The effects of free recall testing on subsequent source memory.
Brewer, Gene A; Marsh, Richard L; Meeks, Joseph T; Clark-Foos, Arlo; Hicks, Jason L
2010-05-01
The testing effect is the finding that prior retrieval of information from memory will result in better subsequent memory for that material. One explanation for these effects is that initial free recall testing increases the recollective details for tested information, which then becomes more available during a subsequent test phase. In three experiments we explored this hypothesis using a source-monitoring test phase after the initial free recall tests. We discovered that memory is differentially enhanced for certain recollective details depending on the nature of the free recall task. Thus further research needs to be conducted to specify how different kinds of memorial details are enhanced by free recall testing.
Vogelsang, David A; Bonnici, Heidi M; Bergström, Zara M; Ranganath, Charan; Simons, Jon S
2016-08-01
To remember a previous event, it is often helpful to use goal-directed control processes to constrain what comes to mind during retrieval. Behavioral studies have demonstrated that incidental learning of new "foil" words in a recognition test is superior if the participant is trying to remember studied items that were semantically encoded compared to items that were non-semantically encoded. Here, we applied subsequent memory analysis to fMRI data to understand the neural mechanisms underlying the "foil effect". Participants encoded information during deep semantic and shallow non-semantic tasks and were tested in a subsequent blocked memory task to examine how orienting retrieval towards different types of information influences the incidental encoding of new words presented as foils during the memory test phase. To assess memory for foils, participants performed a further surprise old/new recognition test involving foil words that were encountered during the previous memory test blocks as well as completely new words. Subsequent memory effects, distinguishing successful versus unsuccessful incidental encoding of foils, were observed in regions that included the left inferior frontal gyrus and posterior parietal cortex. The left inferior frontal gyrus exhibited disproportionately larger subsequent memory effects for semantic than non-semantic foils, and significant overlap in activity during semantic, but not non-semantic, initial encoding and foil encoding. The results suggest that orienting retrieval towards different types of foils involves re-implementing the neurocognitive processes that were involved during initial encoding. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Selective attention meets spontaneous recognition memory: Evidence for effects at retrieval.
Moen, Katherine C; Miller, Jeremy K; Lloyd, Marianne E
2017-03-01
Previous research on the effects of Divided Attention on recognition memory have shown consistent impairments during encoding but more variable effects at retrieval. The present study explored whether effects of Selective Attention at retrieval and subsequent testing were parallel to those of Divided Attention. Participants studied a list of pictures and then had a recognition memory test that included both full attention and selective attention (the to be responded to object was overlaid atop a blue outlined object) trials. All participants then completed a second recognition memory test. The results of 2 experiments suggest that subsequent tests consistently show impacts of the status of the ignored stimulus, and that having an initial test changes performance on a later test. The results are discussed in relation to effect of attention on memory more generally as well as spontaneous recognition memory research. Copyright © 2017 Elsevier Inc. All rights reserved.
The influences of partner accuracy and partner memory ability on social false memories.
Numbers, Katya T; Meade, Michelle L; Perga, Vladimir A
2014-11-01
In this study, we examined whether increasing the proportion of false information suggested by a confederate would influence the magnitude of socially introduced false memories in the social contagion paradigm Roediger, Meade, & Bergman (Psychonomic Bulletin & Review 8:365-371, 2001). One participant and one confederate collaboratively recalled items from previously studied household scenes. During collaboration, the confederate interjected 0 %, 33 %, 66 %, or 100 % false items. On subsequent individual-recall tests across three experiments, participants were just as likely to incorporate misleading suggestions from a partner who was mostly accurate (33 % incorrect) as they were from a partner who was not at all accurate (100 % incorrect). Even when participants witnessed firsthand that their partner had a very poor memory on a related memory task, they were still as likely to incorporate the confederate's entirely misleading suggestions on subsequent recall and recognition tests (Exp. 2). Only when participants witnessed firsthand that their partner had a very poor memory on a practice test of the experimental task itself were they able to reduce false memory, and this reduction occurred selectively on a subsequent individual recognition test (Exp. 3). These data demonstrate that participants do not always consider their partners' memory ability when working on collaborative memory tasks.
The Replicability of the Negative Testing Effect: Differences across Participant Populations
ERIC Educational Resources Information Center
Mulligan, Neil W.; Rawson, Katherine A.; Peterson, Daniel J.; Wissman, Kathryn T.
2018-01-01
Although memory retrieval often enhances subsequent memory, Peterson and Mulligan (2013) reported conditions under which retrieval produces poorer subsequent recall--the negative testing effect. The item-specific--relational account proposes that the effect occurs when retrieval disrupts interitem organizational processing relative to the restudy…
ERIC Educational Resources Information Center
Chan, Jason C. K.; Langley, Moses M.
2011-01-01
Although retrieval practice typically enhances memory retention, it can also impair subsequent eyewitness memory accuracy (Chan, Thomas, & Bulevich, 2009). Specifically, participants who had taken an initial test about a witnessed event were more likely than nontested participants to recall subsequently encountered misinformation--an effect we…
Test-Potentiated Learning: Distinguishing Between Direct and Indirect Effects of Tests
Arnold, Kathleen M.; McDermott, Kathleen B.
2013-01-01
The facilitative effect of retrieval practice, or testing, on the probability of later retrieval has been the focus of much recent empirical research. A lesser-known benefit of retrieval practice is that it may also enhance the ability of a learner to benefit from a subsequent restudy opportunity. This facilitative effect of retrieval practice on subsequent encoding is known as test-potentiated learning. Thus far, however, the literature has not isolated the indirect effect of retrieval practice on subsequent memory (via enhancing the effectiveness of restudy) from the direct effects of retrieval on subsequent memory. The experiment presented here uses conditional probability to disentangle test-potentiated learning from the direct effects of retrieval practice. The results indicate that unsuccessful retrieval attempts enhance the effectiveness of subsequent restudy, demonstrating that tests do potentiate subsequent learning. PMID:22774852
Griffin, Michael; DeWolf, Melissa; Keinath, Alexander; Liu, Xiaonan; Reder, Lynne
2013-01-01
This Event-Related Potential (ERP) study investigated whether components commonly measured at test, such as the FN400 and the parietal old/new components, could be observed during encoding and, if so, whether they would predict different levels of accuracy on a subsequent memory test. ERPs were recorded while subjects classified pictures of objects as man-made or natural. Some objects were only classified once while others were classified twice during encoding, sometimes with an identical picture, and other times with a different exemplar from the same category. A subsequent surprise recognition test required subjects to judge whether each probe word corresponded to a picture shown earlier, and if so whether there were two identical pictures that corresponded to the word probe, two different pictures, or just one picture. When the second presentation showed a duplicate of an earlier picture, the FN400 effect (a significantly less negative deflection on the second presentation) was observed regardless of subsequent memory response; however, when the second presentation showed a different exemplar of the same concept, the FN400 effect was only marginally significant. In contrast, the parietal old/new effect was robust for the second presentation of conceptual repetitions when the test probe was subsequently recognized, but not for identical repetitions. These findings suggest that ERP components that are typically observed during an episodic memory test can be observed during an incidental encoding task, and that they are predictive of the degree of subsequent memory performance. PMID:23528265
Does the presence of priming hinder subsequent recognition or recall performance?
Stark, Shauna M; Gordon, Barry; Stark, Craig E L
2008-02-01
Declarative and non-declarative memories are thought be supported by two distinct memory systems that are often posited not to interact. However, Wagner, Maril, and Schacter (2000a) reported that at the time priming was assessed, greater behavioural and neural priming was associated with lower levels of subsequent recognition memory, demonstrating an interaction between declarative and non-declarative memory. We examined this finding using a similar paradigm, in which participants made the same or different semantic word judgements following a short or long lag and subsequent memory test. We found a similar overall pattern of results, with greater behavioural priming associated with a decrease in recognition and recall performance. However, neither various within-participant nor various between-participant analyses revealed significant correlations between priming and subsequent memory performance. These data suggest that both lag and task have effects on priming and declarative memory performance, but that they are largely independent and occur in parallel.
Karlsson Wirebring, Linnea; Wiklund-Hörnqvist, Carola; Eriksson, Johan; Andersson, Micael; Jonsson, Bert; Nyberg, Lars
2015-07-01
Encoding and retrieval processes enhance long-term memory performance. The efficiency of encoding processes has recently been linked to representational consistency: the reactivation of a representation that gets more specific each time an item is further studied. Here we examined the complementary hypothesis of whether the efficiency of retrieval processes also is linked to representational consistency. Alternatively, recurrent retrieval might foster representational variability--the altering or adding of underlying memory representations. Human participants studied 60 Swahili-Swedish word pairs before being scanned with fMRI the same day and 1 week later. On Day 1, participants were tested three times on each word pair, and on Day 7 each pair was tested once. A BOLD signal change in right superior parietal cortex was associated with subsequent memory on Day 1 and with successful long-term retention on Day 7. A representational similarity analysis in this parietal region revealed that beneficial recurrent retrieval was associated with representational variability, such that the pattern similarity on Day 1 was lower for retrieved words subsequently remembered compared with those subsequently forgotten. This was mirrored by a monotonically decreased BOLD signal change in dorsolateral prefrontal cortex on Day 1 as a function of repeated successful retrieval for words subsequently remembered, but not for words subsequently forgotten. This reduction in prefrontal response could reflect reduced demands on cognitive control. Collectively, the results offer novel insights into why memory retention benefits from repeated retrieval, and they suggest fundamental differences between repeated study and repeated testing. Repeated testing is known to produce superior long-term retention of the to-be-learned material compared with repeated encoding and other learning techniques, much because it fosters repeated memory retrieval. This study demonstrates that repeated memory retrieval might strengthen memory by inducing more differentiated or elaborated memory representations in the parietal cortex, and at the same time reducing demands on prefrontal-cortex-mediated cognitive control processes during retrieval. The findings contrast with recent demonstrations that repeated encoding induces less differentiated or elaborated memory representations. Together, this study suggests a potential neurocognitive explanation of why repeated retrieval is more beneficial for long-term retention than repeated encoding, a phenomenon known as the testing effect. Copyright © 2015 the authors 0270-6474/15/359595-08$15.00/0.
Shifting visual perspective during memory retrieval reduces the accuracy of subsequent memories.
Marcotti, Petra; St Jacques, Peggy L
2018-03-01
Memories for events can be retrieved from visual perspectives that were never experienced, reflecting the dynamic and reconstructive nature of memories. Characteristics of memories can be altered when shifting from an own eyes perspective, the way most events are initially experienced, to an observer perspective, in which one sees oneself in the memory. Moreover, recent evidence has linked these retrieval-related effects of visual perspective to subsequent changes in memories. Here we examine how shifting visual perspective influences the accuracy of subsequent memories for complex events encoded in the lab. Participants performed a series of mini-events that were experienced from their own eyes, and were later asked to retrieve memories for these events while maintaining the own eyes perspective or shifting to an alternative observer perspective. We then examined how shifting perspective during retrieval modified memories by influencing the accuracy of recall on a final memory test. Across two experiments, we found that shifting visual perspective reduced the accuracy of subsequent memories and that reductions in vividness when shifting visual perspective during retrieval predicted these changes in the accuracy of memories. Our findings suggest that shifting from an own eyes to an observer perspective influences the accuracy of long-term memories.
ERIC Educational Resources Information Center
Rindal, Eric J.; DeFranco, Rachel M.; Rich, Patrick R.; Zaragoza, Maria S.
2016-01-01
In a recent PNAS article, Chan and LaPaglia (2013) provided arguments and evidence to support the claim that reactivating a witnessed memory (by taking a test) renders the memory labile and susceptible to impairment by subsequent misinformation. In the current article, we argue that Chan and LaPaglia's (2013) findings are open to alternative…
de Chastelaine, Marianne; Mattson, Julia T; Wang, Tracy H; Donley, Brian E; Rugg, Michael D
2015-07-01
The present fMRI experiment employed associative recognition to investigate the relationships between age and encoding-related negative subsequent memory effects and task-negative effects. Young, middle-aged and older adults (total n=136) were scanned while they made relational judgments on visually presented word pairs. In a later memory test, the participants made associative recognition judgments on studied, rearranged (items studied on different trials) and new pairs. Several regions, mostly localized to the default mode network, demonstrated negative subsequent memory effects in an across age-group analysis. All but one of these regions also demonstrated task-negative effects, although there was no correlation between the size of the respective effects. Whereas negative subsequent memory effects demonstrated a graded attenuation with age, task-negative effects declined markedly between the young and the middle-aged group, but showed no further reduction in the older group. Negative subsequent memory effects did not correlate with memory performance within any age group. By contrast, in the older group only, task-negative effects predicted later memory performance. The findings demonstrate that negative subsequent memory and task-negative effects depend on dissociable neural mechanisms and likely reflect distinct cognitive processes. The relationship between task-negative effects and memory performance in the older group might reflect the sensitivity of these effects to variations in amount of age-related neuropathology. This article is part of a Special Issue entitled SI: Memory. Copyright © 2014 Elsevier B.V. All rights reserved.
Alpha Oscillations during Incidental Encoding Predict Subsequent Memory for New "Foil" Information.
Vogelsang, David A; Gruber, Matthias; Bergström, Zara M; Ranganath, Charan; Simons, Jon S
2018-05-01
People can employ adaptive strategies to increase the likelihood that previously encoded information will be successfully retrieved. One such strategy is to constrain retrieval toward relevant information by reimplementing the neurocognitive processes that were engaged during encoding. Using EEG, we examined the temporal dynamics with which constraining retrieval toward semantic versus nonsemantic information affects the processing of new "foil" information encountered during a memory test. Time-frequency analysis of EEG data acquired during an initial study phase revealed that semantic compared with nonsemantic processing was associated with alpha decreases in a left frontal electrode cluster from around 600 msec after stimulus onset. Successful encoding of semantic versus nonsemantic foils during a subsequent memory test was related to decreases in alpha oscillatory activity in the same left frontal electrode cluster, which emerged relatively late in the trial at around 1000-1600 msec after stimulus onset. Across participants, left frontal alpha power elicited by semantic processing during the study phase correlated significantly with left frontal alpha power associated with semantic foil encoding during the memory test. Furthermore, larger left frontal alpha power decreases elicited by semantic foil encoding during the memory test predicted better subsequent semantic foil recognition in an additional surprise foil memory test, although this effect did not reach significance. These findings indicate that constraining retrieval toward semantic information involves reimplementing semantic encoding operations that are mediated by alpha oscillations and that such reimplementation occurs at a late stage of memory retrieval, perhaps reflecting additional monitoring processes.
de Chastelaine, Marianne; Mattson, Julia T.; Wang, Tracy H.; Donley, Brian E.; Rugg, Michael D.
2016-01-01
Using fMRI, subsequent memory effects (greater activity for later remembered than later forgotten study items) predictive of associative encoding were compared across samples of young, middle-aged and older adults (total n = 136). During scanning, participants studied visually presented word pairs. In a later test phase, they discriminated between studied pairs, ‘rearranged’ pairs (items studied on different trials) and new pairs. Subsequent memory effects were identified by contrasting activity elicited by study pairs that went on to be correctly judged intact or incorrectly judged rearranged. Effects in the hippocampus were age-invariant and positively correlated across participants with associative memory performance. Subsequent memory effects in the right IFG were greater in the older than the young group. In older participants only, both left and, in contrast to prior reports, right IFG subsequent memory effects correlated positively with memory performance. We suggest that the IFG is especially vulnerable to age-related decline in functional integrity, and that the relationship between encoding-related activity in right IFG and memory performance depends on the experimental context. PMID:27143433
The effects of valence and arousal on the neural activity leading to subsequent memory.
Mickley Steinmetz, Katherine R; Kensinger, Elizabeth A
2009-11-01
This study examined how valence and arousal affect the processes linked to subsequent memory for emotional information. While undergoing an fMRI scan, participants viewed neutral pictures and emotional pictures varying by valence and arousal. After the scan, participants performed a recognition test. Subsequent memory for negative or high arousal information was associated with occipital and temporal activity, whereas memory for positive or low arousal information was associated with frontal activity. Regression analyses confirmed that for negative or high arousal items, temporal lobe activity was the strongest predictor of later memory whereas for positive or low arousal items, frontal activity corresponded most strongly with later memory. These results suggest that the types of encoding processes relating to memory (e.g., sensory vs. elaborative processing) can differ based on the affective qualities of emotional information.
The effects of valence and arousal on the neural activity leading to subsequent memory
Mickley Steinmetz, Katherine R.; Kensinger, Elizabeth A.
2010-01-01
This study examined how valence and arousal affect the processes linked to subsequent memory for emotional information. While undergoing an fMRI scan, participants viewed neutral pictures and emotional pictures varying by valence and arousal. After the scan, participants performed a recognition test. Subsequent memory for negative or high arousal information was associated with occipital and temporal activity, while memory for positive or low arousal information was associated with frontal activity. Regression analyses confirmed that for negative or high arousal items, temporal lobe activity was the strongest predictor of later memory whereas for positive or low arousal items, frontal activity corresponded most strongly with later memory. These results suggest that the types of encoding processes relating to memory (e.g., sensory vs. elaborative processing) can differ based on the affective qualities of emotional information. PMID:19674398
Does Testing Impair Relational Processing? Failed Attempts to Replicate the Negative Testing Effect
ERIC Educational Resources Information Center
Rawson, Katherine A.; Wissman, Kathryn T.; Vaughn, Kalif E.
2015-01-01
Recent research on testing effects (i.e., practice tests are more effective than restudy for enhancing subsequent memory) has focused on explaining when and why testing enhances memory. Of particular interest for present purposes, Zaromb and Roediger (2010) reported evidence that testing effects in part reflect enhanced relational processing,…
Otis, James M; Fitzgerald, Michael K; Mueller, Devin
2014-01-01
Retrieval of drug-associated memories is critical for maintaining addictive behaviors, as presentation of drug-associated cues can elicit drug seeking and relapse. Recently, we and others have demonstrated that β-adrenergic receptor (β-AR) activation is necessary for retrieval using both rat and human memory models. Importantly, blocking retrieval with β-AR antagonists persistently impairs retrieval and provides protection against subsequent reinstatement. However, the neural locus at which β-ARs are required for maintaining retrieval and subsequent reinstatement is unclear. Here, we investigated the necessity of dorsal hippocampus (dHipp) β-ARs for drug-associated memory retrieval. Using a cocaine conditioned place preference (CPP) model, we demonstrate that local dHipp β-AR blockade before a CPP test prevents CPP expression shortly and long after treatment, indicating that dHipp β-AR blockade induces a memory retrieval disruption. Furthermore, this retrieval disruption provides long-lasting protection against cocaine-induced reinstatement. The effects of β-AR blockade were dependent on memory reactivation and were not attributable to reconsolidation disruption as blockade of β-ARs immediately after a CPP test had little effect on subsequent CPP expression. Thus, cocaine-associated memory retrieval is mediated by β-AR activity within the dHipp, and disruption of this activity could prevent cue-induced drug seeking and relapse long after treatment. PMID:23907403
Otis, James M; Fitzgerald, Michael K; Mueller, Devin
2014-01-01
Retrieval of drug-associated memories is critical for maintaining addictive behaviors, as presentation of drug-associated cues can elicit drug seeking and relapse. Recently, we and others have demonstrated that β-adrenergic receptor (β-AR) activation is necessary for retrieval using both rat and human memory models. Importantly, blocking retrieval with β-AR antagonists persistently impairs retrieval and provides protection against subsequent reinstatement. However, the neural locus at which β-ARs are required for maintaining retrieval and subsequent reinstatement is unclear. Here, we investigated the necessity of dorsal hippocampus (dHipp) β-ARs for drug-associated memory retrieval. Using a cocaine conditioned place preference (CPP) model, we demonstrate that local dHipp β-AR blockade before a CPP test prevents CPP expression shortly and long after treatment, indicating that dHipp β-AR blockade induces a memory retrieval disruption. Furthermore, this retrieval disruption provides long-lasting protection against cocaine-induced reinstatement. The effects of β-AR blockade were dependent on memory reactivation and were not attributable to reconsolidation disruption as blockade of β-ARs immediately after a CPP test had little effect on subsequent CPP expression. Thus, cocaine-associated memory retrieval is mediated by β-AR activity within the dHipp, and disruption of this activity could prevent cue-induced drug seeking and relapse long after treatment.
Barnacle, Gemma E; Montaldi, Daniela; Talmi, Deborah; Sommer, Tobias
2016-09-01
The Emotional enhancement of memory (EEM) is observed in immediate free-recall memory tests when emotional and neutral stimuli are encoded and tested together ("mixed lists"), but surprisingly, not when they are encoded and tested separately ("pure lists"). Here our aim was to investigate whether the effect of list-composition (mixed versus pure lists) on the EEM is due to differential allocation of attention. We scanned participants with fMRI during encoding of semantically-related emotional (negative valence only) and neutral pictures. Analysis of memory performance data replicated previous work, demonstrating an interaction between list composition and emotional valence. In mixed lists, neural subsequent memory effects in the dorsal attention network were greater for neutral stimulus encoding, while neural subsequent memory effects for emotional stimuli were found in a region associated with the ventral attention network. These results imply that when life experiences include both emotional and neutral elements, memory for the latter is more highly correlated with neural activity representing goal-directed attention processing at encoding. Copyright © 2016. Published by Elsevier Ltd.
Neural correlates of encoding processes predicting subsequent cued recall and source memory.
Angel, Lucie; Isingrini, Michel; Bouazzaoui, Badiâa; Fay, Séverine
2013-03-06
In this experiment, event-related potentials were used to examine whether the neural correlates of encoding processes predicting subsequent successful recall differed from those predicting successful source memory retrieval. During encoding, participants studied lists of words and were instructed to memorize each word and the list in which it occurred. At test, they had to complete stems (the first four letters) with a studied word and then make a judgment of the initial temporal context (i.e. list). Event-related potentials recorded during encoding were segregated according to subsequent memory performance to examine subsequent memory effects (SMEs) reflecting successful cued recall (cued recall SME) and successful source retrieval (source memory SME). Data showed a cued recall SME on parietal electrode sites from 400 to 1200 ms and a late inversed cued recall SME on frontal sites in the 1200-1400 ms period. Moreover, a source memory SME was reported from 400 to 1400 ms on frontal areas. These findings indicate that patterns of encoding-related activity predicting successful recall and source memory are clearly dissociated.
Can Testing Immunize Memories against Interference?
ERIC Educational Resources Information Center
Potts, Rosalind; Shanks, David R.
2012-01-01
Testing typically enhances subsequent recall of tested material. In contrast, it has been proposed that consolidated memories can be destabilized when reactivated and then need to be reconsolidated in order to persist. Learning new material immediately after reactivation may disrupt reconsolidation. We investigated whether the well-known benefits…
The beneficial effect of testing: an event-related potential study
Bai, Cheng-Hua; Bridger, Emma K.; Zimmer, Hubert D.; Mecklinger, Axel
2015-01-01
The enhanced memory performance for items that are tested as compared to being restudied (the testing effect) is a frequently reported memory phenomenon. According to the episodic context account of the testing effect, this beneficial effect of testing is related to a process which reinstates the previously learnt episodic information. Few studies have explored the neural correlates of this effect at the time point when testing takes place, however. In this study, we utilized the ERP correlates of successful memory encoding to address this issue, hypothesizing that if the benefit of testing is due to retrieval-related processes at test then subsequent memory effects (SMEs) should resemble the ERP correlates of retrieval-based processing in their temporal and spatial characteristics. Participants were asked to learn Swahili-German word pairs before items were presented in either a testing or a restudy condition. Memory performance was assessed immediately and 1-day later with a cued recall task. Successfully recalling items at test increased the likelihood that items were remembered over time compared to items which were only restudied. An ERP subsequent memory contrast (later remembered vs. later forgotten tested items), which reflects the engagement of processes that ensure items are recallable the next day were topographically comparable with the ERP correlate of immediate recollection (immediately remembered vs. immediately forgotten tested items). This result shows that the processes which allow items to be more memorable over time share qualitatively similar neural correlates with the processes that relate to successful retrieval at test. This finding supports the notion that testing is more beneficial than restudying on memory performance over time because of its engagement of retrieval processes, such as the re-encoding of actively retrieved memory representations. PMID:26441577
On the adaptive function of children's and adults' false memories.
Howe, Mark L; Wilkinson, Samantha; Garner, Sarah R; Ball, Linden J
2016-09-01
Recent research has shown that memory illusions can successfully prime both children's and adults' performance on complex, insight-based problems (compound remote associates tasks or CRATs). The current research aimed to clarify the locus of these priming effects. Like before, Deese-Roediger-McDermott (DRM) lists were selected to prime subsequent CRATs such that the critical lures were also the solution words to a subset of the CRATs participants attempted to solve. Unique to the present research, recognition memory tests were used and participants were either primed during the list study phase, during the memory test phase, or both. Across two experiments, primed problems were solved more frequently and significantly faster than unprimed problems. Moreover, when participants were primed during the list study phase, subsequent solution times and rates were considerably superior to those produced by those participants who were simply primed at test. Together, these are the first results to show that false-memory priming during encoding facilitates problem-solving in both children and adults.
On the adaptive function of children's and adults’ false memories
Howe, Mark L.; Wilkinson, Samantha; Garner, Sarah R.; Ball, Linden J.
2016-01-01
ABSTRACT Recent research has shown that memory illusions can successfully prime both children's and adults' performance on complex, insight-based problems (compound remote associates tasks or CRATs). The current research aimed to clarify the locus of these priming effects. Like before, Deese–Roediger–McDermott (DRM) lists were selected to prime subsequent CRATs such that the critical lures were also the solution words to a subset of the CRATs participants attempted to solve. Unique to the present research, recognition memory tests were used and participants were either primed during the list study phase, during the memory test phase, or both. Across two experiments, primed problems were solved more frequently and significantly faster than unprimed problems. Moreover, when participants were primed during the list study phase, subsequent solution times and rates were considerably superior to those produced by those participants who were simply primed at test. Together, these are the first results to show that false-memory priming during encoding facilitates problem-solving in both children and adults. PMID:26230151
Unstable Memories Create a High-Level Representation that Enables Learning Transfer.
Mosha, Neechi; Robertson, Edwin M
2016-01-11
A memory is unstable, making it susceptible to interference and disruption, after its acquisition [1-4]. The function or possible benefit of a memory being unstable at its acquisition is not well understood. Potentially, instability may be critical for the communication between recently acquired memories, which would allow learning in one task to be transferred to the other subsequent task [1, 5]. Learning may be transferred between any memories that are unstable, even between different types of memory. Here, we test the link between a memory being unstable and the transfer of learning to a different type of memory task. We measured how learning in one task transferred to and thus improved learning in a subsequent task. There was transfer from a motor skill to a word list task and, vice versa, from a word list to a motor skill task. What was transferred was a high-level relationship between elements, rather than knowledge of the individual elements themselves. Memory instability was correlated with subsequent transfer, suggesting that transfer was related to the instability of the memory. Using different methods, we stabilized the initial memory, preventing it from being susceptible to interference, and found that these methods consistently prevented transfer to the subsequent memory task. This suggests that the transfer of learning across diverse tasks is due to a high-level representation that can only be formed when a memory is unstable. Our work has identified an important function of memory instability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Children's Memory for Words Under Self-Reported and Induced Imagery Strategies.
ERIC Educational Resources Information Center
Filan, Gary L.; Sullivan, Howard J.
The effectiveness of the use of self-reported imagery strategies on children's subsequent memory performance was studied, and the coding redundancy hypothesis that memory is facilitated by using an encoding procedure in both words and images was tested. The two levels of reported memory strategy (imagize, verbalize) were crossed with "think…
A Matter of Time: Rapid Motor Memory Stabilization in Childhood
ERIC Educational Resources Information Center
Adi-Japha, Esther; Badir, Rodayna; Dorfberger, Shoshi; Karni, Avi
2014-01-01
Are children better than adults in acquiring new skills ("how-to" knowledge) because of a difference in skill memory consolidation? Here we tested the proposal that, as opposed to adults, children's memories for newly acquired skills are immune to interference by subsequent experience. The establishment of long-term memory for a…
Rose, Nathan S.; Myerson, Joel; Roediger, Henry L.; Hale, Sandra
2010-01-01
Two experiments compared the effects of depth of processing on working memory (WM) and long-term memory (LTM) using a levels-of-processing (LOP) span task, a newly developed WM span procedure that involves processing to-be-remembered words based on their visual, phonological, or semantic characteristics. Depth of processing had minimal effect on WM tests, yet subsequent memory for the same items on delayed tests showed the typical benefits of semantic processing. Although the difference in LOP effects demonstrates a dissociation between WM and LTM, we also found that the retrieval practice provided by recalling words on the WM task benefited long-term retention, especially for words initially recalled from supraspan lists. The latter result is consistent with the hypothesis that WM span tasks involve retrieval from secondary memory, but the LOP dissociation suggests the processes engaged by WM and LTM tests may differ. Therefore, similarities and differences between WM and LTM depend on the extent to which retrieval from secondary memory is involved and whether there is a match (or mismatch) between initial processing and subsequent retrieval, consistent with transfer-appropriate-processing theory. PMID:20192543
Learning From Tests: Facilitation of Delayed Recall by Initial Recognition Alternatives.
ERIC Educational Resources Information Center
Whitten, William B., II; Leonard, Janet Mauriello
1980-01-01
Two experiments were designed to determine the effects of multiple-choice recognition test alternatives on subsequent memory for the correct answers. Results of both experiments are interpreted as demonstrations of the principle that long-term retention is facilitated such that memory evaluation occurs during initial recognition tests. (Author/RD)
Briefly Cuing Memories Leads to Suppression of Their Neural Representations
Norman, Kenneth A.
2014-01-01
Previous studies have linked partial memory activation with impaired subsequent memory retrieval (e.g., Detre et al., 2013) but have not provided an account of this phenomenon at the level of memory representations: How does partial activation change the neural pattern subsequently elicited when the memory is cued? To address this question, we conducted a functional magnetic resonance imaging (fMRI) experiment in which participants studied word-scene paired associates. Later, we weakly reactivated some memories by briefly presenting the cue word during a rapid serial visual presentation (RSVP) task; other memories were more strongly reactivated or not reactivated at all. We tested participants' memory for the paired associates before and after RSVP. Cues that were briefly presented during RSVP triggered reduced levels of scene activity on the post-RSVP memory test, relative to the other conditions. We used pattern similarity analysis to assess how representations changed as a function of the RSVP manipulation. For briefly cued pairs, we found that neural patterns elicited by the same cue on the pre- and post-RSVP tests (preA–postA; preB–postB) were less similar than neural patterns elicited by different cues (preA–postB; preB–postA). These similarity reductions were predicted by neural measures of memory activation during RSVP. Through simulation, we show that our pattern similarity results are consistent with a model in which partial memory activation triggers selective weakening of the strongest parts of the memory. PMID:24899722
Learned Interval Time Facilitates Associate Memory Retrieval
ERIC Educational Resources Information Center
van de Ven, Vincent; Kochs, Sarah; Smulders, Fren; De Weerd, Peter
2017-01-01
The extent to which time is represented in memory remains underinvestigated. We designed a time paired associate task (TPAT) in which participants implicitly learned cue-time-target associations between cue-target pairs and specific cue-target intervals. During subsequent memory testing, participants showed increased accuracy of identifying…
Chan, Jason C K; Langley, Moses M
2011-01-01
Although retrieval practice typically enhances memory retention, it can also impair subsequent eyewitness memory accuracy (Chan, Thomas, & Bulevich, 2009). Specifically, participants who had taken an initial test about a witnessed event were more likely than nontested participants to recall subsequently encountered misinformation—an effect we called retrieval-enhanced suggestibility (RES). Here, we sought to test the generality of RES and to further elucidate its underlying mechanisms. To that end, we tested a dual mechanism account, which suggests that RES occurs because initial testing (a) enhances learning of the later misinformation by reducing proactive interference and (b) causes the reactivated memory trace to be more susceptible to later interference (i.e., a reconsolidation account). Three major findings emerged. First, RES was found after a 1-week delay, where a robust testing benefit occurred for event details that were not contradicted by later misinformation. Second, blockage of reconsolidation was unnecessary for RES to occur. Third, initial testing enhanced learning of the misinformation even when proactive interference played a minimal role.
ERIC Educational Resources Information Center
Schmeichel, Brandon J.
2007-01-01
This research tested the hypothesis that initial efforts at executive control temporarily undermine subsequent efforts at executive control. Four experiments revealed that controlling the focus of visual attention (Experiment 1), inhibiting predominant writing tendencies (Experiment 2), taking a working memory test (Experiment 3), or exaggerating…
Kubik, Veit; Nilsson, Lars-Göran; Olofsson, Jonas K; Jönsson, Fredrik U
2015-10-01
Testing one's memory of previously studied information reduces the rate of forgetting, compared to restudy. However, little is known about how this direct testing effect applies to action phrases (e.g., "wash the car") - a learning material relevant to everyday memory. As action phrases consist of two different components, a verb (e.g., "wash") and a noun (e.g., "car"), testing can either be implemented as noun-cued recall of verbs or verb-cued recall of nouns, which may differently affect later memory performance. In the present study, we investigated the effect of testing for these two recall types, using verbally encoded action phrases as learning materials. Results showed that repeated study-test practice, compared to repeated study-restudy practice, decreased the forgetting rate across 1 week to a similar degree for both noun-cued and verb-cued recall types. However, noun-cued recall of verbs initiated more new subsequent learning during the first restudy, compared to verb-cued recall of nouns. The study provides evidence that testing has benefits on both subsequent restudy and long-term retention of action-relevant materials, but that these benefits are differently expressed with testing via noun-cued versus verb-cued recall. © 2015 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Shi, Hai-Shui; Luo, Yi-Xiao; Yin, Xi; Wu, Hong-Hai; Xue, Gai; Geng, Xu-Hong; Hou, Yan-Ning
2015-01-01
Drug addiction is considered an aberrant form of learning, and drug-associated memories evoked by the presence of associated stimuli (drug context or drug-related cues) contribute to recurrent craving and reinstatement. Epigenetic changes mediated by DNA methyltransferase (DNMT) have been implicated in the reconsolidation of fear memory. Here, we investigated the role of DNMT activity in the reconsolidation of cocaine-associated memories. Rats were trained over 10 days to intravenously self-administer cocaine by nosepokes. Each injection was paired with a light/tone conditioned stimulus (CS). After acquisition of stable self-administration behaviour, rats underwent nosepoke extinction (10 d) followed by cue-induced reactivation and subsequent cue-induced and cocaine-priming + cue-induced reinstatement tests or subsequently tested to assess the strength of the cocaine-associated cue as a conditioned reinforcer to drive cocaine seeking behaviour. Bilateral intra-basolateral amygdala (BLA) infusion of the DNMT inhibitor5-azacytidine (5-AZA, 1 μg per side) immediately following reactivation decreased subsequent reinstatement induced by cues or cocaine priming as well as cue-maintained cocaine-seeking behaviour. In contrast, delayed intra-BLA infusion of 5-AZA 6 h after reactivation or 5-AZA infusion without reactivation had no effect on subsequent cue-induced reinstatement. These findings indicate that memory reconsolidation for a cocaine-paired stimulus depends critically on DNMT activity in the BLA. PMID:26289919
What drives social in-group biases in face recognition memory? ERP evidence from the own-gender bias
Kemter, Kathleen; Schweinberger, Stefan R.; Wiese, Holger
2014-01-01
It is well established that memory is more accurate for own-relative to other-race faces (own-race bias), which has been suggested to result from larger perceptual expertise for own-race faces. Previous studies also demonstrated better memory for own-relative to other-gender faces, which is less likely to result from differences in perceptual expertise, and rather may be related to social in-group vs out-group categorization. We examined neural correlates of the own-gender bias using event-related potentials (ERP). In a recognition memory experiment, both female and male participants remembered faces of their respective own gender more accurately compared with other-gender faces. ERPs during learning yielded significant differences between the subsequent memory effects (subsequently remembered – subsequently forgotten) for own-gender compared with other-gender faces in the occipito-temporal P2 and the central N200, whereas neither later subsequent memory effects nor ERP old/new effects at test reflected a neural correlate of the own-gender bias. We conclude that the own-gender bias is mainly related to study phase processes, which is in line with sociocognitive accounts. PMID:23474824
Testing episodic memory in animals: a new approach.
Griffiths, D P; Clayton, N S
2001-08-01
Episodic memory involves the encoding and storage of memories concerned with unique personal experiences and their subsequent recall, and it has long been the subject of intensive investigation in humans. According to Tulving's classical definition, episodic memory "receives and stores information about temporally dated episodes or events and temporal-spatial relations among these events." Thus, episodic memory provides information about the 'what' and 'when' of events ('temporally dated experiences') and about 'where' they happened ('temporal-spatial relations'). The storage and subsequent recall of this episodic information was thought to be beyond the memory capabilities of nonhuman animals. Although there are many laboratory procedures for investigating memory for discrete past episodes, until recently there were no previous studies that fully satisfied the criteria of Tulving's definition: they can all be explained in much simpler terms than episodic memory. However, current studies of memory for cache sites in food-storing jays provide an ethologically valid model for testing episodic-like memory in animals, thereby bridging the gap between human and animal studies memory. There is now a pressing need to adapt these experimental tests of episodic memory for other animals. Given the potential power of transgenic and knock-out procedures for investigating the genetic and molecular bases of learning and memory in laboratory rodents, not to mention the wealth of knowledge about the neuroanatomy and neurophysiology of the rodent hippocampus (a brain area heavily implicated in episodic memory), an obvious next step is to develop a rodent model of episodic-like memory based on the food-storing bird paradigm. The development of a rodent model system could make an important contribution to our understanding of the neural, molecular, and behavioral mechanisms of mammalian episodic memory.
Encoding-related brain activity and accelerated forgetting in transient epileptic amnesia.
Atherton, Kathryn E; Filippini, Nicola; Zeman, Adam Z J; Nobre, Anna C; Butler, Christopher R
2018-05-17
The accelerated forgetting of newly learned information is common amongst patients with epilepsy and, in particular, in the syndrome of transient epileptic amnesia (TEA). However, the neural mechanisms underlying accelerated forgetting are poorly understood. It has been hypothesised that interictal epileptiform activity during longer retention intervals disrupts normally established memory traces. Here, we tested a distinct hypothesis-that accelerated forgetting relates to the abnormal encoding of memories. We studied a group of 15 patients with TEA together with matched, healthy control subjects. Despite normal performance on standard anterograde memory tasks, patients showed accelerated forgetting of a word list over one week. We used a subsequent memory paradigm to compare encoding-related brain activity in patients and controls. Participants studied a series of visually presented scenes whilst undergoing functional MRI scanning. Recognition memory for these scenes was then probed outside the scanner after delays of 45 min and of 4 days. Patients showed poorer memory for the scenes compared with controls. In the patients but not the controls, subsequently forgotten stimuli were associated with reduced hippocampal activation at encoding. Furthermore, patients demonstrated reduced deactivation of posteromedial cortex regions upon viewing subsequently remembered stimuli as compared to subsequently forgotten ones. These data suggest that abnormal encoding-related activity in key memory areas of the brain contributes to accelerated forgetting in TEA. We propose that abnormally encoded memory traces may be particularly vulnerable to interference from subsequently encountered material and hence be forgotten more rapidly. Our results shed light on the mechanisms underlying memory impairment in epilepsy, and offer support to the proposal that accelerated forgetting may be a useful marker of subtle dysfunction in memory-related brain systems. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
ERIC Educational Resources Information Center
Peterson, Robin T.
2007-01-01
This study investigates the combined impact of a memory test and subsequent listening practice in enhancing student listening abilities in collegiate business administration courses. The article reviews relevant literature and describes an exploratory study that was undertaken to compare the effectiveness of this technique with traditional…
Continued effects of context reinstatement in recognition.
Hanczakowski, Maciej; Zawadzka, Katarzyna; Macken, Bill
2015-07-01
The context reinstatement effect refers to the enhanced memory performance found when the context information paired with a target item at study is re-presented at test. Here we investigated the consequences of the way that context information is processed in such a setting that gives rise to its beneficial effect on item recognition memory. Specifically, we assessed whether reinstating context in a recognition test facilitates subsequent memory for this context, beyond the facilitation conferred by presentation of the same context with a different study item. Reinstating the study context at test led to better accuracy in two-alternative forced choice recognition for target faces than did re-pairing those faces with another context encountered during the study phase. The advantage for reinstated over re-paired conditions occurred for both within-subjects (Exp. 1) and between-subjects (Exp. 2) manipulations. Critically, in a subsequent recognition test for the contexts themselves, contexts that had previously served in the reinstated condition were recognized better than contexts that had previously served in the re-paired context condition. This constitutes the first demonstration of continuous effects of context reinstatement on memory for context.
Neural Overlap in Item Representations Across Episodes Impairs Context Memory.
Kim, Ghootae; Norman, Kenneth A; Turk-Browne, Nicholas B
2018-06-12
We frequently encounter the same item in different contexts, and when that happens, memories of earlier encounters can get reactivated. We examined how existing memories are changed as a result of such reactivation. We hypothesized that when an item's initial and subsequent neural representations overlap, this allows the initial item to become associated with novel contextual information, interfering with later retrieval of the initial context. Specifically, we predicted a negative relationship between representational similarity across repeated experiences of an item and subsequent source memory for the initial context. We tested this hypothesis in an fMRI study, in which objects were presented multiple times during different tasks. We measured the similarity of the neural patterns in lateral occipital cortex that were elicited by the first and second presentations of objects, and related this neural overlap score to subsequent source memory. Consistent with our hypothesis, greater item-specific pattern similarity was linked to worse source memory for the initial task. In contrast, greater reactivation of the initial context was associated with better source memory. Our findings suggest that the influence of novel experiences on an existing context memory depends on how reliably a shared component (i.e., item) is represented across these episodes.
Meng, Yingfang; Ye, Xiaohong; Gonsalves, Brian D
2014-10-17
The distinction between neural mechanisms of explicit and implicit expressions of memory has been well studied at the retrieval stage, but less at encoding. In addition, dissociations obtained in many studies are complicated by methodological difficulties in obtaining process-pure measures of different types of memory. In this experiment, we applied a subsequent memory paradigm and a two-stage forced-choice recognition test to classify study ERP data into four categories: subsequent remembered (later retrieved accompanied by detailed information), subsequent known (later retrieved accompanied by a feeling of familiarity), subsequent primed (later retrieved without conscious awareness) and subsequent forgotten (not retrieved). Differences in subsequent memory effects (DM effects) were measured by comparing ERP waveform associated with later memory based on recollection, familiarity or priming with ERP waveform for later forgotten items. The recollection DM effect involved a robust sustained (onset at 300 ms) prefrontal positive-going DM effect which was right-lateralized, and a later (onset at 800 ms) occipital negative-going DM effect. Familiarity involved an earlier (300-400 ms) prefrontal positive-going DM effect and a later (500-600 ms) parietal positive-going DM effect. Priming involved a negative-going DM effect which onset at 600 ms, mainly distributed over anterior brain sites. These results revealed a sequence of components that represented cognitive processes underlying the encoding of verbal information into episodic memory, and separately supported later remembering, knowing and priming. Copyright © 2014 Elsevier B.V. All rights reserved.
How Does Using Object Names Influence Visual Recognition Memory?
ERIC Educational Resources Information Center
Richler, Jennifer J.; Palmeri, Thomas J.; Gauthier, Isabel
2013-01-01
Two recent lines of research suggest that explicitly naming objects at study influences subsequent memory for those objects at test. Lupyan (2008) suggested that naming "impairs" memory by a representational shift of stored representations of named objects toward the prototype (labeling effect). MacLeod, Gopie, Hourihan, Neary, and Ozubko (2010)…
Retrieval Constraints on the Front End Create Differences in Recollection on a Subsequent Test
ERIC Educational Resources Information Center
Marsh, Richard L.; Meeks, J. Thadeus; Cook, Gabriel I.; Clark-Foos, Arlo; Hicks, Jason L.; Brewer, Gene A.
2009-01-01
Four experiments were conducted to investigate how the cognitive control of memory retrieval selects particular qualitative characteristics as a consequence of instantiating a retrieval mode for recognition memory. Adapting the memory for foils paradigm from Jacoby, Shimizu, Daniels, and Rhodes (Jacoby, L. L., Shimizu, Y., Daniels, K. A., &…
Vaughn, Kalif E; Rawson, Katherine A
2011-09-01
Previous research has shown that increasing the criterion level (i.e., the number of times an item must be correctly retrieved during practice) improves subsequent memory, but which specific components of memory does increased criterion level enhance? In two experiments, we examined the extent to which the criterion level affects associative memory, target memory, and cue memory. Participants studied Lithuanian-English word pairs via cued recall with restudy until items were correctly recalled one to five times. In Experiment 1, participants took one of four recall tests and one of three recognition tests after a 2-day delay. In Experiment 2, participants took only recognition tests after a 1-week delay. In both experiments, increasing the criterion level enhanced associative memory, as indicated by enhanced performance on forward and backward cued-recall tests and on tests of associative recognition. An increased criterion level also improved target memory, as indicated by enhanced free recall and recognition of targets, and improved cue memory, as indicated by enhanced free recall and recognition of cues.
Chiu, Yu-Chin; Egner, Tobias
2015-08-26
Response inhibition is a key component of executive control, but its relation to other cognitive processes is not well understood. We recently documented the "inhibition-induced forgetting effect": no-go cues are remembered more poorly than go cues. We attributed this effect to central-resource competition, whereby response inhibition saps attention away from memory encoding. However, this proposal is difficult to test with behavioral means alone. We therefore used fMRI in humans to test two neural predictions of the "common resource hypothesis": (1) brain regions associated with response inhibition should exhibit greater resource demands during encoding of subsequently forgotten than remembered no-go cues; and (2) this higher inhibitory resource demand should lead to memory encoding regions having less resources available during encoding of subsequently forgotten no-go cues. Participants categorized face stimuli by gender in a go/no-go task and, following a delay, performed a surprise recognition memory test for those faces. Replicating previous findings, memory was worse for no-go than for go stimuli. Crucially, forgetting of no-go cues was predicted by high inhibitory resource demand, as quantified by the trial-by-trial ratio of activity in neural "no-go" versus "go" networks. Moreover, this index of inhibitory demand exhibited an inverse trial-by-trial relationship with activity in brain regions responsible for the encoding of no-go cues into memory, notably the ventrolateral prefrontal cortex. This seesaw pattern between the neural resource demand of response inhibition and activity related to memory encoding directly supports the hypothesis that response inhibition temporarily saps attentional resources away from stimulus processing. Recent behavioral experiments showed that inhibiting a motor response to a stimulus (a "no-go cue") impairs subsequent memory for that cue. Here, we used fMRI to test whether this "inhibition-induced forgetting effect" is caused by competition for neural resources between the processes of response inhibition and memory encoding. We found that trial-by-trial variations in neural inhibitory resource demand predicted subsequent forgetting of no-go cues and that higher inhibitory demand was furthermore associated with lower concurrent activation in brain regions responsible for successful memory encoding of no-go cues. Thus, motor inhibition and stimulus encoding appear to compete with each other: when more resources have to be devoted to inhibiting action, less are available for encoding sensory stimuli. Copyright © 2015 the authors 0270-6474/15/3511936-10$15.00/0.
The effects of study task on prestimulus subsequent memory effects in the hippocampus.
de Chastelaine, Marianne; Rugg, Michael D
2015-11-01
Functional magnetic resonance imaging (fMRI) was employed to examine the effects of a study task manipulation on pre-stimulus activity in the hippocampus predictive of later successful recollection. Eighteen young participants were scanned while making either animacy or syllable judgments on visually presented study words. Cues presented before each word denoted which judgment should be made. Following the study phase, a surprise recognition memory test was administered in which each test item had to be endorsed as "Remembered," "Known," or "New." As expected, "deep" animacy judgments led to better memory for study items than did "shallow" syllable judgments. In both study tasks, pre-stimulus subsequent recollection effects were evident in the interval between the cue and the study item in bilateral anterior hippocampus. However, the direction of the effects differed according to the study task: whereas pre-stimulus hippocampal activity on animacy trials was greater for later recollected items than items judged old on the basis of familiarity (replicating prior findings), these effects reversed for syllable trials. We propose that the direction of pre-stimulus hippocampal subsequent memory effects depends on whether an optimal pre-stimulus task set facilitates study processing that is conducive or unconducive to the formation of contextually rich episodic memories. © 2015 Wiley Periodicals, Inc.
Tsukiura, Takashi; Cabeza, Roberto
2011-01-01
Behavioral data have shown that attractive faces are better remembered but the neural mechanisms of this effect are largely unknown. To investigate this issue, female participants were scanned with event-related functional MRI (fMRI) while rating the attractiveness of male faces. Memory for the faces was tested after fMRI scanning and was used to identify successful encoding activity (subsequent memory paradigm). As expected, attractive faces were remembered better than other faces. The study yielded three main fMRI findings. First, activity in the right orbitofrontal cortex increased linearly as a function of attractiveness ratings. Second, activity in the left hippocampus increased as a function of subsequent memory (subsequent misses
Tsukiura, Takashi; Cabeza, Roberto
2010-01-01
Behavioral data have shown that attractive faces are better remembered but the neural mechanisms of this effect are largely unknown. To investigate this issue, female participants were scanned with event-related functional MRI (fMRI) while rating the attractiveness of male faces. Memory for the faces was tested after fMRI scanning and was used to identify successful encoding activity (subsequent memory paradigm). As expected, attractive faces were remembered better than other faces. The study yielded three main fMRI findings. First, activity in the right orbitofrontal cortex increased linearly as a function of attractiveness ratings. Second, activity in the left hippocampus increased as a function of subsequent memory (subsequent misses
Malin, David H; Lee, David R; Goyarzu, Pilar; Chang, Yu-Hsuan; Ennis, Lalanya J; Beckett, Elizabeth; Shukitt-Hale, Barbara; Joseph, James A
2011-03-01
Previously, 4 mo of a blueberry-enriched (BB) antioxidant diet prevented impaired object recognition memory in aging rats. Experiment 1 determined whether 1- and 2-mo BB diets would have a similar effect and whether the benefits would disappear promptly after terminating the diets. Experiment 2 determined whether a 1-mo BB diet could subsequently reverse existing object memory impairment in aging rats. In experiment 1, Fischer-344 rats were maintained on an appropriate control diet or on 1 or 2 mo of the BB diet before testing object memory at 19 mo postnatally. In experiment 2, rats were tested for object recognition memory at 19 mo and again at 20 mo after 1 mo of maintenance on a 2% BB or control diet. In experiment 1, the control group performed no better than chance, whereas the 1- and 2-mo BB diet groups performed similarly and significantly better than controls. The 2-mo BB-diet group, but not the 1-mo group, maintained its performance over a subsequent month on a standard laboratory diet. In experiment 2, the 19-mo-old rats performed near chance. At 20 mo of age, the rats subsequently maintained on the BB diet significantly increased their object memory scores, whereas the control diet group exhibited a non-significant decline. The change in object memory scores differed significantly between the two diet groups. These results suggest that a considerable degree of age-related object memory decline can be prevented and reversed by brief maintenance on BB diets. Copyright © 2011 Elsevier Inc. All rights reserved.
Geraci, Lisa; Hughes, Matthew L; Miller, Tyler M; De Forrest, Ross L
2016-01-01
Negative aging stereotypes can lead older adults to perform poorly on memory tests. Yet, memory performance can be improved if older adults have a single successful experience on a cognitive test prior to participating in a memory experiment (Geraci & Miller, 2013, Psychology and Aging, 28, 340-345). The current study examined the effects of different types of prior task experience on subsequent memory performance. Before participating in a verbal free recall experiment, older adults in Experiment 1 successfully completed either a verbal or a visual cognitive task or no task. In Experiment 2, they successfully completed either a motor task or no task before participating in the free recall experiment. Results from Experiment 1 showed that relative to control (no prior task), participants who had prior success, either on a verbal or a visual task, had better subsequent recall performance. Experiment 2 showed that prior success on a motor task, however, did not lead to a later memory advantage relative to control. These findings demonstrate that older adults' memory can be improved by a successful prior task experience so long as that experience is in a cognitive domain.
How retellings shape younger and older adults' memories.
Barber, Sarah J; Mather, Mara
2014-04-01
The way a story is retold influences the way it is later remembered; after retelling an event in a biased manner people subsequently remember the event in line with their distorted retelling. This study tested the hypothesis that this should be especially true for older adults. To test this, older and younger adults retold a story to be entertaining, to be accurate, or did not complete an initial retelling. Later, all participants recalled the story as accurately as possible. On this final test younger adults were unaffected by how they had previously retold the story. In contrast, older adults had better memory for the story's content and structure if they had previously retold the story accurately. Furthermore, for older adults, greater usage of storytelling language during the retelling was associated with lower subsequent recall. In summary, retellings exerted a greater effect on memory in older, compared with younger, adults.
How retellings shape younger and older adults’ memories
Mather, Mara
2014-01-01
The way a story is retold influences the way it is later remembered; after retelling an event in a biased manner people subsequently remember the event in line with their distorted retelling. This study tested the hypothesis that this should be especially true for older adults. To test this, older and younger adults retold a story to be entertaining, to be accurate, or did not complete an initial retelling. Later, all participants recalled the story as accurately as possible. On this final test younger adults were unaffected by how they had previously retold the story. In contrast, older adults had better memory for the story’s content and structure if they had previously retold the story accurately. Furthermore, for older adults, greater usage of storytelling language during the retelling was associated with lower subsequent recall. In summary, retellings exerted a greater effect on memory in older, compared with younger, adults. PMID:25436107
Barber, Sarah J; Harris, Celia B; Rajaram, Suparna
2015-03-01
Although a group of people working together remembers more than any one individual, they recall less than their predicted potential. This finding is known as collaborative inhibition and is generally thought to arise due to retrieval disruption. However, there is growing evidence that is inconsistent with the retrieval disruption account, suggesting that additional mechanisms also contribute to collaborative inhibition. In the current studies, we examined 2 alternate mechanisms: retrieval inhibition and retrieval blocking. To identify the contributions of retrieval disruption, retrieval inhibition, and retrieval blocking, we tested how collaborative recall of entirely unshared information influences subsequent individual recall and individual recognition memory. If collaborative inhibition is due solely to retrieval disruption, then there should be a release from the negative effects of collaboration on subsequent individual recall and recognition tests. If it is due to retrieval inhibition, then the negative effects of collaboration should persist on both individual recall and recognition memory tests. Finally, if it is due to retrieval blocking, then the impairment should persist on subsequent individual free recall, but not recognition, tests. Novel to the current study, results suggest that retrieval inhibition plays a role in the collaborative inhibition effect. The negative effects of collaboration persisted on a subsequent, always-individual, free-recall test (Experiment 1) and also on a subsequent, always-individual, recognition test (Experiment 2). However, consistent with the retrieval disruption account, this deficit was attenuated (Experiment 1). Together, these results suggest that, in addition to retrieval disruption, multiple mechanisms play a role in collaborative inhibition. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Moderate Levels of Activation Lead to Forgetting In the Think/No-Think Paradigm
Detre, Greg J.; Natarajan, Annamalai; Gershman, Samuel J.; Norman, Kenneth A.
2013-01-01
Using the think/no-think paradigm (Anderson & Green, 2001), researchers have found that suppressing retrieval of a memory (in the presence of a strong retrieval cue) can make it harder to retrieve that memory on a subsequent test. This effect has been replicated numerous times, but the size of the effect is highly variable. Also, it is unclear from a neural mechanistic standpoint why preventing recall of a memory now should impair your ability to recall that memory later. Here, we address both of these puzzles using the idea, derived from computational modeling and studies of synaptic plasticity, that the function relating memory activation to learning is U-shaped, such that moderate levels of memory activation lead to weakening of the memory and higher levels of activation lead to strengthening. According to this view, forgetting effects in the think/no-think paradigm occur when the suppressed item activates moderately during the suppression attempt, leading to weakening; the effect is variable because sometimes the suppressed item activates strongly (leading to strengthening) and sometimes it does not activate at all (in which case no learning takes place). To test this hypothesis, we ran a think/no-think experiment where participants learned word-picture pairs; we used pattern classifiers, applied to fMRI data, to measure how strongly the picture associates were activating when participants were trying not to retrieve these associates, and we used a novel Bayesian curve-fitting procedure to relate this covert neural measure of retrieval to performance on a later memory test. In keeping with our hypothesis, the curve-fitting procedure revealed a nonmonotonic relationship between memory activation (as measured by the classifier) and subsequent memory, whereby moderate levels of activation of the to-be-suppressed item led to diminished performance on the final memory test, and higher levels of activation led to enhanced performance on the final test. PMID:23499722
Moderate levels of activation lead to forgetting in the think/no-think paradigm.
Detre, Greg J; Natarajan, Annamalai; Gershman, Samuel J; Norman, Kenneth A
2013-10-01
Using the think/no-think paradigm (Anderson & Green, 2001), researchers have found that suppressing retrieval of a memory (in the presence of a strong retrieval cue) can make it harder to retrieve that memory on a subsequent test. This effect has been replicated numerous times, but the size of the effect is highly variable. Also, it is unclear from a neural mechanistic standpoint why preventing recall of a memory now should impair your ability to recall that memory later. Here, we address both of these puzzles using the idea, derived from computational modeling and studies of synaptic plasticity, that the function relating memory activation to learning is U-shaped, such that moderate levels of memory activation lead to weakening of the memory and higher levels of activation lead to strengthening. According to this view, forgetting effects in the think/no-think paradigm occur when the suppressed item activates moderately during the suppression attempt, leading to weakening; the effect is variable because sometimes the suppressed item activates strongly (leading to strengthening) and sometimes it does not activate at all (in which case no learning takes place). To test this hypothesis, we ran a think/no-think experiment where participants learned word-picture pairs; we used pattern classifiers, applied to fMRI data, to measure how strongly the picture associates were activating when participants were trying not to retrieve these associates, and we used a novel Bayesian curve-fitting procedure to relate this covert neural measure of retrieval to performance on a later memory test. In keeping with our hypothesis, the curve-fitting procedure revealed a nonmonotonic relationship between memory activation (as measured by the classifier) and subsequent memory, whereby moderate levels of activation of the to-be-suppressed item led to diminished performance on the final memory test, and higher levels of activation led to enhanced performance on the final test. Copyright © 2013 Elsevier Ltd. All rights reserved.
Demeter, Elise; Mirdamadi, Jasmine L.; Meehan, Sean K.; Taylor, Stephan F.
2016-01-01
Deep semantic encoding of verbal stimuli can aid in later successful retrieval of those stimuli from long-term episodic memory. Evidence from numerous neuropsychological and neuroimaging experiments demonstrate regions in left prefrontal cortex, including left dorsolateral prefrontal cortex (DLPFC), are important for processes related to encoding. Here, we investigated the relationship between left DLPFC activity during encoding and successful subsequent memory with transcranial magnetic stimulation (TMS). In a pair of experiments using a 2-session within-subjects design, we stimulated either left DLPFC or a control region (Vertex) with a single 2-s train of short theta burst stimulation (sTBS) during a semantic encoding task and then gave participants a recognition memory test. We found that subsequent memory was enhanced on the day left DLPFC was stimulated, relative to the day Vertex was stimulated, and that DLPFC stimulation also increased participants’ confidence in their decisions during the recognition task. We also explored the time course of how long the effects of sTBS persisted. Our data suggest 2 s of sTBS to left DLPFC is capable of enhancing subsequent memory for items encoded up to 15 s following stimulation. Collectively, these data demonstrate sTBS is capable of enhancing long-term memory and provide evidence that TBS protocols are a potentially powerful tool for modulating cognitive function. PMID:27098772
Chia, Chester; Otto, Tim
2013-11-01
Mounting evidence suggests that long-lasting, protein synthesis-dependent changes in synaptic strength accompany both the initial acquisition and subsequent recall of specific memories. Within brain areas thought to be important for learning and memory, including the hippocampus, learning-related plasticity is likely mediated in part by NMDA receptor activation and experience-dependent changes in gene expression. In the present study, we examined the role of activity-regulated cytoskeletal-associated protein (Arc/Arg3.1) expression in the acquisition, recall, and reconsolidation of memory in a trace fear conditioning paradigm. First, we show that the expression of Arc protein in ventral hippocampus (VH) is dramatically enhanced by memory recall 24h after the acquisition of trace fear conditioning, and that both memory recall and the associated recall-induced enhancement of Arc expression are blocked by pre-training administration of 2-amino-5-phosphonovaleric acid (APV). Next, we show that while infusion of Arc antisense oligodeoxynucleotides (ODNs) into VH prior to testing had little effect on memory recall, it significantly reduced both Arc protein expression and freezing behavior during subsequent testing sessions. Collectively, these results suggest that Arc/Arg3.1 protein plays an important functional role in both the initial acquisition of hippocampal-dependent memory and the reconsolidation of these memories after recall. Copyright © 2013 Elsevier Inc. All rights reserved.
Illusory expectations can affect retrieval-monitoring accuracy.
McDonough, Ian M; Gallo, David A
2012-03-01
The present study investigated how expectations, even when illusory, can affect the accuracy of memory decisions. Participants studied words presented in large or small font for subsequent memory tests. Replicating prior work, judgments of learning indicated that participants expected to remember large words better than small words, even though memory for these words was equivalent on a standard test of recognition memory and subjective judgments. Critically, we also included tests that instructed participants to selectively search memory for either large or small words, thereby allowing different memorial expectations to contribute to performance. On these tests we found reduced false recognition when searching memory for large words relative to small words, such that the size illusion paradoxically affected accuracy measures (d' scores) in the absence of actual memory differences. Additional evidence for the role of illusory expectations was that (a) the accuracy effect was obtained only when participants searched memory for the aspect of the stimuli corresponding to illusory expectations (size instead of color) and (b) the accuracy effect was eliminated on a forced-choice test that prevented the influence of memorial expectations. These findings demonstrate the critical role of memorial expectations in the retrieval-monitoring process. 2012 APA, all rights reserved
Competition between items in working memory leads to forgetting.
Lewis-Peacock, Jarrod A; Norman, Kenneth A
2014-12-18
Switching attention from one thought to the next propels our mental lives forward. However, it is unclear how this thought-juggling affects our ability to remember these thoughts. Here we show that competition between the neural representations of pictures in working memory can impair subsequent recognition of those pictures. We use pattern classifiers to decode functional magnetic resonance imaging (fMRI) data from a retro-cueing task where participants juggle two pictures in working memory. Trial-by-trial fluctuations in neural dynamics are predictive of performance on a surprise recognition memory test: trials that elicit similar levels of classifier evidence for both pictures (indicating close competition) are associated with worse memory performance than trials where participants switch decisively from thinking about one picture to the other. This result is consistent with the non-monotonic plasticity hypothesis, which predicts that close competition can trigger weakening of memories that lose the competition, leading to subsequent forgetting.
Competition between items in working memory leads to forgetting
Lewis-Peacock, Jarrod A.; Norman, Kenneth A.
2014-01-01
Switching attention from one thought to the next propels our mental lives forward. However, it is unclear how this thought-juggling affects our ability to remember these thoughts. Here we show that competition between the neural representations of pictures in working memory can impair subsequent recognition of those pictures. We use pattern classifiers to decode functional magnetic resonance imaging (fMRI) data from a retro-cueing task where participants juggle two pictures in working memory. Trial-by-trial fluctuations in neural dynamics are predictive of performance on a surprise recognition memory test: trials that elicit similar levels of classifier evidence for both pictures (indicating close competition) are associated with worse memory performance than trials where participants switch decisively from thinking about one picture to the other. This result is consistent with the non-monotonic plasticity hypothesis, which predicts that close competition can trigger weakening of memories that lose the competition, leading to subsequent forgetting. PMID:25519874
Effects of Different Types of True-False Questions on Memory Awareness and Long-Term Retention
ERIC Educational Resources Information Center
Schaap, Lydia; Verkoeijen, Peter; Schmidt, Henk
2014-01-01
This study investigated the effects of two different true-false questions on memory awareness and long-term retention of knowledge. Participants took four subsequent knowledge tests on curriculum learning material that they studied at different retention intervals prior to the start of this study (i.e. prior to the first test). At the first and…
Free Recall Enhances Subsequent Learning
Arnold, Kathleen M.; McDermott, Kathleen B.
2013-01-01
Testing, or retrieval practice, has become a central topic in memory research. One potentially important effect of retrieval practice has received little attention, however: Retrieval practice may enhance, or potentiate, subsequent learning. We introduce a paradigm that can measure the indirect, potentiating effect of free recall tests on subsequent learning, and then test a hypothesis for why tests have this potentiating effect. In two experiments, the benefit of a restudy trial was enhanced when prior free recall tests had been taken. Results from a third correlational study suggest that this effect may be mediated by the effect of testing on organization. Not only do encoding conditions impact later retrievability, but also retrieval attempts impact subsequent encoding effectiveness. PMID:23297100
NASA Astrophysics Data System (ADS)
Wells, Audrey Marie
The ability of cocaine-associated environmental contexts to promote relapse in abstinent humans and reinstatement of cocaine-seeking behavior in laboratory animals depends on the formation and maintenance of maladaptive context-response-cocaine associative memories, the latter of which can be disrupted by manipulations that interfere with memory reconsolidation. Memory reconsolidation refers to a protein synthesis-dependent phenomenon whereby memory traces are reincorporated back into long-term memory storage following their retrieval and subsequent destabilization. To elucidate the distinctive roles of the basolateral amygdala (BLA) and dorsal hippocampus (DH) in the reconsolidation of context-response-cocaine memories, Experiments 1-3 evaluated novel molecular mechanisms within each structure that control this phenomenon. Experiment 1 tested the hypothesis that activation of the extracellular signal-regulated kinase (ERK) in the BLA and nucleus accumbens core (NACc - a substrate for Pavlovian cocaine-memory reconsolidation) would critically control instrumental cocaine-memory reconsolidation. To determine this, rats were re-exposed to a context that had previously been used for cocaine self-administration (i.e., cocaine memory-reactivation) and immediately thereafter received bilateral intra-BLA or intra-NACc microinfusions of the ERK inhibitor U0126 or vehicle (VEH) and were subsequently tested for drug context-induced cocaine-seeking behavior (non-reinforced lever responding) ~72 h later. Re-exposure to the cocaine-paired context at test fully reinstated cocaine-seeking behavior, relative to responding in an alternate, extinction context, and post-reactivation U0126 treatment in the BLA, but not the NACc, impaired cocaine-seeking behavior, relative to VEH. This effect was associated with a temporary increase in ERK2, but not ERK1, phosphorylation in the BLA and required explicit reactivation of the target memory trace (i.e., did not similarly manifest when U0126 was administered after exposure to an unpaired context), suggesting that ERK in the BLA plays a critical role in restabilizing contextual cocaine-related memories. Next, Experiment 2 evaluated the hypothesis that the transcription factor (TF) nuclear factor-kappaB (NF-kappaB) would also critically mediate instrumental cocaine-memory reconsolidation in the BLA. Remarkably, the NF-kappaB inhibitor, sulfasalazine (SSZ), administered bilaterally into the BLA following cocaine-memory reactivation, did not significantly alter subsequent cocaine-seeking behavior, relative to VEH, despite producing an observable trend for an enhancement in this behavior. Future studies will be needed to further examine this relationship, but the present findings may suggest that NF-kappaB TFs acts as negative regulators of cocaine-memory reconsolidation. Finally, Experiment 3 tested the hypothesis that members of the Src family of tyrosine kinases (SFKs) are obligatory for instrumental cocaine-memory reconsolidation. Consistent with our hypothesis, PP2, a nonspecific inhibitor of SFKs, administered bilaterally into the DH after cocaine-memory reactivation, attenuated subsequent drug-context induced motivation for cocaine, relative to VEH, in a memory reactivation-dependent manner. This effect was associated with a preferential disruption of SFK-mediated phosphorylation of the NR2a N-methyl-D-aspartate receptor (NMDAR) subunit. Together, these findings begin to illuminate how the BLA and DH may subserve the long-term stability of maladaptive cocaine-related memories that underlie contextual stimulus control over cocaine-seeking behavior.
Behavioral and neuroanatomical investigation of Highly Superior Autobiographical Memory (HSAM)
LePort, Aurora K.R.; Mattfeld, Aaron T.; Dickinson-Anson, Heather; Fallon, James H.; Stark, Craig E.L.; Kruggel, Frithjof; Cahill, Larry; McGaugh, James L.
2013-01-01
A single case study recently documented one woman’s ability to recall accurately vast amounts of autobiographical information, spanning most of her lifetime, without the use of practiced mnemonics (Parker, Cahill, & McGaugh, 2006). The current study reports findings based on eleven participants expressing this same memory ability, now referred to as Highly Superior Autobiographical Memory (HSAM). Participants were identified and subsequently characterized based on screening for memory of public events. They were then tested for personal autobiographical memories as well as for memory assessed by laboratory memory tests. Additionally, whole-brain structural MRI scans were obtained. Results indicated that HSAM participants performed significantly better at recalling public as well as personal autobiographical events as well as the days and dates on which these events occurred. However, their performance was comparable to age- and sex-matched controls on most standard laboratory memory tests. Neuroanatomical results identified nine structures as being morphologically different from those of control participants. The study of HSAM may provide new insights into the neurobiology of autobiographical memory. PMID:22652113
ERP Correlates of Encoding Success and Encoding Selectivity in Attention Switching
Yeung, Nick
2016-01-01
Long-term memory encoding depends critically on effective processing of incoming information. The degree to which participants engage in effective encoding can be indexed in electroencephalographic (EEG) data by studying event-related potential (ERP) subsequent memory effects. The current study investigated ERP correlates of memory success operationalised with two different measures—memory selectivity and global memory—to assess whether previously observed ERP subsequent memory effects reflect focused encoding of task-relevant information (memory selectivity), general encoding success (global memory), or both. Building on previous work, the present study combined an attention switching paradigm—in which participants were presented with compound object-word stimuli and switched between attending to the object or the word across trials—with a later recognition memory test for those stimuli, while recording their EEG. Our results provided clear evidence that subsequent memory effects resulted from selective attentional focusing and effective top-down control (memory selectivity) in contrast to more general encoding success effects (global memory). Further analyses addressed the question of whether successful encoding depended on similar control mechanisms to those involved in attention switching. Interestingly, differences in the ERP correlates of attention switching and successful encoding, particularly during the poststimulus period, indicated that variability in encoding success occurred independently of prestimulus demands for top-down cognitive control. These results suggest that while effects of selective attention and selective encoding co-occur behaviourally their ERP correlates are at least partly dissociable. PMID:27907075
ERIC Educational Resources Information Center
Edlin, James M.; Lyle, Keith B.
2013-01-01
The simple act of repeatedly looking left and right can enhance subsequent cognition, including divergent thinking, detection of matching letters from visual arrays, and memory retrieval. One hypothesis is that saccade execution enhances subsequent cognition by altering attentional control. To test this hypothesis, we compared performance…
Neural Conflict–Control Mechanisms Improve Memory for Target Stimuli
Krebs, Ruth M.; Boehler, Carsten N.; De Belder, Maya; Egner, Tobias
2015-01-01
According to conflict-monitoring models, conflict serves as an internal signal for reinforcing top-down attention to task-relevant information. While evidence based on measures of ongoing task performance supports this idea, implications for long-term consequences, that is, memory, have not been tested yet. Here, we evaluated the prediction that conflict-triggered attentional enhancement of target-stimulus processing should be associated with superior subsequent memory for those stimuli. By combining functional magnetic resonance imaging (fMRI) with a novel variant of a face-word Stroop task that employed trial-unique face stimuli as targets, we were able to assess subsequent (incidental) memory for target faces as a function of whether a given face had previously been accompanied by congruent, neutral, or incongruent (conflicting) distracters. In line with our predictions, incongruent distracters not only induced behavioral conflict, but also gave rise to enhanced memory for target faces. Moreover, conflict-triggered neural activity in prefrontal and parietal regions was predictive of subsequent retrieval success, and displayed conflict-enhanced functional coupling with medial-temporal lobe regions. These data provide support for the proposal that conflict evokes enhanced top-down attention to task-relevant stimuli, thereby promoting their encoding into long-term memory. Our findings thus delineate the neural mechanisms of a novel link between cognitive control and memory. PMID:24108799
Baym, Carol L; Gonsalves, Brian D
2010-09-01
False memories can occur when people are exposed to misinformation about a past event. Of interest here are the neural mechanisms of this type of memory failure. In the present study, participants viewed photographic vignettes of common activities during an original event phase (OEP), while we monitored their brain activity using fMRI. Later, in a misinformation phase, participants viewed sentences describing the studied photographs, some of which contained information conflicting with that depicted in the photographs. One day later, participants returned for a surprise item memory recognition test for the content of the photographs. Results showed reliable creation of false memories, in that participants reported information that had been presented in the verbal misinformation but not in the photographs. Several regions were more active during the OEP for later accurate memory than for forgetting, but they were also more active for later false memories, indicating that false memories in this paradigm are not simply caused by failure to encode the original event. There was greater activation in the ventral visual stream for subsequent true memories than for subsequent false memories, however, suggesting that differences in encoding may contribute to later susceptibility to misinformation.
Electrophysiological correlates of forming memories for faces, names, and face-name associations.
Guo, Chunyan; Voss, Joel L; Paller, Ken A
2005-02-01
The ability to put a name to a face is a vital aspect of human interaction, but many people find this extremely difficult, especially after being introduced to someone for the first time. Creating enduring associations between arbitrary stimuli in this manner is also a prime example of what patients with amnesia find most difficult. To help develop a better understanding of this type of memory, we sought to obtain measures of the neural events responsible for successfully forming a new face-name association. We used event-related potentials (ERPs) extracted from high-density scalp EEG recordings in order to compare (1) memory for faces, (2) memory for names, and (3) memory for face-name associations. Each visual face appeared simultaneously with a unique spoken name. Signals observed 200-800 ms after the onset of face-name pairs predicted subsequent memory for faces, names, or face-name associations. Difference potentials observed as a function of subsequent memory performance were not identical for these three memory tests, nor were potentials predicting associative memory equivalent to the sum of potentials predicting item memory, suggesting that different neural events at the time of encoding are relevant for these distinct aspects of remembering people.
