de Chastelaine, Marianne; Mattson, Julia T; Wang, Tracy H; Donley, Brian E; Rugg, Michael D
2015-07-01
The present fMRI experiment employed associative recognition to investigate the relationships between age and encoding-related negative subsequent memory effects and task-negative effects. Young, middle-aged and older adults (total n=136) were scanned while they made relational judgments on visually presented word pairs. In a later memory test, the participants made associative recognition judgments on studied, rearranged (items studied on different trials) and new pairs. Several regions, mostly localized to the default mode network, demonstrated negative subsequent memory effects in an across age-group analysis. All but one of these regions also demonstrated task-negative effects, although there was no correlation between the size of the respective effects. Whereas negative subsequent memory effects demonstrated a graded attenuation with age, task-negative effects declined markedly between the young and the middle-aged group, but showed no further reduction in the older group. Negative subsequent memory effects did not correlate with memory performance within any age group. By contrast, in the older group only, task-negative effects predicted later memory performance. The findings demonstrate that negative subsequent memory and task-negative effects depend on dissociable neural mechanisms and likely reflect distinct cognitive processes. The relationship between task-negative effects and memory performance in the older group might reflect the sensitivity of these effects to variations in amount of age-related neuropathology. This article is part of a Special Issue entitled SI: Memory. Copyright © 2014 Elsevier B.V. All rights reserved.
de Chastelaine, Marianne; Mattson, Julia T.; Wang, Tracy H.; Donley, Brian E.; Rugg, Michael D.
2016-01-01
Using fMRI, subsequent memory effects (greater activity for later remembered than later forgotten study items) predictive of associative encoding were compared across samples of young, middle-aged and older adults (total n = 136). During scanning, participants studied visually presented word pairs. In a later test phase, they discriminated between studied pairs, ‘rearranged’ pairs (items studied on different trials) and new pairs. Subsequent memory effects were identified by contrasting activity elicited by study pairs that went on to be correctly judged intact or incorrectly judged rearranged. Effects in the hippocampus were age-invariant and positively correlated across participants with associative memory performance. Subsequent memory effects in the right IFG were greater in the older than the young group. In older participants only, both left and, in contrast to prior reports, right IFG subsequent memory effects correlated positively with memory performance. We suggest that the IFG is especially vulnerable to age-related decline in functional integrity, and that the relationship between encoding-related activity in right IFG and memory performance depends on the experimental context. PMID:27143433
Yun, Richard J; Krystal, John H; Mathalon, Daniel H
2010-03-01
The human working memory system provides an experimentally useful model for examination of neural overload effects on subsequent functioning of the overloaded system. This study employed functional magnetic resonance imaging in conjunction with a parametric working memory task to characterize the behavioral and neural effects of cognitive overload on subsequent cognitive performance, with particular attention to cognitive-limbic interactions. Overloading the working memory system was associated with varying degrees of subsequent decline in performance accuracy and reduced activation of brain regions central to both task performance and suppression of negative affect. The degree of performance decline was independently predicted by three separate factors operating during the overload condition: the degree of task failure, the degree of amygdala activation, and the degree of inverse coupling between the amygdala and dorsolateral prefrontal cortex. These findings suggest that vulnerability to overload effects in cognitive functioning may be mediated by reduced amygdala suppression and subsequent amygdala-prefrontal interaction.
Chen, Tzu-Ching; Kuo, Wen-Jui; Chiang, Ming-Chang; Tseng, Yi-Jhan; Lin, Yung-Yang
2013-08-01
We evaluated the subsequent memory and forgotten effects for Chinese using event-related fMRI. Sixteen normal subjects were recruited and performing incidental memory tasks where semantic decision was required during memory encoding. Consistent with previous studies, our results showed bilateral frontal regions as the main locus for the subsequent memory effect. However, contrast between miss and hit responses revealed larger activation in bilateral superior temporal gyrus. We proposed that larger activation in the superior temporal gyrus may reflect alteration of self-monitoring process which resulted in unsuccessful memory encoding for the miss items. Copyright © 2013 Elsevier Inc. All rights reserved.
Hayes, Jessica M; Tang, Lingfei; Viviano, Raymond P; van Rooden, Sanneke; Ofen, Noa; Damoiseaux, Jessica S
2017-12-01
Subjective memory complaints, the perceived decline in cognitive abilities in the absence of clinical deficits, may precede Alzheimer's disease. Individuals with subjective memory complaints show differential brain activation during memory encoding; however, whether such differences contribute to successful memory formation remains unclear. Here, we investigated how subsequent memory effects, activation which is greater for hits than misses during an encoding task, differed between healthy older adults aged 50 to 85 years with (n = 23) and without (n = 41) memory complaints. Older adults with memory complaints, compared to those without, showed lower subsequent memory effects in the occipital lobe, superior parietal lobe, and posterior cingulate cortex. In addition, older adults with more memory complaints showed a more negative subsequent memory effects in areas of the default mode network, including the posterior cingulate cortex, precuneus, and ventromedial prefrontal cortex. Our findings suggest that for successful memory formation, older adults with subjective memory complaints rely on distinct neural mechanisms which may reflect an overall decreased task-directed attention. Copyright © 2017 Elsevier Inc. All rights reserved.
The effects of free recall testing on subsequent source memory.
Brewer, Gene A; Marsh, Richard L; Meeks, Joseph T; Clark-Foos, Arlo; Hicks, Jason L
2010-05-01
The testing effect is the finding that prior retrieval of information from memory will result in better subsequent memory for that material. One explanation for these effects is that initial free recall testing increases the recollective details for tested information, which then becomes more available during a subsequent test phase. In three experiments we explored this hypothesis using a source-monitoring test phase after the initial free recall tests. We discovered that memory is differentially enhanced for certain recollective details depending on the nature of the free recall task. Thus further research needs to be conducted to specify how different kinds of memorial details are enhanced by free recall testing.
Meng, Yingfang; Ye, Xiaohong; Gonsalves, Brian D
2014-10-17
The distinction between neural mechanisms of explicit and implicit expressions of memory has been well studied at the retrieval stage, but less at encoding. In addition, dissociations obtained in many studies are complicated by methodological difficulties in obtaining process-pure measures of different types of memory. In this experiment, we applied a subsequent memory paradigm and a two-stage forced-choice recognition test to classify study ERP data into four categories: subsequent remembered (later retrieved accompanied by detailed information), subsequent known (later retrieved accompanied by a feeling of familiarity), subsequent primed (later retrieved without conscious awareness) and subsequent forgotten (not retrieved). Differences in subsequent memory effects (DM effects) were measured by comparing ERP waveform associated with later memory based on recollection, familiarity or priming with ERP waveform for later forgotten items. The recollection DM effect involved a robust sustained (onset at 300 ms) prefrontal positive-going DM effect which was right-lateralized, and a later (onset at 800 ms) occipital negative-going DM effect. Familiarity involved an earlier (300-400 ms) prefrontal positive-going DM effect and a later (500-600 ms) parietal positive-going DM effect. Priming involved a negative-going DM effect which onset at 600 ms, mainly distributed over anterior brain sites. These results revealed a sequence of components that represented cognitive processes underlying the encoding of verbal information into episodic memory, and separately supported later remembering, knowing and priming. Copyright © 2014 Elsevier B.V. All rights reserved.
Kamp, Siri-Maria; Brumback, Ty; Donchin, Emanuel
2013-11-01
We examined the degree to which ERP components elicited by items that are isolated from their context, either by their font size ("size isolates") or by their frequency of usage, are correlated with subsequent immediate recall. Study lists contained (a) 15 words including a size isolate, (b) 14 high frequency (HF) words with one low frequency word ("LF isolate"), or (c) 14 LF words with one HF word. We used spatiotemporal PCA to quantify ERP components. We replicated previously reported P300 subsequent memory effects for size isolates and found additional correlations with recall in the novelty P3, a right lateralized positivity, and a left lateralized slow wave that was distinct from the slow wave correlated with recall for nonisolates. LF isolates also showed evidence of a P300 subsequent memory effect and also elicited the left lateralized subsequent memory effect, supporting a role of distinctiveness in word frequency effects in recall. Copyright © 2013 Society for Psychophysiological Research.
Hierarchical Traces for Reduced NSM Memory Requirements
NASA Astrophysics Data System (ADS)
Dahl, Torbjørn S.
This paper presents work on using hierarchical long term memory to reduce the memory requirements of nearest sequence memory (NSM) learning, a previously published, instance-based reinforcement learning algorithm. A hierarchical memory representation reduces the memory requirements by allowing traces to share common sub-sequences. We present moderated mechanisms for estimating discounted future rewards and for dealing with hidden state using hierarchical memory. We also present an experimental analysis of how the sub-sequence length affects the memory compression achieved and show that the reduced memory requirements do not effect the speed of learning. Finally, we analyse and discuss the persistence of the sub-sequences independent of specific trace instances.
How visual short-term memory maintenance modulates subsequent visual aftereffects.
Saad, Elyana; Silvanto, Juha
2013-05-01
Prolonged viewing of a visual stimulus can result in sensory adaptation, giving rise to perceptual phenomena such as the tilt aftereffect (TAE). However, it is not known if short-term memory maintenance induces such effects. We examined how visual short-term memory (VSTM) maintenance modulates the strength of the TAE induced by subsequent visual adaptation. We reasoned that if VSTM maintenance induces aftereffects on subsequent encoding of visual information, then it should either enhance or reduce the TAE induced by a subsequent visual adapter, depending on the congruency of the memory cue and the adapter. Our results were consistent with this hypothesis and thus indicate that the effects of VSTM maintenance can outlast the maintenance period.
Event Segmentation Improves Event Memory up to One Month Later
ERIC Educational Resources Information Center
Flores, Shaney; Bailey, Heather R.; Eisenberg, Michelle L.; Zacks, Jeffrey M.
2017-01-01
When people observe everyday activity, they spontaneously parse it into discrete meaningful events. Individuals who segment activity in a more normative fashion show better subsequent memory for the events. If segmenting events effectively leads to better memory, does asking people to attend to segmentation improve subsequent memory? To answer…
Wang, Tracy H.; Minton, Brian; Muftuler, L. Tugan; Rugg, Michael D.
2011-01-01
This functional magnetic resonance imaging study investigated the relationship between the neural correlates of associative memory encoding, callosal integrity, and memory performance in older adults. Thirty-six older and 18 young subjects were scanned while making relational judgments on word pairs. Neural correlates of successful encoding (subsequent memory effects) were identified by contrasting the activity elicited by study pairs that were correctly identified as having been studied together with the activity elicited by pairs wrongly judged to have come from different study trials. Subsequent memory effects common to the 2 age groups were identified in several regions, including left inferior frontal gyrus and bilateral hippocampus. Negative effects (greater activity for forgotten than for remembered items) in default network regions in young subjects were reversed in the older group, and the amount of reversal correlated negatively with memory performance. Additionally, older subjects' subsequent memory effects in right frontal cortex correlated positively with anterior callosal integrity and negatively with memory performance. It is suggested that recruitment of right frontal cortex during verbal memory encoding may reflect the engagement of processes that compensate only partially for age-related neural degradation. PMID:21282317
Sidhu, Meneka K.; Stretton, Jason; Winston, Gavin P.; Bonelli, Silvia; Centeno, Maria; Vollmar, Christian; Symms, Mark; Thompson, Pamela J.; Koepp, Matthias J.
2013-01-01
Functional magnetic resonance imaging has demonstrated reorganization of memory encoding networks within the temporal lobe in temporal lobe epilepsy, but little is known of the extra-temporal networks in these patients. We investigated the temporal and extra-temporal reorganization of memory encoding networks in refractory temporal lobe epilepsy and the neural correlates of successful subsequent memory formation. We studied 44 patients with unilateral temporal lobe epilepsy and hippocampal sclerosis (24 left) and 26 healthy control subjects. All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words with subsequent out-of-scanner recognition assessments. A blocked analysis was used to investigate activations during encoding and neural correlates of subsequent memory were investigated using an event-related analysis. Event-related activations were then correlated with out-of-scanner verbal and visual memory scores. During word encoding, control subjects activated the left prefrontal cortex and left hippocampus whereas patients with left hippocampal sclerosis showed significant additional right temporal and extra-temporal activations. Control subjects displayed subsequent verbal memory effects within left parahippocampal gyrus, left orbitofrontal cortex and fusiform gyrus whereas patients with left hippocampal sclerosis activated only right posterior hippocampus, parahippocampus and fusiform gyrus. Correlational analysis showed that patients with left hippocampal sclerosis with better verbal memory additionally activated left orbitofrontal cortex, anterior cingulate cortex and left posterior hippocampus. During face encoding, control subjects showed right lateralized prefrontal cortex and bilateral hippocampal activations. Patients with right hippocampal sclerosis showed increased temporal activations within the superior temporal gyri bilaterally and no increased extra-temporal areas of activation compared with control subjects. Control subjects showed subsequent visual memory effects within right amygdala, hippocampus, fusiform gyrus and orbitofrontal cortex. Patients with right hippocampal sclerosis showed subsequent visual memory effects within right posterior hippocampus, parahippocampal and fusiform gyri, and predominantly left hemisphere extra-temporal activations within the insula and orbitofrontal cortex. Correlational analysis showed that patients with right hippocampal sclerosis with better visual memory activated the amygdala bilaterally, right anterior parahippocampal gyrus and left insula. Right sided extra-temporal areas of reorganization observed in patients with left hippocampal sclerosis during word encoding and bilateral lateral temporal reorganization in patients with right hippocampal sclerosis during face encoding were not associated with subsequent memory formation. Reorganization within the medial temporal lobe, however, is an efficient process. The orbitofrontal cortex is critical to subsequent memory formation in control subjects and patients. Activations within anterior cingulum and insula correlated with better verbal and visual subsequent memory in patients with left and right hippocampal sclerosis, respectively, representing effective extra-temporal recruitment. PMID:23674488
ERP Correlates of Encoding Success and Encoding Selectivity in Attention Switching
Yeung, Nick
2016-01-01
Long-term memory encoding depends critically on effective processing of incoming information. The degree to which participants engage in effective encoding can be indexed in electroencephalographic (EEG) data by studying event-related potential (ERP) subsequent memory effects. The current study investigated ERP correlates of memory success operationalised with two different measures—memory selectivity and global memory—to assess whether previously observed ERP subsequent memory effects reflect focused encoding of task-relevant information (memory selectivity), general encoding success (global memory), or both. Building on previous work, the present study combined an attention switching paradigm—in which participants were presented with compound object-word stimuli and switched between attending to the object or the word across trials—with a later recognition memory test for those stimuli, while recording their EEG. Our results provided clear evidence that subsequent memory effects resulted from selective attentional focusing and effective top-down control (memory selectivity) in contrast to more general encoding success effects (global memory). Further analyses addressed the question of whether successful encoding depended on similar control mechanisms to those involved in attention switching. Interestingly, differences in the ERP correlates of attention switching and successful encoding, particularly during the poststimulus period, indicated that variability in encoding success occurred independently of prestimulus demands for top-down cognitive control. These results suggest that while effects of selective attention and selective encoding co-occur behaviourally their ERP correlates are at least partly dissociable. PMID:27907075
Emotion regulation during the encoding of emotional stimuli: Effects on subsequent memory.
Leventon, Jacqueline S; Bauer, Patricia J
2016-02-01
In the adult literature, emotional arousal is regarded as a source of the enhancing effect of emotion on subsequent memory. Here, we used behavioral and electrophysiological methods to examine the role of emotional arousal on subsequent memory in school-age children. Furthermore, we implemented a reappraisal instruction to manipulate (down-regulate) emotional arousal at encoding to examine the relation between emotional arousal and subsequent memory. Participants (8-year-old girls) viewed emotional scenes as electrophysiological (EEG) data were recorded and participated in a memory task 1 to 5days later where EEG and behavioral responses were recorded; participants provided subjective ratings of the scenes after the memory task. The reappraisal instruction successfully reduced emotional arousal responses to negative stimuli but not positive stimuli. Similarly, recognition performance in both event-related potentials (ERPs) and behavior was impaired for reappraised negative stimuli but not positive stimuli. The findings indicate that ERPs are sensitive to the reappraisal of negative stimuli in children as young as 8years. Furthermore, the findings suggest an interaction of emotion and memory during the school years, implicating the explanatory role of emotional arousal at encoding on subsequent memory performance in female children as young as 8years. Copyright © 2015 Elsevier Inc. All rights reserved.
The Replicability of the Negative Testing Effect: Differences across Participant Populations
ERIC Educational Resources Information Center
Mulligan, Neil W.; Rawson, Katherine A.; Peterson, Daniel J.; Wissman, Kathryn T.
2018-01-01
Although memory retrieval often enhances subsequent memory, Peterson and Mulligan (2013) reported conditions under which retrieval produces poorer subsequent recall--the negative testing effect. The item-specific--relational account proposes that the effect occurs when retrieval disrupts interitem organizational processing relative to the restudy…
St Jacques, Peggy L; Dolcos, Florin; Cabeza, Roberto
2009-01-01
Aging is associated with preserved enhancement of emotional memory, as well as with age-related reductions in memory for negative stimuli, but the neural networks underlying such alterations are not clear. We used a subsequent-memory paradigm to identify brain activity predicting enhanced emotional memory in young and older adults. Activity in the amygdala predicted enhanced emotional memory, with subsequent-memory activity greater for negative stimuli than for neutral stimuli, across age groups, a finding consistent with an overall enhancement of emotional memory. However, older adults recruited greater activity in anterior regions and less activity in posterior regions in general for negative stimuli that were subsequently remembered. Functional connectivity of the amygdala with the rest of the brain was consistent with age-related reductions in memory for negative stimuli: Older adults showed decreased functional connectivity between the amygdala and the hippocampus, but increased functional connectivity between the amygdala and dorsolateral prefrontal cortices. These findings suggest that age-related differences in the enhancement of emotional memory might reflect decreased connectivity between the amygdala and typical subsequent-memory regions, as well as the engagement of regulatory processes that inhibit emotional responses.
Mattson, Julia T.; Wang, Tracy H.; de Chastelaine, Marianne; Rugg, Michael D.
2014-01-01
It has consistently been reported that “negative” subsequent memory effects—lower study activity for later remembered than later forgotten items—are attenuated in older individuals. The present functional magnetic resonance imaging study investigated whether these findings extend to subsequent memory effects associated with successful encoding of item–context information. Older (n = 25) and young (n = 17) subjects were scanned while making 1 of 2 encoding judgments on a series of pictures. Memory was assessed for the study item and, for items judged old, the item's encoding task. Both memory judgments were made using confidence ratings, permitting item and source memory strength to be unconfounded and source confidence to be equated across age groups. Replicating prior findings, negative item effects in regions of the default mode network in young subjects were reversed in older subjects. Negative source effects, however, were invariant with respect to age and, in both age groups, the magnitude of the effects correlated with source memory performance. It is concluded that negative item effects do not reflect processes necessary for the successful encoding of item–context associations in older subjects. Negative source effects, in contrast, appear to reflect the engagement of processes that are equally important for successful episodic encoding in older and younger individuals. PMID:23904464
Dopaminergic inputs in the dentate gyrus direct the choice of memory encoding.
Du, Huiyun; Deng, Wei; Aimone, James B; Ge, Minyan; Parylak, Sarah; Walch, Keenan; Zhang, Wei; Cook, Jonathan; Song, Huina; Wang, Liping; Gage, Fred H; Mu, Yangling
2016-09-13
Rewarding experiences are often well remembered, and such memory formation is known to be dependent on dopamine modulation of the neural substrates engaged in learning and memory; however, it is unknown how and where in the brain dopamine signals bias episodic memory toward preceding rather than subsequent events. Here we found that photostimulation of channelrhodopsin-2-expressing dopaminergic fibers in the dentate gyrus induced a long-term depression of cortical inputs, diminished theta oscillations, and impaired subsequent contextual learning. Computational modeling based on this dopamine modulation indicated an asymmetric association of events occurring before and after reward in memory tasks. In subsequent behavioral experiments, preexposure to a natural reward suppressed hippocampus-dependent memory formation, with an effective time window consistent with the duration of dopamine-induced changes of dentate activity. Overall, our results suggest a mechanism by which dopamine enables the hippocampus to encode memory with reduced interference from subsequent experience.
Dopaminergic inputs in the dentate gyrus direct the choice of memory encoding
Du, Huiyun; Deng, Wei; Aimone, James B.; Ge, Minyan; Parylak, Sarah; Walch, Keenan; Zhang, Wei; Cook, Jonathan; Song, Huina; Wang, Liping; Gage, Fred H.; Mu, Yangling
2016-01-01
Rewarding experiences are often well remembered, and such memory formation is known to be dependent on dopamine modulation of the neural substrates engaged in learning and memory; however, it is unknown how and where in the brain dopamine signals bias episodic memory toward preceding rather than subsequent events. Here we found that photostimulation of channelrhodopsin-2–expressing dopaminergic fibers in the dentate gyrus induced a long-term depression of cortical inputs, diminished theta oscillations, and impaired subsequent contextual learning. Computational modeling based on this dopamine modulation indicated an asymmetric association of events occurring before and after reward in memory tasks. In subsequent behavioral experiments, preexposure to a natural reward suppressed hippocampus-dependent memory formation, with an effective time window consistent with the duration of dopamine-induced changes of dentate activity. Overall, our results suggest a mechanism by which dopamine enables the hippocampus to encode memory with reduced interference from subsequent experience. PMID:27573822
Does the presence of priming hinder subsequent recognition or recall performance?
Stark, Shauna M; Gordon, Barry; Stark, Craig E L
2008-02-01
Declarative and non-declarative memories are thought be supported by two distinct memory systems that are often posited not to interact. However, Wagner, Maril, and Schacter (2000a) reported that at the time priming was assessed, greater behavioural and neural priming was associated with lower levels of subsequent recognition memory, demonstrating an interaction between declarative and non-declarative memory. We examined this finding using a similar paradigm, in which participants made the same or different semantic word judgements following a short or long lag and subsequent memory test. We found a similar overall pattern of results, with greater behavioural priming associated with a decrease in recognition and recall performance. However, neither various within-participant nor various between-participant analyses revealed significant correlations between priming and subsequent memory performance. These data suggest that both lag and task have effects on priming and declarative memory performance, but that they are largely independent and occur in parallel.
Shifting visual perspective during memory retrieval reduces the accuracy of subsequent memories.
Marcotti, Petra; St Jacques, Peggy L
2018-03-01
Memories for events can be retrieved from visual perspectives that were never experienced, reflecting the dynamic and reconstructive nature of memories. Characteristics of memories can be altered when shifting from an own eyes perspective, the way most events are initially experienced, to an observer perspective, in which one sees oneself in the memory. Moreover, recent evidence has linked these retrieval-related effects of visual perspective to subsequent changes in memories. Here we examine how shifting visual perspective influences the accuracy of subsequent memories for complex events encoded in the lab. Participants performed a series of mini-events that were experienced from their own eyes, and were later asked to retrieve memories for these events while maintaining the own eyes perspective or shifting to an alternative observer perspective. We then examined how shifting perspective during retrieval modified memories by influencing the accuracy of recall on a final memory test. Across two experiments, we found that shifting visual perspective reduced the accuracy of subsequent memories and that reductions in vividness when shifting visual perspective during retrieval predicted these changes in the accuracy of memories. Our findings suggest that shifting from an own eyes to an observer perspective influences the accuracy of long-term memories.
What drives social in-group biases in face recognition memory? ERP evidence from the own-gender bias
Kemter, Kathleen; Schweinberger, Stefan R.; Wiese, Holger
2014-01-01
It is well established that memory is more accurate for own-relative to other-race faces (own-race bias), which has been suggested to result from larger perceptual expertise for own-race faces. Previous studies also demonstrated better memory for own-relative to other-gender faces, which is less likely to result from differences in perceptual expertise, and rather may be related to social in-group vs out-group categorization. We examined neural correlates of the own-gender bias using event-related potentials (ERP). In a recognition memory experiment, both female and male participants remembered faces of their respective own gender more accurately compared with other-gender faces. ERPs during learning yielded significant differences between the subsequent memory effects (subsequently remembered – subsequently forgotten) for own-gender compared with other-gender faces in the occipito-temporal P2 and the central N200, whereas neither later subsequent memory effects nor ERP old/new effects at test reflected a neural correlate of the own-gender bias. We conclude that the own-gender bias is mainly related to study phase processes, which is in line with sociocognitive accounts. PMID:23474824
Park, Heekyeong; Kennedy, Kristen M; Rodrigue, Karen M; Hebrank, Andrew; Park, Denise C
2013-02-01
Although it is well-documented that there are age differences between young and older adults in neural activity associated with successful memory formation (positive subsequent memory effects), little is known about how this activation differs across the lifespan, as few studies have included middle-aged adults. The present study investigated the effect of age on neural activity during episodic encoding using a cross-sectional lifespan sample (20-79 years old, N=192) from the Dallas Lifespan Brain Study. We report four major findings. First, in a contrast of remembered vs. forgotten items, a decrease in neural activity occurred with age in bilateral occipito-temporo-parietal regions. Second, when we contrasted forgotten with remembered items (negative subsequent memory), the primary difference was found between middle and older ages. Third, there was evidence for age equivalence in hippocampal regions, congruent with previous studies. Finally, low-memory-performers showed negative subsequent memory differences by middle age, whereas high memory performers did not demonstrate these differences until older age. Taken together, these findings delineate the importance of a lifespan approach to understanding neurocognitive aging and, in particular, the importance of a middle-age sample in revealing different trajectories. Copyright © 2012 Elsevier Ltd. All rights reserved.
Vogelsang, David A; Bonnici, Heidi M; Bergström, Zara M; Ranganath, Charan; Simons, Jon S
2016-08-01
To remember a previous event, it is often helpful to use goal-directed control processes to constrain what comes to mind during retrieval. Behavioral studies have demonstrated that incidental learning of new "foil" words in a recognition test is superior if the participant is trying to remember studied items that were semantically encoded compared to items that were non-semantically encoded. Here, we applied subsequent memory analysis to fMRI data to understand the neural mechanisms underlying the "foil effect". Participants encoded information during deep semantic and shallow non-semantic tasks and were tested in a subsequent blocked memory task to examine how orienting retrieval towards different types of information influences the incidental encoding of new words presented as foils during the memory test phase. To assess memory for foils, participants performed a further surprise old/new recognition test involving foil words that were encountered during the previous memory test blocks as well as completely new words. Subsequent memory effects, distinguishing successful versus unsuccessful incidental encoding of foils, were observed in regions that included the left inferior frontal gyrus and posterior parietal cortex. The left inferior frontal gyrus exhibited disproportionately larger subsequent memory effects for semantic than non-semantic foils, and significant overlap in activity during semantic, but not non-semantic, initial encoding and foil encoding. The results suggest that orienting retrieval towards different types of foils involves re-implementing the neurocognitive processes that were involved during initial encoding. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
The effect of object processing in content-dependent source memory
2013-01-01
Background Previous studies have suggested that the study condition of an item influences how the item is encoded. However, it is still unclear whether subsequent source memory effects are dependent upon stimulus content when the item and context are unitized. The present fMRI study investigated the effect of encoding activity sensitive to stimulus content in source memory via unitization. In the scanner, participants were instructed to integrate a study item, an object in either a word or a picture form, with perceptual context into a single image. Results Subsequent source memory effects independent of stimulus content were identified in the left lateral frontal and parietal regions, bilateral fusiform areas, and the left perirhinal cortex extending to the anterior hippocampus. Content-dependent subsequent source memory effects were found only with words in the left medial frontal lobe, the ventral visual stream, and bilateral parahippocampal regions. Further, neural activity for source memory with words extensively overlapped with the region where pictures were preferentially processed than words, including the left mid-occipital cortex and the right parahippocampal cortex. Conclusions These results indicate that words that were accurately remembered with correct contextual information were processed more like pictures mediated by integrated imagery operation, compared to words that were recognized with incorrect context. In contrast, such processing did not discriminate subsequent source memory with pictures. Taken together, these findings suggest that unitization supports source memory for both words and pictures and that the requirement of the study task interacts with the nature of stimulus content in unitized source encoding. PMID:23848969
Behavioural memory reconsolidation of food and fear memories
Flavell, Charlotte R.; Barber, David J.; Lee, Jonathan L. C.
2012-01-01
The reactivation of a memory through retrieval can render it subject to disruption or modification through the process of memory reconsolidation. In both humans and rodents, briefly reactivating a fear memory results in effective erasure by subsequent extinction training. Here we show that a similar strategy is equally effective in the disruption of appetitive pavlovian cue–food memories. However, systemic administration of the NMDA receptor partial agonist D-cycloserine under the same behavioural conditions did not potentiate appetitive memory extinction, suggesting that reactivation does not enhance subsequent extinction learning. To confirm that reactivation followed by extinction reflects a behavioural analog of memory reconsolidation, we show that prevention of contextual fear memory reactivation by the LVGCC blocker nimodipine interferes with the amnestic outcome. Therefore, the reconsolidation process can be manipulated behaviourally to disrupt both aversive and appetitive memories. PMID:22009036
Mattson, Julia T; Wang, Tracy H; de Chastelaine, Marianne; Rugg, Michael D
2014-12-01
It has consistently been reported that "negative" subsequent memory effects--lower study activity for later remembered than later forgotten items--are attenuated in older individuals. The present functional magnetic resonance imaging study investigated whether these findings extend to subsequent memory effects associated with successful encoding of item-context information. Older (n = 25) and young (n = 17) subjects were scanned while making 1 of 2 encoding judgments on a series of pictures. Memory was assessed for the study item and, for items judged old, the item's encoding task. Both memory judgments were made using confidence ratings, permitting item and source memory strength to be unconfounded and source confidence to be equated across age groups. Replicating prior findings, negative item effects in regions of the default mode network in young subjects were reversed in older subjects. Negative source effects, however, were invariant with respect to age and, in both age groups, the magnitude of the effects correlated with source memory performance. It is concluded that negative item effects do not reflect processes necessary for the successful encoding of item-context associations in older subjects. Negative source effects, in contrast, appear to reflect the engagement of processes that are equally important for successful episodic encoding in older and younger individuals. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Chan, Jason C. K.; Langley, Moses M.
2011-01-01
Although retrieval practice typically enhances memory retention, it can also impair subsequent eyewitness memory accuracy (Chan, Thomas, & Bulevich, 2009). Specifically, participants who had taken an initial test about a witnessed event were more likely than nontested participants to recall subsequently encountered misinformation--an effect we…
Test-Potentiated Learning: Distinguishing Between Direct and Indirect Effects of Tests
Arnold, Kathleen M.; McDermott, Kathleen B.
2013-01-01
The facilitative effect of retrieval practice, or testing, on the probability of later retrieval has been the focus of much recent empirical research. A lesser-known benefit of retrieval practice is that it may also enhance the ability of a learner to benefit from a subsequent restudy opportunity. This facilitative effect of retrieval practice on subsequent encoding is known as test-potentiated learning. Thus far, however, the literature has not isolated the indirect effect of retrieval practice on subsequent memory (via enhancing the effectiveness of restudy) from the direct effects of retrieval on subsequent memory. The experiment presented here uses conditional probability to disentangle test-potentiated learning from the direct effects of retrieval practice. The results indicate that unsuccessful retrieval attempts enhance the effectiveness of subsequent restudy, demonstrating that tests do potentiate subsequent learning. PMID:22774852
Selective attention meets spontaneous recognition memory: Evidence for effects at retrieval.
Moen, Katherine C; Miller, Jeremy K; Lloyd, Marianne E
2017-03-01
Previous research on the effects of Divided Attention on recognition memory have shown consistent impairments during encoding but more variable effects at retrieval. The present study explored whether effects of Selective Attention at retrieval and subsequent testing were parallel to those of Divided Attention. Participants studied a list of pictures and then had a recognition memory test that included both full attention and selective attention (the to be responded to object was overlaid atop a blue outlined object) trials. All participants then completed a second recognition memory test. The results of 2 experiments suggest that subsequent tests consistently show impacts of the status of the ignored stimulus, and that having an initial test changes performance on a later test. The results are discussed in relation to effect of attention on memory more generally as well as spontaneous recognition memory research. Copyright © 2017 Elsevier Inc. All rights reserved.
Grain Size of Recall Practice for Lengthy Text Material: Fragile and Mysterious Effects on Memory
ERIC Educational Resources Information Center
Wissman, Kathryn T.; Rawson, Katherine A.
2015-01-01
The current research evaluated the extent to which the grain size of recall practice for lengthy text material affects recall during practice and subsequent memory. The "grain size hypothesis" states that a smaller vs. larger grain size will increase retrieval success during practice that in turn will enhance subsequent memory for…
Dopaminergic inputs in the dentate gyrus direct the choice of memory encoding
Du, Huiyun; Deng, Wei; Aimone, James B.; ...
2016-09-13
Rewarding experiences are often well remembered, and such memory formation is known to be dependent on dopamine modulation of the neural substrates engaged in learning and memory; however, it is unknown how and where in the brain dopamine signals bias episodic memory toward preceding rather than subsequent events. Here we found that photostimulation of channelrhodopsin-2–expressing dopaminergic fibers in the dentate gyrus induced a long-term depression of cortical inputs, diminished theta oscillations, and impaired subsequent contextual learning. Computational modeling based on this dopamine modulation indicated an asymmetric association of events occurring before and after reward in memory tasks. In subsequent behavioralmore » experiments, preexposure to a natural reward suppressed hippocampus-dependent memory formation, with an effective time window consistent with the duration of dopamine-induced changes of dentate activity. Altogether, our results suggest a mechanism by which dopamine enables the hippocampus to encode memory with reduced interference from subsequent experience.« less
Dopaminergic inputs in the dentate gyrus direct the choice of memory encoding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Huiyun; Deng, Wei; Aimone, James B.
Rewarding experiences are often well remembered, and such memory formation is known to be dependent on dopamine modulation of the neural substrates engaged in learning and memory; however, it is unknown how and where in the brain dopamine signals bias episodic memory toward preceding rather than subsequent events. Here we found that photostimulation of channelrhodopsin-2–expressing dopaminergic fibers in the dentate gyrus induced a long-term depression of cortical inputs, diminished theta oscillations, and impaired subsequent contextual learning. Computational modeling based on this dopamine modulation indicated an asymmetric association of events occurring before and after reward in memory tasks. In subsequent behavioralmore » experiments, preexposure to a natural reward suppressed hippocampus-dependent memory formation, with an effective time window consistent with the duration of dopamine-induced changes of dentate activity. Altogether, our results suggest a mechanism by which dopamine enables the hippocampus to encode memory with reduced interference from subsequent experience.« less
The effects of valence and arousal on the neural activity leading to subsequent memory.
Mickley Steinmetz, Katherine R; Kensinger, Elizabeth A
2009-11-01
This study examined how valence and arousal affect the processes linked to subsequent memory for emotional information. While undergoing an fMRI scan, participants viewed neutral pictures and emotional pictures varying by valence and arousal. After the scan, participants performed a recognition test. Subsequent memory for negative or high arousal information was associated with occipital and temporal activity, whereas memory for positive or low arousal information was associated with frontal activity. Regression analyses confirmed that for negative or high arousal items, temporal lobe activity was the strongest predictor of later memory whereas for positive or low arousal items, frontal activity corresponded most strongly with later memory. These results suggest that the types of encoding processes relating to memory (e.g., sensory vs. elaborative processing) can differ based on the affective qualities of emotional information.
The effects of valence and arousal on the neural activity leading to subsequent memory
Mickley Steinmetz, Katherine R.; Kensinger, Elizabeth A.
2010-01-01
This study examined how valence and arousal affect the processes linked to subsequent memory for emotional information. While undergoing an fMRI scan, participants viewed neutral pictures and emotional pictures varying by valence and arousal. After the scan, participants performed a recognition test. Subsequent memory for negative or high arousal information was associated with occipital and temporal activity, while memory for positive or low arousal information was associated with frontal activity. Regression analyses confirmed that for negative or high arousal items, temporal lobe activity was the strongest predictor of later memory whereas for positive or low arousal items, frontal activity corresponded most strongly with later memory. These results suggest that the types of encoding processes relating to memory (e.g., sensory vs. elaborative processing) can differ based on the affective qualities of emotional information. PMID:19674398
Olsen, Rosanna K; Sebanayagam, Vinoja; Lee, Yunjo; Moscovitch, Morris; Grady, Cheryl L; Rosenbaum, R Shayna; Ryan, Jennifer D
2016-12-01
There is consistent agreement regarding the positive relationship between cumulative eye movement sampling and subsequent recognition, but the role of the hippocampus in this sampling behavior is currently unknown. It is also unclear whether the eye movement repetition effect, i.e., fewer fixations to repeated, compared to novel, stimuli, depends on explicit recognition and/or an intact hippocampal system. We investigated the relationship between cumulative sampling, the eye movement repetition effect, subsequent memory, and the hippocampal system. Eye movements were monitored in a developmental amnesic case (H.C.), whose hippocampal system is compromised, and in a group of typically developing participants while they studied single faces across multiple blocks. The faces were studied from the same viewpoint or different viewpoints and were subsequently tested with the same or different viewpoint. Our previous work suggested that hippocampal representations support explicit recognition for information that changes viewpoint across repetitions (Olsen et al., 2015). Here, examination of eye movements during encoding indicated that greater cumulative sampling was associated with better memory among controls. Increased sampling, however, was not associated with better explicit memory in H.C., suggesting that increased sampling only improves memory when the hippocampal system is intact. The magnitude of the repetition effect was not correlated with cumulative sampling, nor was it related reliably to subsequent recognition. These findings indicate that eye movements collect information that can be used to strengthen memory representations that are later available for conscious remembering, whereas eye movement repetition effects reflect a processing change due to experience that does not necessarily reflect a memory representation that is available for conscious appraisal. Lastly, H.C. demonstrated a repetition effect for fixed viewpoint faces but not for variable viewpoint faces, which suggests that repetition effects are differentially supported by neocortical and hippocampal systems, depending upon the representational nature of the underlying memory trace. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ehlers, Anke; Mauchnik, Jana; Handley, Rachel
2012-01-01
Unwanted memories of traumatic events are a core symptom of post-traumatic stress disorder. A range of interventions including imaginal exposure and elaboration of the trauma memory in its autobiographical context are effective in reducing such unwanted memories. This study explored whether priming for stimuli that occur in the context of trauma and evaluative conditioning may play a role in the therapeutic effects of these procedures. Healthy volunteers (N = 122) watched analogue traumatic and neutral picture stories. They were then randomly allocated to 20 min of either imaginal exposure, autobiographical memory elaboration, or a control condition designed to prevent further processing of the picture stories. A blurred picture identification task showed that neutral objects that preceded traumatic pictures in the stories were subsequently more readily identified than those that had preceded neutral stories, indicating enhanced priming. There was also an evaluative conditioning effect in that participants disliked neutral objects that had preceded traumatic pictures more. Autobiographical memory elaboration reduced the enhanced priming effect. Both interventions reduced the evaluative conditioning effect. Imaginal exposure and autobiographical memory elaboration both reduced the frequency of subsequent unwanted memories of the picture stories. PMID:21227404
Effects of cues to event segmentation on subsequent memory.
Gold, David A; Zacks, Jeffrey M; Flores, Shaney
2017-01-01
To remember everyday activity it is important to encode it effectively, and one important component of everyday activity is that it consists of events. People who segment activity into events more adaptively have better subsequent memory for that activity, and event boundaries are remembered better than event middles. The current study asked whether intervening to improve segmentation by cuing effective event boundaries would enhance subsequent memory for events. We selected a set of movies that had previously been segmented by a large sample of observers and edited them to provide visual and auditory cues to encourage segmentation. For each movie, cues were placed either at event boundaries or event middles, or the movie was left unedited. To further support the encoding of our everyday event movies, we also included post-viewing summaries of the movies. We hypothesized that cuing at event boundaries would improve memory, and that this might reduce age differences in memory. For both younger and older adults, we found that cuing event boundaries improved memory-particularly for the boundaries that were cued. Cuing event middles also improved memory, though to a lesser degree; this suggests that imposing a segmental structure on activity may facilitate memory encoding, even when segmentation is not optimal. These results provide evidence that structural cuing can improve memory for everyday events in younger and older adults.
Dissociating the two faces of selective memory retrieval.
Dobler, Ina M; Bäuml, Karl-Heinz T
2012-07-01
Research in the past four decades has repeatedly shown that selective retrieval of some (non-target) memories can impair subsequent retrieval of other (target) information, a finding known as retrieval-induced forgetting. More recently, however, there is evidence that selective retrieval can both impair and enhance recall of related memories (K-H. T. Bäuml & Samenieh, 2010). To identify possible experimental dissociations between the detrimental and the beneficial effects of memory retrieval, we examined retrieval dynamics in listwise directed forgetting, varying the delay between preceding non-target and subsequent target recall. When target recall immediately followed non-target recall, we replicated the prior work and found detrimental effects of memory retrieval on to-be-remembered items but beneficial effects on to-be-forgotten items. In contrast, when a delay was introduced between non-target and target recall, the detrimental effects were present but the beneficial effects were absent. The results demonstrate a first experimental dissociation between the two effects of memory retrieval. They are consistent with a recent two-factor account of the two faces of selective memory retrieval.
Neural correlates of encoding processes predicting subsequent cued recall and source memory.
Angel, Lucie; Isingrini, Michel; Bouazzaoui, Badiâa; Fay, Séverine
2013-03-06
In this experiment, event-related potentials were used to examine whether the neural correlates of encoding processes predicting subsequent successful recall differed from those predicting successful source memory retrieval. During encoding, participants studied lists of words and were instructed to memorize each word and the list in which it occurred. At test, they had to complete stems (the first four letters) with a studied word and then make a judgment of the initial temporal context (i.e. list). Event-related potentials recorded during encoding were segregated according to subsequent memory performance to examine subsequent memory effects (SMEs) reflecting successful cued recall (cued recall SME) and successful source retrieval (source memory SME). Data showed a cued recall SME on parietal electrode sites from 400 to 1200 ms and a late inversed cued recall SME on frontal sites in the 1200-1400 ms period. Moreover, a source memory SME was reported from 400 to 1400 ms on frontal areas. These findings indicate that patterns of encoding-related activity predicting successful recall and source memory are clearly dissociated.
Bryant, Richard A; Chan, Iris
2017-10-01
Although priming mental representations of attachment security reduces arousal, research has not examined the effect of attachment on the retrieval of emotionally arousing memories. This study investigated the effect of priming attachment security on the retrieval of emotional memories. Seventy-five participants viewed negative and neutral images, and two days later received either an attachment prime or a control prime immediately prior to free recall of the images. Two days later, participants reported how frequently they experienced intrusions of the negative images. The attachment group had less distress, and reported fewer subsequent intrusions than the control group. Attachment style moderated these effects such that individuals with an avoidant attachment style were not impacted by the attachment prime. These findings suggest that priming attachment security decreases distress during memory reactivation, and this may reduce subsequent intrusive memories. Copyright © 2017 Elsevier Inc. All rights reserved.
The effects of study task on prestimulus subsequent memory effects in the hippocampus.
de Chastelaine, Marianne; Rugg, Michael D
2015-11-01
Functional magnetic resonance imaging (fMRI) was employed to examine the effects of a study task manipulation on pre-stimulus activity in the hippocampus predictive of later successful recollection. Eighteen young participants were scanned while making either animacy or syllable judgments on visually presented study words. Cues presented before each word denoted which judgment should be made. Following the study phase, a surprise recognition memory test was administered in which each test item had to be endorsed as "Remembered," "Known," or "New." As expected, "deep" animacy judgments led to better memory for study items than did "shallow" syllable judgments. In both study tasks, pre-stimulus subsequent recollection effects were evident in the interval between the cue and the study item in bilateral anterior hippocampus. However, the direction of the effects differed according to the study task: whereas pre-stimulus hippocampal activity on animacy trials was greater for later recollected items than items judged old on the basis of familiarity (replicating prior findings), these effects reversed for syllable trials. We propose that the direction of pre-stimulus hippocampal subsequent memory effects depends on whether an optimal pre-stimulus task set facilitates study processing that is conducive or unconducive to the formation of contextually rich episodic memories. © 2015 Wiley Periodicals, Inc.
Otis, James M; Fitzgerald, Michael K; Mueller, Devin
2014-01-01
Retrieval of drug-associated memories is critical for maintaining addictive behaviors, as presentation of drug-associated cues can elicit drug seeking and relapse. Recently, we and others have demonstrated that β-adrenergic receptor (β-AR) activation is necessary for retrieval using both rat and human memory models. Importantly, blocking retrieval with β-AR antagonists persistently impairs retrieval and provides protection against subsequent reinstatement. However, the neural locus at which β-ARs are required for maintaining retrieval and subsequent reinstatement is unclear. Here, we investigated the necessity of dorsal hippocampus (dHipp) β-ARs for drug-associated memory retrieval. Using a cocaine conditioned place preference (CPP) model, we demonstrate that local dHipp β-AR blockade before a CPP test prevents CPP expression shortly and long after treatment, indicating that dHipp β-AR blockade induces a memory retrieval disruption. Furthermore, this retrieval disruption provides long-lasting protection against cocaine-induced reinstatement. The effects of β-AR blockade were dependent on memory reactivation and were not attributable to reconsolidation disruption as blockade of β-ARs immediately after a CPP test had little effect on subsequent CPP expression. Thus, cocaine-associated memory retrieval is mediated by β-AR activity within the dHipp, and disruption of this activity could prevent cue-induced drug seeking and relapse long after treatment. PMID:23907403
Otis, James M; Fitzgerald, Michael K; Mueller, Devin
2014-01-01
Retrieval of drug-associated memories is critical for maintaining addictive behaviors, as presentation of drug-associated cues can elicit drug seeking and relapse. Recently, we and others have demonstrated that β-adrenergic receptor (β-AR) activation is necessary for retrieval using both rat and human memory models. Importantly, blocking retrieval with β-AR antagonists persistently impairs retrieval and provides protection against subsequent reinstatement. However, the neural locus at which β-ARs are required for maintaining retrieval and subsequent reinstatement is unclear. Here, we investigated the necessity of dorsal hippocampus (dHipp) β-ARs for drug-associated memory retrieval. Using a cocaine conditioned place preference (CPP) model, we demonstrate that local dHipp β-AR blockade before a CPP test prevents CPP expression shortly and long after treatment, indicating that dHipp β-AR blockade induces a memory retrieval disruption. Furthermore, this retrieval disruption provides long-lasting protection against cocaine-induced reinstatement. The effects of β-AR blockade were dependent on memory reactivation and were not attributable to reconsolidation disruption as blockade of β-ARs immediately after a CPP test had little effect on subsequent CPP expression. Thus, cocaine-associated memory retrieval is mediated by β-AR activity within the dHipp, and disruption of this activity could prevent cue-induced drug seeking and relapse long after treatment.
Griffin, Michael; DeWolf, Melissa; Keinath, Alexander; Liu, Xiaonan; Reder, Lynne
2013-01-01
This Event-Related Potential (ERP) study investigated whether components commonly measured at test, such as the FN400 and the parietal old/new components, could be observed during encoding and, if so, whether they would predict different levels of accuracy on a subsequent memory test. ERPs were recorded while subjects classified pictures of objects as man-made or natural. Some objects were only classified once while others were classified twice during encoding, sometimes with an identical picture, and other times with a different exemplar from the same category. A subsequent surprise recognition test required subjects to judge whether each probe word corresponded to a picture shown earlier, and if so whether there were two identical pictures that corresponded to the word probe, two different pictures, or just one picture. When the second presentation showed a duplicate of an earlier picture, the FN400 effect (a significantly less negative deflection on the second presentation) was observed regardless of subsequent memory response; however, when the second presentation showed a different exemplar of the same concept, the FN400 effect was only marginally significant. In contrast, the parietal old/new effect was robust for the second presentation of conceptual repetitions when the test probe was subsequently recognized, but not for identical repetitions. These findings suggest that ERP components that are typically observed during an episodic memory test can be observed during an incidental encoding task, and that they are predictive of the degree of subsequent memory performance. PMID:23528265
Barnacle, Gemma E; Montaldi, Daniela; Talmi, Deborah; Sommer, Tobias
2016-09-01
The Emotional enhancement of memory (EEM) is observed in immediate free-recall memory tests when emotional and neutral stimuli are encoded and tested together ("mixed lists"), but surprisingly, not when they are encoded and tested separately ("pure lists"). Here our aim was to investigate whether the effect of list-composition (mixed versus pure lists) on the EEM is due to differential allocation of attention. We scanned participants with fMRI during encoding of semantically-related emotional (negative valence only) and neutral pictures. Analysis of memory performance data replicated previous work, demonstrating an interaction between list composition and emotional valence. In mixed lists, neural subsequent memory effects in the dorsal attention network were greater for neutral stimulus encoding, while neural subsequent memory effects for emotional stimuli were found in a region associated with the ventral attention network. These results imply that when life experiences include both emotional and neutral elements, memory for the latter is more highly correlated with neural activity representing goal-directed attention processing at encoding. Copyright © 2016. Published by Elsevier Ltd.
Undermining belief in false memories leads to less efficient problem-solving behaviour.
Wang, Jianqin; Otgaar, Henry; Howe, Mark L; Smeets, Tom; Merckelbach, Harald; Nahouli, Zacharia
2017-08-01
Memories of events for which the belief in the occurrence of those events is undermined, but recollection is retained, are called nonbelieved memories (NBMs). The present experiments examined the effects of NBMs on subsequent problem-solving behaviour. In Experiment 1, we challenged participants' beliefs in their memories and examined whether NBMs affected subsequent solution rates on insight-based problems. True and false memories were elicited using the Deese/Roediger-McDermott (DRM) paradigm. Then participants' belief in true and false memories was challenged by telling them the item had not been presented. We found that when the challenge led to undermining belief in false memories, fewer problems were solved than when belief was not challenged. In Experiment 2, a similar procedure was used except that some participants solved the problems one week rather than immediately after the feedback. Again, our results showed that undermining belief in false memories resulted in lower problem solution rates. These findings suggest that for false memories, belief is an important agent in whether memories serve as effective primes for immediate and delayed problem-solving.
Lewis, Ashley Glen; Schriefers, Herbert; Bastiaansen, Marcel; Schoffelen, Jan-Mathijs
2018-05-21
Reinstatement of memory-related neural activity measured with high temporal precision potentially provides a useful index for real-time monitoring of the timing of activation of memory content during cognitive processing. The utility of such an index extends to any situation where one is interested in the (relative) timing of activation of different sources of information in memory, a paradigm case of which is tracking lexical activation during language processing. Essential for this approach is that memory reinstatement effects are robust, so that their absence (in the average) definitively indicates that no lexical activation is present. We used electroencephalography to test the robustness of a reported subsequent memory finding involving reinstatement of frequency-specific entrained oscillatory brain activity during subsequent recognition. Participants learned lists of words presented on a background flickering at either 6 or 15 Hz to entrain a steady-state brain response. Target words subsequently presented on a non-flickering background that were correctly identified as previously seen exhibited reinstatement effects at both entrainment frequencies. Reliability of these statistical inferences was however critically dependent on the approach used for multiple comparisons correction. We conclude that effects are not robust enough to be used as a reliable index of lexical activation during language processing.
Green, Amity E; Fitzgerald, Paul B; Johnston, Patrick J; Nathan, Pradeep J; Kulkarni, Jayashri; Croft, Rodney J
2017-08-01
Schizophrenia is characterised by significant episodic memory impairment that is thought to be related to problems with encoding, however the neuro-functional mechanisms underlying these deficits are not well understood. The present study used a subsequent recognition memory paradigm and event-related potentials (ERPs) to investigate temporal aspects of episodic memory encoding deficits in schizophrenia. Electroencephalographic data was recorded in 24 patients and 19 healthy controls whilst participants categorised single words as pleasant/unpleasant. ERPs were generated to subsequently recognised versus unrecognised words on the basis of a forced-choice recognition memory task. Subsequent memory effects were examined with the late positive component (LPP). Group differences in N1, P2, N400 and LPP were examined for words correctly recognised. Patients performed more poorly than controls on the recognition task. During encoding patients had significantly reduced N400 and LPP amplitudes than controls. LPP amplitude correlated with task performance however amplitudes did not differ between patients and controls as a function of subsequent memory. No significant differences in N1 or P2 amplitude or latency were observed. The present results indicate that early sensory processes are intact and dysfunctional higher order cognitive processes during encoding are contributing to episodic memory impairments in schizophrenia.
Spaced Learning Enhances Subsequent Recognition Memory by Reducing Neural Repetition Suppression
Xue, Gui; Mei, Leilei; Chen, Chuansheng; Lu, Zhong-Lin; Poldrack, Russell; Dong, Qi
2012-01-01
Spaced learning usually leads to better recognition memory as compared with massed learning, yet the underlying neural mechanisms remain elusive. One open question is whether the spacing effect is achieved by reducing neural repetition suppression. In this fMRI study, participants were scanned while intentionally memorizing 120 novel faces, half under the massed learning condition (i.e., four consecutive repetitions with jittered interstimulus interval) and the other half under the spaced learning condition (i.e., the four repetitions were interleaved). Recognition memory tests afterward revealed a significant spacing effect: Participants recognized more items learned under the spaced learning condition than under the massed learning condition. Successful face memory encoding was associated with stronger activation in the bilateral fusiform gyrus, which showed a significant repetition suppression effect modulated by subsequent memory status and spaced learning. Specifically, remembered faces showed smaller repetition suppression than forgotten faces under both learning conditions, and spaced learning significantly reduced repetition suppression. These results suggest that spaced learning enhances recognition memory by reducing neural repetition suppression. PMID:20617892
Spaced learning enhances subsequent recognition memory by reducing neural repetition suppression.
Xue, Gui; Mei, Leilei; Chen, Chuansheng; Lu, Zhong-Lin; Poldrack, Russell; Dong, Qi
2011-07-01
Spaced learning usually leads to better recognition memory as compared with massed learning, yet the underlying neural mechanisms remain elusive. One open question is whether the spacing effect is achieved by reducing neural repetition suppression. In this fMRI study, participants were scanned while intentionally memorizing 120 novel faces, half under the massed learning condition (i.e., four consecutive repetitions with jittered interstimulus interval) and the other half under the spaced learning condition (i.e., the four repetitions were interleaved). Recognition memory tests afterward revealed a significant spacing effect: Participants recognized more items learned under the spaced learning condition than under the massed learning condition. Successful face memory encoding was associated with stronger activation in the bilateral fusiform gyrus, which showed a significant repetition suppression effect modulated by subsequent memory status and spaced learning. Specifically, remembered faces showed smaller repetition suppression than forgotten faces under both learning conditions, and spaced learning significantly reduced repetition suppression. These results suggest that spaced learning enhances recognition memory by reducing neural repetition suppression.
Hales, J. B.; Brewer, J. B.
2018-01-01
Given the diversity of stimuli encountered in daily life, a variety of strategies must be used for learning new information. Relating and encoding visual and verbal stimuli into memory has been probed using various tasks and stimulus-types. Engagement of specific subsequent memory and cortical processing regions depends on the stimulus modality of studied material; however, it remains unclear whether different encoding strategies similarly influence regional activity when stimulus-type is held constant. In this study, subjects encoded object pairs using a visual or verbal associative strategy during functional magnetic resonance imaging (fMRI), and subsequent memory was assessed for pairs encoded under each strategy. Each strategy elicited distinct regional processing and subsequent memory effects: middle / superior frontal, lateral parietal, and lateral occipital for visually-associated pairs and inferior frontal, medial frontal, and medial occipital for verbally-associated pairs. This regional selectivity mimics the effects of stimulus modality, suggesting that cortical involvement in associative encoding is driven by strategy, and not simply by stimulus-type. The clinical relevance of these findings, probed in two patients with recent aphasic strokes, suggest that training with strategies utilizing unaffected cortical regions might improve memory ability in patients with brain damage. PMID:22390467
Memory and Study Strategies for Optimal Learning.
ERIC Educational Resources Information Center
Hamachek, Alice L.
Study strategies are those specific reading skills that increase understanding, memory storage, and retrieval. Memory techniques are crucial to effective studying, and to subsequent performance in class and on written examinations. A major function of memory is to process information. Stimuli are picked up by sensory receptors and transferred to…
Developmental Changes in Memory Encoding: Insights from Event-Related Potentials
ERIC Educational Resources Information Center
Rollins, Leslie; Riggins, Tracy
2013-01-01
The aim of the present study was to investigate developmental changes in encoding processes between 6-year-old children and adults using event-related potentials (ERPs). Although episodic memory ("EM") effects have been reported in both children and adults at retrieval and subsequent memory effects have been established in adults, no…
Maillet, David; Rajah, M Natasha
2016-06-01
Recent evidence indicates that young adults frequently exhibit task-unrelated thoughts (TUTs) such as mind-wandering during episodic encoding tasks and that TUTs negatively impact subsequent memory. In the current study, we assessed age-related differences in the frequency and neural correlates of TUTs during a source memory encoding task, as well as age-related differences in the relationship between the neural correlates of TUTs and subsequent source forgetting effects (i.e., source misses). We found no age-related differences in frequency of TUTs during fMRI scanning. Moreover, TUT frequency at encoding was positively correlated with source misses at retrieval across age groups. In both age groups, brain regions including bilateral middle/superior frontal gyri and precuneus were activated to a greater extent during encoding for subsequent source misses versus source hits and during TUTs versus on-task episodes. Overall, our results reveal that, during a source memory encoding task in an fMRI environment, young and older adults exhibit a similar frequency of TUTs and that experiencing TUTs at encoding is associated with decreased retrieval performance. In addition, in both age groups, experiencing TUTs at encoding is associated with increased activation in some of the same regions that exhibit subsequent source forgetting effects.
Children's Memory for Words Under Self-Reported and Induced Imagery Strategies.
ERIC Educational Resources Information Center
Filan, Gary L.; Sullivan, Howard J.
The effectiveness of the use of self-reported imagery strategies on children's subsequent memory performance was studied, and the coding redundancy hypothesis that memory is facilitated by using an encoding procedure in both words and images was tested. The two levels of reported memory strategy (imagize, verbalize) were crossed with "think…
Retrieval Demands Adaptively Change Striatal Old/New Signals and Boost Subsequent Long-Term Memory.
Herweg, Nora A; Sommer, Tobias; Bunzeck, Nico
2018-01-17
The striatum is a central part of the dopaminergic mesolimbic system and contributes both to the encoding and retrieval of long-term memories. In this regard, the co-occurrence of striatal novelty and retrieval success effects in independent studies underlines the structure's double duty and suggests dynamic contextual adaptation. To test this hypothesis and further investigate the underlying mechanisms of encoding and retrieval dynamics, human subjects viewed pre-familiarized scene images intermixed with new scenes and classified them as indoor versus outdoor (encoding task) or old versus new (retrieval task), while fMRI and eye tracking data were recorded. Subsequently, subjects performed a final recognition task. As hypothesized, striatal activity and pupil size reflected task-conditional salience of old and new stimuli, but, unexpectedly, this effect was not reflected in the substantia nigra and ventral tegmental area (SN/VTA), medial temporal lobe, or subsequent memory performance. Instead, subsequent memory generally benefitted from retrieval, an effect possibly driven by task difficulty and activity in a network including different parts of the striatum and SN/VTA. Our findings extend memory models of encoding and retrieval dynamics by pinpointing a specific contextual factor that differentially modulates the functional properties of the mesolimbic system. SIGNIFICANCE STATEMENT The mesolimbic system is involved in the encoding and retrieval of information but it is unclear how these two processes are achieved within the same network of brain regions. In particular, memory retrieval and novelty encoding were considered in independent studies, implying that novelty (new > old) and retrieval success (old > new) effects may co-occur in the striatum. Here, we used a common framework implicating the striatum, but not other parts of the mesolimbic system, in tracking context-dependent salience of old and new information. The current study, therefore, paves the way for a more comprehensive understanding of the functional properties of the mesolimbic system during memory encoding and retrieval. Copyright © 2018 the authors 0270-6474/18/380745-10$15.00/0.
Factors affecting reorganisation of memory encoding networks in temporal lobe epilepsy
Sidhu, M.K.; Stretton, J.; Winston, G.P.; Symms, M.; Thompson, P.J.; Koepp, M.J.; Duncan, J.S.
2015-01-01
Summary Aims In temporal lobe epilepsy (TLE) due to hippocampal sclerosis reorganisation in the memory encoding network has been consistently described. Distinct areas of reorganisation have been shown to be efficient when associated with successful subsequent memory formation or inefficient when not associated with successful subsequent memory. We investigated the effect of clinical parameters that modulate memory functions: age at onset of epilepsy, epilepsy duration and seizure frequency in a large cohort of patients. Methods We studied 53 patients with unilateral TLE and hippocampal sclerosis (29 left). All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words. A continuous regression analysis was used to investigate the effects of age at onset of epilepsy, epilepsy duration and seizure frequency on the activation patterns in the memory encoding network. Results Earlier age at onset of epilepsy was associated with left posterior hippocampus activations that were involved in successful subsequent memory formation in left hippocampal sclerosis patients. No association of age at onset of epilepsy was seen with face encoding in right hippocampal sclerosis patients. In both left hippocampal sclerosis patients during word encoding and right hippocampal sclerosis patients during face encoding, shorter duration of epilepsy and lower seizure frequency were associated with medial temporal lobe activations that were involved in successful memory formation. Longer epilepsy duration and higher seizure frequency were associated with contralateral extra-temporal activations that were not associated with successful memory formation. Conclusion Age at onset of epilepsy influenced verbal memory encoding in patients with TLE due to hippocampal sclerosis in the speech-dominant hemisphere. Shorter duration of epilepsy and lower seizure frequency were associated with less disruption of the efficient memory encoding network whilst longer duration and higher seizure frequency were associated with greater, inefficient, extra-temporal reorganisation. PMID:25616449
Event segmentation improves event memory up to one month later.
Flores, Shaney; Bailey, Heather R; Eisenberg, Michelle L; Zacks, Jeffrey M
2017-08-01
When people observe everyday activity, they spontaneously parse it into discrete meaningful events. Individuals who segment activity in a more normative fashion show better subsequent memory for the events. If segmenting events effectively leads to better memory, does asking people to attend to segmentation improve subsequent memory? To answer this question, participants viewed movies of naturalistic activity with instructions to remember the activity for a later test, and in some conditions additionally pressed a button to segment the movies into meaningful events or performed a control condition that required button-pressing but not attending to segmentation. In 5 experiments, memory for the movies was assessed at intervals ranging from immediately following viewing to 1 month later. Performing the event segmentation task led to superior memory at delays ranging from 10 min to 1 month. Further, individual differences in segmentation ability predicted individual differences in memory performance for up to a month following encoding. This study provides the first evidence that manipulating event segmentation affects memory over long delays and that individual differences in event segmentation are related to differences in memory over long delays. These effects suggest that attending to how an activity breaks down into meaningful events contributes to memory formation. Instructing people to more effectively segment events may serve as a potential intervention to alleviate everyday memory complaints in aging and clinical populations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Nicotine Inhibits Memory CTL Programming
Sun, Zhifeng; Smyth, Kendra; Garcia, Karla; Mattson, Elliot; Li, Lei; Xiao, Zhengguo
2013-01-01
Nicotine is the main tobacco component responsible for tobacco addiction and is used extensively in smoking and smoking cessation therapies. However, little is known about its effects on the immune system. We confirmed that multiple nicotinic receptors are expressed on mouse and human cytotoxic T lymphocytes (CTLs) and demonstrated that nicotinic receptors on mouse CTLs are regulated during activation. Acute nicotine presence during activation increases primary CTL expansion in vitro, but impairs in vivo expansion after transfer and subsequent memory CTL differentiation, which reduces protection against subsequent pathogen challenges. Furthermore, nicotine abolishes the regulatory effect of rapamycin on memory CTL programming, which can be attributed to the fact that rapamycin enhances expression of nicotinic receptors. Interestingly, naïve CTLs from chronic nicotine-treated mice have normal memory programming, which is impaired by nicotine during activation in vitro. In conclusion, simultaneous exposure to nicotine and antigen during CTL activation negatively affects memory development. PMID:23844169
Event-related rTMS at encoding affects differently deep and shallow memory traces.
Innocenti, Iglis; Giovannelli, Fabio; Cincotta, Massimo; Feurra, Matteo; Polizzotto, Nicola R; Bianco, Giovanni; Cappa, Stefano F; Rossi, Simone
2010-10-15
The "level of processing" effect is a classical finding of the experimental psychology of memory. Actually, the depth of information processing at encoding predicts the accuracy of the subsequent episodic memory performance. When the incoming stimuli are analyzed in terms of their meaning (semantic, or deep, encoding), the memory performance is superior with respect to the case in which the same stimuli are analyzed in terms of their perceptual features (shallow encoding). As suggested by previous neuroimaging studies and by some preliminary findings with transcranial magnetic stimulation (TMS), the left prefrontal cortex may play a role in semantic processing requiring the allocation of working memory resources. However, it still remains unclear whether deep and shallow encoding share or not the same cortical networks, as well as how these networks contribute to the "level of processing" effect. To investigate the brain areas casually involved in this phenomenon, we applied event-related repetitive TMS (rTMS) during deep (semantic) and shallow (perceptual) encoding of words. Retrieval was subsequently tested without rTMS interference. RTMS applied to the left dorsolateral prefrontal cortex (DLPFC) abolished the beneficial effect of deep encoding on memory performance, both in terms of accuracy (decrease) and reaction times (increase). Neither accuracy nor reaction times were instead affected by rTMS to the right DLPFC or to an additional control site excluded by the memory process (vertex). The fact that online measures of semantic processing at encoding were unaffected suggests that the detrimental effect on memory performance for semantically encoded items took place in the subsequent consolidation phase. These results highlight the specific causal role of the left DLPFC among the wide left-lateralized cortical network engaged by long-term memory, suggesting that it probably represents a crucial node responsible for the improved memory performance induced by semantic processing. Copyright 2010 Elsevier Inc. All rights reserved.
Neural Correlates of Encoding Within- and Across-Domain Inter-Item Associations
Park, Heekyeong; Rugg, Michael D.
2012-01-01
The neural correlates of the encoding of associations between pairs of words, pairs of pictures, and word-picture pairs were compared. The aims were to determine first, whether the neural correlates of associative encoding vary according to study material and second, whether encoding of across- versus within-material item pairs is associated with dissociable patterns of hippocampal and perirhinal activity, as predicted by the ‘domain dichotomy’ hypothesis of medial temporal lobe (MTL) function. While undergoing fMRI scanning, subjects (n = 24) were presented with the three classes of study pairs, judging which of the denoted objects fit into the other. Outside of the scanner, subjects then undertook an associative recognition task, discriminating between intact study pairs, rearranged pairs comprising items that had been presented on different study trials, and unstudied item pairs. The neural correlates of successful associative encoding – subsequent associative memory effects – were operationalized as the difference in activity between study pairs correctly judged intact versus pairs incorrectly judged rearranged on the subsequent memory test. Pair type-independent subsequent memory effects were evident in the left inferior frontal gyrus (IFG) and the hippocampus. Picture-picture pairs elicited material-selective effects in regions of fusiform cortex that were also activated to a greater extent on picture trials than word trials, while word-word pairs elicited material-selective subsequent memory effects in left lateral temporal cortex. Contrary to the domain-dichotomy hypothesis, neither hippocampal nor perirhinal subsequent memory effects differed depending on whether they were elicited by within- versus across-material study pairs. It is proposed that the left IFG plays a domain-general role in associative encoding, that associative encoding can also be facilitated by enhanced processing in material-selective cortical regions, and that the hippocampus and perirhinal cortex contribute equally to the formation of inter-item associations regardless of whether the items belong to the same or to different processing domains. PMID:21254802
Bentley, P; Driver, J; Dolan, R J
2009-09-01
Cholinergic influences on memory are likely to be expressed at several processing stages, including via well-recognized effects of acetylcholine on stimulus processing during encoding. Since previous studies have shown that cholinesterase inhibition enhances visual extrastriate cortex activity during stimulus encoding, especially under attention-demanding tasks, we tested whether this effect correlates with improved subsequent memory. In a within-subject physostigmine versus placebo design, we measured brain activity with functional magnetic resonance imaging while healthy and mild Alzheimer's disease subjects performed superficial and deep encoding tasks on face (and building) visual stimuli. We explored regions in which physostigmine modulation of face-selective neural responses correlated with physostigmine effects on subsequent recognition performance. In healthy subjects physostigmine led to enhanced later recognition for deep- versus superficially-encoded faces, which correlated across subjects with a physostigmine-induced enhancement of face-selective responses in right fusiform cortex during deep- versus superficial-encoding tasks. In contrast, the Alzheimer's disease group showed neither a depth of processing effect nor restoration of this with physostigmine. Instead, patients showed a task-independent improvement in confident memory with physostigmine, an effect that correlated with enhancements in face-selective (but task-independent) responses in bilateral fusiform cortices. Our results indicate that one mechanism by which cholinesterase inhibitors can improve memory is by enhancing extrastriate cortex stimulus selectivity at encoding, in a manner that for healthy people but not in Alzheimer's disease is dependent upon depth of processing.
Rose, Nathan S.; Myerson, Joel; Roediger, Henry L.; Hale, Sandra
2010-01-01
Two experiments compared the effects of depth of processing on working memory (WM) and long-term memory (LTM) using a levels-of-processing (LOP) span task, a newly developed WM span procedure that involves processing to-be-remembered words based on their visual, phonological, or semantic characteristics. Depth of processing had minimal effect on WM tests, yet subsequent memory for the same items on delayed tests showed the typical benefits of semantic processing. Although the difference in LOP effects demonstrates a dissociation between WM and LTM, we also found that the retrieval practice provided by recalling words on the WM task benefited long-term retention, especially for words initially recalled from supraspan lists. The latter result is consistent with the hypothesis that WM span tasks involve retrieval from secondary memory, but the LOP dissociation suggests the processes engaged by WM and LTM tests may differ. Therefore, similarities and differences between WM and LTM depend on the extent to which retrieval from secondary memory is involved and whether there is a match (or mismatch) between initial processing and subsequent retrieval, consistent with transfer-appropriate-processing theory. PMID:20192543
Progesterone at Encoding Predicts Subsequent Emotional Memory
ERIC Educational Resources Information Center
Ertman, Nicole; Andreano, Joseph M.; Cahill, Larry
2011-01-01
Significant sex differences in the well-documented relationship between stress hormones and memory have emerged in recent studies. The potentiating effects of glucocorticoids on memory vary across the menstrual cycle, suggesting a potential interaction between these stress hormones and endogenously cycling sex hormones. Here, we show that memory…
Demeter, Elise; Mirdamadi, Jasmine L.; Meehan, Sean K.; Taylor, Stephan F.
