genetics. Recently, the ability of established approaches to identify reliably the differential effects of landscape structure (e.g. land-cover composition, remnant vegetation configuration and extent) on the mobility of organisms has been questioned. More explicit methods of predicting and testing for such effects must move beyond post hoc explanations for single landscapes and species. Here, we document a process for making a priori predictions, using existing spatial and ecological data and expert opinion, of the effects of landscape structure on genetic structure of multiple species across replicated landscape blocks. We compare the results of two common methods for estimating the influence of landscape structure on effective distance: least-cost path analysis and isolation-by-resistance. We present a series of alternative models of genetic connectivity in the study area, represented by different landscape resistance surfaces for calculating effective distance, and identify appropriate null models. The process is applied to ten species of sympatric woodland-dependant birds. For each species, we rank a priori the expectation of fit of genetic response to the models according to the expected response of birds to loss of structural connectivity and landscape-scale tree-cover. These rankings (our hypotheses) are presented for testing with empirical genetic data in a subsequent contribution. We propose that this replicated landscape, multi-species approach offers a robust method for identifying the likely effects of landscape fragmentation on dispersal. PMID:22363508

  13. Seasonal Genetic Changes of Aedes aegypti (Diptera: Culicidae) Populations in Selected Sites of Cebu City, Philippines.

    PubMed

    Sayson, S L; Gloria-Soria, A; Powell, J R; Edillo, F E

    2015-07-01

    Aedes aegypti (L.) is the primary vector of dengue virus in the Philippines, where dengue is endemic. We examined the genetic changes of Ae. aegypti collected from three selected sites in Cebu city, Philippines, during the relatively wet (2011-2012) and dry seasons (2012 and 2013). A total of 493 Ae. aegypti adults, reared in the laboratory from field-collected larvae, were analyzed using 11 microsatellite loci. Seasonal variation was observed in allele frequencies and allelic richness. Average genetic differentiation (DEST=0.018; FST=0.029) in both dry seasons was higher, due to reduced Ne, than in the wet season (DEST=0.006; FST=0.009). Thus, average gene flow was higher in the wet season than in the dry seasons. However, the overall FST estimate (0.02) inclusive of the two seasons showed little genetic differentiation as supported by Bayesian clustering analysis. Results suggest that during the dry season the intense selection that causes a dramatic reduction of population size favors heterozygotes, leading to small pockets of mosquitoes (refuges) that exhibit random genetic differentiation. During the wet season, the genetic composition of the population is reconstituted by the expansion of the refuges that survived the preceding dry season. Source reduction of mosquitoes during the nonepidemic dry season is thus recommended to prevent dengue re-emergence in the subsequent wet season. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Genome-Wide Association Mapping Combined with Reverse Genetics Identifies New Effectors of Low Water Potential-Induced Proline Accumulation in Arabidopsis1[W][OPEN

    PubMed Central

    Verslues, Paul E.; Lasky, Jesse R.; Juenger, Thomas E.; Liu, Tzu-Wen; Kumar, M. Nagaraj

    2014-01-01

    Arabidopsis (Arabidopsis thaliana) exhibits natural genetic variation in drought response, including varying levels of proline (Pro) accumulation under low water potential. As Pro accumulation is potentially important for stress tolerance and cellular redox control, we conducted a genome-wide association (GWAS) study of low water potential-induced Pro accumulation using a panel of natural accessions and publicly available single-nucleotide polymorphism (SNP) data sets. Candidate genomic regions were prioritized for subsequent study using metrics considering both the strength and spatial clustering of the association signal. These analyses found many candidate regions likely containing gene(s) influencing Pro accumulation. Reverse genetic analysis of several candidates identified new Pro effector genes, including thioredoxins and several genes encoding Universal Stress Protein A domain proteins. These new Pro effector genes further link Pro accumulation to cellular redox and energy status. Additional new Pro effector genes found include the mitochondrial protease LON1, ribosomal protein RPL24A, protein phosphatase 2A subunit A3, a MADS box protein, and a nucleoside triphosphate hydrolase. Several of these new Pro effector genes were from regions with multiple SNPs, each having moderate association with Pro accumulation. This pattern supports the use of summary approaches that incorporate clusters of SNP associations in addition to consideration of individual SNP probability values. Further GWAS-guided reverse genetics promises to find additional effectors of Pro accumulation. The combination of GWAS and reverse genetics to efficiently identify new effector genes may be especially applicable for traits difficult to analyze by other genetic screening methods. PMID:24218491

  15. Development and validation of LC-MS/MS assay for the simultaneous determination of methotrexate, 6-mercaptopurine and its active metabolite 6-thioguanine in plasma of children with acute lymphoblastic leukemia: Correlation with genetic polymorphism.

    PubMed

    Al-Ghobashy, Medhat A; Hassan, Said A; Abdelaziz, Doaa H; Elhosseiny, Noha M; Sabry, Nirmeen A; Attia, Ahmed S; El-Sayed, Manal H

    2016-12-01

    Individualized therapy is a recent approach aiming to specify dosage regimen for each patient according to its genetic state. Cancer chemotherapy requires continuous monitoring of the plasma concentration levels of active forms of cytotoxic drugs and subsequent dose adjustment. In order to attain optimum therapeutic efficacy, correlation to pharmacogenetics data is crucial. In this study, a specific, accurate and sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) has been developed for determination of methotrexate (MTX), 6-mercaptopurine (MP) and its metabolite 6-thioguanine nucleotide (TG) in human plasma. Based on the basic character of the studied compounds, solid phase extraction using a strong cation exchanger was found the optimum approach to achieve good extraction recovery. Chromatographic separation was carried out using RP-HPLC and isocratic elution by acetonitrile: 0.1% aqueous formic acid (85:15v/v) with a flow rate of 0.8mL/min at 40°C. The detection was performed by tandem mass spectrometry in MRM mode via electrospray ionization source in positive ionization mode. Analysis was carried out within 1.0min over a concentration range of 6.25-200.00ng/mL for the studied analytes. Validation was carried out according to FDA guidelines for bioanalytical method validation and satisfactory results were obtained. The applicability of the assay for the monitoring of the MTX, MP and TG and subsequent application to personalized therapy was demonstrated in a clinical study on children with acute lymphoblastic leukemia (ALL). Results confirmed the need for implementation of reliable analysis tools for therapeutic dose adjustment. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Complex chromosomal rearrangement-a lesson learned from PGS.

    PubMed

    Frumkin, Tsvia; Peleg, Sagit; Gold, Veronica; Reches, Adi; Asaf, Shiri; Azem, Foad; Ben-Yosef, Dalit; Malcov, Mira

    2017-08-01

    The aim of the study is to report a case of non-diagnosed complex chromosomal rearrangement (CCR) identified by preimplantation genetic screening (PGS) followed by preimplantation genetic diagnosis (PGD) which resulted in a pregnancy and delivery of healthy offspring. A 29-year-old woman and her spouse, both diagnosed previously with normal karyotypes, approached our IVF-PGD center following eight early spontaneous miscarriages. PGS using chromosomal microarray analysis (CMA) was performed on biopsied trophectoderm. Fluorescence in situ hybridization (FISH), as well as re-karyotype, were performed on metaphase derived from peripheral blood of the couple. Subsequently, in the following PGD cycle, a total of seven blastocysts underwent CMA. A gain or loss at three chromosomes (3, 7, 9) was identified in six out of seven embryos in the first PGS-CMA cycle. FISH analysis of parental peripheral blood samples demonstrated that the male is a carrier of a CCR involving those chromosomes; this was in spite of a former diagnosis of normal karyotypes for both parents. Re-karyotype verified the complex translocation of 46,XY,t (3;7;9)(q23;q22;q22). Subsequently, in the following cycle, a total of seven blastocysts underwent PGD-CMA for the identified complex translocation. Two embryos were diagnosed with balanced chromosomal constitution. A single balanced embryo was transferred and pregnancy was achieved, resulting in the birth of a healthy female baby. PGS employing CMA is an efficient method to detect unrevealed chromosomal abnormalities, including complicated cases of CCR. The combined application of array CGH and FISH technologies enables the identification of an increased number of CCR carriers for which PGD is particularly beneficial.

  17. Germline mosaicism of PHOX2B mutation accounts for familial recurrence of congenital central hypoventilation syndrome (CCHS).

    PubMed

    Rand, Casey M; Yu, Min; Jennings, Lawrence J; Panesar, Kelvin; Berry-Kravis, Elizabeth M; Zhou, Lili; Weese-Mayer, Debra E

    2012-09-01

    Congenital central hypoventilation syndrome (CCHS), a rare disorder characterized by alveolar hypoventilation and autonomic dysregulation, is caused by mutations in the PHOX2B gene. Most mutations occur de novo, but recent evidence suggests that up to 25% are inherited from asymptomatic parents with somatic mosaicism for these mutations. However, to date, germline mosaicism has not been reported. This report describes a family with recurrence of PHOX2B mutation-confirmed CCHS due to germline mosaicism. The first occurrence was a baby girl, noted on day 2 of life to have multiple episodes of apnea, bradycardia, and cyanosis while breathing room air. PHOX2B gene testing confirmed the diagnosis of CCHS with a heterozygous polyalanine repeat expansion mutation (PARM); genotype 20/27 (normal 20/20). Both parents tested negative for this mutation using fragment analysis (limit of detection<1%). Upon subsequent pregnancy [paternity confirmed using short tandem repeat (STR) analysis], amniocentesis testing identified the PHOX2B 20/27 genotype, confirmed with repeat testing. Elective abortion was performed at 21.5 weeks gestation. Testing of abortus tissue confirmed amniocentesis testing. The PHOX2B 20/27 expansion was not observed in a paternal sperm sample. This case represents the first reported family with recurrence of PHOX2B mutation-confirmed CCHS without detection of a parental carrier state or mosaicism, confirming the previously hypothesized possibility of germline mosaicism for PHOX2B mutations. This is an important finding for genetic counseling of CCHS families, suggesting that even if somatic mosaicism is not detected in parental samples, there is still reason for careful genetic counseling and consideration of prenatal testing during subsequent pregnancies. Copyright © 2012 Wiley Periodicals, Inc.

  18. New Mycobacterium tuberculosis LAM sublineage with geographical specificity for the Old World revealed by phylogenetical and Bayesian analyses.

    PubMed

    Reynaud, Yann; Rastogi, Nalin

    2016-12-01

    We recently showed that the Mycobacterium tuberculosis sublineage LAM9 could be subdivided as two distinct subpopulations - each reflecting its unique biogeographical structure and evolutionary history. We subsequently attempted to verify if this genetic structuration could be traced in an enlarged global sample. For this purpose, we analyzed global evolutionary relationships of LAM strains in a large dataset (n = 1923 isolates from 35 countries worldwide) with concomitant spoligotyping and MIRU-VNTR data, followed by a deeper analysis of LAM9 sublineage (n = 851 isolates). Based on a combination of phylogenetical analysis and Bayesian statistics, a total of three different clusters, tentatively named LAM9C1, C2 and C3 were described in this dataset. Closer inspection of the phylogenetic tree with concomitant data on origin of isolates with genetic clusterization revealed LAM9C3 being the most tightly knit group exclusively found in the Old World as opposed to LAM9C2 being a loosely-knit group without any phylogeographical specificity; while LAM9C1 appeared with a majority of strains being well-clustered despite some isolates that intermixed with unrelated LAM clusters. Subsequently, we hereby describe a new M. tuberculosis LAM sublineage named LAM9C3 with phylogeographical specificity for the Old World. These findings open new perspectives to study respective migration histories and adaptation to human hosts of specific M. tuberculosis clones during the exploration and conquest of the New World. We therefore plan to reevaluate the nomenclature and evolutionary history of various LAM sublineages using Whole Genome Sequencing (WGS). Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Genetic and morphological consequences of Quaternary glaciations: A relic barbel lineage (Luciobarbus pallaryi, Cyprinidae) of Guir Basin (Algeria).

    PubMed

    Brahimi, Amina; Tarai, Nacer; Benhassane, Abdelkrim; Henrard, Arnaud; Libois, Roland

    2016-02-01

    Climatic variations during the Quaternary period had a considerable impact on landscapes and habitat fragmentation (rivers) in North Africa. These historical events can have significant consequences on the genetic structure of the populations. Indeed, geographically separated and genetically isolated populations tend to differentiate themselves through time, eventually becoming distinct lineages, allowing new species to emerge in later generations. The aim of the present study is to use genetic and morphological techniques to evaluate the major role of the Saalian glaciation (Middle Quaternary) in the establishment of the geographic space and in the evolution of the intraspecific genetic diversity, by tracing the demographic history of barbels belonging to the Luciobarbus pallaryi (Cyprinidae) species in the Guir Basin (Algeria). In this context, two populations, from two distinct and isolated sites, were studied. Analysis of the cytochrome b (cyt b) mitochondrial markers and of the "D-loop" control region has shown that the "upstream" and "downstream" Guir populations are genetically differentiated. The molecular analyses suggest that the upstream population was disconnected from this hydrographic system during the Saalian glaciation period of the Quaternary. Subsequently, it was isolated in the foggaras underground waters in the Great Western Erg, at approximately 320 000 years BP, creating, through a bottleneck effect, a new allopatric lineage referred to as "Adrar". Conversely, the high genetic diversity in the upstream Guir (Bechar) population suggests that the stock is globally in expansion. These barbels (n=52) were also examined with meristic, morphometric, osteological, and biological features. These data also reveal a complete discrimination between the two populations, with a remarkable and distinctive behavioural adaptation for the Adrar specimens: neoteny. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  20. Computational studies of novel chymase inhibitors against cardiovascular and allergic diseases: mechanism and inhibition.

    PubMed

    Arooj, Mahreen; Thangapandian, Sundarapandian; John, Shalini; Hwang, Swan; Park, Jong K; Lee, Keun W

    2012-12-01

    To provide a new idea for drug design, a computational investigation is performed on chymase and its novel 1,4-diazepane-2,5-diones inhibitors that explores the crucial molecular features contributing to binding specificity. Molecular docking studies of inhibitors within the active site of chymase were carried out to rationalize the inhibitory properties of these compounds and understand their inhibition mechanism. The density functional theory method was used to optimize molecular structures with the subsequent analysis of highest occupied molecular orbital, lowest unoccupied molecular orbital, and molecular electrostatic potential maps, which revealed that negative potentials near 1,4-diazepane-2,5-diones ring are essential for effective binding of inhibitors at active site of enzyme. The Bayesian model with receiver operating curve statistic of 0.82 also identified arylsulfonyl and aminocarbonyl as the molecular features favoring and not favoring inhibition of chymase, respectively. Moreover, genetic function approximation was applied to construct 3D quantitative structure-activity relationships models. Two models (genetic function approximation model 1 r(2) = 0.812 and genetic function approximation model 2 r(2) = 0.783) performed better in terms of correlation coefficients and cross-validation analysis. In general, this study is used as example to illustrate how combinational use of 2D/3D quantitative structure-activity relationships modeling techniques, molecular docking, frontier molecular orbital density fields (highest occupied molecular orbital and lowest unoccupied molecular orbital), and molecular electrostatic potential analysis may be useful to gain an insight into the binding mechanism between enzyme and its inhibitors. © 2012 John Wiley & Sons A/S.

  1. Integrated whole-genome and transcriptome sequence analysis reveals the genetic characteristics of a riboflavin-overproducing Bacillus subtilis.

    PubMed

    Wang, Guanglu; Shi, Ting; Chen, Tao; Wang, Xiaoyue; Wang, Yongcheng; Liu, Dingyu; Guo, Jiaxin; Fu, Jing; Feng, Lili; Wang, Zhiwen; Zhao, Xueming

    2018-06-02

    Commercial riboflavin production with Bacillus subtilis has been developed by combining rational and classical strain development for almost two decades, but how an improved riboflavin producer can be created rationally is still not completely understood. In this study, we demonstrate the combined use of integrated genomic and transcriptomic analysis of the genetic basis for riboflavin over-production in B. subtilis. This methodology succeeded in discerning the positive mutations in the mutagenesis derived riboflavin producer B. subtilis 24/pMX45 through whole-genome sequencing and transcriptome sequencing. These included RibC (G199D), ribD + (G+39A), PurA (P242L), CcpN(A44S), YvrH (R222Q) and two nonsense mutations YhcF (R90*) and YwaA (Q68*). Reintroducing these specific mutations into the wild-type strain recovered the riboflavin overproduction phenotype and subsequent metabolic engineering greatly improved riboflavin production, achieving an up to 3.4-fold increase of the riboflavin titer over the sequenced producer. A novel mutation, YvrH (R222Q), involved in a typical two-component regulatory system deregulated the purine de novo synthesis pathway and increased the pool of intracellular purine metabolites, which in turn increased riboflavin production. Taken together, we present a case study of combining genome and transcriptome analysis to elucidate the genetic underpinnings of a complex cellular property, which enabled the transfer of beneficial mutations to engineer a reference strain into an overproducer. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  2. Re-examination of population structure and phylogeography of hawksbill turtles in the wider Caribbean using longer mtDNA sequences.

    PubMed

    Leroux, Robin A; Dutton, Peter H; Abreu-Grobois, F Alberto; Lagueux, Cynthia J; Campbell, Cathi L; Delcroix, Eric; Chevalier, Johan; Horrocks, Julia A; Hillis-Starr, Zandy; Troëng, Sebastian; Harrison, Emma; Stapleton, Seth

    2012-01-01

    Management of the critically endangered hawksbill turtle in the Wider Caribbean (WC) has been hampered by knowledge gaps regarding stock structure. We carried out a comprehensive stock structure re-assessment of 11 WC hawksbill rookeries using longer mtDNA sequences, larger sample sizes (N = 647), and additional rookeries compared to previous surveys. Additional variation detected by 740 bp sequences between populations allowed us to differentiate populations such as Barbados-Windward and Guadeloupe (F (st) = 0.683, P < 0.05) that appeared genetically indistinguishable based on shorter 380 bp sequences. POWSIM analysis showed that longer sequences improved power to detect population structure and that when N < 30, increasing the variation detected was as effective in increasing power as increasing sample size. Geographic patterns of genetic variation suggest a model of periodic long-distance colonization coupled with region-wide dispersal and subsequent secondary contact within the WC. Mismatch analysis results for individual clades suggest a general population expansion in the WC following a historic bottleneck about 100 000-300 000 years ago. We estimated an effective female population size (N (ef)) of 6000-9000 for the WC, similar to the current estimated numbers of breeding females, highlighting the importance of these regional rookeries to maintaining genetic diversity in hawksbills. Our results provide a basis for standardizing future work to 740 bp sequence reads and establish a more complete baseline for determining stock boundaries in this migratory marine species. Finally, our findings illustrate the value of maintaining an archive of specimens for re-analysis as new markers become available.

  3. Association of functional MMP-2 gene variant with intracranial aneurysms: case-control genetic association study and meta-analysis.

    PubMed

    Alg, Varinder S; Ke, Xiayi; Grieve, Joan; Bonner, Stephen; Walsh, Daniel C; Bulters, Diederik; Kitchen, Neil; Houlden, Henry; Werring, David J

    2018-01-15

    Abnormalities in Matrix Metalloproteinase (MMP) genes, which are important in extracellular matrix (ECM) maintenance and therefore arterial wall integrity are a plausible underlying mechanism of intracranial aneurysm (IA) formation, growth and subsequent rupture. We investigated whether the rs243865 C > T SNP (single nucleotide polymorphism) within the MMP-2 gene (which influences gene transcription) is associated with IA compared to matched controls. We conducted a case-control genetic association study, adjusted for known IA risk factors (smoking and hypertension), in a UK Caucasian population of 1409 patients with intracranial aneurysms (IA), and 1290 matched controls, to determine the association of the rs243865 C > T functional MMP-2 gene SNP with IA (overall, and classified as ruptured and unruptured). We also undertook a meta-analysis of two previous studies examining this SNP. The rs243865 T allele was associated with IA presence in univariate (OR 1.18 [95% CI 1.04-1.33], p = .01) and in multi-variable analyses adjusted for smoking and hypertension status (OR 1.16 [95% CI 1.01-1.35], p = .042). Subgroup analysis demonstrated an association of the rs243865 SNP with ruptured IA (OR 1.18 [95% CI 1.03-1.34] p = .017), but, not unruptured IA (OR 1.17 [95% CI 0.97-1.42], p = .11). Our study demonstrated an association between the functional MMP-2 rs243865 variant and IAs. Our findings suggest a genetic role for altered extracellular matrix integrity in the pathogenesis of IA development and rupture.

  4. Lack of replication of thirteen single-nucleotide polymorphisms implicated in Parkinson’s disease: a large-scale international study

    PubMed Central

    Elbaz, Alexis; Nelson, Lorene M; Payami, Haydeh; Ioannidis, John P A; Fiske, Brian K; Annesi, Grazia; Belin, Andrea Carmine; Factor, Stewart A; Ferrarese, Carlo; Hadjigeorgiou, Georgios M; Higgins, Donald S; Kawakami, Hideshi; Krüger, Rejko; Marder, Karen S; Mayeux, Richard P; Mellick, George D; Nutt, John G; Ritz, Beate; Samii, Ali; Tanner, Caroline M; Van Broeckhoven, Christine; Van Den Eeden, Stephen K; Wirdefeldt, Karin; Zabetian, Cyrus P; Dehem, Marie; Montimurro, Jennifer S; Southwick, Audrey; Myers, Richard M; Trikalinos, Thomas A

    2013-01-01

    Summary Background A genome-wide association study identified 13 single-nucleotide polymorphisms (SNPs) significantly associated with Parkinson’s disease. Small-scale replication studies were largely non-confirmatory, but a meta-analysis that included data from the original study could not exclude all SNP associations, leaving relevance of several markers uncertain. Methods Investigators from three Michael J Fox Foundation for Parkinson’s Research-funded genetics consortia—comprising 14 teams—contributed DNA samples from 5526 patients with Parkinson’s disease and 6682 controls, which were genotyped for the 13 SNPs. Most (88%) participants were of white, non-Hispanic descent. We assessed log-additive genetic effects using fixed and random effects models stratified by team and ethnic origin, and tested for heterogeneity across strata. A meta-analysis was undertaken that incorporated data from the original genome-wide study as well as subsequent replication studies. Findings In fixed and random-effects models no associations with any of the 13 SNPs were identified (odds ratios 0·89 to 1·09). Heterogeneity between studies and between ethnic groups was low for all SNPs. Subgroup analyses by age at study entry, ethnic origin, sex, and family history did not show any consistent associations. In our meta-analysis, no SNP showed significant association (summary odds ratios 0·95 to 1.08); there was little heterogeneity except for SNP rs7520966. Interpretation Our results do not lend support to the finding that the 13 SNPs reported in the original genome-wide association study are genetic susceptibility factors for Parkinson’s disease. PMID:17052658

  5. The optimal algorithm for Multi-source RS image fusion.

    PubMed

    Fu, Wei; Huang, Shui-Guang; Li, Zeng-Shun; Shen, Hao; Li, Jun-Shuai; Wang, Peng-Yuan

    2016-01-01

    In order to solve the issue which the fusion rules cannot be self-adaptively adjusted by using available fusion methods according to the subsequent processing requirements of Remote Sensing (RS) image, this paper puts forward GSDA (genetic-iterative self-organizing data analysis algorithm) by integrating the merit of genetic arithmetic together with the advantage of iterative self-organizing data analysis algorithm for multi-source RS image fusion. The proposed algorithm considers the wavelet transform of the translation invariance as the model operator, also regards the contrast pyramid conversion as the observed operator. The algorithm then designs the objective function by taking use of the weighted sum of evaluation indices, and optimizes the objective function by employing GSDA so as to get a higher resolution of RS image. As discussed above, the bullet points of the text are summarized as follows.•The contribution proposes the iterative self-organizing data analysis algorithm for multi-source RS image fusion.•This article presents GSDA algorithm for the self-adaptively adjustment of the fusion rules.•This text comes up with the model operator and the observed operator as the fusion scheme of RS image based on GSDA. The proposed algorithm opens up a novel algorithmic pathway for multi-source RS image fusion by means of GSDA.

  6. [Familial male-limited precocious puberty due to Asp578His mutations in the LHCGR gene: clinical characteristics and gene analysis in an infant].

    PubMed

    Wang, Min; Li, Min; Liu, Yue-Sheng; Lei, Si-Min; Xiao, Yan-Feng

    2017-11-01

    The aim of the study was to provide a descriptive analysis of familial male-limited precocious puberty (FMPP), which is a rare inherited disease caused by heterozygous constitutively activating mutations of the luteinizing hormone/choriogonadotropin receptor gene (LHCGR). The patient was a ten-month-old boy, presenting with penile enlargement, pubic hair formation, and spontaneous erections. Based on the clinical manifestations and laboratory data, including sexual characteristics, serum testosterone levels, GnRH stimulation test, and bone age, this boy was diagnosed with peripheral precocious puberty. Subsequently the precocious puberty-related genes were analyzed by direct DNA sequencing of amplified PCR products from the patient and his parents. Genetic analysis revealed a novel heterozygous missense mutation c.1732G>C (Asp578His) of the LHCGR gene exon11 in the patient, which had never been reported. His parents had no mutations. After combined treatment with aromatase inhibitor letrozole and anti-androgen spironolactone for six months, the patient's symptoms were controlled. The findings in this study expand the mutation spectrum of the LHCGR gene, and provide molecular evidence for the etiologic diagnosis as well as for the genetic counseling and prenatal diagnosis in the family.

  7. Common and Rare EGFR and KRAS Mutations in a Dutch Non-Small-Cell Lung Cancer Population and Their Clinical Outcome

    PubMed Central

    Kerner, Gerald S. M. A.; Schuuring, Ed; Sietsma, Johanna; Hiltermann, Thijo J. N.; Pieterman, Remge M.; de Leede, Gerard P. J.; van Putten, John W. G.; Liesker, Jeroen; Renkema, Tineke E. J.; van Hengel, Peter; Platteel, Inge; Timens, Wim; Groen, Harry J. M.

    2013-01-01

    Introduction In randomly assigned studies with EGFR TKI only a minor proportion of patients with NSCLC have genetically profiled biopsies. Guidelines provide evidence to perform EGFR and KRAS mutation analysis in non-squamous NSCLC. We explored tumor biopsy quality offered for mutation testing, different mutations distribution, and outcome with EGFR TKI. Patient and Methods Clinical data from 8 regional hospitals were studied for patient and tumor characteristics, treatment and overall survival. Biopsies sent to the central laboratory were evaluated for DNA quality and subsequently analyzed for mutations in exons 18–21 of EGFR and exon 2 of KRAS by bidirectional sequence analysis. Results Tumors from 442 subsequent patients were analyzed. For 74 patients (17%) tumors were unsuitable for mutation analysis. Thirty-eight patients (10.9%) had EGFR mutations with 79% known activating mutations. One hundred eight patients (30%) had functional KRAS mutations. The mutation spectrum was comparable to the Cosmic database. Following treatment in the first or second line with EGFR TKI median overall survival for patients with EGFR (n = 14), KRAS (n = 14) mutations and wild type EGFR/KRAS (n = 31) was not reached, 20 and 9 months, respectively. Conclusion One out of every 6 tumor samples was inadequate for mutation analysis. Patients with EGFR activating mutations treated with EGFR-TKI have the longest survival. PMID:23922984

  8. Genetics Behind Barbed Wire: Masuo Kodani, Émigré Geneticists, and Wartime Genetics Research at Manzanar Relocation Center

    PubMed Central

    Smocovitis, Vassiliki Betty

    2011-01-01

    This article explores the sociopolitical backdrop of genetics research during the politically turbulent decades of the mid-20th century that saw the persecution, displacement, and relocation of unpopular minorities in both the United States and Europe. It explores how geneticists in the United States accommodated these disruptions through formal and informal émigré networks and how the subsequent war affected their research programs and their lives. It does so by focusing on the career and life of geneticist Masuo Kodani, who, as a Japanese American, found himself conducting unexpected cytogenetics research in Manzanar, a “relocation center,” or internment camp, located in the California desert, after the attack on Pearl Harbor. After the war, Kodani's subsequent career continued to be shaped by his experiences as a Japanese American and by the specific skills as a cytogeneticist that he demonstrated at a critical period in the history of 20th-century genetics. His many relocations in search of employment culminated in his work with the Atomic Bomb Casualty Commission on human chromosomes, for which he is best known. PMID:21307394

  9. [Genetic variation and differentiation in striped field mouse Apodemus agrarius inferred from RAPD-PCR analysis].

    PubMed

    Atopkin, D M; Bogdanov, A S; Chelomina, G N

    2007-06-01

    Genetic variation and differentiation of the trans-Palearctic species Apodemus agrarius (striped field mouse), whose range consists of two large isolates-European-Siberian and Far Eastern-Chinese, were examined using RAPD-PCR analysis. The material from the both parts of the range was examined (41 individual of A. agrarius from 18 localities of Russia, Ukraine, Moldova, and Kazakhstan); the Far-Eastern part was represented by samples from the Amur region, Khabarovsk krai, and Primorye (Russia). Differences in frequencies of polymorphic RAPD loci were found between the European-Siberian and the Far Eastern population groups of striped field mouse. No "fixed" differences between them in RAPD spectra were found, and none of the used statistical methods permitted to distinguish with absolute certainty animals from the two range parts. Thus, genetic isolation of the European-Siberian and the Far Eastern population groups of A. agrarius is not strict. These results support the hypothesis on recent dispersal of striped field mouse from East to West Palearctics (during the Holocene climatic optimum, 7000 to 4500 years ago) and subsequent disjunction of the species range (not earlier than 4000-4500 years ago). The Far Eastern population group is more polymorphic than the European-Siberian one, while genetic heterogeneity is more uniformly distributed within it. This is probably explained by both historical events that happened during the species dispersal in the past, and different environmental conditions for the species in different parts of its range. The Far Eastern population group inhabits the area close to the distribution center of A. agrarius. It is likely that this group preserved genetic variation of the formerly integral ancestral form, while some amount of genetic polymorphism could be lost during the species colonization of the Siberian and European areas. To date, the settlement density and population number in general are higher than within the European-Siberian isolate, which seems to account for closer interpopulation associations, intense genetic exchange, and "smoothing" of polymorphism within the Far Eastern population group of A. agrarius.

  10. Whole genome SNP discovery and analysis of genetic diversity in Turkey (Meleagris gallopavo)

    PubMed Central

    2012-01-01

    Background The turkey (Meleagris gallopavo) is an important agricultural species and the second largest contributor to the world’s poultry meat production. Genetic improvement is attributed largely to selective breeding programs that rely on highly heritable phenotypic traits, such as body size and breast muscle development. Commercial breeding with small effective population sizes and epistasis can result in loss of genetic diversity, which in turn can lead to reduced individual fitness and reduced response to selection. The presence of genomic diversity in domestic livestock species therefore, is of great importance and a prerequisite for rapid and accurate genetic improvement of selected breeds in various environments, as well as to facilitate rapid adaptation to potential changes in breeding goals. Genomic selection requires a large number of genetic markers such as e.g. single nucleotide polymorphisms (SNPs) the most abundant source of genetic variation within the genome. Results Alignment of next generation sequencing data of 32 individual turkeys from different populations was used for the discovery of 5.49 million SNPs, which subsequently were used for the analysis of genetic diversity among the different populations. All of the commercial lines branched from a single node relative to the heritage varieties and the South Mexican turkey population. Heterozygosity of all individuals from the different turkey populations ranged from 0.17-2.73 SNPs/Kb, while heterozygosity of populations ranged from 0.73-1.64 SNPs/Kb. The average frequency of heterozygous SNPs in individual turkeys was 1.07 SNPs/Kb. Five genomic regions with very low nucleotide variation were identified in domestic turkeys that showed state of fixation towards alleles different than wild alleles. Conclusion The turkey genome is much less diverse with a relatively low frequency of heterozygous SNPs as compared to other livestock species like chicken and pig. The whole genome SNP discovery study in turkey resulted in the detection of 5.49 million putative SNPs compared to the reference genome. All commercial lines appear to share a common origin. Presence of different alleles/haplotypes in the SM population highlights that specific haplotypes have been selected in the modern domesticated turkey. PMID:22891612

  11. Elaeis oleifera Genomic-SSR Markers: Exploitation in Oil Palm Germplasm Diversity and Cross-Amplification in Arecaceae

    PubMed Central

    Zaki, Noorhariza Mohd; Singh, Rajinder; Rosli, Rozana; Ismail, Ismanizan

    2012-01-01

    Species-specific simple sequence repeat (SSR) markers are favored for genetic studies and marker-assisted selection (MAS) breeding for oil palm genetic improvement. This report characterizes 20 SSR markers from an Elaeis oleifera genomic library (gSSR). Characterization of the repeat type in 2000 sequences revealed a high percentage of di-nucleotides (63.6%), followed by tri-nucleotides (24.2%). Primer pairs were successfully designed for 394 of the E. oleifera gSSRs. Subsequent analysis showed the ability of the 20 selected E. oleifera gSSR markers to reveal genetic diversity in the genus Elaeis. The average Polymorphism Information Content (PIC) value for the SSRs was 0.402, with the tri-repeats showing the highest average PIC (0.626). Low values of observed heterozygosity (Ho) (0.164) and highly positive fixation indices (Fis) in the E. oleifera germplasm collection, compared to the E. guineensis, indicated an excess of homozygosity in E. oleifera. The transferability of the markers to closely related palms, Elaeis guineensis, Cocos nucifera and ornamental palms is also reported. Sequencing the amplicons of three selected E. oleifera gSSRs across both species and palm taxa revealed variations in the repeat-units. The study showed the potential of E. oleifera gSSR markers to reveal genetic diversity in the genus Elaeis. The markers are also a valuable genetic resource for studying E. oleifera and other genus in the Arecaceae family. PMID:22605966

  12. Integrative genomic profiling reveals conserved genetic mechanisms for tumorigenesis in common entities of non-Hodgkin's lymphoma.

    PubMed

    Green, Michael R; Aya-Bonilla, Carlos; Gandhi, Maher K; Lea, Rod A; Wellwood, Jeremy; Wood, Peter; Marlton, Paula; Griffiths, Lyn R

    2011-05-01

    Recent developments in genomic technologies have resulted in increased understanding of pathogenic mechanisms and emphasized the importance of central survival pathways. Here, we use a novel bioinformatic based integrative genomic profiling approach to elucidate conserved mechanisms of lymphomagenesis in the three commonest non-Hodgkin's lymphoma (NHL) entities: diffuse large B-cell lymphoma, follicular lymphoma, and B-cell chronic lymphocytic leukemia. By integrating genome-wide DNA copy number analysis and transcriptome profiling of tumor cohorts, we identified genetic lesions present in each entity and highlighted their likely target genes. This revealed a significant enrichment of components of both the apoptosis pathway and the mitogen activated protein kinase pathway, including amplification of the MAP3K12 locus in all three entities, within the set of genes targeted by genetic alterations in these diseases. Furthermore, amplification of 12p13.33 was identified in all three entities and found to target the FOXM1 oncogene. Amplification of FOXM1 was subsequently found to be associated with an increased MYC oncogenic signaling signature, and siRNA-mediated knock-down of FOXM1 resulted in decreased MYC expression and induced G2 arrest. Together, these findings underscore genetic alteration of the MAPK and apoptosis pathways, and genetic amplification of FOXM1 as conserved mechanisms of lymphomagenesis in common NHL entities. Integrative genomic profiling identifies common central survival mechanisms and highlights them as attractive targets for directed therapy. 2011 Wiley-Liss, Inc.

  13. A genetic analysis of post-weaning feedlot performance and profitability in Bonsmara cattle.

    PubMed

    van der Westhuizen, R R; van der Westhuizen, J; Schoeman, S J

    2009-02-25

    The aim of this study was to identify factors influencing profitability in a feedlot environment and to estimate genetic parameters for and between a feedlot profit function and productive traits measured in growth tests. The heritability estimate of 0.36 for feedlot profitability shows that this trait is genetically inherited and that it can be selected for. The genetic correlations between feedlot profitability and production and efficiency varied from negligible to high. The genetic correlation estimate of -0.92 between feed conversion ratio and feedlot profitability is largely due to the part-whole relationship between these two traits. Consequently, a multiple regression equation was developed to estimate a feed intake value for all performance-tested Bonsmara bulls, which were group fed and whose feed intakes were unknown. These predicted feed intake values enabled the calculation of a post-weaning growth or feedlot profitability value for all tested bulls, even where individual feed intakes were unknown. Subsequently, a feedlot profitability value for each bull was calculated in a favorable economic environment, an average economic environment and in an unfavorable economic environment. The high Pearson and Spearman correlations between the estimate breeding values based on the average economic environment and the other two environments suggested that the average economic environment could be used to calculate estimate breeding values for feedlot profitability. It is therefore not necessary to change the carcass, weaned calf or feed price on a regular basis to allow for possible re-rankings based on estimate breeding values.

  14. Genetic diversity, population structure and marker-trait associations for agronomic and grain traits in wild diploid wheat Triticum urartu.

    PubMed

    Wang, Xin; Luo, Guangbin; Yang, Wenlong; Li, Yiwen; Sun, Jiazhu; Zhan, Kehui; Liu, Dongcheng; Zhang, Aimin

    2017-07-01

    Wild diploid wheat, Triticum urartu (T. urartu) is the progenitor of bread wheat, and understanding its genetic diversity and genome function will provide considerable reference for dissecting genomic information of common wheat. In this study, we investigated the morphological and genetic diversity and population structure of 238 T. urartu accessions collected from different geographic regions. This collection had 19.37 alleles per SSR locus and its polymorphic information content (PIC) value was 0.76, and the PIC and Nei's gene diversity (GD) of high-molecular-weight glutenin subunits (HMW-GSs) were 0.86 and 0.88, respectively. UPGMA clustering analysis indicated that the 238 T. urartu accessions could be classified into two subpopulations, of which Cluster I contained accessions from Eastern Mediterranean coast and those from Mesopotamia and Transcaucasia belonged to Cluster II. The wide range of genetic diversity along with the manageable number of accessions makes it one of the best collections for mining valuable genes based on marker-trait association. Significant associations were observed between simple sequence repeats (SSR) or HMW-GSs and six morphological traits: heading date (HD), plant height (PH), spike length (SPL), spikelet number per spike (SPLN), tiller angle (TA) and grain length (GL). Our data demonstrated that SSRs and HMW-GSs were useful markers for identification of beneficial genes controlling important traits in T. urartu, and subsequently for their conservation and future utilization, which may be useful for genetic improvement of the cultivated hexaploid wheat.

  15. Characterization of hypersensitive resistance to bacterial spot race T3 (Xanthomonas perforans) from tomato accession PI 128216.

    PubMed

    Robbins, Matthew D; Darrigues, Audrey; Sim, Sung-Chur; Masud, Mohammed Abu Taher; Francis, David M

    2009-09-01

    Bacterial spot of tomato is caused by four species of Xanthomonas. The accession PI 128216 (Solanum pimpinellifolium) displays a hypersensitive reaction (HR) to race T3 strains (predominantely Xanthomonas perforans). We developed an inbred backcross (IBC) population (BC(2)S(5), 178 families) derived from PI 128216 and OH88119 (S. lycopersicum) as the susceptible recurrent parent for simultaneous introgression and genetic analysis of the HR response. These IBC families were evaluated in the greenhouse for HR to race T3 strain Xcv761. The IBC population was genotyped with molecular markers distributed throughout the genome in order to identify candidate loci conferring resistance. We treated the IBC population as a hypothesis forming generation to guide validation in subsequent crosses. Nonparametric analysis identified an association between HR and markers clustered on chromosome 11 (P < 0.05 to 0.0001) and chromosome 6 (0.04 > P > 0.002). Further analysis of the IBC population suggested that markers on chromosome 6 and 11 failed to assort independently, a phenomenon known as gametic phase disequilibrium. Therefore, to validate marker-trait linkages, resistant IBC plants were crossed with OH88119 and BC(3)F(2) progeny were evaluated for HR in the greenhouse. In these subsequent populations, the HR response was associated with the chromosome 11 markers (P < 0.0002) but not with the markers on chromosome 6 (P > 0.25). Independent F(2) families were developed by crossing resistant IBC lines to OH8245, OH88119, and OH7530. These populations were genotyped, organized into classes based on chromosome 11 markers, and evaluated for resistance in the field. The PI 128216 locus on chromosome 11 provided resistance that was dependent on gene dosage and genetic background. These results define a single locus, Rx-4, from PI 128216, which provides resistance to bacterial spot race T3, has additive gene action, and is located on chromosome 11.

  16. Characterization of 42 microsatellite markers from poison ivy, Toxicodendron radicans (Anacardiaceae).

    PubMed

    Hsu, Tsai-Wen; Shih, Huei-Chuan; Kuo, Chia-Chi; Chiang, Tzen-Yuh; Chiang, Yu-Chung

    2013-10-14

    Poison ivy, Toxicodendron radicans, and poison oaks, T. diversilobum and T. pubescens, are perennial woody species of the Anacardiaceae and are poisonous, containing strong allergens named urushiols that cause allergic contact dermatitis. Poison ivy is a species distributed from North America to East Asia, while T. diversilobum and T. pubescens are distributed in western and eastern North America, respectively. Phylogreography and population structure of these species remain unclear. Here, we developed microsatellite markers, via constructing a magnetic enriched microsatellite library, from poison ivy. We designed 51 primer pairs, 42 of which successfully yielded products that were subsequently tested for polymorphism in poison oak, and three subspecies of poison ivy. Among the 42 loci, 38 are polymorphic, while 4 are monomorphic. The number of alleles and the expected heterozygosity ranged from 1 to 12 and from 0.10 to 0.87, respectively, in poison ivy, while varied from 2 to 8 and, from 0.26 to 0.83, respectively in poison oak. Genetic analysis revealed distinct differentiation between poison ivy and poison oak, whereas slight genetic differentiation was detected among three subspecies of poison ivy. These highly polymorphic microsatellite fingerprints enable biologists to explore the population genetics, phylogeography, and speciation in Toxicodendron.

  17. Characterization of 42 Microsatellite Markers from Poison Ivy, Toxicodendron radicans (Anacardiaceae)

    PubMed Central

    Hsu, Tsai-Wen; Shih, Huei-Chuan; Kuo, Chia-Chi; Chiang, Tzen-Yuh; Chiang, Yu-Chung

    2013-01-01

    Poison ivy, Toxicodendron radicans, and poison oaks, T. diversilobum and T. pubescens, are perennial woody species of the Anacardiaceae and are poisonous, containing strong allergens named urushiols that cause allergic contact dermatitis. Poison ivy is a species distributed from North America to East Asia, while T. diversilobum and T. pubescens are distributed in western and eastern North America, respectively. Phylogreography and population structure of these species remain unclear. Here, we developed microsatellite markers, via constructing a magnetic enriched microsatellite library, from poison ivy. We designed 51 primer pairs, 42 of which successfully yielded products that were subsequently tested for polymorphism in poison oak, and three subspecies of poison ivy. Among the 42 loci, 38 are polymorphic, while 4 are monomorphic. The number of alleles and the expected heterozygosity ranged from 1 to 12 and from 0.10 to 0.87, respectively, in poison ivy, while varied from 2 to 8 and, from 0.26 to 0.83, respectively in poison oak. Genetic analysis revealed distinct differentiation between poison ivy and poison oak, whereas slight genetic differentiation was detected among three subspecies of poison ivy. These highly polymorphic microsatellite fingerprints enable biologists to explore the population genetics, phylogeography, and speciation in Toxicodendron. PMID:24129176

  18. Autism--genetics, electrophysiology and clinical syndromes.

    PubMed

    Pop-Jordanova, Nada; Plasevska-Karanfilska, Dijana

    2014-01-01

    Autism is a severe and the most heritable developmental disorder, whose pathogenesis is still largely unknown. The rising incidence of autism in the last decade has increased the scientific interest and research. More than a thousand papers concerned with information about the etiology of this "static disorder of the immature brain" can be found on Pub Med. The aim of this paper is to give a review of published genetic chromosomal anomalies associated with autistic spectrum disorders, as well as to discuss common syndromes associated with autistic traits. In addition, some of our own findings in genetics, as well as in quantitative electroencephalography and neurofeedback training in autistic children, will be presented and discussed. Generally, the subsequent analyses indicate that the causes of autism include fewer common single-gene mutations and chromosomal abnormalities, as well as multiple interacting genes of weak effect. Genome-wide linkage analysis has identified several susceptibility loci and positional and functional candidate genes which appear to represent possible risks of the autistic spectrum. Electrophysiological findings showed high delta/theta activity in frontal-central regions, while in 25% high beta activity was detected as a result of anxiety. Neurofeedback is a promising therapy for symptom mitigation.

  19. Ancient DNA Reveals Prehistoric Gene-Flow from Siberia in the Complex Human Population History of North East Europe

    PubMed Central

    Der Sarkissian, Clio; Balanovsky, Oleg; Brandt, Guido; Khartanovich, Valery; Buzhilova, Alexandra; Koshel, Sergey; Zaporozhchenko, Valery; Gronenborn, Detlef; Moiseyev, Vyacheslav; Kolpakov, Eugen; Shumkin, Vladimir; Alt, Kurt W.; Balanovska, Elena; Cooper, Alan; Haak, Wolfgang

    2013-01-01

    North East Europe harbors a high diversity of cultures and languages, suggesting a complex genetic history. Archaeological, anthropological, and genetic research has revealed a series of influences from Western and Eastern Eurasia in the past. While genetic data from modern-day populations is commonly used to make inferences about their origins and past migrations, ancient DNA provides a powerful test of such hypotheses by giving a snapshot of the past genetic diversity. In order to better understand the dynamics that have shaped the gene pool of North East Europeans, we generated and analyzed 34 mitochondrial genotypes from the skeletal remains of three archaeological sites in northwest Russia. These sites were dated to the Mesolithic and the Early Metal Age (7,500 and 3,500 uncalibrated years Before Present). We applied a suite of population genetic analyses (principal component analysis, genetic distance mapping, haplotype sharing analyses) and compared past demographic models through coalescent simulations using Bayesian Serial SimCoal and Approximate Bayesian Computation. Comparisons of genetic data from ancient and modern-day populations revealed significant changes in the mitochondrial makeup of North East Europeans through time. Mesolithic foragers showed high frequencies and diversity of haplogroups U (U2e, U4, U5a), a pattern observed previously in European hunter-gatherers from Iberia to Scandinavia. In contrast, the presence of mitochondrial DNA haplogroups C, D, and Z in Early Metal Age individuals suggested discontinuity with Mesolithic hunter-gatherers and genetic influx from central/eastern Siberia. We identified remarkable genetic dissimilarities between prehistoric and modern-day North East Europeans/Saami, which suggests an important role of post-Mesolithic migrations from Western Europe and subsequent population replacement/extinctions. This work demonstrates how ancient DNA can improve our understanding of human population movements across Eurasia. It contributes to the description of the spatio-temporal distribution of mitochondrial diversity and will be of significance for future reconstructions of the history of Europeans. PMID:23459685

  20. Genetic Diversity Strategy for the Management and Use of Rubber Genetic Resources: More than 1,000 Wild and Cultivated Accessions in a 100-Genotype Core Collection

    PubMed Central

    Cerqueira-Silva, Carlos Bernardo Moreno; Silva, Carla Cristina; Mantello, Camila Campos; Conson, Andre Ricardo Oliveira; Vianna, João Paulo Gomes; Zucchi, Maria Imaculada; Scaloppi Junior, Erivaldo José; Fialho, Josefino de Freitas; de Moraes, Mario Luis Teixeira; Gonçalves, Paulo de Souza; de Souza, Anete Pereira

    2015-01-01

    The rubber tree [Hevea brasiliensis (Willd. ex Adr. de Juss.) Muell. Arg.] is the only plant species worldwide that is cultivated for the commercial production of natural rubber. This study describes the genetic diversity of the Hevea spp. complex that is available in the main ex situ collections of South America, including Amazonian populations that have never been previously described. Genetic data were analyzed to determine the genetic structure of the wild populations, quantify the allelic diversity and suggest the composition of a core collection to capture the maximum genetic diversity within a minimal sample size. A total of 1,117 accessions were genotyped with 13 microsatellite markers. We identified a total of 408 alleles, 319 of which were shared between groups and 89 that were private in different groups of accessions. In a population structure and principal component analysis, the level of clustering reflected a primary division into the following two subgroups: cluster 1, which consisted of varieties from the advanced breeding germplasm that originated from the Wickham and Mato Grosso accessions; and cluster 2, which consisted of the wild germplasm from the Acre, Amazonas, Pará and Rondônia populations and Hevea spp. The analyses revealed a high frequency of gene flow between the groups, with the genetic differentiation coefficient (GST) estimated to be 0.018. Additionally, no distinct separation among the H. brasiliensis accessions and the other species from Amazonas was observed. A core collection of 99 accessions was identified that captured the maximum genetic diversity. Rubber tree breeders can effectively utilize this core collection for cultivar improvement. Furthermore, such a core collection could provide resources for forming an association panel to evaluate traits with agronomic and commercial importance. Our study generated a molecular database that should facilitate the management of the Hevea germplasm and its use for subsequent genetic and genomic breeding. PMID:26225861

  1. Genotyping analysis of protein S-Tokushima (K196E) and the involvement of protein S antigen and activity in patients with recurrent pregnancy loss.

    PubMed

    Matsukawa, Yasushi; Asano, Eriko; Tsuda, Tomohide; Kuma, Hiroyuki; Kitaori, Tamao; Katano, Kinue; Ozaki, Yasuhiko; Sugiura-Ogasawara, Mayumi

    2017-04-01

    Preston et al. indicated that Protein S (PS) deficiency was associated with stillbirths but not miscarriages. The PS-Tokushima missense variant was reported to serve as a genetic risk factor for deep vein thrombosis in the Japanese population. A previous cross-sectional study showed no increase in the prevalence of PS-Tokushima in patients with recurrent early pregnancy loss or in patients with intra uterine fetal death and/or fetal growth restriction. There has been limited number of prospective studies examining the pregnancy outcome in patients with both a PS deficiency and recurrent pregnancy loss (RPL). We examined the association between PS deficiency, PS-Tokushima and RPL. The study group consisted of 355 Japanese women with two or more consecutive pregnancy losses and 101 parous women. The frequency of PS-Tokushima and the subsequent live birth rate in relation to a PS deficiency defined as low PS-specific activity (total PS activity/total PS antigen) and the carriage of PS-Tokushima were examined. There was no significant difference in the frequency of PS-Tokushima between patients and controls. The 8 patients carriers of PS-Tokushima variant were capable of a subsequent live birth without the use of heparin. There was no significant difference in subsequent live birth rates between patients with low or normal PS-specific activity/PS activity without heparin prophylaxis after excluding miscarriages caused by an abnormal embryonic karyotype using multivariate logistic regression analysis. There was no association between PS-Tokushima and RPL and a PS deficiency or low PS activity was shown not to serve as a reliable clinical predictor of subsequent miscarriage. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A novel deletion of SNURF/SNRPN exon 1 in a patient with Prader-Willi-like phenotype.

    PubMed

    Cao, Yang; AlHumaidi, Susan S; Faqeih, Eissa A; Pitel, Beth A; Lundquist, Patrick; Aypar, Umut

    2017-08-01

    Here we report the smallest deletion involving SNURF/SNRPN that causes major symptoms of Prader-Willi syndrome (PWS), including hypotonia, dysmorphic features, intellectual disability, and obesity. A female patient with the aforementioned and additional features was referred to the Mayo Clinic Cytogenetics laboratory for genetic testing. Chromosomal microarray analysis and subsequent Sanger sequencing identified a de novo 6.4 kb deletion at 15q11.2, containing exon 1 of the SNURF gene and exon 1 of the shortest isoform of the SNRPN gene. SNURF/SNRPN exon 1, which is methylated on the silent maternal allele, is associated with acetylated histones on the expressed paternal allele. This region also overlaps with the PWS-imprinting center (IC). Subsequent molecular methylation analysis was performed using methylation-specific MLPA (MS-MLPA), which characterized that the deletion of SNURF/SNRPN exon 1 was paternal in origin, consistent with the PWS-like phenotype. Since SNURF/SNRPN gene and the PWS-IC are known to regulate snoRNAs, it is likely that the PWS-like phenotype observed in patients with paternal SNURF/SNRPN deletion is due to the disrupted expression of SNORD116 snoRNAs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Identification of sequence-related amplified polymorphism markers linked to the red leaf trait in ornamental kale (Brassica oleracea L. var. acephala).

    PubMed

    Wang, Y S; Liu, Z Y; Li, Y F; Zhang, Y; Yang, X F; Feng, H

    2013-04-02

    Artistic diversiform leaf color is an important agronomic trait that affects the market value of ornamental kale. In the present study, genetic analysis showed that a single-dominant gene, Re (red leaf), determines the red leaf trait in ornamental kale. An F2 population consisting of 500 individuals from the cross of a red leaf double-haploid line 'D05' with a white leaf double-haploid line 'D10' was analyzed for the red leaf trait. By combining bulked segregant analysis and sequence-related amplified polymorphism technology, we identified 3 markers linked to the Re/re locus. A genetic map of the Re locus was constructed using these sequence-related amplified polymorphism markers. Two of the markers, Me8Em4 and Me8Em17, were located on one side of Re/re at distances of 2.2 and 6.4 cM, whereas the other marker, Me9Em11, was located on the other side of Re/re at a distance of 3.7 cM. These markers could be helpful for the subsequent cloning of the red trait gene and marker-assisted selection in ornamental kale breeding programs.

  4. Genome-wide association analysis of eosinophilic esophagitis provides insight into the tissue specificity of this allergic disease.