Immediate memory consequences of the effect of emotion on attention to pictures.
Talmi, Deborah; Anderson, Adam K; Riggs, Lily; Caplan, Jeremy B; Moscovitch, Morris
2008-03-01
Emotionally arousing stimuli are at once both highly attention grabbing and memorable. We examined whether emotional enhancement of memory (EEM) reflects an indirect effect of emotion on memory, mediated by enhanced attention to emotional items during encoding. We tested a critical prediction of the mediation hypothesis-that regions conjointly activated by emotion and attention would correlate with subsequent EEM. Participants were scanned with fMRI while they watched emotional or neutral pictures under instructions to attend to them a lot or a little, and were then given an immediate recognition test. A region in the left fusiform gyrus was activated by emotion, voluntary attention, and subsequent EEM. A functional network, different for each attention condition, connected this region and the amygdala, which was associated with emotion and EEM, but not with voluntary attention. These findings support an indirect cortical mediation account of immediate EEM that may complement a direct modulation model.
Immediate memory consequences of the effect of emotion on attention to pictures
Talmi, Deborah; Anderson, Adam K.; Riggs, Lily; Caplan, Jeremy B.; Moscovitch, Morris
2008-01-01
Emotionally arousing stimuli are at once both highly attention grabbing and memorable. We examined whether emotional enhancement of memory (EEM) reflects an indirect effect of emotion on memory, mediated by enhanced attention to emotional items during encoding. We tested a critical prediction of the mediation hypothesis—that regions conjointly activated by emotion and attention would correlate with subsequent EEM. Participants were scanned with fMRI while they watched emotional or neutral pictures under instructions to attend to them a lot or a little, and were then given an immediate recognition test. A region in the left fusiform gyrus was activated by emotion, voluntary attention, and subsequent EEM. A functional network, different for each attention condition, connected this region and the amygdala, which was associated with emotion and EEM, but not with voluntary attention. These findings support an indirect cortical mediation account of immediate EEM that may complement a direct modulation model. PMID:18323572
Spaced Learning Enhances Subsequent Recognition Memory by Reducing Neural Repetition Suppression
Xue, Gui; Mei, Leilei; Chen, Chuansheng; Lu, Zhong-Lin; Poldrack, Russell; Dong, Qi
2012-01-01
Spaced learning usually leads to better recognition memory as compared with massed learning, yet the underlying neural mechanisms remain elusive. One open question is whether the spacing effect is achieved by reducing neural repetition suppression. In this fMRI study, participants were scanned while intentionally memorizing 120 novel faces, half under the massed learning condition (i.e., four consecutive repetitions with jittered interstimulus interval) and the other half under the spaced learning condition (i.e., the four repetitions were interleaved). Recognition memory tests afterward revealed a significant spacing effect: Participants recognized more items learned under the spaced learning condition than under the massed learning condition. Successful face memory encoding was associated with stronger activation in the bilateral fusiform gyrus, which showed a significant repetition suppression effect modulated by subsequent memory status and spaced learning. Specifically, remembered faces showed smaller repetition suppression than forgotten faces under both learning conditions, and spaced learning significantly reduced repetition suppression. These results suggest that spaced learning enhances recognition memory by reducing neural repetition suppression. PMID:20617892
Spaced learning enhances subsequent recognition memory by reducing neural repetition suppression.
Xue, Gui; Mei, Leilei; Chen, Chuansheng; Lu, Zhong-Lin; Poldrack, Russell; Dong, Qi
2011-07-01
Spaced learning usually leads to better recognition memory as compared with massed learning, yet the underlying neural mechanisms remain elusive. One open question is whether the spacing effect is achieved by reducing neural repetition suppression. In this fMRI study, participants were scanned while intentionally memorizing 120 novel faces, half under the massed learning condition (i.e., four consecutive repetitions with jittered interstimulus interval) and the other half under the spaced learning condition (i.e., the four repetitions were interleaved). Recognition memory tests afterward revealed a significant spacing effect: Participants recognized more items learned under the spaced learning condition than under the massed learning condition. Successful face memory encoding was associated with stronger activation in the bilateral fusiform gyrus, which showed a significant repetition suppression effect modulated by subsequent memory status and spaced learning. Specifically, remembered faces showed smaller repetition suppression than forgotten faces under both learning conditions, and spaced learning significantly reduced repetition suppression. These results suggest that spaced learning enhances recognition memory by reducing neural repetition suppression.
Retrieval monitoring and anosognosia in Alzheimer's disease.
Gallo, David A; Chen, Jennifer M; Wiseman, Amy L; Schacter, Daniel L; Budson, Andrew E
2007-09-01
This study explored the relationship between episodic memory and anosognosia (a lack of deficit awareness) among patients with mild Alzheimer's disease (AD). Participants studied words and pictures for subsequent memory tests. Healthy older adults made fewer false recognition errors when trying to remember pictures compared with words, suggesting that the perceptual distinctiveness of picture memories enhanced retrieval monitoring (the distinctiveness heuristic). In contrast, although participants with AD could discriminate between studied and nonstudied items, they had difficulty recollecting the specific presentation formats (words or pictures), and they had limited use of the distinctiveness heuristic. Critically, the demands of the memory test modulated the relationship between memory accuracy and anosognosia. Greater anosognosia was associated with impaired memory accuracy when participants with AD tried to remember words but not when they tried to remember pictures. These data further delineate the retrieval monitoring difficulties among individuals with AD and suggest that anosognosia measures are most likely to correlate with memory tests that require the effortful retrieval of nondistinctive information. (PsycINFO Database Record (c) 2007 APA, all rights reserved).
Differentiation of subsequent memory effects between retrieval practice and elaborative study.
Liu, Yi; Rosburg, Timm; Gao, Chuanji; Weber, Christine; Guo, Chunyan
2017-07-01
Retrieval practice enhances memory retention more than re-studying. The underlying mechanisms of this retrieval practice effect have remained widely unclear. According to the elaborative retrieval hypothesis, activation of elaborative information occurs to a larger extent during testing than re-studying. In contrast, the episodic context account has suggested that recollecting prior episodic information (especially the temporal context) contributes to memory retention. To adjudicate the distinction between these two accounts, the present study used the classical retrieval practice effect paradigm to compare retrieval practice and elaborative study. In an initial behavioral experiment, retrieval practice produced greater retention than elaboration and re-studying in a one-week delayed test. In a subsequent event-related potential (ERP) experiment, retrieval practice resulted in reliably superior accuracy in the delayed test compared to elaborative study. In the ERPs, a frontally distributed subsequent memory effect (SME), starting at 300ms, occurred in the elaborative study condition, but not in the retrieval practice condition. A parietal SME emerged in the retrieval practice condition from 500 to 700ms, but was absent in the elaborative study condition. After 700ms, a late SME was present in the retrieval practice condition, but not in the elaborative study condition. Moreover, SMEs lasted longer in retrieval practice than in elaboration. The frontal SME in the elaborative study condition might be related to semantic processing or working memory-based elaboration, whereas the parietal and widespread SME in the retrieval practice condition might be associated with episodic recollection processes. These findings contradict the elaborative retrieval theory, and suggest that contextual recollection rather than activation of semantic information contributes to the retrieval practice effect, supporting the episodic context account. Copyright © 2017. Published by Elsevier B.V.
Lewis, Ashley Glen; Schriefers, Herbert; Bastiaansen, Marcel; Schoffelen, Jan-Mathijs
2018-05-21
Reinstatement of memory-related neural activity measured with high temporal precision potentially provides a useful index for real-time monitoring of the timing of activation of memory content during cognitive processing. The utility of such an index extends to any situation where one is interested in the (relative) timing of activation of different sources of information in memory, a paradigm case of which is tracking lexical activation during language processing. Essential for this approach is that memory reinstatement effects are robust, so that their absence (in the average) definitively indicates that no lexical activation is present. We used electroencephalography to test the robustness of a reported subsequent memory finding involving reinstatement of frequency-specific entrained oscillatory brain activity during subsequent recognition. Participants learned lists of words presented on a background flickering at either 6 or 15 Hz to entrain a steady-state brain response. Target words subsequently presented on a non-flickering background that were correctly identified as previously seen exhibited reinstatement effects at both entrainment frequencies. Reliability of these statistical inferences was however critically dependent on the approach used for multiple comparisons correction. We conclude that effects are not robust enough to be used as a reliable index of lexical activation during language processing.
Neural conflict-control mechanisms improve memory for target stimuli.
Krebs, Ruth M; Boehler, Carsten N; De Belder, Maya; Egner, Tobias
2015-03-01
According to conflict-monitoring models, conflict serves as an internal signal for reinforcing top-down attention to task-relevant information. While evidence based on measures of ongoing task performance supports this idea, implications for long-term consequences, that is, memory, have not been tested yet. Here, we evaluated the prediction that conflict-triggered attentional enhancement of target-stimulus processing should be associated with superior subsequent memory for those stimuli. By combining functional magnetic resonance imaging (fMRI) with a novel variant of a face-word Stroop task that employed trial-unique face stimuli as targets, we were able to assess subsequent (incidental) memory for target faces as a function of whether a given face had previously been accompanied by congruent, neutral, or incongruent (conflicting) distracters. In line with our predictions, incongruent distracters not only induced behavioral conflict, but also gave rise to enhanced memory for target faces. Moreover, conflict-triggered neural activity in prefrontal and parietal regions was predictive of subsequent retrieval success, and displayed conflict-enhanced functional coupling with medial-temporal lobe regions. These data provide support for the proposal that conflict evokes enhanced top-down attention to task-relevant stimuli, thereby promoting their encoding into long-term memory. Our findings thus delineate the neural mechanisms of a novel link between cognitive control and memory. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Knight, Justin B.; Ball, B. Hunter; Brewer, Gene A.; DeWitt, Michael R.; Marsh, Richard L.
2012-01-01
Five experiments were conducted to examine how unsuccessful retrieval influences learning and subsequent memory. We used a cued-recall paradigm that produces many unsuccessful retrieval attempts (followed by feedback) and allows comparisons to be made between later memory for these trials and trials that only required reading or studying the…
Tran, Dominic M D; Westbrook, R Frederick
2018-05-31
Exposure to a high-fat high-sugar (HFHS) diet rapidly impairs novel-place- but not novel-object-recognition memory in rats (Tran & Westbrook, 2015, 2017). Three experiments sought to investigate the generality of diet-induced cognitive deficits by examining whether there are conditions under which object-recognition memory is impaired. Experiments 1 and 3 tested the strength of short- and long-term object-memory trace, respectively, by varying the interval of time between object familiarization and subsequent novel object test. Experiment 2 tested the effect of increasing working memory load on object-recognition memory by interleaving additional object exposures between familiarization and test in an n-back style task. Experiments 1-3 failed to detect any differences in object recognition between HFHS and control rats. Experiment 4 controlled for object novelty by separately familiarizing both objects presented at test, which included one remote-familiar and one recent-familiar object. Under these conditions, when test objects differed in their relative recency, HFHS rats showed a weaker memory trace for the remote object compared to chow rats. This result suggests that the diet leaves intact recollection judgments, but impairs familiarity judgments. We speculate that the HFHS diet adversely affects "where" memories as well as the quality of "what" memories, and discuss these effects in relation to recollection and familiarity memory models, hippocampal-dependent functions, and episodic food memories. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Event segmentation ability uniquely predicts event memory.
Sargent, Jesse Q; Zacks, Jeffrey M; Hambrick, David Z; Zacks, Rose T; Kurby, Christopher A; Bailey, Heather R; Eisenberg, Michelle L; Beck, Taylor M
2013-11-01
Memory for everyday events plays a central role in tasks of daily living, autobiographical memory, and planning. Event memory depends in part on segmenting ongoing activity into meaningful units. This study examined the relationship between event segmentation and memory in a lifespan sample to answer the following question: Is the ability to segment activity into meaningful events a unique predictor of subsequent memory, or is the relationship between event perception and memory accounted for by general cognitive abilities? Two hundred and eight adults ranging from 20 to 79years old segmented movies of everyday events and attempted to remember the events afterwards. They also completed psychometric ability tests and tests measuring script knowledge for everyday events. Event segmentation and script knowledge both explained unique variance in event memory above and beyond the psychometric measures, and did so as strongly in older as in younger adults. These results suggest that event segmentation is a basic cognitive mechanism, important for memory across the lifespan. Copyright © 2013 Elsevier B.V. All rights reserved.
Event Segmentation Ability Uniquely Predicts Event Memory
Sargent, Jesse Q.; Zacks, Jeffrey M.; Hambrick, David Z.; Zacks, Rose T.; Kurby, Christopher A.; Bailey, Heather R.; Eisenberg, Michelle L.; Beck, Taylor M.
2013-01-01
Memory for everyday events plays a central role in tasks of daily living, autobiographical memory, and planning. Event memory depends in part on segmenting ongoing activity into meaningful units. This study examined the relationship between event segmentation and memory in a lifespan sample to answer the following question: Is the ability to segment activity into meaningful events a unique predictor of subsequent memory, or is the relationship between event perception and memory accounted for by general cognitive abilities? Two hundred and eight adults ranging from 20 to 79 years old segmented movies of everyday events and attempted to remember the events afterwards. They also completed psychometric ability tests and tests measuring script knowledge for everyday events. Event segmentation and script knowledge both explained unique variance in event memory above and beyond the psychometric measures, and did so as strongly in older as in younger adults. These results suggest that event segmentation is a basic cognitive mechanism, important for memory across the lifespan. PMID:23942350
Computerized scoring algorithms for the Autobiographical Memory Test.
Takano, Keisuke; Gutenbrunner, Charlotte; Martens, Kris; Salmon, Karen; Raes, Filip
2018-02-01
Reduced specificity of autobiographical memories is a hallmark of depressive cognition. Autobiographical memory (AM) specificity is typically measured by the Autobiographical Memory Test (AMT), in which respondents are asked to describe personal memories in response to emotional cue words. Due to this free descriptive responding format, the AMT relies on experts' hand scoring for subsequent statistical analyses. This manual coding potentially impedes research activities in big data analytics such as large epidemiological studies. Here, we propose computerized algorithms to automatically score AM specificity for the Dutch (adult participants) and English (youth participants) versions of the AMT by using natural language processing and machine learning techniques. The algorithms showed reliable performances in discriminating specific and nonspecific (e.g., overgeneralized) autobiographical memories in independent testing data sets (area under the receiver operating characteristic curve > .90). Furthermore, outcome values of the algorithms (i.e., decision values of support vector machines) showed a gradient across similar (e.g., specific and extended memories) and different (e.g., specific memory and semantic associates) categories of AMT responses, suggesting that, for both adults and youth, the algorithms well capture the extent to which a memory has features of specific memories. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Six-month atrophy in MTL structures is associated with subsequent memory decline in elderly controls
Murphy, E.A.; Holland, D.; Donohue, M.; McEvoy, L.K.; Hagler, D.J.; Dale, A.M.; Brewer, J. B.
2010-01-01
Neurodegeneration precedes the onset of dementias such as Alzheimer’s by several years. Recent advances in volumetric imaging allow quantification of subtle neuroanatomical change over time periods as short as six months. This study investigates whether neuroanatomical change in medial temporal lobe subregions is associated with later memory decline in elderly controls. Using high-resolution, T1-weighted magnetic resonance images acquired at baseline and six months follow-up, change in cortical thickness and subcortical volumes was measured in 142 healthy elderly subjects (aged 59 – 90 years) from the ADNI cohort. Regression analysis was used to identify whether change in fourteen subregions, selected a priori, was associated with declining performance on memory tests from baseline to two years follow-up. Percent thickness change in the right fusiform and inferior temporal cortices and expansion of the right inferior lateral ventricle were found to be significant predictors of subsequent decline on memory-specific neuropsychological measures. These results demonstrate that six-month regional neurodegeneration can be quantified in the healthy elderly and might help identify those at risk for subsequent cognitive decline. PMID:20633660
Sumowski, James F; Chiaravalloti, Nancy; Deluca, John
2010-03-01
The testing effect is a robust cognitive phenomenon by which memory retrieval on a test improves subsequent recall more than restudying. Also known as retrieval practice, the testing effect has been studied almost exclusively in healthy undergraduates. The current study investigated whether retrieval practice during testing leads to better delayed recall than restudy among persons with multiple sclerosis (MS), a neurologic disease associated with memory dysfunction. In a within-subjects design, 32 persons with MS and 16 demographically matched healthy controls (HC) studied 48 verbal paired associates (VPA) divided across 3 learning conditions: massed restudy (MR), spaced restudy (SR), and spaced testing (ST). Delayed VPA cued recall was measured after 45 min. There was a large main effect of learning condition (etap2 = .54, p < .001) such that both MS and HC participants produced better delayed recall for VPAs learned through ST relative to MR and SR; and SR relative to MR. This same pattern was observed for MS participants with objective memory impairment (n = 16), thereby providing the first evidence that retrieval practice improves memory more than restudy among persons with neurologically based memory impairment. Copyright 2010 APA, all rights reserved
How many pixels make a memory? Picture memory for small pictures.
Wolfe, Jeremy M; Kuzmova, Yoana I
2011-06-01
Torralba (Visual Neuroscience, 26, 123-131, 2009) showed that, if the resolution of images of scenes were reduced to the information present in very small "thumbnail images," those scenes could still be recognized. The objects in those degraded scenes could be identified, even though it would be impossible to identify them if they were removed from the scene context. Can tiny and/or degraded scenes be remembered, or are they like brief presentations, identified but not remembered. We report that memory for tiny and degraded scenes parallels the recognizability of those scenes. You can remember a scene to approximately the degree to which you can classify it. Interestingly, there is a striking asymmetry in memory when scenes are not the same size on their initial appearance and subsequent test. Memory for a large, full-resolution stimulus can be tested with a small, degraded stimulus. However, memory for a small stimulus is not retrieved when it is tested with a large stimulus.
[A new assessment for episodic memory. Episodic memory test and caregiver's episodic memory test].
Ojea Ortega, T; González Álvarez de Sotomayor, M M; Pérez González, O; Fernández Fernández, O
2013-10-01
The purpose of the episodic memory test and the caregiver's episodic memory test is to evaluate episodic memory according to its definition in a way that is feasible for families and achieves high degrees of sensitivity and specificity. We administered a test consisting of 10 questions about episodic events to 332 subjects, of whom 65 had Alzheimer's disease (AD), 115 had amnestic MCI (aMCI) and 152 showed no cognitive impairment according to Reisberg's global deterioration scale (GDS). We calculated the test's sensitivity and specificity to distinguish AD from episodic aMCI and from normal ageing. The area under the ROC curve for the diagnosis of aMCI was 0.94 and the best cut-off value was 20; for that value, sensitivity was 89% and specificity was 82%. For a diagnosis of AD, the area under the ROC curve was 0.99 and the best cut-off point was 17, with a sensitivity of 98% and a specificity of 91%. A subsequent study using similar methodology yielded similar results when the test was administered directly by the caregiver. The episodic memory test and the caregiver's episodic memory test are useful as brief screening tools for identifying patients with early-stage AD. It is suitable for use by primary care medical staff and in the home, since it can be administered by a caregiver. The test's limitations are that it must be administered by a reliable caregiver and the fact that it measures episodic memory only. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
Eacret, Darrell; Grafe, Laura A; Dobkin, Jane; Gotter, Anthony L; Rengerb, John J; Winrow, Christopher J; Bhatnagar, Seema
2018-06-11
Orexins are neuropeptides synthesized in the lateral hypothalamus that influence arousal, feeding, reward pathways, and the response to stress. However, the role of orexins in repeated stress is not fully characterized. Here, we examined how orexins and their receptors contribute to the coping response during repeated social defeat and subsequent anxiety-like and memory-related behaviors. Specifically, we used Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to stimulate orexins prior to each of five consecutive days of social defeat stress in adult male rats. Additionally, we determined the role of the orexin 2 receptor in these behaviors by using a selective orexin 2 receptor antagonist (MK-1064) administered prior to each social defeat. Following the 5 day social defeat conditioning period, rats were evaluated in social interaction and novel object recognition paradigms to assess anxiety-like behavior and recognition memory, respectively. Activation of orexin neurons by DREADDs prior to each social defeat decreased the average latency to become defeated across 5 days, indicative of a passive coping strategy that we have previously linked to a stress vulnerable phenotype. Moreover, stimulation of orexin signaling during defeat conditioning decreased subsequent social interaction and performance in the novel object recognition test indicating increased subsequent anxiety-like behavior and reduced working memory. Blocking the orexin 2 receptor during repeated defeat did not alter these effects. Together, our results suggest that orexin neuron activation produces a passive coping phenotype during social defeat leading to subsequent anxiety-like behaviors and memory deficits. Copyright © 2018. Published by Elsevier B.V.
Negative and Positive Testing Effects in Terms of Item-Specific and Relational Information
ERIC Educational Resources Information Center
Mulligan, Neil W.; Peterson, Daniel J.
2015-01-01
Though retrieving information typically results in improved memory on a subsequent test (the testing effect), Peterson and Mulligan (2013) outlined the conditions under which retrieval practice results in poorer recall relative to restudy, a phenomenon dubbed the "negative testing effect." The item-specific-relational account proposes…
Reduced Interference from Memory Testing: A Postretrieval Monitoring Account
ERIC Educational Resources Information Center
Pierce, Benton H.; Gallo, David A.; McCain, Jason L.
2017-01-01
Initial learning can interfere with subsequent learning (proactive interference [PI]), but recent work indicates initial testing can reduce PI. Here, we tested 2 alternative hypotheses of this effect: Does testing reduce PI by constraining retrieval to the target list, or by facilitating a postretrieval monitoring process? Participants first…
The Negative Testing and Negative Generation Effects Are Eliminated by Delay
ERIC Educational Resources Information Center
Mulligan, Neil W.; Peterson, Daniel J.
2015-01-01
Although retrieval often enhances subsequent memory (the testing effect), a negative testing effect has recently been documented in which prior retrieval harms later recall compared with restudying. The negative testing effect was predicated on the negative generation effect and the item-specific-relational framework. The present experiments…
Memory for time distinguishes between perception and action.
Bueti, Domenica; Walsh, Vincent
2010-01-01
Our experience of time is unlike that of other features of the sensory world such as colour, movement, touch, or sound because there is no unique receptor system through which it is received. However, since time can be perceived, remembered, estimated, and compared in a way analogous to other sensory experiences, it should perhaps be subject to some of the same architectures or principles that have advanced understanding in these other domains. By adapting a task designed to test visual memory within a perception/action framework we investigated whether memory for time is affected by the use to which temporal information is put. When remembering a visual or auditory duration for subsequent motor production, storage is biased by a delay of up to 8 s. When the same duration is remembered for subsequent perception, however, there is no such effect of delay on memory. The results suggest a distinction in temporal memory that parallels the perception/action dichotomy in vision.
Olsen, Rosanna K; Sebanayagam, Vinoja; Lee, Yunjo; Moscovitch, Morris; Grady, Cheryl L; Rosenbaum, R Shayna; Ryan, Jennifer D
2016-12-01
There is consistent agreement regarding the positive relationship between cumulative eye movement sampling and subsequent recognition, but the role of the hippocampus in this sampling behavior is currently unknown. It is also unclear whether the eye movement repetition effect, i.e., fewer fixations to repeated, compared to novel, stimuli, depends on explicit recognition and/or an intact hippocampal system. We investigated the relationship between cumulative sampling, the eye movement repetition effect, subsequent memory, and the hippocampal system. Eye movements were monitored in a developmental amnesic case (H.C.), whose hippocampal system is compromised, and in a group of typically developing participants while they studied single faces across multiple blocks. The faces were studied from the same viewpoint or different viewpoints and were subsequently tested with the same or different viewpoint. Our previous work suggested that hippocampal representations support explicit recognition for information that changes viewpoint across repetitions (Olsen et al., 2015). Here, examination of eye movements during encoding indicated that greater cumulative sampling was associated with better memory among controls. Increased sampling, however, was not associated with better explicit memory in H.C., suggesting that increased sampling only improves memory when the hippocampal system is intact. The magnitude of the repetition effect was not correlated with cumulative sampling, nor was it related reliably to subsequent recognition. These findings indicate that eye movements collect information that can be used to strengthen memory representations that are later available for conscious remembering, whereas eye movement repetition effects reflect a processing change due to experience that does not necessarily reflect a memory representation that is available for conscious appraisal. Lastly, H.C. demonstrated a repetition effect for fixed viewpoint faces but not for variable viewpoint faces, which suggests that repetition effects are differentially supported by neocortical and hippocampal systems, depending upon the representational nature of the underlying memory trace. Copyright © 2016 Elsevier Ltd. All rights reserved.
Awareness of and memory for arm weakness during intracarotid sodium amytal testing.
Carpenter, K; Berti, A; Oxbury, S; Molyneux, A J; Bisiach, E; Oxbury, J M
1995-02-01
The traditional association between anosognosia for hemiplegia and the right hemisphere was investigated in 31 patients with unilateral temporal lobe pathology during intracarotid sodium amytal testing (ISA) before epilepsy surgery. Recall of arm weakness was examined by questioning at the end of the test, when memory for items presented during the hemiplegia was also examined. Significantly more patients were amnesic for left arm weakness than for right. Amnesia for right arm weakness (and speech arrest) was significantly associated with pathology in the temporal lobe on the non-injected side and with impaired recognition of the memory items. Amnesia for left arm weakness was independent of both. Examination of cases where injection was contralateral to a hemisphere without pathology, and which showed normal memory capacity under ISA conditions, revealed that 87% recalled right arm weakness, but only 22% recalled left arm weakness. Awareness of arm weakness during left hemiplegia was examined in nine patients. Five of them were not aware of the weakness. Three of the four others could not subsequently recall it. By inference from the generally unimpaired recall of right arm weakness, following left hemisphere inactivation by amytal, an intact right hemisphere is capable of both recognizing right arm weakness and mediating its subsequent recall. In contrast, the left hemisphere was aware of left arm weakness only in approximately 50% of cases and even when there had been awareness usually could not mediate its subsequent recall. The suggestion is made that the right hemisphere may have a specific mnestic function for arm weakness, and presumably for hemiplegia, additional to the gnostic function.
St Jacques, Peggy L.; Montgomery, Daniel; Schacter, Daniel L.
2015-01-01
Memory reactivation, the activation of a latent memory trace when we are reminded of a past experience, strengthens memory but can also contribute to distortions if new information present during reactivation is integrated with existing memory. In a previous study in young adults we found that the quality of memory reactivation, manipulated using the principle of encoding specificity and indexed by recollection ratings, modulated subsequent true and false memories for events experienced during a museum tour. Here, we examined age-related changes in the quality of memory reactivation on subsequent memory. Young and older adults reactivated memories for museum stops immediately followed by the presentation of a novel lure photo from an alternate tour version (i.e., reactivation plus new information). There was an increase in subsequent true memories for reactivated targets and for subsequent false memories for lures that followed reactivated targets, when compared to baseline target and lure photos. However, the influence of reactivation on subsequent memories was reduced in older adults. These data reveal that aging alters reactivation-related updating processes that allow memories to be strengthened and updated with new information-consequently reducing memory distortions in older compared to young adults. PMID:24993055
St Jacques, Peggy L; Montgomery, Daniel; Schacter, Daniel L
2015-01-01
Memory reactivation, the activation of a latent memory trace when we are reminded of a past experience, strengthens memory but can also contribute to distortions if new information present during reactivation is integrated with existing memory. In a previous study in young adults we found that the quality of memory reactivation, manipulated using the principle of encoding specificity and indexed by recollection ratings, modulated subsequent true and false memories for events experienced during a museum tour. Here in this study, we examined age-related changes in the quality of memory reactivation on subsequent memory. Memories of museum stops in young and older adults were reactivated and then immediately followed by the presentation of a novel lure photo from an alternate tour version (i.e., reactivation plus new information). There was an increase in subsequent true memories for reactivated targets and for subsequent false memories for lures that followed reactivated targets, when compared to baseline target and lure photos. However, the influence of reactivation on subsequent memories was reduced in older adults. These data reveal that ageing alters reactivation-related updating processes that allow memories to be strengthened and updated with new information, consequently reducing memory distortions in older adults compared to young adults.
A Positive Generation Effect on Memory for Auditory Context
Overman, Amy A.; Richard, Alison G.; Stephens, Joseph D. W.
2016-01-01
Self-generation of information during memory encoding has large positive effects on subsequent memory for items, but mixed effects on memory for contextual information associated with items. A processing account of generation effects on context memory (Mulligan, 2004; Mulligan, Lozito, & Rosner, 2006) proposes that these effects depend on whether the generation task causes any shift in processing of the type of context features for which memory is being tested. Mulligan and colleagues have used this account to predict various negative effects of generation on context memory, but the account also predicts positive generation effects under certain circumstances. The present experiment provided a critical test of the processing account by examining how generation affected memory for auditory rather than visual context. Based on the processing account, we predicted that generation of rhyme words should enhance processing of auditory information associated with the words (i.e., voice gender) whereas generation of antonym words should have no effect. These predictions were confirmed, providing support to the processing account. PMID:27696145
Increased gamma band power during movement planning coincides with motor memory retrieval.
Thürer, Benjamin; Stockinger, Christian; Focke, Anne; Putze, Felix; Schultz, Tanja; Stein, Thorsten
2016-01-15
The retrieval of motor memory requires a previous memory encoding and subsequent consolidation of the specific motor memory. Previous work showed that motor memory seems to rely on different memory components (e.g., implicit, explicit). However, it is still unknown if explicit components contribute to the retrieval of motor memories formed by dynamic adaptation tasks and which neural correlates are linked to memory retrieval. We investigated the lower and higher gamma bands of subjects' electroencephalography during encoding and retrieval of a dynamic adaptation task. A total of 24 subjects were randomly assigned to a treatment and control group. Both groups adapted to a force field A on day 1 and were re-exposed to the same force field A on day 3 of the experiment. On day 2, treatment group learned an interfering force field B whereas control group had a day rest. Kinematic analyses showed that control group improved their initial motor performance from day 1 to day 3 but treatment group did not. This behavioral result coincided with an increased higher gamma band power in the electrodes over prefrontal areas on the initial trials of day 3 for control but not treatment group. Intriguingly, this effect vanished with the subsequent re-adaptation on day 3. We suggest that improved re-test performance in a dynamic motor adaptation task is contributed by explicit memory and that gamma bands in the electrodes over the prefrontal cortex are linked to these explicit components. Furthermore, we suggest that the contribution of explicit memory vanishes with the subsequent re-adaptation while task automaticity increases. Copyright © 2015 Elsevier Inc. All rights reserved.
Verbal overshadowing of visual memories: some things are better left unsaid.
Schooler, J W; Engstler-Schooler, T Y
1990-01-01
It is widely believed that verbal processing generally improves memory performance. However, in a series of six experiments, verbalizing the appearance of previously seen visual stimuli impaired subsequent recognition performance. In Experiment 1, subjects viewed a videotape including a salient individual. Later, some subjects described the individual's face. Subjects who verbalized the face performed less well on a subsequent recognition test than control subjects who did not engage in memory verbalization. The results of Experiment 2 replicated those of Experiment 1 and further clarified the effect of memory verbalization by demonstrating that visualization does not impair face recognition. In Experiments 3 and 4 we explored the hypothesis that memory verbalization impairs memory for stimuli that are difficult to put into words. In Experiment 3 memory impairment followed the verbalization of a different visual stimulus: color. In Experiment 4 marginal memory improvement followed the verbalization of a verbal stimulus: a brief spoken statement. In Experiments 5 and 6 the source of verbally induced memory impairment was explored. The results of Experiment 5 suggested that the impairment does not reflect a temporary verbal set, but rather indicates relatively long-lasting memory interference. Finally, Experiment 6 demonstrated that limiting subjects' time to make recognition decisions alleviates the impairment, suggesting that memory verbalization overshadows but does not eradicate the original visual memory. This collection of results is consistent with a recording interference hypothesis: verbalizing a visual memory may produce a verbally biased memory representation that can interfere with the application of the original visual memory.
Cassel, Raphaelle; Kelche, Christian; Lecourtier, Lucas; Cassel, Jean-Christophe
2012-05-01
Animals can perform goal-directed tasks by using response cues or place cues. The underlying memory systems are occasionally presented as competing. Using the double-H maze test (Pol-Bodetto et al.), we trained rats for response learning and, 24 h later, tested their memory in a 60-s probe trial using a new start place. A modest shift of the start place (translation: 60-cm to the left) provided a high misleading potential, whereas a marked shift (180° rotation; shift to the opposite) provided a low misleading potential. We analyzed each rat's first arm choice (to assess response vs. place memory retrieval) and its subsequent search for the former platform location (to assess the persistence in place memory or the shift from response to place memory). After the translation, response memory-based behavior was found in more than 90% rats (24/26). After the rotation, place memory-based behavior was observed in 50% rats, the others showing response memory or failing. Rats starting to use response cues were nevertheless able to subsequently shift to place ones. A posteriori behavioral analyses showed more and longer stops in rats starting their probe trial on the basis of place (vs. response) cues. These observations qualify the idea of competing memory systems for responses and places and are compatible with that of a cooperation between both systems according to principles of match/mismatch computation (at the start of a probe trial) and of error-driven adjustment (during the ongoing probe trial). Copyright © 2012 Elsevier B.V. All rights reserved.
Rugg, Michael D.
2016-01-01
Memory reactivation—the reinstatement of processes and representations engaged when an event is initially experienced—is believed to play an important role in strengthening and updating episodic memory. The present study examines how memory reactivation during a potentially interfering event influences memory for a previously experienced event. Participants underwent fMRI during the encoding phase of an AB/AC interference task in which some words were presented twice in association with two different encoding tasks (AB and AC trials) and other words were presented once (DE trials). The later memory test required retrieval of the encoding tasks associated with each of the study words. Retroactive interference was evident for the AB encoding task and was particularly strong when the AC encoding task was remembered rather than forgotten. We used multivariate classification and pattern similarity analysis (PSA) to measure reactivation of the AB encoding task during AC trials. The results demonstrated that reactivation of generic task information measured with multivariate classification predicted subsequent memory for the AB encoding task regardless of whether interference was strong and weak (trials for which the AC encoding task was remembered or forgotten, respectively). In contrast, reactivation of neural patterns idiosyncratic to a given AB trial measured with PSA only predicted memory when the strength of interference was low. These results suggest that reactivation of features of an initial experience shared across numerous events in the same category, but not features idiosyncratic to a particular event, are important in resisting retroactive interference caused by new learning. SIGNIFICANCE STATEMENT Reactivating a previously encoded memory is believed to provide an opportunity to strengthen the memory, but also to return the memory to a labile state, making it susceptible to interference. However, there is debate as to how memory reactivation elicited by a potentially interfering event influences subsequent retrieval of the memory. The findings of the current study indicate that reactivating features idiosyncratic to a particular experience during interference only influences subsequent memory when interference is relatively weak. Critically, reactivation of generic contextual information predicts subsequent source memory when retroactive interference is either strong and weak. The results indicate that reactivation of generic information about a prior episode mitigates forgetting due to retroactive interference. PMID:27076433
Language-specific memory for everyday arithmetic facts in Chinese-English bilinguals.
Chen, Yalin; Yanke, Jill; Campbell, Jamie I D
2016-04-01
The role of language in memory for arithmetic facts remains controversial. Here, we examined transfer of memory training for evidence that bilinguals may acquire language-specific memory stores for everyday arithmetic facts. Chinese-English bilingual adults (n = 32) were trained on different subsets of simple addition and multiplication problems. Each operation was trained in one language or the other. The subsequent test phase included all problems with addition and multiplication alternating across trials in two blocks, one in each language. Averaging over training language, the response time (RT) gains for trained problems relative to untrained problems were greater in the trained language than in the untrained language. Subsequent analysis showed that English training produced larger RT gains for trained problems relative to untrained problems in English at test relative to the untrained Chinese language. In contrast, there was no evidence with Chinese training that problem-specific RT gains differed between Chinese and the untrained English language. We propose that training in Chinese promoted a translation strategy for English arithmetic (particularly multiplication) that produced strong cross-language generalization of practice, whereas training in English strengthened relatively weak, English-language arithmetic memories and produced little generalization to Chinese (i.e., English training did not induce an English translation strategy for Chinese language trials). The results support the existence of language-specific strengthening of memory for everyday arithmetic facts.
Mark My Words: Tone of Voice Changes Affective Word Representations in Memory
Schirmer, Annett
2010-01-01
The present study explored the effect of speaker prosody on the representation of words in memory. To this end, participants were presented with a series of words and asked to remember the words for a subsequent recognition test. During study, words were presented auditorily with an emotional or neutral prosody, whereas during test, words were presented visually. Recognition performance was comparable for words studied with emotional and neutral prosody. However, subsequent valence ratings indicated that study prosody changed the affective representation of words in memory. Compared to words with neutral prosody, words with sad prosody were later rated as more negative and words with happy prosody were later rated as more positive. Interestingly, the participants' ability to remember study prosody failed to predict this effect, suggesting that changes in word valence were implicit and associated with initial word processing rather than word retrieval. Taken together these results identify a mechanism by which speakers can have sustained effects on listener attitudes towards word referents. PMID:20169154
Sterpenich, Virginie; Schmidt, Christina; Albouy, Geneviève; Matarazzo, Luca; Vanhaudenhuyse, Audrey; Boveroux, Pierre; Degueldre, Christian; Leclercq, Yves; Balteau, Evelyne; Collette, Fabienne; Luxen, André; Phillips, Christophe; Maquet, Pierre
2014-06-01
Memory reactivation appears to be a fundamental process in memory consolidation. In this study we tested the influence of memory reactivation during rapid eye movement (REM) sleep on memory performance and brain responses at retrieval in healthy human participants. Fifty-six healthy subjects (28 women and 28 men, age [mean ± standard deviation]: 21.6 ± 2.2 y) participated in this functional magnetic resonance imaging (fMRI) study. Auditory cues were associated with pictures of faces during their encoding. These memory cues delivered during REM sleep enhanced subsequent accurate recollections but also false recognitions. These results suggest that reactivated memories interacted with semantically related representations, and induced new creative associations, which subsequently reduced the distinction between new and previously encoded exemplars. Cues had no effect if presented during stage 2 sleep, or if they were not associated with faces during encoding. Functional magnetic resonance imaging revealed that following exposure to conditioned cues during REM sleep, responses to faces during retrieval were enhanced both in a visual area and in a cortical region of multisensory (auditory-visual) convergence. These results show that reactivating memories during REM sleep enhances cortical responses during retrieval, suggesting the integration of recent memories within cortical circuits, favoring the generalization and schematization of the information.
Reduced Hippocampal Functional Connectivity During Episodic Memory Retrieval in Autism
Cooper, Rose A.; Richter, Franziska R.; Bays, Paul M.; Plaisted-Grant, Kate C.; Baron-Cohen, Simon
2017-01-01
Abstract Increasing recent research has sought to understand the recollection impairments experienced by individuals with autism spectrum disorder (ASD). Here, we tested whether these memory deficits reflect a reduction in the probability of retrieval success or in the precision of memory representations. We also used functional magnetic resonance imaging (fMRI) to study the neural mechanisms underlying memory encoding and retrieval in ASD, focusing particularly on the functional connectivity of core episodic memory networks. Adults with ASD and typical control participants completed a memory task that involved studying visual displays and subsequently using a continuous dial to recreate their appearance. The ASD group exhibited reduced retrieval success, but there was no evidence of a difference in retrieval precision. fMRI data revealed similar patterns of brain activity and functional connectivity during memory encoding in the 2 groups, though encoding-related lateral frontal activity predicted subsequent retrieval success only in the control group. During memory retrieval, the ASD group exhibited attenuated lateral frontal activity and substantially reduced hippocampal connectivity, particularly between hippocampus and regions of the fronto-parietal control network. These findings demonstrate notable differences in brain function during episodic memory retrieval in ASD and highlight the importance of functional connectivity to understanding recollection-related retrieval deficits in this population. PMID:28057726
Font, Laura; Cunningham, Christopher L.
2012-01-01
The reconsolidation hypothesis posits that established emotional memories, when reactivated, become labile and susceptible to disruption. Post-retrieval injection of propranolol (PRO), a nonspecific β-adrenergic receptor antagonist, impairs subsequent retention performance of a cocaine- and a morphine-induced conditioned place preference (CPP), implicating the noradrenergic system in the reconsolidation processes of drug-seeking behavior. An important question is whether post-retrieval PRO disrupts memory for the drug-cue associations, or instead interferes with extinction. In the present study, we evaluated the role of the β-adrenergic system on the reconsolidation and extinction of ethanol-induced CPP. Male DBA/2J mice were trained using a weak or a strong conditioning procedure, achieved by varying the ethanol conditioning dose (1 or 2 g/kg) and the number of ethanol trials (2 or 4). After acquisition of ethanol CPP, animals were given a single post-retrieval injection of PRO (0, 10 or 30 mg/kg) and tested for memory reconsolidation 24 h later. Also, after the first reconsolidation test, mice received 18 additional 15-min choice extinction tests in which PRO was injected immediately after every test. Contrary to the prediction of the reconsolidation hypothesis, a single PRO injection after the retrieval test did not modify subsequent memory retention. In addition, repeated post-retrieval administration of PRO did not interfere with extinction of CPP in mice. Overall, our data suggest that the β-adrenergic receptor does not modulate the associative processes underlying ethanol CPP. PMID:22285323
Event segmentation improves event memory up to one month later.
Flores, Shaney; Bailey, Heather R; Eisenberg, Michelle L; Zacks, Jeffrey M
2017-08-01
When people observe everyday activity, they spontaneously parse it into discrete meaningful events. Individuals who segment activity in a more normative fashion show better subsequent memory for the events. If segmenting events effectively leads to better memory, does asking people to attend to segmentation improve subsequent memory? To answer this question, participants viewed movies of naturalistic activity with instructions to remember the activity for a later test, and in some conditions additionally pressed a button to segment the movies into meaningful events or performed a control condition that required button-pressing but not attending to segmentation. In 5 experiments, memory for the movies was assessed at intervals ranging from immediately following viewing to 1 month later. Performing the event segmentation task led to superior memory at delays ranging from 10 min to 1 month. Further, individual differences in segmentation ability predicted individual differences in memory performance for up to a month following encoding. This study provides the first evidence that manipulating event segmentation affects memory over long delays and that individual differences in event segmentation are related to differences in memory over long delays. These effects suggest that attending to how an activity breaks down into meaningful events contributes to memory formation. Instructing people to more effectively segment events may serve as a potential intervention to alleviate everyday memory complaints in aging and clinical populations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Ong, Ju Lynn; Chee, Nicholas I Y N; Lee, Xuan Kai; Poh, Jia-Hou; Chee, Michael W L
2018-01-01
Abstract Study Objectives Slow oscillations (SO) during sleep contribute to the consolidation of learned material. How the encoding of declarative memories during subsequent wakefulness might benefit from their enhancement during sleep is less clear. In this study, we investigated the impact of acoustically enhanced SO during a nap on subsequent encoding of declarative material. Methods Thirty-seven healthy young adults were studied under two conditions: stimulation (STIM) and no stimulation (SHAM), in counter-balanced order following a night of sleep restriction (4 hr time-in-bed [TIB]). In the STIM condition, auditory tones were phase-locked to the SO up-state during a 90 min nap opportunity. In the SHAM condition, corresponding time points were marked but tones were not presented. Thirty minutes after awakening, participants encoded pictures while undergoing fMRI. Picture recognition was tested 60 min later. Results Acoustic stimulation augmented SO across the group, but there was no group level benefit on memory. However, the magnitude of SO enhancement correlated with greater recollection. SO enhancement was also positively correlated with hippocampal activation at encoding. Although spindle activity increased, this did not correlate with memory benefit or shift in hippocampal signal. Conclusions Acoustic stimulation during a nap can benefit encoding of declarative memories. Hippocampal activation positively correlated with SO augmentation. PMID:29425369
Ong, Ju Lynn; Patanaik, Amiya; Chee, Nicholas I Y N; Lee, Xuan Kai; Poh, Jia-Hou; Chee, Michael W L
2018-05-01
Slow oscillations (SO) during sleep contribute to the consolidation of learned material. How the encoding of declarative memories during subsequent wakefulness might benefit from their enhancement during sleep is less clear. In this study, we investigated the impact of acoustically enhanced SO during a nap on subsequent encoding of declarative material. Thirty-seven healthy young adults were studied under two conditions: stimulation (STIM) and no stimulation (SHAM), in counter-balanced order following a night of sleep restriction (4 hr time-in-bed [TIB]). In the STIM condition, auditory tones were phase-locked to the SO up-state during a 90 min nap opportunity. In the SHAM condition, corresponding time points were marked but tones were not presented. Thirty minutes after awakening, participants encoded pictures while undergoing fMRI. Picture recognition was tested 60 min later. Acoustic stimulation augmented SO across the group, but there was no group level benefit on memory. However, the magnitude of SO enhancement correlated with greater recollection. SO enhancement was also positively correlated with hippocampal activation at encoding. Although spindle activity increased, this did not correlate with memory benefit or shift in hippocampal signal. Acoustic stimulation during a nap can benefit encoding of declarative memories. Hippocampal activation positively correlated with SO augmentation.
Remembering first impressions: effects of intentionality and diagnosticity on subsequent memory.
Gilron, Roee; Gutchess, Angela H
2012-03-01
People rely on first impressions every day as an important tool to interpret social behavior. While research is beginning to reveal the neural underpinnings of first impressions, particularly through understanding the role of dorsal medial prefrontal cortex (dmPFC), little is known about the way in which first impressions are encoded into memory. This is surprising because first impressions are relevant from a social perspective for future interactions, requiring that they be transferred to memory. The present study used a subsequent-memory paradigm to test the conditions under which the dmPFC is implicated in the encoding of first impressions. We found that intentionally forming impressions engages the dmPFC more than does incidentally forming impressions, and that this engagement supports the encoding of remembered impressions. In addition, we found that diagnostic information, which more readily lends itself to forming trait impressions, engages the dmPFC more than does neutral information. These results indicate that the neural system subserving memory for impressions is sensitive to consciously formed impressions. The results also suggest a distinction between a social memory system and other explicit memory systems governed by the medial temporal lobes.
Remembering first impressions: Effects of intentionality and diagnosticity on subsequent memory
Gilron, Roee; Gutchess, Angela H.
2012-01-01
People rely on first impressions every day as an important tool to interpret social behavior. While research is beginning to reveal the neural underpinnings of first impressions, particularly through understanding the role of dorsal medial prefrontal cortex (dmPFC), little is known about the way in which first impressions are encoded into memory. This is surprising because first impressions are relevant from a social perspective for future interactions, requiring that they be transferred to memory. The present study used a subsequent memory paradigm to test the conditions under which the dmPFC is implicated in the encoding of first impressions. We found that intentionally forming impressions engages the dmPFC more than incidentally forming impressions and that this engagement supports the encoding of remembered impressions. In addition, we found that diagnostic information, which more readily lends itself to forming trait impressions, engages the dmPFC more than neutral information. These results indicate that the neural system subserving memory for impressions is sensitive to consciously formed impressions. The results also suggest a distinction between a social memory system and other explicit memory systems governed by the medial temporal lobes. PMID:22139633
Political conservatism predicts asymmetries in emotional scene memory.
Mills, Mark; Gonzalez, Frank J; Giuseffi, Karl; Sievert, Benjamin; Smith, Kevin B; Hibbing, John R; Dodd, Michael D
2016-06-01
Variation in political ideology has been linked to differences in attention to and processing of emotional stimuli, with stronger responses to negative versus positive stimuli (negativity bias) the more politically conservative one is. As memory is enhanced by attention, such findings predict that memory for negative versus positive stimuli should similarly be enhanced the more conservative one is. The present study tests this prediction by having participants study 120 positive, negative, and neutral scenes in preparation for a subsequent memory test. On the memory test, the same 120 scenes were presented along with 120 new scenes and participants were to respond whether a scene was old or new. Results on the memory test showed that negative scenes were more likely to be remembered than positive scenes, though, this was true only for political conservatives. That is, a larger negativity bias was found the more conservative one was. The effect was sizeable, explaining 45% of the variance across subjects in the effect of emotion. These findings demonstrate that the relationship between political ideology and asymmetries in emotion processing extend to memory and, furthermore, suggest that exploring the extent to which subject variation in interactions among emotion, attention, and memory is predicted by conservatism may provide new insights into theories of political ideology. Published by Elsevier B.V.
The Negative Testing Effect and Multifactor Account
ERIC Educational Resources Information Center
Peterson, Daniel J.; Mulligan, Neil W.
2013-01-01
Across 3 experiments, we investigated the factors that dictate when taking a test improves subsequent memory performance (the "testing effect"). In Experiment 1, participants retrieving a set of targets during a retrieval practice phase ultimately recalled fewer of those targets compared with a group of participants who studied the…
False memory in aging resulting from self-referential processing.
Rosa, Nicole M; Gutchess, Angela H
2013-11-01
Referencing the self is known to enhance accurate memory, but less is known about how the strategy affects false memory, particularly for highly self-relevant information. Because older adults are more prone to false memories, we tested whether self-referencing increased false memories with age. In 2 studies, older and younger adults rated adjectives for self-descriptiveness and later completed a surprise recognition test comprised of words rated previously for self-descriptiveness and novel lure words. Lure words were subsequently rated for self-descriptiveness in order to assess the impact of self-relevance on false memory. Study 2 introduced commonness judgments as a control condition, such that participants completed a recognition test on adjectives rated for commonness in addition to adjectives in the self-descriptiveness condition. Across both studies, findings indicate an increased response bias to self-referencing that increased hit rates for both older and younger adults but also increased false alarms as information became more self-descriptive, particularly for older adults. Although the present study supports previous literature showing a boost in memory for self-referenced information, the increase in false alarms, especially in older adults, highlights the potential for memory errors, particularly for information that is strongly related to the self.
ERIC Educational Resources Information Center
Cleveland, Emily Sutcliffe; Morris, Ashley
2014-01-01
Thirty parents observed their preschoolers (M [subscript age] = 4;2) experience a standardized laboratory event and discussed the event with their child later that day. Children's memory for this event was subsequently tested at two delay intervals. Prior to the laboratory event, parents were randomly assigned to receive either autonomy-support…
Hierarchical Traces for Reduced NSM Memory Requirements
NASA Astrophysics Data System (ADS)
Dahl, Torbjørn S.
This paper presents work on using hierarchical long term memory to reduce the memory requirements of nearest sequence memory (NSM) learning, a previously published, instance-based reinforcement learning algorithm. A hierarchical memory representation reduces the memory requirements by allowing traces to share common sub-sequences. We present moderated mechanisms for estimating discounted future rewards and for dealing with hidden state using hierarchical memory. We also present an experimental analysis of how the sub-sequence length affects the memory compression achieved and show that the reduced memory requirements do not effect the speed of learning. Finally, we analyse and discuss the persistence of the sub-sequences independent of specific trace instances.
ERP Subsequent Memory Effects Differ between Inter-Item and Unitization Encoding Tasks
Kamp, Siri-Maria; Bader, Regine; Mecklinger, Axel
2017-01-01
The “subsequent memory paradigm” is an analysis tool to identify brain activity elicited during episodic encoding that is associated with successful subsequent retrieval. Two commonly observed event-related potential “subsequent memory effects” (SMEs) are the parietal SME in the P300 time window and the frontal slow wave SME, but to date a clear characterization of the circumstances under which each SME is observed is missing. To test the hypothesis that the parietal SME occurs when aspects of an experience are unitized into a single item representation, while inter-item associative encoding is reflected in the frontal slow wave effect, participants were assigned to one of two conditions that emphasized one of the encoding types under otherwise matched study phases of a recognition memory experiment. Word pairs were presented either in the context of a definition that allowed to combine the word pairs into a new concept (unitization or item encoding) or together with a sentence frame (inter-item encoding). Performance on the recognition test did not differ between the groups. The parietal SME was only found in the definition group, supporting the idea that this SME occurs when the components of an association are integrated in a unitized item representation. An early prefrontal negativity also exhibited an SME only in this group, suggesting that the formation of novel units occurs through interactions of multiple brain areas. The frontal slow wave SME was pronounced in both groups and may thus reflect processes generally involved in encoding of associations. Our results provide evidence for a partial dissociation of the eliciting conditions of the two types of SMEs and therefore provide a tool for future studies to characterize the different types of episodic encoding. PMID:28194105
ERP Subsequent Memory Effects Differ between Inter-Item and Unitization Encoding Tasks.
Kamp, Siri-Maria; Bader, Regine; Mecklinger, Axel
2017-01-01
The "subsequent memory paradigm" is an analysis tool to identify brain activity elicited during episodic encoding that is associated with successful subsequent retrieval. Two commonly observed event-related potential "subsequent memory effects" (SMEs) are the parietal SME in the P300 time window and the frontal slow wave SME, but to date a clear characterization of the circumstances under which each SME is observed is missing. To test the hypothesis that the parietal SME occurs when aspects of an experience are unitized into a single item representation, while inter-item associative encoding is reflected in the frontal slow wave effect, participants were assigned to one of two conditions that emphasized one of the encoding types under otherwise matched study phases of a recognition memory experiment. Word pairs were presented either in the context of a definition that allowed to combine the word pairs into a new concept (unitization or item encoding) or together with a sentence frame (inter-item encoding). Performance on the recognition test did not differ between the groups. The parietal SME was only found in the definition group, supporting the idea that this SME occurs when the components of an association are integrated in a unitized item representation. An early prefrontal negativity also exhibited an SME only in this group, suggesting that the formation of novel units occurs through interactions of multiple brain areas. The frontal slow wave SME was pronounced in both groups and may thus reflect processes generally involved in encoding of associations. Our results provide evidence for a partial dissociation of the eliciting conditions of the two types of SMEs and therefore provide a tool for future studies to characterize the different types of episodic encoding.
Remembering the best and worst of times: memories for extreme outcomes bias risky decisions.
Madan, Christopher R; Ludvig, Elliot A; Spetch, Marcia L
2014-06-01
When making decisions on the basis of past experiences, people must rely on their memories. Human memory has many well-known biases, including the tendency to better remember highly salient events. We propose an extreme-outcome rule, whereby this memory bias leads people to overweight the largest gains and largest losses, leading to more risk seeking for relative gains than for relative losses. To test this rule, in two experiments, people repeatedly chose between fixed and risky options, where the risky option led equiprobably to more or less than did the fixed option. As was predicted, people were more risk seeking for relative gains than for relative losses. In subsequent memory tests, people tended to recall the extreme outcome first and also judged the extreme outcome as having occurred more frequently. Across individuals, risk preferences in the risky-choice task correlated with these memory biases. This extreme-outcome rule presents a novel mechanism through which memory influences decision making.
Everyday episodic memory in amnestic mild cognitive impairment: a preliminary investigation.
Irish, Muireann; Lawlor, Brian A; Coen, Robert F; O'Mara, Shane M
2011-08-04
Decline in episodic memory is one of the hallmark features of Alzheimer's disease (AD) and is also a defining feature of amnestic Mild Cognitive Impairment (MCI), which is posited as a potential prodrome of AD. While deficits in episodic memory are well documented in MCI, the nature of this impairment remains relatively under-researched, particularly for those domains with direct relevance and meaning for the patient's daily life. In order to fully explore the impact of disruption to the episodic memory system on everyday memory in MCI, we examined participants' episodic memory capacity using a battery of experimental tasks with real-world relevance. We investigated episodic acquisition and delayed recall (story-memory), associative memory (face-name pairings), spatial memory (route learning and recall), and memory for everyday mundane events in 16 amnestic MCI and 18 control participants. Furthermore, we followed MCI participants longitudinally to gain preliminary evidence regarding the possible predictive efficacy of these real-world episodic memory tasks for subsequent conversion to AD. The most discriminating tests at baseline were measures of acquisition, delayed recall, and associative memory, followed by everyday memory, and spatial memory tasks, with MCI patients scoring significantly lower than controls. At follow-up (mean time elapsed: 22.4 months), 6 MCI cases had progressed to clinically probable AD. Exploratory logistic regression analyses revealed that delayed associative memory performance at baseline was a potential predictor of subsequent conversion to AD. As a preliminary study, our findings suggest that simple associative memory paradigms with real-world relevance represent an important line of enquiry in future longitudinal studies charting MCI progression over time.
Heib, Dominik P J; Hoedlmoser, Kerstin; Anderer, Peter; Gruber, Georg; Zeitlhofer, Josef; Schabus, Manuel
2015-08-01
Sleep has been shown to promote memory consolidation driven by certain oscillatory patterns, such as sleep spindles. However, sleep does not consolidate all newly encoded information uniformly but rather "selects" certain memories for consolidation. It is assumed that such selection depends on salience tags attached to the new memories before sleep. However, little is known about the underlying neuronal processes reflecting presleep memory tagging. The current study sought to address the question of whether event-related changes in spectral theta power (theta ERSP) during presleep memory formation could reflect memory tagging that influences subsequent consolidation during sleep. Twenty-four participants memorized 160 word pairs before sleep; in a separate laboratory visit, they performed a nonlearning control task. Memory performance was tested twice, directly before and after 8 hr of sleep. Results indicate that participants who improved their memory performance overnight displayed stronger theta ERSP during the memory task in comparison with the control task. They also displayed stronger memory task-related increases in fast sleep spindle activity. Furthermore, presleep theta activity was directly linked to fast sleep spindle activity, indicating that processes during memory formation might indeed reflect memory tagging that influences subsequent consolidation during sleep. Interestingly, our results further indicate that the suggested relation between sleep spindles and overnight performance change is not as direct as once believed. Rather, it appears to be mediated by processes beginning during presleep memory formation. We conclude that theta ERSP during presleep memory formation reflects cortico-hippocampal interactions that lead to a better long-term accessibility by tagging memories for sleep spindle-related reprocessing.
St Jacques, Peggy L; Dolcos, Florin; Cabeza, Roberto
2009-01-01
Aging is associated with preserved enhancement of emotional memory, as well as with age-related reductions in memory for negative stimuli, but the neural networks underlying such alterations are not clear. We used a subsequent-memory paradigm to identify brain activity predicting enhanced emotional memory in young and older adults. Activity in the amygdala predicted enhanced emotional memory, with subsequent-memory activity greater for negative stimuli than for neutral stimuli, across age groups, a finding consistent with an overall enhancement of emotional memory. However, older adults recruited greater activity in anterior regions and less activity in posterior regions in general for negative stimuli that were subsequently remembered. Functional connectivity of the amygdala with the rest of the brain was consistent with age-related reductions in memory for negative stimuli: Older adults showed decreased functional connectivity between the amygdala and the hippocampus, but increased functional connectivity between the amygdala and dorsolateral prefrontal cortices. These findings suggest that age-related differences in the enhancement of emotional memory might reflect decreased connectivity between the amygdala and typical subsequent-memory regions, as well as the engagement of regulatory processes that inhibit emotional responses.
Abercrombie, Heather C; Chambers, Andrea S; Greischar, Lawrence; Monticelli, Roxanne M
2008-11-01
Arousal-related processes associated with heightened heart rate (HR) predict memory enhancement, especially for emotionally arousing stimuli. In addition, phasic HR deceleration reflects "orienting" and sensory receptivity during perception of stimuli. We hypothesized that both tonic elevations in HR as well as phasic HR deceleration during viewing of pictures would be associated with deeper encoding and better subsequent memory for stimuli. Emotional pictures are more memorable and cause greater HR deceleration than neutral pictures. Thus, we predicted that the relations between cardiac activity and memory enhancement would be most pronounced for emotionally-laden compared to neutral pictures. We measured HR in 53 males during viewing of unpleasant, neutral, and pleasant pictures, and tested memory for the pictures two days later. Phasic HR deceleration during viewing of individual pictures was greater for subsequently remembered than forgotten pictures across all three emotion categories. Elevated mean HR across the entire encoding epoch also predicted better memory performance, but only for emotionally arousing pictures. Elevated mean HR and phasic HR deceleration were associated, such that individuals with greater tonic HR also showed greater HR decelerations during picture viewing, but only for emotionally arousing pictures. Results suggest that tonic elevations in HR are associated both with greater orienting and heightened memory for emotionally arousing stimuli.
Sex differences in the neural basis of emotional memories.
Canli, Turhan; Desmond, John E; Zhao, Zuo; Gabrieli, John D E
2002-08-06
Psychological studies have found better memory in women than men for emotional events, but the neural basis for this difference is unknown. We used event-related functional MRI to assess whether sex differences in memory for emotional stimuli is associated with activation of different neural systems in men and women. Brain activation in 12 men and 12 women was recorded while they rated their experience of emotional arousal in response to neutral and emotionally negative pictures. In a recognition memory test 3 weeks after scanning, highly emotional pictures were remembered best, and remembered better by women than by men. Men and women activated different neural circuits to encode stimuli effectively into memory even when the analysis was restricted to pictures rated equally arousing by both groups. Men activated significantly more structures than women in a network that included the right amygdala, whereas women activated significantly fewer structures in a network that included the left amygdala. Women had significantly more brain regions where activation correlated with both ongoing evaluation of emotional experience and with subsequent memory for the most emotionally arousing pictures. Greater overlap in brain regions sensitive to current emotion and contributing to subsequent memory may be a neural mechanism for emotions to enhance memory more powerfully in women than in men.
Abercrombie, Heather C.; Chambers, Andrea S.; Greischar, Lawrence; Monticelli, Roxanne M.
2008-01-01
Arousal-related processes associated with heightened heart rate (HR) predict memory enhancement, especially for emotionally arousing stimuli. In addition, phasic HR deceleration reflects “orienting” and sensory receptivity during perception of stimuli. We hypothesized that both tonic elevations in HR as well as phasic HR deceleration during viewing of pictures would be associated with deeper encoding and better subsequent memory for stimuli. Emotional pictures are more memorable and cause greater HR deceleration than neutral pictures. Thus, we predicted that the relations between cardiac activity and memory enhancement would be most pronounced for emotionally-laden compared to neutral pictures. We measured HR in 53 males during viewing of unpleasant, neutral, and pleasant pictures, and tested memory for the pictures two days later. Phasic HR deceleration during viewing of individual pictures was greater for subsequently remembered than forgotten pictures across all three emotion categories. Elevated mean HR across the entire encoding epoch also predicted better memory performance, but only for emotionally arousing pictures. Elevated mean HR and phasic HR deceleration were associated, such that individuals with greater tonic HR also showed greater HR decelerations during picture viewing, but only for emotionally arousing pictures. Results suggest that tonic elevations in HR are associated both with greater orienting and heightened memory for emotionally arousing stimuli. PMID:18755284
Opposing effects of negative emotion on amygdalar and hippocampal memory for items and associations
Horner, Aidan J.; Hørlyck, Lone D.; Burgess, Neil
2016-01-01
Although negative emotion can strengthen memory of an event it can also result in memory disturbances, as in post-traumatic stress disorder (PTSD). We examined the effects of negative item content on amygdalar and hippocampal function in memory for the items themselves and for the associations between them. During fMRI, we examined encoding and retrieval of paired associates made up of all four combinations of neutral and negative images. At test, participants were cued with an image and, if recognised, had to retrieve the associated (target) image. The presence of negative images increased item memory but reduced associative memory. At encoding, subsequent item recognition correlated with amygdala activity, while subsequent associative memory correlated with hippocampal activity. Hippocampal activity was reduced by the presence of negative images, during encoding and correct associative retrieval. In contrast, amygdala activity increased for correctly retrieved negative images, even when cued by a neutral image. Our findings support a dual representation account, whereby negative emotion up-regulates the amygdala to strengthen item memory but down-regulates the hippocampus to weaken associative representations. These results have implications for the development and treatment of clinical disorders in which diminished associations between emotional stimuli and their context contribute to negative symptoms, as in PTSD. PMID:26969864
Farias, Sarah Tomaszewski; Chand, Vineeta; Bonnici, Lisa; Baynes, Kathleen; Harvey, Danielle; Mungas, Dan; Simon, Christa; Reed, Bruce
2012-11-01
The Nun Study showed that lower linguistic ability in young adulthood, measured by idea density (ID), increased the risk of dementia in late life. The present study examined whether ID measured in late life continues to predict the trajectory of cognitive change. ID was measured in 81 older adults who were followed longitudinally for an average of 4.3 years. Changes in global cognition and 4 specific neuropsychological domains (episodic memory, semantic memory, spatial abilities, and executive function) were examined as outcomes. Separate random effects models tested the effect of ID on longitudinal change in outcomes, adjusted for age and education. Lower ID was associated with greater subsequent decline in global cognition, semantic memory, episodic memory, and spatial abilities. When analysis was restricted to only participants without dementia at the time ID was collected, results were similar. Linguistic ability in young adulthood, as measured by ID, has been previously proposed as an index of neurocognitive development and/or cognitive reserve. The present study provides evidence that even when ID is measured in old age, it continues to be associated with subsequent cognitive decline and as such may continue to provide a marker of cognitive reserve.
Richter, Kim Merle; Mödden, Claudia; Eling, Paul; Hildebrandt, Helmut
2018-04-26
To show the effectiveness of a combined recognition and working memory training on everyday memory performance in patients suffering from organic memory disorders. In this double-blind, randomized controlled Study 36 patients with organic memory impairments, mainly attributable to stroke, were assigned to either the experimental or the active control group. In the experimental group a working memory training was combined with a recollection training based on the repetition-lag procedure. Patients in the active control group received the memory therapy usually provided in the rehabilitation center. Both groups received nine hours of therapy. Prior (T0) and subsequent (T1) to the therapy, patients were evaluated on an everyday memory test (EMT) as well as on a neuropsychological test battery. Based on factor analysis of the neuropsychological test scores at T0 we calculated composite scores for working memory, verbal learning and word fluency. After treatment, the intervention group showed a significantly greater improvement for WM performance compared with the active control group. More importantly, performance on the EMT also improved significantly in patients receiving the recollection and working memory training compared with patients with standard memory training. Our results show that combining working memory and recollection training significantly improves performance on everyday memory tasks, demonstrating far transfer effects. The present study argues in favor of a process-based approach for treating memory impairments. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Weis, Susanne; Leube, Dirk; Erb, Michael; Heun, Reinhard; Grodd, Wolfgang; Kircher, Tilo
2011-07-01
The aim of our study was to examine brain networks involved with sustaining memory encoding performance in healthy aging and in Alzheimer's disease (AD). Since different brain regions are affected by degradation in these two conditions, it might be conceivable that different compensation mechanisms occur to keep up memory performance in aging and in AD. Using an event-related functional magnetic resonance imaging (FMRI) design and a correlation analysis, 8 patients suffering from AD and 29 elderly control subjects were scanned while they studied a list of words for a subsequent memory test. Individual performance was assessed on the basis of a subsequent recognition test, and brain regions were identified where functional activations during study correlated with memory performance. In both groups, successful memory encoding performance was significantly correlated with the activation of the right frontal cortex. Furthermore, in healthy controls, there was a significant correlation of memory performance and the activation of the left medial and lateral temporal lobe. In contrast, in AD patients, increasing memory performance goes along with increasing activation of the hippocampus and a bilateral brain network including the frontal and temporal cortices. Our data show that in healthy aging and in AD, common and distinct compensatory mechanisms are employed to keep up a certain level of memory performance. Both in healthy aging and in patients with AD, an increased level of monitoring and control processes mediated by the (right) frontal lobe seems to be necessary to maintain a certain level of memory performance. In addition, memory performance in healthy older subjects seems to rely on an increased effort in encoding item-specific semantic and contextual information in lateral areas of the (left) temporal lobe. In AD patients, on the other hand, the maintenance of memory performance is related to an increase of activation of the (left) hippocampus in conjunction with a bilateral network of cortical areas that might be involved with phonological and visual rehearsal of the incoming information.
Nikolakaros, Georgios; Kurki, Timo; Paju, Janina; Papageorgiou, Sokratis G; Vataja, Risto; Ilonen, Tuula
2018-01-01
Background: Non-alcoholic Wernicke's encephalopathy and Korsakoff syndrome are greatly underdiagnosed. There are very few reported cases of neuropsychologically documented non-alcoholic Korsakoff syndrome, and diffusion tensor imaging (DTI) data are scarce. Methods: We report clinical characteristics and neuropsychological as well as radiological findings from three psychiatric patients (one woman and two men) with a history of probable undiagnosed non-alcoholic Wernicke's encephalopathy and subsequent chronic memory problems. Results: All patients had abnormal neuropsychological test results, predominantly in memory. Thus, the neuropsychological findings were compatible with Korsakoff syndrome. However, the neuropsychological findings were not uniform. The impairment of delayed verbal memory of the first patient was evident only when the results of the memory tests were compared to her general cognitive level. In addition, the logical memory test and the verbal working memory test were abnormal, but the word list memory test was normal. The second patient had impaired attention and psychomotor speed in addition to impaired memory. In the third patient, the word list memory test was abnormal, but the logical memory test was normal. All patients had intrusions in the neuropsychological examination. Executive functions were preserved, except for planning and foresight, which were impaired in two patients. Conventional MRI examination was normal. DTI showed reduced fractional anisotropy values in the uncinate fasciculus in two patients, and in the corpus callosum and in the subgenual cingulum in one patient. Conclusions: Non-alcoholic Korsakoff syndrome can have diverse neuropsychological findings. This may partly explain its marked underdiagnosis. Therefore, a strong index of suspicion is needed. The presence of intrusions in the neuropsychological examination supports the diagnosis. Damage in frontotemporal white matter tracts, particularly in the uncinate fasciculus, may be a feature of non-alcoholic Korsakoff syndrome in psychiatric patients.
Nikolakaros, Georgios; Kurki, Timo; Paju, Janina; Papageorgiou, Sokratis G.; Vataja, Risto; Ilonen, Tuula
2018-01-01
Background: Non-alcoholic Wernicke's encephalopathy and Korsakoff syndrome are greatly underdiagnosed. There are very few reported cases of neuropsychologically documented non-alcoholic Korsakoff syndrome, and diffusion tensor imaging (DTI) data are scarce. Methods: We report clinical characteristics and neuropsychological as well as radiological findings from three psychiatric patients (one woman and two men) with a history of probable undiagnosed non-alcoholic Wernicke's encephalopathy and subsequent chronic memory problems. Results: All patients had abnormal neuropsychological test results, predominantly in memory. Thus, the neuropsychological findings were compatible with Korsakoff syndrome. However, the neuropsychological findings were not uniform. The impairment of delayed verbal memory of the first patient was evident only when the results of the memory tests were compared to her general cognitive level. In addition, the logical memory test and the verbal working memory test were abnormal, but the word list memory test was normal. The second patient had impaired attention and psychomotor speed in addition to impaired memory. In the third patient, the word list memory test was abnormal, but the logical memory test was normal. All patients had intrusions in the neuropsychological examination. Executive functions were preserved, except for planning and foresight, which were impaired in two patients. Conventional MRI examination was normal. DTI showed reduced fractional anisotropy values in the uncinate fasciculus in two patients, and in the corpus callosum and in the subgenual cingulum in one patient. Conclusions: Non-alcoholic Korsakoff syndrome can have diverse neuropsychological findings. This may partly explain its marked underdiagnosis. Therefore, a strong index of suspicion is needed. The presence of intrusions in the neuropsychological examination supports the diagnosis. Damage in frontotemporal white matter tracts, particularly in the uncinate fasciculus, may be a feature of non-alcoholic Korsakoff syndrome in psychiatric patients.
Raymaekers, Linsey H C; Otgaar, Henry; Smeets, Tom
2014-01-01
Prior studies have convincingly demonstrated that survival-related processing of information enhances its subsequent retention. This phenomenon, known as the survival recall advantage, generalises to other stimuli, memory domains, and research populations, thereby underscoring its reliability. As previous studies used only short retention intervals between survival processing and the memory test, an important yet hitherto unanswered issue is whether this effect persists over time. The present experiment therefore examined whether survival processing also produces mnemonic benefits when retention is tested after longer delay periods. Participants (N =81) rated the relevance of words according to a survival and a moving scenario, and were then randomly assigned to the typical immediate (3-minute delay) retention test condition or conditions that included a 24- or 48-hour interval between survival processing and memory testing. In each of these conditions survival processing led to higher surprise free recall and recognition rates than processing words according to the moving scenario. Thus this study provides evidence that illustrates the longevity of survival processing advantages on memory performance.
Global Neural Pattern Similarity as a Common Basis for Categorization and Recognition Memory
Xue, Gui; Love, Bradley C.; Preston, Alison R.; Poldrack, Russell A.
2014-01-01
Familiarity, or memory strength, is a central construct in models of cognition. In previous categorization and long-term memory research, correlations have been found between psychological measures of memory strength and activation in the medial temporal lobes (MTLs), which suggests a common neural locus for memory strength. However, activation alone is insufficient for determining whether the same mechanisms underlie neural function across domains. Guided by mathematical models of categorization and long-term memory, we develop a theory and a method to test whether memory strength arises from the global similarity among neural representations. In human subjects, we find significant correlations between global similarity among activation patterns in the MTLs and both subsequent memory confidence in a recognition memory task and model-based measures of memory strength in a category learning task. Our work bridges formal cognitive theories and neuroscientific models by illustrating that the same global similarity computations underlie processing in multiple cognitive domains. Moreover, by establishing a link between neural similarity and psychological memory strength, our findings suggest that there may be an isomorphism between psychological and neural representational spaces that can be exploited to test cognitive theories at both the neural and behavioral levels. PMID:24872552
NASA Astrophysics Data System (ADS)
Babacan, N.; Ma, J.; Turkbas, O. S.; Karaman, I.; Kockar, B.