2016-01-01
Deep semantic encoding of verbal stimuli can aid in later successful retrieval of those stimuli from long-term episodic memory. Evidence from numerous neuropsychological and neuroimaging experiments demonstrate regions in left prefrontal cortex, including left dorsolateral prefrontal cortex (DLPFC), are important for processes related to encoding. Here, we investigated the relationship between left DLPFC activity during encoding and successful subsequent memory with transcranial magnetic stimulation (TMS). In a pair of experiments using a 2-session within-subjects design, we stimulated either left DLPFC or a control region (Vertex) with a single 2-s train of short theta burst stimulation (sTBS) during a semantic encoding task and then gave participants a recognition memory test. We found that subsequent memory was enhanced on the day left DLPFC was stimulated, relative to the day Vertex was stimulated, and that DLPFC stimulation also increased participants’ confidence in their decisions during the recognition task. We also explored the time course of how long the effects of sTBS persisted. Our data suggest 2 s of sTBS to left DLPFC is capable of enhancing subsequent memory for items encoded up to 15 s following stimulation. Collectively, these data demonstrate sTBS is capable of enhancing long-term memory and provide evidence that TBS protocols are a potentially powerful tool for modulating cognitive function. PMID:27098772
Tsukiura, Takashi; Cabeza, Roberto
2011-01-01
Behavioral data have shown that attractive faces are better remembered but the neural mechanisms of this effect are largely unknown. To investigate this issue, female participants were scanned with event-related functional MRI (fMRI) while rating the attractiveness of male faces. Memory for the faces was tested after fMRI scanning and was used to identify successful encoding activity (subsequent memory paradigm). As expected, attractive faces were remembered better than other faces. The study yielded three main fMRI findings. First, activity in the right orbitofrontal cortex increased linearly as a function of attractiveness ratings. Second, activity in the left hippocampus increased as a function of subsequent memory (subsequent misses
Tsukiura, Takashi; Cabeza, Roberto
2010-01-01
Behavioral data have shown that attractive faces are better remembered but the neural mechanisms of this effect are largely unknown. To investigate this issue, female participants were scanned with event-related functional MRI (fMRI) while rating the attractiveness of male faces. Memory for the faces was tested after fMRI scanning and was used to identify successful encoding activity (subsequent memory paradigm). As expected, attractive faces were remembered better than other faces. The study yielded three main fMRI findings. First, activity in the right orbitofrontal cortex increased linearly as a function of attractiveness ratings. Second, activity in the left hippocampus increased as a function of subsequent memory (subsequent misses
Does Testing Impair Relational Processing? Failed Attempts to Replicate the Negative Testing Effect
ERIC Educational Resources Information Center
Rawson, Katherine A.; Wissman, Kathryn T.; Vaughn, Kalif E.
2015-01-01
Recent research on testing effects (i.e., practice tests are more effective than restudy for enhancing subsequent memory) has focused on explaining when and why testing enhances memory. Of particular interest for present purposes, Zaromb and Roediger (2010) reported evidence that testing effects in part reflect enhanced relational processing,…
ERIC Educational Resources Information Center
Richler, Jennifer J.; Gauthier, Isabel; Palmeri, Thomas J.
2011-01-01
Are there consequences of calling objects by their names? Lupyan (2008) suggested that overtly labeling objects impairs subsequent recognition memory because labeling shifts stored memory representations of objects toward the category prototype (representational shift hypothesis). In Experiment 1, we show that processing objects at the basic…
St Jacques, Peggy L.; Montgomery, Daniel; Schacter, Daniel L.
2015-01-01
Memory reactivation, the activation of a latent memory trace when we are reminded of a past experience, strengthens memory but can also contribute to distortions if new information present during reactivation is integrated with existing memory. In a previous study in young adults we found that the quality of memory reactivation, manipulated using the principle of encoding specificity and indexed by recollection ratings, modulated subsequent true and false memories for events experienced during a museum tour. Here, we examined age-related changes in the quality of memory reactivation on subsequent memory. Young and older adults reactivated memories for museum stops immediately followed by the presentation of a novel lure photo from an alternate tour version (i.e., reactivation plus new information). There was an increase in subsequent true memories for reactivated targets and for subsequent false memories for lures that followed reactivated targets, when compared to baseline target and lure photos. However, the influence of reactivation on subsequent memories was reduced in older adults. These data reveal that aging alters reactivation-related updating processes that allow memories to be strengthened and updated with new information-consequently reducing memory distortions in older compared to young adults. PMID:24993055
St Jacques, Peggy L; Montgomery, Daniel; Schacter, Daniel L
2015-01-01
Memory reactivation, the activation of a latent memory trace when we are reminded of a past experience, strengthens memory but can also contribute to distortions if new information present during reactivation is integrated with existing memory. In a previous study in young adults we found that the quality of memory reactivation, manipulated using the principle of encoding specificity and indexed by recollection ratings, modulated subsequent true and false memories for events experienced during a museum tour. Here in this study, we examined age-related changes in the quality of memory reactivation on subsequent memory. Memories of museum stops in young and older adults were reactivated and then immediately followed by the presentation of a novel lure photo from an alternate tour version (i.e., reactivation plus new information). There was an increase in subsequent true memories for reactivated targets and for subsequent false memories for lures that followed reactivated targets, when compared to baseline target and lure photos. However, the influence of reactivation on subsequent memories was reduced in older adults. These data reveal that ageing alters reactivation-related updating processes that allow memories to be strengthened and updated with new information, consequently reducing memory distortions in older adults compared to young adults.
Morena, Maria; Berardi, Andrea; Peloso, Andrea; Valeri, Daniela; Palmery, Maura; Trezza, Viviana; Schelling, Gustav; Campolongo, Patrizia
2017-06-30
Intensive Care Unit (ICU) or emergency care patients, exposed to traumatic events, are at increased risk for Post-Traumatic Stress Disorder (PTSD) development. Commonly used sedative/anesthetic agents can interfere with the mechanisms of memory formation, exacerbating or attenuating the memory for the traumatic event, and subsequently promote or reduce the risk of PTSD development. Here, we evaluated the effects of ketamine, dexmedetomidine and propofol on fear memory consolidation and subsequent cognitive and emotional alterations related to traumatic stress exposure. Immediately following an inhibitory avoidance training, rats were intraperitoneally injected with ketamine (100-125mg/kg), dexmedetomidine (0.3-0.4mg/kg) or their vehicle and tested for 48h memory retention. Furthermore, the effects of ketamine (125mg/kg), dexmedetomidine (0.4mg/kg), propofol (300mg/kg) or their vehicle on long-term memory and social interaction were evaluated two weeks after drug injection in a rat PTSD model. Ketamine anesthesia increased memory retention without altering the traumatic memory strength in the PTSD model. However, ketamine induced a long-term reduction of social behavior. Conversely, dexmedetomidine markedly impaired memory retention, without affecting long-lasting cognitive or emotional behaviors in the PTSD model. We have previously shown that propofol anesthesia enhanced 48h memory retention. Here, we found that propofol induced an enduring traumatic memory enhancement and anxiogenic effects in the PTSD model. These findings provide new evidence for clinical studies showing that the use of ketamine or propofol anesthesia in emergency care and ICU might be more likely to promote the development of PTSD, while dexmedetomidine might have prophylactic effects. Copyright © 2017 Elsevier B.V. All rights reserved.
Remembered or Forgotten?—An EEG-Based Computational Prediction Approach
Sun, Xuyun; Qian, Cunle; Chen, Zhongqin; Wu, Zhaohui; Luo, Benyan; Pan, Gang
2016-01-01
Prediction of memory performance (remembered or forgotten) has various potential applications not only for knowledge learning but also for disease diagnosis. Recently, subsequent memory effects (SMEs)—the statistical differences in electroencephalography (EEG) signals before or during learning between subsequently remembered and forgotten events—have been found. This finding indicates that EEG signals convey the information relevant to memory performance. In this paper, based on SMEs we propose a computational approach to predict memory performance of an event from EEG signals. We devise a convolutional neural network for EEG, called ConvEEGNN, to predict subsequently remembered and forgotten events from EEG recorded during memory process. With the ConvEEGNN, prediction of memory performance can be achieved by integrating two main stages: feature extraction and classification. To verify the proposed approach, we employ an auditory memory task to collect EEG signals from scalp electrodes. For ConvEEGNN, the average prediction accuracy was 72.07% by using EEG data from pre-stimulus and during-stimulus periods, outperforming other approaches. It was observed that signals from pre-stimulus period and those from during-stimulus period had comparable contributions to memory performance. Furthermore, the connection weights of ConvEEGNN network can reveal prominent channels, which are consistent with the distribution of SME studied previously. PMID:27973531
Elimination of ``memory`` from sample handling and inlet system of a mass spectrometer
Chastgner, P.
1991-05-08
This paper describes a method for preparing the sample handling and inlet system of a mass spectrometer for analysis of a subsequent sample following analysis of a previous sample comprising the flushing of the system interior with supercritical CO{sub 2} and venting the interior. The method eliminates the effect of system ``memory`` on the subsequent analysis, especially following persistent samples such as xenon and krypton.
Swannell, Ellen R; Brown, Christopher A; Jones, Anthony K P; Brown, Richard J
2016-03-01
Theory suggests that as activation of pain concepts in memory increases, so too does subsequent pain perception. Previously, researchers have found that activating pain concepts in memory increases pain perception of subsequent painful stimuli, relative to neutral information. However, they have not attempted to quantify the nature of the association between information studied and ensuing pain perception. We subliminally presented words that had either a low or high degree of association to the word 'pain,' although this was only partially successful and some words were consciously perceived. Participants then received randomized laser heat stimuli, delivered at 1 of 3 intensity levels (low, moderate, high), and we measured the effect of this on behavioral and electrophysiological measures of pain. Participants (N = 27) rated moderate- and high-intensity laser stimuli as more painful after viewing high relative to low associates of pain; these effects remained present when we controlled for measures of mood, anxiety, and physical symptom reporting. Similar effects were observed physiologically, with higher stimulus negativity preceding after high relative to low associates and greater amplitudes for the N2 component of the laser-evoked potential after presentation of high associates in the moderate and high laser intensity conditions. These data support activation-based models of the effects of memory on pain perception. Consistent with current theories of memory and pain, we found that high, relative to low activation of pain concepts in memory increased psychological and physiological responses to laser-induced pain. The effect remained regardless of whether participants showed conscious awareness of activation. Theoretical and clinical implications are discussed. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.
Forrin, Noah D; MacLeod, Colin M
2016-06-01
Differences in memory for item order have been used to explain the absence of between-subjects (i.e., pure-list) effects in free recall for several encoding techniques, including the production effect, the finding that reading aloud benefits memory compared with reading silently. Notably, however, evidence in support of the item-order account (Nairne, Riegler, & Serra, 1991) has derived primarily from short-list paradigms. We provide novel evidence that the item-order account also applies when recalling long lists. In Experiment 1, participants studied and then free recalled 3 different long lists of words: pure aloud, pure silent, and mixed (half aloud, half silent). A Bayesian analysis supported a null pure-list production effect, and subsequent order analyses were largely consistent with the item-order account. These findings indicate that order information is retained in long-term memory and is useful in guiding subsequent free recall. In Experiment 2, a distractor task was inserted between the study and test phases, ensuring that only long-term memory processes were involved in recall: The pattern of results remained consistent with the item-order account. Order information can be retained in long-term memory for long lists, and is useful in guiding subsequent free recall, extending the domain of the item-order account. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
How Does Using Object Names Influence Visual Recognition Memory?
ERIC Educational Resources Information Center
Richler, Jennifer J.; Palmeri, Thomas J.; Gauthier, Isabel
2013-01-01
Two recent lines of research suggest that explicitly naming objects at study influences subsequent memory for those objects at test. Lupyan (2008) suggested that naming "impairs" memory by a representational shift of stored representations of named objects toward the prototype (labeling effect). MacLeod, Gopie, Hourihan, Neary, and Ozubko (2010)…
Ego Depletion Does Not Interfere With Working Memory Performance.
Singh, Ranjit K; Göritz, Anja S
2018-01-01
Ego depletion happens if exerting self-control reduces a person's capacity to subsequently control themselves. Previous research has suggested that ego depletion not only interferes with subsequent self-control but also with working memory. However, recent meta-analytical evidence casts doubt onto this. The present study tackles the question if ego depletion does interfere with working memory performance. We induced ego depletion in two ways: using an e-crossing task and using a Stroop task. We then measured working memory performance using the letter-number sequencing task. There was no evidence of ego depletion interfering with working memory performance. Several aspects of our study render this null finding highly robust. We had a large and heterogeneous sample of N = 1,385, which provided sufficient power. We deployed established depletion tasks from two task families (e-crossing task and Stroop), thus making it less likely that the null finding is due to a specific depletion paradigm. We derived several performance scores from the working memory task and ran different analyses to maximize the chances of finding an effect. Lastly, we controlled for two potential moderators, the implicit theories about willpower and dispositional self-control capacity, to ensure that a possible effect on working memory is not obscured by an interaction effect. In sum, this experiment strengthens the position that ego depletion works but does not affect working memory performance.
Ego Depletion Does Not Interfere With Working Memory Performance
Singh, Ranjit K.; Göritz, Anja S.
2018-01-01
Ego depletion happens if exerting self-control reduces a person’s capacity to subsequently control themselves. Previous research has suggested that ego depletion not only interferes with subsequent self-control but also with working memory. However, recent meta-analytical evidence casts doubt onto this. The present study tackles the question if ego depletion does interfere with working memory performance. We induced ego depletion in two ways: using an e-crossing task and using a Stroop task. We then measured working memory performance using the letter-number sequencing task. There was no evidence of ego depletion interfering with working memory performance. Several aspects of our study render this null finding highly robust. We had a large and heterogeneous sample of N = 1,385, which provided sufficient power. We deployed established depletion tasks from two task families (e-crossing task and Stroop), thus making it less likely that the null finding is due to a specific depletion paradigm. We derived several performance scores from the working memory task and ran different analyses to maximize the chances of finding an effect. Lastly, we controlled for two potential moderators, the implicit theories about willpower and dispositional self-control capacity, to ensure that a possible effect on working memory is not obscured by an interaction effect. In sum, this experiment strengthens the position that ego depletion works but does not affect working memory performance. PMID:29706923
A Positive Generation Effect on Memory for Auditory Context
Overman, Amy A.; Richard, Alison G.; Stephens, Joseph D. W.
2016-01-01
Self-generation of information during memory encoding has large positive effects on subsequent memory for items, but mixed effects on memory for contextual information associated with items. A processing account of generation effects on context memory (Mulligan, 2004; Mulligan, Lozito, & Rosner, 2006) proposes that these effects depend on whether the generation task causes any shift in processing of the type of context features for which memory is being tested. Mulligan and colleagues have used this account to predict various negative effects of generation on context memory, but the account also predicts positive generation effects under certain circumstances. The present experiment provided a critical test of the processing account by examining how generation affected memory for auditory rather than visual context. Based on the processing account, we predicted that generation of rhyme words should enhance processing of auditory information associated with the words (i.e., voice gender) whereas generation of antonym words should have no effect. These predictions were confirmed, providing support to the processing account. PMID:27696145
Geraci, Lisa; Hughes, Matthew L; Miller, Tyler M; De Forrest, Ross L
2016-01-01
Negative aging stereotypes can lead older adults to perform poorly on memory tests. Yet, memory performance can be improved if older adults have a single successful experience on a cognitive test prior to participating in a memory experiment (Geraci & Miller, 2013, Psychology and Aging, 28, 340-345). The current study examined the effects of different types of prior task experience on subsequent memory performance. Before participating in a verbal free recall experiment, older adults in Experiment 1 successfully completed either a verbal or a visual cognitive task or no task. In Experiment 2, they successfully completed either a motor task or no task before participating in the free recall experiment. Results from Experiment 1 showed that relative to control (no prior task), participants who had prior success, either on a verbal or a visual task, had better subsequent recall performance. Experiment 2 showed that prior success on a motor task, however, did not lead to a later memory advantage relative to control. These findings demonstrate that older adults' memory can be improved by a successful prior task experience so long as that experience is in a cognitive domain.
A Causal Contiguity Effect That Persists across Time Scales
ERIC Educational Resources Information Center
Kilic, Asli; Criss, Amy H.; Howard, Marc W.
2013-01-01
The contiguity effect refers to the tendency to recall an item from nearby study positions of the just recalled item. Causal models of contiguity suggest that recalled items are used as probes, causing a change in the memory state for subsequent recall attempts. Noncausal models of the contiguity effect assume the memory state is unaffected by…
No effect of odor-induced memory reactivation during REM sleep on declarative memory stability
Cordi, Maren J.; Diekelmann, Susanne; Born, Jan; Rasch, Björn
2014-01-01
Memory reactivations in hippocampal brain areas are critically involved in memory consolidation processes during sleep. In particular, specific firing patterns of hippocampal place cells observed during learning are replayed during subsequent sleep and rest in rodents. In humans, experimentally inducing hippocampal memory reactivations during slow-wave sleep (but not during wakefulness) benefits consolidation and immediately stabilizes declarative memories against future interference. Importantly, spontaneous hippocampal replay activity can also be observed during rapid eye movement (REM) sleep and some authors have suggested that replay during REM sleep is related to processes of memory consolidation. However, the functional role of reactivations during REM sleep for memory stability is still unclear. Here, we reactivated memories during REM sleep and examined its consequences for the stability of declarative memories. After 3 h of early, slow-wave sleep (SWS) rich sleep, 16 healthy young adults learned a 2-D object location task in the presence of a contextual odor. During subsequent REM sleep, participants were either re-exposed to the odor or to an odorless vehicle, in a counterbalanced within subject design. Reactivation was followed by an interference learning task to probe memory stability after awakening. We show that odor-induced memory reactivation during REM sleep does not stabilize memories against future interference. We propose that the beneficial effect of reactivation during sleep on memory stability might be critically linked to processes characterizing SWS including, e.g., slow oscillatory activity, sleep spindles, or low cholinergic tone, which are required for a successful redistribution of memories from medial temporal lobe regions to neocortical long-term stores. PMID:25225474
Memory for found targets interferes with subsequent performance in multiple-target visual search.
Cain, Matthew S; Mitroff, Stephen R
2013-10-01
Multiple-target visual searches--when more than 1 target can appear in a given search display--are commonplace in radiology, airport security screening, and the military. Whereas 1 target is often found accurately, additional targets are more likely to be missed in multiple-target searches. To better understand this decrement in 2nd-target detection, here we examined 2 potential forms of interference that can arise from finding a 1st target: interference from the perceptual salience of the 1st target (a now highly relevant distractor in a known location) and interference from a newly created memory representation for the 1st target. Here, we found that removing found targets from the display or making them salient and easily segregated color singletons improved subsequent search accuracy. However, replacing found targets with random distractor items did not improve subsequent search accuracy. Removing and highlighting found targets likely reduced both a target's visual salience and its memory load, whereas replacing a target removed its visual salience but not its representation in memory. Collectively, the current experiments suggest that the working memory load of a found target has a larger effect on subsequent search accuracy than does its perceptual salience. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Opposing effects of negative emotion on amygdalar and hippocampal memory for items and associations
Horner, Aidan J.; Hørlyck, Lone D.; Burgess, Neil
2016-01-01
Although negative emotion can strengthen memory of an event it can also result in memory disturbances, as in post-traumatic stress disorder (PTSD). We examined the effects of negative item content on amygdalar and hippocampal function in memory for the items themselves and for the associations between them. During fMRI, we examined encoding and retrieval of paired associates made up of all four combinations of neutral and negative images. At test, participants were cued with an image and, if recognised, had to retrieve the associated (target) image. The presence of negative images increased item memory but reduced associative memory. At encoding, subsequent item recognition correlated with amygdala activity, while subsequent associative memory correlated with hippocampal activity. Hippocampal activity was reduced by the presence of negative images, during encoding and correct associative retrieval. In contrast, amygdala activity increased for correctly retrieved negative images, even when cued by a neutral image. Our findings support a dual representation account, whereby negative emotion up-regulates the amygdala to strengthen item memory but down-regulates the hippocampus to weaken associative representations. These results have implications for the development and treatment of clinical disorders in which diminished associations between emotional stimuli and their context contribute to negative symptoms, as in PTSD. PMID:26969864
Baym, Carol L; Gonsalves, Brian D
2010-09-01
False memories can occur when people are exposed to misinformation about a past event. Of interest here are the neural mechanisms of this type of memory failure. In the present study, participants viewed photographic vignettes of common activities during an original event phase (OEP), while we monitored their brain activity using fMRI. Later, in a misinformation phase, participants viewed sentences describing the studied photographs, some of which contained information conflicting with that depicted in the photographs. One day later, participants returned for a surprise item memory recognition test for the content of the photographs. Results showed reliable creation of false memories, in that participants reported information that had been presented in the verbal misinformation but not in the photographs. Several regions were more active during the OEP for later accurate memory than for forgetting, but they were also more active for later false memories, indicating that false memories in this paradigm are not simply caused by failure to encode the original event. There was greater activation in the ventral visual stream for subsequent true memories than for subsequent false memories, however, suggesting that differences in encoding may contribute to later susceptibility to misinformation.
Tsvetanov, Kamen A; Arvanitis, Theodoros N; Humphreys, Glyn W
2012-01-01
Effects of the identity and load of items in working memory (WM) on visual attention were examined. With a short interval between the WM item and a subsequent search task, there were effects of both load (slowed overall reaction times, RTs, in a WM condition relative to a mere repetition baseline) and identity (search RTs were affected by re-presentation of the item in WM in the search display). As the time to encode the initial display increased, the effects of load decreased while the effect of identity remained. The data indicate that the identity of stimuli in WM can affect the subsequent deployment of attention even when time is allowed for consolidation of the stimuli in WM, and that the WM effects are not causally related to the presence of cognitive load. The results are consistent with the identity of stimuli in WM modulating attention post the memory consolidation stage.
Farias, Sarah Tomaszewski; Chand, Vineeta; Bonnici, Lisa; Baynes, Kathleen; Harvey, Danielle; Mungas, Dan; Simon, Christa; Reed, Bruce
2012-11-01
The Nun Study showed that lower linguistic ability in young adulthood, measured by idea density (ID), increased the risk of dementia in late life. The present study examined whether ID measured in late life continues to predict the trajectory of cognitive change. ID was measured in 81 older adults who were followed longitudinally for an average of 4.3 years. Changes in global cognition and 4 specific neuropsychological domains (episodic memory, semantic memory, spatial abilities, and executive function) were examined as outcomes. Separate random effects models tested the effect of ID on longitudinal change in outcomes, adjusted for age and education. Lower ID was associated with greater subsequent decline in global cognition, semantic memory, episodic memory, and spatial abilities. When analysis was restricted to only participants without dementia at the time ID was collected, results were similar. Linguistic ability in young adulthood, as measured by ID, has been previously proposed as an index of neurocognitive development and/or cognitive reserve. The present study provides evidence that even when ID is measured in old age, it continues to be associated with subsequent cognitive decline and as such may continue to provide a marker of cognitive reserve.
Continued effects of context reinstatement in recognition.
Hanczakowski, Maciej; Zawadzka, Katarzyna; Macken, Bill
2015-07-01
The context reinstatement effect refers to the enhanced memory performance found when the context information paired with a target item at study is re-presented at test. Here we investigated the consequences of the way that context information is processed in such a setting that gives rise to its beneficial effect on item recognition memory. Specifically, we assessed whether reinstating context in a recognition test facilitates subsequent memory for this context, beyond the facilitation conferred by presentation of the same context with a different study item. Reinstating the study context at test led to better accuracy in two-alternative forced choice recognition for target faces than did re-pairing those faces with another context encountered during the study phase. The advantage for reinstated over re-paired conditions occurred for both within-subjects (Exp. 1) and between-subjects (Exp. 2) manipulations. Critically, in a subsequent recognition test for the contexts themselves, contexts that had previously served in the reinstated condition were recognized better than contexts that had previously served in the re-paired context condition. This constitutes the first demonstration of continuous effects of context reinstatement on memory for context.
Neural mechanisms of reactivation-induced updating that enhance and distort memory
St. Jacques, Peggy L.; Olm, Christopher; Schacter, Daniel L.
2013-01-01
We remember a considerable number of personal experiences because we are frequently reminded of them, a process known as memory reactivation. Although memory reactivation helps to stabilize and update memories, reactivation may also introduce distortions if novel information becomes incorporated with memory. Here we used functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms mediating reactivation-induced updating in memory for events experienced during a museum tour. During scanning, participants were shown target photographs to reactivate memories from the museum tour followed by a novel lure photograph from an alternate tour. Later, participants were presented with target and lure photographs and asked to determine whether the photographs showed a stop they visited during the tour. We used a subsequent memory analysis to examine neural recruitment during reactivation that was associated with later true and false memories. We predicted that the quality of reactivation, as determined by online ratings of subjective recollection, would increase subsequent true memories but also facilitate incorporation of the lure photograph, thereby increasing subsequent false memories. The fMRI results revealed that the quality of reactivation modulated subsequent true and false memories via recruitment of left posterior parahippocampal, bilateral retrosplenial, and bilateral posterior inferior parietal cortices. However, the timing of neural recruitment and the way in which memories were reactivated contributed to differences in whether memory reactivation led to distortions or not. These data reveal the neural mechanisms recruited during memory reactivation that modify how memories will be subsequently retrieved, supporting the flexible and dynamic aspects of memory. PMID:24191059
Neural mechanisms of reactivation-induced updating that enhance and distort memory.
St Jacques, Peggy L; Olm, Christopher; Schacter, Daniel L
2013-12-03
We remember a considerable number of personal experiences because we are frequently reminded of them, a process known as memory reactivation. Although memory reactivation helps to stabilize and update memories, reactivation may also introduce distortions if novel information becomes incorporated with memory. Here we used functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms mediating reactivation-induced updating in memory for events experienced during a museum tour. During scanning, participants were shown target photographs to reactivate memories from the museum tour followed by a novel lure photograph from an alternate tour. Later, participants were presented with target and lure photographs and asked to determine whether the photographs showed a stop they visited during the tour. We used a subsequent memory analysis to examine neural recruitment during reactivation that was associated with later true and false memories. We predicted that the quality of reactivation, as determined by online ratings of subjective recollection, would increase subsequent true memories but also facilitate incorporation of the lure photograph, thereby increasing subsequent false memories. The fMRI results revealed that the quality of reactivation modulated subsequent true and false memories via recruitment of left posterior parahippocampal, bilateral retrosplenial, and bilateral posterior inferior parietal cortices. However, the timing of neural recruitment and the way in which memories were reactivated contributed to differences in whether memory reactivation led to distortions or not. These data reveal the neural mechanisms recruited during memory reactivation that modify how memories will be subsequently retrieved, supporting the flexible and dynamic aspects of memory.
Feld, Gordon B; Wilhem, Ines; Benedict, Christian; Rüdel, Benjamin; Klameth, Corinna; Born, Jan; Hallschmid, Manfred
2016-05-01
The neurochemical underpinnings of sleep's contribution to the establishment and maintenance of memory traces are largely unexplored. Considering that intranasal insulin administration to the CNS improves memory functions in healthy and memory-impaired humans, we tested whether brain insulin signaling and sleep interact to enhance memory consolidation in healthy participants. We investigated the effect of intranasal insulin on sleep-associated neurophysiological and neuroendocrine parameters and memory consolidation in 16 men and 16 women (aged 18-30 years), who learned a declarative word-pair task and a procedural finger sequence tapping task in the evening before intranasal insulin (160 IU) or placebo administration and 8 h of nocturnal sleep. On the subsequent evening, they learned interfering word-pairs and a new finger sequence before retrieving the original memories. Insulin increased growth hormone concentrations in the first night-half and EEG delta power during the second 90 min of non-rapid-eye-movement sleep. Insulin treatment impaired the acquisition of new contents in both the declarative and procedural memory systems on the next day, whereas retrieval of original memories was unchanged. Results indicate that sleep-associated memory consolidation is not a primary mediator of insulin's acute memory-improving effect, but that the peptide acts on mechanisms that diminish the subsequent encoding of novel information. Thus, by inhibiting processes of active forgetting during sleep, central nervous insulin might reduce the interfering influence of encoding new information.
Schofield, P W; Marder, K; Dooneief, G; Jacobs, D M; Sano, M; Stern, Y
1997-05-01
The validity of subjective memory complaints has been questioned by clinical studies that have shown little relationship between memory complaints and objective memory performance. These studies often have been cross-sectional in design, have excluded individuals with cognitive impairment, or have lacked a comparison group. The authors conducted a study that attempted to avoid these limitations. Memory complaints of 364 nondemented, community-dwelling elderly individuals were recorded as present or absent at the baseline evaluation. After 1 year, 169 subjects were reevaluated. Standardized neurologic and neuropsychological evaluations were used at each assessment to classify subjects as normal or cognitively impaired. At baseline, 31% of the normal subjects and 47% of those with cognitive impairment had memory complaints. Subjects with memory complaints had higher Hamilton depression scale scores than subjects without memory complaints but equivalent scores on a measure of total recall. At follow-up, multivariate analyses showed that subjects with baseline memory complaints had significantly greater decline in memory and cognition than subjects without memory complaints. Secondary analyses showed this effect to be confined to subjects with baseline cognitive impairment. Memory complaints may lack validity in subjects with normal cognition, but in nondemented individuals with cognitive impairment, memory complaints may predict subsequent cognitive decline.
The beneficial effect of testing: an event-related potential study
Bai, Cheng-Hua; Bridger, Emma K.; Zimmer, Hubert D.; Mecklinger, Axel
2015-01-01
The enhanced memory performance for items that are tested as compared to being restudied (the testing effect) is a frequently reported memory phenomenon. According to the episodic context account of the testing effect, this beneficial effect of testing is related to a process which reinstates the previously learnt episodic information. Few studies have explored the neural correlates of this effect at the time point when testing takes place, however. In this study, we utilized the ERP correlates of successful memory encoding to address this issue, hypothesizing that if the benefit of testing is due to retrieval-related processes at test then subsequent memory effects (SMEs) should resemble the ERP correlates of retrieval-based processing in their temporal and spatial characteristics. Participants were asked to learn Swahili-German word pairs before items were presented in either a testing or a restudy condition. Memory performance was assessed immediately and 1-day later with a cued recall task. Successfully recalling items at test increased the likelihood that items were remembered over time compared to items which were only restudied. An ERP subsequent memory contrast (later remembered vs. later forgotten tested items), which reflects the engagement of processes that ensure items are recallable the next day were topographically comparable with the ERP correlate of immediate recollection (immediately remembered vs. immediately forgotten tested items). This result shows that the processes which allow items to be more memorable over time share qualitatively similar neural correlates with the processes that relate to successful retrieval at test. This finding supports the notion that testing is more beneficial than restudying on memory performance over time because of its engagement of retrieval processes, such as the re-encoding of actively retrieved memory representations. PMID:26441577
Brain mechanisms of persuasion: how 'expert power' modulates memory and attitudes.
Klucharev, Vasily; Smidts, Ale; Fernández, Guillén
2008-12-01
Human behaviour is affected by various forms of persuasion. The general persuasive effect of high expertise of the communicator, often referred to as 'expert power', is well documented. We found that a single exposure to a combination of an expert and an object leads to a long-lasting positive effect on memory for and attitude towards the object. Using functional magnetic resonance imaging, we probed the neural processes predicting these behavioural effects. Expert context was associated with distributed left-lateralized brain activity in prefrontal and temporal cortices related to active semantic elaboration. Furthermore, experts enhanced subsequent memory effects in the medial temporal lobe (i.e. in hippocampus and parahippocampal gyrus) involved in memory formation. Experts also affected subsequent attitude effects in the caudate nucleus involved in trustful behaviour, reward processing and learning. These results may suggest that the persuasive effect of experts is mediated by modulation of caudate activity resulting in a re-evaluation of the object in terms of its perceived value. Results extend our view of the functional role of the dorsal striatum in social interaction and enable us to make the first steps toward a neuroscientific model of persuasion.
Brain mechanisms of persuasion: how ‘expert power’ modulates memory and attitudes
Smidts, Ale; Fernández, Guillén
2008-01-01
Human behaviour is affected by various forms of persuasion. The general persuasive effect of high expertise of the communicator, often referred to as ’expert power’, is well documented. We found that a single exposure to a combination of an expert and an object leads to a long-lasting positive effect on memory for and attitude towards the object. Using functional magnetic resonance imaging, we probed the neural processes predicting these behavioural effects. Expert context was associated with distributed left-lateralized brain activity in prefrontal and temporal cortices related to active semantic elaboration. Furthermore, experts enhanced subsequent memory effects in the medial temporal lobe (i.e. in hippocampus and parahippocampal gyrus) involved in memory formation. Experts also affected subsequent attitude effects in the caudate nucleus involved in trustful behaviour, reward processing and learning. These results may suggest that the persuasive effect of experts is mediated by modulation of caudate activity resulting in a re-evaluation of the object in terms of its perceived value. Results extend our view of the functional role of the dorsal striatum in social interaction and enable us to make the first steps toward a neuroscientific model of persuasion. PMID:19015077
The influence of children's pain memories on subsequent pain experience.
Noel, Melanie; Chambers, Christine T; McGrath, Patrick J; Klein, Raymond M; Stewart, Sherry H
2012-08-01
Healthy children are often required to repeatedly undergo painful medical procedures (eg, immunizations). Although memory is often implicated in children's reactions to future pain, there is a dearth of research directly examining the relationship between the 2. The current study investigated the influence of children's memories for a novel pain stimulus on their subsequent pain experience. One hundred ten healthy children (60 boys) between the ages of 8 and 12 years completed a laboratory pain task and provided pain ratings. Two weeks later, children provided pain ratings based on their memories as well as their expectancies about future pain. One month following the initial laboratory visit, children again completed the pain task and provided pain ratings. Results showed that children's memory of pain intensity was a better predictor of subsequent pain reporting than their actual initial reporting of pain intensity, and mediated the relationship between initial and subsequent pain reporting. Children who had negatively estimated pain memories developed expectations of greater pain prior to a subsequent pain experience and showed greater increases in pain ratings over time than children who had accurate or positively estimated pain memories. These findings highlight the influence of pain memories on healthy children's expectations of future pain and subsequent pain experiences and extend predictive models of subsequent pain reporting. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Differentiation of subsequent memory effects between retrieval practice and elaborative study.
Liu, Yi; Rosburg, Timm; Gao, Chuanji; Weber, Christine; Guo, Chunyan
2017-07-01
Retrieval practice enhances memory retention more than re-studying. The underlying mechanisms of this retrieval practice effect have remained widely unclear. According to the elaborative retrieval hypothesis, activation of elaborative information occurs to a larger extent during testing than re-studying. In contrast, the episodic context account has suggested that recollecting prior episodic information (especially the temporal context) contributes to memory retention. To adjudicate the distinction between these two accounts, the present study used the classical retrieval practice effect paradigm to compare retrieval practice and elaborative study. In an initial behavioral experiment, retrieval practice produced greater retention than elaboration and re-studying in a one-week delayed test. In a subsequent event-related potential (ERP) experiment, retrieval practice resulted in reliably superior accuracy in the delayed test compared to elaborative study. In the ERPs, a frontally distributed subsequent memory effect (SME), starting at 300ms, occurred in the elaborative study condition, but not in the retrieval practice condition. A parietal SME emerged in the retrieval practice condition from 500 to 700ms, but was absent in the elaborative study condition. After 700ms, a late SME was present in the retrieval practice condition, but not in the elaborative study condition. Moreover, SMEs lasted longer in retrieval practice than in elaboration. The frontal SME in the elaborative study condition might be related to semantic processing or working memory-based elaboration, whereas the parietal and widespread SME in the retrieval practice condition might be associated with episodic recollection processes. These findings contradict the elaborative retrieval theory, and suggest that contextual recollection rather than activation of semantic information contributes to the retrieval practice effect, supporting the episodic context account. Copyright © 2017. Published by Elsevier B.V.
ERIC Educational Resources Information Center
Straube, Benjamin; Green, Antonia; Weis, Susanne; Chatterjee, Anjan; Tilo, Kircher
2009-01-01
In human face-to-face communication, the content of speech is often illustrated by coverbal gestures. Behavioral evidence suggests that gestures provide advantages in the comprehension and memory of speech. Yet, how the human brain integrates abstract auditory and visual information into a common representation is not known. Our study investigates…
Hold it! Memory affects attentional dwell time.
Parks, Emily L; Hopfinger, Joseph B
2008-12-01
The allocation of attention, including the initial orienting and the subsequent dwell time, is affected by several bottom-up and top-down factors. How item memory affects these processes, however, remains unclear. Here, we investigated whether item memory affects attentional dwell time by using a modified version of the attentional blink (AB) paradigm. Across four experiments, our results revealed that the AB was significantly affected by memory status (novel vs. old), but critically, this effect depended on the ongoing memory context. Specifically, items that were unique in terms of memory status demanded more resources, as measured by a protracted AB. The present findings suggest that a more comprehensive understanding of memory's effects on attention can be obtained by accounting for an item's memorial context, as well as its individual item memory strength. Our results provide new evidence that item memory and memory context play a significant role in the temporal allocation of attention.
Destination memory for self-generated actions.
El Haj, Mohamad
2016-10-01
There is a substantial body of literature showing memory enhancement for self-generated information in normal aging. The present paper investigated this outcome for destination memory or memory for outputted information. In Experiment 1, younger adults and older adults had to place (self-generated actions) and observe an experimenter placing (experiment-generated actions) items into two different destinations (i.e., a black circular box and a white square box). On a subsequent recognition task, the participants had to decide into which box each item had originally been placed. These procedures showed better destination memory for self- than experimenter-generated actions. In Experiment 2, destination and source memory were assessed for self-generated actions. Younger adults and older adults had to place items into the two boxes (self-generated actions), take items out of the boxes (self-generated actions), and observe an experimenter taking items out of the boxes (experiment-generated actions). On a subsequent recognition task, they had to decide into which box (destination memory)/from which box (source memory) each item had originally been placed/taken. For both populations, source memory was better than destination memory for self-generated actions, and both were better than source memory for experimenter-generated actions. Taken together, these findings highlight the beneficial effect of self-generation on destination memory in older adults.
A Positive Generation Effect on Memory for Auditory Context.
Overman, Amy A; Richard, Alison G; Stephens, Joseph D W
2017-06-01
Self-generation of information during memory encoding has large positive effects on subsequent memory for items, but mixed effects on memory for contextual information associated with items. A processing account of generation effects on context memory (Mulligan in Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(4), 838-855, 2004; Mulligan, Lozito, & Rosner in Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(4), 836-846, 2006) proposes that these effects depend on whether the generation task causes any shift in processing of the type of context features for which memory is being tested. Mulligan and colleagues have used this account to predict various negative effects of generation on context memory, but the account also predicts positive generation effects under certain circumstances. The present experiment provided a critical test of the processing account by examining how generation affected memory for auditory rather than visual context. Based on the processing account, we predicted that generation of rhyme words should enhance processing of auditory information associated with the words (i.e., voice gender), whereas generation of antonym words should have no effect. These predictions were confirmed, providing support to the processing account.
Chiu, Yu-Chin; Egner, Tobias
2015-08-26
Response inhibition is a key component of executive control, but its relation to other cognitive processes is not well understood. We recently documented the "inhibition-induced forgetting effect": no-go cues are remembered more poorly than go cues. We attributed this effect to central-resource competition, whereby response inhibition saps attention away from memory encoding. However, this proposal is difficult to test with behavioral means alone. We therefore used fMRI in humans to test two neural predictions of the "common resource hypothesis": (1) brain regions associated with response inhibition should exhibit greater resource demands during encoding of subsequently forgotten than remembered no-go cues; and (2) this higher inhibitory resource demand should lead to memory encoding regions having less resources available during encoding of subsequently forgotten no-go cues. Participants categorized face stimuli by gender in a go/no-go task and, following a delay, performed a surprise recognition memory test for those faces. Replicating previous findings, memory was worse for no-go than for go stimuli. Crucially, forgetting of no-go cues was predicted by high inhibitory resource demand, as quantified by the trial-by-trial ratio of activity in neural "no-go" versus "go" networks. Moreover, this index of inhibitory demand exhibited an inverse trial-by-trial relationship with activity in brain regions responsible for the encoding of no-go cues into memory, notably the ventrolateral prefrontal cortex. This seesaw pattern between the neural resource demand of response inhibition and activity related to memory encoding directly supports the hypothesis that response inhibition temporarily saps attentional resources away from stimulus processing. Recent behavioral experiments showed that inhibiting a motor response to a stimulus (a "no-go cue") impairs subsequent memory for that cue. Here, we used fMRI to test whether this "inhibition-induced forgetting effect" is caused by competition for neural resources between the processes of response inhibition and memory encoding. We found that trial-by-trial variations in neural inhibitory resource demand predicted subsequent forgetting of no-go cues and that higher inhibitory demand was furthermore associated with lower concurrent activation in brain regions responsible for successful memory encoding of no-go cues. Thus, motor inhibition and stimulus encoding appear to compete with each other: when more resources have to be devoted to inhibiting action, less are available for encoding sensory stimuli. Copyright © 2015 the authors 0270-6474/15/3511936-10$15.00/0.
Contextual Distinctiveness Produces Long-Lasting Priming of Pop-Out
ERIC Educational Resources Information Center
Thomson, David R.; Milliken, Bruce
2013-01-01
Maljkovic and Nakayama have demonstrated memory influences in singleton search from one trial to the next, an effect they termed "priming of pop-out" (PoP). This effect was described as resulting from the persistence of an implicit memory trace, the influence of which could be observed for around 5-8 subsequent trials. Thomson and…
The Effect of Hippocampal Damage in Children on Recalling the Past and Imagining New Experiences
ERIC Educational Resources Information Center
Cooper, Janine M.; Vargha-Khadem, Faraneh; Gadian, David G.; Maguire, Eleanor A.
2011-01-01
Compared to adults, relatively little is known about autobiographical memory and the ability to imagine fictitious and future scenarios in school-aged children, despite the importance of these functions for development and subsequent independent living. Even less is understood about the effect of early hippocampal damage on children's memory and…
Memory Performance for Everyday Motivational and Neutral Objects Is Dissociable from Attention
Schomaker, Judith; Wittmann, Bianca C.
2017-01-01
Episodic memory is typically better for items coupled with monetary reward or punishment during encoding. It is yet unclear whether memory is also enhanced for everyday objects with appetitive or aversive values learned through a lifetime of experience, and to what extent episodic memory enhancement for motivational and neutral items is attributable to attention. In a first experiment, we investigated attention to everyday motivational objects using eye-tracking during free-viewing and subsequently tested episodic memory using a remember/know procedure. Attention was directed more to aversive stimuli, as evidenced by longer viewing durations, whereas recollection was higher for both appetitive and aversive objects. In the second experiment, we manipulated the visual contrast of neutral objects through changes of contrast to further dissociate attention and memory encoding. While objects presented with high visual contrast were looked at longer, recollection was best for objects presented in unmodified, medium contrast. Generalized logistic mixed models on recollection performance showed that attention as measured by eye movements did not enhance subsequent memory, while motivational value (Experiment 1) and visual contrast (Experiment 2) had quadratic effects in opposite directions. Our findings suggest that an enhancement of incidental memory encoding for appetitive items can occur without an increase in attention and, vice versa, that enhanced attention towards salient neutral objects is not necessarily associated with memory improvement. Together, our results provide evidence for a double dissociation of attention and memory effects under certain conditions. PMID:28694774
Carr, Valerie A; Viskontas, Indre V; Engel, Stephen A; Knowlton, Barbara J
2010-11-01
Studies examining medial temporal lobe (MTL) involvement in memory formation typically assess memory performance after a single, short delay. Thus, the relationship between MTL encoding activity and memory durability over time remains poorly characterized. To explore this relationship, we scanned participants using high-resolution functional imaging of the MTL as they encoded object pairs; using the remember/know paradigm, we then assessed memory performance for studied items both 10 min and 1 week later. Encoding trials were classified as either subsequently recollected across both delays, transiently recollected (i.e., recollected at 10 min but not after 1 week), consistently familiar, or consistently forgotten. Activity in perirhinal cortex (PRC) and a hippocampal subfield comprising the dentate gyrus and CA fields 2 and 3 reflected successful encoding only when items were recollected consistently across both delays. Furthermore, in PRC, encoding activity for items that later were consistently recollected was significantly greater than that for transiently recollected and consistently familiar items. Parahippocampal cortex, in contrast, showed a subsequent memory effect during encoding of items that were recollected after 10 min, regardless of whether they also were recollected after 1 week. These data suggest that MTL subfields contribute uniquely to the formation of memories that endure over time, and highlight a role for PRC in supporting subsequent durable episodic recollection.
Shi, Hai-Shui; Luo, Yi-Xiao; Yin, Xi; Wu, Hong-Hai; Xue, Gai; Geng, Xu-Hong; Hou, Yan-Ning
2015-01-01
Drug addiction is considered an aberrant form of learning, and drug-associated memories evoked by the presence of associated stimuli (drug context or drug-related cues) contribute to recurrent craving and reinstatement. Epigenetic changes mediated by DNA methyltransferase (DNMT) have been implicated in the reconsolidation of fear memory. Here, we investigated the role of DNMT activity in the reconsolidation of cocaine-associated memories. Rats were trained over 10 days to intravenously self-administer cocaine by nosepokes. Each injection was paired with a light/tone conditioned stimulus (CS). After acquisition of stable self-administration behaviour, rats underwent nosepoke extinction (10 d) followed by cue-induced reactivation and subsequent cue-induced and cocaine-priming + cue-induced reinstatement tests or subsequently tested to assess the strength of the cocaine-associated cue as a conditioned reinforcer to drive cocaine seeking behaviour. Bilateral intra-basolateral amygdala (BLA) infusion of the DNMT inhibitor5-azacytidine (5-AZA, 1 μg per side) immediately following reactivation decreased subsequent reinstatement induced by cues or cocaine priming as well as cue-maintained cocaine-seeking behaviour. In contrast, delayed intra-BLA infusion of 5-AZA 6 h after reactivation or 5-AZA infusion without reactivation had no effect on subsequent cue-induced reinstatement. These findings indicate that memory reconsolidation for a cocaine-paired stimulus depends critically on DNMT activity in the BLA. PMID:26289919
Philippe, Frederick L; Bouizegarene, Nabil; Guilbault, Valérie; Rajotte, Guillaume; Houle, Iliane
2015-01-01
Narrative research claims that episodic/autobiographical memory characteristics and themes represent stable individual differences that relate to well-being. However, the effects of the order of administration of memory descriptions and well-being scales have never been investigated. Of importance, social cognitive research has shown that trivial contextual factors, such as completing a self-report measure, can influence the type of memories recollected afterwards and that memory recollection can transiently affect subsequent self-report ratings--both of which underscore that transient contextual effects, rather than stable individual differences in memory could be responsible for the correlation between memory characteristics and well-being. The present study examined if the order in which (positive or negative) memory and well-being scales are completed affects the characteristics and themes of the memory described, the scores of well-being reported and the relationship between the two. The results revealed some effects of order of administration when memories were described before completing well-being scales, but only on a situational measure of well-being, not on a trait measure. In sum, we recommend assessing memory-related material at the end of questionnaires to avoid potential mood-priming effects.
Eacret, Darrell; Grafe, Laura A; Dobkin, Jane; Gotter, Anthony L; Rengerb, John J; Winrow, Christopher J; Bhatnagar, Seema
2018-06-11
Orexins are neuropeptides synthesized in the lateral hypothalamus that influence arousal, feeding, reward pathways, and the response to stress. However, the role of orexins in repeated stress is not fully characterized. Here, we examined how orexins and their receptors contribute to the coping response during repeated social defeat and subsequent anxiety-like and memory-related behaviors. Specifically, we used Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to stimulate orexins prior to each of five consecutive days of social defeat stress in adult male rats. Additionally, we determined the role of the orexin 2 receptor in these behaviors by using a selective orexin 2 receptor antagonist (MK-1064) administered prior to each social defeat. Following the 5 day social defeat conditioning period, rats were evaluated in social interaction and novel object recognition paradigms to assess anxiety-like behavior and recognition memory, respectively. Activation of orexin neurons by DREADDs prior to each social defeat decreased the average latency to become defeated across 5 days, indicative of a passive coping strategy that we have previously linked to a stress vulnerable phenotype. Moreover, stimulation of orexin signaling during defeat conditioning decreased subsequent social interaction and performance in the novel object recognition test indicating increased subsequent anxiety-like behavior and reduced working memory. Blocking the orexin 2 receptor during repeated defeat did not alter these effects. Together, our results suggest that orexin neuron activation produces a passive coping phenotype during social defeat leading to subsequent anxiety-like behaviors and memory deficits. Copyright © 2018. Published by Elsevier B.V.
Emotion and Destination Memory in Alzheimer's Disease.
El Haj, Mohamad; Raffard, Stephane; Antoine, Pascal; Gely-Nargeot, Marie-Christine
2015-01-01
Research shows beneficial effect of emotion on self-related information in patients with Alzheimer's Disease (AD). Our paper investigates whether emotion improves destination memory (e.g., did I tell you about the manuscript?), which is thought to be self-related (e.g., did I tell you about the manuscript?). To this aim, twenty-seven AD patients and thirty healthy older adults told 24 neutral facts to eight neutral faces, eight positive faces, and eight negative faces. On a subsequent recognition task, participants had to decide whether they had previously told a given fact to a given face or not. Data revealed no emotional effect on destination memory in AD patients. However, in healthy older adults, better destination memory was observed for negative faces than for positive faces, and the latter memory was better than for neutral faces. The absence of emotional effect on destination memory in AD is interpreted in terms of substantial decline in this memory in the disease.
Time-dependent effects of cortisol on the contextualization of emotional memories.
van Ast, Vanessa A; Cornelisse, Sandra; Meeter, Martijn; Joëls, Marian; Kindt, Merel
2013-12-01
The inability to store fearful memories into their original encoding context is considered to be an important vulnerability factor for the development of anxiety disorders like posttraumatic stress disorder. Altered memory contextualization most likely involves effects of the stress hormone cortisol, acting via receptors located in the memory neurocircuitry. Cortisol via these receptors induces rapid nongenomic effects followed by slower genomic effects, which are thought to modulate cognitive function in opposite, complementary ways. Here, we targeted these time-dependent effects of cortisol during memory encoding and tested subsequent contextualization of emotional and neutral memories. In a double-blind, placebo-controlled design, 64 men were randomly assigned to one of three groups: 1) received 10 mg hydrocortisone 30 minutes (rapid cortisol effects) before a memory encoding task; 2) received 10 mg hydrocortisone 210 minutes (slow cortisol) before a memory encoding task; or 3) received placebo at both times. During encoding, participants were presented with neutral and emotional words in unique background pictures. Approximately 24 hours later, context dependency of their memories was assessed. Recognition data revealed that cortisol's rapid effects impair emotional memory contextualization, while cortisol's slow effects enhance it. Neutral memory contextualization remained unaltered by cortisol, irrespective of the timing of the drug. This study shows distinct time-dependent effects of cortisol on the contextualization of specifically emotional memories. The results suggest that rapid effects of cortisol may lead to impaired emotional memory contextualization, while slow effects of cortisol may confer protection against emotional memory generalization. © 2013 Society of Biological Psychiatry.
Hoscheidt, Siobhan M; LaBar, Kevin S; Ryan, Lee; Jacobs, W Jake; Nadel, Lynn
2014-07-01
Stress at encoding affects memory processes, typically enhancing, or preserving, memory for emotional information. These effects have interesting implications for eyewitness accounts, which in real-world contexts typically involve encoding an aversive event under stressful conditions followed by potential exposure to misinformation. The present study investigated memory for a negative event encoded under stress and subsequent misinformation endorsement. Healthy young adults participated in a between-groups design with three experimental sessions conducted 48 h apart. Session one consisted of a psychosocial stress induction (or control task) followed by incidental encoding of a negative slideshow. During session two, participants were asked questions about the slideshow, during which a random subgroup was exposed to misinformation. Memory for the slideshow was tested during the third session. Assessment of memory accuracy across stress and no-stress groups revealed that stress induced just prior to encoding led to significantly better memory for the slideshow overall. The classic misinformation effect was also observed - participants exposed to misinformation were significantly more likely to endorse false information during memory testing. In the stress group, however, memory accuracy and misinformation effects were moderated by arousal experienced during encoding of the negative event. Misinformed-stress group participants who reported that the negative slideshow elicited high arousal during encoding were less likely to endorse misinformation for the most aversive phase of the story. Furthermore, these individuals showed better memory for components of the aversive slideshow phase that had been directly misinformed. Results from the current study provide evidence that stress and high subjective arousal elicited by a negative event act concomitantly during encoding to enhance emotional memory such that the most aversive aspects of the event are well remembered and subsequently more resistant to misinformation effects. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Moderate Levels of Activation Lead to Forgetting In the Think/No-Think Paradigm
Detre, Greg J.; Natarajan, Annamalai; Gershman, Samuel J.; Norman, Kenneth A.
2013-01-01
Using the think/no-think paradigm (Anderson & Green, 2001), researchers have found that suppressing retrieval of a memory (in the presence of a strong retrieval cue) can make it harder to retrieve that memory on a subsequent test. This effect has been replicated numerous times, but the size of the effect is highly variable. Also, it is unclear from a neural mechanistic standpoint why preventing recall of a memory now should impair your ability to recall that memory later. Here, we address both of these puzzles using the idea, derived from computational modeling and studies of synaptic plasticity, that the function relating memory activation to learning is U-shaped, such that moderate levels of memory activation lead to weakening of the memory and higher levels of activation lead to strengthening. According to this view, forgetting effects in the think/no-think paradigm occur when the suppressed item activates moderately during the suppression attempt, leading to weakening; the effect is variable because sometimes the suppressed item activates strongly (leading to strengthening) and sometimes it does not activate at all (in which case no learning takes place). To test this hypothesis, we ran a think/no-think experiment where participants learned word-picture pairs; we used pattern classifiers, applied to fMRI data, to measure how strongly the picture associates were activating when participants were trying not to retrieve these associates, and we used a novel Bayesian curve-fitting procedure to relate this covert neural measure of retrieval to performance on a later memory test. In keeping with our hypothesis, the curve-fitting procedure revealed a nonmonotonic relationship between memory activation (as measured by the classifier) and subsequent memory, whereby moderate levels of activation of the to-be-suppressed item led to diminished performance on the final memory test, and higher levels of activation led to enhanced performance on the final test. PMID:23499722
Moderate levels of activation lead to forgetting in the think/no-think paradigm.
Detre, Greg J; Natarajan, Annamalai; Gershman, Samuel J; Norman, Kenneth A
2013-10-01
Using the think/no-think paradigm (Anderson & Green, 2001), researchers have found that suppressing retrieval of a memory (in the presence of a strong retrieval cue) can make it harder to retrieve that memory on a subsequent test. This effect has been replicated numerous times, but the size of the effect is highly variable. Also, it is unclear from a neural mechanistic standpoint why preventing recall of a memory now should impair your ability to recall that memory later. Here, we address both of these puzzles using the idea, derived from computational modeling and studies of synaptic plasticity, that the function relating memory activation to learning is U-shaped, such that moderate levels of memory activation lead to weakening of the memory and higher levels of activation lead to strengthening. According to this view, forgetting effects in the think/no-think paradigm occur when the suppressed item activates moderately during the suppression attempt, leading to weakening; the effect is variable because sometimes the suppressed item activates strongly (leading to strengthening) and sometimes it does not activate at all (in which case no learning takes place). To test this hypothesis, we ran a think/no-think experiment where participants learned word-picture pairs; we used pattern classifiers, applied to fMRI data, to measure how strongly the picture associates were activating when participants were trying not to retrieve these associates, and we used a novel Bayesian curve-fitting procedure to relate this covert neural measure of retrieval to performance on a later memory test. In keeping with our hypothesis, the curve-fitting procedure revealed a nonmonotonic relationship between memory activation (as measured by the classifier) and subsequent memory, whereby moderate levels of activation of the to-be-suppressed item led to diminished performance on the final memory test, and higher levels of activation led to enhanced performance on the final test. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chand, Vineeta; Bonnici, Lisa; Baynes, Kathleen; Harvey, Danielle; Mungas, Dan; Simon, Christa; Reed, Bruce
2012-01-01
Objective. The Nun Study showed that lower linguistic ability in young adulthood, measured by idea density (ID), increased the risk of dementia in late life. The present study examined whether ID measured in late life continues to predict the trajectory of cognitive change. Method. ID was measured in 81 older adults who were followed longitudinally for an average of 4.3 years. Changes in global cognition and 4 specific neuropsychological domains (episodic memory, semantic memory, spatial abilities, and executive function) were examined as outcomes. Separate random effects models tested the effect of ID on longitudinal change in outcomes, adjusted for age and education. Results. Lower ID was associated with greater subsequent decline in global cognition, semantic memory, episodic memory, and spatial abilities. When analysis was restricted to only participants without dementia at the time ID was collected, results were similar. Discussion. Linguistic ability in young adulthood, as measured by ID, has been previously proposed as an index of neurocognitive development and/or cognitive reserve. The present study provides evidence that even when ID is measured in old age, it continues to be associated with subsequent cognitive decline and as such may continue to provide a marker of cognitive reserve. PMID:22357642
Barber, Sarah J; Harris, Celia B; Rajaram, Suparna
2015-03-01
Although a group of people working together remembers more than any one individual, they recall less than their predicted potential. This finding is known as collaborative inhibition and is generally thought to arise due to retrieval disruption. However, there is growing evidence that is inconsistent with the retrieval disruption account, suggesting that additional mechanisms also contribute to collaborative inhibition. In the current studies, we examined 2 alternate mechanisms: retrieval inhibition and retrieval blocking. To identify the contributions of retrieval disruption, retrieval inhibition, and retrieval blocking, we tested how collaborative recall of entirely unshared information influences subsequent individual recall and individual recognition memory. If collaborative inhibition is due solely to retrieval disruption, then there should be a release from the negative effects of collaboration on subsequent individual recall and recognition tests. If it is due to retrieval inhibition, then the negative effects of collaboration should persist on both individual recall and recognition memory tests. Finally, if it is due to retrieval blocking, then the impairment should persist on subsequent individual free recall, but not recognition, tests. Novel to the current study, results suggest that retrieval inhibition plays a role in the collaborative inhibition effect. The negative effects of collaboration persisted on a subsequent, always-individual, free-recall test (Experiment 1) and also on a subsequent, always-individual, recognition test (Experiment 2). However, consistent with the retrieval disruption account, this deficit was attenuated (Experiment 1). Together, these results suggest that, in addition to retrieval disruption, multiple mechanisms play a role in collaborative inhibition. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Lonergan, Michelle H; Olivera-Figueroa, Lening A; Pitman, Roger K; Brunet, Alain
2013-07-01
Considering the pivotal role of negative emotional experiences in the development and persistence of mental disorders, interfering with the consolidation/reconsolidation of such experiences would open the door to a novel treatment approach in psychiatry. We conducted a meta-analysis on the experimental evidence regarding the capacity of the ß-blocker propranolol to block the consolidation/reconsolidation of emotional memories in healthy adults. Selected studies consisted of randomized, double-blind experiments assessing long-term memory for emotional material in healthy adults and involved at least 1 propranolol and 1 placebo condition. We searched PsycInfo, PubMed, Web of Science, Cochrane Central, PILOTS, Google Scholar and clinicaltrials.org for eligible studies from the period 1995-2012. Ten consolidation (n = 259) and 8 reconsolidation (n = 308) experiments met the inclusion criteria. We calculated effect sizes (Hedges g) using a random effects model. Compared with placebo, propranolol given before memory consolidation reduced subsequent recall for negatively valenced stories, pictures and word lists (Hedges g = 0.44, 95% confidence interval [CI] 0.14-0.74). Propranolol before reconsolidation also reduced subsequent recall for negatively valenced emotional words and the expression of cue-elicited fear responses (Hedges g = 0.56, 95% CI 0.13-1.00). Limitations include the moderate number of studies examining the influence of propranolol on emotional memory consolidation and reconsolidation in healthy adults and the fact that most samples consisted entirely of young adults, which may limit the ecological validity of results. Propranolol shows promise in reducing subsequent memory for new or recalled emotional material in healthy adults. However, future studies will need to investigate whether more powerful idiosyncratic emotional memories can also be weakened and whether this weakening can bring about long-lasting symptomatic relief in clinical populations, such as patients with posttraumatic stress or other event-related disorders.
Lonergan, Michelle H.; Olivera-Figueroa, Lening A.; Pitman, Roger K.; Brunet, Alain
2013-01-01
Background Considering the pivotal role of negative emotional experiences in the development and persistence of mental disorders, interfering with the consolidation/reconsolidation of such experiences would open the door to a novel treatment approach in psychiatry. We conducted a meta-analysis on the experimental evidence regarding the capacity of the β-blocker propranolol to block the consolidation/reconsolidation of emotional memories in healthy adults. Methods Selected studies consisted of randomized, double-blind experiments assessing long-term memory for emotional material in healthy adults and involved at least 1 propranolol and 1 placebo condition. We searched PsycInfo, PubMed, Web of Science, Cochrane Central, PILOTS, Google Scholar and clinicaltrials.org for eligible studies from the period 1995–2012. Ten consolidation (n = 259) and 8 reconsolidation (n = 308) experiments met the inclusion criteria. We calculated effect sizes (Hedges g) using a random effects model. Results Compared with placebo, propranolol given before memory consolidation reduced subsequent recall for negatively valenced stories, pictures and word lists (Hedges g = 0.44, 95% confidence interval [CI] 0.14–0.74). Propranolol before reconsolidation also reduced subsequent recall for negatively valenced emotional words and the expression of cue-elicited fear responses (Hedges g = 0.56, 95% CI 0.13–1.00). Limitations Limitations include the moderate number of studies examining the influence of propranolol on emotional memory consolidation and reconsolidation in healthy adults and the fact that most samples consisted entirely of young adults, which may limit the ecological validity of results. Conclusion Propranolol shows promise in reducing subsequent memory for new or recalled emotional material in healthy adults. However, future studies will need to investigate whether more powerful idiosyncratic emotional memories can also be weakened and whether this weakening can bring about long-lasting symptomatic relief in clinical populations, such as patients with posttraumatic stress or other event-related disorders. PMID:23182304
Differential effects of ongoing EEG beta and theta power on memory formation
Scholz, Sebastian; Schneider, Signe Luisa
2017-01-01
Recently, elevated ongoing pre-stimulus beta power (13–17 Hz) at encoding has been associated with subsequent memory formation for visual stimulus material. It is unclear whether this activity is merely specific to visual processing or whether it reflects a state facilitating general memory formation, independent of stimulus modality. To answer that question, the present study investigated the relationship between neural pre-stimulus oscillations and verbal memory formation in different sensory modalities. For that purpose, a within-subject design was employed to explore differences between successful and failed memory formation in the visual and auditory modality. Furthermore, associative memory was addressed by presenting the stimuli in combination with background images. Results revealed that similar EEG activity in the low beta frequency range (13–17 Hz) is associated with subsequent memory success, independent of stimulus modality. Elevated power prior to stimulus onset differentiated successful from failed memory formation. In contrast, differential effects between modalities were found in the theta band (3–7 Hz), with an increased oscillatory activity before the onset of later remembered visually presented words. In addition, pre-stimulus theta power dissociated between successful and failed encoding of associated context, independent of the stimulus modality of the item itself. We therefore suggest that increased ongoing low beta activity reflects a memory promoting state, which is likely to be moderated by modality-independent attentional or inhibitory processes, whereas high ongoing theta power is suggested as an indicator of the enhanced binding of incoming interlinked information. PMID:28192459
Retrieval practice enhances the accessibility but not the quality of memory.
Sutterer, David W; Awh, Edward
2016-06-01
Numerous studies have demonstrated that retrieval from long-term memory (LTM) can enhance subsequent memory performance, a phenomenon labeled the retrieval practice effect. However, the almost exclusive reliance on categorical stimuli in this literature leaves open a basic question about the nature of this improvement in memory performance. It has not yet been determined whether retrieval practice improves the probability of successful memory retrieval or the quality of the retrieved representation. To answer this question, we conducted three experiments using a mixture modeling approach (Zhang & Luck, 2008) that provides a measure of both the probability of recall and the quality of the recalled memories. Subjects attempted to memorize the color of 400 unique shapes. After every 10 images were presented, subjects either recalled the last 10 colors (the retrieval practice condition) by clicking on a color wheel with each shape as a retrieval cue or they participated in a control condition that involved no further presentations (Experiment 1) or restudy of the 10 shape/color associations (Experiments 2 and 3). Performance in a subsequent delayed recall test revealed a robust retrieval practice effect. Subjects recalled a significantly higher proportion of items that they had previously retrieved relative to items that were untested or that they had restudied. Interestingly, retrieval practice did not elicit any improvement in the precision of the retrieved memories. The same empirical pattern also was observed following delays of greater than 24 hours. Thus, retrieval practice increases the probability of successful memory retrieval but does not improve memory quality.
ERIC Educational Resources Information Center
Boucher, Victor J.
2006-01-01
Language learning requires a capacity to recall novel series of speech sounds. Research shows that prosodic marks create grouping effects enhancing serial recall. However, any restriction on memory affecting the reproduction of prosody would limit the set of patterns that could be learned and subsequently used in speech. By implication, grouping…
Effects of Different Types of True-False Questions on Memory Awareness and Long-Term Retention
ERIC Educational Resources Information Center
Schaap, Lydia; Verkoeijen, Peter; Schmidt, Henk
2014-01-01
This study investigated the effects of two different true-false questions on memory awareness and long-term retention of knowledge. Participants took four subsequent knowledge tests on curriculum learning material that they studied at different retention intervals prior to the start of this study (i.e. prior to the first test). At the first and…
Increased gamma band power during movement planning coincides with motor memory retrieval.
Thürer, Benjamin; Stockinger, Christian; Focke, Anne; Putze, Felix; Schultz, Tanja; Stein, Thorsten
2016-01-15
The retrieval of motor memory requires a previous memory encoding and subsequent consolidation of the specific motor memory. Previous work showed that motor memory seems to rely on different memory components (e.g., implicit, explicit). However, it is still unknown if explicit components contribute to the retrieval of motor memories formed by dynamic adaptation tasks and which neural correlates are linked to memory retrieval. We investigated the lower and higher gamma bands of subjects' electroencephalography during encoding and retrieval of a dynamic adaptation task. A total of 24 subjects were randomly assigned to a treatment and control group. Both groups adapted to a force field A on day 1 and were re-exposed to the same force field A on day 3 of the experiment. On day 2, treatment group learned an interfering force field B whereas control group had a day rest. Kinematic analyses showed that control group improved their initial motor performance from day 1 to day 3 but treatment group did not. This behavioral result coincided with an increased higher gamma band power in the electrodes over prefrontal areas on the initial trials of day 3 for control but not treatment group. Intriguingly, this effect vanished with the subsequent re-adaptation on day 3. We suggest that improved re-test performance in a dynamic motor adaptation task is contributed by explicit memory and that gamma bands in the electrodes over the prefrontal cortex are linked to these explicit components. Furthermore, we suggest that the contribution of explicit memory vanishes with the subsequent re-adaptation while task automaticity increases. Copyright © 2015 Elsevier Inc. All rights reserved.
Karlsson Wirebring, Linnea; Wiklund-Hörnqvist, Carola; Eriksson, Johan; Andersson, Micael; Jonsson, Bert; Nyberg, Lars
2015-07-01
Encoding and retrieval processes enhance long-term memory performance. The efficiency of encoding processes has recently been linked to representational consistency: the reactivation of a representation that gets more specific each time an item is further studied. Here we examined the complementary hypothesis of whether the efficiency of retrieval processes also is linked to representational consistency. Alternatively, recurrent retrieval might foster representational variability--the altering or adding of underlying memory representations. Human participants studied 60 Swahili-Swedish word pairs before being scanned with fMRI the same day and 1 week later. On Day 1, participants were tested three times on each word pair, and on Day 7 each pair was tested once. A BOLD signal change in right superior parietal cortex was associated with subsequent memory on Day 1 and with successful long-term retention on Day 7. A representational similarity analysis in this parietal region revealed that beneficial recurrent retrieval was associated with representational variability, such that the pattern similarity on Day 1 was lower for retrieved words subsequently remembered compared with those subsequently forgotten. This was mirrored by a monotonically decreased BOLD signal change in dorsolateral prefrontal cortex on Day 1 as a function of repeated successful retrieval for words subsequently remembered, but not for words subsequently forgotten. This reduction in prefrontal response could reflect reduced demands on cognitive control. Collectively, the results offer novel insights into why memory retention benefits from repeated retrieval, and they suggest fundamental differences between repeated study and repeated testing. Repeated testing is known to produce superior long-term retention of the to-be-learned material compared with repeated encoding and other learning techniques, much because it fosters repeated memory retrieval. This study demonstrates that repeated memory retrieval might strengthen memory by inducing more differentiated or elaborated memory representations in the parietal cortex, and at the same time reducing demands on prefrontal-cortex-mediated cognitive control processes during retrieval. The findings contrast with recent demonstrations that repeated encoding induces less differentiated or elaborated memory representations. Together, this study suggests a potential neurocognitive explanation of why repeated retrieval is more beneficial for long-term retention than repeated encoding, a phenomenon known as the testing effect. Copyright © 2015 the authors 0270-6474/15/359595-08$15.00/0.
Verbal overshadowing of visual memories: some things are better left unsaid.
Schooler, J W; Engstler-Schooler, T Y
1990-01-01
It is widely believed that verbal processing generally improves memory performance. However, in a series of six experiments, verbalizing the appearance of previously seen visual stimuli impaired subsequent recognition performance. In Experiment 1, subjects viewed a videotape including a salient individual. Later, some subjects described the individual's face. Subjects who verbalized the face performed less well on a subsequent recognition test than control subjects who did not engage in memory verbalization. The results of Experiment 2 replicated those of Experiment 1 and further clarified the effect of memory verbalization by demonstrating that visualization does not impair face recognition. In Experiments 3 and 4 we explored the hypothesis that memory verbalization impairs memory for stimuli that are difficult to put into words. In Experiment 3 memory impairment followed the verbalization of a different visual stimulus: color. In Experiment 4 marginal memory improvement followed the verbalization of a verbal stimulus: a brief spoken statement. In Experiments 5 and 6 the source of verbally induced memory impairment was explored. The results of Experiment 5 suggested that the impairment does not reflect a temporary verbal set, but rather indicates relatively long-lasting memory interference. Finally, Experiment 6 demonstrated that limiting subjects' time to make recognition decisions alleviates the impairment, suggesting that memory verbalization overshadows but does not eradicate the original visual memory. This collection of results is consistent with a recording interference hypothesis: verbalizing a visual memory may produce a verbally biased memory representation that can interfere with the application of the original visual memory.
FDG metabolism associated with tau-amyloid interaction predicts memory decline
Hanseeuw, Bernard J.; Betensky, Rebecca A.; Schultz, Aaron P.; Papp, Kate V.; Mormino, Elizabeth C.; Sepulcre, Jorge; Bark, John S.; Cosio, Danielle M.; LaPoint, Molly; Chhatwal, Jasmeer P.; Rentz, Dorene M.; Sperling, Reisa A.; Johnson, Keith
2017-01-01
Objective To evaluate in normal older adults and preclinical Alzheimer’s disease (AD) the impact of amyloid and regional tauopathy on cerebral glucose metabolism and subsequent memory decline. Methods We acquired positron emission tomography using F18 Flortaucipir (tau), C11 Pittsburgh Compound B (amyloid) and F18 Fluorodeoxyglucose in 90 clinically normal elderly of the Harvard Aging Brain Study. Results Posterior cingulate metabolism decreased when both amyloid and neocortical tau were high and predicted subsequent memory decline in a larger sample of normal elderly. In contrast, frontal hypometabolism related to the common age-related entorhinal tauopathy, but this dysfunction was independent of amyloid, and did not predict significant memory decline. Neocortical tauopathy was positively associated with metabolism in individuals with sub-threshold amyloid, suggesting that glucose metabolism increases before decreasing in the course of preclinical AD. Interpretation Our study identified a synergistic effect of amyloid and tau deposits and demonstrated for the first time in normal elderly its link to AD-like hypometabolism and to AD-like memory decline. The amyloid effect was seen with tau in neocortex, but not with tau in entorhinal cortex, which is the common site of age-related tauopathy. Entorhinal tau was associated with frontal hypometabolism, but this dysfunction was not associated with memory loss. PMID:28253546
ERP Subsequent Memory Effects Differ between Inter-Item and Unitization Encoding Tasks.