    PubMed

    Kottyan, Leah C; Davis, Benjamin P; Sherrill, Joseph D; Liu, Kan; Rochman, Mark; Kaufman, Kenneth; Weirauch, Matthew T; Vaughn, Samuel; Lazaro, Sara; Rupert, Andrew M; Kohram, Mojtaba; Stucke, Emily M; Kemme, Katherine A; Magnusen, Albert; He, Hua; Dexheimer, Phillip; Chehade, Mirna; Wood, Robert A; Pesek, Robbie D; Vickery, Brian P; Fleischer, David M; Lindbad, Robert; Sampson, Hugh A; Mukkada, Vincent A; Putnam, Phil E; Abonia, J Pablo; Martin, Lisa J; Harley, John B; Rothenberg, Marc E

    2014-08-01

    Eosinophilic esophagitis (EoE) is a chronic inflammatory disorder associated with allergic hypersensitivity to food. We interrogated >1.5 million genetic variants in EoE cases of European ancestry and subsequently in a multi-site cohort with local and out-of-study control subjects. In addition to replicating association of the 5q22 locus (meta-analysis P=1.9×10(-16)), we identified an association at 2p23 spanning CAPN14 (P=2.5×10(-10)). CAPN14 was specifically expressed in the esophagus, was dynamically upregulated as a function of disease activity and genetic haplotype and after exposure of epithelial cells to interleukin (IL)-13, and was located in an epigenetic hotspot modified by IL-13. Genes neighboring the top 208 EoE-associated sequence variants were enriched for esophageal expression, and multiple loci for allergic sensitization were associated with EoE susceptibility (4.8×10(-2)

  5. Genome-wide association analysis of eosinophilic esophagitis provides insight into the tissue specificity of this allergic disease

    PubMed Central

    Kottyan, Leah C.; Davis, Benjamin P.; Sherrill, Joseph D.; Liu, Kan; Rochman, Mark; Kaufman, Kenneth; Weirauch, Matthew T.; Vaughn, Samuel; Lazaro, Sara; Rupert, Andrew M.; Kohram, Mojtaba; Stucke, Emily M.; Kemme, Katherine A.; Magnusen, Albert; He, Hua; Dexheimer, Phillip; Chehade, Mirna; Wood, Robert A.; Pesek, Robbie D.; Vickery, Brian P.; Fleischer, David M.; Lindbad, Robert; Sampson, Hugh A.; Mukkada, Vince; Putnam, Phil E.; Abonia, J. Pablo; Martin, Lisa J.; Harley, John B.; Rothenberg, Marc E.

    2014-01-01

    Eosinophilic esophagitis (EoE) is a chronic inflammatory disorder associated with allergic hypersensitivity to food. We interrogated >1.5 million genetic variants in European EoE cases and subsequently in a multi-site cohort with local and out-of-study control subjects. In addition to replication of the 5q22 locus (meta-analysis p = 1.9×10−16), we identified association at 2p23 (encoding CAPN14, p = 2.5×10−10). CAPN14 was specifically expressed in the esophagus, dynamically upregulated as a function of disease activity and genetic haplotype and after exposure of epithelial cells to IL-13, and located in an epigenetic hotspot modified by IL-13. There was enriched esophageal expression for the genes neighboring the top 208 EoE sequence variants. Multiple allergic sensitization loci were associated with EoE susceptibility (4.8×10−2 < p < 5.1×10−11). We propose a model that elucidates the tissue specific nature of EoE that involves the interplay of allergic sensitization with an EoE-specific, IL-13–inducible esophageal response involving CAPN14. PMID:25017104

  6. Evidence for regular ongoing introductions of mosquito disease vectors into the Galápagos Islands

    PubMed Central

    Bataille, Arnaud; Cunningham, Andrew A.; Cedeño, Virna; Cruz, Marilyn; Eastwood, Gillian; Fonseca, Dina M.; Causton, Charlotte E.; Azuero, Ronal; Loayza, Jose; Martinez, Jose D. Cruz; Goodman, Simon J.

    2009-01-01

    Wildlife on isolated oceanic islands is highly susceptible to the introduction of pathogens. The recent establishment in the Galápagos Islands of the mosquito Culex quinquefasciatus, a vector for diseases such as avian malaria and West Nile fever, is considered a serious risk factor for the archipelago's endemic fauna. Here we present evidence from the monitoring of aeroplanes and genetic analysis that C. quinquefasciatus is regularly introduced via aircraft into the Galápagos Archipelago. Genetic population structure and admixture analysis demonstrates that these mosquitoes breed with, and integrate successfully into, already-established populations of C. quinquefasciatus in the Galápagos, and that there is ongoing movement of mosquitoes between islands. Tourist cruise boats and inter-island boat services are the most likely mechanism for transporting Culex mosquitoes between islands. Such anthropogenic mosquito movements increase the risk of the introduction of mosquito-borne diseases novel to Galápagos and their subsequent widespread dissemination across the archipelago. Failure to implement and maintain measures to prevent the human-assisted transport of mosquitoes to and among the islands could have catastrophic consequences for the endemic wildlife of Galápagos. PMID:19675009

  7. Genome-wide association studies to identify rice salt-tolerance markers.

    PubMed

    Patishtan, Juan; Hartley, Tom N; Fonseca de Carvalho, Raquel; Maathuis, Frans J M

    2018-05-01

    Salinity is an ever increasing menace that affects agriculture worldwide. Crops such as rice are salt sensitive, but its degree of susceptibility varies widely between cultivars pointing to extensive genetic diversity that can be exploited to identify genes and proteins that are relevant in the response of rice to salt stress. We used a diversity panel of 306 rice accessions and collected phenotypic data after short (6 h), medium (7 d) and long (30 d) salinity treatment (50 mm NaCl). A genome-wide association study (GWAS) was subsequently performed, which identified around 1200 candidate genes from many functional categories, but this was treatment period dependent. Further analysis showed the presence of cation transporters and transcription factors with a known role in salinity tolerance and those that hitherto were not known to be involved in salt stress. Localization analysis of single nucleotide polymorphisms (SNPs) showed the presence of several hundred non-synonymous SNPs (nsSNPs) in coding regions and earmarked specific genomic regions with increased numbers of nsSNPs. It points to components of the ubiquitination pathway as important sources of genetic diversity that could underpin phenotypic variation in stress tolerance. © 2017 John Wiley & Sons Ltd.

  8. A Biometric Latent Curve Analysis of Memory Decline in Older Men of the NAS-NRC Twin Registry

    PubMed Central

    McArdle, John J.; Plassman, Brenda L.

    2010-01-01

    Previous research has shown cognitive abilities to have different biometric patterns of age-changes. Here we examined the variation in episodic memory (Words Recalled) for over 6,000 twin pairs who were initially aged 59-75, and were subsequently re-assessed up to three more times over 12 years. In cross-sectional analyses, variation in Education was explained by strong additive genetic influences (~43%) together with shared family influences (~35%) that were independent of age. The longitudinal phenotypic analysis of the Word Recall task showed systematic linear declines over age, but with positive influences of Education and Retesting. The longitudinal biometric estimation yielded: (a) A separation of non-shared environmental influences and transient measurement error (~50%): (b) Strong additive genetic components of this latent curve (~70% at age 60) with increases over age that reach about 90% by age 90. (c) The minor influences of shared family environment (~17% at age 60) were effectively eliminated by age 75. (d) Non-shared environmental effects play an important role over most of the life-span (peak of 42% at age 70) but their relative role diminishes after age 75. PMID:19404731

  9. Genetic diagnosis from formalin-fixed fetal tissue using FISH: a new tool for genetic counseling in subsequent pregnancies.

    PubMed

    Fejgin, M D; Kidron, D; Kedar, I; Gaber, E; Tepper, R; Beyth, Y; Amiel, A

    1996-02-01

    We evaluated the feasibility of retrospective genetic testing for numerical chromosomal aberrations by applying the FISH technique to formalin-fixed fetal tissue. Fetal tissue from 10 old cases with known aneuploidy and from 13 cases with known fetal malformations, were tested with specific DNA probes for pericentromeric repeat regions of chromosomes 13/21, 18, X and Y. FISH diagnosis concurred with karyotype in all nine cases with sufficient cells. Numerical aberration was diagnosed in six out of 13 cases with fetal malformations.

  10. Poor replication validity of biomedical association studies reported by newspapers

    PubMed Central

    Smith, Andy; Boraud, Thomas; Gonon, François

    2017-01-01

    Objective To investigate the replication validity of biomedical association studies covered by newspapers. Methods We used a database of 4723 primary studies included in 306 meta-analysis articles. These studies associated a risk factor with a disease in three biomedical domains, psychiatry, neurology and four somatic diseases. They were classified into a lifestyle category (e.g. smoking) and a non-lifestyle category (e.g. genetic risk). Using the database Dow Jones Factiva, we investigated the newspaper coverage of each study. Their replication validity was assessed using a comparison with their corresponding meta-analyses. Results Among the 5029 articles of our database, 156 primary studies (of which 63 were lifestyle studies) and 5 meta-analysis articles were reported in 1561 newspaper articles. The percentage of covered studies and the number of newspaper articles per study strongly increased with the impact factor of the journal that published each scientific study. Newspapers almost equally covered initial (5/39 12.8%) and subsequent (58/600 9.7%) lifestyle studies. In contrast, initial non-lifestyle studies were covered more often (48/366 13.1%) than subsequent ones (45/3718 1.2%). Newspapers never covered initial studies reporting null findings and rarely reported subsequent null observations. Only 48.7% of the 156 studies reported by newspapers were confirmed by the corresponding meta-analyses. Initial non-lifestyle studies were less often confirmed (16/48) than subsequent ones (29/45) and than lifestyle studies (31/63). Psychiatric studies covered by newspapers were less often confirmed (10/38) than the neurological (26/41) or somatic (40/77) ones. This is correlated to an even larger coverage of initial studies in psychiatry. Whereas 234 newspaper articles covered the 35 initial studies that were later disconfirmed, only four press articles covered a subsequent null finding and mentioned the refutation of an initial claim. Conclusion Journalists preferentially cover initial findings although they are often contradicted by meta-analyses and rarely inform the public when they are disconfirmed. PMID:28222122

  11. Poor replication validity of biomedical association studies reported by newspapers.

    PubMed

    Dumas-Mallet, Estelle; Smith, Andy; Boraud, Thomas; Gonon, François

    2017-01-01

    To investigate the replication validity of biomedical association studies covered by newspapers. We used a database of 4723 primary studies included in 306 meta-analysis articles. These studies associated a risk factor with a disease in three biomedical domains, psychiatry, neurology and four somatic diseases. They were classified into a lifestyle category (e.g. smoking) and a non-lifestyle category (e.g. genetic risk). Using the database Dow Jones Factiva, we investigated the newspaper coverage of each study. Their replication validity was assessed using a comparison with their corresponding meta-analyses. Among the 5029 articles of our database, 156 primary studies (of which 63 were lifestyle studies) and 5 meta-analysis articles were reported in 1561 newspaper articles. The percentage of covered studies and the number of newspaper articles per study strongly increased with the impact factor of the journal that published each scientific study. Newspapers almost equally covered initial (5/39 12.8%) and subsequent (58/600 9.7%) lifestyle studies. In contrast, initial non-lifestyle studies were covered more often (48/366 13.1%) than subsequent ones (45/3718 1.2%). Newspapers never covered initial studies reporting null findings and rarely reported subsequent null observations. Only 48.7% of the 156 studies reported by newspapers were confirmed by the corresponding meta-analyses. Initial non-lifestyle studies were less often confirmed (16/48) than subsequent ones (29/45) and than lifestyle studies (31/63). Psychiatric studies covered by newspapers were less often confirmed (10/38) than the neurological (26/41) or somatic (40/77) ones. This is correlated to an even larger coverage of initial studies in psychiatry. Whereas 234 newspaper articles covered the 35 initial studies that were later disconfirmed, only four press articles covered a subsequent null finding and mentioned the refutation of an initial claim. Journalists preferentially cover initial findings although they are often contradicted by meta-analyses and rarely inform the public when they are disconfirmed.

  12. Intercontinental Spread of Asian-Origin H5N8 to North America through Beringia by Migratory Birds.

    PubMed

    Lee, Dong-Hun; Torchetti, Mia Kim; Winker, Kevin; Ip, Hon S; Song, Chang-Seon; Swayne, David E

    2015-06-01

    Phylogenetic network analysis and understanding of waterfowl migration patterns suggest that the Eurasian H5N8 clade 2.3.4.4 avian influenza virus emerged in late 2013 in China, spread in early 2014 to South Korea and Japan, and reached Siberia and Beringia by summer 2014 via migratory birds. Three genetically distinct subgroups emerged and subsequently spread along different flyways during fall 2014 into Europe, North America, and East Asia, respectively. All three subgroups reappeared in Japan, a wintering site for waterfowl from Eurasia and parts of North America. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Genetic analysis shows that morphology alone cannot distinguish asian carp eggs from those of other cyprinid species

    USGS Publications Warehouse

    Larson, James H.; McCalla, S. Grace; Chapman, Duane C.; Rees, Christopher B.; Knights, Brent C.; Vallazza, Jon; George, Amy E.; Richardson, William B.; Amberg, Jon J.

    2016-01-01

    Fish eggs and embryos (hereafter collectively referred to as “eggs”) were collected in the upper Mississippi River main stem (~300 km upstream of previously reported spawning by invasive Asian carp) during summer 2013. Based on previously published morphological characteristics, the eggs were identified as belonging to Asian carp. A subsample of the eggs was subsequently analyzed by using molecular methods to determine species identity. Genetic identification using the cytochrome-c oxidase 1 gene was attempted for a total of 41 eggs. Due to the preservation technique used (formalin) and the resulting DNA degradation, sequences were recovered from only 17 individual eggs. In all 17 cases, cyprinids other than Asian carp (usually Notropis sp.) were identified as the most likely species. In previously published reports, a key characteristic that distinguished Asian carp eggs from those of other cyprinids was size: Asian carp eggs exhibited diameters ranging from 4.0 to 6.0 mm and were thought to be much larger than the otherwise similar eggs of native species. Eggs from endemic cyprinids were believed to rarely reach 3.0 mm and had not been observed to exceed 3.3 mm. However, many of the eggs that were genetically identified as originating from native cyprinids were as large as 4.0 mm in diameter (at early developmental stages) and were therefore large enough to over- lap with the lower end of the size range observed for Asian carp eggs. Researchers studying the egg stages of Asian carp and other cyprinids should plan on preserving subsets of eggs for genetic analysis to confirm morphological identifications.

  14. Selection of Atypia/Follicular Lesion of Unknown Significance Patients for Surgery Versus Active Surveillance, Without Using Genetic Testing: A Single Institute Experience, Prospective Analysis, and Recommendations.

    PubMed

    Cohen, Oded; Tzelnick, Sharon; Lahav, Yonatan; Schindel, Doron; Halperin, Doron; Yehuda, Moshe

    2017-07-01

    Atypia/follicular lesion of unknown significance (AUS/FLUS) has variable rates of malignancy. The recommended management includes active surveillance (AS), repeated fine-needle aspiration (RFNA), diagnostic surgery, or genetic testing for malignancy. The objective of this study was to assess the management of AUS/FLUS patients in a dedicated thyroid clinic without implementing genetic testing. This was a single institute cohort study of all patients aged ≥18 years who underwent ultrasound-guided FNA thyroid biopsies between January 2009 and January 2013 and were followed until January 2016. The median follow-up time was 4.6 years (range 3.2-6.8 years). Forty-eight (57%) patients were referred to AS, and 36 (43%) patients were referred for diagnostic surgery. Thirty-six (75%) patients from the AS group underwent RFNA. An additional eight patients from the AS group subsequently underwent diagnostic surgery. Malignancies were found in 15/44 (34%) diagnostic surgical samples, and benign cytologies were found in 61.1% of the RFNAs. Analysis of adherence to follow-up in the 36 AS patients showed an adherence rate of only 53%, with males tending to comply better than females did (31.6% vs. 5.8%, respectively; p = 0.052), especially males in their sixth decade of life. Genetic tests for AUS/FLUS patients are accepted today as complementary evaluations in many well-developed health systems. Yet, when these tests are not feasible due to financial or availability issues, careful management of AUS/FLUS patients may still offer good results in the selection of patients for surgery or AS. The present results also indicate that compliance to follow-up schedules is a major consideration when selecting patients for AS.

  15. A wild origin of the loss-of-function lycopene beta cyclase (CYC-b) allele in cultivated, red-fleshed papaya (Carica papaya).

    PubMed

    Wu, Meng; Lewis, Jamicia; Moore, Richard C

    2017-01-01

    The red flesh of some papaya cultivars is caused by a recessive loss-of-function mutation in the coding region of the chromoplast-specific lycopene beta cyclase gene (CYC-b). We performed an evolutionary genetic analysis of the CYC-b locus in wild and cultivated papaya to uncover the origin of this loss-of-function allele in cultivated papaya. We analyzed the levels and patterns of genetic diversity at the CYC-b locus and six loci in a 100-kb region flanking CYC-b and compared these to genetic diversity levels at neutral autosomal loci. The evolutionary relationships of CYC-b haplotypes were assessed using haplotype network analysis of the CYC-b locus and the 100-kb CYC-b region. Genetic diversity at the recessive CYC-b allele (y) was much lower relative to the dominant Y allele found in yellow-fleshed wild and cultivated papaya due to a strong selective sweep. Haplotype network analyses suggest the y allele most likely arose in the wild and was introduced into domesticated varieties after the first papaya domestication event. The shared haplotype structure between some wild, feral, and cultivated haplotypes around the y allele supports subsequent escape of this allele from red cultivars back into wild populations through feral intermediates. Our study supports a protracted domestication process of papaya through the introgression of wild-derived traits and gene flow from cultivars to wild populations. Evidence of gene flow from cultivars to wild populations through feral intermediates has implications for the introduction of transgenic papaya into Central American countries. © 2017 Botanical Society of America.

  16. Systems Biology Analysis Merging Phenotype, Metabolomic and Genomic Data Identifies Non-SMC Condensin I Complex, Subunit G (NCAPG) and Cellular Maintenance Processes as Major Contributors to Genetic Variability in Bovine Feed Efficiency

    PubMed Central

    Widmann, Philipp; Reverter, Antonio; Weikard, Rosemarie; Suhre, Karsten; Hammon, Harald M.; Albrecht, Elke; Kuehn, Christa

    2015-01-01

    Feed efficiency is a paramount factor for livestock economy. Previous studies had indicated a substantial heritability of several feed efficiency traits. In our study, we investigated the genetic background of residual feed intake, a commonly used parameter of feed efficiency, in a cattle resource population generated from crossing dairy and beef cattle. Starting from a whole genome association analysis, we subsequently performed combined phenotype-metabolome-genome analysis taking a systems biology approach by inferring gene networks based on partial correlation and information theory approaches. Our data about biological processes enriched with genes from the feed efficiency network suggest that genetic variation in feed efficiency is driven by genetic modulation of basic processes relevant to general cellular functions. When looking at the predicted upstream regulators from the feed efficiency network, the Tumor Protein P53 (TP53) and Transforming Growth Factor beta 1 (TGFB1) genes stood out regarding significance of overlap and number of target molecules in the data set. These results further support the hypothesis that TP53 is a major upstream regulator for genetic variation of feed efficiency. Furthermore, our data revealed a significant effect of both, the Non-SMC Condensin I Complex, Subunit G (NCAPG) I442M (rs109570900) and the Growth /differentiation factor 8 (GDF8) Q204X (rs110344317) loci, on residual feed intake and feed conversion. For both loci, the growth promoting allele at the onset of puberty was associated with a negative, but favorable effect on residual feed intake. The elevated energy demand for increased growth triggered by the NCAPG 442M allele is obviously not fully compensated for by an increased efficiency in converting feed into body tissue. As a consequence, the individuals carrying the NCAPG 442M allele had an additional demand for energy uptake that is reflected by the association of the allele with increased daily energy intake as observed in our study. PMID:25875852

  17. An evaluation of genotyping by sequencing (GBS) to map the Breviaristatum-e (ari-e) locus in cultivated barley.

    PubMed

    Liu, Hui; Bayer, Micha; Druka, Arnis; Russell, Joanne R; Hackett, Christine A; Poland, Jesse; Ramsay, Luke; Hedley, Pete E; Waugh, Robbie

    2014-02-06

    We explored the use of genotyping by sequencing (GBS) on a recombinant inbred line population (GPMx) derived from a cross between the two-rowed barley cultivar 'Golden Promise' (ari-e.GP/Vrs1) and the six-rowed cultivar 'Morex' (Ari-e/vrs1) to map plant height. We identified three Quantitative Trait Loci (QTL), the first in a region encompassing the spike architecture gene Vrs1 on chromosome 2H, the second in an uncharacterised centromeric region on chromosome 3H, and the third in a region of chromosome 5H coinciding with the previously described dwarfing gene Breviaristatum-e (Ari-e). Barley cultivars in North-western Europe largely contain either of two dwarfing genes; Denso on chromosome 3H, a presumed ortholog of the rice green revolution gene OsSd1, or Breviaristatum-e (ari-e) on chromosome 5H. A recessive mutant allele of the latter gene, ari-e.GP, was introduced into cultivation via the cv. 'Golden Promise' that was a favourite of the Scottish malt whisky industry for many years and is still used in agriculture today. Using GBS mapping data and phenotypic measurements we show that ari-e.GP maps to a small genetic interval on chromosome 5H and that alternative alleles at a region encompassing Vrs1 on 2H along with a region on chromosome 3H also influence plant height. The location of Ari-e is supported by analysis of near-isogenic lines containing different ari-e alleles. We explored use of the GBS to populate the region with sequence contigs from the recently released physically and genetically integrated barley genome sequence assembly as a step towards Ari-e gene identification. GBS was an effective and relatively low-cost approach to rapidly construct a genetic map of the GPMx population that was suitable for genetic analysis of row type and height traits, allowing us to precisely position ari-e.GP on chromosome 5H. Mapping resolution was lower than we anticipated. We found the GBS data more complex to analyse than other data types but it did directly provide linked SNP markers for subsequent higher resolution genetic analysis.

  18. Genome-Wide Identification and Transferability of Microsatellite Markers between Palmae Species

    PubMed Central

    Xiao, Yong; Xia, Wei; Ma, Jianwei; Mason, Annaliese S.; Fan, Haikuo; Shi, Peng; Lei, Xintao; Ma, Zilong; Peng, Ming

    2016-01-01

    The Palmae family contains 202 genera and approximately 2800 species. Except for Elaeis guineensis and Phoenix dactylifera, almost no genetic and genomic information is available for Palmae species. Therefore, this is an obstacle to the conservation and genetic assessment of Palmae species, especially those that are currently endangered. The study was performed to develop a large number of microsatellite markers which can be used for genetic analysis in different Palmae species. Based on the assembled genome of E. guineensis and P. dactylifera, a total of 814 383 and 371 629 microsatellites were identified. Among these microsatellites identified in E. guineensis, 734 509 primer pairs could be designed from the flanking sequences of these microsatellites. The majority (618 762) of these designed primer pairs had in silico products in the genome of E. guineensis. These 618 762 primer pairs were subsequently used to in silico amplify the genome of P. dactylifera. A total of 7 265 conserved microsatellites were identified between E. guineensis and P. dactylifera. One hundred and thirty-five primer pairs flanking the conserved SSRs were stochastically selected and validated to have high cross-genera transferability, varying from 16.7 to 93.3% with an average of 73.7%. These genome-wide conserved microsatellite markers will provide a useful tool for genetic assessment and conservation of different Palmae species in the future. PMID:27826307

  19. Diagnostic exome sequencing provides a molecular diagnosis for a significant proportion of patients with epilepsy.

    PubMed

    Helbig, Katherine L; Farwell Hagman, Kelly D; Shinde, Deepali N; Mroske, Cameron; Powis, Zöe; Li, Shuwei; Tang, Sha; Helbig, Ingo

    2016-09-01

    To assess the yield of diagnostic exome sequencing (DES) and to characterize the molecular findings in characterized and novel disease genes in patients with epilepsy. In an unselected sample of 1,131 patients referred for DES, overall results were compared between patients with and without epilepsy. DES results were examined based on age of onset and epilepsy diagnosis. Positive/likely positive results were identified in 112/293 (38.2%) epilepsy patients compared with 210/732 (28.7%) patients without epilepsy (P = 0.004). The diagnostic yield in characterized disease genes among patients with epilepsy was 33.4% (105/314). KCNQ2, MECP2, FOXG1, IQSEC2, KMT2A, and STXBP1 were most commonly affected by de novo alterations. Patients with epileptic encephalopathies had the highest rate of positive findings (43.4%). A likely positive novel genetic etiology was proposed in 14/200 (7%) patients with epilepsy; this frequency was highest in patients with epileptic encephalopathies (17%). Three genes (COQ4, DNM1, and PURA) were initially reported as likely positive novel disease genes and were subsequently corroborated in independent peer-reviewed publications. DES with analysis and interpretation of both characterized and novel genetic etiologies is a useful diagnostic tool in epilepsy, particularly in severe early-onset epilepsy. The reporting on novel genetic etiologies may further increase the diagnostic yield.Genet Med 18 9, 898-905.

  20. Microtubule actin cross-linking factor 1, a novel target in glioblastoma.

    PubMed

    Afghani, Najlaa; Mehta, Toral; Wang, Jialiang; Tang, Nan; Skalli, Omar; Quick, Quincy A

    2017-01-01

    Genetic heterogeneity is recognized as a major contributing factor of glioblastoma resistance to clinical treatment modalities and consequently low overall survival rates. This genetic diversity results in variations in protein expression, both intratumorally and between individual glioblastoma patients. In this regard, the spectraplakin protein, microtubule actin cross-linking factor 1 (MACF1), was examined in glioblastoma. An expression analysis of MACF1 in various types of brain tumor tissue revealed that MACF1 was predominately present in grade III-IV astroctyomas and grade IV glioblastoma, but not in normal brain tissue, normal human astrocytes and lower grade brain tumors. Subsequent genetic inhibition experiments showed that suppression of MACF1 selectively inhibited glioblastoma cell proliferation and migration in cell lines established from patient derived xenograft mouse models and immortalized glioblastoma cell lines that were associated with downregulation of the Wnt-signaling mediators, Axin1 and β-catenin. Additionally, concomitant MACF1 silencing with the chemotherapeutic agent temozolomide (TMZ) used for the clinical treatment of glioblastomas cooperatively reduced the proliferative capacity of glioblastoma cells. In conclusion, the present study represents the first investigation on the functional role of MACF1 in tumor cell biology, as well as demonstrates its potential as a unique biomarker that can be targeted synergistically with TMZ as part of a combinatorial therapeutic approach for the treatment of genetically multifarious glioblastomas.

  1. A New Barrier to Dispersal Trapped Old Genetic Clines That Escaped the Easter Microplate Tension Zone of the Pacific Vent Mussels

    PubMed Central

    Plouviez, Sophie; Faure, Baptiste; Le Guen, Dominique; Lallier, François H.; Bierne, Nicolas; Jollivet, Didier

    2013-01-01

    Comparative phylogeography of deep-sea hydrothermal vent species has uncovered several genetic breaks between populations inhabiting northern and southern latitudes of the East Pacific Rise. However, the geographic width and position of genetic clines are variable among species. In this report, we further characterize the position and strength of barriers to gene flow between populations of the deep-sea vent mussel Bathymodiolus thermophilus. Eight allozyme loci and DNA sequences of four nuclear genes were added to previously published sequences of the cytochrome c oxidase subunit I gene. Our data confirm the presence of two barriers to gene flow, one located at the Easter Microplate (between 21°33′S and 31°S) recently described as a hybrid zone, and the second positioned between 7°25′S and 14°S with each affecting different loci. Coalescence analysis indicates a single vicariant event at the origin of divergence between clades for all nuclear loci, although the clines are now spatially discordant. We thus hypothesize that the Easter Microplate barrier has recently been relaxed after a long period of isolation and that some genetic clines have escaped the barrier and moved northward where they have subsequently been trapped by a reinforcing barrier to gene flow between 7°25′S and 14°S. PMID:24312557

  2. A new barrier to dispersal trapped old genetic clines that escaped the Easter Microplate tension zone of the Pacific vent mussels.

    PubMed

    Plouviez, Sophie; Faure, Baptiste; Le Guen, Dominique; Lallier, François H; Bierne, Nicolas; Jollivet, Didier

    2013-01-01

    Comparative phylogeography of deep-sea hydrothermal vent species has uncovered several genetic breaks between populations inhabiting northern and southern latitudes of the East Pacific Rise. However, the geographic width and position of genetic clines are variable among species. In this report, we further characterize the position and strength of barriers to gene flow between populations of the deep-sea vent mussel Bathymodiolus thermophilus. Eight allozyme loci and DNA sequences of four nuclear genes were added to previously published sequences of the cytochrome c oxidase subunit I gene. Our data confirm the presence of two barriers to gene flow, one located at the Easter Microplate (between 21°33'S and 31°S) recently described as a hybrid zone, and the second positioned between 7°25'S and 14°S with each affecting different loci. Coalescence analysis indicates a single vicariant event at the origin of divergence between clades for all nuclear loci, although the clines are now spatially discordant. We thus hypothesize that the Easter Microplate barrier has recently been relaxed after a long period of isolation and that some genetic clines have escaped the barrier and moved northward where they have subsequently been trapped by a reinforcing barrier to gene flow between 7°25'S and 14°S.

  3. Longitudinal Analysis of Genetic Susceptibility and BMI Throughout Adult Life.

    PubMed

    Song, Mingyang; Zheng, Yan; Qi, Lu; Hu, Frank B; Chan, Andrew T; Giovannucci, Edward L

    2018-02-01

    Little is known about the genetic influence on BMI trajectory throughout adulthood. We created a genetic risk score (GRS) comprising 97 adult BMI-associated variants among 9,971 women and 6,405 men of European ancestry. Serial measures of BMI were assessed from 18 (women) or 21 (men) years to 85 years of age. We also examined BMI change in early (from 18 or 21 to 45 years of age), middle (from 45 to 65 years of age), and late adulthood (from 65 to 80 years of age). GRS was positively associated with BMI across all ages, with stronger associations in women than in men. The associations increased from early to middle adulthood, peaked at 45 years of age in men and at 60 years of age in women (0.91 and 1.35 kg/m 2 per 10-allele increment, respectively) and subsequently declined in late adulthood. For women, each 10-allele increment in the GRS was associated with an average BMI gain of 0.54 kg/m 2 in early adulthood, whereas no statistically significant association was found for BMI change in middle or late adulthood or for BMI change in any life period in men. Our findings indicate that genetic predisposition exerts a persistent effect on adiposity throughout adult life and increases early adulthood weight gain in women. © 2017 by the American Diabetes Association.

  4. In vivo imaging of the Drosophila Melanogaster heart using a novel optical coherence tomography microscope

    NASA Astrophysics Data System (ADS)

    Izatt, Susan D.; Choma, Michael A.; Israel, Steven; Wessells, Robert J.; Bodmer, Rolf; Izatt, Joseph A.

    2005-03-01

    Real time in vivo optical coherence tomography (OCT) imaging of the adult fruit fly Drosophila melanogaster heart using a newly designed OCT microscope allows accurate assessment of cardiac anatomy and function. D. melanogaster has been used extensively in genetic research for over a century, but in vivo evaluation of the heart has been limited by available imaging technology. The ability to assess phenotypic changes with micrometer-scale resolution noninvasively in genetic models such as D. melanogaster is needed in the advancing fields of developmental biology and genetics. We have developed a dedicated small animal OCT imaging system incorporating a state-of-the-art, real time OCT scanner integrated into a standard stereo zoom microscope which allows for simultaneous OCT and video imaging. System capabilities include A-scan, B-scan, and M-scan imaging as well as automated 3D volumetric acquisition and visualization. Transverse and sagittal B-mode scans of the four chambered D. melanogaster heart have been obtained with the OCT microscope and are consistent with detailed anatomical studies from the literature. Further analysis by M-mode scanning is currently under way to assess cardiac function as a function of age and sex by determination of shortening fraction and ejection fraction. These studies create control cardiac data on the wild type D. melanogaster, allowing subsequent evaluation of phenotypic cardiac changes in this model after regulated genetic mutation.

  5. Evolution of Mycobacterium ulcerans and Other Mycolactone-Producing Mycobacteria from a Common Mycobacterium marinum Progenitor▿ †

    PubMed Central

    Yip, Marcus J.; Porter, Jessica L.; Fyfe, Janet A. M.; Lavender, Caroline J.; Portaels, Françoise; Rhodes, Martha; Kator, Howard; Colorni, Angelo; Jenkin, Grant A.; Stinear, Tim

    2007-01-01

    It had been assumed that production of the cytotoxic polyketide mycolactone was strictly associated with Mycobacterium ulcerans, the causative agent of Buruli ulcer. However, a recent study has uncovered a broader distribution of mycolactone-producing mycobacteria (MPM) that includes mycobacteria cultured from diseased fish and frogs in the United States and from diseased fish in the Red and Mediterranean Seas. All of these mycobacteria contain versions of the M. ulcerans pMUM plasmid, produce mycolactones, and show a high degree of genetic relatedness to both M. ulcerans and Mycobacterium marinum. Here, we show by multiple genetic methods, including multilocus sequence analysis and DNA-DNA hybridization, that all MPM have evolved from a common M. marinum progenitor to form a genetically cohesive group among a more diverse assemblage of M. marinum strains. Like M. ulcerans, the fish and frog MPM show multiple copies of the insertion sequence IS2404. Comparisons of pMUM and chromosomal gene sequences demonstrate that plasmid acquisition and the subsequent ability to produce mycolactone were probably the key drivers of speciation. Ongoing evolution among MPM has since produced at least two genetically distinct ecotypes that can be broadly divided into those typically causing disease in ectotherms (but also having a high zoonotic potential) and those causing disease in endotherms, such as humans. PMID:17172337

  6. Capture and Genetic Analysis of Circulating Tumor Cells Using a Magnetic Separation Device (Magnetic Sifter).

    PubMed

    Ooi, Chin Chun; Park, Seung-Min; Wong, Dawson J; Gambhir, Sanjiv S; Wang, Shan X

    2017-01-01

    Circulating tumor cells (CTCs) are currently widely studied for their potential application as part of a liquid biopsy. These cells are shed from the primary tumor into the circulation, and are postulated to provide insight into the molecular makeup of the actual tumor in a minimally invasive manner. However, they are extremely rare in blood, with typical concentrations of 1-100 in a milliliter of blood; hence, a need exists for a rapid and high-purity method for isolating CTCs from whole blood. Here, we describe the application of a microfabricated magnetic sifter toward isolation of CTCs from whole blood at volumetric flow rates of 10 mL/h, along with the use of a PDMS-based nanowell system for single-cell gene expression profiling. This method allows rapid isolation of CTCs and subsequent integration with downstream genetic profiling methods for clinical applications such as targeted therapy, therapy monitoring, or further biological studies.

  7. The RDE-10/RDE-11 complex triggers RNAi-induced mRNA degradation by association with target mRNA in C. elegans

    PubMed Central

    Yang, Huan; Zhang, Ying; Vallandingham, Jim; Li, Hau; Florens, Laurence; Mak, Ho Yi

    2012-01-01

    The molecular mechanisms for target mRNA degradation in Caenorhabditis elegans undergoing RNAi are not fully understood. Using a combination of genetic, proteomic, and biochemical approaches, we report a divergent RDE-10/RDE-11 complex that is required for RNAi in C. elegans. Genetic analysis indicates that the RDE-10/RDE-11 complex acts in parallel to nuclear RNAi. Association of the complex with target mRNA is dependent on RDE-1 but not RRF-1, suggesting that target mRNA recognition depends on primary but not secondary siRNA. Furthermore, RDE-11 is required for mRNA degradation subsequent to target engagement. Deep sequencing reveals a fivefold decrease in secondary siRNA abundance in rde-10 and rde-11 mutant animals, while primary siRNA and microRNA biogenesis is normal. Therefore, the RDE-10/RDE-11 complex is critical for amplifying the exogenous RNAi response. Our work uncovers an essential output of the RNAi pathway in C. elegans. PMID:22508728

  8. The RDE-10/RDE-11 complex triggers RNAi-induced mRNA degradation by association with target mRNA in C. elegans.

    PubMed

    Yang, Huan; Zhang, Ying; Vallandingham, Jim; Li, Hua; Li, Hau; Florens, Laurence; Mak, Ho Yi

    2012-04-15

    The molecular mechanisms for target mRNA degradation in Caenorhabditis elegans undergoing RNAi are not fully understood. Using a combination of genetic, proteomic, and biochemical approaches, we report a divergent RDE-10/RDE-11 complex that is required for RNAi in C. elegans. Genetic analysis indicates that the RDE-10/RDE-11 complex acts in parallel to nuclear RNAi. Association of the complex with target mRNA is dependent on RDE-1 but not RRF-1, suggesting that target mRNA recognition depends on primary but not secondary siRNA. Furthermore, RDE-11 is required for mRNA degradation subsequent to target engagement. Deep sequencing reveals a fivefold decrease in secondary siRNA abundance in rde-10 and rde-11 mutant animals, while primary siRNA and microRNA biogenesis is normal. Therefore, the RDE-10/RDE-11 complex is critical for amplifying the exogenous RNAi response. Our work uncovers an essential output of the RNAi pathway in C. elegans.

  9. NanoFlares for the detection, isolation, and culture of live tumor cells from human blood.

    PubMed

    Halo, Tiffany L; McMahon, Kaylin M; Angeloni, Nicholas L; Xu, Yilin; Wang, Wei; Chinen, Alyssa B; Malin, Dmitry; Strekalova, Elena; Cryns, Vincent L; Cheng, Chonghui; Mirkin, Chad A; Thaxton, C Shad

    2014-12-02

    Metastasis portends a poor prognosis for cancer patients. Primary tumor cells disseminate through the bloodstream before the appearance of detectable metastatic lesions. The analysis of cancer cells in blood—so-called circulating tumor cells (CTCs)—may provide unprecedented opportunities for metastatic risk assessment and investigation. NanoFlares are nanoconstructs that enable live-cell detection of intracellular mRNA. NanoFlares, when coupled with flow cytometry, can be used to fluorescently detect genetic markers of CTCs in the context of whole blood. They allow one to detect as few as 100 live cancer cells per mL of blood and subsequently culture those cells. This technique can also be used to detect CTCs in a murine model of metastatic breast cancer. As such, NanoFlares provide, to our knowledge, the first genetic-based approach for detecting, isolating, and characterizing live cancer cells from blood and may provide new opportunities for cancer diagnosis, prognosis, and personalized therapy.

  10. NanoFlares for the detection, isolation, and culture of live tumor cells from human blood

    PubMed Central

    Halo, Tiffany L.; McMahon, Kaylin M.; Angeloni, Nicholas L.; Xu, Yilin; Wang, Wei; Chinen, Alyssa B.; Malin, Dmitry; Strekalova, Elena; Cryns, Vincent L.; Cheng, Chonghui; Mirkin, Chad A.; Thaxton, C. Shad

    2014-01-01

    Metastasis portends a poor prognosis for cancer patients. Primary tumor cells disseminate through the bloodstream before the appearance of detectable metastatic lesions. The analysis of cancer cells in blood—so-called circulating tumor cells (CTCs)—may provide unprecedented opportunities for metastatic risk assessment and investigation. NanoFlares are nanoconstructs that enable live-cell detection of intracellular mRNA. NanoFlares, when coupled with flow cytometry, can be used to fluorescently detect genetic markers of CTCs in the context of whole blood. They allow one to detect as few as 100 live cancer cells per mL of blood and subsequently culture those cells. This technique can also be used to detect CTCs in a murine model of metastatic breast cancer. As such, NanoFlares provide, to our knowledge, the first genetic-based approach for detecting, isolating, and characterizing live cancer cells from blood and may provide new opportunities for cancer diagnosis, prognosis, and personalized therapy. PMID:25404304

  11. Deep Diversity: Novel Approach to Overcoming the PCR Bias Encountered During Environmental Analysis of Microbial Populations for Alpha-Diversity

    NASA Technical Reports Server (NTRS)

    Ramirez, Gustavo A; Vaishampayan, Parag A.

    2011-01-01

    Alpha-diversity studies are of crucial importance to environmental microbiologists. The polymerase chain reaction (PCR) method has been paramount for studies interrogating microbial environmental samples for taxon richness. Phylogenetic studies using this technique are based on the amplification and comparison of the 16S rRNA coding regions. PCR, due disproportionate distribution of microbial species in the environment, increasingly favors the amplification of the most predominant phylotypes with every subsequent reaction cycle. The genetic and chemical complexity of environmental samples are intrinsic factors that exacerbate an inherit bias in PCR-based quantitative and qualitative studies of microbial communities. We report that treatment of a genetically complex total genomic environmental DNA extract with Propidium Monoazide (PMA), a DNA intercalating molecule capable of forming a covalent cross-linkage to organic moieties upon light exposure, disproportionally inactivates predominant phylotypes and results in the exponential amplification of previously shadowed microbial ?-diversity quantified as a 19.5% increase in OUTs reported via phylogenetic screening using PhyloChip.

  12. Blood meal analysis of tabanid fly after it biting the rare Sumatran rhinoceros

    PubMed Central

    Rovie-Ryan, Jeffrine Japning; Zainuddin, Zainal Zahari; Marni, Wahap; Ahmad, Abdul Hamid; Ambu, Laurentius N.; Payne, Junaidi

    2013-01-01

    Objective To demonstrate a noninvasive large mammalian genetic sampling method using blood meal obtained from a tabanid fly. Methods Blood meal was recovered from the abdomen of an engorged tabanid fly (Haematopota sp.) which was captured immediately after biting a Sumatran rhino in captivity. The blood was applied on to a Whatman FTA® blood card. Subsequent laboratory work was conducted to extract, amplify and sequence the DNA from the sample. Validation was done by sampling the hair follicles and blood samples from the rhinoceros and subjecting it to the same laboratory process. Results BLAST search and constructed phylogenetic trees confirmed the blood meal samples were indeed from the rhino. Conclusions This method could be used in the field application to noninvasively collect genetic samples. Collection of tabanids and other haematophagous arthropods (e.g. mosquitoes and ticks) and other blood-sucking parasites (e.g. leeches and worms) could also provide information on vector-borne diseases. PMID:23593586

  13. Erlotinib in African Americans with Advanced Non-Small Cell Lung Cancer: A Prospective Randomized Study with Genetic and Pharmacokinetic Analysis

    PubMed Central

    Phelps, Mitch A.; Stinchcombe, Thomas E.; Blachly, James S.; Zhao, Weiqiang; Schaaf, Larry J.; Starrett, Sherri L.; Wei, Lai; Poi, Ming; Wang, Danxin; Papp, Audrey; Aimiuwu, Josephine; Gao, Yue; Li, Junan; Otterson, Gregory A.; Hicks, William J.; Socinski, Mark A.; Villalona-Calero, Miguel A.

    2014-01-01

    Prospective studies focusing on EGFR inhibitors in African Americans with NSCLC have not been previously performed. In this phase II randomized study, 55 African Americans with NSCLC received erlotinib 150mg/day or a body weight adjusted dose with subsequent escalations to the maximum allowable, 200mg/day, to achieve rash. Erlotinib and OSI-420 exposures were lower compared to previous reports, consistent with CYP3A pharmacogenetics implying higher metabolic activity. Tumor genetics revealed only two EGFR mutations, EGFR amplification in 17/47 samples, 8 KRAS mutations and 5 EML4-ALK translocations. Although absence of rash was associated with shorter time to progression (TTP), disease control rate, TTP, and 1-year survival were not different between the two dose groups, indicating the dose-to-rash strategy failed to increase clinical benefit. Observed low incidence of toxicity and low erlotinib exposure suggest standardized and maximum allowable dosing may be suboptimal in African Americans. PMID:24781527

  14. Molecular analysis of Aspergillus section Flavi isolated from Brazil nuts.

    PubMed

    Gonçalves, Juliana Soares; Ferracin, Lara Munique; Carneiro Vieira, Maria Lucia; Iamanaka, Beatriz Thie; Taniwaki, Marta Hiromi; Pelegrinelli Fungaro, Maria Helena

    2012-04-01

    Brazil nuts are an important export market in its main producing countries, including Brazil, Bolivia, and Peru. Approximately 30,000 tons of Brazil nuts are harvested each year. However, substantial nut contamination by Aspergillus section Flavi occurs with subsequent production of aflatoxins. In our study, Aspergillus section Flavi were isolated from Brazil nuts (Bertholletia excelsa), and identified by morphological and molecular means. We obtained 241 isolates from nut samples, 41% positive for aflatoxin production. Eighty-one isolates were selected for molecular investigation. Pairwise genetic distances among isolates and phylogenetic relationships were assessed. The following Aspergillus species were identified: A. flavus, A. caelatus, A. nomius, A. tamarii, A. bombycis, and A. arachidicola. Additionally, molecular profiles indicated a high level of nucleotide variation within β-tubulin and calmodulin gene sequences associated with high genetic divergence from RAPD data. Among the 81 isolates analyzed by molecular means, three of them were phylogenetically distinct from all other isolates representing the six species of section Flavi. A putative novel species was identified based on molecular profiles.

  15. Management of familial cancer: sequencing, surveillance and society.

    PubMed

    Samuel, Nardin; Villani, Anita; Fernandez, Conrad V; Malkin, David

    2014-12-01

    The clinical management of familial cancer begins with recognition of patterns of cancer occurrence suggestive of genetic susceptibility in a proband or pedigree, to enable subsequent investigation of the underlying DNA mutations. In this regard, next-generation sequencing of DNA continues to transform cancer diagnostics, by enabling screening for cancer-susceptibility genes in the context of known and emerging familial cancer syndromes. Increasingly, not only are candidate cancer genes sequenced, but also entire 'healthy' genomes are mapped in children with cancer and their family members. Although large-scale genomic analysis is considered intrinsic to the success of cancer research and discovery, a number of accompanying ethical and technical issues must be addressed before this approach can be adopted widely in personalized therapy. In this Perspectives article, we describe our views on how the emergence of new sequencing technologies and cancer surveillance strategies is altering the framework for the clinical management of hereditary cancer. Genetic counselling and disclosure issues are discussed, and strategies for approaching ethical dilemmas are proposed.

  16. Use of Genome Sequence Information for Meat Quality Trait QTL Mining for Causal Genes and Mutations on Pig Chromosome 17

    PubMed Central

    Hu, Zhi-Liang; Ramos, Antonio M.; Humphray, Sean J.; Rogers, Jane; Reecy, James M.; Rothschild, Max F.

    2011-01-01

    The newly available pig genome sequence has provided new information to fine map quantitative trait loci (QTL) in order to eventually identify causal variants. With targeted genomic sequencing efforts, we were able to obtain high quality BAC sequences that cover a region on pig chromosome 17 where a number of meat quality QTL have been previously discovered. Sequences from 70 BAC clones were assembled to form an 8-Mbp contig. Subsequently, we successfully mapped five previously identified QTL, three for meat color and two for lactate related traits, to the contig. With an additional 25 genetic markers that were identified by sequence comparison, we were able to carry out further linkage disequilibrium analysis to narrow down the genomic locations of these QTL, which allowed identification of the chromosomal regions that likely contain the causative variants. This research has provided one practical approach to combine genetic and molecular information for QTL mining. PMID:22303339

  17. Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation.

    PubMed

    Dusi, Sabrina; Valletta, Lorella; Haack, Tobias B; Tsuchiya, Yugo; Venco, Paola; Pasqualato, Sebastiano; Goffrini, Paola; Tigano, Marco; Demchenko, Nikita; Wieland, Thomas; Schwarzmayr, Thomas; Strom, Tim M; Invernizzi, Federica; Garavaglia, Barbara; Gregory, Allison; Sanford, Lynn; Hamada, Jeffrey; Bettencourt, Conceição; Houlden, Henry; Chiapparini, Luisa; Zorzi, Giovanna; Kurian, Manju A; Nardocci, Nardo; Prokisch, Holger; Hayflick, Susan; Gout, Ivan; Tiranti, Valeria

    2014-01-02

    Neurodegeneration with brain iron accumulation (NBIA) comprises a clinically and genetically heterogeneous group of disorders with progressive extrapyramidal signs and neurological deterioration, characterized by iron accumulation in the basal ganglia. Exome sequencing revealed the presence of recessive missense mutations in COASY, encoding coenzyme A (CoA) synthase in one NBIA-affected subject. A second unrelated individual carrying mutations in COASY was identified by Sanger sequence analysis. CoA synthase is a bifunctional enzyme catalyzing the final steps of CoA biosynthesis by coupling phosphopantetheine with ATP to form dephospho-CoA and its subsequent phosphorylation to generate CoA. We demonstrate alterations in RNA and protein expression levels of CoA synthase, as well as CoA amount, in fibroblasts derived from the two clinical cases and in yeast. This is the second inborn error of coenzyme A biosynthesis to be implicated in NBIA. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. A food-grade fimbrial adhesin FaeG expression system in Lactococcus lactis and Lactobacillus casei.

    PubMed

    Lu, W W; Wang, T; Wang, Y; Xin, M; Kong, J

    2016-03-01

    Enterotoxigenic Escherichia coli (ETEC) infection is the major cause of diarrhea in neonatal piglets. The fimbriae as colonizing factor in the pathogenesis of ETEC constitute a primary target for vaccination against ETEC. Lactic acid bacteria (LAB) are attractive tools to deliver antigens at the mucosal level. With the safety of genetically modified LAB in mind, a food-grade secretion vector (pALRc or pALRb) was constructed with DNA entirely from LAB, including the replicon, promoter, signal peptide, and selection marker alanine racemase gene (alr). To evaluate the feasibility of the system, the nuclease gene (nuc) from Staphylococcus aureus was used as a reporter to be expressed in both Lactococcus lactis and Lactobacillus casei. Subsequently, the extracellular secretion of the fimbrial adhesin FaeG of ETEC was confirmed by Western blot analysis. These results showed that this food-grade expression system has potential as the delivery vehicle for the safe use of genetically modified LAB for the development of vaccines against ETEC infection.

  19. Conserved syntenic clusters of protein coding genes are missing in birds.

    PubMed

    Lovell, Peter V; Wirthlin, Morgan; Wilhelm, Larry; Minx, Patrick; Lazar, Nathan H; Carbone, Lucia; Warren, Wesley C; Mello, Claudio V

    2014-01-01

    Birds are one of the most highly successful and diverse groups of vertebrates, having evolved a number of distinct characteristics, including feathers and wings, a sturdy lightweight skeleton and unique respiratory and urinary/excretion systems. However, the genetic basis of these traits is poorly understood. Using comparative genomics based on extensive searches of 60 avian genomes, we have found that birds lack approximately 274 protein coding genes that are present in the genomes of most vertebrate lineages and are for the most part organized in conserved syntenic clusters in non-avian sauropsids and in humans. These genes are located in regions associated with chromosomal rearrangements, and are largely present in crocodiles, suggesting that their loss occurred subsequent to the split of dinosaurs/birds from crocodilians. Many of these genes are associated with lethality in rodents, human genetic disorders, or biological functions targeting various tissues. Functional enrichment analysis combined with orthogroup analysis and paralog searches revealed enrichments that were shared by non-avian species, present only in birds, or shared between all species. Together these results provide a clearer definition of the genetic background of extant birds, extend the findings of previous studies on missing avian genes, and provide clues about molecular events that shaped avian evolution. They also have implications for fields that largely benefit from avian studies, including development, immune system, oncogenesis, and brain function and cognition. With regards to the missing genes, birds can be considered ‘natural knockouts’ that may become invaluable model organisms for several human diseases.

  20. The Complete Mitochondrial Genome of an 11,450-year-old Aurochsen (Bos primigenius) from Central Italy

    PubMed Central

    2011-01-01

    Background Bos primigenius, the aurochs, is the wild ancestor of modern cattle breeds and was formerly widespread across Eurasia and northern Africa. After a progressive decline, the species became extinct in 1627. The origin of modern taurine breeds in Europe is debated. Archaeological and early genetic evidence point to a single Near Eastern origin and a subsequent spread during the diffusion of herding and farming. More recent genetic data are instead compatible with local domestication events or at least some level of local introgression from the aurochs. Here we present the analysis of the complete mitochondrial genome of a pre-Neolithic Italian aurochs. Results In this study, we applied a combined strategy employing both multiplex PCR amplifications and 454 pyrosequencing technology to sequence the complete mitochondrial genome of an 11,450-year-old aurochs specimen from Central Italy. Phylogenetic analysis of the aurochs mtDNA genome supports the conclusions from previous studies of short mtDNA fragments - namely that Italian aurochsen were genetically very similar to modern cattle breeds, but highly divergent from the North-Central European aurochsen. Conclusions Complete mitochondrial genome sequences are now available for several modern cattle and two pre-Neolithic mtDNA genomes from very different geographic areas. These data suggest that previously identified sub-groups within the widespread modern cattle mitochondrial T clade are polyphyletic, and they support the hypothesis that modern European breeds have multiple geographic origins. PMID:21281509

  1. DPYD, TYMS, TYMP, TK1, and TK2 Genetic Expressions as Response Markers in Locally Advanced Rectal Cancer Patients Treated with Fluoropyrimidine-Based Chemoradiotherapy

    PubMed Central

    Wu, Chan-Han; Huang, Chun-Ming; Chung, Fu-Yen; Huang, Ching-Wen; Tsai, Hsiang-Lin; Chen, Chin-Fan; Wang, Jaw-Yuan

    2013-01-01

    This study is to investigate multiple chemotherapeutic agent- and radiation-related genetic biomarkers in locally advanced rectal cancer (LARC) patients following fluoropyrimidine-based concurrent chemoradiotherapy (CCRT) for response prediction. We initially selected 6 fluoropyrimidine metabolism-related genes (DPYD, ORPT, TYMS, TYMP, TK1, and TK2) and 3 radiotherapy response-related genes (GLUT1, HIF-1 α, and HIF-2 α) as targets for gene expression identification in 60 LARC cancer specimens. Subsequently, a high-sensitivity weighted enzymatic chip array was designed and constructed to predict responses following CCRT. After CCRT, 39 of 60 (65%) LARC patients were classified as responders (pathological tumor regression grade 2 ~ 4). Using a panel of multiple genetic biomarkers (chip), including DPYD, TYMS, TYMP, TK1, and TK2, at a cutoff value for 3 positive genes, a sensitivity of 89.7% and a specificity of 81% were obtained (AUC: 0.915; 95% CI: 0.840–0.991). Negative chip results were significantly correlated to poor CCRT responses (TRG 0-1) (P = 0.014, hazard ratio: 22.704, 95% CI: 3.055–235.448 in multivariate analysis). Disease-free survival analysis showed significantly better survival rate in patients with positive chip results (P = 0.0001). We suggest that a chip including DPYD, TYMS, TYMP, TK1, and TK2 genes is a potential tool to predict response in LARC following fluoropyrimidine-based CCRT. PMID:24455740

  2. Phylogeography and molecular diversity analysis of Jatropha curcas L. and the dispersal route revealed by RAPD, AFLP and nrDNA-ITS analysis.