2018-01-01
In the present study, the effect of thermo-mechanical treatments on the shape memory and the superelastic characteristics of Cu73Al16Mn11 (at%) shape memory alloy were investigated. 10%, 50% and 70% cold rolling and subsequent heat treatment processes were conducted to achieve strengthening via grain size refinement. 70% grain size reduction compared to the homogenized condition was obtained using 70% cold rolling and subsequent recrystallization heat treatment technique. Moreover, 10% cold rolling was applied to homogenized specimen to reveal the influence of the low percentage cold rolling reduction with no heat treatment on shape memory properties of Cu73Al16Mn11 (at%) alloy. Stress free transformation temperatures, monotonic tension and superelasticity behaviors of these samples were compared with those of the as-aged sample. Isobaric heating-cooling experiments were also conducted to see the dimensional stability of the samples as a function of applied stress. The 70% grain-refined sample exhibited better dimensional stability showing reduced residual strain levels upon thermal cycling under constant stress compared with the as-aged material. However, no improvement was achieved with grain size reduction in the superelasticity experiments. This distinctive observation was attributed to the difference in the magnitude of the stress levels achieved during two different types of experiments which were the isobaric heating-cooling and superelasticity tests. Intergranular fracture due to the stress concentration overcame the strengthening effect via grain refinement in the superelasticity tests at higher stress values. On the other hand, the strength of the material and resistance of material against plastic deformation upon phase transformation were increased as a result of the grain refinement at lower stress values in the isobaric heating-cooling experiments.
Marijuana effects on long-term memory assessment and retrieval.
Darley, C F; Tinklenberg, J R; Roth, W T; Vernon, S; Kopell, B S
1977-05-09
The ability of 16 college-educated male subjects to recall from long-term memory a series of common facts was tested during intoxication with marijuana extract calibrated to 0.3 mg/kg delta-9-tetrahydrocannabinol and during placebo conditions. The subjects' ability to assess their memory capabilities was then determined by measuring how certain they were about the accuracy of their recall performance and by having them predict their performance on a subsequent recognition test involving the same recall items. Marijuana had no effect on recall or recognition performance. These results do not support the view that marijuana provides access to facts in long-term storage which are inaccessible during non-intoxication. During both marijuana and placebo conditions, subjects could accurately predict their recognition memory performance. Hence, marijuana did not alter the subjects' ability to accurately assess what information resides in long-term memory even though they did not have complete access to that information.
ERIC Educational Resources Information Center
Halamish, Vered; Bjork, Robert A.
2011-01-01
Tests, as learning events, can enhance subsequent recall more than do additional study opportunities, even without feedback. Such advantages of testing tend to appear, however, only at long retention intervals and/or when criterion tests stress recall, rather than recognition, processes. We propose that the interaction of the benefits of testing…
Effect of acoustic similarity on short-term auditory memory in the monkey
Scott, Brian H.; Mishkin, Mortimer; Yin, Pingbo
2013-01-01
Recent evidence suggests that the monkey’s short-term memory in audition depends on a passively retained sensory trace as opposed to a trace reactivated from long-term memory for use in working memory. Reliance on a passive sensory trace could render memory particularly susceptible to confusion between sounds that are similar in some acoustic dimension. If so, then in delayed matching-to-sample, the monkey’s performance should be predicted by the similarity in the salient acoustic dimension between the sample and subsequent test stimulus, even at very short delays. To test this prediction and isolate the acoustic features relevant to short-term memory, we examined the pattern of errors made by two rhesus monkeys performing a serial, auditory delayed match-to-sample task with interstimulus intervals of 1 s. The analysis revealed that false-alarm errors did indeed result from similarity-based confusion between the sample and the subsequent nonmatch stimuli. Manipulation of the stimuli showed that removal of spectral cues was more disruptive to matching behavior than removal of temporal cues. In addition, the effect of acoustic similarity on false-alarm response was stronger at the first nonmatch stimulus than at the second one. This pattern of errors would be expected if the first nonmatch stimulus overwrote the sample’s trace, and suggests that the passively retained trace is not only vulnerable to similarity-based confusion but is also highly susceptible to overwriting. PMID:23376550
Effect of acoustic similarity on short-term auditory memory in the monkey.
Scott, Brian H; Mishkin, Mortimer; Yin, Pingbo
2013-04-01
Recent evidence suggests that the monkey's short-term memory in audition depends on a passively retained sensory trace as opposed to a trace reactivated from long-term memory for use in working memory. Reliance on a passive sensory trace could render memory particularly susceptible to confusion between sounds that are similar in some acoustic dimension. If so, then in delayed matching-to-sample, the monkey's performance should be predicted by the similarity in the salient acoustic dimension between the sample and subsequent test stimulus, even at very short delays. To test this prediction and isolate the acoustic features relevant to short-term memory, we examined the pattern of errors made by two rhesus monkeys performing a serial, auditory delayed match-to-sample task with interstimulus intervals of 1 s. The analysis revealed that false-alarm errors did indeed result from similarity-based confusion between the sample and the subsequent nonmatch stimuli. Manipulation of the stimuli showed that removal of spectral cues was more disruptive to matching behavior than removal of temporal cues. In addition, the effect of acoustic similarity on false-alarm response was stronger at the first nonmatch stimulus than at the second one. This pattern of errors would be expected if the first nonmatch stimulus overwrote the sample's trace, and suggests that the passively retained trace is not only vulnerable to similarity-based confusion but is also highly susceptible to overwriting. Copyright © 2013 Elsevier B.V. All rights reserved.
LaPaglia, Jessica A; Chan, Jason C K
2012-12-01
Verbally recalling the appearance of a perpetrator and the details of an event can sometimes hinder later eyewitness memory performance. In two experiments, we investigated the effects of verbally recalling a face on people's ability to resist subsequent misinformation about that face. Participants watched a video of a theft and then completed either a recall test or a distractor activity. After a delay, some participants heard a piece of misinformation. Memory was assessed with a recall test in Experiment 1 and with a target-present lineup in Experiment 2. In both experiments, initial testing reduced eyewitness suggestibility for the face.
Capturing real-life forgetting in transient epileptic amnesia via an incidental memory test.
Hoefeijzers, Serge; Zeman, Adam; Della Sala, Sergio; Dewar, Michaela
2017-12-13
Transient epileptic amnesia (TEA) is an epileptic syndrome characterized by recurrent, brief episodes of amnesia. Patients with TEA often complain of interictal (between attacks) retention deficits, characterised by an 'evaporation' of memories for recent events over days to weeks. Clinical tests of anterograde memory often fail to corroborate these complaints as TEA patients commonly perform within the normal range after the standard 10-30-min delay period. Modified laboratory tests that include a 1-3 week delay period frequently reveal clear evidence of 'accelerated long-term forgetting' (ALF). However, they are not used routinely and lack ecological validity. In the present study we examined whether 'real-life' ALF can be captured via a controlled incidental memory test in TEA patients. To this end, the experimenter told 27 TEA patients and 32 controls a well-rehearsed amusing story, apparently as a way of making light conversation before starting a set of research experiments. Without prior warning, the experimenter subsequently probed the participants' memory of this story via tests of free recall and forced choice recognition after 30 min or 1 week. After 30 min retention was comparable in TEA patients and controls. After 1 week TEA patients retained significantly less story material than controls, and significant ALF was revealed in the TEA patients in the recognition test. Our data show that ALF in a 'real-life' situation can occur even when standard memory tests indicate normal memory function. Moreover, our data suggest that incidental memory tests can capture real-life ALF, and that forced-choice recognition tests might be more sensitive than free recall tests for the detection of real-life ALF. Copyright © 2017 Elsevier Ltd. All rights reserved.
Congenital blindness improves semantic and episodic memory.
Pasqualotto, Achille; Lam, Jade S Y; Proulx, Michael J
2013-05-01
Previous studies reported that congenitally blind people possess superior verb-generation skills. Here we tested the impact of blindness on capacity and the fidelity of semantic memory by using a false memory paradigm. In the Deese-Roediger-McDermott paradigm, participants study lists of words that are all semantically related to a lure that is not presented. Subsequently, participants frequently recall the missing lure. We found that congenitally blind participants have enhanced memory performance for recalling the presented words and reduced false memories for the lure. The dissociation of memory capacity and fidelity provides further evidence for enhanced verbal ability in the blind, supported by their broader structural and functional brain reorganisation. Copyright © 2013 Elsevier B.V. All rights reserved.
False memory in aging: effects of emotional valence on word recognition accuracy.
Piguet, Olivier; Connally, Emily; Krendl, Anne C; Huot, Jessica R; Corkin, Suzanne
2008-06-01
Memory is susceptible to distortions. Valence and increasing age are variables known to affect memory accuracy and may increase false alarm production. Interaction between these variables and their impact on false memory was investigated in 36 young (18-28 years) and 36 older (61-83 years) healthy adults. At study, participants viewed lists of neutral words orthographically related to negative, neutral, or positive critical lures (not presented). Memory for these words was subsequently tested with a remember-know procedure. At test, items included the words seen at study and their associated critical lures, as well as sets of orthographically related neutral words not seen at study and their associated unstudied lures. Positive valence was shown to have two opposite effects on older adults' discrimination of the lures: It improved correct rejection of unstudied lures but increased false memory for critical lures (i.e., lures associated with words studied previously). Thus, increased salience triggered by positive valence may disrupt memory accuracy in older adults when discriminating among similar events. These findings likely reflect a source memory deficit due to decreased efficiency in cognitive control processes with aging.
Later maturation of the beneficial than the detrimental effect of selective memory retrieval.
Aslan, Alp; Bäuml, Karl-Heinz T
2014-04-01
In adults, selective memory retrieval can both impair and improve recall of other memories. The study reported here examined whether children also show these two faces of memory retrieval. Employing a variant of the directed-forgetting task, we asked second, fourth, and seventh graders to study a list of target and nontarget words. After study, the participants received a cue to either forget or continue remembering the list. We subsequently asked some participants to recall the nontarget words before we tested their memory for the target words; for the remaining participants, we tested memory only for the target words. Prior retrieval of nontarget words impaired retrieval of to-be-remembered target words, regardless of children's age. In contrast, prior retrieval of nontarget words improved recall of to-be-forgotten target words in seventh graders, though not in fourth and second graders. These results suggest a developmental dissociation between the two faces of memory retrieval and indicate later maturation of the beneficial effect than of the detrimental effect of selective memory retrieval.
Neural mechanisms of reactivation-induced updating that enhance and distort memory
St. Jacques, Peggy L.; Olm, Christopher; Schacter, Daniel L.
2013-01-01
We remember a considerable number of personal experiences because we are frequently reminded of them, a process known as memory reactivation. Although memory reactivation helps to stabilize and update memories, reactivation may also introduce distortions if novel information becomes incorporated with memory. Here we used functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms mediating reactivation-induced updating in memory for events experienced during a museum tour. During scanning, participants were shown target photographs to reactivate memories from the museum tour followed by a novel lure photograph from an alternate tour. Later, participants were presented with target and lure photographs and asked to determine whether the photographs showed a stop they visited during the tour. We used a subsequent memory analysis to examine neural recruitment during reactivation that was associated with later true and false memories. We predicted that the quality of reactivation, as determined by online ratings of subjective recollection, would increase subsequent true memories but also facilitate incorporation of the lure photograph, thereby increasing subsequent false memories. The fMRI results revealed that the quality of reactivation modulated subsequent true and false memories via recruitment of left posterior parahippocampal, bilateral retrosplenial, and bilateral posterior inferior parietal cortices. However, the timing of neural recruitment and the way in which memories were reactivated contributed to differences in whether memory reactivation led to distortions or not. These data reveal the neural mechanisms recruited during memory reactivation that modify how memories will be subsequently retrieved, supporting the flexible and dynamic aspects of memory. PMID:24191059
Neural mechanisms of reactivation-induced updating that enhance and distort memory.
St Jacques, Peggy L; Olm, Christopher; Schacter, Daniel L
2013-12-03
We remember a considerable number of personal experiences because we are frequently reminded of them, a process known as memory reactivation. Although memory reactivation helps to stabilize and update memories, reactivation may also introduce distortions if novel information becomes incorporated with memory. Here we used functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms mediating reactivation-induced updating in memory for events experienced during a museum tour. During scanning, participants were shown target photographs to reactivate memories from the museum tour followed by a novel lure photograph from an alternate tour. Later, participants were presented with target and lure photographs and asked to determine whether the photographs showed a stop they visited during the tour. We used a subsequent memory analysis to examine neural recruitment during reactivation that was associated with later true and false memories. We predicted that the quality of reactivation, as determined by online ratings of subjective recollection, would increase subsequent true memories but also facilitate incorporation of the lure photograph, thereby increasing subsequent false memories. The fMRI results revealed that the quality of reactivation modulated subsequent true and false memories via recruitment of left posterior parahippocampal, bilateral retrosplenial, and bilateral posterior inferior parietal cortices. However, the timing of neural recruitment and the way in which memories were reactivated contributed to differences in whether memory reactivation led to distortions or not. These data reveal the neural mechanisms recruited during memory reactivation that modify how memories will be subsequently retrieved, supporting the flexible and dynamic aspects of memory.
Feld, Gordon B; Wilhem, Ines; Benedict, Christian; Rüdel, Benjamin; Klameth, Corinna; Born, Jan; Hallschmid, Manfred
2016-05-01
The neurochemical underpinnings of sleep's contribution to the establishment and maintenance of memory traces are largely unexplored. Considering that intranasal insulin administration to the CNS improves memory functions in healthy and memory-impaired humans, we tested whether brain insulin signaling and sleep interact to enhance memory consolidation in healthy participants. We investigated the effect of intranasal insulin on sleep-associated neurophysiological and neuroendocrine parameters and memory consolidation in 16 men and 16 women (aged 18-30 years), who learned a declarative word-pair task and a procedural finger sequence tapping task in the evening before intranasal insulin (160 IU) or placebo administration and 8 h of nocturnal sleep. On the subsequent evening, they learned interfering word-pairs and a new finger sequence before retrieving the original memories. Insulin increased growth hormone concentrations in the first night-half and EEG delta power during the second 90 min of non-rapid-eye-movement sleep. Insulin treatment impaired the acquisition of new contents in both the declarative and procedural memory systems on the next day, whereas retrieval of original memories was unchanged. Results indicate that sleep-associated memory consolidation is not a primary mediator of insulin's acute memory-improving effect, but that the peptide acts on mechanisms that diminish the subsequent encoding of novel information. Thus, by inhibiting processes of active forgetting during sleep, central nervous insulin might reduce the interfering influence of encoding new information.
Kensinger, Elizabeth A; Addis, Donna Rose; Atapattu, Ranga K
2011-03-01
It is well known that amygdala activity during encoding corresponds with subsequent memory for emotional information. It is less clear how amygdala activity relates to the subjective and objective qualities of a memory. In the present study, participants viewed emotional and neutral objects while undergoing a functional magnetic resonance imaging scan. Participants then took a memory test, identifying which verbal labels named a studied object and indicating the vividness of their memory for that object. They then retrieved episodic details associated with each object's presentation, selecting which object exemplar had been studied and indicating in which screen quadrant, study list, and with which encoding question the exemplar had been studied. Parametric analysis of the encoding data allowed examination of the processes that tracked with increasing memory vividness or with an increase in the diversity of episodic details remembered. Dissociable networks tracked these two increases, and amygdala activity corresponded with the former but not the latter. Subsequent-memory analyses revealed that amygdala activity corresponded with memory for exemplar type but not for other episodic features. These results emphasize that amygdala activity does not ensure accurate encoding of all types of episodic detail, yet it does support encoding of some item-specific details and leads to the retention of a memory that will feel subjectively vivid. The types of episodic details tied to amygdala engagement may be those that are most important for creating a subjectively vivid memory. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kensinger, Elizabeth A.; Addis, Donna Rose; Atapattu, Ranga K.
2011-01-01
It is well known that amygdala activity during encoding corresponds with subsequent memory for emotional information. It is less clear how amygdala activity relates to the subjective and objective qualities of a memory. In the present study, participants viewed emotional and neutral objects while undergoing a functional magnetic resonance imaging scan. Participants then took a memory test, identifying which verbal labels named a studied object and indicating the vividness of their memory for that object. They then retrieved episodic details associated with each object’s presentation, selecting which object exemplar had been studied and indicating in which screen quadrant, study list, and with which encoding question the exemplar had been studied. Parametric analysis of the encoding data allowed examination of the processes that tracked with increasing memory vividness or with an increase in the diversity of episodic details remembered. Dissociable networks tracked these two increases, and amygdala activity corresponded with the former but not the latter. Subsequent-memory analyses revealed that amygdala activity corresponded with memory for exemplar type but not for other episodic features. These results emphasize that amygdala activity does not ensure accurate encoding of all types of episodic detail, yet it does support encoding of some item-specific details and leads to the retention of a memory that will feel subjectively vivid. The types of episodic details tied to amygdala engagement may be those that are most important for creating a subjectively vivid memory. PMID:21262244
Hoscheidt, Siobhan M; LaBar, Kevin S; Ryan, Lee; Jacobs, W Jake; Nadel, Lynn
2014-07-01
Stress at encoding affects memory processes, typically enhancing, or preserving, memory for emotional information. These effects have interesting implications for eyewitness accounts, which in real-world contexts typically involve encoding an aversive event under stressful conditions followed by potential exposure to misinformation. The present study investigated memory for a negative event encoded under stress and subsequent misinformation endorsement. Healthy young adults participated in a between-groups design with three experimental sessions conducted 48 h apart. Session one consisted of a psychosocial stress induction (or control task) followed by incidental encoding of a negative slideshow. During session two, participants were asked questions about the slideshow, during which a random subgroup was exposed to misinformation. Memory for the slideshow was tested during the third session. Assessment of memory accuracy across stress and no-stress groups revealed that stress induced just prior to encoding led to significantly better memory for the slideshow overall. The classic misinformation effect was also observed - participants exposed to misinformation were significantly more likely to endorse false information during memory testing. In the stress group, however, memory accuracy and misinformation effects were moderated by arousal experienced during encoding of the negative event. Misinformed-stress group participants who reported that the negative slideshow elicited high arousal during encoding were less likely to endorse misinformation for the most aversive phase of the story. Furthermore, these individuals showed better memory for components of the aversive slideshow phase that had been directly misinformed. Results from the current study provide evidence that stress and high subjective arousal elicited by a negative event act concomitantly during encoding to enhance emotional memory such that the most aversive aspects of the event are well remembered and subsequently more resistant to misinformation effects. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Koen, Joshua D; Thakral, Preston P; Rugg, Michael D
2018-06-05
The left angular gyrus (AG) is thought to play a critical role in episodic retrieval and has been implicated in the recollection of specific details of prior episodes. Motivated by recent fMRI studies in which it was reported that elevated neural activity in left AG during study is predictive of subsequent associative memory, the present study investigated whether the region plays a causal role in associative memory encoding. Participants underwent online transcranial magnetic stimulation (TMS) while encoding word pairs prior to an associative memory test. We predicted that TMS to left AG during encoding would result in reduced subsequent memory accuracy, especially for estimates of recollection. The results did not support this prediction: estimates of both recollection and familiarity-driven recognition were essentially identical for words pairs encoded during TMS to left AG relative to a vertex control site. These results suggest that the left AG may not play a necessary role in associative memory encoding. TMS to left AG did however affect confidence for incorrect 'intact' judgments to rearranged pairs and incorrect 'rearranged' judgments to intact pairs. These findings suggest that the left AG supports encoding processes that contribute to aspects of subjective mnemonic experience.
A Positive Generation Effect on Memory for Auditory Context.
Overman, Amy A; Richard, Alison G; Stephens, Joseph D W
2017-06-01
Self-generation of information during memory encoding has large positive effects on subsequent memory for items, but mixed effects on memory for contextual information associated with items. A processing account of generation effects on context memory (Mulligan in Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(4), 838-855, 2004; Mulligan, Lozito, & Rosner in Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(4), 836-846, 2006) proposes that these effects depend on whether the generation task causes any shift in processing of the type of context features for which memory is being tested. Mulligan and colleagues have used this account to predict various negative effects of generation on context memory, but the account also predicts positive generation effects under certain circumstances. The present experiment provided a critical test of the processing account by examining how generation affected memory for auditory rather than visual context. Based on the processing account, we predicted that generation of rhyme words should enhance processing of auditory information associated with the words (i.e., voice gender), whereas generation of antonym words should have no effect. These predictions were confirmed, providing support to the processing account.
The role of overt attention in emotion-modulated memory.
Riggs, Lily; McQuiggan, Douglas A; Farb, Norman; Anderson, Adam K; Ryan, Jennifer D
2011-08-01
The presence of emotional stimuli results in a central/peripheral tradeoff effect in memory: memory for central details is enhanced at the cost of peripheral items. It has been assumed that emotion-modulated differences in memory are the result of differences in attention, but this has not been tested directly. The present experiment used eye movement monitoring as an index of overt attention allocation and mediation analysis to determine whether differences in attention were related to subsequent memory. Participants viewed negative and neutral scenes surrounded by three neutral objects and were then given a recognition memory test. The results revealed evidence in support of a central/peripheral tradeoff in both attention and memory. However, contrary with previous assumptions, whereas attention partially mediated emotion-enhanced memory for central pictures, it did not explain the entire relationship. Further, although centrally presented emotional stimuli led to decreased number of eye fixations toward the periphery, these differences in viewing did not contribute to emotion-impaired memory for specific details pertaining to the periphery. These findings suggest that the differential influence of negative emotion on central versus peripheral memory may result from other cognitive influences in addition to overt visual attention or on postencoding processes. 2011 APA, all rights reserved
Effects on locomotion and memory in 2 models of cerebral hypoperfusion in male Wistar rats.
Martínez-Díaz, J A; García, L I; Hernández, M E; Aranda-Abreu, G E
2015-09-01
Cerebral ischaemia is one of the most common neurological diseases worldwide. Its many sequelae range from motor and sensory symptoms to cognitive decline and dementia. Animal models of cerebral ischaemia/hypoperfusion elicit effects on long term memory; however, the effects of these procedures on short term memory are not clearly understood and effects induced by alternative hypoperfusion models are completely unknown. We evaluated the effects of 2 cerebral hyperperfusion models on memory in 3-month-old male rats. Episodic memory and working memory were assessed using the new object recognition test and the spontaneous alteration test, respectively. Neurological assessment was also performed, along with an open field test to evaluate locomotor activity. Rats in both hyperperfusion models displayed no cognitive changes. Rats with unilateral left-sided ligation plus temporary ligation of the right carotid tended to show slightly impaired performance on the new object recognition test on the second day after the procedure. In contrast, the group with permanent unilateral ligation tended to display alterations in working and episodic memory 9 days after the procedure, but they subsequently recovered. Despite these differences, both hypoperfusion groups displayed clear signs of motor impairment 2 days after the procedure, as reflected by their decreased locomotor activity during the open field test. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.
De Vito, David; Al-Aidroos, Naseem; Fenske, Mark J
2017-05-01
Stimuli appearing as visual distractors subsequently receive more negative affective evaluations than novel items or prior targets of attention. Leading accounts question whether this distractor devaluation effect occurs through evaluative codes that become associated with distractors as a mere artefact of attention-task instructions, or through affective consequences of attentional inhibition when applied to prevent distractor interference. Here we test opposing predictions arising from the evaluative-coding and devaluation-by-inhibition hypotheses using an electrophysiological marker of attentional inhibition in a task that requires participants to avoid interference from abstract-shape distractors presented while maintaining a uniquely-colored stimulus in memory. Consistent with prior research, distractors that matched the colour of the stimulus being held in memory elicited a Pd component of the event-related potential waveform, indicating that their processing was being actively suppressed. Subsequent affective evaluations revealed that memory-matching distractors also received more negative ratings than non-matching distractors or previously-unseen shapes. Moreover, Pd magnitude was greater on trials in which the memory-matching distractors were later rated negatively than on trials preceding positive ratings. These results support the devaluation-by-inhibition hypothesis and strongly suggest that fluctuations in stimulus inhibition are closely associated with subsequent affective evaluations. In contrast, none of the evaluative-coding based predictions were confirmed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Forrin, Noah D; MacLeod, Colin M
2016-06-01
Differences in memory for item order have been used to explain the absence of between-subjects (i.e., pure-list) effects in free recall for several encoding techniques, including the production effect, the finding that reading aloud benefits memory compared with reading silently. Notably, however, evidence in support of the item-order account (Nairne, Riegler, & Serra, 1991) has derived primarily from short-list paradigms. We provide novel evidence that the item-order account also applies when recalling long lists. In Experiment 1, participants studied and then free recalled 3 different long lists of words: pure aloud, pure silent, and mixed (half aloud, half silent). A Bayesian analysis supported a null pure-list production effect, and subsequent order analyses were largely consistent with the item-order account. These findings indicate that order information is retained in long-term memory and is useful in guiding subsequent free recall. In Experiment 2, a distractor task was inserted between the study and test phases, ensuring that only long-term memory processes were involved in recall: The pattern of results remained consistent with the item-order account. Order information can be retained in long-term memory for long lists, and is useful in guiding subsequent free recall, extending the domain of the item-order account. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Everyday episodic memory in amnestic mild cognitive impairment: a preliminary investigation
2011-01-01
Background Decline in episodic memory is one of the hallmark features of Alzheimer's disease (AD) and is also a defining feature of amnestic Mild Cognitive Impairment (MCI), which is posited as a potential prodrome of AD. While deficits in episodic memory are well documented in MCI, the nature of this impairment remains relatively under-researched, particularly for those domains with direct relevance and meaning for the patient's daily life. In order to fully explore the impact of disruption to the episodic memory system on everyday memory in MCI, we examined participants' episodic memory capacity using a battery of experimental tasks with real-world relevance. We investigated episodic acquisition and delayed recall (story-memory), associative memory (face-name pairings), spatial memory (route learning and recall), and memory for everyday mundane events in 16 amnestic MCI and 18 control participants. Furthermore, we followed MCI participants longitudinally to gain preliminary evidence regarding the possible predictive efficacy of these real-world episodic memory tasks for subsequent conversion to AD. Results The most discriminating tests at baseline were measures of acquisition, delayed recall, and associative memory, followed by everyday memory, and spatial memory tasks, with MCI patients scoring significantly lower than controls. At follow-up (mean time elapsed: 22.4 months), 6 MCI cases had progressed to clinically probable AD. Exploratory logistic regression analyses revealed that delayed associative memory performance at baseline was a potential predictor of subsequent conversion to AD. Conclusions As a preliminary study, our findings suggest that simple associative memory paradigms with real-world relevance represent an important line of enquiry in future longitudinal studies charting MCI progression over time. PMID:21816065
The influence of children's pain memories on subsequent pain experience.
Noel, Melanie; Chambers, Christine T; McGrath, Patrick J; Klein, Raymond M; Stewart, Sherry H
2012-08-01
Healthy children are often required to repeatedly undergo painful medical procedures (eg, immunizations). Although memory is often implicated in children's reactions to future pain, there is a dearth of research directly examining the relationship between the 2. The current study investigated the influence of children's memories for a novel pain stimulus on their subsequent pain experience. One hundred ten healthy children (60 boys) between the ages of 8 and 12 years completed a laboratory pain task and provided pain ratings. Two weeks later, children provided pain ratings based on their memories as well as their expectancies about future pain. One month following the initial laboratory visit, children again completed the pain task and provided pain ratings. Results showed that children's memory of pain intensity was a better predictor of subsequent pain reporting than their actual initial reporting of pain intensity, and mediated the relationship between initial and subsequent pain reporting. Children who had negatively estimated pain memories developed expectations of greater pain prior to a subsequent pain experience and showed greater increases in pain ratings over time than children who had accurate or positively estimated pain memories. These findings highlight the influence of pain memories on healthy children's expectations of future pain and subsequent pain experiences and extend predictive models of subsequent pain reporting. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Retrieval Demands Adaptively Change Striatal Old/New Signals and Boost Subsequent Long-Term Memory.
Herweg, Nora A; Sommer, Tobias; Bunzeck, Nico
2018-01-17
The striatum is a central part of the dopaminergic mesolimbic system and contributes both to the encoding and retrieval of long-term memories. In this regard, the co-occurrence of striatal novelty and retrieval success effects in independent studies underlines the structure's double duty and suggests dynamic contextual adaptation. To test this hypothesis and further investigate the underlying mechanisms of encoding and retrieval dynamics, human subjects viewed pre-familiarized scene images intermixed with new scenes and classified them as indoor versus outdoor (encoding task) or old versus new (retrieval task), while fMRI and eye tracking data were recorded. Subsequently, subjects performed a final recognition task. As hypothesized, striatal activity and pupil size reflected task-conditional salience of old and new stimuli, but, unexpectedly, this effect was not reflected in the substantia nigra and ventral tegmental area (SN/VTA), medial temporal lobe, or subsequent memory performance. Instead, subsequent memory generally benefitted from retrieval, an effect possibly driven by task difficulty and activity in a network including different parts of the striatum and SN/VTA. Our findings extend memory models of encoding and retrieval dynamics by pinpointing a specific contextual factor that differentially modulates the functional properties of the mesolimbic system. SIGNIFICANCE STATEMENT The mesolimbic system is involved in the encoding and retrieval of information but it is unclear how these two processes are achieved within the same network of brain regions. In particular, memory retrieval and novelty encoding were considered in independent studies, implying that novelty (new > old) and retrieval success (old > new) effects may co-occur in the striatum. Here, we used a common framework implicating the striatum, but not other parts of the mesolimbic system, in tracking context-dependent salience of old and new information. The current study, therefore, paves the way for a more comprehensive understanding of the functional properties of the mesolimbic system during memory encoding and retrieval. Copyright © 2018 the authors 0270-6474/18/380745-10$15.00/0.
False feedback and beliefs influence name recall in younger and older adults.
Strickland-Hughes, Carla M; West, Robin Lea; Smith, Kimberly A; Ebner, Natalie C
2017-09-01
Feedback is an important self-regulatory process that affects task effort and subsequent performance. Benefits of positive feedback for list recall have been explored in research on goals and feedback, but the effect of negative feedback on memory has rarely been studied. The current research extends knowledge of memory and feedback effects by investigating face-name association memory and by examining the potential mediation of feedback effects, in younger and older adults, through self-evaluative beliefs. Beliefs were assessed before and after name recognition and name recall testing. Repeated presentation of false positive feedback was compared to false negative feedback and a no feedback condition. Results showed that memory self-efficacy declined over time for participants in the negative and no feedback conditions but was sustained for those receiving positive feedback. Furthermore, participants who received negative feedback felt older after testing than before testing. For name recall, the positive feedback group outperformed the negative feedback and no feedback groups combined, with no age interactions. The observed feedback-related effects on memory were fully mediated by changes in memory self-efficacy. These findings advance our understanding of how beliefs are related to feedback in memory and inform future studies examining the importance of self-regulation in memory.
False Memory in Aging Resulting From Self-Referential Processing
2013-01-01
Objectives. Referencing the self is known to enhance accurate memory, but less is known about how the strategy affects false memory, particularly for highly self-relevant information. Because older adults are more prone to false memories, we tested whether self-referencing increased false memories with age. Method. In 2 studies, older and younger adults rated adjectives for self-descriptiveness and later completed a surprise recognition test comprised of words rated previously for self-descriptiveness and novel lure words. Lure words were subsequently rated for self-descriptiveness in order to assess the impact of self-relevance on false memory. Study 2 introduced commonness judgments as a control condition, such that participants completed a recognition test on adjectives rated for commonness in addition to adjectives in the self-descriptiveness condition. Results. Across both studies, findings indicate an increased response bias to self-referencing that increased hit rates for both older and younger adults but also increased false alarms as information became more self-descriptive, particularly for older adults. Discussion. Although the present study supports previous literature showing a boost in memory for self-referenced information, the increase in false alarms, especially in older adults, highlights the potential for memory errors, particularly for information that is strongly related to the self. PMID:23576449
Identification and optogenetic manipulation of memory engrams in the hippocampus
Ramirez, Steve; Tonegawa, Susumu; Liu, Xu
2014-01-01
With the accumulation of our knowledge about how memories are formed, consolidated, retrieved, and updated, neuroscience is now reaching a point where discrete memories can be identified and manipulated at rapid timescales. Here, we start with historical studies that lead to the modern memory engram theory. Then, we will review recent advances in memory engram research that combine transgenic and optogenetic approaches to reveal the underlying neuronal substrates sufficient for activating mnemonic processes. We will focus on three concepts: (1) isolating memory engrams at the level of single cells to tag them for subsequent manipulation; (2) testing the sufficiency of these engrams for memory recall by artificially activating them; and (3) presenting new stimuli during the artificial activation of these engrams to induce an association between the two to form a false memory. We propose that hippocampal cells that show activity-dependent changes during learning construct a cellular basis for contextual memory engrams. PMID:24478647
Poppenk, Jordan; Norman, Kenneth A.
2012-01-01
Recent cognitive research has revealed better source memory performance for familiar relative to novel stimuli. Here we consider two possible explanations for this finding. The source memory advantage for familiar stimuli could arise because stimulus novelty induces attention to stimulus features at the expense of contextual processing, resulting in diminished overall levels of contextual processing at study for novel (vs. familiar) stimuli. Another possibility is that stimulus information retrieved from long-term memory (LTM) provides scaffolding that facilitates the formation of item-context associations. If contextual features are indeed more effectively bound to familiar (vs. novel) items, the relationship between contextual processing at study and subsequent source memory should be stronger for familiar items. We tested these possibilities by applying multi-voxel pattern analysis (MVPA) to a recently collected functional magnetic resonance imaging (fMRI) dataset, with the goal of measuring contextual processing at study and relating it to subsequent source memory performance. Participants were scanned with fMRI while viewing novel proverbs, repeated proverbs (previously novel proverbs that were shown in a pre-study phase), and previously known proverbs in the context of one of two experimental tasks. After scanning was complete, we evaluated participants’ source memory for the task associated with each proverb. Drawing upon fMRI data from the study phase, we trained a classifier to detect on-task processing (i.e., how strongly was the correct task set activated). On-task processing was greater for previously known than novel proverbs and similar for repeated and novel proverbs. However, both within- and across participants, the relationship between on-task processing and subsequent source memory was stronger for repeated than novel proverbs and similar for previously known and novel proverbs. Finally, focusing on the repeated condition, we found that higher levels of hippocampal activity during the pre-study phase, which we used as an index of episodic encoding, led to a stronger relationship between on-task processing at study and subsequent memory. Together, these findings suggest different mechanisms may be primarily responsible for superior source memory for repeated and previously known stimuli. Specifically, they suggest that prior stimulus knowledge enhances memory by boosting the overall level of contextual processing, whereas stimulus repetition enhances the probability that contextual features will be successfully bound to item features. Several possible theoretical explanations for this pattern are discussed. PMID:22820636
Event-related rTMS at encoding affects differently deep and shallow memory traces.
Innocenti, Iglis; Giovannelli, Fabio; Cincotta, Massimo; Feurra, Matteo; Polizzotto, Nicola R; Bianco, Giovanni; Cappa, Stefano F; Rossi, Simone
2010-10-15
The "level of processing" effect is a classical finding of the experimental psychology of memory. Actually, the depth of information processing at encoding predicts the accuracy of the subsequent episodic memory performance. When the incoming stimuli are analyzed in terms of their meaning (semantic, or deep, encoding), the memory performance is superior with respect to the case in which the same stimuli are analyzed in terms of their perceptual features (shallow encoding). As suggested by previous neuroimaging studies and by some preliminary findings with transcranial magnetic stimulation (TMS), the left prefrontal cortex may play a role in semantic processing requiring the allocation of working memory resources. However, it still remains unclear whether deep and shallow encoding share or not the same cortical networks, as well as how these networks contribute to the "level of processing" effect. To investigate the brain areas casually involved in this phenomenon, we applied event-related repetitive TMS (rTMS) during deep (semantic) and shallow (perceptual) encoding of words. Retrieval was subsequently tested without rTMS interference. RTMS applied to the left dorsolateral prefrontal cortex (DLPFC) abolished the beneficial effect of deep encoding on memory performance, both in terms of accuracy (decrease) and reaction times (increase). Neither accuracy nor reaction times were instead affected by rTMS to the right DLPFC or to an additional control site excluded by the memory process (vertex). The fact that online measures of semantic processing at encoding were unaffected suggests that the detrimental effect on memory performance for semantically encoded items took place in the subsequent consolidation phase. These results highlight the specific causal role of the left DLPFC among the wide left-lateralized cortical network engaged by long-term memory, suggesting that it probably represents a crucial node responsible for the improved memory performance induced by semantic processing. Copyright 2010 Elsevier Inc. All rights reserved.
Memory Performance for Everyday Motivational and Neutral Objects Is Dissociable from Attention
Schomaker, Judith; Wittmann, Bianca C.
2017-01-01
Episodic memory is typically better for items coupled with monetary reward or punishment during encoding. It is yet unclear whether memory is also enhanced for everyday objects with appetitive or aversive values learned through a lifetime of experience, and to what extent episodic memory enhancement for motivational and neutral items is attributable to attention. In a first experiment, we investigated attention to everyday motivational objects using eye-tracking during free-viewing and subsequently tested episodic memory using a remember/know procedure. Attention was directed more to aversive stimuli, as evidenced by longer viewing durations, whereas recollection was higher for both appetitive and aversive objects. In the second experiment, we manipulated the visual contrast of neutral objects through changes of contrast to further dissociate attention and memory encoding. While objects presented with high visual contrast were looked at longer, recollection was best for objects presented in unmodified, medium contrast. Generalized logistic mixed models on recollection performance showed that attention as measured by eye movements did not enhance subsequent memory, while motivational value (Experiment 1) and visual contrast (Experiment 2) had quadratic effects in opposite directions. Our findings suggest that an enhancement of incidental memory encoding for appetitive items can occur without an increase in attention and, vice versa, that enhanced attention towards salient neutral objects is not necessarily associated with memory improvement. Together, our results provide evidence for a double dissociation of attention and memory effects under certain conditions. PMID:28694774
Treating verbal working memory in a boy with intellectual disability
Orsolini, Margherita; Melogno, Sergio; Latini, Nausica; Penge, Roberta; Conforti, Sara
2015-01-01
The present case study investigates the effects of a cognitive training of verbal working memory that was proposed for Davide, a 14-year-old boy diagnosed with mild intellectual disability. The program stimulated attention, inhibition, switching, and the ability to engage either in verbal dual tasks or in producing inferences after the content of a short passage had been encoded in episodic memory. Key elements in our program included (1) core training of target cognitive mechanisms; (2) guided practice emphasizing concrete strategies to engage in exercises; and (3) a variable amount of adult support. The study explored whether such a complex program produced “near transfer” effects on an untrained dual task assessing verbal working memory and whether effects on this and other target cognitive mechanisms (i.e., attention, inhibition, and switching) were long-lasting and produced “far transfer” effects on cognitive flexibility. The effects of the intervention program were investigated with a research design consisting of four subsequent phases lasting 8 or 10 weeks, each preceded and followed by testing. There was a control condition (phase 1) in which the boy received, at home, a stimulation focused on the visuospatial domain. Subsequently, there were three experimental training phases, in which stimulation in the verbal domain was first focused on attention and inhibition (phase 2a), then on switching and simple working memory tasks (phase 2b), then on complex working memory tasks (phase 3). A battery of neuropsychological tests was administered before and after each training phase and 7 months after the conclusion of the intervention. The main finding was that Davide changed from being incapable of addressing the dual task request of the listening span test in the initial assessment to performing close to the normal limits of a 13-year-old boy in the follow-up assessment with this test, when he was 15 years old. PMID:26284014
How "implicit" are implicit color effects in memory?
Zimmer, Hubert D; Steiner, Astrid; Ecker, Ullrich K H
2002-01-01
Processing colored pictures of objects results in a preference to choose the former color for a specific object in a subsequent color choice test (Wippich & Mecklenbräuker, 1998). We tested whether this implicit memory effect is independent of performances in episodic color recollection (recognition). In the study phase of Experiment 1, the color of line drawings was either named or its appropriateness was judged. We found only weak implicit memory effects for categorical color information. In Experiment 2, silhouettes were colored by subjects during the study phase. Performances in both the implicit and the explicit test were good. Selections of "old" colors in the implicit test, though, were almost completely confined to items for which the color was also remembered explicitly. In Experiment 3, we applied the opposition technique in order to check whether we could find any implicit effects regarding items for which no explicit color recollection was possible. This was not the case. We therefore draw the conclusion that implicit color preference effects are not independent of explicit recollection, and that they are probably based on the same episodic memory traces that are used in explicit tests.
Dopaminergic inputs in the dentate gyrus direct the choice of memory encoding.
Du, Huiyun; Deng, Wei; Aimone, James B; Ge, Minyan; Parylak, Sarah; Walch, Keenan; Zhang, Wei; Cook, Jonathan; Song, Huina; Wang, Liping; Gage, Fred H; Mu, Yangling
2016-09-13
Rewarding experiences are often well remembered, and such memory formation is known to be dependent on dopamine modulation of the neural substrates engaged in learning and memory; however, it is unknown how and where in the brain dopamine signals bias episodic memory toward preceding rather than subsequent events. Here we found that photostimulation of channelrhodopsin-2-expressing dopaminergic fibers in the dentate gyrus induced a long-term depression of cortical inputs, diminished theta oscillations, and impaired subsequent contextual learning. Computational modeling based on this dopamine modulation indicated an asymmetric association of events occurring before and after reward in memory tasks. In subsequent behavioral experiments, preexposure to a natural reward suppressed hippocampus-dependent memory formation, with an effective time window consistent with the duration of dopamine-induced changes of dentate activity. Overall, our results suggest a mechanism by which dopamine enables the hippocampus to encode memory with reduced interference from subsequent experience.
Dopaminergic inputs in the dentate gyrus direct the choice of memory encoding
Du, Huiyun; Deng, Wei; Aimone, James B.; Ge, Minyan; Parylak, Sarah; Walch, Keenan; Zhang, Wei; Cook, Jonathan; Song, Huina; Wang, Liping; Gage, Fred H.; Mu, Yangling
2016-01-01
Rewarding experiences are often well remembered, and such memory formation is known to be dependent on dopamine modulation of the neural substrates engaged in learning and memory; however, it is unknown how and where in the brain dopamine signals bias episodic memory toward preceding rather than subsequent events. Here we found that photostimulation of channelrhodopsin-2–expressing dopaminergic fibers in the dentate gyrus induced a long-term depression of cortical inputs, diminished theta oscillations, and impaired subsequent contextual learning. Computational modeling based on this dopamine modulation indicated an asymmetric association of events occurring before and after reward in memory tasks. In subsequent behavioral experiments, preexposure to a natural reward suppressed hippocampus-dependent memory formation, with an effective time window consistent with the duration of dopamine-induced changes of dentate activity. Overall, our results suggest a mechanism by which dopamine enables the hippocampus to encode memory with reduced interference from subsequent experience. PMID:27573822
Chand, Vineeta; Bonnici, Lisa; Baynes, Kathleen; Harvey, Danielle; Mungas, Dan; Simon, Christa; Reed, Bruce
2012-01-01
Objective. The Nun Study showed that lower linguistic ability in young adulthood, measured by idea density (ID), increased the risk of dementia in late life. The present study examined whether ID measured in late life continues to predict the trajectory of cognitive change. Method. ID was measured in 81 older adults who were followed longitudinally for an average of 4.3 years. Changes in global cognition and 4 specific neuropsychological domains (episodic memory, semantic memory, spatial abilities, and executive function) were examined as outcomes. Separate random effects models tested the effect of ID on longitudinal change in outcomes, adjusted for age and education. Results. Lower ID was associated with greater subsequent decline in global cognition, semantic memory, episodic memory, and spatial abilities. When analysis was restricted to only participants without dementia at the time ID was collected, results were similar. Discussion. Linguistic ability in young adulthood, as measured by ID, has been previously proposed as an index of neurocognitive development and/or cognitive reserve. The present study provides evidence that even when ID is measured in old age, it continues to be associated with subsequent cognitive decline and as such may continue to provide a marker of cognitive reserve. PMID:22357642
Chen, Yvonne Y; Caplan, Jeremy B
2017-01-01
During study trials of a recognition memory task, alpha (∼10 Hz) oscillations decrease, and concurrently, theta (4-8 Hz) oscillations increase when later memory is successful versus unsuccessful (subsequent memory effect). Likewise, at test, reduced alpha and increased theta activity are associated with successful memory (retrieval success effect). Here we take an individual-differences approach to test three hypotheses about theta and alpha oscillations in verbal, old/new recognition, measuring the difference in oscillations between hit trials and miss trials. First, we test the hypothesis that theta and alpha oscillations have a moderately mutually exclusive relationship; but no support for this hypothesis was found. Second, we test the hypothesis that theta oscillations explain not only memory effects within participants, but also individual differences. Supporting this prediction, durations of theta (but not alpha) oscillations at study and at test correlated significantly with d' across participants. Third, we test the hypothesis that theta and alpha oscillations reflect familiarity and recollection processes by comparing oscillation measures to ERPs that are implicated in familiarity and recollection. The alpha-oscillation effects correlated with some ERP measures, but inversely, suggesting that the actions of alpha oscillations on memory processes are distinct from the roles of familiarity- and recollection-linked ERP signals. The theta-oscillation measures, despite differentiating hits from misses, did not correlate with any ERP measure; thus, theta oscillations may reflect elaborative processes not tapped by recollection-related ERPs. Our findings are consistent with alpha oscillations reflecting visual inattention, which can modulate memory, and with theta oscillations supporting recognition memory in ways that complement the most commonly studied ERPs.
Gafford, Georgette M; Parsons, Ryan G; Helmstetter, Fred J
2013-09-01
Prior work suggests that hippocampus-dependent memory undergoes a systems consolidation process such that recent memories are stored in the hippocampus, while older memories are independent of the hippocampus and instead dependent on cortical areas. One problem with interpreting these studies is that memory for the contextual stimuli weakens as time passes between the training event and testing and older memories are often less detailed, making it difficult to determine if memory storage in the hippocampus is related to the age or to the accuracy of the memory. Activity of the mammalian target of rapamycin (mTOR) signaling pathway is known to be important for controlling protein translation necessary for both memory consolidation after initial learning and for the reconsolidation of memory after retrieval. We tested whether p70s6 kinase (p70s6K), a key component of the mTOR signaling pathway, is activated following retrieval of context fear memory in the dorsal hippocampus (DH) and anterior cingulate cortex (ACC) at 1, 10, or 36 days after context fear conditioning. We also tested whether strengthening memory for the contextual stimuli changed p70s6K phosphorylation in these structures 36 days after training. We show that under standard training conditions retrieval of a recently formed memory is initially precise and involves the DH. Over time it loses detail, becomes independent of the DH and depends on the ACC. In a subsequent experiment, we preserved the accuracy of older memories through pre-exposure to the training context. We show that remote memory still involved the DH in animals given pre-exposure. These data support the notion that detailed memories depend on the DH regardless of their age. Copyright © 2013 Wiley Periodicals, Inc.
Global neural pattern similarity as a common basis for categorization and recognition memory.
Davis, Tyler; Xue, Gui; Love, Bradley C; Preston, Alison R; Poldrack, Russell A
2014-05-28
Familiarity, or memory strength, is a central construct in models of cognition. In previous categorization and long-term memory research, correlations have been found between psychological measures of memory strength and activation in the medial temporal lobes (MTLs), which suggests a common neural locus for memory strength. However, activation alone is insufficient for determining whether the same mechanisms underlie neural function across domains. Guided by mathematical models of categorization and long-term memory, we develop a theory and a method to test whether memory strength arises from the global similarity among neural representations. In human subjects, we find significant correlations between global similarity among activation patterns in the MTLs and both subsequent memory confidence in a recognition memory task and model-based measures of memory strength in a category learning task. Our work bridges formal cognitive theories and neuroscientific models by illustrating that the same global similarity computations underlie processing in multiple cognitive domains. Moreover, by establishing a link between neural similarity and psychological memory strength, our findings suggest that there may be an isomorphism between psychological and neural representational spaces that can be exploited to test cognitive theories at both the neural and behavioral levels. Copyright © 2014 the authors 0270-6474/14/347472-13$15.00/0.
Studies and applications of NiTi shape memory alloys in the medical field in China.
Dai, K; Chu, Y
1996-01-01
The biomedical study of NiTi shape memory alloys has been undertaken in China since 1978. A series of stimulating corrosion tests, histological observations, toxicity tests, carcinogenicity tests, trace nickel elements analysis and a number of clinical trials have been conducted. The results showed that the NiTi shape memory alloy is a good biomaterial with good biocompatibility and no obvious local tissue reaction, carcinogenesis or erosion of implants were found experimentally or clinically. In 1981, on the basis of fundamental studies, a shape memory staple was used for the first time inside the human body. Subsequently, various shape memory devices were designed and applied clinically for internal fixation of fractures, spine surgery, endoprostheses, gynaecological and craniofacial surgery. Since 1990, a series of internal stents have been developed for the management of biliary, tracheal and esophageal strictures and urethrostenosis as well as vascular obturator for tumour management. Several thousand cases have been treated and had a 1-10 year follow-up and good clinical results with a rather low complication rate were obtained.
Wada testing reveals frontal lateralization for the memorization of words and faces.
Kelley, W M; Ojemann, J G; Wetzel, R D; Derdeyn, C P; Moran, C J; Cross, D T; Dowling, J L; Miller, J W; Petersen, S E
2002-01-01
Neuroimaging studies have suggested that specific regions of the frontal and medial temporal cortex are engaged during memory formation. Further, there is specialization across these regions such that verbal materials appear to preferentially engage the left regions while nonverbal materials primarily engage the right regions. An open question, however, has been to what extent frontal regions contribute to successful memory formation. The present study investigates this question using a reversible lesion technique known as the Wada test. Patients memorized words and unfamiliar faces while portions of their left and right hemispheres were temporarily anesthetized with sodium amytal. Subsequent memory tests revealed that faces were remembered better than words following left-hemisphere anesthesia, whereas words were remembered better than faces following right-hemisphere anesthesia. Importantly, inspection of the circulation affected by the amytal further suggests that these memory impairments did not result from direct anesthetization of the medial temporal regions. Taken in the context of the imaging findings, these results suggest that frontal regions may also contribute to memory formation in normal performance.
Merging of long-term memories in an insect.
Hunt, Kathryn L; Chittka, Lars
2015-03-16
Research on comparative cognition has largely focused on successes and failures of animals to solve certain cognitive tasks, but in humans, memory errors can be more complex than simple failures to retrieve information [1, 2]. The existence of various types of "false memories," in which individuals remember events that they have never actually encountered, are now well established in humans [3, 4]. We hypothesize that such systematic memory errors may be widespread in animals whose natural lifestyle involves the processing and recollection of memories for multiple stimuli [5]. We predict that memory traces for various stimuli may "merge," such that features acquired in distinct bouts of training are combined in an animal's mind, so that stimuli that have never been viewed before, but are a combination of the features presented in training, may be chosen during recall. We tested this using bumblebees, Bombus terrestris. When individuals were first trained to a solid single-colored stimulus followed by a black and white (b/w)-patterned stimulus, a subsequent preference for the last entrained stimulus was found in both short-term- and long-term-memory tests. However, when bees were first trained to b/w-patterned stimuli followed by solid single-colored stimuli and were tested in long-term-memory tests 1 or 3 days later, they only initially preferred the most recently rewarded stimulus, and then switched their preference to stimuli that combined features from the previous color and pattern stimuli. The observed merging of long-term memories is thus similar to the memory conjunction error found in humans [6]. Copyright © 2015 Elsevier Ltd. All rights reserved.
Retrieval practice enhances the accessibility but not the quality of memory.
Sutterer, David W; Awh, Edward
2016-06-01
Numerous studies have demonstrated that retrieval from long-term memory (LTM) can enhance subsequent memory performance, a phenomenon labeled the retrieval practice effect. However, the almost exclusive reliance on categorical stimuli in this literature leaves open a basic question about the nature of this improvement in memory performance. It has not yet been determined whether retrieval practice improves the probability of successful memory retrieval or the quality of the retrieved representation. To answer this question, we conducted three experiments using a mixture modeling approach (Zhang & Luck, 2008) that provides a measure of both the probability of recall and the quality of the recalled memories. Subjects attempted to memorize the color of 400 unique shapes. After every 10 images were presented, subjects either recalled the last 10 colors (the retrieval practice condition) by clicking on a color wheel with each shape as a retrieval cue or they participated in a control condition that involved no further presentations (Experiment 1) or restudy of the 10 shape/color associations (Experiments 2 and 3). Performance in a subsequent delayed recall test revealed a robust retrieval practice effect. Subjects recalled a significantly higher proportion of items that they had previously retrieved relative to items that were untested or that they had restudied. Interestingly, retrieval practice did not elicit any improvement in the precision of the retrieved memories. The same empirical pattern also was observed following delays of greater than 24 hours. Thus, retrieval practice increases the probability of successful memory retrieval but does not improve memory quality.
Attention during memory retrieval enhances future remembering.
Dudukovic, Nicole M; Dubrow, Sarah; Wagner, Anthony D
2009-10-01
Memory retrieval is a powerful learning event that influences whether an experience will be remembered in the future. Although retrieval can succeed in the presence of distraction, dividing attention during retrieval may reduce the power of remembering as an encoding event. In the present experiments, participants studied pictures of objects under full attention and then engaged in item recognition and source memory retrieval under full or divided attention. Two days later, a second recognition and source recollection test assessed the impact of attention during initial retrieval on long-term retention. On this latter test, performance was superior for items that had been tested initially under full versus divided attention. More importantly, even when items were correctly recognized on the first test, divided attention reduced the likelihood of subsequent recognition on the second test. The same held true for source recollection. Additionally, foils presented during the first test were also less likely to be later recognized if they had been encountered initially under divided attention. These findings demonstrate that attentive retrieval is critical for learning through remembering.
Event Segmentation Improves Event Memory up to One Month Later
ERIC Educational Resources Information Center
Flores, Shaney; Bailey, Heather R.; Eisenberg, Michelle L.; Zacks, Jeffrey M.
2017-01-01
When people observe everyday activity, they spontaneously parse it into discrete meaningful events. Individuals who segment activity in a more normative fashion show better subsequent memory for the events. If segmenting events effectively leads to better memory, does asking people to attend to segmentation improve subsequent memory? To answer…
Neural Correlates of Encoding Within- and Across-Domain Inter-Item Associations
Park, Heekyeong; Rugg, Michael D.
2012-01-01
The neural correlates of the encoding of associations between pairs of words, pairs of pictures, and word-picture pairs were compared. The aims were to determine first, whether the neural correlates of associative encoding vary according to study material and second, whether encoding of across- versus within-material item pairs is associated with dissociable patterns of hippocampal and perirhinal activity, as predicted by the ‘domain dichotomy’ hypothesis of medial temporal lobe (MTL) function. While undergoing fMRI scanning, subjects (n = 24) were presented with the three classes of study pairs, judging which of the denoted objects fit into the other. Outside of the scanner, subjects then undertook an associative recognition task, discriminating between intact study pairs, rearranged pairs comprising items that had been presented on different study trials, and unstudied item pairs. The neural correlates of successful associative encoding – subsequent associative memory effects – were operationalized as the difference in activity between study pairs correctly judged intact versus pairs incorrectly judged rearranged on the subsequent memory test. Pair type-independent subsequent memory effects were evident in the left inferior frontal gyrus (IFG) and the hippocampus. Picture-picture pairs elicited material-selective effects in regions of fusiform cortex that were also activated to a greater extent on picture trials than word trials, while word-word pairs elicited material-selective subsequent memory effects in left lateral temporal cortex. Contrary to the domain-dichotomy hypothesis, neither hippocampal nor perirhinal subsequent memory effects differed depending on whether they were elicited by within- versus across-material study pairs. It is proposed that the left IFG plays a domain-general role in associative encoding, that associative encoding can also be facilitated by enhanced processing in material-selective cortical regions, and that the hippocampus and perirhinal cortex contribute equally to the formation of inter-item associations regardless of whether the items belong to the same or to different processing domains. PMID:21254802
Yun, Richard J; Krystal, John H; Mathalon, Daniel H
2010-03-01
The human working memory system provides an experimentally useful model for examination of neural overload effects on subsequent functioning of the overloaded system. This study employed functional magnetic resonance imaging in conjunction with a parametric working memory task to characterize the behavioral and neural effects of cognitive overload on subsequent cognitive performance, with particular attention to cognitive-limbic interactions. Overloading the working memory system was associated with varying degrees of subsequent decline in performance accuracy and reduced activation of brain regions central to both task performance and suppression of negative affect. The degree of performance decline was independently predicted by three separate factors operating during the overload condition: the degree of task failure, the degree of amygdala activation, and the degree of inverse coupling between the amygdala and dorsolateral prefrontal cortex. These findings suggest that vulnerability to overload effects in cognitive functioning may be mediated by reduced amygdala suppression and subsequent amygdala-prefrontal interaction.
Bentley, P; Driver, J; Dolan, R J
2009-09-01
Cholinergic influences on memory are likely to be expressed at several processing stages, including via well-recognized effects of acetylcholine on stimulus processing during encoding. Since previous studies have shown that cholinesterase inhibition enhances visual extrastriate cortex activity during stimulus encoding, especially under attention-demanding tasks, we tested whether this effect correlates with improved subsequent memory. In a within-subject physostigmine versus placebo design, we measured brain activity with functional magnetic resonance imaging while healthy and mild Alzheimer's disease subjects performed superficial and deep encoding tasks on face (and building) visual stimuli. We explored regions in which physostigmine modulation of face-selective neural responses correlated with physostigmine effects on subsequent recognition performance. In healthy subjects physostigmine led to enhanced later recognition for deep- versus superficially-encoded faces, which correlated across subjects with a physostigmine-induced enhancement of face-selective responses in right fusiform cortex during deep- versus superficial-encoding tasks. In contrast, the Alzheimer's disease group showed neither a depth of processing effect nor restoration of this with physostigmine. Instead, patients showed a task-independent improvement in confident memory with physostigmine, an effect that correlated with enhancements in face-selective (but task-independent) responses in bilateral fusiform cortices. Our results indicate that one mechanism by which cholinesterase inhibitors can improve memory is by enhancing extrastriate cortex stimulus selectivity at encoding, in a manner that for healthy people but not in Alzheimer's disease is dependent upon depth of processing.
Koekkoek, P S; Janssen, J; Kooistra, M; Biesbroek, J M; Groeneveld, O; van den Berg, E; Kappelle, L J; Biessels, G J; Rutten, G E H M
2016-06-01
To evaluate two cognitive tests for case-finding for cognitive impairment in older patients with Type 2 diabetes. Of 1243 invited patients with Type 2 diabetes, aged ≥70 years, 228 participated in a prospective cohort study. Exclusion criteria were: diagnosis of dementia; previous investigation at a memory clinic; and inability to write or read. Patients first filled out two self-administered cognitive tests (Test Your Memory and Self-Administered Gerocognitive Examination). Secondly, a general practitioner, blinded to Test Your Memory and Self-Administered Gerocognitive Examination scores, performed a structured evaluation using the Mini-Mental State Examination. Subsequently, patients suspected of cognitive impairment (on either the cognitive tests or general practitioner evaluation) and a random sample of 30% of patients not suspected of cognitive impairment were evaluated at a memory clinic. Diagnostic accuracy and area under the curve were determined for the Test Your Memory, Self-Administered Gerocognitive Examination and general practitioner evaluation compared with a memory clinic evaluation to detect cognitive impairment (mild cognitive impairment or dementia). A total of 44 participants were diagnosed with cognitive impairment. The Test Your Memory and Self-Administered Gerocognitive Examination questionnaires had negative predictive values of 81 and 85%, respectively. Positive predictive values were 39 and 40%, respectively. The general practitioner evaluation had a negative predictive value of 83% and positive predictive value of 64%. The area under the curve was ~0.70 for all tests. Both the tests evaluated in the present study can easily be used in case-finding strategies for cognitive impairment in patients with Type 2 diabetes in primary care. The Self-Administered Gerocognitive Examination had the best diagnostic accuracy and therefore we would have a slight preference for this test. Applying the Self-Administered Gerocognitive Examination would considerably reduce the number of patients in whom the general practitioner needs to evaluate cognitive functioning to tailor diabetes treatment. © 2015 Diabetes UK.
Sidhu, Meneka K.; Stretton, Jason; Winston, Gavin P.; Bonelli, Silvia; Centeno, Maria; Vollmar, Christian; Symms, Mark; Thompson, Pamela J.; Koepp, Matthias J.
2013-01-01
Functional magnetic resonance imaging has demonstrated reorganization of memory encoding networks within the temporal lobe in temporal lobe epilepsy, but little is known of the extra-temporal networks in these patients. We investigated the temporal and extra-temporal reorganization of memory encoding networks in refractory temporal lobe epilepsy and the neural correlates of successful subsequent memory formation. We studied 44 patients with unilateral temporal lobe epilepsy and hippocampal sclerosis (24 left) and 26 healthy control subjects. All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words with subsequent out-of-scanner recognition assessments. A blocked analysis was used to investigate activations during encoding and neural correlates of subsequent memory were investigated using an event-related analysis. Event-related activations were then correlated with out-of-scanner verbal and visual memory scores. During word encoding, control subjects activated the left prefrontal cortex and left hippocampus whereas patients with left hippocampal sclerosis showed significant additional right temporal and extra-temporal activations. Control subjects displayed subsequent verbal memory effects within left parahippocampal gyrus, left orbitofrontal cortex and fusiform gyrus whereas patients with left hippocampal sclerosis activated only right posterior hippocampus, parahippocampus and fusiform gyrus. Correlational analysis showed that patients with left hippocampal sclerosis with better verbal memory additionally activated left orbitofrontal cortex, anterior cingulate cortex and left posterior hippocampus. During face encoding, control subjects showed right lateralized prefrontal cortex and bilateral hippocampal activations. Patients with right hippocampal sclerosis showed increased temporal activations within the superior temporal gyri bilaterally and no increased extra-temporal areas of activation compared with control subjects. Control subjects showed subsequent visual memory effects within right amygdala, hippocampus, fusiform gyrus and orbitofrontal cortex. Patients with right hippocampal sclerosis showed subsequent visual memory effects within right posterior hippocampus, parahippocampal and fusiform gyri, and predominantly left hemisphere extra-temporal activations within the insula and orbitofrontal cortex. Correlational analysis showed that patients with right hippocampal sclerosis with better visual memory activated the amygdala bilaterally, right anterior parahippocampal gyrus and left insula. Right sided extra-temporal areas of reorganization observed in patients with left hippocampal sclerosis during word encoding and bilateral lateral temporal reorganization in patients with right hippocampal sclerosis during face encoding were not associated with subsequent memory formation. Reorganization within the medial temporal lobe, however, is an efficient process. The orbitofrontal cortex is critical to subsequent memory formation in control subjects and patients. Activations within anterior cingulum and insula correlated with better verbal and visual subsequent memory in patients with left and right hippocampal sclerosis, respectively, representing effective extra-temporal recruitment. PMID:23674488
Insights from child development on the relationship between episodic and semantic memory.
Robertson, Erin K; Köhler, Stefan
2007-11-05
The present study was motivated by a recent controversy in the neuropsychological literature on semantic dementia as to whether episodic encoding requires semantic processing or whether it can proceed solely based on perceptual processing. We addressed this issue by examining the effect of age-related limitations in semantic competency on episodic memory in 4-6-year-old children (n=67). We administered three different forced-choice recognition memory tests for pictures previously encountered in a single study episode. The tests varied in the degree to which access to semantically encoded information was required at retrieval. Semantic competency predicted recognition performance regardless of whether access to semantic information was required. A direct relation between picture naming at encoding and subsequent recognition was also found for all tests. Our findings emphasize the importance of semantic encoding processes even in retrieval situations that purportedly do not require access to semantic information. They also highlight the importance of testing neuropsychological models of memory in different populations, healthy and brain damaged, at both ends of the developmental continuum.
Jennings, J Richard; Heim, Alicia F; Sheu, Lei K; Muldoon, Matthew F; Ryan, Christopher; Gach, H Michael; Schirda, Claudiu; Gianaros, Peter J
2017-12-01
Hypertension is a presumptive risk factor for premature cognitive decline. However, lowering blood pressure (BP) does not uniformly reverse cognitive decline, suggesting that high BP per se may not cause cognitive decline. We hypothesized that essential hypertension has initial effects on the brain that, over time, manifest as cognitive dysfunction in conjunction with both brain vascular abnormalities and systemic BP elevation. Accordingly, we tested whether neuropsychological function and brain blood flow responses to cognitive challenges among prehypertensive individuals would predict subsequent progression of BP. Midlife adults (n=154; mean age, 49; 45% men) with prehypertensive BP underwent neuropsychological testing and assessment of regional cerebral blood flow (rCBF) response to cognitive challenges. Neuropsychological performance measures were derived for verbal and logical memory (memory), executive function, working memory, mental efficiency, and attention. A pseudo-continuous arterial spin labeling magnetic resonance imaging sequence compared rCBF responses with control and active phases of cognitive challenges. Brain areas previously associated with BP were grouped into composites for frontoparietal, frontostriatal, and insular-subcortical rCBF areas. Multiple regression models tested whether BP after 2 years was predicted by initial BP, initial neuropsychological scores, and initial rCBF responses to cognitive challenge. The neuropsychological composite of working memory (standardized beta, -0.276; se=0.116; P =0.02) and the frontostriatal rCBF response to cognitive challenge (standardized beta, 0.234; se=0.108; P =0.03) significantly predicted follow-up BP. Initial BP failed to significantly predict subsequent cognitive performance or rCBF. Changes in brain function may precede or co-occur with progression of BP toward hypertensive levels in midlife. © 2017 American Heart Association, Inc.
Hayes, Jessica M; Tang, Lingfei; Viviano, Raymond P; van Rooden, Sanneke; Ofen, Noa; Damoiseaux, Jessica S
2017-12-01
Subjective memory complaints, the perceived decline in cognitive abilities in the absence of clinical deficits, may precede Alzheimer's disease. Individuals with subjective memory complaints show differential brain activation during memory encoding; however, whether such differences contribute to successful memory formation remains unclear. Here, we investigated how subsequent memory effects, activation which is greater for hits than misses during an encoding task, differed between healthy older adults aged 50 to 85 years with (n = 23) and without (n = 41) memory complaints. Older adults with memory complaints, compared to those without, showed lower subsequent memory effects in the occipital lobe, superior parietal lobe, and posterior cingulate cortex. In addition, older adults with more memory complaints showed a more negative subsequent memory effects in areas of the default mode network, including the posterior cingulate cortex, precuneus, and ventromedial prefrontal cortex. Our findings suggest that for successful memory formation, older adults with subjective memory complaints rely on distinct neural mechanisms which may reflect an overall decreased task-directed attention. Copyright © 2017 Elsevier Inc. All rights reserved.
Slow-Wave Sleep-Imposed Replay Modulates Both Strength and Precision of Memory
2014-01-01
Odor perception is hypothesized to be an experience-dependent process involving the encoding of odor objects by distributed olfactory cortical ensembles. Olfactory cortical neurons coactivated by a specific pattern of odorant evoked input become linked through association fiber synaptic plasticity, creating a template of the familiar odor. In this way, experience and memory play an important role in odor perception and discrimination. In other systems, memory consolidation occurs partially via slow-wave sleep (SWS)-dependent replay of activity patterns originally evoked during waking. SWS is ideal for replay given hyporesponsive sensory systems, and thus reduced interference. Here, using artificial patterns of olfactory bulb stimulation in a fear conditioning procedure in the rat, we tested the effects of imposed post-training replay during SWS and waking on strength and precision of pattern memory. The results show that imposed replay during post-training SWS enhanced the subsequent strength of memory, whereas the identical replay during waking induced extinction. The magnitude of this enhancement was dependent on the timing of imposed replay relative to cortical sharp-waves. Imposed SWS replay of stimuli, which differed from the conditioned stimulus, did not affect conditioned stimulus memory strength but induced generalization of the fear memory to novel artificial patterns. Finally, post-training disruption of piriform cortex intracortical association fiber synapses, hypothesized to be critical for experience-dependent odor coding, also impaired subsequent memory precision but not strength. These results suggest that SWS replay in the olfactory cortex enhances memory consolidation, and that memory precision is dependent on the fidelity of that replay. PMID:24719093
1980-11-01
4006 DMAE Direct Memory Access Enable: ’Ibis command enables direct memory access (DMA). 4007 I)MAi) Direct Memory Access Disable: This command...72 DLI 72 DLR 72 DM 111 DMAD 30 DMAE 30 DMR 111 ONEG 103 DR 117 DS 104 OSAR 53 141 373 ’., M1L-STD-1750A (USAF) 2 July 1980 OSBI 29 OSCR 54 OSIC 48...in 4.7.7, the connectors shall show no defects detrimental to the operation of the connectors and shall A-7 461 -meet the subsequent test requirements
Dopaminergic inputs in the dentate gyrus direct the choice of memory encoding
Du, Huiyun; Deng, Wei; Aimone, James B.; ...
2016-09-13
Rewarding experiences are often well remembered, and such memory formation is known to be dependent on dopamine modulation of the neural substrates engaged in learning and memory; however, it is unknown how and where in the brain dopamine signals bias episodic memory toward preceding rather than subsequent events. Here we found that photostimulation of channelrhodopsin-2–expressing dopaminergic fibers in the dentate gyrus induced a long-term depression of cortical inputs, diminished theta oscillations, and impaired subsequent contextual learning. Computational modeling based on this dopamine modulation indicated an asymmetric association of events occurring before and after reward in memory tasks. In subsequent behavioralmore » experiments, preexposure to a natural reward suppressed hippocampus-dependent memory formation, with an effective time window consistent with the duration of dopamine-induced changes of dentate activity. Altogether, our results suggest a mechanism by which dopamine enables the hippocampus to encode memory with reduced interference from subsequent experience.« less
Dopaminergic inputs in the dentate gyrus direct the choice of memory encoding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Huiyun; Deng, Wei; Aimone, James B.
Rewarding experiences are often well remembered, and such memory formation is known to be dependent on dopamine modulation of the neural substrates engaged in learning and memory; however, it is unknown how and where in the brain dopamine signals bias episodic memory toward preceding rather than subsequent events. Here we found that photostimulation of channelrhodopsin-2–expressing dopaminergic fibers in the dentate gyrus induced a long-term depression of cortical inputs, diminished theta oscillations, and impaired subsequent contextual learning. Computational modeling based on this dopamine modulation indicated an asymmetric association of events occurring before and after reward in memory tasks. In subsequent behavioralmore » experiments, preexposure to a natural reward suppressed hippocampus-dependent memory formation, with an effective time window consistent with the duration of dopamine-induced changes of dentate activity. Altogether, our results suggest a mechanism by which dopamine enables the hippocampus to encode memory with reduced interference from subsequent experience.« less
Green, Matthew R; McCormick, Cheryl M
2013-11-01
There is evidence that exposure to stressors in adolescence leads to lasting deficits on hippocampal-dependent tasks, but whether medial prefrontal cortical function is also impaired is unknown. We previously found that rats exposed to social instability stress in adolescence (SS; daily 1h isolation and subsequent change of cage partner between postnatal days 30 and 45) had impaired memory performance on a Spatial Object Location test and in memory for fear conditioning context, tasks that depend on the integrity of the hippocampus. Here we investigated whether impaired performance would be evident after adolescent SS in male rats on a different test of hippocampal function, spatial learning and memory in the Morris water maze (MWM) and on a working memory task for which performance depends on the integrity of the medial prefrontal cortex, the Delayed Alternation task (DAT). During MWM testing, SS rats showed greater improvements in performance across trials within days compared to control (CTL) rats, but showed less retention of learning between days (48 h) compared to CTL rats. Similarly, SS rats had impaired long-term memory in the Spatial Object Location test after a long delay (240 min), but not after shorter delays (15 or 60 min) compared to CTL rats. No group differences were observed on the DAT, which assessed working memory across brief delays (5-90 s). Thus, deficits in memory performance after chronic social stress in adolescence may be limited to long-term memory. Copyright © 2013 Elsevier B.V. All rights reserved.
Ferree, Nikole K; Cahill, Larry
2009-03-01
Spontaneous intrusive recollections (SIRs) follow traumatic events in clinical and non-clinical populations. To determine whether any relationship exists between SIRs and enhanced memory for emotional events, participants viewed emotional or neutral films, had their memory for the films tested two days later, and estimated the number of SIRs they experienced for each film. SIR frequency related positively to memory strength, an effect more pronounced in the emotional condition. These findings represent the first demonstration of a relationship between SIRs occurring after an emotional experience and subsequent memory strength for that experience. The results are consistent with the possibility that emotional arousal leads both to elevated SIR frequency and better memory, and that the covert rehearsal associated with SIRs enhances memory for emotional relative to neutral stimuli. Additional evidence of menstrual cycle influences on SIR incidence in female participants appears to merit consideration in future work.
Ferree, Nikole K.; Cahill, Larry
2009-01-01
Spontaneous intrusive recollections (SIRs) follow traumatic events in clinical and non-clinical populations. To determine whether any relationship exists between SIRs and enhanced memory for emotional events, participants viewed emotional or neutral films, had their memory for the films tested two days later, and estimated the number of SIRs they experienced for each film. SIR frequency related positively to memory strength, an effect more pronounced in the emotional condition. These findings represent the first demonstration of a relationship between SIRs occurring after an emotional experience and subsequent memory strength for that experience. The results are consistent with the possibility that emotional arousal leads both to elevated SIR frequency and better memory, and that the covert rehearsal associated with SIRs enhances memory for emotional relative to neutral stimuli. Additional evidence of menstrual cycle influences on SIR incidence in female participants appears to merit consideration in future work. PMID:19131257
Spatial transposition gradients in visual working memory.