Kamp, Siri-Maria; Bader, Regine; Mecklinger, Axel
2017-01-01
The "subsequent memory paradigm" is an analysis tool to identify brain activity elicited during episodic encoding that is associated with successful subsequent retrieval. Two commonly observed event-related potential "subsequent memory effects" (SMEs) are the parietal SME in the P300 time window and the frontal slow wave SME, but to date a clear characterization of the circumstances under which each SME is observed is missing. To test the hypothesis that the parietal SME occurs when aspects of an experience are unitized into a single item representation, while inter-item associative encoding is reflected in the frontal slow wave effect, participants were assigned to one of two conditions that emphasized one of the encoding types under otherwise matched study phases of a recognition memory experiment. Word pairs were presented either in the context of a definition that allowed to combine the word pairs into a new concept (unitization or item encoding) or together with a sentence frame (inter-item encoding). Performance on the recognition test did not differ between the groups. The parietal SME was only found in the definition group, supporting the idea that this SME occurs when the components of an association are integrated in a unitized item representation. An early prefrontal negativity also exhibited an SME only in this group, suggesting that the formation of novel units occurs through interactions of multiple brain areas. The frontal slow wave SME was pronounced in both groups and may thus reflect processes generally involved in encoding of associations. Our results provide evidence for a partial dissociation of the eliciting conditions of the two types of SMEs and therefore provide a tool for future studies to characterize the different types of episodic encoding.
Alpha Oscillations during Incidental Encoding Predict Subsequent Memory for New "Foil" Information.
Vogelsang, David A; Gruber, Matthias; Bergström, Zara M; Ranganath, Charan; Simons, Jon S
2018-05-01
People can employ adaptive strategies to increase the likelihood that previously encoded information will be successfully retrieved. One such strategy is to constrain retrieval toward relevant information by reimplementing the neurocognitive processes that were engaged during encoding. Using EEG, we examined the temporal dynamics with which constraining retrieval toward semantic versus nonsemantic information affects the processing of new "foil" information encountered during a memory test. Time-frequency analysis of EEG data acquired during an initial study phase revealed that semantic compared with nonsemantic processing was associated with alpha decreases in a left frontal electrode cluster from around 600 msec after stimulus onset. Successful encoding of semantic versus nonsemantic foils during a subsequent memory test was related to decreases in alpha oscillatory activity in the same left frontal electrode cluster, which emerged relatively late in the trial at around 1000-1600 msec after stimulus onset. Across participants, left frontal alpha power elicited by semantic processing during the study phase correlated significantly with left frontal alpha power associated with semantic foil encoding during the memory test. Furthermore, larger left frontal alpha power decreases elicited by semantic foil encoding during the memory test predicted better subsequent semantic foil recognition in an additional surprise foil memory test, although this effect did not reach significance. These findings indicate that constraining retrieval toward semantic information involves reimplementing semantic encoding operations that are mediated by alpha oscillations and that such reimplementation occurs at a late stage of memory retrieval, perhaps reflecting additional monitoring processes.
Effects of early morning nap sleep on associative memory for neutral and emotional stimuli.
Sopp, Marie Roxanne; Michael, Tanja; Mecklinger, Axel
2018-06-18
Emotional events are preferentially retained in episodic memory. This effect is commonly attributed to enhanced consolidation and has been linked specifically to rapid eye movement (REM) sleep physiology. While several studies have demonstrated an enhancing effect of REM sleep on emotional item memory, it has not been thoroughly explored whether this effect extends to the retention of associative memory. Moreover, it is unclear how non-rapid eye movement (NREM) sleep contributes to these effects. The present study thus examined associative recognition of emotional and non-emotional material across an early morning nap (N= 23) and sustained wakefulness (N= 23). Nap group subjects demonstrated enhanced post-sleep associative memory performance, which was evident across both valence categories. Subsequent analyses revealed significant correlations between NREM spindle density and pre-sleep memory performance. Moreover, NREM spindle density was positively correlated with post-sleep neutral associative memory performance but not with post-sleep emotional associative memory. Accordingly, only neutral associative memory, but not emotional associative memory, was significantly correlated with spindle density after an additional night of sleep (+24 h). These results illustrate a temporally persistent relationship between spindle density and memory for neutral associations, whereas post-sleep emotional associative memory appears to be disengaged from NREM-sleep-dependent processes. Copyright © 2018. Published by Elsevier B.V.
Immediate memory consequences of the effect of emotion on attention to pictures.
Talmi, Deborah; Anderson, Adam K; Riggs, Lily; Caplan, Jeremy B; Moscovitch, Morris
2008-03-01
Emotionally arousing stimuli are at once both highly attention grabbing and memorable. We examined whether emotional enhancement of memory (EEM) reflects an indirect effect of emotion on memory, mediated by enhanced attention to emotional items during encoding. We tested a critical prediction of the mediation hypothesis-that regions conjointly activated by emotion and attention would correlate with subsequent EEM. Participants were scanned with fMRI while they watched emotional or neutral pictures under instructions to attend to them a lot or a little, and were then given an immediate recognition test. A region in the left fusiform gyrus was activated by emotion, voluntary attention, and subsequent EEM. A functional network, different for each attention condition, connected this region and the amygdala, which was associated with emotion and EEM, but not with voluntary attention. These findings support an indirect cortical mediation account of immediate EEM that may complement a direct modulation model.
Immediate memory consequences of the effect of emotion on attention to pictures
Talmi, Deborah; Anderson, Adam K.; Riggs, Lily; Caplan, Jeremy B.; Moscovitch, Morris
2008-01-01
Emotionally arousing stimuli are at once both highly attention grabbing and memorable. We examined whether emotional enhancement of memory (EEM) reflects an indirect effect of emotion on memory, mediated by enhanced attention to emotional items during encoding. We tested a critical prediction of the mediation hypothesis—that regions conjointly activated by emotion and attention would correlate with subsequent EEM. Participants were scanned with fMRI while they watched emotional or neutral pictures under instructions to attend to them a lot or a little, and were then given an immediate recognition test. A region in the left fusiform gyrus was activated by emotion, voluntary attention, and subsequent EEM. A functional network, different for each attention condition, connected this region and the amygdala, which was associated with emotion and EEM, but not with voluntary attention. These findings support an indirect cortical mediation account of immediate EEM that may complement a direct modulation model. PMID:18323572
Malin, David H; Lee, David R; Goyarzu, Pilar; Chang, Yu-Hsuan; Ennis, Lalanya J; Beckett, Elizabeth; Shukitt-Hale, Barbara; Joseph, James A
2011-03-01
Previously, 4 mo of a blueberry-enriched (BB) antioxidant diet prevented impaired object recognition memory in aging rats. Experiment 1 determined whether 1- and 2-mo BB diets would have a similar effect and whether the benefits would disappear promptly after terminating the diets. Experiment 2 determined whether a 1-mo BB diet could subsequently reverse existing object memory impairment in aging rats. In experiment 1, Fischer-344 rats were maintained on an appropriate control diet or on 1 or 2 mo of the BB diet before testing object memory at 19 mo postnatally. In experiment 2, rats were tested for object recognition memory at 19 mo and again at 20 mo after 1 mo of maintenance on a 2% BB or control diet. In experiment 1, the control group performed no better than chance, whereas the 1- and 2-mo BB diet groups performed similarly and significantly better than controls. The 2-mo BB-diet group, but not the 1-mo group, maintained its performance over a subsequent month on a standard laboratory diet. In experiment 2, the 19-mo-old rats performed near chance. At 20 mo of age, the rats subsequently maintained on the BB diet significantly increased their object memory scores, whereas the control diet group exhibited a non-significant decline. The change in object memory scores differed significantly between the two diet groups. These results suggest that a considerable degree of age-related object memory decline can be prevented and reversed by brief maintenance on BB diets. Copyright © 2011 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Suzuki, Akinobu; Mukawa, Takuya; Tsukagoshi, Akinori; Frankland, Paul W.; Kida, Satoshi
2008-01-01
Previous studies have shown that inhibiting protein synthesis shortly after reactivation impairs the subsequent expression of a previously consolidated fear memory. This has suggested that reactivation returns a memory to a labile state and that protein synthesis is required for the subsequent restabilization of memory. While the molecular…
On the adaptive function of children's and adults' false memories.
Howe, Mark L; Wilkinson, Samantha; Garner, Sarah R; Ball, Linden J
2016-09-01
Recent research has shown that memory illusions can successfully prime both children's and adults' performance on complex, insight-based problems (compound remote associates tasks or CRATs). The current research aimed to clarify the locus of these priming effects. Like before, Deese-Roediger-McDermott (DRM) lists were selected to prime subsequent CRATs such that the critical lures were also the solution words to a subset of the CRATs participants attempted to solve. Unique to the present research, recognition memory tests were used and participants were either primed during the list study phase, during the memory test phase, or both. Across two experiments, primed problems were solved more frequently and significantly faster than unprimed problems. Moreover, when participants were primed during the list study phase, subsequent solution times and rates were considerably superior to those produced by those participants who were simply primed at test. Together, these are the first results to show that false-memory priming during encoding facilitates problem-solving in both children and adults.
Memory for time distinguishes between perception and action.
Bueti, Domenica; Walsh, Vincent
2010-01-01
Our experience of time is unlike that of other features of the sensory world such as colour, movement, touch, or sound because there is no unique receptor system through which it is received. However, since time can be perceived, remembered, estimated, and compared in a way analogous to other sensory experiences, it should perhaps be subject to some of the same architectures or principles that have advanced understanding in these other domains. By adapting a task designed to test visual memory within a perception/action framework we investigated whether memory for time is affected by the use to which temporal information is put. When remembering a visual or auditory duration for subsequent motor production, storage is biased by a delay of up to 8 s. When the same duration is remembered for subsequent perception, however, there is no such effect of delay on memory. The results suggest a distinction in temporal memory that parallels the perception/action dichotomy in vision.
On the adaptive function of children's and adults’ false memories
Howe, Mark L.; Wilkinson, Samantha; Garner, Sarah R.; Ball, Linden J.
2016-01-01
ABSTRACT Recent research has shown that memory illusions can successfully prime both children's and adults' performance on complex, insight-based problems (compound remote associates tasks or CRATs). The current research aimed to clarify the locus of these priming effects. Like before, Deese–Roediger–McDermott (DRM) lists were selected to prime subsequent CRATs such that the critical lures were also the solution words to a subset of the CRATs participants attempted to solve. Unique to the present research, recognition memory tests were used and participants were either primed during the list study phase, during the memory test phase, or both. Across two experiments, primed problems were solved more frequently and significantly faster than unprimed problems. Moreover, when participants were primed during the list study phase, subsequent solution times and rates were considerably superior to those produced by those participants who were simply primed at test. Together, these are the first results to show that false-memory priming during encoding facilitates problem-solving in both children and adults. PMID:26230151
Sterpenich, Virginie; Schmidt, Christina; Albouy, Geneviève; Matarazzo, Luca; Vanhaudenhuyse, Audrey; Boveroux, Pierre; Degueldre, Christian; Leclercq, Yves; Balteau, Evelyne; Collette, Fabienne; Luxen, André; Phillips, Christophe; Maquet, Pierre
2014-06-01
Memory reactivation appears to be a fundamental process in memory consolidation. In this study we tested the influence of memory reactivation during rapid eye movement (REM) sleep on memory performance and brain responses at retrieval in healthy human participants. Fifty-six healthy subjects (28 women and 28 men, age [mean ± standard deviation]: 21.6 ± 2.2 y) participated in this functional magnetic resonance imaging (fMRI) study. Auditory cues were associated with pictures of faces during their encoding. These memory cues delivered during REM sleep enhanced subsequent accurate recollections but also false recognitions. These results suggest that reactivated memories interacted with semantically related representations, and induced new creative associations, which subsequently reduced the distinction between new and previously encoded exemplars. Cues had no effect if presented during stage 2 sleep, or if they were not associated with faces during encoding. Functional magnetic resonance imaging revealed that following exposure to conditioned cues during REM sleep, responses to faces during retrieval were enhanced both in a visual area and in a cortical region of multisensory (auditory-visual) convergence. These results show that reactivating memories during REM sleep enhances cortical responses during retrieval, suggesting the integration of recent memories within cortical circuits, favoring the generalization and schematization of the information.
Dolcos, Florin; Cabeza, Roberto
2008-01-01
According to the consolidation hypothesis, enhanced memory for emotional information reflects the modulatory effect of the amygdala on the medial temporal lobe (MTL) memory system during consolidation. Although there is evidence that amygdala–MTL connectivity enhances memory for emotional stimuli, it remains unclear whether this enhancement increases over time, as consolidation processes unfold. To investigate this, we used functional magnetic resonance imaging to measure encoding activity predicting memory for emotionally negative and neutral pictures after short (20-min) versus long (1-week) delays. Memory measures distinguished between vivid remembering (recollection) and feelings of knowing (familiarity). Consistent with the consolidation hypothesis, the persistence of recollection over time (long divided by short) was greater for emotional than neutral pictures. Activity in the amygdala predicted subsequent memory to a greater extent for emotional than neutral pictures. Although this advantage did not vary with delay, the contribution of amygdala–MTL connectivity to subsequent memory for emotional items increased over time. Moreover, both this increase in connectivity and amygdala activity itself were correlated with individual differences in recollection persistence for emotional but not neutral pictures. These results suggest that the amygdala and its connectivity with the MTL are critical to sustaining emotional memories over time, consistent with the consolidation hypothesis. PMID:18375529
The stability of working memory: do previous tasks influence complex span?
Healey, M Karl; Hasher, Lynn; Danilova, Elena
2011-11-01
Schmeichel (2007) reported that performing an initial task before completing a working memory span task can lower span scores and suggested that the effect was due to depleted cognitive resources. We showed that the detrimental effect of prior tasks depends on a match between the stimuli used in the span task and the preceding task. A task requiring participants to ignore words reduced performance on a subsequent word-based verbal span task but not on an arrow-based spatial span task. Ignoring arrows had the opposite pattern of effects: reducing performance on the spatial span task but not on the word-based span task. Finally, we showed that antisaccade, a nonverbal task that taxes domain-general processes implicated in working memory, did not influence subsequent performance of either a verbal or a spatial span task. Together these results suggest that while span is sensitive to prior tasks, that sensitivity does not stem from depleted resources. (PsycINFO Database Record (c) 2011 APA, all rights reserved).
Mark My Words: Tone of Voice Changes Affective Word Representations in Memory
Schirmer, Annett
2010-01-01
The present study explored the effect of speaker prosody on the representation of words in memory. To this end, participants were presented with a series of words and asked to remember the words for a subsequent recognition test. During study, words were presented auditorily with an emotional or neutral prosody, whereas during test, words were presented visually. Recognition performance was comparable for words studied with emotional and neutral prosody. However, subsequent valence ratings indicated that study prosody changed the affective representation of words in memory. Compared to words with neutral prosody, words with sad prosody were later rated as more negative and words with happy prosody were later rated as more positive. Interestingly, the participants' ability to remember study prosody failed to predict this effect, suggesting that changes in word valence were implicit and associated with initial word processing rather than word retrieval. Taken together these results identify a mechanism by which speakers can have sustained effects on listener attitudes towards word referents. PMID:20169154
Unstable Memories Create a High-Level Representation that Enables Learning Transfer.
Mosha, Neechi; Robertson, Edwin M
2016-01-11
A memory is unstable, making it susceptible to interference and disruption, after its acquisition [1-4]. The function or possible benefit of a memory being unstable at its acquisition is not well understood. Potentially, instability may be critical for the communication between recently acquired memories, which would allow learning in one task to be transferred to the other subsequent task [1, 5]. Learning may be transferred between any memories that are unstable, even between different types of memory. Here, we test the link between a memory being unstable and the transfer of learning to a different type of memory task. We measured how learning in one task transferred to and thus improved learning in a subsequent task. There was transfer from a motor skill to a word list task and, vice versa, from a word list to a motor skill task. What was transferred was a high-level relationship between elements, rather than knowledge of the individual elements themselves. Memory instability was correlated with subsequent transfer, suggesting that transfer was related to the instability of the memory. Using different methods, we stabilized the initial memory, preventing it from being susceptible to interference, and found that these methods consistently prevented transfer to the subsequent memory task. This suggests that the transfer of learning across diverse tasks is due to a high-level representation that can only be formed when a memory is unstable. Our work has identified an important function of memory instability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Free Recall Enhances Subsequent Learning
Arnold, Kathleen M.; McDermott, Kathleen B.
2013-01-01
Testing, or retrieval practice, has become a central topic in memory research. One potentially important effect of retrieval practice has received little attention, however: Retrieval practice may enhance, or potentiate, subsequent learning. We introduce a paradigm that can measure the indirect, potentiating effect of free recall tests on subsequent learning, and then test a hypothesis for why tests have this potentiating effect. In two experiments, the benefit of a restudy trial was enhanced when prior free recall tests had been taken. Results from a third correlational study suggest that this effect may be mediated by the effect of testing on organization. Not only do encoding conditions impact later retrievability, but also retrieval attempts impact subsequent encoding effectiveness. PMID:23297100
Levy, Roi; Levitan, David; Susswein, Abraham J
2016-01-01
Brief experiences while a memory is consolidated may capture the consolidation, perhaps producing a maladaptive memory, or may interrupt the consolidation. Since consolidation occurs during sleep, even fleeting experiences when animals are awakened may produce maladaptive long-term memory, or may interrupt consolidation. In a learning paradigm affecting Aplysia feeding, when animals were trained after being awakened from sleep, interactions between new experiences and consolidation were prevented by blocking long-term memory arising from the new experiences. Inhibiting protein synthesis eliminated the block and allowed even a brief, generally ineffective training to produce long-term memory. Memory formation depended on consolidative proteins already expressed before training. After effective training, long term memory required subsequent transcription and translation. Memory formation during the sleep phase was correlated with increased CREB1 transcription, but not CREB2 transcription. Increased C/EBP transcription was a correlate of both effective and ineffective training and of treatments not producing memory. DOI: http://dx.doi.org/10.7554/eLife.17769.001 PMID:27919318
Levy, Roi; Levitan, David; Susswein, Abraham J
2016-12-06
Brief experiences while a memory is consolidated may capture the consolidation, perhaps producing a maladaptive memory, or may interrupt the consolidation. Since consolidation occurs during sleep, even fleeting experiences when animals are awakened may produce maladaptive long-term memory, or may interrupt consolidation. In a learning paradigm affecting Aplysia feeding, when animals were trained after being awakened from sleep, interactions between new experiences and consolidation were prevented by blocking long-term memory arising from the new experiences. Inhibiting protein synthesis eliminated the block and allowed even a brief, generally ineffective training to produce long-term memory. Memory formation depended on consolidative proteins already expressed before training. After effective training, long term memory required subsequent transcription and translation. Memory formation during the sleep phase was correlated with increased CREB1 transcription, but not CREB2 transcription. Increased C/EBP transcription was a correlate of both effective and ineffective training and of treatments not producing memory.
NASA Astrophysics Data System (ADS)
Babacan, N.; Ma, J.; Turkbas, O. S.; Karaman, I.; Kockar, B.
2018-01-01
In the present study, the effect of thermo-mechanical treatments on the shape memory and the superelastic characteristics of Cu73Al16Mn11 (at%) shape memory alloy were investigated. 10%, 50% and 70% cold rolling and subsequent heat treatment processes were conducted to achieve strengthening via grain size refinement. 70% grain size reduction compared to the homogenized condition was obtained using 70% cold rolling and subsequent recrystallization heat treatment technique. Moreover, 10% cold rolling was applied to homogenized specimen to reveal the influence of the low percentage cold rolling reduction with no heat treatment on shape memory properties of Cu73Al16Mn11 (at%) alloy. Stress free transformation temperatures, monotonic tension and superelasticity behaviors of these samples were compared with those of the as-aged sample. Isobaric heating-cooling experiments were also conducted to see the dimensional stability of the samples as a function of applied stress. The 70% grain-refined sample exhibited better dimensional stability showing reduced residual strain levels upon thermal cycling under constant stress compared with the as-aged material. However, no improvement was achieved with grain size reduction in the superelasticity experiments. This distinctive observation was attributed to the difference in the magnitude of the stress levels achieved during two different types of experiments which were the isobaric heating-cooling and superelasticity tests. Intergranular fracture due to the stress concentration overcame the strengthening effect via grain refinement in the superelasticity tests at higher stress values. On the other hand, the strength of the material and resistance of material against plastic deformation upon phase transformation were increased as a result of the grain refinement at lower stress values in the isobaric heating-cooling experiments.
Schlagbauer, Bernhard; Mink, Maurice; Müller, Hermann J; Geyer, Thomas
2017-02-01
Observers are able to resume an interrupted search trial faster relative to responding to a new, unseen display. This finding of rapid resumption is attributed to short-term perceptual hypotheses generated on the current look and confirmed upon subsequent looks at the same display. It has been suggested that the contents of perceptual hypotheses are similar to those of other forms of memory acquired long-term through repeated exposure to the same search displays over the course of several trials, that is, the memory supporting "contextual cueing." In three experiments, we investigated the relationship between short-term perceptual hypotheses and long-term contextual memory. The results indicated that long-term, contextual memory of repeated displays neither affected the generation nor the confirmation of short-term perceptual hypotheses for these displays. Furthermore, the analysis of eye movements suggests that long-term memory provides an initial benefit in guiding attention to the target, whereas in subsequent looks guidance is entirely based on short-term perceptual hypotheses. Overall, the results reveal a picture of both long- and short-term memory contributing to reliable performance gains in interrupted search, while exerting their effects in an independent manner.
Remembering first impressions: effects of intentionality and diagnosticity on subsequent memory.
Gilron, Roee; Gutchess, Angela H
2012-03-01
People rely on first impressions every day as an important tool to interpret social behavior. While research is beginning to reveal the neural underpinnings of first impressions, particularly through understanding the role of dorsal medial prefrontal cortex (dmPFC), little is known about the way in which first impressions are encoded into memory. This is surprising because first impressions are relevant from a social perspective for future interactions, requiring that they be transferred to memory. The present study used a subsequent-memory paradigm to test the conditions under which the dmPFC is implicated in the encoding of first impressions. We found that intentionally forming impressions engages the dmPFC more than does incidentally forming impressions, and that this engagement supports the encoding of remembered impressions. In addition, we found that diagnostic information, which more readily lends itself to forming trait impressions, engages the dmPFC more than does neutral information. These results indicate that the neural system subserving memory for impressions is sensitive to consciously formed impressions. The results also suggest a distinction between a social memory system and other explicit memory systems governed by the medial temporal lobes.
Remembering first impressions: Effects of intentionality and diagnosticity on subsequent memory
Gilron, Roee; Gutchess, Angela H.
2012-01-01
People rely on first impressions every day as an important tool to interpret social behavior. While research is beginning to reveal the neural underpinnings of first impressions, particularly through understanding the role of dorsal medial prefrontal cortex (dmPFC), little is known about the way in which first impressions are encoded into memory. This is surprising because first impressions are relevant from a social perspective for future interactions, requiring that they be transferred to memory. The present study used a subsequent memory paradigm to test the conditions under which the dmPFC is implicated in the encoding of first impressions. We found that intentionally forming impressions engages the dmPFC more than incidentally forming impressions and that this engagement supports the encoding of remembered impressions. In addition, we found that diagnostic information, which more readily lends itself to forming trait impressions, engages the dmPFC more than neutral information. These results indicate that the neural system subserving memory for impressions is sensitive to consciously formed impressions. The results also suggest a distinction between a social memory system and other explicit memory systems governed by the medial temporal lobes. PMID:22139633
ERIC Educational Resources Information Center
Peterson, Robin T.
2007-01-01
This study investigates the combined impact of a memory test and subsequent listening practice in enhancing student listening abilities in collegiate business administration courses. The article reviews relevant literature and describes an exploratory study that was undertaken to compare the effectiveness of this technique with traditional…
Schematic Influences on Category Learning and Recognition Memory
ERIC Educational Resources Information Center
Sakamoto, Yasuaki; Love, Bradley C.
2004-01-01
The results from 3 category learning experiments suggest that items are better remembered when they violate a salient knowledge structure such as a rule. The more salient the knowledge structure, the stronger the memory for deviant items. The effect of learning errors on subsequent recognition appears to be mediated through the imposed knowledge…
Spaced Learning Enhances Subsequent Recognition Memory by Reducing Neural Repetition Suppression
ERIC Educational Resources Information Center
Xue, Gui; Mei, Leilei; Chen, Chuansheng; Lu, Zhong-Lin; Poldrack, Russell; Dong, Qi
2011-01-01
Spaced learning usually leads to better recognition memory as compared with massed learning, yet the underlying neural mechanisms remain elusive. One open question is whether the spacing effect is achieved by reducing neural repetition suppression. In this fMRI study, participants were scanned while intentionally memorizing 120 novel faces, half…
Repeatedly Reactivated Memories Become More Resistant to Hippocampal Damage
ERIC Educational Resources Information Center
Lehmann, Hugo; McNamara, Kathryn C.
2011-01-01
We examined whether repeated reactivations of a context memory would prevent the typical amnesic effects of post-training damage to the hippocampus (HPC). Rats were given a single contextual fear-conditioning session followed by 10 reactivations, involving a brief return to the conditioning context (no shock). Subsequently, the rats received sham…
Learning From Tests: Facilitation of Delayed Recall by Initial Recognition Alternatives.
ERIC Educational Resources Information Center
Whitten, William B., II; Leonard, Janet Mauriello
1980-01-01
Two experiments were designed to determine the effects of multiple-choice recognition test alternatives on subsequent memory for the correct answers. Results of both experiments are interpreted as demonstrations of the principle that long-term retention is facilitated such that memory evaluation occurs during initial recognition tests. (Author/RD)
An Examination of the Effects of Argument Mapping on Students' Memory and Comprehension Performance
ERIC Educational Resources Information Center
Dwyer, Christopher P.; Hogan, Michael J.; Stewart, Ian
2013-01-01
Argument mapping (AM) is a method of visually diagramming arguments to allow for easy comprehension of core statements and relations. A series of three experiments compared argument map reading and construction with hierarchical outlining, text summarisation, and text reading as learning methods by examining subsequent memory and comprehension…
Aging and the genetic road towards the positivity effect in memory.
Mammarella, Nicola; Di Domenico, Alberto; Fairfield, Beth
2016-09-01
Better memory for positive information compared to negative and neutral information has been repeatedly associated with successful aging. The main psychological explanations for this so-called "positivity effect" in memory principally rely on emotional, motivational, and cognitive mechanisms that make older adults' cognition highly sensitive to positive information according to ultimate goals of well-being. However, emerging evidence also delineates a genetic profile for positivity effects in memory, which may render some older adults more prone than others to encoding and remembering positive memories. First, we present a brief overview of behavioral and neuroimaging studies about the positivity effect in aging. Subsequently, we report studies on candidate genes associated with positive memories. In particular, we review work to date on several candidate genes that are sensitive to stimulus valence such as ADRA2B, COMT, and 5HTTLPR. Finally, we propose that the future approach to the study of genetic correlates of positivity effects in memory should also include mitochondrial functioning (TOMM40). Altogether, the study of genetics and cell biology of positivity effects in memory can help us to reveal the underlying bottom-up pathways to positive affect in healthy aging. Copyright © 2016 Elsevier Inc. All rights reserved.
Sleep, Plasticity and Memory from Molecules to Whole-Brain Networks
Abel, Ted; Havekes, Robbert; Saletin, Jared M.; Walker, Matthew P.
2014-01-01
Despite the ubiquity of sleep across phylogeny, its function remains elusive. In this review, we consider one compelling candidate: brain plasticity associated with memory processing. Focusing largely on hippocampus-dependent memory in rodents and humans, we describe molecular, cellular, network, whole-brain and behavioral evidence establishing a role for sleep both in preparation for initial memory encoding, and in the subsequent offline consolidation ofmemory. Sleep and sleep deprivation bidirectionally alter molecular signaling pathways that regulate synaptic strength and control plasticity-related gene transcription and protein translation. At the cellular level, sleep deprivation impairs cellular excitability necessary for inducing synaptic potentiation and accelerates the decay of long-lasting forms of synaptic plasticity. In contrast, NREM and REM sleep enhance previously induced synaptic potentiation, although synaptic de-potentiation during sleep has also been observed. Beyond single cell dynamics, large-scale cell ensembles express coordinated replay of prior learning-related firing patterns during subsequent sleep. This occurs in the hippocampus, in the cortex, and between the hippocampus and cortex, commonly in association with specific NREM sleep oscillations. At the whole-brain level, somewhat analogous learning-associated hippocampal (re)activation during NREM sleep has been reported in humans. Moreover, the same cortical NREM oscillations associated with replay in rodents also promote human hippocampal memory consolidation, and this process can be manipulated using exogenous reactivation cues during sleep. Mirroring molecular findings in rodents, specific NREM sleep oscillations before encoding refresh human hippocampal learning capacity, while deprivation of sleep conversely impairs subsequent hippocampal activity and associated encoding. Together, these cross-descriptive level findings demonstrate that the unique neurobiology of sleep exert powerful effects on molecular, cellular and network mechanism of plasticity that govern both initial learning and subsequent long-term memory consolidation. PMID:24028961
Mace, John H; Clevinger, Amanda M
2013-01-01
The goal of this study was to show that voluntary autobiographical memories could be primed by the prior activation of autobiographical memories. Three experiments demonstrated voluntary memory priming with three different approaches. In Experiment 1 primed participants were asked to recall memories from their elementary school years. In a subsequent memory task primed participants were asked to recall memories from any time period, and they produced significantly more memories from their elementary school years than unprimed participants. In Experiment 2 primed participants were asked to recall what they were doing when they had heard various news events occurring between 1998 and 2005. Subsequently these participants produced significantly more memories from this time period than unprimed participants. In Experiment 3 primed participants were asked to recall memories from their teenage years. Subsequently these participants were able to recall more memories from ages 13-15 than unprimed participants, where both had only 1 second to produce a memory. We argue that the results support the notion that episodic memories can activate one another and that some of them are organised according to lifetime periods. We further argue that the results have implications for the reminiscence bump and voluntary recall of the past.
Chia, Chester; Otto, Tim
2013-11-01
Mounting evidence suggests that long-lasting, protein synthesis-dependent changes in synaptic strength accompany both the initial acquisition and subsequent recall of specific memories. Within brain areas thought to be important for learning and memory, including the hippocampus, learning-related plasticity is likely mediated in part by NMDA receptor activation and experience-dependent changes in gene expression. In the present study, we examined the role of activity-regulated cytoskeletal-associated protein (Arc/Arg3.1) expression in the acquisition, recall, and reconsolidation of memory in a trace fear conditioning paradigm. First, we show that the expression of Arc protein in ventral hippocampus (VH) is dramatically enhanced by memory recall 24h after the acquisition of trace fear conditioning, and that both memory recall and the associated recall-induced enhancement of Arc expression are blocked by pre-training administration of 2-amino-5-phosphonovaleric acid (APV). Next, we show that while infusion of Arc antisense oligodeoxynucleotides (ODNs) into VH prior to testing had little effect on memory recall, it significantly reduced both Arc protein expression and freezing behavior during subsequent testing sessions. Collectively, these results suggest that Arc/Arg3.1 protein plays an important functional role in both the initial acquisition of hippocampal-dependent memory and the reconsolidation of these memories after recall. Copyright © 2013 Elsevier Inc. All rights reserved.
Kubik, Veit; Nilsson, Lars-Göran; Olofsson, Jonas K; Jönsson, Fredrik U
2015-10-01
Testing one's memory of previously studied information reduces the rate of forgetting, compared to restudy. However, little is known about how this direct testing effect applies to action phrases (e.g., "wash the car") - a learning material relevant to everyday memory. As action phrases consist of two different components, a verb (e.g., "wash") and a noun (e.g., "car"), testing can either be implemented as noun-cued recall of verbs or verb-cued recall of nouns, which may differently affect later memory performance. In the present study, we investigated the effect of testing for these two recall types, using verbally encoded action phrases as learning materials. Results showed that repeated study-test practice, compared to repeated study-restudy practice, decreased the forgetting rate across 1 week to a similar degree for both noun-cued and verb-cued recall types. However, noun-cued recall of verbs initiated more new subsequent learning during the first restudy, compared to verb-cued recall of nouns. The study provides evidence that testing has benefits on both subsequent restudy and long-term retention of action-relevant materials, but that these benefits are differently expressed with testing via noun-cued versus verb-cued recall. © 2015 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
The sensory strength of voluntary visual imagery predicts visual working memory capacity.
Keogh, Rebecca; Pearson, Joel
2014-10-09
How much we can actively hold in mind is severely limited and differs greatly from one person to the next. Why some individuals have greater capacities than others is largely unknown. Here, we investigated why such large variations in visual working memory (VWM) capacity might occur, by examining the relationship between visual working memory and visual mental imagery. To assess visual working memory capacity participants were required to remember the orientation of a number of Gabor patches and make subsequent judgments about relative changes in orientation. The sensory strength of voluntary imagery was measured using a previously documented binocular rivalry paradigm. Participants with greater imagery strength also had greater visual working memory capacity. However, they were no better on a verbal number working memory task. Introducing a uniform luminous background during the retention interval of the visual working memory task reduced memory capacity, but only for those with strong imagery. Likewise, for the good imagers increasing background luminance during imagery generation reduced its effect on subsequent binocular rivalry. Luminance increases did not affect any of the subgroups on the verbal number working memory task. Together, these results suggest that luminance was disrupting sensory mechanisms common to both visual working memory and imagery, and not a general working memory system. The disruptive selectivity of background luminance suggests that good imagers, unlike moderate or poor imagers, may use imagery as a mnemonic strategy to perform the visual working memory task. © 2014 ARVO.
Effects of semantic relatedness on recall of stimuli preceding emotional oddballs.
Smith, Ryan M; Beversdorf, David Q
2008-07-01
Semantic and episodic memory networks function as highly interconnected systems, both relying on the hippocampal/medial temporal lobe complex (HC/MTL). Episodic memory encoding triggers the retrieval of semantic information, serving to incorporate contextual relationships between the newly acquired memory and existing semantic representations. While emotional material augments episodic memory encoding at the time of stimulus presentation, interactions between emotion and semantic memory that contribute to subsequent episodic recall are not well understood. Using a modified oddball task, we examined the modulatory effects of negative emotion on semantic interactions with episodic memory by measuring the free-recall of serially presented neutral or negative words varying in semantic relatedness. We found increased free-recall for words related to and preceding emotionally negative oddballs, suggesting that negative emotion can indirectly facilitate episodic free-recall by enhancing semantic contributions during encoding. Our findings demonstrate the ability of emotion and semantic memory to interact to mutually enhance free-recall.
Sex differences in the neural basis of emotional memories.
Canli, Turhan; Desmond, John E; Zhao, Zuo; Gabrieli, John D E
2002-08-06
Psychological studies have found better memory in women than men for emotional events, but the neural basis for this difference is unknown. We used event-related functional MRI to assess whether sex differences in memory for emotional stimuli is associated with activation of different neural systems in men and women. Brain activation in 12 men and 12 women was recorded while they rated their experience of emotional arousal in response to neutral and emotionally negative pictures. In a recognition memory test 3 weeks after scanning, highly emotional pictures were remembered best, and remembered better by women than by men. Men and women activated different neural circuits to encode stimuli effectively into memory even when the analysis was restricted to pictures rated equally arousing by both groups. Men activated significantly more structures than women in a network that included the right amygdala, whereas women activated significantly fewer structures in a network that included the left amygdala. Women had significantly more brain regions where activation correlated with both ongoing evaluation of emotional experience and with subsequent memory for the most emotionally arousing pictures. Greater overlap in brain regions sensitive to current emotion and contributing to subsequent memory may be a neural mechanism for emotions to enhance memory more powerfully in women than in men.
Soeter, Marieke; Kindt, Merel
2015-01-01
Disrupting the process of memory reconsolidation may point to a novel therapeutic strategy for the permanent reduction of fear in patients suffering from anxiety disorders. However both in animal and human studies the retrieval cue typically involves a re-exposure to the original fear-conditioned stimulus (CS). A relevant question is whether abstract cues not directly associated with the threat event also trigger reconsolidation, given that anxiety disorders often result from vicarious or unobtrusive learning for which no explicit memory exists. Insofar as the fear memory involves a flexible representation of the original learning experience, we hypothesized that the process of memory reconsolidation may also be triggered by abstract cues. We addressed this hypothesis by using a differential human fear-conditioning procedure in two distinct fear-learning groups. We predicted that if fear learning involves discrimination on basis of perceptual cues within one semantic category (i.e., the perceptual-learning group, n = 15), the subsequent ambiguity of the abstract retrieval cue would not trigger memory reconsolidation. In contrast, if fear learning involves discriminating between two semantic categories (i.e., categorical-learning group, n = 15), an abstract retrieval cue would unequivocally reactivate the fear memory and might subsequently trigger memory reconsolidation. Here we show that memory reconsolidation may indeed be triggered by another cue than the one that was present during the original learning occasion, but this effect depends on the learning history. Evidence for fear memory reconsolidation was inferred from the fear-erasing effect of one pill of propranolol (40 mg) systemically administered upon exposure to the abstract retrieval cue. Our finding that reconsolidation of a specific fear association does not require exposure to the original retrieval cue supports the feasibility of reconsolidation-based interventions for emotional disorders.
Sticht, Martin A; Jacklin, Derek L; Mechoulam, Raphael; Parker, Linda A; Winters, Boyer D
2015-03-25
Cannabinoids disrupt learning and memory in human and nonhuman participants. Object recognition memory, which is particularly susceptible to the impairing effects of cannabinoids, relies critically on the perirhinal cortex (PRh); however, to date, the effects of cannabinoids within PRh have not been assessed. In the present study, we evaluated the effects of localized administration of the synthetic cannabinoid, HU210 (0.01, 1.0 μg/hemisphere), into PRh on spontaneous object recognition in Long-Evans rats. Animals received intra-PRh infusions of HU210 before the sample phase, and object recognition memory was assessed at various delays in a subsequent retention test. We found that presample intra-PRh HU210 dose dependently (1.0 μg but not 0.01 μg) interfered with spontaneous object recognition performance, exerting an apparently more pronounced effect when memory demands were increased. These novel findings show that cannabinoid agonists in PRh disrupt object recognition memory. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.
Goal orientation and self-efficacy in relation to memory in adulthood
Hastings, Erin C.; West, Robin L.
2011-01-01
The achievement goal framework (Dweck, 1986) has been well-established in children and college-students, but has rarely been examined empirically with older adults. The current study, including younger and older adults, examined the effects of memory self-efficacy, learning goals (focusing on skill mastery over time) and performance goals (focusing on performance outcome evaluations) on memory performance. Questionnaires measured memory self-efficacy and general orientation toward learning and performance goals; free and cued recall was assessed in a subsequent telephone interview. As expected, age was negatively related and education was positively related to memory self-efficacy, and memory self-efficacy was positively related to memory, in a structural equation model. Age was also negatively related to memory performance. Results supported the positive impact of learning goals and the negative impact of performance goals on memory self-efficacy. There was no significant direct effect of learning or performance goals on memory performance; their impact occurred via their effect on memory self-efficacy. The present study supports past research suggesting that learning goals are beneficial, and performance goals are maladaptive, for self-efficacy and learning, and validates the achievement goal framework in a sample including older adults. PMID:21728891
Poppenk, Jordan; Norman, Kenneth A.
2012-01-01
Recent cognitive research has revealed better source memory performance for familiar relative to novel stimuli. Here we consider two possible explanations for this finding. The source memory advantage for familiar stimuli could arise because stimulus novelty induces attention to stimulus features at the expense of contextual processing, resulting in diminished overall levels of contextual processing at study for novel (vs. familiar) stimuli. Another possibility is that stimulus information retrieved from long-term memory (LTM) provides scaffolding that facilitates the formation of item-context associations. If contextual features are indeed more effectively bound to familiar (vs. novel) items, the relationship between contextual processing at study and subsequent source memory should be stronger for familiar items. We tested these possibilities by applying multi-voxel pattern analysis (MVPA) to a recently collected functional magnetic resonance imaging (fMRI) dataset, with the goal of measuring contextual processing at study and relating it to subsequent source memory performance. Participants were scanned with fMRI while viewing novel proverbs, repeated proverbs (previously novel proverbs that were shown in a pre-study phase), and previously known proverbs in the context of one of two experimental tasks. After scanning was complete, we evaluated participants’ source memory for the task associated with each proverb. Drawing upon fMRI data from the study phase, we trained a classifier to detect on-task processing (i.e., how strongly was the correct task set activated). On-task processing was greater for previously known than novel proverbs and similar for repeated and novel proverbs. However, both within- and across participants, the relationship between on-task processing and subsequent source memory was stronger for repeated than novel proverbs and similar for previously known and novel proverbs. Finally, focusing on the repeated condition, we found that higher levels of hippocampal activity during the pre-study phase, which we used as an index of episodic encoding, led to a stronger relationship between on-task processing at study and subsequent memory. Together, these findings suggest different mechanisms may be primarily responsible for superior source memory for repeated and previously known stimuli. Specifically, they suggest that prior stimulus knowledge enhances memory by boosting the overall level of contextual processing, whereas stimulus repetition enhances the probability that contextual features will be successfully bound to item features. Several possible theoretical explanations for this pattern are discussed. PMID:22820636
James, Ella L; Lau-Zhu, Alex; Tickle, Hannah; Horsch, Antje; Holmes, Emily A
2016-12-01
Visuospatial working memory (WM) tasks performed concurrently or after an experimental trauma (traumatic film viewing) have been shown to reduce subsequent intrusive memories (concurrent or retroactive interference, respectively). This effect is thought to arise because, during the time window of memory consolidation, the film memory is labile and vulnerable to interference by the WM task. However, it is not known whether tasks before an experimental trauma (i.e. proactive interference) would also be effective. Therefore, we tested if a visuospatial WM task given before a traumatic film reduced intrusions. Findings are relevant to the development of preventative strategies to reduce intrusive memories of trauma for groups who are routinely exposed to trauma (e.g. emergency services personnel) and for whom tasks prior to trauma exposure might be beneficial. Participants were randomly assigned to 1 of 2 conditions. In the Tetris condition (n = 28), participants engaged in the computer game for 11 min immediately before viewing a 12-min traumatic film, whereas those in the Control condition (n = 28) had no task during this period. Intrusive memory frequency was assessed using an intrusion diary over 1-week and an Intrusion Provocation Task at 1-week follow-up. Recognition memory for the film was also assessed at 1-week. Compared to the Control condition, participants in the Tetris condition did not report statistically significant difference in intrusive memories of the trauma film on either measure. There was also no statistically significant difference in recognition memory scores between conditions. The study used an experimental trauma paradigm and findings may not be generalizable to a clinical population. Compared to control, playing Tetris before viewing a trauma film did not lead to a statistically significant reduction in the frequency of later intrusive memories of the film. It is unlikely that proactive interference, at least with this task, effectively influences intrusive memory development. WM tasks administered during or after trauma stimuli, rather than proactively, may be a better focus for intrusive memory amelioration. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Audiovisual integration supports face-name associative memory formation.
Lee, Hweeling; Stirnberg, Rüdiger; Stöcker, Tony; Axmacher, Nikolai
2017-10-01
Prior multisensory experience influences how we perceive our environment, and hence how memories are encoded for subsequent retrieval. This study investigated if audiovisual (AV) integration and associative memory formation rely on overlapping or distinct processes. Our functional magnetic resonance imaging results demonstrate that the neural mechanisms underlying AV integration and associative memory overlap substantially. In particular, activity in anterior superior temporal sulcus (STS) is increased during AV integration and also determines the success of novel AV face-name association formation. Dynamic causal modeling results further demonstrate how the anterior STS interacts with the associative memory system to facilitate successful memory formation for AV face-name associations. Specifically, the connection of fusiform gyrus to anterior STS is enhanced while the reverse connection is reduced when participants subsequently remembered both face and name. Collectively, our results demonstrate how multisensory associative memories can be formed for subsequent retrieval.
Höhne, Marlene; Jahanbekam, Amirhossein; Bauckhage, Christian; Axmacher, Nikolai; Fell, Juergen
2016-10-01
Mediotemporal EEG characteristics are closely related to long-term memory formation. It has been reported that rhinal and hippocampal EEG measures reflecting the stability of phases across trials are better suited to distinguish subsequently remembered from forgotten trials than event-related potentials or amplitude-based measures. Theoretical models suggest that the phase of EEG oscillations reflects neural excitability and influences cellular plasticity. However, while previous studies have shown that the stability of phase values across trials is indeed a relevant predictor of subsequent memory performance, the effect of absolute single-trial phase values has been little explored. Here, we reanalyzed intracranial EEG recordings from the mediotemporal lobe of 27 epilepsy patients performing a continuous word recognition paradigm. Two-class classification using a support vector machine was performed to predict subsequently remembered vs. forgotten trials based on individually selected frequencies and time points. We demonstrate that it is possible to successfully predict single-trial memory formation in the majority of patients (23 out of 27) based on only three single-trial phase values given by a rhinal phase, a hippocampal phase, and a rhinal-hippocampal phase difference. Overall classification accuracy across all subjects was 69.2% choosing frequencies from the range between 0.5 and 50Hz and time points from the interval between -0.5s and 2s. For 19 patients, above chance prediction of subsequent memory was possible even when choosing only time points from the prestimulus interval (overall accuracy: 65.2%). Furthermore, prediction accuracies based on single-trial phase surpassed those based on single-trial power. Our results confirm the functional relevance of mediotemporal EEG phase for long-term memory operations and suggest that phase information may be utilized for memory enhancement applications based on deep brain stimulation. Copyright © 2016 Elsevier Inc. All rights reserved.
Kaschel, Reiner; Kazén, Miguel; Kuhl, Julius
2017-07-01
A modified event-based paradigm of prospective memory was applied to investigate intention initiation in older and younger participants under high versus low memory load (subsequent episodic word recall vs. recognition). State versus action orientation, a personality dimension related to intention enactment, was also measured. State-oriented persons show a superiority effect for the storage of intentions in an explicit format but have a paradoxical deficit in their actual enactment. We predicted an interaction between aging, personality, and memory load, with longer intention-initiation latencies and higher omission rates for older state-oriented participants under high memory load. Results were consistent with predictions and are interpreted according to current personality and prospective memory models of aging.
Cognitive Association Formation in Episodic Memory: Evidence from Event-Related Potentials
ERIC Educational Resources Information Center
Kim, Alice S. N.; Vallesi, Antonino; Picton, Terence W.; Tulving, Endel
2009-01-01
The present study focused on the processes underlying cognitive association formation by investigating subsequent memory effects. Event-related potentials were recorded as participants studied pairs of words, presented one word at a time, for later recall. The findings showed that a frontal-positive late wave (LW), which occurred 1-1.6 s after the…
NASA Astrophysics Data System (ADS)
Wells, Audrey Marie
The ability of cocaine-associated environmental contexts to promote relapse in abstinent humans and reinstatement of cocaine-seeking behavior in laboratory animals depends on the formation and maintenance of maladaptive context-response-cocaine associative memories, the latter of which can be disrupted by manipulations that interfere with memory reconsolidation. Memory reconsolidation refers to a protein synthesis-dependent phenomenon whereby memory traces are reincorporated back into long-term memory storage following their retrieval and subsequent destabilization. To elucidate the distinctive roles of the basolateral amygdala (BLA) and dorsal hippocampus (DH) in the reconsolidation of context-response-cocaine memories, Experiments 1-3 evaluated novel molecular mechanisms within each structure that control this phenomenon. Experiment 1 tested the hypothesis that activation of the extracellular signal-regulated kinase (ERK) in the BLA and nucleus accumbens core (NACc - a substrate for Pavlovian cocaine-memory reconsolidation) would critically control instrumental cocaine-memory reconsolidation. To determine this, rats were re-exposed to a context that had previously been used for cocaine self-administration (i.e., cocaine memory-reactivation) and immediately thereafter received bilateral intra-BLA or intra-NACc microinfusions of the ERK inhibitor U0126 or vehicle (VEH) and were subsequently tested for drug context-induced cocaine-seeking behavior (non-reinforced lever responding) ~72 h later. Re-exposure to the cocaine-paired context at test fully reinstated cocaine-seeking behavior, relative to responding in an alternate, extinction context, and post-reactivation U0126 treatment in the BLA, but not the NACc, impaired cocaine-seeking behavior, relative to VEH. This effect was associated with a temporary increase in ERK2, but not ERK1, phosphorylation in the BLA and required explicit reactivation of the target memory trace (i.e., did not similarly manifest when U0126 was administered after exposure to an unpaired context), suggesting that ERK in the BLA plays a critical role in restabilizing contextual cocaine-related memories. Next, Experiment 2 evaluated the hypothesis that the transcription factor (TF) nuclear factor-kappaB (NF-kappaB) would also critically mediate instrumental cocaine-memory reconsolidation in the BLA. Remarkably, the NF-kappaB inhibitor, sulfasalazine (SSZ), administered bilaterally into the BLA following cocaine-memory reactivation, did not significantly alter subsequent cocaine-seeking behavior, relative to VEH, despite producing an observable trend for an enhancement in this behavior. Future studies will be needed to further examine this relationship, but the present findings may suggest that NF-kappaB TFs acts as negative regulators of cocaine-memory reconsolidation. Finally, Experiment 3 tested the hypothesis that members of the Src family of tyrosine kinases (SFKs) are obligatory for instrumental cocaine-memory reconsolidation. Consistent with our hypothesis, PP2, a nonspecific inhibitor of SFKs, administered bilaterally into the DH after cocaine-memory reactivation, attenuated subsequent drug-context induced motivation for cocaine, relative to VEH, in a memory reactivation-dependent manner. This effect was associated with a preferential disruption of SFK-mediated phosphorylation of the NR2a N-methyl-D-aspartate receptor (NMDAR) subunit. Together, these findings begin to illuminate how the BLA and DH may subserve the long-term stability of maladaptive cocaine-related memories that underlie contextual stimulus control over cocaine-seeking behavior.
Enhanced Extinction of Aversive Memories by High-Frequency Stimulation of the Rat Infralimbic Cortex
Maroun, Mouna; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara; Motanis, Helen
2012-01-01
Electrical stimulation of the rodent medial prefrontal cortex (mPFC), including the infralimbic cortex (IL), immediately prior to or during fear extinction training facilitates extinction memory. Here we examined the effects of high-frequency stimulation (HFS) of the rat IL either prior to conditioning or following retrieval of the conditioned memory, on extinction of Pavlovian fear and conditioned taste aversion (CTA). IL-HFS applied immediately after fear memory retrieval, but not three hours after retrieval or prior to conditioning, subsequently reduced freezing during fear extinction. Similarly, IL-HFS given immediately, but not three hours after, retrieval of a CTA memory reduced aversion during extinction. These data indicate that HFS of the IL may be an effective method for reducing both learned fear and learned aversion. PMID:22586453
Later maturation of the beneficial than the detrimental effect of selective memory retrieval.
Aslan, Alp; Bäuml, Karl-Heinz T
2014-04-01
In adults, selective memory retrieval can both impair and improve recall of other memories. The study reported here examined whether children also show these two faces of memory retrieval. Employing a variant of the directed-forgetting task, we asked second, fourth, and seventh graders to study a list of target and nontarget words. After study, the participants received a cue to either forget or continue remembering the list. We subsequently asked some participants to recall the nontarget words before we tested their memory for the target words; for the remaining participants, we tested memory only for the target words. Prior retrieval of nontarget words impaired retrieval of to-be-remembered target words, regardless of children's age. In contrast, prior retrieval of nontarget words improved recall of to-be-forgotten target words in seventh graders, though not in fourth and second graders. These results suggest a developmental dissociation between the two faces of memory retrieval and indicate later maturation of the beneficial effect than of the detrimental effect of selective memory retrieval.
Critical Period of Memory Enhancement during Taste Avoidance Conditioning in Lymnaea stagnalis
Sunada, Hiroshi; Lukowiak, Ken; Sakakibara, Manabu
2013-01-01
The present study investigated the optimal training procedure leading to long-lasting taste avoidance behavior in Lymnaea. A training procedure comprising 5 repeated pairings of a conditional stimulus (CS, sucrose), with an unconditional stimulus (US, a tactile stimulation to the animal’s head), over a 4-day period resulted in an enhanced memory formation than 10 CS-US repeated pairings over a 2-day period or 20 CS-US repeated pairings on a single day. Backward conditioning (US-CS) pairings did not result in conditioning. Thus, this taste avoidance conditioning was CS-US pairing specific. Food avoidance behavior was not observed following training, however, if snails were immediately subjected to a cold-block (4°C for 10 min). It was critical that the cold-block be applied within 10 min to block long-term memory (LTM) formation. Further, exposure to the cold-block 180 min after training also blocked both STM and LTM formation. The effects of the cold-block on subsequent learning and memory formation were also examined. We found no long lasting effects of the cold-block on subsequent memory formation. If protein kinase C was activated before the conditioning paradigm, snails could still acquire STM despite exposure to the cold-block. PMID:24098373
Sosic-Vasic, Zrinka; Hille, Katrin; Kröner, Julia; Spitzer, Manfred; Kornmeier, Jürgen
2018-01-01
Introduction: Consolidation is defined as the time necessary for memory stabilization after learning. In the present study we focused on effects of interference during the first 12 consolidation minutes after learning. Participants had to learn a set of German – Japanese word pairs in an initial learning task and a different set of German – Japanese word pairs in a subsequent interference task. The interference task started in different experimental conditions at different time points (0, 3, 6, and 9 min) after the learning task and was followed by subsequent cued recall tests. In a control experiment the interference periods were replaced by rest periods without any interference. Results: The interference task decreased memory performance by up to 20%, with negative effects at all interference time points and large variability between participants concerning both the time point and the size of maximal interference. Further, fast learners seem to be more affected by interference than slow learners. Discussion: Our results indicate that the first 12 min after learning are highly important for memory consolidation, without a general pattern concerning the precise time point of maximal interference across individuals. This finding raises doubts about the generalized learning recipes and calls for individuality of learning schedules. PMID:29503621
Encoding-related brain activity and accelerated forgetting in transient epileptic amnesia.
Atherton, Kathryn E; Filippini, Nicola; Zeman, Adam Z J; Nobre, Anna C; Butler, Christopher R
2018-05-17
The accelerated forgetting of newly learned information is common amongst patients with epilepsy and, in particular, in the syndrome of transient epileptic amnesia (TEA). However, the neural mechanisms underlying accelerated forgetting are poorly understood. It has been hypothesised that interictal epileptiform activity during longer retention intervals disrupts normally established memory traces. Here, we tested a distinct hypothesis-that accelerated forgetting relates to the abnormal encoding of memories. We studied a group of 15 patients with TEA together with matched, healthy control subjects. Despite normal performance on standard anterograde memory tasks, patients showed accelerated forgetting of a word list over one week. We used a subsequent memory paradigm to compare encoding-related brain activity in patients and controls. Participants studied a series of visually presented scenes whilst undergoing functional MRI scanning. Recognition memory for these scenes was then probed outside the scanner after delays of 45 min and of 4 days. Patients showed poorer memory for the scenes compared with controls. In the patients but not the controls, subsequently forgotten stimuli were associated with reduced hippocampal activation at encoding. Furthermore, patients demonstrated reduced deactivation of posteromedial cortex regions upon viewing subsequently remembered stimuli as compared to subsequently forgotten ones. These data suggest that abnormal encoding-related activity in key memory areas of the brain contributes to accelerated forgetting in TEA. We propose that abnormally encoded memory traces may be particularly vulnerable to interference from subsequently encountered material and hence be forgotten more rapidly. Our results shed light on the mechanisms underlying memory impairment in epilepsy, and offer support to the proposal that accelerated forgetting may be a useful marker of subtle dysfunction in memory-related brain systems. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Abdullahi, Payman Rasise; Eskandarian, Sharaf; Ghanbari, Ali; Rashidy-Pour, Ali
2018-05-23
There is increasing evidence that oxytocin is involved in learning and memory process. This study investigated the effects of blockade of oxytocin receptors using the selective oxytocin receptor antagonist atosiban (ATO) on contextual fear memory consolidation and reconsolidation in male rats. Post-training injections of different doses of ATO (1, 10, 100 or 1000 µg/kg) impaired the 48 h retention performance in a dose-dependent manner. The same doses of ATO following memory reactivation did not impair subsequent expression of contextual fear memories which formed under low or high shock intensities and tested 24 h or one week following memory reactivation. Also, no effect was found when ATO was administrated in the absence of memory reactivation. Our finding is the first report that indicates endogenous oxytocin released during training play an important role in the consolidation, but not reconsolidation of contextual fear memory in rats. Copyright © 2018. Published by Elsevier B.V.
De Vito, David; Al-Aidroos, Naseem; Fenske, Mark J
2017-05-01
Stimuli appearing as visual distractors subsequently receive more negative affective evaluations than novel items or prior targets of attention. Leading accounts question whether this distractor devaluation effect occurs through evaluative codes that become associated with distractors as a mere artefact of attention-task instructions, or through affective consequences of attentional inhibition when applied to prevent distractor interference. Here we test opposing predictions arising from the evaluative-coding and devaluation-by-inhibition hypotheses using an electrophysiological marker of attentional inhibition in a task that requires participants to avoid interference from abstract-shape distractors presented while maintaining a uniquely-colored stimulus in memory. Consistent with prior research, distractors that matched the colour of the stimulus being held in memory elicited a Pd component of the event-related potential waveform, indicating that their processing was being actively suppressed. Subsequent affective evaluations revealed that memory-matching distractors also received more negative ratings than non-matching distractors or previously-unseen shapes. Moreover, Pd magnitude was greater on trials in which the memory-matching distractors were later rated negatively than on trials preceding positive ratings. These results support the devaluation-by-inhibition hypothesis and strongly suggest that fluctuations in stimulus inhibition are closely associated with subsequent affective evaluations. In contrast, none of the evaluative-coding based predictions were confirmed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Virlouvet, Laetitia; Ding, Yong; Fujii, Hiroaki; Avramova, Zoya; Fromm, Michael
2014-07-01
Plants subjected to a prior dehydration stress were seen to have altered transcriptional responses during a subsequent dehydration stress for up to 5 days after the initial stress. The abscisic acid (ABA) inducible RD29B gene of Arabidopsis thaliana was strongly induced after the first stress and displayed transcriptional memory with transcript levels nine-fold higher during the second dehydration stress. These increased transcript levels were due to an increased rate of transcription and are associated with an altered chromatin template during the recovery interval between the dehydration stresses. Here we use a combination of promoter deletion/substitutions, mutants in the trans-acting transcription factors and their upstream protein kinases, and treatments with exogenous ABA or dehydration stress to advance our understanding of the features required for transcriptional memory of RD29B. ABA Response Elements (ABREs) are sufficient to confer transcriptional memory on a minimal promoter, although there is a context effect from flanking sequences. Different mutations in Snf1 Related Protein Kinase 2 (SnRK2) genes positively and negatively affected the response, suggesting that this effect is important for transcriptional memory. Although exogenous ABA treatments could prime transcriptional memory, a second ABA treatment was not sufficient to activate transcriptional memory. Therefore, we concluded that transcriptional memory requires ABA and an ABA-independent factor that is induced or activated by a subsequent dehydration stress and directly or indirectly results in a more active RD29B chromatin template. These results advance our knowledge of the cis- and trans-acting factors that are required for transcriptional memory of RD29B. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Shigemune, Yayoi; Tsukiura, Takashi; Kambara, Toshimune; Kawashima, Ryuta
2014-05-01
The motivation of getting rewards or avoiding punishments reinforces learning behaviors. Although the neural mechanisms underlying the effect of rewards on episodic memory have been demonstrated, there is little evidence of the effect of punishments on this memory. Our functional magnetic resonance imaging (fMRI) study investigated the effects of monetary rewards and punishments on activation during the encoding of source memories. During encoding, participants memorized words (item) and locations of presented words (source) under 3 conditions (Reward, Punishment, and Control). During retrieval, participants retrieved item and source memories of the words and were rewarded or penalized according to their performance. Source memories encoded with rewards or punishments were remembered better than those without such encoding. fMRI data demonstrated that the ventral tegmental area and substantia nigra and nucleus accumbens activations reflected both the processes of reward and punishment, whereas insular activation increased as a linear function of punishment. Activation in the hippocampus and parahippocampal cortex predicted subsequent retrieval success of source memories. Additionally, correlations between these reward/punishment-related regions and the hippocampus were significant. The successful encoding of source memories could be enhanced by punishments and rewards, and interactions between reward/punishment-related regions and memory-related regions could contribute to memory enhancement by reward and/or punishment.
Shigemune, Yayoi; Tsukiura, Takashi; Kambara, Toshimune; Kawashima, Ryuta
2014-01-01
The motivation of getting rewards or avoiding punishments reinforces learning behaviors. Although the neural mechanisms underlying the effect of rewards on episodic memory have been demonstrated, there is little evidence of the effect of punishments on this memory. Our functional magnetic resonance imaging (fMRI) study investigated the effects of monetary rewards and punishments on activation during the encoding of source memories. During encoding, participants memorized words (item) and locations of presented words (source) under 3 conditions (Reward, Punishment, and Control). During retrieval, participants retrieved item and source memories of the words and were rewarded or penalized according to their performance. Source memories encoded with rewards or punishments were remembered better than those without such encoding. fMRI data demonstrated that the ventral tegmental area and substantia nigra and nucleus accumbens activations reflected both the processes of reward and punishment, whereas insular activation increased as a linear function of punishment. Activation in the hippocampus and parahippocampal cortex predicted subsequent retrieval success of source memories. Additionally, correlations between these reward/punishment-related regions and the hippocampus were significant. The successful encoding of source memories could be enhanced by punishments and rewards, and interactions between reward/punishment-related regions and memory-related regions could contribute to memory enhancement by reward and/or punishment. PMID:23314939
ERP Subsequent Memory Effects Differ between Inter-Item and Unitization Encoding Tasks
Kamp, Siri-Maria; Bader, Regine; Mecklinger, Axel
2017-01-01
The “subsequent memory paradigm” is an analysis tool to identify brain activity elicited during episodic encoding that is associated with successful subsequent retrieval. Two commonly observed event-related potential “subsequent memory effects” (SMEs) are the parietal SME in the P300 time window and the frontal slow wave SME, but to date a clear characterization of the circumstances under which each SME is observed is missing. To test the hypothesis that the parietal SME occurs when aspects of an experience are unitized into a single item representation, while inter-item associative encoding is reflected in the frontal slow wave effect, participants were assigned to one of two conditions that emphasized one of the encoding types under otherwise matched study phases of a recognition memory experiment. Word pairs were presented either in the context of a definition that allowed to combine the word pairs into a new concept (unitization or item encoding) or together with a sentence frame (inter-item encoding). Performance on the recognition test did not differ between the groups. The parietal SME was only found in the definition group, supporting the idea that this SME occurs when the components of an association are integrated in a unitized item representation. An early prefrontal negativity also exhibited an SME only in this group, suggesting that the formation of novel units occurs through interactions of multiple brain areas. The frontal slow wave SME was pronounced in both groups and may thus reflect processes generally involved in encoding of associations. Our results provide evidence for a partial dissociation of the eliciting conditions of the two types of SMEs and therefore provide a tool for future studies to characterize the different types of episodic encoding. PMID:28194105
The effect of articulatory suppression on implicit and explicit false memory in the DRM paradigm.
Van Damme, Ilse; Menten, Jan; d'Ydewalle, Gery
2010-11-01
Several studies have shown that reliable implicit false memory can be obtained in the DRM paradigm. There has been considerable debate, however, about whether or not conscious activation of critical lures during study is a necessary condition for this. Recent findings have revealed that articulatory suppression prevents subsequent false priming in an anagram task (Lovden & Johansson, 2003). The present experiment sought to replicate and extend these findings to an implicit word stem completion task, and to additionally investigate the effect of articulatory suppression on explicit false memory. Results showed an inhibitory effect of articulatory suppression on veridical memory, as well as on implicit false memory, whereas the level of explicit false memory was heightened. This suggests that articulatory suppression did not merely eliminate conscious lure activation, but had a more general capacity-delimiting effect. The drop in veridical memory can be attributed to diminished encoding of item-specific information. Superficial encoding also limited the spreading of semantic activation during study, which inhibited later false priming. In addition, the lack of item-specific and phenomenological details caused impaired source monitoring at test, resulting in heightened explicit false memory.
Chan, Jason C K; Langley, Moses M
2011-01-01
Although retrieval practice typically enhances memory retention, it can also impair subsequent eyewitness memory accuracy (Chan, Thomas, & Bulevich, 2009). Specifically, participants who had taken an initial test about a witnessed event were more likely than nontested participants to recall subsequently encountered misinformation—an effect we called retrieval-enhanced suggestibility (RES). Here, we sought to test the generality of RES and to further elucidate its underlying mechanisms. To that end, we tested a dual mechanism account, which suggests that RES occurs because initial testing (a) enhances learning of the later misinformation by reducing proactive interference and (b) causes the reactivated memory trace to be more susceptible to later interference (i.e., a reconsolidation account). Three major findings emerged. First, RES was found after a 1-week delay, where a robust testing benefit occurred for event details that were not contradicted by later misinformation. Second, blockage of reconsolidation was unnecessary for RES to occur. Third, initial testing enhanced learning of the misinformation even when proactive interference played a minimal role.
Uncapher, Melina R; Wagner, Anthony D
2009-02-01
The formation of episodic memories--memories for life events--is affected by attention during event processing. A leading neurobiological model of attention posits two separate yet interacting systems that depend on distinct regions in lateral posterior parietal cortex (PPC). From this dual-attention perspective, dorsal PPC is thought to support the goal-directed allocation of attention, whereas ventral PPC is thought to support reflexive orienting to information that automatically captures attention. To advance understanding of how parietal mechanisms may impact event encoding, we review functional MRI studies that document the relationship between lateral PPC activation during encoding and subsequent memory performance (e.g., later remembering or forgetting). This review reveals that (a) encoding-related activity is frequently observed in human lateral PPC, (b) increased activation in dorsal PPC is associated with later memory success, and (c) increased activation in ventral PPC predominantly correlates with later memory failure. From a dual-attention perspective, these findings suggest that allocating goal-directed attention during event processing increases the probability that the event will be remembered later, whereas the capture of reflexive attention during event processing may have negative consequences for event encoding. The prevalence of encoding-related activation in parietal cortex suggests that neurobiological models of episodic memory should consider how parietal-mediated attentional mechanisms regulate encoding.
Effects of memory load on hemispheric asymmetries of colour memory.
Clapp, Wes; Kirk, Ian J; Hausmann, Markus
2007-03-01
Hemispheric asymmetries in colour perception have been a matter of debate for some time. Recent evidence suggests that lateralisation of colour processing may be largely task specific. Here we investigated hemispheric asymmetries during different types and phases of a delayed colour-matching (recognition) memory task. A total of 11 male and 12 female right-handed participants performed colour-memory tasks. The task involved presentation of a set of colour stimuli (encoding), and subsequent indication (forced choice) of which colours in a larger set had previously appeared at the retrieval or recognition phase. The effect of memory load (set size), and the effect of lateralisation at the encoding or retrieval phases were investigated. Overall, the results indicate a right hemisphere advantage in colour processing, which was particularly pronounced in high memory load conditions, and was seen in males rather than female participants. The results suggest that verbal (mnemonic) strategies can significantly affect the magnitude of hemispheric asymmetries in a non-verbal task.
Can false memories be corrected by feedback in the DRM paradigm?
McConnell, Melissa D; Hunt, R Reed
2007-07-01
Normal processes of comprehension frequently yield false memories as an unwanted by-product. The simple paradigm now known as the Deese/Roediger-McDermott (DRM) paradigm takes advantage of this fact and has been used to reliably produce false memory for laboratory study. Among the findings from past research is the difficulty of preventing false memories in this paradigm. The purpose of the present experiments was to examine the effectiveness of feedback in correcting false memories. Two experiments were conducted, in which participants recalled DRM lists and either received feedback on their performance or did not. A subsequent recall test was administered to assess the effect of feedback. The results showed promising effects of feedback: Feedback enhanced both error correction and the propagation of correct recall. The data replicated other data of studies that have shown substantial error perseveration following feedback. These data also provide new information on the occurrence of errors following feedback. The results are discussed in terms of the activation-monitoring theory of false memory.
Memory and prediction in natural gaze control
Diaz, Gabriel; Cooper, Joseph; Hayhoe, Mary
2013-01-01
In addition to stimulus properties and task factors, memory is an important determinant of the allocation of attention and gaze in the natural world. One way that the role of memory is revealed is by predictive eye movements. Both smooth pursuit and saccadic eye movements demonstrate predictive effects based on previous experience. We have previously shown that unskilled subjects make highly accurate predictive saccades to the anticipated location of a ball prior to a bounce in a virtual racquetball setting. In this experiment, we examined this predictive behaviour. We asked whether the period after the bounce provides subjects with visual information about the ball trajectory that is used to programme the pursuit movement initiated when the ball passes through the fixation point. We occluded a 100 ms period of the ball's trajectory immediately after the bounce, and found very little effect on the subsequent pursuit movement. Subjects did not appear to modify their strategy to prolong the fixation. Neither were we able to find an effect on interception performance. Thus, it is possible that the occluded trajectory information is not critical for subsequent pursuit, and subjects may use an estimate of the ball's trajectory to programme pursuit. These results provide further support for the role of memory in eye movements. PMID:24018726
Entringer, Sonja; Buss, Claudia; Kumsta, Robert; Hellhammer, Dirk H; Wadhwa, Pathik D; Wüst, Stefan
2009-08-01
The aim of the present study was to examine the association between prenatal psychosocial stress exposure and subsequent prefrontal cortex-dependent working memory performance in human adults. Working memory performance was assessed using an item-recognition task under 10 mg hydrocortisone (cortisol) and placebo conditions in a sample of 32 healthy young women (mean age = 25 +/- 4.34 years) whose mothers experienced a major negative life event during their pregnancy (Prenatal Stress, PS group), and in a comparison group of 27 healthy young women (mean age = 24 +/- 3.4 years). The two groups did not differ in the placebo condition, however, subjects in the PS group showed longer reaction times after hydrocortisone administration compared with subjects in the comparison group (p = .02). These findings provide support for an association between prenatal stress exposure and the potential modulatory effect of cortisol on working memory performance in young adults, which may reflect compromised development of the prefrontal cortex in prenatal life. 2009 APA, all rights reserved
Motivated reconstruction: The effect of brand commitment on false memories.