    PubMed

    Sudheer Pamidimarri, D V N; Reddy, Muppala P

    2014-05-01

    Jatropha curcas L. (Euphorbiaceae) has acquired a great importance as a renewable source of energy with a number of environmental benefits. Very few attempts were made to understand the extent of genetic diversity and its distribution. This study was aimed to study the diversity and deduce the phylogeography of Jatropha curcas L. which is said to be the most primitive species of the genus Jatropha. Here we studied the intraspecific genetic diversity of the species distributed in different parts of the globe. The study also focused to understand the molecular diversity at reported probable center of origin (Mexico), and to reveal the dispersal route to other regions based on random amplified polymorphic DNA, amplified fragment length polymorphism and nrDNA-ITS sequences data. The overall genetic diversity of J. curcas found in the present study was narrow. The highest genetic diversity was observed in the germplasm collected from Mexico and supports the earlier hypothesis based on morphological data and natural distribution, it is the center for origin of the species. Least genetic diversity found in the Indian germplasm and clustering results revealed that the species was introduced simultaneously by two distinct germplasm and subsequently distributed in different parts of India. The present molecular data further revealed that J. curcas might have spread from the center of the origin to Cape Verde, than to Spain, Portuguese to other neighboring countries and simultaneously to Africa. The molecular evidence supports the Burkill et al. (A dictionary of the economic products of the Malay Peninsula, Governments of Malaysia and Singapore by the Ministry of Agriculture and Co-operatives. Kuala Lumpur, Malaysia, 1966) view of Portuguese might have introduced the species to India. The clustering pattern suggests that the distribution was interfered by human activity.

  3. Heterogeneous Stock Rat: A Unique Animal Model for Mapping Genes Influencing Bone Fragility

    PubMed Central

    Alam, Imranul; Koller, Daniel L.; Sun, Qiwei; Roeder, Ryan K.; Cañete, Toni; Blázquez, Gloria; López-Aumatell, Regina; Martínez-Membrives, Esther; Vicens-Costa, Elia; Mont, Carme; Díaz, Sira; Tobeña, Adolf; Fernández-Teruel, Alberto; Whitley, Adam; Strid, Pernilla; Diez, Margarita; Johannesson, Martina; Flint, Jonathan; Econs, Michael J.; Turner, Charles H.; Foroud, Tatiana

    2011-01-01

    Previously, we demonstrated that skeletal mass, structure and biomechanical properties vary considerably among 11 different inbred rat strains. Subsequently, we performed quantitative trait loci (QTL) analysis in 4 inbred rat strains (F344, LEW, COP and DA) for different bone phenotypes and identified several candidate genes influencing various bone traits. The standard approach to narrowing QTL intervals down to a few candidate genes typically employs the generation of congenic lines, which is time consuming and often not successful. A potential alternative approach is to use a highly genetically informative animal model resource capable of delivering very high-resolution gene mapping such as Heterogeneous stock (HS) rat. HS rat was derived from eight inbred progenitors: ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, WKY/N and WN/N. The genetic recombination pattern generated across 50 generations in these rats has been shown to deliver ultra-high even gene-level resolution for complex genetic studies. The purpose of this study is to investigate the usefulness of the HS rat model for fine mapping and identification of genes underlying bone fragility phenotypes. We compared bone geometry, density and strength phenotypes at multiple skeletal sites in HS rats with those obtained from 5 of the 8 progenitor inbred strains. In addition, we estimated the heritability for different bone phenotypes in these rats and employed principal component analysis to explore relationships among bone phenotypes in the HS rats. Our study demonstrates that significant variability exists for different skeletal phenotypes in HS rats compared with their inbred progenitors. In addition, we estimated high heritability for several bone phenotypes and biologically interpretable factors explaining significant overall variability, suggesting that the HS rat model could be a unique genetic resource for rapid and efficient discovery of the genetic determinants of bone fragility. PMID:21334473

  4. Heterogeneous stock rat: a unique animal model for mapping genes influencing bone fragility.

    PubMed

    Alam, Imranul; Koller, Daniel L; Sun, Qiwei; Roeder, Ryan K; Cañete, Toni; Blázquez, Gloria; López-Aumatell, Regina; Martínez-Membrives, Esther; Vicens-Costa, Elia; Mont, Carme; Díaz, Sira; Tobeña, Adolf; Fernández-Teruel, Alberto; Whitley, Adam; Strid, Pernilla; Diez, Margarita; Johannesson, Martina; Flint, Jonathan; Econs, Michael J; Turner, Charles H; Foroud, Tatiana

    2011-05-01

    Previously, we demonstrated that skeletal mass, structure and biomechanical properties vary considerably among 11 different inbred rat strains. Subsequently, we performed quantitative trait loci (QTL) analysis in four inbred rat strains (F344, LEW, COP and DA) for different bone phenotypes and identified several candidate genes influencing various bone traits. The standard approach to narrowing QTL intervals down to a few candidate genes typically employs the generation of congenic lines, which is time consuming and often not successful. A potential alternative approach is to use a highly genetically informative animal model resource capable of delivering very high resolution gene mapping such as Heterogeneous stock (HS) rat. HS rat was derived from eight inbred progenitors: ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, WKY/N and WN/N. The genetic recombination pattern generated across 50 generations in these rats has been shown to deliver ultra-high even gene-level resolution for complex genetic studies. The purpose of this study is to investigate the usefulness of the HS rat model for fine mapping and identification of genes underlying bone fragility phenotypes. We compared bone geometry, density and strength phenotypes at multiple skeletal sites in HS rats with those obtained from five of the eight progenitor inbred strains. In addition, we estimated the heritability for different bone phenotypes in these rats and employed principal component analysis to explore relationships among bone phenotypes in the HS rats. Our study demonstrates that significant variability exists for different skeletal phenotypes in HS rats compared with their inbred progenitors. In addition, we estimated high heritability for several bone phenotypes and biologically interpretable factors explaining significant overall variability, suggesting that the HS rat model could be a unique genetic resource for rapid and efficient discovery of the genetic determinants of bone fragility. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Analysis of BAC-end sequences (BESs) and development of BES-SSR markers for genetic mapping and hybrid purity assessment in pigeonpea (Cajanus spp.)

    PubMed Central

    2011-01-01

    Background Pigeonpea [Cajanus cajan (L.) Millsp.] is an important legume crop of rainfed agriculture. Despite of concerted research efforts directed to pigeonpea improvement, stagnated productivity of pigeonpea during last several decades may be accounted to prevalence of various biotic and abiotic constraints and the situation is exacerbated by availability of inadequate genomic resources to undertake any molecular breeding programme for accelerated crop improvement. With the objective of enhancing genomic resources for pigeonpea, this study reports for the first time, large scale development of SSR markers from BAC-end sequences and their subsequent use for genetic mapping and hybridity testing in pigeonpea. Results A set of 88,860 BAC (bacterial artificial chromosome)-end sequences (BESs) were generated after constructing two BAC libraries by using HindIII (34,560 clones) and BamHI (34,560 clones) restriction enzymes. Clustering based on sequence identity of BESs yielded a set of >52K non-redundant sequences, comprising 35 Mbp or >4% of the pigeonpea genome. These sequences were analyzed to develop annotation lists and subdivide the BESs into genome fractions (e.g., genes, retroelements, transpons and non-annotated sequences). Parallel analysis of BESs for microsatellites or simple sequence repeats (SSRs) identified 18,149 SSRs, from which a set of 6,212 SSRs were selected for further analysis. A total of 3,072 novel SSR primer pairs were synthesized and tested for length polymorphism on a set of 22 parental genotypes of 13 mapping populations segregating for traits of interest. In total, we identified 842 polymorphic SSR markers that will have utility in pigeonpea improvement. Based on these markers, the first SSR-based genetic map comprising of 239 loci was developed for this previously uncharacterized genome. Utility of developed SSR markers was also demonstrated by identifying a set of 42 markers each for two hybrids (ICPH 2671 and ICPH 2438) for genetic purity assessment in commercial hybrid breeding programme. Conclusion In summary, while BAC libraries and BESs should be useful for genomics studies, BES-SSR markers, and the genetic map should be very useful for linking the genetic map with a future physical map as well as for molecular breeding in pigeonpea. PMID:21447154

  6. Association between maternal micronutrient status, oxidative stress, and common genetic variants in antioxidant enzymes at 15 weeks׳ gestation in nulliparous women who subsequently develop preeclampsia.

    PubMed

    Mistry, Hiten D; Gill, Carolyn A; Kurlak, Lesia O; Seed, Paul T; Hesketh, John E; Méplan, Catherine; Schomburg, Lutz; Chappell, Lucy C; Morgan, Linda; Poston, Lucilla

    2015-01-01

    Preeclampsia is a pregnancy-specific condition affecting 2-7% of women and a leading cause of perinatal and maternal morbidity and mortality. Deficiencies of specific micronutrient antioxidant activities associated with copper, selenium, zinc, and manganese have previously been linked to preeclampsia at the time of disease. Our aims were to investigate whether maternal plasma micronutrient concentrations and related antioxidant enzyme activities are altered before preeclampsia onset and to examine the dependence on genetic variations in these antioxidant enzymes. Predisease plasma samples (15±1 weeks׳ gestation) were obtained from women enrolled in the international Screening for Pregnancy Endpoints (SCOPE) study who subsequently developed preeclampsia (n=244) and from age- and BMI-matched normotensive controls (n=472). Micronutrient concentrations were measured by inductively coupled plasma mass spectrometry; associated antioxidant enzyme activities, selenoprotein-P, ceruloplasmin concentration and activity, antioxidant capacity, and markers of oxidative stress were measured by colorimetric assays. Sixty-four tag-single-nucleotide polymorphisms (SNPs) within genes encoding the antioxidant enzymes and selenoprotein-P were genotyped using allele-specific competitive PCR. Plasma copper and ceruloplasmin concentrations were modestly but significantly elevated in women who subsequently developed preeclampsia (both P<0.001) compared to controls (median (IQR), copper, 1957.4 (1787, 2177.5) vs 1850.0 (1663.5, 2051.5) µg/L; ceruloplasmin, 2.5 (1.4, 3.2) vs 2.2 (1.2, 3.0) µg/ml). There were no differences in other micronutrients or enzymes between groups. No relationship was observed between genotype for SNPs and antioxidant enzyme activity. This analysis of a prospective cohort study reports maternal micronutrient concentrations in combination with associated antioxidant enzymes and SNPs in their encoding genes in women at 15 weeks׳ gestation that subsequently developed preeclampsia. The modest elevation in copper may contribute to oxidative stress, later in pregnancy, in those women that go on to develop preeclampsia. The lack of evidence to support the hypothesis that functional SNPs influence antioxidant enzyme activity in pregnant women argues against a role for these genes in the etiology of preeclampsia. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Assessing the presence of shared genetic architecture between Alzheimer's disease and major depressive disorder using genome-wide association data

    PubMed Central

    Gibson, J; Russ, T C; Adams, M J; Clarke, T-K; Howard, D M; Hall, L S; Fernandez-Pujals, A M; Wigmore, E M; Hayward, C; Davies, G; Murray, A D; Smith, B H; Porteous, D J; Deary, I J; McIntosh, A M

    2017-01-01

    Major depressive disorder (MDD) and Alzheimer's disease (AD) are both common in older age and frequently co-occur. Numerous phenotypic studies based on clinical diagnoses suggest that a history of depression increases risk of subsequent AD, although the basis of this relationship is uncertain. Both illnesses are polygenic, and shared genetic risk factors could explain some of the observed association. We used genotype data to test whether MDD and AD have an overlapping polygenic architecture in two large population-based cohorts, Generation Scotland's Scottish Family Health Study (GS:SFHS; N=19 889) and UK Biobank (N=25 118), and whether age of depression onset influences any relationship. Using two complementary techniques, we found no evidence that the disorders are influenced by common genetic variants. Using linkage disequilibrium score regression with genome-wide association study (GWAS) summary statistics from the International Genomics of Alzheimer's Project, we report no significant genetic correlation between AD and MDD (rG=−0.103, P=0.59). Polygenic risk scores (PRS) generated using summary data from International Genomics of Alzheimer's Project (IGAP) and the Psychiatric Genomics Consortium were used to assess potential pleiotropy between the disorders. PRS for MDD were nominally associated with participant-recalled AD family history in GS:SFHS, although this association did not survive multiple comparison testing. AD PRS were not associated with depression status or late-onset depression, and a survival analysis showed no association between age of depression onset and genetic risk for AD. This study found no evidence to support a common polygenic structure for AD and MDD, suggesting that the comorbidity of these disorders is not explained by common genetic variants. PMID:28418403

  8. Functional molecular markers (EST-SSR) in the full-sib reciprocal recurrent selection program of maize (Zea mays L.).

    PubMed

    Galvão, K S C; Ramos, H C C; Santos, P H A D; Entringer, G C; Vettorazzi, J C F; Pereira, M G

    2015-07-03

    This study aimed to improve grain yield in the full-sib reciprocal recurrent selection program of maize from the North Fluminense State University. In the current phase of the program, the goal is to maintain, or even increase, the genetic variability within and among populations, in order to increase heterosis of the 13th cycle of reciprocal recurrent selection. Microsatellite expressed sequence tags (EST-SSRs) were used as a tool to assist the maximization step of genetic variability, targeting the functional genome. Eighty S1 progenies of the 13th recur-rent selection cycle, 40 from each population (CIMMYT and Piranão), were analyzed using 20 EST-SSR loci. Genetic diversity, observed heterozygosity, information content of polymorphism, and inbreeding co-efficient were estimated. Subsequently, analysis of genetic dissimilarity, molecular variance, and a graphical dispersion of genotypes were conducted. The number of alleles in the CIMMYT population ranged from 1 to 6, while in the Piranão population the range was from 2 to 8, with a mean of 3.65 and 4.35, respectively. As evidenced by the number of alleles, the Shannon index showed greater diversity for the Piranão population (1.04) in relation to the CIMMYT population (0.89). The genic SSR markers were effective in clustering genotypes into their respective populations before selection and an increase in the variation between populations after selection was observed. The results indicate that the study populations have expressive genetic diversity, which cor-responds to the functional genome, indicating that this strategy may contribute to genetic gain, especially in association with the grain yield of future hybrids.

  9. A quantitative genetic analysis of hibernation emergence date in a wild population of Columbian ground squirrels.

    PubMed

    Lane, J E; Kruuk, L E B; Charmantier, A; Murie, J O; Coltman, D W; Buoro, M; Raveh, S; Dobson, F S

    2011-09-01

    The life history schedules of wild organisms have long attracted scientific interest, and, in light of ongoing climate change, an understanding of their genetic and environmental underpinnings is increasingly becoming of applied concern. We used a multi-generation pedigree and detailed phenotypic records, spanning 18 years, to estimate the quantitative genetic influences on the timing of hibernation emergence in a wild population of Columbian ground squirrels (Urocitellus columbianus). Emergence date was significantly heritable [h(2) = 0.22 ± 0.05 (in females) and 0.34 ± 0.14 (in males)], and there was a positive genetic correlation (r(G) = 0.76 ± 0.22) between male and female emergence dates. In adult females, the heritabilities of body mass at emergence and oestrous date were h(2) = 0.23 ± 0.09 and h(2) = 0.18 ± 0.12, respectively. The date of hibernation emergence has been hypothesized to have evolved so as to synchronize subsequent reproduction with upcoming peaks in vegetation abundance. In support of this hypothesis, although levels of phenotypic variance in emergence date were higher than oestrous date, there was a highly significant genetic correlation between the two (r(G) = 0.98 ± 0.01). Hibernation is a prominent feature in the annual cycle of many small mammals, but our understanding of its influences lags behind that for phenological traits in many other taxa. Our results provide the first insight into its quantitative genetic influences and thus help contribute to a more general understanding of its evolutionary significance. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  10. Assessing the presence of shared genetic architecture between Alzheimer's disease and major depressive disorder using genome-wide association data.

    PubMed

    Gibson, J; Russ, T C; Adams, M J; Clarke, T-K; Howard, D M; Hall, L S; Fernandez-Pujals, A M; Wigmore, E M; Hayward, C; Davies, G; Murray, A D; Smith, B H; Porteous, D J; Deary, I J; McIntosh, A M

    2017-04-18

    Major depressive disorder (MDD) and Alzheimer's disease (AD) are both common in older age and frequently co-occur. Numerous phenotypic studies based on clinical diagnoses suggest that a history of depression increases risk of subsequent AD, although the basis of this relationship is uncertain. Both illnesses are polygenic, and shared genetic risk factors could explain some of the observed association. We used genotype data to test whether MDD and AD have an overlapping polygenic architecture in two large population-based cohorts, Generation Scotland's Scottish Family Health Study (GS:SFHS; N=19 889) and UK Biobank (N=25 118), and whether age of depression onset influences any relationship. Using two complementary techniques, we found no evidence that the disorders are influenced by common genetic variants. Using linkage disequilibrium score regression with genome-wide association study (GWAS) summary statistics from the International Genomics of Alzheimer's Project, we report no significant genetic correlation between AD and MDD (r G =-0.103, P=0.59). Polygenic risk scores (PRS) generated using summary data from International Genomics of Alzheimer's Project (IGAP) and the Psychiatric Genomics Consortium were used to assess potential pleiotropy between the disorders. PRS for MDD were nominally associated with participant-recalled AD family history in GS:SFHS, although this association did not survive multiple comparison testing. AD PRS were not associated with depression status or late-onset depression, and a survival analysis showed no association between age of depression onset and genetic risk for AD. This study found no evidence to support a common polygenic structure for AD and MDD, suggesting that the comorbidity of these disorders is not explained by common genetic variants.

  11. Characterization of Hepatitis C Virus (HCV) Envelope Diversification from Acute to Chronic Infection within a Sexually Transmitted HCV Cluster by Using Single-Molecule, Real-Time Sequencing

    PubMed Central

    Ho, Cynthia K. Y.; Raghwani, Jayna; Koekkoek, Sylvie; Liang, Richard H.; Van der Meer, Jan T. M.; Van Der Valk, Marc; De Jong, Menno; Pybus, Oliver G.

    2016-01-01

    ABSTRACT In contrast to other available next-generation sequencing platforms, PacBio single-molecule, real-time (SMRT) sequencing has the advantage of generating long reads albeit with a relatively higher error rate in unprocessed data. Using this platform, we longitudinally sampled and sequenced the hepatitis C virus (HCV) envelope genome region (1,680 nucleotides [nt]) from individuals belonging to a cluster of sexually transmitted cases. All five subjects were coinfected with HIV-1 and a closely related strain of HCV genotype 4d. In total, 50 samples were analyzed by using SMRT sequencing. By using 7 passes of circular consensus sequencing, the error rate was reduced to 0.37%, and the median number of sequences was 612 per sample. A further reduction of insertions was achieved by alignment against a sample-specific reference sequence. However, in vitro recombination during PCR amplification could not be excluded. Phylogenetic analysis supported close relationships among HCV sequences from the four male subjects and subsequent transmission from one subject to his female partner. Transmission was characterized by a strong genetic bottleneck. Viral genetic diversity was low during acute infection and increased upon progression to chronicity but subsequently fluctuated during chronic infection, caused by the alternate detection of distinct coexisting lineages. SMRT sequencing combines long reads with sufficient depth for many phylogenetic analyses and can therefore provide insights into within-host HCV evolutionary dynamics without the need for haplotype reconstruction using statistical algorithms. IMPORTANCE Next-generation sequencing has revolutionized the study of genetically variable RNA virus populations, but for phylogenetic and evolutionary analyses, longer sequences than those generated by most available platforms, while minimizing the intrinsic error rate, are desired. Here, we demonstrate for the first time that PacBio SMRT sequencing technology can be used to generate full-length HCV envelope sequences at the single-molecule level, providing a data set with large sequencing depth for the characterization of intrahost viral dynamics. The selection of consensus reads derived from at least 7 full circular consensus sequencing rounds significantly reduced the intrinsic high error rate of this method. We used this method to genetically characterize a unique transmission cluster of sexually transmitted HCV infections, providing insight into the distinct evolutionary pathways in each patient over time and identifying the transmission-associated genetic bottleneck as well as fluctuations in viral genetic diversity over time, accompanied by dynamic shifts in viral subpopulations. PMID:28077634

  12. Connecting Amazonian, Cerrado, and Atlantic Forest histories: Paraphyly, old divergences, and modern population dynamics in tyrant-manakins (Neopelma/Tyranneutes, Aves: Pipridae).

    PubMed

    Capurucho, João Marcos Guimarães; Ashley, Mary V; Ribas, Camila C; Bates, John M

    2018-06-11

    Several biogeographic hypotheses have been proposed to explain connections between Amazonian and Atlantic forest biotas. These hypotheses are related to the timing of the connections and their geographic patterns. We performed a phylogeographic investigation of Tyrant-manakins (Aves: Pipridae, Neopelma/Tyranneutes) which include species inhabiting the Amazon and Atlantic forests, as well as gallery forests of the Cerrado. Using DNA sequence data, we determined phylogenetic relationships, temporal and geographic patterns of diversification, and recent intraspecific population genetic patterns, relative to the history of these biomes. We found Neopelma to be a paraphyletic genus, as N. chrysolophum is sister to Neopelma + Tyranneutes, with an estimated divergence of approximately 18 Myrs BP, within the oldest estimated divergence times of other Amazonian and Atlantic forest avian taxa. Subsequent divergences in the group occurred from Mid Miocene to Early Pliocene and involved mainly the Amazonian species, with an expansion into and subsequent speciation in the Cerrado gallery forests by N. pallescens. We found additional structure within N. chrysocephalum and N. sulphureiventer. Analysis of recent population dynamics in N. chrysocephalum, N. sulphureiventer, and N. pallescens revealed recent demographic fluctuations and restrictions to gene flow related to environmental changes since the last glacial cycle. No genetic structure was detected across the Amazon River in N. pallescens. The tyrant-manakins represent an old historical connection between the Amazon and Atlantic Forest. Copyright © 2018. Published by Elsevier Inc.

  13. Recurrent pregnancy loss evaluation combined with 24-chromosome microarray of miscarriage tissue provides a probable or definite cause of pregnancy loss in over 90% of patients.

    PubMed

    Popescu, F; Jaslow, C R; Kutteh, W H

    2018-04-01

    Will the addition of 24-chromosome microarray analysis on miscarriage tissue combined with the standard American Society for Reproductive Medicine (ASRM) evaluation for recurrent miscarriage explain most losses? Over 90% of patients with recurrent pregnancy loss (RPL) will have a probable or definitive cause identified when combining genetic testing on miscarriage tissue with the standard ASRM evaluation for recurrent miscarriage. RPL is estimated to occur in 2-4% of reproductive age couples. A probable cause can be identified in approximately 50% of patients after an ASRM recommended workup including an evaluation for parental chromosomal abnormalities, congenital and acquired uterine anomalies, endocrine imbalances and autoimmune factors including antiphospholipid syndrome. Single-center, prospective cohort study that included 100 patients seen in a private RPL clinic from 2014 to 2017. All 100 women had two or more pregnancy losses, a complete evaluation for RPL as defined by the ASRM, and miscarriage tissue evaluated by 24-chromosome microarray analysis after their second or subsequent miscarriage. Frequencies of abnormal results for evidence-based diagnostic tests considered definite or probable causes of RPL (karyotyping for parental chromosomal abnormalities, and 24-chromosome microarray evaluation for products of conception (POC); pelvic sonohysterography, hysterosalpingogram, or hysteroscopy for uterine anomalies; immunological tests for lupus anticoagulant and anticardiolipin antibodies; and blood tests for thyroid stimulating hormone (TSH), prolactin and hemoglobin A1c) were evaluated. We excluded cases where there was maternal cell contamination of the miscarriage tissue or if the ASRM evaluation was incomplete. A cost analysis for the evaluation of RPL was conducted to determine whether a proposed procedure of 24-chromome microarray evaluation followed by an ASRM RPL workup (for those RPL patients who had a normal 24-chromosome microarray evaluation) was more cost-efficient than conducting ASRM RPL workups on RPL patients followed by 24-chromosome microarray analysis (for those RPL patients who had a normal RPL workup). A definite or probable cause of pregnancy loss was identified in the vast majority (95/100; 95%) of RPL patients when a 24-chromosome pair microarray evaluation of POC testing is combined with the standard ASRM RPL workup evaluation at the time of the second or subsequent loss. The ASRM RPL workup identified an abnormality and a probable explanation for pregnancy loss in only 45/100 or 45% of all patients. A definite abnormality was identified in 67/100 patients or 67% when initial testing was performed using 24-chromosome microarray analyses on the miscarriage tissue. Only 5/100 (5%) patients, who had a euploid loss and a normal ASRM RPL workup, had a pregnancy loss without a probable or definitive cause identified. All other losses were explained by an abnormal 24-chromosome microarray analysis of the miscarriage tissue, an abnormal finding of the RPL workup, or a combination of both. Results from the cost analysis indicated that an initial approach of using a 24-chromosome microarray analysis on miscarriage tissue resulted in a 50% savings in cost to the health care system and to the patient. This is a single-center study on a small group of well-characterized women with RPL. There was an incomplete follow-up on subsequent pregnancy outcomes after evaluation, however this should not affect our principal results. The maternal age of patients varied from 26 to 45 years old. More aneuploid pregnancy losses would be expected in older women, particularly over the age of 35 years old. Evaluation of POC using 24-chromosome microarray analysis adds significantly to the ASRM recommended evaluation of RPL. Genetic evaluation on miscarriage tissue obtained at the time of the second and subsequent pregnancy losses should be offered to all couples with two or more consecutive pregnancy losses. The combination of a genetic evaluation on miscarriage tissue with an evidence-based evaluation for RPL will identify a probable or definitive cause in over 90% of miscarriages. No funding was received for this study and there are no conflicts of interest to declare. Not applicable.

  14. Guide and Position of the International Society of Nutrigenetics/Nutrigenomics on Personalised Nutrition: Part 1 - Fields of Precision Nutrition.

    PubMed

    Ferguson, Lynnette R; De Caterina, Raffaele; Görman, Ulf; Allayee, Hooman; Kohlmeier, Martin; Prasad, Chandan; Choi, Myung Sook; Curi, Rui; de Luis, Daniel Antonio; Gil, Ángel; Kang, Jing X; Martin, Ron L; Milagro, Fermin I; Nicoletti, Carolina Ferreira; Nonino, Carla Barbosa; Ordovas, Jose Maria; Parslow, Virginia R; Portillo, María P; Santos, José Luis; Serhan, Charles N; Simopoulos, Artemis P; Velázquez-Arellano, Antonio; Zulet, Maria Angeles; Martinez, J Alfredo

    2016-01-01

    Diversity in the genetic profile between individuals and specific ethnic groups affects nutrient requirements, metabolism and response to nutritional and dietary interventions. Indeed, individuals respond differently to lifestyle interventions (diet, physical activity, smoking, etc.). The sequencing of the human genome and subsequent increased knowledge regarding human genetic variation is contributing to the emergence of personalized nutrition. These advances in genetic science are raising numerous questions regarding the mode that precision nutrition can contribute solutions to emerging problems in public health, by reducing the risk and prevalence of nutrition-related diseases. Current views on personalized nutrition encompass omics technologies (nutrigenomics, transcriptomics, epigenomics, foodomics, metabolomics, metagenomics, etc.), functional food development and challenges related to legal and ethical aspects, application in clinical practice, and population scope, in terms of guidelines and epidemiological factors. In this context, precision nutrition can be considered as occurring at three levels: (1) conventional nutrition based on general guidelines for population groups by age, gender and social determinants; (2) individualized nutrition that adds phenotypic information about the person's current nutritional status (e.g. anthropometry, biochemical and metabolic analysis, physical activity, among others), and (3) genotype-directed nutrition based on rare or common gene variation. Research and appropriate translation into medical practice and dietary recommendations must be based on a solid foundation of knowledge derived from studies on nutrigenetics and nutrigenomics. A scientific society, such as the International Society of Nutrigenetics/Nutrigenomics (ISNN), internationally devoted to the study of nutrigenetics/nutrigenomics, can indeed serve the commendable roles of (1) promoting science and favoring scientific communication and (2) permanently working as a 'clearing house' to prevent disqualifying logical jumps, correct or stop unwarranted claims, and prevent the creation of unwarranted expectations in patients and in the general public. In this statement, we are focusing on the scientific aspects of disciplines covering nutrigenetics and nutrigenomics issues. Genetic screening and the ethical, legal, social and economic aspects will be dealt with in subsequent statements of the Society. © 2016 S. Karger AG, Basel.

  15. Reading Development in Young Children: Genetic and Environmental Influences

    PubMed Central

    Logan, Jessica A. R.; Hart, Sara A.; Cutting, Laurie; Deater-Deckard, Kirby; Schatschneider, Chris; Petrill, Stephen

    2013-01-01

    The development of reading skills in typical students is commonly described as a rapid growth across early grades of active reading education, with a slowing down of growth as active instruction tapers. This study examined the extent to which genetics and environments influence these growth rates. Participants were 371 twin pairs, aged approximately 6 through 12, from the Western Reserve Reading Project. Development of word-level reading, reading comprehension, and rapid naming was examined using genetically sensitive latent quadratic growth curve modeling. Results confirmed the developmental trajectory described in the phenotypic literature. Furthermore, the same shared environmental influences were related to early reading skills and subsequent growth, but genetic influences on these factors were unique. PMID:23574275

  16. Early animal evolution: emerging views from comparative biology and geology

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.; Carroll, S. B.

    1999-01-01

    The Cambrian appearance of fossils representing diverse phyla has long inspired hypotheses about possible genetic or environmental catalysts of early animal evolution. Only recently, however, have data begun to emerge that can resolve the sequence of genetic and morphological innovations, environmental events, and ecological interactions that collectively shaped Cambrian evolution. Assembly of the modern genetic tool kit for development and the initial divergence of major animal clades occurred during the Proterozoic Eon. Crown group morphologies diversified in the Cambrian through changes in the genetic regulatory networks that organize animal ontogeny. Cambrian radiation may have been triggered by environmental perturbation near the Proterozoic-Cambrian boundary and subsequently amplified by ecological interactions within reorganized ecosystems.

  17. The canid genome: behavioral geneticists' best friend?

    PubMed

    Hall, N J; Wynne, C D L

    2012-11-01

    We review a range of studies on the genetic contribution to behavior in canid species. We begin by identifying factors that make canids a promising model in behavioral genetics and proceed to review research over the last decade that has used canids to identify genetic contributions to behavior. We first review studies that have selectively bred dogs to identify genetic contributions to behavior and then review studies that estimate heritability from populations of non-laboratory bred dogs. We subsequently review studies that used molecular genetics to identify gene-behavior associations and note associations that have been uncovered. We then note challenges in canid behavioral genetics research that require further consideration. We finish by suggesting alternative phenotyping methods and identify areas in which canids may have as yet unexploited advantages, such as in gene-environment interaction studies where genetic factors are found to moderate the effects of environmental variables. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  18. The Whole-Genome and Transcriptome of the Manila Clam (Ruditapes philippinarum).

    PubMed

    Mun, Seyoung; Kim, Yun-Ji; Markkandan, Kesavan; Shin, Wonseok; Oh, Sumin; Woo, Jiyoung; Yoo, Jongsu; An, Hyesuck; Han, Kyudong

    2017-06-01

    The manila clam, Ruditapes philippinarum, is an important bivalve species in worldwide aquaculture including Korea. The aquaculture production of R. philippinarum is under threat from diverse environmental factors including viruses, microorganisms, parasites, and water conditions with subsequently declining production. In spite of its importance as a marine resource, the reference genome of R. philippinarum for comprehensive genetic studies is largely unexplored. Here, we report the de novo whole-genome and transcriptome assembly of R. philippinarum across three different tissues (foot, gill, and adductor muscle), and provide the basic data for advanced studies in selective breeding and disease control in order to obtain successful aquaculture systems. An approximately 2.56 Gb high quality whole-genome was assembled with various library construction methods. A total of 108,034 protein coding gene models were predicted and repetitive elements including simple sequence repeats and noncoding RNAs were identified to further understanding of the genetic background of R. philippinarum for genomics-assisted breeding. Comparative analysis with the bivalve marine invertebrates uncover that the gene family related to complement C1q was enriched. Furthermore, we performed transcriptome analysis with three different tissues in order to support genome annotation and then identified 41,275 transcripts which were annotated. The R. philippinarum genome resource will markedly advance a wide range of potential genetic studies, a reference genome for comparative analysis of bivalve species and unraveling mechanisms of biological processes in molluscs. We believe that the R. philippinarum genome will serve as an initial platform for breeding better-quality clams using a genomic approach. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Fourteen-Genome Comparison Identifies DNA Markers for Severe-Disease-Associated Strains of Clostridium difficile▿†

    PubMed Central

    Forgetta, Vincenzo; Oughton, Matthew T.; Marquis, Pascale; Brukner, Ivan; Blanchette, Ruth; Haub, Kevin; Magrini, Vince; Mardis, Elaine R.; Gerding, Dale N.; Loo, Vivian G.; Miller, Mark A.; Mulvey, Michael R.; Rupnik, Maja; Dascal, Andre; Dewar, Ken

    2011-01-01

    Clostridium difficile is a common cause of infectious diarrhea in hospitalized patients. A severe and increased incidence of C. difficile infection (CDI) is associated predominantly with the NAP1 strain; however, the existence of other severe-disease-associated (SDA) strains and the extensive genetic diversity across C. difficile complicate reliable detection and diagnosis. Comparative genome analysis of 14 sequenced genomes, including those of a subset of NAP1 isolates, allowed the assessment of genetic diversity within and between strain types to identify DNA markers that are associated with severe disease. Comparative genome analysis of 14 isolates, including five publicly available strains, revealed that C. difficile has a core genome of 3.4 Mb, comprising ∼3,000 genes. Analysis of the core genome identified candidate DNA markers that were subsequently evaluated using a multistrain panel of 177 isolates, representing more than 50 pulsovars and 8 toxinotypes. A subset of 117 isolates from the panel had associated patient data that allowed assessment of an association between the DNA markers and severe CDI. We identified 20 candidate DNA markers for species-wide detection and 10,683 single nucleotide polymorphisms (SNPs) associated with the predominant SDA strain (NAP1). A species-wide detection candidate marker, the sspA gene, was found to be the same across 177 sequenced isolates and lacked significant similarity to those of other species. Candidate SNPs in genes CD1269 and CD1265 were found to associate more closely with disease severity than currently used diagnostic markers, as they were also present in the toxin A-negative and B-positive (A-B+) strain types. The genetic markers identified illustrate the potential of comparative genomics for the discovery of diagnostic DNA-based targets that are species specific or associated with multiple SDA strains. PMID:21508155

  20. Genetic diversity of Newcastle disease virus in Pakistan: a countrywide perspective

    PubMed Central

    2013-01-01

    Background Newcastle disease (ND) is one of the most deadly diseases of poultry around the globe. The disease is endemic in Pakistan and recurrent outbreaks are being reported regularly in wild captive, rural and commercial poultry flocks. Though, efforts have been made to characterize the causative agent in some of parts of the country, the genetic nature of strains circulating throughout Pakistan is currently lacking. Material and methods To ascertain the genetics of NDV, 452 blood samples were collected from 113 flocks, originating from all the provinces of Pakistan, showing high mortality (30–80%). The samples represented domesticated poultry (broiler, layer and rural) as well as wild captive birds (pigeons, turkeys, pheasants and peacock). Samples were screened with real-time PCR for both matrix and fusion genes (1792 bp), positive samples were subjected to amplification of full fusion gene and subsequent sequencing and phylogenetic analysis. Results The deduced amino acid sequence of the fusion protein cleavage site indicated the presence of motif (112RK/RQRR↓F117) typical for velogenic strains of NDV. Phylogenetic analysis of hypervariable region of the fusion gene indicated that all the isolates belong to lineage 5 of NDV except isolates collected from Khyber Pakhtunkhwa (KPK) province. A higher resolution of the phylogenetic analysis of lineage 5 showed the distribution of Pakistani NDV strains to 5b. However, the isolates from KPK belonged to lineage 4c; the first report of such lineage from this province. Conclusions Taken together, data indicated the prevalence of multiple lineages of NDV in different poultry population including wild captive birds. Such understanding is crucial to underpin the nature of circulating strains of NDV, their potential for interspecies transmission and disease diagnosis and control strategies. PMID:23721461

  1. Ellis-van Creveld syndrome: prenatal diagnosis, molecular analysis and genetic counseling.

    PubMed

    Chen, Chih-Ping; Su, Yi-Ning; Hsu, Chin-Yuan; Chern, Schu-Rern; Tsai, Fuu-Jen; Wu, Pei-Chen; Chen, Po-Tsang; Wang, Wayseen

    2010-12-01

    To present the perinatal findings and molecular genetic analysis of two siblings with Ellis-van Creveld (EvC) syndrome. A 33-year-old woman, gravida 3, para 1, was referred for genetic counseling at 18 gestational weeks because of recurrent fetal skeletal dysplasia. Two years previously, she had delivered a 1,316-g dead male baby at 28 gestational weeks with a karyotype of 46,XY, postaxial polydactyly of the hands, thoracic narrowness, endocardial cushion defects, transposition of the great arteries, shortening of the long bones, malposition of the toes, and hypoplastic nails. During this pregnancy, prenatal ultrasound at 18 gestational weeks revealed shortening of the long bones (equivalent to 15 weeks), postaxial polydactyly of both hands, thoracic narrowness, and endocardial cushion defects. The pregnancy was subsequently terminated, and a 236-g female fetus was delivered with a karyotype of 46,XX, postaxial polydactyly of the hands, thoracic dysplasia, endocardial cushion defects, shortening of the long bones, and malposition of the toes and hypoplastic nails. The phenotype of each of the two siblings was consistent with EVC syndrome. Molecular analysis of the EVC and EVC2 genes revealed heterozygous mutations in the EVC2 gene. A heterozygous deletion mutation of a 26-bp deletion of c.871-2_894del26 encompassing the junction between intron 7 and exon 8 of the EVC2 gene was found in the mother and two siblings, and a heterozygous nonsense mutation of c.1195C >T, p.R399X in exon 10 of the EVC2 gene was found in the father and two siblings. Prenatal sonographic identification of endocardial cushion defects in association with shortening of the long bones should alert clinicians to the possibility of EvC syndrome and prompt a careful search of hexadactyly of the hands. Molecular analysis of the EVC and EVC2 genes is helpful in genetic counseling in cases with prenatally detected postaxial polydactyly, thoracic narrowness, short limbs and endocardial cushion defects. Copyright © 2010 Taiwan Association of Obstetric & Gynecology. Published by Elsevier B.V. All rights reserved.

  2. Toward a new history and geography of human genes informed by ancient DNA

    PubMed Central

    Pickrell, Joseph K.; Reich, David

    2014-01-01

    Genetic information contains a record of the history of our species, and technological advances have transformed our ability to access this record. Many studies have used genome-wide data from populations today to learn about the peopling of the globe and subsequent adaptation to local conditions. Implicit in this research is the assumption that the geographic locations of people today are informative about the geographic locations of their ancestors in the distant past. However, it is now clear that long-range migration, admixture and population replacement subsequent to the initial out-of-Africa expansion have altered the genetic structure of most of the world’s human populations. In light of this, we argue that it is time to critically re-evaluate current models of the peopling of the globe, as well as the importance of natural selection in determining the geographic distribution of phenotypes. We specifically highlight the transformative potential of ancient DNA. By accessing the genetic make-up of populations living at archaeologically-known times and places, ancient DNA makes it possible to directly track migrations and responses to natural selection. PMID:25168683

  3. The human pain genetics database: an interview with Luda Diatchenko.

    PubMed

    Diatchenko, Luda

    2018-06-05

    Luda Diatchenko, MD, PhD is a Canada Excellence Research Chair in Human Pain Genetics, Professor, Faculty of Medicine, Department of Anesthesia and Faculty of Dentistry at McGill University, Alan Edwards Centre for Research on Pain. She earned her MD and PhD in the field of molecular biology from the Russian State Medical University. She started her career in industry, she was a Leader of the RNA Expression Group at Clontech, Inc., and subsequently, Director of Gene Discovery at Attagene, Inc. During this time, she was actively involved in the development of several widely used and widely cited molecular tools for the analysis of gene expression and regulation. Her academic career started at 2000 in the Center for Neurosensory Disorders at University of North Carolina. Her research since then is focused on determining the cellular and molecular biological mechanisms by which functional genetic variations impact human pain perception and risk of development of chronic pain conditions, enabling new approaches to identify new drug targets, treatment responses to analgesics and diagnostic. Multiple collaborative activities allow the Diatchenko group to take basic genetic findings all the way from human association studies, through molecular and cellular mechanisms to animal models and ultimately to human clinical trials. In total, she has authored or co-authored over 120 peer-reviewed research papers in journals, ten book chapters and edited a book in human pain genetics. She is a member and an active officer of several national and international scientific societies, including the International Association for the Study of Pain and the American Pain Society.

  4. Random regression models on Legendre polynomials to estimate genetic parameters for weights from birth to adult age in Canchim cattle.

    PubMed

    Baldi, F; Albuquerque, L G; Alencar, M M

    2010-08-01

    The objective of this work was to estimate covariance functions for direct and maternal genetic effects, animal and maternal permanent environmental effects, and subsequently, to derive relevant genetic parameters for growth traits in Canchim cattle. Data comprised 49,011 weight records on 2435 females from birth to adult age. The model of analysis included fixed effects of contemporary groups (year and month of birth and at weighing) and age of dam as quadratic covariable. Mean trends were taken into account by a cubic regression on orthogonal polynomials of animal age. Residual variances were allowed to vary and were modelled by a step function with 1, 4 or 11 classes based on animal's age. The model fitting four classes of residual variances was the best. A total of 12 random regression models from second to seventh order were used to model direct and maternal genetic effects, animal and maternal permanent environmental effects. The model with direct and maternal genetic effects, animal and maternal permanent environmental effects fitted by quadric, cubic, quintic and linear Legendre polynomials, respectively, was the most adequate to describe the covariance structure of the data. Estimates of direct and maternal heritability obtained by multi-trait (seven traits) and random regression models were very similar. Selection for higher weight at any age, especially after weaning, will produce an increase in mature cow weight. The possibility to modify the growth curve in Canchim cattle to obtain animals with rapid growth at early ages and moderate to low mature cow weight is limited.

  5. Mechanisms of population differentiation in marbled murrelets: historical versus contemporary processes

    USGS Publications Warehouse

    Congdon, B.C.; Piatt, John F.; Martin, Kathy; Friesen, Vicki L.

    2000-01-01

    Mechanisms of population differentiation in highly vagile species such as seabirds are poorly understood. Previous studies of marbled murrelets (Brachyramphus marmoratus; Charadriiformes: Alcidae) found significant population genetic structure, but could not determine whether this structure is due to historical vicariance (e.g., due to Pleistocene glaciers), isolation by distance, drift or selection in peripheral populations, or nesting habitat selection. To discriminate among these possibilities, we analyzed sequence variation in nine nuclear introns from 120 marbled murrelets sampled from British Columbia to the western Aleutian Islands. Mismatch distributions indicated that murrelets underwent at least one population expansion during the Pleistocene and probably are not in genetic equilibrium. Maximum-likelihood analysis of allele frequencies suggested that murrelets from 'mainland' sites (from the Alaskan Peninsula east) are genetically different from those in the Aleutians and that these two lineages diverged prior to the last glaciation. Analyses of molecular variance, as well as estimates of gene flow derived using coalescent theory, indicate that population genetic structure is best explained by peripheral isolation of murrelets in the Aleutian Islands, rather than by selection associated with different nesting habitats. No isolation-by-distance effects could be detected. Our results are consistent with a rapid expansion of murrelets from a single refugium during the early-mid Pleistocene, subsequent isolation and divergence in two or more refugia during the final Pleistocene glacial advance, and secondary contact following retreat of the ice sheets. Population genetic structure now appears to be maintained by distance effects combined with small populations and a highly fragmented habitat in the Aleutian Islands.

  6. Haplotype analysis and a novel allele-sharing method refines a chromosome 4p locus linked to bipolar affective disorder.

    PubMed

    Le Hellard, Stephanie; Lee, Andrew J; Underwood, Sarah; Thomson, Pippa A; Morris, Stewart W; Torrance, Helen S; Anderson, Susan M; Adams, Richard R; Navarro, Pau; Christoforou, Andrea; Houlihan, Lorna M; Detera-Wadleigh, Sevilla; Owen, Michael J; Asherson, Philip; Muir, Walter J; Blackwood, Douglas H R; Wray, Naomi R; Porteous, David J; Evans, Kathryn L

    2007-03-15

    Bipolar affective disorder (BPAD) and schizophrenia (SCZ) are common conditions. Their causes are unknown, but they include a substantial genetic component. Previously, we described significant linkage of BPAD to a chromosome 4p locus within a large pedigree (F22). Others subsequently have found evidence for linkage of BPAD and SCZ to this region. We constructed high-resolution haplotypes for four linked families, calculated logarithm of the odds (LOD) scores, and developed a novel method to assess the extent of allele sharing within genes between the families. We describe an increase in the F22 LOD score for this region. Definition and comparison of the linked haplotypes allowed us to prioritize two subregions of 3.8 and 4.4 Mb. Analysis of the extent of allele sharing within these subregions identified 200 kb that shows increased allele sharing between families. Linkage of BPAD to chromosome 4p has been strengthened. Haplotype analysis in the additional linked families refined the 20-Mb linkage region. Development of a novel allele-sharing method allowed us to bridge the gap between conventional linkage and association studies. Description of a 200-kb region of increased allele sharing prioritizes this region, which contains two functional candidate genes for BPAD, SLC2A9, and WDR1, for subsequent studies.

  7. Adaptive Immunity Restricts Replication of Novel Murine Astroviruses

    PubMed Central

    Yokoyama, Christine C.; Loh, Joy; Zhao, Guoyan; Stappenbeck, Thaddeus S.; Wang, David; Huang, Henry V.

    2012-01-01

    The mechanisms of astrovirus pathogenesis are largely unknown, in part due to a lack of a small-animal model of disease. Using shotgun sequencing and a custom analysis pipeline, we identified two novel astroviruses capable of infecting research mice, murine astrovirus (MuAstV) STL1 and STL2. Subsequent analysis revealed the presence of at least two additional viruses (MuAstV STL3 and STL4), suggestive of a diverse population of murine astroviruses in research mice. Complete genomic characterization and subsequent phylogenetic analysis showed that MuAstV STL1 to STL4 are members of the mamastrovirus genus and are likely members of a new mamastrovirus genogroup. Using Rag1−/− mice deficient in B and T cells, we demonstrate that adaptive immunity is required to control MuAstV infection. Furthermore, using Stat1−/− mice deficient in innate signaling, we demonstrate a role for the innate immune response in the control of MuAstV replication. Our results demonstrate that MuAstV STL permits the study of the mechanisms of astrovirus infection and host-pathogen interactions in a genetically manipulable small-animal model. Finally, we detected MuAstV in commercially available mice, suggesting that these viruses may be present in academic and commercial research mouse facilities, with possible implications for interpretation of data generated in current mouse models of disease. PMID:22951832

  8. Candidiasis During Pregnancy May Result From Isogenic Commensal Strains

    PubMed Central

    Daniels, Wayne; Glover, Douglas D.; Essmann, Michael

    2001-01-01

    Objective: Our laboratory previously demonstrated that asymptomatic vaginal colonization during pregnancy is a factor predisposing patients to subsequent symptomatic vulvovaginal candidiasis. It is unknown whether symptoms result from strain replacement or a change in host relationship to the original colonizing strain. This study was undertaken to determine whether Candida albicans isolates from asymptomatic women could be responsible for subsequent symptomatic vaginitis. Methods: We retained isolates of C. albicans from women followed longitudinally through pregnancy, and identified six pairs of cultures from women who were colonized without symptoms and who later became symptomatic (average time 14 weeks). We used a random amplification of polymorphic DNA (RAPD) analysis to determine whether isolates from our study patients were genetically similar or dissimilar. Results: Analysis of these pairs of yeast strains by RAPD revealed that five of the six women had symptoms apparently due to the same yeast strain that was found initially as a commensal strain. To increase the power of these observations, we also performed RAPD analysis on six randomly selected yeast strains from other women in this study who had not become symptomatic to determine whether any of these unrelated strains matched strains from those women who became symptomatic. Conclusion: Symptomatic yeast vaginitis is usually due to strains of C. albicans already carried in the lower genital tract, underscoring the need to understand regulation of growth and virulence of the organism in vivo. PMID:11495556

  9. Genetic factors affecting statin concentrations and subsequent myopathy: a HuGENet systematic review

    PubMed Central

    Canestaro, William J.; Austin, Melissa A.; Thummel, Kenneth E.

    2015-01-01

    Statins, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors, have proven efficacy in both lowering low-density-lipoprotein levels and preventing major coronary events, making them one of the most commonly prescribed drugs in the United States. Statins exhibit a class-wide side effect of muscle toxicity and weakness, which has led regulators to impose both dosage limitations and a recall. This review focuses on the best-characterized genetic factors associated with increased statin muscle concentrations, including the genes encoding cytochrome P450 enzymes (CYP2D6, CYP3A4, and CYP3A5), a mitochondrial enzyme (GATM), an influx transporter (SLCO1B1), and efflux transporters (ABCB1 and ABCG2). A systematic literature review was conducted to identify relevant research evaluating the significance of genetic variants predictive of altered statin concentrations and subsequent statin-related myopathy. Studies eligible for inclusion must have incorporated genotype information and must have associated it with some measure of myopathy, either creatine kinase levels or self-reported muscle aches and pains. After an initial review, focus was placed on seven genes that were adequately characterized to provide a substantive review: CYP2D6, CYP3A4, CYP3A5, GATM, SLCO1B1, ABCB1, and ABCG2. All statins were included in this review. Among the genetic factors evaluated, statin-related myopathy appears to be most strongly associated with variants in SLCO1B1. PMID:24810685

  10. Determination of (241)Pu by the method of disturbed radioactive equilibrium using 2πα-counting and precision gamma-spectrometry.

    PubMed

    Alekseev, I; Kuzmina, T

    2016-04-01

    A simple technique is proposed for the determination of the content of (241)Pu, which is based on disturbance of radioactive equilibrium in the genetically related (237)U←(241)Pu→(241)Am decay chain of radionuclides, with the subsequent use of 2πα-counting and precision gamma-spectroscopy for monitoring the process of restoration of that equilibrium. It has been shown that the data on dynamics of accumulation of the daughter (241)Am, which were obtained from the results of measurements of α- and γ-spectra of the samples, correspond to the estimates calculated for the chain of two genetically related radionuclides, the differences in the estimates of (241)Pu radioactivity not exceeding 2%. Combining the different methods of registration (2πα-counting, semiconductor alpha- and gamma-spectrometry) enables the proposed method to be efficiently applied both for calibration of (241)Pu-sources (from several hundreds of kBq and higher) and for radioisotopic analysis of plutonium mixtures. In doing so, there is a deep purification of (241)Pu from its daughter decay products required due to unavailability of commercial detectors that could make it possible, based only on analysis of alpha-spectra, to conduct quantitative analysis of the content of (238)Pu and (241)Am. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Biotechnology: the language of multiple views in Māori communities.

    PubMed

    Te Momo, O H Fiona

    2007-09-01

    In Aotearoa (New Zealand), the government funded studies on communicating biotechnology to different sectors in the community from 2003 to 2006. Subsequently, a researcher covering the Māori sector performed a content analysis of data gathered in the community. Qualitative analysis methods included examining text from participant interviews, focus groups, government documents, newspapers, Internet sites, and current literature. Content was coded by identifying common themes in the English and the Māori language. Words like genetic modification (GM), genetic engineering (GE), and biotechnology were explained to provide a basic understanding between the communities and researcher. The terminology applied in the research was essential to achieve communication between the researcher and the community. The resultant themes represented seven views to interpret the communities association with biotechnology: purist Māori, religious Māori, anti Māori, pro Māori, no Māori, uncertain Māori, and middle Māori views. The themes are taken from the analysis of data compiled after 3 years of completing different stages of a research project. The views indicate that a common understanding can be achieved in the diverse range of Māori tribal communities providing those communicating biotechnology can identify the view and interpretations communities associate with biotechnology. This knowledge is essential for government agencies, researchers, community practitioners, scientist, and businesses that desire to dialogue with Māori communities in the language of biotechnology.

  12. Case report: Concomitant Chronic Lymphocytic Leukaemia and Cytogenetically Normal de novo Acute Leukaemia in a Patient.

    PubMed

    Kajtár, Béla; Rajnics, Péter; Egyed, Miklós; Alizadeh, Hussain

    2015-01-01

    The simultaneous occurrence of acute myeloid leukaemia with untreated chronic lymphocytic leukemia is extremely rare. We report a case of a 74-year-old man who was evaluated for macrocytic anaemia. Based on the morphology and immunophenotyping analysis of peripheral blood, a diagnosis of chronic lymphocytic leukemia was established. Subsequently, the bone marrow examination revealed the presence of two distinct, coexisting CLL and AML clones. Cytogenetic and molecular genetic analysis detected deletion 13q14.3 and unmutated immunoglobulin variable heavy-chain in the CLL clone, only. The AML and CLL clones did not share clonality, and the AML did not involve the peripheral blood. A diagnosis of cytogenetically normal de novo AML occurring concurrently with untreated CLL has not been reported previously in English literature. © 2015 by the Association of Clinical Scientists, Inc.

  13. Duty to warn of genetic harm in breach of patient confidentiality.

    PubMed

    Keeling, Sharon L

    2004-11-01

    Harm caused by the failure of health professionals to warn an at-risk genetic relative of her or his risk is genetic harm. Genetic harm should be approached using the usual principles of negligence. When these principles are applied, it is shown that (a) genetic harm is foreseeable; (b) the salient features of vulnerability, the health professional's knowledge of the risk to the genetic relative and the determinancy of the affected class and individual result in a duty of care being owed to the genetic relative; (c) the standard of care required to fulfil the duty to warn should be the expectations of a reasonable person in the position of the relative; and (d) causation is satisfied as the harm is caused by the failure of intervention of the health professional. Legislation enacted subsequent to the Report of the Commonwealth of Australia, Panel of Eminent Persons (Chair D Ipp), Review of the Law of Negligence Report (2002) and relevant to a duty to warn of genetic harm is considered. The modes of regulation and penalties for breach of any future duty to warn of genetic harm are considered.