Rerko, Laura; Oberauer, Klaus; Lin, Hsuan-Yu
2014-01-01
In list memory, access to individual items reflects limits of temporal distinctiveness. This is reflected in the finding that neighbouring list items tend to be confused most often. This article investigates the analogous effect of spatial proximity in a visual working-memory task. Items were presented in different locations varying in spatial distance. A retro-cue indicated the location of the item relevant for the subsequent memory test. In two recognition experiments, probes matching spatially close neighbours of the relevant item led to more false alarms than probes matching distant neighbours or non-neighbouring memory items. In two probed-recall experiments, one with simultaneous, the other with sequential memory item presentation, items closer to the cued location were more frequently chosen for recall than more distant items. These results reflect a spatial transposition gradient analogous to the temporal transposition gradient in serial recall and challenge fixed-capacity models of visual working memory (WM).
Werner, Craig T; Milovanovic, Mike; Christian, Daniel T; Loweth, Jessica A; Wolf, Marina E
2015-12-01
The ubiquitin-proteasome system (UPS) has been implicated in the retrieval-induced destabilization of cocaine- and fear-related memories in Pavlovian paradigms. However, nothing is known about its role in memory retrieval after self-administration of cocaine, an operant paradigm, or how the length of withdrawal from cocaine may influence retrieval mechanisms. Here, we examined UPS activity after an extended-access cocaine self-administration regimen that leads to withdrawal-dependent incubation of cue-induced cocaine craving. Controls self-administered saline. In initial experiments, memory retrieval was elicited via a cue-induced seeking/retrieval test on withdrawal day (WD) 50-60, when craving has incubated. We found that retrieval of cocaine- and saline-associated memories produced similar increases in polyubiquitinated proteins in the nucleus accumbens (NAc), compared with rats that did not undergo a seeking/retrieval test. Measures of proteasome catalytic activity confirmed similar activation of the UPS after retrieval of saline and cocaine memories. However, in a subsequent experiment in which testing was conducted on WD1, proteasome activity in the NAc was greater after retrieval of cocaine memory than saline memory. Analysis of other brain regions confirmed that effects of cocaine memory retrieval on proteasome activity, relative to saline memory retrieval, depend on withdrawal time. These results, combined with prior studies, suggest that the relationship between UPS activity and memory retrieval depends on training paradigm, brain region, and time elapsed between training and retrieval. The observation that mechanisms underlying cocaine memory retrieval change depending on the age of the memory has implications for development of memory destabilization therapies for cue-induced relapse in cocaine addicts.
Emotion regulation during the encoding of emotional stimuli: Effects on subsequent memory.
Leventon, Jacqueline S; Bauer, Patricia J
2016-02-01
In the adult literature, emotional arousal is regarded as a source of the enhancing effect of emotion on subsequent memory. Here, we used behavioral and electrophysiological methods to examine the role of emotional arousal on subsequent memory in school-age children. Furthermore, we implemented a reappraisal instruction to manipulate (down-regulate) emotional arousal at encoding to examine the relation between emotional arousal and subsequent memory. Participants (8-year-old girls) viewed emotional scenes as electrophysiological (EEG) data were recorded and participated in a memory task 1 to 5days later where EEG and behavioral responses were recorded; participants provided subjective ratings of the scenes after the memory task. The reappraisal instruction successfully reduced emotional arousal responses to negative stimuli but not positive stimuli. Similarly, recognition performance in both event-related potentials (ERPs) and behavior was impaired for reappraised negative stimuli but not positive stimuli. The findings indicate that ERPs are sensitive to the reappraisal of negative stimuli in children as young as 8years. Furthermore, the findings suggest an interaction of emotion and memory during the school years, implicating the explanatory role of emotional arousal at encoding on subsequent memory performance in female children as young as 8years. Copyright © 2015 Elsevier Inc. All rights reserved.
Adolescent Self-Organization Predicts Midlife Memory in a Prospective Birth Cohort Study
2013-01-01
Childhood and adolescent mental health have a lasting impact on adult life chances, with strong implications for subsequent health, including cognitive aging. Using the British 1946 birth cohort, the authors tested associations between adolescent conduct problems, emotional problems and aspects of self-organization, and verbal memory at 43 years and rate of decline in verbal memory from 43 to 60–64 years. After controlling for childhood intelligence, adolescent self-organization was positively associated with verbal memory at 43 years, mainly through educational attainment, although not with rate of memory decline. Associations between adolescent conduct and emotional problems and future memory were of negligible magnitude. It has been suggested that interventions to improve self-organization may save a wide range of societal costs; this study also suggests that this might also benefit cognitive function in later life. PMID:24364401
Memory strength and specificity revealed by pupillometry
Papesh, Megan H.; Goldinger, Stephen D.; Hout, Michael C.
2011-01-01
Voice-specificity effects in recognition memory were investigated using both behavioral data and pupillometry. Volunteers initially heard spoken words and nonwords in two voices; they later provided confidence-based old/new classifications to items presented in their original voices, changed (but familiar) voices, or entirely new voices. Recognition was more accurate for old-voice items, replicating prior research. Pupillometry was used to gauge cognitive demand during both encoding and testing: Enlarged pupils revealed that participants devoted greater effort to encoding items that were subsequently recognized. Further, pupil responses were sensitive to the cue match between encoding and retrieval voices, as well as memory strength. Strong memories, and those with the closest encoding-retrieval voice matches, resulted in the highest peak pupil diameters. The results are discussed with respect to episodic memory models and Whittlesea’s (1997) SCAPE framework for recognition memory. PMID:22019480
ERIC Educational Resources Information Center
Suzuki, Akinobu; Mukawa, Takuya; Tsukagoshi, Akinori; Frankland, Paul W.; Kida, Satoshi
2008-01-01
Previous studies have shown that inhibiting protein synthesis shortly after reactivation impairs the subsequent expression of a previously consolidated fear memory. This has suggested that reactivation returns a memory to a labile state and that protein synthesis is required for the subsequent restabilization of memory. While the molecular…
Giesbrecht, Timo; Merckelbach, Harald; van Oorsouw, Kim; Simeon, Daphne
2010-05-30
It is often assumed that when confronted with an emotional event, patients with DPD inhibit information processing. It is also thought that this fosters memory fragmentation. This hypothesis has not been tested in chronic depersonalization. The aim of this study was to investigate the temporal pattern of autonomic responding to emotional material in depersonalization disorder, along with concomitant deficits in subjective and objective memory formation (i.e., difficulties to form a coherent narrative consisting of an ordered sequence of events). Participants with depersonalization disorder (n=14) and healthy control participants (n=14) viewed an emotional video clip while their skin conductance (SC) levels were measured. Peritraumatic dissociation was measured before and after the clip, and memory performance was measured 35 min after viewing. Compared to controls, depersonalized participants exhibited a distinctly different temporal pattern of autonomic responding, characterized by an earlier peak and subsequent flattening of SCLs. Maximum SCLs did not differ between the two groups. Moreover, unlike the control group, depersonalized participants showed no SC recovery after clip offset. In terms of memory performance, patients exhibited objective memory fragmentation, which they also reported subjectively. However, they did not differ from controls in free recall performance. Apparently, emotional responding in DPD is characterized by a shortened latency to peak with subsequent flattening and is accompanied by memory fragmentation in the light of otherwise unremarkable memory functioning. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
The interaction of short-term and long-term memory in phonetic category formation
NASA Astrophysics Data System (ADS)
Harnsberger, James D.
2002-05-01
This study examined the role that short-term memory capacity plays in the relationship between novel stimuli (e.g., non-native speech sounds, native nonsense words) and phonetic categories in long-term memory. Thirty native speakers of American English were administered five tests: categorial AXB discrimination using nasal consonants from Malayalam; categorial identification, also using Malayalam nasals, which measured the influence of phonetic categories in long-term memory; digit span; nonword span, a short-term memory measure mediated by phonetic categories in long-term memory; and paired-associate word learning (word-word and word-nonword pairs). The results showed that almost all measures were significantly correlated with one another. The strongest predictor for the discrimination and word-nonword learning results was nonword (r=+0.62) and digit span (r=+0.51), respectively. When the identification test results were partialed out, only nonword span significantly correlated with discrimination. The results show a strong influence of short-term memory capacity on the encoding of phonetic detail within phonetic categories and suggest that long-term memory representations regulate the capacity of short-term memory to preserve information for subsequent encoding. The results of this study will also be discussed with regards to resolving the tension between episodic and abstract models of phonetic category structure.
Weight and See: Loading Working Memory Improves Incidental Identification of Irrelevant Faces
Carmel, David; Fairnie, Jake; Lavie, Nilli
2012-01-01
Are task-irrelevant stimuli processed to a level enabling individual identification? This question is central both for perceptual processing models and for applied settings (e.g., eye-witness testimony). Lavie’s load theory proposes that working memory actively maintains attentional prioritization of relevant over irrelevant information. Loading working memory thus impairs attentional prioritization, leading to increased processing of task-irrelevant stimuli. Previous research has shown that increased working memory load leads to greater interference effects from response-competing distractors. Here we test the novel prediction that increased processing of irrelevant stimuli under high working memory load should lead to a greater likelihood of incidental identification of entirely irrelevant stimuli. To test this, we asked participants to perform a word-categorization task while ignoring task-irrelevant images. The categorization task was performed during the retention interval of a working memory task with either low or high load (defined by memory set size). Following the final experimental trial, a surprise question assessed incidental identification of the irrelevant image. Loading working memory was found to improve identification of task-irrelevant faces, but not of building stimuli (shown in a separate experiment to be less distracting). These findings suggest that working memory plays a critical role in determining whether distracting stimuli will be subsequently identified. PMID:22912623
Associative Recognition Memory Awareness Improved by Theta-Burst Stimulation of Frontopolar Cortex
Ryals, Anthony J.; Rogers, Lynn M.; Gross, Evan Z.; Polnaszek, Kelly L.; Voss, Joel L.
2016-01-01
Neuroimaging and lesion studies have implicated specific prefrontal cortex locations in subjective memory awareness. Based on this evidence, a rostrocaudal organization has been proposed whereby increasingly anterior prefrontal regions are increasingly involved in memory awareness. We used theta-burst transcranial magnetic stimulation (TBS) to temporarily modulate dorsolateral versus frontopolar prefrontal cortex to test for distinct causal roles in memory awareness. In three sessions, participants received TBS bilaterally to frontopolar cortex, dorsolateral prefrontal cortex, or a control location prior to performing an associative-recognition task involving judgments of memory awareness. Objective memory performance (i.e., accuracy) did not differ based on stimulation location. In contrast, frontopolar stimulation significantly influenced several measures of memory awareness. During study, judgments of learning were more accurate such that lower ratings were given to items that were subsequently forgotten selectively following frontopolar TBS. Confidence ratings during test were also higher for correct trials following frontopolar TBS. Finally, trial-by-trial correspondence between overt performance and subjective awareness during study demonstrated a linear increase across control, dorsolateral, and frontopolar TBS locations, supporting a rostrocaudal hierarchy of prefrontal contributions to memory awareness. These findings indicate that frontopolar cortex contributes causally to memory awareness, which was improved selectively by anatomically targeted TBS. PMID:25577574
Poppenk, Jordan; Norman, Kenneth A
2012-11-01
Recent cognitive research has revealed better source memory performance for familiar relative to novel stimuli. Here we consider two possible explanations for this finding. The source memory advantage for familiar stimuli could arise because stimulus novelty induces attention to stimulus features at the expense of contextual processing, resulting in diminished overall levels of contextual processing at study for novel (vs. familiar) stimuli. Another possibility is that stimulus information retrieved from long-term memory (LTM) provides scaffolding that facilitates the formation of item-context associations. If contextual features are indeed more effectively bound to familiar (vs. novel) items, the relationship between contextual processing at study and subsequent source memory should be stronger for familiar items. We tested these possibilities by applying multi-voxel pattern analysis (MVPA) to a recently collected functional magnetic resonance imaging (fMRI) dataset, with the goal of measuring contextual processing at study and relating it to subsequent source memory performance. Participants were scanned with fMRI while viewing novel proverbs, repeated proverbs (previously novel proverbs that were shown in a pre-study phase), and previously known proverbs in the context of one of two experimental tasks. After scanning was complete, we evaluated participants' source memory for the task associated with each proverb. Drawing upon fMRI data from the study phase, we trained a classifier to detect on-task processing (i.e., how strongly was the correct task set activated). On-task processing was greater for previously known than novel proverbs and similar for repeated and novel proverbs. However, both within and across participants, the relationship between on-task processing and subsequent source memory was stronger for repeated than novel proverbs and similar for previously known and novel proverbs. Finally, focusing on the repeated condition, we found that higher levels of hippocampal activity during the pre-study phase, which we used as an index of episodic encoding, led to a stronger relationship between on-task processing at study and subsequent memory. Together, these findings suggest different mechanisms may be primarily responsible for superior source memory for repeated and previously known stimuli. Specifically, they suggest that prior stimulus knowledge enhances memory by boosting the overall level of contextual processing, whereas stimulus repetition enhances the probability that contextual features will be successfully bound to item features. Several possible theoretical explanations for this pattern are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Egocentric and nonegocentric coding in memory for spatial layout: Evidence from scene recognition
2005-01-01
Much contemporary research has suggested that memories for spatial layout are stored with a preferred orientation. The present paper examines whether spatial memories are also stored with a preferred viewpoint position. Participants viewed images of an arrangement of objects taken from a single viewpoint, and were subsequently tested on their ability to recognize the arrangement from novel viewpoints that had been translated in either the lateral or depth dimension. Lateral and forward displacements of the viewpoint resulted in increasing response latencies and errors. Backward displacement showed no such effect, nor did lateral translation that resulted in a centered “canonical” view of the arrangement. These results further constrain the specificity of spatial memory, while also providing some evidence that nonegocentric spatial information is coded in memory. PMID:16933759
The Role of Cognitive Load in Intentional Forgetting Using the Think/No-Think Task.
Noreen, Saima; de Fockert, Jan W
2017-01-01
We investigated the role of cognitive control in intentional forgetting by manipulating working memory load during the think/no-think task. In two experiments, participants learned a series of cue-target word pairs and were asked to recall the target words associated with some cues or to avoid thinking about the target associated with other cues. In addition to this, participants also performed a modified version of the n-back task which required them to respond to the identity of a single target letter present in the currently presented cue word (n = 0 condition, low working memory load), and in either the previous cue word (n = 1 condition, high working memory load, Experiment 1) or the cue word presented two trials previously (n = 2 condition, high working memory load, Experiment 2). Participants' memory for the target words was subsequently tested using same and novel independent probes. In both experiments it was found that although participants were successful at forgetting on both the same and independent-probe tests in the low working memory load condition, they were only successful at forgetting on the same-probe test in the high working memory load condition. We argue that our findings suggest that the high load working memory task diverted attention from direct suppression and acted as an interference-based strategy. Thus, when cognitive resources are limited participants can switch between the strategies they use to prevent unwanted memories from coming to mind.
Wagner, Isabella C; van Buuren, Mariët; Bovy, Leonore; Morris, Richard G; Fernández, Guillén
2017-02-01
Synaptic memory consolidation is thought to rely on catecholaminergic signaling. Eventually, it is followed by systems consolidation, which embeds memories in a neocortical network. Although this sequence was demonstrated in rodents, it is unclear how catecholamines affect memory consolidation in humans. Here, we tested the effects of catecholaminergic modulation on synaptic and subsequent systems consolidation. We expected enhanced memory performance and increased neocortical engagement during delayed retrieval. Additionally, we tested if this effect was modulated by individual differences in a cognitive proxy measure of baseline catecholamine synthesis capacity. Fifty-three healthy males underwent a between-subjects, double-blind, placebo-controlled procedure across 2 days. On day 1, subjects studied and retrieved object-location associations and received 20 mg of methylphenidate or placebo. Drug intake was timed so that methylphenidate was expected to affect early consolidation but not encoding or retrieval. Memory was tested again while subjects were scanned three days later. Methylphenidate did not facilitate memory performance, and there was no significant group difference in activation during delayed retrieval. However, memory representations differed between groups depending on baseline catecholamines. The placebo group showed increased activation in occipito-temporal regions but decreased connectivity with the hippocampus, associated with lower baseline catecholamine synthesis capacity. The methylphenidate group showed stronger activation in the postcentral gyrus, associated with higher baseline catecholamine synthesis capacity. Altogether, methylphenidate during early consolidation did not foster long-term memory performance, but it affected retrieval-related neural processes depending on individual levels of baseline catecholamines.
Ezzati, Ali; Katz, Mindy J; Zammit, Andrea R; Lipton, Michael L; Zimmerman, Molly E; Sliwinski, Martin J; Lipton, Richard B
2016-12-01
The hippocampus plays a critical role in verbal and spatial memory, thus any pathological damage to this formation may lead to cognitive impairment. It is suggested that right and left hippocampi are affected differentially in healthy or pathologic aging. The purpose of this study was to test the hypothesis that verbal episodic memory performance is associated with left hippocampal volume (HV) while spatial memory is associated with right HV. 115 non-demented adults over age 70 were drawn from the Einstein Aging Study. Verbal memory was measured using the free recall score from the Free and Cued Selective Reminding Test - immediate recall (FCSRT-IR), logical memory immediate and delayed subtests (LM-I and LM-II) from the Wechsler Memory Scale-Revised (WMS-R). Spatial Memory was measured using a computerized dot memory paradigm that has been validated for use in older adults. All participants underwent 3T MRI with subsequent automatized measurement of the volume of each hippocampus. The sample had a mean age of 78.7 years (SD=5.0); 57% were women, and 52% were white. Participants had a mean of 14.3 years (SD=3.5) of education. In regression models, two tests of verbal memory (FCSRT-IR free recall and LM-II) were positively associated with left HV, but not with right HV. Performance on the spatial memory task was associated with right HV, but not left HV. Our findings support the hypothesis that the left hippocampus plays a critical role in episodic verbal memory, while right hippocampus might be more important for spatial memory processing among non-demented older adults. Copyright © 2016 Elsevier Ltd. All rights reserved.
Morena, Maria; Berardi, Andrea; Peloso, Andrea; Valeri, Daniela; Palmery, Maura; Trezza, Viviana; Schelling, Gustav; Campolongo, Patrizia
2017-06-30
Intensive Care Unit (ICU) or emergency care patients, exposed to traumatic events, are at increased risk for Post-Traumatic Stress Disorder (PTSD) development. Commonly used sedative/anesthetic agents can interfere with the mechanisms of memory formation, exacerbating or attenuating the memory for the traumatic event, and subsequently promote or reduce the risk of PTSD development. Here, we evaluated the effects of ketamine, dexmedetomidine and propofol on fear memory consolidation and subsequent cognitive and emotional alterations related to traumatic stress exposure. Immediately following an inhibitory avoidance training, rats were intraperitoneally injected with ketamine (100-125mg/kg), dexmedetomidine (0.3-0.4mg/kg) or their vehicle and tested for 48h memory retention. Furthermore, the effects of ketamine (125mg/kg), dexmedetomidine (0.4mg/kg), propofol (300mg/kg) or their vehicle on long-term memory and social interaction were evaluated two weeks after drug injection in a rat PTSD model. Ketamine anesthesia increased memory retention without altering the traumatic memory strength in the PTSD model. However, ketamine induced a long-term reduction of social behavior. Conversely, dexmedetomidine markedly impaired memory retention, without affecting long-lasting cognitive or emotional behaviors in the PTSD model. We have previously shown that propofol anesthesia enhanced 48h memory retention. Here, we found that propofol induced an enduring traumatic memory enhancement and anxiogenic effects in the PTSD model. These findings provide new evidence for clinical studies showing that the use of ketamine or propofol anesthesia in emergency care and ICU might be more likely to promote the development of PTSD, while dexmedetomidine might have prophylactic effects. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Tzu-Ching; Kuo, Wen-Jui; Chiang, Ming-Chang; Tseng, Yi-Jhan; Lin, Yung-Yang
2013-08-01
We evaluated the subsequent memory and forgotten effects for Chinese using event-related fMRI. Sixteen normal subjects were recruited and performing incidental memory tasks where semantic decision was required during memory encoding. Consistent with previous studies, our results showed bilateral frontal regions as the main locus for the subsequent memory effect. However, contrast between miss and hit responses revealed larger activation in bilateral superior temporal gyrus. We proposed that larger activation in the superior temporal gyrus may reflect alteration of self-monitoring process which resulted in unsuccessful memory encoding for the miss items. Copyright © 2013 Elsevier Inc. All rights reserved.
Memory and event-related potentials for rapidly presented emotional pictures.
Versace, Francesco; Bradley, Margaret M; Lang, Peter J
2010-08-01
Dense array event-related potentials (ERPs) and memory performance were assessed following rapid serial visual presentation (RSVP) of emotional and neutral pictures. Despite the extremely brief presentation, emotionally arousing pictures prompted an enhanced negative voltage over occipital sensors, compared to neutral pictures, replicating previous encoding effects. Emotionally arousing pictures were also remembered better in a subsequent recognition test, with higher hit rates and better discrimination performance. ERPs measured during the recognition test showed both an early (250-350 ms) frontally distributed difference between hits and correct rejections, and a later (400-500 ms), more centrally distributed difference, consistent with effects of recognition on ERPs typically found using slower presentation rates. The data are consistent with the hypothesis that features of affective pictures pop out during rapid serial visual presentation, prompting better memory performance.
Straube, Benjamin; Meyer, Lea; Green, Antonia; Kircher, Tilo
2014-06-03
Speech-associated gesturing leads to memory advantages for spoken sentences. However, unexpected or surprising events are also likely to be remembered. With this study we test the hypothesis that different neural mechanisms (semantic elaboration and surprise) lead to memory advantages for iconic and unrelated gestures. During fMRI-data acquisition participants were presented with video clips of an actor verbalising concrete sentences accompanied by iconic gestures (IG; e.g., circular gesture; sentence: "The man is sitting at the round table"), unrelated free gestures (FG; e.g., unrelated up down movements; same sentence) and no gestures (NG; same sentence). After scanning, recognition performance for the three conditions was tested. Videos were evaluated regarding semantic relation and surprise by a different group of participants. The semantic relationship between speech and gesture was rated higher for IG (IG>FG), whereas surprise was rated higher for FG (FG>IG). Activation of the hippocampus correlated with subsequent memory performance of both gesture conditions (IG+FG>NG). For the IG condition we found activation in the left temporal pole and middle cingulate cortex (MCC; IG>FG). In contrast, for the FG condition posterior thalamic structures (FG>IG) as well as anterior and posterior cingulate cortices were activated (FG>NG). Our behavioral and fMRI-data suggest different mechanisms for processing related and unrelated co-verbal gestures, both of them leading to enhanced memory performance. Whereas activation in MCC and left temporal pole for iconic co-verbal gestures may reflect semantic memory processes, memory enhancement for unrelated gestures relies on the surprise response, mediated by anterior/posterior cingulate cortex and thalamico-hippocampal structures. Copyright © 2014 Elsevier B.V. All rights reserved.
How visual short-term memory maintenance modulates subsequent visual aftereffects.
Saad, Elyana; Silvanto, Juha
2013-05-01
Prolonged viewing of a visual stimulus can result in sensory adaptation, giving rise to perceptual phenomena such as the tilt aftereffect (TAE). However, it is not known if short-term memory maintenance induces such effects. We examined how visual short-term memory (VSTM) maintenance modulates the strength of the TAE induced by subsequent visual adaptation. We reasoned that if VSTM maintenance induces aftereffects on subsequent encoding of visual information, then it should either enhance or reduce the TAE induced by a subsequent visual adapter, depending on the congruency of the memory cue and the adapter. Our results were consistent with this hypothesis and thus indicate that the effects of VSTM maintenance can outlast the maintenance period.
Testing enhances subsequent learning in older but not in younger elementary school children.
Aslan, Alp; Bäuml, Karl-Heinz T
2016-11-01
In adults, testing can enhance subsequent learning by reducing interference from the tested information. Here, we examined this forward effect of testing in children. Younger and older elementary school children and adult controls studied four lists of items in anticipation of a final cumulative recall test. Following presentation of each of the first three lists, participants were immediately tested on the respective list, or the list was re-presented for additional study. Results revealed that, compared to additional study, immediate testing of Lists 1-3 enhanced memory for the subsequently studied List 4 in adults and older elementary school children, but not in younger elementary school children. The findings indicate that the forward effect of testing is a relatively late-maturing phenomenon that develops over middle childhood and is still inefficient in the early elementary school years. Together with the results of other recent studies, these findings point to a more general problem in young children in combating interference. © 2015 John Wiley & Sons Ltd.
Mace, John H; Clevinger, Amanda M
2013-01-01
The goal of this study was to show that voluntary autobiographical memories could be primed by the prior activation of autobiographical memories. Three experiments demonstrated voluntary memory priming with three different approaches. In Experiment 1 primed participants were asked to recall memories from their elementary school years. In a subsequent memory task primed participants were asked to recall memories from any time period, and they produced significantly more memories from their elementary school years than unprimed participants. In Experiment 2 primed participants were asked to recall what they were doing when they had heard various news events occurring between 1998 and 2005. Subsequently these participants produced significantly more memories from this time period than unprimed participants. In Experiment 3 primed participants were asked to recall memories from their teenage years. Subsequently these participants were able to recall more memories from ages 13-15 than unprimed participants, where both had only 1 second to produce a memory. We argue that the results support the notion that episodic memories can activate one another and that some of them are organised according to lifetime periods. We further argue that the results have implications for the reminiscence bump and voluntary recall of the past.
Reward associations impact both iconic and visual working memory.
Infanti, Elisa; Hickey, Clayton; Turatto, Massimo
2015-02-01
Reward plays a fundamental role in human behavior. A growing number of studies have shown that stimuli associated with reward become salient and attract attention. The aim of the present study was to extend these results into the investigation of iconic memory and visual working memory. In two experiments we asked participants to perform a visual-search task where different colors of the target stimuli were paired with high or low reward. We then tested whether the pre-established feature-reward association affected performance on a subsequent visual memory task, in which no reward was provided. In this test phase participants viewed arrays of 8 objects, one of which had unique color that could match the color associated with reward during the previous visual-search task. A probe appeared at varying intervals after stimulus offset to identify the to-be-reported item. Our results suggest that reward biases the encoding of visual information such that items characterized by a reward-associated feature interfere with mnemonic representations of other items in the test display. These results extend current knowledge regarding the influence of reward on early cognitive processes, suggesting that feature-reward associations automatically interact with the encoding and storage of visual information, both in iconic memory and visual working memory. Copyright © 2014 Elsevier Ltd. All rights reserved.
When Do Objects Become Landmarks? A VR Study of the Effect of Task Relevance on Spatial Memory
Han, Xue; Byrne, Patrick; Kahana, Michael; Becker, Suzanna
2012-01-01
We investigated how objects come to serve as landmarks in spatial memory, and more specifically how they form part of an allocentric cognitive map. Participants performing a virtual driving task incidentally learned the layout of a virtual town and locations of objects in that town. They were subsequently tested on their spatial and recognition memory for the objects. To assess whether the objects were encoded allocentrically we examined pointing consistency across tested viewpoints. In three experiments, we found that spatial memory for objects at navigationally relevant locations was more consistent across tested viewpoints, particularly when participants had more limited experience of the environment. When participants’ attention was focused on the appearance of objects, the navigational relevance effect was eliminated, whereas when their attention was focused on objects’ locations, this effect was enhanced, supporting the hypothesis that when objects are processed in the service of navigation, rather than merely being viewed as objects, they engage qualitatively distinct attentional systems and are incorporated into an allocentric spatial representation. The results are consistent with evidence from the neuroimaging literature that when objects are relevant to navigation, they not only engage the ventral “object processing stream”, but also the dorsal stream and medial temporal lobe memory system classically associated with allocentric spatial memory. PMID:22586455
Organizational strategies mediate nonverbal memory impairment in obsessive-compulsive disorder.
Savage, C R; Baer, L; Keuthen, N J; Brown, H D; Rauch, S L; Jenike, M A
1999-04-01
Previous neuropsychological studies of obsessive-compulsive disorder (OCD) have indicated impaired executive functioning and nonverbal memory. The extent to which impaired executive functioning impacts nonverbal memory has not been established. The current study investigated the mediating effects of organizational strategies used when copying a figure on subsequent nonverbal memory for that figure. We examined neuropsychological performance in 20 unmedicated subjects with OCD and 20 matched normal control subjects. Subjects were administered the Rey-Osterrieth Complex Figure Test (RCFT) and neuropsychological tests assessing various aspects of executive function. OCD subjects differed significantly from healthy control subjects in the organizational strategies used to copy the RCFT figure, and they recalled significantly less information on both immediate and delayed testing. Multiple regression analyses indicated that group differences in immediate percent recall were significantly mediated by copy organizational strategies. Further exploratory analyses indicated that organizational problems in OCD may be related to difficulties shifting mental and/or spatial set. Immediate nonverbal memory problems in OCD subjects were mediated by impaired organizational strategies used during the initial copy of the RCFT figure. Thus, the primary deficit was one affecting executive function, which then had a secondary effect on immediate memory. These findings are consistent with current theories proposing frontal-striatal system dysfunction in OCD.
Altered prefrontal brain activity in persons at risk for Alzheimer's disease: an fMRI study.
Elgh, Eva; Larsson, Anne; Eriksson, Sture; Nyberg, Lars
2003-06-01
Early diagnosis of Alzheimer's disease (AD) is critical for adequate treatment and care. Recently it has been shown that functional magnetic resonance imaging (fMRI) can be important in preclinical detection of AD. The purpose of this study was to examine possible differences in memory-related brain activation between persons with high versus low risk for AD. This was achieved by combining a validated neurocognitive screening battery (the 7-minutes test) with memory assessment and fMRI. One hundred two healthy community-living persons with subjective memory complaints were recruited through advertisement and tested with the 7-minutes test. Based on their test performance they were classified as having either high (n = 8) or low risk (n = 94) for AD. Six high-risk individuals and six age-, sex-, and education-matched low-risk individuals were investigated with fMRI while engaged in episodic memory tasks. The high-risk individuals performed worse than low-risk individuals on tests of episodic memory. Patterns of brain activity during episodic encoding and retrieval showed significant group differences (p < .05 corrected). During both encoding and retrieval, the low-risk persons showed increased activity relative to a baseline condition in prefrontal brain regions that previously have been implicated in episodic memory. By contrast, the high-risk persons did not significantly activate any prefrontal regions, but instead showed increased activity in visual occipito-temporal regions. Patterns of prefrontal brain activity related to episodic memory differ between persons with high versus low risk for AD, and lowered prefrontal activity may predict subsequent disease.
Takatsu-Coleman, André L; Zanin, Karina A; Patti, Camilla L; Zager, Adriano; Lopes-Silva, Leonardo B; Longo, Beatriz M; Tufik, Sergio; Andersen, Monica L; Frussa-Filho, Roberto
2013-10-01
While the effects of sleep deprivation (SD) on the acquisition and consolidation phases of memory have been extensively characterized, its effects on memory retrieval remain overlooked. SD alone is a stressor, and stress-activated glucocorticoids promote bimodal effects on memory. Because we have recently demonstrated that 72h SD impairs memory retrieval in the plus-maze discriminative avoidance task (PM-DAT) in mice, this study investigated whether shorter SD periods would facilitate retrieval. In Experiment I, the temporal forgetting curve of the PM-DAT was determined and an interval between training/testing in which retrieval was no longer present was used in all subsequent experiments. In Experiments II and III, retrieval performance and corticosterone concentration, respectively, were quantified in mice that were sleep deprived for 12 or 24h before testing. In Experiments IV and V, the effects of the corticosterone synthesis inhibitor metyrapone were evaluated on 12h SD-induced retrieval reinstatement and corticosterone concentration enhancement, respectively. Experiment VI determined whether pre-test acute administration of exogenous corticosterone would mimic the facilitatory effects of 12h SD on retrieval. Thirty days after training, mice presented poor performance of the task; however, SD for 12h (but not for 24) before testing reinstated memory retrieval. This facilitatory effect was accompanied by increased corticosterone concentration, abolished by metyrapone, and mimicked by pre-test acute corticosterone administration. Collectively, short-term SD can facilitate memory retrieval by enhancing corticosterone secretion. This facilitatory effect is abolished by longer periods of SD. Copyright © 2013 Elsevier Ltd. All rights reserved.
Feigning Amnesia Moderately Impairs Memory for a Mock Crime Video.
Mangiulli, Ivan; van Oorsouw, Kim; Curci, Antonietta; Merckelbach, Harald; Jelicic, Marko
2018-01-01
Previous studies showed that feigning amnesia for a crime impairs actual memory for the target event. Lack of rehearsal has been proposed as an explanation for this memory-undermining effect of feigning. The aim of the present study was to replicate and extend previous research adopting a mock crime video instead of a narrative story. We showed participants a video of a violent crime. Next, they were requested to imagine that they had committed this offense and to either feign amnesia or confess the crime. A third condition was included: Participants in the delayed test-only control condition did not receive any instruction. On subsequent recall tests, participants in all three conditions were instructed to report as much information as possible about the offense. On the free recall test, feigning amnesia impaired memory for the video clip, but participants who were asked to feign crime-related amnesia outperformed controls. However, no differences between simulators and confessors were found on both correct cued recollection or on distortion and commission rates. We also explored whether inner speech might modulate memory for the crime. Inner speech traits were not found to be related to the simulating amnesia effect. Theoretical and practical implications of our results are discussed.
Competitive short-term and long-term memory processes in spatial habituation.
Sanderson, David J; Bannerman, David M
2011-04-01
Exposure to a spatial location leads to habituation of exploration such that, in a novelty preference test, rodents subsequently prefer exploring a novel location to the familiar location. According to Wagner's (1981) theory of memory, short-term and long-term habituation are caused by separate and sometimes opponent processes. In the present study, this dual-process account of memory was tested. Mice received a series of exposure training trials to a location before receiving a novelty preference test. The novelty preference was greater when tested after a short, rather than a long, interval. In contrast, the novelty preference was weaker when exposure training trials were separated by a short, rather than a long interval. Furthermore, it was found that long-term habituation was determined by the independent effects of the amount of exposure training and the number of exposure training trials when factors such as the intertrial interval and the cumulative intertrial interval were controlled. A final experiment demonstrated that a long-term reduction of exploration could be caused by a negative priming effect due to associations formed during exploration. These results provide evidence against a single-process account of habituation and suggest that spatial habituation is determined by both short-term, recency-based memory and long-term, incrementally strengthened memory.
Effects of emotionally valenced working memory taxation on negative memories.
Tsai, Cynthia; McNally, Richard J
2014-03-01
Memories enter a labile state during recollection. Thus, memory changes that occur during recollection can affect future instances of its activation. Having subjects perform a secondary task that taxes working memory while they recall a negative emotional memory often reduces its vividness and emotional intensity during subsequent recollections. However, researchers have not manipulated the emotional valence of the secondary task itself. Subjects viewed a video depicting the aftermath of three fatal road traffic accidents, establishing the same negative emotional memory for all subjects. We then tested their memory for the video after randomly assigning them to no secondary task or a delayed match-to-sample secondary task involving photographs of positive, negative, or neutral emotional valence. The positive secondary task reduced memory for details about the video, whereas negative and neutral tasks did not. We did not assess the vividness and emotionality of the subjects' memory of the video. Having subjects recall a stressful experience while performing a positively valent secondary task can decrement details of the memory and perhaps its emotionality. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effects of emotional context on memory for details: the role of attention.
Kim, Johann Sung-Cheul; Vossel, Gerhard; Gamer, Matthias
2013-01-01
It was repeatedly demonstrated that a negative emotional context enhances memory for central details while impairing memory for peripheral information. This trade-off effect is assumed to result from attentional processes: a negative context seems to narrow attention to central information at the expense of more peripheral details, thus causing the differential effects in memory. However, this explanation has rarely been tested and previous findings were partly inconclusive. For the present experiment 13 negative and 13 neutral naturalistic, thematically driven picture stories were constructed to test the trade-off effect in an ecologically more valid setting as compared to previous studies. During an incidental encoding phase, eye movements were recorded as an index of overt attention. In a subsequent recognition phase, memory for central and peripheral details occurring in the picture stories was tested. Explicit affective ratings and autonomic responses validated the induction of emotion during encoding. Consistent with the emotional trade-off effect on memory, encoding context differentially affected recognition of central and peripheral details. However, contrary to the common assumption, the emotional trade-off effect on memory was not mediated by attentional processes. By contrast, results suggest that the relevance of attentional processing for later recognition memory depends on the centrality of information and the emotional context but not their interaction. Thus, central information was remembered well even when fixated very briefly whereas memory for peripheral information depended more on overt attention at encoding. Moreover, the influence of overt attention on memory for central and peripheral details seems to be much lower for an arousing as compared to a neutral context.
Effects of Emotional Context on Memory for Details: The Role of Attention
Kim, Johann Sung-Cheul; Vossel, Gerhard; Gamer, Matthias
2013-01-01
It was repeatedly demonstrated that a negative emotional context enhances memory for central details while impairing memory for peripheral information. This trade-off effect is assumed to result from attentional processes: a negative context seems to narrow attention to central information at the expense of more peripheral details, thus causing the differential effects in memory. However, this explanation has rarely been tested and previous findings were partly inconclusive. For the present experiment 13 negative and 13 neutral naturalistic, thematically driven picture stories were constructed to test the trade-off effect in an ecologically more valid setting as compared to previous studies. During an incidental encoding phase, eye movements were recorded as an index of overt attention. In a subsequent recognition phase, memory for central and peripheral details occurring in the picture stories was tested. Explicit affective ratings and autonomic responses validated the induction of emotion during encoding. Consistent with the emotional trade-off effect on memory, encoding context differentially affected recognition of central and peripheral details. However, contrary to the common assumption, the emotional trade-off effect on memory was not mediated by attentional processes. By contrast, results suggest that the relevance of attentional processing for later recognition memory depends on the centrality of information and the emotional context but not their interaction. Thus, central information was remembered well even when fixated very briefly whereas memory for peripheral information depended more on overt attention at encoding. Moreover, the influence of overt attention on memory for central and peripheral details seems to be much lower for an arousing as compared to a neutral context. PMID:24116226
Keerativittayayut, Ruedeerat; Aoki, Ryuta; Sarabi, Mitra Taghizadeh; Jimura, Koji; Nakahara, Kiyoshi
2018-06-18
Although activation/deactivation of specific brain regions have been shown to be predictive of successful memory encoding, the relationship between time-varying large-scale brain networks and fluctuations of memory encoding performance remains unclear. Here we investigated time-varying functional connectivity patterns across the human brain in periods of 30-40 s, which have recently been implicated in various cognitive functions. During functional magnetic resonance imaging, participants performed a memory encoding task, and their performance was assessed with a subsequent surprise memory test. A graph analysis of functional connectivity patterns revealed that increased integration of the subcortical, default-mode, salience, and visual subnetworks with other subnetworks is a hallmark of successful memory encoding. Moreover, multivariate analysis using the graph metrics of integration reliably classified the brain network states into the period of high (vs. low) memory encoding performance. Our findings suggest that a diverse set of brain systems dynamically interact to support successful memory encoding. © 2018, Keerativittayayut et al.
Abdullahi, Payman Rasise; Eskandarian, Sharaf; Ghanbari, Ali; Rashidy-Pour, Ali
2018-05-23
There is increasing evidence that oxytocin is involved in learning and memory process. This study investigated the effects of blockade of oxytocin receptors using the selective oxytocin receptor antagonist atosiban (ATO) on contextual fear memory consolidation and reconsolidation in male rats. Post-training injections of different doses of ATO (1, 10, 100 or 1000 µg/kg) impaired the 48 h retention performance in a dose-dependent manner. The same doses of ATO following memory reactivation did not impair subsequent expression of contextual fear memories which formed under low or high shock intensities and tested 24 h or one week following memory reactivation. Also, no effect was found when ATO was administrated in the absence of memory reactivation. Our finding is the first report that indicates endogenous oxytocin released during training play an important role in the consolidation, but not reconsolidation of contextual fear memory in rats. Copyright © 2018. Published by Elsevier B.V.
Listen up, eye movements play a role in verbal memory retrieval.
Scholz, Agnes; Mehlhorn, Katja; Krems, Josef F
2016-01-01
People fixate on blank spaces if visual stimuli previously occupied these regions of space. This so-called "looking at nothing" (LAN) phenomenon is said to be a part of information retrieval from internal memory representations, but the exact nature of the relationship between LAN and memory retrieval is unclear. While evidence exists for an influence of LAN on memory retrieval for visuospatial stimuli, evidence for verbal information is mixed. Here, we tested the relationship between LAN behavior and memory retrieval in an episodic retrieval task where verbal information was presented auditorily during encoding. When participants were allowed to gaze freely during subsequent memory retrieval, LAN occurred, and it was stronger for correct than for incorrect responses. When eye movements were manipulated during memory retrieval, retrieval performance was higher when participants fixated on the area associated with to-be-retrieved information than when fixating on another area. Our results provide evidence for a functional relationship between LAN and memory retrieval that extends to verbal information.
de Voogd, Lycia D; Klumpers, Floris; Fernández, Guillén; Hermans, Erno J
2017-01-01
Declarative memories of stressful events are less prone to forgetting than mundane events. Animal research has demonstrated that such stress effects on consolidation of hippocampal-dependent memories require the amygdala. In humans, it has been shown that during learning, increased amygdala-hippocampal interactions are related to more efficient memory encoding. Animal models predict that following learning, amygdala-hippocampal interactions are instrumental to strengthening the consolidation of such declarative memories. Whether this is the case in humans is unknown and remains to be empirically verified. To test this, we analyzed data from a sample of 120 healthy male participants who performed an incidental encoding task and subsequently underwent resting-state functional MRI in a stressful and a neutral context. Stress was assessed by measures of salivary cortisol, blood pressure, heart rate, and subjective ratings. Memory was tested afterwards outside of the scanner. Our data show that memory was stronger in the stress context compared to the neutral context and that stress-induced cortisol responses were associated with this memory enhancement. Interestingly, amygdala-hippocampal connectivity during post-encoding awake rest regardless of context (stress or neutral) was associated with the enhanced memory performance under stress. Thus, our findings are in line with a role for intrinsic functional connectivity during rest between the amygdala and the hippocampus in the state effects of stress on strengthening memory. Copyright © 2016 Elsevier Ltd. All rights reserved.
An Electrophysiological Signature of Unconscious Recognition Memory
Voss, Joel L.; Paller, Ken A.
2009-01-01
Contradicting the common assumption that accurate recognition reflects explicit-memory processing, we describe evidence for recognition lacking two hallmark explicit-memory features: awareness of memory retrieval and facilitation by attentive encoding. Kaleidoscope images were encoded in conjunction with an attentional diversion and subsequently recognized more accurately than those encoded without diversion. Confidence in recognition was superior following attentive encoding, though recognition was remarkably accurate when people claimed to be unaware of memory retrieval. This “implicit recognition” was associated with frontal-occipital negative brain potentials at 200-400 ms post-stimulus-onset, which were spatially and temporally distinct from positive brain potentials corresponding to explicit recollection and familiarity. This dissociation between behavioral and electrophysiological characteristics of “implicit recognition” versus explicit recognition indicates that a neurocognitive mechanism with properties similar to those that produce implicit memory can be operative in standard recognition tests. People can accurately discriminate repeat stimuli from new stimuli without necessarily knowing it. PMID:19198606
Theta-burst microstimulation in the human entorhinal area improves memory specificity.
Titiz, Ali S; Hill, Michael R H; Mankin, Emily A; M Aghajan, Zahra; Eliashiv, Dawn; Tchemodanov, Natalia; Maoz, Uri; Stern, John; Tran, Michelle E; Schuette, Peter; Behnke, Eric; Suthana, Nanthia A; Fried, Itzhak
2017-10-24
The hippocampus is critical for episodic memory, and synaptic changes induced by long-term potentiation (LTP) are thought to underlie memory formation. In rodents, hippocampal LTP may be induced through electrical stimulation of the perforant path. To test whether similar techniques could improve episodic memory in humans, we implemented a microstimulation technique that allowed delivery of low-current electrical stimulation via 100 μm -diameter microelectrodes. As thirteen neurosurgical patients performed a person recognition task, microstimulation was applied in a theta-burst pattern, shown to optimally induce LTP. Microstimulation in the right entorhinal area during learning significantly improved subsequent memory specificity for novel portraits; participants were able both to recognize previously-viewed photos and reject similar lures. These results suggest that microstimulation with physiologic level currents-a radical departure from commonly used deep brain stimulation protocols-is sufficient to modulate human behavior and provides an avenue for refined interrogation of the circuits involved in human memory.
Sumner, Jennifer A.; Griffith, James W.; Mineka, Susan; Rekart, Kathleen Newcomb; Zinbarg, Richard E.; Craske, Michelle G.
2012-01-01
This study investigated whether overgeneral autobiographical memory (OGM) predicts the course of depression in adolescents. As part of a larger longitudinal study of risk for emotional disorders, 55 adolescents with a past history of major depressive disorder or minor depressive disorder completed the Autobiographical Memory Test. Fewer specific memories predicted the subsequent onset of a major depressive episode (MDE) over a 16-month follow-up period, even when covarying baseline depressive symptoms. This main effect was qualified by an interaction between specific memories and chronic interpersonal stress: Fewer specific memories predicted greater risk of MDE onset over follow-up at high (but not low) levels of chronic interpersonal stress. Thus, our findings suggest that OGM, in interaction with chronic interpersonal stress, predicts the course of depression among adolescents, and highlight the importance of measuring interpersonal stress in OGM research. PMID:21432666
Similarity to the self influences cortical recruitment during impression formation
Leshikar, Eric D.; Cassidy, Brittany S.; Gutchess, Angela H.
2015-01-01
Prior work has shown that whether or not someone is similar to the self influences person memory—a type of self-reference effect for others. In this study, we were interested in understanding the neural regions supporting the generation of impressions and subsequent memory for targets who vary in similarity to the self. Participants underwent fMRI scanning while forming positive or negative impressions of face-behavior pairs. We tested participants’ memory for their generated impressions, and then back-sorted the impression trials (encoding) into different levels of self-similarity (high, medium, low) using a self-similarity post-test that came after recognition. Extending prior behavioral work, our data confirmed our hypothesis that memory would be highest for self-similar others and lowest for self-dissimilar others. Dorsal anterior cingulate cortex (dACC) activity increased with self-similarity (high > medium > low) to targets, regardless of later memory for them. An analysis of regions supporting impression memory revealed a double dissociation within medial temporal lobe regions: for similar others, amygdala recruitment supported memory, whereas for dissimilar others, hippocampal activation supported memory. These results suggest that self-similarity influences evaluation and memory for targets, but also affects the underlying neural resources engaged when thinking about others who vary in self-similarity. PMID:26558615
Sterpenich, Virginie; Schmidt, Christina; Albouy, Geneviève; Matarazzo, Luca; Vanhaudenhuyse, Audrey; Boveroux, Pierre; Degueldre, Christian; Leclercq, Yves; Balteau, Evelyne; Collette, Fabienne; Luxen, André; Phillips, Christophe; Maquet, Pierre
2014-01-01
Study Objectives: Memory reactivation appears to be a fundamental process in memory consolidation. In this study we tested the influence of memory reactivation during rapid eye movement (REM) sleep on memory performance and brain responses at retrieval in healthy human participants. Participants: Fifty-six healthy subjects (28 women and 28 men, age [mean ± standard deviation]: 21.6 ± 2.2 y) participated in this functional magnetic resonance imaging (fMRI) study. Methods and Results: Auditory cues were associated with pictures of faces during their encoding. These memory cues delivered during REM sleep enhanced subsequent accurate recollections but also false recognitions. These results suggest that reactivated memories interacted with semantically related representations, and induced new creative associations, which subsequently reduced the distinction between new and previously encoded exemplars. Cues had no effect if presented during stage 2 sleep, or if they were not associated with faces during encoding. Functional magnetic resonance imaging revealed that following exposure to conditioned cues during REM sleep, responses to faces during retrieval were enhanced both in a visual area and in a cortical region of multisensory (auditory-visual) convergence. Conclusions: These results show that reactivating memories during REM sleep enhances cortical responses during retrieval, suggesting the integration of recent memories within cortical circuits, favoring the generalization and schematization of the information. Citation: Sterpenich V, Schmidt C, Albouy G, Matarazzo L, Vanhaudenhuyse A, Boveroux P, Degueldre C, Leclercq Y, Balteau E, Collette F, Luxen A, Phillips C, Maquet P. Memory reactivation during rapid eye movement sleep promotes its generalization and integration in cortical stores. SLEEP 2014;37(6):1061-1075. PMID:24882901
Koscik, Rebecca L; Berman, Sara E; Clark, Lindsay R; Mueller, Kimberly D; Okonkwo, Ozioma C; Gleason, Carey E; Hermann, Bruce P; Sager, Mark A; Johnson, Sterling C
2016-11-01
Intraindividual cognitive variability (IICV) has been shown to differentiate between groups with normal cognition, mild cognitive impairment (MCI), and dementia. This study examined whether baseline IICV predicted subsequent mild to moderate cognitive impairment in a cognitively normal baseline sample. Participants with 4 waves of cognitive assessment were drawn from the Wisconsin Registry for Alzheimer's Prevention (WRAP; n=684; 53.6(6.6) baseline age; 9.1(1.0) years follow-up; 70% female; 74.6% parental history of Alzheimer's disease). The primary outcome was Wave 4 cognitive status ("cognitively normal" vs. "impaired") determined by consensus conference; "impaired" included early MCI (n=109), clinical MCI (n=11), or dementia (n=1). Primary predictors included two IICV variables, each based on the standard deviation of a set of scores: "6 Factor IICV" and "4 Test IICV". Each IICV variable was tested in a series of logistic regression models to determine whether IICV predicted cognitive status. In exploratory analyses, distribution-based cutoffs incorporating memory, executive function, and IICV patterns were used to create and test an MCI risk variable. Results were similar for the IICV variables: higher IICV was associated with greater risk of subsequent impairment after covariate adjustment. After adjusting for memory and executive functioning scores contributing to IICV, IICV was not significant. The MCI risk variable also predicted risk of impairment. While IICV in middle-age predicts subsequent impairment, it is a weaker risk indicator than the memory and executive function scores contributing to its calculation. Exploratory analyses suggest potential to incorporate IICV patterns into risk assessment in clinical settings. (JINS, 2016, 22, 1016-1025).
Hippocampal activation is associated with longitudinal amyloid accumulation and cognitive decline
Leal, Stephanie L.; Landau, Susan M.; Bell, Rachel K.; ...
2017-02-08
The amyloid hypothesis suggests that beta-amyloid (Aβ) deposition leads to alterations in neural function and ultimately to cognitive decline in Alzheimer’s disease. However, factors that underlie Aβ deposition are incompletely understood. One proposed model suggests that synaptic activity leads to increased Aβ deposition. More specifically, hyperactivity in the hippocampus may be detrimental and could be one factor that drives Aβ deposition. To test this model, we examined the relationship between hippocampal activity during a memory task using fMRI and subsequent longitudinal change in Aβ using PIB-PET imaging in cognitively normal older adults. We found that greater hippocampal activation at baselinemore » was associated with increased Aβ accumulation. Furthermore, increasing Aβ accumulation mediated the influence of hippocampal activation on declining memory performance, demonstrating a crucial role of Aβ in linking hippocampal activation and memory. These findings support a model linking increased hippocampal activation to subsequent Aβ deposition and cognitive decline.« less
Hippocampal activation is associated with longitudinal amyloid accumulation and cognitive decline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leal, Stephanie L.; Landau, Susan M.; Bell, Rachel K.
The amyloid hypothesis suggests that beta-amyloid (Aβ) deposition leads to alterations in neural function and ultimately to cognitive decline in Alzheimer’s disease. However, factors that underlie Aβ deposition are incompletely understood. One proposed model suggests that synaptic activity leads to increased Aβ deposition. More specifically, hyperactivity in the hippocampus may be detrimental and could be one factor that drives Aβ deposition. To test this model, we examined the relationship between hippocampal activity during a memory task using fMRI and subsequent longitudinal change in Aβ using PIB-PET imaging in cognitively normal older adults. We found that greater hippocampal activation at baselinemore » was associated with increased Aβ accumulation. Furthermore, increasing Aβ accumulation mediated the influence of hippocampal activation on declining memory performance, demonstrating a crucial role of Aβ in linking hippocampal activation and memory. These findings support a model linking increased hippocampal activation to subsequent Aβ deposition and cognitive decline.« less
Monkeys rely on recency of stimulus repetition when solving short-term memory tasks.
Wittig, John H; Richmond, Barry J
2014-05-16
Seven monkeys performed variants of two short-term memory tasks that others have used to differentiate between selective and nonselective memory mechanisms. The first task was to view a list of sequentially presented images and identify whether a test matched any image from the list, but not a distractor from a preceding list. Performance was best when the test matched the most recently presented image. Response rates depended linearly on recency of repetition whether the test matched a sample from the current list or a distractor from a preceding list, suggesting nonselective memorization of all images viewed instead of just the sample images. The second task was to remember just the first image in a list selectively and ignore subsequent distractors. False alarms occurred frequently when the test matched a distractor presented near the beginning of the sequence. In a pilot experiment, response rates depended linearly on recency of repetition irrespective of whether the test matched the first image or a distractor, again suggesting nonselective memorization of all images instead of just the first image. Modification of the second task improved recognition of the first image, but did not abolish use of recency. Monkeys appear to perform nonspatial visual short-term memory tasks often (or exclusively) using a single, nonselective, memory mechanism that conveys the recency of stimulus repetition. Published by Cold Spring Harbor Laboratory Press.
Subramanian, Ramanathan; Shankar, Divya; Sebe, Nicu; Melcher, David
2014-03-26
A basic question in vision research regards where people look in complex scenes and how this influences their performance in various tasks. Previous studies with static images have demonstrated a close link between where people look and what they remember. Here, we examined the pattern of eye movements when participants watched neutral and emotional clips from Hollywood-style movies. Participants answered multiple-choice memory questions concerning visual and auditory scene details immediately upon viewing 1-min-long neutral or emotional movie clips. Fixations were more narrowly focused for emotional clips, and immediate memory for object details was worse compared to matched neutral scenes, implying preferential attention to emotional events. Although we found the expected correlation between where people looked and what they remembered for neutral clips, this relationship broke down for emotional clips. When participants were subsequently presented with key frames (static images) extracted from the movie clips such that presentation duration of the target objects (TOs) corresponding to the multiple-choice questions was matched and the earlier questions were repeated, more fixations were observed on the TOs, and memory performance also improved significantly, confirming that emotion modulates the relationship between gaze position and memory performance. Finally, in a long-term memory test, old/new recognition performance was significantly better for emotional scenes as compared to neutral scenes. Overall, these results are consistent with the hypothesis that emotional content draws eye fixations and strengthens memory for the scene gist while weakening encoding of peripheral scene details.
Rose, Nathan S; Craik, Fergus I M
2012-07-01
Recent theories suggest that performance on working memory (WM) tasks involves retrieval from long-term memory (LTM). To examine whether WM and LTM tests have common principles, Craik and Tulving's (1975) levels-of-processing paradigm, which is known to affect LTM, was administered as a WM task: Participants made uppercase, rhyme, or category-membership judgments about words, and immediate recall of the words was required after every 3 or 8 processing judgments. In Experiment 1, immediate recall did not demonstrate a levels-of-processing effect, but a subsequent LTM test (delayed recognition) of the same words did show a benefit of deeper processing. Experiment 2 showed that surprise immediate recall of 8-item lists did demonstrate a levels-of-processing effect, however. A processing account of the conditions in which levels-of-processing effects are and are not found in WM tasks was advanced, suggesting that the extent to which levels-of-processing effects are similar between WM and LTM tests largely depends on the amount of disruption to active maintenance processes. 2012 APA, all rights reserved
Fragments of a larger whole: retrieval cues constrain observed neural correlates of memory encoding.
Otten, Leun J
2007-09-01
Laying down a new memory involves activity in a number of brain regions. Here, it is shown that the particular regions associated with successful encoding depend on the way in which memory is probed. Event-related functional magnetic resonance imaging signals were acquired while subjects performed an incidental encoding task on a series of visually presented words denoting objects. A recognition memory test using the Remember/Know procedure to separate responses based on recollection and familiarity followed 1 day later. Critically, half of the studied objects were cued with a corresponding spoken word, and half with a corresponding picture. Regardless of cue, activity in prefrontal and hippocampal regions predicted subsequent recollection of a word. Type of retrieval cue modulated activity in prefrontal, temporal, and parietal cortices. Words subsequently recognized on the basis of a sense of familiarity were at study also associated with differential activity in a number of brain regions, some of which were probe dependent. Thus, observed neural correlates of successful encoding are constrained by type of retrieval cue, and are only fragments of all encoding-related neural activity. Regions exhibiting cue-specific effects may be sites that support memory through the degree of overlap between the processes engaged during encoding and those engaged during retrieval.
Sosic-Vasic, Zrinka; Hille, Katrin; Kröner, Julia; Spitzer, Manfred; Kornmeier, Jürgen
2018-01-01
Introduction: Consolidation is defined as the time necessary for memory stabilization after learning. In the present study we focused on effects of interference during the first 12 consolidation minutes after learning. Participants had to learn a set of German – Japanese word pairs in an initial learning task and a different set of German – Japanese word pairs in a subsequent interference task. The interference task started in different experimental conditions at different time points (0, 3, 6, and 9 min) after the learning task and was followed by subsequent cued recall tests. In a control experiment the interference periods were replaced by rest periods without any interference. Results: The interference task decreased memory performance by up to 20%, with negative effects at all interference time points and large variability between participants concerning both the time point and the size of maximal interference. Further, fast learners seem to be more affected by interference than slow learners. Discussion: Our results indicate that the first 12 min after learning are highly important for memory consolidation, without a general pattern concerning the precise time point of maximal interference across individuals. This finding raises doubts about the generalized learning recipes and calls for individuality of learning schedules. PMID:29503621
Relational Memory Is Evident in Eye Movement Behavior despite the Use of Subliminal Testing Methods.
Nickel, Allison E; Henke, Katharina; Hannula, Deborah E
2015-01-01
While it is generally agreed that perception can occur without awareness, there continues to be debate about the type of representational content that is accessible when awareness is minimized or eliminated. Most investigations that have addressed this issue evaluate access to well-learned representations. Far fewer studies have evaluated whether or not associations encountered just once prior to testing might also be accessed and influence behavior. Here, eye movements were used to examine whether or not memory for studied relationships is evident following the presentation of subliminal cues. Participants assigned to experimental or control groups studied scene-face pairs and test trials evaluated implicit and explicit memory for these pairs. Each test trial began with a subliminal scene cue, followed by three visible studied faces. For experimental group participants, one face was the studied associate of the scene (implicit test); for controls none were a match. Subsequently, the display containing a match was presented to both groups, but now it was preceded by a visible scene cue (explicit test). Eye movements were recorded and recognition memory responses were made. Participants in the experimental group looked disproportionately at matching faces on implicit test trials and participants from both groups looked disproportionately at matching faces on explicit test trials, even when that face had not been successfully identified as the associate. Critically, implicit memory-based viewing effects seemed not to depend on residual awareness of subliminal scene cues, as subjective and objective measures indicated that scenes were successfully masked from view. The reported outcomes indicate that memory for studied relationships can be expressed in eye movement behavior without awareness.
Relational Memory Is Evident in Eye Movement Behavior despite the Use of Subliminal Testing Methods
Nickel, Allison E.; Henke, Katharina; Hannula, Deborah E.
2015-01-01
While it is generally agreed that perception can occur without awareness, there continues to be debate about the type of representational content that is accessible when awareness is minimized or eliminated. Most investigations that have addressed this issue evaluate access to well-learned representations. Far fewer studies have evaluated whether or not associations encountered just once prior to testing might also be accessed and influence behavior. Here, eye movements were used to examine whether or not memory for studied relationships is evident following the presentation of subliminal cues. Participants assigned to experimental or control groups studied scene-face pairs and test trials evaluated implicit and explicit memory for these pairs. Each test trial began with a subliminal scene cue, followed by three visible studied faces. For experimental group participants, one face was the studied associate of the scene (implicit test); for controls none were a match. Subsequently, the display containing a match was presented to both groups, but now it was preceded by a visible scene cue (explicit test). Eye movements were recorded and recognition memory responses were made. Participants in the experimental group looked disproportionately at matching faces on implicit test trials and participants from both groups looked disproportionately at matching faces on explicit test trials, even when that face had not been successfully identified as the associate. Critically, implicit memory-based viewing effects seemed not to depend on residual awareness of subliminal scene cues, as subjective and objective measures indicated that scenes were successfully masked from view. The reported outcomes indicate that memory for studied relationships can be expressed in eye movement behavior without awareness. PMID:26512726
Effects of dividing attention on memory for declarative and procedural aspects of tool use.
Roy, Shumita; Park, Norman W
2016-07-01
Tool-related knowledge and skills are supported by a complex set of memory processes that are not well understood. Some aspects of tools are mediated by either declarative or procedural memory, while other aspects may rely on an interaction of both systems. Although motor skill learning is believed to be primarily supported by procedural memory, there is debate in the current literature regarding the role of declarative memory. Growing evidence suggests that declarative memory may be involved during early stages of motor skill learning, although findings have been mixed. In the current experiment, healthy, younger adults were trained to use a set of novel complex tools and were tested on their memory for various aspects of the tools. Declarative memory encoding was interrupted by dividing attention during training. Findings showed that dividing attention during training was detrimental for subsequent memory for tool attributes as well as accurate demonstration of tool use and tool grasping. However, dividing attention did not interfere with motor skill learning, suggesting that declarative memory is not essential for skill learning associated with tools.
Audiovisual integration supports face-name associative memory formation.
Lee, Hweeling; Stirnberg, Rüdiger; Stöcker, Tony; Axmacher, Nikolai
2017-10-01
Prior multisensory experience influences how we perceive our environment, and hence how memories are encoded for subsequent retrieval. This study investigated if audiovisual (AV) integration and associative memory formation rely on overlapping or distinct processes. Our functional magnetic resonance imaging results demonstrate that the neural mechanisms underlying AV integration and associative memory overlap substantially. In particular, activity in anterior superior temporal sulcus (STS) is increased during AV integration and also determines the success of novel AV face-name association formation. Dynamic causal modeling results further demonstrate how the anterior STS interacts with the associative memory system to facilitate successful memory formation for AV face-name associations. Specifically, the connection of fusiform gyrus to anterior STS is enhanced while the reverse connection is reduced when participants subsequently remembered both face and name. Collectively, our results demonstrate how multisensory associative memories can be formed for subsequent retrieval.
Improved memory for error feedback.
Van der Borght, Liesbet; Schouppe, Nathalie; Notebaert, Wim
2016-11-01
Surprising feedback in a general knowledge test leads to an improvement in memory for both the surface features and the content of the feedback (Psychon Bull Rev 16:88-92, 2009). Based on the idea that in cognitive tasks, error is surprising (the orienting account, Cognition 111:275-279, 2009), we tested whether error feedback would be better remembered than correct feedback. Colored words were presented as feedback signals in a flanker task, where the color indicated the accuracy. Subsequently, these words were again presented during a recognition task (Experiment 1) or a lexical decision task (Experiments 2 and 3). In all experiments, memory was improved for words seen as error feedback. These results are compared to the attentional boost effect (J Exp Psychol Learn Mem Cogn 39:1223-12231, 2013) and related to the orienting account for post-error slowing (Cognition 111:275-279, 2009).
Methylene Blue Facilitates Memory Retention in Zebrafish in a Dose-Dependent Manner.
Echevarria, David J; Caramillo, Erika M; Gonzalez-Lima, Francisco
2016-12-01
Methylene blue (MB) is an FDA-grandfathered drug with memory-enhancing effects at low doses, but opposite effects at high doses. We investigated the effects of four MB doses (0.1, 0.5, 5.0, or 10.0 μM) on zebrafish memory retention in the T-maze task. After training fish to swim into a certain arm of the T-maze, the fish were placed into a tank containing one of the four MB doses or a control tank containing blue food dye. Subsequently, fish were placed into the T-maze for memory retention testing. Results indicated that MB produced hormetic dose-response effects on memory. Fish that received the 0.5 μM dose performed significantly better at the T-maze than those that received higher doses. Fish who received 5.0 μM did not exhibit a significant difference in performance from control fish, and the fish that received the 10.0 μM dose performed significantly worse than lower doses. These findings support the utility of zebrafish in comparative research and their potential value for testing of MB and other neuropsychopharmacological treatments in animal models of memory disorders.
Bezdek, Matthew A; Wenzel, William G; Schumacher, Eric H
2017-10-01
We tested the hypothesis that, during naturalistic viewing, moments of increasing narrative suspense narrow the scope of attentional focus. We also tested how changes in the emotional congruency of the music would affect brain responses to suspense, as well as subsequent memory for narrative events. In our study, participants viewed suspenseful film excerpts while brain activation was measured with functional magnetic resonance imaging. Results indicated that suspense produced a pattern of activation consistent with the attention-narrowing hypothesis. For example, we observed decreased activation in the anterior calcarine sulcus, which processes the visual periphery, and increased activity in nodes of the ventral attention network and decreased activity in nodes of the default mode network. Memory recall was more accurate for high suspense than low suspense moments, but did not differ by soundtrack congruency. These findings provide neural evidence that perceptual, attentional, and memory processes respond to suspense on a moment-by-moment basis. Copyright © 2017 Elsevier B.V. All rights reserved.
Shing, Yee Lee; Brehmer, Yvonne; Heekeren, Hauke R; Bäckman, Lars; Lindenberger, Ulman
2016-08-01
The two-component framework of episodic memory (EM) development posits that the contributions of medial temporal lobe (MTL) and prefrontal cortex (PFC) to successful encoding differ across the lifespan. To test the framework's hypotheses, we compared subsequent memory effects (SME) of 10-12 year-old children, younger adults, and older adults using functional magnetic resonance imaging (fMRI). Memory was probed by cued recall, and SME were defined as regional activation differences during encoding between subsequently correctly recalled versus omitted items. In MTL areas, children's SME did not differ in magnitude from those of younger and older adults. In contrast, children's SME in PFC were weaker than the corresponding SME in younger and older adults, in line with the hypothesis that PFC contributes less to successful encoding in childhood. Differences in SME between younger and older adults were negligible. The present results suggest that, among individuals with high memory functioning, the neural circuitry contributing to successful episodic encoding is reorganized from middle childhood to adulthood. Successful episodic encoding in later adulthood, however, is characterized by the ability to maintain the activation patterns that emerged in young adulthood. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Contributions of Hippocampus and Striatum to Memory-Guided Behavior Depend on Past Experience
2016-01-01
The hippocampal and striatal memory systems are thought to operate independently and in parallel in supporting cognitive memory and habits, respectively. Much of the evidence for this principle comes from double dissociation data, in which damage to brain structure A causes deficits in Task 1 but not Task 2, whereas damage to structure B produces the reverse pattern of effects. Typically, animals are explicitly trained in one task. Here, we investigated whether this principle continues to hold when animals concurrently learn two types of tasks. Rats were trained on a plus maze in either a spatial navigation or a cue–response task (sequential training), whereas a third set of rats acquired both (concurrent training). Subsequently, the rats underwent either sham surgery or neurotoxic lesions of the hippocampus (HPC), medial dorsal striatum (DSM), or lateral dorsal striatum (DSL), followed by retention testing. Finally, rats in the sequential training condition also acquired the novel “other” task. When rats learned one task, HPC and DSL selectively supported spatial navigation and cue response, respectively. However, when rats learned both tasks, HPC and DSL additionally supported the behavior incongruent with the processing style of the corresponding memory system. Thus, in certain conditions, the hippocampal and striatal memory systems can operate cooperatively and in synergism. DSM significantly contributed to performance regardless of task or training procedure. Experience with the cue–response task facilitated subsequent spatial learning, whereas experience with spatial navigation delayed both concurrent and subsequent response learning. These findings suggest that there are multiple operational principles that govern memory networks. SIGNIFICANCE STATEMENT Currently, we distinguish among several types of memories, each supported by a distinct neural circuit. The memory systems are thought to operate independently and in parallel. Here, we demonstrate that the hippocampus and the dorsal striatum memory systems operate independently and in parallel when rats learn one type of task at a time, but interact cooperatively and in synergism when rats concurrently learn two types of tasks. Furthermore, new learning is modulated by past experiences. These results can be explained by a model in which independent and parallel information processing that occurs in the separate memory-related neural circuits is supplemented by information transfer between the memory systems at the level of the cortex. PMID:27307234
Contributions of Hippocampus and Striatum to Memory-Guided Behavior Depend on Past Experience.
Ferbinteanu, Janina
2016-06-15
The hippocampal and striatal memory systems are thought to operate independently and in parallel in supporting cognitive memory and habits, respectively. Much of the evidence for this principle comes from double dissociation data, in which damage to brain structure A causes deficits in Task 1 but not Task 2, whereas damage to structure B produces the reverse pattern of effects. Typically, animals are explicitly trained in one task. Here, we investigated whether this principle continues to hold when animals concurrently learn two types of tasks. Rats were trained on a plus maze in either a spatial navigation or a cue-response task (sequential training), whereas a third set of rats acquired both (concurrent training). Subsequently, the rats underwent either sham surgery or neurotoxic lesions of the hippocampus (HPC), medial dorsal striatum (DSM), or lateral dorsal striatum (DSL), followed by retention testing. Finally, rats in the sequential training condition also acquired the novel "other" task. When rats learned one task, HPC and DSL selectively supported spatial navigation and cue response, respectively. However, when rats learned both tasks, HPC and DSL additionally supported the behavior incongruent with the processing style of the corresponding memory system. Thus, in certain conditions, the hippocampal and striatal memory systems can operate cooperatively and in synergism. DSM significantly contributed to performance regardless of task or training procedure. Experience with the cue-response task facilitated subsequent spatial learning, whereas experience with spatial navigation delayed both concurrent and subsequent response learning. These findings suggest that there are multiple operational principles that govern memory networks. Currently, we distinguish among several types of memories, each supported by a distinct neural circuit. The memory systems are thought to operate independently and in parallel. Here, we demonstrate that the hippocampus and the dorsal striatum memory systems operate independently and in parallel when rats learn one type of task at a time, but interact cooperatively and in synergism when rats concurrently learn two types of tasks. Furthermore, new learning is modulated by past experiences. These results can be explained by a model in which independent and parallel information processing that occurs in the separate memory-related neural circuits is supplemented by information transfer between the memory systems at the level of the cortex. Copyright © 2016 the authors 0270-6474/16/366459-12$15.00/0.
Using memories to motivate future behaviour: an experimental exercise intervention.
Biondolillo, Mathew J; Pillemer, David B
2015-01-01
This study tested a novel memory-based experimental intervention to increase exercise activity. Undergraduate students completed a two-part online survey ostensibly regarding college activity choices. At Time 1, they completed questionnaires that included assessments of exercise-related attitudes, motivation and self-reported behaviours. Next, they described a memory of a positive or negative experience that would increase their motivation to exercise; students in a control condition did not receive a memory prompt. Finally, they rated their intentions to exercise in the future. Eight days following Time 1, students received a Time 2 survey that included an assessment of their self-reported exercise during the prior week. Students in the positive memory condition reported higher levels of subsequent exercise than those in the control condition; students in the negative memory condition reported intermediate levels of exercise. Activating a positive motivational memory had a significant effect on students' self-reported exercise activity even after controlling for prior attitudes, motivation and exercise activity.
Incidental biasing of attention from visual long-term memory.
Fan, Judith E; Turk-Browne, Nicholas B
2016-06-01
Holding recently experienced information in mind can help us achieve our current goals. However, such immediate and direct forms of guidance from working memory are less helpful over extended delays or when other related information in long-term memory is useful for reaching these goals. Here we show that information that was encoded in the past but is no longer present or relevant to the task also guides attention. We examined this by associating multiple unique features with novel shapes in visual long-term memory (VLTM), and subsequently testing how memories for these objects biased the deployment of attention. In Experiment 1, VLTM for associated features guided visual search for the shapes, even when these features had never been task-relevant. In Experiment 2, associated features captured attention when presented in isolation during a secondary task that was completely unrelated to the shapes. These findings suggest that long-term memory enables a durable and automatic type of memory-based attentional control. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
SenseCam as a rehabilitation tool in a child with anterograde amnesia.
Pauly-Takacs, Katalin; Moulin, Chris J A; Estlin, Edward J
2011-10-01
We present the case of a 13-year-old boy, CJ, with profound episodic memory difficulties following the diagnosis of a metastatic intracranial germ cell tumour and subsequent treatment with radiotherapy and chemotherapy. At the core of this study is the first application of SenseCam to a child with severe memory impairment. CJ was taken for a walk while he was wearing SenseCam. This included visiting four different locations. We manipulated the number of locations he could review on SenseCam "films" and then tested recognition memory (forced choice) for both reviewed and non-reviewed locations. We also collected his justifications for the choices he made. Our results indicate that repeated viewings of SenseCam images support the formation of personal semantic memories. Overall our results suggest that the use of SenseCam in memory rehabilitation extends beyond supporting episodic memory and recollection, and supports the feasibility of its use with children who have marked memory difficulties.
Xie, Weizhen; Zhang, Weiwei
2017-09-01
Negative emotion sometimes enhances memory (higher accuracy and/or vividness, e.g., flashbulb memories). The present study investigates whether it is the qualitative (precision) or quantitative (the probability of successful retrieval) aspect of memory that drives these effects. In a visual long-term memory task, observers memorized colors (Experiment 1a) or orientations (Experiment 1b) of sequentially presented everyday objects under negative, neutral, or positive emotions induced with International Affective Picture System images. In a subsequent test phase, observers reconstructed objects' colors or orientations using the method of adjustment. We found that mnemonic precision was enhanced under the negative condition relative to the neutral and positive conditions. In contrast, the probability of successful retrieval was comparable across the emotion conditions. Furthermore, the boost in memory precision was associated with elevated subjective feelings of remembering (vividness and confidence) and metacognitive sensitivity in Experiment 2. Altogether, these findings suggest a novel precision-based account for emotional memories. Copyright © 2017 Elsevier B.V. All rights reserved.