Montgomery, Nicole Votolato; Rajagopal, Priyali
2018-06-01
Across 5 studies, we examine the effect of prior brand commitment on the creation of false memories about product experience after reading online product reviews. We find that brand commitment and the valence of reviews to which consumers are exposed, interact to affect the incidence of false memories. Thus, highly committed consumers are more susceptible to the creation of false experience memories on exposure to positive versus negative reviews, whereas low commitment consumers exhibit similar levels of false memories in response to both positive and negative reviews. Further, these differences across brand commitment are attenuated when respondents are primed with an accuracy motivation, suggesting that the biasing effects of commitment are likely because of the motivation to defend the committed brand. Finally, we find that differences in false memories subsequently lead to differences in intentions to spread word-of-mouth (e.g., recommend the product to friends), suggesting that the consequences of false product experience memories can be significant for marketers and consumers. Our findings contribute to the literatures in false memory and marketing by documenting a motivated bias in false memories because of brand commitment. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Geary, David C.; Nicholas, Alan; Li, Yaoran; Sun, Jianguo
2016-01-01
The contributions of domain-general abilities and domain-specific knowledge to subsequent mathematics achievement were longitudinally assessed (n = 167) through 8th grade. First grade intelligence and working memory and prior grade reading achievement indexed domain-general effects and domain-specific effects were indexed by prior grade mathematics achievement and mathematical cognition measures of prior grade number knowledge, addition skills, and fraction knowledge. Use of functional data analysis enabled grade-by-grade estimation of overall domain-general and domain-specific effects on subsequent mathematics achievement, the relative importance of individual domain-general and domain-specific variables on this achievement, and linear and non-linear across-grade estimates of these effects. The overall importance of domain-general abilities for subsequent achievement was stable across grades, with working memory emerging as the most important domain-general ability in later grades. The importance of prior mathematical competencies on subsequent mathematics achievement increased across grades, with number knowledge and arithmetic skills critical in all grades and fraction knowledge in later grades. Overall, domain-general abilities were more important than domain-specific knowledge for mathematics learning in early grades but general abilities and domain-specific knowledge were equally important in later grades. PMID:28781382
A face to remember: emotional expression modulates prefrontal activity during memory formation.
Sergerie, Karine; Lepage, Martin; Armony, Jorge L
2005-01-15
Emotion can exert a modulatory role on episodic memory. Several studies have shown that negative stimuli (e.g., words, pictures) are better remembered than neutral ones. Although facial expressions are powerful emotional stimuli and have been shown to influence perception and attention processes, little is known about their effect on memory. We used functional magnetic resonance imaging (fMRI) in humans to investigate the effects of expression (happy, neutral, and fearful) on prefrontal cortex (PFC) activity during the encoding of faces, using a subsequent memory effect paradigm. Our results show that activity in right PFC predicted memory for faces, regardless of expression, while a homotopic region in the left hemisphere was associated with successful encoding only for faces with an emotional expression. These findings are consistent with the proposed role of right dorsolateral PFC in successful encoding of nonverbal material, but also suggest that left DLPFC may be a site where integration of memory and emotional processes occurs. This study sheds new light on the current controversy regarding the hemispheric lateralization of PFC in memory encoding.
Aging and the Effects of Exploratory Behavior on Spatial Memory.
Varner, Kaitlin M; Dopkins, Stephen; Philbeck, John W
2016-03-01
The present research examined the effect of encoding from multiple viewpoints on scene recall in a group of younger (18-22 years) and older (65-80 years) adults. Participants completed a visual search task, during which they were given the opportunity to examine a room using two sets of windows that partitioned the room differently. Their choice of window set was recorded, to determine whether an association between these choices and spatial memory performance existed. Subsequently, participants were tested for spatial memory of the domain in which the search task was completed. Relative to younger adults, older adults demonstrated an increased tendency to use a single set of windows as well as decreased spatial memory for the domain. Window-set usage was associated with spatial memory, such that older adults who relied more heavily on a single set of windows also had better performance on the spatial memory task. These findings suggest that, in older adults, moderation in exploratory behavior may have a positive effect on memory for the domain of exploration. © The Author(s) 2016.
Oyarzún, Javiera P; Packard, Pau A; de Diego-Balaguer, Ruth; Fuentemilla, Lluis
2016-09-01
Neurobiological models of long-term memory explain how memory for inconsequential events fades, unless these happen before or after other relevant (i.e., rewarding or aversive) or novel events. Recently, it has been shown in humans that retrospective and prospective memories are selectively enhanced if semantically related events are paired with aversive stimuli. However, it remains unclear whether motivating stimuli, as opposed to aversive, have the same effect in humans. Here, participants performed a three phase incidental encoding task where one semantic category was rewarded during the second phase. A memory test 24h after, but not immediately after encoding, revealed that memory for inconsequential items was selectively enhanced only if items from the same category had been previously, but not subsequently, paired with rewards. This result suggests that prospective memory enhancement of reward-related information requires, like previously reported for aversive memories, of a period of memory consolidation. The current findings provide the first empirical evidence in humans that the effects of motivated encoding are selectively and prospectively prolonged over time. Copyright © 2016 Elsevier Inc. All rights reserved.
Gao, Aijing; Xia, Frances; Guskjolen, Axel J; Ramsaran, Adam I; Santoro, Adam; Josselyn, Sheena A; Frankland, Paul W
2018-03-28
Throughout life neurons are continuously generated in the subgranular zone of the hippocampus. The subsequent integration of newly generated neurons alters patterns of dentate gyrus input and output connectivity, potentially rendering memories already stored in those circuits harder to access. Consistent with this prediction, we previously showed that increasing hippocampal neurogenesis after training induces forgetting of hippocampus-dependent memories, including contextual fear memory. However, the brain regions supporting contextual fear memories change with time, and this time-dependent memory reorganization might regulate the sensitivity of contextual fear memories to fluctuations in hippocampal neurogenesis. By virally expressing the inhibitory designer receptor exclusively activated by designer drugs, hM4Di, we first confirmed that chemogenetic inhibition of dorsal hippocampal neurons impairs retrieval of recent (day-old) but not remote (month-old) contextual fear memories in male mice. We then contrasted the effects of increasing hippocampal neurogenesis at recent versus remote time points after contextual fear conditioning in male and female mice. Increasing hippocampal neurogenesis immediately following training reduced conditioned freezing when mice were replaced in the context 1 month later. In contrast, when hippocampal neurogenesis was increased time points remote to training, conditioned freezing levels were unaltered when mice were subsequently tested. These temporally graded forgetting effects were observed using both environmental and genetic interventions to increase hippocampal neurogenesis. Our experiments identify memory age as a boundary condition for neurogenesis-mediated forgetting and suggest that, as contextual fear memories mature, they become less sensitive to changes in hippocampal neurogenesis levels because they no longer depend on the hippocampus for their expression. SIGNIFICANCE STATEMENT New neurons are generated in the hippocampus throughout life. As they integrate into the hippocampus, they remodel neural circuitry, potentially making information stored in those circuits harder to access. Consistent with this, increasing hippocampal neurogenesis after learning induces forgetting of the learnt information. The current study in mice asks whether these forgetting effects depend on the age of the memory. We found that post-training increases in hippocampal neurogenesis only impacted recently acquired, and not remotely acquired, hippocampal memories. These experiments identify memory age as a boundary condition for neurogenesis-mediated forgetting, and suggest remote memories are less sensitive to changes in hippocampal neurogenesis levels because they no longer depend critically on the hippocampus for their expression. Copyright © 2018 the authors 0270-6474/18/383190-09$15.00/0.
Effect of acoustic similarity on short-term auditory memory in the monkey
Scott, Brian H.; Mishkin, Mortimer; Yin, Pingbo
2013-01-01
Recent evidence suggests that the monkey’s short-term memory in audition depends on a passively retained sensory trace as opposed to a trace reactivated from long-term memory for use in working memory. Reliance on a passive sensory trace could render memory particularly susceptible to confusion between sounds that are similar in some acoustic dimension. If so, then in delayed matching-to-sample, the monkey’s performance should be predicted by the similarity in the salient acoustic dimension between the sample and subsequent test stimulus, even at very short delays. To test this prediction and isolate the acoustic features relevant to short-term memory, we examined the pattern of errors made by two rhesus monkeys performing a serial, auditory delayed match-to-sample task with interstimulus intervals of 1 s. The analysis revealed that false-alarm errors did indeed result from similarity-based confusion between the sample and the subsequent nonmatch stimuli. Manipulation of the stimuli showed that removal of spectral cues was more disruptive to matching behavior than removal of temporal cues. In addition, the effect of acoustic similarity on false-alarm response was stronger at the first nonmatch stimulus than at the second one. This pattern of errors would be expected if the first nonmatch stimulus overwrote the sample’s trace, and suggests that the passively retained trace is not only vulnerable to similarity-based confusion but is also highly susceptible to overwriting. PMID:23376550
When encoding yields remembering: insights from event-related neuroimaging.
Wagner, A D; Koutstaal, W; Schacter, D L
1999-01-01
To understand human memory, it is important to determine why some experiences are remembered whereas others are forgotten. Until recently, insights into the neural bases of human memory encoding, the processes by which information is transformed into an enduring memory trace, have primarily been derived from neuropsychological studies of humans with select brain lesions. The advent of functional neuroimaging methods, such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), has provided a new opportunity to gain additional understanding of how the brain supports memory formation. Importantly, the recent development of event-related fMRI methods now allows for examination of trial-by-trial differences in neural activity during encoding and of the consequences of these differences for later remembering. In this review, we consider the contributions of PET and fMRI studies to the understanding of memory encoding, placing a particular emphasis on recent event-related fMRI studies of the Dm effect: that is, differences in neural activity during encoding that are related to differences in subsequent memory. We then turn our attention to the rich literature on the Dm effect that has emerged from studies using event-related potentials (ERPs). It is hoped that the integration of findings from ERP studies, which offer higher temporal resolution, with those from event-related fMRI studies, which offer higher spatial resolution, will shed new light on when and why encoding yields subsequent remembering. PMID:10466153
Effect of acoustic similarity on short-term auditory memory in the monkey.
Scott, Brian H; Mishkin, Mortimer; Yin, Pingbo
2013-04-01
Recent evidence suggests that the monkey's short-term memory in audition depends on a passively retained sensory trace as opposed to a trace reactivated from long-term memory for use in working memory. Reliance on a passive sensory trace could render memory particularly susceptible to confusion between sounds that are similar in some acoustic dimension. If so, then in delayed matching-to-sample, the monkey's performance should be predicted by the similarity in the salient acoustic dimension between the sample and subsequent test stimulus, even at very short delays. To test this prediction and isolate the acoustic features relevant to short-term memory, we examined the pattern of errors made by two rhesus monkeys performing a serial, auditory delayed match-to-sample task with interstimulus intervals of 1 s. The analysis revealed that false-alarm errors did indeed result from similarity-based confusion between the sample and the subsequent nonmatch stimuli. Manipulation of the stimuli showed that removal of spectral cues was more disruptive to matching behavior than removal of temporal cues. In addition, the effect of acoustic similarity on false-alarm response was stronger at the first nonmatch stimulus than at the second one. This pattern of errors would be expected if the first nonmatch stimulus overwrote the sample's trace, and suggests that the passively retained trace is not only vulnerable to similarity-based confusion but is also highly susceptible to overwriting. Copyright © 2013 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Edlin, James M.; Lyle, Keith B.
2013-01-01
The simple act of repeatedly looking left and right can enhance subsequent cognition, including divergent thinking, detection of matching letters from visual arrays, and memory retrieval. One hypothesis is that saccade execution enhances subsequent cognition by altering attentional control. To test this hypothesis, we compared performance…
Illusory expectations can affect retrieval-monitoring accuracy.
McDonough, Ian M; Gallo, David A
2012-03-01
The present study investigated how expectations, even when illusory, can affect the accuracy of memory decisions. Participants studied words presented in large or small font for subsequent memory tests. Replicating prior work, judgments of learning indicated that participants expected to remember large words better than small words, even though memory for these words was equivalent on a standard test of recognition memory and subjective judgments. Critically, we also included tests that instructed participants to selectively search memory for either large or small words, thereby allowing different memorial expectations to contribute to performance. On these tests we found reduced false recognition when searching memory for large words relative to small words, such that the size illusion paradoxically affected accuracy measures (d' scores) in the absence of actual memory differences. Additional evidence for the role of illusory expectations was that (a) the accuracy effect was obtained only when participants searched memory for the aspect of the stimuli corresponding to illusory expectations (size instead of color) and (b) the accuracy effect was eliminated on a forced-choice test that prevented the influence of memorial expectations. These findings demonstrate the critical role of memorial expectations in the retrieval-monitoring process. 2012 APA, all rights reserved
Taherian, Fatemeh; Vafaei, Abbas Ali; Vaezi, Gholam Hassan; Eskandarian, Sharaf; Kashef, Adel; Rashidy-Pour, Ali
2014-01-01
Introduction Previous studies have demonstrated that the β-adrenergic receptor antagonist propranolol impairs fear memory reconsolidation in experimental animals. There are experimental parameters such as the age and the strength of memory that can interact with pharmacological manipulations of memory reconsolidation. In this study, we investigated the ability of the age and the strength of memory to influence the disrupting effects of propranolol on fear memory reconsolidation in rats. Methods The rats were trained in a contextual fear conditioning using two (weak training) or five (strong training) footshocks (1mA). Propranolol (10mg/kg) injection was immediately followed retrieval of either a one-day recent (weak or strong) or 36-day remote (weak or strong) contextual fear memories. Results We found that propranolol induced a long-lasting impairment of subsequent expression of recent and remote memories with either weak or strong strength. We also found no memory recovery after a weak reminder shock. Furthermore, no significant differences were found on the amount of memory deficit induced by propranolol among memories with different age and strength. Discussion Our data suggest that the efficacy of propranolol in impairing fear memory reconsolidation is not limited to the age or strength of the memory. PMID:25337385
Poppenk, Jordan; Norman, Kenneth A
2012-11-01
Recent cognitive research has revealed better source memory performance for familiar relative to novel stimuli. Here we consider two possible explanations for this finding. The source memory advantage for familiar stimuli could arise because stimulus novelty induces attention to stimulus features at the expense of contextual processing, resulting in diminished overall levels of contextual processing at study for novel (vs. familiar) stimuli. Another possibility is that stimulus information retrieved from long-term memory (LTM) provides scaffolding that facilitates the formation of item-context associations. If contextual features are indeed more effectively bound to familiar (vs. novel) items, the relationship between contextual processing at study and subsequent source memory should be stronger for familiar items. We tested these possibilities by applying multi-voxel pattern analysis (MVPA) to a recently collected functional magnetic resonance imaging (fMRI) dataset, with the goal of measuring contextual processing at study and relating it to subsequent source memory performance. Participants were scanned with fMRI while viewing novel proverbs, repeated proverbs (previously novel proverbs that were shown in a pre-study phase), and previously known proverbs in the context of one of two experimental tasks. After scanning was complete, we evaluated participants' source memory for the task associated with each proverb. Drawing upon fMRI data from the study phase, we trained a classifier to detect on-task processing (i.e., how strongly was the correct task set activated). On-task processing was greater for previously known than novel proverbs and similar for repeated and novel proverbs. However, both within and across participants, the relationship between on-task processing and subsequent source memory was stronger for repeated than novel proverbs and similar for previously known and novel proverbs. Finally, focusing on the repeated condition, we found that higher levels of hippocampal activity during the pre-study phase, which we used as an index of episodic encoding, led to a stronger relationship between on-task processing at study and subsequent memory. Together, these findings suggest different mechanisms may be primarily responsible for superior source memory for repeated and previously known stimuli. Specifically, they suggest that prior stimulus knowledge enhances memory by boosting the overall level of contextual processing, whereas stimulus repetition enhances the probability that contextual features will be successfully bound to item features. Several possible theoretical explanations for this pattern are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
The Negative Testing and Negative Generation Effects Are Eliminated by Delay
ERIC Educational Resources Information Center
Mulligan, Neil W.; Peterson, Daniel J.
2015-01-01
Although retrieval often enhances subsequent memory (the testing effect), a negative testing effect has recently been documented in which prior retrieval harms later recall compared with restudying. The negative testing effect was predicated on the negative generation effect and the item-specific-relational framework. The present experiments…
Wolf, O T; Atsak, P; de Quervain, D J; Roozendaal, B; Wingenfeld, K
2016-08-01
Stress causes a neuroendocrine response cascade, leading to the release of catecholamines and glucocorticoids (GCs). GCs influence learning and memory by acting on mineralocorticoid (MR) and glucocorticoid (GR) receptors. Typically, GCs enhance the consolidation of memory processing at the same time as impairing the retrieval of memory of emotionally arousing experiences. The present selective review addresses four recent developments in this area. First, the role of the endocannabinoid system in mediating the rapid, nongenomic effects of GCs on memory is illustrated in rodents. Subsequently, studies on the impact of the selective stimulation of MRs on different memory processes in humans are summarised. Next, a series of human experiments on the impact of stress or GC treatment on fear extinction and fear reconsolidation is presented. Finally, the clinical relevance of the effects of exogenous GC administration is highlighted by the description of patients with anxiety disorders who demonstrate an enhancement of extinction-based therapies by GC treatment. The review highlights the substantial progress made in our mechanistic understanding of the memory-modulating properties of GCs, as well as their clinical potential. © 2015 British Society for Neuroendocrinology.
Semantic and phonological contributions to short-term repetition and long-term cued sentence recall.
Meltzer, Jed A; Rose, Nathan S; Deschamps, Tiffany; Leigh, Rosie C; Panamsky, Lilia; Silberberg, Alexandra; Madani, Noushin; Links, Kira A
2016-02-01
The function of verbal short-term memory is supported not only by the phonological loop, but also by semantic resources that may operate on both short and long time scales. Elucidation of the neural underpinnings of these mechanisms requires effective behavioral manipulations that can selectively engage them. We developed a novel cued sentence recall paradigm to assess the effects of two factors on sentence recall accuracy at short-term and long-term stages. Participants initially repeated auditory sentences immediately following a 14-s retention period. After this task was complete, long-term memory for each sentence was probed by a two-word recall cue. The sentences were either concrete (high imageability) or abstract (low imageability), and the initial 14-s retention period was filled with either an undemanding finger-tapping task or a more engaging articulatory suppression task (Exp. 1, counting backward by threes; Exp. 2, repeating a four-syllable nonword). Recall was always better for the concrete sentences. Articulatory suppression reduced accuracy in short-term recall, especially for abstract sentences, but the sentences initially recalled following articulatory suppression were retained better at the subsequent cued-recall test, suggesting that the engagement of semantic mechanisms for short-term retention promoted encoding of the sentence meaning into long-term memory. These results provide a basis for using sentence imageability and subsequent memory performance as probes of semantic engagement in short-term memory for sentences.
Slow-Wave Sleep-Imposed Replay Modulates Both Strength and Precision of Memory
2014-01-01
Odor perception is hypothesized to be an experience-dependent process involving the encoding of odor objects by distributed olfactory cortical ensembles. Olfactory cortical neurons coactivated by a specific pattern of odorant evoked input become linked through association fiber synaptic plasticity, creating a template of the familiar odor. In this way, experience and memory play an important role in odor perception and discrimination. In other systems, memory consolidation occurs partially via slow-wave sleep (SWS)-dependent replay of activity patterns originally evoked during waking. SWS is ideal for replay given hyporesponsive sensory systems, and thus reduced interference. Here, using artificial patterns of olfactory bulb stimulation in a fear conditioning procedure in the rat, we tested the effects of imposed post-training replay during SWS and waking on strength and precision of pattern memory. The results show that imposed replay during post-training SWS enhanced the subsequent strength of memory, whereas the identical replay during waking induced extinction. The magnitude of this enhancement was dependent on the timing of imposed replay relative to cortical sharp-waves. Imposed SWS replay of stimuli, which differed from the conditioned stimulus, did not affect conditioned stimulus memory strength but induced generalization of the fear memory to novel artificial patterns. Finally, post-training disruption of piriform cortex intracortical association fiber synapses, hypothesized to be critical for experience-dependent odor coding, also impaired subsequent memory precision but not strength. These results suggest that SWS replay in the olfactory cortex enhances memory consolidation, and that memory precision is dependent on the fidelity of that replay. PMID:24719093
Uncapher, Melina R; Rugg, Michael D
2008-02-01
Considerable evidence suggests that attentional resources are necessary for the encoding of episodic memories, but the nature of the relationship between attention and neural correlates of encoding is unclear. Here we address this question using functional magnetic resonance imaging and a divided-attention paradigm in which competition for different types of attentional resources was manipulated. Fifteen volunteers were scanned while making animacy judgments to visually presented words and concurrently performing one of three tasks on auditorily presented words: male/female voice discrimination (control task), 1-back voice comparison (1-back task), or indoor/outdoor judgment (semantic task). The 1-back and semantic tasks were designed to compete for task-generic and task-specific attentional resources, respectively. Using the "remember/know" procedure, memory for the study words was assessed after 15 min. In the control condition, subsequent memory effects associated with later recollection were identified in the left dorsal inferior frontal gyrus and in the left hippocampus. These effects were differentially attenuated in the two more difficult divided-attention conditions. The effects of divided attention seem, therefore, to reflect impairments due to limitations at both task-generic and task-specific levels. Additionally, each of the two more difficult divided-attention conditions was associated with subsequent memory effects in regions distinct from those showing effects in the control condition. These findings suggest the engagement of alternative encoding processes to those engaged in the control task. The overall pattern of findings suggests that divided attention can impact later memory in different ways, and accordingly, that different attentional resources, including task-generic and task-specific resources, make distinct contributions to successful episodic encoding.
ERIC Educational Resources Information Center
Rindal, Eric J.; DeFranco, Rachel M.; Rich, Patrick R.; Zaragoza, Maria S.
2016-01-01
In a recent PNAS article, Chan and LaPaglia (2013) provided arguments and evidence to support the claim that reactivating a witnessed memory (by taking a test) renders the memory labile and susceptible to impairment by subsequent misinformation. In the current article, we argue that Chan and LaPaglia's (2013) findings are open to alternative…
Hippocampal and Cognitive Function, Exercise, and Ovarian Cancer: A Pilot Study
2015-08-01
the hippocampus and subsequently offset memory decline. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF... hippocampus and subsequently offset memory decline. 2 KEYWORDS: Physical activity interventions, ovarian cancer treatment, chemotherapy-induced...chemotherapy complaint in a single cancer: problems with memory in patients with ovarian cancer. We focus on this problem for three reasons: 1
False feedback and beliefs influence name recall in younger and older adults.
Strickland-Hughes, Carla M; West, Robin Lea; Smith, Kimberly A; Ebner, Natalie C
2017-09-01
Feedback is an important self-regulatory process that affects task effort and subsequent performance. Benefits of positive feedback for list recall have been explored in research on goals and feedback, but the effect of negative feedback on memory has rarely been studied. The current research extends knowledge of memory and feedback effects by investigating face-name association memory and by examining the potential mediation of feedback effects, in younger and older adults, through self-evaluative beliefs. Beliefs were assessed before and after name recognition and name recall testing. Repeated presentation of false positive feedback was compared to false negative feedback and a no feedback condition. Results showed that memory self-efficacy declined over time for participants in the negative and no feedback conditions but was sustained for those receiving positive feedback. Furthermore, participants who received negative feedback felt older after testing than before testing. For name recall, the positive feedback group outperformed the negative feedback and no feedback groups combined, with no age interactions. The observed feedback-related effects on memory were fully mediated by changes in memory self-efficacy. These findings advance our understanding of how beliefs are related to feedback in memory and inform future studies examining the importance of self-regulation in memory.
Menges, Steven A; Riepe, Joshua R; Philips, Gary T
2015-09-01
A highly conserved feature of memory is that it can exist in a latent, non-expressed state which is revealed during subsequent learning by its ability to significantly facilitate (savings) or inhibit (latent inhibition) subsequent memory formation. Despite the ubiquitous nature of latent memory, the mechanistic nature of the latent memory trace and its ability to influence subsequent learning remains unclear. The model organism Aplysia californica provides the unique opportunity to make strong links between behavior and underlying cellular and molecular mechanisms. Using Aplysia, we have studied the mechanisms of savings due to latent memory for a prior, forgotten experience. We previously reported savings in the induction of three distinct temporal domains of memory: short-term (10min), intermediate-term (2h) and long-term (24h). Here we report that savings memory formation utilizes molecular signaling pathways that are distinct from original learning: whereas the induction of both original intermediate- and long-term memory in naïve animals requires mitogen activated protein kinase (MAPK) activation and ongoing protein synthesis, 2h savings memory is not disrupted by inhibitors of MAPK or protein synthesis, and 24h savings memory is not dependent on MAPK activation. Collectively, these findings reveal that during forgetting, latent memory for the original experience can facilitate relearning through molecular signaling mechanisms that are distinct from original learning. Copyright © 2015 Elsevier Inc. All rights reserved.
False memory in aging: effects of emotional valence on word recognition accuracy.
Piguet, Olivier; Connally, Emily; Krendl, Anne C; Huot, Jessica R; Corkin, Suzanne
2008-06-01
Memory is susceptible to distortions. Valence and increasing age are variables known to affect memory accuracy and may increase false alarm production. Interaction between these variables and their impact on false memory was investigated in 36 young (18-28 years) and 36 older (61-83 years) healthy adults. At study, participants viewed lists of neutral words orthographically related to negative, neutral, or positive critical lures (not presented). Memory for these words was subsequently tested with a remember-know procedure. At test, items included the words seen at study and their associated critical lures, as well as sets of orthographically related neutral words not seen at study and their associated unstudied lures. Positive valence was shown to have two opposite effects on older adults' discrimination of the lures: It improved correct rejection of unstudied lures but increased false memory for critical lures (i.e., lures associated with words studied previously). Thus, increased salience triggered by positive valence may disrupt memory accuracy in older adults when discriminating among similar events. These findings likely reflect a source memory deficit due to decreased efficiency in cognitive control processes with aging.
How a high working memory capacity can increase proactive interference.
Steinwascher, Merle A; Meiser, Thorsten
2016-08-01
Previous findings suggested that a high working memory capacity (WMC) is potentially associated with a higher susceptibility to proactive interference (PI) if the latter is measured under high cognitive load. To explain such a finding, we propose to consider susceptibility to PI as a net effect of individual executive processes and the intrinsic potential for PI. With the latter, we refer to the amount of information that is activated at a given time and that has the potential to exert PI subsequently. In two studies deploying generalized linear mixed models, susceptibility to PI was modeled as the decline of performance over trials of a complex span task. The results revealed that a higher WMC was associated with a higher susceptibility to PI. Moreover, the number of stimuli recalled in one trial as a proxy variable for the intrinsic potential for PI negatively affected memory performance in the subsequent trial. Copyright © 2016 Elsevier Inc. All rights reserved.
How retellings shape younger and older adults' memories.
Barber, Sarah J; Mather, Mara
2014-04-01
The way a story is retold influences the way it is later remembered; after retelling an event in a biased manner people subsequently remember the event in line with their distorted retelling. This study tested the hypothesis that this should be especially true for older adults. To test this, older and younger adults retold a story to be entertaining, to be accurate, or did not complete an initial retelling. Later, all participants recalled the story as accurately as possible. On this final test younger adults were unaffected by how they had previously retold the story. In contrast, older adults had better memory for the story's content and structure if they had previously retold the story accurately. Furthermore, for older adults, greater usage of storytelling language during the retelling was associated with lower subsequent recall. In summary, retellings exerted a greater effect on memory in older, compared with younger, adults.
How retellings shape younger and older adults’ memories
Mather, Mara
2014-01-01
The way a story is retold influences the way it is later remembered; after retelling an event in a biased manner people subsequently remember the event in line with their distorted retelling. This study tested the hypothesis that this should be especially true for older adults. To test this, older and younger adults retold a story to be entertaining, to be accurate, or did not complete an initial retelling. Later, all participants recalled the story as accurately as possible. On this final test younger adults were unaffected by how they had previously retold the story. In contrast, older adults had better memory for the story’s content and structure if they had previously retold the story accurately. Furthermore, for older adults, greater usage of storytelling language during the retelling was associated with lower subsequent recall. In summary, retellings exerted a greater effect on memory in older, compared with younger, adults. PMID:25436107
Abercrombie, Heather C; Wirth, Michelle M; Hoks, Roxanne M
2012-05-01
Acute emotional arousal moderates the effects of cortisol on memory. However, it is currently unknown how stable inter-individual differences (i.e., traits) moderate cortisol's effects on memory. In two studies using within-subjects designs - 31 healthy males in Study 1 and 42 healthy subjects (22 female) in Study 2 - we measured trait negative affect (NA) and presented emotional and neutral pictures. In Study 1, we manipulated endogenous cortisol levels using a speech stressor following encoding. In Study 2, using a randomized placebo-controlled design, we pharmacologically manipulated cortisol levels prior to encoding (0.1mg/kg hydrocortisone vs. saline infused over 30min). Free recall for pictures was subsequently assessed. Trait NA repeatedly moderated the relationship between cortisol and memory formation. Findings suggested the speculative conclusion that the direction of effects may vary by sex. In males, cortisol was related to memory facilitation in subjects with lower Trait NA. Conversely, females with higher Trait NA showed greater cortisol-related increases in memory. Trait NA may be a stable inter-individual difference predicting neurocognitive effects of cortisol during stressors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Shaping memory accuracy by left prefrontal transcranial direct current stimulation.
Zwissler, Bastian; Sperber, Christoph; Aigeldinger, Sina; Schindler, Sebastian; Kissler, Johanna; Plewnia, Christian
2014-03-12
Human memory is dynamic and flexible but is also susceptible to distortions arising from adaptive as well as pathological processes. Both accurate and false memory formation require executive control that is critically mediated by the left prefrontal cortex (PFC). Transcranial direct current stimulation (tDCS) enables noninvasive modulation of cortical activity and associated behavior. The present study reports that tDCS applied to the left dorsolateral PFC (dlPFC) shaped accuracy of episodic memory via polaritiy-specific modulation of false recognition. When applied during encoding of pictures, anodal tDCS increased whereas cathodal stimulation reduced the number of false alarms to lure pictures in subsequent recognition memory testing. These data suggest that the enhancement of excitability in the dlPFC by anodal tDCS can be associated with blurred detail memory. In contrast, activity-reducing cathodal tDCS apparently acted as a noise filter inhibiting the development of imprecise memory traces and reducing the false memory rate. Consistently, the largest effect was found in the most active condition (i.e., for stimuli cued to be remembered). This first evidence for a polarity-specific, activity-dependent effect of tDCS on false memory opens new vistas for the understanding and potential treatment of disturbed memory control.
Uncapher, Melina; Wagner, Anthony D.
2010-01-01
The formation of episodic memories –– memories for life events –– is affected by attention during event processing. A leading neurobiological model of attention posits two separate yet interacting systems that depend on distinct regions in lateral posterior parietal cortex (PPC). From this dual-attention perspective, dorsal PPC is thought to support the goal-directed allocation of attention, whereas ventral PPC is thought to support reflexive orienting to information that automatically captures attention. To advance understanding of how parietal mechanisms may impact event encoding, we review functional MRI studies that document the relationship between lateral PPC activation during encoding and subsequent memory performance (e.g., later remembering or forgetting). This review reveals that (a) encoding-related activity is frequently observed in human lateral PPC, (b) increased activation in dorsal PPC is associated with later memory success, and (c) increased activation in ventral PPC predominantly correlates with later memory failure. From a dual-attention perspective, these findings suggest that allocating goal-directed attention during event processing increases the probability that the event will be remembered later, whereas the capture of reflexive attention during event processing may have negative consequences for event encoding. The prevalence of encoding-related activation in parietal cortex suggests that neurobiological models of episodic memory should consider how parietal-mediated attentional mechanisms regulate encoding. PMID:19028591
Neural suppression of irrelevant information underlies optimal working memory performance.
Zanto, Theodore P; Gazzaley, Adam
2009-03-11
Our ability to focus attention on task-relevant information and ignore distractions is reflected by differential enhancement and suppression of neural activity in sensory cortex (i.e., top-down modulation). Such selective, goal-directed modulation of activity may be intimately related to memory, such that the focus of attention biases the likelihood of successfully maintaining relevant information by limiting interference from irrelevant stimuli. Despite recent studies elucidating the mechanistic overlap between attention and memory, the relationship between top-down modulation of visual processing during working memory (WM) encoding, and subsequent recognition performance has not yet been established. Here, we provide neurophysiological evidence in healthy, young adults that top-down modulation of early visual processing (< 200 ms from stimulus onset) is intimately related to subsequent WM performance, such that the likelihood of successfully remembering relevant information is associated with limiting interference from irrelevant stimuli. The consequences of a failure to ignore distractors on recognition performance was replicated for two types of feature-based memory, motion direction and color. Moreover, attention to irrelevant stimuli was reflected neurally during the WM maintenance period as an increased memory load. These results suggest that neural enhancement of relevant information is not the primary determinant of high-level performance, but rather optimal WM performance is dependent on effectively filtering irrelevant information through neural suppression to prevent overloading a limited memory capacity.
NASA Astrophysics Data System (ADS)
Kuriyama, Kenichi; Honma, Motoyasu; Yoshiike, Takuya; Kim, Yoshiharu
2013-07-01
Sleep deprivation immediately following an aversive event reduces fear by preventing memory consolidation during homeostatic sleep. This suggests that acute insomnia might act prophylactically against the development of posttraumatic stress disorder (PTSD) even though it is also a possible risk factor for PTSD. We examined total sleep deprivation and memory suppression to evaluate the effects of these interventions on subsequent aversive memory formation and fear conditioning. Active suppression of aversive memory impaired retention of event memory. However, although the remembered fear was more reduced in sleep-deprived than sleep-control subjects, suppressed fear increased, and seemed to abandon the sleep-dependent plasticity of fear. Active memory suppression, which provides a psychological model for Freud's ego defense mechanism, enhances fear and casts doubt on the potential of acute insomnia as a prophylactic measure against PTSD. Our findings bring into question the role of sleep in aversive-memory consolidation in clinical PTSD pathophysiology.
Thermopriming triggers splicing memory in Arabidopsis.
Ling, Yu; Serrano, Natalia; Gao, Ge; Atia, Mohamed; Mokhtar, Morad; Woo, Yong H; Bazin, Jeremie; Veluchamy, Alaguraj; Benhamed, Moussa; Crespi, Martin; Gehring, Christoph; Reddy, A S N; Mahfouz, Magdy M
2018-04-27
Abiotic and biotic stresses limit crop productivity. Exposure to a non-lethal stress, referred to as priming, can allow plants to survive subsequent and otherwise lethal conditions; the priming effect persists even after a prolonged stress-free period. However, the molecular mechanisms underlying priming are not fully understood. Here, we investigated the molecular basis of heat-shock memory and the role of priming in Arabidopsis thaliana. Comprehensive analysis of transcriptome-wide changes in gene expression and alternative splicing in primed and non-primed plants revealed that alternative splicing functions as a novel component of heat-shock memory. We show that priming of plants with a non-lethal heat stress results in de-repression of splicing after a second exposure to heat stress. By contrast, non-primed plants showed significant repression of splicing. These observations link 'splicing memory' to the ability of plants to survive subsequent and otherwise lethal heat stress. This newly discovered priming-induced splicing memory may represent a general feature of heat-stress responses in plants and other organisms as many of the key components are conserved among eukaryotes. Furthermore, this finding could facilitate the development of novel approaches to improve plant survival under extreme heat stress.
Marijuana effects on long-term memory assessment and retrieval.
Darley, C F; Tinklenberg, J R; Roth, W T; Vernon, S; Kopell, B S
1977-05-09
The ability of 16 college-educated male subjects to recall from long-term memory a series of common facts was tested during intoxication with marijuana extract calibrated to 0.3 mg/kg delta-9-tetrahydrocannabinol and during placebo conditions. The subjects' ability to assess their memory capabilities was then determined by measuring how certain they were about the accuracy of their recall performance and by having them predict their performance on a subsequent recognition test involving the same recall items. Marijuana had no effect on recall or recognition performance. These results do not support the view that marijuana provides access to facts in long-term storage which are inaccessible during non-intoxication. During both marijuana and placebo conditions, subjects could accurately predict their recognition memory performance. Hence, marijuana did not alter the subjects' ability to accurately assess what information resides in long-term memory even though they did not have complete access to that information.
Rapamycin prevents drug seeking via disrupting reconsolidation of reward memory in rats.
Lin, Jue; Liu, Lingqi; Wen, Quan; Zheng, Chunming; Gao, Yang; Peng, Shuxian; Tan, Yalun; Li, Yanqin
2014-01-01
The maladaptive drug memory developed between the drug-rewarding effect and environmental cues contributes to difficulty in preventing drug relapse. Established reward memories can be disrupted by pharmacologic interventions following their reactivation. Rapamycin, an inhibitor of mammalian target of rapamycin (mTOR) kinase, has been proved to be involved in various memory consolidation. However, it is less well characterized in drug memory reconsolidation. Using a conditioned place preference (CPP) procedure, we examined the effects of systemically administered rapamycin on reconsolidation of drug memory in rats. We found that systemically administered rapamycin (0.1 or 10 mg/kg, i.p.) after re-exposure to drug-paired environment, dose dependently decreased the expression of CPP 1 d later, and the effect lasted for up to 14 d and could not be reversed by a priming injection of morphine. The effect of rapamycin on morphine-associated memory was specific to drug-paired context, and rapamycin had no effect on subsequent CPP expression when rats were exposed to saline-paired context or homecage. These results indicated that systemic administration of rapamycin after memory reactivation can persistently inhibit the drug seeking behaviour via disruption of morphine memory reconsolidation in rats. Additionally, the effect of rapamycin on memory reconsolidation was reproduced in cocaine CPP and alcohol CPP. Furthermore, rapamycin did not induce conditioned place aversion and had no effect on locomotor activity and anxiety behaviour. These findings suggest that rapamycin could erase the acquired drug CPP in rats, and that mTOR activity plays an important role in drug reconsolidation and is required for drug relapse.
Theta synchronization networks emerge during human object-place memory encoding.
Sato, Naoyuki; Yamaguchi, Yoko
2007-03-26
Recent rodent hippocampus studies have suggested that theta rhythm-dependent neural dynamics ('theta phase precession') is essential for an on-line memory formation. A computational study indicated that the phase precession enables a human object-place association memory with voluntary eye movements, although it is still an open question whether the human brain uses the dynamics. Here we elucidated subsequent memory-correlated activities in human scalp electroencephalography in an object-place association memory designed according the former computational study. Our results successfully demonstrated that subsequent memory recall is characterized by an increase in theta power and coherence, and further, that multiple theta synchronization networks emerge. These findings suggest the human theta dynamics in common with rodents in episodic memory formation.
Treating verbal working memory in a boy with intellectual disability
Orsolini, Margherita; Melogno, Sergio; Latini, Nausica; Penge, Roberta; Conforti, Sara
2015-01-01
The present case study investigates the effects of a cognitive training of verbal working memory that was proposed for Davide, a 14-year-old boy diagnosed with mild intellectual disability. The program stimulated attention, inhibition, switching, and the ability to engage either in verbal dual tasks or in producing inferences after the content of a short passage had been encoded in episodic memory. Key elements in our program included (1) core training of target cognitive mechanisms; (2) guided practice emphasizing concrete strategies to engage in exercises; and (3) a variable amount of adult support. The study explored whether such a complex program produced “near transfer” effects on an untrained dual task assessing verbal working memory and whether effects on this and other target cognitive mechanisms (i.e., attention, inhibition, and switching) were long-lasting and produced “far transfer” effects on cognitive flexibility. The effects of the intervention program were investigated with a research design consisting of four subsequent phases lasting 8 or 10 weeks, each preceded and followed by testing. There was a control condition (phase 1) in which the boy received, at home, a stimulation focused on the visuospatial domain. Subsequently, there were three experimental training phases, in which stimulation in the verbal domain was first focused on attention and inhibition (phase 2a), then on switching and simple working memory tasks (phase 2b), then on complex working memory tasks (phase 3). A battery of neuropsychological tests was administered before and after each training phase and 7 months after the conclusion of the intervention. The main finding was that Davide changed from being incapable of addressing the dual task request of the listening span test in the initial assessment to performing close to the normal limits of a 13-year-old boy in the follow-up assessment with this test, when he was 15 years old. PMID:26284014
Effects of timbre and tempo change on memory for music.
Halpern, Andrea R; Müllensiefen, Daniel
2008-09-01
We investigated the effects of different encoding tasks and of manipulations of two supposedly surface parameters of music on implicit and explicit memory for tunes. In two experiments, participants were first asked to either categorize instrument or judge familiarity of 40 unfamiliar short tunes. Subsequently, participants were asked to give explicit and implicit memory ratings for a list of 80 tunes, which included 40 previously heard. Half of the 40 previously heard tunes differed in timbre (Experiment 1) or tempo (Experiment 2) in comparison with the first exposure. A third experiment compared similarity ratings of the tunes that varied in timbre or tempo. Analysis of variance (ANOVA) results suggest first that the encoding task made no difference for either memory mode. Secondly, timbre and tempo change both impaired explicit memory, whereas tempo change additionally made implicit tune recognition worse. Results are discussed in the context of implicit memory for nonsemantic materials and the possible differences in timbre and tempo in musical representations.
Pitsikas, Nikolaos; Sakellaridis, Nikolaos
2007-10-01
The effects of the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist memantine on recognition memory were investigated in the rat by using the object recognition task. In addition, a possible interaction between memantine and the nitric oxide (NO) donor molsidomine in antagonizing extinction of recognition memory was also evaluated utilizing the same behavioral procedure. In a first dose-response study, post-training administration of memantine (10 and 20, but not 3 mg/kg) antagonized recognition memory deficits in the rat, suggesting that memantine modulates storage and/or retrieval of information. In a subsequent study, combination of sub-threshold doses of memantine (3 mg/kg) and the NO donor molsidomine (1 mg/kg) counteracted delay-dependent impairments in the same task. Neither memantine (3 mg/kg) nor molsidomine (1 mg/kg) alone reduced object recognition performance deficits. The present findings indicate a) that memantine is involved in recognition memory and b) support a functional interaction between memantine and molsidomine on recognition memory mechanisms.
Soto, David; Humphreys, Glyn W
2008-07-01
Four experiments explored the effect of cognitive load on the time course of top-down guidance of attention from working memory (WM). Observers had to search for a target presented among several distractors, with the target and distractor stimuli embedded inside different objects. On half of the trials, one of the distractor objects was cued by a matching item held in WM. When a single item was maintained in memory, search performance was impaired relative to a neutral baseline, where the memory and search displays did not match. These effects of WM on subsequent search were reduced by including a verbal suppression task during the WM and search displays, and by varying the WM load. The degree of competition for resources in WM is a key factor in determining the time course and magnitude of the interaction between WM and visual selection.
Alkozei, Anna; Smith, Ryan; Dailey, Natalie S; Bajaj, Sahil; Killgore, William D S
2017-01-01
Acute exposure to light within the blue wavelengths has been shown to enhance alertness and vigilance, and lead to improved speed on reaction time tasks, possibly due to activation of the noradrenergic system. It remains unclear, however, whether the effects of blue light extend beyond simple alertness processes to also enhance other aspects of cognition, such as memory performance. The aim of this study was to investigate the effects of a thirty minute pulse of blue light versus placebo (amber light) exposure in healthy normally rested individuals in the morning during verbal memory consolidation (i.e., 1.5 hours after memory acquisition) using an abbreviated version of the California Verbal Learning Test (CVLT-II). At delayed recall, individuals who received blue light (n = 12) during the consolidation period showed significantly better long-delay verbal recall than individuals who received amber light exposure (n = 18), while controlling for the effects of general intelligence, depressive symptoms and habitual wake time. These findings extend previous work demonstrating the effect of blue light on brain activation and alertness to further demonstrate its effectiveness at facilitating better memory consolidation and subsequent retention of verbal material. Although preliminary, these findings point to a potential application of blue wavelength light to optimize memory performance in healthy populations. It remains to be determined whether blue light exposure may also enhance performance in clinical populations with memory deficits.
Levin, Natali; Kritman, Milly; Maroun, Mouna; Akirav, Irit
2017-09-01
Studies about reconsolidation of conditioned fear memories have shown that pharmacological manipulation at memory reactivation can attenuate or enhance the subsequent expression of the conditioned fear response. Here we examined the effects of a single injection of the mTOR inhibitor rapamycin (Rap) into the infralimbic (IL) and prelimbic (PL) areas [which compose the ventromedial prefrontal cortex (PFC)] on reconsolidation and extinction of a traumatic fear memory. We found opposite effects of Rap infused into the PL and IL on reconsolidation and extinction: intra-PL Rap and systemic Rap impaired reconsolidation and facilitated extinction whereas intra-IL Rap enhanced reconsolidation and impaired extinction. These effects persisted at least 10 days after reactivation. Shock exposure induced anxiety-like behavior and impaired working memory and intra-IL and -PL Rap normalized these effects. Finally, when measured after fear retrieval, shocked rats exhibited reduced and increased phosphorylated p70s6K levels in the IL and basolateral amygdala, respectively. No effect on phosphorylated p70s6K levels was observed in the PL. The study points to the differential roles of the IL and PL in memory reconsolidation and extinction. Moreover, inhibiting mTOR via rapamycin following reactivation of a fear memory may be a novel approach in attenuating enhanced fear memories. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.
Ben-Yakov, Aya; Dudai, Yadin
2011-06-15
Encoding of real-life episodic memory commonly involves integration of information as the episode unfolds. Offline processing immediately following event offset is expected to play a role in encoding the episode into memory. In this study, we examined whether distinct human brain activity time-locked to the offset of short narrative audiovisual episodes could predict subsequent memory for the gist of the episodes. We found that a set of brain regions, most prominently the bilateral hippocampus and the bilateral caudate nucleus, exhibit memory-predictive activity time-locked to the stimulus offset. We propose that offline activity in these regions reflects registration to memory of integrated episodes.
Neural Overlap in Item Representations Across Episodes Impairs Context Memory.
Kim, Ghootae; Norman, Kenneth A; Turk-Browne, Nicholas B
2018-06-12
We frequently encounter the same item in different contexts, and when that happens, memories of earlier encounters can get reactivated. We examined how existing memories are changed as a result of such reactivation. We hypothesized that when an item's initial and subsequent neural representations overlap, this allows the initial item to become associated with novel contextual information, interfering with later retrieval of the initial context. Specifically, we predicted a negative relationship between representational similarity across repeated experiences of an item and subsequent source memory for the initial context. We tested this hypothesis in an fMRI study, in which objects were presented multiple times during different tasks. We measured the similarity of the neural patterns in lateral occipital cortex that were elicited by the first and second presentations of objects, and related this neural overlap score to subsequent source memory. Consistent with our hypothesis, greater item-specific pattern similarity was linked to worse source memory for the initial task. In contrast, greater reactivation of the initial context was associated with better source memory. Our findings suggest that the influence of novel experiences on an existing context memory depends on how reliably a shared component (i.e., item) is represented across these episodes.
Effects of emotional context on memory for details: the role of attention.
Kim, Johann Sung-Cheul; Vossel, Gerhard; Gamer, Matthias
2013-01-01
It was repeatedly demonstrated that a negative emotional context enhances memory for central details while impairing memory for peripheral information. This trade-off effect is assumed to result from attentional processes: a negative context seems to narrow attention to central information at the expense of more peripheral details, thus causing the differential effects in memory. However, this explanation has rarely been tested and previous findings were partly inconclusive. For the present experiment 13 negative and 13 neutral naturalistic, thematically driven picture stories were constructed to test the trade-off effect in an ecologically more valid setting as compared to previous studies. During an incidental encoding phase, eye movements were recorded as an index of overt attention. In a subsequent recognition phase, memory for central and peripheral details occurring in the picture stories was tested. Explicit affective ratings and autonomic responses validated the induction of emotion during encoding. Consistent with the emotional trade-off effect on memory, encoding context differentially affected recognition of central and peripheral details. However, contrary to the common assumption, the emotional trade-off effect on memory was not mediated by attentional processes. By contrast, results suggest that the relevance of attentional processing for later recognition memory depends on the centrality of information and the emotional context but not their interaction. Thus, central information was remembered well even when fixated very briefly whereas memory for peripheral information depended more on overt attention at encoding. Moreover, the influence of overt attention on memory for central and peripheral details seems to be much lower for an arousing as compared to a neutral context.
Effects of Emotional Context on Memory for Details: The Role of Attention
Kim, Johann Sung-Cheul; Vossel, Gerhard; Gamer, Matthias
2013-01-01
It was repeatedly demonstrated that a negative emotional context enhances memory for central details while impairing memory for peripheral information. This trade-off effect is assumed to result from attentional processes: a negative context seems to narrow attention to central information at the expense of more peripheral details, thus causing the differential effects in memory. However, this explanation has rarely been tested and previous findings were partly inconclusive. For the present experiment 13 negative and 13 neutral naturalistic, thematically driven picture stories were constructed to test the trade-off effect in an ecologically more valid setting as compared to previous studies. During an incidental encoding phase, eye movements were recorded as an index of overt attention. In a subsequent recognition phase, memory for central and peripheral details occurring in the picture stories was tested. Explicit affective ratings and autonomic responses validated the induction of emotion during encoding. Consistent with the emotional trade-off effect on memory, encoding context differentially affected recognition of central and peripheral details. However, contrary to the common assumption, the emotional trade-off effect on memory was not mediated by attentional processes. By contrast, results suggest that the relevance of attentional processing for later recognition memory depends on the centrality of information and the emotional context but not their interaction. Thus, central information was remembered well even when fixated very briefly whereas memory for peripheral information depended more on overt attention at encoding. Moreover, the influence of overt attention on memory for central and peripheral details seems to be much lower for an arousing as compared to a neutral context. PMID:24116226
Serial position effects in free memory recall--An ERP-study.
Wiswede, Daniel; Rüsseler, Jascha; Münte, Thomas F
2007-05-01
Event-related brain potentials (ERPs) elicited by recalled and non-recalled words were recorded from 18 female subjects to investigate primacy and recency effects in free memory recall. The typical pattern of a serial position curve (SPC) was obtained with words presented at first and final positions in a list recalled better than words presented in the middle of a list. A marked positivity is seen in the ERPs for words on Primacy, but not on Recency positions at frontocentral electrodes. In contrast, ERP amplitudes on parietal electrodes resemble the SPC seen in behavioral data: P300 amplitude is largest for words on Primacy and Recency positions and attenuated on Plateau positions. Furthermore, subjects with a clear Primacy effect in behavioral data show a distinct frontal positive slow wave for Primacy words only, whereas subjects without a clear primacy effect show a frontal "difference due to subsequent memory" (DM) effect for Primacy and Plateau words. These results are discussed in the framework of working memory and distinctiveness.
Event-related Potentials Reveal Age Differences in the Encoding and Recognition of Scenes
Gutchess, Angela H.; Ieuji, Yoko; Federmeier, Kara D.
2009-01-01
The present study used event-related potentials (ERPs) to investigate how the encoding and recognition of complex scenes change with normal aging. Although functional magnetic resonance imaging (fMRI) studies have identified more drastic age impairments at encoding than at recognition, ERP studies accumulate more evidence for age differences at retrieval. However, stimulus type and paradigm differences across the two literatures have made direct comparisons difficult. Here, we collected young and elderly adults’ encoding- and recognition-phase ERPs using the same materials and paradigm as a previous fMRI study. Twenty young and 20 elderly adults incidentally encoded and then recognized photographs of outdoor scenes. During encoding, young adults showed a frontocentral subsequent memory effect, with high-confidence hits exhibiting greater positivity than misses. Elderly adults showed a similar subsequent memory effect, which, however, did not differ as a function of confidence. During recognition, young adults elicited a widespread old/new effect, and high-confidence hits were distinct from both low-confidence hits and false alarms. Elderly adults elicited a smaller and later old/new effect, which was unaffected by confidence, and hits and false alarms were indistinguishable in the waveforms. Consistent with prior ERP work, these results point to important age-related changes in recognition-phase brain activity, even when behavioral measures of memory and confidence pattern similarly across groups. We speculate that memory processes with different time signatures contribute to the apparent differences across encoding and retrieval stages, and across methods. PMID:17583986
Fellner, Marie-Christin; Bäuml, Karl-Heinz T; Hanslmayr, Simon
2013-10-01
Memory crucially depends on the way information is processed during encoding. Differences in processes during encoding not only lead to differences in memory performance but also rely on different brain networks. Although these assumptions are corroborated by several previous fMRI and ERP studies, little is known about how brain oscillations dissociate between different memory encoding tasks. The present study therefore compared encoding related brain oscillatory activity elicited by two very efficient encoding tasks: a typical deep semantic item feature judgment task and a more elaborative survival encoding task. Subjects were asked to judge words either for survival relevance or for animacy, as indicated by a cue presented prior to the item. This allowed dissociating pre-item activity from item-related activity for both tasks. Replicating prior studies, survival processing led to higher recognition performance than semantic processing. Successful encoding in the semantic condition was reflected by a strong decrease in alpha and beta power, whereas successful encoding in the survival condition was related to increased alpha and beta long-range phase synchrony. Moreover, a pre-item subsequent memory effect in theta power was found which did not vary with encoding condition. These results show that measures of local synchrony (power) and global long range-synchrony (phase synchronization) dissociate between memory encoding processes. Whereas semantic encoding was reflected in decreases in local synchrony, increases in global long range synchrony were related to elaborative survival encoding, presumably reflecting the involvement of a more widespread cortical network in this task. Copyright © 2013 Elsevier Inc. All rights reserved.
Negative and Positive Testing Effects in Terms of Item-Specific and Relational Information
ERIC Educational Resources Information Center
Mulligan, Neil W.; Peterson, Daniel J.
2015-01-01
Though retrieving information typically results in improved memory on a subsequent test (the testing effect), Peterson and Mulligan (2013) outlined the conditions under which retrieval practice results in poorer recall relative to restudy, a phenomenon dubbed the "negative testing effect." The item-specific-relational account proposes…
The influences of partner accuracy and partner memory ability on social false memories.
Numbers, Katya T; Meade, Michelle L; Perga, Vladimir A
2014-11-01
In this study, we examined whether increasing the proportion of false information suggested by a confederate would influence the magnitude of socially introduced false memories in the social contagion paradigm Roediger, Meade, & Bergman (Psychonomic Bulletin & Review 8:365-371, 2001). One participant and one confederate collaboratively recalled items from previously studied household scenes. During collaboration, the confederate interjected 0 %, 33 %, 66 %, or 100 % false items. On subsequent individual-recall tests across three experiments, participants were just as likely to incorporate misleading suggestions from a partner who was mostly accurate (33 % incorrect) as they were from a partner who was not at all accurate (100 % incorrect). Even when participants witnessed firsthand that their partner had a very poor memory on a related memory task, they were still as likely to incorporate the confederate's entirely misleading suggestions on subsequent recall and recognition tests (Exp. 2). Only when participants witnessed firsthand that their partner had a very poor memory on a practice test of the experimental task itself were they able to reduce false memory, and this reduction occurred selectively on a subsequent individual recognition test (Exp. 3). These data demonstrate that participants do not always consider their partners' memory ability when working on collaborative memory tasks.
Otten, L J; Henson, R N; Rugg, M D
2001-02-01
Neuroimaging studies have implicated the prefrontal cortex and medial temporal areas in the successful encoding of verbal material into episodic memory. The present study used event-related functional MRI to investigate whether the brain areas associated with successful episodic encoding of words in a semantic study task are a subset of those demonstrating depth of processing effects. In addition, we tested whether the brain areas associated with successful episodic encoding differ depending on the nature of the study task. At study, 15 volunteers were cued to make either animacy or alphabetical decisions about words. A recognition memory test including confidence judgements followed after a delay of 15 min. Prefrontal and medial temporal regions showed greater functional MRI activations for semantically encoded words relative to alphabetically encoded words. Two of these regions (left anterior hippocampus and left ventral inferior frontal gyrus) showed greater activation for semantically encoded words that were subsequently recognized confidently. However, other regions (left posterior hippocampus and right inferior frontal cortex) demonstrated subsequent memory effects, but not effects of depth of processing. Successful memory for alphabetically encoded words was also associated with greater activation in the left anterior hippocampus and left ventral inferior frontal gyrus. The findings suggest that episodic encoding for words in a semantic study task involves a subset of the regions activated by deep relative to shallow processing. The data provide little evidence that successful episodic encoding during a shallow study task depends upon regions different from those that support the encoding of deeply studied words. Instead, the findings suggest that successful episodic encoding during a shallow study task relies on a subset of the regions engaged during successful encoding in a deep task.
Methylene Blue Facilitates Memory Retention in Zebrafish in a Dose-Dependent Manner.
Echevarria, David J; Caramillo, Erika M; Gonzalez-Lima, Francisco
2016-12-01
Methylene blue (MB) is an FDA-grandfathered drug with memory-enhancing effects at low doses, but opposite effects at high doses. We investigated the effects of four MB doses (0.1, 0.5, 5.0, or 10.0 μM) on zebrafish memory retention in the T-maze task. After training fish to swim into a certain arm of the T-maze, the fish were placed into a tank containing one of the four MB doses or a control tank containing blue food dye. Subsequently, fish were placed into the T-maze for memory retention testing. Results indicated that MB produced hormetic dose-response effects on memory. Fish that received the 0.5 μM dose performed significantly better at the T-maze than those that received higher doses. Fish who received 5.0 μM did not exhibit a significant difference in performance from control fish, and the fish that received the 10.0 μM dose performed significantly worse than lower doses. These findings support the utility of zebrafish in comparative research and their potential value for testing of MB and other neuropsychopharmacological treatments in animal models of memory disorders.
Sumowski, James F; Chiaravalloti, Nancy; Deluca, John
2010-03-01
The testing effect is a robust cognitive phenomenon by which memory retrieval on a test improves subsequent recall more than restudying. Also known as retrieval practice, the testing effect has been studied almost exclusively in healthy undergraduates. The current study investigated whether retrieval practice during testing leads to better delayed recall than restudy among persons with multiple sclerosis (MS), a neurologic disease associated with memory dysfunction. In a within-subjects design, 32 persons with MS and 16 demographically matched healthy controls (HC) studied 48 verbal paired associates (VPA) divided across 3 learning conditions: massed restudy (MR), spaced restudy (SR), and spaced testing (ST). Delayed VPA cued recall was measured after 45 min. There was a large main effect of learning condition (etap2 = .54, p < .001) such that both MS and HC participants produced better delayed recall for VPAs learned through ST relative to MR and SR; and SR relative to MR. This same pattern was observed for MS participants with objective memory impairment (n = 16), thereby providing the first evidence that retrieval practice improves memory more than restudy among persons with neurologically based memory impairment. Copyright 2010 APA, all rights reserved
Conversion of short-term to long-term memory in the novel object recognition paradigm
Moore, Shannon J.; Deshpande, Kaivalya; Stinnett, Gwen S.; Seasholtz, Audrey F.; Murphy, Geoffrey G.
2013-01-01
It is well-known that stress can significantly impact learning; however, whether this effect facilitates or impairs the resultant memory depends on the characteristics of the stressor. Investigation of these dynamics can be confounded by the role of the stressor in motivating performance in a task. Positing a cohesive model of the effect of stress on learning and memory necessitates elucidating the consequences of stressful stimuli independently from task-specific functions. Therefore, the goal of this study was to examine the effect of manipulating a task-independent stressor (elevated light level) on short-term and long-term memory in the novel object recognition paradigm. Short-term memory was elicited in both low light and high light conditions, but long-term memory specifically required high light conditions during the acquisition phase (familiarization trial) and was independent of the light level during retrieval (test trial). Additionally, long-term memory appeared to be independent of stress-mediated glucocorticoid release, as both low and high light produced similar levels of plasma corticosterone, which further did not correlate with subsequent memory performance. Finally, both short-term and long-term memory showed no savings between repeated experiments suggesting that this novel object recognition paradigm may be useful for longitudinal studies, particularly when investigating treatments to stabilize or enhance weak memories in neurodegenerative diseases or during age-related cognitive decline. PMID:23835143
Conversion of short-term to long-term memory in the novel object recognition paradigm.
Moore, Shannon J; Deshpande, Kaivalya; Stinnett, Gwen S; Seasholtz, Audrey F; Murphy, Geoffrey G
2013-10-01
It is well-known that stress can significantly impact learning; however, whether this effect facilitates or impairs the resultant memory depends on the characteristics of the stressor. Investigation of these dynamics can be confounded by the role of the stressor in motivating performance in a task. Positing a cohesive model of the effect of stress on learning and memory necessitates elucidating the consequences of stressful stimuli independently from task-specific functions. Therefore, the goal of this study was to examine the effect of manipulating a task-independent stressor (elevated light level) on short-term and long-term memory in the novel object recognition paradigm. Short-term memory was elicited in both low light and high light conditions, but long-term memory specifically required high light conditions during the acquisition phase (familiarization trial) and was independent of the light level during retrieval (test trial). Additionally, long-term memory appeared to be independent of stress-mediated glucocorticoid release, as both low and high light produced similar levels of plasma corticosterone, which further did not correlate with subsequent memory performance. Finally, both short-term and long-term memory showed no savings between repeated experiments suggesting that this novel object recognition paradigm may be useful for longitudinal studies, particularly when investigating treatments to stabilize or enhance weak memories in neurodegenerative diseases or during age-related cognitive decline. Copyright © 2013 Elsevier Inc. All rights reserved.
Ferree, Nikole K; Cahill, Larry
2009-03-01
Spontaneous intrusive recollections (SIRs) follow traumatic events in clinical and non-clinical populations. To determine whether any relationship exists between SIRs and enhanced memory for emotional events, participants viewed emotional or neutral films, had their memory for the films tested two days later, and estimated the number of SIRs they experienced for each film. SIR frequency related positively to memory strength, an effect more pronounced in the emotional condition. These findings represent the first demonstration of a relationship between SIRs occurring after an emotional experience and subsequent memory strength for that experience. The results are consistent with the possibility that emotional arousal leads both to elevated SIR frequency and better memory, and that the covert rehearsal associated with SIRs enhances memory for emotional relative to neutral stimuli. Additional evidence of menstrual cycle influences on SIR incidence in female participants appears to merit consideration in future work.
Ferree, Nikole K.; Cahill, Larry
2009-01-01
Spontaneous intrusive recollections (SIRs) follow traumatic events in clinical and non-clinical populations. To determine whether any relationship exists between SIRs and enhanced memory for emotional events, participants viewed emotional or neutral films, had their memory for the films tested two days later, and estimated the number of SIRs they experienced for each film. SIR frequency related positively to memory strength, an effect more pronounced in the emotional condition. These findings represent the first demonstration of a relationship between SIRs occurring after an emotional experience and subsequent memory strength for that experience. The results are consistent with the possibility that emotional arousal leads both to elevated SIR frequency and better memory, and that the covert rehearsal associated with SIRs enhances memory for emotional relative to neutral stimuli. Additional evidence of menstrual cycle influences on SIR incidence in female participants appears to merit consideration in future work. PMID:19131257
Spatial transposition gradients in visual working memory.
Rerko, Laura; Oberauer, Klaus; Lin, Hsuan-Yu
2014-01-01
In list memory, access to individual items reflects limits of temporal distinctiveness. This is reflected in the finding that neighbouring list items tend to be confused most often. This article investigates the analogous effect of spatial proximity in a visual working-memory task. Items were presented in different locations varying in spatial distance. A retro-cue indicated the location of the item relevant for the subsequent memory test. In two recognition experiments, probes matching spatially close neighbours of the relevant item led to more false alarms than probes matching distant neighbours or non-neighbouring memory items. In two probed-recall experiments, one with simultaneous, the other with sequential memory item presentation, items closer to the cued location were more frequently chosen for recall than more distant items. These results reflect a spatial transposition gradient analogous to the temporal transposition gradient in serial recall and challenge fixed-capacity models of visual working memory (WM).
Padovani, Tullia; Koenig, Thomas; Eckstein, Doris; Perrig, Walter J
2013-01-01
Memory formation is commonly thought to rely on brain activity following an event. Yet, recent research has shown that even brain activity previous to an event can predict later recollection (subsequent memory effect, SME). In order to investigate the attentional sources of the SME, event-related potentials (ERPs) elicited by task cues preceding target words were recorded in a switched task paradigm that was followed by a surprise recognition test. Stay trials, that is, those with the same task as the previous trial, were contrasted with switch trials, which included a task switch compared to the previous trial. The underlying assumption was that sustained attention would be dominant in stay trials and that transient attentional reconfiguration processes would be dominant in switch trials. To determine the SME, local and global statistics of scalp electric fields were used to identify differences between subsequently remembered and forgotten items. Results showed that the SME in stay trials occurred in a time window from 2 to 1 sec before target onset, whereas the SME in switch trials occurred subsequently, in a time window from 1 to 0 sec before target onset. Both SMEs showed a frontal negativity resembling the topography of previously reported effects, which suggests that sustained and transient attentional processes contribute to the prestimulus SME in consecutive time periods. PMID:24381815
Padovani, Tullia; Koenig, Thomas; Eckstein, Doris; Perrig, Walter J
2013-07-01
Memory formation is commonly thought to rely on brain activity following an event. Yet, recent research has shown that even brain activity previous to an event can predict later recollection (subsequent memory effect, SME). In order to investigate the attentional sources of the SME, event-related potentials (ERPs) elicited by task cues preceding target words were recorded in a switched task paradigm that was followed by a surprise recognition test. Stay trials, that is, those with the same task as the previous trial, were contrasted with switch trials, which included a task switch compared to the previous trial. The underlying assumption was that sustained attention would be dominant in stay trials and that transient attentional reconfiguration processes would be dominant in switch trials. To determine the SME, local and global statistics of scalp electric fields were used to identify differences between subsequently remembered and forgotten items. Results showed that the SME in stay trials occurred in a time window from 2 to 1 sec before target onset, whereas the SME in switch trials occurred subsequently, in a time window from 1 to 0 sec before target onset. Both SMEs showed a frontal negativity resembling the topography of previously reported effects, which suggests that sustained and transient attentional processes contribute to the prestimulus SME in consecutive time periods.
St. Jacques, Peggy L.; Schacter, Daniel L.
2013-01-01
Memory can be modified when reactivated, but little is known about how the properties and extent of reactivation can selectively affect subsequent memory. We developed a novel museum paradigm to directly investigate reactivation-induced plasticity for personal memories. Participants reactivated memories triggered by photos taken from a camera they wore during a museum tour and made relatedness judgments on novel photos taken from a different tour of the same museum. Subsequent recognition memory for events at the museum was better for memories that were highly reactivated (i.e., the retrieval cues during reactivation matched the encoding experience) than for memories that were reactivated at a lower level (i.e., the retrieval cues during reactivation mismatched the encoding experience), but reactivation also increased false recognition of photographs depicting stops that were not experienced during the museum tour. Reactivation thus enables memories to be selectively enhanced and distorted via updating, thereby supporting the dynamic and flexible nature of memory. PMID:23406611
Memory strength and specificity revealed by pupillometry
Papesh, Megan H.; Goldinger, Stephen D.; Hout, Michael C.
2011-01-01
Voice-specificity effects in recognition memory were investigated using both behavioral data and pupillometry. Volunteers initially heard spoken words and nonwords in two voices; they later provided confidence-based old/new classifications to items presented in their original voices, changed (but familiar) voices, or entirely new voices. Recognition was more accurate for old-voice items, replicating prior research. Pupillometry was used to gauge cognitive demand during both encoding and testing: Enlarged pupils revealed that participants devoted greater effort to encoding items that were subsequently recognized. Further, pupil responses were sensitive to the cue match between encoding and retrieval voices, as well as memory strength. Strong memories, and those with the closest encoding-retrieval voice matches, resulted in the highest peak pupil diameters. The results are discussed with respect to episodic memory models and Whittlesea’s (1997) SCAPE framework for recognition memory. PMID:22019480
Sterpenich, Virginie; Schmidt, Christina; Albouy, Geneviève; Matarazzo, Luca; Vanhaudenhuyse, Audrey; Boveroux, Pierre; Degueldre, Christian; Leclercq, Yves; Balteau, Evelyne; Collette, Fabienne; Luxen, André; Phillips, Christophe; Maquet, Pierre
2014-01-01
Study Objectives: Memory reactivation appears to be a fundamental process in memory consolidation. In this study we tested the influence of memory reactivation during rapid eye movement (REM) sleep on memory performance and brain responses at retrieval in healthy human participants. Participants: Fifty-six healthy subjects (28 women and 28 men, age [mean ± standard deviation]: 21.6 ± 2.2 y) participated in this functional magnetic resonance imaging (fMRI) study. Methods and Results: Auditory cues were associated with pictures of faces during their encoding. These memory cues delivered during REM sleep enhanced subsequent accurate recollections but also false recognitions. These results suggest that reactivated memories interacted with semantically related representations, and induced new creative associations, which subsequently reduced the distinction between new and previously encoded exemplars. Cues had no effect if presented during stage 2 sleep, or if they were not associated with faces during encoding. Functional magnetic resonance imaging revealed that following exposure to conditioned cues during REM sleep, responses to faces during retrieval were enhanced both in a visual area and in a cortical region of multisensory (auditory-visual) convergence. Conclusions: These results show that reactivating memories during REM sleep enhances cortical responses during retrieval, suggesting the integration of recent memories within cortical circuits, favoring the generalization and schematization of the information. Citation: Sterpenich V, Schmidt C, Albouy G, Matarazzo L, Vanhaudenhuyse A, Boveroux P, Degueldre C, Leclercq Y, Balteau E, Collette F, Luxen A, Phillips C, Maquet P. Memory reactivation during rapid eye movement sleep promotes its generalization and integration in cortical stores. SLEEP 2014;37(6):1061-1075. PMID:24882901
Impairing existing declarative memory in humans by disrupting reconsolidation
Chan, Jason C. K.; LaPaglia, Jessica A.
2013-01-01
During the past decade, a large body of research has shown that memory traces can become labile upon retrieval and must be restabilized. Critically, interrupting this reconsolidation process can abolish a previously stable memory. Although a large number of studies have demonstrated this reconsolidation associated amnesia in nonhuman animals, the evidence for its occurrence in humans is far less compelling, especially with regard to declarative memory. In fact, reactivating a declarative memory often makes it more robust and less susceptible to subsequent disruptions. Here we show that existing declarative memories can be selectively impaired by using a noninvasive retrieval–relearning technique. In six experiments, we show that this reconsolidation-associated amnesia can be achieved 48 h after formation of the original memory, but only if relearning occurred soon after retrieval. Furthermore, the amnesic effect persists for at least 24 h, cannot be attributed solely to source confusion and is attainable only when relearning targets specific existing memories for impairment. These results demonstrate that human declarative memory can be selectively rewritten during reconsolidation. PMID:23690586
Pedreira, María E.