  14. Rapid identification of Yersinia pestis and Brucella melitensis by chip-based continuous flow PCR

    NASA Astrophysics Data System (ADS)

    Dietzsch, Michael; Hlawatsch, Nadine; Melzer, Falk; Tomaso, Herbert; Gärtner, Claudia; Neubauer, Heinrich

    2012-06-01

    To combat the threat of biological agents like Yersinia pestis and Brucella melitensis in bioterroristic scenarios requires fast, easy-to-use and safe identification systems. In this study we describe a system for rapid amplification of specific genetic markers for the identification of Yersinia pestis and Brucella melitensis. Using chip based PCR and continuous flow technology we were able to amplify the targets simultaneously with a 2-step reaction profile within 20 minutes. The subsequent analysis of amplified fragments by standard gel electrophoresis requires another 45 minutes. We were able to detect both pathogens within 75 minutes being much faster than most other nucleic acid amplification technologies.

  15. Novel technologies provide more engineering strategies for amino acid-producing microorganisms.

    PubMed

    Gu, Pengfei; Su, Tianyuan; Qi, Qingsheng

    2016-03-01

    Traditionally, amino acid-producing strains were obtained by random mutagenesis and subsequent selection. With the development of genetic and metabolic engineering techniques, various microorganisms with high amino acid production yields are now constructed by rational design of targeted biosynthetic pathways. Recently, novel technologies derived from systems and synthetic biology have emerged and open a new promising avenue towards the engineering of amino acid production microorganisms. In this review, these approaches, including rational engineering of rate-limiting enzymes, real-time sensing of end-products, pathway optimization on the chromosome, transcription factor-mediated strain improvement, and metabolic modeling and flux analysis, were summarized with regard to their application in microbial amino acid production.

  16. Development of a broadly reactive nested reverse transcription-PCR assay to detect murine noroviruses, and investigation of the prevalence of murine noroviruses in laboratory mice in Japan.

    PubMed

    Kitajima, Masaaki; Oka, Tomoichiro; Tohya, Yukinobu; Katayama, Hiroyuki; Takeda, Naokazu; Katayama, Kazuhiko

    2009-09-01

    A broadly reactive nested RT-PCR assay to detect MNV was developed and subsequently used to investigate the prevalence of MNV in laboratory mice in Japan. MNV were detected in 8 (22%) of 37 murine stool specimens by second-round PCR, although no positive band was obtained from any specimen by first-round PCR. Genetic analysis of the second round PCR products showed that MNV sequences detected in this study were closely matched (97.2 approximately 99.1%) to that of MNV-3 (DQ223042). This is the first report demonstrating the prevalence of MNV in Japan.

  17. CYP2C9*3 polymorphism presenting as lethal subdural hematoma with low-dose warfarin

    PubMed Central

    Karnik, Niteen D.; Sridharan, Kannan; Tiwari, D.; Gupta, V.

    2014-01-01

    Warfarin is the most common and cheap oral anticoagulant currently used in clinical practice. A high inter-individual variation is seen in the response to warfarin. Recently, pharmacogenetics has gained importance in managing patients on warfarin, both in predicting the optimum required dose as well as in decreasing the risk of bleeding. This case report is a description of a 49-year-old patient who had a lethal subdural hematoma with low-dose warfarin. He was subsequently found to have CYP2C9 gene polymorphism (*1/*3). This case report stresses the importance of pre-prescription assessment of genetic analysis for those initiated on warfarin. PMID:25298588

  18. Ototoxicity in preterm infants: effects of genetics, aminoglycosides, and loud environmental noise.

    PubMed

    Zimmerman, E; Lahav, A

    2013-01-01

    Majority of hearing-loss cases with extremely preterm infants have no known etiology. There is a growing concern that the administration of aminoglycoside treatment in the noisy environment of the Neonatal Intensive Care Unit (NICU) may lead to hair-cell damage and subsequent auditory impairments. In addition, several mitochondrial DNA mutations are known to have been associated with aminoglycoside-induced hearing loss. This review provides a systematic analysis of the research in this area and elucidates the multifactorial mechanisms behind how mitochondrial DNA mutations, aminoglycosides and loud noise can potentiate ototoxicity in extremely preterm neonates. Recommended steps to minimize the risk of ototoxicity and improve clinical care for NICU infants are discussed.

  19. Differential gene expression is not required for facultative sex allocation: a transcriptome analysis of brain tissue in the parasitoid wasp Nasonia vitripennis

    PubMed Central

    Boulton, Rebecca A.; Green, Jade; Trivedi, Urmi; Pannebakker, Bart A.; Ritchie, Michael G.; Shuker, David M.

    2018-01-01

    Whole-transcriptome technologies have been widely used in behavioural genetics to identify genes associated with the performance of a behaviour and provide clues to its mechanistic basis. Here, we consider the genetic basis of sex allocation behaviour in the parasitoid wasp Nasonia vitripennis. Female Nasonia facultatively vary their offspring sex ratio in line with Hamilton's theory of local mate competition (LMC). A single female or ‘foundress’ laying eggs on a patch will lay just enough sons to fertilize her daughters. As the number of ‘foundresses’ laying eggs on a patch increases (and LMC declines), females produce increasingly male-biased sex ratios. Phenotypic studies have revealed the cues females use to estimate the level of LMC their sons will experience, but our understanding of the genetics underlying sex allocation is limited. Here, we exposed females to three foundress number conditions, i.e. three LMC conditions, and allowed them to oviposit. mRNA was extracted from only the heads of these females to target the brain tissue. The subsequent RNA-seq experiment confirmed that differential gene expression is not associated with the response to sex allocation cues and that we must instead turn to the underlying neuroscience to reveal the underpinnings of this impressive behavioural plasticity. PMID:29515880

  20. Identification of a novel MYO7A mutation in Usher syndrome type 1.

    PubMed

    Cheng, Ling; Yu, Hongsong; Jiang, Yan; He, Juan; Pu, Sisi; Li, Xin; Zhang, Li

    2018-01-05

    Usher syndrome (USH) is an autosomal recessive disease characterized by deafness and retinitis pigmentosa. In view of the high phenotypic and genetic heterogeneity in USH, performing genetic screening with traditional methods is impractical. In the present study, we carried out targeted next-generation sequencing (NGS) to uncover the underlying gene in an USH family (2 USH patients and 15 unaffected relatives). One hundred and thirty-five genes associated with inherited retinal degeneration were selected for deep exome sequencing. Subsequently, variant analysis, Sanger validation and segregation tests were utilized to identify the disease-causing mutations in this family. All affected individuals had a classic USH type I (USH1) phenotype which included deafness, vestibular dysfunction and retinitis pigmentosa. Targeted NGS and Sanger sequencing validation suggested that USH1 patients carried an unreported splice site mutation, c.5168+1G>A, as a compound heterozygous mutation with c.6070C>T (p.R2024X) in the MYO7A gene. A functional study revealed decreased expression of the MYO7A gene in the individuals carrying heterozygous mutations. In conclusion, targeted next-generation sequencing provided a comprehensive and efficient diagnosis for USH1. This study revealed the genetic defects in the MYO7A gene and expanded the spectrum of clinical phenotypes associated with USH1 mutations.

  1. Development of bioluminescent chick chorioallantoic membrane (CAM) models for primary pancreatic cancer cells: a platform for drug testing

    PubMed Central

    Rovithi, Maria; Avan, Amir; Funel, Niccola; Leon, Leticia G.; Gomez, Valentina E.; Wurdinger, Thomas; Griffioen, Arjan W.; Verheul, Henk M. W.; Giovannetti, Elisa

    2017-01-01

    The aim of the present study was to develop chick-embryo chorioallantoic membrane (CAM) bioluminescent tumor models employing low passage cell cultures obtained from primary pancreatic ductal adenocarcinoma (PDAC) cells. Primary PDAC cells transduced with lentivirus expressing Firefly-luciferase (Fluc) were established and inoculated onto the CAM membrane, with >80% engraftment. Fluc signal reliably correlated with tumor growth. Tumor features were evaluated by immunohistochemistry and genetic analyses, including analysis of mutations and mRNA expression of PDAC pivotal genes, as well as microRNA (miRNA) profiling. These studies showed that CAM tumors had histopathological and genetic characteristic comparable to the original tumors. We subsequently tested the modulation of key miRNAs and the activity of gemcitabine and crizotinib on CAM tumors, showing that combination treatment resulted in 63% inhibition of tumor growth as compared to control (p < 0.01). These results were associated with reduced expression of miR-21 and increased expression of miR-155. Our study provides the first evidence that transduced primary PDAC cells can form tumors on the CAM, retaining several histopathological and (epi)genetic characteristics of original tumors. Moreover, our results support the use of these models for drug testing, providing insights on molecular mechanisms underlying antitumor activity of new drugs/combinations. PMID:28304379

  2. Cross-species amplification of microsatellites reveals incongruence in the molecular variation and taxonomic limits of the Pilosocereus aurisetus group (Cactaceae).

    PubMed

    Moraes, Evandro M; Perez, Manolo F; Téo, Mariana F; Zappi, Daniela C; Taylor, Nigel P; Machado, Marlon C

    2012-09-01

    The Pilosocereus aurisetus group contains eight cactus species restricted to xeric habitats in eastern and central Brazil that have an archipelago-like distribution. In this study, 5-11 microsatellite markers previously designed for Pilosocereus machrisii were evaluated for cross-amplification and polymorphisms in ten populations from six species of the P. aurisetus group. The genotypic information was subsequently used to investigate the genetic relationships between the individuals, populations, and species analyzed. Only the Pmac101 locus failed to amplify in all of the six analyzed species, resulting in an 88 % success rate. The number of alleles per polymorphic locus ranged from 2 to 12, and the most successfully amplified loci showed at least one population with a larger number of alleles than were reported in the source species. The population relationships revealed clear genetic clustering in a neighbor-joining tree that was partially incongruent with the taxonomic limits between the P. aurisetus and P. machrisii species, a fact which parallels the problematic taxonomy of the P. aurisetus group. A Bayesian clustering analysis of the individual genotypes confirmed the observed taxonomic incongruence. These microsatellite markers provide a valuable resource for facilitating large-scale genetic studies on population structures, systematics and evolutionary history in this group.

  3. Genetic Testing Confirmed the Early Diagnosis of X-Linked Hypophosphatemic Rickets in a 7-Month-Old Infant

    PubMed Central

    Poon, Kok Siong; Sng, Andrew Anjian; Ho, Cindy Weili; Koay, Evelyn Siew-Chuan

    2015-01-01

    Loss-of-function mutations in the phosphate regulating gene with homologies to endopeptidases on the X-chromosome (PHEX) have been causally associated with X-linked hypophosphatemic rickets (XLHR). The early diagnosis of XLHR in infants is challenging when it is based solely on clinical features and biochemical findings. We report a 7-month-old boy with a family history of hypophosphatemic rickets., who demonstrated early clinical evidence of rickets, although serial biochemical findings could not definitively confirm rickets. A sequencing assay targeting the PHEX gene was first performed on the mother’s DNA to screen for mutations in the 5′UTR, 22 coding exons, and the exon-intron junctions. Targeted mutation analysis and mRNA studies were subsequently performed on the boys’ DNA to investigate the pathogenicity of the identified mutation. Genetic screening of the PHEX gene revealed a novel mutation, c.1080-2A>C, at the splice acceptor site in intron 9. The detection of an aberrant mRNA transcript with skipped (loss of) exon 10 establishes its pathogenicity and confirms the diagnosis of XLHR in this infant. Genetic testing of the PHEX gene resulted in early diagnosis of XLHR, thus enabling initiation of therapy and prevention of progressive rachitic changes in the infant. PMID:26904698

  4. Quantitative trait loci segregating in crosses between New Hampshire and White Leghorn chicken lines: II. Muscle weight and carcass composition.

    PubMed

    Nassar, M K; Goraga, Z S; Brockmann, G A

    2012-12-01

    In order to identify genetic factors influencing muscle weight and carcass composition in chicken, a linkage analysis was performed with 278 F(2) males of reciprocal crosses between the extremely different inbred lines New Hampshire (NHI) and White Leghorn (WL77). The NHI line had been selected for high meat yield and the WL77 for low egg weight before inbreeding. Highly significant quantitative trait loci (QTL) controlling body weight and the weights of carcass, breast muscle, drumsticks-thighs and wings were identified on GGA4 between 151.5 and 160.5 cM and on GGA27 between 4 and 52 cM. These genomic regions explained 13.7-40.2% and 5.3-13.8% of the phenotypic F(2) variances of the corresponding traits respectively. Additional genome-wide highly significant QTL for the weight of drumsticks-thighs were mapped on GGA1, 5 and 7. Moreover, significant QTL controlling body weight were found on GGA2 and 11. The data obtained in this study can be used for increasing the mapping resolution and subsequent gene targeting on GGA4 and 27 by combining data with other crosses where the same QTL were found. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

  5. Exploring lateral genetic transfer among microbial genomes using TF-IDF.

    PubMed

    Cong, Yingnan; Chan, Yao-Ban; Ragan, Mark A

    2016-07-25

    Many microbes can acquire genetic material from their environment and incorporate it into their genome, a process known as lateral genetic transfer (LGT). Computational approaches have been developed to detect genomic regions of lateral origin, but typically lack sensitivity, ability to distinguish donor from recipient, and scalability to very large datasets. To address these issues we have introduced an alignment-free method based on ideas from document analysis, term frequency-inverse document frequency (TF-IDF). Here we examine the performance of TF-IDF on three empirical datasets: 27 genomes of Escherichia coli and Shigella, 110 genomes of enteric bacteria, and 143 genomes across 12 bacterial and three archaeal phyla. We investigate the effect of k-mer size, gap size and delineation of groups on the inference of genomic regions of lateral origin, finding an interplay among these parameters and sequence divergence. Because TF-IDF identifies donor groups and delineates regions of lateral origin within recipient genomes, aggregating these regions by gene enables us to explore, for the first time, the mosaic nature of lateral genes including the multiplicity of biological sources, ancestry of transfer and over-writing by subsequent transfers. We carry out Gene Ontology enrichment tests to investigate which biological processes are potentially affected by LGT.

  6. MSH6 and MSH3 are rarely involved in genetic predisposition to nonpolypotic colon cancer.

    PubMed

    Huang, J; Kuismanen, S A; Liu, T; Chadwick, R B; Johnson, C K; Stevens, M W; Richards, S K; Meek, J E; Gao, X; Wright, F A; Mecklin, J P; Järvinen, H J; Grönberg, H; Bisgaard, M L; Lindblom, A; Peltomäki, P

    2001-02-15

    A set of 90 nonpolypotic colon cancer families in which germ-line mutations of MSH2 and MLH1 had been excluded were screened for mutations in two additional DNA mismatch repair genes, MSH6 and MSH3. Kindreds fulfilling and not fulfilling the Amsterdam I criteria, showing early and late onset colorectal (and other) cancers, and having microsatellite stable and unstable tumors were included. Two partly parallel approaches were used: genetic linkage analysis (19 large families) and the protein truncation test (85, mostly smaller, families). Whereas MSH3 was not involved in any family, a large Amsterdam-positive, late-onset family showed a novel germ-line mutation in MSH6 (deletion of CT at nucleotide 3052 in exon 4). The mutation was identified through genetic linkage (multipoint lod score 2.4) and subsequent sequencing of MSH6. Furthermore, the entire MSH6 gene was sequenced exon by exon in families with frameshift mutations in the (C)8 tract in tumors, previously suggested as a predictor of MSH6 germ-line mutations; no mutations were found. We conclude that germ-line involvement of MSH6 and MSH3 is rare and that other genes are likely to account for a majority of MSH2-, MLH1-mutation negative families with nonpolypotic colon cancer.

  7. 'Omic' genetic technologies for herbal medicines in psychiatry.

    PubMed

    Sarris, Jerome; Ng, Chee Hong; Schweitzer, Isaac

    2012-04-01

    The field of genetics, which includes the use of 'omic' technologies, is an evolving area of science that has emerging application in phytotherapy. Omic studies include pharmacogenomics, proteomics and metabolomics. Herbal medicines, as monotherapies, or complex formulations such as traditional Chinese herbal prescriptions, may benefit from omic studies, and this new field may be termed 'herbomics'. Applying herbomics in the field of psychiatry may provide answers about which herbal interventions may be effective for individuals, which genetic processes are triggered, and the subsequent neurochemical pathways of activity. The use of proteomic technology can explore the differing epigenetic effects on neurochemical gene expression between individual herbs, isolated constituents and complex formulae. The possibilities of side effects or insufficient response to the herb can also be assessed via pharmacogenomic analysis of polymorphisms of cytochrome P450 liver enzymes or P-glycoprotein. While another novel application of omic technology is for the validation of the concept of synergy in individual herbal extracts and prescriptive formulations. Chronic administration of psychotropic herbal medicines may discover important effects on chromatin remodelling via modification of histone and DNA methylation. This paper focuses on the emerging field of herbomics, and is to our knowledge the first publication to explore this in the area of psychiatry. Copyright © 2011 John Wiley & Sons, Ltd.

  8. Toward Repurposing Metformin as a Precision Anti-Cancer Therapy Using Structural Systems Pharmacology

    PubMed Central

    Hart, Thomas; Dider, Shihab; Han, Weiwei; Xu, Hua; Zhao, Zhongming; Xie, Lei

    2016-01-01

    Metformin, a drug prescribed to treat type-2 diabetes, exhibits anti-cancer effects in a portion of patients, but the direct molecular and genetic interactions leading to this pleiotropic effect have not yet been fully explored. To repurpose metformin as a precision anti-cancer therapy, we have developed a novel structural systems pharmacology approach to elucidate metformin’s molecular basis and genetic biomarkers of action. We integrated structural proteome-scale drug target identification with network biology analysis by combining structural genomic, functional genomic, and interactomic data. Through searching the human structural proteome, we identified twenty putative metformin binding targets and their interaction models. We experimentally verified the interactions between metformin and our top-ranked kinase targets. Notably, kinases, particularly SGK1 and EGFR were identified as key molecular targets of metformin. Subsequently, we linked these putative binding targets to genes that do not directly bind to metformin but whose expressions are altered by metformin through protein-protein interactions, and identified network biomarkers of phenotypic response of metformin. The molecular targets and the key nodes in genetic networks are largely consistent with the existing experimental evidence. Their interactions can be affected by the observed cancer mutations. This study will shed new light into repurposing metformin for safe, effective, personalized therapies. PMID:26841718

  9. Development and Characterization of 1,906 EST-SSR Markers from Unigenes in Jute (Corchorus spp.)

    PubMed Central

    Zhang, Liwu; Li, Yanru; Tao, Aifen; Fang, Pingping; Qi, Jianmin

    2015-01-01

    Jute, comprising white and dark jute, is the second important natural fiber crop after cotton worldwide. However, the lack of expressed sequence tag-derived simple sequence repeat (EST-SSR) markers has resulted in a large gap in the improvement of jute. Previously, de novo 48,914 unigenes from white jute were assembled. In this study, 1,906 EST-SSRs were identified from these assembled uingenes. Among these markers, di-, tri- and tetra-nucleotide repeat types were the abundant types (12.0%, 56.9% and 21.6% respectively). The AG-rich or GA-rich nucleotide repeats were the predominant. Subsequently, a sample of 116 SSRs, located in genes encoding transcription factors and cellulose synthases, were selected to survey polymorphisms among12 diverse jute accessions. Of these, 83.6% successfully amplified at least one fragment and detected polymorphism among the 12diverse genotypes, indicating that the newly developed SSRs are of good quality. Furthermore, the genetic similarity coefficients of all the 12 accessions were evaluated using 97 polymorphic SSRs. The cluster analysis divided the jute accessions into two main groups with genetic similarity coefficient of 0.61. These EST-SSR markers not only enrich molecular markers of jute genome, but also facilitate genetic and genomic researches in jute. PMID:26512891

  10. PREVALENCE OF MUTATIONS IN ELANE, GFI1, HAX1, SBDS, WAS, AND G6PC3 IN PATIENTS WITH SEVERE CONGENITAL NEUTROPENIA

    PubMed Central

    Xia, Jun; Bolyard, Audrey Anna; Rodger, Elin; Stein, Steve; Aprikyan, Andrew A.; Dale, David C.; Link, Daniel C.

    2009-01-01

    SUMMARY Severe congenital neutropenia (SCN) is a genetically heterogeneous syndrome associated with mutations of ELANE (ELA2), HAX1, GFI1, WAS, CSF3R or G6PC3. We investigated the prevalence of mutations of ELANE in a cohort of 162 SCN patients for whom blood or bone marrow samples were submitted to the North American Severe Chronic Neutropenia Tissue Repository. Mutations of ELANE were found in 90 of 162 patients (55.6%). Subsequently, we conducted an analysis of a subset of 73 of these cases utilizing a high throughput sequencing approach to determine the prevalence of other mutations associated with SCN. Among the 73 patients, mutations of ELANE were detected in 28. In the remaining 45 patients with wild type ELANE alleles, 5 patients had mutations: GFI1 (1), SBDS (1), WAS (1) and G6PC3 (2); no mutations of HAX1 were detected. In approximately 40% of our cases, the genetic basis of SCN remains unknown. These data suggest that for genetic diagnosis of SCN, ELANE genotyping should first be performed. In patients without ELANE mutations, other known SCN-associated gene mutations will be found rarely and genotyping can be guided by the clinical features of each patient. PMID:19775295

  11. Forensic ancestry analysis in two Chinese minority populations using massively parallel sequencing of 165 ancestry-informative SNPs.

    PubMed

    He, Guanglin; Wang, Zheng; Wang, Mengge; Luo, Tao; Liu, Jing; Zhou, You; Gao, Bo; Hou, Yiping

    2018-06-04

    Ancestry inference based on single nucleotide polymorphism (SNP) with marked allele frequency differences in diverse populations (called ancestry-informative SNP, AISNP) is rapidly developed with the technology advancements of massively parallel sequencing (MPS). Despite the decade of exploration and broad public interest in the peopling of East-Asians, the genetic landscape of Chinese Silk Road populations based on the AISNPs is still little known. In this work, 206 unrelated individuals from Chinese Uyghur and Hui populations were firstly genotyped by 165 AISNPs (The Precision ID Ancestry Panel) using the Ion Torrent PGM system. The ethnic origin of two investigated populations and population structures and genetic relationships were subsequently investigated. The 165 AISNPs panel not only can differentiate Uyghur and Hui populations but also has potential applications in individual identification. Comprehensive population comparisons and admixture estimates demonstrated a predominantly higher European-related ancestry (36.30%) in Uyghurs than Huis (3.66%). Overall, the Precision ID Ancestry Panel can provide good resolution at the intercontinental level, but has limitations on the genetic homogeneous populations, such as the Hui and Han. Additional population-specific AISNPs remain necessary to get better-scale resolution within geographically proximate populations in East Asia. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Receptor tyrosine kinase alterations in AML - biology and therapy.

    PubMed

    Stirewalt, Derek L; Meshinchi, Soheil

    2010-01-01

    Acute myeloid leukemia (AML) is the most common form of leukemia in adults, and despite some recent progress in understanding the biology of the disease, AML remains the leading cause of leukemia-related deaths in adults and children. AML is a complex and heterogeneous disease, often involving multiple genetic defects that promote leukemic transformation and drug resistance. The cooperativity model suggests that an initial genetic event leads to maturational arrest in a myeloid progenitor cell, and subsequent genetic events induce proliferation and block apoptosis. Together, these genetic abnormalities lead to clonal expansion and frank leukemia. The purpose of this chapter is to review the biology of receptor tyrosine kinases (RTKs) in AML, exploring how RTKs are being used as novel prognostic factors and potential therapeutic targets.

  13. Preimplantation genetic diagnosis for cystic fibrosis: a case report.

    PubMed

    Biazotti, Maria Cristina Santoro; Pinto Junior, Walter; Albuquerque, Maria Cecília Romano Maciel de; Fujihara, Litsuko Shimabukuro; Suganuma, Cláudia Haru; Reigota, Renata Bednar; Bertuzzo, Carmen Sílvia

    2015-01-01

    Cystic fibrosis is an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator gene. This disorder produces a variable phenotype including lung disease, pancreatic insufficiency, and meconium ileus plus bilateral agenesis of the vas deferens causing obstructive azoospermia and male infertility. Preimplantation genetic diagnosis is an alternative that allows identification of embryos affected by this or other genetic diseases. We report a case of couple with cystic fibrosis; the woman had the I148 T mutation and the man had the Delta F508 gene mutation. The couple underwent in vitro fertilization, associated with preimplantation genetic diagnosis, and with subsequent selection of healthy embryos for uterine transfer. The result was an uneventful pregnancy and delivery of a healthy male baby.

  14. [Research progress on molecular genetics of forest musk deer].

    PubMed

    Jie, Hang; Zheng, Cheng-li; Wang, Jian-ming; Feng, Xiao-lan; Zeng, De-jun; Zhao, Gui-jun

    2015-11-01

    Forest musk deer is one of the large-scale farming musk deer animals with the largest population at the same time. The male musk deer can secrete valuable medicines, which has high medicinal and economic value. Due to the loss of habitat and indiscriminate hunting, the numbers of wild population specie and the distribution have been drastically reduced. Therefore, in-depth understanding of the molecular genetics progress of forest musk deer will pave a way for musk deer protection and breeding. In this review, the progress associated with the molecular marker, genetic classification, artificial breeding, musk secretion and disease in past decades were reviewed, in order to provide a theoretical basis for subsequent molecular genetic researches in forest musk deer.

  15. Preimplantation genetic diagnosis for cystic fibrosis: a case report

    PubMed Central

    Biazotti, Maria Cristina Santoro; Pinto, Walter; de Albuquerque, Maria Cecília Romano Maciel; Fujihara, Litsuko Shimabukuro; Suganuma, Cláudia Haru; Reigota, Renata Bednar; Bertuzzo, Carmen Sílvia

    2015-01-01

    Cystic fibrosis is an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator gene. This disorder produces a variable phenotype including lung disease, pancreatic insufficiency, and meconium ileus plus bilateral agenesis of the vas deferens causing obstructive azoospermia and male infertility. Preimplantation genetic diagnosis is an alternative that allows identification of embryos affected by this or other genetic diseases. We report a case of couple with cystic fibrosis; the woman had the I148 T mutation and the man had the Delta F508 gene mutation. The couple underwent in vitro fertilization, associated with preimplantation genetic diagnosis, and with subsequent selection of healthy embryos for uterine transfer. The result was an uneventful pregnancy and delivery of a healthy male baby. PMID:25993078

  16. Persistent genetic signatures of historic climatic events in an Antarctic octopus.

    PubMed

    Strugnell, J M; Watts, P C; Smith, P J; Allcock, A L

    2012-06-01

    Repeated cycles of glaciation have had major impacts on the distribution of genetic diversity of the Antarctic marine fauna. During glacial periods, ice cover limited the amount of benthic habitat on the continental shelf. Conversely, more habitat and possibly altered seaways were available during interglacials when the ice receded and the sea level was higher. We used microsatellites and partial sequences of the mitochondrial cytochrome oxidase 1 gene to examine genetic structure in the direct-developing, endemic Southern Ocean octopod Pareledone turqueti sampled from a broad range of areas that circumvent Antarctica. We find that, unusually for a species with poor dispersal potential, P. turqueti has a circumpolar distribution and is also found off the islands of South Georgia and Shag Rocks. The overriding pattern of spatial genetic structure can be explained by hydrographic (with ocean currents both facilitating and hindering gene flow) and bathymetric features. The Antarctic Peninsula region displays a complex population structure, consistent with its varied topographic and oceanographic influences. Genetic similarities between the Ross and Weddell Seas, however, are interpreted as a persistent historic genetic signature of connectivity during the hypothesized Pleistocene West Antarctic Ice Sheet collapses. A calibrated molecular clock indicates two major lineages within P. turqueti, a continental lineage and a sub-Antarctic lineage, that diverged in the mid-Pliocene with no subsequent gene flow. Both lineages survived subsequent major glacial cycles. Our data are indicative of potential refugia at Shag Rocks and South Georgia and also around the Antarctic continent within the Ross Sea, Weddell Sea and off Adélie Land. The mean age of mtDNA diversity within these main continental lineages coincides with Pleistocene glacial cycles. © 2012 Blackwell Publishing Ltd.

  17. Gene interaction at seed-awning loci in the genetic background of wild rice.

    PubMed

    Ikemoto, Mai; Otsuka, Mitsuharu; Thanh, Pham Thien; Phan, Phuong Dang Thai; Ishikawa, Ryo; Ishii, Takashige

    2017-09-12

    Seed awning is one of the important traits for successful propagation in wild rice. During the domestication of rice by ancient humans, plants with awnless seeds may have been selected because long awns hindered collection and handling activities. To investigate domestication of awnless rice, QTL analysis for seed awning was first carried out using backcross recombinant inbred lines between Oryza sativa Nipponbare (recurrent parent) and O. rufipogon W630 (donor parent). Two strong QTLs were detected in the same regions as known major seed-awning loci, An-1 and RAE2. Subsequent causal mutation surveying and fine mapping confirmed that O. rufipogon W630 has functional alleles at both loci. The gene effects and interactions at these loci were examined using two backcross populations with reciprocal genetic backgrounds of O. sativa Nipponbare and O. rufipogon W630. As awn length in wild rice varied among seeds even in the same plant, awn length was measured based on spikelet position. In the genetic background of cultivated rice, the wild alleles at An-1 and RAE2 had awning effects, and plants having both wild homozygous alleles produced awns whose length was about 70% of those of the wild parent. On the other hand, in the genetic background of wild rice, the substitution of cultivated alleles at An-1 and RAE2 contributed little to awn length reduction. These results indicate that the domestication process of awnless seeds was complicated because many genes are involved in awn formation in wild rice.

  18. Genetic variability and founder effect in the pitcher plant Sarracenia purpurea (Sarraceniaceae) in populations introduced into Switzerland: from inbreeding to invasion.

    PubMed

    Parisod, Christian; Trippi, Charlotte; Galland, Nicole

    2005-01-01

    The long-lived and mainly outcrossing species Sarracenia purpurea has been introduced into Switzerland and become invasive. This creates the opportunity to study reactions to founder effect and how a species can circumvent deleterious effects of bottlenecks such as reduced genetic diversity, inbreeding and extinction through mutational meltdown, to emerge as a highly invasive plant. A population genetic survey by random amplified polymorphism DNA markers (RAPD) together with historical insights and a field pollination experiment were carried out. At the regional scale, S. purpurea shows low structure (thetast=0.072) due to a recent founder event and important subsequent growth. Nevertheless, multivariate statistical analyses reveal that, because of a bottleneck that shifted allele frequencies, most of the variability is independent among populations. In one population (Tenasses) the species has become invasive and genetic analysis reveals restricted gene flow and family structure (thetast=0.287). Although inbreeding appears to be high (Fis >0.410 from a Bayesian estimation), a field pollination experiment failed to detect significant inbreeding depression upon F1 seed number and seed weight fitness-traits. Furthermore, crosses between unrelated individuals produced F1 seeds with significantly reduced fitness, thus showing local outbreeding depression. The results suggest that, under restricted gene flow among families, the species may not only have rapidly purged deleterious alleles, but also have undergone some form of selection for inbreeding due to co-adaptation between loci.

  19. Genetic diversity and genomic signatures of selection among cattle breeds from Siberia, eastern and northern Europe.

    PubMed

    Iso-Touru, T; Tapio, M; Vilkki, J; Kiseleva, T; Ammosov, I; Ivanova, Z; Popov, R; Ozerov, M; Kantanen, J

    2016-12-01

    Domestication in the near eastern region had a major impact on the gene pool of humpless taurine cattle (Bos taurus). As a result of subsequent natural and artificial selection, hundreds of different breeds have evolved, displaying a broad range of phenotypic traits. Here, 10 Eurasian B. taurus breeds from different biogeographic and production conditions, which exhibit different demographic histories and have been under artificial selection at various intensities, were investigated using the Illumina BovineSNP50 panel to understand their genetic diversity and population structure. In addition, we scanned genomes from eight breeds for signatures of diversifying selection. Our population structure analysis indicated six distinct breed groups, the most divergent being the Yakutian cattle from Siberia. Selection signals were shared (experimental P-value < 0.01) with more than four breeds on chromosomes 6, 7, 13, 16 and 22. The strongest selection signals in the Yakutian cattle were found on chromosomes 7 and 21, where a miRNA gene and genes related to immune system processes are respectively located. In general, genomic regions indicating selection overlapped with known QTL associated with milk production (e.g. on chromosome 19), reproduction (e.g. on chromosome 24) and meat quality (e.g. on chromosome 7). The selection map created in this study shows that native cattle breeds and their genetic resources represent unique material for future breeding. © 2016 Stichting International Foundation for Animal Genetics.

  20. Population signatures of large-scale, long-term disjunction and small-scale, short-term habitat fragmentation in an Afromontane forest bird

    PubMed Central

    Habel, J C; Mulwa, R K; Gassert, F; Rödder, D; Ulrich, W; Borghesio, L; Husemann, M; Lens, L

    2014-01-01

    The Eastern Afromontane cloud forests occur as geographically distinct mountain exclaves. The conditions of these forests range from large to small and from fairly intact to strongly degraded. For this study, we sampled individuals of the forest bird species, the Montane White-eye Zosterops poliogaster from 16 sites and four mountain archipelagos. We analysed 12 polymorphic microsatellites and three phenotypic traits, and calculated Species Distribution Models (SDMs) to project past distributions and predict potential future range shifts under a scenario of climate warming. We found well-supported genetic and morphologic clusters corresponding to the mountain ranges where populations were sampled, with 43% of all alleles being restricted to single mountains. Our data suggest that large-scale and long-term geographic isolation on mountain islands caused genetically and morphologically distinct population clusters in Z. poliogaster. However, major genetic and biometric splits were not correlated to the geographic distances among populations. This heterogeneous pattern can be explained by past climatic shifts, as highlighted by our SDM projections. Anthropogenically fragmented populations showed lower genetic diversity and a lower mean body mass, possibly in response to suboptimal habitat conditions. On the basis of these findings and the results from our SDM analysis we predict further loss of genotypic and phenotypic uniqueness in the wake of climate change, due to the contraction of the species' climatic niche and subsequent decline in population size. PMID:24713824

  1. Population signatures of large-scale, long-term disjunction and small-scale, short-term habitat fragmentation in an Afromontane forest bird.

    PubMed

    Habel, J C; Mulwa, R K; Gassert, F; Rödder, D; Ulrich, W; Borghesio, L; Husemann, M; Lens, L

    2014-09-01

    The Eastern Afromontane cloud forests occur as geographically distinct mountain exclaves. The conditions of these forests range from large to small and from fairly intact to strongly degraded. For this study, we sampled individuals of the forest bird species, the Montane White-eye Zosterops poliogaster from 16 sites and four mountain archipelagos. We analysed 12 polymorphic microsatellites and three phenotypic traits, and calculated Species Distribution Models (SDMs) to project past distributions and predict potential future range shifts under a scenario of climate warming. We found well-supported genetic and morphologic clusters corresponding to the mountain ranges where populations were sampled, with 43% of all alleles being restricted to single mountains. Our data suggest that large-scale and long-term geographic isolation on mountain islands caused genetically and morphologically distinct population clusters in Z. poliogaster. However, major genetic and biometric splits were not correlated to the geographic distances among populations. This heterogeneous pattern can be explained by past climatic shifts, as highlighted by our SDM projections. Anthropogenically fragmented populations showed lower genetic diversity and a lower mean body mass, possibly in response to suboptimal habitat conditions. On the basis of these findings and the results from our SDM analysis we predict further loss of genotypic and phenotypic uniqueness in the wake of climate change, due to the contraction of the species' climatic niche and subsequent decline in population size.

  2. Adoptive parent hostility and children's peer behavior problems: examining the role of genetically informed child attributes on adoptive parent behavior.

    PubMed

    Elam, Kit K; Harold, Gordon T; Neiderhiser, Jenae M; Reiss, David; Shaw, Daniel S; Natsuaki, Misaki N; Gaysina, Darya; Barrett, Doug; Leve, Leslie D

    2014-05-01

    Socially disruptive behavior during peer interactions in early childhood is detrimental to children's social, emotional, and academic development. Few studies have investigated the developmental underpinnings of children's socially disruptive behavior using genetically sensitive research designs that allow examination of parent-on-child and child-on-parent (evocative genotype-environment correlation [rGE]) effects when examining family process and child outcome associations. Using an adoption-at-birth design, the present study controlled for passive genotype-environment correlation and directly examined evocative rGE while examining the associations between family processes and children's peer behavior. Specifically, the present study examined the evocative effect of genetic influences underlying toddler low social motivation on mother-child and father-child hostility and the subsequent influence of parent hostility on disruptive peer behavior during the preschool period. Participants were 316 linked triads of birth mothers, adoptive parents, and adopted children. Path analysis showed that birth mother low behavioral motivation predicted toddler low social motivation, which predicted both adoptive mother-child and father-child hostility, suggesting the presence of an evocative genotype-environment association. In addition, both mother-child and father-child hostility predicted children's later disruptive peer behavior. Results highlight the importance of considering genetically influenced child attributes on parental hostility that in turn links to later child social behavior. Implications for intervention programs focusing on early family processes and the precursors of disrupted child social development are discussed. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  3. Adoptive Parent Hostility and Children’s Peer Behavior Problems: Examining the Role of Genetically-Informed Child Attributes on Adoptive Parent Behavior

    PubMed Central

    Elam, Kit K.; Harold, Gordon T.; Neiderhiser, Jenae M.; Reiss, David; Shaw, Daniel S.; Natsuaki, Misaki N.; Gaysina, Darya; Barrett, Doug; Leve, Leslie D.

    2014-01-01

    Socially disruptive behavior during peer interactions in early childhood is detrimental to children’s social, emotional, and academic development. Few studies have investigated the developmental underpinnings of children’s socially disruptive behavior using genetically-sensitive research designs that allow examination of parent-on-child and child-on-parent (evocative genotype-environment correlation) effects when examining family process and child outcome associations. Using an adoption-at-birth design, the present study controlled for passive genotype-environment correlation and directly examined evocative genotype-environment correlation (rGE) while examining the associations between family processes and children’s peer behavior. Specifically, the present study examined the evocative effect of genetic influences underlying toddler low social motivation on mother-child and father-child hostility, and the subsequent influence of parent hostility on disruptive peer behavior during the preschool period. Participants were 316 linked triads of birth mothers, adoptive parents, and adopted children. Path analysis showed that birth mother low behavioral motivation predicted toddler low social motivation, which predicted both adoptive mother-child and father-child hostility, suggesting the presence of an evocative genotype-environment association. In addition, both mother-child and father-child hostility predicted children’s later disruptive peer behavior. Results highlight the importance of considering genetically-influenced child attributes on parental hostility that in turn link to later child social behavior. Implications for intervention programs focusing on early family processes and the precursors of disrupted child social development are discussed. PMID:24364829

  4. Admixture of Eastern and Western European Red Deer Lineages as a Result of Postglacial Recolonization of the Czech Republic (Central Europe).

    PubMed

    Krojerová-Prokešová, Jarmila; Barančeková, Miroslava; Koubek, Petr

    2015-01-01

    Due to a restriction of the distributional range of European red deer (Cervus elaphus L.) during the Quaternary and subsequent recolonization of Europe from different refugia, a clear phylogeographical pattern in genetic structure has been revealed using mitochondrial DNA markers. In Central Europe, 2 distinct, eastern and western, lineages of European red deer are present; however, admixture between them has not yet been studied in detail. We used mitochondrial DNA (control region and cytochrome b gene) sequences and 22 microsatellite loci from 522 individuals to investigate the genetic diversity of red deer in what might be expected to be an intermediate zone. We discovered a high number of unique mtDNA haplotypes belonging to each lineage and high levels of genetic diversity (cyt b H = 0.867, D-loop H = 0.914). The same structuring of red deer populations was also revealed by microsatellite analysis, with results from both analyses thus suggesting a suture zone between the 2 lineages. Despite the fact that postglacial recolonization of Central Europe by red deer occurred more than 10000 years ago, the degree of admixture between the 2 lineages is relatively small, with only 10.8% admixed individuals detected. Direct translocations of animals by humans have slightly blurred the pattern in this region; however, this blurring was more apparent when using maternally inherited markers than nuclear markers. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Use of genetic data to infer population-specific ecological and phenotypic traits from mixed aggregations

    USGS Publications Warehouse

    Moran, Paul; Bromaghin, Jeffrey F.; Masuda, Michele

    2014-01-01

    Many applications in ecological genetics involve sampling individuals from a mixture of multiple biological populations and subsequently associating those individuals with the populations from which they arose. Analytical methods that assign individuals to their putative population of origin have utility in both basic and applied research, providing information about population-specific life history and habitat use, ecotoxins, pathogen and parasite loads, and many other non-genetic ecological, or phenotypic traits. Although the question is initially directed at the origin of individuals, in most cases the ultimate desire is to investigate the distribution of some trait among populations. Current practice is to assign individuals to a population of origin and study properties of the trait among individuals within population strata as if they constituted independent samples. It seemed that approach might bias population-specific trait inference. In this study we made trait inferences directly through modeling, bypassing individual assignment. We extended a Bayesian model for population mixture analysis to incorporate parameters for the phenotypic trait and compared its performance to that of individual assignment with a minimum probability threshold for assignment. The Bayesian mixture model outperformed individual assignment under some trait inference conditions. However, by discarding individuals whose origins are most uncertain, the individual assignment method provided a less complex analytical technique whose performance may be adequate for some common trait inference problems. Our results provide specific guidance for method selection under various genetic relationships among populations with different trait distributions.

  6. Use of Genetic Data to Infer Population-Specific Ecological and Phenotypic Traits from Mixed Aggregations

    PubMed Central

    Moran, Paul; Bromaghin, Jeffrey F.; Masuda, Michele

    2014-01-01

    Many applications in ecological genetics involve sampling individuals from a mixture of multiple biological populations and subsequently associating those individuals with the populations from which they arose. Analytical methods that assign individuals to their putative population of origin have utility in both basic and applied research, providing information about population-specific life history and habitat use, ecotoxins, pathogen and parasite loads, and many other non-genetic ecological, or phenotypic traits. Although the question is initially directed at the origin of individuals, in most cases the ultimate desire is to investigate the distribution of some trait among populations. Current practice is to assign individuals to a population of origin and study properties of the trait among individuals within population strata as if they constituted independent samples. It seemed that approach might bias population-specific trait inference. In this study we made trait inferences directly through modeling, bypassing individual assignment. We extended a Bayesian model for population mixture analysis to incorporate parameters for the phenotypic trait and compared its performance to that of individual assignment with a minimum probability threshold for assignment. The Bayesian mixture model outperformed individual assignment under some trait inference conditions. However, by discarding individuals whose origins are most uncertain, the individual assignment method provided a less complex analytical technique whose performance may be adequate for some common trait inference problems. Our results provide specific guidance for method selection under various genetic relationships among populations with different trait distributions. PMID:24905464

  7. When gender matters: new insights into the relationships between social systems and the genetic structure of human populations.

    PubMed

    Destro Bisol, Giovanni; Capocasa, Marco; Anagnostou, Paolo

    2012-10-01

    Due to its important effects on the ecological dynamics and the genetic structure of species, biologists have long been interested in gender-biased dispersal, a condition where one gender is more prone to move from the natal site. More recently, this topic has attracted a great attention from human evolutionary geneticists. Considering the close relations between residential rules and social structure, gender-biased dispersal is, in fact, regarded as an important case study concerning the effects of socio-cultural factors on human genetic variation. It all started with the seminal paper by Mark Seielstad, Erich Minch and Luigi Luca Cavalli Sforza from Stanford University (Seielstad et al. 1998). They observed a larger differentiation for Y-chromosome than mitochondrial DNA between extant human populations, purportedly a consequence of the prevalence of long-term patrilocality in human societies. Subsequent studies, however, have highlighted the need to consider geographically close and culturally homogeneous groups, disentangle signals due to different peopling events and obtain unbiased estimates of genetic diversity. In this issue of Molecular Ecology, not only do Marks et al. (2012) adopt an experimental design which addresses these concerns, but they also take a further and important step forward by integrating the genetic analysis of two distant populations, the Basotho and Spanish, with data regarding migration rates and matrimonial distances. Using both empirical evidence and simulations, the authors show that female-biased migration due to patrilocality might shape the genetic structure of human populations only at short ranges and under substantial differences in migration rates between genders. Providing a quantitative framework for future studies of the effects of residential rules on the human genome, this study paves the way for further developments in the field. On a wider perspective, Marks et al.'s work demonstrates the power of approaches which integrate biological, cultural and demographic lines of evidence in the study of relations between social and genetic structures of human populations.

  8. Persistence of genetically altered fields in head and neck cancer patients: biological and clinical implications.

    PubMed

    Tabor, M P; Brakenhoff, R H; van Houten, V M; Kummer, J A; Snel, M H; Snijders, P J; Snow, G B; Leemans, C R; Braakhuis, B J

    2001-06-01

    In 1953, Slaughter et al. [D. P. Slaughter et al., Cancer (Phila.), 6: 963-968, 1953] proposed the concept of field cancerization in patients with squamous cell carcinoma of the head and neck (HNSCC) and discussed its clinical significance for the development of second primary tumors and local recurrences. To define the process of field cancerization and its putative clinical implications, we analyzed genetic aberrations in HNSCC and the accompanying macroscopically normal mucosa. In 28 HNSCC patients, loss of heterozygosity was determined in tumor and five noncontiguous mucosal biopsies using eight microsatellite markers at 9p, 3p, and 17p. For patients who showed loss of heterozygosity in their mucosal biopsies, all margins of the surgical specimen were subsequently analyzed to determine the extension of the field. In these cases, additional markers at 8p, 13q, and 18q as well as p53 mutations were included to determine subclonal differences between field and tumor. Genetically altered fields were detected in 36% (10 of 28) of the HNSCC patients. The field varied in size between patients and consisted of genetically different subclones. In 7 of 10 cases, the field extended into the surgical margins. One particular patient with a genetically altered field in a surgical margin developed a local recurrence after 28 months of follow-up. Microsatellite analysis showed that this recurrence had more molecular markers in common with the nonresected premalignant field than with the original tumor, suggesting that this persistent field has progressed further into a new malignancy. Our data show that genetically altered mucosa remains after treatment in a significant proportion of HNSCC patients, which may explain in part the high frequency of local recurrences and second primary tumors. Adequate identification and risk assessment of these genetically altered fields may have profound implications for future patient management.

  9. Population genetic analysis of a medicinally significant Australian rainforest tree, Fontainea picrosperma C.T. White (Euphorbiaceae): biogeographic patterns and implications for species domestication and plantation establishment.

    PubMed

    Lamont, R W; Conroy, G C; Reddell, P; Ogbourne, S M

    2016-02-29

    Fontainea picrosperma, a subcanopy tree endemic to the rainforests of northeastern Australia, is of medicinal significance following the discovery of the novel anti-cancer natural product, EBC-46. Laboratory synthesis of EBC-46 is unlikely to be commercially feasible and consequently production of the molecule is via isolation from F. picrosperma grown in plantations. Successful domestication and plantation production requires an intimate knowledge of a taxon's life-history attributes and genetic architecture, not only to ensure the maximum capture of genetic diversity from wild source populations, but also to minimise the risk of a detrimental loss in genetic diversity via founder effects during subsequent breeding programs designed to enhance commercially significant agronomic traits. Here we report the use of eleven microsatellite loci (PIC = 0.429; P ID  = 1.72 × 10(-6)) to investigate the partitioning of genetic diversity within and among seven natural populations of F. picrosperma. Genetic variation among individuals and within populations was found to be relatively low (A = 2.831; H E  = 0.407), although there was marked differentiation among populations (PhiPT = 0.248). Bayesian, UPGMA and principal coordinates analyses detected three main genotypic clusters (K = 3), which were present at all seven populations. Despite low levels of historical gene flow (N m  = 1.382), inbreeding was negligible (F = -0.003); presumably due to the taxon's dioecious breeding system. The data suggests that F. picrosperma was previously more continuously distributed, but that rainforest contraction and expansion in response to glacial-interglacial cycles, together with significant anthropogenic effects have resulted in significant fragmentation. This research provides important tools to support plantation establishment, selection and genetic improvement of this medicinally significant Australian rainforest species.

  10. Genetics Home Reference: infantile-onset ascending hereditary spastic paralysis

    MedlinePlus

    ... cell membrane to the interior of the cell (endocytosis), and the development of specialized structures called axons ... the subsequent loss of GTPase functions, such as endocytosis and the development of axons and dendrites, contribute ...

  11. Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification

    PubMed Central

    Wen, Tingxi; Zhang, Zhongnan

    2017-01-01

    Abstract In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy. PMID:28489789

  12. Calcineurin orchestrates dimorphic transitions, antifungal drug responses and host-pathogen interactions of the pathogenic mucoralean fungus Mucor circinelloides.

    PubMed

    Lee, Soo Chan; Li, Alicia; Calo, Silvia; Inoue, Makoto; Tonthat, Nam K; Bain, Judith M; Louw, Johanna; Shinohara, Mari L; Erwig, Lars P; Schumacher, Maria A; Ko, Dennis C; Heitman, Joseph

    2015-09-01

    Calcineurin plays essential roles in virulence and growth of pathogenic fungi and is a target of the natural products FK506 and Cyclosporine A. In the pathogenic mucoralean fungus Mucor circinelloides, calcineurin mutation or inhibition confers a yeast-locked phenotype indicating that calcineurin governs the dimorphic transition. Genetic analysis in this study reveals that two calcineurin A catalytic subunits (out of three) are functionally diverged. Homology modeling illustrates modes of resistance resulting from amino substitutions in the interface between each calcineurin subunit and the inhibitory drugs. In addition, we show how the dimorphic transition orchestrated by calcineurin programs different outcomes during host-pathogen interactions. For example, when macrophages phagocytose Mucor yeast, subsequent phagosomal maturation occurs, indicating host cells respond appropriately to control the pathogen. On the other hand, upon phagocytosis of spores, macrophages fail to form mature phagosomes. Cytokine production from immune cells differs following exposure to yeast versus spores (which germinate into hyphae). Thus, the morphogenic transition can be targeted as an efficient treatment option against Mucor infection. In addition, genetic analysis (including gene disruption and mutational studies) further strengthens the understanding of calcineurin and provides a foundation to develop antifungal agents targeting calcineurin to deploy against Mucor and other pathogenic fungi. © 2015 John Wiley & Sons Ltd.

  13. Genome-wide analysis of bacterial determinants of plant growth promotion and induced systemic resistance by Pseudomonas fluorescens.

    PubMed

    Cheng, Xu; Etalo, Desalegn W; van de Mortel, Judith E; Dekkers, Ester; Nguyen, Linh; Medema, Marnix H; Raaijmakers, Jos M

    2017-11-01

    Pseudomonas fluorescens strain SS101 (Pf.SS101) promotes growth of Arabidopsis thaliana, enhances greening and lateral root formation, and induces systemic resistance (ISR) against the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Here, targeted and untargeted approaches were adopted to identify bacterial determinants and underlying mechanisms involved in plant growth promotion and ISR by Pf.SS101. Based on targeted analyses, no evidence was found for volatiles, lipopeptides and siderophores in plant growth promotion by Pf.SS101. Untargeted, genome-wide analyses of 7488 random transposon mutants of Pf.SS101 led to the identification of 21 mutants defective in both plant growth promotion and ISR. Many of these mutants, however, were auxotrophic and impaired in root colonization. Genetic analysis of three mutants followed by site-directed mutagenesis, genetic complementation and plant bioassays revealed the involvement of the phosphogluconate dehydratase gene edd, the response regulator gene colR and the adenylsulfate reductase gene cysH in both plant growth promotion and ISR. Subsequent comparative plant transcriptomics analyses strongly suggest that modulation of sulfur assimilation, auxin biosynthesis and transport, steroid biosynthesis and carbohydrate metabolism in Arabidopsis are key mechanisms linked to growth promotion and ISR by Pf.SS101. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Emotional distress following genetic testing for hereditary breast and ovarian cancer: a meta-analytic review.

    PubMed

    Hamilton, Jada G; Lobel, Marci; Moyer, Anne

    2009-07-01

    Meta-analysis was used to synthesize results of studies on emotional consequences of predictive genetic testing for BRCA1/2 mutations conferring increased risk of breast and ovarian cancer. Studies assessing anxiety or cancer-specific distress before and after provision of test results (k = 20) were analyzed using a random-effects model. Moderator variables included country of data collection and personal cancer history of study participants. Standardized mean gain effect sizes were calculated for mutation carriers, noncarriers, and those with inconclusive results over short (0-4 weeks), moderate (5-24 weeks), or long (25-52 weeks) periods of time after testing. Distress among carriers increased shortly after receiving results and returned to pretesting levels over time. Distress among noncarriers and those with inconclusive results decreased over time. Some distress patterns differed in studies conducted outside the United States and for individuals with varying cancer histories. Results underscore the importance of time; changes in distress observed shortly after test-result disclosure frequently differed from the pattern of distress seen subsequently. Although emotional consequences of this testing appear minimal, it remains possible that testing may affect cognitive and behavioral outcomes, which have rarely been examined through meta-analysis. Testing may also affect understudied subgroups differently.

  15. "Is It Worth Knowing?" Focus Group Participants' Perceived Utility of Genomic Preconception Carrier Screening.

    PubMed

    Schneider, Jennifer L; Goddard, Katrina A B; Davis, James; Wilfond, Benjamin; Kauffman, Tia L; Reiss, Jacob A; Gilmore, Marian; Himes, Patricia; Lynch, Frances L; Leo, Michael C; McMullen, Carmit

    2016-02-01

    As genome sequencing technology advances, research is needed to guide decision-making about what results can or should be offered to patients in different clinical settings. We conducted three focus groups with individuals who had prior preconception genetic testing experience to explore perceived advantages and disadvantages of genome sequencing for preconception carrier screening, compared to usual care. Using a discussion guide, a trained qualitative moderator facilitated the audio-recorded focus groups. Sixteen individuals participated. Thematic analysis of transcripts started with a grounded approach and subsequently focused on participants' perceptions of the value of genetic information. Analysis uncovered two orientations toward genomic preconception carrier screening: "certain" individuals desiring all possible screening information; and "hesitant" individuals who were more cautious about its value. Participants revealed valuable information about barriers to screening: fear/anxiety about results; concerns about the method of returning results; concerns about screening necessity; and concerns about partner participation. All participants recommended offering choice to patients to enhance the value of screening and reduce barriers. Overall, two groups of likely users of genome sequencing for preconception carrier screening demonstrated different perceptions of the advantages or disadvantages of screening, suggesting tailored approaches to education, consent, and counseling may be warranted with each group.