Neurobiological dissociation of retrieval and reconsolidation of cocaine-associated memory
Otis, James M.; Dashew, Kidane B.; Mueller, Devin
2013-01-01
Drug use is provoked by the presentation of drug-associated cues, even following long periods of abstinence. Disruption of these learned associations would therefore limit relapse susceptibility. Drug-associated memories are susceptible to long-term disruption during retrieval and shortly after, during memory reconsolidation. Recent evidence reveals that retrieval and reconsolidation are dependent on β-adrenergic receptor (β-AR) activation. Despite this, whether retrieval and reconsolidation are dependent on identical or distinct neural mechanisms is unknown. The prelimbic medial prefrontal cortex (PL-mPFC) and basolateral amygdala (BLA) have been implicated in the expression and reconsolidation of associative memories. Therefore, we investigated the necessity of β-AR activation within the PL-mPFC and BLA for cocaine-associated memory retrieval and reconsolidation in rats. Before or immediately after a cocaine-induced conditioned place preference (CPP) retrieval trial, β-AR antagonists were infused into the PL-mPFC or BLA, followed by daily testing. PL-mPFC infusions before, but not after, a CPP trial disrupted CPP memory retrieval and induced a persistent deficit in retrieval during subsequent trials. In contrast, BLA β-AR blockade had no effect on initial CPP memory retrieval, but prevented CPP expression during subsequent trials indicative of reconsolidation disruption. Our results reveal a distinct dissociation between the neural mechanisms required for cocaine-associated memory retrieval and reconsolidation. Using patch-clamp electrophysiology, we also show that application of a β-AR antagonist prevents NE-induced potentiation of PL-mPFC pyramidal and GABAergic neuronal excitability. Thus, targeted β-AR blockade could induce long-term deficits in drug-associated memory retrieval by reducing neuronal excitability, providing a novel method of preventing cue-elicited drug seeking and relapse. PMID:23325262
Neurobiological dissociation of retrieval and reconsolidation of cocaine-associated memory.
Otis, James M; Dashew, Kidane B; Mueller, Devin
2013-01-16
Drug use is provoked by the presentation of drug-associated cues, even following long periods of abstinence. Disruption of these learned associations would therefore limit relapse susceptibility. Drug-associated memories are susceptible to long-term disruption during retrieval and shortly after, during memory reconsolidation. Recent evidence reveals that retrieval and reconsolidation are dependent on β-adrenergic receptor (β-AR) activation. Despite this, whether retrieval and reconsolidation are dependent on identical or distinct neural mechanisms is unknown. The prelimbic medial prefrontal cortex (PL-mPFC) and basolateral amygdala (BLA) have been implicated in the expression and reconsolidation of associative memories. Therefore, we investigated the necessity of β-AR activation within the PL-mPFC and BLA for cocaine-associated memory retrieval and reconsolidation in rats. Before or immediately after a cocaine-induced conditioned place preference (CPP) retrieval trial, β-AR antagonists were infused into the PL-mPFC or BLA, followed by daily testing. PL-mPFC infusions before, but not after, a CPP trial disrupted CPP memory retrieval and induced a persistent deficit in retrieval during subsequent trials. In contrast, BLA β-AR blockade had no effect on initial CPP memory retrieval, but prevented CPP expression during subsequent trials indicative of reconsolidation disruption. Our results reveal a distinct dissociation between the neural mechanisms required for cocaine-associated memory retrieval and reconsolidation. Using patch-clamp electrophysiology, we also show that application of a β-AR antagonist prevents norepinephrine-induced potentiation of PL-mPFC pyramidal cell and γ-aminobutyric-acid (GABA) interneuron excitability. Thus, targeted β-AR blockade could induce long-term deficits in drug-associated memory retrieval by reducing neuronal excitability, providing a novel method of preventing cue-elicited drug seeking and relapse.
Spencer, Caroline; Weber-Fox, Christine
2014-01-01
Purpose In preschool children, we investigated whether expressive and receptive language, phonological, articulatory, and/or verbal working memory proficiencies aid in predicting eventual recovery or persistence of stuttering. Methods Participants included 65 children, including 25 children who do not stutter (CWNS) and 40 who stutter (CWS) recruited at age 3;9–5;8. At initial testing, participants were administered the Test of Auditory Comprehension of Language, 3rd edition (TACL-3), Structured Photographic Expressive Language Test, 3rd edition (SPELT-3), Bankson-Bernthal Test of Phonology-Consonant Inventory subtest (BBTOP-CI), Nonword Repetition Test (NRT; Dollaghan & Campbell, 1998), and Test of Auditory Perceptual Skills-Revised (TAPS-R) auditory number memory and auditory word memory subtests. Stuttering behaviors of CWS were assessed in subsequent years, forming groups whose stuttering eventually persisted (CWS-Per; n=19) or recovered (CWS-Rec; n=21). Proficiency scores in morphosyntactic skills, consonant production, verbal working memory for known words, and phonological working memory and speech production for novel nonwords obtained at the initial testing were analyzed for each group. Results CWS-Per were less proficient than CWNS and CWS-Rec in measures of consonant production (BBTOP-CI) and repetition of novel phonological sequences (NRT). In contrast, receptive language, expressive language, and verbal working memory abilities did not distinguish CWS-Rec from CWS-Per. Binary logistic regression analysis indicated that preschool BBTOP-CI scores and overall NRT proficiency significantly predicted future recovery status. Conclusion Results suggest that phonological and speech articulation abilities in the preschool years should be considered with other predictive factors as part of a comprehensive risk assessment for the development of chronic stuttering. PMID:25173455
Emotional Encoding Context Leads to Memory Bias in Individuals with High Anxiety
Fernandes, Myra A.
2017-01-01
We investigated whether anxious individuals, who adopt an inherently negative mindset, demonstrate a particularly salient memory bias for words tainted by negative contexts. To this end, sequentially presented target words, overlayed onto negative or neutral pictures, were studied in separate blocks (within-subjects) using a deep or shallow encoding instruction (between-subjects). Following study, in Test 1, participants completed separate recognition test blocks for the words overlayed onto the negative and the neutral contexts. Following this, in Test 2, participants completed a recognition test for the foils from each Test 1 block. We found a significant three-way interaction on Test 2, such that individuals with high anxiety who initially studied target words using a shallow encoding instruction, demonstrated significantly elevated memory for foils that were contained within the negative Test 1 block. Results show that during retrieval (Test 1), participants re-entered the mode of processing (negative or neutral) engaged at encoding, tainting the encoding of foils with that same mode of processing. The findings suggest that individuals with high relative to low anxiety, adopt a particularly salient negative retrieval mode, and this creates a downstream bias in encoding and subsequent retrieval of otherwise neutral information. PMID:29280957
Emotional Encoding Context Leads to Memory Bias in Individuals with High Anxiety.
Lee, Christopher; Fernandes, Myra A
2017-12-27
We investigated whether anxious individuals, who adopt an inherently negative mindset, demonstrate a particularly salient memory bias for words tainted by negative contexts. To this end, sequentially presented target words, overlayed onto negative or neutral pictures, were studied in separate blocks (within-subjects) using a deep or shallow encoding instruction (between-subjects). Following study, in Test 1, participants completed separate recognition test blocks for the words overlayed onto the negative and the neutral contexts. Following this, in Test 2, participants completed a recognition test for the foils from each Test 1 block. We found a significant three-way interaction on Test 2, such that individuals with high anxiety who initially studied target words using a shallow encoding instruction, demonstrated significantly elevated memory for foils that were contained within the negative Test 1 block. Results show that during retrieval (Test 1), participants re-entered the mode of processing (negative or neutral) engaged at encoding, tainting the encoding of foils with that same mode of processing. The findings suggest that individuals with high relative to low anxiety, adopt a particularly salient negative retrieval mode, and this creates a downstream bias in encoding and subsequent retrieval of otherwise neutral information.
Oyarzún, Javiera P; Packard, Pau A; de Diego-Balaguer, Ruth; Fuentemilla, Lluis
2016-09-01
Neurobiological models of long-term memory explain how memory for inconsequential events fades, unless these happen before or after other relevant (i.e., rewarding or aversive) or novel events. Recently, it has been shown in humans that retrospective and prospective memories are selectively enhanced if semantically related events are paired with aversive stimuli. However, it remains unclear whether motivating stimuli, as opposed to aversive, have the same effect in humans. Here, participants performed a three phase incidental encoding task where one semantic category was rewarded during the second phase. A memory test 24h after, but not immediately after encoding, revealed that memory for inconsequential items was selectively enhanced only if items from the same category had been previously, but not subsequently, paired with rewards. This result suggests that prospective memory enhancement of reward-related information requires, like previously reported for aversive memories, of a period of memory consolidation. The current findings provide the first empirical evidence in humans that the effects of motivated encoding are selectively and prospectively prolonged over time. Copyright © 2016 Elsevier Inc. All rights reserved.
Green, Amity E; Fitzgerald, Paul B; Johnston, Patrick J; Nathan, Pradeep J; Kulkarni, Jayashri; Croft, Rodney J
2017-08-01
Schizophrenia is characterised by significant episodic memory impairment that is thought to be related to problems with encoding, however the neuro-functional mechanisms underlying these deficits are not well understood. The present study used a subsequent recognition memory paradigm and event-related potentials (ERPs) to investigate temporal aspects of episodic memory encoding deficits in schizophrenia. Electroencephalographic data was recorded in 24 patients and 19 healthy controls whilst participants categorised single words as pleasant/unpleasant. ERPs were generated to subsequently recognised versus unrecognised words on the basis of a forced-choice recognition memory task. Subsequent memory effects were examined with the late positive component (LPP). Group differences in N1, P2, N400 and LPP were examined for words correctly recognised. Patients performed more poorly than controls on the recognition task. During encoding patients had significantly reduced N400 and LPP amplitudes than controls. LPP amplitude correlated with task performance however amplitudes did not differ between patients and controls as a function of subsequent memory. No significant differences in N1 or P2 amplitude or latency were observed. The present results indicate that early sensory processes are intact and dysfunctional higher order cognitive processes during encoding are contributing to episodic memory impairments in schizophrenia.
Rhodes, Matthew G; Tauber, Sarah K
2011-11-01
The current study examined the degree to which predictions of memory performance made immediately or at a delay are sensitive to confidently held memory illusions. Participants studied unrelated pairs of words and made judgements of learning (JOLs) for each item, either immediately or after a delay. Half of the unrelated pairs (deceptive items; e.g., nurse-dollar) had a semantically related competitor (e.g., doctor) that was easily accessible when given a test cue (e.g., nurse-do_ _ _r) and half had no semantically related competitor (control items; e.g., subject-dollar). Following the study phase, participants were administered a cued recall test. Results from Experiment 1 showed that memory performance was less accurate for deceptive compared with control items. In addition, delaying judgement improved the relative accuracy of JOLs for control items but not for deceptive items. Subsequent experiments explored the degree to which the relative accuracy of delayed JOLs for deceptive items improved as a result of a warning to ensure that retrieved memories were accurate (Experiment 2) and corrective feedback regarding the veracity of information retrieved prior to making a JOL (Experiment 3). In all, these data suggest that delayed JOLs may be largely insensitive to memory errors unless participants are provided with feedback regarding memory accuracy.
Retrieval during Learning Facilitates Subsequent Memory Encoding
ERIC Educational Resources Information Center
Pastotter, Bernhard; Schicker, Sabine; Niedernhuber, Julia; Bauml, Karl-Heinz T.
2011-01-01
In multiple-list learning, retrieval during learning has been suggested to improve recall of the single lists by enhancing list discrimination and, at test, reducing interference. Using electrophysiological, oscillatory measures of brain activity, we examined to what extent retrieval during learning facilitates list encoding. Subjects studied 5…
Delayed working memory consolidation during the attentional blink.
Vogel, Edward K; Luck, Steven J
2002-12-01
After the detection of a target (T1) in a rapid stream of visual stimuli, there is a period of 400-600 msec during which a subsequent target (T2) is missed. This impairment in performance has been labeled the attentional blink. Recent theories propose that the attentional blink reflects a bottleneck in working memory consolidation such that T2 cannot be consolidated until after T1 is consolidated, and T2 is therefore masked by subsequent stimuli if it is presented while T1 is being consolidated. In support of this explanation, Giesbrecht & Di Lollo (1998) found that when T2 is the final item in the stimulus stream, no attentional blink is observed, because there are no subsequent stimuli that might mask T2. To provide a direct test of this explanation of the attentional blink, in the present study we used the P3 component of the event-related potential waveform to track the processing of T2. When T2 was followed by a masking item, we found that the P3 wave was completely suppressed during the attentional blink period, indicating that T2 was not consolidated in working memory. When T2 was the last item in the stimulus stream, however, we found that the P3 wave was delayed but not suppressed, indicating that T2 consolidation was not eliminated but simply delayed. These results are consistent with a fundamental limit on the consolidation of information in working memory.
Blagrove, Mark; Seddon, Jennifer; George, Sophie; Parrott, Andrew C.; Stickgold, Robert; Walker, Matthew; Jones, Katy; Morgan, Michael J.
2013-01-01
This study assessed the effects of ecstasy/MDMA on declarative memory (Rivermead Behavioral Memory task - RBMT), on procedural learning (Finger Tapping Task - FTT), and on the memory consolidation function of sleep for these two tasks. Testing occurred in 2 afternoon testing sessions, 24 hours apart so that a full period of sleep was allowed between them. Groups were: Non-drug taking Controls (n=24); Recent Ecstasy/MDMA users, who had taken ecstasy and/or MDMA 2–3 days before the first testing session (n=25), and Abstinent Ecstasy/MDMA users, who had not taken ecstasy/MDMA for at least 8 days before the first session (n=17). The recent ecstasy/MDMA users performed significantly worse than controls on the RBMT (mean recall 76.1% of control group recall), but did not differ from controls on FTT performance. Correspondingly there was a significant regression between the continuous variable of recency of ecstasy/MDMA use and RBMT performance. However, there was an interaction between ecstasy/MDMA use and subsequent other drug use. Controls had similar RBMT scores to recent ecstasy/MDMA users who did not take other drugs 48 – 24 hours before testing, but scored significantly better than recent ecstasy/MDMA users who took various other drugs (mainly cannabis) 48 – 24 hours before testing. For both tasks the control, recent ecstasy/MDMA and abstinent ecstasy/MDMA users did not differ in their change of performance across 24 hours; there was thus no evidence that ecstasy/MDMA impairs the memory consolidation function of sleep for either declarative or procedural memory. For participants in the two ecstasy/MDMA groups greater lifetime consumption of ecstasy tablets was associated with significantly more deficits in procedural memory. Furthermore, greater lifetime consumption of ecstasy tablets and of cocaine, were also associated with significantly more deficits in declarative memory. PMID:20615932
Assessing fitness-for-duty and predicting performance with cognitive neurophysiological measures
NASA Astrophysics Data System (ADS)
Smith, Michael E.; Gevins, Alan
2005-05-01
Progress is described in developing a novel test of neurocognitive status for fitness-for-duty testing. The Sustained Attention & Memory (SAM) test combines neurophysiologic (EEG) measures of brain activation with performance measures during a psychometric test of sustained attention and working memory, and then gauges changes in neurocognitive status relative to an individual"s normative baseline. In studies of the effects of common psychoactive substances that can affect job performance, including sedating antihistamines, caffeine, alcohol, marijuana, and prescription medications, test sensitivity was greater for the combined neurophysiological and performance measures than for task performance measures by themselves. The neurocognitive effects of overnight sleep deprivation were quite evident, and such effects predicted subsequent performance impairment on a flight simulator task. Sensitivity to diurnal circadian variations was also demonstrated. With further refinement and independent validation, the SAM Test may prove useful for assessing readiness-to-perform in high-asset personnel working in demanding, high risk situations.
Feigning Amnesia Moderately Impairs Memory for a Mock Crime Video
Mangiulli, Ivan; van Oorsouw, Kim; Curci, Antonietta; Merckelbach, Harald; Jelicic, Marko
2018-01-01
Previous studies showed that feigning amnesia for a crime impairs actual memory for the target event. Lack of rehearsal has been proposed as an explanation for this memory-undermining effect of feigning. The aim of the present study was to replicate and extend previous research adopting a mock crime video instead of a narrative story. We showed participants a video of a violent crime. Next, they were requested to imagine that they had committed this offense and to either feign amnesia or confess the crime. A third condition was included: Participants in the delayed test-only control condition did not receive any instruction. On subsequent recall tests, participants in all three conditions were instructed to report as much information as possible about the offense. On the free recall test, feigning amnesia impaired memory for the video clip, but participants who were asked to feign crime-related amnesia outperformed controls. However, no differences between simulators and confessors were found on both correct cued recollection or on distortion and commission rates. We also explored whether inner speech might modulate memory for the crime. Inner speech traits were not found to be related to the simulating amnesia effect. Theoretical and practical implications of our results are discussed. PMID:29760675
Distractor devaluation requires visual working memory.
Goolsby, Brian A; Shapiro, Kimron L; Raymond, Jane E
2009-02-01
Visual stimuli seen previously as distractors in a visual search task are subsequently evaluated more negatively than those seen as targets. An attentional inhibition account for this distractor-devaluation effect posits that associative links between attentional inhibition and to-be-ignored stimuli are established during search, stored, and then later reinstantiated, implying that distractor devaluation may require visual working memory (WM) resources. To assess this, we measured distractor devaluation with and without a concurrent visual WM load. Participants viewed a memory array, performed a simple search task, evaluated one of the search items (or a novel item), and then viewed a memory test array. Although distractor devaluation was observed with low (and no) WM load, it was absent when WM load was increased. This result supports the notions that active association of current attentional states with stimuli requires WM and that memory for these associations plays a role in affective response.
The functional consequences of social distraction: Attention and memory for complex scenes.
Doherty, Brianna Ruth; Patai, Eva Zita; Duta, Mihaela; Nobre, Anna Christina; Scerif, Gaia
2017-01-01
Cognitive scientists have long proposed that social stimuli attract visual attention even when task irrelevant, but the consequences of this privileged status for memory are unknown. To address this, we combined computational approaches, eye-tracking methodology, and individual-differences measures. Participants searched for targets in scenes containing social or non-social distractors equated for low-level visual salience. Subsequent memory precision for target locations was tested. Individual differences in autistic traits and social anxiety were also measured. Eye-tracking revealed significantly more attentional capture to social compared to non-social distractors. Critically, memory precision for target locations was poorer for social scenes. This effect was moderated by social anxiety, with anxious individuals remembering target locations better under conditions of social distraction. These findings shed further light onto the privileged attentional status of social stimuli and its functional consequences on memory across individuals. Copyright © 2016. Published by Elsevier B.V.
Eighteen-month-olds' memory for short movies of simple stories.
Kingo, Osman S; Krøjgaard, Peter
2015-04-01
This study investigated twenty four 18-month-olds' memory for dynamic visual stimuli. During the first visit participants saw one of two brief movies (30 seconds) with a simple storyline displayed in four iterations. After 2 weeks, memory was tested in the visual paired comparison paradigm in which the familiar and the novel movie were contrasted simultaneously and displayed in two iterations for a total of 60 seconds. Eye-tracking revealed that participants fixated the familiar movie significantly more than the novel movie, thus indicating memory for the familiar movie. Furthermore, time-dependent analysis of the data revealed that individual differences in the looking-patterns for the first and second iteration of the movies were related to individual differences in productive vocabulary. We suggest that infants' vocabulary may be indicative of their ability to understand and remember the storyline of the movies, thereby affecting their subsequent memory. © 2015 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
A causal contiguity effect that persists across time scales.
Kiliç, Asli; Criss, Amy H; Howard, Marc W
2013-01-01
The contiguity effect refers to the tendency to recall an item from nearby study positions of the just recalled item. Causal models of contiguity suggest that recalled items are used as probes, causing a change in the memory state for subsequent recall attempts. Noncausal models of the contiguity effect assume the memory state is unaffected by recall per se, relying instead on the correlation between the memory states at study and at test to drive contiguity. We examined the contiguity effect in a probed recall task in which the correlation between the study context and the test context was disrupted. After study of several lists of words, participants were given probe words in a random order and were instructed to recall a word from the same list as the probe. The results showed both short-term and long-term contiguity effects. Because study order and test order are uncorrelated, these contiguity effects require a causal contiguity mechanism that operates across time scales.
Otten, L J; Henson, R N; Rugg, M D
2001-02-01
Neuroimaging studies have implicated the prefrontal cortex and medial temporal areas in the successful encoding of verbal material into episodic memory. The present study used event-related functional MRI to investigate whether the brain areas associated with successful episodic encoding of words in a semantic study task are a subset of those demonstrating depth of processing effects. In addition, we tested whether the brain areas associated with successful episodic encoding differ depending on the nature of the study task. At study, 15 volunteers were cued to make either animacy or alphabetical decisions about words. A recognition memory test including confidence judgements followed after a delay of 15 min. Prefrontal and medial temporal regions showed greater functional MRI activations for semantically encoded words relative to alphabetically encoded words. Two of these regions (left anterior hippocampus and left ventral inferior frontal gyrus) showed greater activation for semantically encoded words that were subsequently recognized confidently. However, other regions (left posterior hippocampus and right inferior frontal cortex) demonstrated subsequent memory effects, but not effects of depth of processing. Successful memory for alphabetically encoded words was also associated with greater activation in the left anterior hippocampus and left ventral inferior frontal gyrus. The findings suggest that episodic encoding for words in a semantic study task involves a subset of the regions activated by deep relative to shallow processing. The data provide little evidence that successful episodic encoding during a shallow study task depends upon regions different from those that support the encoding of deeply studied words. Instead, the findings suggest that successful episodic encoding during a shallow study task relies on a subset of the regions engaged during successful encoding in a deep task.
Guida, Alessandro; Gras, Doriane; Noel, Yvonnick; Le Bohec, Olivier; Quaireau, Christophe; Nicolas, Serge
2013-05-01
In this study, a personalization method (Guida, Tardieu, & Nicolas, European Journal of Cognitive Psychology, 21: 862-896 2009) was applied to a free-recall task. Fifteen pairs of words, composed of an object and a location, were presented to 93 participants, who had to mentally associate each pair and subsequently recall the objects. A 30-s delay was introduced on half of the trials, the presentation rate was manipulated (5 or 10 s per item), and verbal and visuospatial working memory tests were administered to test for their effects on the serial curve. Two groups were constituted: a personalized group, for whom the locations were well-known places on their university campus, and a nonpersonalized group, for whom the locations did not refer to known places. Since personalization putatively operationalizes long-term working memory (Ericsson & Kintsch, Psychological Review, 102: 211-245 1995)-namely, the capacity to store information reliably and rapidly in long-term memory-and if we take a dual-store approach to memory, the personalization advantage would be expected to be greater for pre-recency than for recency items. Overall, the results were compatible with long-term working memory theory. They contribute to validating the personalization method as a methodology to characterize the contribution of long-term memory storage to performance in working memory tasks.
Electrophysiological Evidence for a Sensory Recruitment Model of Somatosensory Working Memory.
Katus, Tobias; Grubert, Anna; Eimer, Martin
2015-12-01
Sensory recruitment models of working memory assume that information storage is mediated by the same cortical areas that are responsible for the perceptual processing of sensory signals. To test this assumption, we measured somatosensory event-related brain potentials (ERPs) during a tactile delayed match-to-sample task. Participants memorized a tactile sample set at one task-relevant hand to compare it with a subsequent test set on the same hand. During the retention period, a sustained negativity (tactile contralateral delay activity, tCDA) was elicited over primary somatosensory cortex contralateral to the relevant hand. The amplitude of this component increased with memory load and was sensitive to individual limitations in memory capacity, suggesting that the tCDA reflects the maintenance of tactile information in somatosensory working memory. The tCDA was preceded by a transient negativity (N2cc component) with a similar contralateral scalp distribution, which is likely to reflect selection of task-relevant tactile stimuli at the encoding stage. The temporal sequence of N2cc and tCDA components mirrors previous observations from ERP studies of working memory in vision. The finding that the sustained somatosensory delay period activity varies as a function of memory load supports a sensory recruitment model for spatial working memory in touch. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Aerobic fitness and executive control of relational memory in preadolescent children.
Chaddock, Laura; Hillman, Charles H; Buck, Sarah M; Cohen, Neal J
2011-02-01
the neurocognitive benefits of an active lifestyle in childhood have public health and educational implications, especially as children in today's technological society are becoming increasingly overweight, unhealthy, and unfit. Human and animal studies show that aerobic exercise affects both prefrontal executive control and hippocampal function. This investigation attempts to bridge these research threads by using a cognitive task to examine the relationship between aerobic fitness and executive control of relational memory in preadolescent 9- and 10-yr-old children. higher-fit and lower-fit children studied faces and houses under individual item (i.e., nonrelational) and relational encoding conditions, and the children were subsequently tested with recognition memory trials consisting of previously studied pairs and pairs of completely new items. With each subject participating in both item and relational encoding conditions, and with recognition test trials amenable to the use of both item and relational memory cues, this task afforded a challenge to the flexible use of memory, specifically in the use of appropriate encoding and retrieval strategies. Hence, the task provided a test of both executive control and memory processes. lower-fit children showed poorer recognition memory performance than higher-fit children, selectively in the relational encoding condition. No association between aerobic fitness and recognition performance was found for faces and houses studied as individual items (i.e., nonrelationally). the findings implicate childhood aerobic fitness as a factor in the ability to use effective encoding and retrieval executive control processes for relational memory material and, possibly, in the strategic engagement of prefrontal- and hippocampal-dependent systems.
Overgeneral autobiographical memory predicts changes in depression in a community sample.
Van Daele, Tom; Griffith, James W; Van den Bergh, Omer; Hermans, Dirk
2014-01-01
This study investigated whether overgeneral autobiographical memory (OGM) predicts the course of symptoms of depression and anxiety in a community sample, after 5, 6, 12 and 18 months. Participants (N=156) completed the Autobiographical Memory Test and the Depression Anxiety Stress Scales-21 (DASS-21) at baseline and were subsequently reassessed using the DASS-21 at four time points over a period of 18 months. Using latent growth curve modelling, we found that OGM was associated with a linear increase in depression. We were unable to detect changes over time in anxiety. OGM may be an important marker to identify people at risk for depression in the future, but more research is needed with anxiety.
Candidate Socioemotional Remediation Program for Individuals with Intellectual Disability
ERIC Educational Resources Information Center
Glaser, Bronwyn; Lothe, Amelie; Chabloz, Melanie; Dukes, Daniel; Pasca, Catherine; Redoute, Jerome; Eliez, Stephan
2012-01-01
The authors developed a computerized program, Vis-a-Vis (VAV), to improve socioemotional functioning and working memory in children with developmental disabilities. The authors subsequently tested whether participants showed signs of improving the targeted skills. VAV is composed of three modules: Focus on the Eyes, Emotion Recognition and…
Procedural Memory Consolidation in the Performance of Brief Keyboard Sequences
ERIC Educational Resources Information Center
Duke, Robert A.; Davis, Carla M.
2006-01-01
Using two sequential key press sequences, we tested the extent to which subjects' performance on a digital piano keyboard changed between the end of training and retest on subsequent days. We found consistent, significant improvements attributable to sleep-based consolidation effects, indicating that learning continued after the cessation of…
Grain Size of Recall Practice for Lengthy Text Material: Fragile and Mysterious Effects on Memory
ERIC Educational Resources Information Center
Wissman, Kathryn T.; Rawson, Katherine A.
2015-01-01
The current research evaluated the extent to which the grain size of recall practice for lengthy text material affects recall during practice and subsequent memory. The "grain size hypothesis" states that a smaller vs. larger grain size will increase retrieval success during practice that in turn will enhance subsequent memory for…
Electrolytic lesions of dorsal CA3 impair episodic-like memory in rats.
Li, Jay-Shake; Chao, Yuen-Shin
2008-02-01
Episodic memory is the ability to recollect one's past experiences occurring in an unique spatial and temporal context. In non-human animals, it is expressed in the ability to combine "what", "where" and "when" factors to form an integrated memory system. During the search for its neural substrates, the hippocampus has attracted a lot of attentions. Yet, it is not yet possible to induce a pure episodic-like memory deficit in animal studies without being confounded by impairments in the spatial cognition. Here, we present a lesion study evidencing direct links between the hippocampus CA3 region and the episodic-like memory in rats. In a spontaneous object exploration task, lesioned rats showed no interaction between the temporal and spatial elements in their memory associated with the objects. In separate tests carried out subsequently, the same animals still expressed abilities to process spatial, temporal, and object recognition memory. In conclusions, our results support the idea that the hippocampus CA3 has a particular status in the neural mechanism of the episodic-like memory system. It is responsible for combining information from different modules of cognitive processes.
Kamp, Siri-Maria; Brumback, Ty; Donchin, Emanuel
2013-11-01
We examined the degree to which ERP components elicited by items that are isolated from their context, either by their font size ("size isolates") or by their frequency of usage, are correlated with subsequent immediate recall. Study lists contained (a) 15 words including a size isolate, (b) 14 high frequency (HF) words with one low frequency word ("LF isolate"), or (c) 14 LF words with one HF word. We used spatiotemporal PCA to quantify ERP components. We replicated previously reported P300 subsequent memory effects for size isolates and found additional correlations with recall in the novelty P3, a right lateralized positivity, and a left lateralized slow wave that was distinct from the slow wave correlated with recall for nonisolates. LF isolates also showed evidence of a P300 subsequent memory effect and also elicited the left lateralized subsequent memory effect, supporting a role of distinctiveness in word frequency effects in recall. Copyright © 2013 Society for Psychophysiological Research.
Semantic and phonological contributions to short-term repetition and long-term cued sentence recall.
Meltzer, Jed A; Rose, Nathan S; Deschamps, Tiffany; Leigh, Rosie C; Panamsky, Lilia; Silberberg, Alexandra; Madani, Noushin; Links, Kira A
2016-02-01
The function of verbal short-term memory is supported not only by the phonological loop, but also by semantic resources that may operate on both short and long time scales. Elucidation of the neural underpinnings of these mechanisms requires effective behavioral manipulations that can selectively engage them. We developed a novel cued sentence recall paradigm to assess the effects of two factors on sentence recall accuracy at short-term and long-term stages. Participants initially repeated auditory sentences immediately following a 14-s retention period. After this task was complete, long-term memory for each sentence was probed by a two-word recall cue. The sentences were either concrete (high imageability) or abstract (low imageability), and the initial 14-s retention period was filled with either an undemanding finger-tapping task or a more engaging articulatory suppression task (Exp. 1, counting backward by threes; Exp. 2, repeating a four-syllable nonword). Recall was always better for the concrete sentences. Articulatory suppression reduced accuracy in short-term recall, especially for abstract sentences, but the sentences initially recalled following articulatory suppression were retained better at the subsequent cued-recall test, suggesting that the engagement of semantic mechanisms for short-term retention promoted encoding of the sentence meaning into long-term memory. These results provide a basis for using sentence imageability and subsequent memory performance as probes of semantic engagement in short-term memory for sentences.
Shaping memory accuracy by left prefrontal transcranial direct current stimulation.
Zwissler, Bastian; Sperber, Christoph; Aigeldinger, Sina; Schindler, Sebastian; Kissler, Johanna; Plewnia, Christian
2014-03-12
Human memory is dynamic and flexible but is also susceptible to distortions arising from adaptive as well as pathological processes. Both accurate and false memory formation require executive control that is critically mediated by the left prefrontal cortex (PFC). Transcranial direct current stimulation (tDCS) enables noninvasive modulation of cortical activity and associated behavior. The present study reports that tDCS applied to the left dorsolateral PFC (dlPFC) shaped accuracy of episodic memory via polaritiy-specific modulation of false recognition. When applied during encoding of pictures, anodal tDCS increased whereas cathodal stimulation reduced the number of false alarms to lure pictures in subsequent recognition memory testing. These data suggest that the enhancement of excitability in the dlPFC by anodal tDCS can be associated with blurred detail memory. In contrast, activity-reducing cathodal tDCS apparently acted as a noise filter inhibiting the development of imprecise memory traces and reducing the false memory rate. Consistently, the largest effect was found in the most active condition (i.e., for stimuli cued to be remembered). This first evidence for a polarity-specific, activity-dependent effect of tDCS on false memory opens new vistas for the understanding and potential treatment of disturbed memory control.
Wierzba, M; Riegel, M; Wypych, M; Jednoróg, K; Grabowska, A; Marchewka, A
2018-02-28
It is widely accepted that people differ in memory performance. The ability to control one's memory depends on multiple factors, including the emotional properties of the memorized material. While it was widely demonstrated that emotion can facilitate memory, it is unclear how emotion modifies our ability to suppress memory. One of the reasons for the lack of consensus among researchers is that individual differences in memory performance were largely neglected in previous studies. We used the directed forgetting paradigm in an fMRI study, in which subjects viewed neutral and emotional words, which they were instructed to remember or to forget. Subsequently, subjects' memory of these words was tested. Finally, they assessed the words on scales of valence, arousal, sadness and fear. We found that memory performance depended on instruction as reflected in the engagement of the lateral prefrontal cortex (lateral PFC), irrespective of emotional properties of words. While the lateral PFC engagement did not differ between neutral and emotional conditions, it correlated with behavioural performance when emotional - as opposed to neutral - words were presented. A deeper understanding of the underlying brain mechanisms is likely to require a study of individual differences in cognitive abilities to suppress memory.
Sommerlandt, Frank M. J.; Spaethe, Johannes; Rössler, Wolfgang; Dyer, Adrian G.
2016-01-01
Honeybees learn color information of rewarding flowers and recall these memories in future decisions. For fine color discrimination, bees require differential conditioning with a concurrent presentation of target and distractor stimuli to form a long-term memory. Here we investigated whether the long-term storage of color information shapes the neural network of microglomeruli in the mushroom body calyces and if this depends on the type of conditioning. Free-flying honeybees were individually trained to a pair of perceptually similar colors in either absolute conditioning towards one of the colors or in differential conditioning with both colors. Subsequently, bees of either conditioning groups were tested in non-rewarded discrimination tests with the two colors. Only bees trained with differential conditioning preferred the previously learned color, whereas bees of the absolute conditioning group, and a stimuli-naïve group, chose randomly among color stimuli. All bees were then kept individually for three days in the dark to allow for complete long-term memory formation. Whole-mount immunostaining was subsequently used to quantify variation of microglomeruli number and density in the mushroom-body lip and collar. We found no significant differences among groups in neuropil volumes and total microglomeruli numbers, but learning performance was negatively correlated with microglomeruli density in the absolute conditioning group. Based on these findings we aim to promote future research approaches combining behaviorally relevant color learning tests in honeybees under free-flight conditions with neuroimaging analysis; we also discuss possible limitations of this approach. PMID:27783640
Sommerlandt, Frank M J; Spaethe, Johannes; Rössler, Wolfgang; Dyer, Adrian G
2016-01-01
Honeybees learn color information of rewarding flowers and recall these memories in future decisions. For fine color discrimination, bees require differential conditioning with a concurrent presentation of target and distractor stimuli to form a long-term memory. Here we investigated whether the long-term storage of color information shapes the neural network of microglomeruli in the mushroom body calyces and if this depends on the type of conditioning. Free-flying honeybees were individually trained to a pair of perceptually similar colors in either absolute conditioning towards one of the colors or in differential conditioning with both colors. Subsequently, bees of either conditioning groups were tested in non-rewarded discrimination tests with the two colors. Only bees trained with differential conditioning preferred the previously learned color, whereas bees of the absolute conditioning group, and a stimuli-naïve group, chose randomly among color stimuli. All bees were then kept individually for three days in the dark to allow for complete long-term memory formation. Whole-mount immunostaining was subsequently used to quantify variation of microglomeruli number and density in the mushroom-body lip and collar. We found no significant differences among groups in neuropil volumes and total microglomeruli numbers, but learning performance was negatively correlated with microglomeruli density in the absolute conditioning group. Based on these findings we aim to promote future research approaches combining behaviorally relevant color learning tests in honeybees under free-flight conditions with neuroimaging analysis; we also discuss possible limitations of this approach.
Behavioural memory reconsolidation of food and fear memories
Flavell, Charlotte R.; Barber, David J.; Lee, Jonathan L. C.
2012-01-01
The reactivation of a memory through retrieval can render it subject to disruption or modification through the process of memory reconsolidation. In both humans and rodents, briefly reactivating a fear memory results in effective erasure by subsequent extinction training. Here we show that a similar strategy is equally effective in the disruption of appetitive pavlovian cue–food memories. However, systemic administration of the NMDA receptor partial agonist D-cycloserine under the same behavioural conditions did not potentiate appetitive memory extinction, suggesting that reactivation does not enhance subsequent extinction learning. To confirm that reactivation followed by extinction reflects a behavioural analog of memory reconsolidation, we show that prevention of contextual fear memory reactivation by the LVGCC blocker nimodipine interferes with the amnestic outcome. Therefore, the reconsolidation process can be manipulated behaviourally to disrupt both aversive and appetitive memories. PMID:22009036
Sperduti, Marco; Armougum, Allan; Makowski, Dominique; Blondé, Philippe; Piolino, Pascale
2017-12-01
Episodic memory (EM) is defined as a long-term memory system that stores information that can be retrieved along with details of the context of the original events (binding). Several studies have shown that manipulation of attention during encoding can impact subsequent memory performance. An influential model of attention distinguishes between three partially independent attentional networks: the alerting, the orienting and the executive or conflict resolution component. To date, the impact of the engagement of these sub-systems during encoding on item and relational context binding has not been investigated. Here, we developed a new task combining the Attentional Network Test and an incidental episodic memory encoding task to study this issue. We reported that when the alerting network was not solicited, resolving conflict hindered item encoding. Moreover, resolving conflict, independently of the cueing condition, had a negative impact on context binding. These novel findings could have a potential impact in the understanding EM formation, and memory disorders in different populations, including healthy elderly people.
Uncovering Camouflage: Amygdala Activation Predicts Long-Term Memory of Induced Perceptual Insight
Ludmer, Rachel; Dudai, Yadin; Rubin, Nava
2012-01-01
What brain mechanisms underlie learning of new knowledge from single events? We studied encoding in long-term memory of a unique type of one-shot experience, induced perceptual insight. While undergoing an fMRI brain scan, participants viewed degraded images of real-world pictures where the underlying objects were hard to recognize (‘camouflage’), followed by brief exposures to the original images (‘solution’), which led to induced insight (“Aha!”). A week later, participants’ memory was tested; a solution image was classified as ‘remembered’ if detailed perceptual knowledge was elicited from the camouflage image alone. During encoding, subsequently remembered images enjoyed higher activity in mid-level visual cortex and medial frontal cortex, but most pronouncedly in the amygdala, whose activity could be used to predict which solutions will remain in long-term memory. Our findings extend the known roles of amygdala in memory to include promoting of long-term memory of the sudden reorganization of internal representations. PMID:21382558
Can false memories be corrected by feedback in the DRM paradigm?
McConnell, Melissa D; Hunt, R Reed
2007-07-01
Normal processes of comprehension frequently yield false memories as an unwanted by-product. The simple paradigm now known as the Deese/Roediger-McDermott (DRM) paradigm takes advantage of this fact and has been used to reliably produce false memory for laboratory study. Among the findings from past research is the difficulty of preventing false memories in this paradigm. The purpose of the present experiments was to examine the effectiveness of feedback in correcting false memories. Two experiments were conducted, in which participants recalled DRM lists and either received feedback on their performance or did not. A subsequent recall test was administered to assess the effect of feedback. The results showed promising effects of feedback: Feedback enhanced both error correction and the propagation of correct recall. The data replicated other data of studies that have shown substantial error perseveration following feedback. These data also provide new information on the occurrence of errors following feedback. The results are discussed in terms of the activation-monitoring theory of false memory.
Sticht, Martin A; Jacklin, Derek L; Mechoulam, Raphael; Parker, Linda A; Winters, Boyer D
2015-03-25
Cannabinoids disrupt learning and memory in human and nonhuman participants. Object recognition memory, which is particularly susceptible to the impairing effects of cannabinoids, relies critically on the perirhinal cortex (PRh); however, to date, the effects of cannabinoids within PRh have not been assessed. In the present study, we evaluated the effects of localized administration of the synthetic cannabinoid, HU210 (0.01, 1.0 μg/hemisphere), into PRh on spontaneous object recognition in Long-Evans rats. Animals received intra-PRh infusions of HU210 before the sample phase, and object recognition memory was assessed at various delays in a subsequent retention test. We found that presample intra-PRh HU210 dose dependently (1.0 μg but not 0.01 μg) interfered with spontaneous object recognition performance, exerting an apparently more pronounced effect when memory demands were increased. These novel findings show that cannabinoid agonists in PRh disrupt object recognition memory. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.
Sumner, Jennifer A; Griffith, James W; Mineka, Susan; Rekart, Kathleen Newcomb; Zinbarg, Richard E; Craske, Michelle G
2011-01-01
This study investigated whether overgeneral autobiographical memory (OGM) predicts the course of depression in adolescents. As part of a larger longitudinal study of risk for emotional disorders, 55 adolescents with a past history of major depressive disorder or minor depressive disorder completed the Autobiographical Memory Test. Fewer specific memories predicted the subsequent onset of a major depressive episode (MDE) over a 16-month follow-up period, even when covarying baseline depressive symptoms. This main effect was qualified by an interaction between specific memories and chronic interpersonal stress: Fewer specific memories predicted greater risk of MDE onset over follow-up at high (but not low) levels of chronic interpersonal stress. Thus, our findings suggest that OGM, in interaction with chronic interpersonal stress, predicts the course of depression among adolescents, and highlight the importance of measuring interpersonal stress in OGM research. © 2010 Psychology Press, an imprint of the Taylor & Francis Group, an Informa business
Vetere, Gisella; Restivo, Leonardo; Cole, Christina J.; Ross, P. Joel; Ammassari-Teule, Martine; Josselyn, Sheena A.; Frankland, Paul W.
2011-01-01
Remodeling of cortical connectivity is thought to allow initially hippocampus-dependent memories to be expressed independently of the hippocampus at remote time points. Consistent with this, consolidation of a contextual fear memory is associated with dendritic spine growth in neurons of the anterior cingulate cortex (aCC). To directly test whether such cortical structural remodeling is necessary for memory consolidation, we disrupted spine growth in the aCC at different times following contextual fear conditioning in mice. We took advantage of previous studies showing that the transcription factor myocyte enhancer factor 2 (MEF2) negatively regulates spinogenesis both in vitro and in vivo. We found that increasing MEF2-dependent transcription in the aCC during a critical posttraining window (but not at later time points) blocked both the consolidation-associated dendritic spine growth and subsequent memory expression. Together, these data strengthen the causal link between cortical structural remodeling and memory consolidation and, further, identify MEF2 as a key regulator of these processes. PMID:21531906
Seamon, John G; Lee, Ihno A; Toner, Sarah K; Wheeler, Rachel H; Goodkind, Madeleine S; Birch, Antoine D
2002-11-01
Do participants in the Deese, Roediger, and McDermott (DRM) procedure demonstrate false memory because they think of nonpresented critical words during study and confuse them with words that were actually presented? In two experiments, 160 participants studied eight visually presented DRM lists at a rate of 2 s or 5 s per word. Half of the participants rehearsed silently: the other half rehearsed overtly. Following study, the participants' memory for the lists was tested by recall or recognition. Typical false memory results were obtained for both memory measures. More important, two new results were observed. First, a large majority of the overt-rehearsal participants spontaneously rehearsed approximately half of the critical words during study. Second, critical-word rehearsal at study enhanced subsequent false recall, but it had no effect on false recognition or remember judgments for falsely recognized critical words. Thinking of critical words during study was unnecessary for producing false memory.
Meloni, Edward G.; Gillis, Timothy E.; Manoukian, Jasmine; Kaufman, Marc J.
2014-01-01
Xenon (Xe) is a noble gas that has been developed for use in people as an inhalational anesthestic and a diagnostic imaging agent. Xe inhibits glutamatergic N-methyl-D-aspartate (NMDA) receptors involved in learning and memory and can affect synaptic plasticity in the amygdala and hippocampus, two brain areas known to play a role in fear conditioning models of post-traumatic stress disorder (PTSD). Because glutamate receptors also have been shown to play a role in fear memory reconsolidation – a state in which recalled memories become susceptible to modification – we examined whether Xe administered after fear memory reactivation could affect subsequent expression of fear-like behavior (freezing) in rats. Male Sprague-Dawley rats were trained for contextual and cued fear conditioning and the effects of inhaled Xe (25%, 1 hr) on fear memory reconsolidation were tested using conditioned freezing measured days or weeks after reactivation/Xe administration. Xe administration immediately after fear memory reactivation significantly reduced conditioned freezing when tested 48 h, 96 h or 18 d after reactivation/Xe administration. Xe did not affect freezing when treatment was delayed until 2 h after reactivation or when administered in the absence of fear memory reactivation. These data suggest that Xe substantially and persistently inhibits memory reconsolidation in a reactivation and time-dependent manner, that it could be used as a new research tool to characterize reconsolidation and other memory processes, and that it could be developed to treat people with PTSD and other disorders related to emotional memory. PMID:25162644
Park, Heekyeong; Kennedy, Kristen M; Rodrigue, Karen M; Hebrank, Andrew; Park, Denise C
2013-02-01
Although it is well-documented that there are age differences between young and older adults in neural activity associated with successful memory formation (positive subsequent memory effects), little is known about how this activation differs across the lifespan, as few studies have included middle-aged adults. The present study investigated the effect of age on neural activity during episodic encoding using a cross-sectional lifespan sample (20-79 years old, N=192) from the Dallas Lifespan Brain Study. We report four major findings. First, in a contrast of remembered vs. forgotten items, a decrease in neural activity occurred with age in bilateral occipito-temporo-parietal regions. Second, when we contrasted forgotten with remembered items (negative subsequent memory), the primary difference was found between middle and older ages. Third, there was evidence for age equivalence in hippocampal regions, congruent with previous studies. Finally, low-memory-performers showed negative subsequent memory differences by middle age, whereas high memory performers did not demonstrate these differences until older age. Taken together, these findings delineate the importance of a lifespan approach to understanding neurocognitive aging and, in particular, the importance of a middle-age sample in revealing different trajectories. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wang, Tracy H.; Minton, Brian; Muftuler, L. Tugan; Rugg, Michael D.
2011-01-01
This functional magnetic resonance imaging study investigated the relationship between the neural correlates of associative memory encoding, callosal integrity, and memory performance in older adults. Thirty-six older and 18 young subjects were scanned while making relational judgments on word pairs. Neural correlates of successful encoding (subsequent memory effects) were identified by contrasting the activity elicited by study pairs that were correctly identified as having been studied together with the activity elicited by pairs wrongly judged to have come from different study trials. Subsequent memory effects common to the 2 age groups were identified in several regions, including left inferior frontal gyrus and bilateral hippocampus. Negative effects (greater activity for forgotten than for remembered items) in default network regions in young subjects were reversed in the older group, and the amount of reversal correlated negatively with memory performance. Additionally, older subjects' subsequent memory effects in right frontal cortex correlated positively with anterior callosal integrity and negatively with memory performance. It is suggested that recruitment of right frontal cortex during verbal memory encoding may reflect the engagement of processes that compensate only partially for age-related neural degradation. PMID:21282317
How does intentionality of encoding affect memory for episodic information?
Craig, Michael; Butterworth, Karla; Nilsson, Jonna; Hamilton, Colin J.; Gallagher, Peter
2016-01-01
Episodic memory enables the detailed and vivid recall of past events, including target and wider contextual information. In this paper, we investigated whether/how encoding intentionality affects the retention of target and contextual episodic information from a novel experience. Healthy adults performed (1) a What-Where-When (WWW) episodic memory task involving the hiding and delayed recall of a number of items (what) in different locations (where) in temporally distinct sessions (when) and (2) unexpected tests probing memory for wider contextual information from the WWW task. Critically, some participants were informed that memory for WWW information would be subsequently probed (intentional group), while this came as a surprise for others (incidental group). The probing of contextual information came as a surprise for all participants. Participants also performed several measures of episodic and nonepisodic cognition from which common episodic and nonepisodic factors were extracted. Memory for target (WWW) and contextual information was superior in the intentional group compared with the incidental group. Memory for target and contextual information was unrelated to factors of nonepisodic cognition, irrespective of encoding intentionality. In addition, memory for target information was unrelated to factors of episodic cognition. However, memory for wider contextual information was related to some factors of episodic cognition, and these relationships differed between the intentional and incidental groups. Our results lead us to propose the hypothesis that intentional encoding of episodic information increases the coherence of the representation of the context in which the episode took place. This hypothesis remains to be tested. PMID:27918286
Dual-memory processes in crack cocaine dependents: The effects of childhood neglect on recall.
Tractenberg, Saulo G; Viola, Thiago W; Gomes, Carlos F A; Wearick-Silva, Luis Eduardo; Kristensen, Christian H; Stein, Lilian M; Grassi-Oliveira, Rodrigo
2015-01-01
Exposure to adversities during sensitive periods of neurodevelopment is associated with the subsequent development of substance dependence and exerts harmful, long-lasting effects upon memory functioning. In this study, we investigated the relationship between childhood neglect (CN) and memory using a dual-process model that quantifies recollective and non-recollective retrieval processes in crack cocaine dependents. Eighty-four female crack cocaine-dependent inpatients who did (N = 32) or did not (N = 52) report a history of CN received multiple opportunities to study and recall a short list composed of familiar and concrete words and then received a delayed-recall test. Crack cocaine dependents with a history of CN showed worse performance on free-recall tests than did dependents without a history of CN; this finding was associated with declines in recollective retrieval (direct access) rather than non-recollective retrieval. In addition, we found no evidence of group differences in forgetting rates between immediate- and delayed-recall tests. The results support developmental models of traumatology and suggest that neglect of crack cocaine dependents in early life disrupts the adult memory processes that support the retrieval of detailed representations of events from the past.
Hippocampal and Cognitive Function, Exercise, and Ovarian Cancer: A Pilot Study
2015-08-01
the hippocampus and subsequently offset memory decline. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF... hippocampus and subsequently offset memory decline. 2 KEYWORDS: Physical activity interventions, ovarian cancer treatment, chemotherapy-induced...chemotherapy complaint in a single cancer: problems with memory in patients with ovarian cancer. We focus on this problem for three reasons: 1
Menges, Steven A; Riepe, Joshua R; Philips, Gary T
2015-09-01
A highly conserved feature of memory is that it can exist in a latent, non-expressed state which is revealed during subsequent learning by its ability to significantly facilitate (savings) or inhibit (latent inhibition) subsequent memory formation. Despite the ubiquitous nature of latent memory, the mechanistic nature of the latent memory trace and its ability to influence subsequent learning remains unclear. The model organism Aplysia californica provides the unique opportunity to make strong links between behavior and underlying cellular and molecular mechanisms. Using Aplysia, we have studied the mechanisms of savings due to latent memory for a prior, forgotten experience. We previously reported savings in the induction of three distinct temporal domains of memory: short-term (10min), intermediate-term (2h) and long-term (24h). Here we report that savings memory formation utilizes molecular signaling pathways that are distinct from original learning: whereas the induction of both original intermediate- and long-term memory in naïve animals requires mitogen activated protein kinase (MAPK) activation and ongoing protein synthesis, 2h savings memory is not disrupted by inhibitors of MAPK or protein synthesis, and 24h savings memory is not dependent on MAPK activation. Collectively, these findings reveal that during forgetting, latent memory for the original experience can facilitate relearning through molecular signaling mechanisms that are distinct from original learning. Copyright © 2015 Elsevier Inc. All rights reserved.
Nitrogen narcosis and tactile shape memory in low visibility.
van Wijk, Charles H; Meintjes, W A J
2014-01-01
Commercial diving often occurs in low visibility, where divers are reliant on their tactile senses. This study examined the effect of nitrogen narcosis on tactile memory for shapes as well as the influence of psychological and biographical factors on this relationship. This crossover study tested 139 commercial divers in a dry hyperbaric chamber at 101.325 and 607.95 kPa (1 and 6 atmospheres absolute/atm abs). Divers memorized shapes while blindfolded, using their tactile senses only. Delayed recall was measured at the surface after each dive. Psychological and biographical data were also collected. A significant effect of hyperbaric pressure on tactile memory was demonstrated, and a further effect of sequence of testing found. Thus, divers' delayed shape recall deteriorated by 8% after learning material at depth, compared to learning on the surface. There were also significant but small effects of psychological and biographical markers on tactile memory performance, with lower trait anxiety associated with better recall, and lower education associated with poorer recall. The findings emphasize the importance of utilizing other forms of recording of events or objects at depth, particularly in conditions of low visibility during deeper diving, to aid memory encoding and subsequent recall at the surface.
Ghrelin modulates encoding-related brain function without enhancing memory formation in humans.
Kunath, N; Müller, N C J; Tonon, M; Konrad, B N; Pawlowski, M; Kopczak, A; Elbau, I; Uhr, M; Kühn, S; Repantis, D; Ohla, K; Müller, T D; Fernández, G; Tschöp, M; Czisch, M; Steiger, A; Dresler, M
2016-11-15
Ghrelin regulates energy homeostasis in various species and enhances memory in rodent models. In humans, the role of ghrelin in cognitive processes has yet to be characterized. Here we show in a double-blind randomized crossover design that acute administration of ghrelin alters encoding-related brain activity, however does not enhance memory formation in humans. Twenty-one healthy young male participants had to memorize food- and non-food-related words presented on a background of a virtual navigational route while undergoing fMRI recordings. After acute ghrelin administration, we observed decreased post-encoding resting state fMRI connectivity between the caudate nucleus and the insula, amygdala, and orbitofrontal cortex. In addition, brain activity related to subsequent memory performance was modulated by ghrelin. On the next day, however, no differences were found in free word recall or cued location-word association recall between conditions; and ghrelin's effects on brain activity or functional connectivity were unrelated to memory performance. Further, ghrelin had no effect on a cognitive test battery comprising tests for working memory, fluid reasoning, creativity, mental speed, and attention. In conclusion, in contrast to studies with animal models, we did not find any evidence for the potential of ghrelin acting as a short-term cognitive enhancer in humans. Copyright © 2016 Elsevier Inc. All rights reserved.
Sundar, Raghav Prashant; Becker, Mark W.; Bello, Nora M.; Bix, Laura
2012-01-01
Adverse drug events (ADEs) are a significant problem in health care. While effective warnings have the potential to reduce the prevalence of ADEs, little is known about how patients access and use prescription labeling. We investigated the effectiveness of prescription warning labels (PWLs, small, colorful stickers applied at the pharmacy) in conveying warning information to two groups of patients (young adults and those 50+). We evaluated the early stages of information processing by tracking eye movements while participants interacted with prescription vials that had PWLs affixed to them. We later tested participants’ recognition memory for the PWLs. During viewing, participants often failed to attend to the PWLs; this effect was more pronounced for older than younger participants. Older participants also performed worse on the subsequent memory test. However, when memory performance was conditionalized on whether or not the participant had fixated the PWL, these age-related differences in memory were no longer significant, suggesting that the difference in memory performance between groups was attributable to differences in attention rather than differences in memory encoding or recall. This is important because older adults are recognized to be at greater risk for ADEs. These data provide a compelling case that understanding consumers’ attentive behavior is crucial to developing an effective labeling standard for prescription drugs. PMID:22719955
Adaptive memory: enhanced location memory after survival processing.
Nairne, James S; Vanarsdall, Joshua E; Pandeirada, Josefa N S; Blunt, Janell R
2012-03-01
Two experiments investigated whether survival processing enhances memory for location. From an adaptive perspective, remembering that food has been located in a particular area, or that potential predators are likely to be found in a given territory, should increase the chances of subsequent survival. Participants were shown pictures of food or animals located at various positions on a computer screen. The task was to rate the ease of collecting the food or capturing the animals relative to a central fixation point. Surprise retention tests revealed that people remembered the locations of the items better when the collection or capturing task was described as relevant to survival. These data extend the generality of survival processing advantages to a new domain (location memory) by means of a task that does not involve rating the relevance of words to a scenario. 2012 APA, all rights reserved
Working memory dependence of spatial contextual cueing for visual search.
Pollmann, Stefan
2018-05-10
When spatial stimulus configurations repeat in visual search, a search facilitation, resulting in shorter search times, can be observed that is due to incidental learning. This contextual cueing effect appears to be rather implicit, uncorrelated with observers' explicit memory of display configurations. Nevertheless, as I review here, this search facilitation due to contextual cueing depends on visuospatial working memory resources, and it disappears when visuospatial working memory is loaded by a concurrent delayed match to sample task. However, the search facilitation immediately recovers for displays learnt under visuospatial working memory load when this load is removed in a subsequent test phase. Thus, latent learning of visuospatial configurations does not depend on visuospatial working memory, but the expression of learning, as memory-guided search in repeated displays, does. This working memory dependence has also consequences for visual search with foveal vision loss, where top-down controlled visual exploration strategies pose high demands on visuospatial working memory, in this way interfering with memory-guided search in repeated displays. Converging evidence for the contribution of working memory to contextual cueing comes from neuroimaging data demonstrating that distinct cortical areas along the intraparietal sulcus as well as more ventral parieto-occipital cortex are jointly activated by visual working memory and contextual cueing. © 2018 The British Psychological Society.
Theta synchronization networks emerge during human object-place memory encoding.
Sato, Naoyuki; Yamaguchi, Yoko
2007-03-26
Recent rodent hippocampus studies have suggested that theta rhythm-dependent neural dynamics ('theta phase precession') is essential for an on-line memory formation. A computational study indicated that the phase precession enables a human object-place association memory with voluntary eye movements, although it is still an open question whether the human brain uses the dynamics. Here we elucidated subsequent memory-correlated activities in human scalp electroencephalography in an object-place association memory designed according the former computational study. Our results successfully demonstrated that subsequent memory recall is characterized by an increase in theta power and coherence, and further, that multiple theta synchronization networks emerge. These findings suggest the human theta dynamics in common with rodents in episodic memory formation.
Staying Cool when Things Get Hot: Emotion Regulation Modulates Neural Mechanisms of Memory Encoding
Hayes, Jasmeet Pannu; Morey, Rajendra A.; Petty, Christopher M.; Seth, Srishti; Smoski, Moria J.; McCarthy, Gregory; LaBar, Kevin S.
2010-01-01
During times of emotional stress, individuals often engage in emotion regulation to reduce the experiential and physiological impact of negative emotions. Interestingly, emotion regulation strategies also influence memory encoding of the event. Cognitive reappraisal is associated with enhanced memory while expressive suppression is associated with impaired explicit memory of the emotional event. However, the mechanism by which these emotion regulation strategies affect memory is unclear. We used event-related fMRI to investigate the neural mechanisms that give rise to memory formation during emotion regulation. Twenty-five participants viewed negative pictures while alternately engaging in cognitive reappraisal, expressive suppression, or passive viewing. As part of the subsequent memory design, participants returned to the laboratory two weeks later for a surprise memory test. Behavioral results showed a reduction in negative affect and a retention advantage for reappraised stimuli relative to the other conditions. Imaging results showed that successful encoding during reappraisal was uniquely associated with greater co-activation of the left inferior frontal gyrus, amygdala, and hippocampus, suggesting a possible role for elaborative encoding of negative memories. This study provides neurobehavioral evidence that engaging in cognitive reappraisal is advantageous to both affective and mnemonic processes. PMID:21212840
McDonough, Ian M; Bui, Dung C; Friedman, Michael C; Castel, Alan D
2015-10-01
The perceived value of information can influence one's motivation to successfully remember that information. This study investigated how information value can affect memory search and evaluation processes (i.e., retrieval monitoring). In Experiment 1, participants studied unrelated words associated with low, medium, or high values. Subsequent memory tests required participants to selectively monitor retrieval for different values. False memory effects were smaller when searching memory for high-value than low-value words, suggesting that people more effectively monitored more important information. In Experiment 2, participants studied semantically-related words, and the need for retrieval monitoring was reduced at test by using inclusion instructions (i.e., endorsement of any word related to the studied words) compared with standard instructions. Inclusion instructions led to increases in false recognition for low-value, but not for high-value words, suggesting that under standard-instruction conditions retrieval monitoring was less likely to occur for important information. Experiment 3 showed that words retrieved with lower confidence were associated with more effective retrieval monitoring, suggesting that the quality of the retrieved memory influenced the degree and effectiveness of monitoring processes. Ironically, unless encouraged to do so, people were less likely to carefully monitor important information, even though people want to remember important memories most accurately. Copyright © 2015 Elsevier B.V. All rights reserved.
Resing, Wilma C M; Bakker, Merel; Pronk, Christine M E; Elliott, Julian G
2017-01-01
The current study investigated developmental trajectories of analogical reasoning performance of 104 7- and 8-year-old children. We employed a microgenetic research method and multilevel analysis to examine the influence of several background variables and experimental treatment on the children's developmental trajectories. Our participants were divided into two treatment groups: repeated practice alone and repeated practice with training. Each child received an initial working memory assessment and was subsequently asked to solve figural analogies on each of several sessions. We examined children's analogical problem-solving behavior and their subsequent verbal accounts of their employed solving processes. We also investigated the influence of verbal and visual-spatial working memory capacity and initial variability in strategy use on analogical reasoning development. Results indicated that children in both treatment groups improved but that gains were greater for those who had received training. Training also reduced the influence of children's initial variability in the use of analogical strategies with the degree of improvement in reasoning largely unrelated to working memory capacity. Findings from this study demonstrate the value of a microgenetic research method and the use of multilevel analysis to examine inter- and intra-individual change in problem-solving processes. Copyright © 2016 Elsevier Inc. All rights reserved.
Distinct Patterns of Neural Activity during Memory Formation of Nonwords versus Words
Otten, Leun J.; Sveen, Josefin; Quayle, Angela H.
2008-01-01
Research into the neural underpinnings of memory formation has focused on the encoding of familiar verbal information. Here, we address how the brain supports the encoding of novel information that does not have meaning. Electrical brain activity was recorded from the scalps of healthy young adults while they performed an incidental encoding task (syllable judgments) on separate series of words and ‘nonwords’ (nonsense letter strings that are orthographically legal and pronounceable). Memory for the items was then probed with a recognition memory test. For words as well as nonwords, event-related potentials differed depending on whether an item would subsequently be remembered or forgotten. However, the polarity and timing of the effect varied across item type. For words, subsequently remembered items showed the usually observed positive-going, frontally-distributed modulation from around 600 ms after word onset. For nonwords, by contrast, a negative-going, spatially widespread modulation predicted encoding success from 1000 ms onwards. Nonwords also showed a modulation shortly after item onset. These findings imply that the brain supports the encoding of familiar and unfamiliar letter strings in qualitatively different ways, including the engagement of distinct neural activity at different points in time. The processing of semantic attributes plays an important role in the encoding of words and the associated positive frontal modulation. PMID:17958481
Aging and the Effects of Exploratory Behavior on Spatial Memory.
Varner, Kaitlin M; Dopkins, Stephen; Philbeck, John W
2016-03-01
The present research examined the effect of encoding from multiple viewpoints on scene recall in a group of younger (18-22 years) and older (65-80 years) adults. Participants completed a visual search task, during which they were given the opportunity to examine a room using two sets of windows that partitioned the room differently. Their choice of window set was recorded, to determine whether an association between these choices and spatial memory performance existed. Subsequently, participants were tested for spatial memory of the domain in which the search task was completed. Relative to younger adults, older adults demonstrated an increased tendency to use a single set of windows as well as decreased spatial memory for the domain. Window-set usage was associated with spatial memory, such that older adults who relied more heavily on a single set of windows also had better performance on the spatial memory task. These findings suggest that, in older adults, moderation in exploratory behavior may have a positive effect on memory for the domain of exploration. © The Author(s) 2016.
The effects of divided attention on implicit and explicit memory performance.
Schmitter-Edgecombe, M
1996-03-01
This study explored the nature of the relationship between attention available at learning and subsequent implicit and explicit memory performance. One hundred neurologically normal subjects rated their liking of target words on a five-point scale. Half of the subjects completed the word-rating task in a full attention condition and the other half performed the task in a divided attention condition. Following administration of the word-rating task, all subjects completed five memory tests, three implicit (category association, tachistoscopic identification, and perceptual clarification) and two explicit (semantic-cued recall and graphemic-cued recall), each bearing on a different subset of the list of previously presented target words. The results revealed that subjects in the divided attention condition performed significantly more poorly than subjects in the full attention condition on the explicit memory measures. In contrast, there were no significant group differences in performance on the implicit memory measures. These findings suggest that the attention to an episode that is necessary to produce later explicit memory may differ from that necessary to produce unconscious influences. The relationship between implicit memory, neurologic injury and automatic processes is discussed.
Romero-Martínez, A; González-Bono, E; Salvador, A; Moya-Albiol, L
2016-01-01
Caring for offspring diagnosed with a chronic psychological disorder such as autism spectrum disorder (ASD) is used in research as a model of chronic stress. This chronic stress has been reported to have deleterious effects on caregivers' cognition, particularly in verbal declarative memory. Moreover, such cognitive decline may be mediated by testosterone (T) levels and negative affect, understood as depressive mood together with high anxiety and anger. This study aimed to compare declarative memory function in middle-aged women who were caregivers for individuals with ASD (n = 24; mean age = 45) and female controls (n = 22; mean age = 45), using a standardised memory test (Rey's Auditory Verbal Learning Test). It also sought to examine the role of care recipient characteristics, negative mood and T levels in memory impairments. ASD caregivers were highly sensitive to proactive interference and verbal forgetting. In addition, they had higher negative affect and T levels, both of which have been associated with poorer verbal memory performance. Moreover, the number of years of caregiving affected memory performance and negative affect, especially, in terms of anger feelings. On the other hand, T levels in caregivers had a curvilinear relationship with verbal memory performance; that is, increases in T were associated with improvements in verbal memory performance up to a certain point, but subsequently, memory performance decreased with increasing T. Chronic stress may produce disturbances in mood and hormonal levels, which in turn might increase the likelihood of developing declarative memory impairments although caregivers do not show a generalised decline in memory. These findings should be taken into account for understanding the impact of cognitive impairments on the ability to provide optimal caregiving.
Prazosin during Threat Discrimination Boosts Memory of the Safe Stimulus
ERIC Educational Resources Information Center
Homan, Philipp; Lin, Qi; Murrough, James W.; Soleimani, Laili; Bach, Dominik R.; Clem, Roger L.; Schiller, Daniela
2017-01-01
The alpha-1 adrenoreceptor antagonist prazosin has shown promise in the treatment of post-traumatic stress disorder (PTSD) symptoms, but its mechanisms are not well understood. Here we administered prazosin or placebo prior to threat conditioning (day 1) and tested subsequent extinction (day 2) and reextinction (day 3) in healthy human…
The dark side of testing memory: repeated retrieval can enhance eyewitness suggestibility.
Chan, Jason C K; Lapaglia, Jessica A
2011-12-01
Eyewitnesses typically recount their experiences many times before trial. Such repeated retrieval can enhance memory retention of the witnessed event. However, recent studies (e.g., Chan, Thomas, & Bulevich, 2009) have found that initial retrieval can exacerbate eyewitness suggestibility to later misleading information--a finding termed retrieval-enhanced suggestibility (RES). Here we examined the influence of multiple retrieval attempts on eyewitness suggestibility to subsequent misinformation. In four experiments, we systematically varied the number of initial tests taken (between zero and six), the delay between initial testing and misinformation exposure (~30 min or 1 week), and whether initial testing was manipulated between- or within-subjects. University undergraduate students were used as participants. Overall, we found that eyewitness suggestibility increased as the number of initial tests increased, but this RES effect was qualified by the delay and by whether initial testing occurred in a within- or between-subjects manner. Specifically, the within-subjects RES effect was smaller than the between-subjects RES effect, possibly because of the influence of retrieval-induced forgetting/facilitation (Chan, 2009) when initial testing was manipulated within subjects. Moreover, consistent with the testing effect literature (Roediger & Karpicke, 2006), the benefits of repeated testing on later memory were stronger after a 1-week delay than after a 30-min delay, thus reducing the negative impact of RES in long-term situations. These findings suggest that conditions that are likely to occur in criminal investigations can either increase (repeated testing) or reduce (delay) the influence of RES, thus further demonstrating the complex relationship between eyewitness memory and repeated retrieval.
James, Ella L; Lau-Zhu, Alex; Tickle, Hannah; Horsch, Antje; Holmes, Emily A
2016-12-01
Visuospatial working memory (WM) tasks performed concurrently or after an experimental trauma (traumatic film viewing) have been shown to reduce subsequent intrusive memories (concurrent or retroactive interference, respectively). This effect is thought to arise because, during the time window of memory consolidation, the film memory is labile and vulnerable to interference by the WM task. However, it is not known whether tasks before an experimental trauma (i.e. proactive interference) would also be effective. Therefore, we tested if a visuospatial WM task given before a traumatic film reduced intrusions. Findings are relevant to the development of preventative strategies to reduce intrusive memories of trauma for groups who are routinely exposed to trauma (e.g. emergency services personnel) and for whom tasks prior to trauma exposure might be beneficial. Participants were randomly assigned to 1 of 2 conditions. In the Tetris condition (n = 28), participants engaged in the computer game for 11 min immediately before viewing a 12-min traumatic film, whereas those in the Control condition (n = 28) had no task during this period. Intrusive memory frequency was assessed using an intrusion diary over 1-week and an Intrusion Provocation Task at 1-week follow-up. Recognition memory for the film was also assessed at 1-week. Compared to the Control condition, participants in the Tetris condition did not report statistically significant difference in intrusive memories of the trauma film on either measure. There was also no statistically significant difference in recognition memory scores between conditions. The study used an experimental trauma paradigm and findings may not be generalizable to a clinical population. Compared to control, playing Tetris before viewing a trauma film did not lead to a statistically significant reduction in the frequency of later intrusive memories of the film. It is unlikely that proactive interference, at least with this task, effectively influences intrusive memory development. WM tasks administered during or after trauma stimuli, rather than proactively, may be a better focus for intrusive memory amelioration. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Jing, Liang; Duan, Ting-Ting; Tian, Meng; Yuan, Qiang; Tan, Ji-Wei; Zhu, Yong-Yong; Ding, Ze-Yang; Cao, Jun; Yang, Yue-Xiong; Zhang, Xia; Mao, Rong-Rong; Richter-levin, Gal; Zhou, Qi-Xin; Xu, Lin
2015-01-01
The emotion of despair that occurs with uncontrollable stressful event is probably retained by memory, termed despair-associated memory, although little is known about the underlying mechanisms. Here, we report that forced swimming (FS) with no hope to escape, but not hopefully escapable swimming (ES), enhances hippocampal α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-dependent GluA1 Ser831 phosphorylation (S831-P), induces a slow-onset CA1 long-term potentiation (LTP) in freely moving rats and leads to increased test immobility 24-h later. Before FS application of the antagonists to block S831-P or N-methyl-D-aspartic acid receptor (NMDAR) or glucocorticoid receptor (GR) disrupts LTP and reduces test immobility, to levels similar to those of the ES group. Because these mechanisms are specifically linked with the hopeless of escape from FS, we suggest that despair-associated memory occurs with an endogenous CA1 LTP that is intriguingly mediated by a unique combination of rapid S831-P with NMDAR and GR activation to shape subsequent behavioral despair. PMID:26449319
Schroeder, Jason P.; Packard, Mark G.
2004-01-01
These experiments examined the effects of posttrial peripheral and intra-amygdala injections of the cholinergic muscarinic receptor agonist oxotremorine on memory consolidation underlying extinction of amphetamine conditioned place preference (CPP) behavior. Male Long-Evans rats were initially trained and tested for an amphetamine (2 mg/kg) CPP. Rats were subsequently given limited extinction training, followed by immediate posttrial peripheral or intrabasolateral amygdala injections of oxotremorine. A second CPP test was then administered, and the amount of time spent in the previously amphetamine-paired and saline-paired apparatus compartments was recorded. Peripheral (0.07 or 0.01 mg/kg) or intra-amygdala (10 ηg/0.5μL) postextinction trial injections of oxotremorine facilitated CPP extinction. Oxotremorine injections that were delayed 2 h posttrial training did not enhance CPP extinction, indicating a time-dependent effect of the drug on memory consolidation processes. The findings indicate that memory consolidation for extinction of approach behavior to environmental stimuli previously paired with drug reward can be facilitated by posttrial peripheral or intrabasolateral amygdala administration of a cholinergic agonist. PMID:15466320
The effect of acute aerobic and resistance exercise on working memory.
Pontifex, Matthew B; Hillman, Charles H; Fernhall, Bo; Thompson, Kelli M; Valentini, Teresa A
2009-04-01
The goal of this investigation was to assess the influence of acute bouts of aerobic versus resistance exercise on the executive control of working memory. Twenty-one young adult participants completed a cardiorespiratory fitness test and maximal strength tests. On subsequent days, task performance measures of reaction time (RT) and accuracy were collected while participants completed a modified Sternberg working memory task before the start of, immediately after, and 30 min after an intervention consisting of 30 min of either resistance or aerobic exercise and a seated rest control. Findings indicated shorter RT immediately and 30 min after acute aerobic exercise relative to the preexercise baseline with no such effects observed after resistance exercise or seated rest. Further, in the aerobic condition, a larger reduction in RT from the baseline occurred during task conditions requiring increased working memory capacity. Again, no effect was observed in the resistance exercise or the seated rest conditions. These data extend the current knowledge base by indicating that acute exercise-induced changes in cognition are disproportionately related to executive control and may be specific to the aerobic exercise domain.