2013-01-01
Several reports have shown that after specific reminders are presented, consolidated memories pass from a stable state to one in which the memory is reactivated. This reactivation implies that memories are labile and susceptible to amnesic agents. This susceptibility decreases over time and leads to a re-stabilization phase usually known as reconsolidation. With respect to the biological role of reconsolidation, two functions have been proposed. First, the reconsolidation process allows new information to be integrated into the background of the original memory; second, it strengthens the original memory. We have previously demonstrated that both of these functions occur in the reconsolidation of human declarative memories. Our paradigm consisted of learning verbal material (lists of five pairs of nonsense syllables) acquired by a training process (L1-training) on Day 1 of our experiment. After this declarative memory is consolidated, it can be made labile by presenting a specific reminder. After this, the memory passes through a subsequent stabilization process. Strengthening creates a new scenario for the reconsolidation process; this function represents a new factor that may transform the dynamic of memories. First, we analyzed whether the repeated labilization-reconsolidation processes maintained the memory for longer periods of time. We showed that at least one labilization-reconsolidation process strengthens a memory via evaluation 5 days after its re-stabilization. We also demonstrated that this effect is not triggered by retrieval only. We then analyzed the way strengthening modified the effect of an amnesic agent that was presented immediately after repeated labilizations. The repeated labilization-reconsolidation processes made the memory more resistant to interference during re-stabilization. Finally, we evaluated whether the effect of strengthening may depend on the age of the memory. We found that the effect of strengthening did depend on the age of the memory. Forgetting may represent a process that weakens the effect of strengthening. PMID:23658614
Forcato, Cecilia; Fernandez, Rodrigo S; Pedreira, María E
2013-01-01
Several reports have shown that after specific reminders are presented, consolidated memories pass from a stable state to one in which the memory is reactivated. This reactivation implies that memories are labile and susceptible to amnesic agents. This susceptibility decreases over time and leads to a re-stabilization phase usually known as reconsolidation. With respect to the biological role of reconsolidation, two functions have been proposed. First, the reconsolidation process allows new information to be integrated into the background of the original memory; second, it strengthens the original memory. We have previously demonstrated that both of these functions occur in the reconsolidation of human declarative memories. Our paradigm consisted of learning verbal material (lists of five pairs of nonsense syllables) acquired by a training process (L1-training) on Day 1 of our experiment. After this declarative memory is consolidated, it can be made labile by presenting a specific reminder. After this, the memory passes through a subsequent stabilization process. Strengthening creates a new scenario for the reconsolidation process; this function represents a new factor that may transform the dynamic of memories. First, we analyzed whether the repeated labilization-reconsolidation processes maintained the memory for longer periods of time. We showed that at least one labilization-reconsolidation process strengthens a memory via evaluation 5 days after its re-stabilization. We also demonstrated that this effect is not triggered by retrieval only. We then analyzed the way strengthening modified the effect of an amnesic agent that was presented immediately after repeated labilizations. The repeated labilization-reconsolidation processes made the memory more resistant to interference during re-stabilization. Finally, we evaluated whether the effect of strengthening may depend on the age of the memory. We found that the effect of strengthening did depend on the age of the memory. Forgetting may represent a process that weakens the effect of strengthening.
Contributions of Hippocampus and Striatum to Memory-Guided Behavior Depend on Past Experience
2016-01-01
The hippocampal and striatal memory systems are thought to operate independently and in parallel in supporting cognitive memory and habits, respectively. Much of the evidence for this principle comes from double dissociation data, in which damage to brain structure A causes deficits in Task 1 but not Task 2, whereas damage to structure B produces the reverse pattern of effects. Typically, animals are explicitly trained in one task. Here, we investigated whether this principle continues to hold when animals concurrently learn two types of tasks. Rats were trained on a plus maze in either a spatial navigation or a cue–response task (sequential training), whereas a third set of rats acquired both (concurrent training). Subsequently, the rats underwent either sham surgery or neurotoxic lesions of the hippocampus (HPC), medial dorsal striatum (DSM), or lateral dorsal striatum (DSL), followed by retention testing. Finally, rats in the sequential training condition also acquired the novel “other” task. When rats learned one task, HPC and DSL selectively supported spatial navigation and cue response, respectively. However, when rats learned both tasks, HPC and DSL additionally supported the behavior incongruent with the processing style of the corresponding memory system. Thus, in certain conditions, the hippocampal and striatal memory systems can operate cooperatively and in synergism. DSM significantly contributed to performance regardless of task or training procedure. Experience with the cue–response task facilitated subsequent spatial learning, whereas experience with spatial navigation delayed both concurrent and subsequent response learning. These findings suggest that there are multiple operational principles that govern memory networks. SIGNIFICANCE STATEMENT Currently, we distinguish among several types of memories, each supported by a distinct neural circuit. The memory systems are thought to operate independently and in parallel. Here, we demonstrate that the hippocampus and the dorsal striatum memory systems operate independently and in parallel when rats learn one type of task at a time, but interact cooperatively and in synergism when rats concurrently learn two types of tasks. Furthermore, new learning is modulated by past experiences. These results can be explained by a model in which independent and parallel information processing that occurs in the separate memory-related neural circuits is supplemented by information transfer between the memory systems at the level of the cortex. PMID:27307234
Contributions of Hippocampus and Striatum to Memory-Guided Behavior Depend on Past Experience.
Ferbinteanu, Janina
2016-06-15
The hippocampal and striatal memory systems are thought to operate independently and in parallel in supporting cognitive memory and habits, respectively. Much of the evidence for this principle comes from double dissociation data, in which damage to brain structure A causes deficits in Task 1 but not Task 2, whereas damage to structure B produces the reverse pattern of effects. Typically, animals are explicitly trained in one task. Here, we investigated whether this principle continues to hold when animals concurrently learn two types of tasks. Rats were trained on a plus maze in either a spatial navigation or a cue-response task (sequential training), whereas a third set of rats acquired both (concurrent training). Subsequently, the rats underwent either sham surgery or neurotoxic lesions of the hippocampus (HPC), medial dorsal striatum (DSM), or lateral dorsal striatum (DSL), followed by retention testing. Finally, rats in the sequential training condition also acquired the novel "other" task. When rats learned one task, HPC and DSL selectively supported spatial navigation and cue response, respectively. However, when rats learned both tasks, HPC and DSL additionally supported the behavior incongruent with the processing style of the corresponding memory system. Thus, in certain conditions, the hippocampal and striatal memory systems can operate cooperatively and in synergism. DSM significantly contributed to performance regardless of task or training procedure. Experience with the cue-response task facilitated subsequent spatial learning, whereas experience with spatial navigation delayed both concurrent and subsequent response learning. These findings suggest that there are multiple operational principles that govern memory networks. Currently, we distinguish among several types of memories, each supported by a distinct neural circuit. The memory systems are thought to operate independently and in parallel. Here, we demonstrate that the hippocampus and the dorsal striatum memory systems operate independently and in parallel when rats learn one type of task at a time, but interact cooperatively and in synergism when rats concurrently learn two types of tasks. Furthermore, new learning is modulated by past experiences. These results can be explained by a model in which independent and parallel information processing that occurs in the separate memory-related neural circuits is supplemented by information transfer between the memory systems at the level of the cortex. Copyright © 2016 the authors 0270-6474/16/366459-12$15.00/0.
Cairney, Scott A; Lindsay, Shane; Sobczak, Justyna M; Paller, Ken A; Gaskell, M Gareth
2016-05-01
To investigate how the effects of targeted memory reactivation (TMR) are influenced by memory accuracy prior to sleep and the presence or absence of direct cue-memory associations. 30 participants associated each of 50 pictures with an unrelated word and then with a screen location in two separate tasks. During picture-location training, each picture was also presented with a semantically related sound. The sounds were therefore directly associated with the picture locations but indirectly associated with the words. During a subsequent nap, half of the sounds were replayed in slow wave sleep (SWS). The effect of TMR on memory for the picture locations (direct cue-memory associations) and picture-word pairs (indirect cue-memory associations) was then examined. TMR reduced overall memory decay for recall of picture locations. Further analyses revealed a benefit of TMR for picture locations recalled with a low degree of accuracy prior to sleep, but not those recalled with a high degree of accuracy. The benefit of TMR for low accuracy memories was predicted by time spent in SWS. There was no benefit of TMR for memory of the picture-word pairs, irrespective of memory accuracy prior to sleep. TMR provides the greatest benefit to memories recalled with a low degree of accuracy prior to sleep. The memory benefits of TMR may also be contingent on direct cue-memory associations. © 2016 Associated Professional Sleep Societies, LLC.
Hsu, Che-Wei; Teoh, Yee-San
2017-02-01
The present study aimed to examine the effects of a novel avatar interviewing aid during memory interviews with children with autism spectrum disorder (ASD). Thirty children were recruited for our study (Age: M = 7.60, SD = 0.68), half with ASD (13 boys; 2 girls) and the other half being neurotypical (13 boys; 2 girls). Children participated in a target event and were subsequently interviewed a week later by either an avatar interviewer or a human. The participants were also asked six misleading questions aimed to examine their suggestibility. Bayesian analysis showed some increase in memory performance for both groups of children interviewed by the avatar interviewer, and this effect exacerbated for children with ASD. These results showed encouraging implications for future applications.
Kong, Tianzhu; He, Yini; Auerbach, Randy P; McWhinnie, Chad M; Xiao, Jing
2015-04-01
In this study, we examined the mediator effects of overgeneral autobiographical memory (OGM) on the relationship between rumination and depression in 323 Chinese university students. 323 undergraduates completed the questionnaires measuring OGM (Autobiographical Memory Test), rumination (Ruminative Response Scale) and depression (Center for Epidemiologic Studies Depression Scale). Results using structural equation modeling showed that OGM partially-mediated the relationship between rumination and depression (χ 2 = 88.61, p < .01; RMSEA = .051; SRMR = .040; and CFI = .91). Bootstrap methods were used to assess the magnitude of the indirect effects. The results of the bootstrap estimation procedure and subsequent analyses indicated that the indirect effects of OGM on the relationship between rumination and depressive symptoms were significant. The results indicated that rumination and depression were partially mediated by OGM.
Egocentric and nonegocentric coding in memory for spatial layout: Evidence from scene recognition
2005-01-01
Much contemporary research has suggested that memories for spatial layout are stored with a preferred orientation. The present paper examines whether spatial memories are also stored with a preferred viewpoint position. Participants viewed images of an arrangement of objects taken from a single viewpoint, and were subsequently tested on their ability to recognize the arrangement from novel viewpoints that had been translated in either the lateral or depth dimension. Lateral and forward displacements of the viewpoint resulted in increasing response latencies and errors. Backward displacement showed no such effect, nor did lateral translation that resulted in a centered “canonical” view of the arrangement. These results further constrain the specificity of spatial memory, while also providing some evidence that nonegocentric spatial information is coded in memory. PMID:16933759
Tran, Dominic M D; Westbrook, R Frederick
2018-05-31
Exposure to a high-fat high-sugar (HFHS) diet rapidly impairs novel-place- but not novel-object-recognition memory in rats (Tran & Westbrook, 2015, 2017). Three experiments sought to investigate the generality of diet-induced cognitive deficits by examining whether there are conditions under which object-recognition memory is impaired. Experiments 1 and 3 tested the strength of short- and long-term object-memory trace, respectively, by varying the interval of time between object familiarization and subsequent novel object test. Experiment 2 tested the effect of increasing working memory load on object-recognition memory by interleaving additional object exposures between familiarization and test in an n-back style task. Experiments 1-3 failed to detect any differences in object recognition between HFHS and control rats. Experiment 4 controlled for object novelty by separately familiarizing both objects presented at test, which included one remote-familiar and one recent-familiar object. Under these conditions, when test objects differed in their relative recency, HFHS rats showed a weaker memory trace for the remote object compared to chow rats. This result suggests that the diet leaves intact recollection judgments, but impairs familiarity judgments. We speculate that the HFHS diet adversely affects "where" memories as well as the quality of "what" memories, and discuss these effects in relation to recollection and familiarity memory models, hippocampal-dependent functions, and episodic food memories. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Memory T cells in organ transplantation: progress and challenges
Espinosa, Jaclyn R.; Samy, Kannan P.; Kirk, Allan D.
2017-01-01
Antigen-experienced T cells, also known as memory T cells, are functionally and phenotypically distinct from naive T cells. Their enhanced expression of adhesion molecules and reduced requirement for co-stimulation enables them to mount potent and rapid recall responses to subsequent antigen encounters. Memory T cells generated in response to prior antigen exposures can cross-react with other nonidentical, but similar, antigens. This heterologous cross-reactivity not only enhances protective immune responses, but also engenders de novo alloimmunity. This latter characteristic is increasingly recognized as a potential barrier to allograft acceptance that is worthy of immunotherapeutic intervention, and several approaches have been investigated. Calcineurin inhibition effectively controls memory T-cell responses to allografts, but this benefit comes at the expense of increased infectious morbidity. Lymphocyte depletion eliminates allospecific T cells but spares memory T cells to some extent, such that patients do not completely lose protective immunity. Co-stimulation blockade is associated with reduced adverse-effect profiles and improved graft function relative to calcineurin inhibition, but lacks efficacy in controlling memory T-cell responses. Targeting the adhesion molecules that are upregulated on memory T cells might offer additional means to control co-stimulation-blockade-resistant memory T-cell responses. PMID:26923209
Tetrahedral Arrangements of Perylene Bisimide Columns via Supramolecular Orientational Memory.
Sahoo, Dipankar; Peterca, Mihai; Aqad, Emad; Partridge, Benjamin E; Heiney, Paul A; Graf, Robert; Spiess, Hans W; Zeng, Xiangbing; Percec, Virgil
2017-01-24
Chiral, shape, and liquid crystalline memory effects are well-known to produce commercial macroscopic materials with important applications as springs, sensors, displays, and memory devices. A supramolecular orientational memory effect that provides complex nanoscale arrangements was only recently reported. This supramolecular orientational memory was demonstrated to preserve the molecular orientation and packing within supramolecular units of a self-assembling cyclotriveratrylene crown at the nanoscale upon transition between its columnar hexagonal and Pm3̅n cubic periodic arrays. Here we report the discovery of supramolecular orientational memory in a dendronized perylene bisimide (G2-PBI) that self-assembles into tetrameric crowns and subsequently self-organizes into supramolecular columns and spheres. This supramolecular orientation memory upon transition between columnar hexagonal and body-centered cubic (BCC) mesophases preserves the 3-fold cubic [111] orientations rather than the 4-fold [100] axes, generating an unusual tetrahedral arrangement of supramolecular columns. These results indicate that the supramolecular orientational memory concept may be general for periodic arrays of self-assembling dendrons and dendrimers as well as for other periodic and quasiperiodic nanoscale organizations comprising supramolecular spheres, generated from other organized complex soft matter including block copolymers and surfactants.
The lasting memory enhancements of retrospective attention
Reaves, Sarah; Strunk, Jonathan; Phillips, Shekinah; Verhaeghen, Paul; Duarte, Audrey
2016-01-01
Behavioral research has shown that spatial cues that orient attention toward task relevant items being maintained in visual short-term memory (VSTM) enhance item memory accuracy. However, it is unknown if these retrospective attentional cues (“retro-cues”) enhance memory beyond typical short-term memory delays. It is also unknown whether retro-cues affect the spatial information associated with VSTM representations. Emerging evidence suggests that processes that affect short-term memory maintenance may also affect long-term memory (LTM) but little work has investigated the role of attention in LTM. In the current event-related potential (ERP) study, we investigated the duration of retrospective attention effects and the impact of retrospective attention manipulations on VSTM representations. Results revealed that retro-cueing improved both VSTM and LTM memory accuracy and that posterior maximal ERPs observed during VSTM maintenance predicted subsequent LTM performance. N2pc ERPs associated with attentional selection were attenuated by retro-cueing suggesting that retrospective attention may disrupt maintenance of spatial configural information in VSTM. Collectively, these findings suggest that retrospective attention can alter the structure of memory representations, which impacts memory performance beyond short-term memory delays. PMID:27038756
Effects of emotionally valenced working memory taxation on negative memories.
Tsai, Cynthia; McNally, Richard J
2014-03-01
Memories enter a labile state during recollection. Thus, memory changes that occur during recollection can affect future instances of its activation. Having subjects perform a secondary task that taxes working memory while they recall a negative emotional memory often reduces its vividness and emotional intensity during subsequent recollections. However, researchers have not manipulated the emotional valence of the secondary task itself. Subjects viewed a video depicting the aftermath of three fatal road traffic accidents, establishing the same negative emotional memory for all subjects. We then tested their memory for the video after randomly assigning them to no secondary task or a delayed match-to-sample secondary task involving photographs of positive, negative, or neutral emotional valence. The positive secondary task reduced memory for details about the video, whereas negative and neutral tasks did not. We did not assess the vividness and emotionality of the subjects' memory of the video. Having subjects recall a stressful experience while performing a positively valent secondary task can decrement details of the memory and perhaps its emotionality. Copyright © 2013 Elsevier Ltd. All rights reserved.
Xiu, Daiming; Geiger, Maximilian J; Klaver, Peter
2015-01-01
This study investigated the role of bottom-up and top-down neural mechanisms in the processing of emotional face expression during memory formation. Functional brain imaging data was acquired during incidental learning of positive ("happy"), neutral and negative ("angry" or "fearful") faces. Dynamic Causal Modeling (DCM) was applied on the functional magnetic resonance imaging (fMRI) data to characterize effective connectivity within a brain network involving face perception (inferior occipital gyrus and fusiform gyrus) and successful memory formation related areas (hippocampus, superior parietal lobule, amygdala, and orbitofrontal cortex). The bottom-up models assumed processing of emotional face expression along feed forward pathways to the orbitofrontal cortex. The top-down models assumed that the orbitofrontal cortex processed emotional valence and mediated connections to the hippocampus. A subsequent recognition memory test showed an effect of negative emotion on the response bias, but not on memory performance. Our DCM findings showed that the bottom-up model family of effective connectivity best explained the data across all subjects and specified that emotion affected most bottom-up connections to the orbitofrontal cortex, especially from the occipital visual cortex and superior parietal lobule. Of those pathways to the orbitofrontal cortex the connection from the inferior occipital gyrus correlated with memory performance independently of valence. We suggest that bottom-up neural mechanisms support effects of emotional face expression and memory formation in a parallel and partially overlapping fashion.
Effects on locomotion and memory in 2 models of cerebral hypoperfusion in male Wistar rats.
Martínez-Díaz, J A; García, L I; Hernández, M E; Aranda-Abreu, G E
2015-09-01
Cerebral ischaemia is one of the most common neurological diseases worldwide. Its many sequelae range from motor and sensory symptoms to cognitive decline and dementia. Animal models of cerebral ischaemia/hypoperfusion elicit effects on long term memory; however, the effects of these procedures on short term memory are not clearly understood and effects induced by alternative hypoperfusion models are completely unknown. We evaluated the effects of 2 cerebral hyperperfusion models on memory in 3-month-old male rats. Episodic memory and working memory were assessed using the new object recognition test and the spontaneous alteration test, respectively. Neurological assessment was also performed, along with an open field test to evaluate locomotor activity. Rats in both hyperperfusion models displayed no cognitive changes. Rats with unilateral left-sided ligation plus temporary ligation of the right carotid tended to show slightly impaired performance on the new object recognition test on the second day after the procedure. In contrast, the group with permanent unilateral ligation tended to display alterations in working and episodic memory 9 days after the procedure, but they subsequently recovered. Despite these differences, both hypoperfusion groups displayed clear signs of motor impairment 2 days after the procedure, as reflected by their decreased locomotor activity during the open field test. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.
Vienne, Julie; Lecciso, Gianpaolo; Constantinescu, Irina; Schwartz, Sophie; Franken, Paul; Heinzer, Raphaël; Tafti, Mehdi
2012-01-01
Study Objectives: Sodium oxybate (SO) is a GABAB agonist used to treat the sleep disorder narcolepsy. SO was shown to increase slow wave sleep (SWS) and EEG delta power (0.75-4.5 Hz), both indexes of NREM sleep (NREMS) intensity and depth, suggesting that SO enhances recuperative function of NREM. We investigated whether SO induces physiological deep sleep. Design: SO was administered before an afternoon nap or before the subsequent experimental night in 13 healthy volunteers. The effects of SO were compared to baclofen (BAC), another GABAB receptor agonist, to assess the role of GABAB receptors in the SO response. Measurements and Results: As expected, a nap significantly decreased sleep need and intensity the subsequent night. Both drugs reversed this nap effect on the subsequent night by decreasing sleep latency and increasing total sleep time, SWS during the first NREMS episode, and EEG delta and theta (0.75-7.25 Hz) power during NREMS. The SO-induced increase in EEG delta and theta power was, however, not specific to NREMS and was also observed during REM sleep (REMS) and wakefulness. Moreover, the high levels of delta power during a nap following SO administration did not affect delta power the following night. SO and BAC taken before the nap did not improve subsequent psychomotor performance and subjective alertness, or memory consolidation. Finally, SO and BAC strongly promoted the appearance of sleep onset REM periods. Conclusions: The SO-induced EEG slow waves seem not to be functionally similar to physiological slow waves. Our findings also suggest a role for GABAB receptors in REMS generation. Citation: Vienne J; Lecciso G; Constantinescu I; Schwartz S; Franken P; Heinzer R; Tafti M. Differential effects of sodium oxybate and baclofen on EEG, sleep, neurobehavioral performance, and memory. SLEEP 2012;35(8):1071–1084. PMID:22851803
Kalenzaga, Sandrine; Sperduti, Marco; Anssens, Adèle; Martinelli, Penelope; Devauchelle, Anne-Dominique; Gallarda, Thierry; Delhommeau, Marion; Lion, Stéphanie; Amado, Isabelle; Krebs, Marie-Odile; Oppenheim, Catherine; Piolino, Pascale
2014-01-01
Self-referential processing relies mainly on the medial prefrontal cortex (MPFC) and enhances memory encoding (i.e., Self-Reference Effect, SRE) as it improves the accuracy and richness of remembering in both young and older adults. However, studies on age-related changes in the neural correlates of the SRE on the subjective (i.e., autonoetic consciousness) and the objective (i.e., source memory) qualitative features of episodic memory are lacking. In the present fMRI study, we compared the effects of a self-related (semantic autobiographical memory task) and a non self-related (general semantic memory task) encoding condition on subsequent episodic memory retrieval. We investigated encoding-related activity during each condition in two groups of 19 younger and 16 older adults. Behaviorally, the SRE improved subjective memory performance in both groups but objective memory only in young adults. At the neural level, a direct comparison between self-related and non self-related conditions revealed that SRE mainly activated the cortical midline system, especially the MPFC, in both groups. Additionally, in older adults and regardless of the condition, greater activity was found in a fronto-parietal network. Overall, correlations were noted between source memory performance and activity in the MPFC (irrespective of age) and visual areas (mediated by age). Thus, the present findings expand evidence of the role of the MPFC in self-referential processing in the context of source memory benefit in both young and older adults using incidental encoding via semantic autobiographical memory. However, our finding suggests that its role is less effective in aging.
Kalenzaga, Sandrine; Sperduti, Marco; Anssens, Adèle; Martinelli, Penelope; Devauchelle, Anne-Dominique; Gallarda, Thierry; Delhommeau, Marion; Lion, Stéphanie; Amado, Isabelle; Krebs, Marie-Odile; Oppenheim, Catherine; Piolino, Pascale
2015-01-01
Self-referential processing relies mainly on the medial prefrontal cortex (MPFC) and enhances memory encoding (i.e., Self-Reference Effect, SRE) as it improves the accuracy and richness of remembering in both young and older adults. However, studies on age-related changes in the neural correlates of the SRE on the subjective (i.e., autonoetic consciousness) and the objective (i.e., source memory) qualitative features of episodic memory are lacking. In the present fMRI study, we compared the effects of a self-related (semantic autobiographical memory task) and a non self-related (general semantic memory task) encoding condition on subsequent episodic memory retrieval. We investigated encoding-related activity during each condition in two groups of 19 younger and 16 older adults. Behaviorally, the SRE improved subjective memory performance in both groups but objective memory only in young adults. At the neural level, a direct comparison between self-related and non self-related conditions revealed that SRE mainly activated the cortical midline system, especially the MPFC, in both groups. Additionally, in older adults and regardless of the condition, greater activity was found in a fronto-parietal network. Overall, correlations were noted between source memory performance and activity in the MPFC (irrespective of age) and visual areas (mediated by age). Thus, the present findings expand evidence of the role of the MPFC in self-referential processing in the context of source memory benefit in both young and older adults using incidental encoding via semantic autobiographical memory. However, our finding suggests that its role is less effective in aging. PMID:25628546
Seifert, A Ronald
2012-01-01
Absence of memory or verbal recall for symptom acquisition in fear and trauma exposure, as well as absence of successful coping behavior for life events, is associated with a number of diagnoses, including traumatic brain injury, posttraumatic stress disorder, pain, and anxiety. The difficulty with diagnosis and treatment planning based on the absence of recall, memory, and successful coping behavior is threefold: (1) these assessments do not distinguish between disruption of behavior and lack of capacity, (2) the absence of verbal recall and memory complicates cognitive-based treatment, and (3) a confounding issue is the same absent behavior can be observed at different times and contexts. While memory of the specific details of the initial traumatic event(s) may not be available to verbal report, the existence of time- and context-dependent relationships for the initial as well as subsequent experiences is arguable. The absence of memory or lack of verbal recall does not rule out measurable physiological bodily responses for the initial trauma(s), nor does it help to establish the effects of subsequent experiences for symptom expression. Also, the absence of memory must include the prospect of fear-based learning that does not require or involve the cortex. It is posited that the literatures of fear conditioning and learned nonuse provide complementary illustrations of how the time and context of the initial trauma(s) and subsequent experiences affect behavior, which is not dependent on the effected individual being able to provide a memory-based verbal report. The replicated clinical application demonstrates that, without scientific demonstration, neither neuroanatomy nor verbal report can be assumed sufficient to predict overt behavior or physiologic responses. For example, while commonly assumed to be predictively so, autonomic nervous system innervation is insufficient to define the unique stimulus- and context-dependent physiological responses of an individual. By recording simultaneous physiological responses to the controlled presentation of a context-dependent stimulus, the unique relationships of physiology and overt behaviors for the individual can be demonstrated. Using this process also allows more complex virtual reality or other in vivo stimulus assessments to be incorporated for the development of individually tailored assessments and therapeutic plans. Thus, with or without memory or verbal recall, the use of multiple time- and context-specific simultaneous physiological measures and overt behavior can guide clinical effort as well as serve to objectively assess the ongoing treatment and its outcome.
Richter, Kim Merle; Mödden, Claudia; Eling, Paul; Hildebrandt, Helmut
2018-04-26
To show the effectiveness of a combined recognition and working memory training on everyday memory performance in patients suffering from organic memory disorders. In this double-blind, randomized controlled Study 36 patients with organic memory impairments, mainly attributable to stroke, were assigned to either the experimental or the active control group. In the experimental group a working memory training was combined with a recollection training based on the repetition-lag procedure. Patients in the active control group received the memory therapy usually provided in the rehabilitation center. Both groups received nine hours of therapy. Prior (T0) and subsequent (T1) to the therapy, patients were evaluated on an everyday memory test (EMT) as well as on a neuropsychological test battery. Based on factor analysis of the neuropsychological test scores at T0 we calculated composite scores for working memory, verbal learning and word fluency. After treatment, the intervention group showed a significantly greater improvement for WM performance compared with the active control group. More importantly, performance on the EMT also improved significantly in patients receiving the recollection and working memory training compared with patients with standard memory training. Our results show that combining working memory and recollection training significantly improves performance on everyday memory tasks, demonstrating far transfer effects. The present study argues in favor of a process-based approach for treating memory impairments. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Fragments of a larger whole: retrieval cues constrain observed neural correlates of memory encoding.
Otten, Leun J
2007-09-01
Laying down a new memory involves activity in a number of brain regions. Here, it is shown that the particular regions associated with successful encoding depend on the way in which memory is probed. Event-related functional magnetic resonance imaging signals were acquired while subjects performed an incidental encoding task on a series of visually presented words denoting objects. A recognition memory test using the Remember/Know procedure to separate responses based on recollection and familiarity followed 1 day later. Critically, half of the studied objects were cued with a corresponding spoken word, and half with a corresponding picture. Regardless of cue, activity in prefrontal and hippocampal regions predicted subsequent recollection of a word. Type of retrieval cue modulated activity in prefrontal, temporal, and parietal cortices. Words subsequently recognized on the basis of a sense of familiarity were at study also associated with differential activity in a number of brain regions, some of which were probe dependent. Thus, observed neural correlates of successful encoding are constrained by type of retrieval cue, and are only fragments of all encoding-related neural activity. Regions exhibiting cue-specific effects may be sites that support memory through the degree of overlap between the processes engaged during encoding and those engaged during retrieval.
Advance Organizers: Concret Versus Abstract.
ERIC Educational Resources Information Center
Corkill, Alice J.; And Others
1988-01-01
Two experiments examined the relative effects of concrete and abstract advance organizers on students' memory for subsequent prose. Results of the experiments are discussed in terms of the memorability, familiarity, and visualizability of concrete and abstract verbal materials. (JD)
Thielen, Jan-Willem; Hong, Donghyun; Rohani Rankouhi, Seyedmorteza; Wiltfang, Jens; Fernández, Guillén; Norris, David G; Tendolkar, Indira
2018-06-01
The classical model of the declarative memory system describes the hippocampus and its interactions with representational brain areas in posterior neocortex as being essential for the formation of long-term episodic memories. However, new evidence suggests an extension of this classical model by assigning the medial prefrontal cortex (mPFC) a specific, yet not fully defined role in episodic memory. In this study, we utilized 1H magnetic resonance spectroscopy (MRS) and psychophysiological interaction (PPI) analysis to lend further support for the idea of a mnemonic role of the mPFC in humans. By using MRS, we measured mPFC γ-aminobutyric acid (GABA) and glutamate/glutamine (GLx) concentrations before and after volunteers memorized face-name association. We demonstrate that mPFC GLx but not GABA levels increased during the memory task, which appeared to be related to memory performance. Regarding functional connectivity, we used the subsequent memory paradigm and found that the GLx increase was associated with stronger mPFC connectivity to thalamus and hippocampus for associations subsequently recognized with high confidence as opposed to subsequently recognized with low confidence/forgotten. Taken together, we provide new evidence for an mPFC involvement in episodic memory by showing a memory-related increase in mPFC excitatory neurotransmitter levels that was associated with better memory and stronger memory-related functional connectivity in a medial prefrontal-thalamus-hippocampus network. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Cognitive control, attention, and the other race effect in memory.
Brown, Thackery I; Uncapher, Melina R; Chow, Tiffany E; Eberhardt, Jennifer L; Wagner, Anthony D
2017-01-01
People are better at remembering faces from their own race than other races-a phenomenon with significant societal implications. This Other Race Effect (ORE) in memory could arise from different attentional allocation to, and cognitive control over, same- and other-race faces during encoding. Deeper or more differentiated processing of same-race faces could yield more robust representations of same- vs. other-race faces that could support better recognition memory. Conversely, to the extent that other-race faces may be characterized by lower perceptual expertise, attention and cognitive control may be more important for successful encoding of robust, distinct representations of these stimuli. We tested a mechanistic model in which successful encoding of same- and other-race faces, indexed by subsequent memory performance, is differentially predicted by (a) engagement of frontoparietal networks subserving top-down attention and cognitive control, and (b) interactions between frontoparietal networks and fusiform cortex face processing. European American (EA) and African American (AA) participants underwent fMRI while intentionally encoding EA and AA faces, and ~24 hrs later performed an "old/new" recognition memory task. Univariate analyses revealed greater engagement of frontoparietal top-down attention and cognitive control networks during encoding for same- vs. other-race faces, stemming particularly from a failure to engage the cognitive control network during processing of other-race faces that were subsequently forgotten. Psychophysiological interaction (PPI) analyses further revealed that OREs were characterized by greater functional interaction between medial intraparietal sulcus, a component of the top-down attention network, and fusiform cortex during same- than other-race face encoding. Together, these results suggest that group-based face memory biases at least partially stem from differential allocation of cognitive control and top-down attention during encoding, such that same-race memory benefits from elevated top-down attentional engagement with face processing regions; conversely, reduced recruitment of cognitive control circuitry appears more predictive of memory failure when encoding out-group faces.
Cognitive control, attention, and the other race effect in memory
Uncapher, Melina R.; Chow, Tiffany E.; Eberhardt, Jennifer L.; Wagner, Anthony D.
2017-01-01
People are better at remembering faces from their own race than other races–a phenomenon with significant societal implications. This Other Race Effect (ORE) in memory could arise from different attentional allocation to, and cognitive control over, same- and other-race faces during encoding. Deeper or more differentiated processing of same-race faces could yield more robust representations of same- vs. other-race faces that could support better recognition memory. Conversely, to the extent that other-race faces may be characterized by lower perceptual expertise, attention and cognitive control may be more important for successful encoding of robust, distinct representations of these stimuli. We tested a mechanistic model in which successful encoding of same- and other-race faces, indexed by subsequent memory performance, is differentially predicted by (a) engagement of frontoparietal networks subserving top-down attention and cognitive control, and (b) interactions between frontoparietal networks and fusiform cortex face processing. European American (EA) and African American (AA) participants underwent fMRI while intentionally encoding EA and AA faces, and ~24 hrs later performed an “old/new” recognition memory task. Univariate analyses revealed greater engagement of frontoparietal top-down attention and cognitive control networks during encoding for same- vs. other-race faces, stemming particularly from a failure to engage the cognitive control network during processing of other-race faces that were subsequently forgotten. Psychophysiological interaction (PPI) analyses further revealed that OREs were characterized by greater functional interaction between medial intraparietal sulcus, a component of the top-down attention network, and fusiform cortex during same- than other-race face encoding. Together, these results suggest that group-based face memory biases at least partially stem from differential allocation of cognitive control and top-down attention during encoding, such that same-race memory benefits from elevated top-down attentional engagement with face processing regions; conversely, reduced recruitment of cognitive control circuitry appears more predictive of memory failure when encoding out-group faces. PMID:28282414
Recollective performance advantages for implicit memory tasks.
Sheldon, Signy A M; Moscovitch, Morris
2010-10-01
A commonly held assumption is that processes underlying explicit and implicit memory are distinct. Recent evidence, however, suggests that they may interact more than previously believed. Using the remember-know procedure the current study examines the relation between recollection, a process thought to be exclusive to explicit memory, and performance on two implicit memory tasks, lexical decision and word stem completion. We found that, for both implicit tasks, words that were recollected were associated with greater priming effects than were words given a subsequent familiarity rating or words that had been studied but were not recognised (misses). Broadly, our results suggest that non-voluntary processes underlying explicit memory also benefit priming, a measure of implicit memory. More specifically, given that this benefit was due to a particular aspect of explicit memory (recollection), these results are consistent with some strength models of memory and with Moscovitch's (2008) proposal that recollection is a two-stage process, one rapid and unconscious and the other more effortful and conscious.
Greater neural pattern similarity across repetitions is associated with better memory.
Xue, Gui; Dong, Qi; Chen, Chuansheng; Lu, Zhonglin; Mumford, Jeanette A; Poldrack, Russell A
2010-10-01
Repeated study improves memory, but the underlying neural mechanisms of this improvement are not well understood. Using functional magnetic resonance imaging and representational similarity analysis of brain activity, we found that, compared with forgotten items, subsequently remembered faces and words showed greater similarity in neural activation across multiple study in many brain regions, including (but not limited to) the regions whose mean activities were correlated with subsequent memory. This result addresses a longstanding debate in the study of memory by showing that successful episodic memory encoding occurs when the same neural representations are more precisely reactivated across study episodes, rather than when patterns of activation are more variable across time.
Memory reactivation during rest supports upcoming learning of related content.
Schlichting, Margaret L; Preston, Alison R
2014-11-04
Although a number of studies have highlighted the importance of offline processes for memory, how these mechanisms influence future learning remains unknown. Participants with established memories for a set of initial face-object associations were scanned during passive rest and during encoding of new related and unrelated pairs of objects. Spontaneous reactivation of established memories and enhanced hippocampal-neocortical functional connectivity during rest was related to better subsequent learning, specifically of related content. Moreover, the degree of functional coupling during rest was predictive of neural engagement during the new learning experience itself. These results suggest that through rest-phase reactivation and hippocampal-neocortical interactions, existing memories may come to facilitate encoding during subsequent related episodes.
Memory reactivation during rest supports upcoming learning of related content
Schlichting, Margaret L.; Preston, Alison R.
2014-01-01
Although a number of studies have highlighted the importance of offline processes for memory, how these mechanisms influence future learning remains unknown. Participants with established memories for a set of initial face–object associations were scanned during passive rest and during encoding of new related and unrelated pairs of objects. Spontaneous reactivation of established memories and enhanced hippocampal–neocortical functional connectivity during rest was related to better subsequent learning, specifically of related content. Moreover, the degree of functional coupling during rest was predictive of neural engagement during the new learning experience itself. These results suggest that through rest-phase reactivation and hippocampal–neocortical interactions, existing memories may come to facilitate encoding during subsequent related episodes. PMID:25331890
Grain size of recall practice for lengthy text material: fragile and mysterious effects on memory.
Wissman, Kathryn T; Rawson, Katherine A
2015-03-01
The current research evaluated the extent to which the grain size of recall practice for lengthy text material affects recall during practice and subsequent memory. The grain size hypothesis states that a smaller vs. larger grain size will increase retrieval success during practice that in turn will enhance subsequent memory for lengthy text material. Participants were prompted to recall directly after studying each section (section recall) or after all sections had been studied (whole-text recall) during practice, and then all participants completed a final test after a delay. Results across 7 experiments (including 587 participants and 1,394 recall protocols) partially disconfirmed the predictions of the grain size hypothesis: Although the smaller grain size produced sizable recall advantages during practice as expected (ds from 1.02 to 1.87 across experiments), the advantage was substantially or completely attenuated across a delay. Experiments 2-7 falsified several plausible methodological and theoretical explanations for the fragility of the effect, indicating that it was not due to particular text materials, retrieval from working memory during practice, the length of the retention interval, the spacing between study and practice recall, a disproportionate increase in recall of unimportant details, or a deficit in integration of ideas across text sections. In sum, results conclusively establish an initially sizable but mysteriously fragile effect of grain size, for which an explanation remains elusive. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Neurobiological dissociation of retrieval and reconsolidation of cocaine-associated memory
Otis, James M.; Dashew, Kidane B.; Mueller, Devin
2013-01-01
Drug use is provoked by the presentation of drug-associated cues, even following long periods of abstinence. Disruption of these learned associations would therefore limit relapse susceptibility. Drug-associated memories are susceptible to long-term disruption during retrieval and shortly after, during memory reconsolidation. Recent evidence reveals that retrieval and reconsolidation are dependent on β-adrenergic receptor (β-AR) activation. Despite this, whether retrieval and reconsolidation are dependent on identical or distinct neural mechanisms is unknown. The prelimbic medial prefrontal cortex (PL-mPFC) and basolateral amygdala (BLA) have been implicated in the expression and reconsolidation of associative memories. Therefore, we investigated the necessity of β-AR activation within the PL-mPFC and BLA for cocaine-associated memory retrieval and reconsolidation in rats. Before or immediately after a cocaine-induced conditioned place preference (CPP) retrieval trial, β-AR antagonists were infused into the PL-mPFC or BLA, followed by daily testing. PL-mPFC infusions before, but not after, a CPP trial disrupted CPP memory retrieval and induced a persistent deficit in retrieval during subsequent trials. In contrast, BLA β-AR blockade had no effect on initial CPP memory retrieval, but prevented CPP expression during subsequent trials indicative of reconsolidation disruption. Our results reveal a distinct dissociation between the neural mechanisms required for cocaine-associated memory retrieval and reconsolidation. Using patch-clamp electrophysiology, we also show that application of a β-AR antagonist prevents NE-induced potentiation of PL-mPFC pyramidal and GABAergic neuronal excitability. Thus, targeted β-AR blockade could induce long-term deficits in drug-associated memory retrieval by reducing neuronal excitability, providing a novel method of preventing cue-elicited drug seeking and relapse. PMID:23325262
Neurobiological dissociation of retrieval and reconsolidation of cocaine-associated memory.
Otis, James M; Dashew, Kidane B; Mueller, Devin
2013-01-16
Drug use is provoked by the presentation of drug-associated cues, even following long periods of abstinence. Disruption of these learned associations would therefore limit relapse susceptibility. Drug-associated memories are susceptible to long-term disruption during retrieval and shortly after, during memory reconsolidation. Recent evidence reveals that retrieval and reconsolidation are dependent on β-adrenergic receptor (β-AR) activation. Despite this, whether retrieval and reconsolidation are dependent on identical or distinct neural mechanisms is unknown. The prelimbic medial prefrontal cortex (PL-mPFC) and basolateral amygdala (BLA) have been implicated in the expression and reconsolidation of associative memories. Therefore, we investigated the necessity of β-AR activation within the PL-mPFC and BLA for cocaine-associated memory retrieval and reconsolidation in rats. Before or immediately after a cocaine-induced conditioned place preference (CPP) retrieval trial, β-AR antagonists were infused into the PL-mPFC or BLA, followed by daily testing. PL-mPFC infusions before, but not after, a CPP trial disrupted CPP memory retrieval and induced a persistent deficit in retrieval during subsequent trials. In contrast, BLA β-AR blockade had no effect on initial CPP memory retrieval, but prevented CPP expression during subsequent trials indicative of reconsolidation disruption. Our results reveal a distinct dissociation between the neural mechanisms required for cocaine-associated memory retrieval and reconsolidation. Using patch-clamp electrophysiology, we also show that application of a β-AR antagonist prevents norepinephrine-induced potentiation of PL-mPFC pyramidal cell and γ-aminobutyric-acid (GABA) interneuron excitability. Thus, targeted β-AR blockade could induce long-term deficits in drug-associated memory retrieval by reducing neuronal excitability, providing a novel method of preventing cue-elicited drug seeking and relapse.
Fast effects of glucocorticoids on memory-related network oscillations in the mouse hippocampus.
Weiss, E K; Krupka, N; Bähner, F; Both, M; Draguhn, A
2008-05-01
Transient or lasting increases in glucocorticoids accompany deficits in hippocampus-dependent memory formation. Recent data indicate that the formation and consolidation of declarative and spatial memory are mechanistically related to different patterns of hippocampal network oscillations. These include gamma oscillations during memory acquisition and the faster ripple oscillations (approximately 200 Hz) during subsequent memory consolidation. We therefore analysed the effects of acutely applied glucocorticoids on network activity in mouse hippocampal slices. Evoked field population spikes and paired-pulse responses were largely unaltered by corticosterone or cortisol, respectively, despite a slight increase in maximal population spike amplitude by 10 microm corticosterone. Several characteristics of sharp waves and superimposed ripple oscillations were affected by glucocorticoids, most prominently the frequency of spontaneously occurring sharp waves. At 0.1 microm, corticosterone increased this frequency, whereas maximal (10 microm) concentrations led to a reduction. In addition, gamma oscillations became slightly faster and less regular in the presence of high doses of corticosteroids. The present study describes acute effects of glucocorticoids on sharp wave-ripple complexes and gamma oscillations in mouse hippocampal slices, revealing a potential background for memory deficits in the presence of elevated levels of these hormones.
Remembered study mode: support for the distinctiveness account of the production effect.
Ozubko, Jason D; Major, Jennifer; MacLeod, Colin M
2014-01-01
The production effect is the finding that words spoken aloud at study are subsequently remembered better than are words read silently at study. According to the distinctiveness account, aloud words are remembered better because the act of speaking those words aloud is encoded and later recovery of this information can be used to infer that those words were studied. An alternative account (the strength-based account) is that memory strength is simply greater for words read aloud. To discriminate these two accounts, we investigated study mode judgements (i.e., "aloud"/"silent"/"new" ratings): The strength-based account predicts that "aloud" responses should positively correlate with memory strength, whereas the distinctiveness account predicts that accuracy of study mode judgements will be independent of memory strength. Across three experiments, where the strength of some silent words was increased by repetition, study mode was discriminable regardless of strength-even when the strength of aloud and repeated silent items was equivalent. Consistent with the distinctiveness account, we conclude that memory for "aloudness" is independent of memory strength and a likely candidate to explain the production effect.
Hong, Donghyun; Rohani Rankouhi, Seyedmorteza; Wiltfang, Jens; Fernández, Guillén; Norris, David G.; Tendolkar, Indira
2018-01-01
Abstract The classical model of the declarative memory system describes the hippocampus and its interactions with representational brain areas in posterior neocortex as being essential for the formation of long‐term episodic memories. However, new evidence suggests an extension of this classical model by assigning the medial prefrontal cortex (mPFC) a specific, yet not fully defined role in episodic memory. In this study, we utilized 1H magnetic resonance spectroscopy (MRS) and psychophysiological interaction (PPI) analysis to lend further support for the idea of a mnemonic role of the mPFC in humans. By using MRS, we measured mPFC γ‐aminobutyric acid (GABA) and glutamate/glutamine (GLx) concentrations before and after volunteers memorized face–name association. We demonstrate that mPFC GLx but not GABA levels increased during the memory task, which appeared to be related to memory performance. Regarding functional connectivity, we used the subsequent memory paradigm and found that the GLx increase was associated with stronger mPFC connectivity to thalamus and hippocampus for associations subsequently recognized with high confidence as opposed to subsequently recognized with low confidence/forgotten. Taken together, we provide new evidence for an mPFC involvement in episodic memory by showing a memory‐related increase in mPFC excitatory neurotransmitter levels that was associated with better memory and stronger memory‐related functional connectivity in a medial prefrontal–thalamus–hippocampus network. PMID:29488277
Similarities of Recently Acquired and Reactivated Memories in Interference
ERIC Educational Resources Information Center
Gordon, William C.
1977-01-01
Together, these studies replicate and extend Gordon and Spear's (1973a) findings that proactive interference decreases as the interval between prior and subsequent learning increases and that reactivation of a prior memory just before subsequent learning significantly increases the proactive interference due to the prior learning. (Author/RK)
Social contagion of correct and incorrect information in memory.
Rush, Ryan A; Clark, Steven E
2014-01-01
The present study examines how discussion between individuals regarding a shared memory affects their subsequent individual memory reports. In three experiments pairs of participants recalled items from photographs of common household scenes, discussed their recall with each other, and then recalled the items again individually. Results showed that after the discussion. individuals recalled more correct items and more incorrect items, with very small non-significant increases, or no change, in recall accuracy. The information people were exposed to during the discussion was generally accurate, although not as accurate as individuals' initial recall. Individuals incorporated correct exposure items into their subsequent recall at a higher rate than incorrect exposure items. Participants who were initially more accurate became less accurate, and initially less-accurate participants became more accurate as a result of their discussion. Comparisons to no-discussion control groups suggest that the effects were not simply the product of repeated recall opportunities or self-cueing, but rather reflect the transmission of information between individuals.
Estrogen modifies arousal but not memory for emotional events in older women
Pruis, T.A.; Neiss, M.B.; Leigland, L.A.; Janowsky, J.S.
2009-01-01
Emotional arousal and the affective content of events influence memory. These effects shift with age such that older people find negative information less arousing and remember proportionately more positive events compared to the young. The emotional enhancement of memory is mediated by medial temporal lobe limbic structures and the prefrontal cortex, which are both affected by sex hormones. We examined whether hormone use (estrogen or estrogen and progesterone) in older women modulated perceptions of valence and arousal, and subsequent memory for emotional images or stories. Their performance was compared to younger women. Hormone use in older women resulted in higher arousal for negative images and stories but memory was not affected. We hypothesize that estrogen modifies the influence of the amygdala and the prefrontal cortex on emotion, but that age-related changes in the hippocampus prevent the enhancement of emotional memory in older women. PMID:18160182
Gold, Paul E.; Korol, Donna L.
2012-01-01
This article reviews some of the neuroendocrine bases by which emotional events regulate brain mechanisms of learning and memory. In laboratory rodents, there is extensive evidence that epinephrine influences memory processing through an inverted-U relationship, at which moderate levels enhance and high levels impair memory. These effects are, in large part, mediated by increases in blood glucose levels subsequent to epinephrine release, which then provide support for the brain processes engaged by learning and memory. These brain processes include augmentation of neurotransmitter release and of energy metabolism, the latter apparently including a key role for astrocytic glycogen. In addition to up- and down-regulation of learning and memory in general, physiological concomitants of emotion and arousal can also switch the neural system that controls learning at a particular time, at once improving some attributes of learning and impairing others in a manner that results in a change in the strategy used to solve a problem. PMID:23264764
Sumner, Jennifer A.; Griffith, James W.; Mineka, Susan; Rekart, Kathleen Newcomb; Zinbarg, Richard E.; Craske, Michelle G.
2012-01-01
This study investigated whether overgeneral autobiographical memory (OGM) predicts the course of depression in adolescents. As part of a larger longitudinal study of risk for emotional disorders, 55 adolescents with a past history of major depressive disorder or minor depressive disorder completed the Autobiographical Memory Test. Fewer specific memories predicted the subsequent onset of a major depressive episode (MDE) over a 16-month follow-up period, even when covarying baseline depressive symptoms. This main effect was qualified by an interaction between specific memories and chronic interpersonal stress: Fewer specific memories predicted greater risk of MDE onset over follow-up at high (but not low) levels of chronic interpersonal stress. Thus, our findings suggest that OGM, in interaction with chronic interpersonal stress, predicts the course of depression among adolescents, and highlight the importance of measuring interpersonal stress in OGM research. PMID:21432666
The Negative Testing Effect and Multifactor Account
ERIC Educational Resources Information Center
Peterson, Daniel J.; Mulligan, Neil W.
2013-01-01
Across 3 experiments, we investigated the factors that dictate when taking a test improves subsequent memory performance (the "testing effect"). In Experiment 1, participants retrieving a set of targets during a retrieval practice phase ultimately recalled fewer of those targets compared with a group of participants who studied the…
Vaughn, Kalif E; Rawson, Katherine A
2011-09-01
Previous research has shown that increasing the criterion level (i.e., the number of times an item must be correctly retrieved during practice) improves subsequent memory, but which specific components of memory does increased criterion level enhance? In two experiments, we examined the extent to which the criterion level affects associative memory, target memory, and cue memory. Participants studied Lithuanian-English word pairs via cued recall with restudy until items were correctly recalled one to five times. In Experiment 1, participants took one of four recall tests and one of three recognition tests after a 2-day delay. In Experiment 2, participants took only recognition tests after a 1-week delay. In both experiments, increasing the criterion level enhanced associative memory, as indicated by enhanced performance on forward and backward cued-recall tests and on tests of associative recognition. An increased criterion level also improved target memory, as indicated by enhanced free recall and recognition of targets, and improved cue memory, as indicated by enhanced free recall and recognition of cues.
Effects of dividing attention on memory for declarative and procedural aspects of tool use.
Roy, Shumita; Park, Norman W
2016-07-01
Tool-related knowledge and skills are supported by a complex set of memory processes that are not well understood. Some aspects of tools are mediated by either declarative or procedural memory, while other aspects may rely on an interaction of both systems. Although motor skill learning is believed to be primarily supported by procedural memory, there is debate in the current literature regarding the role of declarative memory. Growing evidence suggests that declarative memory may be involved during early stages of motor skill learning, although findings have been mixed. In the current experiment, healthy, younger adults were trained to use a set of novel complex tools and were tested on their memory for various aspects of the tools. Declarative memory encoding was interrupted by dividing attention during training. Findings showed that dividing attention during training was detrimental for subsequent memory for tool attributes as well as accurate demonstration of tool use and tool grasping. However, dividing attention did not interfere with motor skill learning, suggesting that declarative memory is not essential for skill learning associated with tools.
Dworak, Markus; Schierl, Thomas; Bruns, Thomas; Strüder, Heiko Klaus
2007-11-01
Television and computer game consumption are a powerful influence in the lives of most children. Previous evidence has supported the notion that media exposure could impair a variety of behavioral characteristics. Excessive television viewing and computer game playing have been associated with many psychiatric symptoms, especially emotional and behavioral symptoms, somatic complaints, attention problems such as hyperactivity, and family interaction problems. Nevertheless, there is insufficient knowledge about the relationship between singular excessive media consumption on sleep patterns and linked implications on children. The aim of this study was to investigate the effects of singular excessive television and computer game consumption on sleep patterns and memory performance of children. Eleven school-aged children were recruited for this polysomnographic study. Children were exposed to voluntary excessive television and computer game consumption. In the subsequent night, polysomnographic measurements were conducted to measure sleep-architecture and sleep-continuity parameters. In addition, a visual and verbal memory test was conducted before media stimulation and after the subsequent sleeping period to determine visuospatial and verbal memory performance. Only computer game playing resulted in significant reduced amounts of slow-wave sleep as well as significant declines in verbal memory performance. Prolonged sleep-onset latency and more stage 2 sleep were also detected after previous computer game consumption. No effects on rapid eye movement sleep were observed. Television viewing reduced sleep efficiency significantly but did not affect sleep patterns. The results suggest that television and computer game exposure affect children's sleep and deteriorate verbal cognitive performance, which supports the hypothesis of the negative influence of media consumption on children's sleep, learning, and memory.
Does widowhood affect memory performance of older persons?
Aartsen, Marja J; Van Tilburg, Theo; Smits, Carolien H M; Comijs, Hannie C; Knipscheer, Kees C P M
2005-02-01
The loss of a spouse has been found to have a negative effect on physical and mental health and leads to increased mortality. Whether conjugal bereavement also affects memory functioning has largely been unexamined. The present study investigates the effect of widowhood on memory functioning in older persons. The sample consisted of 474 married women and 690 married men aged 60-85 years in 1992, followed up in 1995 and 1998. During the study 135 (28%) of the women and 69 (10%) of the men lost their spouse. Linear regression analysis was used to examine whether widowed men and women differed from those who had not been widowed in rate of memory change over 6 years. Cross-domain latent-change models were subsequently used to evaluate the extent to which changes in memory are related to changes in other domains of functioning that may be affected by widowhood. Older adults who lost a spouse during follow-up showed a greater decline in memory over 6 years than those who remained married. A higher level of depressive symptoms at baseline was related to lower levels of memory functioning and a greater decline. Memory decline was unrelated to changes in depressive symptoms and physical health. Loss of the spouse is related to a greater decline in memory in older adults. The absence of an association with physical functioning and the weak association with mental functioning suggest that losing a spouse has an independent effect on memory functioning.
Evans, Simon; Dowell, Nicholas G; Tabet, Naji; King, Sarah L; Hutton, Samuel B; Rusted, Jennifer M
2017-02-01
The APOE e4 allele has been linked to poorer cognitive aging and enhanced dementia risk. Previous imaging studies have used subsequent memory paradigms to probe hippocampal function in e4 carriers across the age range, and evidence suggests a pattern of hippocampal overactivation in young adult e4 carriers. In this study, we employed a word-based subsequent memory task under fMRI; pupillometry data were also acquired as an index of cognitive effort. Participants (26 non-e4 carriers and 28 e4 carriers) performed an incidental encoding task (presented as word categorization), followed by a surprise old/new recognition task after a 40 minute delay. In e4 carriers only, subsequently remembered words were linked to increased hippocampal activity. Across all participants, increased pupil diameter differentiated subsequently remembered from forgotten words, and neural activity covaried with pupil diameter in cuneus and precuneus. These effects were weaker in e4 carriers, and e4 carriers did not show greater pupil diameter to remembered words. In the recognition phase, genotype status also modulated hippocampal activity: here, however, e4 carriers failed to show the conventional pattern of greater hippocampal activity to novel words. Overall, neural activity changes were unstable in e4 carriers, failed to respond to novelty, and did not link strongly to cognitive effort, as indexed by pupil diameter. This provides further evidence of abnormal hippocampal recruitment in young adult e4 carriers, manifesting as both up and downregulation of neural activity, in the absence of behavioral performance differences.
Effects of aging on neural connectivity underlying selective memory for emotional scenes
Waring, Jill D.; Addis, Donna Rose; Kensinger, Elizabeth A.
2012-01-01
Older adults show age-related reductions in memory for neutral items within complex visual scenes, but just like young adults, older adults exhibit a memory advantage for emotional items within scenes compared with the background scene information. The present study examined young and older adults’ encoding-stage effective connectivity for selective memory of emotional items versus memory for both the emotional item and its background. In a functional magnetic resonance imaging (fMRI) study, participants viewed scenes containing either positive or negative items within neutral backgrounds. Outside the scanner, participants completed a memory test for items and backgrounds. Irrespective of scene content being emotionally positive or negative, older adults had stronger positive connections among frontal regions and from frontal regions to medial temporal lobe structures than did young adults, especially when items and backgrounds were subsequently remembered. These results suggest there are differences between young and older adults’ connectivity accompanying the encoding of emotional scenes. Older adults may require more frontal connectivity to encode all elements of a scene rather than just encoding the emotional item. PMID:22542836
Effects of aging on neural connectivity underlying selective memory for emotional scenes.
Waring, Jill D; Addis, Donna Rose; Kensinger, Elizabeth A
2013-02-01
Older adults show age-related reductions in memory for neutral items within complex visual scenes, but just like young adults, older adults exhibit a memory advantage for emotional items within scenes compared with the background scene information. The present study examined young and older adults' encoding-stage effective connectivity for selective memory of emotional items versus memory for both the emotional item and its background. In a functional magnetic resonance imaging (fMRI) study, participants viewed scenes containing either positive or negative items within neutral backgrounds. Outside the scanner, participants completed a memory test for items and backgrounds. Irrespective of scene content being emotionally positive or negative, older adults had stronger positive connections among frontal regions and from frontal regions to medial temporal lobe structures than did young adults, especially when items and backgrounds were subsequently remembered. These results suggest there are differences between young and older adults' connectivity accompanying the encoding of emotional scenes. Older adults may require more frontal connectivity to encode all elements of a scene rather than just encoding the emotional item. Published by Elsevier Inc.
Inductive reasoning and implicit memory: evidence from intact and impaired memory systems.
Girelli, Luisa; Semenza, Carlo; Delazer, Margarete
2004-01-01
In this study, we modified a classic problem solving task, number series completion, in order to explore the contribution of implicit memory to inductive reasoning. Participants were required to complete number series sharing the same underlying algorithm (e.g., +2), differing in both constituent elements (e.g., 2468 versus 57911) and correct answers (e.g., 10 versus 13). In Experiment 1, reliable priming effects emerged, whether primes and targets were separated by four or ten fillers. Experiment 2 provided direct evidence that the observed facilitation arises at central stages of problem solving, namely the identification of the algorithm and its subsequent extrapolation. The observation of analogous priming effects in a severely amnesic patient strongly supports the hypothesis that the facilitation in number series completion was largely determined by implicit memory processes. These findings demonstrate that the influence of implicit processes extends to higher level cognitive domain such as induction reasoning.
Stillbirth and stigma: the spoiling and repair of multiple social identities.
Brierley-Jones, Lyn; Crawley, Rosalind; Lomax, Samantha; Ayers, Susan
This study investigated mothers' experiences surrounding stillbirth in the United Kingdom, their memory making and sharing opportunities, and the effect these opportunities had on them. Qualitative data were generated from free text responses to open-ended questions. Thematic content analysis revealed that "stigma" was experienced by most women and Goffman's (1963) work on stigma was subsequently used as an analytical framework. Results suggest that stillbirth can spoil the identities of "patient," "mother," and "full citizen." Stigma was reported as arising from interactions with professionals, family, friends, work colleagues, and even casual acquaintances. Stillbirth produces common learning experiences often requiring "identity work" (Murphy, 2012). Memory making and sharing may be important in this work and further research is needed. Stigma can reduce the memory sharing opportunities for women after stillbirth and this may explain some of the differential mental health effects of memory making after stillbirth that is documented in the literature.
Emotional discussions reduce memory recall.
Soleti, Emanuela; Wright, Daniel B; Curci, Antonietta
2017-05-01
People often discuss events they have seen and these discussions can influence later recollections. We investigated the effects of factual, emotional, and free retelling discussion on memory recollections of individuals who have witnessed an event. Participants were shown a video, made an initial individual recall, participated in one of the three retelling conditions (emotional versus factual versus free) or a control condition, and then recalled the event individually again. Participants in the factual and free retelling conditions reported more items not previously recalled than participants in the control condition did, while the emotional condition did not show the same advantage. Participants in all three retelling conditions failed to report more previously recalled items as compared with the control condition. Finally, a memory conformity effect was observed for all three retelling conditions. These findings suggest that eyewitnesses' discussions may influence the accuracy of subsequent memory reports, especially when these discussions are focused on emotional details and thoughts.
ERIC Educational Resources Information Center
Reder, Lynne M.; Park, Heekyeong; Kieffaber, Paul D.
2009-01-01
There is a popular hypothesis that performance on implicit and explicit memory tasks reflects 2 distinct memory systems. Explicit memory is said to store those experiences that can be consciously recollected, and implicit memory is said to store experiences and affect subsequent behavior but to be unavailable to conscious awareness. Although this…
Conserved region C functions to regulate PD-1 expression and subsequent CD8 T cell memory1
Bally, Alexander P. R.; Tang, Yan; Lee, Joshua T.; Barwick, Benjamin G.; Martinez, Ryan; Evavold, Brian D.; Boss, Jeremy M.
2016-01-01
Expression of programmed death 1 (PD-1) on CD8 T cells promotes T cell exhaustion during chronic antigen exposure. During acute infections, PD-1 is transiently expressed and has the potential to modulate CD8 T cell memory formation. Conserved Region C (CR-C), a promoter proximal cis-regulatory element that is critical to PD-1 expression in vitro, responds to NFATc1, FoxO1, and/or NF-κB signaling pathways. Here, a CR-C knockout mouse (CRC−) was established to determine its role on PD-1 expression and corresponding effects on T cell function in vivo. Deletion of CR-C decreased PD-1 expression on CD4 T cells and antigen-specific CD8 T cells during acute and chronic lymphocytic choriomeningitis virus (LCMV) challenges, but did not affect the ability to clear an infection. Following acute LCMV infection, memory CD8 T cells in the CRC− mouse were formed in greater numbers, were more functional, and were more effective at responding to a melanoma tumor than wild-type memory cells. These data implicate a critical role for CR-C in governing PD-1 expression, and a subsequent role in guiding CD8 T cell differentiation. The data suggest the possibility that titrating PD-1 expression during CD8 T cell activation could have important ramifications in vaccine development and clinical care. PMID:27895178
Rugg, Michael D.
2016-01-01
Memory reactivation—the reinstatement of processes and representations engaged when an event is initially experienced—is believed to play an important role in strengthening and updating episodic memory. The present study examines how memory reactivation during a potentially interfering event influences memory for a previously experienced event. Participants underwent fMRI during the encoding phase of an AB/AC interference task in which some words were presented twice in association with two different encoding tasks (AB and AC trials) and other words were presented once (DE trials). The later memory test required retrieval of the encoding tasks associated with each of the study words. Retroactive interference was evident for the AB encoding task and was particularly strong when the AC encoding task was remembered rather than forgotten. We used multivariate classification and pattern similarity analysis (PSA) to measure reactivation of the AB encoding task during AC trials. The results demonstrated that reactivation of generic task information measured with multivariate classification predicted subsequent memory for the AB encoding task regardless of whether interference was strong and weak (trials for which the AC encoding task was remembered or forgotten, respectively). In contrast, reactivation of neural patterns idiosyncratic to a given AB trial measured with PSA only predicted memory when the strength of interference was low. These results suggest that reactivation of features of an initial experience shared across numerous events in the same category, but not features idiosyncratic to a particular event, are important in resisting retroactive interference caused by new learning. SIGNIFICANCE STATEMENT Reactivating a previously encoded memory is believed to provide an opportunity to strengthen the memory, but also to return the memory to a labile state, making it susceptible to interference. However, there is debate as to how memory reactivation elicited by a potentially interfering event influences subsequent retrieval of the memory. The findings of the current study indicate that reactivating features idiosyncratic to a particular experience during interference only influences subsequent memory when interference is relatively weak. Critically, reactivation of generic contextual information predicts subsequent source memory when retroactive interference is either strong and weak. The results indicate that reactivation of generic information about a prior episode mitigates forgetting due to retroactive interference. PMID:27076433
Neuroimaging analysis of an anesthetic gas that blocks human emotional memory.
Alkire, Michael T; Gruver, Robin; Miller, Jason; McReynolds, Jayme R; Hahn, Emily L; Cahill, Larry
2008-02-05
It is hypothesized that emotional arousal modulates long-term memory consolidation through the amygdala. Gaseous anesthetic agents are among the most potent drugs that cause temporary amnesia, yet the effects of inhalational anesthesia on human emotional memory processing remain unknown. To study this, two experiments were performed with the commonly used inhalational anesthetic sevoflurane. In experiment 1, volunteers responded to a series of emotional and neutral slides while under various subanesthetic doses of sevoflurane or placebo (no anesthesia). One week later, a mnemonic boost for emotionally arousing stimuli was evident in the placebo, 0.1%, and 0.2% sevoflurane groups, as measured with a recognition test. However, the mnemonic boost was absent in subjects who received 0.25% sevoflurane. Subsequently, in experiment 2, glucose PET assessed brain-state-related activity of subjects exposed to 0.25% sevoflurane. Structural equation modeling of the PET data revealed that 0.25% sevoflurane suppressed amygdala to hippocampal effective connectivity. The behavioral results show that 0.25% sevoflurane blocks emotional memory, and connectivity results demonstrate that this dose of sevoflurane suppresses the effective influence of the amygdala. Collectively, the findings support the hypothesis that the amygdala mediates memory modulation by demonstrating that suppressed amygdala effectiveness equates with a loss of emotional memory.
Sundar, Raghav Prashant; Becker, Mark W.; Bello, Nora M.; Bix, Laura
2012-01-01
Adverse drug events (ADEs) are a significant problem in health care. While effective warnings have the potential to reduce the prevalence of ADEs, little is known about how patients access and use prescription labeling. We investigated the effectiveness of prescription warning labels (PWLs, small, colorful stickers applied at the pharmacy) in conveying warning information to two groups of patients (young adults and those 50+). We evaluated the early stages of information processing by tracking eye movements while participants interacted with prescription vials that had PWLs affixed to them. We later tested participants’ recognition memory for the PWLs. During viewing, participants often failed to attend to the PWLs; this effect was more pronounced for older than younger participants. Older participants also performed worse on the subsequent memory test. However, when memory performance was conditionalized on whether or not the participant had fixated the PWL, these age-related differences in memory were no longer significant, suggesting that the difference in memory performance between groups was attributable to differences in attention rather than differences in memory encoding or recall. This is important because older adults are recognized to be at greater risk for ADEs. These data provide a compelling case that understanding consumers’ attentive behavior is crucial to developing an effective labeling standard for prescription drugs. PMID:22719955
Effects of fluvalinate on honey bee learning, memory, responsiveness to sucrose, and survival.
Frost, Elisabeth H; Shutler, Dave; Hillier, Neil Kirk
2013-08-01
Contaminants can affect organisms' behaviour and, as a consequence, survival. Tau-fluvalinate (hereafter fluvalinate) is the active ingredient in a pesticide commonly used in North America to control Varroa destructor mites in honey bee (Apis mellifera) colonies. Fluvalinate's effects on honey bees are not well known. Honey bee cognitive and neural function can be assessed using the proboscis extension reflex (PER), which applies Pavlovian conditioning techniques. This study used PER to evaluate effects of fluvalinate on honey bee acquisition learning, (long-term) memory recall, responsiveness to sucrose, and mortality. We also evaluated how exclusion criteria for honey bees that did not exhibit PER during training and memory trials affected interpretation of results. Fluvalinate was administered both orally and dermally at high and low doses to mimic routes by which honey bees are exposed. We found negative effects of fluvalinate on honey bee learning, memory, responsiveness to sucrose, and survival, especially in high oral doses. We also found significant consequences to interpretation of results using different exclusion criteria. For example, almost 50% of individuals that failed to show evidence of learning subsequently showed evidence of memory. The latter results have important implications regarding traditional assessment of PER-based learning and memory; the former results suggest that evaluation of honey bee exposure to fluvalinate and attendant consequences warrants further investigation.
Neuroimaging analysis of an anesthetic gas that blocks human emotional memory
Alkire, Michael T.; Gruver, Robin; Miller, Jason; McReynolds, Jayme R.; Hahn, Emily L.; Cahill, Larry
2008-01-01
It is hypothesized that emotional arousal modulates long-term memory consolidation through the amygdala. Gaseous anesthetic agents are among the most potent drugs that cause temporary amnesia, yet the effects of inhalational anesthesia on human emotional memory processing remain unknown. To study this, two experiments were performed with the commonly used inhalational anesthetic sevoflurane. In experiment 1, volunteers responded to a series of emotional and neutral slides while under various subanesthetic doses of sevoflurane or placebo (no anesthesia). One week later, a mnemonic boost for emotionally arousing stimuli was evident in the placebo, 0.1%, and 0.2% sevoflurane groups, as measured with a recognition test. However, the mnemonic boost was absent in subjects who received 0.25% sevoflurane. Subsequently, in experiment 2, glucose PET assessed brain-state-related activity of subjects exposed to 0.25% sevoflurane. Structural equation modeling of the PET data revealed that 0.25% sevoflurane suppressed amygdala to hippocampal effective connectivity. The behavioral results show that 0.25% sevoflurane blocks emotional memory, and connectivity results demonstrate that this dose of sevoflurane suppresses the effective influence of the amygdala. Collectively, the findings support the hypothesis that the amygdala mediates memory modulation by demonstrating that suppressed amygdala effectiveness equates with a loss of emotional memory. PMID:18227504
How "implicit" are implicit color effects in memory?
Zimmer, Hubert D; Steiner, Astrid; Ecker, Ullrich K H
2002-01-01
Processing colored pictures of objects results in a preference to choose the former color for a specific object in a subsequent color choice test (Wippich & Mecklenbräuker, 1998). We tested whether this implicit memory effect is independent of performances in episodic color recollection (recognition). In the study phase of Experiment 1, the color of line drawings was either named or its appropriateness was judged. We found only weak implicit memory effects for categorical color information. In Experiment 2, silhouettes were colored by subjects during the study phase. Performances in both the implicit and the explicit test were good. Selections of "old" colors in the implicit test, though, were almost completely confined to items for which the color was also remembered explicitly. In Experiment 3, we applied the opposition technique in order to check whether we could find any implicit effects regarding items for which no explicit color recollection was possible. This was not the case. We therefore draw the conclusion that implicit color preference effects are not independent of explicit recollection, and that they are probably based on the same episodic memory traces that are used in explicit tests.
McDonough, Ian M; Bui, Dung C; Friedman, Michael C; Castel, Alan D
2015-10-01
The perceived value of information can influence one's motivation to successfully remember that information. This study investigated how information value can affect memory search and evaluation processes (i.e., retrieval monitoring). In Experiment 1, participants studied unrelated words associated with low, medium, or high values. Subsequent memory tests required participants to selectively monitor retrieval for different values. False memory effects were smaller when searching memory for high-value than low-value words, suggesting that people more effectively monitored more important information. In Experiment 2, participants studied semantically-related words, and the need for retrieval monitoring was reduced at test by using inclusion instructions (i.e., endorsement of any word related to the studied words) compared with standard instructions. Inclusion instructions led to increases in false recognition for low-value, but not for high-value words, suggesting that under standard-instruction conditions retrieval monitoring was less likely to occur for important information. Experiment 3 showed that words retrieved with lower confidence were associated with more effective retrieval monitoring, suggesting that the quality of the retrieved memory influenced the degree and effectiveness of monitoring processes. Ironically, unless encouraged to do so, people were less likely to carefully monitor important information, even though people want to remember important memories most accurately. Copyright © 2015 Elsevier B.V. All rights reserved.