  16. Chapter 7. Cloning and analysis of natural product pathways.

    PubMed

    Gust, Bertolt

    2009-01-01

    The identification of gene clusters of natural products has lead to an enormous wealth of information about their biosynthesis and its regulation, and about self-resistance mechanisms. Well-established routine techniques are now available for the cloning and sequencing of gene clusters. The subsequent functional analysis of the complex biosynthetic machinery requires efficient genetic tools for manipulation. Until recently, techniques for the introduction of defined changes into Streptomyces chromosomes were very time-consuming. In particular, manipulation of large DNA fragments has been challenging due to the absence of suitable restriction sites for restriction- and ligation-based techniques. The homologous recombination approach called recombineering (referred to as Red/ET-mediated recombination in this chapter) has greatly facilitated targeted genetic modifications of complex biosynthetic pathways from actinomycetes by eliminating many of the time-consuming and labor-intensive steps. This chapter describes techniques for the cloning and identification of biosynthetic gene clusters, for the generation of gene replacements within such clusters, for the construction of integrative library clones and their expression in heterologous hosts, and for the assembly of entire biosynthetic gene clusters from the inserts of individual library clones. A systematic approach toward insertional mutation of a complete Streptomyces genome is shown by the use of an in vitro transposon mutagenesis procedure.

  17. Mitochondrial enteropathy: the primary pathology may not be within the gastrointestinal tract

    PubMed Central

    Chinnery, P; Jones, S; Sviland, L; Andrews, R; Parsons, T; Turnbull, D; Bindoff, L

    2001-01-01

    BACKGROUND—Mitochondrial DNA (mtDNA) defects are an important cause of disease. Although gastrointestinal symptoms are common in these patients, their pathogenesis remains uncertain.
AIM—To investigate the role of the mtDNA defect in the production of gastrointestinal dysfunction.
PATIENT—A 20 year old woman who presented at 15 years of age with recurrent vomiting and pseudo-obstruction, who did not respond to conservative management and ultimately had subtotal gastrectomy and Roux-en-y reconstruction. She subsequently presented with status epilepticus and was found to have a mitochondrial respiratory chain disorder due to a pathogenic mtDNA point mutation (A3243G).
METHODS—Resected bowel was studied using light and electron microscopy and mtDNA analysed from both mucosal and muscular layers using polymerase chain reaction generated RFLP analysis. 
RESULTS— Histological and electron microscopic studies revealed no morphological abnormalities in the resected stomach, and molecular genetic analysis failed to identify the genetic defect in either the mucosal or muscle layers.
CONCLUSION—This study suggests that in some individuals with gastrointestinal symptoms associated with established mitochondrial DNA disease, the primary pathology of the mitochondrial enteropathy lies outside the gastrointestinal tract.


Keywords: mitochondrial encephalomyopathy; cyclical vomiting; pseudo-obstruction PMID:11115833

  18. Structural insights into the adaptation of proliferating cell nuclear antigen (PCNA) from Haloferax volcanii to a high-salt environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgunova, Ekaterina, E-mail: ekaterina.morgunova@ki.se; Gray, Fiona C.; MacNeill, Stuart A.

    2009-10-01

    The crystal structure of PCNA from the halophilic archaeon H. volcanii reveals specific features of the charge distribution on the protein surface that reflect adaptation to a high-salt environment and suggests a different type of interaction with DNA in halophilic PCNAs. The sliding clamp proliferating cell nuclear antigen (PCNA) plays vital roles in many aspects of DNA replication and repair in eukaryotic cells and in archaea. Realising the full potential of archaea as a model for PCNA function requires a combination of biochemical and genetic approaches. In order to provide a platform for subsequent reverse genetic analysis, PCNA from themore » halophilic archaeon Haloferax volcanii was subjected to crystallographic analysis. The gene was cloned and expressed in Escherichia coli and the protein was purified by affinity chromatography and crystallized by the vapour-diffusion technique. The structure was determined by molecular replacement and refined at 3.5 Å resolution to a final R factor of 23.7% (R{sub free} = 25%). PCNA from H. volcanii was found to be homotrimeric and to resemble other homotrimeric PCNA clamps but with several differences that appear to be associated with adaptation of the protein to the high intracellular salt concentrations found in H. volcanii cells.« less

  19. Ancient mtDNA Analysis of Early 16th Century Caribbean Cattle Provides Insight into Founding Populations of New World Creole Cattle Breeds

    PubMed Central

    Speller, Camilla F.; Burley, David V.; Woodward, Robyn P.; Yang, Dongya Y.

    2013-01-01

    The Columbian Exchange resulted in a widespread movement of humans, plants and animals between the Old and New Worlds. The late 15th to early 16th century transfer of cattle from the Iberian Peninsula and Canary Islands to the Caribbean laid the foundation for the development of American creole cattle (Bos taurus) breeds. Genetic analyses of modern cattle from the Americas reveal a mixed ancestry of European, African and Indian origins. Recent debate in the genetic literature centers on the ‘African’ haplogroup T1 and its subhaplogroups, alternatively tying their origins to the initial Spanish herds, and/or from subsequent movements of taurine cattle through the African slave trade. We examine this problem through ancient DNA analysis of early 16th century cattle bone from Sevilla la Nueva, the first Spanish colony in Jamaica. In spite of poor DNA preservation, both T3 and T1 haplogroups were identified in the cattle remains, confirming the presence of T1 in the earliest Spanish herds. The absence, however, of “African-derived American” haplotypes (AA/T1c1a1) in the Sevilla la Nueva sample, leaves open the origins of this sub-haplogroup in contemporary Caribbean cattle. PMID:23894505

  20. Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification.

    PubMed

    Wen, Tingxi; Zhang, Zhongnan

    2017-05-01

    In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy.

  1. Development of a New Rapid Isolation Device for Circulating Tumor Cells (CTCs) Using 3D Palladium Filter and Its Application for Genetic Analysis

    PubMed Central

    Yusa, Akiko; Toneri, Makoto; Masuda, Taisuke; Ito, Seiji; Yamamoto, Shuhei; Okochi, Mina; Kondo, Naoto; Iwata, Hiroji; Yatabe, Yasushi; Ichinosawa, Yoshiyuki; Kinuta, Seichin; Kondo, Eisaku; Honda, Hiroyuki; Arai, Fumihito; Nakanishi, Hayao

    2014-01-01

    Circulating tumor cells (CTCs) in the blood of patients with epithelial malignancies provide a promising and minimally invasive source for early detection of metastasis, monitoring of therapeutic effects and basic research addressing the mechanism of metastasis. In this study, we developed a new filtration-based, sensitive CTC isolation device. This device consists of a 3-dimensional (3D) palladium (Pd) filter with an 8 µm-sized pore in the lower layer and a 30 µm-sized pocket in the upper layer to trap CTCs on a filter micro-fabricated by precise lithography plus electroforming process. This is a simple pump-less device driven by gravity flow and can enrich CTCs from whole blood within 20 min. After on-device staining of CTCs for 30 min, the filter cassette was removed from the device, fixed in a cassette holder and set up on the upright fluorescence microscope. Enumeration and isolation of CTCs for subsequent genetic analysis from the beginning were completed within 1.5 hr and 2 hr, respectively. Cell spike experiments demonstrated that the recovery rate of tumor cells from blood by this Pd filter device was more than 85%. Single living tumor cells were efficiently isolated from these spiked tumor cells by a micromanipulator, and KRAS mutation, HER2 gene amplification and overexpression, for example, were successfully detected from such isolated single tumor cells. Sequential analysis of blood from mice bearing metastasis revealed that CTC increased with progression of metastasis. Furthermore, a significant increase in the number of CTCs from the blood of patients with metastatic breast cancer was observed compared with patients without metastasis and healthy volunteers. These results suggest that this new 3D Pd filter-based device would be a useful tool for the rapid, cost effective and sensitive detection, enumeration, isolation and genetic analysis of CTCs from peripheral blood in both preclinical and clinical settings. PMID:24523941

  2. Three ulcerative colitis susceptibility loci are associated with primary sclerosing cholangitis and indicate a role for IL2, REL, and CARD9.

    PubMed

    Janse, Marcel; Lamberts, Laetitia E; Franke, Lude; Raychaudhuri, Soumya; Ellinghaus, Eva; Muri Boberg, Kirsten; Melum, Espen; Folseraas, Trine; Schrumpf, Erik; Bergquist, Annika; Björnsson, Einar; Fu, Jingyuan; Jan Westra, Harm; Groen, Harry J M; Fehrmann, Rudolf S N; Smolonska, Joanna; van den Berg, Leonard H; Ophoff, Roel A; Porte, Robert J; Weismüller, Tobias J; Wedemeyer, Jochen; Schramm, Christoph; Sterneck, Martina; Günther, Rainer; Braun, Felix; Vermeire, Severine; Henckaerts, Liesbet; Wijmenga, Cisca; Ponsioen, Cyriel Y; Schreiber, Stefan; Karlsen, Tom H; Franke, Andre; Weersma, Rinse K

    2011-06-01

    Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by inflammation and fibrosis of the bile ducts. Both environmental and genetic factors contribute to its pathogenesis. To further clarify its genetic background, we investigated susceptibility loci recently identified for ulcerative colitis (UC) in a large cohort of 1,186 PSC patients and 1,748 controls. Single nucleotide polymorphisms (SNPs) tagging 13 UC susceptibility loci were initially genotyped in 854 PSC patients and 1,491 controls from Benelux (331 cases, 735 controls), Germany (265 cases, 368 controls), and Scandinavia (258 cases, 388 controls). Subsequently, a joint analysis was performed with an independent second Scandinavian cohort (332 cases, 257 controls). SNPs at chromosomes 2p16 (P-value 4.12 × 10(-4) ), 4q27 (P-value 4.10 × 10(-5) ), and 9q34 (P-value 8.41 × 10(-4) ) were associated with PSC in the joint analysis after correcting for multiple testing. In PSC patients without inflammatory bowel disease (IBD), SNPs at 4q27 and 9q34 were nominally associated (P < 0.05). We applied additional in silico analyses to identify likely candidate genes at PSC susceptibility loci. To identify nonrandom, evidence-based links we used GRAIL (Gene Relationships Across Implicated Loci) analysis showing interconnectivity between genes in six out of in total nine PSC-associated regions. Expression quantitative trait analysis from 1,469 Dutch and UK individuals demonstrated that five out of nine SNPs had an effect on cis-gene expression. These analyses prioritized IL2, CARD9, and REL as novel candidates. We have identified three UC susceptibility loci to be associated with PSC, harboring the putative candidate genes REL, IL2, and CARD9. These results add to the scarce knowledge on the genetic background of PSC and imply an important role for both innate and adaptive immunological factors. Copyright © 2011 American Association for the Study of Liver Diseases.

  3. Gene-environment interaction in atopic diseases: a population-based twin study of early-life exposures.

    PubMed

    Kahr, Niklas; Naeser, Vibeke; Stensballe, Lone Graff; Kyvik, Kirsten Ohm; Skytthe, Axel; Backer, Vibeke; Bønnelykke, Klaus; Thomsen, Simon Francis

    2015-01-01

    The development of atopic diseases early in life suggests an important role of perinatal risk factors. To study whether early-life exposures modify the genetic influence on atopic diseases in a twin population. Questionnaire data on atopic diseases from 850 monozygotic and 2279 like-sex dizygotic twin pairs, 3-9 years of age, from the Danish Twin Registry were cross-linked with data on prematurity, Cesarean section, maternal age at birth, parental cohabitation, season of birth and maternal smoking during pregnancy, from the Danish National Birth Registry. Significant predictors of atopic diseases were identified with logistic regression and subsequently tested for genetic effect modification using variance components analysis. After multivariable adjustment, prematurity (gestational age below 32 weeks) [odds ratio (OR) = 1.93, confidence interval (CI) = 1.45-2.56], Cesarean section (OR = 1.25, CI = 1.05-1.49) and maternal smoking during pregnancy (OR = 1.70, CI = 1.42-2.04) significantly influenced the risk of asthma, whereas none of the factors were significantly associated with atopic dermatitis and hay fever. Variance components analysis stratified by exposure status showed no significant change in the heritability of asthma according to the identified risk factors. In this population-based study of children, there was no evidence of genetic effect modification of atopic diseases by several identified early-life risk factors. The causal relationship between these risk factors and atopic diseases may therefore be mediated via mechanisms different from gene-environment interaction. © 2014 John Wiley & Sons Ltd.

  4. Molecular andrology as related to sperm DNA fragmentation/sperm chromatin biotechnology.

    PubMed

    Shafik, A; Shafik, A A; Shafik, I; El Sibai, O

    2006-01-01

    Genetic male infertility occurs throughout the life cycle from genetic traits carried by the sperm, to fertilization and post-fertilization genome alterations, and subsequent developmental changes in the blastocyst and fetus as well as errors in meiosis and abnormalities in spermatogenesis/spermatogenesis. Genes encoding proteins for normal development include SRY, SOX9, INSL3 and LGR8. Genetic abnormalities affect spermatogenesis whereas polymorphisms affect receptor affinity and hormone bioactivity. Transgenic animal models, the human genome project, and other techniques have identified numerous genes related to male fertility. Several techniques have been developed to measure the amount of sperm DNA damage in an effort to identify more objective parameters for evaluation of infertile men. The integrity of sperm DNA influences a couple's fertility and helps predict the chances of pregnancy and its successful outcome. The available tests of sperm DNA damage require additional large-scale clinical trials before their integration into routine clinical practice. The physiological/molecular integrity of sperm DNA is a novel parameter of semen quality and a potential fertility predictor. Although DNA integrity assessment appears to be a logical biomarker of sperm quality, it is not being assessed as a routine part of semen analysis by clinical andrologists. Extensive investigation has been conducted for the comparative evaluation of these techniques. However, some of these techniques require expensive instrumentation for optimal and unbiased analysis, are labor intensive, or require the use of enzymes whose activity and accessibility to DNA breaks may be irregular. Thus, these techniques are recommended for basic research rather than for routine andrology laboratories.

  5. Empirical valence bond models for reactive potential energy surfaces: a parallel multilevel genetic program approach.

    PubMed

    Bellucci, Michael A; Coker, David F

    2011-07-28

    We describe a new method for constructing empirical valence bond potential energy surfaces using a parallel multilevel genetic program (PMLGP). Genetic programs can be used to perform an efficient search through function space and parameter space to find the best functions and sets of parameters that fit energies obtained by ab initio electronic structure calculations. Building on the traditional genetic program approach, the PMLGP utilizes a hierarchy of genetic programming on two different levels. The lower level genetic programs are used to optimize coevolving populations in parallel while the higher level genetic program (HLGP) is used to optimize the genetic operator probabilities of the lower level genetic programs. The HLGP allows the algorithm to dynamically learn the mutation or combination of mutations that most effectively increase the fitness of the populations, causing a significant increase in the algorithm's accuracy and efficiency. The algorithm's accuracy and efficiency is tested against a standard parallel genetic program with a variety of one-dimensional test cases. Subsequently, the PMLGP is utilized to obtain an accurate empirical valence bond model for proton transfer in 3-hydroxy-gamma-pyrone in gas phase and protic solvent. © 2011 American Institute of Physics

  6. Dietary ascorbic acid and subsequent change in body weight and waist circumference: associations may depend on genetic predisposition to obesity - a prospective study of three independent cohorts

    PubMed Central

    2014-01-01

    Background Cross-sectional data suggests that a low level of plasma ascorbic acid positively associates with both Body Mass Index (BMI) and Waist Circumference (WC). This leads to questions about a possible relationship between dietary intake of ascorbic acid and subsequent changes in anthropometry, and whether such associations may depend on genetic predisposition to obesity. Hence, we examined whether dietary ascorbic acid, possibly in interaction with the genetic predisposition to a high BMI, WC or waist-hip ratio adjusted for BMI (WHR), associates with subsequent annual changes in weight (∆BW) and waist circumference (∆WC). Methods A total of 7,569 participants’ from MONICA, the Diet Cancer and Health study and the INTER99 study were included in the study. We combined 50 obesity associated single nucleotide polymorphisms (SNPs) in four genetic scores: a score of all SNPs and a score for each of the traits (BMI, WC and WHR) with which the SNPs associate. Linear regression was used to examine the association between ascorbic acid intake and ΔBW or ΔWC. SNP-score × ascorbic acid interactions were examined by adding product terms to the models. Results We found no significant associations between dietary ascorbic acid and ∆BW or ∆WC. Regarding SNP-score × ascorbic acid interactions, each additional risk allele of the 14 WHR associated SNPs associated with a ∆WC of 0.039 cm/year (P = 0.02, 95% CI: 0.005 to 0.073) per 100 mg/day higher ascorbic acid intake. However, the association to ∆WC only remained borderline significant after adjustment for ∆BW. Conclusion In general, our study does not support an association between dietary ascorbic acid and ∆BW or ∆WC, but a diet with a high content of ascorbic acid may be weakly associated to higher WC gain among people who are genetically predisposed to a high WHR. However, given the quite limited association any public health relevance is questionable. PMID:24886192

  7. The association between speed of transition from initiation to subsequent use of cannabis and later problematic cannabis use, abuse and dependence.

    PubMed

    Hines, Lindsey A; Morley, Katherine I; Strang, John; Agrawal, Arpana; Nelson, Elliot C; Statham, Dixie; Martin, Nicholas G; Lynskey, Michael T

    2015-08-01

    To test whether speed of transition from initiation use to subsequent use of cannabis is associated with likelihood of later cannabis dependence and other outcomes, and whether transition speed is attributable to genetic or environmental factors. Cross-sectional interview study. Australia. A total of 2239 twins and siblings who reported using cannabis at least twice [mean age at time of survey = 32.0, 95% confidence interval (CI) = 31.9 - 32.1, range = 22-45]. Time between initiation and subsequent cannabis use (within 1 week; within 3 months; between 3 and 12 months; more than 1 year later), later use of cannabis and symptoms of DSM-IV cannabis abuse/dependence. Multinomial regression analyses (comparison group: more than 1 year later) adjusted the association between speed of transition and the outcomes of cannabis daily use, abuse/dependence and treatment-seeking after controlling for socio-demographic, childhood, mental health, peer and licit drug factors. Twin modelling estimated the proportion of variance in transition speed attributable to genetic (A), common environment (C) and unique environmental (E) factors. Subsequent use of cannabis within 1 week of initiation was associated with daily use [odds ratio (OR) = 2.64, 95% CI = 1.75-3.99], abuse and/or dependence (OR = 3.25, 95% CI = 2.31-4.56) and treatment-seeking for cannabis problems (OR = 1.89, 95% CI = 1.03-3.46). Subsequent use within 3 months was associated with abuse and/or dependence (OR = 1.61, 95% CI = 1.18-2.19). The majority of the variation of the speed of transition was accounted for by unique environment factors (0.75). Rapid transition from initiation to subsequent use of cannabis is associated with increased likelihood of subsequent daily cannabis use and abuse/dependence. © 2015 Society for the Study of Addiction.

  8. The development of genetic resistance to myxomatosis in wild rabbits in Britain.

    PubMed

    Ross, J; Sanders, M F

    1984-06-01

    The presence of genetic resistance to myxomatosis in a sample of wild rabbits from one area in England was reported in 1977. Rabbits from three other areas in Great Britain have been tested subsequently, and all cases showed similar resistance to a moderately virulent strain of myxoma virus. Rabbits from one area also showed a significant degree of resistance to a fully virulent strain of virus. It is concluded that genetic resistance to myxomatosis is widespread in wild rabbit populations in Britain. The implications of the results are discussed in relation to the co-evolution of the disease and its host.

  9. The development of genetic resistance to myxomatosis in wild rabbits in Britain.

    PubMed Central

    Ross, J.; Sanders, M. F.

    1984-01-01

    The presence of genetic resistance to myxomatosis in a sample of wild rabbits from one area in England was reported in 1977. Rabbits from three other areas in Great Britain have been tested subsequently, and all cases showed similar resistance to a moderately virulent strain of myxoma virus. Rabbits from one area also showed a significant degree of resistance to a fully virulent strain of virus. It is concluded that genetic resistance to myxomatosis is widespread in wild rabbit populations in Britain. The implications of the results are discussed in relation to the co-evolution of the disease and its host. PMID:6736637

  10. Network neighborhood analysis with the multi-node topological overlap measure.

    PubMed

    Li, Ai; Horvath, Steve

    2007-01-15

    The goal of neighborhood analysis is to find a set of genes (the neighborhood) that is similar to an initial 'seed' set of genes. Neighborhood analysis methods for network data are important in systems biology. If individual network connections are susceptible to noise, it can be advantageous to define neighborhoods on the basis of a robust interconnectedness measure, e.g. the topological overlap measure. Since the use of multiple nodes in the seed set may lead to more informative neighborhoods, it can be advantageous to define multi-node similarity measures. The pairwise topological overlap measure is generalized to multiple network nodes and subsequently used in a recursive neighborhood construction method. A local permutation scheme is used to determine the neighborhood size. Using four network applications and a simulated example, we provide empirical evidence that the resulting neighborhoods are biologically meaningful, e.g. we use neighborhood analysis to identify brain cancer related genes. An executable Windows program and tutorial for multi-node topological overlap measure (MTOM) based analysis can be downloaded from the webpage (http://www.genetics.ucla.edu/labs/horvath/MTOM/).

  11. Genome-based prediction of test cross performance in two subsequent breeding cycles.

    PubMed

    Hofheinz, Nina; Borchardt, Dietrich; Weissleder, Knuth; Frisch, Matthias

    2012-12-01

    Genome-based prediction of genetic values is expected to overcome shortcomings that limit the application of QTL mapping and marker-assisted selection in plant breeding. Our goal was to study the genome-based prediction of test cross performance with genetic effects that were estimated using genotypes from the preceding breeding cycle. In particular, our objectives were to employ a ridge regression approach that approximates best linear unbiased prediction of genetic effects, compare cross validation with validation using genetic material of the subsequent breeding cycle, and investigate the prospects of genome-based prediction in sugar beet breeding. We focused on the traits sugar content and standard molasses loss (ML) and used a set of 310 sugar beet lines to estimate genetic effects at 384 SNP markers. In cross validation, correlations >0.8 between observed and predicted test cross performance were observed for both traits. However, in validation with 56 lines from the next breeding cycle, a correlation of 0.8 could only be observed for sugar content, for standard ML the correlation reduced to 0.4. We found that ridge regression based on preliminary estimates of the heritability provided a very good approximation of best linear unbiased prediction and was not accompanied with a loss in prediction accuracy. We conclude that prediction accuracy assessed with cross validation within one cycle of a breeding program can not be used as an indicator for the accuracy of predicting lines of the next cycle. Prediction of lines of the next cycle seems promising for traits with high heritabilities.

  12. Acute Aortic Dissection in Pregnancy in a Woman with Undiagnosed Marfan Syndrome

    PubMed Central

    Master, Mandana; Day, Gavin

    2012-01-01

    We report a case of acute aortic dissection in a lady of 28 weeks of gestation with undiagnosed Marfan syndrome. The patient had been seen in our antenatal clinics. Her history documented in her pregnancy record was negative for genetic/congenital abnormalities. There was no family history documented. Subsequently, at 28 weeks of gestation, the patient presented with sudden onset chest, jaw, and back pain. Further history revealed that her father had died at the age of 27 of an aortic dissection. Echocardiography showed aortic root dissection with occlusion of aortic branches. She subsequently underwent an emergency lower segment caesarean section followed by surgical repair of type A dissection. A simultaneous type B dissection was managed conservatively. On later examination, our patient fulfilled the diagnostic criteria for phenotypic expression of Marfan syndrome. Genetic testing also confirmed that she has a mutation of the fibrillin (FBN 1) gene associated with the disease. PMID:23304584

  13. Mechanisms of transgenerational inheritance of addictive-like behaviors.

    PubMed

    Vassoler, F M; Sadri-Vakili, G

    2014-04-04

    Genetic factors are implicated in the heritability of drug abuse. However, even with advances in current technology no specific genes have been identified that are critical for the transmission of drug-induced phenotypes to subsequent generations. It is now evident that epigenetic factors contribute to disease heritability and represent a link between genes and the environment. Recently, epigenetic mechanisms have been shown to underlie drug-induced structural, synaptic, and behavioral plasticity by coordinating the expression of gene networks within the brain. Therefore, the epigenome provides a direct mechanism for drugs of abuse to influence the genetic events involved in the development of addiction as well as its heritability to subsequent generations. In this review we discuss the mechanisms underlying intergenerational epigenetic transmission, highlight studies that demonstrate this phenomenon with particular attention to the field of addiction, and identify gaps for future studies. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Deficiency of Interleukin-1 Receptor Antagonist (DIRA): Report of the First Indian Patient and a Novel Deletion Affecting IL1RN.

    PubMed

    Mendonca, Leonardo O; Malle, Louise; Donovan, Frank X; Chandrasekharappa, Settara C; Montealegre Sanchez, Gina A; Garg, Megha; Tedgard, Ulf; Castells, Mariana; Saini, Shiv S; Dutta, Sourabh; Goldbach-Mansky, Raphaela; Suri, Deepti; Jesus, Adriana A

    2017-07-01

    Deficiency of interleukin-1 receptor antagonist (DIRA) is a rare life-threatening autoinflammatory disease caused by autosomal recessive mutations in IL1RN. DIRA presents clinically with early onset generalized pustulosis, multifocal osteomyelitis, and elevation of acute phase reactants. We evaluated and treated an antibiotic-unresponsive patient with presumed DIRA with recombinant IL-1Ra (anakinra). The patient developed anaphylaxis to anakinra and was subsequently desensitized. Genetic analysis of IL1RN was undertaken and treatment with anakinra was initiated. A 5-month-old Indian girl born to healthy non-consanguineous parents presented at the third week of life with irritability, sterile multifocal osteomyelitis including ribs and clavicles, a mild pustular rash, and elevated acute phase reactants. SNP array of the patient's genomic DNA revealed a previously unrecognized homozygous deletion of approximately 22.5 Kb. PCR and Sanger sequencing of the borders of the deleted area allowed identification of the breakpoints of the deletion, thus confirming a homozygous 22,216 bp deletion that spans the first four exons of IL1RN. Due to a clinical suspicion of DIRA, anakinra was initiated which resulted in an anaphylactic reaction that triggered desensitization with subsequent marked and sustained clinical and laboratory improvement. We report a novel DIRA-causing homozygous deletion affecting IL1RN in an Indian patient. The mutation likely is a founder mutation; the design of breakpoint-specific primers will enable genetic screening in Indian patients suspected of DIRA. The patient developed anaphylaxis to anakinra, was desensitized, and is in clinical remission on continued treatment.

  15. Goltz-Gorlin Syndrome: Revisiting the Clinical Spectrum.

    PubMed

    Yesodharan, Dhanya; Büschenfelde, Uta Meyer Zum; Kutsche, Kerstin; Mohandas Nair, K; Nampoothiri, Sheela

    2018-01-31

    To describe the varying phenotypic spectrum of Focal Dermal Hypoplasia (FDH) and to emphasize the need for identifying the condition in mildly affected females which is crucial for offering a prenatal diagnosis in subsequent pregnancy owing to the risk of having a severely affected baby. The phenotype-genotype correlation of 4 patients with FDH, over a period of 11 y from the genetic clinic in a tertiary care centre from Kerala, India was done. All four mutation proven patients were females (2 adults and 2 children). One of the adult female subjects were mildly affected, though she had a history of having a severely affected female child who expired on day six. Among the 2 affected children, one of them had an unaffected mother and the other had an affected mother. FDH has a wide clinical spectrum from very subtle findings to severe manifestations. The lethality of the condition in males and the disfigurement and multisystem involvement in females highlights the importance of confirmation of diagnosis by molecular analysis so that the family can be offered prenatal diagnosis in subsequent pregnancy.

  16. The Development of Comorbid Conduct Problems in Children With ADHD: An Example of an Integrative Developmental Psychopathology Perspective.

    PubMed

    Danforth, Jeffrey S; Connor, Daniel F; Doerfler, Leonard A

    2016-03-01

    We describe interactions among factors that contribute to the development of conduct problems among children with ADHD. An integrative developmental psychopathology analysis combines various approaches and posits one model of how diverse risk factors operate together to contribute to the development of conduct problems among children with ADHD. Substantial genetic risk increases covariation between ADHD and conduct problems. Candidate genes are associated with CNS monoaminergic neurotransmission. Subsequent neurodevelopmental impairment interferes with executive function, with impaired verbal working memory playing an important role. Parent/child bi-directional influences exacerbate the risk for conduct problems when ADHD symptoms increase the likelihood of a coercive parenting style. Parent stress in reaction to child comorbid ADHD and conduct problems, and parent attribution for the child's conduct problem behavior, add to the potential for coercion and reduce constructive parent-child interaction that might otherwise enhance the development of verbal working memory. In an integrated manner, these variables increase the risk that a child with ADHD will subsequently develop conduct problems. © The Author(s) 2014.

  17. Genetic diversity and stock identification of small abalone (Haliotis diversicolor) in Taiwan and Japan

    PubMed Central

    Hsu, Te-Hua; Gwo, Jin-Chywan

    2017-01-01

    Small abalone (Haliotis diversicolor) is a commercially valuable species for both fisheries and aquaculture. The production of annual farmed small abalone in Taiwan, once the highest in the world, has dramatically decreased in the past 15 years, and currently, the industry is close to collapse. Understanding the genetic diversity of small abalone and developing stock identification methods will be useful for genetic breeding, restoring collapsed stocks, managing stocks, and preventing illegal trade. We investigated 307 cultured and wild individuals from Taiwan, Japan, and Bali Island (Indonesia) by using the mitochondrial cytochrome c oxidase subunit I (COI) gene. Network analysis of mtDNA COI gene sequences revealed that the individuals collected from Taiwan, Japan, and Indonesia could be identified, and showed significant genetic divergence. In addition, the Indonesian population (Haliotis diversicolor squamata) was significantly different from the other populations and might need to be considered a separate species. We discovered a single nucleotide polymorphism marker in the mtDNA COI gene that can be used to distinguish the Taiwan population from the Japan population. We also developed a polymerase chain reaction-restriction fragment length polymorphism method for rapid detection. Furthermore, we could identify the cultured stocks, wild population, and hybrid stocks by using 6 microsatellites and amplified fragment length polymorphism. This study contributes useful tools for stock identification and the production of high-disease resistant small abalone strains (Japan × Taiwan or Taiwan × Japan). Efforts should be made to avoid unintentional random genetic mixing of the Taiwan population with the Japan population and subsequent breakdown of population differentiation, which impair local adaptation of the Taiwan wild population. Molecular markers revealed a split between the Taiwan and Japan populations, and the existence of a possible barrier to the free dispersal of small abalone is discussed. PMID:28662122

  18. Sources of genetic and phenotypic variance in fertilization rates and larval traits in a sea urchin.

    PubMed

    Evans, Jonathan P; García-González, Francisco; Marshall, Dustin J

    2007-12-01

    In nonresource based mating systems females are thought to derive indirect genetic benefits by mating with high-quality males. Such benefits can be due either to the intrinsic genetic quality of sires or to beneficial interactions between maternal and paternal haplotypes. Animals with external fertilization and no parental care offer unrivaled opportunities to address these hypotheses. With these systems, cross-classified breeding designs and in vitro fertilization can be used to disentangle sources of genetic and environmental variance in offspring fitness. Here, we employ these approaches in the Australian sea urchin Heliocidaris erythrogramma and explore how sire-dam identities influence fertilization rates, embryo viability (survival to hatching), and metamorphosis, as well as the interrelationships between these potential fitness traits. We show that fertilization is influenced by a combination of strong maternal effects and intrinsic male effects. Our subsequent analysis of embryo viability, however, revealed a highly significant interaction between parental genotypes, indicating that partial incompatibilities can severely limit offspring survival at this life-history stage. Importantly, we detected no significant relationship between fertilization rates and embryo viability. This finding suggests that fertilization rates should not be inferred from hatching rates, which is commonly practiced in species in which it is not possible to estimate fertilization at conception. Finally, we detected significant additive genetic variance due to sires in rates of juvenile metamorphosis, and a positive correlation between fertilization rates and metamorphosis. This latter finding indicates that the performance of a male's ejaculate in noncompetitive IVF trials predicts heritable offspring traits, although the fitness implications of variance in rates of spontaneous juvenile metamorphosis have yet to be determined.

  19. Genetic diversity and stock identification of small abalone (Haliotis diversicolor) in Taiwan and Japan.

    PubMed

    Hsu, Te-Hua; Gwo, Jin-Chywan

    2017-01-01

    Small abalone (Haliotis diversicolor) is a commercially valuable species for both fisheries and aquaculture. The production of annual farmed small abalone in Taiwan, once the highest in the world, has dramatically decreased in the past 15 years, and currently, the industry is close to collapse. Understanding the genetic diversity of small abalone and developing stock identification methods will be useful for genetic breeding, restoring collapsed stocks, managing stocks, and preventing illegal trade. We investigated 307 cultured and wild individuals from Taiwan, Japan, and Bali Island (Indonesia) by using the mitochondrial cytochrome c oxidase subunit I (COI) gene. Network analysis of mtDNA COI gene sequences revealed that the individuals collected from Taiwan, Japan, and Indonesia could be identified, and showed significant genetic divergence. In addition, the Indonesian population (Haliotis diversicolor squamata) was significantly different from the other populations and might need to be considered a separate species. We discovered a single nucleotide polymorphism marker in the mtDNA COI gene that can be used to distinguish the Taiwan population from the Japan population. We also developed a polymerase chain reaction-restriction fragment length polymorphism method for rapid detection. Furthermore, we could identify the cultured stocks, wild population, and hybrid stocks by using 6 microsatellites and amplified fragment length polymorphism. This study contributes useful tools for stock identification and the production of high-disease resistant small abalone strains (Japan × Taiwan or Taiwan × Japan). Efforts should be made to avoid unintentional random genetic mixing of the Taiwan population with the Japan population and subsequent breakdown of population differentiation, which impair local adaptation of the Taiwan wild population. Molecular markers revealed a split between the Taiwan and Japan populations, and the existence of a possible barrier to the free dispersal of small abalone is discussed.

  20. Genetic Mapping in Mice Reveals the Involvement of Pcdh9 in Long-Term Social and Object Recognition and Sensorimotor Development.

    PubMed

    Bruining, Hilgo; Matsui, Asuka; Oguro-Ando, Asami; Kahn, René S; Van't Spijker, Heleen M; Akkermans, Guus; Stiedl, Oliver; van Engeland, Herman; Koopmans, Bastijn; van Lith, Hein A; Oppelaar, Hugo; Tieland, Liselotte; Nonkes, Lourens J; Yagi, Takeshi; Kaneko, Ryosuke; Burbach, J Peter H; Yamamoto, Nobuhiko; Kas, Martien J

    2015-10-01

    Quantitative genetic analysis of basic mouse behaviors is a powerful tool to identify novel genetic phenotypes contributing to neurobehavioral disorders. Here, we analyzed genetic contributions to single-trial, long-term social and nonsocial recognition and subsequently studied the functional impact of an identified candidate gene on behavioral development. Genetic mapping of single-trial social recognition was performed in chromosome substitution strains, a sophisticated tool for detecting quantitative trait loci (QTL) of complex traits. Follow-up occurred by generating and testing knockout (KO) mice of a selected QTL candidate gene. Functional characterization of these mice was performed through behavioral and neurological assessments across developmental stages and analyses of gene expression and brain morphology. Chromosome substitution strain 14 mapping studies revealed an overlapping QTL related to long-term social and object recognition harboring Pcdh9, a cell-adhesion gene previously associated with autism spectrum disorder. Specific long-term social and object recognition deficits were confirmed in homozygous (KO) Pcdh9-deficient mice, while heterozygous mice only showed long-term social recognition impairment. The recognition deficits in KO mice were not associated with alterations in perception, multi-trial discrimination learning, sociability, behavioral flexibility, or fear memory. Rather, KO mice showed additional impairments in sensorimotor development reflected by early touch-evoked biting, rotarod performance, and sensory gating deficits. This profile emerged with structural changes in deep layers of sensory cortices, where Pcdh9 is selectively expressed. This behavior-to-gene study implicates Pcdh9 in cognitive functions required for long-term social and nonsocial recognition. This role is supported by the involvement of Pcdh9 in sensory cortex development and sensorimotor phenotypes. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Social and ethical aspects of forensic genetics: A critical review.

    PubMed

    Williams, R; Wienroth, M

    2017-07-01

    This review describes the social and ethical responses to the history of innovations in forensic genetics and their application to criminal investigations. Following an outline of the three recurrent social perspectives that have informed these responses (crime management, due process, and genetic surveillance), it goes on to introduce the repertoire of ethical considerations by describing a series of key reports that have shaped subsequent commentaries on forensic DNA profiling and databasing. Four major ethical concerns form the focus of the remainder of the paper (dignity, privacy, justice, and social solidarity), and key features of forensic genetic practice are examined in the light of these concerns. The paper concludes with a discussion of the concept of "proportionality" as a resource for balancing the social and ethical risks and benefits of the use of forensic genetics in support of criminal justice. Copyright © 2017 Central Police University.

  2. Aggressive Versus Nonaggressive Antisocial Behavior: Distinctive Etiological Moderation by Age

    PubMed Central

    Burt, S. Alexandra; Neiderhiser, Jenae M.

    2015-01-01

    Research has supported the existence of distinct behavioral patterns, demographic correlates, and etiologic mechanisms for aggressive (AGG) versus nonaggressive but delinquent (DEL) antisocial behavior. Though behavioral genetic studies have the potential to further crystallize these dimensions, inconsistent results have limited their contribution. These inconsistencies may stem in part from the limited attention paid to the impact of age. In the current study, the authors thus examined age-related etiological moderation of AGG and DEL antisocial behavior in a sample of 720 sibling pairs (ranging in age from 10 to 18 years) with varying degrees of genetic relatedness. Results reveal that the magnitude of genetic and environmental influences on AGG remained stable across adolescence. By contrast, genetic influences on DEL increased dramatically with age, whereas shared environmental influences decreased. Subsequent longitudinal analyses fully replicated these results. Such findings highlight etiological distinctions between aggression and delinquency, and offer insights into the expression of genetic influences during development. PMID:19586186

  3. Inferring human history in East Asia from Y chromosomes.

    PubMed

    Wang, Chuan-Chao; Li, Hui

    2013-06-03

    East Asia harbors substantial genetic, physical, cultural and linguistic diversity, but the detailed structures and interrelationships of those aspects remain enigmatic. This question has begun to be addressed by a rapid accumulation of molecular anthropological studies of the populations in and around East Asia, especially by Y chromosome studies. The current Y chromosome evidence suggests multiple early migrations of modern humans from Africa via Southeast Asia to East Asia. After the initial settlements, the northward migrations during the Paleolithic Age shaped the genetic structure in East Asia. Subsequently, recent admixtures between Central Asian immigrants and northern East Asians enlarged the genetic divergence between southern and northern East Asia populations. Cultural practices, such as languages, agriculture, military affairs and social prestige, also have impacts on the genetic patterns in East Asia. Furthermore, application of Y chromosome analyses in the family genealogy studies offers successful showcases of the utility of genetics in studying the ancient history.

  4. Inferring human history in East Asia from Y chromosomes

    PubMed Central

    2013-01-01

    East Asia harbors substantial genetic, physical, cultural and linguistic diversity, but the detailed structures and interrelationships of those aspects remain enigmatic. This question has begun to be addressed by a rapid accumulation of molecular anthropological studies of the populations in and around East Asia, especially by Y chromosome studies. The current Y chromosome evidence suggests multiple early migrations of modern humans from Africa via Southeast Asia to East Asia. After the initial settlements, the northward migrations during the Paleolithic Age shaped the genetic structure in East Asia. Subsequently, recent admixtures between Central Asian immigrants and northern East Asians enlarged the genetic divergence between southern and northern East Asia populations. Cultural practices, such as languages, agriculture, military affairs and social prestige, also have impacts on the genetic patterns in East Asia. Furthermore, application of Y chromosome analyses in the family genealogy studies offers successful showcases of the utility of genetics in studying the ancient history. PMID:23731529

  5. Genetic engineering of cell lines using lentiviral vectors to achieve antibody secretion following encapsulated implantation.

    PubMed

    Lathuilière, Aurélien; Bohrmann, Bernd; Kopetzki, Erhard; Schweitzer, Christoph; Jacobsen, Helmut; Moniatte, Marc; Aebischer, Patrick; Schneider, Bernard L

    2014-01-01

    The controlled delivery of antibodies by immunoisolated bioimplants containing genetically engineered cells is an attractive and safe approach for chronic treatments. To reach therapeutic antibody levels there is a need to generate renewable cell lines, which can long-term survive in macroencapsulation devices while maintaining high antibody specific productivity. Here we have developed a dual lentiviral vector strategy for the genetic engineering of cell lines compatible with macroencapsulation, using separate vectors encoding IgG light and heavy chains. We show that IgG expression level can be maximized as a function of vector dose and transgene ratio. This approach allows for the generation of stable populations of IgG-expressing C2C12 mouse myoblasts, and for the subsequent isolation of clones stably secreting high IgG levels. Moreover, we demonstrate that cell transduction using this lentiviral system leads to the production of a functional glycosylated antibody by myogenic cells. Subsequent implantation of antibody-secreting cells in a high-capacity macroencapsulation device enables continuous delivery of recombinant antibodies in the mouse subcutaneous tissue, leading to substantial levels of therapeutic IgG detectable in the plasma.

  6. Toward a new history and geography of human genes informed by ancient DNA.

    PubMed

    Pickrell, Joseph K; Reich, David

    2014-09-01

    Genetic information contains a record of the history of our species, and technological advances have transformed our ability to access this record. Many studies have used genome-wide data from populations today to learn about the peopling of the globe and subsequent adaptation to local conditions. Implicit in this research is the assumption that the geographic locations of people today are informative about the geographic locations of their ancestors in the distant past. However, it is now clear that long-range migration, admixture, and population replacement subsequent to the initial out-of-Africa expansion have altered the genetic structure of most of the world's human populations. In light of this we argue that it is time to critically reevaluate current models of the peopling of the globe, as well as the importance of natural selection in determining the geographic distribution of phenotypes. We specifically highlight the transformative potential of ancient DNA. By accessing the genetic make-up of populations living at archaeologically known times and places, ancient DNA makes it possible to directly track migrations and responses to natural selection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Genome Sequencing and Analysis of the Tasmanian Devil and Its Transmissible Cancer

    PubMed Central

    Murchison, Elizabeth P.; Schulz-Trieglaff, Ole B.; Ning, Zemin; Alexandrov, Ludmil B.; Bauer, Markus J.; Fu, Beiyuan; Hims, Matthew; Ding, Zhihao; Ivakhno, Sergii; Stewart, Caitlin; Ng, Bee Ling; Wong, Wendy; Aken, Bronwen; White, Simon; Alsop, Amber; Becq, Jennifer; Bignell, Graham R.; Cheetham, R. Keira; Cheng, William; Connor, Thomas R.; Cox, Anthony J.; Feng, Zhi-Ping; Gu, Yong; Grocock, Russell J.; Harris, Simon R.; Khrebtukova, Irina; Kingsbury, Zoya; Kowarsky, Mark; Kreiss, Alexandre; Luo, Shujun; Marshall, John; McBride, David J.; Murray, Lisa; Pearse, Anne-Maree; Raine, Keiran; Rasolonjatovo, Isabelle; Shaw, Richard; Tedder, Philip; Tregidgo, Carolyn; Vilella, Albert J.; Wedge, David C.; Woods, Gregory M.; Gormley, Niall; Humphray, Sean; Schroth, Gary; Smith, Geoffrey; Hall, Kevin; Searle, Stephen M.J.; Carter, Nigel P.; Papenfuss, Anthony T.; Futreal, P. Andrew; Campbell, Peter J.; Yang, Fengtang; Bentley, David R.; Evers, Dirk J.; Stratton, Michael R.

    2012-01-01

    Summary The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations. PaperClip PMID:22341448

  8. Application of quantum-behaved particle swarm optimization to motor imagery EEG classification.

    PubMed

    Hsu, Wei-Yen

    2013-12-01

    In this study, we propose a recognition system for single-trial analysis of motor imagery (MI) electroencephalogram (EEG) data. Applying event-related brain potential (ERP) data acquired from the sensorimotor cortices, the system chiefly consists of automatic artifact elimination, feature extraction, feature selection and classification. In addition to the use of independent component analysis, a similarity measure is proposed to further remove the electrooculographic (EOG) artifacts automatically. Several potential features, such as wavelet-fractal features, are then extracted for subsequent classification. Next, quantum-behaved particle swarm optimization (QPSO) is used to select features from the feature combination. Finally, selected sub-features are classified by support vector machine (SVM). Compared with without artifact elimination, feature selection using a genetic algorithm (GA) and feature classification with Fisher's linear discriminant (FLD) on MI data from two data sets for eight subjects, the results indicate that the proposed method is promising in brain-computer interface (BCI) applications.

  9. Novel skeletal muscle ryanodine receptor mutation in a large Brazilian family with malignant hyperthermia.

    PubMed

    McWilliams, S; Nelson, T; Sudo, R T; Zapata-Sudo, G; Batti, M; Sambuughin, N

    2002-07-01

    Malignant hyperthermia (MH) is an autosomal dominant disorder that predisposes susceptible individuals to a potentially life-threatening crisis when exposed to commonly used anesthetics. Mutations in the skeletal muscle calcium release channel, ryanodine receptor (RYR1) are associated with MH in over 50% of affected families. Linkage analysis of the RYR1 gene region at 19q13 was performed in a large Brazilian family and a distinct disease co-segregating haplotype was revealed in the majority of members with diagnosis of MH. Subsequent sequencing of RYR1 mutational hot spots revealed a nucleotide substitution of C to T at position 7062, causing a novel amino acid change from Arg2355 to Cys associated with MH in the family. Haplotype analysis of the RYR1 gene area at 19q13 in the family with multiple MH members is an important tool in identification of genetic cause underlying this disease.

  10. ISRNA: an integrative online toolkit for short reads from high-throughput sequencing data.

    PubMed

    Luo, Guan-Zheng; Yang, Wei; Ma, Ying-Ke; Wang, Xiu-Jie

    2014-02-01

    Integrative Short Reads NAvigator (ISRNA) is an online toolkit for analyzing high-throughput small RNA sequencing data. Besides the high-speed genome mapping function, ISRNA provides statistics for genomic location, length distribution and nucleotide composition bias analysis of sequence reads. Number of reads mapped to known microRNAs and other classes of short non-coding RNAs, coverage of short reads on genes, expression abundance of sequence reads as well as some other analysis functions are also supported. The versatile search functions enable users to select sequence reads according to their sub-sequences, expression abundance, genomic location, relationship to genes, etc. A specialized genome browser is integrated to visualize the genomic distribution of short reads. ISRNA also supports management and comparison among multiple datasets. ISRNA is implemented in Java/C++/Perl/MySQL and can be freely accessed at http://omicslab.genetics.ac.cn/ISRNA/.

  11. Low childhood high density lipoprotein cholesterol levels and subsequent risk for chronic inflammatory bowel disease.

    PubMed

    Voutilainen, Markku; Hutri-Kähönen, Nina; Tossavainen, Päivi; Sipponen, Taina; Pitkänen, Niina; Laitinen, Tomi; Jokinen, Eero; Rönnemaa, Tapani; Viikari, Jorma S A; Raitakari, Olli T; Juonala, Markus

    2018-04-01

    Several genetic and environmental risk factors have been linked to chronic inflammatory bowel disease (IBD). The incidence of IBD has significantly increased in developed countries during last decades. The aim of the present study was to examine childhood risk factors for subsequent IBD diagnosis in a longitudinal cohort study of children and adolescents. A Finnish study population consisting of 3551 children and adolescents originally evaluated as part of the Cardiovascular Risk in Young Finns study in 1980. At baseline, participant BMI, insulin, lipid, C-reactive protein and blood pressure levels, socioeconomic position, dietary habits, and physical activity, were evaluated. In addition, information was gathered on rural residency, severe infections, breast feeding, parental smoking and birth weight. Subsequent IBD diagnosis status was evaluated based on nationwide registries on hospitalisations and drug imbursement decisions. Altogether, 49 participants (1.4%) had IBD diagnosed during the 34 years of register follow-up, of which 31 had ulcerative colitis, 12 Crohn's disease and 6 undetermined colitis. In univariate analyses, significant correlations were observed between childhood HDL-cholesterol (risk ratio (95% CI) for 1-SD change (0.58 (0.42-0.79)) and CRP concentrations (1.20 (1.01-1.43)) with IBD. The inverse association between HDL-cholesterol and IBD remained significant (0.57 (0.39-0.82)) in a multivariable model including data on age, sex and CRP. In addition, a weighted genetic z-score of 71 single nucleotide polymorphisms associated with elevated HDL-cholesterol levels was significantly lower in IBD patients, P=0.01). Low childhood HDL-cholesterol levels are associated with subsequent IBD diagnosis. In addition, a genetic risk score associated with low HDL-cholesterol levels predict later IBD suggesting that HDL-cholesterol metabolism might have a role in the pathogenesis of IBD. Copyright © 2018 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  12. Low-level chromosome 12 amplification in a primary lipoma of the lung: evidence for a pathogenetic relationship with common adipose tissue tumors.

    PubMed

    Bridge, J A; Roberts, C A; Degenhardt, J; Walker, C; Lackner, R; Linder, J

    1998-02-01

    Cytogenetic analysis of a primary lipoma of the lung removed from a 56-year-old woman revealed the presence of a supernumerary marker chromosome in all metaphase cells analyzed; namely, 47,XX,+mar. To the best of our knowledge, this is the first cytogenetic description of a primary lipoma of lung. Genetic analysis of intramuscular lipoma, atypical lipoma, and well-differentiated liposarcoma have revealed the presence of one to three supernumerary ring or giant marker chromosomes composed of chromosome 12 segments as the characteristic anomaly. The marker chromosome in the present case was shown to be composed entirely of chromosome 12 material by subsequent analysis with a chromosome 12-specific paint probe and fluorescence in situ hybridization. Thus, analogous to intramuscular lipoma, atypical lipoma, and well-differentiated liposarcoma, extra chromosome 12 material is present. These findings support a pathogenetic relationship between this lipoma of unusual anatomic location and common adipose tissue tumors.

  13. Artificial bee colony algorithm for single-trial electroencephalogram analysis.

    PubMed

    Hsu, Wei-Yen; Hu, Ya-Ping

    2015-04-01

    In this study, we propose an analysis system combined with feature selection to further improve the classification accuracy of single-trial electroencephalogram (EEG) data. Acquiring event-related brain potential data from the sensorimotor cortices, the system comprises artifact and background noise removal, feature extraction, feature selection, and feature classification. First, the artifacts and background noise are removed automatically by means of independent component analysis and surface Laplacian filter, respectively. Several potential features, such as band power, autoregressive model, and coherence and phase-locking value, are then extracted for subsequent classification. Next, artificial bee colony (ABC) algorithm is used to select features from the aforementioned feature combination. Finally, selected subfeatures are classified by support vector machine. Comparing with and without artifact removal and feature selection, using a genetic algorithm on single-trial EEG data for 6 subjects, the results indicate that the proposed system is promising and suitable for brain-computer interface applications. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  14. High density genetic mapping identifies new susceptibility loci for rheumatoid arthritis

    PubMed Central

    Eyre, Steve; Bowes, John; Diogo, Dorothée; Lee, Annette; Barton, Anne; Martin, Paul; Zhernakova, Alexandra; Stahl, Eli; Viatte, Sebastien; McAllister, Kate; Amos, Christopher I.; Padyukov, Leonid; Toes, Rene E.M.; Huizinga, Tom W.J.; Wijmenga, Cisca; Trynka, Gosia; Franke, Lude; Westra, Harm-Jan; Alfredsson, Lars; Hu, Xinli; Sandor, Cynthia; de Bakker, Paul I.W.; Davila, Sonia; Khor, Chiea Chuen; Heng, Khai Koon; Andrews, Robert; Edkins, Sarah; Hunt, Sarah E; Langford, Cordelia; Symmons, Deborah; Concannon, Pat; Onengut-Gumuscu, Suna; Rich, Stephen S; Deloukas, Panos; Gonzalez-Gay, Miguel A.; Rodriguez-Rodriguez, Luis; Ärlsetig, Lisbeth; Martin, Javier; Rantapää-Dahlqvist, Solbritt; Plenge, Robert; Raychaudhuri, Soumya; Klareskog, Lars; Gregersen, Peter K; Worthington, Jane

    2012-01-01

    Summary Using the Immunochip custom single nucleotide polymorphism (SNP) array, designed for dense genotyping of 186 genome wide association study (GWAS) confirmed loci we analysed 11,475 rheumatoid arthritis cases of European ancestry and 15,870 controls for 129,464 markers. The data were combined in meta-analysis with GWAS data from additional independent cases (n=2,363) and controls (n=17,872). We identified fourteen novel loci; nine were associated with rheumatoid arthritis overall and 5 specifically in anti-citrillunated peptide antibody positive disease, bringing the number of confirmed European ancestry rheumatoid arthritis loci to 46. We refined the peak of association to a single gene for 19 loci, identified secondary independent effects at six loci and association to low frequency variants (minor allele frequency <0.05) at 4 loci. Bioinformatic analysis of the data generated strong hypotheses for the causal SNP at seven loci. This study illustrates the advantages of dense SNP mapping analysis to inform subsequent functional investigations. PMID:23143596

  15. Natural attenuation of dengue virus type-2 after a series of island outbreaks: a retrospective phylogenetic study of events in the South Pacific three decades ago.

    PubMed

    Steel, Argon; Gubler, Duane J; Bennett, Shannon N

    2010-09-30

    Dengue is an expanding arboviral disease of variable severity characterized by the emergence of virus strains with greater fitness, epidemic potential and possibly virulence. To investigate the role of dengue virus (DENV) strain variation on epidemic activity we studied DENV-2 viruses from a series of South Pacific islands experiencing outbreaks of varying intensity and clinical severity. Initially appearing in 1971 in Tahiti and Fiji, the virus was responsible for subsequent epidemics in American Samoa, New Caledonia and Niue Island in 1972, reaching Tonga in 1973 where there was near-silent transmission for over a year. Based on whole-genome sequencing and phylogenetic analysis on 20 virus isolates, Tonga viruses were genetically unique, clustering in a single clade. Substitutions in the pre-membrane (prM) and nonstructural genes NS2A and NS4A correlated with the attenuation of the Tongan viruses and suggest that genetic change may play a significant role in dengue epidemic severity. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Whole-exome sequencing, without prior linkage, identifies a mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta.