Ben-Yakov, Aya; Dudai, Yadin
2011-06-15
Encoding of real-life episodic memory commonly involves integration of information as the episode unfolds. Offline processing immediately following event offset is expected to play a role in encoding the episode into memory. In this study, we examined whether distinct human brain activity time-locked to the offset of short narrative audiovisual episodes could predict subsequent memory for the gist of the episodes. We found that a set of brain regions, most prominently the bilateral hippocampus and the bilateral caudate nucleus, exhibit memory-predictive activity time-locked to the stimulus offset. We propose that offline activity in these regions reflects registration to memory of integrated episodes.
Non-Interfering Effects of Active Post-Encoding Tasks on Episodic Memory Consolidation in Humans
Varma, Samarth; Takashima, Atsuko; Krewinkel, Sander; van Kooten, Maaike; Fu, Lily; Medendorp, W. Pieter; Kessels, Roy P. C.; Daselaar, Sander M.
2017-01-01
So far, studies that investigated interference effects of post-learning processes on episodic memory consolidation in humans have used tasks involving only complex and meaningful information. Such tasks require reallocation of general or encoding-specific resources away from consolidation-relevant activities. The possibility that interference can be elicited using a task that heavily taxes our limited brain resources, but has low semantic and hippocampal related long-term memory processing demands, has never been tested. We address this question by investigating whether consolidation could persist in parallel with an active, encoding-irrelevant, minimally semantic task, regardless of its high resource demands for cognitive processing. We distinguish the impact of such a task on consolidation based on whether it engages resources that are: (1) general/executive, or (2) specific/overlapping with the encoding modality. Our experiments compared subsequent memory performance across two post-encoding consolidation periods: quiet wakeful rest and a cognitively demanding n-Back task. Across six different experiments (total N = 176), we carefully manipulated the design of the n-Back task to target general or specific resources engaged in the ongoing consolidation process. In contrast to previous studies that employed interference tasks involving conceptual stimuli and complex processing demands, we did not find any differences between n-Back and rest conditions on memory performance at delayed test, using both recall and recognition tests. Our results indicate that: (1) quiet, wakeful rest is not a necessary prerequisite for episodic memory consolidation; and (2) post-encoding cognitive engagement does not interfere with memory consolidation when task-performance has minimal semantic and hippocampally-based episodic memory processing demands. We discuss our findings with reference to resource and reactivation-led interference theories. PMID:28424596
Non-Interfering Effects of Active Post-Encoding Tasks on Episodic Memory Consolidation in Humans.
Varma, Samarth; Takashima, Atsuko; Krewinkel, Sander; van Kooten, Maaike; Fu, Lily; Medendorp, W Pieter; Kessels, Roy P C; Daselaar, Sander M
2017-01-01
So far, studies that investigated interference effects of post-learning processes on episodic memory consolidation in humans have used tasks involving only complex and meaningful information. Such tasks require reallocation of general or encoding-specific resources away from consolidation-relevant activities. The possibility that interference can be elicited using a task that heavily taxes our limited brain resources, but has low semantic and hippocampal related long-term memory processing demands, has never been tested. We address this question by investigating whether consolidation could persist in parallel with an active, encoding-irrelevant, minimally semantic task, regardless of its high resource demands for cognitive processing. We distinguish the impact of such a task on consolidation based on whether it engages resources that are: (1) general/executive, or (2) specific/overlapping with the encoding modality. Our experiments compared subsequent memory performance across two post-encoding consolidation periods: quiet wakeful rest and a cognitively demanding n-Back task. Across six different experiments (total N = 176), we carefully manipulated the design of the n-Back task to target general or specific resources engaged in the ongoing consolidation process. In contrast to previous studies that employed interference tasks involving conceptual stimuli and complex processing demands, we did not find any differences between n-Back and rest conditions on memory performance at delayed test, using both recall and recognition tests. Our results indicate that: (1) quiet, wakeful rest is not a necessary prerequisite for episodic memory consolidation; and (2) post-encoding cognitive engagement does not interfere with memory consolidation when task-performance has minimal semantic and hippocampally-based episodic memory processing demands. We discuss our findings with reference to resource and reactivation-led interference theories.
A Flight/Ground/Test Event Logging Facility
NASA Technical Reports Server (NTRS)
Dvorak, Daniel
1999-01-01
The onboard control software for spacecraft such as Mars Pathfinder and Cassini is composed of many subsystems including executive control, navigation, attitude control, imaging, data management, and telecommunications. The software in all of these subsystems needs to be instrumented for several purposes: to report required telemetry data, to report warning and error events, to verify internal behavior during system testing, and to provide ground operators with detailed data when investigating in-flight anomalies. Events can range in importance from purely informational events to major errors. It is desirable to provide a uniform mechanism for reporting such events and controlling their subsequent processing. Since radiation-hardened flight processors are several years behind the speed and memory of their commercial cousins, and since most subsystems require real-time control, and since downlink rates to earth can be very low from deep space, there are limits to how much of the data can be saved and transmitted. Some kinds of events are more important than others and should therefore be preferentially retained when memory is low. Some faults can cause an event to recur at a high rate, but this must not be allowed to consume the memory pool. Some event occurrences may be of low importance when reported but suddenly become more important when a subsequent error event gets reported. Some events may be so low-level that they need not be saved and reported unless specifically requested by ground operators.
Weinstein, Galit; Goldbourt, Uri; Tanne, David
2015-01-01
The relationship between coronary heart disease (CHD) and cognitive function is not completely elucidated. We examined the association between severity of angina pectoris (AP) in mid-life and subsequent cognitive impairment among CHD patients. Severity of AP according to the Canadian Cardiovascular Society angina classification was assessed in a subgroup of people with chronic CHD, who previously participated in a secondary prevention trial. Cognitive performance was evaluated 15±3 years later, using a validated set of computerized cognitive tests (Neurotrax Computerized Cognitive Battery; computing index scores summarizing performance in each cognitive domain and a global cognitive score). We compared the risk of cognitive deficits in participants with AP class >2 to those with AP≤2, adjusting for vascular risk factors, common carotid-intima media thickness (CC-IMT), and presence of carotid plaques. Among 535 participants (mean age at baseline 57.9±6.6 y; 95% males), AP class >2 was associated with subsequent poorer performance on tests of memory and attention compared to those with AP class ≤2 (β=-4.3±1.8; P=0.016 and β=-3.6±1.7; P=0.029, respectively) and with a higher risk of having impairment in these domains [odds ratio (95% confidence interval)=1.83 (1.11-3.02); P=0.019 and 2.36 (1.34-4.16); P=0.003, for memory and attention, respectively]. These results were similar after controlling for vascular risk factors; however, the association of AP with memory domain attenuated after adjustment for CC-IMT or presence of carotid plaques. In people with preexisting CHD, severity of AP is associated with late-life poorer cognitive performance, independent of other vascular risk factors.
The neural basis for novel semantic categorization.
Koenig, Phyllis; Smith, Edward E; Glosser, Guila; DeVita, Chris; Moore, Peachie; McMillan, Corey; Gee, Jim; Grossman, Murray
2005-01-15
We monitored regional cerebral activity with BOLD fMRI during acquisition of a novel semantic category and subsequent categorization of test stimuli by a rule-based strategy or a similarity-based strategy. We observed different patterns of activation in direct comparisons of rule- and similarity-based categorization. During rule-based category acquisition, subjects recruited anterior cingulate, thalamic, and parietal regions to support selective attention to perceptual features, and left inferior frontal cortex to helps maintain rules in working memory. Subsequent rule-based categorization revealed anterior cingulate and parietal activation while judging stimuli whose conformity with the rules was readily apparent, and left inferior frontal recruitment during judgments of stimuli whose conformity was less apparent. By comparison, similarity-based category acquisition showed recruitment of anterior prefrontal and posterior cingulate regions, presumably to support successful retrieval of previously encountered exemplars from long-term memory, and bilateral temporal-parietal activation for perceptual feature integration. Subsequent similarity-based categorization revealed temporal-parietal, posterior cingulate, and anterior prefrontal activation. These findings suggest that large-scale networks support relatively distinct categorization processes during the acquisition and judgment of semantic category knowledge.
Chronic Stress Impairs Prefrontal Cortex-Dependent Response Inhibition and Spatial Working Memory
Mika, Agnieszka; Mazur, Gabriel J.; Hoffman, Ann N.; Talboom, Joshua S.; Bimonte-Nelson, Heather A.; Sanabria, Federico; Conrad, Cheryl D.
2012-01-01
Chronic stress leads to neurochemical and structural alterations in the prefrontal cortex (PFC) that correspond to deficits in PFC-mediated behaviors. The present study examined the effects of chronic restraint stress on response inhibition (using a response-withholding task, fixed-minimum interval schedule of reinforcement, or FMI), and working memory (using a radial arm water maze, RAWM). Adult male Sprague Dawley rats were first trained on the RAWM and subsequently trained on FMI. Following acquisition of FMI, rats were assigned to a restraint stress (6h/d/28d in wire mesh restrainers) or control condition. Immediately after chronic stress, rats were tested on FMI and subsequently on RAWM. FMI results suggest that chronic stress reduces response inhibition capacity and motivation to initiate the task on selective conditions when food reward was not obtained on the preceding trial. RAWM results suggest that chronic stress produces transient deficits in working memory without altering previously consolidated reference memory. Behavioral measures from FMI failed to correlate with metrics from RAWM except for one in which changes in FMI timing precision negatively correlated with changes in RAWM working memory errors for the controls, a finding that was not observed following chronic stress. Fisher’s r to z transformation revealed no significant differences between control and stress with correlation coefficients. These findings are the first to show that chronic stress impairs both response inhibition and working memory, two behaviors that have never been direct compared within the same animals following chronic stress, using FMI, an appetitive task, and RAWM, a non-appetitive task. PMID:22905921
Preparation breeds success: Brain activity predicts remembering.
Herron, Jane E; Evans, Lisa H
2018-05-09
Successful retrieval of episodic information is thought to involve the adoption of memory states that ensure that stimulus events are treated as episodic memory cues (retrieval mode) and which can bias retrieval toward specific memory contents (retrieval orientation). The neural correlates of these memory states have been identified in many neuroimaging studies, yet critically there is no direct evidence that they facilitate retrieval success. We cued participants before each test item to prepare to complete an episodic (retrieve the encoding task performed on the item at study) or a non-episodic task. Our design allowed us to separate event-related potentials (ERPs) elicited by the preparatory episodic cue according to the accuracy of the subsequent memory judgment. We predicted that a correlate of retrieval orientation should be larger in magnitude preceding correct source judgments than that preceding source errors. This hypothesis was confirmed. Preparatory ERPs at bilateral frontal sites were significantly more positive-going when preceding correct source judgments than when preceding source errors or correct responses in a non-episodic baseline task. Furthermore this effect was not evident prior to recognized items associated with incorrect source judgments. This pattern of results indicates a direct contribution of retrieval orientation to the recovery of task-relevant information and highlights the value of separating preparatory neural activity at retrieval according to subsequent memory accuracy. Moreover, at a more general level this work demonstrates the important role of pre-stimulus processing in ecphory, which has remained largely neglected to date. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Lee, Yu-Na; Lee, Young-Tae; Kim, Min-Chul; Gewirtz, Andrew T.; Kang, Sang-Moo
2016-01-01
The currently used vaccine strategy to combat influenza A virus (IAV) aims to provide highly specific immunity to circulating seasonal IAV strains. However, the outbreak of 2009 influenza pandemic highlights the danger in this strategy. Here, we tested the hypothesis that universal vaccination that offers broader but weaker protection would result in cross protective T-cell responses after primary IAV infection, which would subsequently provide protective immunity against future pandemic strains. Specifically, we used tandem repeat M2e epitopes on virus-like particles (M2e5x VLP) that induced heterosubtypic immunity by eliciting antibodies to a conserved M2e epitope. M2e5x VLP was found to be superior to strain-specific current split vaccine in conferring heterosubtypic cross protection and in equipping the host with cross-protective lung-resident nucleoprotein-specific memory CD8+ T cell responses to a subsequent secondary infection with a new pandemic potential strain. Immune correlates for subsequent heterosubtypic immunity by M2e5x VLP vaccination were found to be virus-specific CD8+ T cells secreting IFN-γ and expressing lung-resident memory phenotypic markers CD69+ and CD103+ as well as M2e antibodies. Hence, vaccination with M2e5x VLP may be developable as a new strategy to combat future pandemic outbreaks. PMID:26864033
Padovani, Tullia; Koenig, Thomas; Eckstein, Doris; Perrig, Walter J
2013-01-01
Memory formation is commonly thought to rely on brain activity following an event. Yet, recent research has shown that even brain activity previous to an event can predict later recollection (subsequent memory effect, SME). In order to investigate the attentional sources of the SME, event-related potentials (ERPs) elicited by task cues preceding target words were recorded in a switched task paradigm that was followed by a surprise recognition test. Stay trials, that is, those with the same task as the previous trial, were contrasted with switch trials, which included a task switch compared to the previous trial. The underlying assumption was that sustained attention would be dominant in stay trials and that transient attentional reconfiguration processes would be dominant in switch trials. To determine the SME, local and global statistics of scalp electric fields were used to identify differences between subsequently remembered and forgotten items. Results showed that the SME in stay trials occurred in a time window from 2 to 1 sec before target onset, whereas the SME in switch trials occurred subsequently, in a time window from 1 to 0 sec before target onset. Both SMEs showed a frontal negativity resembling the topography of previously reported effects, which suggests that sustained and transient attentional processes contribute to the prestimulus SME in consecutive time periods. PMID:24381815
Padovani, Tullia; Koenig, Thomas; Eckstein, Doris; Perrig, Walter J
2013-07-01
Memory formation is commonly thought to rely on brain activity following an event. Yet, recent research has shown that even brain activity previous to an event can predict later recollection (subsequent memory effect, SME). In order to investigate the attentional sources of the SME, event-related potentials (ERPs) elicited by task cues preceding target words were recorded in a switched task paradigm that was followed by a surprise recognition test. Stay trials, that is, those with the same task as the previous trial, were contrasted with switch trials, which included a task switch compared to the previous trial. The underlying assumption was that sustained attention would be dominant in stay trials and that transient attentional reconfiguration processes would be dominant in switch trials. To determine the SME, local and global statistics of scalp electric fields were used to identify differences between subsequently remembered and forgotten items. Results showed that the SME in stay trials occurred in a time window from 2 to 1 sec before target onset, whereas the SME in switch trials occurred subsequently, in a time window from 1 to 0 sec before target onset. Both SMEs showed a frontal negativity resembling the topography of previously reported effects, which suggests that sustained and transient attentional processes contribute to the prestimulus SME in consecutive time periods.
Testing enhances both encoding and retrieval for both tested and untested items.
Cho, Kit W; Neely, James H; Crocco, Stephanie; Vitrano, Deana
2017-07-01
In forward testing effects, taking a test enhances memory for subsequently studied material. These effects have been observed for previously studied and tested items, a potentially item-specific testing effect, and newly studied untested items, a purely generalized testing effect. We directly compared item-specific and generalized forward testing effects using procedures to separate testing benefits due to encoding versus retrieval. Participants studied two lists of Swahili-English word pairs, with the second study list containing "new" pairs intermixed with the previously studied "old" pairs. Participants completed a review phase in which they took a cued-recall test on only the "old" pairs or restudied them. In Experiments 1a, 1b, and 2, the review phase was given either before or after the second study list. Testing benefited memory to the same degree for both "new" and "old" pairs, suggesting that there were no pair-specific benefits of testing. The larger benefit from testing when review was given before rather than after the second study list suggests that the memory enhancement was due to both testing-enhanced encoding and testing-enhanced retrieval. To better equate generalized testing effects for "new" and "old" pairs, Experiment 3 intermixed them in the review phase. A statistically significant pair-specific testing effect for "old" items was now observed. Overall, these results show that forward testing effects are due to both testing-enhanced encoding and retrieval effects and that direct, pair-specific forward testing benefits are considerably smaller than indirect, generalized forward testing benefits.
Cheung, Mei-Chun; Chan, Agnes S; Liu, Ying; Law, Derry; Wong, Christina W Y
2017-01-01
Music training can improve cognitive functions. Previous studies have shown that children and adults with music training demonstrate better verbal learning and memory performance than those without such training. Although prior studies have shown an association between music training and changes in the structural and functional organization of the brain, there is no concrete evidence of the underlying neural correlates of the verbal memory encoding phase involved in such enhanced memory performance. Therefore, we carried out an electroencephalography (EEG) study to investigate how music training was associated with brain activity during the verbal memory encoding phase. Sixty participants were recruited, 30 of whom had received music training for at least one year (the MT group) and 30 of whom had never received music training (the NMT group). The participants in the two groups were matched for age, education, gender distribution, and cognitive capability. Their verbal and visual memory functions were assessed using standardized neuropsychological tests and EEG was used to record their brain activity during the verbal memory encoding phase. Consistent with previous studies, the MT group demonstrated better verbal memory than the NMT group during both the learning and the delayed recall trials in the paper-and-pencil tests. The MT group also exhibited greater learning capacity during the learning trials. Compared with the NMT group, the MT group showed an increase in long-range left and right intrahemispheric EEG coherence in the theta frequency band during the verbal memory encoding phase. In addition, their event-related left intrahemispheric theta coherence was positively associated with subsequent verbal memory performance as measured by discrimination scores. These results suggest that music training may modulate the cortical synchronization of the neural networks involved in verbal memory formation.
Cheung, Mei-chun; Chan, Agnes S.; Liu, Ying; Law, Derry; Wong, Christina W. Y.
2017-01-01
Music training can improve cognitive functions. Previous studies have shown that children and adults with music training demonstrate better verbal learning and memory performance than those without such training. Although prior studies have shown an association between music training and changes in the structural and functional organization of the brain, there is no concrete evidence of the underlying neural correlates of the verbal memory encoding phase involved in such enhanced memory performance. Therefore, we carried out an electroencephalography (EEG) study to investigate how music training was associated with brain activity during the verbal memory encoding phase. Sixty participants were recruited, 30 of whom had received music training for at least one year (the MT group) and 30 of whom had never received music training (the NMT group). The participants in the two groups were matched for age, education, gender distribution, and cognitive capability. Their verbal and visual memory functions were assessed using standardized neuropsychological tests and EEG was used to record their brain activity during the verbal memory encoding phase. Consistent with previous studies, the MT group demonstrated better verbal memory than the NMT group during both the learning and the delayed recall trials in the paper-and-pencil tests. The MT group also exhibited greater learning capacity during the learning trials. Compared with the NMT group, the MT group showed an increase in long-range left and right intrahemispheric EEG coherence in the theta frequency band during the verbal memory encoding phase. In addition, their event-related left intrahemispheric theta coherence was positively associated with subsequent verbal memory performance as measured by discrimination scores. These results suggest that music training may modulate the cortical synchronization of the neural networks involved in verbal memory formation. PMID:28358852
St. Jacques, Peggy L.; Schacter, Daniel L.
2013-01-01
Memory can be modified when reactivated, but little is known about how the properties and extent of reactivation can selectively affect subsequent memory. We developed a novel museum paradigm to directly investigate reactivation-induced plasticity for personal memories. Participants reactivated memories triggered by photos taken from a camera they wore during a museum tour and made relatedness judgments on novel photos taken from a different tour of the same museum. Subsequent recognition memory for events at the museum was better for memories that were highly reactivated (i.e., the retrieval cues during reactivation matched the encoding experience) than for memories that were reactivated at a lower level (i.e., the retrieval cues during reactivation mismatched the encoding experience), but reactivation also increased false recognition of photographs depicting stops that were not experienced during the museum tour. Reactivation thus enables memories to be selectively enhanced and distorted via updating, thereby supporting the dynamic and flexible nature of memory. PMID:23406611
Azzubaidi, Marwan Saad; Saxena, Anil Kumar; Talib, Norlelawati Abi; Ahmed, Qamar Uddin; Dogarai, Bashar Bello
2012-01-01
The fixed oil of black cumin seeds, Nigella sativa L. (NSO), has shown considerable antioxidant and anti-inflammatory activities. Chronic cerebral hypoperfusion has been linked to neurodegenerative disorders including Alzheimer's disease (AD) and its subsequent cognitive impairment in which oxidative stress and neuroinflammation are the principal culprits. Cerebrovascular hypoperfusion was experimentally achieved by bilateral common carotid arteries occlusion (2VO) in rats. Morris water maze (MWM) test was employed to assess the effects of NSO on spatial cognitive function before and after 2VO intervention. Rats were divided into long-term memory (LTM) and short-term memory (STM) groups, each was further subdivided into 3 subgroups: sham control, untreated 2VO and NSO treated 2VO group. All subgroups were tested with MWM at the tenth postoperative week. Working memory test results for both sham control and NSO treated groups showed significantly lower escape latency time and total distance travelled than untreated 2VO group. Similarly, LTM and STM MWM tests for sham control and NSO treated groups revealed significantly better maze test performance as compared to untreated 2VO group. Sham control and NSO treated 2VO groups demonstrated superior probe memory test performance as compared to untreated 2VO group. The fixed oil of Nigella sativa seeds has demonstrated noticeable spatial cognitive preservation in rats challenged with chronic cerebral hypoperfusion which indicates a promising prospective neuroprotective effect.
Christakis, D. A.; Ramirez, J. S. B.; Ramirez, J. M.
2012-01-01
Observational studies in humans have found associations between overstimulation in infancy via excessive television viewing and subsequent deficits in cognition and attention. We developed and tested a mouse model of overstimulation whereby p10 mice were subjected to audio (70 db) and visual stimulation (flashing lights) for six hours per day for a total of 42 days. 10 days later cognition and behavior were tested using the following tests: Light Dark Latency, Elevated Plus Maze, Novel Object Recognition, and Barnes Maze. In all tests, overstimulated mice performed significantly worse compared to controls suggesting increased activity and risk taking, diminished short term memory, and decreased cognitive function. These findings suggest that excessive non-normative stimulation during critical periods of brain development can have demonstrable untoward effects on subsequent neurocognitive function. PMID:22855702
The effect of articulatory suppression on implicit and explicit false memory in the DRM paradigm.
Van Damme, Ilse; Menten, Jan; d'Ydewalle, Gery
2010-11-01
Several studies have shown that reliable implicit false memory can be obtained in the DRM paradigm. There has been considerable debate, however, about whether or not conscious activation of critical lures during study is a necessary condition for this. Recent findings have revealed that articulatory suppression prevents subsequent false priming in an anagram task (Lovden & Johansson, 2003). The present experiment sought to replicate and extend these findings to an implicit word stem completion task, and to additionally investigate the effect of articulatory suppression on explicit false memory. Results showed an inhibitory effect of articulatory suppression on veridical memory, as well as on implicit false memory, whereas the level of explicit false memory was heightened. This suggests that articulatory suppression did not merely eliminate conscious lure activation, but had a more general capacity-delimiting effect. The drop in veridical memory can be attributed to diminished encoding of item-specific information. Superficial encoding also limited the spreading of semantic activation during study, which inhibited later false priming. In addition, the lack of item-specific and phenomenological details caused impaired source monitoring at test, resulting in heightened explicit false memory.
How does intentionality of encoding affect memory for episodic information?
Craig, Michael; Butterworth, Karla; Nilsson, Jonna; Hamilton, Colin J; Gallagher, Peter; Smulders, Tom V
2016-11-01
Episodic memory enables the detailed and vivid recall of past events, including target and wider contextual information. In this paper, we investigated whether/how encoding intentionality affects the retention of target and contextual episodic information from a novel experience. Healthy adults performed (1) a What-Where-When (WWW) episodic memory task involving the hiding and delayed recall of a number of items (what) in different locations (where) in temporally distinct sessions (when) and (2) unexpected tests probing memory for wider contextual information from the WWW task. Critically, some participants were informed that memory for WWW information would be subsequently probed (intentional group), while this came as a surprise for others (incidental group). The probing of contextual information came as a surprise for all participants. Participants also performed several measures of episodic and nonepisodic cognition from which common episodic and nonepisodic factors were extracted. Memory for target (WWW) and contextual information was superior in the intentional group compared with the incidental group. Memory for target and contextual information was unrelated to factors of nonepisodic cognition, irrespective of encoding intentionality. In addition, memory for target information was unrelated to factors of episodic cognition. However, memory for wider contextual information was related to some factors of episodic cognition, and these relationships differed between the intentional and incidental groups. Our results lead us to propose the hypothesis that intentional encoding of episodic information increases the coherence of the representation of the context in which the episode took place. This hypothesis remains to be tested. © 2016 Craig et al.; Published by Cold Spring Harbor Laboratory Press.
Bidirectional switch of the valence associated with a hippocampal contextual memory engram.
Redondo, Roger L; Kim, Joshua; Arons, Autumn L; Ramirez, Steve; Liu, Xu; Tonegawa, Susumu
2014-09-18
The valence of memories is malleable because of their intrinsic reconstructive property. This property of memory has been used clinically to treat maladaptive behaviours. However, the neuronal mechanisms and brain circuits that enable the switching of the valence of memories remain largely unknown. Here we investigated these mechanisms by applying the recently developed memory engram cell- manipulation technique. We labelled with channelrhodopsin-2 (ChR2) a population of cells in either the dorsal dentate gyrus (DG) of the hippocampus or the basolateral complex of the amygdala (BLA) that were specifically activated during contextual fear or reward conditioning. Both groups of fear-conditioned mice displayed aversive light-dependent responses in an optogenetic place avoidance test, whereas both DG- and BLA-labelled mice that underwent reward conditioning exhibited an appetitive response in an optogenetic place preference test. Next, in an attempt to reverse the valence of memory within a subject, mice whose DG or BLA engram had initially been labelled by contextual fear or reward conditioning were subjected to a second conditioning of the opposite valence while their original DG or BLA engram was reactivated by blue light. Subsequent optogenetic place avoidance and preference tests revealed that although the DG-engram group displayed a response indicating a switch of the memory valence, the BLA-engram group did not. This switch was also evident at the cellular level by a change in functional connectivity between DG engram-bearing cells and BLA engram-bearing cells. Thus, we found that in the DG, the neurons carrying the memory engram of a given neutral context have plasticity such that the valence of a conditioned response evoked by their reactivation can be reversed by re-associating this contextual memory engram with a new unconditioned stimulus of an opposite valence. Our present work provides new insight into the functional neural circuits underlying the malleability of emotional memory.
Bidirectional switch of the valence associated with a hippocampal contextual memory engram
Redondo, Roger L; Kim, Joshua; Arons, Autumn L; Ramirez, Steve; Liu, Xu; Tonegawa, Susumu
2014-01-01
The valence of memories is malleable because of their intrinsic reconstructive property1. This property of memory has been used clinically to treat maladaptive behaviours2. However, the neuronal mechanisms and brain circuits that enable the switching of the valence of memories remain largely unknown. Here, we investigated these mechanisms by applying the recently developed memory engram cell-labelling and -manipulation technique 3,4. We labelled, with Channelrhodopsin-2 (ChR2), a population of cells in either the dorsal dentate gyrus (DG) of the hippocampus or the basolateral complex of the amygdala (BLA) that were specifically activated during contextual fear or reward conditioning. Both groups of fear-conditioned mice displayed aversive light-dependent responses in an optogenetic place avoidance test, whereas both DG- and BLA-labelled mice that underwent reward conditioning exhibited an appetitive response in an optogenetic place preference test. Next, in an attempt to reverse the valence of memory within a subject, mice whose DG or BLA engram had initially been labelled by contextual fear or reward conditioning were subjected to a second conditioning of the opposite valence while their original DG or BLA engram was reactivated by blue light. Subsequent optogenetic place avoidance and preference tests revealed that while the DG-engram group displayed a response indicating a switch of the memory valence, the BLA-engram group did not. This switch was also evident at the cellular level by a change in functional connectivity between DG engram-bearing cells and BLA engram-bearing cells. Thus, we found that in the DG, the neurons carrying the memory engram of a given neutral context have plasticity such that the valence of a conditioned response evoked by their reactivation can be reversed by re-associating this contextual memory engram with a new US of an opposite valence. Our present work provides new insight into the functional neural circuit underlying the malleability of emotional memory. PMID:25162525
Hennig-Fast, Kristina; Meister, Franziska; Frodl, Thomas; Beraldi, Anna; Padberg, Frank; Engel, Rolf R; Reiser, Maximilian; Möller, Hans-Jürgen; Meindl, Thomas
2008-10-01
Autobiographical memory relies on complex interactions between episodic memory contents, associated emotions and a sense of self-continuity over the course of one's life. This paper reports a study based upon the case of the patient NN who suffered from a complete loss of autobiographical memory and awareness of identity subsequent to a dissociative fugue. Neuropsychological, behavioral, and functional neuroimaging tests converged on the conclusion that NN suffered from a selective retrograde amnesia following an episode of dissociative fugue, during which he had lost explicit knowledge and vivid memory of his personal past. NN's loss of self-related memories was mirrored in neurobiological changes after the fugue whereas his semantic memory remained intact. Although NN still claimed to suffer from a stable loss of autobiographical, self-relevant memories 1 year after the fugue state, a proportionate improvement in underlying fronto-temporal neuronal networks was evident at this point in time. In spite of this improvement in neuronal activation, his anterograde visual memory had been decreased. It is posited that our data provide evidence for the important role of visual processing in autobiographical memory as well as for the efficiency of protective control mechanisms that constitute functional retrograde amnesia.
Music causes deterioration of source memory: evidence from normal ageing.
El Haj, Mohamad; Omigie, Diana; Clément, Sylvain
2014-01-01
Previous research has shown that music exposure can impair a wide variety of cognitive and behavioural performance. We investigated whether this is the case for source memory. Forty-one younger adults and 35 healthy elderly were required to retain the location in which pictures of coloured objects were displayed. On a subsequent recognition test they were required to decide whether the objects were displayed in the same location as before or not. Encoding took place (a) in silence, (b) while listening to street noise, or (c) while listening to Vivaldi's "Four Seasons". Recognition always took place during silence. A significant reduction in source memory was observed following music exposure, a reduction that was more pronounced for older adults than for younger adults. This pattern was significantly correlated with performance on an executive binding task. The exposure to music appeared to interfere with binding in working memory, worsening source recall.
Recognition memory reveals just how CONTRASTIVE contrastive accenting really is
Fraundorf, Scott H.; Watson, Duane G.; Benjamin, Aaron S.
2010-01-01
The effects of pitch accenting on memory were investigated in three experiments. Participants listened to short recorded discourses that contained contrast sets with two items (e.g. British scientists and French scientists); a continuation specified one item from the set. Pitch accenting on the critical word in the continuation was manipulated between non-contrastive (H* in the ToBI system) and contrastive (L+H*). On subsequent recognition memory tests, the L+H* accent increased hits to correct statements and correct rejections of the contrast item (Experiments 1–3), but did not impair memory for other parts of the discourse (Experiment 2). L+H* also did not facilitate correct rejections of lures not in the contrast set (Experiment 3), indicating that contrastive accents do not simply strengthen the representation of the target item. These results suggest comprehenders use pitch accenting to encode and update information about multiple elements in a contrast set. PMID:20835405
Positive events protect children from causal false memories for scripted events.
Melinder, Annika; Toffalini, Enrico; Geccherle, Eleonora; Cornoldi, Cesare
2017-11-01
Adults produce fewer inferential false memories for scripted events when their conclusions are emotionally charged than when they are neutral, but it is not clear whether the same effect is also found in children. In the present study, we examined this issue in a sample of 132 children aged 6-12 years (mean 9 years, 3 months). Participants encoded photographs depicting six script-like events that had a positively, negatively, or a neutral valenced ending. Subsequently, true and false recognition memory of photographs related to the observed scripts was tested as a function of emotionality. Causal errors-a type of false memory thought to stem from inferential processes-were found to be affected by valence: children made fewer causal errors for positive than for neutral or negative events. Hypotheses are proposed on why adults were found protected against inferential false memories not only by positive (as for children) but also by negative endings when administered similar versions of the same paradigm.
Otgaar, Henry; Smeets, Tom; van Bergen, Saskia
2010-01-01
Recent studies have shown that processing words according to a survival scenario leads to superior retention relative to control conditions. Here, we examined whether a survival recall advantage could be elicited by using pictures. Furthermore, in Experiment 1, we were interested in whether survival processing also results in improved memory for details. Undergraduates rated the relevance of pictures in a survival, moving, or pleasantness scenario and were subsequently given a surprise free recall test. We found that survival processing yielded superior retention. We also found that distortions occurred more often in the survival condition than in the pleasantness condition. In Experiment 2, we directly compared the survival recall effect between pictures and words. A comparable survival recall advantage was found for pictures and words. The present findings support the idea that memory is enhanced by processing information in terms of fitness value, yet at the same time, the present results suggest that this may increase the risk for memory distortions.
Additional Boundary Condition for List-Method Directed Forgetting: The Effect of Presentation Format
ERIC Educational Resources Information Center
Hupbach, Almut; Sahakyan, Lili
2014-01-01
The attempt to forget some recently encoded information renders this information difficult to recall in a subsequent memory test. "Forget" instructions are only effective when followed by learning of new material. In the present study, we asked whether the new material needs to match the format of the to-be-forgotten information for…
ERIC Educational Resources Information Center
Kraemer, David J. M.; Schinazi, Victor R.; Cawkwell, Philip B.; Tekriwal, Anand; Epstein, Russell A.; Thompson-Schill, Sharon L.
2017-01-01
Using novel virtual cities, we investigated the influence of verbal and visual strategies on the encoding of navigation-relevant information in a large-scale virtual environment. In 2 experiments, participants watched videos of routes through 4 virtual cities and were subsequently tested on their memory for observed landmarks and their ability to…
Serrano Sponton, Lucas Ezequiel; Soria, Gonzalo Jose; Dubroqua, Sylvain; Singer, Philipp; Feldon, Joram; Gargiulo, Pascual A; Yee, Benjamin K
2018-02-26
The water maze is one of the most widely employed spatial learning paradigms in the cognitive profiling of genetically modified mice. Oftentimes, tests of reference memory (RM) and working memory (WM) in the water maze are sequentially evaluated in the same animals. However, critical difference in the rules governing efficient escape from the water between WM and RM tests is expected to promote the adoption of incompatible mnemonic or navigational strategies. Hence, performance in a given test is likely poorer if it follows the other test instead of being conducted first. Yet, the presence of such negative transfer effects (or proactive interference) between WM and RM training in the water maze is often overlooked in the literature. To gauge whether this constitutes a serious concern, the present study determined empirically the magnitude, persistence, and directionality of the transfer effect in wild-type C57BL/6 mice. We contrasted the order of tests between two cohorts of mice. Performance between the two cohorts in the WM and RM tests were then separately compared. We showed that prior training of either test significantly reduced performance in the subsequent one. The statistical effect sizes in both directions were moderate to large. Although extended training could overcome the deficit, it could re-emerge later albeit in a more transient fashion. Whenever RM and WM water maze tests are conducted sequentially in the same animals - regardless of the test order, extra caution is necessary when interpreting the outcomes in the second test. Counterbalancing test orders between animals is recommended. Copyright © 2017 Elsevier B.V. All rights reserved.
The effect of object processing in content-dependent source memory
2013-01-01
Background Previous studies have suggested that the study condition of an item influences how the item is encoded. However, it is still unclear whether subsequent source memory effects are dependent upon stimulus content when the item and context are unitized. The present fMRI study investigated the effect of encoding activity sensitive to stimulus content in source memory via unitization. In the scanner, participants were instructed to integrate a study item, an object in either a word or a picture form, with perceptual context into a single image. Results Subsequent source memory effects independent of stimulus content were identified in the left lateral frontal and parietal regions, bilateral fusiform areas, and the left perirhinal cortex extending to the anterior hippocampus. Content-dependent subsequent source memory effects were found only with words in the left medial frontal lobe, the ventral visual stream, and bilateral parahippocampal regions. Further, neural activity for source memory with words extensively overlapped with the region where pictures were preferentially processed than words, including the left mid-occipital cortex and the right parahippocampal cortex. Conclusions These results indicate that words that were accurately remembered with correct contextual information were processed more like pictures mediated by integrated imagery operation, compared to words that were recognized with incorrect context. In contrast, such processing did not discriminate subsequent source memory with pictures. Taken together, these findings suggest that unitization supports source memory for both words and pictures and that the requirement of the study task interacts with the nature of stimulus content in unitized source encoding. PMID:23848969
Marin, Bianca M; VanHaerents, Stephen A; Voss, Joel L; Bridge, Donna J
2018-01-01
Dorsolateral prefrontal cortex (DLPFC) is thought to organize items in working memory and this organizational role may also influence long-term memory. To causally test this hypothesized role of DLPFC in long-term memory formation, we used θ-burst noninvasive stimulation (TBS) to modulate DLPFC involvement in a memory task that assessed the influence of active short-term retrieval on later memory. Human subjects viewed three objects on a grid and then either actively retrieved or passively restudied one object's location after a brief delay. Long-term memory for the other objects was assessed after a delay to evaluate the beneficial role of active short-term retrieval on subsequent memory for the entire set of object locations. We found that DLPFC TBS had no significant effects on short-term memory. In contrast, DLPFC TBS impaired long-term memory selectively in the active-retrieval condition but not in the passive-restudy condition. These findings are consistent with the hypothesized contribution of DLPFC to the organizational processes operative during active short-term retrieval that influence long-term memory, although other regions that were not stimulated could provide similar contributions. Notably, active-retrieval and passive-restudy conditions were intermixed, and therefore nonspecific influences of stimulation were well controlled. These results suggest that DLPFC is causally involved in organizing event information during active retrieval to support coherent long-term memory formation.
2018-01-01
Abstract Dorsolateral prefrontal cortex (DLPFC) is thought to organize items in working memory and this organizational role may also influence long-term memory. To causally test this hypothesized role of DLPFC in long-term memory formation, we used θ-burst noninvasive stimulation (TBS) to modulate DLPFC involvement in a memory task that assessed the influence of active short-term retrieval on later memory. Human subjects viewed three objects on a grid and then either actively retrieved or passively restudied one object’s location after a brief delay. Long-term memory for the other objects was assessed after a delay to evaluate the beneficial role of active short-term retrieval on subsequent memory for the entire set of object locations. We found that DLPFC TBS had no significant effects on short-term memory. In contrast, DLPFC TBS impaired long-term memory selectively in the active-retrieval condition but not in the passive-restudy condition. These findings are consistent with the hypothesized contribution of DLPFC to the organizational processes operative during active short-term retrieval that influence long-term memory, although other regions that were not stimulated could provide similar contributions. Notably, active-retrieval and passive-restudy conditions were intermixed, and therefore nonspecific influences of stimulation were well controlled. These results suggest that DLPFC is causally involved in organizing event information during active retrieval to support coherent long-term memory formation. PMID:29445769
Effects of aging on neural connectivity underlying selective memory for emotional scenes
Waring, Jill D.; Addis, Donna Rose; Kensinger, Elizabeth A.
2012-01-01
Older adults show age-related reductions in memory for neutral items within complex visual scenes, but just like young adults, older adults exhibit a memory advantage for emotional items within scenes compared with the background scene information. The present study examined young and older adults’ encoding-stage effective connectivity for selective memory of emotional items versus memory for both the emotional item and its background. In a functional magnetic resonance imaging (fMRI) study, participants viewed scenes containing either positive or negative items within neutral backgrounds. Outside the scanner, participants completed a memory test for items and backgrounds. Irrespective of scene content being emotionally positive or negative, older adults had stronger positive connections among frontal regions and from frontal regions to medial temporal lobe structures than did young adults, especially when items and backgrounds were subsequently remembered. These results suggest there are differences between young and older adults’ connectivity accompanying the encoding of emotional scenes. Older adults may require more frontal connectivity to encode all elements of a scene rather than just encoding the emotional item. PMID:22542836
Effects of aging on neural connectivity underlying selective memory for emotional scenes.
Waring, Jill D; Addis, Donna Rose; Kensinger, Elizabeth A
2013-02-01
Older adults show age-related reductions in memory for neutral items within complex visual scenes, but just like young adults, older adults exhibit a memory advantage for emotional items within scenes compared with the background scene information. The present study examined young and older adults' encoding-stage effective connectivity for selective memory of emotional items versus memory for both the emotional item and its background. In a functional magnetic resonance imaging (fMRI) study, participants viewed scenes containing either positive or negative items within neutral backgrounds. Outside the scanner, participants completed a memory test for items and backgrounds. Irrespective of scene content being emotionally positive or negative, older adults had stronger positive connections among frontal regions and from frontal regions to medial temporal lobe structures than did young adults, especially when items and backgrounds were subsequently remembered. These results suggest there are differences between young and older adults' connectivity accompanying the encoding of emotional scenes. Older adults may require more frontal connectivity to encode all elements of a scene rather than just encoding the emotional item. Published by Elsevier Inc.
Patai, Eva Zita; Buckley, Alice; Nobre, Anna Christina
2013-01-01
A popular model of visual perception states that coarse information (carried by low spatial frequencies) along the dorsal stream is rapidly transmitted to prefrontal and medial temporal areas, activating contextual information from memory, which can in turn constrain detailed input carried by high spatial frequencies arriving at a slower rate along the ventral visual stream, thus facilitating the processing of ambiguous visual stimuli. We were interested in testing whether this model contributes to memory-guided orienting of attention. In particular, we asked whether global, low-spatial frequency (LSF) inputs play a dominant role in triggering contextual memories in order to facilitate the processing of the upcoming target stimulus. We explored this question over four experiments. The first experiment replicated the LSF advantage reported in perceptual discrimination tasks by showing that participants were faster and more accurate at matching a low spatial frequency version of a scene, compared to a high spatial frequency version, to its original counterpart in a forced-choice task. The subsequent three experiments tested the relative contributions of low versus high spatial frequencies during memory-guided covert spatial attention orienting tasks. Replicating the effects of memory-guided attention, pre-exposure to scenes associated with specific spatial memories for target locations (memory cues) led to higher perceptual discrimination and faster response times to identify targets embedded in the scenes. However, either high or low spatial frequency cues were equally effective; LSF signals did not selectively or preferentially contribute to the memory-driven attention benefits to performance. Our results challenge a generalized model that LSFs activate contextual memories, which in turn bias attention and facilitate perception.
Patai, Eva Zita; Buckley, Alice; Nobre, Anna Christina
2013-01-01
A popular model of visual perception states that coarse information (carried by low spatial frequencies) along the dorsal stream is rapidly transmitted to prefrontal and medial temporal areas, activating contextual information from memory, which can in turn constrain detailed input carried by high spatial frequencies arriving at a slower rate along the ventral visual stream, thus facilitating the processing of ambiguous visual stimuli. We were interested in testing whether this model contributes to memory-guided orienting of attention. In particular, we asked whether global, low-spatial frequency (LSF) inputs play a dominant role in triggering contextual memories in order to facilitate the processing of the upcoming target stimulus. We explored this question over four experiments. The first experiment replicated the LSF advantage reported in perceptual discrimination tasks by showing that participants were faster and more accurate at matching a low spatial frequency version of a scene, compared to a high spatial frequency version, to its original counterpart in a forced-choice task. The subsequent three experiments tested the relative contributions of low versus high spatial frequencies during memory-guided covert spatial attention orienting tasks. Replicating the effects of memory-guided attention, pre-exposure to scenes associated with specific spatial memories for target locations (memory cues) led to higher perceptual discrimination and faster response times to identify targets embedded in the scenes. However, either high or low spatial frequency cues were equally effective; LSF signals did not selectively or preferentially contribute to the memory-driven attention benefits to performance. Our results challenge a generalized model that LSFs activate contextual memories, which in turn bias attention and facilitate perception. PMID:23776509
Remembered or Forgotten?—An EEG-Based Computational Prediction Approach
Sun, Xuyun; Qian, Cunle; Chen, Zhongqin; Wu, Zhaohui; Luo, Benyan; Pan, Gang
2016-01-01
Prediction of memory performance (remembered or forgotten) has various potential applications not only for knowledge learning but also for disease diagnosis. Recently, subsequent memory effects (SMEs)—the statistical differences in electroencephalography (EEG) signals before or during learning between subsequently remembered and forgotten events—have been found. This finding indicates that EEG signals convey the information relevant to memory performance. In this paper, based on SMEs we propose a computational approach to predict memory performance of an event from EEG signals. We devise a convolutional neural network for EEG, called ConvEEGNN, to predict subsequently remembered and forgotten events from EEG recorded during memory process. With the ConvEEGNN, prediction of memory performance can be achieved by integrating two main stages: feature extraction and classification. To verify the proposed approach, we employ an auditory memory task to collect EEG signals from scalp electrodes. For ConvEEGNN, the average prediction accuracy was 72.07% by using EEG data from pre-stimulus and during-stimulus periods, outperforming other approaches. It was observed that signals from pre-stimulus period and those from during-stimulus period had comparable contributions to memory performance. Furthermore, the connection weights of ConvEEGNN network can reveal prominent channels, which are consistent with the distribution of SME studied previously. PMID:27973531
Altered declarative memory in introverted middle-aged adults carrying the BDNF val66met allele.
De Beaumont, Louis; Fiocco, Alexandra J; Quesnel, Geneviève; Lupien, Sonia; Poirier, Judes
2013-09-15
The val66met polymorphism of the brain-derived neurotrophic factor gene (BDNFMet) is associated with impaired learning/memory function, affective dysregulation and maladaptive personality traits. Here, we examine the potential relationship between the BDNFMet allele, introversion and declarative memory in middle-age adults. A total of 132 middle-aged healthy adults took part in this study that included taking a blood sample for genetic profiling, a short battery of neuropsychological tests and the NEO-Five Factor Inventory (NEO-FFI), widely used to assess the Big Five personality. Controlling for age, level of education and sex, a multiple analysis of covariance (MANCOVA) computing the effect of BDNF polymorphism on extraversion and declarative memory revealed a significant association (D1,128=4.79; p=0.03; ηp(2)=0.053). Using the Sobel Goodman Mediation Test, it was found that 25.61% of the relationship between genotype and declarative memory performance was mediated by introversion. Subsequent correlational analyses yielded a strong and significant correlation (β=0.53; p<0.001) between introversion and declarative memory specific to BDNFMet individuals. this study highlights the pertinence of further investigating gene×personality×environment interactions to account for the significant variability that is observed in cognitive function in late life. Copyright © 2013 Elsevier B.V. All rights reserved.
Forgetting motor programmes: retrieval dynamics in procedural memory.
Tempel, Tobias; Frings, Christian
2014-01-01
When motor sequences are stored in memory in a categorised manner, selective retrieval of some sequences can induce forgetting of the non-retrieved sequences. We show that such retrieval-induced forgetting (RIF) occurs not only in cued recall but also in a test assessing memory indirectly by providing novel test cues without involving recall of items. Participants learned several sequential finger movements (SFMs), each consisting of the movement of two fingers of either the left or the right hand. Subsequently, they performed retrieval practice on half of the sequences of one hand. A final task then required participants to enter letter dyads. A subset of these dyads corresponded to the previously learned sequences. RIF was present in the response times during the entering of the dyads. The finding of RIF in the slowed-down execution of motor programmes overlapping with initially trained motor sequences suggests that inhibition resolved interference between procedural representations of the acquired motor sequences of one hand during retrieval practice.
Perception, memory and aesthetics of indeterminate art.
Ishai, Alumit; Fairhall, Scott L; Pepperell, Robert
2007-07-12
Indeterminate art, in which familiar objects are only suggestive, invokes a perceptual conundrum as apparently detailed and vivid images resist identification. We hypothesized that compared with paintings that depict meaningful content, object recognition in indeterminate images would be delayed, and tested whether aesthetic affect depends on meaningful content. Subjects performed object recognition and judgment of aesthetic affect tasks. Response latencies were significantly longer for indeterminate images and subjects perceived recognizable objects in 24% of these paintings. Although the aesthetic affect rating of all paintings was similar, judgement latencies for the indeterminate paintings were significantly longer. A surprise memory test revealed that more representational than indeterminate paintings were remembered and that affective strength increased the probability of subsequent recall. Our results suggest that perception and memory of art depend on semantic aspects, whereas, aesthetic affect depends on formal visual features. The longer latencies associated with indeterminate paintings reflect the underlying cognitive processes that mediate object resolution. Indeterminate art works therefore comprise a rich set of stimuli with which the neural correlates of visual perception can be investigated.
Thielen, Jan-Willem; Hong, Donghyun; Rohani Rankouhi, Seyedmorteza; Wiltfang, Jens; Fernández, Guillén; Norris, David G; Tendolkar, Indira
2018-06-01
The classical model of the declarative memory system describes the hippocampus and its interactions with representational brain areas in posterior neocortex as being essential for the formation of long-term episodic memories. However, new evidence suggests an extension of this classical model by assigning the medial prefrontal cortex (mPFC) a specific, yet not fully defined role in episodic memory. In this study, we utilized 1H magnetic resonance spectroscopy (MRS) and psychophysiological interaction (PPI) analysis to lend further support for the idea of a mnemonic role of the mPFC in humans. By using MRS, we measured mPFC γ-aminobutyric acid (GABA) and glutamate/glutamine (GLx) concentrations before and after volunteers memorized face-name association. We demonstrate that mPFC GLx but not GABA levels increased during the memory task, which appeared to be related to memory performance. Regarding functional connectivity, we used the subsequent memory paradigm and found that the GLx increase was associated with stronger mPFC connectivity to thalamus and hippocampus for associations subsequently recognized with high confidence as opposed to subsequently recognized with low confidence/forgotten. Taken together, we provide new evidence for an mPFC involvement in episodic memory by showing a memory-related increase in mPFC excitatory neurotransmitter levels that was associated with better memory and stronger memory-related functional connectivity in a medial prefrontal-thalamus-hippocampus network. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
The effect of presentation level on memory performance.
Heinrich, Antje; Schneider, Bruce A
2011-01-01
A loss of speech intelligibility at high presentation levels is called rollover. It is a phenomenon that increases in prevalence as people age. Whether the adverse effect of high presentation levels extends to processes subsequent to speech intelligibility, such as memory, is unknown. The present study examined this question on the basis of the previous finding that older but not younger adults showed memory impairment when acoustically distorted words were presented at 50 dB SL compared with an undistorted baseline presented at 65 dB SPL. One question investigated in the present study was whether a presentation level of 50 dB SL put older listeners at the cusp of rollover and whether this subsequently impaired memory. Moreover, we wanted to know whether and at what level it was possible to induce a similar impairment in younger listeners. We used a paired-associate memory paradigm in which five word pairs per list were presented at a rate of 4 secs per word pair. After each list, the first word of one of the pairs was presented again and the listener was asked to recall the second word. Over the course of the experiment, all list positions were tested an equal number of times. The word pairs, which were acoustically distorted using a jittering algorithm, were presented at 40 dB SL to all younger and older participants and just below an uncomfortably loud level for younger listeners only. Intelligibility of the distorted words was equated across age groups for each presentation level. The effect of presentation level on memory performance was investigated and compared with data of a previous study that used the same design but presented the distorted and undistorted words at 50 dB SL to both age groups. A total of 58 younger and 24 older adults were tested in two experiments. The results showed that for older adults, memory performance for distorted words was decreased in all list positions at a presentation level of 50 dB SL compared with 40 dB SL and an undistorted 65 dB SPL baseline. This effect did not occur for younger listeners. However, when younger adults were tested at a very high presentation level, they showed the same memory decrease compared with the baseline as older adults showed for 50 dB SL. A high presentation level of distorted words can adversely affect memory even after intelligibility is equated for. Moreover, older listeners are affected at lower presentation levels. Hence, the choice of sound level, particularly for older listeners, is important and may affect their level of cognitive performance beyond its effects on intelligibility. Higher presentation levels may not always lead to better performance when the task involves recall of words previously heard.
Jou, Jerwen
2014-10-01
Subjects performed Sternberg-type memory recognition tasks (Sternberg paradigm) in four experiments. Category-instance names were used as learning and testing materials. Sternberg's original experiments demonstrated a linear relation between reaction time (RT) and memory-set size (MSS). A few later studies found no relation, and other studies found a nonlinear relation (logarithmic) between the two variables. These deviations were used as evidence undermining Sternberg's serial scan theory. This study identified two confounding variables in the fixed-set procedure of the paradigm (where multiple probes are presented at test for a learned memory set) that could generate a MSS RT function that was either flat or logarithmic rather than linearly increasing. These two confounding variables were task-switching cost and repetition priming. The former factor worked against smaller memory sets and in favour of larger sets whereas the latter factor worked in the opposite way. Results demonstrated that a null or a logarithmic RT-to-MSS relation could be the artefact of the combined effects of these two variables. The Sternberg paradigm has been used widely in memory research, and a thorough understanding of the subtle methodological pitfalls is crucial. It is suggested that a varied-set procedure (where only one probe is presented at test for a learned memory set) is a more contamination-free procedure for measuring the MSS effects, and that if a fixed-set procedure is used, it is worthwhile examining the RT function of the very first trials across the MSSs, which are presumably relatively free of contamination by the subsequent trials.
Nelson, Andrew J D; Vann, Seralynne D
2017-07-01
Despite being historically one of the first brain regions linked to memory loss, there remains controversy over the core features of diencephalic amnesia as well as the critical site for amnesia to occur. The mammillary bodies and thalamus appear to be the primary locus of pathology in the cases of diencephalic amnesia, but the picture is complicated by the lack of patients with circumscribed damage. Impaired temporal memory is a consistent neuropsychological finding in Korsakoff syndrome patients, but again, it is unclear whether this deficit is attributable to pathology within the diencephalon or concomitant frontal lobe dysfunction. To address these issues, we used an animal model of diencephalic amnesia and examined the effect of mammillothalamic tract lesions on tests of recency memory. The mammillothalamic tract lesions severely disrupted recency judgements involving multiple items but left intact both recency and familiarity judgements for single items. Subsequently, we used disconnection procedures to assess whether this deficit reflects the indirect involvement of the prefrontal cortex. Crossed-lesion rats, with unilateral lesions of the mammillothalamic tract and medial prefrontal cortex in contralateral hemispheres, were unimpaired on the same recency tests. These results provide the first evidence for the selective importance of mammillary body efferents for recency memory. Moreover, this contribution to recency memory is independent of the prefrontal cortex. More broadly, these findings identify how specific diencephalic structures are vital for key elements of event memory.
Effects of cues to event segmentation on subsequent memory.
Gold, David A; Zacks, Jeffrey M; Flores, Shaney
2017-01-01
To remember everyday activity it is important to encode it effectively, and one important component of everyday activity is that it consists of events. People who segment activity into events more adaptively have better subsequent memory for that activity, and event boundaries are remembered better than event middles. The current study asked whether intervening to improve segmentation by cuing effective event boundaries would enhance subsequent memory for events. We selected a set of movies that had previously been segmented by a large sample of observers and edited them to provide visual and auditory cues to encourage segmentation. For each movie, cues were placed either at event boundaries or event middles, or the movie was left unedited. To further support the encoding of our everyday event movies, we also included post-viewing summaries of the movies. We hypothesized that cuing at event boundaries would improve memory, and that this might reduce age differences in memory. For both younger and older adults, we found that cuing event boundaries improved memory-particularly for the boundaries that were cued. Cuing event middles also improved memory, though to a lesser degree; this suggests that imposing a segmental structure on activity may facilitate memory encoding, even when segmentation is not optimal. These results provide evidence that structural cuing can improve memory for everyday events in younger and older adults.
Greater neural pattern similarity across repetitions is associated with better memory.
Xue, Gui; Dong, Qi; Chen, Chuansheng; Lu, Zhonglin; Mumford, Jeanette A; Poldrack, Russell A
2010-10-01
Repeated study improves memory, but the underlying neural mechanisms of this improvement are not well understood. Using functional magnetic resonance imaging and representational similarity analysis of brain activity, we found that, compared with forgotten items, subsequently remembered faces and words showed greater similarity in neural activation across multiple study in many brain regions, including (but not limited to) the regions whose mean activities were correlated with subsequent memory. This result addresses a longstanding debate in the study of memory by showing that successful episodic memory encoding occurs when the same neural representations are more precisely reactivated across study episodes, rather than when patterns of activation are more variable across time.
Memory reactivation during rest supports upcoming learning of related content.
Schlichting, Margaret L; Preston, Alison R
2014-11-04
Although a number of studies have highlighted the importance of offline processes for memory, how these mechanisms influence future learning remains unknown. Participants with established memories for a set of initial face-object associations were scanned during passive rest and during encoding of new related and unrelated pairs of objects. Spontaneous reactivation of established memories and enhanced hippocampal-neocortical functional connectivity during rest was related to better subsequent learning, specifically of related content. Moreover, the degree of functional coupling during rest was predictive of neural engagement during the new learning experience itself. These results suggest that through rest-phase reactivation and hippocampal-neocortical interactions, existing memories may come to facilitate encoding during subsequent related episodes.
Memory reactivation during rest supports upcoming learning of related content
Schlichting, Margaret L.; Preston, Alison R.
2014-01-01
Although a number of studies have highlighted the importance of offline processes for memory, how these mechanisms influence future learning remains unknown. Participants with established memories for a set of initial face–object associations were scanned during passive rest and during encoding of new related and unrelated pairs of objects. Spontaneous reactivation of established memories and enhanced hippocampal–neocortical functional connectivity during rest was related to better subsequent learning, specifically of related content. Moreover, the degree of functional coupling during rest was predictive of neural engagement during the new learning experience itself. These results suggest that through rest-phase reactivation and hippocampal–neocortical interactions, existing memories may come to facilitate encoding during subsequent related episodes. PMID:25331890
Brain computer interface to enhance episodic memory in human participants
Burke, John F.; Merkow, Maxwell B.; Jacobs, Joshua; Kahana, Michael J.
2015-01-01
Recent research has revealed that neural oscillations in the theta (4–8 Hz) and alpha (9–14 Hz) bands are predictive of future success in memory encoding. Because these signals occur before the presentation of an upcoming stimulus, they are considered stimulus-independent in that they correlate with enhanced memory encoding independent of the item being encoded. Thus, such stimulus-independent activity has important implications for the neural mechanisms underlying episodic memory as well as the development of cognitive neural prosthetics. Here, we developed a brain computer interface (BCI) to test the ability of such pre-stimulus activity to modulate subsequent memory encoding. We recorded intracranial electroencephalography (iEEG) in neurosurgical patients as they performed a free recall memory task, and detected iEEG theta and alpha oscillations that correlated with optimal memory encoding. We then used these detected oscillatory changes to trigger the presentation of items in the free recall task. We found that item presentation contingent upon the presence of pre-stimulus theta and alpha oscillations modulated memory performance in more sessions than expected by chance. Our results suggest that an electrophysiological signal may be causally linked to a specific behavioral condition, and contingent stimulus presentation has the potential to modulate human memory encoding. PMID:25653605
Sleep-dependent facilitation of episodic memory details.
van der Helm, Els; Gujar, Ninad; Nishida, Masaki; Walker, Matthew P
2011-01-01
While a role for sleep in declarative memory processing is established, the qualitative nature of this consolidation benefit, and the physiological mechanisms mediating it, remain debated. Here, we investigate the impact of sleep physiology on characteristics of episodic memory using an item- (memory elements) and context- (contextual details associated with those elements) learning paradigm; the latter being especially dependent on the hippocampus. Following back-to-back encoding of two word lists, each associated with a different context, participants were assigned to either a Nap-group, who obtained a 120-min nap, or a No Nap-group. Six hours post-encoding, participants performed a recognition test involving item-memory and context-memory judgments. In contrast to item-memory, which demonstrated no between-group differences, a significant benefit in context-memory developed in the Nap-group, the extent of which correlated both with the amount of stage-2 NREM sleep and frontal fast sleep-spindles. Furthermore, a difference was observed on the basis of word-list order, with the sleep benefit and associated physiological correlations being selective for the second word-list, learned last (most proximal to sleep). These findings suggest that sleep may preferentially benefit contextual (hippocampal-dependent) aspects of memory, supported by sleep-spindle oscillations, and that the temporal order of initial learning differentially determines subsequent offline consolidation.
Level of processing modulates the neural correlates of emotional memory formation
Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto
2010-01-01
Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study employed a levels-of-processing manipulation to characterize the impact of emotion on encoding with and without the influence of elaborative processes. Participants viewed emotionally negative, neutral, and positive scenes under two conditions: a shallow condition focused on the perceptual features of the scenes and a deep condition that queried their semantic meaning. Recognition memory was tested 2 days later. Results showed that emotional memory enhancements were greatest in the shallow condition. FMRI analyses revealed that the right amygdala predicted subsequent emotional memory in the shallow more than deep condition, whereas the right ventrolateral prefrontal cortex demonstrated the reverse pattern. Furthermore, the association of these regions with the hippocampus was modulated by valence: the amygdala-hippocampal link was strongest for negative stimuli, whereas the prefrontal-hippocampal link was strongest for positive stimuli. Taken together, these results suggest two distinct activation patterns underlying emotional memory formation: an amygdala component that promotes memory during shallow encoding, especially for negative information, and a prefrontal component that provides extra benefits during deep encoding, especially for positive information. PMID:20350176
Level of processing modulates the neural correlates of emotional memory formation.
Ritchey, Maureen; LaBar, Kevin S; Cabeza, Roberto
2011-04-01
Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study used a levels-of-processing manipulation to characterize the impact of emotion on encoding with and without the influence of elaborative processes. Participants viewed emotionally negative, neutral, and positive scenes under two conditions: a shallow condition focused on the perceptual features of the scenes and a deep condition that queried their semantic meaning. Recognition memory was tested 2 days later. Results showed that emotional memory enhancements were greatest in the shallow condition. fMRI analyses revealed that the right amygdala predicted subsequent emotional memory in the shallow more than deep condition, whereas the right ventrolateral PFC demonstrated the reverse pattern. Furthermore, the association of these regions with the hippocampus was modulated by valence: the amygdala-hippocampal link was strongest for negative stimuli, whereas the prefrontal-hippocampal link was strongest for positive stimuli. Taken together, these results suggest two distinct activation patterns underlying emotional memory formation: an amygdala component that promotes memory during shallow encoding, especially for negative information, and a prefrontal component that provides extra benefits during deep encoding, especially for positive information.
Okereke, Olivia I; Grodstein, Francine
2013-11-01
To examine the relation of phobic anxiety to late-life cognitive trajectory. Prospective cohort. Nurses' Health Study-U.S. registered nurses. A total of 16,351 women among whom phobic anxiety symptoms were assessed in 1988 (mean age = 63 years). Beginning a decade after phobic anxiety ascertainment (mean age = 74 years), three assessments of general cognition, word and paragraph immediate and delayed recall, category fluency, and attention or working memory were administered over an average of 4.4 years; global cognitive and verbal memory composite scores were generated from the component tests. General linear models of response profiles were used to evaluate relations of phobic anxiety to initial cognitive performance and subsequent change. Higher phobic anxiety was associated with poorer initial performance: for example, comparing women with the highest anxiety to those with no or minimal symptoms, the multivariate-adjusted mean difference (95% confidence interval) in scores was -0.10 (-0.13,-0.06) standard units for the global score summarizing all tests, and -0.08 (-0.11,-0.04) standard units for verbal memory (summarizing four word- and paragraph-recall tasks). Mean differences between extreme categories of phobic anxiety were equal to those for participants aged 1.5-2 years apart: that is, cognitively equivalent to being about 2 years older. There were no relations of phobic anxiety to subsequent cognitive change. Higher mid-life phobic anxiety was related to worse later-life overall cognition and verbal memory. Yet, profiles of poorer cognition with higher anxiety remained parallel over time, suggesting phobic anxiety may impose impact on cognition earlier in life, rather than ongoing impact in later-life. Copyright © 2013 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Okereke, Olivia I.; Grodstein, Francine
2012-01-01
Objective To examine the relation of phobic anxiety to late-life cognitive trajectory. Design Prospective cohort. Setting Nurses’ Health Study – U.S. registered nurses. Participants 16,351 women among whom phobic anxiety symptoms were assessed in 1988 (mean age=63 years). Measurements Beginning a decade after phobic anxiety ascertainment (mean age=74 years), three assessments of general cognition, word and paragraph immediate and delayed recall, category fluency, and attention/working memory were administered over an average of 4.4 years; global cognitive and verbal memory composite scores were generated from the component tests. General linear models of response profiles were used to evaluate relations of phobic anxiety to initial cognitive performance and subsequent change. Results Higher phobic anxiety was associated with poorer initial performance: e.g., comparing women with the highest anxiety to those with no/minimal symptoms, the multivariate-adjusted mean difference (95% confidence interval) in scores was −0.10 (−0.13,−0.06) standard units for the global score summarizing all tests, and −0.08 (−0.11,−0.04) standard units for verbal memory (summarizing 4 word- and paragraph-recall tasks). Mean differences between extreme categories of phobic anxiety were equal to those for participants aged 1.5–2 years apart: i.e., cognitively equivalent to being about two years older. There were no relations of phobic anxiety to subsequent cognitive change. Conclusions Higher mid-life phobic anxiety was related to worse later-life overall cognition and verbal memory. Yet, profiles of poorer cognition with higher anxiety remained parallel over time, suggesting phobic anxiety may impose impact on cognition earlier in life, rather than ongoing impact in later-life. PMID:23567369
Kong, Tianzhu; He, Yini; Auerbach, Randy P; McWhinnie, Chad M; Xiao, Jing
2015-04-01
In this study, we examined the mediator effects of overgeneral autobiographical memory (OGM) on the relationship between rumination and depression in 323 Chinese university students. 323 undergraduates completed the questionnaires measuring OGM (Autobiographical Memory Test), rumination (Ruminative Response Scale) and depression (Center for Epidemiologic Studies Depression Scale). Results using structural equation modeling showed that OGM partially-mediated the relationship between rumination and depression (χ 2 = 88.61, p < .01; RMSEA = .051; SRMR = .040; and CFI = .91). Bootstrap methods were used to assess the magnitude of the indirect effects. The results of the bootstrap estimation procedure and subsequent analyses indicated that the indirect effects of OGM on the relationship between rumination and depressive symptoms were significant. The results indicated that rumination and depression were partially mediated by OGM.
Gao, Aijing; Xia, Frances; Guskjolen, Axel J; Ramsaran, Adam I; Santoro, Adam; Josselyn, Sheena A; Frankland, Paul W
2018-03-28
Throughout life neurons are continuously generated in the subgranular zone of the hippocampus. The subsequent integration of newly generated neurons alters patterns of dentate gyrus input and output connectivity, potentially rendering memories already stored in those circuits harder to access. Consistent with this prediction, we previously showed that increasing hippocampal neurogenesis after training induces forgetting of hippocampus-dependent memories, including contextual fear memory. However, the brain regions supporting contextual fear memories change with time, and this time-dependent memory reorganization might regulate the sensitivity of contextual fear memories to fluctuations in hippocampal neurogenesis. By virally expressing the inhibitory designer receptor exclusively activated by designer drugs, hM4Di, we first confirmed that chemogenetic inhibition of dorsal hippocampal neurons impairs retrieval of recent (day-old) but not remote (month-old) contextual fear memories in male mice. We then contrasted the effects of increasing hippocampal neurogenesis at recent versus remote time points after contextual fear conditioning in male and female mice. Increasing hippocampal neurogenesis immediately following training reduced conditioned freezing when mice were replaced in the context 1 month later. In contrast, when hippocampal neurogenesis was increased time points remote to training, conditioned freezing levels were unaltered when mice were subsequently tested. These temporally graded forgetting effects were observed using both environmental and genetic interventions to increase hippocampal neurogenesis. Our experiments identify memory age as a boundary condition for neurogenesis-mediated forgetting and suggest that, as contextual fear memories mature, they become less sensitive to changes in hippocampal neurogenesis levels because they no longer depend on the hippocampus for their expression. SIGNIFICANCE STATEMENT New neurons are generated in the hippocampus throughout life. As they integrate into the hippocampus, they remodel neural circuitry, potentially making information stored in those circuits harder to access. Consistent with this, increasing hippocampal neurogenesis after learning induces forgetting of the learnt information. The current study in mice asks whether these forgetting effects depend on the age of the memory. We found that post-training increases in hippocampal neurogenesis only impacted recently acquired, and not remotely acquired, hippocampal memories. These experiments identify memory age as a boundary condition for neurogenesis-mediated forgetting, and suggest remote memories are less sensitive to changes in hippocampal neurogenesis levels because they no longer depend critically on the hippocampus for their expression. Copyright © 2018 the authors 0270-6474/18/383190-09$15.00/0.
Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch
NASA Astrophysics Data System (ADS)
El-Tahan, M.; Dawood, M.; Song, G.
2015-06-01
The objective of this research is to develop a self-stressing patch using a combination of shape memory alloys (SMAs) and fiber reinforced polymer (FRP) composites. Prestressed carbon FRP patches are emerging as a promising alternative to traditional methods to repair cracked steel structures and civil infrastructure. However, prestressing these patches typically requires heavy and complex fixtures, which is impractical in many applications. This paper presents a new approach in which the prestressing force is applied by restraining the shape memory effect of NiTiNb SMA wires. The wires are subsequently embedded in an FRP overlay patch. This method overcomes the practical challenges associated with conventional prestressing. This paper presents the conceptual development of the self-stressing patch with the support of experimental observations. The bond between the SMA wires and the FRP is evaluated using pull-out tests. The paper concludes with an experimental study that evaluates the patch response during activation subsequent monotonic tensile loading. The results demonstrate that the self-stressing patch with NiTiNb SMA is capable of generating a significant prestressing force with minimal tool and labor requirements.
Time-dependent effects of cortisol on the contextualization of emotional memories.
van Ast, Vanessa A; Cornelisse, Sandra; Meeter, Martijn; Joëls, Marian; Kindt, Merel
2013-12-01
The inability to store fearful memories into their original encoding context is considered to be an important vulnerability factor for the development of anxiety disorders like posttraumatic stress disorder. Altered memory contextualization most likely involves effects of the stress hormone cortisol, acting via receptors located in the memory neurocircuitry. Cortisol via these receptors induces rapid nongenomic effects followed by slower genomic effects, which are thought to modulate cognitive function in opposite, complementary ways. Here, we targeted these time-dependent effects of cortisol during memory encoding and tested subsequent contextualization of emotional and neutral memories. In a double-blind, placebo-controlled design, 64 men were randomly assigned to one of three groups: 1) received 10 mg hydrocortisone 30 minutes (rapid cortisol effects) before a memory encoding task; 2) received 10 mg hydrocortisone 210 minutes (slow cortisol) before a memory encoding task; or 3) received placebo at both times. During encoding, participants were presented with neutral and emotional words in unique background pictures. Approximately 24 hours later, context dependency of their memories was assessed. Recognition data revealed that cortisol's rapid effects impair emotional memory contextualization, while cortisol's slow effects enhance it. Neutral memory contextualization remained unaltered by cortisol, irrespective of the timing of the drug. This study shows distinct time-dependent effects of cortisol on the contextualization of specifically emotional memories. The results suggest that rapid effects of cortisol may lead to impaired emotional memory contextualization, while slow effects of cortisol may confer protection against emotional memory generalization. © 2013 Society of Biological Psychiatry.
Memory retrieval by activating engram cells in mouse models of early Alzheimer's disease.
Roy, Dheeraj S; Arons, Autumn; Mitchell, Teryn I; Pignatelli, Michele; Ryan, Tomás J; Tonegawa, Susumu
2016-03-24
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory decline and subsequent loss of broader cognitive functions. Memory decline in the early stages of AD is mostly limited to episodic memory, for which the hippocampus has a crucial role. However, it has been uncertain whether the observed amnesia in the early stages of AD is due to disrupted encoding and consolidation of episodic information, or an impairment in the retrieval of stored memory information. Here we show that in transgenic mouse models of early AD, direct optogenetic activation of hippocampal memory engram cells results in memory retrieval despite the fact that these mice are amnesic in long-term memory tests when natural recall cues are used, revealing a retrieval, rather than a storage impairment. Before amyloid plaque deposition, the amnesia in these mice is age-dependent, which correlates with a progressive reduction in spine density of hippocampal dentate gyrus engram cells. We show that optogenetic induction of long-term potentiation at perforant path synapses of dentate gyrus engram cells restores both spine density and long-term memory. We also demonstrate that an ablation of dentate gyrus engram cells containing restored spine density prevents the rescue of long-term memory. Thus, selective rescue of spine density in engram cells may lead to an effective strategy for treating memory loss in the early stages of AD.
Hong, Donghyun; Rohani Rankouhi, Seyedmorteza; Wiltfang, Jens; Fernández, Guillén; Norris, David G.; Tendolkar, Indira
2018-01-01
Abstract The classical model of the declarative memory system describes the hippocampus and its interactions with representational brain areas in posterior neocortex as being essential for the formation of long‐term episodic memories. However, new evidence suggests an extension of this classical model by assigning the medial prefrontal cortex (mPFC) a specific, yet not fully defined role in episodic memory. In this study, we utilized 1H magnetic resonance spectroscopy (MRS) and psychophysiological interaction (PPI) analysis to lend further support for the idea of a mnemonic role of the mPFC in humans. By using MRS, we measured mPFC γ‐aminobutyric acid (GABA) and glutamate/glutamine (GLx) concentrations before and after volunteers memorized face–name association. We demonstrate that mPFC GLx but not GABA levels increased during the memory task, which appeared to be related to memory performance. Regarding functional connectivity, we used the subsequent memory paradigm and found that the GLx increase was associated with stronger mPFC connectivity to thalamus and hippocampus for associations subsequently recognized with high confidence as opposed to subsequently recognized with low confidence/forgotten. Taken together, we provide new evidence for an mPFC involvement in episodic memory by showing a memory‐related increase in mPFC excitatory neurotransmitter levels that was associated with better memory and stronger memory‐related functional connectivity in a medial prefrontal–thalamus–hippocampus network. PMID:29488277
Similarities of Recently Acquired and Reactivated Memories in Interference
ERIC Educational Resources Information Center
Gordon, William C.