Shing, Yee Lee; Brehmer, Yvonne; Heekeren, Hauke R; Bäckman, Lars; Lindenberger, Ulman
2016-08-01
The two-component framework of episodic memory (EM) development posits that the contributions of medial temporal lobe (MTL) and prefrontal cortex (PFC) to successful encoding differ across the lifespan. To test the framework's hypotheses, we compared subsequent memory effects (SME) of 10-12 year-old children, younger adults, and older adults using functional magnetic resonance imaging (fMRI). Memory was probed by cued recall, and SME were defined as regional activation differences during encoding between subsequently correctly recalled versus omitted items. In MTL areas, children's SME did not differ in magnitude from those of younger and older adults. In contrast, children's SME in PFC were weaker than the corresponding SME in younger and older adults, in line with the hypothesis that PFC contributes less to successful encoding in childhood. Differences in SME between younger and older adults were negligible. The present results suggest that, among individuals with high memory functioning, the neural circuitry contributing to successful episodic encoding is reorganized from middle childhood to adulthood. Successful episodic encoding in later adulthood, however, is characterized by the ability to maintain the activation patterns that emerged in young adulthood. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Medial prefrontal cortex supports source memory accuracy for self-referenced items.
Leshikar, Eric D; Duarte, Audrey
2012-01-01
Previous behavioral work suggests that processing information in relation to the self enhances subsequent item recognition. Neuroimaging evidence further suggests that regions along the cortical midline, particularly those of the medial prefrontal cortex (PFC), underlie this benefit. There has been little work to date, however, on the effects of self-referential encoding on source memory accuracy or whether the medial PFC might contribute to source memory for self-referenced materials. In the current study, we used fMRI to measure neural activity while participants studied and subsequently retrieved pictures of common objects superimposed on one of two background scenes (sources) under either self-reference or self-external encoding instructions. Both item recognition and source recognition were better for objects encoded self-referentially than self-externally. Neural activity predictive of source accuracy was observed in the medial PFC (Brodmann area 10) at the time of study for self-referentially but not self-externally encoded objects. The results of this experiment suggest that processing information in relation to the self leads to a mnemonic benefit for source level features, and that activity in the medial PFC contributes to this source memory benefit. This evidence expands the purported role that the medial PFC plays in self-referencing.
Kong, Tianzhu; He, Yini; Auerbach, Randy P.; McWhinnie, Chad M.; Xiao, Jing
2015-01-01
Objective In this study, we examined the mediator effects of overgeneral autobiographical memory (OGM) on the relationship between rumination and depression in 323 Chinese university students. Method 323 undergraduates completed the questionnaires measuring OGM (Autobiographical Memory Test), rumination (Ruminative Response Scale) and depression (Center for Epidemiologic Studies Depression Scale). Results Results using structural equation modeling showed that OGM partially-mediated the relationship between rumination and depression (χ2 = 88.61, p < .01; RMSEA = .051; SRMR = .040; and CFI = .91). Bootstrap methods were used to assess the magnitude of the indirect effects. The results of the bootstrap estimation procedure and subsequent analyses indicated that the indirect effects of OGM on the relationship between rumination and depressive symptoms were significant. Conclusion The results indicated that rumination and depression were partially mediated by OGM. PMID:25977594
Guida, Alessandro; Gras, Doriane; Noel, Yvonnick; Le Bohec, Olivier; Quaireau, Christophe; Nicolas, Serge
2013-05-01
In this study, a personalization method (Guida, Tardieu, & Nicolas, European Journal of Cognitive Psychology, 21: 862-896 2009) was applied to a free-recall task. Fifteen pairs of words, composed of an object and a location, were presented to 93 participants, who had to mentally associate each pair and subsequently recall the objects. A 30-s delay was introduced on half of the trials, the presentation rate was manipulated (5 or 10 s per item), and verbal and visuospatial working memory tests were administered to test for their effects on the serial curve. Two groups were constituted: a personalized group, for whom the locations were well-known places on their university campus, and a nonpersonalized group, for whom the locations did not refer to known places. Since personalization putatively operationalizes long-term working memory (Ericsson & Kintsch, Psychological Review, 102: 211-245 1995)-namely, the capacity to store information reliably and rapidly in long-term memory-and if we take a dual-store approach to memory, the personalization advantage would be expected to be greater for pre-recency than for recency items. Overall, the results were compatible with long-term working memory theory. They contribute to validating the personalization method as a methodology to characterize the contribution of long-term memory storage to performance in working memory tasks.
Soleman, Remi S; Kreukels, Baudewijntje P C; Veltman, Dick J; Cohen-Kettenis, Peggy T; Hompes, Peter G A; Drent, Madeleine L; Lambalk, Cornelis B
2016-05-01
To study effects of overexposure to androgens and subsequent antiandrogenic treatment on brain activity during working memory processes in women with polycystic ovary syndrome (PCOS). In this longitudinal study, working memory function was evaluated with the use of functional magnetic resonance imaging (MRI) in women with PCOS before and after antiandrogenic treatment. Department of reproductive medicine, university medical center. Fourteen women with PCOS and with hyperandrogenism and 20 healthy control women without any features of PCOS or other hormonal disorders. Antiandrogenic hormone treatment. Functional MRI response during a working memory task. At baseline women with PCOS showed more activation than the control group within the right superior parietal lobe and the inferior parietal lobe during task (all memory conditions). Task performance (speed and accuracy) did not differ between the groups. After antiandrogenic treatment the difference in overall brain activity between the groups disappeared and accuracy in the high memory load condition of the working memory task increased in women with PCOS. Women with PCOS may need additional neural resources during a working memory task compared with women without PCOS, suggesting less efficient executive functioning. This inefficiency may have effects on daily life functioning of women with PCOS. Antiandrogenic treatment appears to have a beneficial effect on this area of cognitive functioning. NTR2493. Copyright © 2016. Published by Elsevier Inc.
Effects of grasp compatibility on long-term memory for objects.
Canits, Ivonne; Pecher, Diane; Zeelenberg, René
2018-01-01
Previous studies have shown action potentiation during conceptual processing of manipulable objects. In four experiments, we investigated whether these motor actions also play a role in long-term memory. Participants categorized objects that afforded either a power grasp or a precision grasp as natural or artifact by grasping cylinders with either a power grasp or a precision grasp. In all experiments, responses were faster when the affordance of the object was compatible with the type of grasp response. However, subsequent free recall and recognition memory tasks revealed no better memory for object pictures and object names for which the grasp affordance was compatible with the grasp response. The present results therefore do not support the hypothesis that motor actions play a role in long-term memory. Copyright © 2017 Elsevier B.V. All rights reserved.
Audiovisual semantic congruency during encoding enhances memory performance.
Heikkilä, Jenni; Alho, Kimmo; Hyvönen, Heidi; Tiippana, Kaisa
2015-01-01
Studies of memory and learning have usually focused on a single sensory modality, although human perception is multisensory in nature. In the present study, we investigated the effects of audiovisual encoding on later unisensory recognition memory performance. The participants were to memorize auditory or visual stimuli (sounds, pictures, spoken words, or written words), each of which co-occurred with either a semantically congruent stimulus, incongruent stimulus, or a neutral (non-semantic noise) stimulus in the other modality during encoding. Subsequent memory performance was overall better when the stimulus to be memorized was initially accompanied by a semantically congruent stimulus in the other modality than when it was accompanied by a neutral stimulus. These results suggest that semantically congruent multisensory experiences enhance encoding of both nonverbal and verbal materials, resulting in an improvement in their later recognition memory.
Nitrogen narcosis and tactile shape memory in low visibility.
van Wijk, Charles H; Meintjes, W A J
2014-01-01
Commercial diving often occurs in low visibility, where divers are reliant on their tactile senses. This study examined the effect of nitrogen narcosis on tactile memory for shapes as well as the influence of psychological and biographical factors on this relationship. This crossover study tested 139 commercial divers in a dry hyperbaric chamber at 101.325 and 607.95 kPa (1 and 6 atmospheres absolute/atm abs). Divers memorized shapes while blindfolded, using their tactile senses only. Delayed recall was measured at the surface after each dive. Psychological and biographical data were also collected. A significant effect of hyperbaric pressure on tactile memory was demonstrated, and a further effect of sequence of testing found. Thus, divers' delayed shape recall deteriorated by 8% after learning material at depth, compared to learning on the surface. There were also significant but small effects of psychological and biographical markers on tactile memory performance, with lower trait anxiety associated with better recall, and lower education associated with poorer recall. The findings emphasize the importance of utilizing other forms of recording of events or objects at depth, particularly in conditions of low visibility during deeper diving, to aid memory encoding and subsequent recall at the surface.
Characterizing the role of the hippocampus during episodic simulation and encoding.
Thakral, Preston P; Benoit, Roland G; Schacter, Daniel L
2017-12-01
The hippocampus has been consistently associated with episodic simulation (i.e., the mental construction of a possible future episode). In a recent study, we identified an anterior-posterior temporal dissociation within the hippocampus during simulation. Specifically, transient simulation-related activity occurred in relatively posterior portions of the hippocampus and sustained activity occurred in anterior portions. In line with previous theoretical proposals of hippocampal function during simulation, the posterior hippocampal activity was interpreted as reflecting a transient retrieval process for the episodic details necessary to construct an episode. In contrast, the sustained anterior hippocampal activity was interpreted as reflecting the continual recruitment of encoding and/or relational processing associated with a simulation. In the present study, we provide a direct test of these interpretations by conducting a subsequent memory analysis of our previously published data to assess whether successful encoding during episodic simulation is associated with the anterior hippocampus. Analyses revealed a subsequent memory effect (i.e., later remembered > later forgotten simulations) in the anterior hippocampus. The subsequent memory effect was transient and not sustained. Taken together, the current findings provide further support for a component process model of hippocampal function during simulation. That is, unique regions of the hippocampus support dissociable processes during simulation, which include the transient retrieval of episodic information, the sustained binding of such information into a coherent episode, and the transient encoding of that episode for later retrieval. © 2017 Wiley Periodicals, Inc.
Neural Conflict–Control Mechanisms Improve Memory for Target Stimuli
Krebs, Ruth M.; Boehler, Carsten N.; De Belder, Maya; Egner, Tobias
2015-01-01
According to conflict-monitoring models, conflict serves as an internal signal for reinforcing top-down attention to task-relevant information. While evidence based on measures of ongoing task performance supports this idea, implications for long-term consequences, that is, memory, have not been tested yet. Here, we evaluated the prediction that conflict-triggered attentional enhancement of target-stimulus processing should be associated with superior subsequent memory for those stimuli. By combining functional magnetic resonance imaging (fMRI) with a novel variant of a face-word Stroop task that employed trial-unique face stimuli as targets, we were able to assess subsequent (incidental) memory for target faces as a function of whether a given face had previously been accompanied by congruent, neutral, or incongruent (conflicting) distracters. In line with our predictions, incongruent distracters not only induced behavioral conflict, but also gave rise to enhanced memory for target faces. Moreover, conflict-triggered neural activity in prefrontal and parietal regions was predictive of subsequent retrieval success, and displayed conflict-enhanced functional coupling with medial-temporal lobe regions. These data provide support for the proposal that conflict evokes enhanced top-down attention to task-relevant stimuli, thereby promoting their encoding into long-term memory. Our findings thus delineate the neural mechanisms of a novel link between cognitive control and memory. PMID:24108799
Using memories to motivate future behaviour: an experimental exercise intervention.
Biondolillo, Mathew J; Pillemer, David B
2015-01-01
This study tested a novel memory-based experimental intervention to increase exercise activity. Undergraduate students completed a two-part online survey ostensibly regarding college activity choices. At Time 1, they completed questionnaires that included assessments of exercise-related attitudes, motivation and self-reported behaviours. Next, they described a memory of a positive or negative experience that would increase their motivation to exercise; students in a control condition did not receive a memory prompt. Finally, they rated their intentions to exercise in the future. Eight days following Time 1, students received a Time 2 survey that included an assessment of their self-reported exercise during the prior week. Students in the positive memory condition reported higher levels of subsequent exercise than those in the control condition; students in the negative memory condition reported intermediate levels of exercise. Activating a positive motivational memory had a significant effect on students' self-reported exercise activity even after controlling for prior attitudes, motivation and exercise activity.
Xie, Weizhen; Zhang, Weiwei
2017-09-01
Negative emotion sometimes enhances memory (higher accuracy and/or vividness, e.g., flashbulb memories). The present study investigates whether it is the qualitative (precision) or quantitative (the probability of successful retrieval) aspect of memory that drives these effects. In a visual long-term memory task, observers memorized colors (Experiment 1a) or orientations (Experiment 1b) of sequentially presented everyday objects under negative, neutral, or positive emotions induced with International Affective Picture System images. In a subsequent test phase, observers reconstructed objects' colors or orientations using the method of adjustment. We found that mnemonic precision was enhanced under the negative condition relative to the neutral and positive conditions. In contrast, the probability of successful retrieval was comparable across the emotion conditions. Furthermore, the boost in memory precision was associated with elevated subjective feelings of remembering (vividness and confidence) and metacognitive sensitivity in Experiment 2. Altogether, these findings suggest a novel precision-based account for emotional memories. Copyright © 2017 Elsevier B.V. All rights reserved.
Cairney, Scott A.; Lindsay, Shane; Sobczak, Justyna M.; Paller, Ken A.; Gaskell, M. Gareth
2016-01-01
Study Objectives: To investigate how the effects of targeted memory reactivation (TMR) are influenced by memory accuracy prior to sleep and the presence or absence of direct cue-memory associations. Methods: 30 participants associated each of 50 pictures with an unrelated word and then with a screen location in two separate tasks. During picture-location training, each picture was also presented with a semantically related sound. The sounds were therefore directly associated with the picture locations but indirectly associated with the words. During a subsequent nap, half of the sounds were replayed in slow wave sleep (SWS). The effect of TMR on memory for the picture locations (direct cue-memory associations) and picture-word pairs (indirect cue-memory associations) was then examined. Results: TMR reduced overall memory decay for recall of picture locations. Further analyses revealed a benefit of TMR for picture locations recalled with a low degree of accuracy prior to sleep, but not those recalled with a high degree of accuracy. The benefit of TMR for low accuracy memories was predicted by time spent in SWS. There was no benefit of TMR for memory of the picture-word pairs, irrespective of memory accuracy prior to sleep. Conclusions: TMR provides the greatest benefit to memories recalled with a low degree of accuracy prior to sleep. The memory benefits of TMR may also be contingent on direct cue-memory associations. Citation: Cairney SA, Lindsay S, Sobczak JM, Paller KA, Gaskell MG. The benefits of targeted memory reactivation for consolidation in sleep are contingent on memory accuracy and direct cue-memory associations. SLEEP 2016;39(5):1139–1150. PMID:26856905
Memory Effect Manifested by a Boson Peak in Metallic Glass.
Luo, P; Li, Y Z; Bai, H Y; Wen, P; Wang, W H
2016-04-29
We explore the correlation between a boson peak and structural relaxation in a typical metallic glass. Consistent with enthalpy recovery, a boson peak shows a memory effect in an aging-and-scan procedure. Single-step isothermal aging produces a monotonic decrease of enthalpy and boson peak intensity; for double-step isothermal aging, both enthalpy and boson peak intensity experience, coincidently, an incipient increase to a maximum and a subsequent decrease toward the equilibrium state. Our results indicate a direct link between slow structural relaxation and fast boson peak dynamics, which presents a profound understanding of the two dynamic behaviors in glass.
de Voogd, Lycia D; Klumpers, Floris; Fernández, Guillén; Hermans, Erno J
2017-01-01
Declarative memories of stressful events are less prone to forgetting than mundane events. Animal research has demonstrated that such stress effects on consolidation of hippocampal-dependent memories require the amygdala. In humans, it has been shown that during learning, increased amygdala-hippocampal interactions are related to more efficient memory encoding. Animal models predict that following learning, amygdala-hippocampal interactions are instrumental to strengthening the consolidation of such declarative memories. Whether this is the case in humans is unknown and remains to be empirically verified. To test this, we analyzed data from a sample of 120 healthy male participants who performed an incidental encoding task and subsequently underwent resting-state functional MRI in a stressful and a neutral context. Stress was assessed by measures of salivary cortisol, blood pressure, heart rate, and subjective ratings. Memory was tested afterwards outside of the scanner. Our data show that memory was stronger in the stress context compared to the neutral context and that stress-induced cortisol responses were associated with this memory enhancement. Interestingly, amygdala-hippocampal connectivity during post-encoding awake rest regardless of context (stress or neutral) was associated with the enhanced memory performance under stress. Thus, our findings are in line with a role for intrinsic functional connectivity during rest between the amygdala and the hippocampus in the state effects of stress on strengthening memory. Copyright © 2016 Elsevier Ltd. All rights reserved.
Guo, Chunyan; Zhu, Ying; Ding, Jinhong; Fan, Silu; Paller, Ken A
2004-02-12
Memory encoding can be studied by monitoring brain activity correlated with subsequent remembering. To understand brain potentials associated with encoding, we compared multiple factors known to affect encoding. Depth of processing was manipulated by requiring subjects to detect animal names (deep encoding) or boldface (shallow encoding) in a series of Chinese words. Recognition was more accurate with deep than shallow encoding, and for low- compared to high-frequency words. Potentials were generally more positive for subsequently recognized versus forgotten words; for deep compared to shallow processing; and, for remembered words only, for low- than for high-frequency words. Latency and topographic differences between these potentials suggested that several factors influence the effectiveness of encoding and can be distinguished using these methods, even with Chinese logographic symbols.
Spreng, R Nathan; Madore, Kevin P; Schacter, Daniel L
2018-05-01
Episodic simulation is an adaptive process that can support goal-directed activity and planning success. We investigated the neural architecture associated with the episodic simulation improvement to the likelihood of carrying out future actions by isolating the brain regions associated with this facilitation in a prospective memory paradigm. Participants performed a lexical decision task by making word/non-word judgments, with rarely occurring prospective memory target words requiring a pre-specified manual response. Prior to scanning, participants were given exposure to two lists of prospective memory targets: animals and tools. In a fully counterbalanced design, participants generated a rhyme to one target list and imagined their subsequent encounter (episodic simulation) with target words on the other list. Replicating prior behavioral work, episodic simulation improved subsequent prospective memory performance. Brain activation was assessed in a multivariate partial least squares analysis. Relative to lexical decision blocks with no prospective memory demand, sustained prospective memory replicated prior observations of frontal polar activation. Critically, maintaining the intention to respond to simulated targets, over and above rhyme targets, engaged middle frontal and angular gyri, and medial parietal and prefrontal cortices. Transient activity associated with prospective memory target hits revealed activation for simulated targets in medial prefrontal cortex, posterior cingulate, lateral temporal lobe and inferior parietal lobule. In contrast, rhyme target hits engaged more left lateralized dorsolateral prefrontal cortex and anterior insula. Episodic simulation, thus effectively shifts executive control strategy and boosts task performance. These results are consistent with a growing body of evidence implicating executive control and default network region interactions in adaptive, goal-directed behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sadeh, Talya; Maril, Anat; Goshen-Gottstein, Yonatan
2012-07-01
The subsequent-memory (SM) paradigm uncovers brain mechanisms that are associated with mnemonic activity during encoding by measuring participants' neural activity during encoding and classifying the encoding trials according to performance in the subsequent retrieval phase. The majority of these studies have converged on the notion that the mechanism supporting recognition is mediated by familiarity and recollection. The process of recollection is often assumed to be a recall-like process, implying that the active search for the memory trace is similar, if not identical, for recall and recognition. Here we challenge this assumption and hypothesize - based on previous findings obtained in our lab - that the recollective processes underlying recall and recognition might show dissociative patterns of encoding-related brain activity. To this end, our design controlled for familiarity, thereby focusing on contextual, recollective processes. We found evidence for dissociative neurocognitive encoding mechanisms supporting subsequent-recall and subsequent-recognition. Specifically, the contrast of subsequent-recognition versus subsequent-recall revealed activation in the Parahippocampal cortex (PHc) and the posterior hippocampus--regions associated with contextual processing. Implications of our findings and their relation to current cognitive models of recollection are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Takatsu-Coleman, André L; Zanin, Karina A; Patti, Camilla L; Zager, Adriano; Lopes-Silva, Leonardo B; Longo, Beatriz M; Tufik, Sergio; Andersen, Monica L; Frussa-Filho, Roberto
2013-10-01
While the effects of sleep deprivation (SD) on the acquisition and consolidation phases of memory have been extensively characterized, its effects on memory retrieval remain overlooked. SD alone is a stressor, and stress-activated glucocorticoids promote bimodal effects on memory. Because we have recently demonstrated that 72h SD impairs memory retrieval in the plus-maze discriminative avoidance task (PM-DAT) in mice, this study investigated whether shorter SD periods would facilitate retrieval. In Experiment I, the temporal forgetting curve of the PM-DAT was determined and an interval between training/testing in which retrieval was no longer present was used in all subsequent experiments. In Experiments II and III, retrieval performance and corticosterone concentration, respectively, were quantified in mice that were sleep deprived for 12 or 24h before testing. In Experiments IV and V, the effects of the corticosterone synthesis inhibitor metyrapone were evaluated on 12h SD-induced retrieval reinstatement and corticosterone concentration enhancement, respectively. Experiment VI determined whether pre-test acute administration of exogenous corticosterone would mimic the facilitatory effects of 12h SD on retrieval. Thirty days after training, mice presented poor performance of the task; however, SD for 12h (but not for 24) before testing reinstated memory retrieval. This facilitatory effect was accompanied by increased corticosterone concentration, abolished by metyrapone, and mimicked by pre-test acute corticosterone administration. Collectively, short-term SD can facilitate memory retrieval by enhancing corticosterone secretion. This facilitatory effect is abolished by longer periods of SD. Copyright © 2013 Elsevier Ltd. All rights reserved.
The lasting memory enhancements of retrospective attention.
Reaves, Sarah; Strunk, Jonathan; Phillips, Shekinah; Verhaeghen, Paul; Duarte, Audrey
2016-07-01
Behavioral research has shown that spatial cues that orient attention toward task relevant items being maintained in visual short-term memory (VSTM) enhance item memory accuracy. However, it is unknown if these retrospective attentional cues ("retro-cues") enhance memory beyond typical short-term memory delays. It is also unknown whether retro-cues affect the spatial information associated with VSTM representations. Emerging evidence suggests that processes that affect short-term memory maintenance may also affect long-term memory (LTM) but little work has investigated the role of attention in LTM. In the current event-related potential (ERP) study, we investigated the duration of retrospective attention effects and the impact of retrospective attention manipulations on VSTM representations. Results revealed that retro-cueing improved both VSTM and LTM memory accuracy and that posterior maximal ERPs observed during VSTM maintenance predicted subsequent LTM performance. N2pc ERPs associated with attentional selection were attenuated by retro-cueing suggesting that retrospective attention may disrupt maintenance of spatial configural information in VSTM. Collectively, these findings suggest that retrospective attention can alter the structure of memory representations, which impacts memory performance beyond short-term memory delays. Copyright © 2016 Elsevier B.V. All rights reserved.
Political conservatism predicts asymmetries in emotional scene memory.
Mills, Mark; Gonzalez, Frank J; Giuseffi, Karl; Sievert, Benjamin; Smith, Kevin B; Hibbing, John R; Dodd, Michael D
2016-06-01
Variation in political ideology has been linked to differences in attention to and processing of emotional stimuli, with stronger responses to negative versus positive stimuli (negativity bias) the more politically conservative one is. As memory is enhanced by attention, such findings predict that memory for negative versus positive stimuli should similarly be enhanced the more conservative one is. The present study tests this prediction by having participants study 120 positive, negative, and neutral scenes in preparation for a subsequent memory test. On the memory test, the same 120 scenes were presented along with 120 new scenes and participants were to respond whether a scene was old or new. Results on the memory test showed that negative scenes were more likely to be remembered than positive scenes, though, this was true only for political conservatives. That is, a larger negativity bias was found the more conservative one was. The effect was sizeable, explaining 45% of the variance across subjects in the effect of emotion. These findings demonstrate that the relationship between political ideology and asymmetries in emotion processing extend to memory and, furthermore, suggest that exploring the extent to which subject variation in interactions among emotion, attention, and memory is predicted by conservatism may provide new insights into theories of political ideology. Published by Elsevier B.V.
Neural Correlates of the In-Group Memory Advantage on the Encoding and Recognition of Faces
Herzmann, Grit; Curran, Tim
2013-01-01
People have a memory advantage for faces that belong to the same group, for example, that attend the same university or have the same personality type. Faces from such in-group members are assumed to receive more attention during memory encoding and are therefore recognized more accurately. Here we use event-related potentials related to memory encoding and retrieval to investigate the neural correlates of the in-group memory advantage. Using the minimal group procedure, subjects were classified based on a bogus personality test as belonging to one of two personality types. While the electroencephalogram was recorded, subjects studied and recognized faces supposedly belonging to the subject’s own and the other personality type. Subjects recognized in-group faces more accurately than out-group faces but the effect size was small. Using the individual behavioral in-group memory advantage in multivariate analyses of covariance, we determined neural correlates of the in-group advantage. During memory encoding (300 to 1000 ms after stimulus onset), subjects with a high in-group memory advantage elicited more positive amplitudes for subsequently remembered in-group than out-group faces, showing that in-group faces received more attention and elicited more neural activity during initial encoding. Early during memory retrieval (300 to 500 ms), frontal brain areas were more activated for remembered in-group faces indicating an early detection of group membership. Surprisingly, the parietal old/new effect (600 to 900 ms) thought to indicate recollection processes differed between in-group and out-group faces independent from the behavioral in-group memory advantage. This finding suggests that group membership affects memory retrieval independent of memory performance. Comparisons with a previous study on the other-race effect, another memory phenomenon influenced by social classification of faces, suggested that the in-group memory advantage is dominated by top-down processing whereas the other-race effect is also influenced by extensive perceptual experience. PMID:24358226
Memory and event-related potentials for rapidly presented emotional pictures.
Versace, Francesco; Bradley, Margaret M; Lang, Peter J
2010-08-01
Dense array event-related potentials (ERPs) and memory performance were assessed following rapid serial visual presentation (RSVP) of emotional and neutral pictures. Despite the extremely brief presentation, emotionally arousing pictures prompted an enhanced negative voltage over occipital sensors, compared to neutral pictures, replicating previous encoding effects. Emotionally arousing pictures were also remembered better in a subsequent recognition test, with higher hit rates and better discrimination performance. ERPs measured during the recognition test showed both an early (250-350 ms) frontally distributed difference between hits and correct rejections, and a later (400-500 ms), more centrally distributed difference, consistent with effects of recognition on ERPs typically found using slower presentation rates. The data are consistent with the hypothesis that features of affective pictures pop out during rapid serial visual presentation, prompting better memory performance.
Mechanisms of mechanical strain memory in airway smooth muscle.
Kim, Hak Rim; Hai, Chi-Ming
2005-10-01
We evaluated the hypothesis that mechanical deformation of airway smooth muscle induces structural remodeling of airway smooth muscle cells, thereby modulating mechanical performance in subsequent contractions. This hypothesis implied that past experience of mechanical deformation was retained (or "memorized") as structural changes in airway smooth muscle cells, which modulated the cell's subsequent contractile responses. We termed this phenomenon mechanical strain memory. Preshortening has been found to induce attenuation of both force and isotonic shortening velocity in cholinergic receptor-activated airway smooth muscle. Rapid stretching of cholinergic receptor-activated airway smooth muscle from an initial length to a final length resulted in post-stretch force and myosin light chain phosphorylation that correlated significantly with initial length. Thus post-stretch muscle strips appeared to retain memory of the initial length prior to rapid stretch (mechanical strain memory). Cytoskeletal recruitment of actin- and integrin-binding proteins and Erk 1/2 MAPK appeared to be important mechanisms of mechanical strain memory. Sinusoidal length oscillation led to force attenuation during oscillation and in subsequent contractions in intact airway smooth muscle, and p38 MAPK appeared to be an important mechanism. In contrast, application of local mechanical strain to cultured airway smooth muscle cells induced local actin polymerization and cytoskeletal stiffening. It is conceivable that deep inspiration-induced bronchoprotection may be a manifestation of mechanical strain memory such that mechanical deformation from past breathing cycles modulated the mechanical performance of airway smooth muscle in subsequent cycles in a continuous and dynamic manner.
Rose, Nathan S; Craik, Fergus I M
2012-07-01
Recent theories suggest that performance on working memory (WM) tasks involves retrieval from long-term memory (LTM). To examine whether WM and LTM tests have common principles, Craik and Tulving's (1975) levels-of-processing paradigm, which is known to affect LTM, was administered as a WM task: Participants made uppercase, rhyme, or category-membership judgments about words, and immediate recall of the words was required after every 3 or 8 processing judgments. In Experiment 1, immediate recall did not demonstrate a levels-of-processing effect, but a subsequent LTM test (delayed recognition) of the same words did show a benefit of deeper processing. Experiment 2 showed that surprise immediate recall of 8-item lists did demonstrate a levels-of-processing effect, however. A processing account of the conditions in which levels-of-processing effects are and are not found in WM tasks was advanced, suggesting that the extent to which levels-of-processing effects are similar between WM and LTM tests largely depends on the amount of disruption to active maintenance processes. 2012 APA, all rights reserved
Parent, Marise B; Krebs-Kraft, Desiree L; Ryan, John P; Wilson, Jennifer S; Harenski, Carla; Hamann, Stephan
2011-04-01
Glucose enhances memory in a variety of species. In humans, glucose administration enhances episodic memory encoding, although little is known regarding the neural mechanisms underlying these effects. Here we examined whether elevating blood glucose would enhance functional MRI (fMRI) activation and connectivity in brain regions associated with episodic memory encoding and whether these effects would differ depending on the emotional valence of the material. We used a double-blind, within-participants, crossover design in which either glucose (50g) or a saccharin placebo were administered before scanning, on days approximately 1 week apart. We scanned healthy young male participants with fMRI as they viewed emotionally arousing negative pictures and emotionally neutral pictures, intermixed with baseline fixation. Free recall was tested at 5 min after scanning and again after 1 day. Glucose administration increased activation in brain regions associated with successful episodic memory encoding. Glucose also enhanced activation in regions whose activity was correlated with subsequent successful recall, including the hippocampus, prefrontal cortex, and other regions, and these effects differed for negative vs. neutral stimuli. Finally, glucose substantially increased functional connectivity between the hippocampus and amygdala and a network of regions previously implicated in successful episodic memory encoding. These findings fit with evidence from nonhuman animals indicating glucose modulates memory by selectively enhancing neural activity in brain regions engaged during memory tasks. Our results highlight the modulatory effects of glucose and the importance of examining both regional changes in activity and functional connectivity to fully characterize the effects of glucose on brain function and memory. Copyright © 2011 Elsevier Ltd. All rights reserved.
Acute aerobic exercise hastens emotional recovery from a subsequent stressor.
Bernstein, Emily E; McNally, Richard J
2017-06-01
Despite findings that regular exercise is broadly associated with emotional well-being, more basic research is needed to deepen our understanding of the exercise and emotion connection. This paper examines how acute aerobic exercise in particular influences subjective emotional recovery from a subsequent stressor. Potential mediators and moderators, including level of physical fitness, attentional control, and perseverative negative thinking were explored. All of the participants (n = 95) completed 3 laboratory visits, each including 1 of 3 activities (i.e., cycling, resting, stretching), tests of working memory and attentional control, and an experimental stressor. Self-reported rumination after the stressor and the experience of positive and negative emotions throughout the study were recorded. In this within-subjects paradigm, as expected, higher rumination in response to the stressor predicted more persistent negative emotion afterward; this effect was attenuated only by prior acute aerobic exercise, in this case, cycling, both 5 min and 15 min poststressor. This effect was unrelated to physical fitness or cognitive performance. Physical fitness level did predict greater attentional control and the capacity to update working memory. Acute aerobic exercise may facilitate subjective emotional recovery from a subsequent stressor and improve emotional flexibility. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Shifting Visual Perspective During Retrieval Shapes Autobiographical Memories
St Jacques, Peggy L.; Szpunar, Karl K.; Schacter, Daniel L.
2016-01-01
The dynamic and flexible nature of memories is evident in our ability to adopt multiple visual perspectives. Although autobiographical memories are typically encoded from the visual perspective of our own eyes they can be retrieved from the perspective of an observer looking at our self. Here, we examined the neural mechanisms of shifting visual perspective during long-term memory retrieval and its influence on online and subsequent memories using functional magnetic resonance imaging (fMRI). Participants generated specific autobiographical memories from the last five years and rated their visual perspective. In a separate fMRI session, they were asked to retrieve the memories across three repetitions while maintaining the same visual perspective as their initial rating or by shifting to an alternative perspective. Visual perspective shifting during autobiographical memory retrieval was supported by a linear decrease in neural recruitment across repetitions in the posterior parietal cortices. Additional analyses revealed that the precuneus, in particular, contributed to both online and subsequent changes in the phenomenology of memories. Our findings show that flexibly shifting egocentric perspective during autobiographical memory retrieval is supported by the precuneus, and suggest that this manipulation of mental imagery during retrieval has consequences for how memories are retrieved and later remembered. PMID:27989780
A causal contiguity effect that persists across time scales.
Kiliç, Asli; Criss, Amy H; Howard, Marc W
2013-01-01
The contiguity effect refers to the tendency to recall an item from nearby study positions of the just recalled item. Causal models of contiguity suggest that recalled items are used as probes, causing a change in the memory state for subsequent recall attempts. Noncausal models of the contiguity effect assume the memory state is unaffected by recall per se, relying instead on the correlation between the memory states at study and at test to drive contiguity. We examined the contiguity effect in a probed recall task in which the correlation between the study context and the test context was disrupted. After study of several lists of words, participants were given probe words in a random order and were instructed to recall a word from the same list as the probe. The results showed both short-term and long-term contiguity effects. Because study order and test order are uncorrelated, these contiguity effects require a causal contiguity mechanism that operates across time scales.
van Geldorp, Bonnie; Heringa, Sophie M; van den Berg, Esther; Olde Rikkert, Marcel G M; Biessels, Geert Jan; Kessels, Roy P C
2015-01-01
Recent studies indicate that in both normal and pathological aging working memory (WM) performance deteriorates, especially when associations have to be maintained. However, most studies typically do not assess the relationship between WM and episodic memory formation. In the present study, we examined WM and episodic memory formation in normal aging and in patients with early Alzheimer's disease (mild cognitive impairment, MCI; and Alzheimer's dementia, AD). In the first study, 26 young adults (mean age 29.6 years) were compared to 18 middle-aged adults (mean age 52.2 years) and 25 older adults (mean age 72.8 years). We used an associative delayed-match-to-sample WM task, which requires participants to maintain two pairs of faces and houses presented on a computer screen for short (3 s) or long (6 s) maintenance intervals. After the WM task, an unexpected subsequent associative memory task was administered (two-alternative forced choice). In the second study, 27 patients with AD and 19 patients with MCI were compared to 25 older controls, using the same paradigm as that in Experiment 1. Older adults performed worse than both middle-aged and young adults. No effect of delay was observed in the healthy adults, and pairs that were processed during long maintenance intervals were not better remembered in the subsequent memory task. In the MCI and AD patients, longer maintenance intervals hampered the task performance. Also, both patient groups performed significantly worse than controls on the episodic memory task as well as the associative WM task. Aging and AD present with a decline in WM binding, a finding that extends similar results in episodic memory. Longer delays in the WM task did not affect episodic memory formation. We conclude that WM deficits are found when WM capacity is exceeded, which may occur during associative processing.
Lines, Justin
2017-01-01
The context in which learning occurs is sufficient to reconsolidate stored memories and neuronal reactivation may be crucial to memory consolidation during sleep. The mechanisms of context-dependent and sleep-dependent memory (re)consolidation are unknown but involve the hippocampus. We simulated memory (re)consolidation using a connectionist model of the hippocampus that explicitly accounted for its dorsoventral organization and for CA1 proximodistal processing. Replicating human and rodent (re)consolidation studies yielded the following results. (1) Semantic overlap between memory items and extraneous learning was necessary to explain experimental data and depended crucially on the recurrent networks of dorsal but not ventral CA3. (2) Stimulus-free, sleep-induced internal reactivations of memory patterns produced heterogeneous recruitment of memory items and protected memories from subsequent interference. These simulations further suggested that the decrease in memory resilience when subjects were not allowed to sleep following learning was primarily due to extraneous learning. (3) Partial exposure to the learning context during simulated sleep (i.e., targeted memory reactivation) uniformly increased memory item reactivation and enhanced subsequent recall. Altogether, these results show that the dorsoventral and proximodistal organization of the hippocampus may be important components of the neural mechanisms for context-based and sleep-based memory (re)consolidations. PMID:28757864
Retrieval from Episodic Memory: Neural Mechanisms of Interference Resolution
ERIC Educational Resources Information Center
Wimber, Maria; Rutschmann, Roland Marcus; Greenlee, Mark W.; Bauml, Karl-Heinz
2009-01-01
Selectively retrieving a target memory among related memories requires some degree of inhibitory control over interfering and competing memories, a process assumed to be supported by inhibitory mechanisms. Evidence from behavioral studies suggests that such inhibitory control can lead to subsequent forgetting of the interfering information, a…
NASA Astrophysics Data System (ADS)
Petrovic, Z. Lj; Markovic, V. Lj; Pejovic, M. M.; Gocic, S. R.
2001-06-01
The memory effect, the phenomenon that some active species survive very long afterglow periods and affect subsequent breakdown, was observed more than 40 years ago. The effects have been observed even over periods of several hours. Attempts to explain the memory effect in nitrogen were mostly based on hypothetical metastables and on the A3Σ state. However, such explanations had to neglect some quenching processes which are known to be very effective under the conditions of the experiments. The explanation based on atoms remaining from the previous discharge and recombining on the cathode to produce initial electrons was shown to be fully consistent with all the experimental data for nitrogen including a wide range of pressures and the addition of oxygen impurities. The memory effect was also shown to be sensitive to the work function of the cathode material. Thus, an attempt was made to use the memory effect as a diagnostic tool to establish the data on the dominant loss of nitrogen atoms from the discharge which is recombination on the walls of the tube. However, a possible role of higher vibrational levels has not been fully addressed, mainly due to the shortage of data. On the other hand, the memory effect which was observed for rare gases cannot be explained on the basis of the standard data unless the presence of molecular impurities is invoked. Another open issue would be the role of charges accumulated on the glass surfaces and whether those may be released to the gas phase. The aim of this paper is to summarize the achievements of the model based on atom recombination and to point out how the breakdown model associated with the memory effect may be completed and how it may be applied in practical discharges.
Self-imagining enhances recognition memory in memory-impaired individuals with neurological damage.
Grilli, Matthew D; Glisky, Elizabeth L
2010-11-01
The ability to imagine an elaborative event from a personal perspective relies on several cognitive processes that may potentially enhance subsequent memory for the event, including visual imagery, semantic elaboration, emotional processing, and self-referential processing. In an effort to find a novel strategy for enhancing memory in memory-impaired individuals with neurological damage, we investigated the mnemonic benefit of a method we refer to as self-imagining-the imagining of an event from a realistic, personal perspective. Fourteen individuals with neurologically based memory deficits and 14 healthy control participants intentionally encoded neutral and emotional sentences under three instructions: structural-baseline processing, semantic processing, and self-imagining. Findings revealed a robust "self-imagination effect (SIE)," as self-imagination enhanced recognition memory relative to deep semantic elaboration in both memory-impaired individuals, F(1, 13) = 32.11, p < .001, η2 = .71; and healthy controls, F(1, 13) = 5.57, p < .05, η2 = .30. In addition, results indicated that mnemonic benefits of self-imagination were not limited by severity of the memory disorder nor were they related to self-reported vividness of visual imagery, semantic processing, or emotional content of the materials. The findings suggest that the SIE may depend on unique mnemonic mechanisms possibly related to self-referential processing and that imagining an event from a personal perspective makes that event particularly memorable even for those individuals with severe memory deficits. Self-imagining may thus provide an effective rehabilitation strategy for individuals with memory impairment.
Competition between items in working memory leads to forgetting.
Lewis-Peacock, Jarrod A; Norman, Kenneth A
2014-12-18
Switching attention from one thought to the next propels our mental lives forward. However, it is unclear how this thought-juggling affects our ability to remember these thoughts. Here we show that competition between the neural representations of pictures in working memory can impair subsequent recognition of those pictures. We use pattern classifiers to decode functional magnetic resonance imaging (fMRI) data from a retro-cueing task where participants juggle two pictures in working memory. Trial-by-trial fluctuations in neural dynamics are predictive of performance on a surprise recognition memory test: trials that elicit similar levels of classifier evidence for both pictures (indicating close competition) are associated with worse memory performance than trials where participants switch decisively from thinking about one picture to the other. This result is consistent with the non-monotonic plasticity hypothesis, which predicts that close competition can trigger weakening of memories that lose the competition, leading to subsequent forgetting.
Competition between items in working memory leads to forgetting
Lewis-Peacock, Jarrod A.; Norman, Kenneth A.
2014-01-01
Switching attention from one thought to the next propels our mental lives forward. However, it is unclear how this thought-juggling affects our ability to remember these thoughts. Here we show that competition between the neural representations of pictures in working memory can impair subsequent recognition of those pictures. We use pattern classifiers to decode functional magnetic resonance imaging (fMRI) data from a retro-cueing task where participants juggle two pictures in working memory. Trial-by-trial fluctuations in neural dynamics are predictive of performance on a surprise recognition memory test: trials that elicit similar levels of classifier evidence for both pictures (indicating close competition) are associated with worse memory performance than trials where participants switch decisively from thinking about one picture to the other. This result is consistent with the non-monotonic plasticity hypothesis, which predicts that close competition can trigger weakening of memories that lose the competition, leading to subsequent forgetting. PMID:25519874
When Do Objects Become Landmarks? A VR Study of the Effect of Task Relevance on Spatial Memory
Han, Xue; Byrne, Patrick; Kahana, Michael; Becker, Suzanna
2012-01-01
We investigated how objects come to serve as landmarks in spatial memory, and more specifically how they form part of an allocentric cognitive map. Participants performing a virtual driving task incidentally learned the layout of a virtual town and locations of objects in that town. They were subsequently tested on their spatial and recognition memory for the objects. To assess whether the objects were encoded allocentrically we examined pointing consistency across tested viewpoints. In three experiments, we found that spatial memory for objects at navigationally relevant locations was more consistent across tested viewpoints, particularly when participants had more limited experience of the environment. When participants’ attention was focused on the appearance of objects, the navigational relevance effect was eliminated, whereas when their attention was focused on objects’ locations, this effect was enhanced, supporting the hypothesis that when objects are processed in the service of navigation, rather than merely being viewed as objects, they engage qualitatively distinct attentional systems and are incorporated into an allocentric spatial representation. The results are consistent with evidence from the neuroimaging literature that when objects are relevant to navigation, they not only engage the ventral “object processing stream”, but also the dorsal stream and medial temporal lobe memory system classically associated with allocentric spatial memory. PMID:22586455
Negative effects of item repetition on source memory.
Kim, Kyungmi; Yi, Do-Joon; Raye, Carol L; Johnson, Marcia K
2012-08-01
In the present study, we explored how item repetition affects source memory for new item-feature associations (picture-location or picture-color). We presented line drawings varying numbers of times in Phase 1. In Phase 2, each drawing was presented once with a critical new feature. In Phase 3, we tested memory for the new source feature of each item from Phase 2. Experiments 1 and 2 demonstrated and replicated the negative effects of item repetition on incidental source memory. Prior item repetition also had a negative effect on source memory when different source dimensions were used in Phases 1 and 2 (Experiment 3) and when participants were explicitly instructed to learn source information in Phase 2 (Experiments 4 and 5). Importantly, when the order between Phases 1 and 2 was reversed, such that item repetition occurred after the encoding of critical item-source combinations, item repetition no longer affected source memory (Experiment 6). Overall, our findings did not support predictions based on item predifferentiation, within-dimension source interference, or general interference from multiple traces of an item. Rather, the findings were consistent with the idea that prior item repetition reduces attention to subsequent presentations of the item, decreasing the likelihood that critical item-source associations will be encoded.
Aerobic Exercise During Encoding Impairs Hippocampus-Dependent Memory.
Soga, Keishi; Kamijo, Keita; Masaki, Hiroaki
2017-08-01
We investigated how aerobic exercise during encoding affects hippocampus-dependent memory through a source memory task that assessed hippocampus-independent familiarity and hippocampus-dependent recollection processes. Using a within-participants design, young adult participants performed a memory-encoding task while performing a cycling exercise or being seated. The subsequent retrieval phase was conducted while sitting on a chair. We assessed behavioral and event-related brain potential measures of familiarity and recollection processes during the retrieval phase. Results indicated that source accuracy was lower for encoding with exercise than for encoding in the resting condition. Event-related brain potential measures indicated that the parietal old/new effect, which has been linked to recollection processing, was observed in the exercise condition, whereas it was absent in the rest condition, which is indicative of exercise-induced hippocampal activation. These findings suggest that aerobic exercise during encoding impairs hippocampus-dependent memory, which may be attributed to inefficient source encoding during aerobic exercise.
Distractor devaluation requires visual working memory.
Goolsby, Brian A; Shapiro, Kimron L; Raymond, Jane E
2009-02-01
Visual stimuli seen previously as distractors in a visual search task are subsequently evaluated more negatively than those seen as targets. An attentional inhibition account for this distractor-devaluation effect posits that associative links between attentional inhibition and to-be-ignored stimuli are established during search, stored, and then later reinstantiated, implying that distractor devaluation may require visual working memory (WM) resources. To assess this, we measured distractor devaluation with and without a concurrent visual WM load. Participants viewed a memory array, performed a simple search task, evaluated one of the search items (or a novel item), and then viewed a memory test array. Although distractor devaluation was observed with low (and no) WM load, it was absent when WM load was increased. This result supports the notions that active association of current attentional states with stimuli requires WM and that memory for these associations plays a role in affective response.
The functional consequences of social distraction: Attention and memory for complex scenes.
Doherty, Brianna Ruth; Patai, Eva Zita; Duta, Mihaela; Nobre, Anna Christina; Scerif, Gaia
2017-01-01
Cognitive scientists have long proposed that social stimuli attract visual attention even when task irrelevant, but the consequences of this privileged status for memory are unknown. To address this, we combined computational approaches, eye-tracking methodology, and individual-differences measures. Participants searched for targets in scenes containing social or non-social distractors equated for low-level visual salience. Subsequent memory precision for target locations was tested. Individual differences in autistic traits and social anxiety were also measured. Eye-tracking revealed significantly more attentional capture to social compared to non-social distractors. Critically, memory precision for target locations was poorer for social scenes. This effect was moderated by social anxiety, with anxious individuals remembering target locations better under conditions of social distraction. These findings shed further light onto the privileged attentional status of social stimuli and its functional consequences on memory across individuals. Copyright © 2016. Published by Elsevier B.V.
School-aged children can benefit from audiovisual semantic congruency during memory encoding.
Heikkilä, Jenni; Tiippana, Kaisa
2016-05-01
Although we live in a multisensory world, children's memory has been usually studied concentrating on only one sensory modality at a time. In this study, we investigated how audiovisual encoding affects recognition memory. Children (n = 114) from three age groups (8, 10 and 12 years) memorized auditory or visual stimuli presented with a semantically congruent, incongruent or non-semantic stimulus in the other modality during encoding. Subsequent recognition memory performance was better for auditory or visual stimuli initially presented together with a semantically congruent stimulus in the other modality than for stimuli accompanied by a non-semantic stimulus in the other modality. This congruency effect was observed for pictures presented with sounds, for sounds presented with pictures, for spoken words presented with pictures and for written words presented with spoken words. The present results show that semantically congruent multisensory experiences during encoding can improve memory performance in school-aged children.
Retrospective attention in short-term memory has a lasting effect on long-term memory across age.
Strunk, Jonathan; Morgan, Lauren; Reaves, Sarah; Verhaeghen, Paul; Duarte, Audrey
2018-04-13
Declines in both short- and long-term memory are typical of healthy aging. Recent findings suggest that retrodictive attentional cues ("retro-cues") that indicate the location of to-be-probed items in short-term memory (STM) have a lasting impact on long-term memory (LTM) performance in young adults. Whether older adults can also use retro-cues to facilitate both STM and LTM is unknown. Young and older adults performed a visual STM task in which spatially informative retro-cues or non-informative neutral-cues were presented during STM maintenance of real-world objects. We tested participants' memory at both STM and LTM delays for objects that were previously cued with retrodictive or neutral cues during STM order to measure the lasting impact of retrospective attention on LTM. Older adults showed reduced STM and LTM capacity compared to young adults. However, they showed similar magnitude retro-cue memory benefits as young adults at both STM and LTM delays. To the best of our knowledge, this is the first study to investigate whether retro-cues in STM facilitate the encoding of objects into LTM such that they are more likely to be subsequently retrieved by older adults. Our results support the idea that retrospective attention can be an effective means by which older adults can improve their short and long-term memory performance, even in the context of reduced memory capacity.
Where to start? Bottom-up attention improves working memory by determining encoding order.
Ravizza, Susan M; Uitvlugt, Mitchell G; Hazeltine, Eliot
2016-12-01
The present study aimed to characterize the mechanism by which working memory is enhanced for items that capture attention because of their novelty or saliency-that is, via bottom-up attention. The first experiment replicated previous research by corroborating that bottom-up attention directed to an item is sufficient for enhancing working memory and, moreover, generalized the effect to the domain of verbal working memory. The subsequent 3 experiments sought to determine how bottom-up attention affects working memory. We considered 2 hypotheses: (1) Bottom-up attention enhances the encoded representation of the stimulus, similar to how voluntary attention functions, or (2) It affects the order of encoding by shifting priority onto the attended stimulus. By manipulating how stimuli were presented (simultaneous/sequential display) and whether the cue predicted the tested items, we found evidence that bottom-up attention improves working memory performance via the order of encoding hypothesis. This finding was observed across change detection and free recall paradigms. In contrast, voluntary attention improved working memory regardless of encoding order and showed greater effects on working memory. We conclude that when multiple information sources compete, bottom-up attention prioritizes the location at which encoding should begin. When encoding order is set, bottom-up attention has little or no benefit to working memory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
The role of overt attention in emotion-modulated memory.
Riggs, Lily; McQuiggan, Douglas A; Farb, Norman; Anderson, Adam K; Ryan, Jennifer D
2011-08-01
The presence of emotional stimuli results in a central/peripheral tradeoff effect in memory: memory for central details is enhanced at the cost of peripheral items. It has been assumed that emotion-modulated differences in memory are the result of differences in attention, but this has not been tested directly. The present experiment used eye movement monitoring as an index of overt attention allocation and mediation analysis to determine whether differences in attention were related to subsequent memory. Participants viewed negative and neutral scenes surrounded by three neutral objects and were then given a recognition memory test. The results revealed evidence in support of a central/peripheral tradeoff in both attention and memory. However, contrary with previous assumptions, whereas attention partially mediated emotion-enhanced memory for central pictures, it did not explain the entire relationship. Further, although centrally presented emotional stimuli led to decreased number of eye fixations toward the periphery, these differences in viewing did not contribute to emotion-impaired memory for specific details pertaining to the periphery. These findings suggest that the differential influence of negative emotion on central versus peripheral memory may result from other cognitive influences in addition to overt visual attention or on postencoding processes. 2011 APA, all rights reserved
Nonlocal memory effects allow perfect teleportation with mixed states
Laine, Elsi-Mari; Breuer, Heinz-Peter; Piilo, Jyrki
2014-01-01
One of the most striking consequences of quantum physics is quantum teleportation – the possibility to transfer quantum states over arbitrary distances. Since its theoretical introduction, teleportation has been demonstrated experimentally up to the distance of 143 km. In the original proposal two parties share a maximally entangled quantum state acting as a resource for the teleportation task. If, however, the state is influenced by decoherence, perfect teleportation can no longer be accomplished. Therefore, one of the current major challenges in accomplishing teleportation over long distances is to overcome the limitations imposed by decoherence and the subsequent mixedness of the resource state. Here we show that, in the presence of nonlocal memory effects, perfect quantum teleportation can be achieved even with mixed photon polarisation states. Our results imply that memory effects can be exploited in harnessing noisy quantum systems for quantum communication and that non-Markovianity is a resource for quantum information tasks. PMID:24714695
Interference effects between memory systems in the acquisition of a skill.
Gagné, Marie-Hélène; Cohen, Henri
2016-10-01
There is now converging evidence that the declarative memory system (hippocampus dependent) contributes to sequential motor learning in concert with the procedural memory system (striatum dependent). Because of the competition for shared neuronal resources, introducing a declarative memory task can impair learning of a new motor sequence and interference may occur during the procedural consolidation process. Here, we investigated the extent to which interference effects between memory systems are seen at the retrieval phase of skill learning. Healthy participants were assigned to a control (n = 15) or a declarative condition (n = 15) and trained on a sequence of finger movements (FOS task). Both groups showed similar improvement at the end of the practice session on the first day. Twenty-four hours later, controls were tested solely on the FOS task, while subjects in the declarative condition first engaged in a visuospatial task. Additional offline gains in performance were observed only in the control condition. The introduction of a visuospatial memory task just before retrieval of the motor skill was sufficient to eliminate these gains. This suggests that interference between procedural and declarative memory systems may also occur during subsequent motor recall. It is proposed that the interference effects are linked, in part, to the spatial nature of the motor and declarative tasks, which specifically depends upon hippocampal involvement.
Neural conflict-control mechanisms improve memory for target stimuli.
Krebs, Ruth M; Boehler, Carsten N; De Belder, Maya; Egner, Tobias
2015-03-01
According to conflict-monitoring models, conflict serves as an internal signal for reinforcing top-down attention to task-relevant information. While evidence based on measures of ongoing task performance supports this idea, implications for long-term consequences, that is, memory, have not been tested yet. Here, we evaluated the prediction that conflict-triggered attentional enhancement of target-stimulus processing should be associated with superior subsequent memory for those stimuli. By combining functional magnetic resonance imaging (fMRI) with a novel variant of a face-word Stroop task that employed trial-unique face stimuli as targets, we were able to assess subsequent (incidental) memory for target faces as a function of whether a given face had previously been accompanied by congruent, neutral, or incongruent (conflicting) distracters. In line with our predictions, incongruent distracters not only induced behavioral conflict, but also gave rise to enhanced memory for target faces. Moreover, conflict-triggered neural activity in prefrontal and parietal regions was predictive of subsequent retrieval success, and displayed conflict-enhanced functional coupling with medial-temporal lobe regions. These data provide support for the proposal that conflict evokes enhanced top-down attention to task-relevant stimuli, thereby promoting their encoding into long-term memory. Our findings thus delineate the neural mechanisms of a novel link between cognitive control and memory. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Conserved Region C Functions To Regulate PD-1 Expression and Subsequent CD8 T Cell Memory.
Bally, Alexander P R; Tang, Yan; Lee, Joshua T; Barwick, Benjamin G; Martinez, Ryan; Evavold, Brian D; Boss, Jeremy M
2017-01-01
Expression of programmed death 1 (PD-1) on CD8 T cells promotes T cell exhaustion during chronic Ag exposure. During acute infections, PD-1 is transiently expressed and has the potential to modulate CD8 T cell memory formation. Conserved region C (CR-C), a promoter proximal cis-regulatory element that is critical to PD-1 expression in vitro, responds to NFATc1, FoxO1, and/or NF-κB signaling pathways. Here, a CR-C knockout mouse was established to determine its role on PD-1 expression and the corresponding effects on T cell function in vivo. Deletion of CR-C decreased PD-1 expression on CD4 T cells and Ag-specific CD8 T cells during acute and chronic lymphocytic choriomeningitis virus challenges, but did not affect the ability to clear an infection. Following acute lymphocytic choriomeningitis virus infection, memory CD8 T cells in the CR-C knockout mouse were formed in greater numbers, were more functional, and were more effective at responding to a melanoma tumor than wild-type memory cells. These data implicate a critical role for CR-C in governing PD-1 expression, and a subsequent role in guiding CD8 T cell differentiation. The data suggest the possibility that titrating PD-1 expression during CD8 T cell activation could have important ramifications in vaccine development and clinical care. Copyright © 2016 by The American Association of Immunologists, Inc.
Electrophysiological correlates of forming memories for faces, names, and face-name associations.
Guo, Chunyan; Voss, Joel L; Paller, Ken A
2005-02-01
The ability to put a name to a face is a vital aspect of human interaction, but many people find this extremely difficult, especially after being introduced to someone for the first time. Creating enduring associations between arbitrary stimuli in this manner is also a prime example of what patients with amnesia find most difficult. To help develop a better understanding of this type of memory, we sought to obtain measures of the neural events responsible for successfully forming a new face-name association. We used event-related potentials (ERPs) extracted from high-density scalp EEG recordings in order to compare (1) memory for faces, (2) memory for names, and (3) memory for face-name associations. Each visual face appeared simultaneously with a unique spoken name. Signals observed 200-800 ms after the onset of face-name pairs predicted subsequent memory for faces, names, or face-name associations. Difference potentials observed as a function of subsequent memory performance were not identical for these three memory tests, nor were potentials predicting associative memory equivalent to the sum of potentials predicting item memory, suggesting that different neural events at the time of encoding are relevant for these distinct aspects of remembering people.
NASA Astrophysics Data System (ADS)
Most, S.; Jia, N.; Bijeljic, B.; Nowak, W.
2016-12-01
Pre-asymptotic characteristics are almost ubiquitous when analyzing solute transport processes in porous media. These pre-asymptotic aspects are caused by spatial coherence in the velocity field and by its heterogeneity. For the Lagrangian perspective of particle displacements, the causes of pre-asymptotic, non-Fickian transport are skewed velocity distribution, statistical dependencies between subsequent increments of particle positions (memory) and dependence between the x, y and z-components of particle increments. Valid simulation frameworks should account for these factors. We propose a particle tracking random walk (PTRW) simulation technique that can use empirical pore-space velocity distributions as input, enforces memory between subsequent random walk steps, and considers cross dependence. Thus, it is able to simulate pre-asymptotic non-Fickian transport phenomena. Our PTRW framework contains an advection/dispersion term plus a diffusion term. The advection/dispersion term produces time-series of particle increments from the velocity CDFs. These time series are equipped with memory by enforcing that the CDF values of subsequent velocities change only slightly. The latter is achieved through a random walk on the axis of CDF values between 0 and 1. The virtual diffusion coefficient for that random walk is our only fitting parameter. Cross-dependence can be enforced by constraining the random walk to certain combinations of CDF values between the three velocity components in x, y and z. We will show that this modelling framework is capable of simulating non-Fickian transport by comparison with a pore-scale transport simulation and we analyze the approach to asymptotic behavior.
Feature binding and attention in working memory: a resolution of previous contradictory findings.
Allen, Richard J; Hitch, Graham J; Mate, Judit; Baddeley, Alan D
2012-01-01
We aimed to resolve an apparent contradiction between previous experiments from different laboratories, using dual-task methodology to compare effects of a concurrent executive load on immediate recognition memory for colours or shapes of items or their colour-shape combinations. Results of two experiments confirmed previous evidence that an irrelevant attentional load interferes equally with memory for features and memory for feature bindings. Detailed analyses suggested that previous contradictory evidence arose from limitations in the way recognition memory was measured. The present findings are inconsistent with an earlier suggestion that feature binding takes place within a multimodal episodic buffer Baddeley, ( 2000 ) and support a subsequent account in which binding takes place automatically prior to information entering the episodic buffer Baddeley, Allen, & Hitch, ( 2011 ). Methodologically, the results suggest that different measures of recognition memory performance (A', d', corrected recognition) give a converging picture of main effects, but are less consistent in detecting interactions. We suggest that this limitation on the reliability of measuring recognition should be taken into account in future research so as to avoid problems of replication that turn out to be more apparent than real.
Memory complaints are related to Alzheimer disease pathology in older persons.
Barnes, L L; Schneider, J A; Boyle, P A; Bienias, J L; Bennett, D A
2006-11-14
To study the relationship between Alzheimer disease (AD) pathology and memory complaints proximate to death. A group of 90 older persons underwent detailed clinical evaluations and brain autopsy at death. The evaluations included administration of questions on subjective memory complaints and clinical classification of dementia and AD. On postmortem examination, neuritic plaques, diffuse plaques, and neurofibrillary tangles in tissue samples from five cortical regions were counted, and a summary measure of overall AD pathology was derived. In addition, amyloid load and tau tangles were quantified in eight regions. In multiple linear regression models adjusted for age, sex, and education, memory complaints were associated with AD pathology, including both amyloid and tau tangles. Subsequent analyses demonstrated that the relationship between memory complaints and AD pathology was present in those with and without dementia, and could not be explained by the potentially confounding effects of depressive symptoms or coexisting common chronic health problems. Memory complaints in older persons may indicate self awareness of a degenerative process.
Soto, David; Humphreys, Glyn W
2009-01-01
Recent research has shown that the contents of working memory (WM) can guide the early deployment of attention in visual search. Here, we assessed whether this guidance occurred for all attributes of items held in WM, or whether effects are based on just the attributes relevant for the memory task. We asked observers to hold in memory just the shape of a coloured object and to subsequently search for a target line amongst distractor lines, each embedded within a different object. On some trials, one of the objects in the search display could match the shape, the colour or both dimensions of the cue, but this object never contained the relevant target line. Relative to a neutral baseline, where there was no match between the memory and the search displays, search performance was impaired when a distractor object matched both the colour and the shape of the memory cue. The implications for the understanding of the interaction between WM and selection are discussed.
Sumner, Jennifer A; Griffith, James W; Mineka, Susan; Rekart, Kathleen Newcomb; Zinbarg, Richard E; Craske, Michelle G
2011-01-01
This study investigated whether overgeneral autobiographical memory (OGM) predicts the course of depression in adolescents. As part of a larger longitudinal study of risk for emotional disorders, 55 adolescents with a past history of major depressive disorder or minor depressive disorder completed the Autobiographical Memory Test. Fewer specific memories predicted the subsequent onset of a major depressive episode (MDE) over a 16-month follow-up period, even when covarying baseline depressive symptoms. This main effect was qualified by an interaction between specific memories and chronic interpersonal stress: Fewer specific memories predicted greater risk of MDE onset over follow-up at high (but not low) levels of chronic interpersonal stress. Thus, our findings suggest that OGM, in interaction with chronic interpersonal stress, predicts the course of depression among adolescents, and highlight the importance of measuring interpersonal stress in OGM research. © 2010 Psychology Press, an imprint of the Taylor & Francis Group, an Informa business
Seamon, John G; Lee, Ihno A; Toner, Sarah K; Wheeler, Rachel H; Goodkind, Madeleine S; Birch, Antoine D
2002-11-01
Do participants in the Deese, Roediger, and McDermott (DRM) procedure demonstrate false memory because they think of nonpresented critical words during study and confuse them with words that were actually presented? In two experiments, 160 participants studied eight visually presented DRM lists at a rate of 2 s or 5 s per word. Half of the participants rehearsed silently: the other half rehearsed overtly. Following study, the participants' memory for the lists was tested by recall or recognition. Typical false memory results were obtained for both memory measures. More important, two new results were observed. First, a large majority of the overt-rehearsal participants spontaneously rehearsed approximately half of the critical words during study. Second, critical-word rehearsal at study enhanced subsequent false recall, but it had no effect on false recognition or remember judgments for falsely recognized critical words. Thinking of critical words during study was unnecessary for producing false memory.
Working memory dependence of spatial contextual cueing for visual search.
Pollmann, Stefan
2018-05-10
When spatial stimulus configurations repeat in visual search, a search facilitation, resulting in shorter search times, can be observed that is due to incidental learning. This contextual cueing effect appears to be rather implicit, uncorrelated with observers' explicit memory of display configurations. Nevertheless, as I review here, this search facilitation due to contextual cueing depends on visuospatial working memory resources, and it disappears when visuospatial working memory is loaded by a concurrent delayed match to sample task. However, the search facilitation immediately recovers for displays learnt under visuospatial working memory load when this load is removed in a subsequent test phase. Thus, latent learning of visuospatial configurations does not depend on visuospatial working memory, but the expression of learning, as memory-guided search in repeated displays, does. This working memory dependence has also consequences for visual search with foveal vision loss, where top-down controlled visual exploration strategies pose high demands on visuospatial working memory, in this way interfering with memory-guided search in repeated displays. Converging evidence for the contribution of working memory to contextual cueing comes from neuroimaging data demonstrating that distinct cortical areas along the intraparietal sulcus as well as more ventral parieto-occipital cortex are jointly activated by visual working memory and contextual cueing. © 2018 The British Psychological Society.
Sinha, Neha; Glass, Arnold Lewis
2015-01-01
Three experiments, two performed in the laboratory and one embedded in a college psychology lecture course, investigated the effects of immediate versus delayed feedback following a multiple-choice exam on subsequent short answer and multiple-choice exams. Performance on the subsequent multiple-choice exam was not affected by the timing of the feedback on the prior exam; however, performance on the subsequent short answer exam was better following delayed than following immediate feedback. This was true regardless of the order in which immediate versus delayed feedback was given. Furthermore, delayed feedback only had a greater effect than immediate feedback on subsequent short answer performance following correct, confident responses on the prior exam. These results indicate that delayed feedback cues a student's prior response and increases subsequent recollection of that response. The practical implication is that delayed feedback is better than immediate feedback during academic testing.
Staring, A B P; van den Berg, D P G; Cath, D C; Schoorl, M; Engelhard, I M; Korrelboom, C W
2016-07-01
Little is known about treating low self-esteem in anxiety disorders. This study evaluated two treatments targeting different mechanisms: (1) Eye Movement Desensitization and Reprocessing (EMDR), which aims to desensitize negative memory representations that are proposed to maintain low self-esteem; and (2) Competitive Memory Training (COMET), which aims to activate positive representations for enhancing self-esteem. A Randomized Controlled Trial (RCT) was used with a crossover design. Group 1 received six sessions EMDR first and then six sessions COMET; group 2 vice versa. Assessments were made at baseline (T0), end of first treatment (T1), and end of second treatment (T2). Main outcome was self-esteem. We included 47 patients and performed Linear Mixed Models. COMET showed more improvements in self-esteem than EMDR: effect-sizes 1.25 versus 0.46 post-treatment. Unexpectedly, when EMDR was given first, subsequent effects of COMET were significantly reduced in comparison to COMET as the first intervention. For EMDR, sequence made no difference. Reductions in anxiety and depression were mediated by better self-esteem. COMET was associated with significantly greater improvements in self-esteem than EMDR in patients with anxiety disorders. EMDR treatment reduced the effectiveness of subsequent COMET. Improved self-esteem mediated reductions in anxiety and depression symptoms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Additional Boundary Condition for List-Method Directed Forgetting: The Effect of Presentation Format
ERIC Educational Resources Information Center
Hupbach, Almut; Sahakyan, Lili
2014-01-01
The attempt to forget some recently encoded information renders this information difficult to recall in a subsequent memory test. "Forget" instructions are only effective when followed by learning of new material. In the present study, we asked whether the new material needs to match the format of the to-be-forgotten information for…
ERIC Educational Resources Information Center
Gottlieb, Lauren J.; Rugg, Michael D.
2011-01-01
Prior research has demonstrated that the neural correlates of successful encoding ("subsequent memory effects") partially overlap with neural regions selectively engaged by the on-line demands of the study task. The primary goal of the present experiment was to determine whether this overlap is associated solely with encoding processes supporting…
Chen, Yvonne Y; Caplan, Jeremy B
2017-01-01
During study trials of a recognition memory task, alpha (∼10 Hz) oscillations decrease, and concurrently, theta (4-8 Hz) oscillations increase when later memory is successful versus unsuccessful (subsequent memory effect). Likewise, at test, reduced alpha and increased theta activity are associated with successful memory (retrieval success effect). Here we take an individual-differences approach to test three hypotheses about theta and alpha oscillations in verbal, old/new recognition, measuring the difference in oscillations between hit trials and miss trials. First, we test the hypothesis that theta and alpha oscillations have a moderately mutually exclusive relationship; but no support for this hypothesis was found. Second, we test the hypothesis that theta oscillations explain not only memory effects within participants, but also individual differences. Supporting this prediction, durations of theta (but not alpha) oscillations at study and at test correlated significantly with d' across participants. Third, we test the hypothesis that theta and alpha oscillations reflect familiarity and recollection processes by comparing oscillation measures to ERPs that are implicated in familiarity and recollection. The alpha-oscillation effects correlated with some ERP measures, but inversely, suggesting that the actions of alpha oscillations on memory processes are distinct from the roles of familiarity- and recollection-linked ERP signals. The theta-oscillation measures, despite differentiating hits from misses, did not correlate with any ERP measure; thus, theta oscillations may reflect elaborative processes not tapped by recollection-related ERPs. Our findings are consistent with alpha oscillations reflecting visual inattention, which can modulate memory, and with theta oscillations supporting recognition memory in ways that complement the most commonly studied ERPs.
Christensen, Thomas A; Almryde, Kyle R; Fidler, Lesley J; Lockwood, Julie L; Antonucci, Sharon M; Plante, Elena
2012-01-01
Attention is crucial for encoding information into memory, and current dual-process models seek to explain the roles of attention in both recollection memory and incidental-perceptual memory processes. The present study combined an incidental memory paradigm with event-related functional MRI to examine the effect of attention at encoding on the subsequent neural activation associated with unintended perceptual memory for spoken words. At encoding, we systematically varied attention levels as listeners heard a list of single English nouns. We then presented these words again in the context of a recognition task and assessed the effect of modulating attention at encoding on the BOLD responses to words that were either attended strongly, weakly, or not heard previously. MRI revealed activity in right-lateralized inferior parietal and prefrontal regions, and positive BOLD signals varied with the relative level of attention present at encoding. Temporal analysis of hemodynamic responses further showed that the time course of BOLD activity was modulated differentially by unintentionally encoded words compared to novel items. Our findings largely support current models of memory consolidation and retrieval, but they also provide fresh evidence for hemispheric differences and functional subdivisions in right frontoparietal attention networks that help shape auditory episodic recall.
Christensen, Thomas A.; Almryde, Kyle R.; Fidler, Lesley J.; Lockwood, Julie L.; Antonucci, Sharon M.; Plante, Elena
2012-01-01
Attention is crucial for encoding information into memory, and current dual-process models seek to explain the roles of attention in both recollection memory and incidental-perceptual memory processes. The present study combined an incidental memory paradigm with event-related functional MRI to examine the effect of attention at encoding on the subsequent neural activation associated with unintended perceptual memory for spoken words. At encoding, we systematically varied attention levels as listeners heard a list of single English nouns. We then presented these words again in the context of a recognition task and assessed the effect of modulating attention at encoding on the BOLD responses to words that were either attended strongly, weakly, or not heard previously. MRI revealed activity in right-lateralized inferior parietal and prefrontal regions, and positive BOLD signals varied with the relative level of attention present at encoding. Temporal analysis of hemodynamic responses further showed that the time course of BOLD activity was modulated differentially by unintentionally encoded words compared to novel items. Our findings largely support current models of memory consolidation and retrieval, but they also provide fresh evidence for hemispheric differences and functional subdivisions in right frontoparietal attention networks that help shape auditory episodic recall. PMID:22144982
Examining the influence of a spatially irrelevant working memory load on attentional allocation.