    PubMed

    Poulter, James A; El-Sayed, Walid; Shore, Roger C; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2014-01-01

    The conventional approach to identifying the defective gene in a family with an inherited disease is to find the disease locus through family studies. However, the rapid development and decreasing cost of next generation sequencing facilitates a more direct approach. Here, we report the identification of a frameshift mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta (AI). Whole-exome sequencing of three affected family members and subsequent filtering of shared variants, without prior genetic linkage, sufficed to identify the pathogenic variant. Simultaneous analysis of multiple family members confirms segregation, enhancing the power to filter the genetic variation found and leading to rapid identification of the pathogenic variant. LAMB3 encodes a subunit of Laminin-5, one of a family of basement membrane proteins with essential functions in cell growth, movement and adhesion. Homozygous LAMB3 mutations cause junctional epidermolysis bullosa (JEB) and enamel defects are seen in JEB cases. However, to our knowledge, this is the first report of dominant AI due to a LAMB3 mutation in the absence of JEB.

  17. Characterization of an Equine α-S2-Casein Variant Due to a 1.3 kb Deletion Spanning Two Coding Exons

    PubMed Central

    Brinkmann, Julia; Koudelka, Tomas; Keppler, Julia K.; Tholey, Andreas; Schwarz, Karin; Thaller, Georg; Tetens, Jens

    2015-01-01

    The production and consumption of mare’s milk in Europe has gained importance, mainly based on positive health effects and a lower allergenic potential as compared to cows’ milk. The allergenicity of milk is to a certain extent affected by different genetic variants. In classical dairy species, much research has been conducted into the genetic variability of milk proteins, but the knowledge in horses is scarce. Here, we characterize two major forms of equine αS2-casein arising from genomic 1.3 kb in-frame deletion involving two coding exons, one of which represents an equid specific duplication. Findings at the DNA-level have been verified by cDNA sequencing from horse milk of mares with different genotypes. At the protein-level, we were able to show by SDS-page and in-gel digestion with subsequent LC-MS analysis that both proteins are actually expressed. The comparison with published sequences of other equids revealed that the deletion has probably occurred before the ancestor of present-day asses and zebras diverged from the horse lineage. PMID:26444874

  18. Mitochondrial threshold effects.

    PubMed Central

    Rossignol, Rodrigue; Faustin, Benjamin; Rocher, Christophe; Malgat, Monique; Mazat, Jean-Pierre; Letellier, Thierry

    2003-01-01

    The study of mitochondrial diseases has revealed dramatic variability in the phenotypic presentation of mitochondrial genetic defects. To attempt to understand this variability, different authors have studied energy metabolism in transmitochondrial cell lines carrying different proportions of various pathogenic mutations in their mitochondrial DNA. The same kinds of experiments have been performed on isolated mitochondria and on tissue biopsies taken from patients with mitochondrial diseases. The results have shown that, in most cases, phenotypic manifestation of the genetic defect occurs only when a threshold level is exceeded, and this phenomenon has been named the 'phenotypic threshold effect'. Subsequently, several authors showed that it was possible to inhibit considerably the activity of a respiratory chain complex, up to a critical value, without affecting the rate of mitochondrial respiration or ATP synthesis. This phenomenon was called the 'biochemical threshold effect'. More recently, quantitative analysis of the effects of various mutations in mitochondrial DNA on the rate of mitochondrial protein synthesis has revealed the existence of a 'translational threshold effect'. In this review these different mitochondrial threshold effects are discussed, along with their molecular bases and the roles that they play in the presentation of mitochondrial diseases. PMID:12467494

  19. Internuclear Genetic Transfer in Dikaryons of SCHIZOPHYLLUM COMMUNE. II. Direct Recovery and Analysis of Recombinant Nuclei

    PubMed Central

    Leonard, Thomas J.; Gaber, Richard F.; Dick, Stanley

    1978-01-01

    The recessive gene, mound (mnd), allows the appearance of globose masses of compacted hyphae. Dikaryons of Schizophyllum commune that are heteroallelic for mnd [(mosaic dikaryons: (mnd + mnd+)] have been successfully dedikaryotized in cholate-containing medium in order to recover the component nuclear types directly. The relative proportion of the two recovered monokaryotic types shows in all cases a marked deviation from 1:1. Hyphae from nonmound mycelial regions yield monokaryotic types identical to those originally used to form the dikaryons. In hyphae from mound-forming regions, however, homoallelism of the mnd allele has been demonstrated; the nuclear type that formerly contained the mnd+ allele acquired a mnd allele.—The process of internuclear transfer or recombination is unaccompanied by the simultaneous alteration of any additional genetic markers carried by the recipient nucleus. The newly acquired mnd allele segregates in Mendelian fashion in subsequent outcrosses and appears to be chromosomally located. A novel process of somatic recombination, with several features distinct from classical parasexual mitotic recombination, appears to be in operation. PMID:17248847

  20. Natural attenuation of Dengue Virus Type-2 after a series of island outbreaks: a re-trospective phylogenetic study of events in the South Pacific three decades ago

    PubMed Central

    Steel, Argon; Gubler, Duane J.; Bennett, Shannon N.

    2011-01-01

    Dengue is an expanding arboviral disease of variable severity characterized by the emergence of virus strains with greater fitness, epidemic potential and possibly virulence. To investigate the role of dengue virus (DENV) strain variation on epidemic activity we studied DENV-2 viruses from a series of South Pacific islands experiencing outbreaks of varying intensity and clinical severity. Initially appearing in 1971 in Tahiti and Fiji, the virus was responsible for subsequent epidemics in American Samoa, New Caledonia and Niue Island in 1972, reaching Tonga in 1973 where there was near-silent transmission for over a year. Based on whole-genome sequencing and phylogenetic analysis on 20 virus isolates, Tonga viruses were genetically unique, clustering in a single clade. Substitutions in the pre-membrane (prM) and nonstructural genes NS2A and NS4A correlated with the attenuation of the Tongan viruses and suggest that genetic change may play a significant role in dengue epidemic severity. PMID:20663532

  1. BAC-end sequence-based SNPs and Bin mapping for rapid integration of physical and genetic maps in apple.

    PubMed

    Han, Yuepeng; Chagné, David; Gasic, Ksenija; Rikkerink, Erik H A; Beever, Jonathan E; Gardiner, Susan E; Korban, Schuyler S

    2009-03-01

    A genome-wide BAC physical map of the apple, Malus x domestica Borkh., has been recently developed. Here, we report on integrating the physical and genetic maps of the apple using a SNP-based approach in conjunction with bin mapping. Briefly, BAC clones located at ends of BAC contigs were selected, and sequenced at both ends. The BAC end sequences (BESs) were used to identify candidate SNPs. Subsequently, these candidate SNPs were genetically mapped using a bin mapping strategy for the purpose of mapping the physical onto the genetic map. Using this approach, 52 (23%) out of 228 BESs tested were successfully exploited to develop SNPs. These SNPs anchored 51 contigs, spanning approximately 37 Mb in cumulative physical length, onto 14 linkage groups. The reliability of the integration of the physical and genetic maps using this SNP-based strategy is described, and the results confirm the feasibility of this approach to construct an integrated physical and genetic maps for apple.

  2. Positional cloning in mice and its use for molecular dissection of inflammatory arthritis.

    PubMed

    Abe, Koichiro; Yu, Philipp

    2009-02-01

    One of the upcoming next quests in the field of genetics might be molecular dissection of the genetic and environmental components of human complex diseases. In humans, however, there are certain experimental limitations for identification of a single component of the complex interactions by genetic analyses. Experimental animals offer simplified models for genetic and environmental interactions in human complex diseases. In particular, mice are the best mammalian models because of a long history and ample experience for genetic analyses. Forward genetics, which includes genetic screen and subsequent positional cloning of the causative genes, is a powerful strategy to dissect a complex phenomenon without preliminarily molecular knowledge of the process. In this review, first, we describe a general scheme of positional cloning in mice. Next, recent accomplishments on the patho-mechanisms of inflammatory arthritis by forward genetics approaches are introduced; Positional cloning effort for skg, Ali5, Ali18, cmo, and lupo mutants are provided as examples for the application to human complex diseases. As seen in the examples, the identification of genetic factors by positional cloning in the mouse have potential in solving molecular complexity of gene-environment interactions in human complex diseases.

  3. Horizontal integration of OMIM across the medical school preclinical curriculum for early reinforcement of clinical genetics principles.

    PubMed

    Diehl, Adam C; Reader, Lauren; Hamosh, Ada; Bodurtha, Joann N

    2015-02-01

    With the relentless expansion of genetics into every field of medicine, stronger preclinical and clinical medical student education in genetics is needed. The explosion of genetic information cannot be addressed by simply adding content hours. We proposed that students be provided a tool to access accurate clinical information on genetic conditions and, through this tool, build life-long learning habits to carry them through their medical careers. Surveys conducted at the Johns Hopkins University School of Medicine revealed that medical students in all years lacked confidence when approaching genetic conditions and lacked a reliable resource for accurate genetic information. In response, the school created a horizontal thread that stretches across the first-year curriculum and is devoted to teaching students how to use Online Mendelian Inheritance in Man (OMIM) (http://omim.org) and the databases to which it links as a starting point for approaching genetic conditions. The thread improved the first-year students' confidence in clinical genetics concepts and encouraged use of OMIM as a primary source for genetic information. Most students showed confidence in OMIM as a learning tool and wanted to see the thread repeated in subsequent years. Incorporating OMIM into the preclinical curriculum improved students' confidence in clinical genetics concepts.

  4. Translational Research on the Way to Effective Therapy for Alzheimer Disease

    PubMed Central

    Rosenberg, Roger N.

    2006-01-01

    Context Alzheimer disease (AD) is a major public health issue with a prediction of 12 million Americans being affected by 2025 from the present 4 million. Molecular and genetic findings have provided significant insights into the roles that amyloid, tau, and apolipoprotein E isoforms have in the causation of AD. A central issue in AD pathogenesis is the amyloid cascade hypothesis. It states that abnormal amyloid processing and accumulation is the primary causative factor of AD and other associated neuropathologic abnormalities are of secondary consequence. It is presented to provide the rationale for novel drug and vaccination therapeutic strategies. Future research directed at prediction and prevention of AD through a genomic and proteomic analysis with identification of multiple polymorphic genes that interact, resulting in increased risk for late-onset AD, are the realistic and ultimate goals. A new approach for drug development is required, one that will emphasize a genomic and proteomic analysis to identify at-risk gene sets whose genetic expression is sufficient to cause late onset, sporadic AD. Prediction and prevention of disease prior to clinical signs and symptoms are the goals. Objective A review and analysis from electronic literature databases and subsequent reference searches of the molecular genetic data including pertinent genetic mutations and abnormal biochemical findings causal of AD, are cited. The amyloid cascade hypothesis, the contributions of apolipoprotein E, and hyperphosphorylated tau are discussed as to their roles in pathogenesis. Molecular targets for potential drug and vaccination therapies are cited from a critical assessment of the molecular and biomedical data. These data form the basis for rational, target-specific drug and vaccination therapies currently employed and planned for the near future. Phase 2 and 3 clinical trial results of drug and vaccination therapies are cited. Conclusions A new approach is needed as current pharmacologic therapy directed at symptomatic relief has proved to be marginally effective. The genomic and proteomic basis of AD will be defined in the near future, and corresponding molecular therapeutic targets will be identified. Genomic neurology has arrived and its application to resolving AD is our best hope. PMID:16275806

  5. Translational research on the way to effective therapy for Alzheimer disease.

    PubMed

    Rosenberg, Roger N

    2005-11-01

    Alzheimer disease (AD) is a major public health issue with a prediction of 12 million Americans being affected by 2025 from the present 4 million. Molecular and genetic findings have provided significant insights into the roles that amyloid, tau, and apolipoprotein E isoforms have in the causation of AD. A central issue in AD pathogenesis is the amyloid cascade hypothesis. It states that abnormal amyloid processing and accumulation is the primary causative factor of AD and other associated neuropathologic abnormalities are of secondary consequence. It is presented to provide the rationale for novel drug and vaccination therapeutic strategies. Future research directed at prediction and prevention of AD through a genomic and proteomic analysis with identification of multiple polymorphic genes that interact, resulting in increased risk for late-onset AD, are the realistic and ultimate goals. A new approach for drug development is required, one that will emphasize a genomic and proteomic analysis to identify at-risk gene sets whose genetic expression is sufficient to cause late onset, sporadic AD. Prediction and prevention of disease prior to clinical signs and symptoms are the goals. A review and analysis from electronic literature databases and subsequent reference searches of the molecular genetic data. including pertinent genetic mutations and abnormal biochemical findings causal of AD, are cited. The amyloid cascade hypothesis, the contributions of apolipoprotein E, and hyperphosphorylated tau are discussed as to their roles in pathogenesis. Molecular targets for potential drug and vaccination therapies are cited from a critical assessment of the molecular and biomedical data. These data form the basis for rational, target-specific drug and vaccination therapies currently employed and planned for the near future. Phase 2 and 3 clinical trial results of drug and vaccination therapies are cited. A new approach is needed as current pharmacologic therapy directed at symptomatic relief has proved to be marginally effective. The genomic and proteomic basis of AD will be defined in the near future, and corresponding molecular therapeutic targets will be identified. Genomic neurology has arrived and its application to resolving AD is our best hope.

  6. SNiPlay: a web-based tool for detection, management and analysis of SNPs. Application to grapevine diversity projects.

    PubMed

    Dereeper, Alexis; Nicolas, Stéphane; Le Cunff, Loïc; Bacilieri, Roberto; Doligez, Agnès; Peros, Jean-Pierre; Ruiz, Manuel; This, Patrice

    2011-05-05

    High-throughput re-sequencing, new genotyping technologies and the availability of reference genomes allow the extensive characterization of Single Nucleotide Polymorphisms (SNPs) and insertion/deletion events (indels) in many plant species. The rapidly increasing amount of re-sequencing and genotyping data generated by large-scale genetic diversity projects requires the development of integrated bioinformatics tools able to efficiently manage, analyze, and combine these genetic data with genome structure and external data. In this context, we developed SNiPlay, a flexible, user-friendly and integrative web-based tool dedicated to polymorphism discovery and analysis. It integrates:1) a pipeline, freely accessible through the internet, combining existing softwares with new tools to detect SNPs and to compute different types of statistical indices and graphical layouts for SNP data. From standard sequence alignments, genotyping data or Sanger sequencing traces given as input, SNiPlay detects SNPs and indels events and outputs submission files for the design of Illumina's SNP chips. Subsequently, it sends sequences and genotyping data into a series of modules in charge of various processes: physical mapping to a reference genome, annotation (genomic position, intron/exon location, synonymous/non-synonymous substitutions), SNP frequency determination in user-defined groups, haplotype reconstruction and network, linkage disequilibrium evaluation, and diversity analysis (Pi, Watterson's Theta, Tajima's D).Furthermore, the pipeline allows the use of external data (such as phenotype, geographic origin, taxa, stratification) to define groups and compare statistical indices.2) a database storing polymorphisms, genotyping data and grapevine sequences released by public and private projects. It allows the user to retrieve SNPs using various filters (such as genomic position, missing data, polymorphism type, allele frequency), to compare SNP patterns between populations, and to export genotyping data or sequences in various formats. Our experiments on grapevine genetic projects showed that SNiPlay allows geneticists to rapidly obtain advanced results in several key research areas of plant genetic diversity. Both the management and treatment of large amounts of SNP data are rendered considerably easier for end-users through automation and integration. Current developments are taking into account new advances in high-throughput technologies.SNiPlay is available at: http://sniplay.cirad.fr/.

  7. Genetic contribution of hatchery fish to walleye stocks in Saginaw Bay, Michigan

    USGS Publications Warehouse

    Todd, Thomas N.; Haas, Robert C.; Schramm, Harold L.; Piper, Robert G.

    1995-01-01

    Stocks of walleye (Stizostedion vitreum) were severely depressed in Saginaw Bay in the 1970s. In 1979, the Michigan Department of Natural Resources began intensive stocking of walleye fingerlings to bolster fish populations. Subsequent to stocking, the walleye fishery has recovered. The study objective was to determine if recovery was due to the stocking program or natural reproduction. Inherent genetic differences between hatchery fish and endemic walleyes were used to determine the effect and contribution of hatchery fish to Saginaw Bay.

  8. Plant transformation via pollen tube-mediated gene transfer

    USDA-ARS?s Scientific Manuscript database

    Genetic transformation using foreign genes and the subsequent development of transgenic plants has been employed to develop enhanced elite germplasm. Although some skepticism exits regarding pollen tube-mediated gene transfer (PTT), reports demonstrating improved transformation efficiency with PTT ...

  9. [Molecular genetic analysis and clinical aspects of patients with hereditary hemochromatosis].

    PubMed

    Lange, U; Teichmann, J; Dischereit, G

    2014-08-01

    The purpose of the study was to perform a molecular genetic analysis and to document clinical aspects in patients with hereditary hemochromatosis. The study included 33 outpatients (23 males average age 50.6 years and 10 females average age 60.6 years) with a disorder of iron metabolism (transferrin saturation > 75 %) as confirmation of hemochromatosis who were subjected to molecular genetic and clinical analyses. A homozygous mutation of the hemochromatosis (HFE) gene (C282YY) was detected in 63.6 %, a compound heterozygous mutation (C282Y/H63D) in 30.3% and no mutation of the HFE gene was detected in 6.1 %. The following organ manifestations could be objectified: arthralgia (78.8 %), liver disease (39.9 %), skin hyperpigmentation (30.3 %), osteoporosis (24.2 %), diabetes mellitus (24.2 %) and cardiomyopathy (12.1 %). Comparison between patients with heterozygous and homozygous hemochromatosis revealed the following differences: compound heterozygote patients presented less frequently with osteoarthritis of the metacarpophalangeal (MCP) joints and hands (85.7 %/71.4 % homozygotes vs. 60 %/60 % heterozygotes). Osteoarthritis of the shoulder joints and osteoporosis as well as hypothyroidism were more frequent in compound heterozygote patients, whereas osteoarthritis of the knee and hip joints as well as liver disease were more common in homozygote patients. No differences between both groups were seen with respect to the clinical manifestations of cardiomyopathy and diabetes mellitus. Prevalent causes of death in hereditary hemochromatosis are heart failure, liver disease (cirrhosis and hepatocellular carcinoma) and portal hypertension. Therefore, an early diagnosis, adequate therapy and genetic screening of family members are of great importance. Medicinal treatment will only effectively prevent deleterious organ involvement and subsequent complications if initiated at an early stage. Furthermore, an overview of the current data is given.

  10. An evidence-based approach to globally assess the covariate-dependent effect of the MTHFR single nucleotide polymorphism rs1801133 on blood homocysteine: a systematic review and meta-analysis.

    PubMed

    Jin, Huifeng; Cheng, Haojie; Chen, Wei; Sheng, Xiaoming; Levy, Mark A; Brown, Mark J; Tian, Junqiang

    2018-05-01

    The single nucleotide polymorphism of the gene 5,10-methylenetetrahydrofolate reductase (MTHFR) C677T (or rs1801133) is the most established genetic factor that increases plasma total homocysteine (tHcy) and consequently results in hyperhomocysteinemia. Yet, given the limited penetrance of this genetic variant, it is necessary to individually predict the risk of hyperhomocysteinemia for an rs1801133 carrier. We hypothesized that variability in this genetic risk is largely due to the presence of factors (covariates) that serve as effect modifiers, confounders, or both, such as folic acid (FA) intake, and aimed to assess this risk in the complex context of these covariates. We systematically extracted from published studies the data on tHcy, rs1801133, and any previously reported rs1801133 covariates. The resulting metadata set was first used to analyze the covariates' modifying effect by meta-regression and other statistical means. Subsequently, we controlled for this modifying effect by genotype-stratifying tHcy data and analyzed the variability in the risk resulting from the confounding of covariates. The data set contains data on 36 rs1801133 covariates that were collected from 114,799 participants and 256 qualified studies, among which 6 covariates (sex, age, race, FA intake, smoking, and alcohol consumption) are the most frequently informed and therefore included for statistical analysis. The effect of rs1801133 on tHcy exhibits significant variability that can be attributed to effect modification as well as confounding by these covariates. Via statistical modeling, we predicted the covariate-dependent risk of tHcy elevation and hyperhomocysteinemia in a systematic manner. We showed an evidence-based approach that globally assesses the covariate-dependent effect of rs1801133 on tHcy. The results should assist clinicians in interpreting the rs1801133 data from genetic testing for their patients. Such information is also important for the public, who increasingly receive genetic data from commercial services without interpretation of its clinical relevance. This study was registered at Research Registry with the registration number reviewregistry328.

  11. A hitchhikers guide to the Galápagos: co-phylogeography of Galápagos mockingbirds and their parasites

    PubMed Central

    2011-01-01

    Background Parasites are evolutionary hitchhikers whose phylogenies often track the evolutionary history of their hosts. Incongruence in the evolutionary history of closely associated lineages can be explained through a variety of possible events including host switching and host independent speciation. However, in recently diverged lineages stochastic population processes, such as retention of ancestral polymorphism or secondary contact, can also explain discordant genealogies, even in fully co-speciating taxa. The relatively simple biogeographic arrangement of the Galápagos archipelago, compared with mainland biomes, provides a framework to identify stochastic and evolutionary informative components of genealogic data in these recently diverged organisms. Results Mitochondrial DNA sequences were obtained for four species of Galápagos mockingbirds and three sympatric species of ectoparasites - two louse and one mite species. These data were complemented with nuclear EF1α sequences in selected samples of parasites and with information from microsatellite loci in the mockingbirds. Mitochondrial sequence data revealed differences in population genetic diversity between all taxa and varying degrees of topological congruence between host and parasite lineages. A very low level of genetic variability and lack of congruence was found in one of the louse parasites, which was excluded from subsequent joint analysis of mitochondrial data. The reconciled multi-species tree obtained from the analysis is congruent with both the nuclear data and the geological history of the islands. Conclusions The gene genealogies of Galápagos mockingbirds and two of their ectoparasites show strong phylogeographic correlations, with instances of incongruence mostly explained by ancestral genetic polymorphism. A third parasite genealogy shows low levels of genetic diversity and little evidence of co-phylogeny with their hosts. These differences can mostly be explained by variation in life-history characteristics, primarily host specificity and dispersal capabilities. We show that pooling genetic data from organisms living in close ecological association reveals a more accurate phylogeographic history for these taxa. Our results have implications for the conservation and taxonomy of Galápagos mockingbirds and their parasites. PMID:21966954

  12. A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy

    PubMed Central

    2012-01-01

    Background Miscanthus (subtribe Saccharinae, tribe Andropogoneae, family Poaceae) is a genus of temperate perennial C4 grasses whose high biomass production makes it, along with its close relatives sugarcane and sorghum, attractive as a biofuel feedstock. The base chromosome number of Miscanthus (x = 19) is different from that of other Saccharinae and approximately twice that of the related Sorghum bicolor (x = 10), suggesting large-scale duplications may have occurred in recent ancestors of Miscanthus. Owing to the complexity of the Miscanthus genome and the complications of self-incompatibility, a complete genetic map with a high density of markers has not yet been developed. Results We used deep transcriptome sequencing (RNAseq) from two M. sinensis accessions to define 1536 single nucleotide variants (SNVs) for a GoldenGate™ genotyping array, and found that simple sequence repeat (SSR) markers defined in sugarcane are often informative in M. sinensis. A total of 658 SNP and 210 SSR markers were validated via segregation in a full sibling F1 mapping population. Using 221 progeny from this mapping population, we constructed a genetic map for M. sinensis that resolves into 19 linkage groups, the haploid chromosome number expected from cytological evidence. Comparative genomic analysis documents a genome-wide duplication in Miscanthus relative to Sorghum bicolor, with subsequent insertional fusion of a pair of chromosomes. The utility of the map is confirmed by the identification of two paralogous C4-pyruvate, phosphate dikinase (C4-PPDK) loci in Miscanthus, at positions syntenic to the single orthologous gene in Sorghum. Conclusions The genus Miscanthus experienced an ancestral tetraploidy and chromosome fusion prior to its diversification, but after its divergence from the closely related sugarcane clade. The recent timing of this tetraploidy complicates discovery and mapping of genetic markers for Miscanthus species, since alleles and fixed differences between paralogs are comparable. These difficulties can be overcome by careful analysis of segregation patterns in a mapping population and genotyping of doubled haploids. The genetic map for Miscanthus will be useful in biological discovery and breeding efforts to improve this emerging biofuel crop, and also provide a valuable resource for understanding genomic responses to tetraploidy and chromosome fusion. PMID:22524439

  13. Dengue 1 Diversity and Microevolution, French Polynesia 2001–2006: Connection with Epidemiology and Clinics

    PubMed Central

    Descloux, Elodie; Cao-Lormeau, Van-Mai; Roche, Claudine; De Lamballerie, Xavier

    2009-01-01

    Background Dengue fever (DF) is an emerging infectious disease in the tropics and subtropics. Determinants of DF epidemiology and factors involved in severe cases—dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS)—remain imperfectly characterized. Since 2000, serotype 1 (DENV-1) has predominated in the South Pacific. The aim of this study was (i) to determine the origin and (ii) to study the evolutionary relationships of DENV-1 viruses that have circulated in French Polynesia (FP) from the severe 2001 outbreak to the recent 2006 epidemic, and (iii) to analyse the viral intra-host genetic diversity according to clinical presentation. Methodology/Principal Findings Sequences of 181 envelope gene and 12 complete polyproteins of DENV-1 viruses obtained from human sera in FP during the 2001–2006 period were generated. Phylogenetic analysis showed that all DENV-1 FP strains belonged to genotype IV–“South Pacific” and derived from a single introduction event from South-East Asia followed by a 6-year in situ evolution. Although the ratio of nonsynonymous/synonymous substitutions per site indicated strong negative selection, a mutation in the envelope glycoprotein (S222T) appeared in 2002 and was subsequently fixed. It was noted that genetic diversification was very significant during the 2002–2005 period of endemic DENV-1 circulation. For nine DF sera and eight DHF/DSS sera, approximately 40 clones/serum of partial envelope gene were sequenced. Importantly, analysis revealed that the intra-host genetic diversity was significantly lower in severe cases than in classical DF. Conclusions/Significance First, this study showed that DENV-1 epidemiology in FP was different from that described in other South-Pacific islands, characterized by a long sustained viral circulation and the absence of new viral introduction over a 6-year period. Second, a significant part of DENV-1 evolution was observed during the endemic period characterized by the rapid fixation of S222T in the envelope protein that may reflect genetic drift or adaptation to the mosquito vector. Third, for the first time, it is suggested that clinical outcome may be correlated with intra-host genetic diversity. PMID:19652703

  14. Global mtDNA genetic structure and hypothesized invasion history of a major pest of citrus, Diaphorina citri (Hemiptera: Liviidae).

    PubMed

    Luo, Yufa; Agnarsson, Ingi

    2018-01-01

    The Asian citrus psyllid Diaphorina citri Kuwayama is a key pest of citrus as the vector of the bacterium causing the "huanglongbing" disease (HLB). To assess the global mtDNA population genetic structure, and possible dispersal history of the pest, we investigated genetic variation at the COI gene collating newly collected samples with all previously published data. Our dataset consists of 356 colonies from 106 geographic sites worldwide. High haplotype diversity (H-mean = 0.702 ± 0.017), low nucleotide diversity (π-mean = 0.003), and significant positive selection (Ka/Ks = 32.92) were observed. Forty-four haplotypes (Hap) were identified, clustered into two matrilines: Both occur in southeastern and southern Asia, North and South America, and Africa; lineages A and B also occur in eastern and western Asia, respectively. The most abundant haplotypes were Hap4 in lineage A (35.67%), and Hap9 in lineage B (41.29%). The haplotype network identified them as the ancestral haplotypes within their respective lineages. Analysis of molecular variance showed significant genetic structure ( F ST  = 0.62, p  < .0001) between the lineages, and population genetic analysis suggests geographic structuring. We hypothesize a southern and/or southeastern Asia origin, three dispersal routes, and parallel expansions of two lineages. The hypothesized first route involved the expansion of lineage B from southern Asia into North America via West Asia. The second, the expansion of some lineage A individuals from Southeast Asia into East Asia, and the third involved both lineages from Southeast Asia spreading westward into Africa and subsequently into South America. To test these hypotheses and gain a deeper understanding of the global history of D. citri , more data-rich approaches will be necessary from the ample toolkit of next-generation sequencing (NGS). However, this study may serve to guide such sampling and in the development of biological control programs against the global pest D. citri .

  15. Identification of crop cultivars with consistently high lignocellulosic sugar release requires the use of appropriate statistical design and modelling

    PubMed Central

    2013-01-01

    Background In this study, a multi-parent population of barley cultivars was grown in the field for two consecutive years and then straw saccharification (sugar release by enzymes) was subsequently analysed in the laboratory to identify the cultivars with the highest consistent sugar yield. This experiment was used to assess the benefit of accounting for both the multi-phase and multi-environment aspects of large-scale phenotyping experiments with field-grown germplasm through sound statistical design and analysis. Results Complementary designs at both the field and laboratory phases of the experiment ensured that non-genetic sources of variation could be separated from the genetic variation of cultivars, which was the main target of the study. The field phase included biological replication and plot randomisation. The laboratory phase employed re-randomisation and technical replication of samples within a batch, with a subset of cultivars chosen as duplicates that were randomly allocated across batches. The resulting data was analysed using a linear mixed model that incorporated field and laboratory variation and a cultivar by trial interaction, and ensured that the cultivar means were more accurately represented than if the non-genetic variation was ignored. The heritability detected was more than doubled in each year of the trial by accounting for the non-genetic variation in the analysis, clearly showing the benefit of this design and approach. Conclusions The importance of accounting for both field and laboratory variation, as well as the cultivar by trial interaction, by fitting a single statistical model (multi-environment trial, MET, model), was evidenced by the changes in list of the top 40 cultivars showing the highest sugar yields. Failure to account for this interaction resulted in only eight cultivars that were consistently in the top 40 in different years. The correspondence between the rankings of cultivars was much higher at 25 in the MET model. This approach is suited to any multi-phase and multi-environment population-based genetic experiment. PMID:24359577

  16. TriXY-Homogeneous genetic sexing of highly degraded forensic samples including hair shafts.

    PubMed

    Madel, Maria-Bernadette; Niederstätter, Harald; Parson, Walther

    2016-11-01

    Sexing of biological evidence is an important aspect in forensic investigations. A routinely used molecular-genetic approach to this endeavour is the amelogenin sex test, which is integrated in most commercially available polymerase chain reaction (PCR) kits for human identification. However, this assay is not entirely effective in respect to highly degraded DNA samples. This study presents a homogeneous PCR assay for robust sex diagnosis, especially for the analysis of severely fragmented DNA. The introduced triplex for the X and Y chromosome (TriXY) is based on real-time PCR amplification of short intergenic sequences (<50bp) on both gonosomes. Subsequent PCR product examination and molecular-genetic sex-assignment rely on high-resolution melting (HRM) curve analysis. TriXY was optimized using commercially available multi-donor human DNA preparations of either male or female origin and successfully evaluated on challenging samples, including 46 ancient DNA specimens from archaeological excavations and a total of 16 DNA samples extracted from different segments of eight hair shafts of male and female donors. Additionally, sensitivity and cross-species amplification were examined to further test the assay's utility in forensic investigations. TriXY's closed-tube format avoids post-PCR sample manipulations and, therefore, distinctly reduces the risk of PCR product carry-over contamination and sample mix-up, while reducing labour and financial expenses at the same time. The method is sensitive down to the DNA content of approximately two diploid cells and has proven highly useful on severely fragmented and low quantity ancient DNA samples. Furthermore, it even allowed for sexing of proximal hair shafts with very good results. In summary, TriXY facilitates highly sensitive, rapid, and costeffective genetic sex-determination. It outperforms existing sexing methods both in terms of sensitivity and minimum required template molecule lengths. Therefore, we feel confident that TriXY will prove to be a reliable addition to the toolbox currently used for sex-typing in forensic genetics and other fields of research. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Genome-wide association study and ancestral origins of the slick-hair coat in tropically adapted cattle

    PubMed Central

    Huson, Heather J.; Kim, Eui-Soo; Godfrey, Robert W.; Olson, Timothy A.; McClure, Matthew C.; Chase, Chad C.; Rizzi, Rita; O'Brien, Ana M. P.; Van Tassell, Curt P.; Garcia, José F.; Sonstegard, Tad S.

    2014-01-01

    The slick hair coat (SLICK) is a dominantly inherited trait typically associated with tropically adapted cattle that are from Criollo descent through Spanish colonization of cattle into the New World. The trait is of interest relative to climate change, due to its association with improved thermo-tolerance and subsequent increased productivity. Previous studies localized the SLICK locus to a 4 cM region on chromosome (BTA) 20 and identified signatures of selection in this region derived from Senepol cattle. The current study compares three slick-haired Criollo-derived breeds including Senepol, Carora, and Romosinuano and three additional slick-haired cross-bred lineages to non-slick ancestral breeds. Genome-wide association (GWA), haplotype analysis, signatures of selection, runs of homozygosity (ROH), and identity by state (IBS) calculations were used to identify a 0.8 Mb (37.7–38.5 Mb) consensus region for the SLICK locus on BTA20 in which contains SKP2 and SPEF2 as possible candidate genes. Three specific haplotype patterns are identified in slick individuals, all with zero frequency in non-slick individuals. Admixture analysis identified common genetic patterns between the three slick breeds at the SLICK locus. Principal component analysis (PCA) and admixture results show Senepol and Romosinuano sharing a higher degree of genetic similarity to one another with a much lesser degree of similarity to Carora. Variation in GWA, haplotype analysis, and IBS calculations with accompanying population structure information supports potentially two mutations, one common to Senepol and Romosinuano and another in Carora, effecting genes contained within our refined location for the SLICK locus. PMID:24808908

  18. Genome-wide association study and ancestral origins of the slick-hair coat in tropically adapted cattle.

    PubMed

    Huson, Heather J; Kim, Eui-Soo; Godfrey, Robert W; Olson, Timothy A; McClure, Matthew C; Chase, Chad C; Rizzi, Rita; O'Brien, Ana M P; Van Tassell, Curt P; Garcia, José F; Sonstegard, Tad S

    2014-01-01

    The slick hair coat (SLICK) is a dominantly inherited trait typically associated with tropically adapted cattle that are from Criollo descent through Spanish colonization of cattle into the New World. The trait is of interest relative to climate change, due to its association with improved thermo-tolerance and subsequent increased productivity. Previous studies localized the SLICK locus to a 4 cM region on chromosome (BTA) 20 and identified signatures of selection in this region derived from Senepol cattle. The current study compares three slick-haired Criollo-derived breeds including Senepol, Carora, and Romosinuano and three additional slick-haired cross-bred lineages to non-slick ancestral breeds. Genome-wide association (GWA), haplotype analysis, signatures of selection, runs of homozygosity (ROH), and identity by state (IBS) calculations were used to identify a 0.8 Mb (37.7-38.5 Mb) consensus region for the SLICK locus on BTA20 in which contains SKP2 and SPEF2 as possible candidate genes. Three specific haplotype patterns are identified in slick individuals, all with zero frequency in non-slick individuals. Admixture analysis identified common genetic patterns between the three slick breeds at the SLICK locus. Principal component analysis (PCA) and admixture results show Senepol and Romosinuano sharing a higher degree of genetic similarity to one another with a much lesser degree of similarity to Carora. Variation in GWA, haplotype analysis, and IBS calculations with accompanying population structure information supports potentially two mutations, one common to Senepol and Romosinuano and another in Carora, effecting genes contained within our refined location for the SLICK locus.

  19. Dissecting the Phenotypic Components of Crop Plant Growth and Drought Responses Based on High-Throughput Image Analysis[W][OPEN

    PubMed Central

    Chen, Dijun; Neumann, Kerstin; Friedel, Swetlana; Kilian, Benjamin; Chen, Ming; Altmann, Thomas; Klukas, Christian

    2014-01-01

    Significantly improved crop varieties are urgently needed to feed the rapidly growing human population under changing climates. While genome sequence information and excellent genomic tools are in place for major crop species, the systematic quantification of phenotypic traits or components thereof in a high-throughput fashion remains an enormous challenge. In order to help bridge the genotype to phenotype gap, we developed a comprehensive framework for high-throughput phenotype data analysis in plants, which enables the extraction of an extensive list of phenotypic traits from nondestructive plant imaging over time. As a proof of concept, we investigated the phenotypic components of the drought responses of 18 different barley (Hordeum vulgare) cultivars during vegetative growth. We analyzed dynamic properties of trait expression over growth time based on 54 representative phenotypic features. The data are highly valuable to understand plant development and to further quantify growth and crop performance features. We tested various growth models to predict plant biomass accumulation and identified several relevant parameters that support biological interpretation of plant growth and stress tolerance. These image-based traits and model-derived parameters are promising for subsequent genetic mapping to uncover the genetic basis of complex agronomic traits. Taken together, we anticipate that the analytical framework and analysis results presented here will be useful to advance our views of phenotypic trait components underlying plant development and their responses to environmental cues. PMID:25501589

  20. Transcriptome analysis and de novo annotation of the critically endangered Amur sturgeon (Acipenser schrenckii).

    PubMed

    Zhang, X J; Jiang, H Y; Li, L M; Yuan, L H; Chen, J P

    2016-06-20

    The aim of this study was to provide comprehensive insights into the genetic background of sturgeon by transcriptome study. We performed a de novo assembly of the Amur sturgeon Acipenser schrenckii transcriptome using Illumina Hiseq 2000 sequencing. A total of 148,817 non-redundant unigenes with base length of approximately 121,698,536 bp and ranges from 201 to 26,789 bp were obtained. All the unigenes were classified into 3368 distinct categories and 145,449 singletons by homologous transcript cluster analysis. In all, 46,865 (31.49%) unigenes showed homologous matches with Nr database and 32,214 (21.65%) unigenes were matched to Nt database. In total, 24,862 unigenes were categorized into significantly enriched 52 function groups by GO analysis, and 38,436 unigenes were classified into 25 groups by KOG prediction, as well as 128 enriched KEGG pathways were identified by 45,598 unigenes (P < 0.05). Subsequently, a total of 19,860 SSRs markers were identified with the abundant di-nucleotide type (10,658; 53.67%) and the most AT/TA motif repeats (2689; 13.54%). A total of 1341 conserved lncRNAs were identified by a customized pipeline. Our study provides new sequence and function information for A. schrenckii, which will be the basis for further genetic studies on sturgeon species. The huge number of potential SSRs and putatively conserved lncRNAs isolated by the transcriptome also shed light on research in many fields, including the evolution, conservation management, and biological processes in sturgeon.

  1. Replication and meta-analysis of TMEM132D gene variants in panic disorder

    PubMed Central

    Erhardt, A; Akula, N; Schumacher, J; Czamara, D; Karbalai, N; Müller-Myhsok, B; Mors, O; Borglum, A; Kristensen, A S; Woldbye, D P D; Koefoed, P; Eriksson, E; Maron, E; Metspalu, A; Nurnberger, J; Philibert, R A; Kennedy, J; Domschke, K; Reif, A; Deckert, J; Otowa, T; Kawamura, Y; Kaiya, H; Okazaki, Y; Tanii, H; Tokunaga, K; Sasaki, T; Ioannidis, J P A; McMahon, F J; Binder, E B

    2012-01-01

    A recent genome-wide association study in patients with panic disorder (PD) identified a risk haplotype consisting of two single-nucleotide polymorphisms (SNPs) (rs7309727 and rs11060369) located in intron 3 of TMEM132D to be associated with PD in three independent samples. Now we report a subsequent confirmation study using five additional PD case–control samples (n=1670 cases and n=2266 controls) assembled as part of the Panic Disorder International Consortium (PanIC) study for a total of 2678 cases and 3262 controls in the analysis. In the new independent samples of European ancestry (EA), the association of rs7309727 and the risk haplotype rs7309727–rs11060369 was, indeed, replicated, with the strongest signal coming from patients with primary PD, that is, patients without major psychiatric comorbidities (n=1038 cases and n=2411 controls). This finding was paralleled by the results of the meta-analysis across all samples, in which the risk haplotype and rs7309727 reached P-levels of P=1.4e−8 and P=1.1e−8, respectively, when restricting the samples to individuals of EA with primary PD. In the Japanese sample no associations with PD could be found. The present results support the initial finding that TMEM132D gene contributes to genetic susceptibility for PD in individuals of EA. Our results also indicate that patient ascertainment and genetic background could be important sources of heterogeneity modifying this association signal in different populations. PMID:22948381

  2. Molecular epidemiology of respiratory syncytial virus in The Gambia.

    PubMed Central

    Cane, P. A.; Weber, M.; Sanneh, M.; Dackour, R.; Pringle, C. R.; Whittle, H.

    1999-01-01

    Respiratory syncytial virus (RSV) infection in The Gambia occurs seasonally in association with the rainy season. This study examined the genetic variability of RSV isolates from four consecutive epidemics from 1993-6. Each epidemic was made up of a number of variants which were replaced in subsequent epidemics. Analysis of attachment (G) protein gene sequences showed that isolates were closely related to those observed in the rest of the world. However, many isolates from 1993 and 1994 were unlike other isolates observed in the developed world during this period and were more similar to isolates from 1984 in Europe. In addition, the most commonly observed genotype in the UK in the 1990s was not detected in The Gambia during this period. PMID:10098799

  3. Solving Immunology?

    PubMed Central

    Vodovotz, Yoram; Xia, Ashley; Read, Elizabeth L.; Bassaganya-Riera, Josep; Hafler, David A.; Sontag, Eduardo; Wang, Jin; Tsang, John S.; Day, Judy D.; Kleinstein, Steven; Butte, Atul J.; Altman, Matthew C; Hammond, Ross; Sealfon, Stuart C.

    2016-01-01

    Emergent responses of the immune system result from integration of molecular and cellular networks over time and across multiple organs. High-content and high-throughput analysis technologies, concomitantly with data-driven and mechanistic modeling, hold promise for systematic interrogation of these complex pathways. However, connecting genetic variation and molecular mechanisms to individual phenotypes and health outcomes has proven elusive. Gaps remain in data, and disagreements persist about the value of mechanistic modeling for immunology. Here, we present the perspectives that emerged from the NIAID workshop “Complex Systems Science, Modeling and Immunity” and subsequent discussions regarding the potential synergy of high-throughput data acquisition, data-driven modeling and mechanistic modeling to define new mechanisms of immunological disease and to accelerate the translation of these insights into therapies. PMID:27986392

  4. Understanding Ebola: the 2014 epidemic.

    PubMed

    Kaner, Jolie; Schaack, Sarah

    2016-09-13

    Near the end of 2013, an outbreak of Zaire ebolavirus (EBOV) began in Guinea, subsequently spreading to neighboring Liberia and Sierra Leone. As this epidemic grew, important public health questions emerged about how and why this outbreak was so different from previous episodes. This review provides a synthetic synopsis of the 2014-15 outbreak, with the aim of understanding its unprecedented spread. We present a summary of the history of previous epidemics, describe the structure and genetics of the ebolavirus, and review our current understanding of viral vectors and the latest treatment practices. We conclude with an analysis of the public health challenges epidemic responders faced and some of the lessons that could be applied to future outbreaks of Ebola or other viruses.

  5. Disentangling the Correlated Evolution of Monogamy and Cooperation.

    PubMed

    Dillard, Jacqueline R; Westneat, David F

    2016-07-01

    Lifetime genetic monogamy, by increasing sibling relatedness, has been proposed as an important causal factor in the evolution of altruism. Monogamy, however, could influence the subsequent evolution of cooperation in other ways. We present several alternative, non-mutually exclusive, evolutionary processes that could explain the correlated evolution of monogamy and cooperation. Our analysis of these possibilities reveals that many ecological or social factors can affect all three variables of Hamilton's Rule simultaneously, thus calling for a more holistic, systems-level approach to studying the evolution of social traits. This perspective reveals novel dimensions to coevolutionary relationships and provides solutions for assigning causality in complex cases of correlated social trait evolution, such as the sequential evolution of monogamy and cooperation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Integrative analysis of GWAS, eQTLs and meQTLs data suggests that multiple gene sets are associated with bone mineral density.

    PubMed

    Wang, W; Huang, S; Hou, W; Liu, Y; Fan, Q; He, A; Wen, Y; Hao, J; Guo, X; Zhang, F

    2017-10-01

    Several genome-wide association studies (GWAS) of bone mineral density (BMD) have successfully identified multiple susceptibility genes, yet isolated susceptibility genes are often difficult to interpret biologically. The aim of this study was to unravel the genetic background of BMD at pathway level, by integrating BMD GWAS data with genome-wide expression quantitative trait loci (eQTLs) and methylation quantitative trait loci (meQTLs) data METHOD: We employed the GWAS datasets of BMD from the Genetic Factors for Osteoporosis Consortium (GEFOS), analysing patients' BMD. The areas studied included 32 735 femoral necks, 28 498 lumbar spines, and 8143 forearms. Genome-wide eQTLs (containing 923 021 eQTLs) and meQTLs (containing 683 152 unique methylation sites with local meQTLs) data sets were collected from recently published studies. Gene scores were first calculated by summary data-based Mendelian randomisation (SMR) software and meQTL-aligned GWAS results. Gene set enrichment analysis (GSEA) was then applied to identify BMD-associated gene sets with a predefined significance level of 0.05. We identified multiple gene sets associated with BMD in one or more regions, including relevant known biological gene sets such as the Reactome Circadian Clock (GSEA p-value = 1.0 × 10 -4 for LS and 2.7 × 10 -2 for femoral necks BMD in eQTLs-based GSEA) and insulin-like growth factor receptor binding (GSEA p-value = 5.0 × 10 -4 for femoral necks and 2.6 × 10 -2 for lumbar spines BMD in meQTLs-based GSEA). Our results provided novel clues for subsequent functional analysis of bone metabolism, and illustrated the benefit of integrating eQTLs and meQTLs data into pathway association analysis for genetic studies of complex human diseases. Cite this article : W. Wang, S. Huang, W. Hou, Y. Liu, Q. Fan, A. He, Y. Wen, J. Hao, X. Guo, F. Zhang. Integrative analysis of GWAS, eQTLs and meQTLs data suggests that multiple gene sets are associated with bone mineral density. Bone Joint Res 2017;6:572-576. © 2017 Wang et al.

  7. Genetic analysis of a four generation Indian family with Usher syndrome: a novel insertion mutation in MYO7A.

    PubMed

    Kumar, Arun; Babu, Mohan; Kimberling, William J; Venkatesh, Conjeevaram P

    2004-11-24

    Usher syndrome (USH) is a rare autosomal recessive disorder characterized by deafness and retinitis pigmentosa. The purpose of this study was to determine the genetic cause of USH in a four generation Indian family. Peripheral blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to known USH loci, microsatellite markers were selected from the candidate regions of known loci and used to genotype the family. Exon specific intronic primers for the MYO7A gene were used to amplify DNA samples from one affected individual from the family. PCR products were subsequently sequenced to detect mutation. PCR-SSCP analysis was used to determine if the mutation segregated with the disease in the family and was not present in 50 control individuals. All affected individuals had a classic USH type I (USH1) phenotype which included deafness, vestibular dysfunction and retinitis pigmentosa. Pedigree analysis suggested an autosomal recessive mode of inheritance of USH in the family. Haplotype analysis suggested linkage of this family to the USH1B locus on chromosome 11q. DNA sequence analysis of the entire coding region of the MYO7A gene showed a novel insertion mutation c.2663_2664insA in a homozygous state in all affected individuals, resulting in truncation of MYO7A protein. This is the first study from India which reports a novel MYO7A insertion mutation in a four generation USH family. The mutation is predicted to produce a truncated MYO7A protein. With the novel mutation reported here, the total number of USH causing mutations in the MYO7A gene described to date reaches to 75.

  8. A very large Brazilian pedigree with 11778 Leber's hereditary optic neuropathy.

    PubMed Central

    Sadun, Alfredo A; Carelli, Valerio; Salomao, Solange R; Berezovsky, Adriana; Quiros, Peter; Sadun, Federico; DeNegri, Anna-Maria; Andrade, Rafael; Schein, Stan; Belfort, Rubens

    2002-01-01

    PURPOSE: We conducted extensive epidemiological, neuro-ophthalmological, psychophysical, and blood examinations on a newly discovered, very large pedigree with molecular analysis showing mtDNA mutation for Leber's hereditary optic neuropathy (LHON). METHODS: Four patients representing four index cases from a remote area of Brazil were sent to Sao Paulo, where complete ophthalmological examinations strongly suggested LHON. Molecular analysis of their blood demonstrated that they were LHON, homoplasmic 11778, J-haplogroup. They had an extensive family that all lived in one rural area in Brazil. To investigate this family, we drew on a number of international experts to form a team that traveled to Brazil. This field team also included several members of the Federal University of Sao Paulo, and together we evaluated 273 of the 295 family members that were still alive. We conducted epidemiological interviews emphasizing possible environmental risk factors, comprehensive neuro-ophthalmological examinations, psychophysical tests, Humphrey visual field studies, fundus photography, and blood testing for both mitochondrial genetic analysis and nuclear gene linkage analysis. RESULTS: The person representing the first-generation case immigrated from Verona, Italy, to Colatina. Subsequent generations demonstrated penetrance rates of 71%, 60%, 34%, 15%, and 9%. The percentages of males were 60%, 50%, 64%, 100%, and 100%. Age at onset varied from 10 to 64 years, and current visual acuities varied from LP to 20/400. CONCLUSIONS: Almost 95% of a nearly 300-member pedigree with LHON 11778 were comprehensively studied. Analysis of environmental risk factors and a nuclear modifying factor from this group may help address the perplexing mystery of LHON: Why do only some of the genetically affected individuals manifest the disease? This fully described database may also provide an excellent opportunity for future clinical trials of any purported neuroprotective agent. PMID:12545691

  9. Genetic diversity and distribution patterns of host insects of Caterpillar Fungus Ophiocordyceps sinensis in the Qinghai-Tibet Plateau.

    PubMed

    Quan, Qing-Mei; Chen, Ling-Ling; Wang, Xi; Li, Shan; Yang, Xiao-Ling; Zhu, Yun-Guo; Wang, Mu; Cheng, Zhou

    2014-01-01

    The caterpillar fungus Ophiocordyceps sinensis is one of the most valuable medicinal fungi in the world, and it requires host insects in family Hepialidae (Lepidoptera) to complete its life cycle. However, the genetic diversity and phylogeographic structures of the host insects remain to be explored. We analyzed the genetic diversity and temporal and spatial distribution patterns of genetic variation of the host insects throughout the O. sinensis distribution. Abundant haplotype and nucleotide diversity mainly existed in the areas of Nyingchi, ShangriLa, and around the edge of the Qinghai-Tibet Plateau, where are considered as the diversity center or micro-refuges of the host insects of O. sinensis. However, there was little genetic variation among host insects from 72.1% of all populations, indicating that the host species composition might be relatively simple in large-scale O. sinensis populations. All host insects are monophyletic except for those from four O. sinensis populations around Qinghai Lake. Significant phylogeographic structure (NST>GST, P<0.05) was revealed for the monophyletic host insects, and the three major phylogenetic groups corresponded with specific geographical areas. The divergence of most host insects was estimated to have occurred at ca. 3.7 Ma, shortly before the rapid uplift of the QTP. The geographical distribution and star-like network of the haplotypes implied that most host insects were derived from the relicts of a once-widespread host that subsequently became fragmented. Neutrality tests, mismatch distribution analysis, and expansion time estimation confirmed that most host insects presented recent demographic expansions that began ca. 0.118 Ma in the late Pleistocene. Therefore, the genetic diversity and distribution of the present-day insects should be attributed to effects of the Qinghai-Tibet Plateau uplift and glacial advance/retreat cycles during the Quaternary ice age. These results provide valuable information to guide the protection and sustainable use of these host insects as well as O. sinensis.

  10. A New Phylogeographic Pattern of Endemic Bufo bankorensis in Taiwan Island Is Attributed to the Genetic Variation of Populations

    PubMed Central

    Yu, Teng-Lang; Lin, Hung-Du; Weng, Ching-Feng

    2014-01-01

    Aim To comprehend the phylogeographic patterns of genetic variation in anurans at Taiwan Island, this study attempted to examine (1) the existence of various geological barriers (Central Mountain Ranges, CMRs); and (2) the genetic variation of Bufo bankorensis using mtDNA sequences among populations located in different regions of Taiwan, characterized by different climates and existing under extreme conditions when compared available sequences of related species B. gargarizans of mainland China. Methodology/Principal Findings Phylogenetic analyses of the dataset with mitochondrial DNA (mtDNA) D-loop gene (348 bp) recovered a close relationship between B. bankorensis and B. gargarizans, identified three distinct lineages. Furthermore, the network of mtDNA D-loop gene (564 bp) amplified (279 individuals, 27 localities) from Taiwan Island indicated three divergent clades within B. bankorensis (Clade W, E and S), corresponding to the geography, thereby verifying the importance of the CMRs and Kaoping River drainage as major biogeographic barriers. Mismatch distribution analysis, neutrality tests and Bayesian skyline plots revealed that a significant population expansion occurred for the total population and Clade W, with horizons dated to approximately 0.08 and 0.07 Mya, respectively. These results suggest that the population expansion of Taiwan Island species B. bankorensis might have resulted from the release of available habitat in post-glacial periods, the genetic variation on mtDNA showing habitat selection, subsequent population dispersal, and co-distribution among clades. Conclusions The multiple origins (different clades) of B. bankorensis mtDNA sequences were first evident in this study. The divergent genetic clades found within B. bankorensis could be independent colonization by previously diverged lineages; inferring B. bankorensis originated from B. gargarizans of mainland China, then dispersal followed by isolation within Taiwan Island. Highly divergent clades between W and E of B. bankorensis, implies that the CMRs serve as a genetic barrier and separated the whole island into the western and eastern phylogroups. PMID:24853679

  11. Learning genetic inquiry through the use, revision, and justification of explanatory models

    NASA Astrophysics Data System (ADS)

    Cartier, Jennifer Lorraine

    Central to the process of inquiry in science is the construction and assessment of models that can be used to explain (and in some cases, predict) natural phenomena. This dissertation is a qualitative study of student learning in a high school biology course that was designed to give students opportunities to learn about genetic inquiry in part by providing them with authentic experiences doing inquiry in the discipline. With the aid of a computer program that generates populations of "fruit flies", the students in this class worked in groups structured like scientific communities to build, revise, and defend explanatory models for various inheritance phenomena. Analysis of the ways in which the first cohort of students assessed their inheritance models revealed that all students assessed models based upon empirical fit (data/model match). However, in contrast to the practice of scientists and despite explicit instruction, students did not consistently apply conceptual assessment criteria to their models. That is, they didn't seek consistency between underlying concepts or processes in their models and those of other important genetic models, such as meiosis. This is perhaps in part because they lacked an understanding of models as conceptual rather than physical entities. Subsequently, the genetics curriculum was altered in order to create more opportunities for students to address epistemological issues associated with model assessment throughout the course. The second cohort of students' understanding of models changed over the nine-week period: initially the majority of students equated scientific models with "proof" (generally physical) of "theories"; at the end of the course, most students demonstrated understanding of the conceptual nature of scientific models and the need to justify such knowledge according to both its empirical utility and conceptual consistency. Through model construction and assessment (i.e. scientific inquiry), students were able to come to a rich understanding of both the central concepts of transmission genetics and important epistemological aspects of genetic practice.