1977-01-01
Together, these studies replicate and extend Gordon and Spear's (1973a) findings that proactive interference decreases as the interval between prior and subsequent learning increases and that reactivation of a prior memory just before subsequent learning significantly increases the proactive interference due to the prior learning. (Author/RK)
Cognitive control, attention, and the other race effect in memory.
Brown, Thackery I; Uncapher, Melina R; Chow, Tiffany E; Eberhardt, Jennifer L; Wagner, Anthony D
2017-01-01
People are better at remembering faces from their own race than other races-a phenomenon with significant societal implications. This Other Race Effect (ORE) in memory could arise from different attentional allocation to, and cognitive control over, same- and other-race faces during encoding. Deeper or more differentiated processing of same-race faces could yield more robust representations of same- vs. other-race faces that could support better recognition memory. Conversely, to the extent that other-race faces may be characterized by lower perceptual expertise, attention and cognitive control may be more important for successful encoding of robust, distinct representations of these stimuli. We tested a mechanistic model in which successful encoding of same- and other-race faces, indexed by subsequent memory performance, is differentially predicted by (a) engagement of frontoparietal networks subserving top-down attention and cognitive control, and (b) interactions between frontoparietal networks and fusiform cortex face processing. European American (EA) and African American (AA) participants underwent fMRI while intentionally encoding EA and AA faces, and ~24 hrs later performed an "old/new" recognition memory task. Univariate analyses revealed greater engagement of frontoparietal top-down attention and cognitive control networks during encoding for same- vs. other-race faces, stemming particularly from a failure to engage the cognitive control network during processing of other-race faces that were subsequently forgotten. Psychophysiological interaction (PPI) analyses further revealed that OREs were characterized by greater functional interaction between medial intraparietal sulcus, a component of the top-down attention network, and fusiform cortex during same- than other-race face encoding. Together, these results suggest that group-based face memory biases at least partially stem from differential allocation of cognitive control and top-down attention during encoding, such that same-race memory benefits from elevated top-down attentional engagement with face processing regions; conversely, reduced recruitment of cognitive control circuitry appears more predictive of memory failure when encoding out-group faces.
Cognitive control, attention, and the other race effect in memory
Uncapher, Melina R.; Chow, Tiffany E.; Eberhardt, Jennifer L.; Wagner, Anthony D.
2017-01-01
People are better at remembering faces from their own race than other races–a phenomenon with significant societal implications. This Other Race Effect (ORE) in memory could arise from different attentional allocation to, and cognitive control over, same- and other-race faces during encoding. Deeper or more differentiated processing of same-race faces could yield more robust representations of same- vs. other-race faces that could support better recognition memory. Conversely, to the extent that other-race faces may be characterized by lower perceptual expertise, attention and cognitive control may be more important for successful encoding of robust, distinct representations of these stimuli. We tested a mechanistic model in which successful encoding of same- and other-race faces, indexed by subsequent memory performance, is differentially predicted by (a) engagement of frontoparietal networks subserving top-down attention and cognitive control, and (b) interactions between frontoparietal networks and fusiform cortex face processing. European American (EA) and African American (AA) participants underwent fMRI while intentionally encoding EA and AA faces, and ~24 hrs later performed an “old/new” recognition memory task. Univariate analyses revealed greater engagement of frontoparietal top-down attention and cognitive control networks during encoding for same- vs. other-race faces, stemming particularly from a failure to engage the cognitive control network during processing of other-race faces that were subsequently forgotten. Psychophysiological interaction (PPI) analyses further revealed that OREs were characterized by greater functional interaction between medial intraparietal sulcus, a component of the top-down attention network, and fusiform cortex during same- than other-race face encoding. Together, these results suggest that group-based face memory biases at least partially stem from differential allocation of cognitive control and top-down attention during encoding, such that same-race memory benefits from elevated top-down attentional engagement with face processing regions; conversely, reduced recruitment of cognitive control circuitry appears more predictive of memory failure when encoding out-group faces. PMID:28282414
Destination Memory in Korsakoff's Syndrome.
El Haj, Mohamad; Kessels, Roy P C; Matton, Christian; Bacquet, Jean-Eudes; Urso, Laurent; Cool, Gaëlle; Guidez, Florence; Potier, Stéphanie; Nandrino, Jean-Louis; Antoine, Pascal
2016-06-01
Context memory, or the ability to remember the context in which an episodic event has occurred (e.g., where and when an event took place), has been found to be compromised in Korsakoff's syndrome. This study examined whether a similar deficit would be observed for destination memory, that is, the ability to remember to whom an information was previously transmitted. Patients with Korsakoff's syndrome and healthy controls were instructed to tell proverbs to pictures of celebrities. In a subsequent recognition test, they had to indicate to which celebrity they had previously told the proverbs. Participants also completed a neuropsychological battery including a binding task in which they were required to associate letters with their correspondent locations to assess context memory. Results showed worse binding and destination memory in patients with Korsakoff's syndrome than in controls. In the Korsakoff group, destination memory was significantly correlated with and predicted by performances on the binding task. The binding process seems to be impaired in Korsakoff's syndrome, a deficit that may account for the destination memory compromise in the syndrome, and probably, for the difficulty to retrieve the "where and when" of an encountered event. Copyright © 2016 by the Research Society on Alcoholism.
Towler, John; Kelly, Maria; Eimer, Martin
2016-06-01
The capacity of visual working memory for faces is extremely limited, but the reasons for these limitations remain unknown. We employed event-related brain potential measures to demonstrate that individual faces have to be focally attended in order to be maintained in working memory, and that attention is allocated to only a single face at a time. When 2 faces have to be memorized simultaneously in a face identity-matching task, the focus of spatial attention during encoding predicts which of these faces can be successfully maintained in working memory and matched to a subsequent test face. We also show that memory representations of attended faces are maintained in a position-dependent fashion. These findings demonstrate that the limited capacity of face memory is directly linked to capacity limits of spatial attention during the encoding and maintenance of individual face representations. We suggest that the capacity and distribution of selective spatial attention is a dynamic resource that constrains the capacity and fidelity of working memory for faces. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Johnson, Sarah A.; Sacks, Patricia K.; Turner, Sean M.; Gaynor, Leslie S.; Ormerod, Brandi K.; Maurer, Andrew P.; Bizon, Jennifer L.
2016-01-01
Hippocampal-dependent episodic memory and stimulus discrimination abilities are both compromised in the elderly. The reduced capacity to discriminate between similar stimuli likely contributes to multiple aspects of age-related cognitive impairment; however, the association of these behaviors within individuals has never been examined in an animal model. In the present study, young and aged F344×BN F1 hybrid rats were cross-characterized on the Morris water maze test of spatial memory and a dentate gyrus-dependent match-to-position test of spatial discrimination ability. Aged rats showed overall impairments relative to young in spatial learning and memory on the water maze task. Although young and aged learned to apply a match-to-position response strategy in performing easy spatial discriminations within a similar number of trials, a majority of aged rats were impaired relative to young in performing difficult spatial discriminations on subsequent tests. Moreover, all aged rats were susceptible to cumulative interference during spatial discrimination tests, such that error rate increased on later trials of test sessions. These data suggest that when faced with difficult discriminations, the aged rats were less able to distinguish current goal locations from those of previous trials. Increasing acetylcholine levels with donepezil did not improve aged rats’ abilities to accurately perform difficult spatial discriminations or reduce their susceptibility to interference. Interestingly, better spatial memory abilities were not significantly associated with higher performance on difficult spatial discriminations. This observation, along with the finding that aged rats made more errors under conditions in which interference was high, suggests that match-to-position spatial discrimination performance may rely on extra-hippocampal structures such as the prefrontal cortex, in addition to the dentate gyrus. PMID:27317194
Wells, Audrey M.; Lasseter, Heather C.; Xie, Xiaohu; Cowhey, Kate E.; Reittinger, Andrew M.; Fuchs, Rita A.
2011-01-01
Contextual stimulus control over instrumental drug-seeking behavior relies on the reconsolidation of context-response-drug associative memories into long-term memory storage following retrieval-induced destabilization. According to previous studies, the basolateral amygdala (BLA) and dorsal hippocampus (DH) regulate cocaine-related memory reconsolidation; however, it is not known whether these brain regions interact or independently control this phenomenon. To investigate this question, rats were trained to lever press for cocaine reinforcement in a distinct environmental context followed by extinction training in a different context. Rats were then briefly re-exposed to the cocaine-paired context to destabilize cocaine-related memories, or they were exposed to an unpaired context. Immediately thereafter, the rats received unilateral microinfusions of anisomycin (ANI) into the BLA plus baclofen/muscimol (B/M) into the contralateral (BLA/DH disconnection) or ipsilateral DH, or they received contralateral or ipsilateral microinfusions of vehicle. They then remained in their home cages overnight or for 21 d, followed by additional extinction training and a test of cocaine-seeking behavior (nonreinforced active lever responding). BLA/DH disconnection following re-exposure to the cocaine-paired context, but not the unpaired context, impaired subsequent drug context-induced cocaine-seeking behavior relative to vehicle or ipsilateral ANI + B/M treatment. Prolonged home cage stay elicited a time-dependent increase, or incubation, of drug-context-induced cocaine-seeking behavior, and BLA/DH disconnection inhibited this incubation effect despite some recovery of cocaine-seeking behavior. Thus, the BLA and DH interact to regulate the reconsolidation of cocaine-related associative memories, thereby facilitating the ability of drug-paired contexts to trigger cocaine-seeking behavior and contributing to the incubation of cocaine-seeking behavior. PMID:22005750
Chronic stress impairs prefrontal cortex-dependent response inhibition and spatial working memory.
Mika, Agnieszka; Mazur, Gabriel J; Hoffman, Ann N; Talboom, Joshua S; Bimonte-Nelson, Heather A; Sanabria, Federico; Conrad, Cheryl D
2012-10-01
Chronic stress leads to neurochemical and structural alterations in the prefrontal cortex (PFC) that correspond to deficits in PFC-mediated behaviors. The present study examined the effects of chronic restraint stress on response inhibition (using a response-withholding task, the fixed-minimum interval schedule of reinforcement, or FMI), and working memory (using a radial arm water maze, RAWM). Adult male Sprague-Dawley rats were first trained on the RAWM and subsequently trained on FMI. After acquisition of FMI, rats were assigned to a restraint stress (6h/d/28d in wire mesh restrainers) or control condition. Immediately after chronic stress, rats were tested on FMI and subsequently on RAWM. FMI results suggest that chronic stress reduces response inhibition capacity and motivation to initiate the task on selective conditions when sucrose reward was not obtained on the preceding trial. RAWM results suggest that chronic stress produces transient deficits in working memory without altering previously consolidated reference memory. Behavioral measures from FMI failed to correlate with metrics from RAWM except for one in which changes in FMI timing imprecision negatively correlated with changes in RAWM working memory errors for the controls, a finding that was not observed following chronic stress. Fisher's r-to-z transformation revealed no significant differences between control and stress groups with correlation coefficients. These findings are the first to show that chronic stress impairs both response inhibition and working memory, two behaviors that have never been directly compared within the same animals after chronic stress, using FMI, an appetitive task, and RAWM, a nonappetitive task. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Working memory encoding delays top-down attention to visual cortex.
Scalf, Paige E; Dux, Paul E; Marois, René
2011-09-01
The encoding of information from one event into working memory can delay high-level, central decision-making processes for subsequent events [e.g., Jolicoeur, P., & Dell'Acqua, R. The demonstration of short-term consolidation. Cognitive Psychology, 36, 138-202, 1998, doi:10.1006/cogp.1998.0684]. Working memory, however, is also believed to interfere with the deployment of top-down attention [de Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. The role of working memory in visual selective attention. Science, 291, 1803-1806, 2001, doi:10.1126/science.1056496]. It is, therefore, possible that, in addition to delaying central processes, the engagement of working memory encoding (WME) also postpones perceptual processing as well. Here, we tested this hypothesis with time-resolved fMRI by assessing whether WME serially postpones the action of top-down attention on low-level sensory signals. In three experiments, participants viewed a skeletal rapid serial visual presentation sequence that contained two target items (T1 and T2) separated by either a short (550 msec) or long (1450 msec) SOA. During single-target runs, participants attended and responded only to T1, whereas in dual-target runs, participants attended and responded to both targets. To determine whether T1 processing delayed top-down attentional enhancement of T2, we examined T2 BOLD response in visual cortex by subtracting the single-task waveforms from the dual-task waveforms for each SOA. When the WME demands of T1 were high (Experiments 1 and 3), T2 BOLD response was delayed at the short SOA relative to the long SOA. This was not the case when T1 encoding demands were low (Experiment 2). We conclude that encoding of a stimulus into working memory delays the deployment of attention to subsequent target representations in visual cortex.
Dworak, Markus; Schierl, Thomas; Bruns, Thomas; Strüder, Heiko Klaus
2007-11-01
Television and computer game consumption are a powerful influence in the lives of most children. Previous evidence has supported the notion that media exposure could impair a variety of behavioral characteristics. Excessive television viewing and computer game playing have been associated with many psychiatric symptoms, especially emotional and behavioral symptoms, somatic complaints, attention problems such as hyperactivity, and family interaction problems. Nevertheless, there is insufficient knowledge about the relationship between singular excessive media consumption on sleep patterns and linked implications on children. The aim of this study was to investigate the effects of singular excessive television and computer game consumption on sleep patterns and memory performance of children. Eleven school-aged children were recruited for this polysomnographic study. Children were exposed to voluntary excessive television and computer game consumption. In the subsequent night, polysomnographic measurements were conducted to measure sleep-architecture and sleep-continuity parameters. In addition, a visual and verbal memory test was conducted before media stimulation and after the subsequent sleeping period to determine visuospatial and verbal memory performance. Only computer game playing resulted in significant reduced amounts of slow-wave sleep as well as significant declines in verbal memory performance. Prolonged sleep-onset latency and more stage 2 sleep were also detected after previous computer game consumption. No effects on rapid eye movement sleep were observed. Television viewing reduced sleep efficiency significantly but did not affect sleep patterns. The results suggest that television and computer game exposure affect children's sleep and deteriorate verbal cognitive performance, which supports the hypothesis of the negative influence of media consumption on children's sleep, learning, and memory.
ERIC Educational Resources Information Center
Reder, Lynne M.; Park, Heekyeong; Kieffaber, Paul D.
2009-01-01
There is a popular hypothesis that performance on implicit and explicit memory tasks reflects 2 distinct memory systems. Explicit memory is said to store those experiences that can be consciously recollected, and implicit memory is said to store experiences and affect subsequent behavior but to be unavailable to conscious awareness. Although this…
Ren, Li; Zhang, Fan; Min, Su; Hao, Xuechao; Qin, Peipei; Zhu, Xianlin
2016-06-30
Electroconvulsive therapy (ECT) is an effective treatment for depression, but it can induce learning and memory impairment. Our previous study found propofol (γ-aminobutyric acid (GABA) receptor agonist) could ameliorate electroconvulsive shock (ECS, an analog of ECT to animals)-induced cognitive impairment, however, the underlying molecular mechanisms remain unclear. This study aimed to investigate the effects of propofol on metaplasticity and autophosphorylation of CaMKIIa in stressed rats receiving ECS. Depressive-like behavior and learning and memory function were assessed by sucrose preference test and Morris water test respectively. LTP were tested by electrophysiological experiment, the expression of CaMKIIa, p-T305-CaMKII in hippocampus and CaMKIIα in hippocampal PSD fraction were evaluated by western blot. Results suggested ECS raised the baseline fEPSP and impaired the subsequent LTP, increased the expression of p-T305-CaMKII and decreased the expression of CaMKIIα in hippocampal PSD fraction, leading to cognitive dysfunction in stressed rats. Propofol could down-regulate the baseline fEPSP and reversed the impairment of LTP partly, decreased the expression of p-T305-CaMKII and increased the expression of CaMKIIα in hippocampal PSD fraction and alleviated ECS-induced learning and memory impairment. In conclusion, propofol ameliorates ECS-induced learning and memory impairment, possibly by regulation of synaptic metaplasticity via p-T305-CaMKII. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The influence of encoding strategy on episodic memory and cortical activity in schizophrenia.
Bonner-Jackson, Aaron; Haut, Kristen; Csernansky, John G; Barch, Deanna M
2005-07-01
Recent work suggests that episodic memory deficits in schizophrenia may be related to disturbances of encoding or retrieval. Schizophrenia patients appear to benefit from instruction in episodic memory strategies. We tested the hypothesis that providing effective encoding strategies to schizophrenia patients enhances encoding-related brain activity and recognition performance. Seventeen schizophrenia patients and 26 healthy comparison subjects underwent functional magnetic resonance imaging scans while performing incidental encoding tasks of words and faces. Subjects were required to make either deep (abstract/concrete) or shallow (alphabetization) judgments for words and deep (gender) judgments for faces, followed by subsequent recognition tests. Schizophrenia and comparison subjects recognized significantly more words encoded deeply than shallowly, activated regions in inferior frontal cortex (Brodmann area 45/47) typically associated with deep and successful encoding of words, and showed greater left frontal activation for the processing of words compared with faces. However, during deep encoding and material-specific processing (words vs. faces), participants with schizophrenia activated regions not activated by control subjects, including several in prefrontal cortex. Our findings suggest that a deficit in use of effective strategies influences episodic memory performance in schizophrenia and that abnormalities in functional brain activation persist even when such strategies are applied.
Warren, Brandon L.; Mendoza, Michael P.; Cruz, Fabio C.; Leao, Rodrigo M.; Caprioli, Daniele; Rubio, F. Javier; Whitaker, Leslie R.; McPherson, Kylie B.; Bossert, Jennifer M.; Shaham, Yavin
2016-01-01
In operant learning, initial reward-associated memories are thought to be distinct from subsequent extinction-associated memories. Memories formed during operant learning are thought to be stored in “neuronal ensembles.” Thus, we hypothesize that different neuronal ensembles encode reward- and extinction-associated memories. Here, we examined prefrontal cortex neuronal ensembles involved in the recall of reward and extinction memories of food self-administration. We first trained rats to lever press for palatable food pellets for 7 d (1 h/d) and then exposed them to 0, 2, or 7 daily extinction sessions in which lever presses were not reinforced. Twenty-four hours after the last training or extinction session, we exposed the rats to either a short 15 min extinction test session or left them in their homecage (a control condition). We found maximal Fos (a neuronal activity marker) immunoreactivity in the ventral medial prefrontal cortex of rats that previously received 2 extinction sessions, suggesting that neuronal ensembles in this area encode extinction memories. We then used the Daun02 inactivation procedure to selectively disrupt ventral medial prefrontal cortex neuronal ensembles that were activated during the 15 min extinction session following 0 (no extinction) or 2 prior extinction sessions to determine the effects of inactivating the putative food reward and extinction ensembles, respectively, on subsequent nonreinforced food seeking 2 d later. Inactivation of the food reward ensembles decreased food seeking, whereas inactivation of the extinction ensembles increased food seeking. Our results indicate that distinct neuronal ensembles encoding operant reward and extinction memories intermingle within the same cortical area. SIGNIFICANCE STATEMENT A current popular hypothesis is that neuronal ensembles in different prefrontal cortex areas control reward-associated versus extinction-associated memories: the dorsal medial prefrontal cortex (mPFC) promotes reward seeking, whereas the ventral mPFC inhibits reward seeking. In this paper, we use the Daun02 chemogenetic inactivation procedure to demonstrate that Fos-expressing neuronal ensembles mediating both food reward and extinction memories intermingle within the same ventral mPFC area. PMID:27335401
Warren, Brandon L; Mendoza, Michael P; Cruz, Fabio C; Leao, Rodrigo M; Caprioli, Daniele; Rubio, F Javier; Whitaker, Leslie R; McPherson, Kylie B; Bossert, Jennifer M; Shaham, Yavin; Hope, Bruce T
2016-06-22
In operant learning, initial reward-associated memories are thought to be distinct from subsequent extinction-associated memories. Memories formed during operant learning are thought to be stored in "neuronal ensembles." Thus, we hypothesize that different neuronal ensembles encode reward- and extinction-associated memories. Here, we examined prefrontal cortex neuronal ensembles involved in the recall of reward and extinction memories of food self-administration. We first trained rats to lever press for palatable food pellets for 7 d (1 h/d) and then exposed them to 0, 2, or 7 daily extinction sessions in which lever presses were not reinforced. Twenty-four hours after the last training or extinction session, we exposed the rats to either a short 15 min extinction test session or left them in their homecage (a control condition). We found maximal Fos (a neuronal activity marker) immunoreactivity in the ventral medial prefrontal cortex of rats that previously received 2 extinction sessions, suggesting that neuronal ensembles in this area encode extinction memories. We then used the Daun02 inactivation procedure to selectively disrupt ventral medial prefrontal cortex neuronal ensembles that were activated during the 15 min extinction session following 0 (no extinction) or 2 prior extinction sessions to determine the effects of inactivating the putative food reward and extinction ensembles, respectively, on subsequent nonreinforced food seeking 2 d later. Inactivation of the food reward ensembles decreased food seeking, whereas inactivation of the extinction ensembles increased food seeking. Our results indicate that distinct neuronal ensembles encoding operant reward and extinction memories intermingle within the same cortical area. A current popular hypothesis is that neuronal ensembles in different prefrontal cortex areas control reward-associated versus extinction-associated memories: the dorsal medial prefrontal cortex (mPFC) promotes reward seeking, whereas the ventral mPFC inhibits reward seeking. In this paper, we use the Daun02 chemogenetic inactivation procedure to demonstrate that Fos-expressing neuronal ensembles mediating both food reward and extinction memories intermingle within the same ventral mPFC area. Copyright © 2016 the authors 0270-6474/16/366691-13$15.00/0.
Effects of Bilateral Eye Movements on Gist Based False Recognition in the DRM Paradigm
ERIC Educational Resources Information Center
Parker, Andrew; Dagnall, Neil
2007-01-01
The effects of saccadic bilateral (horizontal) eye movements on gist based false recognition was investigated. Following exposure to lists of words related to a critical but non-studied word participants were asked to engage in 30s of bilateral vs. vertical vs. no eye movements. Subsequent testing of recognition memory revealed that those who…
Characterizing the role of the hippocampus during episodic simulation and encoding.
Thakral, Preston P; Benoit, Roland G; Schacter, Daniel L
2017-12-01
The hippocampus has been consistently associated with episodic simulation (i.e., the mental construction of a possible future episode). In a recent study, we identified an anterior-posterior temporal dissociation within the hippocampus during simulation. Specifically, transient simulation-related activity occurred in relatively posterior portions of the hippocampus and sustained activity occurred in anterior portions. In line with previous theoretical proposals of hippocampal function during simulation, the posterior hippocampal activity was interpreted as reflecting a transient retrieval process for the episodic details necessary to construct an episode. In contrast, the sustained anterior hippocampal activity was interpreted as reflecting the continual recruitment of encoding and/or relational processing associated with a simulation. In the present study, we provide a direct test of these interpretations by conducting a subsequent memory analysis of our previously published data to assess whether successful encoding during episodic simulation is associated with the anterior hippocampus. Analyses revealed a subsequent memory effect (i.e., later remembered > later forgotten simulations) in the anterior hippocampus. The subsequent memory effect was transient and not sustained. Taken together, the current findings provide further support for a component process model of hippocampal function during simulation. That is, unique regions of the hippocampus support dissociable processes during simulation, which include the transient retrieval of episodic information, the sustained binding of such information into a coherent episode, and the transient encoding of that episode for later retrieval. © 2017 Wiley Periodicals, Inc.
Verbal Learning and Memory in Cannabis and Alcohol Users: An Event-Related Potential Investigation
Smith, Janette L.; De Blasio, Frances M.; Iredale, Jaimi M.; Matthews, Allison J.; Bruno, Raimondo; Dwyer, Michelle; Batt, Tessa; Fox, Allison M.; Solowij, Nadia; Mattick, Richard P.
2017-01-01
Aims: Long-term heavy use of cannabis and alcohol are known to be associated with memory impairments. In this study, we used event-related potentials to examine verbal learning and memory processing in a commonly used behavioral task. Method: We conducted two studies: first, a small pilot study of adolescent males, comprising 13 Drug-Naive Controls (DNC), 12 heavy drinkers (HD) and 8 cannabis users (CU). Second, a larger study of young adults, comprising 45 DNC (20 female), 39 HD (16 female), and 20 CU (9 female). In both studies, participants completed a modified verbal learning task (the Rey Auditory Verbal Learning Test, RAVLT) while brain electrical activity was recorded. ERPs were calculated for words which were subsequently remembered vs. those which were not remembered, and for presentations of learnt words, previously seen words, and new words in a subsequent recognition test. Pre-planned principal components analyses (PCA) were used to quantify the ERP components in these recall and recognition phases separately for each study. Results: Memory performance overall was slightly lower than published norms using the standardized RAVLT delivery, but was generally similar and showed the expected changes over trials. Few differences in performance were observed between groups; a notable exception was markedly poorer delayed recall in HD relative to DNC (Study 2). PCA identified components expected from prior research using other memory tasks. At encoding, there were no between-group differences in the usual P2 recall effect (larger for recalled than not-recalled words). However, alcohol-related differences were observed in a larger P540 (indexing recollection) in HD than DNC, and cannabis-related differences were observed in a smaller N340 (indexing familiarity) and a lack of previously seen > new words effect for P540 in Study 2. Conclusions: This study is the first examination of ERPs in the RAVLT in healthy control participants, as well as substance-using individuals, and represents an important advance in methodology. The results indicate alterations in recognition memory processing, which even if not manifesting in overt behavioral impairment, underline the potential for brain dysfunction with early exposure to alcohol and cannabis. PMID:29276495
Factors affecting reorganisation of memory encoding networks in temporal lobe epilepsy
Sidhu, M.K.; Stretton, J.; Winston, G.P.; Symms, M.; Thompson, P.J.; Koepp, M.J.; Duncan, J.S.
2015-01-01
Summary Aims In temporal lobe epilepsy (TLE) due to hippocampal sclerosis reorganisation in the memory encoding network has been consistently described. Distinct areas of reorganisation have been shown to be efficient when associated with successful subsequent memory formation or inefficient when not associated with successful subsequent memory. We investigated the effect of clinical parameters that modulate memory functions: age at onset of epilepsy, epilepsy duration and seizure frequency in a large cohort of patients. Methods We studied 53 patients with unilateral TLE and hippocampal sclerosis (29 left). All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words. A continuous regression analysis was used to investigate the effects of age at onset of epilepsy, epilepsy duration and seizure frequency on the activation patterns in the memory encoding network. Results Earlier age at onset of epilepsy was associated with left posterior hippocampus activations that were involved in successful subsequent memory formation in left hippocampal sclerosis patients. No association of age at onset of epilepsy was seen with face encoding in right hippocampal sclerosis patients. In both left hippocampal sclerosis patients during word encoding and right hippocampal sclerosis patients during face encoding, shorter duration of epilepsy and lower seizure frequency were associated with medial temporal lobe activations that were involved in successful memory formation. Longer epilepsy duration and higher seizure frequency were associated with contralateral extra-temporal activations that were not associated with successful memory formation. Conclusion Age at onset of epilepsy influenced verbal memory encoding in patients with TLE due to hippocampal sclerosis in the speech-dominant hemisphere. Shorter duration of epilepsy and lower seizure frequency were associated with less disruption of the efficient memory encoding network whilst longer duration and higher seizure frequency were associated with greater, inefficient, extra-temporal reorganisation. PMID:25616449
Conversion of short-term to long-term memory in the novel object recognition paradigm
Moore, Shannon J.; Deshpande, Kaivalya; Stinnett, Gwen S.; Seasholtz, Audrey F.; Murphy, Geoffrey G.
2013-01-01
It is well-known that stress can significantly impact learning; however, whether this effect facilitates or impairs the resultant memory depends on the characteristics of the stressor. Investigation of these dynamics can be confounded by the role of the stressor in motivating performance in a task. Positing a cohesive model of the effect of stress on learning and memory necessitates elucidating the consequences of stressful stimuli independently from task-specific functions. Therefore, the goal of this study was to examine the effect of manipulating a task-independent stressor (elevated light level) on short-term and long-term memory in the novel object recognition paradigm. Short-term memory was elicited in both low light and high light conditions, but long-term memory specifically required high light conditions during the acquisition phase (familiarization trial) and was independent of the light level during retrieval (test trial). Additionally, long-term memory appeared to be independent of stress-mediated glucocorticoid release, as both low and high light produced similar levels of plasma corticosterone, which further did not correlate with subsequent memory performance. Finally, both short-term and long-term memory showed no savings between repeated experiments suggesting that this novel object recognition paradigm may be useful for longitudinal studies, particularly when investigating treatments to stabilize or enhance weak memories in neurodegenerative diseases or during age-related cognitive decline. PMID:23835143
Conversion of short-term to long-term memory in the novel object recognition paradigm.
Moore, Shannon J; Deshpande, Kaivalya; Stinnett, Gwen S; Seasholtz, Audrey F; Murphy, Geoffrey G
2013-10-01
It is well-known that stress can significantly impact learning; however, whether this effect facilitates or impairs the resultant memory depends on the characteristics of the stressor. Investigation of these dynamics can be confounded by the role of the stressor in motivating performance in a task. Positing a cohesive model of the effect of stress on learning and memory necessitates elucidating the consequences of stressful stimuli independently from task-specific functions. Therefore, the goal of this study was to examine the effect of manipulating a task-independent stressor (elevated light level) on short-term and long-term memory in the novel object recognition paradigm. Short-term memory was elicited in both low light and high light conditions, but long-term memory specifically required high light conditions during the acquisition phase (familiarization trial) and was independent of the light level during retrieval (test trial). Additionally, long-term memory appeared to be independent of stress-mediated glucocorticoid release, as both low and high light produced similar levels of plasma corticosterone, which further did not correlate with subsequent memory performance. Finally, both short-term and long-term memory showed no savings between repeated experiments suggesting that this novel object recognition paradigm may be useful for longitudinal studies, particularly when investigating treatments to stabilize or enhance weak memories in neurodegenerative diseases or during age-related cognitive decline. Copyright © 2013 Elsevier Inc. All rights reserved.
Undermining belief in false memories leads to less efficient problem-solving behaviour.
Wang, Jianqin; Otgaar, Henry; Howe, Mark L; Smeets, Tom; Merckelbach, Harald; Nahouli, Zacharia
2017-08-01
Memories of events for which the belief in the occurrence of those events is undermined, but recollection is retained, are called nonbelieved memories (NBMs). The present experiments examined the effects of NBMs on subsequent problem-solving behaviour. In Experiment 1, we challenged participants' beliefs in their memories and examined whether NBMs affected subsequent solution rates on insight-based problems. True and false memories were elicited using the Deese/Roediger-McDermott (DRM) paradigm. Then participants' belief in true and false memories was challenged by telling them the item had not been presented. We found that when the challenge led to undermining belief in false memories, fewer problems were solved than when belief was not challenged. In Experiment 2, a similar procedure was used except that some participants solved the problems one week rather than immediately after the feedback. Again, our results showed that undermining belief in false memories resulted in lower problem solution rates. These findings suggest that for false memories, belief is an important agent in whether memories serve as effective primes for immediate and delayed problem-solving.
Hales, J. B.; Brewer, J. B.
2018-01-01
Given the diversity of stimuli encountered in daily life, a variety of strategies must be used for learning new information. Relating and encoding visual and verbal stimuli into memory has been probed using various tasks and stimulus-types. Engagement of specific subsequent memory and cortical processing regions depends on the stimulus modality of studied material; however, it remains unclear whether different encoding strategies similarly influence regional activity when stimulus-type is held constant. In this study, subjects encoded object pairs using a visual or verbal associative strategy during functional magnetic resonance imaging (fMRI), and subsequent memory was assessed for pairs encoded under each strategy. Each strategy elicited distinct regional processing and subsequent memory effects: middle / superior frontal, lateral parietal, and lateral occipital for visually-associated pairs and inferior frontal, medial frontal, and medial occipital for verbally-associated pairs. This regional selectivity mimics the effects of stimulus modality, suggesting that cortical involvement in associative encoding is driven by strategy, and not simply by stimulus-type. The clinical relevance of these findings, probed in two patients with recent aphasic strokes, suggest that training with strategies utilizing unaffected cortical regions might improve memory ability in patients with brain damage. PMID:22390467
Mattson, Julia T.; Wang, Tracy H.; de Chastelaine, Marianne; Rugg, Michael D.
2014-01-01
It has consistently been reported that “negative” subsequent memory effects—lower study activity for later remembered than later forgotten items—are attenuated in older individuals. The present functional magnetic resonance imaging study investigated whether these findings extend to subsequent memory effects associated with successful encoding of item–context information. Older (n = 25) and young (n = 17) subjects were scanned while making 1 of 2 encoding judgments on a series of pictures. Memory was assessed for the study item and, for items judged old, the item's encoding task. Both memory judgments were made using confidence ratings, permitting item and source memory strength to be unconfounded and source confidence to be equated across age groups. Replicating prior findings, negative item effects in regions of the default mode network in young subjects were reversed in older subjects. Negative source effects, however, were invariant with respect to age and, in both age groups, the magnitude of the effects correlated with source memory performance. It is concluded that negative item effects do not reflect processes necessary for the successful encoding of item–context associations in older subjects. Negative source effects, in contrast, appear to reflect the engagement of processes that are equally important for successful episodic encoding in older and younger individuals. PMID:23904464
VanElzakker, Michael B.; Zoladz, Phillip R.; Thompson, Vanessa M.; Park, Collin R.; Halonen, Joshua D.; Spencer, Robert L.; Diamond, David M.
2011-01-01
We have studied the influence of pre-training psychological stress on the expression of c-fos mRNA following long-term spatial memory retrieval. Rats were trained to learn the location of a hidden escape platform in the radial-arm water maze, and then their memory for the platform location was assessed 24 h later. Rat brains were extracted 30 min after the 24-h memory test trial for analysis of c-fos mRNA. Four groups were tested: (1) Rats given standard training (Standard); (2) Rats given cat exposure (Predator Stress) 30 min prior to training (Pre-Training Stress); (3) Rats given water exposure only (Water Yoked); and (4) Rats given no water exposure (Home Cage). The Standard trained group exhibited excellent 24 h memory which was accompanied by increased c-fos mRNA in the dorsal hippocampus and basolateral amygdala (BLA). The Water Yoked group exhibited no increase in c-fos mRNA in any brain region. Rats in the Pre-Training Stress group were classified into two subgroups: good and bad memory performers. Neither of the two Pre-Training Stress subgroups exhibited a significant change in c-fos mRNA expression in the dorsal hippocampus or BLA. Instead, stressed rats with good memory exhibited significantly greater c-fos mRNA expression in the dorsolateral striatum (DLS) compared to stressed rats with bad memory. This finding suggests that stressed rats with good memory used their DLS to generate a non-spatial (cue-based) strategy to learn and subsequently retrieve the memory of the platform location. Collectively, these findings provide evidence at a molecular level for the involvement of the hippocampus and BLA in the retrieval of spatial memory and contribute novel observations on the influence of pre-training stress in activating the DLS in response to long-term memory retrieval. PMID:21738501
Sanderson, David J; Good, Mark A; Skelton, Kathryn; Sprengel, Rolf; Seeburg, Peter H; Rawlins, J Nicholas P; Bannerman, David M
2009-06-01
The GluA1 AMPA receptor subunit is a key mediator of hippocampal synaptic plasticity and is especially important for a rapidly-induced, short-lasting form of potentiation. GluA1 gene deletion impairs hippocampus-dependent, spatial working memory, but spares hippocampus-dependent spatial reference memory. These findings may reflect the necessity of GluA1-dependent synaptic plasticity for short-term memory of recently visited places, but not for the ability to form long-term associations between a particular spatial location and an outcome. This hypothesis is in concordance with the theory that short-term and long-term memory depend on dissociable psychological processes. In this study we tested GluA1-/- mice on both short-term and long-term spatial memory using a simple novelty preference task. Mice were given a series of repeated exposures to a particular spatial location (the arm of a Y-maze) before their preference for a novel spatial location (the unvisited arm of the maze) over the familiar spatial location was assessed. GluA1-/- mice were impaired if the interval between the trials was short (1 min), but showed enhanced spatial memory if the interval between the trials was long (24 h). This enhancement was caused by the interval between the exposure trials rather than the interval prior to the test, thus demonstrating enhanced learning and not simply enhanced performance or expression of memory. This seemingly paradoxical enhancement of hippocampus-dependent spatial learning may be caused by GluA1 gene deletion reducing the detrimental effects of short-term memory on subsequent long-term learning. Thus, these results support a dual-process model of memory in which short-term and long-term memory are separate and sometimes competitive processes.
An Ideal Observer Analysis of Visual Working Memory
Sims, Chris R.; Jacobs, Robert A.; Knill, David C.
2013-01-01
Limits in visual working memory (VWM) strongly constrain human performance across many tasks. However, the nature of these limits is not well understood. In this paper we develop an ideal observer analysis of human visual working memory, by deriving the expected behavior of an optimally performing, but limited-capacity memory system. This analysis is framed around rate–distortion theory, a branch of information theory that provides optimal bounds on the accuracy of information transmission subject to a fixed information capacity. The result of the ideal observer analysis is a theoretical framework that provides a task-independent and quantitative definition of visual memory capacity and yields novel predictions regarding human performance. These predictions are subsequently evaluated and confirmed in two empirical studies. Further, the framework is general enough to allow the specification and testing of alternative models of visual memory (for example, how capacity is distributed across multiple items). We demonstrate that a simple model developed on the basis of the ideal observer analysis—one which allows variability in the number of stored memory representations, but does not assume the presence of a fixed item limit—provides an excellent account of the empirical data, and further offers a principled re-interpretation of existing models of visual working memory. PMID:22946744
Memory for found targets interferes with subsequent performance in multiple-target visual search.
Cain, Matthew S; Mitroff, Stephen R
2013-10-01
Multiple-target visual searches--when more than 1 target can appear in a given search display--are commonplace in radiology, airport security screening, and the military. Whereas 1 target is often found accurately, additional targets are more likely to be missed in multiple-target searches. To better understand this decrement in 2nd-target detection, here we examined 2 potential forms of interference that can arise from finding a 1st target: interference from the perceptual salience of the 1st target (a now highly relevant distractor in a known location) and interference from a newly created memory representation for the 1st target. Here, we found that removing found targets from the display or making them salient and easily segregated color singletons improved subsequent search accuracy. However, replacing found targets with random distractor items did not improve subsequent search accuracy. Removing and highlighting found targets likely reduced both a target's visual salience and its memory load, whereas replacing a target removed its visual salience but not its representation in memory. Collectively, the current experiments suggest that the working memory load of a found target has a larger effect on subsequent search accuracy than does its perceptual salience. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Acute aerobic exercise hastens emotional recovery from a subsequent stressor.
Bernstein, Emily E; McNally, Richard J
2017-06-01
Despite findings that regular exercise is broadly associated with emotional well-being, more basic research is needed to deepen our understanding of the exercise and emotion connection. This paper examines how acute aerobic exercise in particular influences subjective emotional recovery from a subsequent stressor. Potential mediators and moderators, including level of physical fitness, attentional control, and perseverative negative thinking were explored. All of the participants (n = 95) completed 3 laboratory visits, each including 1 of 3 activities (i.e., cycling, resting, stretching), tests of working memory and attentional control, and an experimental stressor. Self-reported rumination after the stressor and the experience of positive and negative emotions throughout the study were recorded. In this within-subjects paradigm, as expected, higher rumination in response to the stressor predicted more persistent negative emotion afterward; this effect was attenuated only by prior acute aerobic exercise, in this case, cycling, both 5 min and 15 min poststressor. This effect was unrelated to physical fitness or cognitive performance. Physical fitness level did predict greater attentional control and the capacity to update working memory. Acute aerobic exercise may facilitate subjective emotional recovery from a subsequent stressor and improve emotional flexibility. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Fuzzy-trace theory: dual processes in memory, reasoning, and cognitive neuroscience.
Brainerd, C J; Reyna, V F
2001-01-01
Fuzzy-trace theory has evolved in response to counterintuitive data on how memory development influences the development of reasoning. The two traditional perspectives on memory-reasoning relations--the necessity and constructivist hypotheses--stipulate that the accuracy of children's memory for problem information and the accuracy of their reasoning are closely intertwined, albeit for different reasons. However, contrary to necessity, correlational and experimental dissociations have been found between children's memory for problem information that is determinative in solving certain problems and their solutions of those problems. In these same tasks, age changes in memory for problem information appear to be dissociated from age changes in reasoning. Contrary to constructivism, correlational and experimental dissociations also have been found between children's performance on memory tests for actual experience and memory tests for the meaning of experience. As in memory-reasoning studies, age changes in one type of memory performance do not seem to be closely connected to age changes in the other type of performance. Subsequent experiments have led to dual-process accounts in both the memory and reasoning spheres. The account of memory development features four other principles: parallel verbatim-gist storage, dissociated verbatim-gist retrieval, memorial bases of conscious recollection, and identity/similarity processes. The account of the development of reasoning features three principles: gist extraction, fuzzy-to-verbatim continua, and fuzzy-processing preferences. The fuzzy-processing preference is a particularly important notion because it implies that gist-based intuitive reasoning often suffices to deliver "logical" solutions and that such reasoning confers multiple cognitive advantages that enhance accuracy. The explanation of memory-reasoning dissociations in cognitive development then falls out of fuzzy-trace theory's dual-process models of memory and reasoning. More explicitly, in childhood reasoning tasks, it is assumed that both verbatim and gist traces of problem information are stored. Responding accurately to memory tests for presented problem information depends primarily on verbatim memory abilities (preserving traces of that information and accessing them when the appropriate memory probes are administered). However, accurate solutions to reasoning problems depend primarily on gist-memory abilities (extracting the correct gist from problem information, focusing on that gist during reasoning, and accessing reasoning operations that process that gist). Because verbatim and gist memories exhibit considerable dissociation, both during storage and when they are subsequently accessed on memory tests, dissociations of verbatim-based memory performance from gist-based reasoning are predictable. Conversely, associations are predicted in situations in which memory and reasoning are based on the same verbatim traces (Brainerd & Reyna, 1988) and in situations in which memory and reasoning are based on the same gist traces (Reyna & Kiernan, 1994). Fuzzy-trace theory's memory and reasoning principles have been applied in other research domains. Four such domains are developmental cognitive neuroscience studies of false memory, studies of false memory in brain-damaged patients, studies of reasoning errors in judgment and decision making, and studies of retrieval mechanisms in recall. In the first domain, the principles of parallel verbatim-gist storage, dissociated verbatim-gist retrieval, and identity/similarity processes have been used to explain both spontaneous and implanted false reports in children and in the elderly. These explanations have produced some surprising predictions that have been verified: false reports do not merely decline with age during childhood but increase under theoretically specified conditions; reports of events that were not experienced can nevertheless be highly persistent over time; and false reports can be suppressed by retrieving verbatim traces of corresponding true events. In the second domain, the same principles have been invoked to explain why some forms of brain damage lead to elevated levels of false memory and other forms lead to reduced levels of false memory. In the third domain, the principles of gist extraction, fuzzy-to-verbatim continua, and fuzzy-processing preferences have been exploited to formulate a general theory of loci of processing failures in judgment and decision making, cluminating in a developmental account of degrees of rationality that distinguishes more and less advanced reasoning. This theory has in turn been used to formulate local models, such as the inclusion illusions model, that explain the characteristic reasoning errors that are observed on specific judgment and decision-making tasks. Finally, in the fourth domain, a dual-process conception of recall has been derived from the principles of parallel verbatim-gist storage and dissociated verbatim-gist retrieval. In this conception, which has been used to explain cognitive triage effects in recall and robust false recall, targets are recalled either by directly accessing their verbatim traces and reading the retrieved information out of consciousness or by reconstructively processing their gist traces.
Sadeh, Talya; Maril, Anat; Goshen-Gottstein, Yonatan
2012-07-01
The subsequent-memory (SM) paradigm uncovers brain mechanisms that are associated with mnemonic activity during encoding by measuring participants' neural activity during encoding and classifying the encoding trials according to performance in the subsequent retrieval phase. The majority of these studies have converged on the notion that the mechanism supporting recognition is mediated by familiarity and recollection. The process of recollection is often assumed to be a recall-like process, implying that the active search for the memory trace is similar, if not identical, for recall and recognition. Here we challenge this assumption and hypothesize - based on previous findings obtained in our lab - that the recollective processes underlying recall and recognition might show dissociative patterns of encoding-related brain activity. To this end, our design controlled for familiarity, thereby focusing on contextual, recollective processes. We found evidence for dissociative neurocognitive encoding mechanisms supporting subsequent-recall and subsequent-recognition. Specifically, the contrast of subsequent-recognition versus subsequent-recall revealed activation in the Parahippocampal cortex (PHc) and the posterior hippocampus--regions associated with contextual processing. Implications of our findings and their relation to current cognitive models of recollection are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Programs for Testing Processor-in-Memory Computing Systems
NASA Technical Reports Server (NTRS)
Katz, Daniel S.
2006-01-01
The Multithreaded Microbenchmarks for Processor-In-Memory (PIM) Compilers, Simulators, and Hardware are computer programs arranged in a series for use in testing the performances of PIM computing systems, including compilers, simulators, and hardware. The programs at the beginning of the series test basic functionality; the programs at subsequent positions in the series test increasingly complex functionality. The programs are intended to be used while designing a PIM system, and can be used to verify that compilers, simulators, and hardware work correctly. The programs can also be used to enable designers of these system components to examine tradeoffs in implementation. Finally, these programs can be run on non-PIM hardware (either single-threaded or multithreaded) using the POSIX pthreads standard to verify that the benchmarks themselves operate correctly. [POSIX (Portable Operating System Interface for UNIX) is a set of standards that define how programs and operating systems interact with each other. pthreads is a library of pre-emptive thread routines that comply with one of the POSIX standards.
Neural Differentiation of Incorrectly Predicted Memories.
Kim, Ghootae; Norman, Kenneth A; Turk-Browne, Nicholas B
2017-02-22
When an item is predicted in a particular context but the prediction is violated, memory for that item is weakened (Kim et al., 2014). Here, we explore what happens when such previously mispredicted items are later reencountered. According to prior neural network simulations, this sequence of events-misprediction and subsequent restudy-should lead to differentiation of the item's neural representation from the previous context (on which the misprediction was based). Specifically, misprediction weakens connections in the representation to features shared with the previous context and restudy allows new features to be incorporated into the representation that are not shared with the previous context. This cycle of misprediction and restudy should have the net effect of moving the item's neural representation away from the neural representation of the previous context. We tested this hypothesis using human fMRI by tracking changes in item-specific BOLD activity patterns in the hippocampus, a key structure for representing memories and generating predictions. In left CA2/3/DG, we found greater neural differentiation for items that were repeatedly mispredicted and restudied compared with items from a control condition that was identical except without misprediction. We also measured prediction strength in a trial-by-trial fashion and found that greater misprediction for an item led to more differentiation, further supporting our hypothesis. Therefore, the consequences of prediction error go beyond memory weakening. If the mispredicted item is restudied, the brain adaptively differentiates its memory representation to improve the accuracy of subsequent predictions and to shield it from further weakening. SIGNIFICANCE STATEMENT Competition between overlapping memories leads to weakening of nontarget memories over time, making it easier to access target memories. However, a nontarget memory in one context might become a target memory in another context. How do such memories get restrengthened without increasing competition again? Computational models suggest that the brain handles this by reducing neural connections to the previous context and adding connections to new features that were not part of the previous context. The result is neural differentiation away from the previous context. Here, we provide support for this theory, using fMRI to track neural representations of individual memories in the hippocampus and how they change based on learning. Copyright © 2017 the authors 0270-6474/17/372022-10$15.00/0.
Mechanisms of mechanical strain memory in airway smooth muscle.
Kim, Hak Rim; Hai, Chi-Ming
2005-10-01
We evaluated the hypothesis that mechanical deformation of airway smooth muscle induces structural remodeling of airway smooth muscle cells, thereby modulating mechanical performance in subsequent contractions. This hypothesis implied that past experience of mechanical deformation was retained (or "memorized") as structural changes in airway smooth muscle cells, which modulated the cell's subsequent contractile responses. We termed this phenomenon mechanical strain memory. Preshortening has been found to induce attenuation of both force and isotonic shortening velocity in cholinergic receptor-activated airway smooth muscle. Rapid stretching of cholinergic receptor-activated airway smooth muscle from an initial length to a final length resulted in post-stretch force and myosin light chain phosphorylation that correlated significantly with initial length. Thus post-stretch muscle strips appeared to retain memory of the initial length prior to rapid stretch (mechanical strain memory). Cytoskeletal recruitment of actin- and integrin-binding proteins and Erk 1/2 MAPK appeared to be important mechanisms of mechanical strain memory. Sinusoidal length oscillation led to force attenuation during oscillation and in subsequent contractions in intact airway smooth muscle, and p38 MAPK appeared to be an important mechanism. In contrast, application of local mechanical strain to cultured airway smooth muscle cells induced local actin polymerization and cytoskeletal stiffening. It is conceivable that deep inspiration-induced bronchoprotection may be a manifestation of mechanical strain memory such that mechanical deformation from past breathing cycles modulated the mechanical performance of airway smooth muscle in subsequent cycles in a continuous and dynamic manner.
Testing memory for unseen visual stimuli in patients with extinction and spatial neglect.
Vuilleumier, Patrik; Schwartz, Sophie; Clarke, Karen; Husain, Masud; Driver, Jon
2002-08-15
Visual extinction after right parietal damage involves a loss of awareness for stimuli in the contralesional field when presented concurrently with ipsilesional stimuli, although contralesional stimuli are still perceived if presented alone. However, extinguished stimuli can still receive some residual on-line processing, without awareness. Here we examined whether such residual processing of extinguished stimuli can produce implicit and/or explicit memory traces lasting many minutes. We tested four patients with right parietal damage and left extinction on two sessions, each including distinct study and subsequent test phases. At study, pictures of objects were shown briefly in the right, left, or both fields. Patients were asked to name them without memory instructions (Session 1) or to make an indoor/outdoor categorization and memorize them (Session 2). They extinguished most left stimuli on bilateral presentation. During the test (up to 48 min later), fragmented pictures of the previously exposed objects (or novel objects) were presented alone in either field. Patients had to identify each object and then judge whether it had previously been exposed. Identification of fragmented pictures was better for previously exposed objects that had been consciously seen and critically also for objects that had been extinguished (as compared with novel objects), with no influence of the depth of processing during study. By contrast, explicit recollection occurred only for stimuli that were consciously seen at study and increased with depth of processing. These results suggest implicit but not explicit memory for extinguished visual stimuli in parietal patients.
Kong, Tianzhu; He, Yini; Auerbach, Randy P.; McWhinnie, Chad M.; Xiao, Jing
2015-01-01
Objective In this study, we examined the mediator effects of overgeneral autobiographical memory (OGM) on the relationship between rumination and depression in 323 Chinese university students. Method 323 undergraduates completed the questionnaires measuring OGM (Autobiographical Memory Test), rumination (Ruminative Response Scale) and depression (Center for Epidemiologic Studies Depression Scale). Results Results using structural equation modeling showed that OGM partially-mediated the relationship between rumination and depression (χ2 = 88.61, p < .01; RMSEA = .051; SRMR = .040; and CFI = .91). Bootstrap methods were used to assess the magnitude of the indirect effects. The results of the bootstrap estimation procedure and subsequent analyses indicated that the indirect effects of OGM on the relationship between rumination and depressive symptoms were significant. Conclusion The results indicated that rumination and depression were partially mediated by OGM. PMID:25977594
Maillet, David; Rajah, M Natasha
2016-06-01
Recent evidence indicates that young adults frequently exhibit task-unrelated thoughts (TUTs) such as mind-wandering during episodic encoding tasks and that TUTs negatively impact subsequent memory. In the current study, we assessed age-related differences in the frequency and neural correlates of TUTs during a source memory encoding task, as well as age-related differences in the relationship between the neural correlates of TUTs and subsequent source forgetting effects (i.e., source misses). We found no age-related differences in frequency of TUTs during fMRI scanning. Moreover, TUT frequency at encoding was positively correlated with source misses at retrieval across age groups. In both age groups, brain regions including bilateral middle/superior frontal gyri and precuneus were activated to a greater extent during encoding for subsequent source misses versus source hits and during TUTs versus on-task episodes. Overall, our results reveal that, during a source memory encoding task in an fMRI environment, young and older adults exhibit a similar frequency of TUTs and that experiencing TUTs at encoding is associated with decreased retrieval performance. In addition, in both age groups, experiencing TUTs at encoding is associated with increased activation in some of the same regions that exhibit subsequent source forgetting effects.
Sinha, Neha; Glass, Arnold Lewis
2015-01-01
Three experiments, two performed in the laboratory and one embedded in a college psychology lecture course, investigated the effects of immediate versus delayed feedback following a multiple-choice exam on subsequent short answer and multiple-choice exams. Performance on the subsequent multiple-choice exam was not affected by the timing of the feedback on the prior exam; however, performance on the subsequent short answer exam was better following delayed than following immediate feedback. This was true regardless of the order in which immediate versus delayed feedback was given. Furthermore, delayed feedback only had a greater effect than immediate feedback on subsequent short answer performance following correct, confident responses on the prior exam. These results indicate that delayed feedback cues a student's prior response and increases subsequent recollection of that response. The practical implication is that delayed feedback is better than immediate feedback during academic testing.
How do students implement collaborative testing in real-world contexts?
Wissman, Kathryn T; Rawson, Katherine A
2016-01-01
Recent research has explored the effects of collaborative testing, showing costs and benefits during learning and for subsequent memory. However, no prior research is informative about whether and how students use collaborative testing in real-world contexts. Accordingly, the primary purpose of the current research was to explore the extent to which students use collaborative testing during self-regulated learning. We conducted three surveys (n = 692 across three samples) asking students about their use of collaborative testing, with a particular interest in conditions under which students report implementing collaborative testing. Among the key outcomes, a majority of students reported using collaborative testing when studying in a group. Additionally, students reported that key term definitions are the material most often used during collaborative testing. Students are also more motivated to use testing and believe testing is more effective and more fun when implemented in a group versus alone. Outcomes also shed light on metacognitive components of collaborative testing, with the student asking (versus answering) the question making the monitoring judgement whereas both students make the control decision about when to terminate practice. We discuss ways in which the collaborative memory literature can be extended to support more successful student learning.
Smets, Jorien; Griffith, James W; Wessel, Ineke; Walschaerts, Dominique; Raes, Filip
2013-01-01
According to the CaRFAX model, rumination is one of the key underlying mechanisms of overgeneral autobiographical memory (OGM). The association between rumination and OGM is well established in clinical populations, but this relationship is not robust in nonclinical samples. A series of null findings is reported in the current paper. Additionally we followed up on recent findings suggesting that a state of rumination needs to be active in order to detect a relationship between trait-rumination and OGM. Secondary school students (N= 123) completed questionnaires assessing trait-rumination and depressive symptoms as well as two autobiographical memory tests (AMTs), one before and one after a self-discrepancy induction. This induction should trigger state-rumination, which would subsequently promote the retrieval of general rather than specific memories. Trait-rumination failed to predict increases in OGM. We did find, however, that higher BDI-II scores were positively related to an increase in OGM following the induction. This adds to the growing body of evidence that OGM reactivity might be more important than baseline memory specificity.
The contribution of general cognitive abilities and approximate number system to early mathematics.
Passolunghi, Maria Chiara; Cargnelutti, Elisa; Pastore, Massimiliano
2014-12-01
Math learning is a complex process that entails a wide range of cognitive abilities to be fulfilled. There is sufficient evidence that both general and specific cognitive skills assume a fundamental role, despite the absence of shared consensus about the relative extent of their involvement. Moreover, regarding general abilities, there is no agreement about the recruitment of the different memory components or of intelligence. In relation to specific factors, great debate subsists regarding the role of the approximate number system (ANS). Starting from these considerations, we wanted to conduct a wide assessment of memory components and ANS, by controlling for the effects associated with intelligence and also exploring possible relationships between all precursors. To achieve this purpose, a sample of 157 children was tested at both beginning and end of their Grade 1. Both general (memory and intelligence) and specific (ANS) precursors were evaluated by a wide battery of tests and put in relation to concurrent and subsequent math skills. Memory was explored in passive and active aspects involving both verbal and visuo-spatial components. Path analysis results demonstrated that memory, and especially the more active processes, and intelligence were the strongest precursors in both assessment times. ANS had a milder role which lost significance by the end of the school year. Memory and ANS seemed to influence early mathematics almost independently. Both general and specific precursors seemed to have a crucial role in early math competences, despite the lower involvement of ANS. © 2014 The British Psychological Society.
Inhibition of hippocampal aromatization impairs spatial memory performance in a male songbird.
Bailey, David J; Ma, Chunqi; Soma, Kiran K; Saldanha, Colin J
2013-12-01
Recent studies have revealed the presence and regulation of aromatase at the vertebrate synapse, and identified a critical role played by presynaptic estradiol synthesis in the electrophysiological response to auditory and other social cues. However, if and how synaptic aromatization affects behavior remains to be directly tested. We have exploited 3 characteristics of the zebra finch hippocampus (HP) to test the role of synaptocrine estradiol provision on spatial memory function. Although the zebra finch HP contains abundant aromatase transcripts and enzyme activity, immunocytochemical studies reveal widespread pre- and postsynaptic, but sparse to undetectable somal, localization of this enzyme. Further, the superficial location of the avian HP makes possible the more exclusive manipulation of its neurochemical characteristics without perturbation of the neuropil and the resultant induction of astroglial aromatase. Last, as in other vertebrates, the HP is critical for spatial memory performance in this species. Here we report that local inhibition of hippocampal aromatization impairs spatial memory performance in an ecologically valid food-finding task. Local aromatase inhibition also resulted in lower levels of estradiol in the HP, but not in adjacent brain areas, and was achieved without the induction of astroglial aromatase. The observed decrement in acquisition and subsequent memory performance as a consequence of lowered aromatization was similar to that achieved by lesioning this locus. Thus, hippocampal aromatization, much of which is achieved at the synapse in this species, is critical for spatial memory performance.
Spencer, Caroline; Weber-Fox, Christine
2014-09-01
In preschool children, we investigated whether expressive and receptive language, phonological, articulatory, and/or verbal working memory proficiencies aid in predicting eventual recovery or persistence of stuttering. Participants included 65 children, including 25 children who do not stutter (CWNS) and 40 who stutter (CWS) recruited at age 3;9-5;8. At initial testing, participants were administered the Test of Auditory Comprehension of Language, 3rd edition (TACL-3), Structured Photographic Expressive Language Test, 3rd edition (SPELT-3), Bankson-Bernthal Test of Phonology-Consonant Inventory subtest (BBTOP-CI), Nonword Repetition Test (NRT; Dollaghan & Campbell, 1998), and Test of Auditory Perceptual Skills-Revised (TAPS-R) auditory number memory and auditory word memory subtests. Stuttering behaviors of CWS were assessed in subsequent years, forming groups whose stuttering eventually persisted (CWS-Per; n=19) or recovered (CWS-Rec; n=21). Proficiency scores in morphosyntactic skills, consonant production, verbal working memory for known words, and phonological working memory and speech production for novel nonwords obtained at the initial testing were analyzed for each group. CWS-Per were less proficient than CWNS and CWS-Rec in measures of consonant production (BBTOP-CI) and repetition of novel phonological sequences (NRT). In contrast, receptive language, expressive language, and verbal working memory abilities did not distinguish CWS-Rec from CWS-Per. Binary logistic regression analysis indicated that preschool BBTOP-CI scores and overall NRT proficiency significantly predicted future recovery status. Results suggest that phonological and speech articulation abilities in the preschool years should be considered with other predictive factors as part of a comprehensive risk assessment for the development of chronic stuttering. At the end of this activity the reader will be able to: (1) describe the current status of nonlinguistic and linguistic predictors for recovery and persistence of stuttering; (2) summarize current evidence regarding the potential value of consonant cluster articulation and nonword repetition abilities in helping to predict stuttering outcome in preschool children; (3) discuss the current findings in relation to potential implications for theories of developmental stuttering; (4) discuss the current findings in relation to potential considerations for the evaluation and treatment of developmental stuttering. Copyright © 2014 Elsevier Inc. All rights reserved.
Leshikar, Eric D.; Duarte, Audrey
2013-01-01
Behavioral evidence suggests that young and older adults show a benefit in source memory accuracy when processing materials in reference to the self. In the young, activity within the medial prefrontal cortex supports this source memory benefit at study. This investigation examined whether the same neural regions support this memory benefit in both age groups. Using fMRI, participants were scanned while studying and retrieving pictures of objects paired with one of three scenes (source) under self-reference and other-reference conditions. At the time of study, half of the items were presented once and half twice, allowing us to match behavioral performance between groups. Both groups showed equivalent source accuracy benefit for objects encoded self-referentially. Activity in the left dorsal medial prefrontal cortex supported subsequent source memory in both age groups for the self-referenced relative to the other-referenced items. At the time of test, source accuracy for both self- and other-referenced items was supported by a network of regions including the precuneus in both age groups. At both study and test, little in the way of age-differences emerged, suggesting that when matched on behavioral performance young and older adults engage similar regions in support of source memory when processing materials in reference to the self; however, when performance was not matched, age differences in functional recruitment were prevalent. These results suggest that by capitalizing on preserved processes (self-referential encoding), older adults can show improvement in memory for source details which typically are not well remembered relative to the young. PMID:23904335
Shifting Visual Perspective During Retrieval Shapes Autobiographical Memories
St Jacques, Peggy L.; Szpunar, Karl K.; Schacter, Daniel L.
2016-01-01
The dynamic and flexible nature of memories is evident in our ability to adopt multiple visual perspectives. Although autobiographical memories are typically encoded from the visual perspective of our own eyes they can be retrieved from the perspective of an observer looking at our self. Here, we examined the neural mechanisms of shifting visual perspective during long-term memory retrieval and its influence on online and subsequent memories using functional magnetic resonance imaging (fMRI). Participants generated specific autobiographical memories from the last five years and rated their visual perspective. In a separate fMRI session, they were asked to retrieve the memories across three repetitions while maintaining the same visual perspective as their initial rating or by shifting to an alternative perspective. Visual perspective shifting during autobiographical memory retrieval was supported by a linear decrease in neural recruitment across repetitions in the posterior parietal cortices. Additional analyses revealed that the precuneus, in particular, contributed to both online and subsequent changes in the phenomenology of memories. Our findings show that flexibly shifting egocentric perspective during autobiographical memory retrieval is supported by the precuneus, and suggest that this manipulation of mental imagery during retrieval has consequences for how memories are retrieved and later remembered. PMID:27989780
Berkers, Ruud M W J; Klumpers, Floris; Fernández, Guillén
2016-10-01
Emotionally charged items are often remembered better, whereas a paradoxical loss of specificity is found for associative emotional information (specific memory). The balance between specific and generalized emotional memories appears to show large individual differences, potentially related to differences in (the risk for) affective disorders that are characterized by 'overgeneralized' emotional memories. Here, we investigate the neural underpinnings of individual differences in emotional associative memory. A large group of healthy male participants were scanned while encoding associations of face-photographs and written occupational identities that were of either neutral ('driver') or negative ('murderer') valence. Subsequently, memory was tested by prompting participants to retrieve the occupational identities corresponding to each face. Whereas in both valence categories a similar amount of faces was labeled correctly with 'neutral' and 'negative' identities, (gist memory), specific associations were found to be less accurately remembered when the occupational identity was negative compared to neutral (specific memory). This pattern of results suggests reduced memory specificity for associations containing a negatively valenced component. The encoding of these negative associations was paired with a selective increase in medial prefrontal cortex activity and medial prefrontal-hippocampal connectivity. Individual differences in valence-specific neural connectivity were predictive of valence-specific reduction of memory specificity. The relationship between loss of emotional memory specificity and medial prefrontal-hippocampal connectivity is in line with the hypothesized role of a medial prefrontal-hippocampal circuit in regulating memory specificity, and warrants further investigations in individuals displaying 'overgeneralized' emotional memories. Copyright © 2016 Elsevier Inc. All rights reserved.
Auditory memory in monkeys: costs and benefits of proactive interference.
Bigelow, James; Poremba, Amy
2013-05-01
Proactive interference (PI) has traditionally been understood as an adverse consequence of stimulus repetition during memory tasks. Herein, we present data that emphasize costs as well as benefits of PI for monkeys performing an auditory delayed matching-to-sample (DMTS) task. The animals made same/different judgments for a variety of simple and complex sounds separated by a 5-s memory delay. Each session used a stimulus set that included eight sounds; thus, each sound was repeated multiple times per session for match trials and for nonmatch trials as the sample (Cue 1) or test (Cue 2) stimulus. For nonmatch trials, performance was substantially diminished when the test stimulus had been previously presented on a recent trial. However, when the sample stimulus had been recently presented, performance was significantly improved. We also observed a marginal performance benefit when stimuli for match trials had been recently presented. The costs of PI for nonmatch test stimuli were greater than the combined benefits of PI for nonmatch sample stimuli and match trials, indicating that the net influence of PI is detrimental. For all three manifestations of PI, the effects are shown to extend beyond the immediately subsequent trial. Our data suggest that PI in auditory DMTS is best understood as an enduring influence that can be both detrimental and beneficial to memory-task performance. © 2012 Wiley Periodicals, Inc.
Bugaiska, Aurélia; Clarys, David; Jarry, Caroline; Taconnat, Laurence; Tapia, Géraldine; Vanneste, Sandrine; Isingrini, Michel
2007-12-01
This study was designed to investigate the effects of aging on consciousness in recognition memory, using the Remember/Know/Guess procedure (Gardiner, J. M., & Richarson-Klavehn, A. (2000). Remembering and Knowing. In E. Tulving & F. I. M. Craik (Eds.), The Oxford Handbook of Memory. Oxford University Press.). In recognition memory, older participants report fewer occasions on which recognition is accompanied by recollection of the original encoding context. Two main hypotheses were tested: the speed mediation hypothesis (Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 3, 403-428) and the executive-aging hypothesis (West, R. L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120, 272-292). A group of young and a group of older adults took a recognition test in which they classified their responses according to Gardiner, J. M., & Richarson-Klavehn, A. (2000). Remembering and Knowing. In E. Tulving & F. I. M. Craik (Eds.), The Oxford Handbook of Memory. Oxford University Press. remember-know-guess paradigm. Subsequently, participants completed processing speed and executive function tests. The results showed that among the older participants, R responses decreased, but K responses did not. Moreover, a hierarchical regression analysis supported the view that the effect of age in recollection experience is determined by frontal lobe integrity and not by diminution of processing speed.
Hippocampus Is Place of Interaction between Unconscious and Conscious Memories
Züst, Marc Alain; Colella, Patrizio; Reber, Thomas Peter; Vuilleumier, Patrik; Hauf, Martinus; Ruch, Simon; Henke, Katharina
2015-01-01
Recent evidence suggests that humans can form and later retrieve new semantic relations unconsciously by way of hippocampus—the key structure also recruited for conscious relational (episodic) memory. If the hippocampus subserves both conscious and unconscious relational encoding/retrieval, one would expect the hippocampus to be place of unconscious-conscious interactions during memory retrieval. We tested this hypothesis in an fMRI experiment probing the interaction between the unconscious and conscious retrieval of face-associated information. For the establishment of unconscious relational memories, we presented subliminal (masked) combinations of unfamiliar faces and written occupations (“actor” or “politician”). At test, we presented the former subliminal faces, but now supraliminally, as cues for the reactivation of the unconsciously associated occupations. We hypothesized that unconscious reactivation of the associated occupation—actor or politician—would facilitate or inhibit the subsequent conscious retrieval of a celebrity’s occupation, which was also actor or politician. Depending on whether the reactivated unconscious occupation was congruent or incongruent to the celebrity’s occupation, we expected either quicker or delayed conscious retrieval process. Conscious retrieval was quicker in the congruent relative to a neutral baseline condition but not delayed in the incongruent condition. fMRI data collected during subliminal face-occupation encoding confirmed previous evidence that the hippocampus was interacting with neocortical storage sites of semantic knowledge to support relational encoding. fMRI data collected at test revealed that the facilitated conscious retrieval was paralleled by deactivations in the hippocampus and neocortical storage sites of semantic knowledge. We assume that the unconscious reactivation has pre-activated overlapping relational representations in the hippocampus reducing the neural effort for conscious retrieval. This finding supports the notion of synergistic interactions between conscious and unconscious relational memories in a common, cohesive hippocampal-neocortical memory space. PMID:25826338
Retrospective attention in short-term memory has a lasting effect on long-term memory across age.
Strunk, Jonathan; Morgan, Lauren; Reaves, Sarah; Verhaeghen, Paul; Duarte, Audrey
2018-04-13
Declines in both short- and long-term memory are typical of healthy aging. Recent findings suggest that retrodictive attentional cues ("retro-cues") that indicate the location of to-be-probed items in short-term memory (STM) have a lasting impact on long-term memory (LTM) performance in young adults. Whether older adults can also use retro-cues to facilitate both STM and LTM is unknown. Young and older adults performed a visual STM task in which spatially informative retro-cues or non-informative neutral-cues were presented during STM maintenance of real-world objects. We tested participants' memory at both STM and LTM delays for objects that were previously cued with retrodictive or neutral cues during STM order to measure the lasting impact of retrospective attention on LTM. Older adults showed reduced STM and LTM capacity compared to young adults. However, they showed similar magnitude retro-cue memory benefits as young adults at both STM and LTM delays. To the best of our knowledge, this is the first study to investigate whether retro-cues in STM facilitate the encoding of objects into LTM such that they are more likely to be subsequently retrieved by older adults. Our results support the idea that retrospective attention can be an effective means by which older adults can improve their short and long-term memory performance, even in the context of reduced memory capacity.
Where to start? Bottom-up attention improves working memory by determining encoding order.
Ravizza, Susan M; Uitvlugt, Mitchell G; Hazeltine, Eliot
2016-12-01
The present study aimed to characterize the mechanism by which working memory is enhanced for items that capture attention because of their novelty or saliency-that is, via bottom-up attention. The first experiment replicated previous research by corroborating that bottom-up attention directed to an item is sufficient for enhancing working memory and, moreover, generalized the effect to the domain of verbal working memory. The subsequent 3 experiments sought to determine how bottom-up attention affects working memory. We considered 2 hypotheses: (1) Bottom-up attention enhances the encoded representation of the stimulus, similar to how voluntary attention functions, or (2) It affects the order of encoding by shifting priority onto the attended stimulus. By manipulating how stimuli were presented (simultaneous/sequential display) and whether the cue predicted the tested items, we found evidence that bottom-up attention improves working memory performance via the order of encoding hypothesis. This finding was observed across change detection and free recall paradigms. In contrast, voluntary attention improved working memory regardless of encoding order and showed greater effects on working memory. We conclude that when multiple information sources compete, bottom-up attention prioritizes the location at which encoding should begin. When encoding order is set, bottom-up attention has little or no benefit to working memory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Arntzen, Kjell Arne; Schirmer, Henrik; Johnsen, Stein Harald; Wilsgaard, Tom; Mathiesen, Ellisiv B
2012-01-01
Carotid artery atherosclerosis is a major risk factor for stroke and subsequent cognitive impairment. Prospective population studies have shown associations between carotid intima-media thickness (IMT) and stenosis and cognitive decline and dementia in elderly stroke-free persons, whereas results in the middle-aged are conflicting. In this prospective population-based study, 4,371 stroke-free middle-aged participants underwent carotid ultrasound examination and assessment of vascular risk factors at baseline and were tested for cognitive function 7 years later. Associations between IMT, number of plaques and total plaque area and cognitive test scores on verbal memory test, digit symbol-coding test and tapping test were assessed in linear regression models. In the multivariable analyses adjusted for sex, age, education, depression and vascular risk factors, the presence of plaques was significantly associated with lower test scores on the verbal memory test (p = 0.01) and on the digit symbol-coding test (p = 0.03). The number of plaques (p = 0.01) and the total plaque area (p = 0.02) were associated with lower scores on the verbal memory test. No significant association was seen between common carotid artery IMT and cognitive test scores. The tapping test was not associated with the carotid ultrasound variables. In this middle-aged general population, subclinical carotid atherosclerosis measured as the presence of plaques, number of plaques and total plaque area were independent long-term predictors of lower cognitive test scores. Copyright © 2012 S. Karger AG, Basel.
Destination memory and deception: when I lie to Barack Obama about the moon.
Haj, Mohamad El; Saloppé, Xavier; Nandrino, Jean Louis
2018-05-01
This study investigates whether deceivers demonstrate high memory of the person to whom lies have been told (i.e., high destination memory). Participants were asked to tell true information (e.g., the heart is a vital organ) and false information (e.g., the moon is bigger than the sun) to pictures of famous people (e.g., Barack Obama) and, in a subsequent recognition test, they had to remember to whom each type of information had previously been told. Participants were also assessed on a deception scale to divide them into two populations (i.e., those with high vs. those with low deception). Participants with high tendency to deceive demonstrated similar destination memory for both false and true information, whereas those with low deception demonstrated higher destination memory for lies than for true information. Individuals with a high tendency to deceive seem to keep track of the destination of both true information and lies to be consistent in their future social interactions, and thus to avoid discovery of their deception. However, the inconsistency between deceiving and the moral standard of individuals with a low tendency to deceive may result in high destination memory in these individuals.