McDonnell, Gerald P; Dodd, Michael D
2013-08-01
The present study examined the influence of holding task-relevant gaze cues in working memory during a target detection task. Gaze cues shift attention in gaze-consistent directions, even when they are irrelevant to a primary detection task. It is unclear, however, whether gaze cues need to be perceived online to elicit these effects, or how these effects may be moderated if the gaze cues are relevant to a secondary task. In Experiment 1, participants encoded a face for a subsequent memory task, after which they performed an unrelated target detection task. Critically, gaze direction was irrelevant to the target detection task, but memory for the perceived face was tested at trial conclusion. Surprisingly, participants exhibited inhibition-of-return (IOR) and not facilitation, with slower response times for the gazed-at location. In Experiments 2, presentation duration and cue-target stimulus-onset asynchrony were manipulated and we continued to observe IOR with no early facilitation. Experiment 3 revealed facilitation but not IOR when the memory task was removed; Experiment 4 also revealed facilitation when the gaze cue memory task was replaced with arrows cues. The present experiments provide an important dissociation between perceiving cues online versus holding them in memory as it relates to attentional allocation. 2013 APA, all rights reserved
A Matter of Time: Rapid Motor Memory Stabilization in Childhood
ERIC Educational Resources Information Center
Adi-Japha, Esther; Badir, Rodayna; Dorfberger, Shoshi; Karni, Avi
2014-01-01
Are children better than adults in acquiring new skills ("how-to" knowledge) because of a difference in skill memory consolidation? Here we tested the proposal that, as opposed to adults, children's memories for newly acquired skills are immune to interference by subsequent experience. The establishment of long-term memory for a…
Inhibition of Lactate Transport Erases Drug Memory and Prevents Drug Relapse.
Zhang, Yan; Xue, Yanxue; Meng, Shiqiu; Luo, Yixiao; Liang, Jie; Li, Jiali; Ai, Sizhi; Sun, Chengyu; Shen, Haowei; Zhu, Weili; Wu, Ping; Lu, Lin; Shi, Jie
2016-06-01
Drug memories that associate drug-paired stimuli with the effects of abused drugs contribute to relapse. Exposure to drug-associated contexts causes consolidated drug memories to be in a labile state, during which manipulations can be given to impair drug memories. Although substantial evidence demonstrates the crucial role of neuronal signaling in addiction, little is known about the contribution of astrocyte-neuron communication. Rats were trained for cocaine-induced conditioned place preference (CPP) or self-administration and microinjected with the glycogen phosphorylation inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol into the basolateral amygdala (BLA) immediately after retrieval. The concentration of lactate was measured immediately after retrieval via microdialysis, and the CPP score and number of nosepokes were recorded 24 hours later. Furthermore, we used antisense oligodeoxynucleotides to disrupt the expression of astrocytic lactate transporters (monocarboxylate transporters 1 and 2) in the BLA after retrieval, tested the expression of CPP 1 day later, and injected L-lactate into the BLA 15 minutes before retrieval to rescue the effects of the oligodeoxynucleotides. Injection of 1,4-dideoxy-1,4-imino-D-arabinitol into the BLA immediately after retrieval prevented the subsequent expression of cocaine-induced CPP, decreased the concentration of lactate in the BLA, and reduced the number of nosepokes for cocaine self-administration. Disrupting the expression of monocarboxylate transporters 1 and 2 in the BLA also caused subsequent deficits in the expression of cocaine-induced CPP, which was rescued by pretreatment with L-lactate. Our results suggest that astrocyte-neuron lactate transport in the BLA is critical for the reconsolidation of cocaine memory. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Understanding original antigenic sin in influenza with a dynamical system.
Pan, Keyao
2011-01-01
Original antigenic sin is the phenomenon in which prior exposure to an antigen leads to a subsequent suboptimal immune response to a related antigen. Immune memory normally allows for an improved and rapid response to antigens previously seen and is the mechanism by which vaccination works. I here develop a dynamical system model of the mechanism of original antigenic sin in influenza, clarifying and explaining the detailed spin-glass treatment of original antigenic sin. The dynamical system describes the viral load, the quantities of healthy and infected epithelial cells, the concentrations of naïve and memory antibodies, and the affinities of naïve and memory antibodies. I give explicit correspondences between the microscopic variables of the spin-glass model and those of the present dynamical system model. The dynamical system model reproduces the phenomenon of original antigenic sin and describes how a competition between different types of B cells compromises the overall effect of immune response. I illustrate the competition between the naïve and the memory antibodies as a function of the antigenic distance between the initial and subsequent antigens. The suboptimal immune response caused by original antigenic sin is observed when the host is exposed to an antigen which has intermediate antigenic distance to a second antigen previously recognized by the host's immune system.
Distinct Patterns of Neural Activity during Memory Formation of Nonwords versus Words
Otten, Leun J.; Sveen, Josefin; Quayle, Angela H.
2008-01-01
Research into the neural underpinnings of memory formation has focused on the encoding of familiar verbal information. Here, we address how the brain supports the encoding of novel information that does not have meaning. Electrical brain activity was recorded from the scalps of healthy young adults while they performed an incidental encoding task (syllable judgments) on separate series of words and ‘nonwords’ (nonsense letter strings that are orthographically legal and pronounceable). Memory for the items was then probed with a recognition memory test. For words as well as nonwords, event-related potentials differed depending on whether an item would subsequently be remembered or forgotten. However, the polarity and timing of the effect varied across item type. For words, subsequently remembered items showed the usually observed positive-going, frontally-distributed modulation from around 600 ms after word onset. For nonwords, by contrast, a negative-going, spatially widespread modulation predicted encoding success from 1000 ms onwards. Nonwords also showed a modulation shortly after item onset. These findings imply that the brain supports the encoding of familiar and unfamiliar letter strings in qualitatively different ways, including the engagement of distinct neural activity at different points in time. The processing of semantic attributes plays an important role in the encoding of words and the associated positive frontal modulation. PMID:17958481
Medial prefrontal cortex supports source memory accuracy for self-referenced items
Leshikar, Eric D.; Duarte, Audrey
2013-01-01
Previous behavioral work suggests that processing information in relation to the self enhances subsequent item recognition. Neuroimaging evidence further suggests that regions along the cortical midline, particularly those of the medial prefrontal cortex, underlie this benefit. There has been little work to date, however, on the effects of self-referential encoding on source memory accuracy or whether the medial prefrontal cortex might contribute to source memory for self-referenced materials. In the current study, we used fMRI to measure neural activity while participants studied and subsequently retrieved pictures of common objects superimposed on one of two background scenes (sources) under either self-reference or self-external encoding instructions. Both item recognition and source recognition were better for objects encoded self-referentially than self-externally. Neural activity predictive of source accuracy was observed in the medial prefrontal cortex (BA 10) at the time of study for self-referentially but not self-externally encoded objects. The results of this experiment suggest that processing information in relation to the self leads to a mnemonic benefit for source level features, and that activity in the medial prefrontal cortex contributes to this source memory benefit. This evidence expands the purported role that the medial prefrontal cortex plays in self-referencing. PMID:21936739
Differentiation of perceptual and semantic subsequent memory effects using an orthographic paradigm.
Kuo, Michael C C; Liu, Karen P Y; Ting, Kin Hung; Chan, Chetwyn C H
2012-11-27
This study aimed to differentiate perceptual and semantic encoding processes using subsequent memory effects (SMEs) elicited by the recognition of orthographs of single Chinese characters. Participants studied a series of Chinese characters perceptually (by inspecting orthographic components) or semantically (by determining the object making sounds), and then made studied or unstudied judgments during the recognition phase. Recognition performance in terms of d-prime measure in the semantic condition was higher, though not significant, than that of the perceptual condition. The between perceptual-semantic condition differences in SMEs at P550 and late positive component latencies (700-1000ms) were not significant in the frontal area. An additional analysis identified larger SME in the semantic condition during 600-1000ms in the frontal pole regions. These results indicate that coordination and incorporation of orthographic information into mental representation is essential to both task conditions. The differentiation was also revealed in earlier SMEs (perceptual>semantic) at N3 (240-360ms) latency, which is a novel finding. The left-distributed N3 was interpreted as more efficient processing of meaning with semantically learned characters. Frontal pole SMEs indicated strategic processing by executive functions, which would further enhance memory. Copyright © 2012 Elsevier B.V. All rights reserved.
Novelty's effect on memory encoding.
Rangel-Gomez, Mauricio; Janenaite, Sigita; Meeter, Martijn
2015-07-01
It is often thought that novelty benefits memory formation. However, support for this idea mostly comes from paradigms that are open to alternative explanations. In the present study we manipulated novelty in a word-learning task through task-irrelevant background images. These background images were either standard (presented repeatedly), or novel (presented only once). Two types of background images were used: Landscape pictures and fractals. EEG was also recorded during encoding. Contrary to the idea that novelty aids memory formation, memory performance was not affected by the novelty of the background. In the evoked response potentials, we found evidence of distracting effects of novelty: both the N1 and P3b components were smaller to words studied with novel backgrounds, and the amplitude of the N2b component correlated negatively with subsequent retrieval. We conclude that although evidence from other studies does suggest benefits on a longer time scale, novelty has no instantaneous benefits for learning. Copyright © 2015 Elsevier B.V. All rights reserved.
The effects of experimental pain and induced optimism on working memory task performance.
Boselie, Jantine J L M; Vancleef, Linda M G; Peters, Madelon L
2016-07-01
Pain can interrupt and deteriorate executive task performance. We have previously shown that experimentally induced optimism can diminish the deteriorating effect of cold pressor pain on a subsequent working memory task (i.e., operation span task). In two successive experiments we sought further evidence for the protective role of optimism on pain-induced working memory impairments. We used another working memory task (i.e., 2-back task) that was performed either after or during pain induction. Study 1 employed a 2 (optimism vs. no-optimism)×2 (pain vs. no-pain)×2 (pre-score vs. post-score) mixed factorial design. In half of the participants optimism was induced by the Best Possible Self (BPS) manipulation, which required them to write and visualize about a life in the future where everything turned out for the best. In the control condition, participants wrote and visualized a typical day in their life (TD). Next, participants completed either the cold pressor task (CPT) or a warm water control task (WWCT). Before (baseline) and after the CPT or WWCT participants working memory performance was measured with the 2-back task. The 2-back task measures the ability to monitor and update working memory representation by asking participants to indicate whether the current stimulus corresponds to the stimulus that was presented 2 stimuli ago. Study 2 had a 2 (optimism vs. no-optimism)×2 (pain vs. no-pain) mixed factorial design. After receiving the BPS or control manipulation, participants completed the 2-back task twice: once with painful heat stimulation, and once without any stimulation (counter-balanced order). Continuous heat stimulation was used with temperatures oscillating around 1°C above and 1°C below the individual pain threshold. In study 1, the results did not show an effect of cold pressor pain on subsequent 2-back task performance. Results of study 2 indicated that heat pain impaired concurrent 2-back task performance. However, no evidence was found that optimism protected against this pain-induced performance deterioration. Experimentally induced pain impairs concurrent but not subsequent working memory task performance. Manipulated optimism did not counteract pain-induced deterioration of 2-back performance. It is important to explore factors that may diminish the negative impact of pain on the ability to function in daily life, as pain itself often cannot be remediated. We are planning to conduct future studies that should shed further light on the conditions, contexts and executive operations for which optimism can act as a protective factor. Copyright © 2016 Scandinavian Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Should I trust you? Learning and memory of social interactions in dementia.
Wong, Stephanie; Irish, Muireann; O'Callaghan, Claire; Kumfor, Fiona; Savage, Greg; Hodges, John R; Piguet, Olivier; Hornberger, Michael
2017-09-01
Social relevance has an enhancing effect on learning and subsequent memory retrieval. The ability to learn from and remember social interactions may impact on susceptibility to financial exploitation, which is elevated in individuals with dementia. The current study aimed to investigate learning and memory of social interactions, the relationship between performance and financial vulnerability and the neural substrates underpinning performance in 14 Alzheimer's disease (AD) and 20 behavioural-variant frontotemporal dementia (bvFTD) patients and 20 age-matched healthy controls. On a "trust game" task, participants invested virtual money with counterparts who acted either in a trustworthy or untrustworthy manner over repeated interactions. A non-social "lottery" condition was also included. Participants' learning of trust/distrust responses and subsequent memory for the counterparts and nature of the interactions was assessed. Carer-rated profiles of financial vulnerability were also collected. Relative to controls, both patient groups showed attenuated learning of trust/distrust responses, and lower overall memory for social interactions. Despite poor learning performance, both AD and bvFTD patients showed better memory of social compared to non-social interactions. Importantly, better memory for social interactions was associated with lower financial vulnerability in AD, but not bvFTD. Learning and memory of social interactions was associated with medial temporal and temporoparietal atrophy in AD, whereas a wider network of frontostriatal, insular, fusiform and medial temporal regions was implicated in bvFTD. Our findings suggest that although social relevance influences memory to an extent in both AD and bvFTD, this is associated with vulnerability to financial exploitation in AD only, and is underpinned by changes to different neural substrates. Theoretically, these findings provide novel insights into potential mechanisms that give rise to vulnerability in people with dementia, and open avenues for possible interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.
The effect of acute aerobic and resistance exercise on working memory.
Pontifex, Matthew B; Hillman, Charles H; Fernhall, Bo; Thompson, Kelli M; Valentini, Teresa A
2009-04-01
The goal of this investigation was to assess the influence of acute bouts of aerobic versus resistance exercise on the executive control of working memory. Twenty-one young adult participants completed a cardiorespiratory fitness test and maximal strength tests. On subsequent days, task performance measures of reaction time (RT) and accuracy were collected while participants completed a modified Sternberg working memory task before the start of, immediately after, and 30 min after an intervention consisting of 30 min of either resistance or aerobic exercise and a seated rest control. Findings indicated shorter RT immediately and 30 min after acute aerobic exercise relative to the preexercise baseline with no such effects observed after resistance exercise or seated rest. Further, in the aerobic condition, a larger reduction in RT from the baseline occurred during task conditions requiring increased working memory capacity. Again, no effect was observed in the resistance exercise or the seated rest conditions. These data extend the current knowledge base by indicating that acute exercise-induced changes in cognition are disproportionately related to executive control and may be specific to the aerobic exercise domain.
The effect of presentation level on memory performance.
Heinrich, Antje; Schneider, Bruce A
2011-01-01
A loss of speech intelligibility at high presentation levels is called rollover. It is a phenomenon that increases in prevalence as people age. Whether the adverse effect of high presentation levels extends to processes subsequent to speech intelligibility, such as memory, is unknown. The present study examined this question on the basis of the previous finding that older but not younger adults showed memory impairment when acoustically distorted words were presented at 50 dB SL compared with an undistorted baseline presented at 65 dB SPL. One question investigated in the present study was whether a presentation level of 50 dB SL put older listeners at the cusp of rollover and whether this subsequently impaired memory. Moreover, we wanted to know whether and at what level it was possible to induce a similar impairment in younger listeners. We used a paired-associate memory paradigm in which five word pairs per list were presented at a rate of 4 secs per word pair. After each list, the first word of one of the pairs was presented again and the listener was asked to recall the second word. Over the course of the experiment, all list positions were tested an equal number of times. The word pairs, which were acoustically distorted using a jittering algorithm, were presented at 40 dB SL to all younger and older participants and just below an uncomfortably loud level for younger listeners only. Intelligibility of the distorted words was equated across age groups for each presentation level. The effect of presentation level on memory performance was investigated and compared with data of a previous study that used the same design but presented the distorted and undistorted words at 50 dB SL to both age groups. A total of 58 younger and 24 older adults were tested in two experiments. The results showed that for older adults, memory performance for distorted words was decreased in all list positions at a presentation level of 50 dB SL compared with 40 dB SL and an undistorted 65 dB SPL baseline. This effect did not occur for younger listeners. However, when younger adults were tested at a very high presentation level, they showed the same memory decrease compared with the baseline as older adults showed for 50 dB SL. A high presentation level of distorted words can adversely affect memory even after intelligibility is equated for. Moreover, older listeners are affected at lower presentation levels. Hence, the choice of sound level, particularly for older listeners, is important and may affect their level of cognitive performance beyond its effects on intelligibility. Higher presentation levels may not always lead to better performance when the task involves recall of words previously heard.
Chronic Stress Impairs Prefrontal Cortex-Dependent Response Inhibition and Spatial Working Memory
Mika, Agnieszka; Mazur, Gabriel J.; Hoffman, Ann N.; Talboom, Joshua S.; Bimonte-Nelson, Heather A.; Sanabria, Federico; Conrad, Cheryl D.
2012-01-01
Chronic stress leads to neurochemical and structural alterations in the prefrontal cortex (PFC) that correspond to deficits in PFC-mediated behaviors. The present study examined the effects of chronic restraint stress on response inhibition (using a response-withholding task, fixed-minimum interval schedule of reinforcement, or FMI), and working memory (using a radial arm water maze, RAWM). Adult male Sprague Dawley rats were first trained on the RAWM and subsequently trained on FMI. Following acquisition of FMI, rats were assigned to a restraint stress (6h/d/28d in wire mesh restrainers) or control condition. Immediately after chronic stress, rats were tested on FMI and subsequently on RAWM. FMI results suggest that chronic stress reduces response inhibition capacity and motivation to initiate the task on selective conditions when food reward was not obtained on the preceding trial. RAWM results suggest that chronic stress produces transient deficits in working memory without altering previously consolidated reference memory. Behavioral measures from FMI failed to correlate with metrics from RAWM except for one in which changes in FMI timing precision negatively correlated with changes in RAWM working memory errors for the controls, a finding that was not observed following chronic stress. Fisher’s r to z transformation revealed no significant differences between control and stress with correlation coefficients. These findings are the first to show that chronic stress impairs both response inhibition and working memory, two behaviors that have never been direct compared within the same animals following chronic stress, using FMI, an appetitive task, and RAWM, a non-appetitive task. PMID:22905921
Preparation breeds success: Brain activity predicts remembering.
Herron, Jane E; Evans, Lisa H
2018-05-09
Successful retrieval of episodic information is thought to involve the adoption of memory states that ensure that stimulus events are treated as episodic memory cues (retrieval mode) and which can bias retrieval toward specific memory contents (retrieval orientation). The neural correlates of these memory states have been identified in many neuroimaging studies, yet critically there is no direct evidence that they facilitate retrieval success. We cued participants before each test item to prepare to complete an episodic (retrieve the encoding task performed on the item at study) or a non-episodic task. Our design allowed us to separate event-related potentials (ERPs) elicited by the preparatory episodic cue according to the accuracy of the subsequent memory judgment. We predicted that a correlate of retrieval orientation should be larger in magnitude preceding correct source judgments than that preceding source errors. This hypothesis was confirmed. Preparatory ERPs at bilateral frontal sites were significantly more positive-going when preceding correct source judgments than when preceding source errors or correct responses in a non-episodic baseline task. Furthermore this effect was not evident prior to recognized items associated with incorrect source judgments. This pattern of results indicates a direct contribution of retrieval orientation to the recovery of task-relevant information and highlights the value of separating preparatory neural activity at retrieval according to subsequent memory accuracy. Moreover, at a more general level this work demonstrates the important role of pre-stimulus processing in ecphory, which has remained largely neglected to date. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cortisol disrupts the neural correlates of extinction recall.
Kinner, Valerie L; Merz, Christian J; Lissek, Silke; Wolf, Oliver T
2016-06-01
The renewal effect describes the recovery of extinguished responses that may occur after a change in context and indicates that extinction memory retrieval is sometimes prone to failure. Stress hormones have been implicated to modulate extinction processes, with mostly impairing effects on extinction retrieval. However, the neurobiological mechanisms mediating stress effects on extinction memory remain elusive. In this functional magnetic resonance imaging study, we investigated the effects of cortisol administration on the neural correlates of extinction memory retrieval in a predictive learning task. In this task, participants were required to predict whether certain food stimuli were associated with stomach trouble when presented in two different contexts. A two-day renewal paradigm was applied in which an association was acquired in context A and subsequently extinguished in context B. On the following day, participants received either cortisol or placebo 40min before extinction memory retrieval was tested in both contexts. Behaviorally, cortisol impaired the retrieval of extinguished associations when presented in the extinction context. On the neural level, this effect was characterized by a reduced context differentiation for the extinguished stimulus in the ventromedial prefrontal cortex, but only in men. In the placebo group, ventromedial prefrontal cortex was functionally connected to the left cerebellum, the anterior cingulate and the right anterior parahippocampal gyrus to express extinction memory. This functional crosstalk was reduced under cortisol. These findings illustrate that the stress hormone cortisol disrupts ventromedial prefrontal cortex functioning and its communication with other brain regions implicated in extinction memory. Copyright © 2016 Elsevier Inc. All rights reserved.
Cioncoloni, David; Galli, Giulia; Mazzocchio, Riccardo; Feurra, Matteo; Giovannelli, Fabio; Santarnecchi, Emiliano; Bonifazi, Marco; Rossi, Alessandro; Rossi, Simone
2014-10-01
We aimed at investigating rapid effects of plasma cortisol elevations on the episodic memory phase of encoding or retrieval, and on the strength of the memory trace. Participants were asked either to select a word containing the letter "e" (shallow encoding task) or to judge if a word referred to a living entity (deep encoding task). We intravenously administered a bolus of 20mg of cortisol either 5 min before encoding or 5 min before retrieval, in a between-subjects design. The study included only male participants tested in the late afternoon, and neutral words as stimuli. When cortisol administration occurred prior to retrieval, a main effect of group emerged. Recognition accuracy was higher for individuals who received cortisol compared to placebo. The higher discrimination accuracy for the cortisol group was significant for words encoded during deep but not shallow task. Cortisol administration before encoding did not affect subsequent retrieval performance (either for deep or shallow stimuli) despite a facilitatory trend. Because genomic mechanisms take some time to develop, such a mechanism cannot apply to our findings where the memory task was performed shortly after the enhancement of glucocorticoid levels. Therefore, glucocorticoids, through non-genomic fast effects, determine an enhancement in episodic memory if administered immediately prior to retrieval. This effect is more evident if the memory trace is laid down through deep encoding operations involving the recruitment of specific neural networks. Copyright © 2014 Elsevier Inc. All rights reserved.
Alkozei, Anna; Smith, Ryan; Pisner, Derek A.; Vanuk, John R.; Berryhill, Sarah M.; Fridman, Andrew; Shane, Bradley R.; Knight, Sara A.; Killgore, William D.S.
2016-01-01
Study Objectives: Prolonged exposure to blue wavelength light has been shown to have an alerting effect, and enhances performance on cognitive tasks. A small number of studies have also shown that relatively short exposure to blue light leads to changes in functional brain responses during the period of exposure. The extent to which blue light continues to affect brain functioning during a cognitively challenging task after cessation of longer periods of exposure (i.e., roughly 30 minutes or longer), however, has not been fully investigated. Methods: A total of 35 healthy participants (18 female) were exposed to either blue (469 nm) (n = 17) or amber (578 nm) (n = 18) wavelength light for 30 minutes in a darkened room, followed immediately by functional magnetic resonance imaging (fMRI) while undergoing a working memory task (N-back task). Results: Participants in the blue light condition were faster in their responses on the N-back task and showed increased activation in the dorsolateral (DLPFC) and ventrolateral (VLPFC) prefrontal cortex compared to those in the amber control light condition. Furthermore, greater activation within the VLPFC was correlated with faster N-back response times. Conclusions: This is the first study to suggest that a relatively brief, single exposure to blue light has a subsequent beneficial effect on working memory performance, even after cessation of exposure, and leads to temporarily persisting functional brain changes within prefrontal brain regions associated with executive functions. These findings may have broader implication for using blue-enriched light in a variety of work settings where alertness and quick decision-making are important. Citation: Alkozei A, Smith R, Pisner DA, Vanuk JR, Berryhill SM, Fridman A, Shane BR, Knight SA, Killgore WD. Exposure to blue light increases subsequent functional activation of the prefrontal cortex during performance of a working memory task. SLEEP 2016;39(9):1671–1680. PMID:27253770
Vinader-Caerols, Concepción; Talk, Andrew; Montañés, Adriana; Duque, Aránzazu; Monleón, Santiago
2017-09-01
Binge drinking (BD) is characterized by intermittent consumption of large quantities of alcohol in short periods. This pattern of drinking is prevalent among adolescents, and has been associated with undermined learning and memory ability. This study investigates the relationships between a history of BD and the effects of acute exposure to alcohol on learning and memory performance in adolescent men and women. A high, acute dose of alcohol or control refreshment was administered to a sample of 172 adolescent undergraduate students, some of which had a history of BD and others of which had refrained from alcohol consumption. Subsequently, immediate visual memory (IVM) and working memory (WM) was measured according to the Wechsler Memory Scale in females and males with different BAC (Experiment 1) and similar BAC (Experiment 2). In both experiments, IVM was reduced after acute alcohol consumption and there was no significant main effect of Drinking Pattern. Furthermore, an effect of cognitive alcohol tolerance on IVM was observed in women but not in men. WM was not affected by alcohol, but a gender difference was evident in that performance was superior in men than in women. In adolescents, IVM is more sensitive than WM to impairment by alcohol, and women are more vulnerable to the neurotoxic effects of alcohol than men, since the cognitive tolerance effect of alcohol on IVM develops in BD women but not in BD men. These findings emphasize the need to investigate the neurotoxic effects of alcohol in adolescent women. In adolescents, immediate visual memory (IVM) is more sensitive than working memory to impairment by alcohol, and women are more vulnerable to the neurotoxic effects of alcohol than men, because the cognitive tolerance effect of alcohol on IVM develops in binge drinking (BD) women but not in BD men. © The Author 2017. Medical Council on Alcohol and Oxford University Press. All rights reserved.
Manipulations of attention during eating and their effects on later snack intake.
Higgs, Suzanne
2015-09-01
Manipulation of attention during eating has been reported to affect later consumption via changes in meal memory. The aim of the present studies was to examine the robustness of these effects and investigate moderating factors. Across three studies, attention to eating was manipulated via distraction (via a computer game or TV watching) or focusing of attention to eating, and effects on subsequent snack consumption and meal memory were assessed. The participants were predominantly lean, young women students and the designs were between-subjects. Distraction increased later snack intake and this effect was larger when participants were more motivated to engage with the distracter and were offset when the distractor included food-related cues. Attention to eating reduced later snacking and this effect was larger when participants imagined eating from their own perspective than when they imagined eating from a third person perspective. Meal memory was impaired after distraction but focusing on eating did not affect later meal memory, possibly explained by ceiling effects for the memory measure. The pattern of results suggests that attention manipulations during eating have robust effects on later eating and the effect sizes are medium to large. The data are consistent with previous reports and add to the literature by suggesting that type of attention manipulation is important in determining effects on later eating. The results further suggest that attentive eating may be a useful target in interventions to help with appetite control. Copyright © 2015 Elsevier Ltd. All rights reserved.
How to Assess Gaming-Induced Benefits on Attention and Working Memory.
Mishra, Jyoti; Bavelier, Daphne; Gazzaley, Adam
2012-06-01
Our daily actions are driven by our goals in the moment, constantly forcing us to choose among various options. Attention and working memory are key enablers of that process. Attention allows for selective processing of goal-relevant information and rejecting task-irrelevant information. Working memory functions to maintain goal-relevant information in memory for brief periods of time for subsequent recall and/or manipulation. Efficient attention and working memory thus support the best extraction and retention of environmental information for optimal task performance. Recent studies have evidenced that attention and working memory abilities can be enhanced by cognitive training games as well as entertainment videogames. Here we review key cognitive paradigms that have been used to evaluate the impact of game-based training on various aspects of attention and working memory. Common use of such methodology within the scientific community will enable direct comparison of the efficacy of different games across age groups and clinical populations. The availability of common assessment tools will ultimately facilitate development of the most effective forms of game-based training for cognitive rehabilitation and education.
How to Assess Gaming-Induced Benefits on Attention and Working Memory
Mishra, Jyoti; Bavelier, Daphne
2012-01-01
Abstract Our daily actions are driven by our goals in the moment, constantly forcing us to choose among various options. Attention and working memory are key enablers of that process. Attention allows for selective processing of goal-relevant information and rejecting task-irrelevant information. Working memory functions to maintain goal-relevant information in memory for brief periods of time for subsequent recall and/or manipulation. Efficient attention and working memory thus support the best extraction and retention of environmental information for optimal task performance. Recent studies have evidenced that attention and working memory abilities can be enhanced by cognitive training games as well as entertainment videogames. Here we review key cognitive paradigms that have been used to evaluate the impact of game-based training on various aspects of attention and working memory. Common use of such methodology within the scientific community will enable direct comparison of the efficacy of different games across age groups and clinical populations. The availability of common assessment tools will ultimately facilitate development of the most effective forms of game-based training for cognitive rehabilitation and education. PMID:24761314
The effects of divided attention on implicit and explicit memory performance.
Schmitter-Edgecombe, M
1996-03-01
This study explored the nature of the relationship between attention available at learning and subsequent implicit and explicit memory performance. One hundred neurologically normal subjects rated their liking of target words on a five-point scale. Half of the subjects completed the word-rating task in a full attention condition and the other half performed the task in a divided attention condition. Following administration of the word-rating task, all subjects completed five memory tests, three implicit (category association, tachistoscopic identification, and perceptual clarification) and two explicit (semantic-cued recall and graphemic-cued recall), each bearing on a different subset of the list of previously presented target words. The results revealed that subjects in the divided attention condition performed significantly more poorly than subjects in the full attention condition on the explicit memory measures. In contrast, there were no significant group differences in performance on the implicit memory measures. These findings suggest that the attention to an episode that is necessary to produce later explicit memory may differ from that necessary to produce unconscious influences. The relationship between implicit memory, neurologic injury and automatic processes is discussed.
Self-Imagining Enhances Recognition Memory in Memory-Impaired Individuals with Neurological Damage
Grilli, Matthew D.; Glisky, Elizabeth L.
2010-01-01
Objective The ability to imagine an elaborative event from a personal perspective relies on a number of cognitive processes that may potentially enhance subsequent memory for the event, including visual imagery, semantic elaboration, emotional processing, and self-referential processing. In an effort to find a novel strategy for enhancing memory in memory-impaired individuals with neurological damage, the present study investigated the mnemonic benefit of a method we refer to as “self-imagining” – or the imagining of an event from a realistic, personal perspective. Method Fourteen individuals with neurologically-based memory deficits and fourteen healthy control participants intentionally encoded neutral and emotional sentences under three instructions: structural-baseline processing, semantic processing, and self-imagining. Results Findings revealed a robust “self-imagination effect” as self-imagination enhanced recognition memory relative to deep semantic elaboration in both memory-impaired individuals, F (1, 13) = 32.11, p < .001, η2 = .71, and healthy controls, F (1, 13) = 5.57, p < .05, η2 = .30. In addition, results indicated that mnemonic benefits of self-imagination were not limited by severity of the memory disorder nor were they related to self-reported vividness of visual imagery, semantic processing, or emotional content of the materials. Conclusions The findings suggest that the self-imagination effect may depend on unique mnemonic mechanisms possibly related to self-referential processing, and that imagining an event from a personal perspective makes that event particularly memorable even for those individuals with severe memory deficits. Self-imagining may thus provide an effective rehabilitation strategy for individuals with memory impairment. PMID:20873930
Memory consolidation by replay of stimulus-specific neural activity.
Deuker, Lorena; Olligs, Jan; Fell, Juergen; Kranz, Thorsten A; Mormann, Florian; Montag, Christian; Reuter, Martin; Elger, Christian E; Axmacher, Nikolai
2013-12-04
Memory consolidation transforms initially labile memory traces into more stable representations. One putative mechanism for consolidation is the reactivation of memory traces after their initial encoding during subsequent sleep or waking state. However, it is still unknown whether consolidation of individual memory contents relies on reactivation of stimulus-specific neural representations in humans. Investigating stimulus-specific representations in humans is particularly difficult, but potentially feasible using multivariate pattern classification analysis (MVPA). Here, we show in healthy human participants that stimulus-specific activation patterns can indeed be identified with MVPA, that these patterns reoccur spontaneously during postlearning resting periods and sleep, and that the frequency of reactivation predicts subsequent memory for individual items. We conducted a paired-associate learning task with items and spatial positions and extracted stimulus-specific activity patterns by MVPA in a simultaneous electroencephalography and functional magnetic resonance imaging (fMRI) study. As a first step, we investigated the amount of fMRI volumes during rest that resembled either one of the items shown before or one of the items shown as a control after the resting period. Reactivations during both awake resting state and sleep predicted subsequent memory. These data are first evidence that spontaneous reactivation of stimulus-specific activity patterns during resting state can be investigated using MVPA. They show that reactivation occurs in humans and is behaviorally relevant for stabilizing memory traces against interference. They move beyond previous studies because replay was investigated on the level of individual stimuli and because reactivations were not evoked by sensory cues but occurred spontaneously.
Brocca-Cofano, Egidio; McKinnon, Katherine; Demberg, Thorsten; Venzon, David; Hidajat, Rachmat; Xiao, Peng; Daltabuit-Test, Mara; Patterson, L. Jean; Robert-Guroff, Marjorie
2011-01-01
An effective HIV vaccine requires strong systemic and mucosal, cellular and humoral immunity. Numerous non-human primate studies have investigated memory T cells, but not memory B cells. Humoral immunologic memory is mediated by long-lived antibody-secreting plasma cells and differentiation of memory B cells into short-lived plasma blasts following re-exposure to immunizing antigen. Here we studied memory B cells in vaccinated rhesus macaques. PBMC were stimulated polyclonally using CD40 Ligand, IL-21 and CpG to induce B cell proliferation and differentiation into antibody secreting cells (ASC). Flow cytometry was used for phenotyping and evaluating proliferation by CFSE dilution. B cell responses were quantified by ELISPOT. Methodology was established using PBMC of vaccinated elite-controller macaques that exhibited strong, multi-functional antibody activities. Subsequently, memory B cells elicited by two replicating Ad-recombinant prime/envelope boost regimens were retrospectively evaluated pre- and post- SIV and SHIV challenges. The vaccine regimens induced SIV and HIV Env-specific IgG and IgA memory B cells. Prior to challenge, IgA memory B cells were more numerous than IgG memory B cells, reflecting the mucosal priming immunizations. Pre- and post-challenge memory B cells were correlated with functional antibody responses including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell-mediated viral inhibition (ADCVI) and transcytosis inhibition. Post-challenge, Env-specific IgG and IgA memory B cells were correlated with reduced chronic viremia. We conclude that functional antibody responses elicited by our prime/boost regimen were effectively incorporated into the memory B cell pool where they contributed to control of viremia following re-exposure to the immunizing antigen. PMID:21382487
Vienne, Julie; Lecciso, Gianpaolo; Constantinescu, Irina; Schwartz, Sophie; Franken, Paul; Heinzer, Raphaël; Tafti, Mehdi
2012-08-01
Sodium oxybate (SO) is a GABAβ agonist used to treat the sleep disorder narcolepsy. SO was shown to increase slow wave sleep (SWS) and EEG delta power (0.75-4.5 Hz), both indexes of NREM sleep (NREMS) intensity and depth, suggesting that SO enhances recuperative function of NREM. We investigated whether SO induces physiological deep sleep. SO was administered before an afternoon nap or before the subsequent experimental night in 13 healthy volunteers. The effects of SO were compared to baclofen (BAC), another GABAβ receptor agonist, to assess the role of GABAβ receptors in the SO response. As expected, a nap significantly decreased sleep need and intensity the subsequent night. Both drugs reversed this nap effect on the subsequent night by decreasing sleep latency and increasing total sleep time, SWS during the first NREMS episode, and EEG delta and theta (0.75-7.25 Hz) power during NREMS. The SO-induced increase in EEG delta and theta power was, however, not specific to NREMS and was also observed during REM sleep (REMS) and wakefulness. Moreover, the high levels of delta power during a nap following SO administration did not affect delta power the following night. SO and BAC taken before the nap did not improve subsequent psychomotor performance and subjective alertness, or memory consolidation. Finally, SO and BAC strongly promoted the appearance of sleep onset REM periods. The SO-induced EEG slow waves seem not to be functionally similar to physiological slow waves. Our findings also suggest a role for GABAβ receptors in REMS generation.
Wagner, Isabella C; van Buuren, Mariët; Bovy, Leonore; Morris, Richard G; Fernández, Guillén
2017-02-01
Synaptic memory consolidation is thought to rely on catecholaminergic signaling. Eventually, it is followed by systems consolidation, which embeds memories in a neocortical network. Although this sequence was demonstrated in rodents, it is unclear how catecholamines affect memory consolidation in humans. Here, we tested the effects of catecholaminergic modulation on synaptic and subsequent systems consolidation. We expected enhanced memory performance and increased neocortical engagement during delayed retrieval. Additionally, we tested if this effect was modulated by individual differences in a cognitive proxy measure of baseline catecholamine synthesis capacity. Fifty-three healthy males underwent a between-subjects, double-blind, placebo-controlled procedure across 2 days. On day 1, subjects studied and retrieved object-location associations and received 20 mg of methylphenidate or placebo. Drug intake was timed so that methylphenidate was expected to affect early consolidation but not encoding or retrieval. Memory was tested again while subjects were scanned three days later. Methylphenidate did not facilitate memory performance, and there was no significant group difference in activation during delayed retrieval. However, memory representations differed between groups depending on baseline catecholamines. The placebo group showed increased activation in occipito-temporal regions but decreased connectivity with the hippocampus, associated with lower baseline catecholamine synthesis capacity. The methylphenidate group showed stronger activation in the postcentral gyrus, associated with higher baseline catecholamine synthesis capacity. Altogether, methylphenidate during early consolidation did not foster long-term memory performance, but it affected retrieval-related neural processes depending on individual levels of baseline catecholamines.
Slow oscillations orchestrating fast oscillations and memory consolidation.
Mölle, Matthias; Born, Jan
2011-01-01
Slow-wave sleep (SWS) facilitates the consolidation of hippocampus-dependent declarative memory. Based on the standard two-stage memory model, we propose that memory consolidation during SWS represents a process of system consolidation which is orchestrated by the neocortical <1Hz electroencephalogram (EEG) slow oscillation and involves the reactivation of newly encoded representations and their subsequent redistribution from temporary hippocampal to neocortical long-term storage sites. Indeed, experimental induction of slow oscillations during non-rapid eye movement (non-REM) sleep by slowly alternating transcranial current stimulation distinctly improves consolidation of declarative memory. The slow oscillations temporally group neuronal activity into up-states of strongly enhanced neuronal activity and down-states of neuronal silence. In a feed-forward efferent action, this grouping is induced not only in the neocortex but also in other structures relevant to consolidation, namely the thalamus generating 10-15Hz spindles, and the hippocampus generating sharp wave-ripples, with the latter well known to accompany a replay of newly encoded memories taking place in hippocampal circuitries. The feed-forward synchronizing effect of the slow oscillation enables the formation of spindle-ripple events where ripples and accompanying reactivated hippocampal memory information become nested into the single troughs of spindles. Spindle-ripple events thus enable reactivated memory-related hippocampal information to be fed back to neocortical networks in the excitable slow oscillation up-state where they can induce enduring plastic synaptic changes underlying the effective formation of long-term memories. Copyright © 2011 Elsevier B.V. All rights reserved.
Remembering Memories about Students with Disabilities
ERIC Educational Resources Information Center
Miller, Maury; Gresham, Pamela; Fouts, Bonnia
2011-01-01
Preservice general education classroom teachers in an inclusion course were asked to describe their own earliest memories of students with disabilities in school. Substantial literature links early memories to subsequent thoughts and attitudes. Subjects also completed the Opinions Relative to Integration of Students with Disabilities attitude…
Effects of Bilateral Eye Movements on Gist Based False Recognition in the DRM Paradigm
ERIC Educational Resources Information Center
Parker, Andrew; Dagnall, Neil
2007-01-01
The effects of saccadic bilateral (horizontal) eye movements on gist based false recognition was investigated. Following exposure to lists of words related to a critical but non-studied word participants were asked to engage in 30s of bilateral vs. vertical vs. no eye movements. Subsequent testing of recognition memory revealed that those who…
ERIC Educational Resources Information Center
Geary, David C.; Nicholas, Alan; Li, Yaoran; Sun, Jianguo
2017-01-01
The contributions of domain-general abilities and domain-specific knowledge to subsequent mathematics achievement were longitudinally assessed (n = 167) through 8th grade. First grade intelligence and working memory and prior grade reading achievement indexed domain-general effects, and domain-specific effects were indexed by prior grade…
Reorganization in Semantic Memory: An Interpretation of the Facilitation Effect
ERIC Educational Resources Information Center
Hopf-Weichel, Rosemarie
1977-01-01
A model is proposed in which information processing is accompanied by dynamic processes, including the reorganization of items into active patterns and their subsequent displacement. Research using category names and instances showed that reaction times decreased with each successive repetition under one condition, but longer latencies were…
Procedural Memory Consolidation in the Performance of Brief Keyboard Sequences
ERIC Educational Resources Information Center
Duke, Robert A.; Davis, Carla M.
2006-01-01
Using two sequential key press sequences, we tested the extent to which subjects' performance on a digital piano keyboard changed between the end of training and retest on subsequent days. We found consistent, significant improvements attributable to sleep-based consolidation effects, indicating that learning continued after the cessation of…
Reduced Interference from Memory Testing: A Postretrieval Monitoring Account
ERIC Educational Resources Information Center
Pierce, Benton H.; Gallo, David A.; McCain, Jason L.
2017-01-01
Initial learning can interfere with subsequent learning (proactive interference [PI]), but recent work indicates initial testing can reduce PI. Here, we tested 2 alternative hypotheses of this effect: Does testing reduce PI by constraining retrieval to the target list, or by facilitating a postretrieval monitoring process? Participants first…
Grönbladh, Alfhild; Johansson, Jenny; Nöstl, Anatole; Nyberg, Fred; Hallberg, Mathias
2013-01-01
GH has previously been shown to promote cognitive functions in GH-deficient rodents. In this study we report the effects of GH on learning and memory in intact rats pretreated with the anabolic androgenic steroid nandrolone. Male Wistar rats received nandrolone decanoate (15 mg/kg) or peanut oil every third day for 3 weeks and were subsequently treated with recombinant human GH (1.0 IU/kg) or saline for 10 consecutive days. During the GH/saline treatment spatial learning and memory were tested in the Morris water maze (MWM). Also, plasma levels of IGF1 were assessed and the gene expression of the GH receptors (Ghr), Igf1 and Igf2, in hippocampus and frontal cortex was analyzed. The results demonstrated a significant positive effect of GH on memory functions and increased gene expression of Igf1 in the hippocampus was found in the animals treated with GH. In addition, GH was demonstrated to increase the body weight gain and was able to attenuate the reduced body weight seen in nandrolone-treated animals. In general, the rats treated with nandrolone alone did not exhibit any pronounced alteration in memory compared with controls in the MWM, and in many cases GH did not induce any alteration. Regarding target zone crossings, considered to be associated with spatial memory, the difference between GH- and steroid-treated animals was significant and administration of GH improved this parameter in the latter group. In conclusion, GH improves spatial memory in intact rats and can reverse certain effects induced by anabolic androgenic steroid.
Bauch, Eva M; Bunzeck, Nico
2015-09-01
In humans, the temporal and oscillatory dynamics of pain anticipation and its effects on long-term memory are largely unknown. Here, we investigated this open question by using a previously established behavioral paradigm in combination with magnetoencephalography (MEG). Healthy human subjects encoded a series of scene images, which was combined with cues predicting an aversive electric shock with different probabilities (0.2, 0.5 or 0.8). After encoding, memory for the studied images was tested using a remember/know recognition task. Behaviorally, pain anticipation did not modulate recollection-based recognition memory per se, but interacted with the perceived unpleasantness of the electric shock [visual analogue scale rating from 1 (not unpleasant) to 10 (highly unpleasant)]. More precisely, the relationship between pain anticipation and recollection followed an inverted u-shaped function the more unpleasant the shocks were rated by a subject. At the physiological level, this quadratic effect was mimicked in the event-related magnetic fields associated with successful memory formation ('DM-effect') ∼450ms after image onset at left frontal sensors. Importantly, across all subjects, shock anticipation modulated oscillatory power in the low beta frequency range (13-20Hz) in a linear fashion at left temporal sensors. Taken together, our findings indicate that beta oscillations provide a generic mechanism underlying pain anticipation; the effect on subsequent long-term memory, on the other hand, is much more variable and depends on the level of individual pain perception. As such, our findings give new and important insights into how aversive motivational states can drive memory formation. Copyright © 2015 Elsevier Inc. All rights reserved.
Dolcos, Florin; Iordan, Alexandru D.; Kragel, James; Stokes, Jared; Campbell, Ryan; McCarthy, Gregory; Cabeza, Roberto
2013-01-01
A fundamental question in the emotional memory literature is why emotion enhances memory in some conditions but disrupts memory in other conditions. For example, separate studies have shown that emotional stimuli tend to be better remembered in long-term episodic memory (EM), whereas emotional distracters tend to impair working memory (WM) maintenance. The first goal of this study was to directly compare the neural correlates of EM enhancement (EME) and WM impairing (WMI) effects, and the second goal was to explore individual differences in these mechanisms. During event-related functional magnetic resonance imaging (fMRI), participants maintained faces in WM while being distracted by emotional or neutral pictures presented during the delay period. EM for the distracting pictures was tested after scanning and was used to identify successful encoding activity for the picture distracters. The first goal yielded two findings: (1) emotional pictures that disrupted face WM but enhanced subsequent EM were associated with increased amygdala (AMY) and hippocampal activity (ventral system) coupled with reduced dorsolateral PFC (dlPFC) activity (dorsal system); (2) trials in which emotion enhanced EM without disrupting WM were associated with increased ventrolateral PFC activity. The ventral-dorsal switch can explain EME and WMI, while the ventrolateral PFC effect suggests a coping mechanism. The second goal yielded two additional findings: (3) participants who were more susceptible to WMI showed greater amygdala increases and PFC reductions; (4) AMY activity increased and dlPFC activity decreased with measures of attentional impulsivity. Taken together, these results clarify the mechanisms linking the enhancing and impairing effects of emotion on memory, and provide insights into the role of individual differences in the impact of emotional distraction. PMID:23761770
Everyday episodic memory in amnestic mild cognitive impairment: a preliminary investigation.
Irish, Muireann; Lawlor, Brian A; Coen, Robert F; O'Mara, Shane M
2011-08-04
Decline in episodic memory is one of the hallmark features of Alzheimer's disease (AD) and is also a defining feature of amnestic Mild Cognitive Impairment (MCI), which is posited as a potential prodrome of AD. While deficits in episodic memory are well documented in MCI, the nature of this impairment remains relatively under-researched, particularly for those domains with direct relevance and meaning for the patient's daily life. In order to fully explore the impact of disruption to the episodic memory system on everyday memory in MCI, we examined participants' episodic memory capacity using a battery of experimental tasks with real-world relevance. We investigated episodic acquisition and delayed recall (story-memory), associative memory (face-name pairings), spatial memory (route learning and recall), and memory for everyday mundane events in 16 amnestic MCI and 18 control participants. Furthermore, we followed MCI participants longitudinally to gain preliminary evidence regarding the possible predictive efficacy of these real-world episodic memory tasks for subsequent conversion to AD. The most discriminating tests at baseline were measures of acquisition, delayed recall, and associative memory, followed by everyday memory, and spatial memory tasks, with MCI patients scoring significantly lower than controls. At follow-up (mean time elapsed: 22.4 months), 6 MCI cases had progressed to clinically probable AD. Exploratory logistic regression analyses revealed that delayed associative memory performance at baseline was a potential predictor of subsequent conversion to AD. As a preliminary study, our findings suggest that simple associative memory paradigms with real-world relevance represent an important line of enquiry in future longitudinal studies charting MCI progression over time.
Heib, Dominik P J; Hoedlmoser, Kerstin; Anderer, Peter; Gruber, Georg; Zeitlhofer, Josef; Schabus, Manuel
2015-08-01
Sleep has been shown to promote memory consolidation driven by certain oscillatory patterns, such as sleep spindles. However, sleep does not consolidate all newly encoded information uniformly but rather "selects" certain memories for consolidation. It is assumed that such selection depends on salience tags attached to the new memories before sleep. However, little is known about the underlying neuronal processes reflecting presleep memory tagging. The current study sought to address the question of whether event-related changes in spectral theta power (theta ERSP) during presleep memory formation could reflect memory tagging that influences subsequent consolidation during sleep. Twenty-four participants memorized 160 word pairs before sleep; in a separate laboratory visit, they performed a nonlearning control task. Memory performance was tested twice, directly before and after 8 hr of sleep. Results indicate that participants who improved their memory performance overnight displayed stronger theta ERSP during the memory task in comparison with the control task. They also displayed stronger memory task-related increases in fast sleep spindle activity. Furthermore, presleep theta activity was directly linked to fast sleep spindle activity, indicating that processes during memory formation might indeed reflect memory tagging that influences subsequent consolidation during sleep. Interestingly, our results further indicate that the suggested relation between sleep spindles and overnight performance change is not as direct as once believed. Rather, it appears to be mediated by processes beginning during presleep memory formation. We conclude that theta ERSP during presleep memory formation reflects cortico-hippocampal interactions that lead to a better long-term accessibility by tagging memories for sleep spindle-related reprocessing.
The analogy between dreams and the ancient art of memory is tempting but superficial.
Axmacher, Nikolai; Fell, Juergen
2013-12-01
Although the analogy between dreams and ancient mnemotechniques is tempting because they share several phenomenological characteristics, this analogy is superficial at a closer look. Unlike mneomotechnically encoded material, rapid eye movement (REM) dreams are inherently difficult to remember, do not usually allow conscious subsequent retrieval of all interconnected elements, and have been found to support subsequent episodic memory in only rare cases.
Consolidation and reconsolidation: Two lives of memories?
McKenzie, Sam; Eichenbaum, Howard
2011-01-01
Most studies on memory consolidation consider the new information as if it were imposed on a tabula rasa, but considerable evidence indicates that new memories must be interleaved within a large network of relevant pre-existing knowledge. Early studies on reconsolidation highlighted that a newly consolidated memory could be erased after reactivation, but new evidence has shown that an effective reactivation experience must also involve memory re-organization to incorporate new learning. The combination of these observations on consolidation and reconsolidation highlight the fundamental similarities of both phenomena as integration of new information on old, and suggest that reconsolidation = consolidation as a never-ending process of schema modification. Memories evolve over time, and many have come to consider that memories have two extended “lives” following the initial encoding of new information. The first, called consolidation, involves a prolonged period after learning when new information becomes fixed at a cellular level and interleaved among already existing memories to enrich our body of personal and factual knowledge. The second, called reconsolidation, turns the tables on a memory and involves the converse process in which a newly consolidated memory is now subject to modification though subsequent reminders and interference. Here we propose that the time has come to join the literatures on these two lives of memories, towards the goal of understanding memory as an ever-evolving organization of the record of experience. PMID:21791282
Marin, Bianca M; VanHaerents, Stephen A; Voss, Joel L; Bridge, Donna J
2018-01-01
Dorsolateral prefrontal cortex (DLPFC) is thought to organize items in working memory and this organizational role may also influence long-term memory. To causally test this hypothesized role of DLPFC in long-term memory formation, we used θ-burst noninvasive stimulation (TBS) to modulate DLPFC involvement in a memory task that assessed the influence of active short-term retrieval on later memory. Human subjects viewed three objects on a grid and then either actively retrieved or passively restudied one object's location after a brief delay. Long-term memory for the other objects was assessed after a delay to evaluate the beneficial role of active short-term retrieval on subsequent memory for the entire set of object locations. We found that DLPFC TBS had no significant effects on short-term memory. In contrast, DLPFC TBS impaired long-term memory selectively in the active-retrieval condition but not in the passive-restudy condition. These findings are consistent with the hypothesized contribution of DLPFC to the organizational processes operative during active short-term retrieval that influence long-term memory, although other regions that were not stimulated could provide similar contributions. Notably, active-retrieval and passive-restudy conditions were intermixed, and therefore nonspecific influences of stimulation were well controlled. These results suggest that DLPFC is causally involved in organizing event information during active retrieval to support coherent long-term memory formation.
2018-01-01
Abstract Dorsolateral prefrontal cortex (DLPFC) is thought to organize items in working memory and this organizational role may also influence long-term memory. To causally test this hypothesized role of DLPFC in long-term memory formation, we used θ-burst noninvasive stimulation (TBS) to modulate DLPFC involvement in a memory task that assessed the influence of active short-term retrieval on later memory. Human subjects viewed three objects on a grid and then either actively retrieved or passively restudied one object’s location after a brief delay. Long-term memory for the other objects was assessed after a delay to evaluate the beneficial role of active short-term retrieval on subsequent memory for the entire set of object locations. We found that DLPFC TBS had no significant effects on short-term memory. In contrast, DLPFC TBS impaired long-term memory selectively in the active-retrieval condition but not in the passive-restudy condition. These findings are consistent with the hypothesized contribution of DLPFC to the organizational processes operative during active short-term retrieval that influence long-term memory, although other regions that were not stimulated could provide similar contributions. Notably, active-retrieval and passive-restudy conditions were intermixed, and therefore nonspecific influences of stimulation were well controlled. These results suggest that DLPFC is causally involved in organizing event information during active retrieval to support coherent long-term memory formation. PMID:29445769
Memory Operations and Structures in Sentence Comprehension: Evidence from Ellipsis
ERIC Educational Resources Information Center
Martin, Andrea Eyleen
2010-01-01
Natural language often contains dependencies that span words, phrases, or even sentences. Thus, language comprehension relies on recovering recently processed information from memory for subsequent interpretation. This dissertation investigates the memory operations that subserve dependency resolution through the lens of "verb-phrase ellipsis"…
Learned Interval Time Facilitates Associate Memory Retrieval
ERIC Educational Resources Information Center
van de Ven, Vincent; Kochs, Sarah; Smulders, Fren; De Weerd, Peter
2017-01-01
The extent to which time is represented in memory remains underinvestigated. We designed a time paired associate task (TPAT) in which participants implicitly learned cue-time-target associations between cue-target pairs and specific cue-target intervals. During subsequent memory testing, participants showed increased accuracy of identifying…
Lee, Michael L; Katsuyama, Ângela M; Duge, Leanne S; Sriram, Chaitra; Krushelnytskyy, Mykhaylo; Kim, Jeansok J; de la Iglesia, Horacio O
2016-11-01
Sleep is important for consolidation of hippocampus-dependent memories. It is hypothesized that the temporal sequence of nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep is critical for the weakening of nonadaptive memories and the subsequent transfer of memories temporarily stored in the hippocampus to more permanent memories in the neocortex. A great body of evidence supporting this hypothesis relies on behavioral, pharmacological, neural, and/or genetic manipulations that induce sleep deprivation or stage-specific sleep deprivation. We exploit an experimental model of circadian desynchrony in which intact animals are not deprived of any sleep stage but show fragmentation of REM and NREM sleep within nonfragmented sleep bouts. We test the hypothesis that the shortening of NREM and REM sleep durations post-training will impair memory consolidation irrespective of total sleep duration. When circadian-desynchronized animals are trained in a hippocampus-dependent contextual fear-conditioning task they show normal short-term memory but impaired long-term memory consolidation. This impairment in memory consolidation is positively associated with the post-training fragmentation of REM and NREM sleep but is not significantly associated with the fragmentation of total sleep or the total amount of delta activity. We also show that the sleep stage fragmentation resulting from circadian desynchrony has no effect on hippocampus-dependent spatial memory and no effect on hippocampus-independent cued fear-conditioning memory. Our findings in an intact animal model, in which sleep deprivation is not a confounding factor, support the hypothesis that the stereotypic sequence and duration of sleep stages play a specific role in long-term hippocampus-dependent fear memory consolidation. © 2016 Associated Professional Sleep Societies, LLC.
NASA Astrophysics Data System (ADS)
Perez-Zúñiga, M. G.; Sánchez-Arévalo, F. M.; Hernández-Cordero, J.
2017-10-01
A simple way to enhance the activation of shape memory effects with light in a Ni-Ti alloy is demonstrated. Using polydimethylsiloxane-carbon nanopowder (PDMS+CNP) composites as coatings, the one-way shape memory effect (OWSME) of the alloy can be triggered using low power IR light from a laser diode. The PDMS+CNP coatings serve as photothermal materials capable to absorb light, and subsequently generate and dissipate heat in a highly efficient manner, thereby reducing the optical powers required for triggering the OWSME in the Ni-Ti alloy. Experimental results with a cantilever flexural test using both, bare Ni-Ti and coated samples, show that the PDMS+CNP coatings perform as thermal boosters, and therefore the temperatures required for phase transformation in the alloy can be readily obtained with low laser powers. It is also shown that the two-way shape memory effect (TWSME) can be set in the Ni-Ti alloy through cycling the TWSME by simply modulating the laser diode signal. This provides a simple means for training the material, yielding a light driven actuator capable to provide forces in the mN range. Hence, the use of photothermal coatings on Ni-Ti shape memory alloys may offer new possibilities for developing light-controlled smart actuators.
Can't control yourself? Monitor those bad habits.
Quinn, Jeffrey M; Pascoe, Anthony; Wood, Wendy; Neal, David T
2010-04-01
What strategies can people use to control unwanted habits? Past work has focused on controlling other kinds of automatic impulses, especially temptations. The nature of habit cuing calls for certain self-control strategies. Because the slow-to-change memory trace of habits is not amenable to change or reinterpretation, successful habit control involves inhibiting the unwanted response when activated in memory. In support, two episode-sampling diary studies demonstrated that bad habits, unlike responses to temptations, were controlled most effectively through spontaneous use of vigilant monitoring (thinking "don't do it," watching carefully for slipups). No other strategy was useful in controlling strong habits, despite that stimulus control was effective at inhibiting responses to temptations. A subsequent experiment showed that vigilant monitoring aids habit control, not by changing the strength of the habit memory trace but by heightening inhibitory, cognitive control processes. The implications of these findings for behavior change interventions are discussed.
A bilateral advantage for maintaining objects in visual short term memory.
Holt, Jessica L; Delvenne, Jean-François
2015-01-01
Research has shown that attentional pre-cues can subsequently influence the transfer of information into visual short term memory (VSTM) (Schmidt, B., Vogel, E., Woodman, G., & Luck, S. (2002). Voluntary and automatic attentional control of visual working memory. Perception & Psychophysics, 64(5), 754-763). However, studies also suggest that those effects are constrained by the hemifield alignment of the pre-cues (Holt, J. L., & Delvenne, J.-F. (2014). A bilateral advantage in controlling access to visual short-term memory. Experimental Psychology, 61(2), 127-133), revealing better recall when distributed across hemifields relative to within a single hemifield (otherwise known as a bilateral field advantage). By manipulating the duration of the retention interval in a colour change detection task (1s, 3s), we investigated whether selective pre-cues can also influence how information is later maintained in VSTM. The results revealed that the pre-cues influenced the maintenance of the colours in VSTM, promoting consistent performance across retention intervals (Experiments 1 & 4). However, those effects were only shown when the pre-cues were directed to stimuli displayed across hemifields relative to stimuli within a single hemifield. Importantly, the results were not replicated when participants were required to memorise colours (Experiment 2) or locations (Experiment 3) in the absence of spatial pre-cues. Those findings strongly suggest that attentional pre-cues have a strong influence on both the transfer of information in VSTM and its subsequent maintenance, allowing bilateral items to better survive decay. Copyright © 2014 Elsevier B.V. All rights reserved.
Effects of eating rate on satiety: A role for episodic memory?
Ferriday, Danielle; Bosworth, Matthew L.; Lai, Samantha; Godinot, Nicolas; Martin, Nathalie; Martin, Ashley A.; Rogers, Peter J.; Brunstrom, Jeffrey M.
2015-01-01
Eating slowly is associated with a lower body mass index. However, the underlying mechanism is poorly understood. Here, our objective was to determine whether eating a meal at a slow rate improves episodic memory for the meal and promotes satiety. Participants (N = 40) consumed a 400 ml portion of tomato soup at either a fast (1.97 ml/s) or a slow (0.50 ml/s) rate. Appetite ratings were elicited at baseline and at the end of the meal (satiation). Satiety was assessed using; i) an ad libitum biscuit ‘taste test’ (3 h after the meal) and ii) appetite ratings (collected 2 h after the meal and after the ad libitum snack). Finally, to evaluate episodic memory for the meal, participants self-served the volume of soup that they believed they had consumed earlier (portion size memory) and completed a rating of memory ‘vividness’. Participants who consumed the soup slowly reported a greater increase in fullness, both at the end of the meal and during the inter-meal interval. However, we found little effect of eating rate on subsequent ad libitum snack intake. Importantly, after 3 h, participants who ate the soup slowly remembered eating a larger portion. These findings show that eating slowly promotes self-reported satiation and satiety. For the first time, they also suggest that eating rate influences portion size memory. However, eating slowly did not affect ratings of memory vividness and we found little evidence for a relationship between episodic memory and satiety. Therefore, we are unable to conclude that episodic memory mediates effects of eating rate on satiety. PMID:26143189
Effects of eating rate on satiety: A role for episodic memory?
Ferriday, Danielle; Bosworth, Matthew L; Lai, Samantha; Godinot, Nicolas; Martin, Nathalie; Martin, Ashley A; Rogers, Peter J; Brunstrom, Jeffrey M
2015-12-01
Eating slowly is associated with a lower body mass index. However, the underlying mechanism is poorly understood. Here, our objective was to determine whether eating a meal at a slow rate improves episodic memory for the meal and promotes satiety. Participants (N=40) consumed a 400ml portion of tomato soup at either a fast (1.97ml/s) or a slow (0.50ml/s) rate. Appetite ratings were elicited at baseline and at the end of the meal (satiation). Satiety was assessed using; i) an ad libitum biscuit 'taste test' (3h after the meal) and ii) appetite ratings (collected 2h after the meal and after the ad libitum snack). Finally, to evaluate episodic memory for the meal, participants self-served the volume of soup that they believed they had consumed earlier (portion size memory) and completed a rating of memory 'vividness'. Participants who consumed the soup slowly reported a greater increase in fullness, both at the end of the meal and during the inter-meal interval. However, we found little effect of eating rate on subsequent ad libitum snack intake. Importantly, after 3h, participants who ate the soup slowly remembered eating a larger portion. These findings show that eating slowly promotes self-reported satiation and satiety. For the first time, they also suggest that eating rate influences portion size memory. However, eating slowly did not affect ratings of memory vividness and we found little evidence for a relationship between episodic memory and satiety. Therefore, we are unable to conclude that episodic memory mediates effects of eating rate on satiety. Copyright © 2015. Published by Elsevier Inc.
Kuhl, Brice A.; Rissman, Jesse; Wagner, Anthony D.
2012-01-01
Successful encoding of episodic memories is thought to depend on contributions from prefrontal and temporal lobe structures. Neural processes that contribute to successful encoding have been extensively explored through univariate analyses of neuroimaging data that compare mean activity levels elicited during the encoding of events that are subsequently remembered vs. those subsequently forgotten. Here, we applied pattern classification to fMRI data to assess the degree to which distributed patterns of activity within prefrontal and temporal lobe structures elicited during the encoding of word-image pairs were diagnostic of the visual category (Face or Scene) of the encoded image. We then assessed whether representation of category information was predictive of subsequent memory. Classification analyses indicated that temporal lobe structures contained information robustly diagnostic of visual category. Information in prefrontal cortex was less diagnostic of visual category, but was nonetheless associated with highly reliable classifier-based evidence for category representation. Critically, trials associated with greater classifier-based estimates of category representation in temporal and prefrontal regions were associated with a higher probability of subsequent remembering. Finally, consideration of trial-by-trial variance in classifier-based measures of category representation revealed positive correlations between prefrontal and temporal lobe representations, with the strength of these correlations varying as a function of the category of image being encoded. Together, these results indicate that multi-voxel representations of encoded information can provide unique insights into how visual experiences are transformed into episodic memories. PMID:21925190
Ghrelin modulates encoding-related brain function without enhancing memory formation in humans.
Kunath, N; Müller, N C J; Tonon, M; Konrad, B N; Pawlowski, M; Kopczak, A; Elbau, I; Uhr, M; Kühn, S; Repantis, D; Ohla, K; Müller, T D; Fernández, G; Tschöp, M; Czisch, M; Steiger, A; Dresler, M
2016-11-15
Ghrelin regulates energy homeostasis in various species and enhances memory in rodent models. In humans, the role of ghrelin in cognitive processes has yet to be characterized. Here we show in a double-blind randomized crossover design that acute administration of ghrelin alters encoding-related brain activity, however does not enhance memory formation in humans. Twenty-one healthy young male participants had to memorize food- and non-food-related words presented on a background of a virtual navigational route while undergoing fMRI recordings. After acute ghrelin administration, we observed decreased post-encoding resting state fMRI connectivity between the caudate nucleus and the insula, amygdala, and orbitofrontal cortex. In addition, brain activity related to subsequent memory performance was modulated by ghrelin. On the next day, however, no differences were found in free word recall or cued location-word association recall between conditions; and ghrelin's effects on brain activity or functional connectivity were unrelated to memory performance. Further, ghrelin had no effect on a cognitive test battery comprising tests for working memory, fluid reasoning, creativity, mental speed, and attention. In conclusion, in contrast to studies with animal models, we did not find any evidence for the potential of ghrelin acting as a short-term cognitive enhancer in humans. Copyright © 2016 Elsevier Inc. All rights reserved.
Organizational strategies mediate nonverbal memory impairment in obsessive-compulsive disorder.
Savage, C R; Baer, L; Keuthen, N J; Brown, H D; Rauch, S L; Jenike, M A
1999-04-01
Previous neuropsychological studies of obsessive-compulsive disorder (OCD) have indicated impaired executive functioning and nonverbal memory. The extent to which impaired executive functioning impacts nonverbal memory has not been established. The current study investigated the mediating effects of organizational strategies used when copying a figure on subsequent nonverbal memory for that figure. We examined neuropsychological performance in 20 unmedicated subjects with OCD and 20 matched normal control subjects. Subjects were administered the Rey-Osterrieth Complex Figure Test (RCFT) and neuropsychological tests assessing various aspects of executive function. OCD subjects differed significantly from healthy control subjects in the organizational strategies used to copy the RCFT figure, and they recalled significantly less information on both immediate and delayed testing. Multiple regression analyses indicated that group differences in immediate percent recall were significantly mediated by copy organizational strategies. Further exploratory analyses indicated that organizational problems in OCD may be related to difficulties shifting mental and/or spatial set. Immediate nonverbal memory problems in OCD subjects were mediated by impaired organizational strategies used during the initial copy of the RCFT figure. Thus, the primary deficit was one affecting executive function, which then had a secondary effect on immediate memory. These findings are consistent with current theories proposing frontal-striatal system dysfunction in OCD.
A Preliminary Empirical Evaluation of Virtual Reality as a Training Tool for Visual-Spatial Tasks
1993-05-01
Hillsdale, NJ: Lawrence Erlbaum Associates. Craik , F.I.M., & Lockhart , R.S. (1972). Levels of processing ; A framework for memory research. Journal of...short-term memory (Bower, 1972; Kanigel, 1981), elaborative rehearsai in short-term memory, and subsequent retrieval from long-term memory ( Craik ... Lockhart , 1972; Chase & Ericsson, 1981), ?nd the superiority of gist over verbatim recall of sentences (Bransford & Franks, 1971). Even memory for simple
Multiple Transient Memories in Experiments on Sheared Non-Brownian Suspensions
NASA Astrophysics Data System (ADS)
Paulsen, Joseph D.; Keim, Nathan C.; Nagel, Sidney R.
2014-08-01
A system with multiple transient memories can remember a set of inputs but subsequently forgets almost all of them, even as they are continually applied. If noise is added, the system can store all memories indefinitely. The phenomenon has recently been predicted for cyclically sheared non-Brownian suspensions. Here we present experiments on such suspensions, finding behavior consistent with multiple transient memories and showing how memories can be stabilized by noise.
Warren, Brandon L.; Mendoza, Michael P.; Cruz, Fabio C.; Leao, Rodrigo M.; Caprioli, Daniele; Rubio, F. Javier; Whitaker, Leslie R.; McPherson, Kylie B.; Bossert, Jennifer M.; Shaham, Yavin
2016-01-01
In operant learning, initial reward-associated memories are thought to be distinct from subsequent extinction-associated memories. Memories formed during operant learning are thought to be stored in “neuronal ensembles.” Thus, we hypothesize that different neuronal ensembles encode reward- and extinction-associated memories. Here, we examined prefrontal cortex neuronal ensembles involved in the recall of reward and extinction memories of food self-administration. We first trained rats to lever press for palatable food pellets for 7 d (1 h/d) and then exposed them to 0, 2, or 7 daily extinction sessions in which lever presses were not reinforced. Twenty-four hours after the last training or extinction session, we exposed the rats to either a short 15 min extinction test session or left them in their homecage (a control condition). We found maximal Fos (a neuronal activity marker) immunoreactivity in the ventral medial prefrontal cortex of rats that previously received 2 extinction sessions, suggesting that neuronal ensembles in this area encode extinction memories. We then used the Daun02 inactivation procedure to selectively disrupt ventral medial prefrontal cortex neuronal ensembles that were activated during the 15 min extinction session following 0 (no extinction) or 2 prior extinction sessions to determine the effects of inactivating the putative food reward and extinction ensembles, respectively, on subsequent nonreinforced food seeking 2 d later. Inactivation of the food reward ensembles decreased food seeking, whereas inactivation of the extinction ensembles increased food seeking. Our results indicate that distinct neuronal ensembles encoding operant reward and extinction memories intermingle within the same cortical area. SIGNIFICANCE STATEMENT A current popular hypothesis is that neuronal ensembles in different prefrontal cortex areas control reward-associated versus extinction-associated memories: the dorsal medial prefrontal cortex (mPFC) promotes reward seeking, whereas the ventral mPFC inhibits reward seeking. In this paper, we use the Daun02 chemogenetic inactivation procedure to demonstrate that Fos-expressing neuronal ensembles mediating both food reward and extinction memories intermingle within the same ventral mPFC area. PMID:27335401
Warren, Brandon L; Mendoza, Michael P; Cruz, Fabio C; Leao, Rodrigo M; Caprioli, Daniele; Rubio, F Javier; Whitaker, Leslie R; McPherson, Kylie B; Bossert, Jennifer M; Shaham, Yavin; Hope, Bruce T
2016-06-22
In operant learning, initial reward-associated memories are thought to be distinct from subsequent extinction-associated memories. Memories formed during operant learning are thought to be stored in "neuronal ensembles." Thus, we hypothesize that different neuronal ensembles encode reward- and extinction-associated memories. Here, we examined prefrontal cortex neuronal ensembles involved in the recall of reward and extinction memories of food self-administration. We first trained rats to lever press for palatable food pellets for 7 d (1 h/d) and then exposed them to 0, 2, or 7 daily extinction sessions in which lever presses were not reinforced. Twenty-four hours after the last training or extinction session, we exposed the rats to either a short 15 min extinction test session or left them in their homecage (a control condition). We found maximal Fos (a neuronal activity marker) immunoreactivity in the ventral medial prefrontal cortex of rats that previously received 2 extinction sessions, suggesting that neuronal ensembles in this area encode extinction memories. We then used the Daun02 inactivation procedure to selectively disrupt ventral medial prefrontal cortex neuronal ensembles that were activated during the 15 min extinction session following 0 (no extinction) or 2 prior extinction sessions to determine the effects of inactivating the putative food reward and extinction ensembles, respectively, on subsequent nonreinforced food seeking 2 d later. Inactivation of the food reward ensembles decreased food seeking, whereas inactivation of the extinction ensembles increased food seeking. Our results indicate that distinct neuronal ensembles encoding operant reward and extinction memories intermingle within the same cortical area. A current popular hypothesis is that neuronal ensembles in different prefrontal cortex areas control reward-associated versus extinction-associated memories: the dorsal medial prefrontal cortex (mPFC) promotes reward seeking, whereas the ventral mPFC inhibits reward seeking. In this paper, we use the Daun02 chemogenetic inactivation procedure to demonstrate that Fos-expressing neuronal ensembles mediating both food reward and extinction memories intermingle within the same ventral mPFC area. Copyright © 2016 the authors 0270-6474/16/366691-13$15.00/0.