  12. Negligence and the communication of neonatal genetic information to parents.

    PubMed

    Fay, Michael

    2012-01-01

    It is inevitable that neonatal genetic information will be communicated to parents and a potential for psychiatric injury exists where the communication is negligent. An important question in this regard is whether a health-care provider may owe a duty of care to parents when communicating accurate genetic information, or whether the courts might treat it as merely the receipt of distressing news, which hitherto attracts no liability in English Tort Law. The important role of genetic counselling in this context will likely be determinative in deciding whether communicating accurate genetic information is actionable because it arguably distinguishes the parent-physician relationship from that of messenger-recipient. If communication is accepted as being something more than the receipt of distressing news and is capable of causing 'shock', then parents will need to establish themselves as either primary or secondary victims if claims are to be reconciled with the Alcock paradigm. Claims by parents as secondary victims will be unlikely to succeed because the neonate does not fulfil the role of primary victim, although parents may be owed a duty as elevated primary victims as a result of the lack of an immediate victim. Elevating claimants to primary victim status is not without criticism and may serve to further complicate a difficult area of tort law. Alternatively, it may be open to parents to demonstrate that a duty exists subsequent to an assumption of responsibility, as the provision of genetic counselling during and after neonatal screening is indicative of health-care providers assuming responsibility for the parents' mental health. If parents are able to establish that a duty of care exists, then success of their claims will be determined by reference to breach and causation. The potential difficulties and solutions, particularly with regard to causation, are also briefly considered. It is suggested that breach will likely be determined by reference to a responsible body of medical opinion, while it is proposed that the courts adopt a material increase analysis when assessing causation.

  13. Loss of chromosomal integrity in human mammary epithelial cells subsequent to escape from senescence

    NASA Technical Reports Server (NTRS)

    Tlsty, T. D.; Romanov, S. R.; Kozakiewicz, B. K.; Holst, C. R.; Haupt, L. M.; Crawford, Y. G.

    2001-01-01

    The genomic changes that foster cancer can be either genetic or epigenetic in nature. Early studies focused on genetic changes and how mutational events contribute to changes in gene expression. These point mutations, deletions and amplifications are known to activate oncogenes and inactivate tumor suppressor genes. More recently, multiple epigenetic changes that can have a profound effect on carcinogenesis have been identified. These epigenetic events, such as the methylation of promoter sequences in genes, are under active investigation. In this review we will describe a methylation event that occurs during the propagation of human mammary epithelial cells (HMEC) in culture and detail the accompanying genetic alterations that have been observed.

  14. New strategies for genetic engineering Pseudomonas syringae using recombination

    USDA-ARS?s Scientific Manuscript database

    Here we report that DNA oligonucleotides (oligos) introduced directly into bacteria by electroporation can recombine with the bacterial chromosome. This phenomenon was identified in Pseudomonas syringae and we subsequently found that Escherichia coli, Salmonella typhimurium and Shigella flexneri are...

  15. Landscape genomics reveal signatures of local adaptation in barley (Hordeum vulgare L.)

    PubMed Central

    Abebe, Tiegist D.; Naz, Ali A.; Léon, Jens

    2015-01-01

    Land plants are sessile organisms that cannot escape the adverse climatic conditions of a given environment. Hence, adaptation is one of the solutions to surviving in a challenging environment. This study was aimed at detecting adaptive loci in barley landraces that are affected by selection. To that end, a diverse population of barley landraces was analyzed using the genotyping by sequencing approach. Climatic data for altitude, rainfall and temperature were collected from 61 weather sites near the origin of selected landraces across Ethiopia. Population structure analysis revealed three groups whereas spatial analysis accounted significant similarities at shorter geographic distances (< 40 Km) among barley landraces. Partitioning the variance between climate variables and geographic distances indicated that climate variables accounted for most of the explainable genetic variation. Markers by climatic variables association analysis resulted in altogether 18 and 62 putative adaptive loci using Bayenv and latent factor mixed model (LFMM), respectively. Subsequent analysis of the associated SNPs revealed putative candidate genes for plant adaptation. This study highlights the presence of putative adaptive loci among barley landraces representing original gene pool of the farming communities. PMID:26483825

  16. The recent history and population structure of five Mandarina snail species from subtropical Ogasawara (Bonin Islands, Japan).

    PubMed

    Davison, Angus; Chiba, Satoshi

    2006-09-01

    The effect of Pleistocene climate change on the organisms of tropical and subtropical regions is rather poorly understood. We therefore studied the land snail genus Mandarina (Bradybaenidae) of oceanic Ogasawara (Bonin Islands, Japan), with the aim of using population genetic data to understand their recent history. Our analysis of a mitochondrial 16S ribosomal RNA region from more than 600 snails in five ground-living species suggests that populations on the small islands of Mukoujima, Anejima, Imotojima and Meijima, as well as on the low-lying southern and central parts of Hahajima, have probably undergone recent bottlenecks followed by subsequent expansions. Except between the main island of Hahajima and Mukouijima, there is almost no evidence for gene flow among islands even though the islands were connected repeatedly by land bridges through the Pleistocene. Within islands the population structure is severe, suggestive of a long-term, low level of gene flow (F(ST) is frequently greater than 0.5 among geographically close populations). Finally, there is a marked genetic patchiness, meaning that genetically close populations are sometimes separated by genetically distant populations. These patterns could be a consequence of expansion from bottlenecks, low active dispersal and founder effects caused by rare long-distance migrants. Unfortunately, the exact nature of the refugia and bottlenecks remains unknown because the palaeoclimate of this region is poorly understood. Dating the population size changes is also challenging because the molecular clock is uncertain. We suggest, however, that arid conditions or deforestation induced by decreased atmospheric CO(2) may have been the main factor in determining population size.

  17. Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses.

    PubMed

    van Velzen, Robin; Holmer, Rens; Bu, Fengjiao; Rutten, Luuk; van Zeijl, Arjan; Liu, Wei; Santuari, Luca; Cao, Qingqin; Sharma, Trupti; Shen, Defeng; Roswanjaya, Yuda; Wardhani, Titis A K; Kalhor, Maryam Seifi; Jansen, Joelle; van den Hoogen, Johan; Güngör, Berivan; Hartog, Marijke; Hontelez, Jan; Verver, Jan; Yang, Wei-Cai; Schijlen, Elio; Repin, Rimi; Schilthuizen, Menno; Schranz, M Eric; Heidstra, Renze; Miyata, Kana; Fedorova, Elena; Kohlen, Wouter; Bisseling, Ton; Smit, Sandra; Geurts, Rene

    2018-05-15

    Nodules harboring nitrogen-fixing rhizobia are a well-known trait of legumes, but nodules also occur in other plant lineages, with rhizobia or the actinomycete Frankia as microsymbiont. It is generally assumed that nodulation evolved independently multiple times. However, molecular-genetic support for this hypothesis is lacking, as the genetic changes underlying nodule evolution remain elusive. We conducted genetic and comparative genomics studies by using Parasponia species (Cannabaceae), the only nonlegumes that can establish nitrogen-fixing nodules with rhizobium. Intergeneric crosses between Parasponia andersonii and its nonnodulating relative Trema tomentosa demonstrated that nodule organogenesis, but not intracellular infection, is a dominant genetic trait. Comparative transcriptomics of P. andersonii and the legume Medicago truncatula revealed utilization of at least 290 orthologous symbiosis genes in nodules. Among these are key genes that, in legumes, are essential for nodulation, including NODULE INCEPTION ( NIN ) and RHIZOBIUM-DIRECTED POLAR GROWTH ( RPG ). Comparative analysis of genomes from three Parasponia species and related nonnodulating plant species show evidence of parallel loss in nonnodulating species of putative orthologs of NIN , RPG , and NOD FACTOR PERCEPTION Parallel loss of these symbiosis genes indicates that these nonnodulating lineages lost the potential to nodulate. Taken together, our results challenge the view that nodulation evolved in parallel and raises the possibility that nodulation originated ∼100 Mya in a common ancestor of all nodulating plant species, but was subsequently lost in many descendant lineages. This will have profound implications for translational approaches aimed at engineering nitrogen-fixing nodules in crop plants. Copyright © 2018 the Author(s). Published by PNAS.

  18. Genetic Variability and Founder Effect in the Pitcher Plant Sarracenia purpurea (Sarraceniaceae) in Populations Introduced into Switzerland: from Inbreeding to Invasion

    PubMed Central

    PARISOD, CHRISTIAN; TRIPPI, CHARLOTTE; GALLAND, NICOLE

    2004-01-01

    • Background and Aims The long-lived and mainly outcrossing species Sarracenia purpurea has been introduced into Switzerland and become invasive. This creates the opportunity to study reactions to founder effect and how a species can circumvent deleterious effects of bottlenecks such as reduced genetic diversity, inbreeding and extinction through mutational meltdown, to emerge as a highly invasive plant. • Methods A population genetic survey by random amplified polymorphism DNA markers (RAPD) together with historical insights and a field pollination experiment were carried out. • Key Results At the regional scale, S. purpurea shows low structure (θst = 0·072) due to a recent founder event and important subsequent growth. Nevertheless, multivariate statistical analyses reveal that, because of a bottleneck that shifted allele frequencies, most of the variability is independent among populations. In one population (Tenasses) the species has become invasive and genetic analysis reveals restricted gene flow and family structure (θst = 0·287). Although inbreeding appears to be high (Fis > 0·410 from a Bayesian estimation), a field pollination experiment failed to detect significant inbreeding depression upon F1 seed number and seed weight fitness-traits. Furthermore, crosses between unrelated individuals produced F1 seeds with significantly reduced fitness, thus showing local outbreeding depression. • Conclusions The results suggest that, under restricted gene flow among families, the species may not only have rapidly purged deleterious alleles, but also have undergone some form of selection for inbreeding due to co-adaptation between loci. PMID:15546932

  19. Associations between variants of the HAL gene and milk production traits in Chinese Holstein cows.

    PubMed

    Wang, Haifei; Jiang, Li; Wang, Wenwen; Zhang, Shengli; Yin, Zongjun; Zhang, Qin; Liu, Jian-Feng

    2014-11-25

    The histidine ammonia-lyse gene (HAL) encodes the histidine ammonia-lyase, which catalyzes the first reaction of histidine catabolism. In our previous genome-wide association study in Chinese Holstein cows to identify genetic variants affecting milk production traits, a SNP (rs41647754) located 357 bp upstream of HAL, was found to be significantly associated with milk yield and milk protein yield. In addition, the HAL gene resides within the reported QTLs for milk production traits. The aims of this study were to identify genetic variants in HAL and to test the association between these variants and milk production traits. Fifteen SNPs were identified within the regions under study of the HAL gene, including three coding mutations, seven intronic mutations, one promoter region mutation, and four 3'UTR mutations. Nine of these identified SNPs were chosen for subsequent genotyping and association analyses. Our results showed that five SNP markers (ss974768522, ss974768525, ss974768531, ss974768533 and ss974768534) were significantly associated with one or more milk production traits. Haplotype analysis showed that two haplotype blocks were significantly associated with milk yield and milk protein yield, providing additional support for the association between HAL variants and milk production traits in dairy cows (P < 0.05). Our study shows evidence of significant associations between SNPs within the HAL gene and milk production traits in Chinese Holstein cows, indicating the potential role of HAL variants in these traits. These identified SNPs may serve as genetic markers used in genomic selection schemes to accelerate the genetic gains of milk production traits in dairy cattle.

  20. Comparative Genetic Structure and Demographic History in Endemic Galápagos Weevils

    PubMed Central

    Stepien, Courtney C.; Sijapati, Manisha; Roque Albelo, Lázaro

    2012-01-01

    The challenge of maintaining genetic diversity within populations can be exacerbated for island endemics if they display population dynamics and behavioral attributes that expose them to genetic drift without the benefits of gene flow. We assess patterns of the genetic structure and demographic history in 27 populations of 9 species of flightless endemic Galápagos weevils from 9 of the islands and 1 winged introduced close relative. Analysis of mitochondrial DNA reveals a significant population structure and moderately variable, though demographically stable, populations for lowland endemics (FST = 0.094–0.541; π: 0.014–0.042; Mismatch P = 0.003–0.026; and D(Tajima) = −0.601 to 1.203), in contrast to signals of past contractions and expansions in highland specialists on 2 islands (Mismatch P = 0.003–0.026 and D(Tajima) = −0.601 to 1.203). We interpret this series of variable and highly structured population groups as a system of long-established, independently founded island units, where structuring could be a signal of microallopatric differentiation due to patchy host plant distribution and poor dispersal abilities. We suggest that the severe reduction and subsequent increase of a suitably moist habitat that accompanied past climatic variation could have contributed to the observed population fluctuations in highland specialists. We propose the future exploration of hybridization between the introduced and highland endemic species on Santa Cruz, especially given the expansion of the introduced species into the highlands, the sensitivity to past climatic variation detected in highland populations, and the potentially threatened state of single-island endemics. PMID:22174444

  1. Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses

    PubMed Central

    Holmer, Rens; Bu, Fengjiao; Rutten, Luuk; van Zeijl, Arjan; Liu, Wei; Santuari, Luca; Cao, Qingqin; Sharma, Trupti; Shen, Defeng; Roswanjaya, Yuda; Wardhani, Titis A. K.; Kalhor, Maryam Seifi; Jansen, Joelle; van den Hoogen, Johan; Güngör, Berivan; Hartog, Marijke; Hontelez, Jan; Verver, Jan; Schijlen, Elio; Repin, Rimi; Schilthuizen, Menno; Heidstra, Renze; Miyata, Kana; Fedorova, Elena; Kohlen, Wouter; Bisseling, Ton; Smit, Sandra

    2018-01-01

    Nodules harboring nitrogen-fixing rhizobia are a well-known trait of legumes, but nodules also occur in other plant lineages, with rhizobia or the actinomycete Frankia as microsymbiont. It is generally assumed that nodulation evolved independently multiple times. However, molecular-genetic support for this hypothesis is lacking, as the genetic changes underlying nodule evolution remain elusive. We conducted genetic and comparative genomics studies by using Parasponia species (Cannabaceae), the only nonlegumes that can establish nitrogen-fixing nodules with rhizobium. Intergeneric crosses between Parasponia andersonii and its nonnodulating relative Trema tomentosa demonstrated that nodule organogenesis, but not intracellular infection, is a dominant genetic trait. Comparative transcriptomics of P. andersonii and the legume Medicago truncatula revealed utilization of at least 290 orthologous symbiosis genes in nodules. Among these are key genes that, in legumes, are essential for nodulation, including NODULE INCEPTION (NIN) and RHIZOBIUM-DIRECTED POLAR GROWTH (RPG). Comparative analysis of genomes from three Parasponia species and related nonnodulating plant species show evidence of parallel loss in nonnodulating species of putative orthologs of NIN, RPG, and NOD FACTOR PERCEPTION. Parallel loss of these symbiosis genes indicates that these nonnodulating lineages lost the potential to nodulate. Taken together, our results challenge the view that nodulation evolved in parallel and raises the possibility that nodulation originated ∼100 Mya in a common ancestor of all nodulating plant species, but was subsequently lost in many descendant lineages. This will have profound implications for translational approaches aimed at engineering nitrogen-fixing nodules in crop plants. PMID:29717040

  2. The evolutionary history of steelhead (Oncorhynchus mykiss) along the US Pacific Coast: Developing a conservation strategy using genetic diversity

    USGS Publications Warehouse

    Nielsen, J.L.

    1999-01-01

    Changes in genetic variation across a species range may indicate patterns of population structure resulting from past ecological and demographic events that are otherwise difficult to infer and thus provide insight into evolutionary development. Genetic data is used, drawn from 11 microsatellite loci amplified from anadromous steelhead (Oncorhynchus mykiss) sampled throughout its range in the eastern Pacific Ocean, to explore population structure at the southern edge in California. Steelhead populations in this region represent less than 10% of their reported historic abundance and survive in very small populations found in fragmented habitats. Genetic data derived from three independent molecular systems (allozymes, mtDNA, and microsatellites) have shown that the southernmost populations are characterized by a relatively high genetic diversity. Two hypothetical models supporting genetic population substructure such as observed were considered: (1) range expansion with founder-flush effects and subsequent population decline; (2) a second Pleistocene radiation from the Gulf of California. Using genetic and climatic data, a second Pleistocene refugium contributing to a southern ecotone seems more feasible. These data support strong conservation measures based on genetic diversity be developed to ensure the survival of this uniquely diverse gene pool.

  3. The effects of learning about one's own genetic susceptibility to alcoholism: a randomized experiment.

    PubMed

    Dar-Nimrod, Ilan; Zuckerman, Miron; Duberstein, Paul R

    2013-02-01

    Increased accessibility of direct-to-consumer personalized genetic reports raises the question: how are people affected by information about their own genetic predispositions? Participants were led to believe that they had entered a study on the genetics of alcoholism and sleep disorders. Participants provided a saliva sample purportedly to be tested for the presence of relevant genes. While awaiting the results, they completed a questionnaire assessing their emotional state. They subsequently received a bogus report about their genetic susceptibility and completed a questionnaire about their emotional state and items assessing perceived control over drinking, relevant future drinking-related intentions, and intervention-related motivation and behavior. Participants who were led to believe that they had a gene associated with alcoholism showed an increase in negative affect, decrease in positive affect, and reduced perceived personal control over drinking. Reported intentions for alcohol consumption in the near future were not affected; however, individuals were more likely to enroll in a "responsible drinking" workshop after learning of their alleged genetic susceptibility. The first complete randomized experiment to examine the psychological and behavioral effects of receiving personalized genetic susceptibility information indicates some potential perils and benefits of direct-to-consumer genetic tests.

  4. Variation in the miRNA-433 Binding Site of FGF20 Confers Risk for Parkinson Disease by Overexpression of α-Synuclein

    PubMed Central

    Wang, Gaofeng; van der Walt, Joelle M.; Mayhew, Gregory; Li, Yi-Ju; Züchner, Stephan; Scott, William K.; Martin, Eden R.; Vance, Jeffery M.

    2008-01-01

    Parkinson disease (PD) is a common neurodegenerative disorder caused by environmental and genetic factors. We have previously shown linkage of PD to chromosome 8p. Subsequently, fibroblast growth factor 20 (FGF20) at 8p21.3–22 was identified as a risk factor in several association studies. To identify the risk-conferring polymorphism in FGF20, we performed genetic and functional analysis of single-nucleotide polymorphisms within the gene. In a sample of 729 nuclear families with 1089 affected and 1165 unaffected individuals, the strongest evidence of association came from rs12720208 in the 3′ untranslated region of FGF20. We show in several functional assays that the risk allele for rs12720208 disrupts a binding site for microRNA-433, increasing translation of FGF20 in vitro and in vivo. In a cell-based system and in PD brains, this increase in translation of FGF20 is correlated with increased α-synuclein expression, which has previously been shown to cause PD through both overexpression and point mutations. We suggest a novel mechanism of action for PD risk in which the modulation of the susceptibility gene's translation by common variations interfere with the regulation mechanisms of microRNA. We propose this is likely to be a common mechanism of genetic modulation of individual susceptibility to complex disease. PMID:18252210

  5. Automating data acquisition into ontologies from pharmacogenetics relational data sources using declarative object definitions and XML.

    PubMed

    Rubin, Daniel L; Hewett, Micheal; Oliver, Diane E; Klein, Teri E; Altman, Russ B

    2002-01-01

    Ontologies are useful for organizing large numbers of concepts having complex relationships, such as the breadth of genetic and clinical knowledge in pharmacogenomics. But because ontologies change and knowledge evolves, it is time consuming to maintain stable mappings to external data sources that are in relational format. We propose a method for interfacing ontology models with data acquisition from external relational data sources. This method uses a declarative interface between the ontology and the data source, and this interface is modeled in the ontology and implemented using XML schema. Data is imported from the relational source into the ontology using XML, and data integrity is checked by validating the XML submission with an XML schema. We have implemented this approach in PharmGKB (http://www.pharmgkb.org/), a pharmacogenetics knowledge base. Our goals were to (1) import genetic sequence data, collected in relational format, into the pharmacogenetics ontology, and (2) automate the process of updating the links between the ontology and data acquisition when the ontology changes. We tested our approach by linking PharmGKB with data acquisition from a relational model of genetic sequence information. The ontology subsequently evolved, and we were able to rapidly update our interface with the external data and continue acquiring the data. Similar approaches may be helpful for integrating other heterogeneous information sources in order make the diversity of pharmacogenetics data amenable to computational analysis.

  6. Rapid identification of a novel complex I MT-ND3 m.10134C>A mutation in a Leigh syndrome patient.

    PubMed

    Miller, David K; Menezes, Minal J; Simons, Cas; Riley, Lisa G; Cooper, Sandra T; Grimmond, Sean M; Thorburn, David R; Christodoulou, John; Taft, Ryan J

    2014-01-01

    Leigh syndrome (LS) is a rare progressive multi-system neurodegenerative disorder, the genetics of which is frequently difficult to resolve. Rapid determination of the genetic etiology of LS in a 5-year-old girl facilitated inclusion in Edison Pharmaceutical's phase 2B clinical trial of EPI-743. SNP-arrays and high-coverage whole exome sequencing were performed on the proband, both parents and three unaffected siblings. Subsequent multi-tissue targeted high-depth mitochondrial sequencing was performed using custom long-range PCR amplicons. Tissue-specific mutant load was also assessed by qPCR. Complex I was interrogated by spectrophotometric enzyme assays and Western Blot. No putatively causal mutations were identified in nuclear-encoded genes. Analysis of low-coverage off-target mitochondrial reads revealed a previously unreported mitochondrial mutation in the proband in MT-ND3 (m.10134C>A, p.Q26K), a Complex I mitochondrial gene previously associated with LS. Targeted investigations demonstrated that this mutation was 1% heteroplasmic in the mother's blood and homoplasmic in the proband's blood, fibroblasts, liver and muscle. Enzyme assays revealed decreased Complex I activity. The identification of this novel LS MT-ND3 variant, the genomics of which was accomplished in less than 3.5 weeks, indicates that rapid genomic approaches may prove useful in time-sensitive cases with an unresolved genetic diagnosis.

  7. Assessment of the contribution of cocoa-derived strains of Acetobacter ghanensis and Acetobacter senegalensis to the cocoa bean fermentation process through a genomic approach.

    PubMed

    Illeghems, Koen; Pelicaen, Rudy; De Vuyst, Luc; Weckx, Stefan

    2016-09-01

    Acetobacter ghanensis LMG 23848(T) and Acetobacter senegalensis 108B are acetic acid bacteria that originate from a spontaneous cocoa bean heap fermentation process and that have been characterised as strains with interesting functionalities through metabolic and kinetic studies. As there is currently little genetic information available for these species, whole-genome sequencing of A. ghanensis LMG 23848(T) and A. senegalensis 108B and subsequent data analysis was performed. This approach not only revealed characteristics such as the metabolic potential and genomic architecture, but also allowed to indicate the genetic adaptations related to the cocoa bean fermentation process. Indeed, evidence was found that both species possessed the genetic ability to be involved in citrate assimilation and displayed adaptations in their respiratory chain that might improve their competitiveness during the cocoa bean fermentation process. In contrast, other properties such as the dependence on glycerol or mannitol and lactate as energy sources or a less efficient acid stress response may explain their low competitiveness. The presence of a gene coding for a proton-translocating transhydrogenase in A. ghanensis LMG 23848(T) and the genes involved in two aromatic compound degradation pathways in A. senegalensis 108B indicate that these strains have an extended functionality compared to Acetobacter species isolated from other ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. An event-specific method for the detection and quantification of ML01, a genetically modified Saccharomyces cerevisiae wine strain, using quantitative PCR.

    PubMed

    Vaudano, Enrico; Costantini, Antonella; Garcia-Moruno, Emilia

    2016-10-03

    The availability of genetically modified (GM) yeasts for winemaking and, in particular, transgenic strains based on the integration of genetic constructs deriving from other organisms into the genome of Saccharomyces cerevisiae, has been a reality for several years. Despite this, their use is only authorized in a few countries and limited to two strains: ML01, able to convert malic acid into lactic acid during alcoholic fermentation, and ECMo01 suitable for reducing the risk of carbamate production. In this work we propose a quali-quantitative culture-independent method for the detection of GM yeast ML01 in commercial preparations of ADY (Active Dry Yeast) consisting of efficient extraction of DNA and qPCR (quantitative PCR) analysis based on event-specific assay targeting MLC (malolactic cassette), and a taxon-specific S. cerevisiae assay detecting the MRP2 gene. The ADY DNA extraction methodology has been shown to provide good purity DNA suitable for subsequent qPCR. The MLC and MRP2 qPCR assay showed characteristics of specificity, dynamic range, limit of quantification (LOQ) limit of detection (LOD), precision and trueness, which were fully compliant with international reference guidelines. The method has been shown to reliably detect 0.005% (mass/mass) of GM ML01 S. cerevisiae in commercial preparations of ADY. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Performance and robustness of penalized and unpenalized methods for genetic prediction of complex human disease.

    PubMed

    Abraham, Gad; Kowalczyk, Adam; Zobel, Justin; Inouye, Michael

    2013-02-01

    A central goal of medical genetics is to accurately predict complex disease from genotypes. Here, we present a comprehensive analysis of simulated and real data using lasso and elastic-net penalized support-vector machine models, a mixed-effects linear model, a polygenic score, and unpenalized logistic regression. In simulation, the sparse penalized models achieved lower false-positive rates and higher precision than the other methods for detecting causal SNPs. The common practice of prefiltering SNP lists for subsequent penalized modeling was examined and shown to substantially reduce the ability to recover the causal SNPs. Using genome-wide SNP profiles across eight complex diseases within cross-validation, lasso and elastic-net models achieved substantially better predictive ability in celiac disease, type 1 diabetes, and Crohn's disease, and had equivalent predictive ability in the rest, with the results in celiac disease strongly replicating between independent datasets. We investigated the effect of linkage disequilibrium on the predictive models, showing that the penalized methods leverage this information to their advantage, compared with methods that assume SNP independence. Our findings show that sparse penalized approaches are robust across different disease architectures, producing as good as or better phenotype predictions and variance explained. This has fundamental ramifications for the selection and future development of methods to genetically predict human disease. © 2012 WILEY PERIODICALS, INC.

  10. ATP13A2 variability in Parkinson disease

    PubMed Central

    Vilariño-Güell, Carles; Soto, Alexandra I.; Lincoln, Sarah J.; Yahmed, Samia Ben; Kefi, Mounir; Heckman, Michael G.; Hulihan, Mary M.; Chai, Hua; Diehl, Nancy N.; Amouri, Rim; Rajput, Alex; Mash, Deborah C.; Dickson, Dennis W.; Middleton, Lefkos T.; Gibson, Rachel A.; Hentati, Faycal; Farrer, Matthew J.

    2008-01-01

    Recessively inherited mutations in ATP13A2 result in Kufor-Rakeb syndrome, whereas genetic variability and elevated ATP13A2 expression have been implicated in Parkinson disease (PD). Given this background, ATP13A2 was comprehensively assessed to support or refute its contribution to PD. Sequencing of ATP13A2 exons and intron-exon boundaries was performed in 89 probands with familial parkinsonism from Tunisia. The segregation of mutations with parkinsonism was subsequently assessed within pedigrees. The frequency of genetic variants and evidence for association was also examined in 240 patients with non-familial PD and 372 healthy controls. ATP13A2 mRNA expression was also quantified in brain tissues from 38 patients with non-familial PD and 38 healthy subjects from the US. Sequencing analysis revealed 37 new variants; seven missense, six silent and 24 that were noncoding. However, no single ATP13A2 mutation segregated with familial parkinsonism in either a dominant or recessive manner. Four markers showed marginal association with non-familial PD, prior to correction for multiple testing. ATP13A2 mRNA expression was marginally decreased in PD brains compared with tissue from control subjects. In conclusion, neither ATP13A2 genetic variability nor quantitative gene expression in brain appears to contribute to familial parkinsonism or non-familial PD. PMID:19085912

  11. Rethinking the history of common walnut (Juglans regia L.) in Europe: Its origins and human interactions.

    PubMed

    Pollegioni, Paola; Woeste, Keith; Chiocchini, Francesca; Del Lungo, Stefano; Ciolfi, Marco; Olimpieri, Irene; Tortolano, Virginia; Clark, Jo; Hemery, Gabriel E; Mapelli, Sergio; Malvolti, Maria Emilia

    2017-01-01

    Common walnut (Juglans regia L) is an economically important species cultivated worldwide for its high-quality wood and nuts. It is generally accepted that after the last glaciation J. regia survived and grew in almost completely isolated stands in Asia, and that ancient humans dispersed walnuts across Asia and into new habitats via trade and cultural expansion. The history of walnut in Europe is a matter of debate, however. In this study, we estimated the genetic diversity and structure of 91 Eurasian walnut populations using 14 neutral microsatellites. By integrating fossil pollen, cultural, and historical data with population genetics, and approximate Bayesian analysis, we reconstructed the demographic history of walnut and its routes of dispersal across Europe. The genetic data confirmed the presence of walnut in glacial refugia in the Balkans and western Europe. We conclude that human-mediated admixture between Anatolian and Balkan walnut germplasm started in the Early Bronze Age, and between western Europe and the Balkans in eastern Europe during the Roman Empire. A population size expansion and subsequent decline in northeastern and western Europe was detected in the last five centuries. The actual distribution of walnut in Europe resulted from the combined effects of expansion/contraction from multiple refugia after the Last Glacial Maximum and its human exploitation over the last 5,000 years.

  12. Rethinking the history of common walnut (Juglans regia L.) in Europe: Its origins and human interactions

    PubMed Central

    Pollegioni, Paola; Woeste, Keith; Chiocchini, Francesca; Del Lungo, Stefano; Ciolfi, Marco; Olimpieri, Irene; Tortolano, Virginia; Clark, Jo; Hemery, Gabriel E.; Mapelli, Sergio; Malvolti, Maria Emilia

    2017-01-01

    Common walnut (Juglans regia L) is an economically important species cultivated worldwide for its high-quality wood and nuts. It is generally accepted that after the last glaciation J. regia survived and grew in almost completely isolated stands in Asia, and that ancient humans dispersed walnuts across Asia and into new habitats via trade and cultural expansion. The history of walnut in Europe is a matter of debate, however. In this study, we estimated the genetic diversity and structure of 91 Eurasian walnut populations using 14 neutral microsatellites. By integrating fossil pollen, cultural, and historical data with population genetics, and approximate Bayesian analysis, we reconstructed the demographic history of walnut and its routes of dispersal across Europe. The genetic data confirmed the presence of walnut in glacial refugia in the Balkans and western Europe. We conclude that human-mediated admixture between Anatolian and Balkan walnut germplasm started in the Early Bronze Age, and between western Europe and the Balkans in eastern Europe during the Roman Empire. A population size expansion and subsequent decline in northeastern and western Europe was detected in the last five centuries. The actual distribution of walnut in Europe resulted from the combined effects of expansion/contraction from multiple refugia after the Last Glacial Maximum and its human exploitation over the last 5,000 years. PMID:28257470

  13. IQ and Schizophrenia in a Swedish National Sample: Their Causal Relationship and the Interaction of IQ with Genetic Risk

    PubMed Central

    Kendler, Kenneth S.; Ohlsson, Henrik; Sundquist, Jan; Sundquist, Kristina

    2015-01-01

    Objective To clarify the relationship between IQ and subsequent risk for schizophrenia. Method IQ was assessed at ages 18-20 in 1,204,983 Swedish males born 1951-1975. Schizophrenia was assessed by hospital diagnosis through 2010. Results IQ had a monotonic relationship with schizophrenia risk across the IQ range with a mean change of 3.8% in risk per IQ point. This association, stronger in the lower versus higher IQ range, was similar if onsets within five years of testing were censored. No increased risk for schizophrenia was seen in those with highest intelligence. Co-relative control analyses showed a similar IQ-schizophrenia association in the general population and in cousin, half-sibling and full-sibling pairs. A robust interaction was seen between genetic liability to schizophrenia and IQ in predicting schizophrenia risk. Genetic susceptibility for schizophrenia had a much stronger impact on risk of illness for those with low versus high intelligence. The IQ-genetic liability interaction arose largely from IQ differences between close relatives. Conclusions IQ assessed in late adolescence is a robust risk factor for subsequent onset of schizophrenia. This association is not the result of a declining IQ associated with insidious onset. In this large, representative sample, we found no evidence for a link between genius and schizophrenia. Co-relative control analyses show that the association between lower IQ and schizophrenia is not the result of shared familial risk factors and may be causal. The strongest effect was seen with IQ differences within families. High intelligence substantially attenuates the impact of genetic liability on the risk for schizophrenia. PMID:25727538

  14. The promise and peril of CRISPR gene drives: Genetic variation and inbreeding may impede the propagation of gene drives based on the CRISPR genome editing technology.

    PubMed

    Zentner, Gabriel E; Wade, Michael J

    2017-10-01

    Gene drives are selfish genetic elements that use a variety of mechanisms to ensure they are transmitted to subsequent generations at greater than expected frequencies. Synthetic gene drives based on the clustered regularly interspersed palindromic repeats (CRISPR) genome editing system have been proposed as a way to alter the genetic characteristics of natural populations of organisms relevant to the goals of public health, conservation, and agriculture. Here, we review the principles and potential applications of CRISPR drives, as well as means proposed to prevent their uncontrolled spread. We also focus on recent work suggesting that factors such as natural genetic variation and inbreeding may represent substantial impediments to the propagation of CRISPR drives. © 2017 WILEY Periodicals, Inc.

  15. Review: Genetically modified plants for the promotion of human health.

    PubMed

    Yonekura-Sakakibara, Keiko; Saito, Kazuki

    2006-12-01

    Plants are attractive biological resources because of their ability to produce a huge variety of chemical compounds, and the familiarity of production in even the most rural settings. Genetic engineering gives plants additional characteristics and value for cultivation and post-harvest. Genetically modified (GM) plants of the "first generation" were conferred with traits beneficial to producers, whereas GM plants in subsequent "generations" are intended to provide beneficial traits for consumers. Golden Rice is a promising example of a GM plant in the second generation, and has overcome a number of obstacles for practical use. Furthermore, consumer-acceptable plants with health-promoting properties that are genetically modified using native genes are being developed. The emerging technology of metabolomics will also support the commercial realization of GM plants by providing comprehensive analyzes of plant biochemical components.

  16. A power study of bivariate LOD score analysis of a complex trait and fear/discomfort with strangers

    PubMed Central

    Ji, Fei; Lee, Dayoung; Mendell, Nancy Role

    2005-01-01

    Complex diseases are often reported along with disease-related traits (DRT). Sometimes investigators consider both disease and DRT phenotypes separately and sometimes they consider individuals as affected if they have either the disease or the DRT, or both. We propose instead to consider the joint distribution of the disease and the DRT and do a linkage analysis assuming a pleiotropic model. We evaluated our results through analysis of the simulated datasets provided by Genetic Analysis Workshop 14. We first conducted univariate linkage analysis of the simulated disease, Kofendrerd Personality Disorder and one of its simulated associated traits, phenotype b (fear/discomfort with strangers). Subsequently, we considered the bivariate phenotype, which combined the information on Kofendrerd Personality Disorder and fear/discomfort with strangers. We developed a program to perform bivariate linkage analysis using an extension to the Elston-Stewart peeling method of likelihood calculation. Using this program we considered the microsatellites within 30 cM of the gene pleiotropic for this simulated disease and DRT. Based on 100 simulations of 300 families we observed excellent power to detect linkage within 10 cM of the disease locus using the DRT and the bivariate trait. PMID:16451570

  17. A power study of bivariate LOD score analysis of a complex trait and fear/discomfort with strangers.

    PubMed

    Ji, Fei; Lee, Dayoung; Mendell, Nancy Role

    2005-12-30

    Complex diseases are often reported along with disease-related traits (DRT). Sometimes investigators consider both disease and DRT phenotypes separately and sometimes they consider individuals as affected if they have either the disease or the DRT, or both. We propose instead to consider the joint distribution of the disease and the DRT and do a linkage analysis assuming a pleiotropic model. We evaluated our results through analysis of the simulated datasets provided by Genetic Analysis Workshop 14. We first conducted univariate linkage analysis of the simulated disease, Kofendrerd Personality Disorder and one of its simulated associated traits, phenotype b (fear/discomfort with strangers). Subsequently, we considered the bivariate phenotype, which combined the information on Kofendrerd Personality Disorder and fear/discomfort with strangers. We developed a program to perform bivariate linkage analysis using an extension to the Elston-Stewart peeling method of likelihood calculation. Using this program we considered the microsatellites within 30 cM of the gene pleiotropic for this simulated disease and DRT. Based on 100 simulations of 300 families we observed excellent power to detect linkage within 10 cM of the disease locus using the DRT and the bivariate trait.

  18. Genetic association of CD247 (CD3ζ) with SLE in a large-scale multiethnic study.

    PubMed

    Martins, M; Williams, A H; Comeau, M; Marion, M; Ziegler, J T; Freedman, B I; Merrill, J T; Glenn, S B; Kelly, J A; Sivils, K M; James, J A; Guthridge, J M; Alarcón-Riquelme, M E; Bae, S-C; Kim, J-H; Kim, D; Anaya, J-M; Boackle, S A; Criswell, L A; Kimberly, R P; Alarcón, G S; Brown, E E; Vilá, L M; Petri, M A; Ramsey-Goldman, R; Niewold, T B; Tsao, B P; Gilkeson, G S; Kamen, D L; Jacob, C O; Stevens, A M; Gaffney, P M; Harley, J B; Langefeld, C D; Fesel, C

    2015-03-01

    A classic T-cell phenotype in systemic lupus erythematosus (SLE) is the downregulation and replacement of the CD3ζ chain that alters T-cell receptor signaling. However, genetic associations with SLE in the human CD247 locus that encodes CD3ζ are not well established and require replication in independent cohorts. Our aim was therefore to examine, localize and validate CD247-SLE association in a large multiethnic population. We typed 44 contiguous CD247 single-nucleotide polymorphisms (SNPs) in 8922 SLE patients and 8077 controls from four ethnically distinct populations. The strongest associations were found in the Asian population (11 SNPs in intron 1, 4.99 × 10(-4) < P < 4.15 × 10(-2)), where we further identified a five-marker haplotype (rs12141731-rs2949655-rs16859085-rs12144621-rs858554; G-G-A-G-A; P(hap) = 2.12 × 10(-5)) that exceeded the most associated single SNP rs858554 (minor allele frequency in controls = 13%; P = 4.99 × 10(-4), odds ratio = 1.32) in significance. Imputation and subsequent association analysis showed evidence of association (P < 0.05) at 27 additional SNPs within intron 1. Cross-ethnic meta-analysis, assuming an additive genetic model adjusted for population proportions, showed five SNPs with significant P-values (1.40 × 10(-3) < P< 3.97 × 10(-2)), with one (rs704848) remaining significant after Bonferroni correction (P(meta) = 2.66 × 10(-2)). Our study independently confirms and extends the association of SLE with CD247, which is shared by various autoimmune disorders and supports a common T-cell-mediated mechanism.

  19. Agrobacterium-mediated genetic transformation of yam (Dioscorea rotundata): an important tool for functional study of genes and crop improvement

    PubMed Central

    Nyaboga, Evans; Tripathi, Jaindra N.; Manoharan, Rajesh; Tripathi, Leena

    2014-01-01

    Although genetic transformation of clonally propagated crops has been widely studied as a tool for crop improvement and as a vital part of the development of functional genomics resources, there has been no report of any existing Agrobacterium-mediated transformation of yam (Dioscorea spp.) with evidence of stable integration of T-DNA. Yam is an important crop in the tropics and subtropics providing food security and income to over 300 million people. However, yam production remains constrained by increasing levels of field and storage pests and diseases. A major constraint to the development of biotechnological approaches for yam improvement has been the lack of an efficient and robust transformation and regeneration system. In this study, we developed an Agrobacterium-mediated transformation of Dioscorea rotundata using axillary buds as explants. Two cultivars of D. rotundata were transformed using Agrobacterium tumefaciens harboring the binary vectors containing selectable marker and reporter genes. After selection with appropriate concentrations of antibiotic, shoots were developed on shoot induction and elongation medium. The elongated antibiotic-resistant shoots were subsequently rooted on medium supplemented with selection agent. Successful transformation was confirmed by polymerase chain reaction, Southern blot analysis, and reporter genes assay. Expression of gusA gene in transgenic plants was also verified by reverse transcription polymerase chain reaction analysis. Transformation efficiency varied from 9.4 to 18.2% depending on the cultivars, selectable marker genes, and the Agrobacterium strain used for transformation. It took 3–4 months from Agro-infection to regeneration of complete transgenic plant. Here we report an efficient, fast and reproducible protocol for Agrobacterium-mediated transformation of D. rotundata using axillary buds as explants, which provides a useful platform for future genetic engineering studies in this economically important crop. PMID:25309562

  20. Syndrome disintegration: Exome sequencing reveals that Fitzsimmons syndrome is a co-occurrence of multiple events.

    PubMed

    Armour, Christine M; Smith, Amanda; Hartley, Taila; Chardon, Jodi Warman; Sawyer, Sarah; Schwartzentruber, Jeremy; Hennekam, Raoul; Majewski, Jacek; Bulman, Dennis E; Suri, Mohnish; Boycott, Kym M

    2016-07-01

    In 1987 Fitzsimmons and Guilbert described identical male twins with progressive spastic paraplegia, brachydactyly with cone shaped epiphyses, short stature, dysarthria, and "low-normal" intelligence. In subsequent years, four other patients, including one set of female identical twins, a single female child, and a single male individual were described with the same features, and the eponym Fitzsimmons syndrome was adopted (OMIM #270710). We performed exome analysis of the patient described in 2009, and one of the original twins from 1987, the only patients available from the literature. No single genetic etiology exists that explains Fitzsimmons syndrome; however, multiple different genetic causes were identified. Specifically, the twins described by Fitzsimmons had heterozygous mutations in the SACS gene, the gene responsible for autosomal recessive spastic ataxia of Charlevoix Saguenay (ARSACS), as well as a heterozygous mutation in the TRPS1, the gene responsible in Trichorhinophalangeal syndrome type 1 (TRPS1 type 1) which includes brachydactyly as a feature. A TBL1XR1 mutation was identified in the patient described in 2009 as contributing to his cognitive impairment and autistic features with no genetic cause identified for his spasticity or brachydactyly. The findings show that these individuals have multiple different etiologies giving rise to a similar phenotype, and that "Fitzsimmons syndrome" is in fact not one single syndrome. Over time, we anticipate that continued careful phenotyping with concomitant genome-wide analysis will continue to identify the causes of many rare syndromes, but it will also highlight that previously delineated clinical entities are, in fact, not syndromes at all. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Genetic Association of CD247 (CD3ζ) with SLE in a Large-Scale Multiethnic Study

    PubMed Central

    Martins, Madalena; Williams, Adrienne H.; Comeau, Mary; Marion, Miranda; Ziegler, Julie T.; Freedman, Barry I.; Merrill, Joan T.; Glenn, Stuart B.; Kelly, Jennifer A.; Sivils, Kathy M.; James, Judith A.; Guthridge, Joel M.; Alarcón-Riquelme, Marta E.; Bae, Sang-Cheol; Kim, Jae-Hoon; Kim, Dam; Anaya, Juan-Manuel; Boackle, Susan A.; Criswell, Lindsey A.; Kimberly, Robert P.; Alarcón, Graciela S.; Brown, Elizabeth E.; Vilá, Luis M.; Petri, Michelle A.; Ramsey-Goldman, Rosalind; Niewold, Timothy B.; Tsao, Betty P.; Gilkeson, Gary S.; Kamen, Diane L.; Jacob, Chaim O.; Stevens, Anne M.; Gaffney, Patrick M.; Harley, John B.; Langefeld, Carl D.; Fesel, Constantin

    2015-01-01

    A classic T-cell phenotype in Systemic lupus erythematosus (SLE) is the downregulation and replacement of the CD3ζ chain that alters TCR signaling. However, genetic associations with SLE in the human CD247 locus that encodes CD3ζ are not well established and require replication in independent cohorts. Our aim was therefore to examine, localize and validate CD247-SLE association in a large multi-ethnic population. We typed 44 contiguous CD247 SNPs in 8 922 SLE patients and 8 077 controls from four ethnically distinct populations. The strongest associations were found in the Asian population (11 SNPs in intron 1, 4.99×10−4

  2. Genome-wide Polygenic Burden of Rare Deleterious Variants in Sudden Unexpected Death in Epilepsy.

    PubMed

    Leu, Costin; Balestrini, Simona; Maher, Bridget; Hernández-Hernández, Laura; Gormley, Padhraig; Hämäläinen, Eija; Heggeli, Kristin; Schoeler, Natasha; Novy, Jan; Willis, Joseph; Plagnol, Vincent; Ellis, Rachael; Reavey, Eleanor; O'Regan, Mary; Pickrell, William O; Thomas, Rhys H; Chung, Seo-Kyung; Delanty, Norman; McMahon, Jacinta M; Malone, Stephen; Sadleir, Lynette G; Berkovic, Samuel F; Nashef, Lina; Zuberi, Sameer M; Rees, Mark I; Cavalleri, Gianpiero L; Sander, Josemir W; Hughes, Elaine; Helen Cross, J; Scheffer, Ingrid E; Palotie, Aarno; Sisodiya, Sanjay M

    2015-09-01

    Sudden unexpected death in epilepsy (SUDEP) represents the most severe degree of the spectrum of epilepsy severity and is the commonest cause of epilepsy-related premature mortality. The precise pathophysiology and the genetic architecture of SUDEP remain elusive. Aiming to elucidate the genetic basis of SUDEP, we analysed rare, protein-changing variants from whole-exome sequences of 18 people who died of SUDEP, 87 living people with epilepsy and 1479 non-epilepsy disease controls. Association analysis revealed a significantly increased genome-wide polygenic burden per individual in the SUDEP cohort when compared to epilepsy (P = 5.7 × 10(- 3)) and non-epilepsy disease controls (P = 1.2 × 10(- 3)). The polygenic burden was driven both by the number of variants per individual, and over-representation of variants likely to be deleterious in the SUDEP cohort. As determined by this study, more than a thousand genes contribute to the observed polygenic burden within the framework of this study. Subsequent gene-based association analysis revealed five possible candidate genes significantly associated with SUDEP or epilepsy, but no one single gene emerges as common to the SUDEP cases. Our findings provide further evidence for a genetic susceptibility to SUDEP, and suggest an extensive polygenic contribution to SUDEP causation. Thus, an overall increased burden of deleterious variants in a highly polygenic background might be important in rendering a given individual more susceptible to SUDEP. Our findings suggest that exome sequencing in people with epilepsy might eventually contribute to generating SUDEP risk estimates, promoting stratified medicine in epilepsy, with the eventual aim of reducing an individual patient's risk of SUDEP.

  3. A functional polymorphism in the reduced folate carrier gene and DNA hypomethylation in mothers of children with autism

    PubMed Central

    James, S. Jill; Melnyk, Stepan; Jernigan, Stefanie; Lehman, Sara; Seidel, Lisa; Gaylor, David .W.; Cleves, Mario A.

    2010-01-01

    The biologic basis of autism is complex and is thought to involve multiple and variable gene-environment interactions. While the logical focus has been on the affected child, the impact of maternal genetics on intrauterine microenvironment during pivotal developmental windows could be substantial. Folate-dependent one carbon metabolism is a highly polymorphic pathway that regulates the distribution of one-carbon derivatives between DNA synthesis (proliferation) and DNA methylation (cell-specific gene expression and differentiation). These pathways are essential to support the programmed shifts between proliferation and differentiation during embryogenesis and organogenesis. Maternal genetic variants that compromise intrauterine availability of folate derivatives could alter fetal cell trajectories and disrupt normal neurodevelopment. In this investigation, the frequency of common functional polymorphisms in the folate pathway was investigated in a large population-based sample of autism case-parent triads. In case-control analysis, a significant increase in the reduced folate carrier (RFC1) G allele frequency was found among case mothers, but not among fathers or affected children. Subsequent log linear analysis of the RFC1 A80G genotype within family trios revealed that the maternal G allele was associated with a significant increase in risk of autism whereas the inherited genotype of the child was not. Further, maternal DNA from the autism mothers was found to be significantly hypomethylated relative to reference control DNA. Metabolic profiling indicated that plasma homocysteine, adenosine, and S-adenosylhomocyteine were significantly elevated among autism mothers consistent with reduced methylation capacity and DNA hypomethylation. Together, these results suggest that the maternal genetics/epigenetics may influence fetal predisposition to autism. PMID:20468076

  4. A functional polymorphism in the reduced folate carrier gene and DNA hypomethylation in mothers of children with autism.

    PubMed

    James, S Jill; Melnyk, Stepan; Jernigan, Stefanie; Pavliv, Oleksandra; Trusty, Timothy; Lehman, Sara; Seidel, Lisa; Gaylor, David W; Cleves, Mario A

    2010-09-01

    The biologic basis of autism is complex and is thought to involve multiple and variable gene-environment interactions. While the logical focus has been on the affected child, the impact of maternal genetics on intrauterine microenvironment during pivotal developmental windows could be substantial. Folate-dependent one carbon metabolism is a highly polymorphic pathway that regulates the distribution of one-carbon derivatives between DNA synthesis (proliferation) and DNA methylation (cell-specific gene expression and differentiation). These pathways are essential to support the programmed shifts between proliferation and differentiation during embryogenesis and organogenesis. Maternal genetic variants that compromise intrauterine availability of folate derivatives could alter fetal cell trajectories and disrupt normal neurodevelopment. In this investigation, the frequency of common functional polymorphisms in the folate pathway was investigated in a large population-based sample of autism case-parent triads. In case-control analysis, a significant increase in the reduced folate carrier (RFC1) G allele frequency was found among case mothers, but not among fathers or affected children. Subsequent log linear analysis of the RFC1 A80G genotype within family trios revealed that the maternal G allele was associated with a significant increase in risk of autism whereas the inherited genotype of the child was not. Further, maternal DNA from the autism mothers was found to be significantly hypomethylated relative to reference control DNA. Metabolic profiling indicated that plasma homocysteine, adenosine, and S-adenosylhomocyteine were significantly elevated among autism mothers consistent with reduced methylation capacity and DNA hypomethylation. Together, these results suggest that the maternal genetics/epigenetics may influence fetal predisposition to autism. (c) 2010 Wiley-Liss, Inc.

  5. Iddm30 controls pancreatic expression of Ccl11 (Eotaxin) and the Th1/Th2 balance within the insulitic lesions.

    PubMed

    Chao, Gary Y C; Wallis, Robert H; Marandi, Leili; Ning, Terri; Sarmiento, Janice; Paterson, Andrew D; Poussier, Philippe

    2014-04-15

    The autoimmune diabetic syndrome of the BioBreeding diabetes-prone (BBDP) rat is a polygenic disease that resembles in many aspects human type 1 diabetes (T1D). A successful approach to gain insight into the mechanisms underlying genetic associations in autoimmune diseases has been to identify and map disease-related subphenotypes that are under simpler genetic control than the full-blown disease. In this study, we focused on the β cell overexpression of Ccl11 (Eotaxin), previously postulated to be diabetogenic in BBDR rats, a BBDP-related strain. We tested the hypothesis that this trait is genetically determined and contributes to the regulation of diabetes in BBDP rats. Similar to the BBDR strain, we observed a time-dependent, insulitis-independent pancreatic upregulation of Ccl11 in BBDP rats when compared with T1D-resistant ACI.1u.lyp animals. Through linkage analysis of a cross-intercross of these two parental strains, this trait was mapped to a region on chromosome 12 that overlaps Iddm30. Linkage results were confirmed by phenotypic assessment of a novel inbred BBDP.ACI-Iddm30 congenic line. As expected, the Iddm30 BBDP allele is associated with a significantly higher pancreatic expression of Ccl11; however, the same allele confers resistance to T1D. Analysis of islet-infiltrating T cells in Iddm30 congenic BBDP animals revealed that overexpression of pancreatic Ccl11, a prototypical Th2 chemokine, is associated with an enrichment in Th2 CD4+ T cells within the insulitic lesions. These results indicate that, in the BBDP rat, Iddm30 controls T1D susceptibility through both the regulation of Ccl11 expression in β cells and the subsequent Th1/Th2 balance within islet-infiltrating T lymphocytes.

  6. A two-generation analysis of pollen pool genetic structure in flowering dogwood, Cornus florida (Cornaceae), in the Missouri Ozarks.

    PubMed

    Sork, Victoria L; Smouse, Peter E; Apsit, Victoria J; Dyer, Rodney J; Westfall, Robert D

    2005-02-01

    Anthropogenic landscape change can disrupt gene flow. As part of the Missouri Ozark Forest Ecosystem Project, this study examined whether silvicultural practices influence pollen-mediated gene movement in the insect-pollinated species, Cornus florida L., by comparing pollen pool structure (Φ(st)) among clear-cutting, selective cutting, and uncut regimes with the expectation that pollen movement should be least in the uncut regime. Using a sample of 1500 seedlings-10 each from 150 seed parents (43 in clear-cut, 74 in selective, and 33 in control sites) from six sites (each ranging from 266 to 527 ha), eight allozyme loci were analyzed with a pollen pool structure approach known as TwoGener (Smouse et al., 2001; Evolution 55: 260-271). This analysis revealed that pollen pool structure was less in clear-cut (Φ(C) = 0.090, P < 0.001) than in uncut areas (Φ(U) = 0.174, P < 0.001), with selective-cut intermediate (Φ(S) = 0.125, P < 0.001). These estimates translate into more effective pollen donors (N(ep)) in clear-cut (N(ep) = 5.56) and selective-cut (N(ep) = 4.00) areas than in uncut areas (N(ep) = 2.87). We demonstrate that Φ(C) ≤ Φ(S) ≤ Φ(U), with Φ(C) significantly smaller than Φ(U) (P < 0.034). The findings imply that, as long as a sufficiently large number of seed parents remain to provide adequate reproduction and to avoid a genetic bottleneck in the effective number of mothers, silvicultural management may not negatively affect the effective number of pollen parents, and hence subsequent genetic diversity in Cornus florida.