Schofield, P W; Marder, K; Dooneief, G; Jacobs, D M; Sano, M; Stern, Y
1997-05-01
The validity of subjective memory complaints has been questioned by clinical studies that have shown little relationship between memory complaints and objective memory performance. These studies often have been cross-sectional in design, have excluded individuals with cognitive impairment, or have lacked a comparison group. The authors conducted a study that attempted to avoid these limitations. Memory complaints of 364 nondemented, community-dwelling elderly individuals were recorded as present or absent at the baseline evaluation. After 1 year, 169 subjects were reevaluated. Standardized neurologic and neuropsychological evaluations were used at each assessment to classify subjects as normal or cognitively impaired. At baseline, 31% of the normal subjects and 47% of those with cognitive impairment had memory complaints. Subjects with memory complaints had higher Hamilton depression scale scores than subjects without memory complaints but equivalent scores on a measure of total recall. At follow-up, multivariate analyses showed that subjects with baseline memory complaints had significantly greater decline in memory and cognition than subjects without memory complaints. Secondary analyses showed this effect to be confined to subjects with baseline cognitive impairment. Memory complaints may lack validity in subjects with normal cognition, but in nondemented individuals with cognitive impairment, memory complaints may predict subsequent cognitive decline.
Lines, Justin
2017-01-01
The context in which learning occurs is sufficient to reconsolidate stored memories and neuronal reactivation may be crucial to memory consolidation during sleep. The mechanisms of context-dependent and sleep-dependent memory (re)consolidation are unknown but involve the hippocampus. We simulated memory (re)consolidation using a connectionist model of the hippocampus that explicitly accounted for its dorsoventral organization and for CA1 proximodistal processing. Replicating human and rodent (re)consolidation studies yielded the following results. (1) Semantic overlap between memory items and extraneous learning was necessary to explain experimental data and depended crucially on the recurrent networks of dorsal but not ventral CA3. (2) Stimulus-free, sleep-induced internal reactivations of memory patterns produced heterogeneous recruitment of memory items and protected memories from subsequent interference. These simulations further suggested that the decrease in memory resilience when subjects were not allowed to sleep following learning was primarily due to extraneous learning. (3) Partial exposure to the learning context during simulated sleep (i.e., targeted memory reactivation) uniformly increased memory item reactivation and enhanced subsequent recall. Altogether, these results show that the dorsoventral and proximodistal organization of the hippocampus may be important components of the neural mechanisms for context-based and sleep-based memory (re)consolidations. PMID:28757864
Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease
Roy, Dheeraj S.; Arons, Autumn; Mitchell, Teryn I.; Pignatelli, Michele; Ryan, Tomás J.; Tonegawa, Susumu
2016-01-01
Summary Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive memory decline and subsequent loss of broader cognitive functions1. Memory decline in early stages of Alzheimer’s is mostly limited to episodic memory, for which the hippocampus (HPC) plays a crucial role2. However, it has been uncertain whether the observed amnesia in early stages of Alzheimer’s is due to disrupted encoding and consolidation of episodic information, or an impairment in the retrieval of stored memory information. Here we show that in transgenic mouse models of early Alzheimer’s, direct optogenetic activation of hippocampal memory engram cells results in memory retrieval despite the fact that these mice are amnesic in long-term memory tests when natural recall cues are utilized, revealing a retrieval, rather than a storage impairment. Prior to amyloid plaque deposition, the amnesia in these mice is age-dependent3–5, which correlates with a progressive reduction of spine density of hippocampal dentate gyrus (DG) engram cells. We show that optogenetic induction of long-term potentiation (LTP) at perforant path (PP) synapses of DG engram cells restores both spine density and long-term memory. We also demonstrate that an ablation of DG engram cells containing restored spine density prevents the rescue of long-term memory. Thus, selective rescue of spine density in engram cells may lead to an effective strategy for treating memory loss in early stages of Alzheimer’s disease. PMID:26982728
Memory and consciousness: trace distinctiveness in memory retrievals.
Brunel, Lionel; Oker, Ali; Riou, Benoit; Versace, Rémy
2010-12-01
The aim of this article was to provide experimental evidence that classical dissociation between levels of consciousness associated with memory retrieval (i.e., implicit or explicit) can be explained in terms of task dependency and distinctiveness of traces. In our study phase, we manipulated the level of isolation (partial vs. global) of the memory trace by means of an isolation paradigm (isolated words among non-isolated words). We then tested these two types of isolation in a series of tasks of increasing complexity: a lexical decision task, a recognition task, and a free recall task. The main result of this study was that distinctiveness effects were observed as a function of the type of isolation (level of isolation) and the nature of the task. We concluded that trace distinctiveness improves subsequent access to the trace, while the level of trace distinctiveness also appears to determine the possibility of conscious or explicit retrieval. Copyright © 2010 Elsevier Inc. All rights reserved.
Younger and Older Adults Weigh Multiple Cues in a Similar Manner to Generate Judgments of Learning
Hines, Jarrod C.; Hertzog, Christopher; Touron, Dayna R.
2015-01-01
One's memory for past test performance (MPT) is a key piece of information individuals use when deciding how to restudy material. We used a multi-trial recognition memory task to examine adult age differences in the influence of MPT (measured by actual Trial 1 memory accuracy and subjective confidence judgments, CJs) along with Trial 1 judgments of learning (JOLs), objective and participant-estimated recognition fluencies, and Trial 2 study time on Trial 2 JOLs. We found evidence of simultaneous and independent influences of multiple objective and subjective (i.e., metacognitive) cues on Trial 2 JOLs, and these relationships were highly similar for younger and older adults. Individual differences in Trial 1 recognition accuracy and CJs on Trial 2 JOLs indicate that individuals may vary in the degree to which they rely on each MPT cue when assessing subsequent memory confidence. Aging appears to spare the ability to access multiple cues when making JOLs. PMID:25827630
Memory and other properties of multiple test procedures generated by entangled graphs.
Maurer, Willi; Bretz, Frank
2013-05-10
Methods for addressing multiplicity in clinical trials have attracted much attention during the past 20 years. They include the investigation of new classes of multiple test procedures, such as fixed sequence, fallback and gatekeeping procedures. More recently, sequentially rejective graphical test procedures have been introduced to construct and visualize complex multiple test strategies. These methods propagate the local significance level of a rejected null hypothesis to not-yet rejected hypotheses. In the graph defining the test procedure, hypotheses together with their local significance levels are represented by weighted vertices and the propagation rule by weighted directed edges. An algorithm provides the rules for updating the local significance levels and the transition weights after rejecting an individual hypothesis. These graphical procedures have no memory in the sense that the origin of the propagated significance level is ignored in subsequent iterations. However, in some clinical trial applications, memory is desirable to reflect the underlying dependence structure of the study objectives. In such cases, it would allow the further propagation of significance levels to be dependent on their origin and thus reflect the grouped parent-descendant structures of the hypotheses. We will give examples of such situations and show how to induce memory and other properties by convex combination of several individual graphs. The resulting entangled graphs provide an intuitive way to represent the underlying relative importance relationships between the hypotheses, are as easy to perform as the original individual graphs, remain sequentially rejective and control the familywise error rate in the strong sense. Copyright © 2012 John Wiley & Sons, Ltd.
Dissociation of item and source memory in rhesus monkeys.
Basile, Benjamin M; Hampton, Robert R
2017-09-01
Source memory, or memory for the context in which a memory was formed, is a defining characteristic of human episodic memory and source memory errors are a debilitating symptom of memory dysfunction. Evidence for source memory in nonhuman primates is sparse despite considerable evidence for other types of sophisticated memory and the practical need for good models of episodic memory in nonhuman primates. A previous study showed that rhesus monkeys confused the identity of a monkey they saw with a monkey they heard, but only after an extended memory delay. This suggests that they initially remembered the source - visual or auditory - of the information but forgot the source as time passed. Here, we present a monkey model of source memory that is based on this previous study. In each trial, monkeys studied two images, one that they simply viewed and touched and the other that they classified as a bird, fish, flower, or person. In a subsequent memory test, they were required to select the image from one source but avoid the other. With training, monkeys learned to suppress responding to images from the to-be-avoided source. After longer memory intervals, monkeys continued to show reliable item memory, discriminating studied images from distractors, but made many source memory errors. Monkeys discriminated source based on study method, not study order, providing preliminary evidence that our manipulation of retention interval caused errors due to source forgetting instead of source confusion. Finally, some monkeys learned to select remembered images from either source on cue, showing that they did indeed remember both items and both sources. This paradigm potentially provides a new model to study a critical aspect of episodic memory in nonhuman primates. Copyright © 2017 Elsevier B.V. All rights reserved.
Retrieval from Episodic Memory: Neural Mechanisms of Interference Resolution
ERIC Educational Resources Information Center
Wimber, Maria; Rutschmann, Roland Marcus; Greenlee, Mark W.; Bauml, Karl-Heinz
2009-01-01
Selectively retrieving a target memory among related memories requires some degree of inhibitory control over interfering and competing memories, a process assumed to be supported by inhibitory mechanisms. Evidence from behavioral studies suggests that such inhibitory control can lead to subsequent forgetting of the interfering information, a…
Memory and Study Strategies for Optimal Learning.
ERIC Educational Resources Information Center
Hamachek, Alice L.
Study strategies are those specific reading skills that increase understanding, memory storage, and retrieval. Memory techniques are crucial to effective studying, and to subsequent performance in class and on written examinations. A major function of memory is to process information. Stimuli are picked up by sensory receptors and transferred to…
The Effect of Response and Type of Posttest on Understanding of and Memory for Text.
ERIC Educational Resources Information Center
Raphael, Taffy E.; Wonnacott, Clydie A.
A study examined whether (1) the performance of students on text explicit (TE), text implicit (TI), and script implicit (SI) questions inserted in a text would vary as a function of the type of question received; (2) students responding in writing to the inserted questions would perform at a higher level on a subsequent criterion test than those…
Bryant, Richard A; Chan, Iris
2017-10-01
Although priming mental representations of attachment security reduces arousal, research has not examined the effect of attachment on the retrieval of emotionally arousing memories. This study investigated the effect of priming attachment security on the retrieval of emotional memories. Seventy-five participants viewed negative and neutral images, and two days later received either an attachment prime or a control prime immediately prior to free recall of the images. Two days later, participants reported how frequently they experienced intrusions of the negative images. The attachment group had less distress, and reported fewer subsequent intrusions than the control group. Attachment style moderated these effects such that individuals with an avoidant attachment style were not impacted by the attachment prime. These findings suggest that priming attachment security decreases distress during memory reactivation, and this may reduce subsequent intrusive memories. Copyright © 2017 Elsevier Inc. All rights reserved.
Wegerer, Melanie; Blechert, Jens; Kerschbaum, Hubert; Wilhelm, Frank H.
2013-01-01
Intrusive memories – a hallmark symptom of posttraumatic stress disorder (PTSD) – are often triggered by stimuli possessing similarity with cues that predicted or accompanied the traumatic event. According to learning theories, intrusive memories can be seen as a conditioned response to trauma reminders. However, direct laboratory evidence for the link between fear conditionability and intrusive memories is missing. Furthermore, fear conditioning studies have predominantly relied on standardized aversive stimuli (e.g. electric stimulation) that bear little resemblance to typical traumatic events. To investigate the general relationship between fear conditionability and aversive memories, we tested 66 mentally healthy females in a novel conditioned-intrusion paradigm designed to model real-life traumatic experiences. The paradigm included a differential fear conditioning procedure with neutral sounds as conditioned stimuli and short violent film clips as unconditioned stimuli. Subsequent aversive memories were assessed through a memory triggering task (within 30 minutes, in the laboratory) and ambulatory assessment (involuntary aversive memories in the 2 days following the experiment). Skin conductance responses and subjective ratings demonstrated successful differential conditioning indicating that naturalistic aversive film stimuli can be used in a fear conditioning experiment. Furthermore, aversive memories were elicited in response to the conditioned stimuli during the memory triggering task and also occurred in the 2 days following the experiment. Importantly, participants who displayed higher conditionability showed more aversive memories during the memory triggering task and during ambulatory assessment. This suggests that fear conditioning constitutes an important source of persistent aversive memories. Implications for PTSD and its treatment are discussed. PMID:24244407
Grain size of recall practice for lengthy text material: fragile and mysterious effects on memory.
Wissman, Kathryn T; Rawson, Katherine A
2015-03-01
The current research evaluated the extent to which the grain size of recall practice for lengthy text material affects recall during practice and subsequent memory. The grain size hypothesis states that a smaller vs. larger grain size will increase retrieval success during practice that in turn will enhance subsequent memory for lengthy text material. Participants were prompted to recall directly after studying each section (section recall) or after all sections had been studied (whole-text recall) during practice, and then all participants completed a final test after a delay. Results across 7 experiments (including 587 participants and 1,394 recall protocols) partially disconfirmed the predictions of the grain size hypothesis: Although the smaller grain size produced sizable recall advantages during practice as expected (ds from 1.02 to 1.87 across experiments), the advantage was substantially or completely attenuated across a delay. Experiments 2-7 falsified several plausible methodological and theoretical explanations for the fragility of the effect, indicating that it was not due to particular text materials, retrieval from working memory during practice, the length of the retention interval, the spacing between study and practice recall, a disproportionate increase in recall of unimportant details, or a deficit in integration of ideas across text sections. In sum, results conclusively establish an initially sizable but mysteriously fragile effect of grain size, for which an explanation remains elusive. PsycINFO Database Record (c) 2015 APA, all rights reserved.
McDonough, Ian M; Wong, Jessica T; Gallo, David A
2013-05-01
Current theories of cognitive aging emphasize that the prefrontal cortex might not only be a major source of dysfunction but also a source of compensation. We evaluated neural activity associated with retrieval monitoring--or the selection and evaluation of recollected information during memory retrieval--for evidence of dysfunction or compensation. Younger and older adults studied pictures and words and were subsequently given criterial recollection tests during event-related functional magnetic resonance imaging. Although memory accuracy was greater on the picture test than the word test in both groups, activity in right dorsolateral prefrontal cortex (DLPFC) was associated with greater retrieval monitoring demands (word test > picture test) only in younger adults. Similarly, DLPFC activity was consistently associated with greater item difficulty (studied > nonstudied) only in younger adults. Older adults instead exhibited high levels of DLPFC activity for all of these conditions, and activity was greater than younger adults even when test performance was naturally matched across the groups (picture test). Correlations also differed between DLPFC activity and test performance across the groups. Collectively, these findings are more consistent with accounts of DLPFC dysfunction than compensation, suggesting that aging disrupts the otherwise beneficial coupling between DLPFC recruitment and retrieval monitoring demands.
Disentangling the roles of arousal and amygdala activation in emotional declarative memory
Fernández, Guillén; Hermans, Erno J.
2016-01-01
A large body of evidence in animals and humans implicates the amygdala in promoting memory for arousing experiences. Although the amygdala can trigger threat-related noradrenergic-sympathetic arousal, in humans amygdala activation and noradrenergic-sympathetic arousal do not always concur. This raises the question how these two processes play a role in enhancing emotional declarative memory. This study was designed to disentangle these processes in a combined subsequent-memory/fear-conditioning paradigm with neutral items belonging to two conceptual categories as conditioned stimuli. Functional MRI, skin conductance (index of sympathetic activity), and pupil dilation (indirect index of central noradrenergic activity) were acquired throughout procedures. Recognition memory for individual items was tested 24 h later. We found that pupil dilation and skin conductance responses were higher on CS+ (associated with a shock) compared with CS− trials, irrespective of later memory for those items. By contrast, amygdala activity was only higher for CS+ items that were later confidently remembered compared with CS+ items that were later forgotten. Thus, amygdala activity and not noradrenergic-sympathetic arousal, predicted enhanced declarative item memory. This dissociation is in line with animal models stating that the amygdala integrates arousal-related neuromodulatory changes to alter mnemonic processes elsewhere in the brain. PMID:27217115
Examining the influence of a spatially irrelevant working memory load on attentional allocation.
McDonnell, Gerald P; Dodd, Michael D
2013-08-01
The present study examined the influence of holding task-relevant gaze cues in working memory during a target detection task. Gaze cues shift attention in gaze-consistent directions, even when they are irrelevant to a primary detection task. It is unclear, however, whether gaze cues need to be perceived online to elicit these effects, or how these effects may be moderated if the gaze cues are relevant to a secondary task. In Experiment 1, participants encoded a face for a subsequent memory task, after which they performed an unrelated target detection task. Critically, gaze direction was irrelevant to the target detection task, but memory for the perceived face was tested at trial conclusion. Surprisingly, participants exhibited inhibition-of-return (IOR) and not facilitation, with slower response times for the gazed-at location. In Experiments 2, presentation duration and cue-target stimulus-onset asynchrony were manipulated and we continued to observe IOR with no early facilitation. Experiment 3 revealed facilitation but not IOR when the memory task was removed; Experiment 4 also revealed facilitation when the gaze cue memory task was replaced with arrows cues. The present experiments provide an important dissociation between perceiving cues online versus holding them in memory as it relates to attentional allocation. 2013 APA, all rights reserved
Carr, Valerie A; Viskontas, Indre V; Engel, Stephen A; Knowlton, Barbara J
2010-11-01
Studies examining medial temporal lobe (MTL) involvement in memory formation typically assess memory performance after a single, short delay. Thus, the relationship between MTL encoding activity and memory durability over time remains poorly characterized. To explore this relationship, we scanned participants using high-resolution functional imaging of the MTL as they encoded object pairs; using the remember/know paradigm, we then assessed memory performance for studied items both 10 min and 1 week later. Encoding trials were classified as either subsequently recollected across both delays, transiently recollected (i.e., recollected at 10 min but not after 1 week), consistently familiar, or consistently forgotten. Activity in perirhinal cortex (PRC) and a hippocampal subfield comprising the dentate gyrus and CA fields 2 and 3 reflected successful encoding only when items were recollected consistently across both delays. Furthermore, in PRC, encoding activity for items that later were consistently recollected was significantly greater than that for transiently recollected and consistently familiar items. Parahippocampal cortex, in contrast, showed a subsequent memory effect during encoding of items that were recollected after 10 min, regardless of whether they also were recollected after 1 week. These data suggest that MTL subfields contribute uniquely to the formation of memories that endure over time, and highlight a role for PRC in supporting subsequent durable episodic recollection.
Mattson, Julia T; Wang, Tracy H; de Chastelaine, Marianne; Rugg, Michael D
2014-12-01
It has consistently been reported that "negative" subsequent memory effects--lower study activity for later remembered than later forgotten items--are attenuated in older individuals. The present functional magnetic resonance imaging study investigated whether these findings extend to subsequent memory effects associated with successful encoding of item-context information. Older (n = 25) and young (n = 17) subjects were scanned while making 1 of 2 encoding judgments on a series of pictures. Memory was assessed for the study item and, for items judged old, the item's encoding task. Both memory judgments were made using confidence ratings, permitting item and source memory strength to be unconfounded and source confidence to be equated across age groups. Replicating prior findings, negative item effects in regions of the default mode network in young subjects were reversed in older subjects. Negative source effects, however, were invariant with respect to age and, in both age groups, the magnitude of the effects correlated with source memory performance. It is concluded that negative item effects do not reflect processes necessary for the successful encoding of item-context associations in older subjects. Negative source effects, in contrast, appear to reflect the engagement of processes that are equally important for successful episodic encoding in older and younger individuals. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Ehlers, Anke; Mauchnik, Jana; Handley, Rachel
2012-01-01
Unwanted memories of traumatic events are a core symptom of post-traumatic stress disorder. A range of interventions including imaginal exposure and elaboration of the trauma memory in its autobiographical context are effective in reducing such unwanted memories. This study explored whether priming for stimuli that occur in the context of trauma and evaluative conditioning may play a role in the therapeutic effects of these procedures. Healthy volunteers (N = 122) watched analogue traumatic and neutral picture stories. They were then randomly allocated to 20 min of either imaginal exposure, autobiographical memory elaboration, or a control condition designed to prevent further processing of the picture stories. A blurred picture identification task showed that neutral objects that preceded traumatic pictures in the stories were subsequently more readily identified than those that had preceded neutral stories, indicating enhanced priming. There was also an evaluative conditioning effect in that participants disliked neutral objects that had preceded traumatic pictures more. Autobiographical memory elaboration reduced the enhanced priming effect. Both interventions reduced the evaluative conditioning effect. Imaginal exposure and autobiographical memory elaboration both reduced the frequency of subsequent unwanted memories of the picture stories. PMID:21227404
Destination memory for self-generated actions.
El Haj, Mohamad
2016-10-01
There is a substantial body of literature showing memory enhancement for self-generated information in normal aging. The present paper investigated this outcome for destination memory or memory for outputted information. In Experiment 1, younger adults and older adults had to place (self-generated actions) and observe an experimenter placing (experiment-generated actions) items into two different destinations (i.e., a black circular box and a white square box). On a subsequent recognition task, the participants had to decide into which box each item had originally been placed. These procedures showed better destination memory for self- than experimenter-generated actions. In Experiment 2, destination and source memory were assessed for self-generated actions. Younger adults and older adults had to place items into the two boxes (self-generated actions), take items out of the boxes (self-generated actions), and observe an experimenter taking items out of the boxes (experiment-generated actions). On a subsequent recognition task, they had to decide into which box (destination memory)/from which box (source memory) each item had originally been placed/taken. For both populations, source memory was better than destination memory for self-generated actions, and both were better than source memory for experimenter-generated actions. Taken together, these findings highlight the beneficial effect of self-generation on destination memory in older adults.
Zoladz, Phillip R; Cadle, Chelsea E; Dailey, Alison M; Fiely, Miranda K; Peters, David M; Nagle, Hannah E; Mosley, Brianne E; Scharf, Amanda R; Brown, Callie M; Duffy, Tessa J; Earley, McKenna B; Rorabaugh, Boyd R; Payment, Kristie E
2017-07-01
Research examining the effects of stress on false memory formation has been equivocal, partly because of the complex nature of stress-memory interactions. A major factor influencing stress effects on learning is the timing of stress relative to encoding. Previous work has shown that brief stressors administered immediately before learning enhance long-term memory. Thus, we predicted that brief stress immediately before learning would decrease participants' susceptibility to subsequent misinformation and reduce false memory formation. Eighty-four male and female participants submerged their hand in ice cold (stress) or warm (no stress) water for 3min. Immediately afterwards, they viewed an 8-min excerpt from the Disney movie Looking for Miracles. The next day, participants were interviewed and asked several questions about the video, some of which forced them to confabulate responses. Three days and three weeks later, respectively, participants completed a recognition test in the lab and a free recall test via email. Our results revealed a robust misinformation effect, overall, as participants falsely recognized a significant amount of information that they had confabulated during the interview as having occurred in the original video. Stress, overall, did not significantly influence this misinformation effect. However, the misinformation effect was completely absent in stressed participants who exhibited a blunted cortisol response to the stress, for both recognition and recall tests. The complete absence of a misinformation effect in non-responders may lend insight into the interactive roles of autonomic arousal and corticosteroid levels in false memory development. Copyright © 2017 Elsevier Inc. All rights reserved.
Ear2 deletion causes early memory and learning deficits in APP/PS1 mice.
Kummer, Markus P; Hammerschmidt, Thea; Martinez, Ana; Terwel, Dick; Eichele, Gregor; Witten, Anika; Figura, Stefanie; Stoll, Monika; Schwartz, Stephanie; Pape, Hans-Christian; Schultze, Joachim L; Weinshenker, David; Heneka, Michael T; Urban, Inga
2014-06-25
To assess the consequences of locus ceruleus (LC) degeneration and subsequent noradrenaline (NA) deficiency in early Alzheimer's disease (AD), mice overexpressing mutant amyloid precursor protein and presenilin-1 (APP/PS1) were crossed with Ear2(-/-) mice that have a severe loss of LC neurons projecting to the hippocampus and neocortex. Testing spatial memory and hippocampal long-term potentiation revealed an impairment in APP/PS1 Ear2(-/-) mice, whereas APP/PS1 or Ear2(-/-) mice showed only minor changes. These deficits were associated with distinct synaptic changes including reduced expression of the NMDA 2A subunit and increased levels of NMDA receptor 2B in APP/PS1 Ear2(-/-) mice. Acute pharmacological replacement of NA by L-threo-DOPS partially restored phosphorylation of β-CaMKII and spatial memory performance in APP/PS1 Ear2(-/-) mice. These changes were not accompanied by altered APP processing or amyloid β peptide (Aβ) deposition. Thus, early LC degeneration and subsequent NA reduction may contribute to cognitive deficits via CaMKII and NMDA receptor dysfunction independent of Aβ and suggests that NA supplementation could be beneficial in treating AD. Copyright © 2014 the authors 0270-6474/14/348845-10$15.00/0.
Katus, Tobias; Müller, Matthias M; Eimer, Martin
2015-01-28
To adaptively guide ongoing behavior, representations in working memory (WM) often have to be modified in line with changing task demands. We used event-related potentials (ERPs) to demonstrate that tactile WM representations are stored in modality-specific cortical regions, that the goal-directed modulation of these representations is mediated through hemispheric-specific activation of somatosensory areas, and that the rehearsal of somatotopic coordinates in memory is accomplished by modality-specific spatial attention mechanisms. Participants encoded two tactile sample stimuli presented simultaneously to the left and right hands, before visual retro-cues indicated which of these stimuli had to be retained to be matched with a subsequent test stimulus on the same hand. Retro-cues triggered a sustained tactile contralateral delay activity component with a scalp topography over somatosensory cortex contralateral to the cued hand. Early somatosensory ERP components to task-irrelevant probe stimuli (that were presented after the retro-cues) and to subsequent test stimuli were enhanced when these stimuli appeared at the currently memorized location relative to other locations on the cued hand, demonstrating that a precise focus of spatial attention was established during the selective maintenance of tactile events in WM. These effects were observed regardless of whether participants performed the matching task with uncrossed or crossed hands, indicating that WM representations in this task were based on somatotopic rather than allocentric spatial coordinates. In conclusion, spatial rehearsal in tactile WM operates within somatotopically organized sensory brain areas that have been recruited for information storage. Copyright © 2015 Katus et al.
2014-01-01
Purpose: Uncontrolled radiation exposure due to radiological terrorism, industrial accidents or military circumstances is a continuing threat for the civilian population. Age plays a major role in the susceptibility to radiation; younger children are at higher risk of developing cognitive deterioration when compared to adults. Our objective was to determine if an exposure to radiation affected the vulnerability of the juvenile hippocampus to a subsequent moderate traumatic injury. Materials and methods: Three-week-old (juvenile) and eight-week-old young adult C57BL/J6 male mice received whole body cesium-137 (137Cs) irradiation with 4 gray (Gy). One month later, unilateral traumatic brain injury was induced using a controlled cortical impact system. Two months post-irradiation, animals were tested for hippocampus-dependent cognitive performance in the Morris water-maze. After cognitive testing, animals were euthanized and their brains frozen for immunohistochemical assessment of activated microglia and neurogenesis in the hippocampal dentate gyrus. Results: All animals were able to learn the water maze task; however, treatment effects were seen when spatial memory retention was assessed. Animals that received irradiation as juveniles followed by a moderate traumatic brain injury one month later did not show spatial memory retention, i.e., were cognitively impaired. In contrast, all groups of animals that were treated as adults showed spatial memory retention in the probe trials. Conclusion: Although the mechanisms involved are not clear, our results suggest that irradiation enhanced a young animal's vulnerability to develop cognitive injury following a subsequent traumatic injury. PMID:24164494
Reconsolidation and update of morphine-associated contextual memory in mice.
Escosteguy-Neto, Joao Carlos; Varela, Patricia; Correa-Neto, Nelson Francisco; Coelho, Laura Segismundo; Onaivi, Emmanuel S; Santos-Junior, Jair Guilherme
2016-04-01
Drug addiction can be viewed as a pathological memory that is constantly retrieved and reconsolidated. Since drug abuse takes place in different contexts, it could be considered that reconsolidation plays a role in memory updating. There is consistent evidence supporting the role of reconsolidation in the strength and maintenance of contextual memories induced by drugs of abuse. However, this role is not well established in memory update. The purpose of the current study was to assess the reconsolidation process over memory update. C57BL6 mice were subjected to a morphine-induced, conditioned place preference (CPP) paradigm. Based on CPP results, animals were divided into distinct experimental groups, according to the contextual characteristics of the re-exposure and a second CPP Test. Re-exposure in the original context was important for memory maintenance and re-exposure under discrete contextual changes resulted in memory updating, although original memory was maintained. Interestingly, cycloheximide, an inhibitor of protein synthesis, had different outcomes in our protocol. When the re-exposure was done under discrete contextual changes, cycloheximide treatment just after re-exposure blocked memory updating, without changes in memory maintenance. When re-exposure was done under the original context, only two subsequent cycloheximide injections (3 and 6h) disrupted later CPP expression. Considering the temporal window of protein synthesis in consolidation and reconsolidation, these findings suggest that re-exposure, according to the contextual characteristics in our protocol, could trigger both phenomena. Furthermore, when new information is present on retrieval, reconsolidation plays a pivotal role in memory updating. Copyright © 2016 Elsevier Inc. All rights reserved.
[Examination of the hypothesis 'the factors and mechanisms of superiority'].
Sierra-Fitzgerald, O; Quevedo-Caicedo, J; López-Calderón, M G
INTRODUCTION. The hypothesis of Geschwind and Galaburda suggests that specific cognitive superiority arises as a result of an alteration in development of the nervous system. In this article we review the co existence of superiority and inferiority . PATIENTS AND METHODS. A study was made of six children aged between 6 and 8 years old at the Instituto de Belles Artes Antonio Maria Valencia in Cali,Columbia with an educational level between second and third grade at a primary school and of medium low socio economic status. The children were considered to have superior musical ability by music experts, which is the way in which the concept of superiority was to be tested. The concept of inferiority was tested by neuropsychological tests = 1.5 DE below normal for the same age. We estimated the perinatal neurological risk in each case. Subsequently the children s general intelligence and specific cognitive abilities were evaluated. In the first case the WISC R and MSCA were used. The neuropsychological profiles were obtained by broad evaluation using a verbal fluency test, a test using counters, Boston vocabulary test, the Wechster memory scale, sequential verbal memory test, super imposed figures test, Piaget Head battery, Rey Osterrieth complex figure and the Wisconsin card classification test. The RESULTS showed slight/moderate deficits in practical construction ability and mild defects of memory and concept abilities. In general the results supported the hypothesis tested. The mechanisms of superiority proposed in the classical hypothesis mainly involve the contralateral hemisphere: in this study the ipsilateral mechanism was more important.
Lucas, Heather D.; Chiao, Joan Y.; Paller, Ken A.
2011-01-01
Memory is often less accurate for faces from another racial group than for faces from one's own racial group. The mechanisms underlying this phenomenon are a topic of active debate. Contemporary theories invoke factors such as inferior expertise with faces from other racial groups and an encoding emphasis on race-specifying information. We investigated neural mechanisms of this memory bias by recording event-related potentials while participants attempted to memorize same-race (SR) and other-race (OR) faces. Brain potentials at encoding were compared as a function of successful versus unsuccessful recognition on a subsequent-memory test. Late positive amplitudes predicted subsequent memory for SR faces and, to a lesser extent, for OR faces. By contrast, the amplitudes of earlier frontocentral N200 potentials and occipito-temporal P2 potentials were larger for later-remembered relative to later-forgotten OR faces. Furthermore, N200 and P2 amplitudes were larger for OR faces with features considered atypical of that race relative to faces that were race-stereotypical (according to a consensus from a large group of other participants). In keeping with previous reports, we infer that these earlier potentials index the processing of unique or individuating facial information, which is key to remembering a face. Individuation may tend to be uniformly high for SR faces but lower and less reliable for OR faces. Individuation may also be more readily applied for OR faces that appear less stereotypical. These electrophysiological measures thus provide novel evidence that poorer memory for OR faces stems from encoding that is inadequate because it fails to emphasize individuating information. PMID:21441983
A Barnes maze for juvenile rats delineates the emergence of spatial navigation ability.
McHail, Daniel G; Valibeigi, Nazanin; Dumas, Theodore C
2018-03-01
The neural bases of cognition may be greatly informed by relating temporally defined developmental changes in behavior with concurrent alterations in neural function. A robust improvement in performance in spatial learning and memory tasks occurs at 3 wk of age in rodents. We reported that the developmental increase of spontaneous alternation in a Y-maze was related to changes in temporal dynamics of fast glutamatergic synaptic transmission in the hippocampus. We also showed that, during allothetic behaviors in the Y-maze, network oscillation power increased at frequency bands known to support spatial learning and memory in adults. However, there are no discrete learning and memory phases during free exploration in the Y-maze. Thus, we adapted the Barnes maze for use with juvenile rats. Following a single platform exposure in dim light on the day before training (to encourage exploration), animals were trained on the subsequent 2 d in bright light to find a hidden escape box and then underwent a memory test 24 h later. During escape training, the older animals learned the task in 1 d, while the younger animals required 2 d and did not reach the performance of older animals. Long-term memory performance was also superior in the older animals. Thus, we have validated the use of the Barnes maze for this developmental period and established a timeline for the ontogeny of spatial navigation ability in this maze around 3 wk of age. Subsequent work will pair in vivo recording of hippocampal oscillations and single units with this task to help identify how hippocampal maturation might relate to performance improvements. © 2018 McHail et al.; Published by Cold Spring Harbor Laboratory Press.
Inhibition of Lactate Transport Erases Drug Memory and Prevents Drug Relapse.
Zhang, Yan; Xue, Yanxue; Meng, Shiqiu; Luo, Yixiao; Liang, Jie; Li, Jiali; Ai, Sizhi; Sun, Chengyu; Shen, Haowei; Zhu, Weili; Wu, Ping; Lu, Lin; Shi, Jie
2016-06-01
Drug memories that associate drug-paired stimuli with the effects of abused drugs contribute to relapse. Exposure to drug-associated contexts causes consolidated drug memories to be in a labile state, during which manipulations can be given to impair drug memories. Although substantial evidence demonstrates the crucial role of neuronal signaling in addiction, little is known about the contribution of astrocyte-neuron communication. Rats were trained for cocaine-induced conditioned place preference (CPP) or self-administration and microinjected with the glycogen phosphorylation inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol into the basolateral amygdala (BLA) immediately after retrieval. The concentration of lactate was measured immediately after retrieval via microdialysis, and the CPP score and number of nosepokes were recorded 24 hours later. Furthermore, we used antisense oligodeoxynucleotides to disrupt the expression of astrocytic lactate transporters (monocarboxylate transporters 1 and 2) in the BLA after retrieval, tested the expression of CPP 1 day later, and injected L-lactate into the BLA 15 minutes before retrieval to rescue the effects of the oligodeoxynucleotides. Injection of 1,4-dideoxy-1,4-imino-D-arabinitol into the BLA immediately after retrieval prevented the subsequent expression of cocaine-induced CPP, decreased the concentration of lactate in the BLA, and reduced the number of nosepokes for cocaine self-administration. Disrupting the expression of monocarboxylate transporters 1 and 2 in the BLA also caused subsequent deficits in the expression of cocaine-induced CPP, which was rescued by pretreatment with L-lactate. Our results suggest that astrocyte-neuron lactate transport in the BLA is critical for the reconsolidation of cocaine memory. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
The Influence of Encoding Strategy on Episodic Memory and Cortical Activity in Schizophrenia
Haut, Kristen; Csernansky, John G.; Barch, Deanna M.
2005-01-01
Background: Recent work suggests that episodic memory deficits in schizophrenia may be related to disturbances of encoding or retrieval. Schizophrenia patients appear to benefit from instruction in episodic memory strategies. We tested the hypothesis that providing effective encoding strategies to schizophrenia patients enhances encoding-related brain activity and recognition performance. Methods: Seventeen schizophrenia patients and 26 healthy comparison subjects underwent functional magnetic resonance imaging scans while performing incidental encoding tasks of words and faces. Subjects were required to make either deep (abstract/concrete) or shallow (alphabetization) judgments for words and deep (gender) judgments for faces, followed by subsequent recognition tests. Results: Schizophrenia and comparison subjects recognized significantly more words encoded deeply than shallowly, activated regions in inferior frontal cortex (Brodmann area 45/47) typically associated with deep and successful encoding of words, and showed greater left frontal activation for the processing of words compared with faces. However, during deep encoding and material-specific processing (words vs. faces), participants with schizophrenia activated regions not activated by control subjects, including several in prefrontal cortex. Conclusions: Our findings suggest that a deficit in use of effective strategies influences episodic memory performance in schizophrenia and that abnormalities in functional brain activation persist even when such strategies are applied. PMID:15992522
Alkozei, Anna; Smith, Ryan; Dailey, Natalie S; Bajaj, Sahil; Killgore, William D S
2017-01-01
Acute exposure to light within the blue wavelengths has been shown to enhance alertness and vigilance, and lead to improved speed on reaction time tasks, possibly due to activation of the noradrenergic system. It remains unclear, however, whether the effects of blue light extend beyond simple alertness processes to also enhance other aspects of cognition, such as memory performance. The aim of this study was to investigate the effects of a thirty minute pulse of blue light versus placebo (amber light) exposure in healthy normally rested individuals in the morning during verbal memory consolidation (i.e., 1.5 hours after memory acquisition) using an abbreviated version of the California Verbal Learning Test (CVLT-II). At delayed recall, individuals who received blue light (n = 12) during the consolidation period showed significantly better long-delay verbal recall than individuals who received amber light exposure (n = 18), while controlling for the effects of general intelligence, depressive symptoms and habitual wake time. These findings extend previous work demonstrating the effect of blue light on brain activation and alertness to further demonstrate its effectiveness at facilitating better memory consolidation and subsequent retention of verbal material. Although preliminary, these findings point to a potential application of blue wavelength light to optimize memory performance in healthy populations. It remains to be determined whether blue light exposure may also enhance performance in clinical populations with memory deficits.
Hines, Jarrod C.; Touron, Dayna R.; Hertzog, Christopher
2009-01-01
The current study evaluated a metacognitive account of study time allocation, which argues that metacognitive monitoring of recognition test accuracy and latency influences subsequent strategic control and regulation. We examined judgments of learning (JOLs), recognition test confidence judgments (CJs), and subjective response time (RT) judgments by younger and older adults in an associative recognition task involving two study-test phases, with self-paced study in phase 2. Multilevel regression analyses assessed the degree to which age and metacognitive variables predicted phase 2 study time independent of actual test accuracy and RT. Outcomes supported the metacognitive account – JOLs and CJs predicted study time independent of recognition accuracy. For older adults with errant RT judgments, subjective retrieval fluency influenced response confidence as well as (mediated through confidence) subsequent study time allocation. Older adults studied items longer which had been assigned lower CJs, suggesting no age deficit in using memory monitoring to control learning. PMID:19485662
The effects of attention on perceptual implicit memory.
Rajaram, S; Srinivas, K; Travers, S
2001-10-01
Reports on the effects of dividing attention at study on subsequent perceptual priming suggest that perceptual priming is generally unaffected by attentional manipulations as long as word identity is processed. We tested this hypothesis in three experiments by using the implicit word fragment completion and word stem completion tasks. Division of attention was instantiated with the Stroop task in order to ensure the processing of word identity even when the participant's attention was directed to a stimulus attribute other than the word itself. Under these conditions, we found that even though perceptual priming was significant, it was significantly reduced in magnitude. A stem cued recall test in Experiment 2 confirmed a more deleterious effect of divided attention on explicit memory. Taken together, our findings delineate the relative contributions of perceptual analysis and attentional processes in mediating perceptual priming on two ubiquitously used tasks of word fragment completion and word stem completion.
Moritz, S; Wahl, K; Zurowski, B; Jelinek, L; Hand, I; Fricke, S
2007-09-01
Mixed findings have been obtained in prior research with respect to the presence and severity of memory and metamemory deficits in obsessive-compulsive disorder (OCD). We tested the hypothesis that experimentally induced increments of subjective responsibility would lead to a disproportionately strong decline of memory confidence and enhanced response latencies in OCD while leaving memory accuracy unaffected. Twenty-eight OCD patients and 28 healthy controls were presented a computerized memory test framed with two different scenarios. In the neutral scenario, the participant was requested to imagine purchasing 15 items from a do-it-yourself store. In the recognition phase, the 15 needed items were presented along with 15 distractor items. The participant was asked to decide whether items were on his or her shopping list or not, graded by subjective confidence. In the responsibility scenario, the general experimental setup was analogous except that the participant now had to envision that he or she was a helper in a region recently struck by an earthquake, dispatched to provide 15 urgently needed goods from a nearby town. In line with prior work by our group, samples did not differ in either condition on memory accuracy in a subsequent recognition task. As hypothesized, OCD participants were less certain in their responses for the high responsibility condition than controls. Whereas patients and controls did not differ in their subjective estimates for memorized items, patients expressed stronger doubt that their earthquake mission was successful. The findings indicate that low memory confidence in OCD may only be elicited in situations where perceived responsibility is high and that patients may share higher performance standards ("good is not good enough") than controls when perceived responsibility is inflated.
Memory consolidation by replay of stimulus-specific neural activity.
Deuker, Lorena; Olligs, Jan; Fell, Juergen; Kranz, Thorsten A; Mormann, Florian; Montag, Christian; Reuter, Martin; Elger, Christian E; Axmacher, Nikolai
2013-12-04
Memory consolidation transforms initially labile memory traces into more stable representations. One putative mechanism for consolidation is the reactivation of memory traces after their initial encoding during subsequent sleep or waking state. However, it is still unknown whether consolidation of individual memory contents relies on reactivation of stimulus-specific neural representations in humans. Investigating stimulus-specific representations in humans is particularly difficult, but potentially feasible using multivariate pattern classification analysis (MVPA). Here, we show in healthy human participants that stimulus-specific activation patterns can indeed be identified with MVPA, that these patterns reoccur spontaneously during postlearning resting periods and sleep, and that the frequency of reactivation predicts subsequent memory for individual items. We conducted a paired-associate learning task with items and spatial positions and extracted stimulus-specific activity patterns by MVPA in a simultaneous electroencephalography and functional magnetic resonance imaging (fMRI) study. As a first step, we investigated the amount of fMRI volumes during rest that resembled either one of the items shown before or one of the items shown as a control after the resting period. Reactivations during both awake resting state and sleep predicted subsequent memory. These data are first evidence that spontaneous reactivation of stimulus-specific activity patterns during resting state can be investigated using MVPA. They show that reactivation occurs in humans and is behaviorally relevant for stabilizing memory traces against interference. They move beyond previous studies because replay was investigated on the level of individual stimuli and because reactivations were not evoked by sensory cues but occurred spontaneously.
The protective effects of acute cardiovascular exercise on the interference of procedural memory.
Jo, J S; Chen, J; Riechman, S; Roig, M; Wright, D L
2018-04-10
Numerous studies have reported a positive impact of acute exercise for procedural skill memory. Previous work has revealed this effect, but these findings are confounded by a potential contribution of a night of sleep to the reported exercise-mediated reduction in interference. Thus, it remains unclear if exposure to a brief bout of exercise can provide protection to a newly acquired motor memory. The primary objective of the present study was to examine if a single bout of moderate-intensity cardiovascular exercise after practice of a novel motor sequence reduces the susceptibility to retroactive interference. To address this shortcoming, 17 individuals in a control condition practiced a novel motor sequence that was followed by test after a 6-h wake-filled interval. A separate group of 17 individuals experienced practice with an interfering motor sequence 45 min after practice with the original sequence and were then administered test trials 6 h later. One additional group of 12 participants was exposed to an acute bout of exercise immediately after practice with the original motor sequence but prior to practice with the interfering motor sequence and the subsequent test. In comparison with the control condition, increased response times were revealed during the 6-h test for the individuals that were exposed to interference. The introduction of an acute bout of exercise between the practice of the two motor sequences produced a reduction in interference from practice with the second task at the time of test, however, this effect was not statistically significant. These data reinforce the hypothesis that while there may be a contribution from exercise to post-practice consolidation of procedural skills which is independent of sleep, sleep may interact with exercise to strengthen the effects of the latter on procedural memory.
Remembering Memories about Students with Disabilities
ERIC Educational Resources Information Center
Miller, Maury; Gresham, Pamela; Fouts, Bonnia
2011-01-01
Preservice general education classroom teachers in an inclusion course were asked to describe their own earliest memories of students with disabilities in school. Substantial literature links early memories to subsequent thoughts and attitudes. Subjects also completed the Opinions Relative to Integration of Students with Disabilities attitude…
A dual memory theory of the testing effect.
Rickard, Timothy C; Pan, Steven C
2017-06-05
A new theoretical framework for the testing effect-the finding that retrieval practice is usually more effective for learning than are other strategies-is proposed, the empirically supported tenet of which is that separate memories form as a consequence of study and test events. A simplest case quantitative model is derived from that framework for the case of cued recall. With no free parameters, that model predicts both proportion correct in the test condition and the magnitude of the testing effect across 10 experiments conducted in our laboratory, experiments that varied with respect to material type, retention interval, and performance in the restudy condition. The model also provides the first quantitative accounts of (a) the testing effect as a function of performance in the restudy condition, (b) the upper bound magnitude of the testing effect, (c) the effect of correct answer feedback, (d) the testing effect as a function of retention interval for the cases of feedback and no feedback, and (e) the effect of prior learning method on subsequent learning through testing. Candidate accounts of several other core phenomena in the literature, including test-potentiated learning, recognition versus cued recall training effects, cued versus free recall final test effects, and other select transfer effects, are also proposed. Future prospects and relations to other theories are discussed.
Nicotine Inhibits Memory CTL Programming
Sun, Zhifeng; Smyth, Kendra; Garcia, Karla; Mattson, Elliot; Li, Lei; Xiao, Zhengguo
2013-01-01
Nicotine is the main tobacco component responsible for tobacco addiction and is used extensively in smoking and smoking cessation therapies. However, little is known about its effects on the immune system. We confirmed that multiple nicotinic receptors are expressed on mouse and human cytotoxic T lymphocytes (CTLs) and demonstrated that nicotinic receptors on mouse CTLs are regulated during activation. Acute nicotine presence during activation increases primary CTL expansion in vitro, but impairs in vivo expansion after transfer and subsequent memory CTL differentiation, which reduces protection against subsequent pathogen challenges. Furthermore, nicotine abolishes the regulatory effect of rapamycin on memory CTL programming, which can be attributed to the fact that rapamycin enhances expression of nicotinic receptors. Interestingly, naïve CTLs from chronic nicotine-treated mice have normal memory programming, which is impaired by nicotine during activation in vitro. In conclusion, simultaneous exposure to nicotine and antigen during CTL activation negatively affects memory development. PMID:23844169
Dissociating the two faces of selective memory retrieval.
Dobler, Ina M; Bäuml, Karl-Heinz T
2012-07-01
Research in the past four decades has repeatedly shown that selective retrieval of some (non-target) memories can impair subsequent retrieval of other (target) information, a finding known as retrieval-induced forgetting. More recently, however, there is evidence that selective retrieval can both impair and enhance recall of related memories (K-H. T. Bäuml & Samenieh, 2010). To identify possible experimental dissociations between the detrimental and the beneficial effects of memory retrieval, we examined retrieval dynamics in listwise directed forgetting, varying the delay between preceding non-target and subsequent target recall. When target recall immediately followed non-target recall, we replicated the prior work and found detrimental effects of memory retrieval on to-be-remembered items but beneficial effects on to-be-forgotten items. In contrast, when a delay was introduced between non-target and target recall, the detrimental effects were present but the beneficial effects were absent. The results demonstrate a first experimental dissociation between the two effects of memory retrieval. They are consistent with a recent two-factor account of the two faces of selective memory retrieval.
Cortical reinstatement and the confidence and accuracy of source memory.
Thakral, Preston P; Wang, Tracy H; Rugg, Michael D
2015-04-01
Cortical reinstatement refers to the overlap between neural activity elicited during the encoding and the subsequent retrieval of an episode, and is held to reflect retrieved mnemonic content. Previous findings have demonstrated that reinstatement effects reflect the quality of retrieved episodic information as this is operationalized by the accuracy of source memory judgments. The present functional magnetic resonance imaging (fMRI) study investigated whether reinstatement-related activity also co-varies with the confidence of accurate source judgments. Participants studied pictures of objects along with their visual or spoken names. At test, they first discriminated between studied and unstudied pictures and then, for each picture judged as studied, they also judged whether it had been paired with a visual or auditory name, using a three-point confidence scale. Accuracy of source memory judgments- and hence the quality of the source-specifying information--was greater for high than for low confidence judgments. Modality-selective retrieval-related activity (reinstatement effects) also co-varied with the confidence of the corresponding source memory judgment. The findings indicate that the quality of the information supporting accurate judgments of source memory is indexed by the relative magnitude of content-selective, retrieval-related neural activity. Copyright © 2015 Elsevier Inc. All rights reserved.
McDermott, Kathleen B; Gilmore, Adrian W; Nelson, Steven M; Watson, Jason M; Ojemann, Jeffrey G
2017-02-01
Neuroimaging investigations of human memory encoding and retrieval have revealed that multiple regions of parietal cortex contribute to memory. Recently, a sparse network of regions within parietal cortex has been identified using resting state functional connectivity (MRI techniques). The regions within this network exhibit consistent task-related responses during memory formation and retrieval, leading to its being called the parietal memory network (PMN). Among its signature patterns are: deactivation during initial experience with an item (e.g., encoding); activation during subsequent repetitions (e.g., at retrieval); greater activation for successfully retrieved familiar words than novel words (e.g., hits relative to correctly-rejected lures). The question of interest here is whether novel words that are subjectively experienced as having been recently studied would elicit PMN activation similar to that of hits. That is, we compared old items correctly recognized to two types of novel items on a recognition test: those correctly identified as new and those incorrectly labeled as old due to their strong associative relation to the studied words (in the DRM false memory protocol). Subjective oldness plays a strong role in driving activation, as hits and false alarms activated similarly (and greater than correctly-rejected lures). Copyright © 2016 Elsevier Ltd. All rights reserved.
Neuroimaging analysis of an anesthetic gas that blocks human emotional memory.
Alkire, Michael T; Gruver, Robin; Miller, Jason; McReynolds, Jayme R; Hahn, Emily L; Cahill, Larry
2008-02-05
It is hypothesized that emotional arousal modulates long-term memory consolidation through the amygdala. Gaseous anesthetic agents are among the most potent drugs that cause temporary amnesia, yet the effects of inhalational anesthesia on human emotional memory processing remain unknown. To study this, two experiments were performed with the commonly used inhalational anesthetic sevoflurane. In experiment 1, volunteers responded to a series of emotional and neutral slides while under various subanesthetic doses of sevoflurane or placebo (no anesthesia). One week later, a mnemonic boost for emotionally arousing stimuli was evident in the placebo, 0.1%, and 0.2% sevoflurane groups, as measured with a recognition test. However, the mnemonic boost was absent in subjects who received 0.25% sevoflurane. Subsequently, in experiment 2, glucose PET assessed brain-state-related activity of subjects exposed to 0.25% sevoflurane. Structural equation modeling of the PET data revealed that 0.25% sevoflurane suppressed amygdala to hippocampal effective connectivity. The behavioral results show that 0.25% sevoflurane blocks emotional memory, and connectivity results demonstrate that this dose of sevoflurane suppresses the effective influence of the amygdala. Collectively, the findings support the hypothesis that the amygdala mediates memory modulation by demonstrating that suppressed amygdala effectiveness equates with a loss of emotional memory.
An ideal observer analysis of visual working memory.
Sims, Chris R; Jacobs, Robert A; Knill, David C
2012-10-01
Limits in visual working memory (VWM) strongly constrain human performance across many tasks. However, the nature of these limits is not well understood. In this article we develop an ideal observer analysis of human VWM by deriving the expected behavior of an optimally performing but limited-capacity memory system. This analysis is framed around rate-distortion theory, a branch of information theory that provides optimal bounds on the accuracy of information transmission subject to a fixed information capacity. The result of the ideal observer analysis is a theoretical framework that provides a task-independent and quantitative definition of visual memory capacity and yields novel predictions regarding human performance. These predictions are subsequently evaluated and confirmed in 2 empirical studies. Further, the framework is general enough to allow the specification and testing of alternative models of visual memory (e.g., how capacity is distributed across multiple items). We demonstrate that a simple model developed on the basis of the ideal observer analysis-one that allows variability in the number of stored memory representations but does not assume the presence of a fixed item limit-provides an excellent account of the empirical data and further offers a principled reinterpretation of existing models of VWM. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Memory conformity and the perceived accuracy of self versus other.
Allan, Kevin; Midjord, J Palli; Martin, Doug; Gabbert, Fiona
2012-02-01
Here, we demonstrate that the decision to conform to another person's memory involves a strategic trade-off that balances the accuracy of one's own memory against that of another person. We showed participants three household scenes, one for 30 s, one for 60 s, and one for 120 s. Half were told that they would encode each scene for half as long as their virtual partner, and half were told that they would encode each scene for twice as long as their virtual partner. On a subsequent two-alternative-forced choice (2AFC) memory test, the simulated answer of the partner (accurate, errant, or no response) was shown before participants responded. Conformity to the partner's responses was significantly enhanced for the 30-s versus the 60- and 120-s scenes. This pattern, however, was present only in the group who believed that they had encoded each scene for half as long as their partner, even though the short-duration scene had the lowest baseline 2AFC accuracy in both groups and was also subjectively rated as the least memorable by both groups. Our reliance on other people's memory is therefore dynamically and strategically adjusted according to knowledge of the conditions under which we and other people have acquired different memories.
Neuroimaging analysis of an anesthetic gas that blocks human emotional memory
Alkire, Michael T.; Gruver, Robin; Miller, Jason; McReynolds, Jayme R.; Hahn, Emily L.; Cahill, Larry
2008-01-01
It is hypothesized that emotional arousal modulates long-term memory consolidation through the amygdala. Gaseous anesthetic agents are among the most potent drugs that cause temporary amnesia, yet the effects of inhalational anesthesia on human emotional memory processing remain unknown. To study this, two experiments were performed with the commonly used inhalational anesthetic sevoflurane. In experiment 1, volunteers responded to a series of emotional and neutral slides while under various subanesthetic doses of sevoflurane or placebo (no anesthesia). One week later, a mnemonic boost for emotionally arousing stimuli was evident in the placebo, 0.1%, and 0.2% sevoflurane groups, as measured with a recognition test. However, the mnemonic boost was absent in subjects who received 0.25% sevoflurane. Subsequently, in experiment 2, glucose PET assessed brain-state-related activity of subjects exposed to 0.25% sevoflurane. Structural equation modeling of the PET data revealed that 0.25% sevoflurane suppressed amygdala to hippocampal effective connectivity. The behavioral results show that 0.25% sevoflurane blocks emotional memory, and connectivity results demonstrate that this dose of sevoflurane suppresses the effective influence of the amygdala. Collectively, the findings support the hypothesis that the amygdala mediates memory modulation by demonstrating that suppressed amygdala effectiveness equates with a loss of emotional memory. PMID:18227504
Negative effects of item repetition on source memory.
Kim, Kyungmi; Yi, Do-Joon; Raye, Carol L; Johnson, Marcia K
2012-08-01
In the present study, we explored how item repetition affects source memory for new item-feature associations (picture-location or picture-color). We presented line drawings varying numbers of times in Phase 1. In Phase 2, each drawing was presented once with a critical new feature. In Phase 3, we tested memory for the new source feature of each item from Phase 2. Experiments 1 and 2 demonstrated and replicated the negative effects of item repetition on incidental source memory. Prior item repetition also had a negative effect on source memory when different source dimensions were used in Phases 1 and 2 (Experiment 3) and when participants were explicitly instructed to learn source information in Phase 2 (Experiments 4 and 5). Importantly, when the order between Phases 1 and 2 was reversed, such that item repetition occurred after the encoding of critical item-source combinations, item repetition no longer affected source memory (Experiment 6). Overall, our findings did not support predictions based on item predifferentiation, within-dimension source interference, or general interference from multiple traces of an item. Rather, the findings were consistent with the idea that prior item repetition reduces attention to subsequent presentations of the item, decreasing the likelihood that critical item-source associations will be encoded.
Cerciello, Milena; Isella, Valeria; Proserpi, Alice; Papagno, Costanza
2017-01-01
Alzheimer's disease (AD), vascular dementia (VaD) and frontotemporal dementia (FTD) are the most common forms of dementia. It is well known that memory deficits in AD are different from those in VaD and FTD, especially with respect to cued recall. The aim of this clinical study was to compare the memory performance in 15 AD, 10 VaD and 9 FTD patients and 20 normal controls by means of a 24-item Grober-Buschke test [8]. The patients' groups were comparable in terms of severity of dementia. We considered free and total recall (free plus cued) both in immediate and delayed recall and computed an Index of Sensitivity to Cueing (ISC) [8] for immediate and delayed trials. We assessed whether cued recall predicted the subsequent free recall across our patients' groups. We found that AD patients recalled fewer items from the beginning and were less sensitive to cueing supporting the hypothesis that memory disorders in AD depend on encoding and storage deficit. In immediate recall VaD and FTD showed a similar memory performance and a stronger sensitivity to cueing than AD, suggesting that memory disorders in these patients are due to a difficulty in spontaneously implementing efficient retrieval strategies. However, we found a lower ISC in the delayed recall compared to the immediate trials in VaD than FTD due to a higher forgetting in VaD.
Meeuwissen, Esther B; Takashima, Atsuko; Fernández, Guillén; Jensen, Ole
2011-12-01
It is becoming increasingly clear that demanding cognitive tasks rely on an extended network engaging task-relevant areas and, importantly, disengaging task-irrelevant areas. Given that alpha activity (8-12 Hz) has been shown to reflect the disengagement of task-irrelevant regions in attention and working memory tasks, we here ask if alpha activity plays a related role for long-term memory formation. Subjects were instructed to encode and maintain the order of word sequences while the ongoing brain activity was recorded using magnetoencephalography (MEG). In each trial, three words were presented followed by a 3.4 s rehearsal interval. Considering the good temporal resolution of MEG this allowed us to investigate the word presentation and rehearsal interval separately. The sequences were grouped in trials where word order either could be tested immediately (working memory trials; WM) or later (LTM trials) according to instructions. Subjects were tested on their ability to retrieve the order of the three words. The data revealed that alpha power in parieto-occipital regions was lower during word presentation compared to rehearsal. Our key finding was that parieto-occipital alpha power during the rehearsal period was markedly stronger for successfully than unsuccessfully encoded LTM sequences. This subsequent memory effect demonstrates that high posterior alpha activity creates an optimal brain state for successful LTM formation possibly by actively reducing parieto-occipital activity that might interfere with sequence encoding. Copyright © 2010 Wiley Periodicals, Inc.
Sleep, Plasticity and Memory from Molecules to Whole-Brain Networks
Abel, Ted; Havekes, Robbert; Saletin, Jared M.; Walker, Matthew P.
2014-01-01
Despite the ubiquity of sleep across phylogeny, its function remains elusive. In this review, we consider one compelling candidate: brain plasticity associated with memory processing. Focusing largely on hippocampus-dependent memory in rodents and humans, we describe molecular, cellular, network, whole-brain and behavioral evidence establishing a role for sleep both in preparation for initial memory encoding, and in the subsequent offline consolidation ofmemory. Sleep and sleep deprivation bidirectionally alter molecular signaling pathways that regulate synaptic strength and control plasticity-related gene transcription and protein translation. At the cellular level, sleep deprivation impairs cellular excitability necessary for inducing synaptic potentiation and accelerates the decay of long-lasting forms of synaptic plasticity. In contrast, NREM and REM sleep enhance previously induced synaptic potentiation, although synaptic de-potentiation during sleep has also been observed. Beyond single cell dynamics, large-scale cell ensembles express coordinated replay of prior learning-related firing patterns during subsequent sleep. This occurs in the hippocampus, in the cortex, and between the hippocampus and cortex, commonly in association with specific NREM sleep oscillations. At the whole-brain level, somewhat analogous learning-associated hippocampal (re)activation during NREM sleep has been reported in humans. Moreover, the same cortical NREM oscillations associated with replay in rodents also promote human hippocampal memory consolidation, and this process can be manipulated using exogenous reactivation cues during sleep. Mirroring molecular findings in rodents, specific NREM sleep oscillations before encoding refresh human hippocampal learning capacity, while deprivation of sleep conversely impairs subsequent hippocampal activity and associated encoding. Together, these cross-descriptive level findings demonstrate that the unique neurobiology of sleep exert powerful effects on molecular, cellular and network mechanism of plasticity that govern both initial learning and subsequent long-term memory consolidation. PMID:24028961
Caplan, Brina; Schutt, Russell K; Turner, Winston M; Goldfinger, Stephen M; Seidman, Larry J
2006-03-01
To test the effect of living in group housing rather than independent apartments on executive functioning, verbal memory and sustained attention among formerly homeless persons with serious mental illness and to determine whether substance abuse modifies this effect. In metropolitan Boston, 112 persons in Department of Mental Health shelters were randomly assigned to group homes ("Evolving Consumer Households", with project facilitator, group meetings, resident decision-making) or independent apartments. All were case managed. A neuropsychological test battery was administered at baseline, at 18 months (Time 2), with an 81% follow-up rate, and at 48 months (Time 3), with a 59% follow-up rate. Hierarchical Linear Modeling was applied to executive functioning--assessed with the Wisconsin Card Sorting Test (Perseverations)-Logical Memory story recall, and an auditory Continuous Performance Test (CPT) for sustained attention. Subject characteristics were controlled. When moved to group homes, subjects without a lifetime substance abuse history improved on Perseverations, while those who moved to independent apartments deteriorated on Perseverations. Across the two housing conditions, subjects showed no change in Perseverations, but improved on Logical Memory story recall and the CPT. Type of housing placement can influence cognitive functioning; notably, socially isolating housing is associated with weakened executive functioning. Substance abuse significantly diminishes environmental effects. These are important factors to consider in housing placement and subsequent treatment.
The analogy between dreams and the ancient art of memory is tempting but superficial.
Axmacher, Nikolai; Fell, Juergen
2013-12-01
Although the analogy between dreams and ancient mnemotechniques is tempting because they share several phenomenological characteristics, this analogy is superficial at a closer look. Unlike mneomotechnically encoded material, rapid eye movement (REM) dreams are inherently difficult to remember, do not usually allow conscious subsequent retrieval of all interconnected elements, and have been found to support subsequent episodic memory in only rare cases.
Elimination of ``memory`` from sample handling and inlet system of a mass spectrometer
Chastgner, P.
1991-05-08
This paper describes a method for preparing the sample handling and inlet system of a mass spectrometer for analysis of a subsequent sample following analysis of a previous sample comprising the flushing of the system interior with supercritical CO{sub 2} and venting the interior. The method eliminates the effect of system ``memory`` on the subsequent analysis, especially following persistent samples such as xenon and krypton.
Relative recency influences object-in-context memory
Tam, Shu K.E.; Bonardi, Charlotte; Robinson, Jasper
2015-01-01
In two experiments rats received training on an object-in-context (OIC) task, in which they received preexposure to object A in context x, followed by exposure to object B in context y. In a subsequent test both A and B are presented in either context x or context y. Usually more exploration is seen of the object that has not previously been paired with the test context, an effect attributed to the ability to remember where an object was encountered. However, in the typical version of this task, object A has also been encountered less recently than object B at test. This is precisely the arrangement in tests of ‘relatively recency’ (RR), in which more remotely presented objects are explored more than objects experienced more recently. RR could contaminate performance on the OIC task, by enhancing the OIC effect when animals are tested in context y, and masking it when the test is in context x. This possibility was examined in two experiments, and evidence for superior performance in context y was obtained. The implications of this for theoretical interpretations of recognition memory and the procedures used to explore it are discussed. PMID:25546721
Memory Operations and Structures in Sentence Comprehension: Evidence from Ellipsis
ERIC Educational Resources Information Center
Martin, Andrea Eyleen
2010-01-01
Natural language often contains dependencies that span words, phrases, or even sentences. Thus, language comprehension relies on recovering recently processed information from memory for subsequent interpretation. This dissertation investigates the memory operations that subserve dependency resolution through the lens of "verb-phrase ellipsis"…
Progesterone at Encoding Predicts Subsequent Emotional Memory
ERIC Educational Resources Information Center
Ertman, Nicole; Andreano, Joseph M.; Cahill, Larry
2011-01-01
Significant sex differences in the well-documented relationship between stress hormones and memory have emerged in recent studies. The potentiating effects of glucocorticoids on memory vary across the menstrual cycle, suggesting a potential interaction between these stress hormones and endogenously cycling sex hormones. Here, we show that memory…
Further validation of the Internet-based Dementia Risk Assessment.
Brandt, Jason; Blehar, Justin; Anderson, Allan; Gross, Alden L
2014-01-01
Most approaches to the detection of presymptomatic or prodromal Alzheimer's disease require the costly collection and analysis of biological samples or neuroimaging measurements. The Dementia Risk Assessment (DRA) was developed to facilitate this detection by collecting self-report and proxy-report of dementia risk variables and episodic memory performance on a free Internet website. We now report two validation studies. In Study 1, 130 community-residing older adults seeking memory screening at senior health fairs were tested using the Mini-Cog, and were then observed while taking the DRA. They were compared to a demographically-matched subsample from our anonymous Internet sample. Participants seeking memory screening had more dementia risk factors and obtained lower scores on the DRA's recognition memory test (RMT) than their Internet controls. In addition, those who failed the Mini-Cog obtained much lower scores on the RMT than those who passed the Mini-Cog. In Study 2, 160 older adults seeking evaluation of cognitive difficulties took the DRA prior to diagnostic evaluations at outpatient dementia clinics. Patients who ultimately received the diagnosis of a dementia syndrome scored significantly lower on the RMT than those diagnosed with other conditions or deemed normal. Lower education, family history of dementia, presence of hypercholesterolemia and diabetes, and memory test score distinguished the dementia and no-dementia groups with around 82% accuracy. In addition, score on the RMT correlated highly with scores on other instruments widely used to detect cognitive decline. These findings support the concurrent validity of the DRA for detecting prevalent cognitive impairment. Prospective studies of cognitively normal persons who subsequently develop dementia will be necessary to establish its predictive validity.
Tremel, Joshua J; Ortiz, Daniella M; Fiez, Julie A
2018-06-01
When making a decision, we have to identify, collect, and evaluate relevant bits of information to ensure an optimal outcome. How we approach a given choice can be influenced by prior experience. Contextual factors and structural elements of these past decisions can cause a shift in how information is encoded and can in turn influence later decision-making. In this two-experiment study, we sought to manipulate declarative memory efficacy and decision-making in a concurrent discrimination learning task by altering the amount of information to be learned. Subjects learned correct responses to pairs of items across several repetitions of a 50- or 100-pair set and were tested for memory retention. In one experiment, this memory test interrupted learning after an initial encoding experience in order to test for early encoding differences and associate those differences with changes in decision-making. In a second experiment, we used fMRI to probe neural differences between the two list-length groups related to decision-making across learning and assessed subsequent memory retention. We found that a striatum-based system was associated with decision-making patterns when learning a longer list of items, while a medial cortical network was associated with patterns when learning a shorter list. Additionally, the hippocampus was exclusively active for the shorter list group. Altogether, these behavioral, computational, and imaging results provide evidence that multiple types of mnemonic representations contribute to experienced-based decision-making. Moreover, contextual and structural factors of the task and of prior decisions can influence what types of evidence are drawn upon during decision-making. Copyright © 2018 Elsevier Ltd. All rights reserved.
Goodfellow, Molly J; Lindquist, Derick H
2014-09-01
In rodents, ethanol exposure in early postnatal life is known to induce structural and functional impairments throughout the brain, including the hippocampus. Herein, rat pups were administered one of three ethanol doses over postnatal days (PD) 4-9, a period of brain development comparable to the third trimester of human pregnancy. As adults, control and ethanol rats were trained and tested in a variant of hippocampal-dependent one-trial context fear conditioning. In Experiment 1, subjects were placed into a novel context and presented with an immediate footshock (i.e., within ∼8 sec). When re-exposed to the same context 24 hr later low levels of conditioned freezing were observed. Context pre-exposure 24 hr prior to the immediate shock reversed the deficit in sham-intubated and unintubated control rats, enhancing freezing behavior during the context retention test. Even with context pre-exposure, however, significant dose-dependent reductions in contextual freezing were seen in ethanol rats. In Experiment 2, the interval between context pre-exposure and the immediate shock was shortened to 2 hr, in addition to the standard 24 hr. Ethanol rats trained with the 2 hr, but not 24 hr, interval displayed retention test freezing levels roughly equal to controls. Results suggest the ethanol rats can encode a short-term context memory and associate it with the aversive footshock 2 hr later. In the 24 hr ethanol rats the short-term context memory is poorly transferred or consolidated into long-term memory, we propose, impeding the memory's subsequent retrieval and association with shock. © 2014 Wiley Periodicals, Inc.
Disentangling the roles of arousal and amygdala activation in emotional declarative memory.
de Voogd, Lycia D; Fernández, Guillén; Hermans, Erno J
2016-09-01
A large body of evidence in animals and humans implicates the amygdala in promoting memory for arousing experiences. Although the amygdala can trigger threat-related noradrenergic-sympathetic arousal, in humans amygdala activation and noradrenergic-sympathetic arousal do not always concur. This raises the question how these two processes play a role in enhancing emotional declarative memory. This study was designed to disentangle these processes in a combined subsequent-memory/fear-conditioning paradigm with neutral items belonging to two conceptual categories as conditioned stimuli. Functional MRI, skin conductance (index of sympathetic activity), and pupil dilation (indirect index of central noradrenergic activity) were acquired throughout procedures. Recognition memory for individual items was tested 24 h later. We found that pupil dilation and skin conductance responses were higher on CS+ (associated with a shock) compared with CS- trials, irrespective of later memory for those items. By contrast, amygdala activity was only higher for CS+ items that were later confidently remembered compared with CS+ items that were later forgotten. Thus, amygdala activity and not noradrenergic-sympathetic arousal, predicted enhanced declarative item memory. This dissociation is in line with animal models stating that the amygdala integrates arousal-related neuromodulatory changes to alter mnemonic processes elsewhere in the brain. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Xiu, Daiming; Geiger, Maximilian J; Klaver, Peter
2015-01-01
This study investigated the role of bottom-up and top-down neural mechanisms in the processing of emotional face expression during memory formation. Functional brain imaging data was acquired during incidental learning of positive ("happy"), neutral and negative ("angry" or "fearful") faces. Dynamic Causal Modeling (DCM) was applied on the functional magnetic resonance imaging (fMRI) data to characterize effective connectivity within a brain network involving face perception (inferior occipital gyrus and fusiform gyrus) and successful memory formation related areas (hippocampus, superior parietal lobule, amygdala, and orbitofrontal cortex). The bottom-up models assumed processing of emotional face expression along feed forward pathways to the orbitofrontal cortex. The top-down models assumed that the orbitofrontal cortex processed emotional valence and mediated connections to the hippocampus. A subsequent recognition memory test showed an effect of negative emotion on the response bias, but not on memory performance. Our DCM findings showed that the bottom-up model family of effective connectivity best explained the data across all subjects and specified that emotion affected most bottom-up connections to the orbitofrontal cortex, especially from the occipital visual cortex and superior parietal lobule. Of those pathways to the orbitofrontal cortex the connection from the inferior occipital gyrus correlated with memory performance independently of valence. We suggest that bottom-up neural mechanisms support effects of emotional face expression and memory formation in a parallel and partially overlapping fashion.
Interference effects between memory systems in the acquisition of a skill.
Gagné, Marie-Hélène; Cohen, Henri
2016-10-01
There is now converging evidence that the declarative memory system (hippocampus dependent) contributes to sequential motor learning in concert with the procedural memory system (striatum dependent). Because of the competition for shared neuronal resources, introducing a declarative memory task can impair learning of a new motor sequence and interference may occur during the procedural consolidation process. Here, we investigated the extent to which interference effects between memory systems are seen at the retrieval phase of skill learning. Healthy participants were assigned to a control (n = 15) or a declarative condition (n = 15) and trained on a sequence of finger movements (FOS task). Both groups showed similar improvement at the end of the practice session on the first day. Twenty-four hours later, controls were tested solely on the FOS task, while subjects in the declarative condition first engaged in a visuospatial task. Additional offline gains in performance were observed only in the control condition. The introduction of a visuospatial memory task just before retrieval of the motor skill was sufficient to eliminate these gains. This suggests that interference between procedural and declarative memory systems may also occur during subsequent motor recall. It is proposed that the interference effects are linked, in part, to the spatial nature of the motor and declarative tasks, which specifically depends upon hippocampal involvement.
Learning, memory and long-term potentiation are altered in Nedd4 heterozygous mice.
Camera, Daria; Coleman, Harold A; Parkington, Helena C; Jenkins, Trisha A; Pow, David V; Boase, Natasha; Kumar, Sharad; Poronnik, Philip
2016-04-15
The consolidation of short-term memory into long-term memory involves changing protein level and activity for the synaptic plasticity required for long-term potentiation (LTP). AMPA receptor trafficking is a key determinant of LTP and recently ubiquitination by Nedd4 has been shown to play an important role via direct action on the GluA1 subunit, although the physiological relevance of these findings are yet to be determined. We therefore investigated learning and memory in Nedd4(+/-) mice that have a 50% reduction in levels of Nedd4. These mice showed decreased long-term spatial memory as evidenced by significant increases in the time taken to learn the location of and subsequently find a platform in the Morris water maze. In contrast, there were no significant differences between Nedd4(+/+) and Nedd4(+/-) mice in terms of short-term spatial memory in a Y-maze test. Nedd4(+/-) mice also displayed a significant reduction in post-synaptic LTP measured in hippocampal brain slices. Immunofluorescence of Nedd4 in the hippocampus confirmed its expression in hippocampal neurons of the CA1 region. These findings indicate that reducing Nedd4 protein by 50% significantly impairs LTP and long-term memory thereby demonstrating an important role for Nedd4 in these processes. Copyright © 2016 Elsevier B.V. All rights reserved.