Positive events protect children from causal false memories for scripted events.
Melinder, Annika; Toffalini, Enrico; Geccherle, Eleonora; Cornoldi, Cesare
2017-11-01
Adults produce fewer inferential false memories for scripted events when their conclusions are emotionally charged than when they are neutral, but it is not clear whether the same effect is also found in children. In the present study, we examined this issue in a sample of 132 children aged 6-12 years (mean 9 years, 3 months). Participants encoded photographs depicting six script-like events that had a positively, negatively, or a neutral valenced ending. Subsequently, true and false recognition memory of photographs related to the observed scripts was tested as a function of emotionality. Causal errors-a type of false memory thought to stem from inferential processes-were found to be affected by valence: children made fewer causal errors for positive than for neutral or negative events. Hypotheses are proposed on why adults were found protected against inferential false memories not only by positive (as for children) but also by negative endings when administered similar versions of the same paradigm.
Otgaar, Henry; Smeets, Tom; van Bergen, Saskia
2010-01-01
Recent studies have shown that processing words according to a survival scenario leads to superior retention relative to control conditions. Here, we examined whether a survival recall advantage could be elicited by using pictures. Furthermore, in Experiment 1, we were interested in whether survival processing also results in improved memory for details. Undergraduates rated the relevance of pictures in a survival, moving, or pleasantness scenario and were subsequently given a surprise free recall test. We found that survival processing yielded superior retention. We also found that distortions occurred more often in the survival condition than in the pleasantness condition. In Experiment 2, we directly compared the survival recall effect between pictures and words. A comparable survival recall advantage was found for pictures and words. The present findings support the idea that memory is enhanced by processing information in terms of fitness value, yet at the same time, the present results suggest that this may increase the risk for memory distortions.
Nussenbaum, Kate; Amso, Dima; Markant, Julie
2017-11-01
Previous work has demonstrated that increasing the number of distractors in a search array can reduce interference from distractor content during target processing. However, it is unclear how this reduced interference influences learning of target information. Here, we investigated how varying the amount and content of distraction present in a learning environment affects visual search and subsequent memory for target items. In two experiments, we demonstrate that the number and content of competing distractors interact in their influence on target selection and memory. Specifically, while increasing the number of distractors present in a search array made target detection more effortful, it did not impair learning and memory for target content. Instead, when the distractors contained category information that conflicted with the target, increasing the number of distractors from one to three actually benefitted learning and memory. These data suggest that increasing numbers of distractors may reduce interference from conflicting conceptual information during encoding.
Brain oscillations track the formation of episodic memories in the real world.
Griffiths, Benjamin; Mazaheri, Ali; Debener, Stefan; Hanslmayr, Simon
2016-12-01
Despite the well-known influence of environmental context on episodic memory, little has been done to increase contextual richness within the lab. This leaves a blind spot lingering over the neuronal correlates of episodic memory formation in day-to-day life. To address this, we presented participants with a series of words to memorise along a pre-designated route across campus while a mobile EEG system acquired ongoing neural activity. Replicating lab-based subsequent memory effects (SMEs), we identified significant low to mid frequency power decreases (<30Hz), including beta power decreases over the left inferior frontal gyrus. When investigating the oscillatory correlates of temporal and spatial context binding, we found that items strongly bound to spatial context exhibited significantly greater theta power decreases than items strongly bound to temporal context. These findings expand upon lab-based studies by demonstrating the influence of real world contextual factors that underpin memory formation. Copyright © 2016 Elsevier Inc. All rights reserved.
Baumann, Oliver; Skilleter, Ashley J.; Mattingley, Jason B.
2011-01-01
The goal of the present study was to examine the extent to which working memory supports the maintenance of object locations during active spatial navigation. Participants were required to navigate a virtual environment and to encode the location of a target object. In the subsequent maintenance period they performed one of three secondary tasks that were designed to selectively load visual, verbal or spatial working memory subsystems. Thereafter participants re-entered the environment and navigated back to the remembered location of the target. We found that while navigation performance in participants with high navigational ability was impaired only by the spatial secondary task, navigation performance in participants with poor navigational ability was impaired equally by spatial and verbal secondary tasks. The visual secondary task had no effect on navigation performance. Our results extend current knowledge by showing that the differential engagement of working memory subsystems is determined by navigational ability. PMID:21629686
Neural Correlates of Direct and Indirect Suppression of Autobiographical Memories
Noreen, Saima; O’Connor, Akira R.; MacLeod, Malcolm D.
2016-01-01
Research indicates that there are two possible mechanisms by which particular target memories can be intentionally forgotten. Direct suppression, which involves the suppression of the unwanted memory directly, and is dependent on a fronto-hippocampal modulatory process, and, memory substitution, which includes directing one’s attention to an alternative memory in order to prevent the unwanted memory from coming to mind, and involves engaging the caudal prefrontal cortex (cPFC) and the mid-ventrolateral prefrontal cortex (VLPFC) regions. Research to date, however, has investigated the neural basis of memory suppression of relatively simple information. The aim of the current study was to use fMRI to identify the neural mechanisms associated with the suppression of autobiographical memories. In the present study, 22 participants generated memories in response to a series of cue words. In a second session, participants learnt these cue-memory pairings, and were subsequently presented with a cue word and asked either to recall (think) or to suppress (no-think) the associated memory, or to think of an alternative memory in order to suppress the original memory (memory-substitution). Our findings demonstrated successful forgetting effects in the no-think and memory substitution conditions. Although we found no activation in the dorsolateral prefrontal cortex, there was reduced hippocampal activation during direct suppression. In the memory substitution condition, however, we failed to find increased activation in the cPFC and VLPFC regions. Our findings suggest that the suppression of autobiographical memories may rely on different neural mechanisms to those established for other types of material in memory. PMID:27047412
Neural Correlates of Direct and Indirect Suppression of Autobiographical Memories.
Noreen, Saima; O'Connor, Akira R; MacLeod, Malcolm D
2016-01-01
Research indicates that there are two possible mechanisms by which particular target memories can be intentionally forgotten. Direct suppression, which involves the suppression of the unwanted memory directly, and is dependent on a fronto-hippocampal modulatory process, and, memory substitution, which includes directing one's attention to an alternative memory in order to prevent the unwanted memory from coming to mind, and involves engaging the caudal prefrontal cortex (cPFC) and the mid-ventrolateral prefrontal cortex (VLPFC) regions. Research to date, however, has investigated the neural basis of memory suppression of relatively simple information. The aim of the current study was to use fMRI to identify the neural mechanisms associated with the suppression of autobiographical memories. In the present study, 22 participants generated memories in response to a series of cue words. In a second session, participants learnt these cue-memory pairings, and were subsequently presented with a cue word and asked either to recall (think) or to suppress (no-think) the associated memory, or to think of an alternative memory in order to suppress the original memory (memory-substitution). Our findings demonstrated successful forgetting effects in the no-think and memory substitution conditions. Although we found no activation in the dorsolateral prefrontal cortex, there was reduced hippocampal activation during direct suppression. In the memory substitution condition, however, we failed to find increased activation in the cPFC and VLPFC regions. Our findings suggest that the suppression of autobiographical memories may rely on different neural mechanisms to those established for other types of material in memory.
Dopamine D1 receptors are responsible for stress-induced emotional memory deficit in mice.
Wang, Yongfu; Wu, Jing; Zhu, Bi; Li, Chaocui; Cai, Jing-Xia
2012-03-01
It is established that stress impairs spatial learning and memory via the hypothalamus-pituitary-adrenal axis response. Dopamine D1 receptors were also shown to be responsible for a stress-induced deficit of working memory. However, whether stress affects the subsequent emotional learning and memory is not elucidated yet. Here, we employed the well-established one-trial step-through task to study the effect of an acute psychological stress (induced by tail hanging for 5, 10, or 20 min) on emotional learning and memory, and the possible mechanisms as well. We demonstrated that tail hanging induced an obvious stress response. Either an acute tail-hanging stress or a single dose of intraperitoneally injected dopamine D1 receptor antagonist (SCH23390) significantly decreased the step-through latency in the one-trial step-through task. However, SCH23390 prevented the acute tail-hanging stress-induced decrease in the step-through latency. In addition, the effects of tail-hanging stress and/or SCH23390 on the changes in step-through latency were not through non-memory factors such as nociceptive perception and motor function. Our data indicate that the hyperactivation of dopamine D1 receptors mediated the stress-induced deficit of emotional learning and memory. This study may have clinical significance given that psychological stress is considered to play a role in susceptibility to some mental diseases such as depression and post-traumatic stress disorder.
Feigning Amnesia Moderately Impairs Memory for a Mock Crime Video.
Mangiulli, Ivan; van Oorsouw, Kim; Curci, Antonietta; Merckelbach, Harald; Jelicic, Marko
2018-01-01
Previous studies showed that feigning amnesia for a crime impairs actual memory for the target event. Lack of rehearsal has been proposed as an explanation for this memory-undermining effect of feigning. The aim of the present study was to replicate and extend previous research adopting a mock crime video instead of a narrative story. We showed participants a video of a violent crime. Next, they were requested to imagine that they had committed this offense and to either feign amnesia or confess the crime. A third condition was included: Participants in the delayed test-only control condition did not receive any instruction. On subsequent recall tests, participants in all three conditions were instructed to report as much information as possible about the offense. On the free recall test, feigning amnesia impaired memory for the video clip, but participants who were asked to feign crime-related amnesia outperformed controls. However, no differences between simulators and confessors were found on both correct cued recollection or on distortion and commission rates. We also explored whether inner speech might modulate memory for the crime. Inner speech traits were not found to be related to the simulating amnesia effect. Theoretical and practical implications of our results are discussed.
Cortical reinstatement and the confidence and accuracy of source memory.
Thakral, Preston P; Wang, Tracy H; Rugg, Michael D
2015-04-01
Cortical reinstatement refers to the overlap between neural activity elicited during the encoding and the subsequent retrieval of an episode, and is held to reflect retrieved mnemonic content. Previous findings have demonstrated that reinstatement effects reflect the quality of retrieved episodic information as this is operationalized by the accuracy of source memory judgments. The present functional magnetic resonance imaging (fMRI) study investigated whether reinstatement-related activity also co-varies with the confidence of accurate source judgments. Participants studied pictures of objects along with their visual or spoken names. At test, they first discriminated between studied and unstudied pictures and then, for each picture judged as studied, they also judged whether it had been paired with a visual or auditory name, using a three-point confidence scale. Accuracy of source memory judgments- and hence the quality of the source-specifying information--was greater for high than for low confidence judgments. Modality-selective retrieval-related activity (reinstatement effects) also co-varied with the confidence of the corresponding source memory judgment. The findings indicate that the quality of the information supporting accurate judgments of source memory is indexed by the relative magnitude of content-selective, retrieval-related neural activity. Copyright © 2015 Elsevier Inc. All rights reserved.
Six-month atrophy in MTL structures is associated with subsequent memory decline in elderly controls
Murphy, E.A.; Holland, D.; Donohue, M.; McEvoy, L.K.; Hagler, D.J.; Dale, A.M.; Brewer, J. B.
2010-01-01
Neurodegeneration precedes the onset of dementias such as Alzheimer’s by several years. Recent advances in volumetric imaging allow quantification of subtle neuroanatomical change over time periods as short as six months. This study investigates whether neuroanatomical change in medial temporal lobe subregions is associated with later memory decline in elderly controls. Using high-resolution, T1-weighted magnetic resonance images acquired at baseline and six months follow-up, change in cortical thickness and subcortical volumes was measured in 142 healthy elderly subjects (aged 59 – 90 years) from the ADNI cohort. Regression analysis was used to identify whether change in fourteen subregions, selected a priori, was associated with declining performance on memory tests from baseline to two years follow-up. Percent thickness change in the right fusiform and inferior temporal cortices and expansion of the right inferior lateral ventricle were found to be significant predictors of subsequent decline on memory-specific neuropsychological measures. These results demonstrate that six-month regional neurodegeneration can be quantified in the healthy elderly and might help identify those at risk for subsequent cognitive decline. PMID:20633660
Ford, Jaclyn H.; Morris, John A.; Kensinger, Elizabeth A.
2015-01-01
Successful retrieval of an event includes an initial search phase in which the information is accessed and a subsequent elaboration phase in which an individual expands on event details. Traditionally, functional neuroimaging studies examining episodic memory retrieval either have not made a distinction between these two phases or have focused on the initial search process. The current study used an extended retrieval trial to compare the neural correlates of search and elaboration and to examine the effects of emotion on each phase. Prior to scanning, participants encoded positive, negative, and neutral images paired with neutral titles. After a thirty-minute delay, participants engaged in a scanned recognition task in which they viewed the neutral titles and indicated whether the title had been presented with an image during the study phase. Retrieval was divided into an initial memory search and a subsequent five-second elaboration phase. The current study identified neural differences between the search and elaboration phases, with search being associated with widespread bilateral activations across the entire cortex and elaboration primarily being associated with increased activity in the medial prefrontal cortex. The emotionality of the retrieval target was more influential during search relative to elaboration. However, valence influenced when the effect of emotion was greatest, with search engaging many more regions for positive events than negative ones, but elaboration engaging the dorsomedial prefrontal cortex more for negative events than positive events. PMID:24283491
Selective Postevent Review and Children's Memory for Nonreviewed Materials
ERIC Educational Resources Information Center
Conroy, R.; Salmon, K.
2005-01-01
Two experiments investigated the impact of selective postevent questioning on children's memory for nonreviewed materials. In both experiments, children participated in a series of novel activities. Children in the selective-review condition were subsequently questioned about half of these and comparisons were made to memory in a no-review…
Layout Geometry in Encoding and Retrieval of Spatial Memory
ERIC Educational Resources Information Center
Mou, Weimin; Liu, Xianyun; McNamara, Timothy P.
2009-01-01
Two experiments investigated whether the spatial reference directions that are used to specify objects' locations in memory can be solely determined by layout geometry. Participants studied a layout of objects from a single viewpoint while their eye movements were recorded. Subsequently, participants used memory to make judgments of relative…
ERIC Educational Resources Information Center
Herndon, Mary Anne
1978-01-01
In a model of the functioning of short term memory, the encoding of information for subsequent storage in long term memory is simulated. In the encoding process, semantically equivalent paragraphs are detected for recombination into a macro information unit. (HOD)
Reduced Hippocampal Functional Connectivity During Episodic Memory Retrieval in Autism
Cooper, Rose A.; Richter, Franziska R.; Bays, Paul M.; Plaisted-Grant, Kate C.; Baron-Cohen, Simon
2017-01-01
Abstract Increasing recent research has sought to understand the recollection impairments experienced by individuals with autism spectrum disorder (ASD). Here, we tested whether these memory deficits reflect a reduction in the probability of retrieval success or in the precision of memory representations. We also used functional magnetic resonance imaging (fMRI) to study the neural mechanisms underlying memory encoding and retrieval in ASD, focusing particularly on the functional connectivity of core episodic memory networks. Adults with ASD and typical control participants completed a memory task that involved studying visual displays and subsequently using a continuous dial to recreate their appearance. The ASD group exhibited reduced retrieval success, but there was no evidence of a difference in retrieval precision. fMRI data revealed similar patterns of brain activity and functional connectivity during memory encoding in the 2 groups, though encoding-related lateral frontal activity predicted subsequent retrieval success only in the control group. During memory retrieval, the ASD group exhibited attenuated lateral frontal activity and substantially reduced hippocampal connectivity, particularly between hippocampus and regions of the fronto-parietal control network. These findings demonstrate notable differences in brain function during episodic memory retrieval in ASD and highlight the importance of functional connectivity to understanding recollection-related retrieval deficits in this population. PMID:28057726
Wells, Audrey M.; Lasseter, Heather C.; Xie, Xiaohu; Cowhey, Kate E.; Reittinger, Andrew M.; Fuchs, Rita A.
2011-01-01
Contextual stimulus control over instrumental drug-seeking behavior relies on the reconsolidation of context-response-drug associative memories into long-term memory storage following retrieval-induced destabilization. According to previous studies, the basolateral amygdala (BLA) and dorsal hippocampus (DH) regulate cocaine-related memory reconsolidation; however, it is not known whether these brain regions interact or independently control this phenomenon. To investigate this question, rats were trained to lever press for cocaine reinforcement in a distinct environmental context followed by extinction training in a different context. Rats were then briefly re-exposed to the cocaine-paired context to destabilize cocaine-related memories, or they were exposed to an unpaired context. Immediately thereafter, the rats received unilateral microinfusions of anisomycin (ANI) into the BLA plus baclofen/muscimol (B/M) into the contralateral (BLA/DH disconnection) or ipsilateral DH, or they received contralateral or ipsilateral microinfusions of vehicle. They then remained in their home cages overnight or for 21 d, followed by additional extinction training and a test of cocaine-seeking behavior (nonreinforced active lever responding). BLA/DH disconnection following re-exposure to the cocaine-paired context, but not the unpaired context, impaired subsequent drug context-induced cocaine-seeking behavior relative to vehicle or ipsilateral ANI + B/M treatment. Prolonged home cage stay elicited a time-dependent increase, or incubation, of drug-context-induced cocaine-seeking behavior, and BLA/DH disconnection inhibited this incubation effect despite some recovery of cocaine-seeking behavior. Thus, the BLA and DH interact to regulate the reconsolidation of cocaine-related associative memories, thereby facilitating the ability of drug-paired contexts to trigger cocaine-seeking behavior and contributing to the incubation of cocaine-seeking behavior. PMID:22005750
Straube, Benjamin; Meyer, Lea; Green, Antonia; Kircher, Tilo
2014-06-03
Speech-associated gesturing leads to memory advantages for spoken sentences. However, unexpected or surprising events are also likely to be remembered. With this study we test the hypothesis that different neural mechanisms (semantic elaboration and surprise) lead to memory advantages for iconic and unrelated gestures. During fMRI-data acquisition participants were presented with video clips of an actor verbalising concrete sentences accompanied by iconic gestures (IG; e.g., circular gesture; sentence: "The man is sitting at the round table"), unrelated free gestures (FG; e.g., unrelated up down movements; same sentence) and no gestures (NG; same sentence). After scanning, recognition performance for the three conditions was tested. Videos were evaluated regarding semantic relation and surprise by a different group of participants. The semantic relationship between speech and gesture was rated higher for IG (IG>FG), whereas surprise was rated higher for FG (FG>IG). Activation of the hippocampus correlated with subsequent memory performance of both gesture conditions (IG+FG>NG). For the IG condition we found activation in the left temporal pole and middle cingulate cortex (MCC; IG>FG). In contrast, for the FG condition posterior thalamic structures (FG>IG) as well as anterior and posterior cingulate cortices were activated (FG>NG). Our behavioral and fMRI-data suggest different mechanisms for processing related and unrelated co-verbal gestures, both of them leading to enhanced memory performance. Whereas activation in MCC and left temporal pole for iconic co-verbal gestures may reflect semantic memory processes, memory enhancement for unrelated gestures relies on the surprise response, mediated by anterior/posterior cingulate cortex and thalamico-hippocampal structures. Copyright © 2014 Elsevier B.V. All rights reserved.
Chronic stress impairs prefrontal cortex-dependent response inhibition and spatial working memory.
Mika, Agnieszka; Mazur, Gabriel J; Hoffman, Ann N; Talboom, Joshua S; Bimonte-Nelson, Heather A; Sanabria, Federico; Conrad, Cheryl D
2012-10-01
Chronic stress leads to neurochemical and structural alterations in the prefrontal cortex (PFC) that correspond to deficits in PFC-mediated behaviors. The present study examined the effects of chronic restraint stress on response inhibition (using a response-withholding task, the fixed-minimum interval schedule of reinforcement, or FMI), and working memory (using a radial arm water maze, RAWM). Adult male Sprague-Dawley rats were first trained on the RAWM and subsequently trained on FMI. After acquisition of FMI, rats were assigned to a restraint stress (6h/d/28d in wire mesh restrainers) or control condition. Immediately after chronic stress, rats were tested on FMI and subsequently on RAWM. FMI results suggest that chronic stress reduces response inhibition capacity and motivation to initiate the task on selective conditions when sucrose reward was not obtained on the preceding trial. RAWM results suggest that chronic stress produces transient deficits in working memory without altering previously consolidated reference memory. Behavioral measures from FMI failed to correlate with metrics from RAWM except for one in which changes in FMI timing imprecision negatively correlated with changes in RAWM working memory errors for the controls, a finding that was not observed following chronic stress. Fisher's r-to-z transformation revealed no significant differences between control and stress groups with correlation coefficients. These findings are the first to show that chronic stress impairs both response inhibition and working memory, two behaviors that have never been directly compared within the same animals after chronic stress, using FMI, an appetitive task, and RAWM, a nonappetitive task. PsycINFO Database Record (c) 2012 APA, all rights reserved.
The time course of protecting a visual memory representation from perceptual interference
van Moorselaar, Dirk; Gunseli, Eren; Theeuwes, Jan; N. L. Olivers, Christian
2015-01-01
Cueing a remembered item during the delay of a visual memory task leads to enhanced recall of the cued item compared to when an item is not cued. This cueing benefit has been proposed to reflect attention within visual memory being shifted from a distributed mode to a focused mode, thus protecting the cued item against perceptual interference. Here we investigated the dynamics of building up this mnemonic protection against visual interference by systematically varying the stimulus onset asynchrony (SOA) between cue onset and a subsequent visual mask in an orientation memory task. Experiment 1 showed that a cue counteracted the deteriorating effect of pattern masks. Experiment 2 demonstrated that building up this protection is a continuous process that is completed in approximately half a second after cue onset. The similarities between shifting attention in perceptual and remembered space are discussed. PMID:25628555
Recognition memory reveals just how CONTRASTIVE contrastive accenting really is
Fraundorf, Scott H.; Watson, Duane G.; Benjamin, Aaron S.
2010-01-01
The effects of pitch accenting on memory were investigated in three experiments. Participants listened to short recorded discourses that contained contrast sets with two items (e.g. British scientists and French scientists); a continuation specified one item from the set. Pitch accenting on the critical word in the continuation was manipulated between non-contrastive (H* in the ToBI system) and contrastive (L+H*). On subsequent recognition memory tests, the L+H* accent increased hits to correct statements and correct rejections of the contrast item (Experiments 1–3), but did not impair memory for other parts of the discourse (Experiment 2). L+H* also did not facilitate correct rejections of lures not in the contrast set (Experiment 3), indicating that contrastive accents do not simply strengthen the representation of the target item. These results suggest comprehenders use pitch accenting to encode and update information about multiple elements in a contrast set. PMID:20835405
NASA Technical Reports Server (NTRS)
Gaillard, J. P.
1981-01-01
The possibility to use an electrotactile stimulation in teleoperation and to observe the interpretation of such information as a feedback to the operator was investigated. It is proposed that visual feedback is more informative than an electrotactile one; and that complex electrotactile feedback slows down both the motor decision and motor response processes, is processed as an all or nothing signal, and bypasses the receptive structure and accesses directly in a working memory where information is sequentially processed and where memory is limited in treatment capacity. The electrotactile stimulation is used as an alerting signal. It is suggested that the visual dominance effect is the result of the advantage of both a transfer function and a sensory memory register where information is pretreated and memorized for a short time. It is found that dividing attention has an effect on the acquisition of the information but not on the subsequent decision processes.
van Schie, Hein T; Wijers, Albertus A; Mars, Rogier B; Benjamins, Jeroen S; Stowe, Laurie A
2005-05-01
Event-related brain potentials were used to study the retrieval of visual semantic information to concrete words, and to investigate possible structural overlap between visual object working memory and concreteness effects in word processing. Subjects performed an object working memory task that involved 5 s retention of simple 4-angled polygons (load 1), complex 10-angled polygons (load 2), and a no-load baseline condition. During the polygon retention interval subjects were presented with a lexical decision task to auditory presented concrete (imageable) and abstract (nonimageable) words, and pseudowords. ERP results are consistent with the use of object working memory for the visualisation of concrete words. Our data indicate a two-step processing model of visual semantics in which visual descriptive information of concrete words is first encoded in semantic memory (indicated by an anterior N400 and posterior occipital positivity), and is subsequently visualised via the network for object working memory (reflected by a left frontal positive slow wave and a bilateral occipital slow wave negativity). Results are discussed in the light of contemporary models of semantic memory.
Reasoning and dyslexia: is visual memory a compensatory resource?
Bacon, Alison M; Handley, Simon J
2014-11-01
Effective reasoning is fundamental to problem solving and achievement in education and employment. Protocol studies have previously suggested that people with dyslexia use reasoning strategies based on visual mental representations, whereas non-dyslexics use abstract verbal strategies. This research presents converging evidence from experimental and individual differences perspectives. In Experiment 1, dyslexic and non-dyslexic participants were similarly accurate on reasoning problems, but scores on a measure of visual memory ability only predicted reasoning accuracy for dyslexics. In Experiment 2, a secondary task loaded visual memory resources during concurrent reasoning. Dyslexics were significantly less accurate when reasoning under conditions of high memory load and showed reduced ability to subsequently recall the visual stimuli, suggesting that the memory and reasoning tasks were competing for the same visual cognitive resource. The results are consistent with an explanation based on limitations in the verbal and executive components of working memory in dyslexia and the use of compensatory visual strategies for reasoning. There are implications for cognitive activities that do not readily support visual thinking, whether in education, employment or less formal everyday settings. Copyright © 2014 John Wiley & Sons, Ltd.
Weight and See: Loading Working Memory Improves Incidental Identification of Irrelevant Faces
Carmel, David; Fairnie, Jake; Lavie, Nilli
2012-01-01
Are task-irrelevant stimuli processed to a level enabling individual identification? This question is central both for perceptual processing models and for applied settings (e.g., eye-witness testimony). Lavie’s load theory proposes that working memory actively maintains attentional prioritization of relevant over irrelevant information. Loading working memory thus impairs attentional prioritization, leading to increased processing of task-irrelevant stimuli. Previous research has shown that increased working memory load leads to greater interference effects from response-competing distractors. Here we test the novel prediction that increased processing of irrelevant stimuli under high working memory load should lead to a greater likelihood of incidental identification of entirely irrelevant stimuli. To test this, we asked participants to perform a word-categorization task while ignoring task-irrelevant images. The categorization task was performed during the retention interval of a working memory task with either low or high load (defined by memory set size). Following the final experimental trial, a surprise question assessed incidental identification of the irrelevant image. Loading working memory was found to improve identification of task-irrelevant faces, but not of building stimuli (shown in a separate experiment to be less distracting). These findings suggest that working memory plays a critical role in determining whether distracting stimuli will be subsequently identified. PMID:22912623
Tapia, Manuel; Carretié, Luis; Sierra, Benjamín; Mercado, Francisco
2008-06-01
Emotional stimuli are better remembered than neutral stimuli. Most of the studies taking into account this emotional bias refer to explicit memory, use behavioral measures of the recall and predict better recall of negative stimuli. The few studies taking into account implicit memory and the valence emotional dimension are inconclusive on the effect of the stimulus' emotional valence. In the present study, 120 pictures (30 positive, 30 negative, 30 relaxing and 30 neutral) were shown to, and assessed by, 28 participants (study phase). Subsequently, event related brain potentials (ERPs) were recorded during the presentation of 120 new (shown for the first time) and 120 old (already shown in the study phase) pictures (test phase). No explicit instructions or clues related to recovery were given to participants, and a distractor task was employed, in order to maintain implicit the memory assessment. As expected from other studies' data, our results showed that old stimuli elicited an enhanced late positive component 450 ms after stimulus onset (repetition effect). Moreover, this effect was modulated by the stimuli's emotional valence, since the most positively valenced stimuli were associated with a decreased repetition effect with respect to the most negatively valenced stimuli. This effect was located at ventromedial prefrontal cortex. These results suggest the existence of a valence-mediated bias in implicit memory.
Memory retrieval by activating engram cells in mouse models of early Alzheimer's disease.
Roy, Dheeraj S; Arons, Autumn; Mitchell, Teryn I; Pignatelli, Michele; Ryan, Tomás J; Tonegawa, Susumu
2016-03-24
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory decline and subsequent loss of broader cognitive functions. Memory decline in the early stages of AD is mostly limited to episodic memory, for which the hippocampus has a crucial role. However, it has been uncertain whether the observed amnesia in the early stages of AD is due to disrupted encoding and consolidation of episodic information, or an impairment in the retrieval of stored memory information. Here we show that in transgenic mouse models of early AD, direct optogenetic activation of hippocampal memory engram cells results in memory retrieval despite the fact that these mice are amnesic in long-term memory tests when natural recall cues are used, revealing a retrieval, rather than a storage impairment. Before amyloid plaque deposition, the amnesia in these mice is age-dependent, which correlates with a progressive reduction in spine density of hippocampal dentate gyrus engram cells. We show that optogenetic induction of long-term potentiation at perforant path synapses of dentate gyrus engram cells restores both spine density and long-term memory. We also demonstrate that an ablation of dentate gyrus engram cells containing restored spine density prevents the rescue of long-term memory. Thus, selective rescue of spine density in engram cells may lead to an effective strategy for treating memory loss in the early stages of AD.
Harris, Jill D; Cutmore, Tim R H; O'Gorman, John; Finnigan, Simon; Shum, David
2009-02-01
The aim of this study was to identify ERP correlates of perceptual object priming that are insensitive to factors affecting explicit, episodic memory. EEG was recorded from 21 participants while they performed a visual object recognition test on a combination of unstudied items and old items that were previously encountered during either a 'deep' or 'shallow' levels-of-processing (LOP) study task. The results demonstrated a midline P150 old/new effect which was sensitive only to objects' old/new status and not to the accuracy of recognition responses to old items, or to the LOP manipulation. Similar outcomes were observed for the subsequent P200 and N400 effects, the former of which had a parietal scalp maximum and the latter, a broadly distributed topography. In addition an LPC old/new effect typical of those reported in past ERP recognition studies was observed. These outcomes support the proposal that the P150 effect is reflective of perceptual object priming and moreover, provide novel evidence that this and the P200 effect are independent of explicit recognition memory process(es).
Effects of aging and divided attention on episodic feeling-of-knowing accuracy.
Sacher, Mathilde; Isingrini, Michel; Taconnat, Laurence
2013-10-01
This research investigated the effect of aging on episodic feeling-of-knowing (FOK) using a divided attention (DA) paradigm in order to examine whether DA in younger adults mimics the effects of aging when decreasing either memory encoding or monitoring processes. To that end, four groups of participants were tested on the FOK task: young adults (control group), young adults under DA at encoding, young adults under DA when making FOK judgments, and older adults. Our results showed that DA at encoding in young adults mimicked the effect of aging on memory performance, and also on FOK magnitude and accuracy, supporting the memory-constraint hypothesis (Hertzog et al., 2010). However, our results do not completely contradict the monitoring-deficit hypothesis, as DA during FOK judgments also affected FOK accuracy, but to a lesser extent than the aging effect or DA during encoding. We suggest that the age-related FOK deficit may be due to a lower level of deep encoding, leading to difficulty retrieving target-related contextual details enabling accurate prediction of subsequent recognition. © 2013.
The effect of hippocampal damage in children on recalling the past and imagining new experiences.
Cooper, Janine M; Vargha-Khadem, Faraneh; Gadian, David G; Maguire, Eleanor A
2011-06-01
Compared to adults, relatively little is known about autobiographical memory and the ability to imagine fictitious and future scenarios in school-aged children, despite the importance of these functions for development and subsequent independent living. Even less is understood about the effect of early hippocampal damage on children's memory and imagination abilities. To bridge this gap, we devised a novel naturalistic autobiographical memory task that enabled us to formally assess the memory for recent autobiographical experiences in healthy school-aged children. Contemporaneous with the autobiographical memories being formed, the children also imagined and described fictitious scenarios. Having established the performance of healthy school-aged children on these tasks, we proceeded to make comparisons with children (n=21) who had experienced neonatal hypoxia/ischaemia, and consequent bilateral hippocampal damage. Our results showed that healthy children could recall autobiographical events, including spatiotemporal information and specific episodic details. By contrast, children who had experienced neonatal hypoxia/ischaemia had impaired recall, with the specific details of episodes being lost. Despite this significant memory deficit they were able to construct fictitious scenarios. This is in clear contrast to adults with hippocampal damage, who typically have impaired autobiographical memory and deficits in the construction of fictitious and future scenarios. We speculate that the paediatric patients' relatively intact semantic memory and/or some functionality in their residual hippocampi may underpin their scene construction ability. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ong, Ju Lynn; Chee, Nicholas I Y N; Lee, Xuan Kai; Poh, Jia-Hou; Chee, Michael W L
2018-01-01
Abstract Study Objectives Slow oscillations (SO) during sleep contribute to the consolidation of learned material. How the encoding of declarative memories during subsequent wakefulness might benefit from their enhancement during sleep is less clear. In this study, we investigated the impact of acoustically enhanced SO during a nap on subsequent encoding of declarative material. Methods Thirty-seven healthy young adults were studied under two conditions: stimulation (STIM) and no stimulation (SHAM), in counter-balanced order following a night of sleep restriction (4 hr time-in-bed [TIB]). In the STIM condition, auditory tones were phase-locked to the SO up-state during a 90 min nap opportunity. In the SHAM condition, corresponding time points were marked but tones were not presented. Thirty minutes after awakening, participants encoded pictures while undergoing fMRI. Picture recognition was tested 60 min later. Results Acoustic stimulation augmented SO across the group, but there was no group level benefit on memory. However, the magnitude of SO enhancement correlated with greater recollection. SO enhancement was also positively correlated with hippocampal activation at encoding. Although spindle activity increased, this did not correlate with memory benefit or shift in hippocampal signal. Conclusions Acoustic stimulation during a nap can benefit encoding of declarative memories. Hippocampal activation positively correlated with SO augmentation. PMID:29425369
Ong, Ju Lynn; Patanaik, Amiya; Chee, Nicholas I Y N; Lee, Xuan Kai; Poh, Jia-Hou; Chee, Michael W L
2018-05-01
Slow oscillations (SO) during sleep contribute to the consolidation of learned material. How the encoding of declarative memories during subsequent wakefulness might benefit from their enhancement during sleep is less clear. In this study, we investigated the impact of acoustically enhanced SO during a nap on subsequent encoding of declarative material. Thirty-seven healthy young adults were studied under two conditions: stimulation (STIM) and no stimulation (SHAM), in counter-balanced order following a night of sleep restriction (4 hr time-in-bed [TIB]). In the STIM condition, auditory tones were phase-locked to the SO up-state during a 90 min nap opportunity. In the SHAM condition, corresponding time points were marked but tones were not presented. Thirty minutes after awakening, participants encoded pictures while undergoing fMRI. Picture recognition was tested 60 min later. Acoustic stimulation augmented SO across the group, but there was no group level benefit on memory. However, the magnitude of SO enhancement correlated with greater recollection. SO enhancement was also positively correlated with hippocampal activation at encoding. Although spindle activity increased, this did not correlate with memory benefit or shift in hippocampal signal. Acoustic stimulation during a nap can benefit encoding of declarative memories. Hippocampal activation positively correlated with SO augmentation.
Briefly Cuing Memories Leads to Suppression of Their Neural Representations
Norman, Kenneth A.
2014-01-01
Previous studies have linked partial memory activation with impaired subsequent memory retrieval (e.g., Detre et al., 2013) but have not provided an account of this phenomenon at the level of memory representations: How does partial activation change the neural pattern subsequently elicited when the memory is cued? To address this question, we conducted a functional magnetic resonance imaging (fMRI) experiment in which participants studied word-scene paired associates. Later, we weakly reactivated some memories by briefly presenting the cue word during a rapid serial visual presentation (RSVP) task; other memories were more strongly reactivated or not reactivated at all. We tested participants' memory for the paired associates before and after RSVP. Cues that were briefly presented during RSVP triggered reduced levels of scene activity on the post-RSVP memory test, relative to the other conditions. We used pattern similarity analysis to assess how representations changed as a function of the RSVP manipulation. For briefly cued pairs, we found that neural patterns elicited by the same cue on the pre- and post-RSVP tests (preA–postA; preB–postB) were less similar than neural patterns elicited by different cues (preA–postB; preB–postA). These similarity reductions were predicted by neural measures of memory activation during RSVP. Through simulation, we show that our pattern similarity results are consistent with a model in which partial memory activation triggers selective weakening of the strongest parts of the memory. PMID:24899722
Wu, Ping; Xue, Yan-Xue; Ding, Zeng-Bo; Xue, Li-Fen; Xu, Chun-Mei; Lu, Lin
2011-07-01
Exposure to cocaine-associated conditioned stimuli elicits craving and increases the probability of cocaine relapse in cocaine users even after extended periods of abstinence. Recent evidence indicates that cocaine seeking can be inhibited by disrupting the reconsolidation of the cocaine cue memories and that basolateral amygdala (BLA) neuronal activity plays a role in this effect. Previous studies demonstrated that glycogen synthase kinase 3β (GSK-3β) plays a role in the reconsolidation of fear memory. Here, we used a conditioned place preference procedure to examine the role of GSK-3β in the BLA in the reconsolidation of cocaine cue memories. GSK-3β activity in the BLA, but not central amygdala (CeA), in rats that acquired cocaine (10 mg/kg)-induced conditioned place preference increased after re-exposure to a previously cocaine-paired chamber (i.e., a memory reactivation procedure). Systemic injections of the GSK-3β inhibitor lithium chloride after memory reactivation impaired the reconsolidation of cocaine cue memories and inhibited subsequent cue-induced GSK-3β activity in the BLA. Basolateral amygdala, but not central amygdala, injections of SB216763, a selective inhibitor of GSK-3β, immediately after the reactivation of cocaine cue memories also disrupted cocaine cue memory reconsolidation and prevented cue-induced increases in GSK-3β activity in the BLA. The effect of SB216763 on the reconsolidation of cocaine cue memories lasted at least 2 weeks and was not recovered by a cocaine priming injection. These results indicate that GSK-3β activity in the BLA mediates the reconsolidation of cocaine cue memories. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch
NASA Astrophysics Data System (ADS)
El-Tahan, M.; Dawood, M.; Song, G.
2015-06-01
The objective of this research is to develop a self-stressing patch using a combination of shape memory alloys (SMAs) and fiber reinforced polymer (FRP) composites. Prestressed carbon FRP patches are emerging as a promising alternative to traditional methods to repair cracked steel structures and civil infrastructure. However, prestressing these patches typically requires heavy and complex fixtures, which is impractical in many applications. This paper presents a new approach in which the prestressing force is applied by restraining the shape memory effect of NiTiNb SMA wires. The wires are subsequently embedded in an FRP overlay patch. This method overcomes the practical challenges associated with conventional prestressing. This paper presents the conceptual development of the self-stressing patch with the support of experimental observations. The bond between the SMA wires and the FRP is evaluated using pull-out tests. The paper concludes with an experimental study that evaluates the patch response during activation subsequent monotonic tensile loading. The results demonstrate that the self-stressing patch with NiTiNb SMA is capable of generating a significant prestressing force with minimal tool and labor requirements.
Neural Differentiation of Incorrectly Predicted Memories.
Kim, Ghootae; Norman, Kenneth A; Turk-Browne, Nicholas B
2017-02-22
When an item is predicted in a particular context but the prediction is violated, memory for that item is weakened (Kim et al., 2014). Here, we explore what happens when such previously mispredicted items are later reencountered. According to prior neural network simulations, this sequence of events-misprediction and subsequent restudy-should lead to differentiation of the item's neural representation from the previous context (on which the misprediction was based). Specifically, misprediction weakens connections in the representation to features shared with the previous context and restudy allows new features to be incorporated into the representation that are not shared with the previous context. This cycle of misprediction and restudy should have the net effect of moving the item's neural representation away from the neural representation of the previous context. We tested this hypothesis using human fMRI by tracking changes in item-specific BOLD activity patterns in the hippocampus, a key structure for representing memories and generating predictions. In left CA2/3/DG, we found greater neural differentiation for items that were repeatedly mispredicted and restudied compared with items from a control condition that was identical except without misprediction. We also measured prediction strength in a trial-by-trial fashion and found that greater misprediction for an item led to more differentiation, further supporting our hypothesis. Therefore, the consequences of prediction error go beyond memory weakening. If the mispredicted item is restudied, the brain adaptively differentiates its memory representation to improve the accuracy of subsequent predictions and to shield it from further weakening. SIGNIFICANCE STATEMENT Competition between overlapping memories leads to weakening of nontarget memories over time, making it easier to access target memories. However, a nontarget memory in one context might become a target memory in another context. How do such memories get restrengthened without increasing competition again? Computational models suggest that the brain handles this by reducing neural connections to the previous context and adding connections to new features that were not part of the previous context. The result is neural differentiation away from the previous context. Here, we provide support for this theory, using fMRI to track neural representations of individual memories in the hippocampus and how they change based on learning. Copyright © 2017 the authors 0270-6474/17/372022-10$15.00/0.
Remembering Makes Evidence Compelling: Retrieval from Memory Can Give Rise to the Illusion of Truth
ERIC Educational Resources Information Center
Ozubko, Jason D.; Fugelsang, Jonathan
2011-01-01
The "illusion of truth" is traditionally described as the increase in perceived validity of statements when they are repeated (Hasher, Goldstein, & Toppino, 1977). However, subsequent work has demonstrated that the effect can arise due to the increased familiarity or fluency afforded by repetition and not necessarily to repetition…
Nanoscale thermal cross-talk effect on phase-change probe memory.
Wang, Lei; Wen, Jing; Xiong, Bangshu
2018-05-14
Phase-change probe memory is considered as one of the most promising means for next-generation mass storage devices. However, the achievable storage density of phase-change probe memory is drastically affected by the resulting thermal cross-talk effect while previously lacking of detailed study. Therefore, a three dimensional model that couples electrical, thermal, and phase-change processes of the Ge2Sb2Te5 media is developed, and subsequently deployed to assess the thermal cross-talk effect based on Si/TiN/ Ge2Sb2Te5/diamond-like carbon structure by appropriately tailoring the electro-thermal and geometrical properties of the storage media stack for a variety of external excitations. The modeling results show that the diamond-like carbon capping with a thin thickness, a high electrical conductivity, and a low thermal conductivity is desired to minimize the thermal cross-talk, while the TiN underlayer has a slight impact on the thermal cross-talk. Combining the modeling findings with the previous film deposition experience, an optimized phase-change probe memory architecture is presented, and its capability of providing ultra-high recording density simultaneously with a sufficiently low thermal cross-talk is demonstrated. . © 2018 IOP Publishing Ltd.
Everyday episodic memory in amnestic mild cognitive impairment: a preliminary investigation
2011-01-01
Background Decline in episodic memory is one of the hallmark features of Alzheimer's disease (AD) and is also a defining feature of amnestic Mild Cognitive Impairment (MCI), which is posited as a potential prodrome of AD. While deficits in episodic memory are well documented in MCI, the nature of this impairment remains relatively under-researched, particularly for those domains with direct relevance and meaning for the patient's daily life. In order to fully explore the impact of disruption to the episodic memory system on everyday memory in MCI, we examined participants' episodic memory capacity using a battery of experimental tasks with real-world relevance. We investigated episodic acquisition and delayed recall (story-memory), associative memory (face-name pairings), spatial memory (route learning and recall), and memory for everyday mundane events in 16 amnestic MCI and 18 control participants. Furthermore, we followed MCI participants longitudinally to gain preliminary evidence regarding the possible predictive efficacy of these real-world episodic memory tasks for subsequent conversion to AD. Results The most discriminating tests at baseline were measures of acquisition, delayed recall, and associative memory, followed by everyday memory, and spatial memory tasks, with MCI patients scoring significantly lower than controls. At follow-up (mean time elapsed: 22.4 months), 6 MCI cases had progressed to clinically probable AD. Exploratory logistic regression analyses revealed that delayed associative memory performance at baseline was a potential predictor of subsequent conversion to AD. Conclusions As a preliminary study, our findings suggest that simple associative memory paradigms with real-world relevance represent an important line of enquiry in future longitudinal studies charting MCI progression over time. PMID:21816065
Testing episodic memory in animals: a new approach.
Griffiths, D P; Clayton, N S
2001-08-01
Episodic memory involves the encoding and storage of memories concerned with unique personal experiences and their subsequent recall, and it has long been the subject of intensive investigation in humans. According to Tulving's classical definition, episodic memory "receives and stores information about temporally dated episodes or events and temporal-spatial relations among these events." Thus, episodic memory provides information about the 'what' and 'when' of events ('temporally dated experiences') and about 'where' they happened ('temporal-spatial relations'). The storage and subsequent recall of this episodic information was thought to be beyond the memory capabilities of nonhuman animals. Although there are many laboratory procedures for investigating memory for discrete past episodes, until recently there were no previous studies that fully satisfied the criteria of Tulving's definition: they can all be explained in much simpler terms than episodic memory. However, current studies of memory for cache sites in food-storing jays provide an ethologically valid model for testing episodic-like memory in animals, thereby bridging the gap between human and animal studies memory. There is now a pressing need to adapt these experimental tests of episodic memory for other animals. Given the potential power of transgenic and knock-out procedures for investigating the genetic and molecular bases of learning and memory in laboratory rodents, not to mention the wealth of knowledge about the neuroanatomy and neurophysiology of the rodent hippocampus (a brain area heavily implicated in episodic memory), an obvious next step is to develop a rodent model of episodic-like memory based on the food-storing bird paradigm. The development of a rodent model system could make an important contribution to our understanding of the neural, molecular, and behavioral mechanisms of mammalian episodic memory.
Bacopa monnieri and Bacoside-A for ameliorating epilepsy associated behavioral deficits.
Mathew, Jobin; Paul, Jes; Nandhu, M S; Paulose, C S
2010-07-01
Bacopa monnieri is an outstanding nervine tonic used for raising the mental performance. It helps in concentration, comprehension, recall and alertness, Brahmi is particularly beneficial as it aids in categorizing information in brain and its subsequent expression. Bacopa is also called as a natural antioxidant which may give details its neuroprotective role seen in the memory centers of the brain. Epilepsy is neuronal disorder characterized by learning, cognitive and memory impairments. The present review summarizes information concerning botany, chemistry and beneficial effect of Bacopa monnieri on epilepsy associated behavioral deficits. Copyright 2009 Elsevier B.V. All rights reserved.
The role of the BDNF Val66Met polymorphism in individual differences in long-term memory capacity.
Montag, Christian; Felten, Andrea; Markett, Sebastian; Fischer, Luise; Winkel, Katja; Cooper, Andrew; Reuter, Martin
2014-12-01
The protein brain-derived neurotrophic factor (BDNF) plays an important role in diverse memory processes and is strongly expressed in the hippocampus. The hippocampus itself is a key structure involved in the processing of information from short-term to long-term memory. Due to the putative role of BDNF in memory consolidation, a prominent single nucleotide polymorphism (SNP) on the BDNF gene (BDNF Val66Met) was investigated in the context of long-term memory performance. N=138 students were presented with 40 words from 10 categories, each consisting of eight words such as 'fruits' or 'vehicles' in a memory recognition task (specifically the Deese-Roediger-McDermott Paradigm). Recognition performance was analyzed 25 min after the initial presentation of the word list and subsequently 1 week after the initial presentation. Overall, individual long-term memory performance immediately after learning the word list (T1) and performance 1 week later (T2) did not differ on the basis of the BDNF SNP, but an interaction effect of BDNF Val66Met by time-of-recall was found: Carriers of the Met66+ variant showed the strongest decline in hit rate performance over time.
Li, Jay-Shake; Hsiao, Kun-Yuan; Chen, Wei-Min
2011-03-17
Previous animal studies have defined the ability to remember the details of what, where, and when of an event as an episodic-like memory to be used to model episodic memory in humans. Numerous findings indicate that the hippocampal-frontal cortical circuitry plays a major part in its neural mechanism. Researchers have intensively studied roles of diverse hippocampus sub-regions using animal models. By contrast, the impact of prefrontal cortex lesions on episodic-like memory in animals is still unknown. Here we show that Wistar rats with bilateral medial prefrontal cortex lesions failed to use the temporal-contextual information to retrieve memory of a fear-conditioning event, indicating impairments in their episodic-like memory. Subsequent experiments excluded alternative interpretations that the manipulation impaired the fear-conditioning per se, or interfered with the sensory preconditioning process. We concluded that damages in this area might impair temporal information processing, or interfere with integrating temporal and contextual elements of fear-conditioning events to form a conjunctive entity. These findings can help understand how the medial prefrontal cortex contributes to episodic-like memory. Copyright © 2010 Elsevier B.V. All rights reserved.
Autobiographical memory functions in young Japanese men and women.
Maki, Yoichi; Kawasaki, Yayoi; Demiray, Burcu; Janssen, Steve M J
2015-01-01
The present study examined whether the three major functions of autobiographical memory observed in Western societies (i.e., directing-behaviour, social-bonding and self-continuity) also exist in an East Asian society. Two self-report measures were used to assess the autobiographical memory functions of Japanese men and women. Japanese young adults (N = 451, ages 17-28 years) first completed the original Thinking About Life Experiences (TALE) Questionnaire. They subsequently received three TALE items that represented memory functions and attempted to recall a specific instance of memory recall for each item. Confirmatory factor analyses on the TALE showed that the three functions were replicated in the current sample. However, Japanese participants reported lower levels of all three functions than American participants in a previous study. We also explored whether there was an effect of gender in this Japanese sample. Women reported higher levels of the self-continuity and social-bonding functions than men. Finally, participants recalled more specific instances of memory recall for the TALE items that had received higher ratings on the TALE, suggesting that the findings on the first measure were supported by the second measure. Results are discussed in relation to the functional approach to autobiographical memory in a cross-cultural context.
Low latency memory access and synchronization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.
A low latency memory system access is provided in association with a weakly-ordered multiprocessor system. Each processor in the multiprocessor shares resources, and each shared resource has an associated lock within a locking device that provides support for synchronization between the multiple processors in the multiprocessor and the orderly sharing of the resources. A processor only has permission to access a resource when it owns the lock associated with that resource, and an attempt by a processor to own a lock requires only a single load operation, rather than a traditional atomic load followed by store, such that the processormore » only performs a read operation and the hardware locking device performs a subsequent write operation rather than the processor. A simple prefetching for non-contiguous data structures is also disclosed. A memory line is redefined so that in addition to the normal physical memory data, every line includes a pointer that is large enough to point to any other line in the memory, wherein the pointers to determine which memory line to prefetch rather than some other predictive algorithm. This enables hardware to effectively prefetch memory access patterns that are non-contiguous, but repetitive.« less
Low latency memory access and synchronization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.
A low latency memory system access is provided in association with a weakly-ordered multiprocessor system. Bach processor in the multiprocessor shares resources, and each shared resource has an associated lock within a locking device that provides support for synchronization between the multiple processors in the multiprocessor and the orderly sharing of the resources. A processor only has permission to access a resource when it owns the lock associated with that resource, and an attempt by a processor to own a lock requires only a single load operation, rather than a traditional atomic load followed by store, such that the processormore » only performs a read operation and the hardware locking device performs a subsequent write operation rather than the processor. A simple prefetching for non-contiguous data structures is also disclosed. A memory line is redefined so that in addition to the normal physical memory data, every line includes a pointer that is large enough to point to any other line in the memory, wherein the pointers to determine which memory line to prefetch rather than some other predictive algorithm. This enables hardware to effectively prefetch memory access patterns that are non-contiguous, but repetitive.« less
To hear or not to hear: Voice processing under visual load.
Zäske, Romi; Perlich, Marie-Christin; Schweinberger, Stefan R
2016-07-01
Adaptation to female voices causes subsequent voices to be perceived as more male, and vice versa. This contrastive aftereffect disappears under spatial inattention to adaptors, suggesting that voices are not encoded automatically. According to Lavie, Hirst, de Fockert, and Viding (2004), the processing of task-irrelevant stimuli during selective attention depends on perceptual resources and working memory. Possibly due to their social significance, faces may be an exceptional domain: That is, task-irrelevant faces can escape perceptual load effects. Here we tested voice processing, to study whether voice gender aftereffects (VGAEs) depend on low or high perceptual (Exp. 1) or working memory (Exp. 2) load in a relevant visual task. Participants adapted to irrelevant voices while either searching digit displays for a target (Exp. 1) or recognizing studied digits (Exp. 2). We found that the VGAE was unaffected by perceptual load, indicating that task-irrelevant voices, like faces, can also escape perceptual-load effects. Intriguingly, the VGAE was increased under high memory load. Therefore, visual working memory load, but not general perceptual load, determines the processing of task-irrelevant voices.
Schroeder, Jason P.; Packard, Mark G.
2004-01-01
These experiments examined the effects of posttrial peripheral and intra-amygdala injections of the cholinergic muscarinic receptor agonist oxotremorine on memory consolidation underlying extinction of amphetamine conditioned place preference (CPP) behavior. Male Long-Evans rats were initially trained and tested for an amphetamine (2 mg/kg) CPP. Rats were subsequently given limited extinction training, followed by immediate posttrial peripheral or intrabasolateral amygdala injections of oxotremorine. A second CPP test was then administered, and the amount of time spent in the previously amphetamine-paired and saline-paired apparatus compartments was recorded. Peripheral (0.07 or 0.01 mg/kg) or intra-amygdala (10 ηg/0.5μL) postextinction trial injections of oxotremorine facilitated CPP extinction. Oxotremorine injections that were delayed 2 h posttrial training did not enhance CPP extinction, indicating a time-dependent effect of the drug on memory consolidation processes. The findings indicate that memory consolidation for extinction of approach behavior to environmental stimuli previously paired with drug reward can be facilitated by posttrial peripheral or intrabasolateral amygdala administration of a cholinergic agonist. PMID:15466320
Post-learning hippocampal dynamics promote preferential retention of rewarding events
Gruber, Matthias J.; Ritchey, Maureen; Wang, Shao-Fang; Doss, Manoj K.; Ranganath, Charan
2016-01-01
Reward motivation is known to modulate memory encoding, and this effect depends on interactions between the substantia nigra/ ventral tegmental area complex (SN/VTA) and the hippocampus. It is unknown, however, whether these interactions influence offline neural activity in the human brain that is thought to promote memory consolidation. Here, we used functional magnetic resonance imaging (fMRI) to test the effect of reward motivation on post-learning neural dynamics and subsequent memory for objects that were learned in high- or low-reward motivation contexts. We found that post-learning increases in resting-state functional connectivity between the SN/VTA and hippocampus predicted preferential retention of objects that were learned in high-reward contexts. In addition, multivariate pattern classification revealed that hippocampal representations of high-reward contexts were preferentially reactivated during post-learning rest, and the number of hippocampal reactivations was predictive of preferential retention of items learned in high-reward contexts. These findings indicate that reward motivation alters offline post-learning dynamics between the SN/VTA and hippocampus, providing novel evidence for a potential mechanism by which reward could influence memory consolidation. PMID:26875624
Functional Neuroimaging of Self-Referential Encoding with Age
Gutchess, Angela H.; Kensinger, Elizabeth A.; Schacter, Daniel L.
2009-01-01
Aging impacts memory formation and the engagement of frontal and medial temporal regions. However, much of the research to date has focused on the encoding of neutral verbal and visual information. The present fMRI study investigated age differences in a social encoding task while participants made judgments about the self or another person. Although previous studies identified an intact self-reference effect with age, subserved by robust engagement of medial prefrontal cortex (mPFC) by both young and older adults, we identified a number of age differences. In regions including superior mPFC, inferior prefrontal cortex, and anterior and posterior cingulate cortex, young and older adults exhibited reversals in the pattern of activity for self and other conditions. Whereas young primarily evidenced subsequent forgetting effects in the self-reference condition, older adults demonstrated subsequent memory effects in the other-reference condition. These results indicate fundamental differences across the age groups in the engagement of elaborative encoding processes. We suggest that older adults may encode information about the self in a more normative manner, whereas young adults focus on encoding the unique aspects of the self and distinguishing the self from others. PMID:19765600
Piqueras-Fiszman, Betina; Jaeger, Sara R
2016-01-01
Our memories of past eating experiences are influential in shaping food preferences and consumption behavior, and the emotions that people associate to these memories are linked to their attitudes toward foods and their everyday food-related behaviors. This work studies the impact that food-related memories have on peoples' emotional state and how this state is projected in a subsequent evaluation of images pertaining to food and food-related behaviors. Focus is placed on guilt and shame emotions. Through an online survey, three memories were investigated (a positive meal, a routine evening meal, and an overeating occasion) among UK consumers (N = 710). Participants primed with the overeating memory evaluated images related to junk food as conveying more feelings of guilt and shame than did participants primed with the memory of a positive meal. Moreover, this effect was moderated by participants' dietary restraint status. Participants classified as having a high dietary restraint had stronger associations with the emotions guilt and shame than participants classified as low in dietary restraint. In contrast, a memory of a positive meal did not lead to positive valuations of any of the food-related images shown. Overall, the findings from the present study illustrate the partial impact that personal food memories have on consumers' emotional response toward food-related issues, which in turn has the potential to affect future behavior. This study therefore contributes to the literature about cognitive effects on food attitudes and behavior. Furthermore, the results suggest that the empirical approach may be tapping into possibly unconscious emotions toward foods and food-related behavior.
Noradrenergic Mechanisms of Arousal’s Bidirectional Effects on Episodic Memory
Clewett, David; Sakaki, Michiko; Nielsen, Shawn; Petzinger, Giselle; Mather, Mara
2016-01-01
Arousal’s selective effects on cognition go beyond the simple enhancement of emotional stimuli, sometimes enhancing and other times impairing processing of proximal neutral information. Past work shows that arousal impairs encoding of subsequent neutral stimuli regardless of their top-down priority via the engagement of β-adrenoreceptors. In contrast, retrograde amnesia induced by emotional arousal can flip to enhancement when preceding neutral items are prioritized in top-down attention. Whether β-adrenoreceptors also contribute to this retrograde memory enhancement of goal-relevant neutral stimuli is unclear. In this pharmacological study, we administered 40mg of propranolol or 40mg of placebo to healthy young adults to examine whether emotional arousal’s bidirectional effects on declarative memory relies on β-adrenoreceptor activation. Following pill intake, participants completed an emotional oddball task in which they were asked to prioritize a neutral object appearing just before an emotional or neutral oddball image within a sequence of 7 neutral objects. Under placebo, emotional oddballs impaired memory for lower priority oddball+1 objects but had no effect on memory for high priority oddball−1 objects. Propranolol blocked this anterograde amnesic effect of arousal. Emotional oddballs also enhanced selective memory trade-offs significantly more in the placebo than drug condition, such that high priority oddball−1 objects were more likely to be remembered at the cost of their corresponding lower priority oddball+1 objects under arousal. Lastly, those who recalled more high priority oddball−1 objects preceding an emotional versus neutral oddball image showed greater increases in salivary alpha-amylase, a biomarker of noradrenergic system activation, across the task. Together these findings suggest that different noradrenergic mechanisms contribute to the anterograde and retrograde mnemonic effects of arousal on proximal neutral memoranda. PMID:27815214
Noradrenergic mechanisms of arousal's bidirectional effects on episodic memory.
Clewett, David; Sakaki, Michiko; Nielsen, Shawn; Petzinger, Giselle; Mather, Mara
2017-01-01
Arousal's selective effects on cognition go beyond the simple enhancement of emotional stimuli, sometimes enhancing and other times impairing processing of proximal neutral information. Past work shows that arousal impairs encoding of subsequent neutral stimuli regardless of their top-down priority via the engagement of β-adrenoreceptors. In contrast, retrograde amnesia induced by emotional arousal can flip to enhancement when preceding neutral items are prioritized in top-down attention. Whether β-adrenoreceptors also contribute to this retrograde memory enhancement of goal-relevant neutral stimuli is unclear. In this pharmacological study, we administered 40mg of propranolol or 40mg of placebo to healthy young adults to examine whether emotional arousal's bidirectional effects on declarative memory relies on β-adrenoreceptor activation. Following pill intake, participants completed an emotional oddball task in which they were asked to prioritize a neutral object appearing just before an emotional or neutral oddball image within a sequence of 7 neutral objects. Under placebo, emotional oddballs impaired memory for lower priority oddball+1 objects but had no effect on memory for high priority oddball-1 objects. Propranolol blocked this anterograde amnesic effect of arousal. Emotional oddballs also enhanced selective memory trade-offs significantly more in the placebo than drug condition, such that high priority oddball-1 objects were more likely to be remembered at the cost of their corresponding lower priority oddball+1 objects under arousal. Lastly, those who recalled more high priority oddball-1 objects preceding an emotional versus neutral oddball image showed greater increases in salivary alpha-amylase, a biomarker of noradrenergic system activation, across the task. Together these findings suggest that different noradrenergic mechanisms contribute to the anterograde and retrograde mnemonic effects of arousal on proximal neutral memoranda. Copyright © 2016 Elsevier Inc. All rights reserved.
Retrieval Constraints on the Front End Create Differences in Recollection on a Subsequent Test
ERIC Educational Resources Information Center
Marsh, Richard L.; Meeks, J. Thadeus; Cook, Gabriel I.; Clark-Foos, Arlo; Hicks, Jason L.; Brewer, Gene A.
2009-01-01
Four experiments were conducted to investigate how the cognitive control of memory retrieval selects particular qualitative characteristics as a consequence of instantiating a retrieval mode for recognition memory. Adapting the memory for foils paradigm from Jacoby, Shimizu, Daniels, and Rhodes (Jacoby, L. L., Shimizu, Y., Daniels, K. A., &…
Working Memory Encoding Delays Top-Down Attention to Visual Cortex
ERIC Educational Resources Information Center
Scalf, Paige E.; Dux, Paul E.; Marois, Rene
2011-01-01
The encoding of information from one event into working memory can delay high-level, central decision-making processes for subsequent events [e.g., Jolicoeur, P., & Dell'Acqua, R. The demonstration of short-term consolidation. "Cognitive Psychology, 36", 138-202, 1998, doi:10.1006/cogp.1998.0684]. Working memory, however, is also believed to…
Innate immune memory in the brain shapes neurological disease hallmarks.
Wendeln, Ann-Christin; Degenhardt, Karoline; Kaurani, Lalit; Gertig, Michael; Ulas, Thomas; Jain, Gaurav; Wagner, Jessica; Häsler, Lisa M; Wild, Katleen; Skodras, Angelos; Blank, Thomas; Staszewski, Ori; Datta, Moumita; Centeno, Tonatiuh Pena; Capece, Vincenzo; Islam, Md Rezaul; Kerimoglu, Cemil; Staufenbiel, Matthias; Schultze, Joachim L; Beyer, Marc; Prinz, Marco; Jucker, Mathias; Fischer, André; Neher, Jonas J
2018-04-01
Innate immune memory is a vital mechanism of myeloid cell plasticity that occurs in response to environmental stimuli and alters subsequent immune responses. Two types of immunological imprinting can be distinguished-training and tolerance. These are epigenetically mediated and enhance or suppress subsequent inflammation, respectively. Whether immune memory occurs in tissue-resident macrophages in vivo and how it may affect pathology remains largely unknown. Here we demonstrate that peripherally applied inflammatory stimuli induce acute immune training and tolerance in the brain and lead to differential epigenetic reprogramming of brain-resident macrophages (microglia) that persists for at least six months. Strikingly, in a mouse model of Alzheimer's pathology, immune training exacerbates cerebral β-amyloidosis and immune tolerance alleviates it; similarly, peripheral immune stimulation modifies pathological features after stroke. Our results identify immune memory in the brain as an important modifier of neuropathology.
Zhou, Wei; Mo, Fei; Zhang, Yunhong; Ding, Jinhong
2017-01-01
Two experiments were conducted to investigate how linguistic information influences attention allocation in visual search and memory for words. In Experiment 1, participants searched for the synonym of a cue word among five words. The distractors included one antonym and three unrelated words. In Experiment 2, participants were asked to judge whether the five words presented on the screen comprise a valid sentence. The relationships among words were sentential, semantically related or unrelated. A memory recognition task followed. Results in both experiments showed that linguistically related words produced better memory performance. We also found that there were significant interactions between linguistic relation conditions and memorization on eye-movement measures, indicating that good memory for words relied on frequent and long fixations during search in the unrelated condition but to a much lesser extent in linguistically related conditions. We conclude that semantic and syntactic associations attenuate the link between overt attention allocation and subsequent memory performance, suggesting that linguistic relatedness can somewhat compensate for a relative lack of attention during word search.
Jing Li, Jing; Szkudlarek, Hanna; Renard, Justine; Hudson, Roger; Rushlow, Walter; Laviolette, Steven R
2018-05-09
Disturbances in prefrontal cortical (PFC) dopamine (DA) transmission are well established features of psychiatric disorders involving pathological memory processing, such as post-traumatic stress disorder and opioid addiction. Transmission through PFC DA D4 receptors (D4Rs) has been shown to potentiate the emotional salience of normally nonsalient emotional memories, whereas transmission through PFC DA D1 receptors (D1Rs) has been demonstrated to selectively block recall of reward- or aversion-related associative memories. In the present study, using a combination of fear conditioning and opiate reward conditioning in male rats, we examined the role of PFC D4/D1R signaling during the processing of fear-related memory acquisition and recall and subsequent sensitivity to opiate reward memory formation. We report that PFC D4R activation potentiates the salience of normally subthreshold fear conditioning memory cues and simultaneously potentiates the rewarding effects of systemic or intra-ventral tegmental area (VTA) morphine conditioning cues. In contrast, blocking the recall of salient fear memories with intra-PFC D1R activation, blocks the ability of fear memory recall to potentiate systemic or intra-VTA morphine place preference. These effects were dependent upon dissociable PFC phosphorylation states involving calcium-calmodulin-kinase II or extracellular signal-related kinase 1-2, following intra-PFC D4 or D1R activation, respectively. Together, these findings reveal new insights into how aberrant PFC DAergic transmission and associated downstream molecular signaling pathways may modulate fear-related emotional memory processing and concomitantly increase opioid addiction vulnerability. SIGNIFICANCE STATEMENT Post-traumatic stress disorder is highly comorbid with addiction. In this study, we use a translational model of fear memory conditioning to examine how transmission through dopamine D1 or D4 receptors, in the prefrontal cortex (PFC), may differentially control acquisition or recall of fear memories and how these mechanisms might regulate sensitivity to the rewarding effects of opioids. We demonstrate that PFC D4 activation not only controls the salience of fear memory acquisition, but potentiates the rewarding effects of opioids. In contrast, PFC D1 receptor activation blocks recall of fear memories and prevents potentiation of opioid reward effects. Together, these findings demonstrate novel PFC mechanisms that may account for how emotional memory disturbances might increase the addictive liability of opioid-class drugs. Copyright © 2018 the authors 0270-6474/18/384543-13$15.00/0.
Kensinger, Elizabeth A; Addis, Donna Rose; Atapattu, Ranga K
2011-03-01
It is well known that amygdala activity during encoding corresponds with subsequent memory for emotional information. It is less clear how amygdala activity relates to the subjective and objective qualities of a memory. In the present study, participants viewed emotional and neutral objects while undergoing a functional magnetic resonance imaging scan. Participants then took a memory test, identifying which verbal labels named a studied object and indicating the vividness of their memory for that object. They then retrieved episodic details associated with each object's presentation, selecting which object exemplar had been studied and indicating in which screen quadrant, study list, and with which encoding question the exemplar had been studied. Parametric analysis of the encoding data allowed examination of the processes that tracked with increasing memory vividness or with an increase in the diversity of episodic details remembered. Dissociable networks tracked these two increases, and amygdala activity corresponded with the former but not the latter. Subsequent-memory analyses revealed that amygdala activity corresponded with memory for exemplar type but not for other episodic features. These results emphasize that amygdala activity does not ensure accurate encoding of all types of episodic detail, yet it does support encoding of some item-specific details and leads to the retention of a memory that will feel subjectively vivid. The types of episodic details tied to amygdala engagement may be those that are most important for creating a subjectively vivid memory. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kensinger, Elizabeth A.; Addis, Donna Rose; Atapattu, Ranga K.
2011-01-01
It is well known that amygdala activity during encoding corresponds with subsequent memory for emotional information. It is less clear how amygdala activity relates to the subjective and objective qualities of a memory. In the present study, participants viewed emotional and neutral objects while undergoing a functional magnetic resonance imaging scan. Participants then took a memory test, identifying which verbal labels named a studied object and indicating the vividness of their memory for that object. They then retrieved episodic details associated with each object’s presentation, selecting which object exemplar had been studied and indicating in which screen quadrant, study list, and with which encoding question the exemplar had been studied. Parametric analysis of the encoding data allowed examination of the processes that tracked with increasing memory vividness or with an increase in the diversity of episodic details remembered. Dissociable networks tracked these two increases, and amygdala activity corresponded with the former but not the latter. Subsequent-memory analyses revealed that amygdala activity corresponded with memory for exemplar type but not for other episodic features. These results emphasize that amygdala activity does not ensure accurate encoding of all types of episodic detail, yet it does support encoding of some item-specific details and leads to the retention of a memory that will feel subjectively vivid. The types of episodic details tied to amygdala engagement may be those that are most important for creating a subjectively vivid memory. PMID:21262244
Kaji, Tomohiro; Hijikata, Atsushi; Ishige, Akiko; Kitami, Toshimori; Watanabe, Takashi; Ohara, Osamu; Yanaka, Noriyuki; Okada, Mariko; Shimoda, Michiko; Taniguchi, Masaru
2016-01-01
Memory CD4+ T cells promote protective humoral immunity; however, how memory T cells acquire this activity remains unclear. This study demonstrates that CD4+ T cells develop into antigen-specific memory T cells that can promote the terminal differentiation of memory B cells far more effectively than their naive T-cell counterparts. Memory T cell development requires the transcription factor B-cell lymphoma 6 (Bcl6), which is known to direct T-follicular helper (Tfh) cell differentiation. However, unlike Tfh cells, memory T cell development did not require germinal center B cells. Curiously, memory T cells that develop in the absence of cognate B cells cannot promote memory B-cell recall responses and this defect was accompanied by down-regulation of genes associated with homeostasis and activation and up-regulation of genes inhibitory for T-cell responses. Although memory T cells display phenotypic and genetic signatures distinct from Tfh cells, both had in common the expression of a group of genes associated with metabolic pathways. This gene expression profile was not shared to any great extent with naive T cells and was not influenced by the absence of cognate B cells during memory T cell development. These results suggest that memory T cell development is programmed by stepwise expression of gatekeeper genes through serial interactions with different types of antigen-presenting cells, first licensing the memory lineage pathway and subsequently facilitating the functional development of memory T cells. Finally, we identified Gdpd3 as a candidate genetic marker for memory T cells. PMID:26714588