  7. RNA-Seq Analysis of Cocos nucifera: Transcriptome Sequencing and De Novo Assembly for Subsequent Functional Genomics Approaches

    PubMed Central

    Xia, Wei; Mason, Annaliese S.; Xia, Zhihui; Qiao, Fei; Zhao, Songlin; Tang, Haoru

    2013-01-01

    Background Cocos nucifera (coconut), a member of the Arecaceae family, is an economically important woody palm grown in tropical regions. Despite its agronomic importance, previous germplasm assessment studies have relied solely on morphological and agronomical traits. Molecular biology techniques have been scarcely used in assessment of genetic resources and for improvement of important agronomic and quality traits in Cocos nucifera, mostly due to the absence of available sequence information. Methodology/Principal Findings To provide basic information for molecular breeding and further molecular biological analysis in Cocos nucifera, we applied RNA-seq technology and de novo assembly to gain a global overview of the Cocos nucifera transcriptome from mixed tissue samples. Using Illumina sequencing, we obtained 54.9 million short reads and conducted de novo assembly to obtain 57,304 unigenes with an average length of 752 base pairs. Sequence comparison between assembled unigenes and released cDNA sequences of Cocos nucifera and Elaeis guineensis indicated that the assembled sequences were of high quality. Approximately 99.9% of unigenes were novel compared to the released coconut EST sequences. Using BLASTX, 68.2% of unigenes were successfully annotated based on the Genbank non-redundant (Nr) protein database. The annotated unigenes were then further classified using the Gene Ontology (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Conclusions/Significance Our study provides a large quantity of novel genetic information for Cocos nucifera. This information will act as a valuable resource for further molecular genetic studies and breeding in coconut, as well as for isolation and characterization of functional genes involved in different biochemical pathways in this important tropical crop species. PMID:23555859

  8. RNA-Seq analysis of Cocos nucifera: transcriptome sequencing and de novo assembly for subsequent functional genomics approaches.

    PubMed

    Fan, Haikuo; Xiao, Yong; Yang, Yaodong; Xia, Wei; Mason, Annaliese S; Xia, Zhihui; Qiao, Fei; Zhao, Songlin; Tang, Haoru

    2013-01-01

    Cocos nucifera (coconut), a member of the Arecaceae family, is an economically important woody palm grown in tropical regions. Despite its agronomic importance, previous germplasm assessment studies have relied solely on morphological and agronomical traits. Molecular biology techniques have been scarcely used in assessment of genetic resources and for improvement of important agronomic and quality traits in Cocos nucifera, mostly due to the absence of available sequence information. To provide basic information for molecular breeding and further molecular biological analysis in Cocos nucifera, we applied RNA-seq technology and de novo assembly to gain a global overview of the Cocos nucifera transcriptome from mixed tissue samples. Using Illumina sequencing, we obtained 54.9 million short reads and conducted de novo assembly to obtain 57,304 unigenes with an average length of 752 base pairs. Sequence comparison between assembled unigenes and released cDNA sequences of Cocos nucifera and Elaeis guineensis indicated that the assembled sequences were of high quality. Approximately 99.9% of unigenes were novel compared to the released coconut EST sequences. Using BLASTX, 68.2% of unigenes were successfully annotated based on the Genbank non-redundant (Nr) protein database. The annotated unigenes were then further classified using the Gene Ontology (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Our study provides a large quantity of novel genetic information for Cocos nucifera. This information will act as a valuable resource for further molecular genetic studies and breeding in coconut, as well as for isolation and characterization of functional genes involved in different biochemical pathways in this important tropical crop species.

  9. Genome-wide Polygenic Burden of Rare Deleterious Variants in Sudden Unexpected Death in Epilepsy

    PubMed Central

    Leu, Costin; Balestrini, Simona; Maher, Bridget; Hernández-Hernández, Laura; Gormley, Padhraig; Hämäläinen, Eija; Heggeli, Kristin; Schoeler, Natasha; Novy, Jan; Willis, Joseph; Plagnol, Vincent; Ellis, Rachael; Reavey, Eleanor; O'Regan, Mary; Pickrell, William O.; Thomas, Rhys H.; Chung, Seo-Kyung; Delanty, Norman; McMahon, Jacinta M.; Malone, Stephen; Sadleir, Lynette G.; Berkovic, Samuel F.; Nashef, Lina; Zuberi, Sameer M.; Rees, Mark I.; Cavalleri, Gianpiero L.; Sander, Josemir W.; Hughes, Elaine; Helen Cross, J.; Scheffer, Ingrid E.; Palotie, Aarno; Sisodiya, Sanjay M.

    2015-01-01

    Sudden unexpected death in epilepsy (SUDEP) represents the most severe degree of the spectrum of epilepsy severity and is the commonest cause of epilepsy-related premature mortality. The precise pathophysiology and the genetic architecture of SUDEP remain elusive. Aiming to elucidate the genetic basis of SUDEP, we analysed rare, protein-changing variants from whole-exome sequences of 18 people who died of SUDEP, 87 living people with epilepsy and 1479 non-epilepsy disease controls. Association analysis revealed a significantly increased genome-wide polygenic burden per individual in the SUDEP cohort when compared to epilepsy (P = 5.7 × 10− 3) and non-epilepsy disease controls (P = 1.2 × 10− 3). The polygenic burden was driven both by the number of variants per individual, and over-representation of variants likely to be deleterious in the SUDEP cohort. As determined by this study, more than a thousand genes contribute to the observed polygenic burden within the framework of this study. Subsequent gene-based association analysis revealed five possible candidate genes significantly associated with SUDEP or epilepsy, but no one single gene emerges as common to the SUDEP cases. Our findings provide further evidence for a genetic susceptibility to SUDEP, and suggest an extensive polygenic contribution to SUDEP causation. Thus, an overall increased burden of deleterious variants in a highly polygenic background might be important in rendering a given individual more susceptible to SUDEP. Our findings suggest that exome sequencing in people with epilepsy might eventually contribute to generating SUDEP risk estimates, promoting stratified medicine in epilepsy, with the eventual aim of reducing an individual patient's risk of SUDEP. PMID:26501104

  10. Phenotypic polymorphism of Chrysomya albiceps (Wiedemann) (Diptera: Calliphoridae) may lead to species misidentification.

    PubMed

    Grella, Maicon D; Savino, André G; Paulo, Daniel F; Mendes, Felipe M; Azeredo-Espin, Ana M L; Queiroz, Margareth M C; Thyssen, Patricia J; Linhares, Arício X

    2015-01-01

    Species identification is an essential step in the progress and completion of work in several areas of biological knowledge, but it is not a simple process. Due to the close phylogenetic relationship of certain species, morphological characters are not always sufficiently distinguishable. As a result, it is necessary to combine several methods of analysis that contribute to a distinct categorization of taxa. This study aimed to raise diagnostic characters, both morphological and molecular, for the correct identification of species of the genus Chrysomya (Diptera: Calliphoridae) recorded in the New World, which has continuously generated discussion about its taxonomic position over the last century. A clear example of this situation was the first record of Chrysomya rufifacies in Brazilian territory in 2012. However, the morphological polymorphism and genetic variability of Chrysomya albiceps studied here show that both species (C. rufifacies and C. albiceps) share very similar character states, leading to misidentification and subsequent registration error of species present in our territory. This conclusion is demonstrated by the authors, based on a review of the material deposited in major scientific collections in Brazil and subsequent molecular and phylogenetic analysis of these samples. Additionally, we have proposed a new taxonomic key to separate the species of Chrysomya found on the American continent, taking into account a larger number of characters beyond those available in current literature. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A Comprehensive Transcriptomic and Proteomic Analysis of Hydra Head Regeneration

    PubMed Central

    Petersen, Hendrik O.; Höger, Stefanie K.; Looso, Mario; Lengfeld, Tobias; Kuhn, Anne; Warnken, Uwe; Nishimiya-Fujisawa, Chiemi; Schnölzer, Martina; Krüger, Marcus; Özbek, Suat; Simakov, Oleg; Holstein, Thomas W.

    2015-01-01

    The cnidarian freshwater polyp Hydra sp. exhibits an unparalleled regeneration capacity in the animal kingdom. Using an integrative transcriptomic and stable isotope labeling by amino acids in cell culture proteomic/phosphoproteomic approach, we studied stem cell-based regeneration in Hydra polyps. As major contributors to head regeneration, we identified diverse signaling pathways adopted for the regeneration response as well as enriched novel genes. Our global analysis reveals two distinct molecular cascades: an early injury response and a subsequent, signaling driven patterning of the regenerating tissue. A key factor of the initial injury response is a general stabilization of proteins and a net upregulation of transcripts, which is followed by a subsequent activation cascade of signaling molecules including Wnts and transforming growth factor (TGF) beta-related factors. We observed moderate overlap between the factors contributing to proteomic and transcriptomic responses suggesting a decoupled regulation between the transcriptional and translational levels. Our data also indicate that interstitial stem cells and their derivatives (e.g., neurons) have no major role in Hydra head regeneration. Remarkably, we found an enrichment of evolutionarily more recent genes in the early regeneration response, whereas conserved genes are more enriched in the late phase. In addition, genes specific to the early injury response were enriched in transposon insertions. Genetic dynamicity and taxon-specific factors might therefore play a hitherto underestimated role in Hydra regeneration. PMID:25841488

  12. Pleiotropic Contribution of MECOM and AVPR1A to Aggression and Subcortical Brain Volumes

    PubMed Central

    van Donkelaar, Marjolein M. J.; Hoogman, Martine; Pappa, Irene; Tiemeier, Henning; Buitelaar, Jan K.; Franke, Barbara; Bralten, Janita

    2018-01-01

    Reactive and proactive subtypes of aggression have been recognized to help parse etiological heterogeneity of this complex phenotype. With a heritability of about 50%, genetic factors play a role in the development of aggressive behavior. Imaging studies implicate brain structures related to social behavior in aggression etiology, most notably the amygdala and striatum. This study aimed to gain more insight into the pathways from genetic risk factors for aggression to aggression phenotypes. To this end, we conducted genome-wide gene-based cross-trait meta-analyses of aggression with the volumes of amygdala, nucleus accumbens and caudate nucleus to identify genes influencing both aggression and aggression-related brain volumes. We used data of large-scale genome-wide association studies (GWAS) of: (a) aggressive behavior in children and adolescents (EAGLE, N = 18,988); and (b) Magnetic Resonance Imaging (MRI)-based volume measures of aggression-relevant subcortical brain regions (ENIGMA2, N = 13,171). Second, the identified genes were further investigated in a sample of healthy adults (mean age (SD) = 25.28 (4.62) years; 43% male) who had genome-wide genotyping data and questionnaire data on aggression subtypes available (Brain Imaging Genetics, BIG, N = 501) to study their effect on reactive and proactive subtypes of aggression. Our meta-analysis identified two genes, MECOM and AVPR1A, significantly associated with both aggression risk and nucleus accumbens (MECOM) and amygdala (AVPR1A) brain volume. Subsequent in-depth analysis of these genes in healthy adults (BIG), including sex as an interaction term in the model, revealed no significant subtype-specific gene-wide associations. Using cross-trait meta-analysis of brain measures and psychiatric phenotypes, this study generated new hypotheses about specific links between genes, the brain and behavior. Results indicate that MECOM and AVPR1A may exert an effect on aggression through mechanisms involving nucleus accumbens and amygdala volumes, respectively. PMID:29666571

  13. Genetic heterogeneity and Alzheimer`s disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schellenberg, G.D.; Wijsman, E.M.; Bird, T.D.

    1994-09-01

    In some early-onset Alzheimer`s disease (AD) families, inheritance is autosomal dominant. (Early-onset AD is arbitarily defined as onset at {le} 60 years.) Two loci have been identified which are causative for early-onset familial AD (FAD). One is the amyloid precursor protein gene in which specific mutation have been identified. The second is a locus at 14q24.3 (AD3) which has been localized by linkage analysis; the gene and specific mutations have not been identified. Linkage studies place this locus between D14S61 and D14S63. These 2 loci, however, do not account for all early-onset FAD. The Volga German (VG) kindreds are descendantsmore » of families which emigrated from Germany to the Volga river region of Russia and subsequently to the US; AD in these families is hypothesized to be the result of a common genetic founder. The average age-at-onset in these families is 57 years. Linkage analysis for this group has been negative for the APP gene and for chromosome 14 markers. Thus, there is at least 1 other early-onset FAD locus. Recently, the {epsilon}4 allele of apolipoprotein E (ApoE) was identified as a risk-factor for late-onset AD. In a series of 53 late-onset kindreds, a strong genetic association was observed between the ApoE {epsilon}4 allele and AD. However, when linkage analysis was performed using a highly polymorphic locus at the ApoCII gene, which is within 30 kb of ApoE, significant evidence for co-segregation was not observed. This and other data suggests that while ApoE is an age-at-onset modifying locus, another gene(s), located elsewhere, contribute(s) to late-onset AD. Thus, there is probably at least 1 other late-onset locus. Once the VG locus is identified, it will be possible to determine whether an allelic variant of this locus is responsible for late-onset FAD.« less

  14. IQ and schizophrenia in a Swedish national sample: their causal relationship and the interaction of IQ with genetic risk.

    PubMed

    Kendler, Kenneth S; Ohlsson, Henrik; Sundquist, Jan; Sundquist, Kristina

    2015-03-01

    The authors sought to clarify the relationship between IQ and subsequent risk for schizophrenia. IQ was assessed at ages 18-20 in 1,204,983 Swedish males born between 1951 and 1975. Schizophrenia was assessed by hospital diagnosis through 2010. Cox proportional hazards models were used to investigate future risk for schizophrenia in individuals as a function of their IQ score, and then stratified models using pairs of relatives were used to adjust for familial cluster. Finally, regression models were used to examine the interaction between IQ and genetic liability on risk for schizophrenia. IQ had a monotonic relationship with schizophrenia risk across the IQ range, with a mean increase in risk of 3.8% per 1-point decrease in IQ; this association was stronger in the lower than the higher IQ range. Co-relative control analyses showed a similar association between IQ and schizophrenia in the general population and in cousin, half-sibling, and full-sibling pairs. A robust interaction was seen between genetic liability to schizophrenia and IQ in predicting schizophrenia risk. Genetic susceptibility for schizophrenia had a much stronger impact on risk of illness for those with low than high intelligence. The IQ-genetic liability interaction arose largely from IQ differences between close relatives. IQ assessed in late adolescence is a robust risk factor for subsequent onset of schizophrenia. This association is not the result of a declining IQ associated with insidious onset. In this large, representative sample, we found no evidence for a link between genius and schizophrenia. Co-relative control analyses showed that the association between lower IQ and schizophrenia is not the result of shared familial risk factors and may be causal. The strongest effect was seen with IQ differences within families. High intelligence substantially attenuates the impact of genetic liability on the risk for schizophrenia.

  15. Genetic variability in isolates of Chromobacterium violaceum from pulmonary secretion, water, and soil.

    PubMed

    Santini, A C; Magalhães, J T; Cascardo, J C M; Corrêa, R X

    2016-04-28

    Chromobacterium violaceum is a free-living Gram-negative bacillus usually found in the water and soil in tropical regions, which causes infections in humans. Chromobacteriosis is characterized by rapid dissemination and high mortality. The aim of this study was to detect the genetic variability among C. violaceum type strain ATCC 12472, and seven isolates from the environment and one from a pulmonary secretion from a chromobacteriosis patient from Ilhéus, Bahia. The molecular characterization of all samples was performed by polymerase chain reaction (PCR) sequencing and 16S rDNA analysis. Primers specific for two ATCC 12472 pathogenicity genes, hilA and yscD, as well as random amplified polymorphic DNA (RAPD), were used for PCR amplification and comparative sequencing of the products. For a more specific approach, the PCR products of 16S rDNA were digested with restriction enzymes. Seven of the samples, including type-strain ATCC 12472, were amplified by the hilA primers; these were subsequently sequenced. Gene yscD was amplified only in type-strain ATCC 12472. MspI and AluI digestion revealed 16S rDNA polymorphisms. This data allowed the generation of a dendogram for each analysis. The isolates of C. violaceum have variability in random genomic regions demonstrated by RAPD. Also, these isolates have variability in pathogenicity genes, as demonstrated by sequencing and restriction enzyme digestion.

  16. Narrowing the wingless-2 mutation to a 227 kb candidate region on chicken chromosome 12

    PubMed Central

    Webb, A E; Youngworth, I A; Kaya, M; Gitter, C L; O’Hare, E A; May, B; Cheng, H H; Delany, M E

    2018-01-01

    ABSTRACT Wingless-2 (wg-2) is an autosomal recessive mutation in chicken that results in an embryonic lethal condition. Affected individuals exhibit a multisystem syndrome characterized by absent wings, truncated legs, and craniofacial, kidney, and feather malformations. Previously, work focused on phenotype description, establishing the autosomal recessive pattern of Mendelian inheritance and placing the mutation on an inbred genetic background to create the congenic line UCD Wingless-2.331. The research described in this paper employed the complementary tools of breeding, genetics, and genomics to map the chromosomal location of the mutation and successively narrow the size of the region for analysis of the causative element. Specifically, the wg-2 mutation was initially mapped to a 7 Mb region of chromosome 12 using an Illumina 3 K SNP array. Subsequent SNP genotyping and exon sequencing combined with analysis from improved genome assemblies narrowed the region of interest to a maximum size of 227 kb. Within this region, 3 validated and 3 predicted candidate genes are found, and these are described. The wg-2 mutation is a valuable resource to contribute to an improved understanding of the developmental pathways involved in chicken and avian limb development as well as serving as a model for human development, as the resulting syndrome shares features with human congenital disorders. PMID:29562287

  17. Haemagglutinin and neuraminidase sequencing delineate nosocomial influenza outbreaks with accuracy equivalent to whole genome sequencing.

    PubMed

    Houghton, Rebecca; Ellis, Joanna; Galiano, Monica; Clark, Tristan W; Wyllie, Sarah

    2017-04-01

    We describe haemagglutinin (HA) and neuraminidase (NA) sequencing in an apparent cross-site influenza A(H1N1) outbreak in renal transplant and haemodialysis patients, confirmed with whole genome sequencing (WGS). Isolates were sequenced from influenza positive individuals. Phylogenetic trees were constructed using HA and NA sequencing and subsequently WGS. Sequence data was analysed to determine genetic relatedness of viruses obtained from inpatient and outpatient cohorts and compared with epidemiological outbreak information. There were 6 patient cases of influenza in the inpatient renal ward cohort (associated with 3 deaths) and 9 patient cases in the outpatient haemodialysis unit cohort (no deaths). WGS confirmed clustered transmission of two genetically different influenza A(H1N1)pdm09 strains initially identified by analysis of HA and NA genes. WGS took longer, and in this case was not required to determine whether or not the two seemingly linked outbreaks were related. Rapid sequencing of HA and NA genes may be sufficient to aid early influenza outbreak investigation making it appealing for future outbreak investigation. However, as next generation sequencing becomes cheaper and more widely available and bioinformatics software is now freely accessible next generation whole genome analysis may increasingly become a valuable tool for real-time Influenza outbreak investigation. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  18. Pediatric cataract, myopic astigmatism, familial exudative vitreoretinopathy and primary open-angle glaucoma co-segregating in a family

    PubMed Central

    Hewitt, A.W.; Ruddle, J.B.; Vote, B.; Buttery, R.G.; Toomes, C.; Metlapally, R.; Li, Y.J.; Tran-Viet, K.N.; Malecaze, F.; Calvas, P.; Rosenberg, T.; Guggenheim, J.A.; Young, T.L.

    2011-01-01

    Purpose To describe an Australian pedigree of European descent with a variable autosomal dominant phenotype of: pediatric cortical cataract (CC), asymmetric myopia with astigmatism, familial exudative vitreoretinopathy (FEVR), and primary open-angle glaucoma (POAG). Methods Probands with CC, FEVR, and POAG were enrolled in three independent genetic eye studies in Tasmania. Genealogy confirmed these individuals were closely related and subsequent examination revealed 11 other family members with some or all of the associated disorders. Results Twelve individuals had CC thought to be of childhood onset, with one child demonstrating progressive lenticular opacification. One individual had severe retinal detachment while five others had dragged retinal vessels. Seven individuals had POAG. Seven individuals had myopia in at least one eye ≤-3 Diopters. DNA testing excluded mutations in myocilin, trabecular meshwork inducible glucocorticoid response (MYOC) and tetraspanin 12 (TSPAN12). Haplotype analysis excluded frizzled family receptor 4 (FZD4) and low density lipoprotein receptor-related protein 5 (LRP5), but only partly excluded EVR3. Multipoint linkage analysis revealed multiple chromosomal single-nucleotide polymorphisms (SNPs) of interest, but no statistically significant focal localization. Conclusions This unusual clustering of ophthalmic diseases suggests a possible single genetic cause for an apparently new cataract syndrome. This family’s clinical ocular features may reflect the interplay between retinal disease with lenticular changes and axial length in the development of myopia and glaucoma. PMID:21850187

  19. Pediatric cataract, myopic astigmatism, familial exudative vitreoretinopathy and primary open-angle glaucoma co-segregating in a family.

    PubMed

    Mackey, D A; Hewitt, A W; Ruddle, J B; Vote, B; Buttery, R G; Toomes, C; Metlapally, R; Li, Y J; Tran-Viet, K N; Malecaze, F; Calvas, P; Rosenberg, T; Guggenheim, J A; Young, T L

    2011-01-01

    To describe an Australian pedigree of European descent with a variable autosomal dominant phenotype of: pediatric cortical cataract (CC), asymmetric myopia with astigmatism, familial exudative vitreoretinopathy (FEVR), and primary open-angle glaucoma (POAG). Probands with CC, FEVR, and POAG were enrolled in three independent genetic eye studies in Tasmania. Genealogy confirmed these individuals were closely related and subsequent examination revealed 11 other family members with some or all of the associated disorders. Twelve individuals had CC thought to be of childhood onset, with one child demonstrating progressive lenticular opacification. One individual had severe retinal detachment while five others had dragged retinal vessels. Seven individuals had POAG. Seven individuals had myopia in at least one eye ≤-3 Diopters. DNA testing excluded mutations in myocilin, trabecular meshwork inducible glucocorticoid response (MYOC) and tetraspanin 12 (TSPAN12). Haplotype analysis excluded frizzled family receptor 4 (FZD4) and low density lipoprotein receptor-related protein 5 (LRP5), but only partly excluded EVR3. Multipoint linkage analysis revealed multiple chromosomal single-nucleotide polymorphisms (SNPs) of interest, but no statistically significant focal localization. This unusual clustering of ophthalmic diseases suggests a possible single genetic cause for an apparently new cataract syndrome. This family's clinical ocular features may reflect the interplay between retinal disease with lenticular changes and axial length in the development of myopia and glaucoma.

  20. AB071. Semaphorin 3D impact in Indonesian Hirschsprung patients

    PubMed Central

    Iskandar, Kristy; Sunardi, Mukhamad; Gunadi

    2017-01-01

    Background Hirschsprung disease (HSCR) is a heterogeneous genetic disorder characterized by absence of ganglion cells along the intestines, results in functional bowel obstruction in children. Recently, Semaphorin 3D (SEMA3D) gene has been implicated in the pathogenesis of intestinal ganglionosis. We aimed to conduct a mutation analysis of SEMA3D gene in HSCR patients in Indonesia, a genetically distinct group within Asia. Methods We ascertained 40 patients with HSCR of whom 27 and 13 were males and females, respectively. Subsequently, we performed direct sequencing to clarify the contribution of SEMA3D gene to HSCR development. Results All patients were sporadic HSCR with degree of aganglionosis as follows: short-segment in 39/40 (98%) patients and long-segment in 1/40 (2%) patients. Transanal endorectal pull-through (TEPT) has been the most common definitive surgery (54%), followed by Duhamel (21%), and Soave (14%). Mutation analysis of SEMA3D gene showed no rare variant, but one common variant in exon 17, rs7800072. The risk allele frequency at rs7800072 (C) among HSCR patients were 0.52. Conclusions This result implies that the SEMA3D gene may not have an effect in the molecular pathogenesis of HSCR, particularly in Indonesia. This study is the first report of SEMA3D gene in Asian ancestry. Further study with multicenter and a larger number of samples is necessary to clarify the results.

  1. XY (SRY-positive) Ovarian Disorder of Sex Development in Cattle.

    PubMed

    De Lorenzi, Lisa; Arrighi, Silvana; Rossi, Elena; Grignani, Pierangela; Previderè, Carlo; Bonacina, Stefania; Cremonesi, Fausto; Parma, Pietro

    2018-06-13

    In mammals, the sex of the embryo depends on the SRY gene. In the presence of at least one intact and functional copy of this genetic factor (XY embryo) undifferentiated gonads will develop as testicles that subsequently determine the male phenotype. When this factor is not present, i.e., in subjects with 2 X chromosomes, an alternative pathway induces the development of ovaries, hence a female phenotype. In this case study, we describe a female cattle affected by a disorder of sex development (DSD). The subject, despite having a chromosomal XY constitution, did not develop testicles but ovaries, although they were underdeveloped. Moreover, genetic analysis highlighted the presence of the SRY gene with a normal coding region in both blood- and tissue-derived DNA. A chimeric condition was excluded in blood by sexing more than 350 cells and by allele profile investigation of 18 microsatellite markers. Array CGH analysis showed the presence of a not yet described 99-kb duplication (BTA18), but its relationship with the phenotype remains to be demonstrated. Gonadal histology demonstrated paired ovaries: the left one containing a large corpus luteum and the right one showing an underdeveloped aspect and very few early follicles. To our knowledge, we describe the first case of XY (SRY+) DSD in cattle with a normal SRY gene coding sequence. © 2018 S. Karger AG, Basel.

  2. Bayesian Reconstruction of Disease Outbreaks by Combining Epidemiologic and Genomic Data

    PubMed Central

    Jombart, Thibaut; Cori, Anne; Didelot, Xavier; Cauchemez, Simon; Fraser, Christophe; Ferguson, Neil

    2014-01-01

    Recent years have seen progress in the development of statistically rigorous frameworks to infer outbreak transmission trees (“who infected whom”) from epidemiological and genetic data. Making use of pathogen genome sequences in such analyses remains a challenge, however, with a variety of heuristic approaches having been explored to date. We introduce a statistical method exploiting both pathogen sequences and collection dates to unravel the dynamics of densely sampled outbreaks. Our approach identifies likely transmission events and infers dates of infections, unobserved cases and separate introductions of the disease. It also proves useful for inferring numbers of secondary infections and identifying heterogeneous infectivity and super-spreaders. After testing our approach using simulations, we illustrate the method with the analysis of the beginning of the 2003 Singaporean outbreak of Severe Acute Respiratory Syndrome (SARS), providing new insights into the early stage of this epidemic. Our approach is the first tool for disease outbreak reconstruction from genetic data widely available as free software, the R package outbreaker. It is applicable to various densely sampled epidemics, and improves previous approaches by detecting unobserved and imported cases, as well as allowing multiple introductions of the pathogen. Because of its generality, we believe this method will become a tool of choice for the analysis of densely sampled disease outbreaks, and will form a rigorous framework for subsequent methodological developments. PMID:24465202

  3. Discovering genetic variants in Crohn's disease by exploring genomic regions enriched of weak association signals.

    PubMed

    D'Addabbo, Annarita; Palmieri, Orazio; Maglietta, Rosalia; Latiano, Anna; Mukherjee, Sayan; Annese, Vito; Ancona, Nicola

    2011-08-01

    A meta-analysis has re-analysed previous genome-wide association scanning definitively confirming eleven genes and further identifying 21 new loci. However, the identified genes/loci still explain only the minority of genetic predisposition of Crohn's disease. To identify genes weakly involved in disease predisposition by analysing chromosomal regions enriched of single nucleotide polymorphisms with modest statistical association. We utilized the WTCCC data set evaluating 1748 CD and 2938 controls. The identification of candidate genes/loci was performed by a two-step procedure: first of all chromosomal regions enriched of weak association signals were localized; subsequently, weak signals clustered in gene regions were identified. The statistical significance was assessed by non parametric permutation tests. The cytoband enrichment analysis highlighted 44 regions (P≤0.05) enriched with single nucleotide polymorphisms significantly associated with the trait including 23 out of 31 previously confirmed and replicated genes. Importantly, we highlight further 20 novel chromosomal regions carrying approximately one hundred genes/loci with modest association. Amongst these we find compelling functional candidate genes such as MAPT, GRB2 and CREM, LCT, and IL12RB2. Our study suggests a different statistical perspective to discover genes weakly associated with a given trait, although further confirmatory functional studies are needed. Copyright © 2011 Editrice Gastroenterologica Italiana S.r.l. All rights reserved.

  4. Rare Variants in PLD3 Do Not Affect Risk for Early‐Onset Alzheimer Disease in a European Consortium Cohort

    PubMed Central

    Cacace, Rita; Van den Bossche, Tobi; Engelborghs, Sebastiaan; Geerts, Nathalie; Laureys, Annelies; Dillen, Lubina; Graff, Caroline; Thonberg, Håkan; Chiang, Huei‐Hsin; Pastor, Pau; Ortega‐Cubero, Sara; Pastor, Maria A.; Diehl‐Schmid, Janine; Alexopoulos, Panagiotis; Benussi, Luisa; Ghidoni, Roberta; Binetti, Giuliano; Nacmias, Benedetta; Sorbi, Sandro; Sanchez‐Valle, Raquel; Lladó, Albert; Gelpi, Ellen; Almeida, Maria Rosário; Santana, Isabel; Tsolaki, Magda; Koutroumani, Maria; Clarimon, Jordi; Lleó, Alberto; Fortea, Juan; de Mendonça, Alexandre; Martins, Madalena; Borroni, Barbara; Padovani, Alessandro; Matej, Radoslav; Rohan, Zdenek; Vandenbulcke, Mathieu; Vandenberghe, Rik; De Deyn, Peter P.; Cras, Patrick; van der Zee, Julie; Sleegers, Kristel

    2015-01-01

    ABSTRACT Rare variants in the phospholipase D3 gene (PLD3) were associated with increased risk for late‐onset Alzheimer disease (LOAD). We identified a missense mutation in PLD3 in whole‐genome sequence data of a patient with autopsy confirmed Alzheimer disease (AD) and onset age of 50 years. Subsequently, we sequenced PLD3 in a Belgian early‐onset Alzheimer disease (EOAD) patient (N = 261) and control (N = 319) cohort, as well as in European EOAD patients (N = 946) and control individuals (N = 1,209) ascertained in different European countries. Overall, we identified 22 rare variants with a minor allele frequency <1%, 20 missense and two splicing mutations. Burden analysis did not provide significant evidence for an enrichment of rare PLD3 variants in EOAD patients in any of the patient/control cohorts. Also, meta‐analysis of the PLD3 data, including a published dataset of a German EOAD cohort, was not significant (P = 0.43; OR = 1.53, 95% CI 0.60–3.31). Consequently, our data do not support a role for PLD3 rare variants in the genetic etiology of EOAD in European EOAD patients. Our data corroborate the negative replication data obtained in LOAD studies and therefore a genetic role of PLD3 in AD remains to be demonstrated. PMID:26411346

  5. Dispersal responses override density effects on genetic diversity during post-disturbance succession

    PubMed Central

    Landguth, Erin L.; Bull, C. Michael; Banks, Sam C.; Gardner, Michael G.; Driscoll, Don A.

    2016-01-01

    Dispersal fundamentally influences spatial population dynamics but little is known about dispersal variation in landscapes where spatial heterogeneity is generated predominantly by disturbance and succession. We tested the hypothesis that habitat succession following fire inhibits dispersal, leading to declines over time in genetic diversity in the early successional gecko Nephrurus stellatus. We combined a landscape genetics field study with a spatially explicit simulation experiment to determine whether successional patterns in genetic diversity were driven by habitat-mediated dispersal or demographic effects (declines in population density leading to genetic drift). Initial increases in genetic structure following fire were likely driven by direct mortality and rapid population expansion. Subsequent habitat succession increased resistance to gene flow and decreased dispersal and genetic diversity in N. stellatus. Simulated changes in population density alone did not reproduce these results. Habitat-mediated reductions in dispersal, combined with changes in population density, were essential to drive the field-observed patterns. Our study provides a framework for combining demographic, movement and genetic data with simulations to discover the relative influence of demography and dispersal on patterns of landscape genetic structure. Our results suggest that succession can inhibit connectivity among individuals, opening new avenues for understanding how disturbance regimes influence spatial population dynamics. PMID:27009225

  6. Combining bio-electrospraying with gene therapy: a novel biotechnique for the delivery of genetic material via living cells.

    PubMed

    Ward, Eliot; Chan, Emma; Gustafsson, Kenth; Jayasinghe, Suwan N

    2010-05-01

    The investigations reported in this article demonstrate the ability of bio-electrosprays and cell electrospinning to deliver a genetic construct in association with living cells. Previous studies on both bio-electrosprays and cell electrospinning demonstrated great promise for tissue engineering and regenerative biology/medicine. The investigations described herein widen the applicability of these biotechniques by combining gene therapy protocols, resulting in a novel drug delivery methodology previously unexplored. In these studies a human cell line was transduced with recombinant self-inactivating lentiviral particles. These particles incorporated a green fluorescent protein fused to an endosomal targeting construct. This construct encodes a peptide, which can subsequently be detected on the surface of cells by specific T-cells. The transduced cell line was subsequently manipulated in association with either bio-electrospraying or cell electrospinning. Hence this demonstrates (i) the ability to safely handle genetically modified living cells and (ii) the ability to directly form pre-determined architectures bearing living therapeutic cells. This merged technology demonstrates a unique approach for directly forming living therapeutic architectures for controlled and targeted release of experimental cells/genes, as well as medical cell/gene therapeutics for a plethora of biological and medical applications. Hence, such developments could be applied to personalised medicine.

  7. The mitochondrial DNA history of a former native American village in northern Uruguay.

    PubMed

    Sans, Mónica; Mones, Pablo; Figueiro, Gonzalo; Barreto, Isabel; Motti, Josefina M B; Coble, Michael D; Bravi, Claudio M; Hidalgo, Pedro C

    2015-01-01

    In 1828, between 8,000 and 15,000 Indians from the Jesuit Missions were brought to Uruguay. There, they were settled in a village, presently named Bella Unión, in the northwest corner of the country. According to historic sources, the Indians abandoned the settlement shortly thereafter, with the village subsequently repopulated by "criollos" and immigrants from abroad. As a first approach to reconstruct the genetic history of the population, data about the living population genetic structure will be used. Based on the analysis of the maternal lineages of the inhabitants of Bella Unión, and of those from two nearby villages, we expect to partially answer what happened with the first and subsequent inhabitants. We analyzed the maternal lineages of the present inhabitants of Bella Unión and neighboring localities through the sequencing of the mitochondrial DNA control region. A total of 64.3%, 5.7%, and 30% of the mtDNAs were of Native, African, and West Eurasian origin, respectively. These figures are quite similar to that of the population of Tacuarembó, which is located in northeastern Uruguay. The four main Native American founding haplogroups were detected, with B2 being the most frequent, while some rare subhaplogroups (B2h, C1b2, D1f1) were also found. When compared with other Native American sequences, near- matches most consistently pointed to an Amazonian Indian origin which, when considered with historical evidence, suggested a probable Guaraní-Missionary-related origin. The data support the existence of a relationship between the historic and present inhabitants of the extreme northwest Uruguay, with a strong contribution of Native Americans to the mitochondrial DNA diversity observed there. © 2014 Wiley Periodicals, Inc.

  8. Systematic Integration of Brain eQTL and GWAS Identifies ZNF323 as a Novel Schizophrenia Risk Gene and Suggests Recent Positive Selection Based on Compensatory Advantage on Pulmonary Function

    PubMed Central

    Luo, Xiong-Jian; Mattheisen, Manuel; Li, Ming; Huang, Liang; Rietschel, Marcella; Børglum, Anders D.; Als, Thomas D.; van den Oord, Edwin J.; Aberg, Karolina A.; Mors, Ole; Mortensen, Preben Bo; Luo, Zhenwu; Degenhardt, Franziska; Cichon, Sven; Schulze, Thomas G.; Nöthen, Markus M.; Su, Bing; Zhao, Zhongming; Gan, Lin; Yao, Yong-Gang

    2015-01-01

    Genome-wide association studies have identified multiple risk variants and loci that show robust association with schizophrenia. Nevertheless, it remains unclear how these variants confer risk to schizophrenia. In addition, the driving force that maintains the schizophrenia risk variants in human gene pool is poorly understood. To investigate whether expression-associated genetic variants contribute to schizophrenia susceptibility, we systematically integrated brain expression quantitative trait loci and genome-wide association data of schizophrenia using Sherlock, a Bayesian statistical framework. Our analyses identified ZNF323 as a schizophrenia risk gene (P = 2.22×10–6). Subsequent analyses confirmed the association of the ZNF323 and its expression-associated single nucleotide polymorphism rs1150711 in independent samples (gene-expression: P = 1.40×10–6; single-marker meta-analysis in the combined discovery and replication sample comprising 44123 individuals: P = 6.85×10−10). We found that the ZNF323 was significantly downregulated in hippocampus and frontal cortex of schizophrenia patients (P = .0038 and P = .0233, respectively). Evidence for pleiotropic effects was detected (association of rs1150711 with lung function and gene expression of ZNF323 in lung: P = 6.62×10–5 and P = 9.00×10–5, respectively) with the risk allele (T allele) for schizophrenia acting as protective allele for lung function. Subsequent population genetics analyses suggest that the risk allele (T) of rs1150711 might have undergone recent positive selection in human population. Our findings suggest that the ZNF323 is a schizophrenia susceptibility gene whose expression may influence schizophrenia risk. Our study also illustrates a possible mechanism for maintaining schizophrenia risk variants in the human gene pool. PMID:25759474

  9. James V. Neel and Yuri E. Dubrova: Cold War debates and the genetic effects of low-dose radiation.

    PubMed

    Goldstein, Donna M; Stawkowski, Magdalena E

    2015-01-01

    This article traces disagreements about the genetic effects of low-dose radiation exposure as waged by James Neel (1915-2000), a central figure in radiation studies of Japanese populations after World War II, and Yuri Dubrova (1955-), who analyzed the 1986 Chernobyl nuclear power plant accident. In a 1996 article in Nature, Dubrova reported a statistically significant increase in the minisatellite (junk) DNA mutation rate in the children of parents who received a high dose of radiation from the Chernobyl accident, contradicting studies that found no significant inherited genetic effects among offspring of Japanese A-bomb survivors. Neel's subsequent defense of his large-scale longitudinal studies of the genetic effects of ionizing radiation consolidated current scientific understandings of low-dose ionizing radiation. The article seeks to explain how the Hiroshima/Nagasaki data remain hegemonic in radiation studies, contextualizing the debate with attention to the perceived inferiority of Soviet genetic science during the Cold War.

  10. Horizontal gene transfer between bacteria.

    PubMed

    Heuer, Holger; Smalla, Kornelia

    2007-01-01

    Horizontal gene transfer (HGT) refers to the acquisition of foreign genes by organisms. The occurrence of HGT among bacteria in the environment is assumed to have implications in the risk assessment of genetically modified bacteria which are released into the environment. First, introduced genetic sequences from a genetically modified bacterium could be transferred to indigenous micro-organisms and alter their genome and subsequently their ecological niche. Second, the genetically modified bacterium released into the environment might capture mobile genetic elements (MGE) from indigenous micro-organisms which could extend its ecological potential. Thus, for a risk assessment it is important to understand the extent of HGT and genome plasticity of bacteria in the environment. This review summarizes the present state of knowledge on HGT between bacteria as a crucial mechanism contributing to bacterial adaptability and diversity. In view of the use of GM crops and microbes in agricultural settings, in this mini-review we focus particularly on the presence and role of MGE in soil and plant-associated bacteria and the factors affecting gene transfer.

  11. On the centenary of the birth of Francis H. C. Crick - from physics to genetics and neuroscience.

    PubMed

    Teive, Hélio A G

    2016-04-01

    The year 2016 marks the centenary of the birth of Francis Crick (1916-2004), who made outstanding contributions to genetics and neuroscience. In 1953, in a collaborative study, Francis Crick and James Watson discovered the DNA double helix, and in 1962 they and Maurice Wilkins were awarded the Noble Prize in Physiology or Medicine. Crick subsequently became very interested in neuroscience, particularly consciousness and its relationship to the claustrum, a small gray matter structure between the insula and putamen.

  12. Population genetic structure of Monimopetalum chinense (Celastraceae), an endangered endemic species of eastern China.

    PubMed

    Xie, Guo-Wen; Wang, De-Lian; Yuan, Yong-Ming; Ge, Xue-Jun

    2005-04-01

    Monimopetalum chinense (Celastraceae) standing for the monotypic genus is endemic to eastern China. Its conservation status is vulnerable as most populations are small and isolated. Monimopetalum chinense is capable of reproducing both sexually and asexually. The aim of this study was to understand the genetic structure of M. chinense and to suggest conservation strategies. One hundred and ninety individuals from ten populations sampled from the entire distribution area of M. chinense were investigated by using inter-simple sequence repeats (ISSR). A total of 110 different ISSR bands were generated using ten primers. Low levels of genetic variation were revealed both at the species level (Isp=0.183) and at the population level (Ipop=0.083). High clonal diversity (D = 0.997) was found, and strong genetic differentiation among populations was detected (49.06 %). Small population size, possible inbreeding, limited gene flow due to short distances of seed dispersal, fragmentation of the once continuous range and subsequent genetic drift, may have contributed to shaping the population genetic structure of the species.

  13. Weak genetic divergence suggests extensive gene flow at the northeastern range limit of a dioecious Ficus species

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Yang, Chang-Hong; Ding, Yuan-Yuan; Tong, Xin; Chen, Xiao-Yong

    2018-07-01

    Genus Ficus (Moraceae) plays a critical role in the sustainability and biodiversity in tropical and subtropical ecosystems. Ficus species and their host specific pollinating fig wasps (Agaonidae) represent a classic example of obligate mutualism. The genetic consequence of range expansion and range shift is still under investigation, but extensive gene flow and subsequently low level of genetic divergence may be expected to occur among the populations at the poleward range limit of some Ficus species due to long distance gene flow in the genus. In the present study, we focused on populations of F. sarmentosa var. henryi at its northeastern range limit in southeast China to test whether edge populations were genetically fragile. Consistent with our hypothesis, high level of genetic diversity and weak genetic structure were revealed in Ficus sarmentosa var. henryi populations, suggesting extensive gene flow at the plant's range limit. Long-distance movements of both pollinators and frugivorous birds were likely to be frequent and thereby predominantly contributed to the extensive gene flow at large scale despite of some magnificent landscape elements like huge mountains.

  14. Genetic Landscape of Auditory Dysfunction.

    PubMed

    Bowl, Michael R; Brown, S D M

    2018-05-02

    Over the past 25 years, human and mouse genetics research together has identified several hundred genes essential for mammalian hearing, leading to a greater understanding of the molecular mechanisms underlying auditory function. However, from the number of still as yet uncloned human deafness loci and the findings of large-scale mouse mutant screens, it is clear we are still far from identifying all of the genes critical for auditory function. In particular, while we have made great progress in understanding the genetic bases of congenital and early-onset hearing loss, we have only just begun to elaborate upon the genetic landscape of age-related hearing loss. With an aging population and a growing literature suggesting links between age-related hearing loss and neuropsychiatric conditions, such as dementia and depression, understanding the genetics and subsequently the molecular mechanisms underlying this very prevalent condition is of paramount importance. Increased knowledge of genes and molecular pathways required for hearing will ultimately provide the foundation upon which novel therapeutic approaches can be built. Here we discuss the current status of deafness genetics research and the ongoing efforts being undertaken for discovery of novel genes essential for hearing.

  15. Phenotypic changes in laboratory-reared colonies of the maize herbivore, Diabrotica virgifera virgifera

    USDA-ARS?s Scientific Manuscript database

    The North American and European maize pest Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) was used to assess whether environmental conditions of the natal field, subsequent laboratory rearing, or genetic population characteristics affect phenotypic traits of fitness, activity, or...

  16. First encounter of European bat lyssavirus type 2 (EBLV-2) in a bat in Finland.

    PubMed

    Jakava-Viljanen, M; Lilley, T; Kyheröinen, E-M; Huovilainen, A

    2010-11-01

    In Finland, rabies in bats was suspected for the first time in 1985 when a bat researcher, who had multiple bat bites, died in Helsinki. The virus isolated from the researcher proved to be antigenically related to rabies viruses previously detected in German bats. Later, the virus was typed as EBLV-2b. Despite an epidemiological study in bats 1986 and subsequent rabies surveillance, rabies in bats was not detected in Finland until the first case in a Daubenton's bat (Myotis daubentonii) was confirmed in August 2009. The bat was paralysed, occasionally crying, and biting when approached; it subsequently tested positive for rabies. The virus was genetically typed as EBLV-2. This is the northernmost case of bat rabies ever detected in Europe. Phylogenetic analyses showed that the EBLV-2b isolate from the human case in 1985 and the isolate from the bat in 2009 were genetically closely related, demonstrating that EBLV-2 may have been circulating in Finland for many years.

  17. Rfx6 Directs Islet Formation and Insulin Production in Mice and Humans

    PubMed Central

    Smith, Stuart B.; Qu, Hui-Qi; Taleb, Nadine; Kishimoto, Nina; Scheel, David W.; Lu, Yang; Patch, Ann-Marie; Grabs, Rosemary; Wang, Juehu; Lynn, Francis C.; Miyatsuka, Takeshi; Mitchell, John; Seerke, Rina; Désir, Julie; Eijnden, Serge Vanden; Abramowicz, Marc; Kacet, Nadine; Weill, Jacques; Renard, Marie-Éve; Gentile, Mattia; Hansen, Inger; Dewar, Ken; Hattersley, Andrew T.; Wang, Rennian; Wilson, Maria E.; Johnson, Jeffrey D.; Polychronakos, Constantin; German, Michael S.

    2009-01-01

    Insulin from the β-cells of the pancreatic islets of Langerhans controls energy homeostasis in vertebrates, and its deficiency causes diabetes mellitus. During embryonic development, the transcription factor Neurogenin3 initiates the differentiation of the β-cells and other islet cell types from pancreatic endoderm, but the genetic program that subsequently completes this differentiation remains incompletely understood. Here we show that the transcription factor Rfx6 directs islet cell differentiation downstream of Neurogenin3. Mice lacking Rfx6 failed to generate any of the normal islet cell types except for pancreatic-polypeptide-producing cells. In human infants with a similar autosomal recessive syndrome of neonatal diabetes, genetic mapping and subsequent sequencing identified mutations in the human RFX6 gene. These studies demonstrate a unique position for Rfx6 in the hierarchy of factors that coordinate pancreatic islet development in both mice and humans. Rfx6 could prove useful in efforts to generate β-cells for patients with diabetes. PMID:20148032

  18. Factors affecting death and progression towards next stage following modified Blalock-Taussig shunt in neonates.

    PubMed

    Alsoufi, Bahaaldin; Gillespie, Scott; Mori, Makoto; Clabby, Martha; Kanter, Kirk; Kogon, Brian

    2016-07-01

    The modified Blalock-Taussig shunt (BTS) is utilized to palliate neonates born with restrictive pulmonary blood flow including those with single ventricle (SV) or biventricular (BV) cardiac anomalies. We aim in the current study to report palliation outcomes of neonates with BTS and to examine factors affecting death and progression to the subsequent stage of palliation or repair. Between 2002 and 2012, 341 patients underwent BTS including 175 with SV and 166 with BV anomalies. Competing risk analysis modelled events after BTS (death or transplantation, transition to Glenn shunt or biventricular repair) and examined risk factors affecting outcomes. SV patients had a higher incidence of extracorporeal membrane oxygenation (ECMO) support requirement (12 vs 4%, P = 0.004) and unplanned cardiac reoperation (14 vs 7%, P = 0.051) than their BV counterparts. Additionally, hospital mortality was higher in SV than in BV patients (15 vs 3%, P < 0.001). In SV patients, competing risk analysis showed that, 2 years following BTS, 27% of patients had died or received transplantation and 73% had undergone the Glenn shunt. On multivariable analysis, factors associated with time until death or transplantation prior to Glenn were cardiopulmonary bypass [hazard ratio (HR) 3.6 (2.0-6.4), P < 0.001], unplanned cardiac reoperation [HR 2.4 (1.3-4.6), P = 0.007], pulmonary atresia [HR 2.0 (1.1-3.7), P = 0.026] and the shunt size/weight ratio [HR 1.3 (1.1-1.4) per 0.1 increase, P = 0.001]. In BV patients, competing risk analysis showed that, 2 years following BTS, 13% of patients had died or received transplantation, 85% had undergone biventricular repair and 2% were alive without biventricular repair. On multivariable analysis, factors associated with time until death or transplantation prior to biventricular repair were genetic syndromes and extracardiac malformations [HR 6.1 (2.0-18.2), P = 0.001], weight ≤2.5 kg [HR 5.6 (2.0-16.0), P = 0.001] and male gender [HR 3.4 (1.1-11.0), P = 0.041]. Palliation with BTS continues to be associated with significant operative morbidity and mortality. In addition to hospital death, there is an important interstage attrition risk prior to subsequent palliation or biventricular repair. Inherent patient characteristics (i.e. genetic syndromes and low weight) and anatomical details (i.e. SV, pulmonary atresia and concomitant cardiac anomalies) are associated with worse survival. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  19. Genome-Wide Association Study to Identify Susceptibility Loci That Modify Radiation-Related Risk for Breast Cancer After Childhood Cancer.

    PubMed

    Morton, Lindsay M; Sampson, Joshua N; Armstrong, Gregory T; Chen, Ting-Huei; Hudson, Melissa M; Karlins, Eric; Dagnall, Casey L; Li, Shengchao Alfred; Wilson, Carmen L; Srivastava, Deo Kumar; Liu, Wei; Kang, Guolian; Oeffinger, Kevin C; Henderson, Tara O; Moskowitz, Chaya S; Gibson, Todd M; Merino, Diana M; Wong, Jeannette R; Hammond, Sue; Neglia, Joseph P; Turcotte, Lucie M; Miller, Jeremy; Bowen, Laura; Wheeler, William A; Leisenring, Wendy M; Whitton, John A; Burdette, Laurie; Chung, Charles; Hicks, Belynda D; Jones, Kristine; Machiela, Mitchell J; Vogt, Aurelie; Wang, Zhaoming; Yeager, Meredith; Neale, Geoffrey; Lear, Matthew; Strong, Louise C; Yasui, Yutaka; Stovall, Marilyn; Weathers, Rita E; Smith, Susan A; Howell, Rebecca; Davies, Stella M; Radloff, Gretchen A; Onel, Kenan; Berrington de González, Amy; Inskip, Peter D; Rajaraman, Preetha; Fraumeni, Joseph F; Bhatia, Smita; Chanock, Stephen J; Tucker, Margaret A; Robison, Leslie L

    2017-11-01

    Childhood cancer survivors treated with chest-directed radiotherapy have substantially elevated risk for developing breast cancer. Although genetic susceptibility to breast cancer in the general population is well studied, large-scale evaluation of breast cancer susceptibility after chest-directed radiotherapy for childhood cancer is lacking. We conducted a genome-wide association study of breast cancer in female survivors of childhood cancer, pooling two cohorts with detailed treatment data and systematic, long-term follow-up: the Childhood Cancer Survivor Study and St. Jude Lifetime Cohort. The study population comprised 207 survivors who developed breast cancer and 2774 who had not developed any subsequent neoplasm as of last follow-up. Genotyping and subsequent imputation yielded 16 958 466 high-quality variants for analysis. We tested associations in the overall population and in subgroups stratified by receipt of lower than 10 and 10 or higher gray breast radiation exposure. We report P values and pooled per-allele risk estimates from Cox proportional hazards regression models. All statistical tests were two-sided. Among survivors who received 10 or higher gray breast radiation exposure, a locus on 1q41 was associated with subsequent breast cancer risk (rs4342822, nearest gene PROX1 , risk allele frequency in control subjects [RAF controls ] = 0.46, hazard ratio = 1.92, 95% confidence interval = 1.49 to 2.44, P = 7.09 × 10 -9 ). Two rare variants also showed potentially promising associations (breast radiation ≥10 gray: rs74949440, 11q23, TAGLN , RAF controls = 0.02, P = 5.84 × 10 -8 ; <10 gray: rs17020562, 1q32.3, RPS6KC1 , RAF controls = 0.0005, P = 6.68 × 10 -8 ). Associations were restricted to these dose subgroups, with consistent findings in the two survivor cohorts. Our study provides strong evidence that germline genetics outside high-risk syndromes could modify the effect of radiation exposure on breast cancer risk after childhood cancer. Published by Oxford University Press 2017. This work is written by US Government employees and is in the public domain in the US.

  20. Genetic encoding of a bicyclo[6.1.0]nonyne-charged amino acid enables fast cellular protein imaging by metal-free ligation.

    PubMed

    Borrmann, Annika; Milles, Sigrid; Plass, Tilman; Dommerholt, Jan; Verkade, Jorge M M; Wiessler, Manfred; Schultz, Carsten; van Hest, Jan C M; van Delft, Floris L; Lemke, Edward A

    2012-09-24

    Visualizing biomolecules by fluorescent tagging is a powerful method for studying their behaviour and function inside cells. We prepared and genetically encoded an unnatural amino acid (UAA) that features a bicyclononyne moiety. This UAA offered exceptional reactivity in strain-promoted azide-alkyne cycloadditions. Kinetic measurements revealed that the UAA reacted also remarkably fast in the inverse-electron-demand Diels-Alder cycloaddition with tetrazine-conjugated dyes. Genetic encoding of the new UAA inside mammalian cells and its subsequent selective labeling at low dye concentrations demonstrate the usefulness of the new amino acid for future imaging studies. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Top